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Abstract
We study a process of averaging in a distributed system with noisy communication. Each of the
agents in the system starts with some value and the goal of each agent is to compute the average
of all the initial values. In each round, one pair of agents is drawn uniformly at random from the
whole population, communicates with each other and each of these two agents updates their local
value based on their own value and the received message. The communication is noisy and whenever
an agent sends any value v, the receiving agent receives v +N , where N is a zero-mean Gaussian
random variable. The two quality measures of interest are (i) the total sum of squares TSS(t),
which measures the sum of square distances from the average load to the initial average and (ii)
φ̄(t), which measures the sum of square distances from the average load to the running average
(average at time t).

It is known that the simple averaging protocol – in which an agent sends its current value and
sets its new value to the average of the received value and its current value – converges eventually to
a state where φ̄(t) is small. It has been observed that TSS(t), due to the noise, eventually diverges
and previous research – mostly in control theory – has focused on showing eventual convergence
w.r.t. the running average. We obtain the first probabilistic bounds on the convergence time of
φ̄(t) and precise bounds on the drift of TSS(t) that show that although TSS(t) eventually diverges,
for a wide and interesting range of parameters, TSS(t) stays small for a number of rounds that is
polynomial in the number of agents. Our results extend to the synchronous setting and settings
where the agents are restricted to discrete values and perform rounding.
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1 Introduction

We consider the problem of distributed averaging by a group of agents (e.g., sensors),
initialized with values that represent, for example, different temperature measurements. The
agents’ goal is to compute the average of all the initial values using the following simple
dynamic: In each discrete round, two agents are drawn uniformly at random from the whole
population, communicate their values to each other and set their new values to the average
of their old value and the received value. Converging to the average plays a key role in
many applications, e.g., for sensor networks [56, 50], social insects [10], and robotics [20, 30].
In all of these applications, the agents (sensors, ants, and robots) are very simple and are
therefore limited in both memory and communication. Moreover, communication is often
erroneouees.1 This motivates the study of the aforementioned simple averaging dynamic
in a setting where the agents only remember one value, do not use any additional memory,
and the communication is subject to noise. We model the noise in the communication as
follows: Whenever an agent sends any value v, the receiving agent receives v + N , where
random variable N is distributed according to some zero-mean probability distribution ℵ,
e.g., a normal distribution. The agents update their values as follows: whenever two agents
communicate, each agent sets its new value to the average of their old value and the received
value; note that – due to the noise – the two agents might have distinct new values.

The values of the n nodes in step t of the process are denoted by X(t)
1 , X

(t)
2 , . . . , X

(t)
n .

We consider the following models: (i) the sequential setting where one pair of agents is
chosen uniformly at random and (ii) the synchronous setting where each agent is matched
to exactly one other agent chosen uniformly at random. The two quality measures of the
convergence used in this work are (i) the total sum of squares TSS(t) =

∑
i(X

(t)
i −∅(0))2,

where ∅(0) =
∑
iX

(0)
i /n is the initial average and (ii) the sum of squared distances to the

running average φ̄(t) =
∑
i(X

(t)
i −∅(t))2, where ∅(t) =

∑
iX

(t)
i /n is the running average.

Our contributions can be informally summarized as follows:

(i) We give, under mild assumptions on the noise, the first bounds on the convergence
time of the running average φ̄(t) in the noisy gossip-based communication setting. The
bounds we obtain are – up to a constant factor – tight. In particular, the potential
converges to a value that is linear in n and the second moment of the noise E

[
N2 ];

which is tight. So far it was only known that the process eventually converges to a
state where φ̄(t) is small (e.g., [54]), but precise bounds were not known. (Theorem 1)

(ii) We show that, in contrast to the current belief, one can hope to converge to the initial
average in addition to convergence to the running average as long as the number of
rounds are bounded: It was known that TSS(t), due to the noise, eventually diverges
(the running average diverges from the initial average) and for this reason related
research – mostly in control theory – has focused on showing eventual convergence w.r.t.
φ̄(t); leaving TSS(t) aside. Since we give precise bounds on the convergence time of
the running average, we can show the following. Under mild assumptions on the noise,
TSS(t) converges to almost the same value as φ̄(t) as long as the number of time steps
t is bounded by O(n2), where n is the number of nodes. (Corollary 2)

(iii) We pioneer in the discrete setting in which the agents can store only integer values
and the noise is also an integer. In this setting the agents in our algorithm perform
randomized rounding. We show that this only causes a negligible difference from the
continuous case. (Corollary 3)

1 Consult Subsection 1.1 for a more detailed review of these applications including the limitation of agents
and further motivation. Subsection 1.1 also contains related work on the averaging protocol.
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(iv) We study both the sequential and the synchronous setting and show that there is no
significant difference (up to a scaling of time) between the models. (Corollary 4)

