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Abstract
Bandit-style algorithms have been studied extensively in stochastic and adversarial settings. Such
algorithms have been shown to be useful in multiplayer settings, e.g. to solve the wireless network
selection problem, which can be formulated as an adversarial bandit problem. A leading bandit
algorithm for the adversarial setting is EXP3. However, network behavior is often repetitive, where
user density and network behavior follow regular patterns. Bandit algorithms, like EXP3, fail to
provide good guarantees for periodic behaviors. A major reason is that these algorithms compete
against fixed-action policies, which is ineffective in a periodic setting.

In this paper, we define a periodic bandit setting, and periodic regret as a better performance
measure for this type of setting. Instead of comparing an algorithm’s performance to fixed-action
policies, we aim to be competitive with policies that play arms under some set of possible periodic
patterns F (for example, all possible periodic functions with periods 1, 2, · · · , P ). We propose
Periodic EXP4, a computationally efficient variant of the EXP4 algorithm for periodic settings.
With K arms, T time steps, and where each periodic pattern in F is of length at most P , we show
that the periodic regret obtained by Periodic EXP4 is at most O

(√
P KT log K + KT log |F |

)
. We

also prove a lower bound of Ω
(√

P KT + KT log |F |
log K

)
for the periodic setting, showing that this is

optimal within log-factors. As an example, we focus on the wireless network selection problem.
Through simulation, we show that Periodic EXP4 learns the periodic pattern over time, adapts to
changes in a dynamic environment, and far outperforms EXP3.
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1 Introduction

The multi-armed bandit problem is an online learning problem in which a player has access to
a set of choices (i.e., “arms”) each of which provides some reward (i.e., “gain”). At each time
step, the player chooses an arm and gets some reward. In stochastic variants, rewards are
determined by some probabilistic distribution. In adversarial variants, an adversary specifies
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149:2 Periodic Bandits and Wireless Network Selection

the rewards. Amazingly, even when rewards are adversarially chosen, the player can do fairly
well! For example, the EXP3 algorithm [6] minimizes the player’s “regret”, ensuring that
the player does almost as well as if she had selected the single fixed best arm throughout.
Another fascinating property of bandit algorithms is that they work well in multi-player
settings [27, 16], converging to close variants of a Nash equilibrium.

Recently, it has been shown that bandit-style algorithms can efficiently solve the wireless
network selection problem, yielding good performance both in theory and in practice [1, 2, 7].
In this problem, each user has access to a collection of networks (e.g., a few different WiFi
networks and a 4G connection); the goal is to pick networks with higher data rates. Selecting
the best network is challenging, especially in dynamic environments where the “best” network
changes over time, as users move and network bandwidth fluctuates. This can be modeled as
an adversarial bandit problem and solved with EXP3 and its variants.

Bandit algorithms have one major weakness in dynamic settings (such as wireless network
settings): they are designed to learn the average payoff of each arm, and to converge to the
arm that provides the best average performance. In the stochastic case, this is exactly what
you want. In the adversarial case, it leads to minimum regret, i.e., the user does almost as
well as if they knew the best network in advance. If, however, the situation is changing over
time, and especially if it is changing in some predictable manner, then learning the average
payoff of each arm is not productive.

Periodic, repetitive patterns are a particularly common type of dynamic behavior. Take,
for example, the problem of network selection. Network behavior is often repetitive, with user
density and network quality following regular patterns: for example, office WiFi networks
have no users at night, their performance drops when workers arrive in the morning, and the
performance improves again during lunch hour. Other networks are clogged with streaming
video during lunch hour and in the evenings. Periodic patterns are ubiquitous.

Unfortunately, bandit algorithms will fail badly in the case of periodic behavior. As an
example, suppose a player is playing a slot machine with two arms. The first arm gives a
reward of 1 when pulled on odd-numbered hours and 0 otherwise, while the second arm does
the reverse, with a reward of 1 on even-numbered hours and 0 otherwise. In this simple case,
a bandit algorithm will never learn this pattern, instead converging to the best single-action
policy; and the best policy can only reap half of the maximum reward. The player will
receive an average payout of only 1/2 per selection, despite a very predictable pattern. And
when this case is extended to cycle among K arms, the best fixed choice of arm gives only
1/K of the total obtainable reward. Thus, algorithms like EXP3 that minimize the regret do
not guarantee good performance on periodic problems.

1.1 Contributions
Our goal in this paper is to develop an efficient adversarial bandit algorithm for periodic
settings, and to demonstrate the effectiveness of this algorithm in the context of the wireless
network selection problem, yielding a new approach to network selection in dynamic, periodic
environments. The first step is to establish the right metric by which to evaluate bandit
algorithms. The performance of an adversarial bandit algorithm is heavily characterized by
the definition of “regret,” which forms the baseline that it competes against. And traditionally,
the regret is computed with respect to the best fixed strategy.

