
RT-CASEs: Container-Based Virtualization for
Temporally Separated Mixed-Criticality Task Sets
Marcello Cinque
Federico II University of Naples, Italy
wpage.unina.it/macinque
macinque@unina.it

Raffaele Della Corte
Federico II University of Naples, Italy
raffaele.dellacorte2@unina.it

Antonio Eliso
Federico II University of Naples, Italy
antonio.eliso@studenti.unina.it

Antonio Pecchia
Federico II University of Naples, Italy
antonio.pecchia@unina.it

Abstract
This paper presents the notion of real-time containers, or rt-cases, conceived as the convergence of
container-based virtualization technologies, such as Docker, and hard real-time operating systems.
The idea is to allow critical containers, characterized by stringent timeliness and reliability require-
ments, to cohabit with traditional non real-time containers on the same hardware. The approach
allows to keep the advantages of real-time virtualization, largely adopted in the industry, while
reducing its inherent scalability limitation when to be applied to large-scale mixed-criticality systems
or severely constrained hardware environments. The paper provides a reference architecture scheme
for implementing the real-time container concept on top of a Linux kernel patched with a hard
real-time co-kernel, and it discusses a possible solution, based on execution time monitoring, to
achieve temporal separation of fixed-priority hard real-time periodic tasks running within containers
with different criticality levels. The solution has been implemented using Docker over a Linux kernel
patched with RTAI. Experimental results on real machinery show how the implemented solution is
able to achieve temporal separation on a variety of random task sets, despite the presence of faulty
tasks within a container that systematically exceed their worst case execution time.

2012 ACM Subject Classification Software and its engineering → Real-time systems software

Keywords and phrases Containers, mixed-criticality, temporal separation, monitoring

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.5

Funding This work is partially supported by the RT-CASE project, funded by the Dept. of Electrical
Engineering and Information Technology of the University of Naples Federico II, Italy.

Acknowledgements We are thankful to the anonymous reviewers of the ECRTS program committee
for the valuable comments, which allowed us to improve the paper and provided useful guidance to
better target our future research efforts on rt-cases.

1 Introduction

A mixed-criticality system (MCS) can be defined as a real-time and embedded system
integrating software components with different levels of criticality onto a common hardware
platform [4]. The trend in the development of MCSs was initially intertwined with the
migration from single-core to many-core architectures, which paved the way to the opportunity

© Marcello Cinque, Raffaele Della Corte, Antonio Eliso, and Antonio Pecchia;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 5; pp. 5:1–5:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-1455-8614
wpage.unina.it/macinque
mailto:macinque@unina.it
mailto:raffaele.dellacorte2@unina.it
mailto:antonio.eliso@studenti.unina.it
mailto:antonio.pecchia@unina.it
https://doi.org/10.4230/LIPIcs.ECRTS.2019.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

of having components with different degrees of criticality (e.g., in terms of timeliness and
fault tolerance) running on the same hardware. An increasing number of vendors, such as
automotive and avionics industries, are considering MCSs to meet stringent non-functional
requirements. A typical example is to run hard-real time tasks to control the breaking
system of a car on the same board that runs non-critical monitoring tasks for diagnostics, in
order to reduce costs, space, and power consumption. Noteworthy, the concept of mixed-
criticality is now recognized and supported by the main software standards in automotive
(e.g., AUTOSAR – www.autosar.org) and avionics (e.g., ARINC – www.arinc.com).

A fundamental research challenge for MCSs is to assure the correct execution of high
critical tasks, with a disciplined (and possibly user-transparent) use of the underlying shared
resources. At least temporal separation, and fault isolation of tasks must be guaranteed,
in order to avoid that a problem or a delay in a low criticality task can affect a high criticality
one. A number of theoretical approaches have been defined, especially for task allocation
[15] and schedulability analysis [24] in multi-processor systems. However, when it comes
to the actual implementation of the software components, the assurance of separation and
isolation properties can easily become a burden for developers. For this reason, several
frameworks have been proposed, many of them tailored for a particular domain (e.g., [11] in
the automotive) or bound to particular platforms (such as [22] for FPGAs).

Many solutions capitalize on virtualization technologies to separate real-time kernels
from non real-time ones, by means of different virtual machines (VMs) hosted by specific
hypervisors. For instance, Wind River has recently introduced a Virtualization Profile for
VxWorks [25], integrating a real-time embedded, type 1 hypervisor into the VxWorks real-time
operating system, making it possible to consolidate multiple stand-alone hardware platforms
onto a single multi-core platform. Other examples are PikeOS [14], a separation microkernel
providing a paravirtualization real-time operating system for partitioned multi-core platforms,
and ARINC 653, one of the first industrially used hypervisors, insuring temporal and spatial
isolation of different RTOSes. The use of virtualization allows developers to work with their
preferred environment, and to deal with separation and isolation issues at the hypervisor
level; however, running VMs on a single host has a significant overhead. More importantly,
creating VMs for every hardware platform to consolidate may lead to both software and OS
stretch. In practice, real-time virtualization solutions – such as the ones above – are designed
to deal with the (deterministic) performance penalty introduced by a limited number of
VMs. We observe that the overhead caused by replicating entire OS environments makes it
unfeasible to scale-up to a large number of applications of different criticalities, especially
when they need to be consolidated on a limited number of machines.

A concrete example of such a need is represented by the so-called real-time infrastructure
currently under development as part of the control and data acquisition system of the
ITER1 tokamak [26]. The ITER international project aims at the construction of the world’s
largest nuclear fusion experimental facility in Saint-Paul-lès-Durance, south of France. The
construction of ITER is a challenge itself, as well as its future operation, which aims at
proving the feasibility of energy production by means of nuclear fusion on Earth. The inherent
complexity of ITER (such as any other large-scale critical system) requires to consolidate
tens of thousands of applications of different size and criticality – spanning from distributed
control to monitoring, sensor reading and network communication – on a limited number of
interconnected machines. Different real-time frameworks are currently under development
within the ITER project, in order to deal with the complexity of the overall project and to

1 ITER is a Nuclear Facility INB-174. The views and opinions expressed herein do not necessarily reflect
those of the ITER Organization.

www.autosar.org
www.arinc.com

M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia 5:3

facilitate integrated testing and commissioning [26]. Up to now, the ITER organization has
not focused yet on a solution to manage the integration and orchestration steps in a simple
way, considering the different criticality levels, temporal separation, and fault isolation needs
of the components to be run on the available hardware.

1.1 Contributions of the paper
To face these issues, typical of any large-scale mixed-criticality system, in this paper we
propose the notion and a possible implementation of real-time containers here referred to
as: rt-cases. Containers are today considered a key technology to achieve high consolidation
scalability with minimal space and performance overhead. For instance, Docker relies on an
operating system-level virtualization method for running multiple isolated Linux systems
(containers) on a single host. Technically a container is a set of processes and libraries isolated
from the rest of the machine. Unlike a VM, a container does not need to replicate the whole
OS environment for every system, hence reducing the overhead and increasing the number
of applications with different criticalities that can be run on a single node. The possible
advantages of rt-cases are evident: different developers can still work with their preferred
environment, which is desirable in large and heterogeneous teams. The resulting rt-cases can
be flexibly deployed on the available hardware, as done today with non real-time containers.

With rt-cases we aim to explore the benefits of combining containers and hard real-time
co-kernels. We propose a reference architecture for the rt-cases concept, firstly introduced in
[7], [6]. In this paper we explore the design space of rt-cases and discuss possible alternatives
for their realization on top of a Linux kernel patched with a real-time co-kernel. We present a
specific solution to rt-cases, based on fixed-priority scheduling, runtime execution monitoring,
and on-line mitigation. This solution allows to achieve temporal separation without requiring
modifications to the underlying real-time kernel. The paper presents the implementation
details and technical challenges of such solution, based on Docker and RTAI, and reports
the results of an experimentation with randomly generated feasible task sets. Results show
that, thanks to our runtime monitoring and mitigation strategy, the tasks running within a
container are not affected by faulty tasks (i.e., tasks that exceeds their declared worst case
execution time) running in a different container, regardless of the criticality of the container.
We also present the limitations of our current implementation, and discuss prospected
improvements and related trade-offs.

