
On the Complexity of Local Graph
Transformations
Christian Scheideler
Paderborn University, Germany
https://cs.uni-paderborn.de/en/ti/
scheideler@upb.de

Alexander Setzer
Paderborn University, Germany
https://cs.uni-paderborn.de/en/ti/
asetzer@mail.upb.de

Abstract
We consider the problem of transforming a given graph Gs into a desired graph Gt by applying
a minimum number of primitives from a particular set of local graph transformation primitives.
These primitives are local in the sense that each node can apply them based on local knowledge
and by affecting only its 1-neighborhood. Although the specific set of primitives we consider makes
it possible to transform any (weakly) connected graph into any other (weakly) connected graph
consisting of the same nodes, they cannot disconnect the graph or introduce new nodes into the
graph, making them ideal in the context of supervised overlay network transformations. We prove
that computing a minimum sequence of primitive applications (even centralized) for arbitrary Gs

and Gt is NP-hard, which we conjecture to hold for any set of local graph transformation primitives
satisfying the aforementioned properties. On the other hand, we show that this problem admits a
polynomial time algorithm with a constant approximation ratio.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Approximation algorithms analysis

Keywords and phrases Graphs transformations, NP-hardness, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.150

Category Track C: Foundations of Networks and Multi-Agent Systems: Models, Algorithms and
Information Management

Related Version A full version of the paper is available at https://arxiv.org/abs/1904.11395.

Funding This work was supported by the German Research Foundation (DFG) within the Collabo-
rative Research Center “On-The-Fly Computing” (SFB 901) under Grant No.: GZ SFB 901/02.

1 Introduction

Overlay networks are used in many contexts, including peer-to-peer systems, multipoint
VPNs, and wireless ad-hoc networks. In fact, any distributed system on top of a shared
communication infrastructure usually has to form an overlay network (i.e., its participating
sites have to know each other or at least some server) to allow the exchange of information.

A fundamental task in the context of overlay networks is to maintain or adapt its topology
to a desired topology, where the desired topology might either be pre-defined or depend
on a certain objective function. The problem of reaching a pre-defined topology has been
extensively studied in the context of self-stabilizing overlay networks (e.g., [29, 21, 12, 5,
22, 7]), and the problem of adapting the topology based on a certain objective function
has been studied in the context of self-adapting and -optimizing overlay networks (e.g.,
[33, 14, 2, 19, 11, 3, 10, 8]). Many of these approaches are decentralized, and because of that,

EA
T

C
S

© C. Scheideler and A. Setzer;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 150; pp. 150:1–150:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5278-528X
https://cs.uni-paderborn.de/en/ti/
mailto:scheideler@upb.de
https://cs.uni-paderborn.de/en/ti/
mailto:asetzer@mail.upb.de
https://doi.org/10.4230/LIPIcs.ICALP.2019.150
https://arxiv.org/abs/1904.11395
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

150:2 On the Complexity of Local Graph Transformations

the work (in terms of number of edge changes) they need to adapt to a desired topology might
be far away from the minimum possible work to reach that topology. In fact, no non-trivial
results on the competitiveness of decentralized overlay network adaptations are known so
far other than handling single join or leave operations, and it is questionable whether any
good competitive result can be achieved with a decentralized approach. An alternative
approach would be that a server is available for controlling the network adaptations, and this
has already been considered in the context of so-called supervised overlay networks. In a
supervised overlay network there is a dedicated, trusted node called supervisor that controls
all network adaptations but otherwise is not involved in the functionality of the overlay
network (such as serving search requests), which is handled in a peer-to-peer manner. This
has the advantage that even if the supervisor is down, the overlay network is still functional.
Solutions for supervised overlay networks have been proposed in [24, 15], for example, and
the results in [24] imply that, for specific overlay networks, any set of node arrivals and
departures can be handled in a constant competitive fashion (concerning the work needed
for adding and removing edges) to get back to a desired topology. But no general result is
known so far for supervised overlay networks concerning the competitiveness of converting
an initial topology into a desired topology. Also, no result is known so far on how to handle
the problem that a supervisor could be faulty or even act maliciously.

A malicious supervisor would pose a significant problem for an overlay network since it
could easily launch Sybil attacks (i.e., flooding the overlay network with fake or adversarial
nodes) or Eclipse attacks (i.e., isolating nodes from other nodes in the overlay network). We
thus ask: Can we limit the power of a supervisor such that it cannot launch an eclipse or
sybil attack while still being able to convert the overlay network from any connected topology
to any other connected topology?

We answer the question to the affirmative by determining a set of graph transformation
commands, also called primitives, that only the supervisor may issue to the nodes. These
primitives are powerful enough to transform any (weakly) connected topology into any other
(weakly) connected topology but still allow the nodes to locally check that applying them
does not disconnect the network or introduce a new node into the network. We additionally
aim at minimizing the reconfiguration overhead, i.e., the number of commands to be issued
(and, related to this, the number of changes to be made to node neighborhoods) to reach a
desired topology. Unfortunately, as we will show, this cannot be done efficiently for the set
of primitives we consider unless P 6= NP, and we conjecture that this holds for any set of
commands that has the aforementioned property of giving the participants the ability to
locally check that they cannot be used for eclipse or sybil attacks. However, we are able to
give an O(1)-approximation algorithm for this problem.

1.1 Model and Problem Statement

We model the overlay network as a graph, i.e., nodes represent participants of the network
and if there is a directed edge (u, v) in the graph, this means that there is a connection
from u to v. Undirected edges {u, v} model the two connections from u to v and from v

to u. Since there may be multiple connections between the same pair of participants, the
graphs we consider in this work are multigraphs, i.e., edges may appear several times in
the (multi-)set of edges. For convenience throughout this work we will use the term “graph”
instead of multigraph and refer to “edge sets” even though their elements need not be unique.

We consider the following set Pd of four primitives for the manipulation of directed graphs,
first introduced by Koutsopoulos et al. [25] in the context of overlay networks:

C. Scheideler and A. Setzer 150:3

Introduction. If a node u has a reference of two nodes v and w with v 6= w, u introduces w

to v if u sends a message to v containing a reference of w while keeping the reference.
Delegation. If a node u has a reference of two nodes v and w s.t. u, v, w are all different,

then u delegates w’s reference of v if u sends a message to v containing a reference of w

and deletes the reference of w.
Fusion. If a node u has two references v and w with v = w, then u fuses the two references

if it only keeps one of these references.
Reversal. If a node u has a reference of some other node v, then u reverses the connection if

it sends a reference of itself to v and deletes its reference of v.

