
Reliable Dynamic Packet Scheduling over Lossy
Real-Time Wireless Networks
Tao Gong1

University of Connecticut, Storrs, USA

Tianyu Zhang
University of Notre Dame, USA
Qingdao University, China

Xiaobo Sharon Hu
University of Notre Dame, USA

Qingxu Deng
Northeastern University, Shenyang, China

Michael Lemmon
University of Notre Dame, USA

Song Han
University of Connecticut, Storrs, USA

Abstract
Along with the rapid development and deployment of real-time wireless network (RTWN) technologies
in a wide range of applications, effective packet scheduling algorithms have been playing a critical
role in RTWNs for achieving desired Quality of Service (QoS) for real-time sensing and control,
especially in the presence of unexpected disturbances. Most existing solutions in the literature focus
either on static or dynamic schedule construction to meet the desired QoS requirements, but have
a common assumption that all wireless links are reliable. Although this assumption simplifies the
algorithm design and analysis, it is not realistic in real-life settings. To address this drawback, this
paper introduces a novel reliable dynamic packet scheduling framework, called RD-PaS. RD-PaS
can not only construct static schedules to meet both the timing and reliability requirements of
end-to-end packet transmissions in RTWNs for a given periodic network traffic pattern, but also
construct new schedules rapidly to handle abruptly increased network traffic induced by unexpected
disturbances while minimizing the impact on existing network flows. The functional correctness of
the RD-PaS framework has been validated through its implementation and deployment on a real-life
RTWN testbed. Extensive simulation-based experiments have also been performed to evaluate the
effectiveness of RD-PaS, especially in large-scale network settings.

2012 ACM Subject Classification Networks → Network resources allocation; Networks → Network
dynamics; Networks → Network reliability

Keywords and phrases Real-time wireless networks, lossy links, dynamic packet scheduling, reliability

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.11

1 Introduction

In recent years, real-time wireless networks (RTWNs) have been making their way into
a wide range of industrial applications [1, 5, 14, 19]. These applications commonly have
stringent timing and reliability requirements to ensure timely data collection and control
decision delivery. Thus packet scheduling in RTWNs plays an important role for achieving
the desired Quality of Service (QoS) in such applications. QoS here is often measured by

1 The first two authors have equal contribution to this work.

© Tao Gong, Tianyu Zhang, Xiaobo Sharon Hu, Qingxu Deng, Michael Lemmon, and Song Han;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 11; pp. 11:1–11:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECRTS.2019.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

how well the network delivers the packets by their deadlines. Although packet scheduling in
RTWNs has been studied for a long time, how to handle abruptly increased network traffic
in the presence of unexpected disturbances (i.e., events causing more frequent sensing of the
environment and processing of sensed data) remains a challenge. This challenge is further
exacerbated by the lossy wireless links in typical industrial environments [7].

Most RTWNs adopt Time Division Multiple Access (TDMA) based data link layers to
achieve deterministic real-time communication. Sensing and control tasks are abstracted
as end-to-end (e2e) flows with specified timing and reliability requirements. Most earlier
packet scheduling algorithm designs in RTWNs focus on schedulability analysis and employ
centralized and static (or infrequently updated) management frameworks (e.g., [17, 18, 16, 8,
22]). Those solutions may fit well for small-scale static RTWNs. They however often lead
to significantly degraded QoS when the system becomes large and/or when deployed for
monitoring and controlling complex physical processes where disturbances are present.

To model and respond to disturbances in RTWNs, many dynamic scheduling approaches
have been proposed. Both [4] and [27] support admission control in response to adding/re-
moving tasks for handling disturbances in the network. They however do not consider
scenarios when not all tasks can meet their deadlines. The protocol in [12] proposes to
allocate reserved slots for occasionally occurring emergencies (i.e., disturbances), and allow
regular tasks to steal slots from the emergency schedule when no emergency exists. However,
how to satisfy the deadlines of regular tasks in the presence of emergencies is not considered.
[21] proposes a MAC protocol with a centralized reschedule scheme allowing on-line changes
of active streams and network topology. However, the scheduler and the data format of the
schedule distribution are not specified in [21].