(v) We perform simulations in the setting where nodes are limited in storage, i.e., they
can only store values from a bounded range. This leads to a much faster (by order
of magnitude) divergence between the running average and the initial average. Our
simulations also seem to indicate strong bounds on the distribution of distances to the
running average in our main model (unbounded values). (Section 5)

The convergence time of the averaging processes in the gossip-based communication
setting without noise has been studied before (e.g., [37]). However, to the best of our
knowledge, no bounds on the convergence time are known in the gossip-based communication
setting with noise. We continue with a detailed motivation for studying noise in the simple
averaging dynamic and related work.

1.1 Motivation and Related Work
Converging to the average plays a key role in many applications in which agents have limited
computational and communication power, e.g.,
(i) sensor networks [56, 50]: here there is a wide range of application including terrain

monitor applications [51], computing an average temperature, PIR sensors measuring
the infrared light radiation emitted from objects, and many more applications. In such
scenarios links are often faded [46, 14],

(ii) social insects: for ants, values could represent the individuals’ different assessments of
nest qualities when house hunting [10] or the deficit of workers at a given task [41], and

(iii) robotics [20, 30] and in particular memory-limited robots, e.g., Kilobots exploring the
percentage of white tiles in an area [21], or microbots measuring the concentration of
chemicals.

In all of these applications the agents (representing sensors, ants or robots) are very simple
and severely limited in both memory and communication. Moreover, the communication is
often not only limited but also erroneous (e.g., consider wireless communication with obstacles
between robots), or received messages are subject to interpretation (e.g., when insects com-
municate through gestures [39]). Motivated by this unreliable communication in applications
we study the simple averaging dynamic where the communication is subject to noise.

We continue with related work. The problem of distributed values converging to the
average (often without noise) has been studied in various areas reaching back to early versions
studied in statistics [18, 26, 31]. However, to the best of our knowledge, none of the studied
models match our model. We review the related work by areas:
(i) average consensus and its applications,
(ii) gossip-based communication models,
(iii) consensus protocols in population protocols,
(iv) biological distributed algorithms,
(v) noise and failures in sensor networks.

Average consensus and its applications. Consensus has been studied intensively in various
settings in general network topologies, much of it under the name of average consensus
[55, 53]. Most of this work is orthogonal to our work: First, due to the general network
topology and the fact that, in each step of the studied algorithms, the agents update their
values with a weighted average of all of their neighbors’ values whereas in our averaging
dynamic, an agent can only access a single other value per interaction. Second, while the
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potential functions in these works and the noise, if any, are usually identically or similarly
defined as in our work the main goal of these papers is – just as in the classic works – to
study under which circumstances the processes eventually converge to a state with a small
potential function [55], whereas we are interested in the number of interactions until our
process obtains a small potential. Recent papers [45, 11, 40, 15] consider the convergence
rate of the weighted averaging process, but only in the noiseless setting. Average consensus
has also been studied in networks with time-varying topologies [44, 49]. Variants with noisy
communication were studied [55, 36], but they only consider additive noise and assume it to
be zero-mean with unit variance (as mentioned before, only convergence in the limit is shown).
The noisy version of the problem also received ample attention in control theory [52, 48, 47].
Already in the early works on average consensus immediate applications of converging to the
average were discovered and intensively studied, e.g., applications to load balancing between
parallel machines [9, 17] or to coordinate distributed mobile agents [9, 34, 23]. For a more
detailed overview on average linear consensus consult the survey [27].

Gossip-based communication models. Much closer to our work is the study of aggregating
information in gossip-based model. In this model, each node can contact one of its neighbors
in the network in each round and exchange information with it. Even though a node can be
contacted by many neighbors in a single round, this model, if applied to the complete graph,
is very similar to our synchronous model. On the complete graph [37] shows that O(n · lnn)
interactions are enough to approximate the average well with high probability. On the one
hand they consider more general graphs (in some sense we consider the complete graph); on
the other hand they do not consider noise, which simplifies their analysis of the convergence
time significantly.

Consensus protocols in population protocols, biological distributed algorithms. Motiv-
ated by biological applications, population protocols have also been studied in the noisy
setting in the context of biological distributed algorithms. The authors of [24] study rumor
spreading and consensus in extremely faulty networks where a bit in a message can be flipped
with probability 1/2 − ε. This was later generalized in [25] to plurality consensus. The
authors of [8] study the differences between pull and push rumor spreading in the noisy
setting. Reaching consensus to an opinion in population protocols in the noiseless setting
has received much attention (see e.g., [4, 22, 1, 2, 5, 6, 19, 7, 38, 29, 28, 35]).