For the periodic bandit setting, we define a better performance measure, “periodic regret”,
which compares an algorithm’s performance against the best periodic choice of arms. No
choice of period may match the input data perfectly, but the goal of periodic regret is to
compare against the best choice. Moreover, we provide a generalized notion of periodicity, so
that this notion of periodic regret can capture different types of patterned behavior.
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Next, we develop an algorithm that minimizes periodic regret, Periodic EXP4, a com-
putationally efficient variant of EXP4 (Exponential-weight algorithm for Exploration and
Exploitation using Expert advice) [6]. We show that the algorithm minimizes periodic
regret in the following sense: with K arms, |F | possible periods, with each possible period
of at most length P , then in an execution of length T the periodic regret is at most
O
(√

PKT logK +KT log |F |
)
. We also prove a lower bound of Ω

(√
PKT +KT log |F |

logK
)
on

periodic regret in an adversarial setting, showing that this is optimal within log-factors. An
important aspect of Periodic EXP4 is that it is a polynomial time algorithm: we leverage the
structure provided by the target periodic patterns to reduce the computational complexity.
This is in contrast to EXP4 which requires exponential time and space in this context.

The other major contribution of this paper is a new algorithm for network selection that
is especially optimized for environments with periodic, patterned behaviors. We simulate
the network selection problem, comparing Periodic EXP4 to EXP3 and to a “randomized
optimal” omniscient solution. (We have previously seen in [1] that these types of simulations
are reasonably predictive of real-world behavior.)

Our first observation is that Periodic EXP4 does in fact efficiently learn periodic patterns
and adapts relatively quickly to changes in network data rates (both discrete and continuous).
We also see that Periodic EXP4 does indeed outperform EXP3 in periodic settings, as
expected, potentially yielding significant real-world improvements.

Our second question involved the robustness of Periodic EXP4 to noisy patterns. Real-
world periodic patterns are rarely perfectly periodic, suffering noise and variance. We
experiment with noisy patterns, and see that Periodic EXP4 continues to work well.

Finally, our third set of experiments looked at the performance of Periodic EXP4 in the
context of user mobility. We simulate several scenarios where users change location over
time, leading to changes in which networks they can access (and hence changes in the load
on those networks). For example, we imagine a typical office scenario where users arrive at
the office in the morning, take a break for lunch, return to work, and then head home at the
end of the day. We observe that Periodic EXP4 can also learn this type of periodic behavior,
again, learning to adapt the users’ network selection in a near-optimal fashion. In fact, we
compare two versions of the algorithm: one in which the algorithm is notified when networks
become unavailable, and one in which it is not – we observe that even in the latter case where
it is completely oblivious to the changes, the user strategy converges to near-optimal choices.

Overall, we conclude that periodic adversarial bandit algorithms may have significant
value, that Periodic EXP4 is an efficient algorithm for the problem, and that it yields a
potentially interesting and useful approach to network selection.

2 Related work

In this section, we discuss relevant work done on bandit algorithms, and state-of-art wireless
network selection approaches. Multi-armed bandit techniques have been successfully applied
to wireless network selection [1, 2, 7]. They have also been considered for other resource
selection problems, such as channel selection [13, 27], selection of the right sensors to query
in a sensor network [14], and selection of replica server for content distribution networks [28].

Many variations of bandit problems have been studied, in both stochastic and adversarial
settings. EXP3 is the most well-known algorithm for the standard adversarial bandit problem.
With K arms and T time steps, it establishes a pseudo-regret upper bound of O(

√
KT logK),

which almost matches the lower bound of Ω(
√
KT ) [6]. The logK gap in the bounds has

been recently closed by [5] bringing the upper bound down to O(
√
KT ). But, these bound

the regret against the best single-action policy, limiting their usefulness in a periodic setting.

ICALP 2019



149:4 Periodic Bandits and Wireless Network Selection

A related problem is that of bandits with expert advice, defined in the same paper [6].
It defines a more general notion of regret, by competing against the best policy from a set.
With K arms, T time steps and N experts, the EXP4 algorithm gives a pseudo-regret bound
of O(

√
KT logN). However, its possibly high running time and memory cost limit its use in

practice. There are other algorithms for bandits with expert advice, like Context-FTPL. The
latter is more computationally efficient, but has a weaker regret bound [26]. A lower bound
of Ω(

√
KT logN

logK ) [23] has been shown, but the logK gap in bounds has not been closed.
An equivalent formulation of our generalized periodic regret (explained later in Section

4.2) has been briefly discussed in [10, Chapter 4.2.1], phrased as a contextual bandit problem
where the algorithm competes against the best context set from a class of context sets. The
possible use of EXP4 is mentioned, but an alternative algorithm with a weaker regret bound
is instead discussed as it has a reasonable polynomial-time performance unlike EXP4.

While much of the existing literature assume a single best arm, there are other efforts to
look beyond this. One approach to the stochastic version of the problem is to allow reward
distributions of the arms to occasionally change [9, 22]. Our work on the other hand is fully
adversarial, and makes no assumptions on the rewards produced by the adversary.

Numerous wireless network selection approaches have been proposed. Some are centralized
[3, 8, 18, 25]; hence, not scalable and limited to managed networks. A number of distributed
approaches have been proposed, with various limitations. Some rely on coordination from
networks [15], while others require cooperation of wireless devices [12]. Others assume
global knowledge [20, 4, 19], or availability of some information [30, 11]. A continuous-time
multi-armed bandit approach in a stochastic setting has been considered in [29]. A similar
setting to ours, though non-periodic and in the stochastic setting, is considered in [7].

3 Wireless Network Selection

Here, we describe the wireless network selection problem, discuss the periodicity of events in
wireless environments, and formulate the network selection problem as a bandit problem.