The rest of the paper is organized as follows. Section 2 presents related work in the
area and positions our work in context of existing contributions. Section 3 provides the
reference architecture and a discussion on potential alternatives to support the implementation
of rt-cases. Section 4 discusses the system model, while Section 5 describes a specific
implementation, technical challenges and prospected developments. Section 6 illustrates
the functioning of the approach with a case study and a measurement campaign. Section 7
concludes the work.

2 Related work

A consolidated trend in the literature and in the industry for time and space partitioning
in mixed-criticality systems is to make use of virtualization technologies. These solutions
range from type 1 hypervisors to full-featured operating systems, with the aim to completely
separate real-time kernels from non real-time ones.

RT-Xen [29] is a real-time hypervisor scheduling framework for Xen [3], a widely used open-
source type 1 hypervisor. The RT-Xen project extends Xen to support virtual machines with
real-time performance requirements. RT-Xen features a compositional real-time scheduling

ECRTS 2019

5:4 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

framework that bridges the gap between virtualization technology and real-time scheduling
theory for predictable computing on virtualized platforms. In [28] the second version of
RT-Xen is presented, which implements both global and partitioned VM schedulers, with
each scheduler being configurable to support dynamic or static priorities and to run VMs
as periodic or deferrable servers. RT-OpenStack [27] is a cloud CPU resource management
system for co-hosting real-time and regular VMs. RT-OpenStack integrates the real-time
hypervisor RT-Xen in the OpenStack cloud management system through a real-time resource
interface. PikeOS [14] is a separation microkernel targeted to real-time embedded systems,
which aims to provide a partitioned environment for multiple operating systems with different
design goals to coexist in a single multi-core platform. It provides full separation in both
time and space for multiple software applications running on different criticality levels.
XTRATUM [20] is a type 1 hypervisor specially designed for real-time embedded system,
which employs para-virtualization techniques. XTRATUM can be used to build partitioned
systems and provides both strong temporal separation, through a fixed cyclic scheduler, and
strong spatial isolation, since all partitions are executed in processor user mode and do not
share memory. The Wind River VxWorks RTOS [25] features a Virtualization Profile that
integrates a real-time embedded, type 1 hypervisor into the core of VxWorks, which is able
to slow down general purpose operating systems to ensure that real-time operating systems
can execute without performance impact.

An alternative to virtualized solutions, which require running a number of virtual machines,
is represented by the use of container-based environments. Differently from virtual machines,
where the operating system stack is entirely replicated for each virtual machine, containers
allow running multiple isolated Linux systems on a single host with minimal space and
performance overhead. We believe that containers can be a useful alternative or complement
to virtualized partitioned systems with a lightweight solution to sandbox multiple real-time
applications into isolated software environments on the same hardware or VM.

Recently, few studies have started to explore the possibility to use containers to run
real-time tasks. For example, [18] presents an empirical study on the problem of minimizing
computational and networking latencies for Radio Access Networks (RAN) through lightweight
containers. The study analyzes the performance of Docker containers running on the top of a
Linux kernel patched with Ingo Molnar’s preemption patch (PREEMPT-RT). The obtained
results highlight that the use of PREEMPT-RT improves latencies on Docker containers
when compared to a generic kernel. The paper in [19] proposes a sand-boxed environment,
based on Docker containers on a Linux kernel patched with PREEMPT-RT, to deploy the
software in automotive industry. Experimental results highlight that the use of containers
does not affect the performance of the software when compared with the native environment.

It should be noted that both the solutions make use of PREEMPT-RT in order to
meet the real-time requirements of the considered applications. Despite the good results
obtained, it is recognized that real-time co-kernels, such as RTAI (www.rtai.org) or Xenomai
(www.xenomai.org), outperform PREEMT-RT in terms of latencies and task switch times
[8][12], since they make Linux fully preemptable in favor of real-time tasks. Co-kernels also
add core real-time support to user level real-time tasks, such as fixed-priority or dynamic
scheduling, resource management with priority inheritance, and inter-task communication.
An alternative would be to guarantee a fixed CPU bandwidth to containers using server-
based scheduling, such as the Sporadic Server (SS) [23], periodic or deferrable servers as
done in RT-XEN [28], or the Constant Bandwidth Server (CBS) [1]. For instance, the
SCHED_DEADLINE scheduling policy [16], available in the Linux kernel since version 3.14,
is an implementation of the Earliest Deadline First (EDF) scheduling algorithm, augmented
with a CBS, that makes it possible to isolate the behavior of task groups. However, the use
of containers on top of co-kernels with server-based schedulers has not been explored yet.

M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia 5:5

Starting from these considerations, and from the opportunity, already emerged in the
literature, to use containers in real-time environments, in this paper we aim to propose a
reference architecture scheme where hard real-time tasks within containers are scheduled
by a co-kernel, such as RTAI or Xenomai. Our aim is to fully inherit the advantages of the
co-kernel in terms of real-time performance and functionalities, while letting tasks within
containers to keep using the same application programming interface, as if they were running
on the native system patched with the co-kernel.

3 High-level architecture

Figure 1 depicts the reference architecture underlying the proposed rt-case approach. The
idea is to host real-time (rt-) tasks within containers marked with different Criticality Levels
(CL, e.g. CL:0 and CL:1 in figure) on top of a patched real-time Linux kernel. The CL is
used to establish the relative importance of rt-cases.

Linux Kernel modules

Hardware (CPU, memory, disk, …)

System Call Interface

container

libs
user
mode

kernel
mode

real-time co-kernel modules
(scheduling, resource mgmt, …)

RT-CASE ENGINE
(Container Engine and Feasibility Checker)

rt-case

task

task

rt-lib

rt-task

rt-task

CL:0

rt-case

rt-lib

rt-task

rt-task

CL:1

RT-HAL

Figure 1 High level scheme of the rt-case architecture.

The RT-CASE engine includes a container engine, e.g., Docker (www.docker.com) or
Linux Containers (www.linuxcontainers.org), and a feasibility checker, to verify if a new
rt-case can be admitted on a running computing node, without affecting the rt-cases already
hosted on it. At kernel level, we imagine to have a vanilla Linux kernel patched with a
real-time co-kernel, such as RTAI or Xenomai, in order to make the Linux kernel and all the
non real-time environment (including traditional containers) fully preemtable by rt-tasks
run within rt-cases.

The rt-lib is a key component of the architecture: its objective is to provide a transparent
mapping of rt-tasks on the underlying real-time core, depending on the CL of the container,
possibly exposing standard primitives to rt-tasks. With this approach, the code of rt-tasks
does not need to be modified to run in a container. Hence, the same rt-case can be moved
over time on the different machines of a large-scale computing environment, and with a
different CL, depending on temporal needs, hardware constraints, and presence of other
rt-cases, as regularly done in container-based environments.

ECRTS 2019

5:6 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

3.1 Design alternatives
A simple way to implement the rt-cases architecture is to map whole containers on real-time
tasks (see Figure 2a). In this case, a cooperative, non-preemptive user-level scheduler can
be implemented in the rt-lib to schedule real-time tasks running within an rt-case. Even
if conceptually simple, this solution does not allow to define precise individual deadlines
for tasks within containers, which are hence forced to share a container deadline. This also
requires to introduce specific primitives for cooperative scheduling in the rt-lib (such as yield
primitives) that contradicts our idea to adopt standard primitives for real-time tasks.

Preemptive scheduling for individual tasks within containers overcomes these limitations,
but, to achieve temporal separation, tasks belonging to different containers have not to
interfere each other. To this aim, a possible solution is to adopt hierarchical scheduling
[9][21], e.g., by using Earliest Deadline First (EDF) on task groups (one group for rt-case),
each with a fixed bandwidth Ui guaranteed by a server-based mechanism, such as, the
Constant Bandwidth Server (CBS) [1] (see Figure 2b), or by using the Hierarchical CBS
scheme [17]. This is similar to what done in RT-Xen to assign virtual machines on different
virtual CPUs in a multicore environment, with different bandwidths [28]. In this case, to
admit a (n+ 1)th rt-case to an existing computing node with n rt-cases already running, it
is sufficient to check that:

∑n
i=1 Ui + Un+1 ≤ 1. Even if simple in principle, this solution

implies a significant implementation effort in our architectural proposal, since it requires
to modify the real-time co-kernel (e.g., RTAI or Xenomai core modules) to implement the
hierarchical scheduling solution.

rt-case 2

T3

rt-case 1
T1

rt-lib

T2

CL:0 rt-lib CL:1

PFP
scheduler

Monitor
module

rt-case 2

T3

rt-case 1
T1

rt-lib

T2

CL:0 rt-lib CL:1

EDF scheduler with
CBS policy

rt-case 2

T3

rt-case 1
T1

rt-lib

T2

CL:0 rt-lib CL:1

real-tme scheduler

rt-task 2rt-task 1

(a) (b) (c)

Figure 2 Design alternatives to implement the rt-case model: (a) mapping of whole containers
on single rt-tasks; (b) use of task groups and hierarchical scheduling (for instance, EDF with CBS);
(c) use of preemptive fixed-priority scheduling, static priority assignment, and temporal protection
with on-line execution time monitoring.