Another thread of research significantly advances the state of the art by providing dynamic
packet scheduling functions in RTWNs. Among these approaches, OLS in [9] relies on a
centralized gateway to construct and disseminate a dynamic schedule to all the nodes in
the network; D2-PaS in [23] offloads the schedule construction to individual nodes and only
disseminates minimum information for the nodes to construct a dynamic schedule locally; and
FD-PaS in [26] further eliminates the need of a centralized gateway by notifies and handles
the disturbances in a local and distributed manner. They, however, all assume perfect wireless
network links, which is not realistic especially in noisy and harsh industrial environments.
To our best knowledge, none of the existing dynamic packet scheduling algorithms consider
packet losses and thus can lead to poor QoS for real-life deployment.

On the other hand, a rich set of methods have been designed for RTWNs to improve the
reliability of wireless packet transmission over lossy links. For instance, most RTWN solutions
(e.g., WirelessHART [20], ISA 100.11a [10], and 6TiSCH [6]) employ multiple channels and
some frequency hopping mechanisms to minimize potential interference. Further, [8] proposed
a set of reliable graph routing algorithms in WirelessHART networks to explore path diversity
to improve reliability. These works are complementary to the approach to be introduced in
this paper since we focus on single channel with pre-defined routing. [3] proposed an algorithm
to allocate a necessary number of retransmision links for individual nodes to guarantee a
desired success ratio of packet delivery in a star network topology. [2] extended the network
model in [3] to allow multi-hop flows and proposed both Link-Centric and Flow-Centric
scheduling policies. However, the policies in [3, 2] tend to assign more retransmission slots
than necessary, and thus require higher network bandwidth. Our approach in this work
results in an optimal retransmission slot assignment. Furthermore, all aforementioned studies
only focus on packet scheduling in static RTWN settings over lossy links, and cannot be easily
extended to handle abruptly increased network traffic caused by unexpected disturbances. In

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:3

a recently submitted work [25], we addressed disturbance handling in lossy RTWNs. However,
the schedule used in the static setting is generated by directly applying the retransmission
mechanism in [2] which can lead to higher network bandwidth usage than necessary. Further,
[25] is based on the distributed framework FD-PaS to handle disturbances which can cause
high QoS degradation on other uncritical tasks according to the results in [26].

In this work, we introduce a reliable dynamic packet scheduling framework, called RD-PaS,
for meeting both timing and reliability requirements in packet scheduling in the presence of
disturbances. When no disturbance occurs (i.e., in the static scenario), RD-PaS determines
the minimum number of retransmission slots needed for each task to guarantee reliable
e2e packet delivery, and construct a communication schedule locally in a hybrid manner at
individual nodes. The hybrid approach needs a centralized controller and a local schedule
generator to keep a good tradeoff between bandwidth usage and QoS. When a disturbance
occurs, RD-PaS generates a dynamic schedule to guarantee desired reliability of critical
task(s) while judiciously degrade the reliability of packet transmissions for other tasks. We
formulate a reliable dynamic scheduling problem to minimize such degradation, prove that
this problem is NP-hard, and present an effective heuristic to solve it. The functional
correctness of the RD-PaS framework has been validated through its implementation and
deployment on a real-life RTWN testbed. Extensive simulation-based experiments have also
been performed to evaluate the effectiveness of RD-PaS, especially in large-scale network
settings. Our results show that RD-PaS can reduce e2e packet deliver ratio degradation in
dynamic schedule by 58% on average compared to the D2-PaS approach.

The remainder of this paper is organized as follows. Section 2 describes the system model
and problem definition, and gives an overview of the RD-PaS framework. Section 3 presents
the details of RD-PaS for the Transmission-based Scheduling (TBS) model, including both
static schedule construction and dynamic schedule adjustment in the presence of disturbances.
These efforts are further extended to the Packet-based Scheduling (PBS) model in Section 4.
In Section 5, we present the implementation and functional validation of RD-PaS on a real-life
RTWN testbed. Performance evaluation from extensive simulation-based experiments is
reported in Section 6. Finally, we conclude the paper and discuss future work in Section 7.

2 Preliminaries

In this section, we first discuss the system model and then give an overview of the proposed
RD-PaS framework.

2.1 System Model and Problem Definition
The system architecture of an RTWN studied in this work is modeled after RTWNs often
found in industrial process control applications. Such an RTWN consists of multiple sensor
and actuator nodes wirelessly connected to a single controller node either directly or through
relay nodes. The network is described by a directed graph G = (V,E), where the node set
V = {V0, V1, . . . , Vc}. Vc is the controller node and the rest are referred to as the device
nodes. A direct link e = (Vi, Vj) ∈ E represents a wireless link from node Vi to Vj with a
Packet Delivery Ratio (PDR), λLe , which represents the probabilistic transmission success
rate on link e2. Vc connects to all the nodes via some routes and is responsible for executing

2 Link PDR λL
e is usually measured during the site survey and is stable during normal network operations.

In case the value of λL
e changes significantly, the new value is assumed to be broadcast to all the nodes

in the network.