The four primitives are visualized in Figure 1. Note that for the Introduction primitive, it
is possible that w = u, i.e., u introduces itself to v. To simplify the description, we sometimes
say that a node u introduces or delegates the edge (u, v) if u introduces v to some other node
or delegates v’s reference to some other node, respectively.

u
v

w
u

v

w
(a) Introduction Primitive.

u
v

w
u

v

w
(b) Delegation Primitive.

u v u v

(c) Fusion primitive.

u v u v

(d) Reversal primitive.

Figure 1 The four primitives in Pd in pictures.

The primitives in Pd are known to be universal (c.f. [25]), i.e., it is possible to transform
any weakly connected graph into any other weakly connected graph by using only the
primitives in Pd. Note that for every edge (u, v) used in any of the primitives, either (u, v)
still exists after the corresponding primitive is applied, or there is still an (undirected) path
from u to v in the resulting graph. This directly implies that no application of the primitives
can disconnect the graph. We assume that all connections are authorized, meaning that both
endpoints are aware of the other endpoint of this connection. Thus, if for an edge (u, v)
that is supposed to be transformed into (v, u) by an application of the Reversal Primitive,
v checks that u actually was the previous endpoint of the former edge then the primitives
cannot be used to introduce new nodes into the graph.

For undirected graphs, consider the set Pu containing only the primitives Introduction,
Delegation and Fusion (defined correspondingly). These three primitives, accordingly, are
universal on undirected graphs, i.e., any connected undirected graph can be transformed into
any other connected undirected graph by applying the primitives in Pu (c.f. [25]).

We make the following observation:

I Observation 1. The Introduction primitive is the only primitive that can increase the
number of edges in a graph. The Fusion primitive is the only primitive that can decrease the
number of edges in a graph. The Delegation primitive is the only primitive that can remove
the last edge between two nodes (i.e., an edge of multiplicity one).

A computation C is a finite sequence G1 ⇒ G2 ⇒ · · · ⇒ Gl of either directed or undirected
graphs, in which each graph Gi+1 is obtained from Gi by the application of a single primitive
from Pd or Pu, respectively. The graphs G1 and Gl are called the initial and the final graphs
of C, respectively. The variable l is called the length of the computation.

ICALP 2019

150:4 On the Complexity of Local Graph Transformations

We define the Undirected Local Graph Transformation Problem (ULGT) as follows: given
two connected undirected graphs Gs, Gt, find a computation of minimum length whose initial
graph is Gs and whose final graph is Gt. The corresponding decision problem k-ULGT is
defined as follows: given a positive integer k and two connected undirected graphs Gs and
Gt, decide whether there is a computation with initial graph Gs and final graph Gt of length
at most k. Accordingly we define the Directed Local Graph Transformation Problem (DLGT)
and k-DLGT, which differ from the according problems in that the graphs are directed.

1.2 Related Work

Graph transformations have been studied in many different contexts and applications,
including but not limited to pattern recognition, compiler construction, computer-aided
software engineering, description of biological developments in organisms, and functional
programming languages implementation (for a more detailed introduction and literature
overview, we refer the reader to [4], [20], or [31, 13]). Simply put, a graph transformation (or
graph-rewriting) system consists of a set of rules L→ R that may be applied to subgraphs
isomorphic to L of a given graph G thus replacing L with R in G. Since changing the labels
assigned to a graph (graph relabeling) is also a kind of graph transformation, basically every
distributed algorithm can be understood as a graph transformation system (c.f. [13]). The
type of graph transformations probably closest related to our work is the area of Topology
Control (TC). In simple terms, the goal of TC is to select a subgraph of a given input graph
that fulfills certain properties (such as connectivity) and optimizes some value (such as the
maximum degree). This problem has been studied in a variety of settings (for surveys on
this topic see, e.g., [27], or [6]) and although the usual approach is decentralized, there are
also some centralized algorithms in this area (see, e.g., [30]). However, these works only
consider the complexity of computing an optimal topology (instead of the complexity of
transforming the graph by a minimum number of rule applications). There is one work by
Lin [28] proving the NP-hardness of the Graph Transformation Problem, in which the goal is
to find the minimum integer k such that an initial graph Gs can be transformed into a final
graph Gt by adding and removing at most k edges in Gs. Our work differs from that work
in that we do not allow arbitrary edge relocations but restrict them to a set of rules that can
be applied locally (and we also provide constant-factor approximation algorithms).

Our approximation algorithms use an approximation algorithm for the Undirected Steiner
Forest Problem as a black-box (also known as the Steiner Subgraph Problem with edge
sharing, or, in generalizations, the Survivable Network Design Problem or the Generalized
Steiner Problem). 2-approximations of this problem were first given by Agrawal, Klein, and
Ravi [1], and by Goemans and Williamson [16], and later also by Jain [23]. Gupta and
Kumar [18] showed a simple greedy algorithm to have a constant approximation ratio and
recently, Groß et al. [17] presented a local-search constant approximation for Steiner Forest.

1.3 Our Contribution

The main contributions of this paper are as follows: We prove the Undirected and the
Directed Local Graph Transformation Problem to be NP-hard in Section 2. Furthermore,
in Section 3 we show that they belong to APX, i.e., there exist constant approximation
algorithms for these two problems.

C. Scheideler and A. Setzer 150:5

2 NP-hardness results

In this section, we show the NP-hardness of the Undirected Local Graph Transformation
Problem by proving the NP-hardness of k-ULGT (see Section 2.1). Since k-DLGT’s NP-
hardness is very similar for k-ULGT, we omit its proof and only briefly sketch the differences
in the full version of this paper [32].

Throughout this section, for any positive integer i we use the notation [i] to refer to the
set {1, 2, . . . , i}.

2.1 k-ULGT is NP-hard
We prove k-ULGT’s hardness via a reduction from the Boolean satisfiability problem (SAT)
which was proven to be NP-hard by Cook [9] and, independently, by Levin [26]. We briefly
recap SAT as follows:

I Definition 1 (SAT). Given a set X of n Boolean variables x1, . . . , xn and a Boolean
formula Φ over the variables in X in conjunctive normal form (CNF), decide whether there
is a truth assignment t : X → {0, 1} that satisfies Φ.

To reduce SAT to k-ULGT, we use the following reduction function:

I Definition 2 (Reduction function). Let S = (X, Φ) be a SAT instance, in which X =
{x1, . . . , xn} is the set of Boolean variables and Φ = C1 ∧ · · · ∧ Cm for clauses C1, . . . , Cm.
Then f(S) = (Gs, Gt, k) in which k = 2n + m and Gs and Gt are undirected graphs defined
as follows. Without loss of generality, assume that each literal yi ∈ {xi, xi} occurs only once
in each clause. We say yi ∈ Cj if literal yi occurs in Cj.