Noise and failures in sensor networks. The problem of converging to the average (and
similar problems) have also been studied in (noisy) sensor networks [56, 50] where nodes
again can interact with all their neighbors. In these networks another type of unreliable
communication, i.e., packages might be dropped, has received ample attention, e.g., [12]
studies the broadcast problem and [13] develops a framework to transform certain algorithms
for failure free networks to also work in faulty sensor networks.

An interesting type of failure has been studied in [32]. There failures do not happen
during the communication but the algorithm itself might be faulty, i.e., a state machine run
at an agent might switch to a wrong state.

1.2 Formal Results
We now formally state our main theorems. For the ease of presentation, in the discussion
we assume that noise is normally distributed with unit variance, N ∼ N (0, 1), but our
results hold for general variance σ2. Let φ0 = φ̄(X(0)) be the initial potential. Our first
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theorem shows that the agents converge to a small value of φ̄(t) = O(n) after parallel
time2 that is logarithmic in φ0/n. In particular, if we use b to denote the initial imbalance
(b = maxi,j{x(0)

i − x
(0)
j }), then it takes O(ln b) parallel steps for the potential to become

φ̄(t) = O(n). Note that φ̄(t) = O(n) means that the “average” difference between the values
of any two agents is constant and we show that the constant hidden in the O-notation is
actually very small. It is worth mentioning that this is tight in two senses: (i) In expectancy
we have φ̄(t) = Ω(n) for any fixed time step t ≥ n, (i.e., after one parallel time step).
Even in the case where all nodes initially have the same value, our results show that the
potential increases after n interactions in expectation by Ω(nE

[
N2 ]) = Ω(n). (ii) At least

Ω(ln b) parallel time steps are required3 to decrease the potential to O(n), since the potential
only drops in expectation by a constant factor in each parallel step. The formal statement
is as follows.

I Theorem 1 (Convergence to Running Avg.). Consider any noise-distribution ℵ with (at
least) exponential-decay4. Fix any δ ∈ R. Let n = n(δ) be large enough. The following hold:

(i) for any t = Ω
(
n ln

(
φ0
δσ2n

))
with probability at least 1− δ we have

φ̄(X(t)) = O(σ2n ln(1/δ)) ,
(ii) for any t ≥ n (parallel time) with constant probability we have φ̄(X(t)) = Ω(σ2n) and
(iii) even without noise, for any t = o

(
n ln

(
φ0
σ2n

))
we have E

[
φ̄(X(t))

]
= ω(σ2n) .

While the above theorem shows a quick convergence to the running average, this does
not imply convergence to the initial average. In fact, as time progresses the distance to the
initial average (TSS(X(t))) is likely to increase. Nonetheless, in the case of the Gaussian
white noise model we can bound the drift of the running average from the initial average
in a time window of O(n2) steps (see Lemma 17). Theorem 1 roughly says that after at
least t = Ω(n logn) steps the distance to the running average is small if we start with a
potential that is polynomial in n. Thus, as long as t = Ω(n logn) and t = O(n2) we obtain
TSS(X(t)) = O (n). After the O(n2) step time window the potential starts to increase again,
which, is unavoidable, due to the noise causing drift of the running average; in Gaussian
white noise model, the running average after t steps diverges with constant probability from
the initial average by

√
t
n (Lemma 17). This in turn implies that TSS(X(t)) ≥ t/n.

I Corollary 2 ((Bounded) Divergence from Initial Avg.). In the case of Gaussian white noise
model, for any δ ∈ R and large enough n = n(δ) and all t = Ω

(
n ln

(
φ̄(X(0))
δσ2n

))
we have

(i) “non-divergence for O(n2) steps”, i.e., TSS(X(t)) = O
((

t
n + n

)
σ2 ln(1/δ)

)
with prob-

ability at least 1− δ and
(ii) “divergence for ω(n2) steps”, i.e., TSS(X(t)) = Ω

((
t
n + n

)
σ2) with constant probabil-

ity.
If one can bound the divergence between the running average and the initial average for a
general noise-distribution ℵ with (at least) exponential-decay5 the following remark is useful
to obtain a similar bound for the TSS(X(t)) as in Corollary 2. Recall that ∅(t) =

∑
iX

(t)
i /n

and in particular, ∅(0) denotes the initial average.

2 Recall that in parallel time we scale time by a factor of n for a fair comparison with the synchronous
time model.

3 For the case where constant fraction of the values are at distance b.
4 In fact we only require the function to be smooth, which we define later. This class is much broader

and contains most of the famous distributions including the normal distribution, geometric distribution
and the Poisson distribution.