3.1 Wireless network selection problem.

We consider an environment with multiple wireless devices and heterogeneous wireless
networks, such as the one depicted in Figure 1. The latter illustrates four mobile users with
their (active) mobile devices, and five wireless networks, namely four WiFi networks and
a cellular network (represented using 3 cellular base stations). The wireless networks have
limited areas of coverage. Hence, each mobile device may have access to a different set of
wireless networks depending on their location, e.g. different networks are available at home
and at the office. The bandwidths of wireless networks may also vary with time. Each mobile
device aims to quickly identify and associate with the best network, which may vary over
time, to maximize their data rates.

Mobile users tend to have daily routines that follow repetitive patterns - going to the office
each morning, lunch at noon, returning home in the evening; these activities are performed
at fixed times each weekday. Figure 1 broadly depicts the daily routine of a mobile user,
Alice. Network behavior, which is affected by user density, is also often repetitive and follows
a regular pattern. For example, the available bandwidth of office WiFi networks is likely to
be higher during lunch hours, where the office is nearly empty. A good network selection
protocol learns and adapts to periodic patterns in network quality for better performance.
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Figure 1 Mobile devices with access to a different set of wireless networks as the user moves.

3.2 Wireless network selection as a bandit problem
A device must be aware of the bit rate it can observe from each network to perform an
optimal network selection. While this information is unknown at the time of selection, the
device can estimate the achievable bit rate by exploring the networks. The network selection
problem can be seen as a multi-armed bandit problem in a multi-player setting. A mobile
device is a player, and each network can be considered as an arm. Every so often (e.g. once
per minute), a device selects a network (analogous to pulling an arm) and observes a bit
rate (gain) for that network. The gain from other networks is unknown to the device. Given
that mobile devices operate in a dynamic environment, they must continuously explore and
adapt to changes, by deciding which networks to select in sequence. The goal of each device
is to maximize its cumulative gain over time. Since the quality of a wireless network is
affected by its number of clients, other mobile devices in the environment may be considered
to be adversaries. We hence use the adversarial setting. A leading bandit algorithm in this
setting is EXP3.

4 Periodic Bandit Problem

In this section, we introduce the periodic bandit problem and discuss periodic regret.
We consider a general bandit problem. On each time step, an algorithm is allowed to

pick any one out of K possible arms, and each arm produces a certain amount of reward.
These rewards are unknown to the algorithm, which can only observe the reward of the arm
it picked. We aim to maximize the total reward obtained by the algorithm. We study the
adversarial setting with a possibly adaptive adversary, which decides on the distribution of
rewards at each time step, taking into consideration the outcomes of past random events.

Let K be the number of arms. The set of arms is [K] := {1, 2, · · · ,K}. Let xi(t) ∈ [0, 1]
be the reward earned by arm i ∈ [K] at time step t. Let a(t) ∈ [K] be the arm played by
the algorithm at time t. Let T be the total number of time steps. The set of time steps
is [T ] := {1, 2, · · · , T}. Thus, the total reward earned by the algorithm after T iterations
is
∑T
t=1 xa(t)(t). The commonly used performance measure for bandit algorithms is regret.

Regret compares the total reward obtained by the algorithm against a “best possible” reward
“OPT” after some number of time steps T . Different types of regret compare the algorithm’s
result to different notions of the optimal result.

We can define a form of regret where OPT is allowed to pick any arm in [K] at each time
step. For later reference we will refer to this as full regret, defined as follows:

Rfull(T ) =
T∑
t=1

max
i∈[K]

E
[
xi(t)

]
− E

[ T∑
t=1

xa(t)(t)
]

ICALP 2019
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The above definition uses what is commonly known as pseudo-regret, rather than expected
regret. For the rest of this paper, we will often refer to pseudo-regret as simply “regret”.
Expectations are taken over the possible randomness of the algorithm and adversary.

In most studies of adversarial bandits, a weaker definition of regret is used. This is
because full regret uses too powerful an adversary, and it is impossible to achieve better than
linear expected full regret in the worst case (we include a proof in the full version of the
paper [21]). Therefore, it is common to define a notion of regret where OPT is required to
use the same arm for all T time steps. We refer to this as weak regret, defined as follows:

Rweak(T ) = max
i∈[K]

T∑
t=1

E
[
xi(t)

]
− E

[ T∑
t=1

xa(t)(t)
]

Weak regret however, severely limits what OPT can do, and being competitive with an
algorithm that can only pick one arm and stick to it may not be a very strong result.

4.1 Periodic Regret
We can bridge the two with a periodic definition of regret. Taking the idea that a periodic
choice of arms is likely to perform well in situations with periodic patterns, we can define
a regret function which measures how competitive an algorithm is with the best periodic
choice of arms. For example, we can say OPT is forced to play the same arm every τ ∈ N
steps. This defines a regret function as follows,

Rτ (T ) =
τ∑
`=1

max
i∈[K]

bT−`
τ c∑
t=0

E
[
xi(tτ + `)

]
− E

[ T∑
t=1

xa(t)(t)
]

As OPT may optionally still pick the same arm on all time steps, this is a generalization of
weak regret. This makes for a regret value in between weak regret and full regret.

If we were competing against the regret for a specific, known value of τ , this would
be equivalent to playing τ independent instances of the adversarial bandits problem over
approximately T/τ time steps each. By playing τ separate instances of an algorithm for
weak regret, and by Theorem 2 in Section 6.1, we have an upper/lower bound of Θ(

√
τKT ).

However, if we were to consider that the “best possible” period τ may not be known (for
example, if OPT were to consist of the best periodic function for any of the possible periods
τ ∈ {1, · · · , P}), these bounds do not apply as easily.