We define the following sets of nodes: VC = {C1, . . . , Cm}, and VXi
= {xi, xi, si, ti}.

Then, the set of nodes of Gs and Gt is V =
⋃

1≤i≤n VXi
∪VC∪{r}. For the set of edges, define

EXi
= {{si, xi}, {xi, si}, {xi, ti}, {ti, xi}}, ECj

= {{yi, Cj}|yi ∈ {xi, xi} ∧ yi occurs in Cj},
Esr = {{si, r}|1 ≤ i ≤ n}, Etr = {{ti, r}|1 ≤ i ≤ n}, ECr = {{Cj , r}|1 ≤ j ≤ m}. Both Gs

and Gt have the edges in
⋃

1≤i≤n EXi ∪
⋃

1≤j≤m ECj . Additionally, Gs has the edges in Esr

and Gt has the edges in Etr ∪ ECr.

Intuitively, each variable xi is mapped to a gadget Xi consisting of the four nodes xi, xi, si,
and ti. Also each clause Cj is connected with each literal occurring within it. Lastly, in Gs,
each of the si is connected with the node r, whereas in Gt, each of the ti and each of the Cj

are connected with r. Figure 2 shows an example of the output of the reduction function for
a given formula in CNF.

We now show that every SAT instance S is satisfiable if and only if f(S) is a “yes” instance
of k-ULGT. We start with the “only if” part for this is the simpler direction:

I Lemma 3. If a SAT instance S as in Definition 2 is satisfiable then f(S) = (Gs, Gt, k)
with k = 2n + m is a k-ULGT instance and there is a computation with initial graph Gs

and final graph equal to Gt of length at most 2n + m.

Proof. Assume there is a satisfying truth assignment t : X → {0, 1} of S. For every 1 ≤ i ≤ n

let yi := xi if t(xi) = 1 or yi := xi if t(xi) = 0. We construct the following computation with
initial graph Gs and final graph Gt:
1. For every 1 ≤ i ≤ n, si delegates the edge {si, r} to yi.
2. For every Cj ∈ {C1, . . . , Cm} choose one neighbor zj ∈ {y1, . . . , yn} (we show below that

this exists), and let zj introduce r to Cj .
3. For every 1 ≤ i ≤ n, yi delegates the edge {yi, r} to ti.

ICALP 2019

150:6 On the Complexity of Local Graph Transformations

X1

s1

t1

x1x1

C1

r

X2

s2

t2

x2x2

X3

s3

t3

x3x3

C2 C3 C4

Figure 2 Graph Gs returned by the reduction function for the (example) Boolean formula
(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2) ∧ (x2 ∨ x3). Gt differs from Gs in that the dashed edges do not exist and
all grey nodes share an edge with node r.

Obviously, the length of this computation is 2n + m. To prove the missing part, recall that
every Cj is satisfied under t, i.e., there is at least one literal zj in Cj that evaluates to true,
i.e., there is an i ∈ [n] such that zj = xi if t(xi) = 1, or zj = xi if t(xi) = 0. By definition of
yi, zj = yi. Thus because zj occurs in Cj , yi was a neighbor of Cj during Step 2. J

The “if” part is more complex. We begin with the following insight that will prove helpful
in the course of this part.

I Lemma 4. Suppose the nodes in the initial graph of a computation C can be decomposed
into disjoint sets V1, . . . , Vk, P such that there is no edge {u, v} for some u ∈ Vi, v ∈ Vj,
i, j ∈ [k], i 6= j and throughout C none of the nodes in P applies a primitive. Then there is
no edge {u, v} for some u ∈ Vi, v ∈ Vj, i, j ∈ [k], i 6= j in any graph of the computation.

Proof. Assume there is a computation C and sets V1, . . . , Vk, P as defined above and assume
for contradiction that the claim is not true. We consider the first edge {u, v} such that
u ∈ Vi, v ∈ Vj , i, j ∈ [k], i 6= j. Clearly, it cannot have been created by the application of a
Fusion primitive. Thus it must have been created by an Introduction or Delegation primitive
applied by a node w that knew both u and v before the application of this primitive. By
definition of P , w /∈ P , i.e., w ∈ Vl for some l ∈ [k]. However, by the definition of {u, v}, u

and v must have been from Vl as well, yielding a contradiction. J

The next lemma we show represents a main building block of the proof of the “if” part.

I Lemma 5. Let S be a SAT instance and let (Gs, Gt, k) = f(S). For every computation C

with initial graph Gs and final graph equal to Gt of length at most 2n + m it holds: There
are y1, . . . , yn, yi ∈ {xi, xi} for every i ∈ [n], such that in C there are no edges other than
E(Gs) ∪ E(Gt) ∪ {{yi, r}|i ∈ [n]} and no edge occurs twice (where E(Gs) and E(Gt) denote
the edge set of Gs and Gt, respectively).

Due to space constraints, we only sketch the proof here, whereas the full proof can be found
in the full version of this paper [32]. The general idea of the proof of Lemma 5 is the following:
To obtain the target graph, for each j ∈ [m] the edge {Cj , r} has to be created and for

C. Scheideler and A. Setzer 150:7

each i ∈ [n] the edge {ti, r} has to be created. Each of these creations involves a distinct
application of a primitive. Therefore, only n applications of primitives are left in a feasible
computation. We show that the nodes in each gadget i have to apply at least one primitive
pi that does not create one of the above edges. This implies that each gadget may apply no
other primitive than pi to create an edge that is not in the target graph and that the nodes
r and Cj themselves cannot apply any primitives at all which by Lemma 4 means that there
are no inter-gadget edges. We use these facts to prove that pi is used to remove the edge
{si, r} thereby creating either {xi, r} or {xi, r}.

The rest of the proof of the “if” part, as formalized by the following lemma, is comparably
straightforward.

I Lemma 6. Let S be a SAT instance as in Definition 2. If f(S) = (Gs, Gt, k) with
k = 2n + m is a k-ULGT instance and there is a computation with initial graph Gs and
final graph equal to Gt of length at most 2n + m then S is satisfiable.

Proof. In the following, we refer to the variables defined in Definition 2. Furthermore, we
say a computation is feasible if and only if its initial graph is Gs, its target graph is Gt and
its length is at most 2n + m. Moreover, we say that the edge that is established during the
application of an Introduction or Delegation primitive (the edge (v, w) in Figures 1a and 1b)
is the result of the Introduction or Delegation, respectively.