5 Again, we only require the function to be smooth, which we define in Section 3.

ICALP 2019



148:6 Noidy Conmunixatipn: On the Convergence of the Averaging Population Protocol

I Remark 2. Fix any δ ∈ R. Let n = n(δ) be large enough. For any fixed t = Ω
(
n ln

(
φ0
δσ2n

))
with probability at least 1− δ we have TSS(X(t)) = Θ

(
n
(
∅(t) −∅(0))2 + σ2n ln(1/δ)

)
.

Remark 2 follows by rewriting TSS(t) = φ̄(X(t)) + n ·
(
∅(0) −∅(t))2 (cf. Fact 9) and

plugging in the first part of Theorem 1. Corollary 2 then follows by plugging in the bounded
deviation of the running average from the initial average for the Gaussian white noise model
(cf. Lemma 17).

The Influence of Rounding. Agents with limited computational power might not be able
to store real values. Motivated by this we also consider the setting where agents can only
store integers. In particular, we consider the case that the averaging protocol is augmented
with the following rounding procedure: Assume that the noise N ∼ ℵ takes only integer
variables. After a node i receives the value from node j, the node averages it as before and
then rounds up or down with equal probability. In the full version we show how to relate the
setting of rounding to the original setting allowing us to derive the following corollary.

I Corollary 3. The bounds of Theorem 1 and Corollary 2 hold even if rounding is used.

The Synchronous Model. In the full version, we show how our results extend to the
synchronous setting. It turns out that the results are the same up to a rescaling of time.

I Corollary 4 (Synchronous Setting). The bounds of Theorem 1 and Corollary 2 hold even
in the synchronous setting, where time is rescaled by a factor of 2/n.

Experimental Results. In Section 5, we simulate the averaging dynamic in various settings.
In the first setting, we consider the distribution of the distances between agents’ values and
the running average. Our simulations show that these distances seem to follow an exponential
law, i.e., the concentration is even stronger than what Theorem 1 implies.

Due to the limited memory of agents it would be desirable to obtain similar results as
in Theorem 1 for the averaging dynamic in the setting where agents can only store values
from a bounded range. However, our simulations in Section 5 show that this setting leads
to a much faster (by order of magnitude) divergence between the running average and the
initial average.

1.3 Technical Contributions
While it is not hard to show that in expectation the potentials TSS(t) and φ̄(t) decrease in one
step as long as their value is large, it is surprisingly challenging to derive probabilistic bounds
on either potential at an arbitrary point in time, i.e., bounds of the type P

[
φ̄(t) ≥ b

]
≤ p(b).

Two of the reasons are as follows. (i) The potential decreases (expectedly) only conditioned
on the fact that it is large enough. In fact, when the potential is small, then due to the noise
it will increase in expectation. (ii) Since we study general distributions and in particular
the normal distribution, the noise in a given round can be arbitrarily large leading to an
arbitrarily large increase in φ̄(t); if the protocol runs long enough (possibly exponentially long
in n) we, indeed, will have encountered some time steps with a very large potential increase.
There are surprisingly few analytical tools for using potentials as φ̄(t) with challenges (i) and
(ii). One notable exception is Hajek’s theorem [33], which can be used to bound the value of
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such a potential at a given time t. However, in our setting – with our potential function –
the results obtained are very weak.6

Instead, we use a more sophisticated approach that at its core has a decomposition
of the potential change in a single time step into three additive (but dependent) random
variables. We iterate this decomposition over time throughout some interval I = (t0, t1] and
sum the respective variables which we will denote as S−(I), S′(I), and S∗(I). Then (cf.
Proposition 12) we are able to bound the potential change at the end of the interval as

φ̄(X(t1)) ≤
(

1− S−(I)
t1 − t0

)t1−t0
· φ̄(X(t0)) + S′(I) + S∗(I). (1)

Due to the dependencies between the three variables we use strong Martingale concentration
bounds to separately upper bound S′(I) + S∗(I) and lower bound S−(I) (cf. Lemma 14).
We then use a union bound – to circumvent the dependencies – to bound each of these
variables allowing us to get a bound on Equation 1. It is critical that we define the random
variable S− in such a way that it always has an expected decrease. This is in stark contrast to
the entire potential, which, as we mentioned before in (i), only decreases in expectation when
it is large. Having an unconditional decrease of S− allows us to consider arbitrarily large
intervals. With these bounds at hand one can use Equation 1 to obtain probabilistic bounds
on the potential at any given point time t1. However, due to the bound on S′(I) + S∗(I)
the total bound becomes very weak for large intervals. As a remedy, we carefully trace the
change in the potential in different regimes (with several phases in each regime) and we
separately apply the aforementioned analysis with a fresh (small) interval in each phase. The
intervals (and thus also the phases) have variable length – decreasing geometrically or even
exponentially, depending on the regime.