4.2 Generalized Periodic Regret
A generalization of the periodic case is the use of partition functions. Fix a maximum number
of labels P . We define this upper bound P for use in our analysis later on. A partition
function f : [T ] → [P ] is a function that assigns every time step a label from 1 to P . We
consider two partition functions the same if their choice of label assignments are permutations
of each other. The regret under function f would be when OPT is forced to play the same
arm for all timesteps with the same label as assigned by f .

Rf (T ) =
∑
`∈[P ]

max
i∈[K]

∑
t∈f−1(`)

E
[
xi(t)

]
− E

[ T∑
t=1

xa(t)(t)
]

(1)
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Consider a set of partition functions F ⊆ {f : [T ]→ [P ]} for some P ∈ N. F is necessarily
finite. The regret under the function set f would be when OPT can choose to play using any
of the partition functions in F . This gives the following regret definition:

RF (T ) = max
f∈F

∑
`∈[P ]

max
i∈[K]

∑
t∈f−1(`)

E
[
xi(t)

]
− E

[ T∑
t=1

xa(t)(t)
]

(2)

This definition (2) of periodic regret gives us more choice in how we want to define our
potential periodic patterns to learn, through deciding on the labels on each time step for
each function. We demonstrate this with our choice of partition functions in Section 7.

To model the example described earlier with periods τ ∈ {1, 2, · · · , P}, we can use the
set of partitions F = {f1, f2, · · · , fP }, where fτ (t) := (t mod τ) + 1 for each t ∈ [T ], τ ∈ [P ].

5 The Periodic EXP4 Algorithm

We discuss the relationship between our generalized periodic setting and the problem of
bandits with expert advice, and hence the applicability of EXP4 [6] to the problem. We use
this to introduce Periodic EXP4, an efficient algorithm for generalized periodic regret.

5.1 Applying Bandits with Expert Advice to Periodic Bandit Problems
Periodic bandit problems can be reduced to the problem of bandits with expert advice. In
the problem of bandits with expert advice, we are given a set Π of N experts. Each expert
predicts an arm on each time step. We fix the number of time steps T . Thus an expert can
be seen as a function π : [T ]→ [K]. An algorithm to solve this problem would make use of
each expert’s predictions on each time step, to obtain a reward competitive with the best
expert in the set. This gives us the following regret definition:

RΠ(T ) = max
π∈Π

T∑
t=1

xπ(t)(t)− E
[ T∑
t=1

xa(t)(t)
]

This can be used to model all of the above notions of regret. For full regret, we have
Π := {π : [T ]→ [K]}, the set of all possible functions from [T ] to [K]. For weak regret, Π is
the set of all constant functions from [T ] to [K].

In the generalized periodic setting, let F be the set of partition functions f : [T ]→ [P ].
For each function f ∈ F , let Θf be the set of all possible mappings θ : f([T ])→ [K] from
the image set f([T ]) of f to the set of arms [K] (thus |Θf | = K |f([T ])|). Each composition
θ ◦ f , f ∈ F , θ ∈ Θf thus represents a possible mapping of the time steps [T ] to arms. Thus,
for the generalized periodic setting, Π = {θ ◦ f | f ∈ F, θ ∈ Θf}.

We note that when Π1 ⊆ Π2, we will have RΠ1(T ) ≤ RΠ2(T ). Let Πfull, Πweak and ΠF

be the sets of functions corresponding to full regret, weak regret and generalized periodic
regret under some function set F respectively. Thus, for any nonempty set F of partition
functions, we have RΠweak(T ) ≤ RΠF (T ) ≤ RΠfull(T ).

An existing algorithm for this problem is the EXP4 algorithm [6], which achieves a regret
upper bound of O(

√
KT logN), where N := |Π|. We can thus apply EXP4 directly to our

problem. However, a commonly cited drawback of the EXP4 algorithm is that its running
time and memory cost are at least linear in N . This is an issue as N is often very large. For
example, in the generalized periodic setting, the size of N could easily be on the order of

ICALP 2019



149:8 Periodic Bandits and Wireless Network Selection

Algorithm 1 Periodic EXP4.
1: procedure Initialization
2: for each f ∈ F do
3: for each ` ∈ f([T ]) do
4: for each i ∈ [K] do
5: Initialize b`,fi (1) = 1
6: procedure Algorithm
7: for each time step t = 1, 2, · · · , T do
8: for each i ∈ [K] do

9: ri(t) :=
∑
f∈F

(
b
f(t),f
i (t)

∏
`∈f([t])\{f(t)}

K∑
j=1

b`,fj (t)
)

10: for each i ∈ [K] do

11: pi(t) = ri(t)∑K
j=1rj(t)

12: Play arm it ∈ [K] from the probabilities p1(t), p2(t), · · · , pK(t)
13: Obtain reward xit(t)
14: for each f ∈ F do
15: for each ` ∈ f([T ]) do
16: for each i ∈ [K] do
17: if i = it and ` = f(t) then
18: b`,fi (t+ 1) = b`,fi (t) exp( γKxi(t)/pi(t))
19: else
20: b`,fi (t+ 1) = b`,fi (t)

|F |KP , which is exponential in P . However, we show below that in the generalized periodic
setting, we can devise an algorithm that is distributionally equivalent to EXP4 and can be
made to run in time polynomial in |F |, K and P .