A possible compromise to achieve temporal separation without requiring modification to
the real-time kernel support is to perform a one-to-one mapping of tasks within containers
with real-time tasks at kernel level, using a preemptive fixed-priority (PFP) scheduler and a
static priority mapping (see Figure 2c). Using a proper priority assignment, we can assure
that rt-tasks running within a container with a high CL (corresponding to a low CL value,
e.g., 0 in the figure) cannot be preempted neither by any rt-task running in a container
with a lower CL (e.g., 1 in the figure) nor by any non-real time task (running either in
other containers or on the host OS). A priority assignment algorithm is needed in this
case, in order to assure both the feasibility of individual tasks and the feasibility of whole
rt-cases to be admitted on a computing node. The advantage of this solution is simplicity: in

M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia 5:7

principle, it only requires a PFP scheduler, such as rate monotonic (RM), largely available in
existing real-time operating systems. In practice, the solution requires a temporal protection
mechanism (with on-line task execution time monitoring), in order to assure that faulty tasks,
exceeding their worst case execution time (WCET), do not interfere with tasks belonging to
different containers.

In this paper we focus on the implementation of the rt-cases model following the last
alternative, i.e., fixed priority scheduling with monitoring, as in Figure 2c. Future work will
be devoted to the implementation of the hierarchical scheduling alternative (Figure 2b) and
to the comparison between the two solutions.

4 System model

We assume a system composed of M rt-cases, each of them with a criticality level CLj :
j = 0...M − 1. A criticality level CLj can assume an integer value in the interval [0, CLmax],
with 0 being the highest CL, and CLmax the lowest CL. Each rt-case hosts one or more
periodic hard real-time tasks τi, characterized by a worst case execution time Ci and a
period Ti. We assume Ti to be coincident with the relative deadline of the task. Overall, the
system is composed by a set Γ of N tasks, each of them assigned to an rt-case with a given
CL. With Γ(CL) we indicate the subset of tasks with criticality level CL. By construction:
Γ = Γ(CL0) ∪ ... ∪ Γ(CLM−1) and Γ(CLk) ∩ Γ(CLh) = ∅, where CLk 6= CLj .

For example, considering the system depicted in Figure 3, with 4 rt-cases, 8 tasks, and
3 criticality levels, we have: M = 4; N = 8 CLmax = 2; Γ = {τ1 ... τ8}, Γ(0) = {τ1, τ2},
Γ(1) = {τ3, τ4, τ5, τ6}, and Γ(2) = {τ7, τ8}.

CL0 = 0 CL1 = 1 CL2 = 1 CL3 = 2

𝜏" 𝜏# 𝜏$

𝜏%
𝜏&

𝜏' 𝜏(𝜏)

Figure 3 An example of decomposition of tasks within containers: circles represent tasks and
squares represent rt-cases with different CLs; rt-cases 1 and 2 have the same CL.

Each task τi is characterized by a static priority pi. Priority values range in the integer
interval [0, N − 1], where N is the total number of tasks, assuming 0 to be the highest and
N − 1 the lowest priority values. Priorities have to be assigned to tasks according to the CL
of the container they belong to. In particular, to avoid that tasks in a high criticality rt-case
are preempted by tasks in a lower criticality rt-case, we assume that:

CLk < CLH ∧ τi ∈ Γ(CLk) ∧ τj ∈ Γ(CLh) ⇐⇒ pi < pj (1)

In other terms, tasks belonging to high criticality containers must receive high priorities,
and viceversa.

Once priorities are assigned, tasks can be scheduled by a PFP scheduler. Having assumed
a PFP scheduler, a simple method to assign priorities to tasks, while checking the feasibility
of the system, is to adopt the Audsley’s priority assignment algorithm [2], with the classical
Joseph-Pandya’s response time analysis (RTA) schedulability test [13]. RTA consists in
computing the response time Ri of a task τi as: Ri = Ci +

∑
pk<pi

dRi/Tke · Ck. Ri takes
into account the interference that a task can suffer due to preemptions by higher priority
tasks. The task set is schedulable if and only if Ri ≤ Ti ∀i.

The Audsley’s algorithm is based on the following lemmas:

ECRTS 2019

5:8 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

Lemma 1 : the worst case response time of a task τi can be determined with a test (such
as RTA), by knowing the tasks that have priorities greater than τi, but without knowing
the specific assignments of such priorities;
Lemma 2 : if a task is schedulable considering a given priority assignment, then it remains
schedulable if it receives a higher priority.

We adapted the algorithm to our case, as shown in Alg. 1. In particular, to be compliant
with our assumption in (1), we force the assignment of priorities to proceed from tasks
belonging to the lowest criticality rt-case (with CL = CLmax) to the highest one (with
CL = 0, see line 2 in the algorithm), starting from the lowest priority (N − 1) to the highest
one (0). A priority is assigned to a task τi if Ri < Ti (see lines 5-6). If we are not able to
assign the priorities to all the tasks of a given CL, then the task set is unschedulable (see
lines 10-11). If all priorities are assigned, the task set is schedulable.

Algorithm 1 Priority Assignment Algorithm (Audsley’s algorithm adaptation).
1: p← N − 1
2: for CL = CLmax down to 0 do
3: while p ≥ 0 do
4: for each unassigned task τi in Γ(CL) do
5: if Ri ≤ Ti, with all unassigned tasks assumed to have priorities < p then
6: assign p to τi

7: p = p− 1
8: end if
9: end for

10: if not all tasks in Γ(CL) can be assigned then
11: return UNSCHEDULABLE;
12: end if
13: break
14: end while
15: end for
16: return SCHEDULABLE;

Such priority assignment solution assures isolation of high criticality rt-cases from lower
ones, since, by construction, a task running in an rt-case with CLk can never be preempted
by a task running in an rt-case with CLh > CLk, according to (1). However, we must also
ensure that faulty tasks in high criticality rt-cases (e.g., a task instance, or job, exceeding
its Ci) do not affect tasks in low criticality rt-cases. Hence, we assume the system to be
equipped with a temporal protection mechanism implemented by a monitor, running on a
different CPU than the one(s) running rt-cases. The monitor has to measure the execution
time of tasks at runtime, in order to interrupt a job of a periodic task whenever it exceeds
its declared Ci.

With reference to the rt-case architecture in Figure 1, the proposed priority assignment
algorithm has to be implemented by the feasibility checker within the RT-CASE engine. The
algorithm can be run whenever a new rt-case becomes ready, to check if it can be admitted
to a CPU hosting other rt-cases without affecting their execution.

It has to be noted that the assignment obtained with Alg. 1 may not reflect the priority
assignment originally planned by the application developer for the tasks to be run within
his/her container. This might still be fine in the cases where the developer does not care
about individual task priorities, as long as the assignment guarantees that task deadlines

M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia 5:9

are met. However, if application dependent constraints on priorities must be met, Alg. 1
cannot be used as it is. In this case, our implementation leaves to the developer the chance to
manually assign the priorities to tasks, at his/her own risk. A viable alternative is to force the
algorithm (i) to allot disjoint priority intervals to different containers (even for rt-cases with
the same CL), and (ii) to assign priorities to tasks within a rt-case by respecting their original
relative order, in terms of the priorities assigned by the developer. A different solution is
to adopt the rt-case design alternative based on hierarchical scheduling and server-based
approaches (see Figure 2b), since it makes priority assignments within rt-cases independent
from the feasibility checker. We leave the implementation and evaluation of this solution,
along with the comparison with the currently developed scheme, as future work.