ECRTS 2019

11:4 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

Controller Vc

Sensor V0

Sensor V3

Sensor V5

Actuator V1

Actuator V4 Sensor/Actuator V2

χ0,j (0)

χ0,j(1)

χ0,j(2
)

χ1,j(0)
χ1,j (1)

χ1,j(2)
χ1,j(3)

χ2,j(0) χ2,j(1
)

χ3,j (0)

χ3,j(1
)

χ5,j(0)

χ5,j(0
)

χ5,j (0)

χ5,j (1)

χ5,j(1)

χ5,j(2)

Routing Paths
τ0 τ1 τ2 τ3 τ5

V3→

V0→

Vc→
V1

V5→

V2→
Vc→
V0→

V4

V0→
Vc→

V1

V2→

Vc→

V1

Vc→

V0,V1,V2|

V0→

V3,V4|

V2→

V5

Figure 1 An example RTWN with 5 tasks running on 7 nodes. The sensor and actuator nodes
are taken from a crude processing plant.

relevant control algorithms. Vc also contains a network manager which conducts network
configuration and resource allocation. In this work, we focus on RTWNs with only one
controller node. Networks with multiple controller nodes are left for future work.

We assume that the system executes a fixed set of control tasks T = {τ0, τ1, . . . τn} where
τi (0 ≤ i < n) is a unicast task and τn is a broadcast task. Each task τi is associated with a
period Pi and deadline Di, and follows a designated single routing path with Hi hops. We
use −→L i = [Li[0], Li[1], . . . , Li[Hi − 1]] to represent the routing path of task τi. For a unicast
task, Li[h] ∈ E (0 ≤ h < Hi). Each unicast task periodically generates a packet originated
at a sensor node, passing through the controller node and delivering a control message to the
designated actuator node. For the broadcast task τn, each hop involves multiple links, thus
Ln[h] = (Ln[h](0), Ln[h](1), . . .), where Ln[h](i) ∈ E. The broadcast task runs periodically
in Vc and only generates packets when necessary. These packets are broadcast to each node
directly or though some intermediate nodes by the designed broadcast path Ln. The j-th
released instance of τi is referred to as packet χi,j , with its release time, deadline, and finish
time denoted as ri,j , di,j and fi,j , respectively. We denote the transmission of packet χi,j at
the h-th hop as transmission χi,j(h), (0 ≤ h < Hi).

Fig. 1 shows an example RTWN running 4 unicast tasks (τ0, τ1, τ2 and τ3) and 1 broadcast
task (τ5) on 7 nodes (V0, V1, . . . , V5 and Vc) where V0, V3, V5 are the sensor nodes, V1, V4 are
the actuator nodes, and V2 is a combined sensor and actuator node. The routing paths of
individual tasks are summarized on the right side of Fig. 1.

In applications such as crude oil refining, a disturbance, e.g., a sudden change in temper-
ature, may occur unexpectedly. When a disturbance occurs, the system usually requires the
sensor nodes located within the range of the disturbance to monitor the environment more
closely, and thus one or multiple tasks may demand more network bandwidth during the
disturbance. To capture such abrupt increase in network resource demand upon the detection
of a disturbance, we adopt the rhythmic task model [11] in this work3. In the rhythmic model,
each task has two states: nominal state and rhythmic state. In the nominal state, τi releases
packets following the nominal period Pi and each packet has a relative deadline Di ≤ Pi.
In the rhythmic state, the period and relative deadline of τi adopt a series of new values
specified by pre-designed vectors −→P i and

−→
D i. Once τi returns to nominal state, it starts to

use Pi and Di again. When a disturbance occurs and the corresponding tasks (denoted as
TRhy) enter their rhythmic states, we say the system switches to the rhythmic mode. The
system returns to the nominal mode after the disturbance has been completely handled, i.e.

3 RD-PaS is not limited to the rhythmic task model and can be applied to any task models capturing
unexpected network resource demand changes.