All missing proofs can be found in the full version [43].

2 Model

In this section we present the model including all assumptions. We have a collection of n
agents that have initial values X(0)

1 , X
(0)
2 , . . . , X

(0)
n . Time is discrete and X(t)

i denotes the
value of agent i ∈ [n] at time t. Recall that ∅(t) =

∑
iX

(t)
i /n denotes the average value

at time t; in particular, ∅(0) denotes the initial average. For two random variables X and
Y we write X d= Y if they have the same (probability) distribution. Next, we define the
communication models.

I Definition 5 (Communication Models). We consider two communication models.
(i) Sequential model: At every discrete time step two of the agents i, j are chosen uniformly

at random (with replacement7) and send their current values xi and xj to each other,
where the values received are xi +Ni and xj +Nj , where Ni, Nj

d= N .
(ii) Synchronous model: At every discrete time step a perfect matching is chosen u.a.r.

among all perfect matchings on the n agents8. All matched agents interchange their

6 Hajek’s theorem considers the moment generating function of the potential. In order to apply the
theorem to our potential, it seems that one would need to consider a logarithmic version of the potential,
which together with the moment generating function results in bound that is weaker than a simple
union bound.

7 This is not crucial to our results, but simplifies the calculations slightly.
8 Again, we allow matchings of the kind (i, i) for simplicity. It is easy but slightly less aesthetic to modify
our results to exclude matchings (i, i).

ICALP 2019



148:8 Noidy Conmunixatipn: On the Convergence of the Averaging Population Protocol

values as in the sequential model.
We use the parallel time, which was first defined in [3], to denote the time step t/n in the
sequential model. This notion eases the comparison of results in both models, as the total
number of interactions is up to a factor of 2 equal.

I Definition 6 (Noise Models). Let v be the value sent by an agent. The value received
is v + N , where N is distributed according to some zero-mean noise distribution ℵ with
σ2 = Var [N ].

We consider general noise distributions and our results depend on the moments of N . The
following two models are of special interest in this paper.
(i) Gaussian white noise model where ℵ = N (0, σ2) for an arbitrary σ.
(ii) Discrete white noise model where ℵ = D(p), with P [N = i ] = 1

2p(1−p)
|i|, for i ∈ Z\{0}

and P [N = 0 ] = p, where p ∈ (0, 1]. Note that Var [N ] = 1−p
p2 .

From now on we assume that the noise N is distributed according to a fixed noise distribution
ℵ that is independent of n.

I Definition 7 (Averaging Dynamic). We consider the real valued and the discrete valued
algorithm. A node with value v at time receiving the input w sets its new value to
(i) v′ = (v + w)/2 in the real valued model.

(ii) v′ =
{
d(v + w)/2e w.p. 1

2

b(v + w)/2c otherwise
in the discrete valued model.

A probability distribution D is called sub-Gaussian if for X ∼ D we have that there exists
positive constants c1, c2 such that for every x we have P [ |X| ≥ x ] ≤ c1 exp(−c2x2).

Whenever we calculate the new values X(t+1) by conditioning on the current state,
X(t) = x(t) we use small letters x(t)

i to denote fixed values and capitalized letters X(t+1)
i

to denote random variables. Furthermore, we use bold-face to denote vectors. Throughout
the paper we will assume that the number of agents n is large enough and in particular
nE
[
N2 ] ≥ 1.

We define the following potentials which are essential in all our proofs and formal results.

I Definition 8 (Potentials).

TSS(x(t)) =
∑
i

(
x

(t)
i −∅(0)

)2
, φ̄(x(t)) =

∑
i

(
x

(t)
i −∅(t)

)2
, φ(x(t)) =

∑
i,j

(
x

(t)
i − x

(t)
j

)2
.

When clear from the context we drop the time index t and we write x instead of x(t), xi
instead of x(t)

i , etc. Similarly we will use the following short forms TSS(t) = TSS(x(t))
and φ̄(t) = φ̄(x(t)). We emphasize that the difference between φ̄(x) and TSS(t) is that the
former measures the squared distance w.r.t. the running average and the latter w.r.t. initial
average. Initially, we have φ̄(x(0)) = TSS(0). In [43] we prove the following fact that shows
how φ̄(X(t)) relates to TSS(t) and how φ̄ relates to φ.

I Fact 9. We have that
1. TSS(t) = φ̄(X(t)) + n ·

(
∅(0) −∅(t))2 and

2. φ(x) = 2n · φ̄(x).