5 Implementation details

We present the details on the implementation of our proposal on top of RTAI (Real Time
Application Interface), a real-time co-kernel extension for Linux. RTAI is an open-source
project born to add real-time capabilities to standard Linux kernels. It is conceived as a
patch of the Linux Hardware Abstraction Layer (the RT-HAL) that makes the Linux kernel
fully preemptable in favor of real-time tasks, by masking the interrupts handling mechanism
and by redirecting interrupts to the Linux kernel only when there is no real-time activity to
be performed. The RT-HAL is complemented by a number of RTAI modules, providing a
rich set of services for real-time tasks running at the user level, among which real-time task
management, real-time inter-process communication with priority inheritance, etc.

We implement our proposal on a vanilla Linux kernel 4.9.80 patched with RTAI 5.1.
The proposal encompasses three main components, as depicted in Figure 4: the RT-CASE
engine, the RT-lib and the RT-CASE monitoring. The implementation of these components
is presented in the following2.

Figure 4 System components.

2 The source code of the components has been made publicly available at http://www.dessert.unina.
it/RT-CASE.zip.

ECRTS 2019

http://www.dessert.unina.it/RT-CASE.zip
http://www.dessert.unina.it/RT-CASE.zip

5:10 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

5.1 RT-CASE engine
The RT-CASE engine represents a macro-component dedicated to the orchestration of the
rt-cases and, more important, to the feasibility evaluation of the rt-task set to be run inside
the rt-cases. The RT-CASE engine is composed by two components: the feasibility checker
and the container engine.

The feasibility checker aims to verify the schedulability of a given task set Γ. It is
a Python script that accepts the specification of a task set as input. For each task τi, the
specification contains: (i) id, (ii) name, (iii) the period Ti, (iv) the worst case execution
time Ci, (v) the CL and the name of the container hosting the task. Given the task set,
the feasibility checker runs the priority assignment algorithm (Alg. 1); if the task set is
schedulable, the component returns the priorities to be assigned to tasks. In particular, it
fills a data structure, named control_struct, containing for each task: its id, its name, the
rt-case where it runs, its priority and its Ci. The structure is then used at run-time by the
RT-lib, as a contract for the tasks, as described in Section 5.2.

The container engine is used to launch feasible rt-cases. In our implementation, we
use Docker as container engine. Each rt-case is a Docker container, including in its image
the RT-lib and the executables of the rt-tasks to run. Each rt-case is run providing the
PIDC env variable, which contains the ID of the container; the variable is used by the
RT-lib as described in Section 5.2. It is important to note that only user-space rt-tasks are
allowed to run inside the rt-cases. Kernel-space rt-tasks can be run at host level; however,
they are not managed by our proposal. More important, a number of capabilities as well
as the access to some host devices have to be granted to rt-cases in order to allow the
execution of rt-tasks. For example, if the tasks of a given rt-case needs to access to both the
/dev/rtai_shm and /dev/rtc0 device files (representing the RTAI shared memory and real-
time clock device files, respectively), the rt-case has to be lunched with the following
Docker flags: –device=/dev/rtai_shm:/dev/rtai_shm –device=/dev/rtc0:/dev/rtc0.
Similarly, since rt-tasks usually need to set the real-time clock, the rt-cases are lunched with
the Docker flag –cap-add=SYS_TIME.

5.2 RT-lib
The RT-lib exports the user-space APIs provided by RTAI, which are made available for
each rt-task running inside an rt-case. More in details, the RT-lib encapsulates a modified
version of the RTAI LXRT library, i.e., the library allowing the access to all the services
made available by RTAI and its schedulers in user-space; a number of primitives are modified
in order to grant naming isolation and to assign priorities to rt-tasks running inside rt-cases.

Naming isolation allows avoiding clashes due to the use of the same name for a rt-
task or a resource from applications running in different rt-cases. We modify the LXRT
rt_task_init_schmod primitive, which allows to create and initialize rt-tasks in user-space,
to combine the name of the rt-task, generally provided as input parameter, with the ID
of the related rt-case, which is defined through the PIDC env variable of the rt-case.
Similar modifications have to be applied to the other LXRT initialization primitives, such
as rt_typed_sem_init and rt_typed_mbx_init, which allow the initialization of semaphores
and mailboxes, respectively.

To perform the priority assignment, we modify the rt_task_init_schmod primitive. The
modified version of this primitive sets the task priority to the one defined in the control_struct
(the contract) generated by the feasibility checker. If the priority value is not defined in the
control_struct, i.e., the feasibility check has not been executed for the current task set or the
task set is not feasible, the primitive does not change the priority.

M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia 5:11

Finally, in order to assure temporal separation through the protection mechanism imple-
mented by the monitoring component (see next section), both the rt_task _init_schmod
and rt_task_wait_period are modified. The rt_task_init_schmod is modified to create
and initialize a data structure, named task_ descriptor, used by the monitoring compon-
ent and containing the information about the current task. The descriptor, created if the
monitoring is active, logically extends the Linux task_struct (without actually modifying it)
with a number of fields required by the monitoring component. The main fields of the the
task_descriptor are detailed in Table 1. The rt_task_wait_period, i.e., the RTAI primitive
that suspends the execution of a periodic hard real-time task until the next period, is modified
to count the number of cycles of the task. This parameter is reported in the cycle field of the
task_descriptor. Before invoking the syscall allowing the task to wait the next period, the
primitive first verifies if the monitoring is active and, in this case, increments the cycle field.
When the task is resumed at the next cycle, the primitive also saves the current time in the
last_switch_time field of the task_descriptor, which is used by the monitoring component to
measure the execution time of the task (see next section).

It should be noted that all the modifications explained above are totally transparent
to the developer. In fact, the modifications affect only the body of the primitives, while
their signatures are left unchanged. More important, the modifications only affect the RTAI
LXRT user-space library, without any change to the RTAI kernel level source code. This
avoids the need to re-compile the kernel; only the library source code needs to be compiled
and installed in the containers, fostering an easy and quick adoption of the solution. Finally,
it is important to note that if the monitoring component or the feasibility checker is not
activated, all the modified primitives act as the original ones. This leaves the programmer
the freedom to manually assign the priorities at his/her own risk.

Table 1 Main fileds of task_descriptor.

Field Description
wcet Worst Case Execution Time (WCET, or Ci) of the task
exec_time Execution time of the task in the current cycle
last_switch_time Time of the last context switch involving the task
last_overrun Last time the task has been found in overrun
task_alarm Pointer to the task in charge to manage the task, when it becomes faulty
cycle Current cycle of the task
last_cycle Last cycle of the task
overtime Number of overtimes of the task
overrun Number of overruns of the task

5.3 RT-CASE monitoring
The RT-CASE monitoring component aims to provide temporal protection to rt-cases.
The component prevents that a faulty task (i.e., a task exceeding its WCET or having an
activation frequency higher than the one declared during the feasibility checking) running
within an rt-case may affect the tasks running in rt-cases with lower or equal CLs. To this
aim, the component periodically checks the execution time and the activation frequency of
the rt-tasks running inside the rt-cases; in addition, it measures the number of overruns and
overtimes of each task, i.e., the number of times a task exceeds its deadline and WCET,
respectively. When a faulty task is detected, the RT-CASE monitoring implements one of
the following policies to guarantee temporal protection:

ECRTS 2019

5:12 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

KILL: the task is killed in a forced way;
SUSPEND: the task is suspended indefinitely;
FORCE_PERIOD: the task is suspended and it will be resumed at the next period activation;
SIGNAL: a notification is sent to a given task, which will be in charge to take action as a
consequence of the fault.

The policy to adopt represents one of the parameters of the monitoring component, which
also includes the CPU it has to be run on and the monitoring period.

The RT-CASE monitoring component has been developed as a kernel module. The
module launches a number of tasks on a dedicated processor in order to avoid that the
monitoring operation affects the rt-tasks running inside rt-cases. Therefore, the proposed
monitoring approach requires a multiprocessor hardware configuration with at least 2 CPUs,
one for monitoring and the other one for the rt-tasks running in rt-cases. The usage of a
single processor system is also possible (although we leave it as future work); however, there
are two constraints to be considered in this case: (i) the monitoring task has to be taken into
account in the feasibility checking and (ii) it has to be the task with the highest priority.

The RT-CASE monitoring component provides two main services: subscription service
and controller service.

The subscription service is an aperiodic task that is activated when the SIGNAL policy
is used. The service allows developers to subscribe a control task for a rt-task to monitor.
The control task will be notified each time the monitored rt-task is detected as faulty, as
defined by the SIGNAL policy. When a control task requests the subscription for a given
rt-task, the subscription service retrieves the task_descriptor of the rt-task and stores the
pointer to the control task into the task_alarm field. This policy is useful to handle the
recovery of tasks in overtime at the user-space, within rt-cases; however developers must be
aware of it. The other policies do not require modifications to the source code of tasks.