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:5

all the corresponding tasks return to their nominal states. In Fig. 1, when the disturbance
(in the yellow region) occurs, τ0 and τ2 (installed on nodes V3 and V0, respectively) will enter
their rhythmic states and the system switches to the rhythmic mode. In the following, we
first assume that at any time during the system operation, at most one disturbance can
occur and needs to be detected and handled. We will then generalize the system model to
discuss concurrent disturbances at the end of Section 3.2.

Following the industrial practice for RTWNs, we consider a synchronized network adopting
a time-slotted schedule. The length of a time slot is typically 10ms. Within each time slot,
at most one packet can be transmitted over the air from a sender to a receiver. The
acknowledgement (ACK) is then sent back from the receiver to the sender in the same slot
to notify the successful reception.

Traditional RTWNs employ Link-based Scheduling (LBS) to allocate time slots. In
LBS, each time slot is allocated to a link by specifying the sender and receiver. If packets
from different tasks share a common link and are both buffered at the same sender, their
transmission order is decided by a node-specified policy (e.g., FIFO). This approach introduces
uncertainty in packet scheduling and may violate the e2e timing constraints on packet delivery.
To tackle this problem, Transmission-based Scheduling (TBS) and Packet-based Scheduling
(PBS) are proposed in [23] and [2], respectively, to construct deterministic schedules. Each
of the two scheduling models has its own advantages and disadvantages and is preferred in
different usage scenarios as discussed in [2]. Hence, we consider both models in our RD-PaS
framework. Furthermore we focus on single-channel RTWNs in this work since it forms the
basis for more advanced studies. Multichannel networks are left for future work.

In the TBS model, each time slot is allocated to the transmission of a specfic packet
χi,j at a particular hop h or kept idle. Once the network schedule is constructed, packet
transmission in each time slot is unique and fixed. In the PBS model, each time slot is
allocated to a specific packet χi,j or kept idle. Within each time slot assigned to χi,j , every
node along χi,j ’s routing path decides the action to take (e.g., transmit, receive or idle),
depending on whether the node has received χi,j or not. Table 1 gives a time slot allocation
example for task τ2 in Fig. 1. In TBS model, each time slot is allocated to a dedicated hop.
In PBS model, slot 1 can be used to transmit both hops depending on whether the first
transmission succeeds in slot 0.

Table 1 An example of time slot allocation in TBS model and PBS model.

Slot 0 Slot 1 Slot 2
TBS model V0 → Vc V0 → Vc Vc → V1

PBS model V0 → Vc
V0 → Vc

Vc → V1
Vc → V1

Since each link e in the network may suffer packet losses, i.e., λLe < 1, packet transmissions
may fail, which can significantly affect the timely delivery of real-time packets. To handle
such cases, a retransmission mechanism is commonly employed in RTWNs [20, 6]. Specifically,
if a sender node does not receive the ACK from the receiver node of a packet, it automatically
retransmits the packet in the next possible time slot.

To quantify the reliability requirement of the e2e packet delivery for each task, a required
e2e PDR for τi, denoted as λRi , is introduced. For example, a control application can tolerate
0.01% packet loss, so λRi is 99.99%. Based on λRi , the transmission of any packet of τi
is reliable if and only if the achieved e2e PDR of τi is larger than or equal to λRi , i.e.,
λi,j ≥ λRi . To simplify presentation, we assume that all tasks in the network share a common

ECRTS 2019

11:6 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

Table 2 Table of Important Symbols and Notations.

V0, V1, . . . Device nodes: sensor, actuator or relay node
Vc Controller node
T , τi Task set and task i
Hi, Pi, Di Number of hops, period and deadline of τi
Li[h] The h-th link on the routing path of τi (0 ≤ h < Hi)
χi,j The j-th released packet of τi
ri,j , di,j , fi,j Absolute release time, deadline, finish time of χi,j
Wi,j Total number of slots assigned for χi,j
λR Required e2e packet delivery ratio (for all tasks)
λLLi[h] Measured link packet delivery ratio of link Li[h]
λi,j ,

−→
R i,j E2e PDR value and retry vector of χi,j

Ri,j [h] Number of trials for h-th hop assigned by −→R i,j

λ∗i (·) Optimal PDR of τi as a function of number of assigned slots
−→
R ∗i (·) Optimal retry vector of τi as a function of numer of assigned slots
w+
i The smallest w achieving λ∗i (w) ≥ λR

[tsp, tep) Time duration of system rhythmic mode (dynamic schedule)
δi,j PDR degradation of χi,j
Γ Active packet set containing all packets to be scheduled in the system rhythmic mode
ρ Updated packet set

required e2e PDR value, denoted as λR. However, our proposed approach can be easily
extended to support different λR’s for different tasks. Table 2 summarizes the frequently
used symbols in this paper.