Assume that f(S) = (Gs, Gt, 2n + m) is a k-ULGT instance and there is a feasible
computation C for f(S). According to Lemma 5 there are y1, . . . , yn, yi ∈ {xi, xi} for every
i ∈ [n] such that in C there are no edges other than E(Gs) ∪ E(Gt) ∪ {{yi, r}|[n]}. Note
that in Gt, for every j ∈ [m] there is an edge {Cj , r} and each such edge must have been the
result of an introduce or Delegation primitive applied by an yi, i ∈ [n] (as throughout C, the
Cjs do not have any other neighbors with an edge to r that could possible create this edge) .
Let g : {C1, C2, . . . , Cm} → {y1, y2, . . . , yn} be the mapping of each Cj to the yi who applied
a primitive that resulted in the edge {Cj , r}. Consider the truth assignment t : X → {0, 1}
such that t(xi) = 1 if yi = xi and t(xi) = 0 if yi = xi. Observe that t(yi) = 1 for every
i ∈ [n]. Assume for contradiction that there is a clause Cj in S that does not evaluate to 1
under t. Note that g(Cj) must occur in Cj by construction. However, since g(Cj) = yi for
some i ∈ [n] and t(yi) = 1, we obtain the desired contradiction. J

3 Approximation Algorithms

In this section, we first describe an approximation algorithm for ULGT (see Section 3.1)
and prove it to have a constant approximation ratio (see Section 3.2). Note that a constant
approximation factor algorithm for DLGT can be obtained by a slight adaptation of this
algorithm. For a description of this, we refer the reader to the full version [32] due to
space constraints.

As an ingredient our algorithm uses a 2-approximation algorithm (see Section 1.2) for
the Undirected Steiner Forest Problem (USF) defined as follows: Given a graph G and a set
S of pairs of nodes from G, find a forest F in G with a minimum number of edges such that
the two nodes of each pair in S are connected by a path in F .

3.1 Algorithm Description
For an initial graph Gs = (V, Es) and a final graph Gt = (V, Et), we define the set of
additional edges E⊕ := Et \ Es and the set of excess edges E	 := Es \ Et. We now describe
the algorithm in detail and then summarize its pseudo-code in Algorithm 1. Our algorithm
consists of two parts, the first of which dealing with establishing all additional edges and the
second of which dealing with removing all excess edges.

ICALP 2019

150:8 On the Complexity of Local Graph Transformations

Algorithm 1 Approximation algorithm for ULGT.
Input: Initial graph Gs and final graph Gt.
First part:

1: Compute a 2-approximate solution FALG,⊕ for the USF with input Gs, and the set E⊕
as the set of pairs of nodes.

2: For each tree T in FALG,⊕, select a root node rT and connect all nodes in T that are
incident to an edge in E⊕ with rT (details below).

3: For each {u, v} ∈ E⊕, the root of the tree u and v belong to applies the Introduction
primitive to create the edge {u, v}.

4: For each tree T in FALG,⊕, delegate all superfluous edges (i.e., not belonging to Gs or
E⊕) created during Step 2 bottom up in T rooted at rT , starting with the lowest level.
At each intermediate node fuse all of these edges before delegating them to the next
predecessor.
Second part:

5: Compute a 2-approximate solution FALG,	 for the USF with input Gt, and the set E	
as the set of pairs of nodes.

6: For each e ∈ E	, let s(e) be an arbitrary of the two endpoints of e. For each tree T in
FALG,	, select a root node rT and for each e ∈ E	 whose endpoints belong to T , connect
s(e) with rT (similar to Step 2, details below).

7: For each e ∈ E	, s(e) delegates the other endpoint to rT .
8: For each tree T in FALG,	, delegate all superfluous edges bottom-up and fuse multiple

edges as in Step 4.

In the first part, using an arbitrary 2-approximation algorithm for the USF as a black
box the algorithm computes a 2-approximate solution to the following USF instance: The
given graph is Gs, and the set of pairs of nodes is E⊕. Note that the result is a forest such
that for every edge {u, v} ∈ E⊕, u and v belong to the same tree. For each tree T in this
forest the algorithm then selects an arbitrary root rT and connects all nodes in T that are
incident to an edge in E⊕ to rT . The exact details of this will be described when we analyze
the length of the resulting computation. In the next step, for every T , for every {u, v} ∈ E⊕
such that u and v belong to T , rT introduces u to v to each other, thereby creating the edge
{u, v}. After that, the superfluous edges are deleted in a bottom-up fashion: every node that
does not have a descendant with a superfluous edge (in the tree T this node belongs to when
viewing this tree as rooted by rT), fuses all superfluous edges and delegates the last such to
its predecessor in the tree. Note that all superfluous edges in the same tree T have rT as one
of their endpoints.

The second part of the algorithm is similar to the first, with the following differences: In
the fifth step, the USF is approximated for the graph Gt and E	 as the set of pairs. Note
that the solution is a subgraph of the graph obtained after the first part of the algorithm.
In the sixth step, only one of the two endpoints of an edge from E	 is selected to become
connected with the root of the tree the endpoints belong to. In the seventh step (where in
the first part the additional edges are created by the rT nodes), for each edge e ∈ E	, the
endpoint selected in the sixth step delegates this edge to rT (resulting in the edge {rT , v}).

C. Scheideler and A. Setzer 150:9

3.2 Analysis
In this section we show that Algorithm 1 is a constant-approximation algorithm for ULGT,
which is formalized by the following theorem:

I Theorem 7. ULGT ∈ APX.

For convenience we will analyze the two parts of the algorithm individually. Therefore,
for a given initial graph Gs and final graph Gt, let ALG1(Gs, Gt) be the length of the
computation of the first part of the algorithm for this instance, ALG2(Gs, Gt) be the length
of the computation of the second part, and ALG(Gs, Gt) := ALG1(Gs, Gt) + ALG2(Gs, Gt).
Furthermore, let OPT (Gs, GT) be the length of an optimal solution to ULGT for initial
graph Gs and final graph Gt. We also define the intermediate graph G′ = (V, Es ∪ E⊕).
In the course of the analysis we will establish a relationship between ALG1(Gs, Gt) and
OPT (Gs, G′) and between ALG2(Gs, Gt) and OPT (G′, Gt). This will aid us in determining
the approximation factor of Algorithm 1 due to the following lemma:

I Lemma 8. OPT (Gs, G′) + OPT (G′, Gt) ≤ 2OPT (Gs, Gt) + |E⊕|.