The controller service is the main service of the monitoring component since it aims to
detect faulty tasks. The service is conceived as a set of periodic real-time tasks - watchdogs
hereinafter. A watchdog is created for each CPU running the rt-cases. Each watchdog
periodically executes the following steps: (i) gets the task currently running on the CPU it
monitors; (ii) if the current task is a periodic, user-space, hard real-time task, it retrieves the
pointer to its Linux task_struct; (iii) it retrieves the rt-case task_descriptor of the task and
measures its execution time and activation frequency; (iv) if a deviation is detected, i.e., the
execution time exceeds the WCET of the task and/or the activation frequency is higher than
the one declared during the feasibility checking, the configured policy will take place for the
task (i.e., SIGNAL, KILL, SUSPEND or FORCE_PERIOD).

It should be noted that in order to measure the execution time and the number of overruns
and overtimes, the watchdogs leverage information contained in the task_descriptor, e.g., cycle,
last_cycle and last_switch_time fields, as well as RTAI primitives (e.g., rt_get_time_cpuid
to obtain the current time in internal count units on a given cpu). In addition, the
switch_time[cpu] provided by RTAI is used, which indicates the time of the last context
switch on the indicated cpu. Alg. 2 describes the algorithm used by the watchdogs to measure
the execution time of rt-tasks.

The algorithm evaluates the execution time in three different cases, depicted in Figure 5,
which shows two rt-tasks running in rt-cases with different CLs: (a) the current task is in a
cycle different from the one of the last monitoring check (at M0 and M4 for Task 2, at M2
for Task 1); (b) the current task is in the same cycle of the last monitoring check and it has
not been preempted (at M1, M5 and M6 for Task 2); (c) the current task is in the same
cycle of the last monitoring check and it has been preempted in favor of a task with a higher

M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia 5:13

Figure 5 Execution time measurement.

Algorithm 2 Execution time evaluation algorithm.
1: if tsk_desc–>cycle == tsk_desc–>last_cycle then
2: if tsk_desc–>last_switch_time == switch_time[cpu] then
3: tsk_desc–>exec_time = rt_get_time_cpuid (cpu) - tsk_desc–>last_switch_time;
4: else
5: tsk_desc–>last_switch_time = switch_time[cpu];
6: tsk_desc–>exec_time += rt_get_time_cpuid (cpu) - tsk_desc–>last_switch_time;
7: end if
8: else
9: tsk_desc–>last_cycle = tsk_desc–>cycle;
10: switch_time[cpu] = tsk_desc–>last_switch_time;
11: tsk_desc–>exec_time = rt_get_time_cpuid (cpu) - tsk_desc–>last_switch_time;
12: end if

priority (at M3 for Task 2). In both cases (a) and (b) the current execution time of the task
is evaluated as the difference between the current time, provided by rt_get_time_cpuid, and
the last_switch_time (Alg. 2 - lines 3 and 11), i.e., M1 - t0, M6 - t4 (Task 1) and M2 - t1
(Task 2) in Figure 5; however, in case (a) the algorithm also updates the last_cycle value
and updates the switch_time[cpu] with the last_switch_time (lines 9 and 10) since a new
cycle is started. It should be noted that the update of the switch_time[cpu] is required
to avoid an erroneous evaluation of the execution time when a task enters in a new cycle
without any context switch; in fact, in this case the switch_time[cpu] is not updated by
RTAI. In case (c) the algorithm measures the execution time of the task as the sum between
the last measured execution time for the task and the difference between the current time
and the last_switch_time (Alg. 2 - lines 6), i.e., (M1 - t0) + (M3 - t2) in Figure 5 for Task
2; noteworthy, the last_switch_time here is updated to the switch_time[cpu] value (Alg. 2 -
line 5), i.e., t2, in order to consider the begin of the new activation of the task.

Alg. 3 describes the algorithm used by watchdogs to detect tasks in overrun and overtime,
and rt-tasks activating before the expected time. An overrun is detected by evaluating the
difference between the current time, the periodic_resume_time, i.e., the time the task has
been or will be resumed after a cycle, and the period of the task (Alg. 3 - line 3). Both the
periodic_resume_time and the task period are provided through the task struct of the task
(task in Alg. 3); in addition, the function count2nano used in the algorithm converts a value

ECRTS 2019

5:14 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

Algorithm 3 Detection algorithm.
1: //CHECK OV ERRUN
2: overrun = count2nano(rt_get_time_cpuid (cpu) - task–>periodic_resume_time - task–>period);
3: if overrun > 0 AND tsk_desc–>last_overrun != tsk_desc–>cycle AND tsk_desc–>cycle > 1 then
4: tsk_desc–>overrun++;
5: tsk_desc–>last_overrun = tsk_desc–>cycle;
6: end if
7: //CHECK OV ERT IME
8: if count2nano(tsk_desc–>exec_time) > tsk_desc–>wcet AND tsk_desc–>cycle > 0 then
9: tsk_desc–>overtime ++;
10: start_policy(tsk_desc);
11: end if
12: //CHECK ACT IV AT ION
13: if rt_get_time_cpuid (cpu) < task–>periodic_resume_time) then
14: start_policy(tsk_desc);
15: end if

in tick count to nanoseconds. If the obtained value is positive, the rt-task is considered in
overrun, since its execution time exceeds its deadline (that we assume to be equal to the
period of the task). For example, in Figure 6 it is depicted a task exceeding its deadline. It
can be noted that the sum of the periodic_resume_time and the task period is lower than the
current time; therefore, the difference evaluated by the detection algorithm is a positive value,
which allows detecting the overrun at M0. When a task is found in overrun, the algorithm
increments the number of overruns (line 9), i.e., the overrun field of the task_descriptor, and
saves the cycle of the overrun (line 10), i.e., the last_overrun field.

Figure 6 Overrun detection.

Overtimes are evaluated by comparing the evaluated execution time with the WCET
of the task (Alg. 3 - line 8); if the execution time is greater than the WCET, the task is
considered in overtime and the overtime field of the task_descriptor is updated (line 9).
Finally, in order to detect task activating before the expected time, the algorithm verifies
if the current time is lower than the periodic_resume_time (Alg. 3 - line 13); in this case,
the task has been activated before expected. If an overtime or a premature task activation
occurs, the algorithm calls the start_policy function, which applies the policy configured for
the temporal protection (lines 10 and 14).

5.4 Discussion
The algorithm currently implemented for RT-CASE monitoring has the benefit of a constant
computational complexity, which does not depend on the number of tasks running on the
monitored CPUs. At each period, the monitor performs checks on the currently running
rt-task, with a relatively small number of lines of code. We measured the typical execution
time of an instance of the implemented monitor, e.g., the time it takes to perform a check

M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia 5:15

within a period. The measurements have been conducted in our deployment (composed by a
2.4 GHz dual-core Intel Core i7-5500U machine, equipped with 8 GB DDR3 RAM and a
Crucial MX500 SSD) and they show that a watchdog instance is able to run within about
3,500ns in the worst case, regardless of the number of tasks to monitor. This relatively short
monitoring time allows very fine grain monitoring periods, in the order of few microseconds,
if the monitor is run on a dedicated CPU.

As a drawback, it is important to note that the current implementation of the monitor
provides an under-estimation of the execution time of rt-tasks. In fact, each time a task
is preempted in favor of a task with a higher priority or terminates its execution in the
current activation, the watchdog is not able to estimate the time between the last monitoring
activation and the termination of the task execution. For example, in the case depicted in
Figure 5 a watchdog is not able to measure the execution time in [M2, t2] for Task 1, and in
[M1, t1], [M3, t3] and [M6, t5] for Task 2. However, the extent of the estimation error can
be easily evaluated. Given a task with a priority pi and period Ti, the error of the execution
time measured by a watchdog in the worst case is given by Tmon · (P + 1). Tmon is the
monitoring period, while P is the number of times the task can be preempted in favor of
tasks with a higher priority. Thanks to the adoption of a PFP scheduling policy, the value of
P can be easily obtained as:

∑
pk<pi

dTk/Tie. It should be noted that Tmon is multiplied by
P + 1, since we have always an underestimation of the execution time at the task termination
in the current period, also if the task is not preempted, as in [M6, t5] of Figure 5. Such
estimation error can be taken into account in the feasibility analysis (see Section 6.3).