Based on the above system model, the two key problems that we aim to solve in this work
are as follows. P1: In the system nominal mode, construct a schedule such that both the e2e
timing and reliability requirements of all tasks can be satisfied; P2: When disturbances occur
and are detected, adjust the schedule in a dynamic and hybrid manner to still guarantee
the reliable and timely transmissions of the rhythmic packets while achieving the minimum
reliability degradation on other packets. More formally, we have the following.

P1: Given RTWN G = (V,E) where each link e ∈ E has an associated PDR, and task set
T in which each task τi has a single routing path −→L i, determine the nominal-mode schedule
under which the following constraints are satisfied.

I Constraint 1. ∀i, j, λi,j ≥ λR. (e2e reliability requirements for all tasks)

I Constraint 2. ∀i, j, fi,j ≤ di,j . (e2e timing requirements for all tasks)

P2∗: Given the packet set, Γ, in the rhythmic mode under consideration, the PDR function
of each task τi, and other network related constraints, determine the rhythmic-mode schedule
such that

∑
χi,j∈Γ max{0, λR − λi,j} is minimized, with the following constraints being

satisfied.

I Constraint 3. ∀τi ∈ TRhy, λi,j ≥ λR. (e2e reliability requirements for rhythmic tasks)

I Constraint 4. ∀τi ∈ TRhy, fi,j ≤ di,j . (e2e timing requirements for rhythmic tasks)

Here we use P2∗ instead of P2 as we have not discussed the network constraints. They will
be elaborated in Section 3 and 4 where formal definitions of P2 will be given.

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:7

teptsp

Some packets are not reliable, but
QoS degradation is minimized

System rhythmic mode
Rhythmic state

System nominal mode

Network starts

All packets are reliable

Power on

Compute λ∗
i (w),

−→
R ∗

i (w), w+
i

Initialization

Disturbance detected
Broadcast (Rhythmic tasks info + schedule update)

System nominal mode

All packets are reliable

Figure 2 Overview of the execution model of RD-PaS in both nominal and rhythmic modes.
Short upward arrows represent the releases of the rhythmic packets.

2.2 Overview of the RD-PaS Framework

We propose a reliable dynamic packet scheduling framework, referred to as RD-PaS, to
address the questions raised above. An overview of the execution model of RD-PaS is shown
in Fig. 2. Below we focus on a high-level discussion while leave the detailed explanation of
the symbols in Section 3.

In the network initialization phase, each device node stores necessary specification
information of all tasks (i.e., Hi, Di, Pi and λR) locally after receiving it from the network
manager through broadcast packets. Each device node then calculates the number of time
slots to be allocated to each task (for both transmission and retransmission) in order to
achieve the required e2e PDR value λR.

After the network starts, each device node generates a static schedule locally, following
which all tasks can meet their timing and reliability requirements. By locally generating a
static schedule, no unnecessary bandwidth is wasted on transmitting the schedule from the
gateway. When a disturbance occurs, several sensor nodes within the range may detect it
and send a report to the controller node via the corresponding tasks. After the controller
node receives the disturbance information from any of the sensor nodes, Vc first determines
a time duration, denoted as [tsp, tep), during which the system runs in the rhythmic mode
using a temporary dynamic schedule. As RD-PaS and D2-PaS in [23] both require each node
to generate schedule locally, RD-PaS adopts the same end point selection method in D2-PaS
to determine the system rhythmic mode duration [tsp, tep). Vc, then, checks whether all tasks
can still be reliably delivered after the rhythmic tasks entering their rhythmic states. If so, Vc
only broadcasts the rhythmic tasks information (task IDs and the corresponding −→P i and

−→
D i)

to the network. Otherwise, Vc needs to generate a dynamic schedule in which the number
of time slots assigned to certain periodic packets are updated in order to accommodate the
increased workload from the rhythmic tasks. Vc then piggybacks the information of the
updated packet set as well as the rhythmic tasks information to a broadcast packet and
disseminates it to all nodes in the network. After all the nodes receive the updates, the
system switches to the rhythmic mode to handle the disturbance.