The EXP4 algorithm works by assigning a weight wπ (with initial value 1) to each expert
π ∈ Π. The probability pi(t) of playing an arm i ∈ [K] would then be

∑
π(t)=i wπ(t)/

∑
π wπ(t),

the ratio of the combined weights of the experts agreeing to play arm i to the total weight of
the experts. Whenever an arm i ∈ [K] is played, each expert who suggested arm i will have
their weight adjusted by some factor exp( γKxi(t)/pi(t)). More details on EXP4 are given in
[6]. Note that it discusses a more general form of expert advice where each expert suggests a
probability vector on the arms. However, we only require the case where at each time step,
each expert suggests one arm with probability 1, and all other arms with probability 0.

5.2 Periodic EXP4, Memory and Running Time Costs

Periodic EXP4 (Algorithm 1) is distributionally equivalent to the EXP4 algorithm when run
with the set of experts Π = {θ ◦ f | f ∈ F, θ ∈ Θf}. The key intuition behind this algorithm
is that the generalized periodic setting produces many symmetries in the weight computation
for each expert. Specifically, we take advantage of how for each partition function f , the set
of experts contains every possible combination of arm assignments to labels in the image set
f([T ]). This allows us to compute the probabilities that EXP4 would play each arm at each
time step without computing the individual weights of every expert.
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For brevity, let Pf := |f([T ])| be the number of labels used by the function f . Necessarily
Pf ≤ P . The memory requirement is O(K

∑
f∈F Pf ), which is at most O(KP |F |). A naive

implementation of the algorithm gives a running time of O(K2∑
f∈F Pf ) per time step, but

with some pre-computation, the running time can be lowered as shown in the full paper [21].

5.3 Correctness of Periodic EXP4
To show correctness, we show that our algorithm produces the same probability distribution
over arms as EXP4 in every time step. Define πθ,f as the expert which at time t recommends
arm θ ◦ f(t) with probability 1 and all other arms with probability 0. We show this algorithm
is distributionally equivalent to EXP4, where Π = {πθ,f |f ∈ F, θ ∈ Θf}. In EXP4, each
expert πθ,f would have some weight wθ,f (t) at time step t. At time step t, EXP4 plays arm
i with probability pi(t) represented by the following expression:

pi(t) =
∑
f∈F,θ∈Θf ,θ◦f(t)=i wθ,f (t)∑

f∈F,θ∈Θf wθ,f (t)

Thus, to show that the two algorithms are distributionally equivalent, as pi(t) :=
ri(t)/

∑K
j=1 rj(t) in our algorithm, for each successive time step t, we only need to show

the following:

ri(t) =
∑

f∈F,θ∈Θf ,θ◦f(t)=i

wθ,f (t)

The details of this derivation is given in the full paper [21]. We can thus formally state a
regret upper bound as follows (Theorem 1). This upper bound comes directly from EXP4’s
regret bound of O(

√
KT logN), where the number of experts N =

∑
f∈F

K |f([T ])| ≤ |F |KP .

I Theorem 1. With K arms, T time steps, |F | partition functions, with every function having
at most P labels, Periodic EXP4 gives a regret upper bound of O

(√
PKT logK +KT log |F |

)
.

6 Lower Bounds

In this section, we provide lower bounds for the case of a single partition and for a set of
partitions. We demonstrate that the upper and lower bounds differ by a factor of logK.

The existing regret lower bound for the problem of bandits with expert advice [23] is
Ω
(√

KT logN
logK

)
. This lower bound is derived by dividing the time steps [T ] into logN

logK equal
parts. For the generalized periodic setting, as this lower bound uses an instance that can be
modeled with a single partition function, it does not give immediate insight into whether
having multiple different periods or partition functions increases the difficulty of the problem.

6.1 Lower Bound for a Single Partition
We consider the case with only a single partition function f : [T ]→ [P ], which partitions the
time steps into P labels 1, 2, · · · , P . The sizes of the partitions are |f−1(1)|, |f−1(2)|, · · · ,
|f−1(P )| respectively. It seems like intuitively, by seeing this as P separate instances of the
weak regret setting, and by the existing Θ(

√
KT ) upper/lower bounds on weak regret [6, 5],

we would have an upper/lower bound of Θ(
∑P
`=1
√
K|f−1(`)|). For equally sized partitions

of size approximately T
P each, this bound would be Θ(

√
PKT ).
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However, while the upper bound is clearly met by running P independent instances of
an algorithm for weak regret, the lower bound is less clear. Even when considering it as P
separate instances, there is a possibility of an algorithm “reacting” to losses in other instances
to play differently in the current instance, obtaining a higher total reward as a result. For
completeness, we include a proof for the lower bound (Theorem 2) in the full paper [21].

I Theorem 2. Fix a partition function f : [T ]→ [P ] which assigns a label to each time step.
Assume that for each ` ∈ f([T ]), there are at least K/(4 ln 4

3 ) time steps with label `. Then
the minimax pseudo-regret (1), over all algorithms a and adversaries R, has a lower bound
as follows, for some positive constant c:

inf
a

sup
R

(
max
θ∈Θf

E
[ ∑
t∈[T ]

xθ◦f(t)(t)
]
− E

[ ∑
t∈[T ]

xa(t)(t)
])
≥
∑
`∈[P ]

√
cK|f−1(`)|

If we consider the simple case where OPT may play only periodic functions from any period
τ ∈ {1, 2, · · · , P}, it can do no worse than if it were only allowed to play at period P . We
thus obtain a lower regret bound of

√
PKT .