Proof. Let P denote the problem equal to k-ULGT with initial graph Gs and final
graph Gt with the additional requirement that the computation must contain G′ and
let OPT ′(Gs, Gt) be the length of an optimal solution to it. Clearly, OPT (Gs, G′) +
OPT (G′, Gt) ≤ OPT ′(Gs, Gt) (otherwise, split the computation at G′ and improve either
OPT (Gs, G′) by the first part obtained or OPT (G′, Gt) by the second part obtained). We
now show that OPT ′(Gs, Gt) ≤ 2OPT (Gs, Gt) + |E⊕|.

Consider a computation C whose initial graph is Gs, whose final graph is Gt and whose
length is OPT (Gs, Gt) (note that such a computation is an optimal solution to ULGT). We
now transform C into a computation that represents a solution to P. This transformation
increases its length by only OPT (Gs, Gt) + |E⊕| and thus proves the above claim (recall that
any solution to P has at least the size of an optimal solution to it). First, because the final
graph does not contain any edge {u, v} ∈ E	, for every such edge there is one last Delegation
in C that removes this edge (recall Observation 1). We replace each of these last delegations by
an introduction and obtain a new computation C ′ of equal length. Note that changing these
delegations to introductions does not make the computation infeasible as this only causes the
graph to have additional edges. The final graph of C ′ is (V, Et ∪E) = (V, Es ∪E⊕) = G′

(recall that Et = (Es ∪E⊕) \E). Next we append C ′ by C and obtain the computation C ′′

of length 2OPT (Gs, Gt). Note that since C transformed Gs to Gt, this second half of C ′′,
which starts from G′ = (V, Es ∪ E⊕), has the final graph G′′ = (V, Et ∪ E⊕), i.e., each edge
from E⊕ appears twice in G′′. Thus we extend C ′′ by fusing each edge from E⊕ with its
double, resulting in a computation C ′′′ of length 2OPT (Gs, Gt) + |E⊕|. Since C ′′′ represents
a solution to P for initial graph Gs and final graph Gt, this completes the proof. J

In the rest of the analysis we show that ALG1(Gs, Gt) ≤ 11OPT (Gs, G′) (Lemma 9)
and that ALG2(Gs, Gt) ≤ 7OPT (G′, Gt) (Lemma 10). By Lemma 8 this implies that
ALG(Gs, Gt) ≤ 11(2OPT (Gs, Gt)+ |E⊕|) ≤ 33OPT (Gs, Gt) (since, clearly, OPT (Gs, Gt) ≥
|E⊕|), which yields the claim of Theorem 7.

We begin with the former claim, which is formalized by the following lemma:

I Lemma 9. ALG1(Gs, Gt) ≤ 11OPT (Gs, G′).

Proof. Let FOP T,⊕ be an optimal solution for the USF with input Gs and E⊕ as the set of
nodes and recall that FALG,⊕ is the USF approximation computed in Step 1 of Algorithm 1.
Throughout the analysis, |FOP T,⊕| and |FALG,⊕| will denote the number of edges in these

ICALP 2019

150:10 On the Complexity of Local Graph Transformations

x zy

w u v

rT

(a) Step 2 connects all endpoints
of edges in E⊕ belonging to T with
rT .

x zy

w u v

rT

(b) In Step 3, rT creates the edges
in E⊕ that belong to T by an In-
troduction.

x zy

w u v

rT

(c) Step 4 removes all superflu-
ous edges by delegating and fusing
them up in the tree.

Figure 3 Example of a tree T with root rT for Step 2-4 of Algorithm 1 assuming {u, v} ∈ E⊕.
ST (x) consists of x, w, and u. x is relevant, whereas y is not. Dashed edges exist temporarily during
the displayed step.

solutions. In the first part of this proof, we show that ALG1(Gs, Gt) ≤ 4|FOP T,⊕|+ 3|E⊕|.
The second part then consists in proving OPT (Gs, G′) ≥ |FOP T,⊕| − |E⊕|, which together
with the observation that OPT (Gs, G′) ≥ |E⊕| yields the claim.

To upper bound ALG1(Gs, Gt), we analyze the number of primitives applied in each of
the steps of the first part of the approximation algorithm. In Step 1, no primitive is applied.
To keep the number of edges as low as possible (which saves Fusion primitives in Step 4), the
algorithm for every T in FALG,⊕ connects the desired nodes to rT in Step 2 in the following
way: To simplify the description, we view T as rooted at rT and for a node u ∈ T denote by
ST (u) the set consisting of u and all of its descendants in the tree T rooted at rT . We say a
node u is relevant if ST (u) contains a node with an endpoint in E⊕. See Figure 3 for an
illustration of these notions. First of all, rT introduces itself to all relevant children. Then,
starting from the second level, we proceed level-wise in the tree: For each level i, every node
u at level i checks whether u is an endpoint of an edge in E⊕ or {u, rT }. If so, it introduces
rT to all relevant children. Otherwise, it introduces rT to all but one of its relevant children
(chosen arbitrarily) and delegates rT to the relevant child it did not introduce rT to. One can
check that the result of this procedure is that each node incident to an edge in E⊕ has an
edge to rT for the tree T it belongs to, see Figure 3a. Note that according to the definition of
FALG,⊕, for each pair {u, v} ∈ E⊕ u and v belong to the same tree T . The above procedure
increases the number of edges by at most 2|E⊕| and requires at most |FALG,⊕| applications
of primitives (since each tree T with k edges contains at most k + 1 nodes and for each node
u in T , at most one primitive is applied to create {u, rT } and this is done for neither rT

nor the nodes at level 1). It is easy to see that Step 3 (c.f. Figure 3b) involves exactly E⊕
applications of primitives. For the length of Step 4 (c.f. Figure 3c), note that for every tree
T at most |T | delegations have to be applied because every node in each tree has to apply
at most one Delegation (causing |FALG,⊕| delegations in total) and at most 2|E⊕| fusions
have to be applied for this is the number of superfluous edges created during Step 2. All
in all, Step 2, Step 3, and Step 4 involve |FALG,⊕|, E⊕, and |FALG,⊕|+ 2|E⊕| applications
of primitives, respectively. This makes a total of 2|FALG,⊕| + 3|E⊕|. Since FALG,⊕ is a
2-approximation of FOP T,⊕, we obtain ALG1(Gs, Gt) ≤ 4|FOP T,⊕|+ 3|E⊕|.