We defined a possible solution for reducing the underestimation obtained with the current
implementation. The solution requires that the watchdog stores the current task in a last
monitored task variable, before terminating the current monitoring activation. This allows
the watchdog to update the execution time of the previous monitored task during the next
activation; the new value is obtained as the difference between the current switch_time[cpu]
and last_switch_time of the previous monitored task. For example, in Figure 5 the execution
time of the Task 2 will be updated at M2 as t1 - t0. In this case, the underestimation error
committed by the monitor is Tmon at most, when the task ends its execution between two
monitoring executions. However, this solution requires the watchdog to analyze two tasks
at each cycle. In particular, it has to evaluate the execution time of both the current and
the previous task, and it has to execute the overtime and overrun detection for both of
them. This may have an impact on the execution time of watchdog instances, consequently
requiring to reduce the maximum frequency of monitoring. We leave the implementation of
this new version of the monitoring approach, and its evaluation, as future work.

6 Case study

We present a case study of the proposed approach, which consists in a typical setup of high,
medium, and low criticality containers, with CL values equal to 0, 1, and 2, respectively.
Figure 7 depicts the case study: we hypothesize that the tasks hosted by the medium critical
rt-case exhibit a faulty behavior by exceeding their WCET. We propose a mixture of
experiments to gain insights into the following points: (i) thanks to our monitor, the faulty
tasks in an rt-case do not impact tasks hosted by the remaining containers, (ii) trade-offs of
the monitor and viable workarounds. We deploy the containers on a 2.4 GHz dual-core Intel
Core i7-5500U machine, equipped with 8 GB DDR3 RAM and a Crucial MX500 SSD. The
installation consists of the following key components: Docker 17.031-ce, Ubuntu 16.04, Linux
kernel 4.9.80 and RTAI 5.1. We devote special care to achieve a representative setup although

ECRTS 2019

5:16 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

rt-case
(HIGH, CL=0)

rt-case
(MEDIUM, CL=1)

rt-case
(LOW, CL=2)

rt-task

rt-task

rt-task rt-taskrt-task

rt-task

rt-task

rt-taskfault

Figure 7 Representation of the case study.

by means of general purpose hardware. As such, the Linux kernel has been configured in order
to prevent common sources of non-determinism, such as energy savings, frequency scaling
and hyper trading. Monitor and containers are pinned to distinct cores; the monitoring
period is set to 8,000ns. We would like to point out that this case study is not meant to be
exhaustive, but it has been arranged with the aim of eliciting reasonable operating conditions,
which illustrate the basic functioning of the approach and its concrete implementation.

6.1 Experiments
We conduct a campaign of experiments3 to gain insights into the temporal separation across
the containers. Each experiment of the campaign consists in generating a task set with a
total utilization U. We run the task set for one minute, and record the following outcomes
for each task at the end of the run:

overtime: number of times the task exceeds the WCET;
overrun: number of times the task misses the deadline.

We assess 5 levels of utilization within U={0.45, 0.55, 0.65, 0.75, 0.85}; since the task set
is generated randomly – as explained in the following – experiments are replicated 30 times
for each level U, thus leading to 150 experiments. Moreover, experiments are done both
without and with our monitor, i.e., total 2×5×30 experiments.

For each experiment, the task set with utilization U is synthesized according to the
approach in [10]. As such, if we denote by Ui = Ci

Ti
the utilization of a task (with Ci and

Ti denoting the WCET and the period, respectively), we obtain U =
∑n

i=1 Ui where n is
the number of tasks. In our case study, n is set to 14 because we note that with a higher
number of tasks and at levels of utilization higher than 0.85 (i.e., the maximum level of U
assessed) it is becomes hard to find feasible task sets with fixed priority scheduling. Once
the task set is generated, we (i) assign the tasks to the containers, i.e., 3, 7, and 4 tasks, to
the high, medium, and low criticality container, respectively, and (ii) assign the priorities
with the feasibility checker based on Alg. 1 in Section 4. The feasibility checker assigns the
priorities only if the task set is schedulable, so to be sure that potential overruns are not
merely caused by unfeasible task sets.

The tasks execute a CPU-bound workload made of arithmetic operations for a time
consistent with the declared WCET; however, in order to emulate faulty behaviors, the
tasks allotted to the medium criticality container deliberately keep the CPU busy up to
eight times the WCET. For the experiments with monitoring on, we use the SIGNAL policy:
accordingly, each task is accompanied by the corresponding control task, which terminates
the task under-monitoring when it receives a notification from the monitoring system.

3 The code used for experiments has been made public available within the source code of the proposal.

M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia 5:17

Table 2 shows the outcome of one experiment replication with no monitor and a task
set with U=0.85. For each task, we record overtime and overrun at the end of the
experiment by accessing the corresponding task_descriptor. In this specific instance, the
tasks belonging to the medium criticality container cause 1,067 overtimes in total, which
reflects into total 92 overruns by the tasks within the low criticality container. The high
criticality container is not affected by the faulty tasks, as expected.

Table 2 Outcome of one experiment replication with no monitor and U=0.85.

Ci (ns) Ti (ns) Ui criticality priority overtime overrun
978854 7071458 0.138 high 1 0 0
621582 7566834 0.082 high 2 0 0
1380333 8008509 0.172 high 3 0 0
160056 4869494 0.033 medium 4 339 0
34866 6432178 0.005 medium 5 220 0
103005 6606403 0.016 medium 6 169 0
624445 7667583 0.081 medium 7 133 0
123770 8385032 0.015 medium 8 101 0
95034 8792447 0.011 medium 9 70 0
167473 9991428 0.017 medium 10 35 1
77299 5288777 0.015 low 11 0 21
250561 6660143 0.038 low 12 0 4
1438550 7360892 0.195 low 13 0 43
283605 8931703 0.032 low 14 1 24

6.2 Results with no monitoring
We discuss the results obtained at the termination of the experimental campaign. Fig-
ure 8 summarizes the key outcomes obtained without the monitoring approach, i.e., the
tasks allotted to the medium criticality container are free to exceed their WCET with no
temporal separation.

(a) Total overtime medium critic-
ality container.

(b) Total overrun medium critical-
ity container.

(c) Total overrun low criticality
container.

Figure 8 Total overtime and overrun without our monitoring approach.

Boxplots in Figure 8a summarize the variability of the total overtime at increasing
utilization U . One observation of the total overtime is the sum of the overtime of the tasks
allotted to the medium criticality container at the end of one experiment: each boxplot is
obtained with the data from 30 experiment replications for a given U as stated above.

ECRTS 2019

5:18 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

On average, the tasks produce around 1,027 total overtime per experiment across the different
levels of utilization U , such as shown by the dotted line in Figure 8a. By means of ANOVA,
we observe that there is no statistically significant effect of U on the total overtime with
respect to the inherent variability of the overtime across the experiments. This is an expected
result that is given by the way we generate the task sets and emulate the faulty tasks.

Similarly to Figure 8a, boxplots in Figure 8b show the total overrun – i.e., the sum of
the overrun – of the tasks allotted to the medium criticality container. Again, each boxplot
summarizes the outcomes from 30 experiment replications. Figure 8c shows the total overrun
for the low criticality container. In both Figure 8b and 8c the dotted line represents the
mean of the observations. It can be noted that the total overrun increases as the utilization
increases. Noteworthy, this is not merely caused by an increase of the total overtime of
the tasks in the medium criticality container, because we have excluded the existence of a
statistically significant trend with respect to U , as stated above. Rather, it can be reasonably
stated that at low levels of utilization U (e.g., 0.45-0.55) the remaining amount of free CPU
bandwidth provides higher chance to tolerate faults that reflect into exceeding the WCET.
This chance is progressively smaller as U increases, which causes higher total overrun.

Regarding the tasks allotted to the high criticality container, we observe no overrun.
Since this container hosts high-priority tasks – and given that RTAI has a PFP scheduler –
even if the tasks in the medium criticality exceeds the WCET, they do not affect the high
criticality container. The effect of priorities can be also noted by comparing Figure 8b and 8c,
where the total overrun is smaller for the medium criticality container.