6.2 Lower Bound for the Generalized Periodic Setting
Let F be the set of partitions, so |F | is the number of partitions. Let P be the maximum
number of labels of any partition in F . For sufficiently large T and K ≤ P , we obtain a
pseudo-regret(2) lower bound of Ω(

√
PKT +

√
KT log |F |

logK ). It is proved in the full paper [21].
If P < K instead, a simple lower bound can be obtained by using only P out of the K

arms, so we obtain a problem with P arms and maximum partition size P . This gives us a
lower bound of Ω

(√
PKT +

√
PT log |F |

logP

)
. We can then merge these two lower bounds into

a single expression Ω
(√

PKT +
√

min(P,K)T log |F |
log min(P,K)

)
.

6.3 Analysis of Bounds
A conclusion we can make from Section 6.2 is that having multiple periods indeed increases
the difficulty of the problem - we have obtained a lower bound higher than the known upper
bound of O(

√
PKT ) had only one partition function of the maximum period P been used.

With K arms, T time steps, |F | partition functions, with every function having at most
P labels, Periodic EXP4 gives an upper bound of O

(√
PKT logK +KT log |F |

)
. On the

other hand, we have a lower bound of Ω
(√

PKT +KT log |F |
logK

)
in the case where K ≤ P .

This gives a gap of
√

logK between the two bounds. Interestingly, this log-factor is the
same as the current gap between the upper and lower bounds in the problem of bandits with
expert advice. This is possibly because we use a similar lower bound proof to the problem of
bandits with expert advice [23], as well as a similar algorithm for the upper bound.

7 Experimental Evaluation

In this section, we discuss the implementation details of Periodic EXP4 and parameter values
chosen, evaluate the algorithm via simulation, and compare its performance to EXP3 [6].
We show how Periodic EXP4 (a) learns periodic patterns over time under both discrete and
continuous changes in network data rates, (b) outperforms EXP3, (c) is robust to noisy
patterns, and (d) adapts to changes due to mobility of users.
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We benchmark against “Optimal Random”, a player with prior knowledge of the actual
bandwidths of each network. In each time slot, it picks a network from a probability
distribution equal to the ratios of the bandwidths. For example, with network bandwidths
4, 10 and 6, the probability of picking the networks will be 0.2, 0.5 and 0.3, respectively.

All the algorithms are implemented in Python, using SimPy [24], while the core algorithm
is written in C++. We use a time-varying learning rate γ = t−

1
10 [17] for both Periodic

EXP4 and EXP3; γ slowly tends to zero to ensure convergence [27] while at the same
time ensures that the algorithm does not take too long to learn (it learns slowly when γ
is very small). Although they are not pre-requirements of Periodic EXP4, for simplicity,
we assume that (a) a network’s bandwidth is equally shared among its clients, and (b)
devices are time-synchronized. To reduce numerical error in our simulations, we substitute
computations of

∑
x∈Y exp(x) with exp(maxx∈Y x). In nearly all cases, sums of exponentials

in our algorithm are heavily dominated by a single term, making the values of the two
expressions approximately equal. Experimentally, we find that this has negligible effects on
the values computed within the algorithm.

We do simulations on synthetic data. We consider setups with 20 mobile devices and 3
wireless networks, unless otherwise specified. While the number of devices remain constant
throughout the simulation run, the data rates and availability of networks may change. We
assume that a network selection is performed once every minute; hence, 1440 time slots is
one simulated day. All results presented are from 20 simulation runs, of 86,400 time slots
each (i.e., 2 simulated months). The pattern of network behavior and/or user mobility over
the first 1440 time slots is repeated 60 times; we refer to each repetition as an “iteration”.

We apply Periodic EXP4 in the generalized periodic setting. We define a partition
function of period τ as one which divides each iteration of 1440 time slots into τ equal
contiguous segments, labeled 1 to τ in chronological order. The same labels are used for each
successive repetition. Unless otherwise specified, we use the period set {1, · · · , 24}. This
refers to using 24 partition functions, of periods 1 to τ respectively.

7.1 Evaluation Criteria
Good assignments of devices to networks divide the available bandwidth evenly among the
devices. We thus evaluate the performance of the algorithms based on the lowest data rate
observed by any of the devices. We compare this to the optimal allocation of devices, which
maximizes the lowest data rate observed by any device. If a device with the lowest data rate
observes 3Mbps, but the optimal’s lowest is 5Mbps, we say it loses 40% of its achievable gain.
We refer to this percentage loss as the “distance to optimal minimum” in our results.

We do not use average cumulative gain as a performance measure because in our problem
setting, average gain is maximized as long as there is at least one user in each network.

7.2 Performance Comparison of Algorithms
We consider two setups, both at an office with two WiFi networks and a cellular network.
The data rates of these networks vary over time. The first setup involves discrete changes
in network bandwidths at fixed time intervals (Figure 2a). In the second setup, the data
rates vary continuously with time (Figure 2b). Figures 3a and 3b show that in both setups,
the distance to optimal minimum of Periodic EXP4 drops over time while EXP3 shows no
noticeable improvement with time.

Figure 4 for the continuous setup explains this improvement. The figure for the discrete
setup is in the full paper [21]. At each time step, each user has a probability of picking each
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(a) Discrete changes in network data rates.
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(b) Continuous changes in network data rates.