For the lower bound on OPT (Gs, G′), assume for contradiction that there is a computation
C with initial graph Gs and final graph G′ of length L < |FOP T,⊕| − |E⊕|. Let Gs = G1 ⇒
G2 ⇒ · · · ⇒ GL be the sequence of graphs of this computation. For every {u, v} ∈ E⊕ we
iteratively create a path from u to v in the following way: Begin with P L

u,v := (u, v). Note
that P L

u,v exists in GL. We iterate through C in reverse order and for every graph Gi, if P i+1
u,v

exists in Gi, P i
u,v := P i+1

u,v . Otherwise, since Gi+1 is the result of a single application of a
primitive to Gi, there is exactly one edge {x, y} in P i+1

u,v that exists in Gi+1 but not in Gi and
this edge was created by the application of an Introduction or Delegation primitive of some
node w such that {w, x} and {w, y} exist in Gi. Thus, let P i

u,v be P i+1
u,v with (x, y) replaced

C. Scheideler and A. Setzer 150:11

x

u

y

v w

z

(a) Initial graph G1.

x

u

y

v w

z

(b) G2: x has intro-
duced u to y.

x

u

y

v w

z

(c) G3: y has delegated u
to v.

x

u

y

v w

z

(d) G4: y has introduced v
to w.

x

u

y

v w

z

(e) G4: P 4
u,v = (u, v)

and P 4
v,w = (v, w).

x

u

y

v w

z

(f) G3: P 3
u,v = (u, v)

and P 3
v,w = (v, y, w).

x

u

y

v w

z

(g) G2: P 2
u,v = (u, y, v)

and P 2
v,w = (v, y, w).

x

u

y

v w

z

(h) G1: P 1
u,v = (u, x, y, v)

and P 1
v,w = (v, y, w).

Figure 4 Example of an optimal computation C with initial graph G1 and E⊕ = {{u, v}, {v, w}},
and the notions used in the proof of Lemma 9. The upper row shows C in order, the lower row
illustrates the path sets P i

u,v and P i
v,w, which are defined by iterating through C in reverse order.

In the lower row, the edges drawn black in Gi are the edges belonging to to F i. Observe that F1

represents a solution to the USF for graph G1 and node pairs E⊕.

by (x, w, y) and note that P i
u,v exists in Gi. Eventually, we obtain a path P 1

u,v that exists in
Gs. For i ∈ {1, . . . , L}, let F i :=

⋃
{u,v}∈E⊕

E(P i
u,v) (where E(P) is the set of all edges on

the path P) and note that F 1 represents a solution to the USF with input Gs and E⊕ as the
set of node pairs. An example is given in Figure 4. For an arbitrary i ∈ {1, . . . , L− 1}, note
that |F i| ≤ |F i+1|+ 1: if Gi+1 was obtained from Gi by the application of a Fusion primitive,
this inequality trivially holds as none of the above paths changes in this case. Otherwise,
Gi+1 was obtained from Gi by an application of an Introduction or Delegation primitive
by some node w causing at most one edge {x, y} to exist in Gi+1 that does not exist in Gi.
In this case, we further know that {w, x} and {w, y} exist in Gi and by the definition of
the above paths, for every pair {u, v} such that P i+1

u,v contains the edge {x, y} the path P i
u,v

contains (x, w, y) as a sub-path instead and for all other pairs {u′, v′}, P i
u′,v′ = P i+1

u′,v′ . By
the definition of F i and F i+1, this implies |F i| ≤ |F i+1|+ 1 also in this case. All in all we
obtain that |F 1| ≤ |F L|+ L = |E⊕|+ L because F L = E⊕ (note the definition of F L). By
the assumption that L < |FOP T,⊕| − |E⊕|, we obtain |F 1| < |FOP T,⊕|, which represents a
contradiction. J

I Lemma 10. ALG2(Gs, Gt) ≤ 7OPT (G′, Gt).

Proof. The general structure of this proof follows the line of the proof of Lemma 9, but
differs in the details. Similar to the notation used in that proof, let FOP T,	 be an optimal
solution for the USF with input Gt and E	 as the set of nodes and recall that FALG,	 is
the USF approximation computed in Step 5 of Algorithm 1. Analogously, |FOP T,	| and
|FALG,	| denote the number of edges in these solutions. In the first part of this proof, we
show that ALG2(Gs, Gt) ≤ 4|FOP T,	| + 3|E	|. The second part then consists in proving
OPT (G′, Gt) ≥ |FOP T,	|, which together with the observation that OPT (G′, Gt) ≥ |E	|
yields the claim.

To upper bound ALG2(Gs, Gt), we analyze the number of primitives applied in each step
of the second part of the approximation algorithm. Of course, no primitive is applied in Step 5.
The connections required in Step 6 can be created in a similar fashion as in Step 2 (see the
proof of Lemma 9: For each tree T , we proceed top-down in the T rooted at rT again. Here,
each intermediate node u checks whether u = s(e) for some e ∈ E	. If so, it introduces rT to
all relevant children (here a node v is relevant if ST (v) contains a node w such that w = s(e′)
for some e′ ∈ E). Otherwise, it introduces rT to all but one relevant children and delegates

ICALP 2019

150:12 On the Complexity of Local Graph Transformations

it to the remaining one. In the end, for every edge e ∈ E	, s(e) has an edge to rT , the
number of edges in the graph has increased by at most |E	|, and the process involved at most
|FALG,	| applications of primitives. In Step 7, clearly exactly |E	| edges have to be delegated.
Step 8 is similar to Step 4 and for analogous reasons requires at most |FALG,	| delegations
and at most 2|E	| fusions (recall that up to |E	| edges were added in Step 6 and the edges
delegated in Step 7 have to be removed as well). All in all, Step 6, Step 7 and Step 8 of the
algorithm involve at most |FALG,	|, |E	| and |FALG,	|+ 2|E	| applications of primitives,
respectively, which yields: ALG2(Gs, Gt) ≤ 2|FALG,	|+ 3|E	| ≤ 4|FOP T,	|+ 3|E	| (since
FALG,	 is a 2-approximation of FOP T,).