Note that many alternative ways to define the potential at a time t such as the max
distance and `1 norm give only a very partial picture: The max distance to the mean for
example does not distinguish between just one node being far and all nodes being far. On the
other hand, the `1 norm does not “punish” outliers enough: there is no difference between n
nodes being off by 1 from the average and one node being off by n.
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Notation
We use X ∼ D to denote that X is distributed according to probability distribution D. For
two random variables X and Y we write X ≤st Y if X is stochastically dominated by Y , i.e.,
P [X ≥ x ] ≤ P [Y ≥ x ] for all x ∈ R. We use ‖x‖2 to denote the L2-norm. In the sequential
model we have two random variables N (t)

1 and N (t)
2 for the noise of the channel at time step

t (recall that N (t)
1 and N (t)

2 are distributed according to ℵ). We define the following two
random variables N ′(t) and N∗(t) that will play a key role in our analysis:

N ′(t) =
(
N

(t)
1

)2
+
(
N

(t)
2

)2
, N∗(t) = N

(t)
1 +N

(t)
2 .

I Fact 10. In the Gaussian noise model, we have N∗(t) ∼ N (0, 2σ2) and N ′(t) ∼ Γ(1, 2σ2),
where Γ(·, ·) denotes the gamma distribution.

When clear from the context we simply write N ′ and N∗ instead of N ′(t) and N∗(t), respect-
ively. We use Ft to denote the filtration at time t, which encapsulates all randomness up to
time t as well as the initial values of the nodes; hence it defines the state at time t completely.

3 The Sequential Setting: Convergence towards the Running
Average

Conditioning on all the randomness until time t, i.e., conditioning on Ft, we define

∆(t+1) =


(
x

(t)
i
−x(t)

j

)2

2φ̄(x(t)) for φ̄(x(t)) > 0
1/n otherwise

, where i and j are the chosen in round t.

I Lemma 11 (One Step Bound). Fix an arbitrary potential at time t. Suppose the pair i, j
was chosen to communicate and condition on the filtration Ft (all events that happened up
to round t). Then, the following holds

φ̄(X(t+1))− φ̄(x(t)) ≤ −∆(t+1)φ̄(x(t)) + N ′(t+1)

4 +N∗(t+1)

(
x

(t)
i + x

(t)
j

2 −∅(t)

)
.

Further we have E
[

∆(t+1) | Ft
]

= 1
n .

In order to prove the statement, we first calculate the exact expected change in one step
(which we do in the full version). We then majorize (stochastic dominance) with the slightly
more convenient statement above.

For an arbitrary time interval I define

S′(I) =
∑
τ∈I

N ′(τ)/4, S∗(I) =
∑
τ∈I

N∗(τ)

(
x

(τ−1)
i + x

(τ−1)
j

2 −∅(τ)

)
, S−(I) =

∑
τ∈I

∆(τ) .

Note that, in the definition of S∗, we sum up over all time steps τ in the interval I and we
consider the pair i and j that is chosen in round τ (in each round a different pair i and j
can be chosen). With Lemma 11 and the definitions of S′, S∗ and S− we can deduce the
following decomposed bound on the potential for an arbitrary interval.

I Proposition 12 (Decomposition of Potential). Fix arbitrary t0, t1 and consider the interval
I = (t0, t1]. For t = t1 − t0 we have that

φ̄(X(t1)) ≤
(

1− S−(I)
t

)t
φ̄(X(t0)) + S′(I) + S∗(I). (1)
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Our results only hold for smooth noise distributions, which we define in the following. Let

mt,δ = arg max
`

{
P
[

max
({
N
′(t0), . . . , N

′(t0+t)
}
∪
{
N∗(t0), . . . , N∗(t0+t)

})
≤ `

]
≥ 1− δ

}
.

I Definition 13. A noise distribution ℵ is smooth if for all δ > 0 and all t > 0 we have
mt,δ ≤

(
t
δ

)1/20.

Any (sub-)linear probability distribution and even some inverse polynomial distributions
are smooth. Thus many practically relevant distributions such as Gaussian, binomial
and Poisson distributions are smooth. For example, for the standard normal distribution
(N ∼ N (0, 1)) we have mt,δ = log(t/δ), since in each time step the probability that the N2

exceeds log(t/δ) is equal to the probability that N exceeds
√

log(t/δ) which happens w.p.
at most δ/t. Taking union bound over all t steps shows that it is smooth.

Using strong martingale concentration bounds (see the full version for details) and bound-
ing the variance, we deduce the following upper bound on S∗ + S′ and lower bound on S−.

I Lemma 14. Let t0, t1 be such that t1 > t0 and consider the interval I = (t0, t1].
(i) With probability 1− δ we have

S∗(I) + S′(I) ≤

t

4E [N ′ ] + 5
√
t

n

(
ln(4t/δ)m∗t,δ/4

)2
(2 + E [N ′ ])

√
φ̄(x(t0)) + 9tE [N ′ ] + 2 .