In the rhythmic mode, individual device nodes generate their own dynamic schedules
locally and these local schedules collaboratively guarantee the timing and reliability require-
ments of the rhythmic packets while minimizing the total reliability degradation suffered by
other periodic tasks. After executing the dynamic schedules, all the device nodes return to
the nominal mode and re-employ the static schedule.

In the following, we first present the details of the RD-PaS framework for the TBS model
in Section 3. We then introduce required modifications to support the RD-PaS framework
for the PBS model in Section 4.

ECRTS 2019

11:8 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

3 Reliable Scheduling for TBS

This section focuses on reliable scheduling for the Transmission-based Scheduling (TBS)
model. We first describe how RD-PaS constructs a reliable static schedule in the system
nominal mode. We then introduce how RD-PaS handles disturbances in the rhythmic mode.

3.1 Reliable Static Scheduling
An RTWN starts at running in the nominal mode in which all tasks need to 1) be reliably
scheduled to achieve the required e2e PDRs; and 2) meet the e2e timing constraints for all
the packet transmissions. That is, we need to solve P1 defined in Section 2.1. In the TBS
model, each specific time slot is assigned to an individual packet transmission. Considering
the lossy nature of wireless links, when a transmission is not successful, retransmissions
are needed, which require extra time slots. To reduce the demand on network resources,
we aim to minimize the number of extra slots for each task while satisfying the reliability
requirement (i.e. Constraint 1 in P1). On the other hand, we observe that Constraint 2 can
be handled separately from Constraint 1 since satisfying Constraint 2 can be treated as a
standard transmission scheduling problem once the number of extra time slots is determined
for each task. Thus, we intend to first tackle the following sub-problem.

P1.1: Given RTWN G = (V,E) where each link e ∈ E has an associated PDR, and task set
T in which each task τi has a single routing path −→L i, determine the minimum number of
extra slots needed by each task τi for satisfying Constraint 1.

To solve P1.1, we propose to first determine whether a given number of extra time slots
for each task can satisfy Constraint 1 and then search for the optimal number of extra time
slots for every task. We will prove later that this approach indeed leads to an exact solution
for P1.1. We discuss our approach in detail below.

Let −→R i,j = [Ri,j [0], Ri,j [1], . . . , Ri,j [Hi − 1]] be the retry vector of packet χi,j , where
Ri,j [h] denotes the number of time slots assigned to hop h of χi,j . We use Wi,j to denote
the total number of time slots assigned to χi,j , i.e., Wi,j =

∑Hi−1
h=0 Ri,j [h]. Given the PDRs

of all the links along the routing path of τi and the retry vector of χi,j , the e2e PDR of χi,j ,
λi,j , can be derived as:

λi,j =
Hi−1∏
h=0

1− (1− λLLi[h])Ri,j [h]. (1)

According to Constraints 1 and 2 in P1, all the packets released by τi must meet the same
timing and reliability requirements in the system nominal mode. Thus, in the following
discussion, we only consider parameter settings (including both the assigned number of slots
and the retry vector) for each individual task τi instead of each packet χi,j . For a given
number of slots, say w, assigned to τi, the number of possible slot allocations, i.e. retry
vectors, equals to

(
w−1
Hi−1

)
. We further introduce the following definitions.

I Definition 1. Optimal Retry Vector −→R ∗i (w): An optimal retry vector of task τi for a given
number of slots w is the retry vector that leads to the largest PDR value for the given w,
denoted as λ∗i (w), among all the possible allocations.

I Definition 2. Optimal Retry Vector Function −→R ∗i (·): The optimal retry vector function of
task τi is the set of pairs (w,−→R ∗i (w)) such that each −→R ∗i (w) is the optimal retry vector for
the given number of slots w.

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:9

Algorithm 1 PDR Table Computation under TBS for Task τi.
Input: G = (V,E), τi, λR

Output: PDR table of τi and w+
i

1: w ← Hi;
2:
−→
R ∗

i (w)← [1, 1, 1, . . .];
3: λ∗

i (w)←
∏Hi−1

h=0 λL
Li[h];

4: while λ∗
i (w) < λR do

5: w ← w + 1;
6: Select the hop index h which yields the maximum PDR value (computed by Eq. (1));
7: Update −→R ∗

i (w) and λ∗
i (w) in PDR table;

8: end while
9: w+

i ← w

I Definition 3. Optimal PDR Function λ∗i (·): The optimal PDR function of task τi is the
set of pairs (w, λ∗i (w)) such that each PDR value λ∗i (w) corresponds to the optimal retry
vector with the given number of slots w.