To lower bound the value of OPT (G′, Gt), assume for contradiction that there is a
computation C with initial graph G′ and final graph Gs of length L < |FOP T,	| − |E	|. Let
Gs = G1 ⇒ G2 ⇒ · · · ⇒ GL be the sequence of graphs of this computation. Similar to the
proof of Lemma 9, for every {u, v} ∈ E	, we create a path from u to v, but this time we
start with P 1

u,v := (u, v) and consider the graphs in increasing order: For i ∈ {2, . . . , L}, if
P i−1

u,v exists in Gi, P i
u,v := P i−1

u,v . Otherwise since Gi is the result of a single application of a
primitive to Gi−1, there is exactly one edge {x, y} in P i−1

u,v that exists in Gi−1 but not in Gi

and this edge must have been delegated by either x or y to some node w. In the following
denote the node that applied the Delegation by z and denote by z the other node from
{x, y}. In Gi−1, z must share an edge with w and this edge still exists in Gi (for only one
primitive is applied in the transition from Gi−1 to Gi). Since {z, z} was delegated to w,
in Gi the edge {w, z} exists in Gi. Thus, let P i

u,v be P i−1
u,v with (x, y) replaced by (x, w, y)

and observe that P i
u,v exists in Gi. Eventually, we obtain a path P L

u,v that exists in Gt.
Define F i :=

⋃
{u,v}∈E	

E(P i
u,v) (where E(P) is the set of all edges on the path P) for all

i ∈ {1, . . . , L}, and note that F L represents a solution to the USF with input Gt and E	 as
the set of nodes. Furthermore, for an arbitrary i ∈ {1, . . . , L− 1}, note that |F i+1| ≤ |F i|+ 1
because there is at most one edge {x, y} that exists in Gi but not in Gi+1 and thus causes
the replacement of (x, y) by (x, w, y) for some fixed node w for all paths that contain (x, y)
as a sub-path. This yields that |F L| ≤ |F 1| + L = |E	| + L because F 1 = E	 (note the
definition of F 1. By the assumption that L < |FOP T,	| − |E	|, we obtain |F L| < |FOP T,	|,
which represents a contradiction. J

4 Conclusion

We proposed a set of primitives for topology adaptation that a server may use to adapt the
network topology into any desired (weakly) connected state but at the same time cannot
use to disconnect the network or to introduce new nodes into the system. So far, we only
assumed that the server could act maliciously but that the participants of the network are
honest and correct, i.e., they refuse any graph transformation commands beyond the four
primitives. What, however, if some participants also behave in a malicious manner? Is it
still possible to avoid Eclipse or Sybil attacks? It seems that in this case the only measure
that would help is to form quorums of nodes that are sufficiently large so that at least one
node in each quorum is honest.

Besides these security-related aspects, our results give rise to additional questions: For
example, does the NP-hardness apply to any set of local primitives, or is there a set of local
primitives that can transform arbitrary initial graphs much faster into arbitrary final graphs
than the set considered in this work? Furthermore, is it possible to obtain decentralized
versions of the algorithms presented in Section 3, and, if so, what is their competitiveness
when compared to the centralized ones?

C. Scheideler and A. Setzer 150:13

References
1 Ajit Agrawal, Philip N. Klein, and R. Ravi. When Trees Collide: An Approximation Algorithm

for the Generalized Steiner Problem on Networks. SIAM J. Comput., 24(3):440–456, 1995.
doi:10.1137/S0097539792236237.

2 Susanne Albers, Stefan Eilts, Eyal Even-Dar, Yishay Mansour, and Liam Roditty. On nash
equilibria for a network creation game. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January 22-26, 2006,
pages 89–98, 2006.

3 Noga Alon, Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Tom Leighton. Basic Network
Creation Games. SIAM J. Discrete Math., 27(2):656–668, 2013. doi:10.1137/090771478.

4 Marc Andries, Gregor Engels, Annegret Habel, Berthold Hoffmann, Hans-Jörg Kreowski,
Sabine Kuske, Detlef Plump, Andy Schürr, and Gabriele Taentzer. Graph Transformation
for Specification and Programming. Sci. Comput. Program., 34(1):1–54, 1999. doi:10.1016/
S0167-6423(98)00023-9.

5 James Aspnes and Yinghua Wu. O(logn)-Time Overlay Network Construction from Graphs
with Out-Degree 1. In Proceedings of the 11th International Conference on Principles of
Distributed Systems, (OPODIS ’07), pages 286–300, 2007.

6 Azrina Abd Aziz, Y. Ahmet Sekercioglu, Paul G. Fitzpatrick, and Milosh V. Ivanovich. A
Survey on Distributed Topology Control Techniques for Extending the Lifetime of Battery
Powered Wireless Sensor Networks. IEEE Communications Surveys and Tutorials, 15(1):121–
144, 2013. doi:10.1109/SURV.2012.031612.00124.

7 Andrew Berns, Sukumar Ghosh, and Sriram V. Pemmaraju. Building self-stabilizing overlay
networks with the transitive closure framework. Theor. Comput. Sci., 512:2–14, 2013.

8 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Locality-Based Network
Creation Games. TOPC, 3(1):6:1–6:26, 2016. doi:10.1145/2938426.

9 Stephen A. Cook. The Complexity of Theorem-proving Procedures. In Proceedings of the
Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages 151–158, New
York, NY, USA, 1971. ACM. doi:10.1145/800157.805047.

10 Andreas Cord-Landwehr, Martina Hüllmann, Peter Kling, and Alexander Setzer. Basic
Network Creation Games with Communication Interests. In Algorithmic Game Theory - 5th
International Symposium, SAGT 2012, Barcelona, Spain, October 22-23, 2012. Proceedings,
pages 72–83, 2012. doi:10.1007/978-3-642-33996-7_7.

11 Erik D. Demaine, MohammadTaghi Hajiaghayi, Hamid Mahini, and Morteza Zadimoghaddam.
The price of anarchy in network creation games. In Proceedings of the Twenty-Sixth Annual
ACM Symposium on Principles of Distributed Computing, PODC 2007, Portland, Oregon,
USA, August 12-15, 2007, pages 292–298, 2007. doi:10.1145/1281100.1281142.

12 Shlomi Dolev and Ronen I. Kat. HyperTree for self-stabilizing peer-to-peer systems. Distributed
Computing, 20(5):375–388, 2008.

13 Hartmut Ehrig, Hans-Jörg Kreowski, Ugo Montanari, and Grzegorz Rozenberg, editors. Hand-
book of Graph Grammars and Computing by Graph Transformations, Volume 3: Concurrency,
Parallelism, and Distribution. World Scientific, 1999.

14 Alex Fabrikant, Ankur Luthra, Elitza N. Maneva, Christos H. Papadimitriou, and Scott
Shenker. On a network creation game. In Proceedings of the Twenty-Second ACM Symposium
on Principles of Distributed Computing, PODC 2003, Boston, Massachusetts, USA, July 13-16,
2003, pages 347–351, 2003. doi:10.1145/872035.872088.

15 Michael Feldmann, Christina Kolb, Christian Scheideler, and Thim Strothmann. Self-Stabilizing
Supervised Publish-Subscribe Systems. In 2018 IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2018, Vancouver, BC, Canada, May 21-25, 2018, pages
1050–1059, 2018. doi:10.1109/IPDPS.2018.00114.

16 M. Goemans and D. Williamson. A General Approximation Technique for Constrained
Forest Problems. SIAM Journal on Computing, 24(2):296–317, 1995. doi:10.1137/
S0097539793242618.