(ii) For any γ < 1, w.p. at least 1− exp
(
− 3γ2t

8n

)
we have S−(I) ≥ (1− γ) tn .

The following proposition almost directly implies Theorem 1.

I Proposition 15. Fix any δ ∈ (0, 1] and assume that the noise distribution is smooth. There
exists a constant c such that for a time step t0 with potential φ̄(x(t0)) we have

P
[
φ̄(X(t∗)) ≥ ln(1/δ)nE [N ′ ] + b | Ft0

]
≤ δ,

where t∗ = t0 + cn ln
(
φ̄(x(t0))
E[N ′ ]nδ

)
and b = 2 (1 + E [N ′ ]) (ln(1/δ))9

n9/10.

Proof Sketch. We only sketch the proof idea for a simplified setting; during the sketch we
assume that N ∼ N (0, 1) (with E [N ′ ] = O(1)) and also that δ is at least 1/n3. The main
ingredients for the proof are Proposition 12 and Lemma 14. For an interval I = (t0, t1]
Proposition 12 upper bounds the potential at time t1 by

φ̄(X(t1)) ≤
(

1− S−(I)
t

)t
φ̄(X(t0)) + S′(I) + S∗(I), (2)

where t is the length of the interval. Lemma 14 lower bounds S−(I) and upper bounds the sum
S′(I) + S∗(I). To prove Proposition 15 we have to show that the initial potential φ̄(x(t0))
decreases to O(n) after O(n · log φ̄(x(t0))) time steps with probability 1 − δ. Optimally,
we would use a single application of Proposition 12 to upper bound the potential as in
Equation 2 and then bound the terms S−(I) and S′(I) + S∗(I) via Lemma 14. However,
the bounds on S− and S′ + S∗ given by Lemma 14 are too loose to yield the desired result
via a single application of Proposition 12 and Lemma 14 with the whole time interval
I = [t0, t0 + O(n log φ̄(x(t0)))]. For example, the bound on S′ + S∗ inherently has a term
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of order
√
φ̄, where φ̄ is the potential at the start of the interval for which Lemma 14, i is

applied. Thus a one shot proof as described above can never reach a potential below
√
φ̄.

This is not sufficient if the initial potential is large, e.g., say for φ̄� n8/3.
To circumvent this problem we apply Proposition 12 and Lemma 14 several times for

smaller time intervals: More detailed, we split the proof of Proposition 15 into two regimes.
In regime 2 we use several phases to decrease the potential to Θ(n4/3). If the potential is φ̄
at the beginning of a phase a single application of Proposition 12 and Lemma 14 reduces the
potential to φ̄3/4. The length of each such phase is geometrically decreasing by a factor 3/4
where the first phase is of length O

(
n ln

(
φ̄(x(t0))
nδ

))
. After the last phase of regime 2 the

potential is of order n4/3.
Then, in regime 1 the potential reduces from Θ(n4/3) to O(n), again through several

phases. If the first phase of regime 1 starts with a potential of size B, the phase has length
t = O(n ln(B)). If there was no additive increase due to the noise, then this would reduce
the potential to 0. However, there is an additive increase of Θ(t) = Θ(n ln(B)) which leaves
us with a potential of size O(n ln(B)). The next phase will therefore be of length n ln ln(B)
etc. This is repeated for ln∗(B) phases until the potential reduces to O(n), which, as we
explained in Subsection 1.2, is the furthest the potential can be decreased .

Putting everything together, we get that after O
(
n ln

(
φ̄(x(t0))
nδ

))
rounds the potential

reduces to O(n). J

The full proof of Proposition 15 handles general E [N ′ ] and general δ and thus it is significantly
more technical. It can be found in the full version. From Proposition 15 we are able to
derive Theorem 1.

4 Deviation from the Initial Average

An informal argument for the statements in this section in the special case of σ = 1 can
be found in [54]. Before we state our results we need the following result on the standard
normal distribution.
I Theorem 16 ([16]). Let Φ(x) denote the cumulative distribution function of the standard
normal distribution. We have for x ≥ 0:

1√
2π

x

x2 + 1 exp
(
−x2/2

)
≤ Φ(x) ≤ 1√

2π
1
x

exp
(
−x2/2

)
.

We can now state and prove the main results of this section.

I Lemma 17. For any t and any δ < 1 , we have ∅(t) −∅(0) ∼
∑2t

τ=1
N(τ)

2n with probability
at least 1− δ, where N (τ) is the noise of the channel. In particular, for the Gaussian white
noise model setting where N ∼ N (0, σ2) we have

∑2t
τ=1N

(τ) ∼ N (0, 2tσ2). Thus

(i) |∅(t) −∅(0)| ≤ σ
√
t ln(1/δ)
n w.p. at least 1− δ

(ii) |∅(t) −∅(0)| ≥ σ
√
t ln(1/δ)
n w.p. at least δ

2
√

2 ln(1/δ)
.