6.3 Results and considerations with the proposed monitor
We analyze the outcome of the remaining 150 experiments obtained by monitoring the tasks
with the proposed approach, which means that any task exceeding the declared WCET is
terminated by its corresponding control task upon the receipt of a SIGNAL. Differently from
the results discussed in Section 6.2, we observe no overrun across all the levels of utilization
assessed in this case study. Our monitor prevents the overrun affecting the tasks allotted
both to the medium and low criticality container.

Beyond this favorable finding, which pertains the basic functioning of the proposed
architecture, we would like to discuss cons of our monitor and potential workarounds. At
this stage of development, we have pursued a lightweight implementation of the monitor,
with a reactive protection approach, as it can be noted by the mitigation policies described
in Section 5.3. In consequence, it is reasonable to assume the existence of a latency of the
detection mechanism, i.e., the time between (i) a faulty task exceeding the WCET, and (ii)
the effect of the mitigation, e.g., a KILL, triggered by our monitor.

Latency may be an issue in some very strict scheduling scenarios. For example, let us
hypothesize a scenario – generated with SimSo [5] – which consists of six tasks with the
parameters shown in Table 3 and total utilization U=1. Figure 9 shows a schedule of the
tasks (CPU row) and a detailed view for the tasks. It can be noted that there is no timeslot
left for tolerating any latency of the detection: for this worst case scenario any minimum
delay at terminating the tasks that exceed the WCET will likely cause an overrun.

In principle, it is possible to tolerate the latency of the monitor with the following
workaround. Let Cmon denote a WCET estimation for the latency of the detection. Given a
task set, for the sole purpose of the schedulability test we use the declared WCETs of the
tasks augmented by Cmon, i.e., Ci+Cmon. If the task set is admitted, any task can safely
exceed its WCET up to Cmon since we assure – by construction – enough time for the actions
of the monitor to take place. The proposed adjustment of the WCETs has a trade-off, which

M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia 5:19

Table 3 An example of worst case scenario with U=1.0.

ID Ci (ms) Ti (ms) criticality priority
Task T1 1.66 10 high 1
Task T2 8.33 50 high 2
Task T3 8.33 50 medium 3
Task T4 16.66 100 medium 4
Task T5 25.00 150 low 5
Task T6 50.00 300 low 6

Figure 9 Representation of the worst case scenario (adapted from SimSo).

reflects into an inherent increase of the declared utilization of a task set. In the following, we
explore this proposition by analyzing the sensitivity of the probability (p) to find schedulable
task sets at increasing utilization with/without tolerance of the latency.

For this analysis we assume the KILL policy, i.e., a faulty task is terminated outright
by the monitor without the mediation of the corresponding control task. In consequence,
the duration of the mitigation action – per se – is negligible, and the main contribution to
Cmon consists of the time taken by the monitor to detect a faulty task. As discussed in
Section 5.4, at this stage of development Cmon depends on both the monitoring period Tmon

and the number of potential task preemptions, which is a function of the relative priorities
and periods of the tasks. In our case study, for simplicity, a reasonable estimate of Cmon is
around 60,000ns. For example, this value can be obtained by applying the computations
described in Section 5.4 to the tasks in Table 2 and taking the mean value across the tasks.

Figure 10a shows the probability (p) to find a schedulable task set with respect to U for 14
tasks and Cmon=60,000ns. For each value of utilization U within 0.05 and 1.0 (by step 0.05)
we generate 100 task sets according to [10], beforehand. We then run the schedulability test
(Alg. 1) with our feasibility checker: p is the ratio between the number of feasible task sets
divided by 100. For the dotted time series (i.e., no tolerance) WCETs are not modified, while
for the solid time series (i.e., with tolerance) WCETs are augmented by Cmon before assessing
the schedulability. As shown in Figure 10a, p decreases as U increases both with/without
tolerance. We observe that the tolerance does not affect p up to U=0.5, while its impact
is significant between 0.6 and 0.9. For example, it can be noted that with no tolerance, p
approaches 0 at U = 0.9, while with tolerance is around 0 at U = 0.75. Noteworthy, the
distance between no/with tolerance series depends on n: for example, the series are closer
with n=11 – i.e., Figure 10d – at a similar distribution of the tasks across the containers,
i.e., 2, 6, and 3 tasks, to the high, medium, and low criticality container, respectively.

We discuss two workarounds that allow mitigating the loss of utilization. The former,
reducing Tmon. Although we used 8,000ns in the case study, Tmon can be safely set to
4,000ns, which is larger than the WCET of the current algorithm implementation. In

ECRTS 2019

5:20 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

(a) n=14; Cmon = 60, 000ns (b) n=14; Cmon = 30, 000ns (c) n=14; Cmon = 8, 000ns

(d) n=11; Cmon = 60, 000ns (e) n=11; Cmon = 30, 000ns (f) n=11; Cmon = 8, 000ns

Figure 10 Sensitivity of p with respect to the utilization.

this case we obtain Cmon=30,000ns. Figure 10b and 10e show how p varies with/without
tolerance at this lower Cmon, and denote a significant improvement with respect to the figures
discussed before. The latter, improving the implementation of the monitoring algorithm.
According to the discussion in Section 5.4, we are pursuing an implementation that reduces
the measurement error on the execution time; at each monitoring activation we plan to
leverage the last_switch_time of the current rt-task to properly measure the execution
time of the previous monitored rt-task. Hence, in the new implementation, Cmon would be
equal to Tmon, which is strongly desirable in practice. In fact, according to the sensitivity
analysis presented in Figure 10c and 10f with Cmon=8,000ns, no/with tolerance series almost
overlap. Based on this finding, we are confident that the prospected improvement of the
implementation should address the current drawbacks in tolerating the latency.

7 Conclusions

This paper presented the notion and an implementation of real-time containers, or rt-cases,
as a possible lightweight solution to let mixed-criticality hard real-time task sets cohabit on
the same hardware. Containers are largely adopted in the software industry to modularize
application components, to streamline the management of dependencies, and to simplify
their deployment and migration in heterogeneous server environments. With rt-cases, we aim
to bring these advantages and software management attitudes to real-time mixed criticality
systems, allowing for the first time to run hard real-time tasks, from within containers, on
low latency Linux systems patched with real-time co-kernels, such as RTAI.

The paper demonstrated the practical feasibility of the rt-case concept in a real context.
The main enabling components of the proposed architecture have been implemented in a
Linux environment, made publicly available and tested under realistic and feasible task

M. Cinque, R. Della Corte, A. Eliso, and A. Pecchia 5:21

sets. Preemptive fixed priority scheduling has been chosen as underlying task scheduling
solution, to avoid modifications to the co-kernel support, thus fostering the early adoption
of the solution. As drawbacks, we have observed that the measurement error committed
by the monitor can affect significantly the feasibility of the task set when increasing the
CPU utilization. In addition, we noted that the priority assignment algorithm currently
implemented in the feasibility checker may not respect the relative ordering of task priorities,
originally planned by the developer. To mitigate these problems, future work will be devoted
to the implementation of the improved version of the monitoring algorithm that reduces
the measurement error, as described in section 5.4, and to the development of the design
alternative based on the use of task groups and hierarchical scheduling with server-based
approaches, which makes priority assignments within rt-cases independent from the feasibility
checker. We also plan to test the solution with realistic workloads in the context of the ITER
project [26], thanks to an on-going research collaboration.

References
1 L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time systems.

In Proceedings 19th IEEE Real-Time Systems Symposium (Cat. No.98CB36279), pages 4–13,
December 1998. doi:10.1109/REAL.1998.739726.

2 N.C. Audsley. Optimal Priority Assignment And Feasibility Of Static Priority Tasks With
Arbitrary Start Times. Technical report YCS 164, 1991.

3 Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer,
Ian Pratt, and Andrew Warfield. Xen and the Art of Virtualization. In Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03, pages 164–177, New
York, NY, USA, 2003. ACM. doi:10.1145/945445.945462.

4 Alan Burns and Robert I. Davis. Mixed Criticality Systems – A review. Tech Rep of the
University of York, 2018. URL: https://www-users.cs.york.ac.uk/burns/review.pdf.

5 Maxime Chéramy, Pierre-Emmanuel Hladik, and Anne-Marie Déplanche. SimSo: A Simulation
Tool to Evaluate Real-Time Multiprocessor Scheduling Algorithms. In Proc. of the 5th
International Workshop on Analysis Tools and Methodologies for Embedded and Real-time
Systems, WATERS, 2014.