ICALP 2019

http://dx.doi.org/10.1137/S0097539792236237
http://dx.doi.org/10.1137/090771478
http://dx.doi.org/10.1016/S0167-6423(98)00023-9
http://dx.doi.org/10.1016/S0167-6423(98)00023-9
http://dx.doi.org/10.1109/SURV.2012.031612.00124
http://dx.doi.org/10.1145/2938426
http://dx.doi.org/10.1145/800157.805047
http://dx.doi.org/10.1007/978-3-642-33996-7_7
http://dx.doi.org/10.1145/1281100.1281142
http://dx.doi.org/10.1145/872035.872088
http://dx.doi.org/10.1109/IPDPS.2018.00114
http://dx.doi.org/10.1137/S0097539793242618
http://dx.doi.org/10.1137/S0097539793242618

150:14 On the Complexity of Local Graph Transformations

17 Martin Groß, Anupam Gupta, Amit Kumar, Jannik Matuschke, Daniel R. Schmidt, Melanie
Schmidt, and José Verschae. A Local-Search Algorithm for Steiner Forest. In Anna R. Karlin,
editor, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018), volume 94
of Leibniz International Proceedings in Informatics (LIPIcs), pages 31:1–31:17, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
ITCS.2018.31.

18 Anupam Gupta and Amit Kumar. Greedy Algorithms for Steiner Forest. In Proceedings of the
Forty-seventh Annual ACM Symposium on Theory of Computing, STOC ’15, pages 871–878,
New York, NY, USA, 2015. ACM. doi:10.1145/2746539.2746590.

19 Yair Halevi and Yishay Mansour. A Network Creation Game with Nonuniform Inter-
ests. In Internet and Network Economics, Third International Workshop, WINE 2007,
San Diego, CA, USA, December 12-14, 2007, Proceedings, pages 287–292, 2007. doi:
10.1007/978-3-540-77105-0_28.

20 Reiko Heckel. Graph Transformation in a Nutshell. Electr. Notes Theor. Comput. Sci.,
148(1):187–198, 2006. doi:10.1016/j.entcs.2005.12.018.

21 Riko Jacob, Andréa W. Richa, Christian Scheideler, Stefan Schmid, and Hanjo Täubig. SKIP+:
A Self-Stabilizing Skip Graph. J. ACM, 61(6):36:1–36:26, 2014. doi:10.1145/2629695.

22 Riko Jacob, Stephan Ritscher, Christian Scheideler, and Stefan Schmid. Towards higher-
dimensional topological self-stabilization: A distributed algorithm for Delaunay graphs. Theor.
Comput. Sci., 457:137–148, 2012.

23 Kamal Jain. A Factor 2 Approximation Algorithm for the Generalized Steiner Network
Problem. Combinatorica, 21(1):39–60, 2001. doi:10.1007/s004930170004.

24 Kishore Kothapalli and Christian Scheideler. Supervised Peer-to-Peer Systems. In 8th
International Symposium on Parallel Architectures, Algorithms, and Networks, ISPAN 2005,
December 7-9. 2005, Las Vegas, Nevada, USA, pages 188–193, 2005. doi:10.1109/ISPAN.
2005.81.

25 Andreas Koutsopoulos, Christian Scheideler, and Thim Strothmann. Towards a universal
approach for the finite departure problem in overlay networks. Inf. Comput., 255:408–424,
2017. doi:10.1016/j.ic.2016.12.006.

26 Leonid Anatolevich Levin. Universal sequential search problems. Problemy Peredachi Infor-
matsii, 9(3):115–116, 1973.

27 Mo Li, Zhenjiang Li, and Athanasios V. Vasilakos. A Survey on Topology Control in Wireless
Sensor Networks: Taxonomy, Comparative Study, and Open Issues. Proceedings of the IEEE,
101(12):2538–2557, 2013. doi:10.1109/JPROC.2013.2257631.

28 Chih-Long Lin. Hardness of Approximating Graph Transformation Problem. In Algorithms
and Computation, 5th International Symposium, ISAAC ’94, Beijing, P. R. China, August
25-27, 1994, Proceedings, pages 74–82, 1994. doi:10.1007/3-540-58325-4_168.

29 Rizal Mohd Nor, Mikhail Nesterenko, and Christian Scheideler. Corona: A stabilizing
deterministic message-passing skip list. Theor. Comput. Sci., 512:119–129, 2013. doi:10.
1016/j.tcs.2012.08.029.

30 Ram Ramanathan and Regina Hain. Topology Control of Multihop Wireless Networks Using
Transmit Power Adjustment. In Proceedings IEEE INFOCOM 2000, The Conference on
Computer Communications, Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies, Reaching the Promised Land of Communications, Tel Aviv, Israel,
March 26-30, 2000, pages 404–413, 2000. doi:10.1109/INFCOM.2000.832213.

31 Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Trans-
formations, Volume 1: Foundations. World Scientific, 1997.

32 Christian Scheideler and Alexander Setzer. On the Complexity of Local Graph Transformations
(full version), 2019. arXiv:1904.11395.

33 Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler,
and Zvi Lotker. SplayNet: Towards Locally Self-Adjusting Networks. IEEE/ACM Trans.
Netw., 24(3):1421–1433, 2016. doi:10.1109/TNET.2015.2410313.

http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.31
http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.31
http://dx.doi.org/10.1145/2746539.2746590
http://dx.doi.org/10.1007/978-3-540-77105-0_28
http://dx.doi.org/10.1007/978-3-540-77105-0_28
http://dx.doi.org/10.1016/j.entcs.2005.12.018
http://dx.doi.org/10.1145/2629695
http://dx.doi.org/10.1007/s004930170004
http://dx.doi.org/10.1109/ISPAN.2005.81
http://dx.doi.org/10.1109/ISPAN.2005.81
http://dx.doi.org/10.1016/j.ic.2016.12.006
http://dx.doi.org/10.1109/JPROC.2013.2257631
http://dx.doi.org/10.1007/3-540-58325-4_168
http://dx.doi.org/10.1016/j.tcs.2012.08.029
http://dx.doi.org/10.1016/j.tcs.2012.08.029
http://dx.doi.org/10.1109/INFCOM.2000.832213
http://arxiv.org/abs/1904.11395
http://dx.doi.org/10.1109/TNET.2015.2410313

	Introduction
	Model and Problem Statement
	Related Work
	Our Contribution

	NP-hardness results
	k-ULGT is NP-hard

	Approximation Algorithms
	Algorithm Description
	Analysis

	Conclusion