Using the Berry-Esseen theorem, one can easily prove similar bounds for any distribution
with bounded third moment including discrete white noise.

In the following we consider the potential (∅t)t≥0 as a Martingale to derive the desired
concentration bounds. The following bound is weaker than the aforementioned bounds,
however, it is useful whenever the noise is such that mt,δ/(2t) is small.
I Proposition 18. For any t ≥ 2 and any δ < 1, we have −mt,δ/(2t)σ

√
2t ≤ ∅(t) −∅(0) ≤

mt,δ/(2t)σ
√

2t with probability at least 1− δ.
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5 Experimental Results

The goal of this section is twofold. First, we seek to better understand the distribution D
of the distances x(t)

i − ∅(t). Second, we simulate a setting in which the range of values is
bounded, motivated by computational and storage limited agents. All results in this section
are based on an implementation of the simple averaging dynamic. The code (python3) for
the experiments can be found here [42].

(a) The setting of this example is: n = 106, initial
distribution of values is uniformly at random in
the range [1, n2], 10n iterations, Gaussian white
noise with variance 1, unbounded range.

(b) The setting of this example is: n = 1000,
all values equal to 10, using discrete white noise
model D(0.8) (see Definition 6), bounded range in
the interval [1, 10], 104n iterations. The avg. of
the values drifts from 10 to 6.

Figure 1 The figure depicts the distribution of distances as well as the bounded value setting.

5.1 The Distribution of the Distances
The experiments suggest that the distance decays at least exponentially. Note that the
experiments only show a single iteration, however, this phenomena was observable in every
single run. The bound on E

[
φ̄
(
X(t)) ] we obtained in Theorem 1 only implies that D is at

most O(1/d3). However, we conjecture, for sub-Gaussian noise that P
[
|X(t)

i −∅(t)| ≥ x
]

=
O(exp−x) (cf. Figure 1a). Showing this rigorously is challenging due to the dependencies
among the values. Nonetheless, such bounds are very important since they immediately
bound the maximum difference and we consider this the most important open question.

5.2 The Bounded Values Setting
One of the motivations for the very simple averaging dynamic arises in the setting of limited
computational power of the interacting agents. So far we assumed that agents can store and
transmit (intermediate) values from an unbounded range. For many applications and in
particular motivated by agents with bounded memory one would hope for similar results if
there is a maximum and a minimum value that can be stored or transmitted. The formal
definition is as follows: values can only be from the range [vmin, vmax] (= [1, 10] in our
experiments). We assume noise of the channel cannot produce values larger than vmax
or smaller than vmin, which can be motivated as follows in the setting where the values
correspond to amplitudes: here vmax and vmin are simply the amplitudes (high amplitude
and no amplitude) where the signal-to-noise ratio is very large, and noise becomes negligible.
An equivalent model is that the agents know the range of possible communication values,
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and hence, they can simply correct every value larger than vmax to vmax. In particular when
agents only have limited storage, the communication range will often be bounded, and even
rounding might become necessary (see the full version).

We refer to these equivalent models as the model with cutoffs. While the experiments
indicate that values still converge towards the running average, there is a clear drift of the
running average from the initial average if the input values are chosen unsuitably. In our
experiments, we set the range of values to [1, 10], use the noise described in the discrete
noise model together with rounding. Initially, all agents have value 10. We see a drastic drift
of the running average (see Figure 1b). Even though the initial average is 10, the running
average appears to approach the midpoint of the range, i.e., 5. The histogram of distances to
the initial average shows even more clearly that the values are not concentrated around the
initial average. Although the experiments only show a single iteration, this phenomena was
observable in every single run. We believe that the reason for this is simply that the noise is
no longer symmetric and no longer zero-mean due to the cutoffs [1, 10]. Proving convergence
to the running-average in this model seems challenging and interesting.

We believe that the insights in bounding this potential might be useful in similar problems.

6 Conclusion and Open Problems

In this paper we showed bounds on the convergence time for the unbounded setting. Our
simulations in Section 5 yield two interesting open problems: (i) study the setting where the
values are restricted to some interval (in this case the noise is no longer symmetrical) and
(ii) prove tail bounds on the distance distribution w.r.t. to the running or initial average.
Another interesting research direction is to move away from zero-mean noise and consider
biased noise models: how quickly can the bias(es) be estimated and is convergence still
feasible by compensating for the (learned) bias?
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