Figure 2 Changes in network data rates over one iteration (this is repeated 60 times).
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(a) Performance under discrete setup.
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(b) Performance under continuous setup.

Figure 3 Distance to optimal minimum of Periodic EXP4 and EXP3 over 60 iterations.
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(a) EXP3: Combined probabilities for each network over first 10 iterations.
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(b) Bandwidth ratio.
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(c) Periodic EXP4: Combined probabilities for each network over first 10 iterations.

Figure 4 Area chart showing the time variation of combined probabilities in the continuous setup.
Figure 4b shows the actual ratio of the bandwidths of the three networks within any one iteration.

of the networks. If we consider the combined probability of picking each network, we can see
that in Periodic EXP4, these probabilities converge towards the ratios of the bandwidths of
the networks (Figures 4c). This is despite the continuous setup having no obvious best period.
On the other hand, EXP3’s probabilities slowly flatten out (Figure 4a). This is consistent
with what we would expect, as EXP3 seeks to be competitive with the best fixed-action
policy, meaning that it only seeks out the best fixed arm to play.

Figure 5 shows that while EXP3 initially learns more quickly, Periodic EXP4 eventually
outperforms EXP3 (which converges to the network with the best average performance),
with a performance similar to Optimal Random. From our experiments, we find that while
all algorithms have similar total cumulative gains, we may note that Periodic EXP4 is fairer
than EXP3, with significantly lower variance. We present these results in the full paper [21].
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Figure 5 Distances to Optimal minimum in the first and last repetitions of the discrete setting
in Figure 2a. Vertical lines indicate points where data rates change.

7.3 Other Experiments
In the full version of the paper [21], we discuss a few more experiments, the results of which
are briefly summarized as follows:
1. Performance in Noisy Settings: On each time step, we apply a 10% Gaussian noise

to each of the networks’ data rates. We find that our algorithms are largely unaffected
by noise in the data, giving similar results with and without noise.

2. Comparison of Period Sets: We do a comparison between different possible period
sets F . We find that the algorithm learns more slowly with larger period sets (e.g.
{1, 2, · · · , 45}, as compared to {1, 2, · · · , 15}), but can converge to better results on more
complex instances (instances where the bandwidth may fluctuate more wildly).

3. Mobility of Users: We consider a setup where users move around and have access to
different sets of networks at different times. We compare Vanilla Periodic EXP4, which
is oblivious to networks possibly becoming unavailable, against an optimized version,
which selects only from the set of currently available networks. While the optimized
version initially yields a better performance, they eventually perform equally well when
the Vanilla Periodic EXP4 algorithm learns the pattern.

8 Conclusion

In this paper, we develop an efficient variant of EXP4 for the periodic bandit problem, give
nearly matching upper and lower bounds for it, and demonstrate its advantages in learning
periodic behavior in the context of the network selection problem.

An interesting issue raised in contrasting this paper and [9, 22] is whether non-stationary
bandit problems are better modeled stochastically or adversarially. While these papers
address non-stationary rewards primarily in a stochastic setting with some adversarial
aspects, we tackle the periodic bandit problem in a fully adversarial setting. Using the
adversarial setting has the benefit of not placing any constraints on the adversary; we adapt to
the periodic setting only through our definition of regret. A proper comparison of stochastic
and adversarial methods for network selection is a possible future line of work.

References
1 Anuja Meetoo Appavoo, Seth Gilbert, and Kian-Lee Tan. Shrewd Selection Speeds Surfing:

Use Smart EXP3! In 2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS), pages 188–199. IEEE, 2018.

2 Anuja Meetoo Appavoo, Seth Gilbert, and Kian-Lee Tan. Cooperation Speeds Surfing: Use
Co-Bandit! arXiv preprint, 2019. arXiv:1901.07768.

ICALP 2019

http://arxiv.org/abs/1901.07768


149:14 Periodic Bandits and Wireless Network Selection

3 E. Aryafar, A. Keshavarz-Haddad, C. Joe-Wong, and M. Chiang. Max-Min Fair Resource
Allocation in HetNets: Distributed Algorithms and Hybrid Architecture. In ICDCS, 2017,
pages 857–869. IEEE, 2017.

4 E. Aryafar, A. Keshavarz-Haddad, M.l Wang, and M. Chiang. RAT selection games in HetNets.
In INFOCOM, pages 998–1006. IEEE, 2013.

5 Jean-Yves Audibert and Sébastien Bubeck. Minimax policies for adversarial and stochastic
bandits. In COLT, pages 217–226, 2009.

6 P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed
bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

7 O. Avner and S. Mannor. Multi-user lax communications: A multi-armed bandit approach.
In IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer
Communications, pages 1–9, April 2016. doi:10.1109/INFOCOM.2016.7524557.

8 Y. Bejerano, S-J. Han, and L. E. Li. Fairness and load balancing in wireless LANs using
association control. In MobiCom, pages 315–329. ACM, 2004.

9 Omar Besbes, Yonatan Gur, and Assaf Zeevi. Stochastic Multi-Armed-Bandit Prob-
lem with Non-stationary Rewards. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
27, pages 199–207. Curran Associates, Inc., 2014. URL: http://papers.nips.cc/paper/
5378-stochastic-multi-armed-bandit-problem-with-non-stationary-rewards.pdf.

10 Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122,
2012.