6 M. Cinque and D. Cotroneo. Towards Lightweight Temporal and Fault Isolation in Mixed-
Criticality Systems with Real-Time Containers. In 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W), pages 59–60, June
2018. doi:10.1109/DSN-W.2018.00029.

7 M. Cinque and G. De Tommasi. Work-in-Progress: Real-Time Containers for Large-Scale
Mixed-Criticality Systems. In 2017 IEEE Real-Time Systems Symposium (RTSS), pages
369–371, December 2017. doi:10.1109/RTSS.2017.00046.

8 N. T. Dantam, D. M. Lofaro, A. Hereid, P. Y. Oh, A. D. Ames, and M. Stilman. The
Ach Library: A New Framework for Real-Time Communication. IEEE Robotics Automation
Magazine, 22(1):76–85, March 2015. doi:10.1109/MRA.2014.2356937.

9 Z. Deng and J. W. . Liu. Scheduling real-time applications in an open environment. In
Proceedings Real-Time Systems Symposium, pages 308–319, December 1997. doi:10.1109/
REAL.1997.641292.

10 P. Emberson, R. Stafford, and R.I. Davis. Techniques For The Synthesis Of Multiprocessor
Tasksets. In WATERS workshop at the Euromicro Conference on Real-Time Systems, pages
6–11, July 2010.

11 G. Farrall, C. Stellwag, J. Diemer, and R. Ernst. Hardware and software support for mixed-
criticality multicore systems. In Proc. of the Conference on Design, Automation and Test in
Europe, WICERT, DATE, 2013.

12 G. Garre, D. Mundo, M. Gubitosa, and A. Toso. Real-Time and Real-Fast Performance of
General-Purpose and Real-Time Operating Systems in Multithreaded Physical Simulation

ECRTS 2019

http://dx.doi.org/10.1109/REAL.1998.739726
http://dx.doi.org/10.1145/945445.945462
https://www-users.cs.york.ac.uk/burns/review.pdf
http://dx.doi.org/10.1109/DSN-W.2018.00029
http://dx.doi.org/10.1109/RTSS.2017.00046
http://dx.doi.org/10.1109/MRA.2014.2356937
http://dx.doi.org/10.1109/REAL.1997.641292
http://dx.doi.org/10.1109/REAL.1997.641292

5:22 RT-CASEs: Container-Based Virtualization for Mixed-Criticality Task Sets

of Complex Mechanical Systems. Mathematical Problems in Engineering, Article ID 945850,
2014. doi:10.1155/2014/945850.

13 M. Joseph and P. Pandya. Finding Response Times in a Real-Time System. The Computer
Journal, 29(5):390–395, January 1986. doi:10.1093/comjnl/29.5.390.

14 R. Kaiser. The PikeOS concept history and design. Technical Report, SYSGO, 2007.
15 K. Lakshmanan, D. d. Niz, R. Rajkumar, and G. Moreno. Resource Allocation in Distributed

Mixed-Criticality Cyber-Physical Systems. In 2010 IEEE 30th International Conference on
Distributed Computing Systems, pages 169–178, June 2010. doi:10.1109/ICDCS.2010.91.

16 Juri Lelli, Claudio Scordino, Luca Abeni, and Dario Faggioli. Deadline scheduling in the Linux
kernel. Software: Practice and Experience, 46(6):821–839, 2016. doi:10.1002/spe.2335.

17 G. Lipari and S. Baruah. A hierarchical extension to the constant bandwidth server framework.
In Proceedings Seventh IEEE Real-Time Technology and Applications Symposium, pages 26–35,
May 2001. doi:10.1109/RTTAS.2001.929863.

18 C. Mao, M. Huang, S. Padhy, S. Wang, W. Chung, Y. Chung, and C. Hsu. Minimizing
Latency of Real-Time Container Cloud for Software Radio Access Networks. In 2015 IEEE
7th International Conference on Cloud Computing Technology and Science (CloudCom), pages
611–616, November 2015. doi:10.1109/CloudCom.2015.67.

19 Philip Masek, Magnus Thulin, Hugo Sica de Andrade, Christian Berger, and Ola Benderius.
Systematic Evaluation of Sandboxed Software Deployment for Real-time Software on the
Example of a Self-Driving Heavy Vehicle. CoRR, abs/1608.06759, 2016. arXiv:1608.06759.

20 Miguel Masmano, Ismael Ripoll, Alfons Crespo, and J Metge. Xtratum: a hypervisor for
safety critical embedded systems. In 11th Real-Time Linux Workshop, pages 263–272. Citeseer,
2009.

21 M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and J. A. Scoredos. Mixed-
Criticality Real-Time Scheduling for Multicore Systems. 10th IEEE International Conference
on Computer and Information Technology, Bradford, pp. 1864-1871, 2010.

22 R. Santos, S. Venkataraman, A. Das, and A. Kumar. Criticality-aware scrubbing mechanism
for SRAM-based FPGAs. Technical report, Nanyang Technological University, Singapore,
2014.

23 Brinkley Sprunt, Lui Sha, and John Lehoczky. Aperiodic task scheduling for Hard-Real-Time
systems. Real-Time Systems, 1(1):27–60, June 1989. doi:10.1007/BF02341920.

24 X. Wang, Z. Li, and W. M. Wonham. Optimal Priority-Free Conditionally-Preemptive Real-
Time Scheduling of Periodic Tasks Based on DES Supervisory Control. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 47(7):1082–1098, July 2017. doi:10.1109/TSMC.
2016.2531681.

25 WindRiver. VxWorks Virtualization Profile. http://www.windriver.com/products/vxworks/
technology-profiles/#virtualization. [Online; accessed 15-Jan-2019].

26 A. Winter, P. Makijarvi, S. Simrock, J.A. Snipes, A. Wallander, and L. Zabeo. Towards the
conceptual design of the ITER real-time plasma control system. Fusion Engineering and
Design, 89(3):267–272, 2014. doi:10.1016/j.fusengdes.2014.02.064.

27 S. Xi, C. Li, C. Lu, C. D. Gill, M. Xu, L. T. X. Phan, I. Lee, and O. Sokolsky. RT-Open Stack:
CPU Resource Management for Real-Time Cloud Computing. In 2015 IEEE 8th International
Conference on Cloud Computing, pages 179–186, June 2015. doi:10.1109/CLOUD.2015.33.

28 S. Xi, M. Xu, C. Lu, L. T. X. Phan, C. Gill, O. Sokolsky, and I. Lee. Real-time multi-core
virtual machine scheduling in Xen. In 2014 International Conference on Embedded Software
(EMSOFT), pages 1–10, October 2014. doi:10.1145/2656045.2656061.

29 Sisu Xi, Justin Wilson, Chenyang Lu, and Christopher Gill. RT-Xen: Towards Real-time
Hypervisor Scheduling in Xen. In Proceedings of the Ninth ACM International Conference
on Embedded Software, EMSOFT ’11, pages 39–48, New York, NY, USA, 2011. ACM. doi:
10.1145/2038642.2038651.

http://dx.doi.org/10.1155/2014/945850
http://dx.doi.org/10.1093/comjnl/29.5.390
http://dx.doi.org/10.1109/ICDCS.2010.91
http://dx.doi.org/10.1002/spe.2335
http://dx.doi.org/10.1109/RTTAS.2001.929863
http://dx.doi.org/10.1109/CloudCom.2015.67
http://arxiv.org/abs/1608.06759
http://dx.doi.org/10.1007/BF02341920
http://dx.doi.org/10.1109/TSMC.2016.2531681
http://dx.doi.org/10.1109/TSMC.2016.2531681
http://www.windriver.com/products/vxworks/technology-profiles/#virtualization
http://www.windriver.com/products/vxworks/technology-profiles/#virtualization
http://dx.doi.org/10.1016/j.fusengdes.2014.02.064
http://dx.doi.org/10.1109/CLOUD.2015.33
http://dx.doi.org/10.1145/2656045.2656061
http://dx.doi.org/10.1145/2038642.2038651
http://dx.doi.org/10.1145/2038642.2038651

	Introduction
	Contributions of the paper

	Related work
	High-level architecture
	Design alternatives

	System model
	Implementation details
	RT-CASE engine
	RT-lib
	RT-CASE monitoring
	Discussion

	Case study
	Experiments
	Results with no monitoring
	Results and considerations with the proposed monitor

	Conclusions