11 M. H. Cheung, F. Hou, J. Huang, and R. Southwell. Congestion-Aware Distributed Network
Selection for Integrated Cellular and Wi-Fi Networks. arXiv preprint, 2017. arXiv:1703.00216.

12 S. Deng, A. Sivaraman, and H. Balakrishnan. All your network are belong to us: A transport
framework for mobile network selection. In HotMobile. ACM, 2014.

13 Yi Gai, Bhaskar Krishnamachari, and Rahul Jain. Learning multiuser channel allocations in
cognitive radio networks: A combinatorial multi-armed bandit formulation. In New Frontiers
in Dynamic Spectrum, 2010 IEEE Symposium on, pages 1–9. IEEE, 2010.

14 D. Golovin, M. Faulkner, and A. Krause. Online distributed sensor selection. In Proceedings of
the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks,
pages 220–231. ACM, 2010.

15 B. Kauffmann, F. Baccelli, A. Chaintreau, V. Mhatre, K. Papagiannaki, and C. Diot.
Measurement-based self organization of interfering 802.11 wireless access networks. In IN-
FOCOM 2007, pages 1451–1459. IEEE, 2007.

16 R. Kleinberg, G. Piliouras, and E. Tardos. Multiplicative updates outperform generic no-regret
learning in congestion games. In ACM STOC, pages 533–542. ACM, 2009.

17 S. Maghsudi and S. Stanczak. Relay selection with no side information: An adversarial bandit
approach. In WCNC, pages 715–720. IEEE, 2013.

18 A. Mishra, V. Brik, S. Banerjee, A. Srinivasan, and W. A. Arbaugh. A Client-Driven Approach
for Channel Management in Wireless LANs. In Infocom, 2006.

19 E Monsef, A. Keshavarz-Haddad, E. Aryafar, J. Saniie, and M. Chiang. Convergence properties
of general network selection games. In INFOCOM, pages 1445–1453. IEEE, 2015.

20 D. Niyato and E. Hossain. Dynamics of network selection in heterogeneous wireless networks:
An evolutionary game approach. TVT, 58(4):2008–2017, 2009.

21 Shunhao Oh, Anuja Meetoo Appavoo, and Seth Gilbert. Periodic Bandits and Wireless
Network Selection [full version of paper]. arXiv preprint, 2019. arXiv:1904.12355.

22 Allesiardo Robin, Raphaël Feraud, and Odalric-Ambrym Maillard. The Non-stationary
Stochastic Multi-armed Bandit Problem. International Journal of Data Science and Analytics,
March 2017. doi:10.1007/s41060-017-0050-5.

23 Yevgeny Seldin and Gábor Lugosi. A lower bound for multi-armed bandits with expert advice.
In 13th European Workshop on Reinforcement Learning (EWRL), 2016.

http://dx.doi.org/10.1109/INFOCOM.2016.7524557
http://papers.nips.cc/paper/5378-stochastic-multi-armed-bandit-problem-with-non-stationary-rewards.pdf
http://papers.nips.cc/paper/5378-stochastic-multi-armed-bandit-problem-with-non-stationary-rewards.pdf
http://arxiv.org/abs/1703.00216
http://arxiv.org/abs/1904.12355
http://dx.doi.org/10.1007/s41060-017-0050-5


S. Oh, A. Meetoo Appavoo, and S. Gilbert 149:15

24 SimPy. SimPy - Event discrete simulation for Python, 2016. , accessed 2018-19-12. URL:
https://simpy.readthedocs.io/.

25 K. Sui, M. Zhou, D. Liu, M. Ma, D. Pei, Y. Zhao, Z. Li, and T. Moscibroda. Characterizing
and improving wifi latency in large-scale operational networks. In MobiSys, pages 347–360.
ACM, 2016.

26 Vasilis Syrgkanis, Akshay Krishnamurthy, and Robert Schapire. Efficient algorithms for
adversarial contextual learning. In International Conference on Machine Learning, pages
2159–2168, 2016.

27 C. Tekin and M. Liu. Performance and Convergence of Multi-user Online Learning. In
GAMENETS, pages 321–336. Springer, 2011.

28 H. A. Tran, S. Hoceini, A. Mellouk, J. Perez, and S. Zeadally. QoE-based server selection for
content distribution networks. IEEE Transactions on Computers, 63(11):2803–2815, 2014.

29 Q. Wu, Z. Du, P. Yang, Y.-D. Yao, and J. Wang. Traffic-aware online network selection in
heterogeneous wireless networks. TVT, 65(1):381–397, 2016.

30 K. Zhu, D. Niyato, and P. Wang. Network selection in heterogeneous wireless networks:
Evolution with incomplete information. In WCNC, pages 1–6. IEEE, 2010.

ICALP 2019

https://simpy.readthedocs.io/

	Introduction
	Contributions

	Related work
	Wireless Network Selection
	Wireless network selection problem.
	Wireless network selection as a bandit problem

	Periodic Bandit Problem
	Periodic Regret
	Generalized Periodic Regret

	The Periodic EXP4 Algorithm
	Applying Bandits with Expert Advice to Periodic Bandit Problems
	Periodic EXP4, Memory and Running Time Costs
	Correctness of Periodic EXP4

	Lower Bounds
	Lower Bound for a Single Partition
	Lower Bound for the Generalized Periodic Setting
	Analysis of Bounds

	Experimental Evaluation
	Evaluation Criteria
	Performance Comparison of Algorithms
	Other Experiments

	Conclusion