As the first step towards satisfying Constraint 1, we present our solution to calculate the
optimal retry vector function −→R ∗i (·) and the optimal PDR function λ∗i (·) for each task τi. As
both functions are only related to task τi itself, the computation for each task is independent.
For the sake of clarity, we create a PDR table for each task τi to store both −→R ∗i (·) and λ∗i (·)
for all (needed) values of w in each node, such overhead in our implementation is given in
Sec. 5. (An example PDR table can be found in Table 4 in Section 5.) Below, we describe
our optimal PDR table generation algorithm, Alg. 1, and prove its optimality.

Alg. 1 iteratively constructs the PDR table. At each iteration, we add one time slot to τi
at the h-th hop that yields the maximum PDR value λ∗i and store the resulting retry vector
−→
R ∗i into the PDR table (Lines 5-7). The retry vector is initially set to [1, 1, 1, . . .] and the
corresponding PDR value equals to

∏Hi−1
h=0 λLLi[h] (Lines 1-3). Since the required PDR value

is λR, the iterative process stops when λ∗i (w) ≥ λR. We use w+
i to denote the minimum

number of slots that guarantees the reliable delivery of τi.
Lemma 4 and Theorem 5 below affirm that Alg. 1 indeed results in the optimal retry

vector function −→R ∗i (·) and optimal PDR function λ∗i (·).

I Lemma 4. Let G(R∗(w)[h], λLL[h]) = λ∗(w+1)
λ∗(w) be a function of R∗(w)[h] and λLL[h]. When

λLL[h] is set to an arbitrary value λ0, Gλ0 = G(R∗(w)[h], λ0) is a monotonically decreasing
function of R∗(w)[h].

Proof of Lemma 4. If we update −→R ∗(w) by allocating one slot at an arbitrary hop h-th,
according to Eq. (1), we only need to update λ∗(w) by replacing the term 1−(1−λLL[h])R

∗(w)[h]

by 1− (1− λLL[h])R
∗(w)[h]+1 to get λ∗(w + 1). That is,

G(R∗(w)[h], λLL[h]) = λ∗(w + 1)
λ∗(w) =

1− (1− λLL[h])R
∗(w)[h]+1

1− (1− λLL[h])R
∗(w)[h]

Thus, if λLL[h] is fixed to λ0, we have:

G′λ0
= ∂G(R∗(w)[h], λ0)

∂R∗(w)[h] = λ0 · (1− λ0)R∗(w)[h] log(1− λ0)(
(1− λ0)R∗(w)[h] − 1

)2
Since 0 < λLL[h] < 1 and (1 − λLL[h])R

∗(w)[h] > 0, we have G′λ0
< 0. Further, Gλ0 decreases

monotonically as R∗(w)[h] increases. J

ECRTS 2019

11:10 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

I Theorem 5. For any given number of time slots w, no other retry vector can yield a larger
PDR value than −→R ∗i (w) as computed by Alg. 1.

Proof of Theorem 5. We prove the theorem by mathematical induction, i.e., for any w =
H,H + 1, . . . , w+, the retry vector −→R ∗(w) determined by Alg. 1 can achieve the largest PDR
value λ∗(w). (Here we omit the task index i since only one task is considered).
Base case: When w = H, the statement holds as only one possible retry vector exists, i.e.,−→

R ∗(H) = [1, 1, . . . , 1].
Inductive step: Suppose the PDR value of −→R ∗(w) is largest among that of all possible retry

vectors when w = k, we should prove that the PDR value of −→R ∗(k + 1) obtained by
Alg. 1, i.e. λ∗(k + 1) is also the largest. We prove this by contradiction.
Suppose there exists another retry vector (denoted as −→R o(k+1)) leads a larger PDR value,
i.e., λ∗(k + 1) < λo(k + 1). Since the total number of slots assigned to the task (i.e., the
sum of all elements in the retry vectors) both equal to k + 1 and −→R ∗(k + 1) 6= −→R o(k + 1),
we can always find one hop at which the number of assigned slots in −→R o(k + 1) is larger
than that in −→R ∗(k + 1). We use q to denote this hop index and Ro(k)[q] to denote the
number of slots assigned at the q-th hop in −→R o(k). Then, Ro(k + 1)[q] > R∗(k + 1)[q].
Suppose −→R ∗(k + 1) is achieved by adding one slot at the p-th hop in −→R ∗(k).
Case 1: p = q. In this case, −→R ∗(k + 1) and −→R o(k + 1) are both achieved by adding one

slot at the p-th hop in −→R ∗(k) and −→R o(k), respectively. Then, according to Lemma 4,
λ∗(k + 1) and λo(k + 1) can be rewritten with G(R∗(w)[h], λLL[h]) function as follows:

λ∗(k + 1) = λ∗(k) · G(R∗(k)[p], λLL[p]), λo(k + 1) = λo(k) · G(Ro(k)[p], λLL[p]).

According to the assumption that the PDR value of −→R ∗(k) is largest, we have λ∗(k) ≥
λo(k). Since R∗(k)[p] < Ro(k)[p], according to Lemma 4, we have G(R∗(k)[p], λLL[p]) >
G(Ro(k)[p], λLL[p]). Then, λ∗(k + 1) > λo(k + 1). This contradicts our assumption.

Case 2: p 6= q. λ∗(k + 1) and λo(k + 1) can be rewritten as:

λ∗(k + 1) = λ∗(k) · G(R∗(k)[p], λLL[p]), λo(k + 1) = λo(k) · G(Ro(k)[q], λLL[q]).

As λ∗(k + 1) < λo(k + 1) and λ∗(k) ≥ λo(k), it must holds that

G(R∗(k)[p], λLL[p]) < G(Ro(k)[q], λLL[q]). (2)

Since R∗(k)[q] < Ro(k)[q] according to the assumption, the following inequality holds:

G(R∗(k)[q], λLL[q]) > G(Ro(k)[q], λLL[q]). (3)

Combining Eq. (2) and Eq. (3), we have G(R∗(k)[p], λLL[p]) < G(R∗(k)[q], λLL[q]) .
Further,

λ∗(k) · G(R∗(k)[p], λLL[p]) < λ∗(k) · G(R∗(k)[q], λLL[q]).

This means that if we allocate one slot at the q-th hop in −→R ∗(k) instead of at the p-th
hop, we can have a larger PDR value. This contradicts with Alg. 1 which allocats one
slot at the hop which yields the largest PDR value at each iteration.

Since both cases lead to contradiction, the inductive step is proved. Thus, Theorem 5
holds for all values of w. J

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:11

Now with the functions −→R ∗i (·) and λ∗i (·) being determined, we have successfully solved
P1.1. To satisfy Constraint 2 in P1, we need to create a static schedule, i.e., specifying when
a packet uses a slot, to ensure real-time constraints are met. We introduce an observation
that helps map the reliable static schedule generation problem, i.e., P1, to a conventional
real-time scheduling problem.

I Observation 1. Given task set T to be reliably scheduled, if we set the number of slots
for τi to w+

i according to λ∗i (·)4, w+
i is then equivalent to the execution time of τi. Then,

each task τi ∈ T with Pi, Di and w+
i can be mapped to a task in a conventional real-time

task set with the same period, deadline and execution time. Thus, a feasible schedule for the
corresponding conventional real-time task set is also a feasible schedule under which all tasks
in T can be reliably delivered.

Given the schedule specifying the slot assignment for each task, each node can further
allocate specific slots to the transmission at each hop according to the retry vector function−→
R ∗i (·). Thus, given a task set to be reliably scheduled in an RTWN, the network can adopt
any conventional real-time scheduling algorithm to generate a static schedule that guarantees
to meet all the constraints in P1. Since we allow at most one transmission within each
timeslot, determining the nominal-mode schedule (i.e., P1) can be mapped to a uni-processor
scheduling problem. Here, we adopt Earliest-Deadline-First (EDF) [13] to generate optimal
schedule for tasks and assign time slots to transmissions according to retry vector, consistently
at each node.

Note that regarding the broadcast task, two more issues need to be considered. First, the
transmission of a broadcast packet at each hop involves one sender node but multiple receiver
nodes. Second, no acknowledgement is sent back from the receiver nodes in a broadcast slot.
The first issue mainly affects the number of slots assigned at each hop since multiple links
with different link PDRs are involved. To tackle this, we directly adopt the lowest link PDR
to determine the number of retries assigned at the hop. Due to the second issue, the sender
node does not have any knowledge about whether the current transmission succeeds. Thus,
we just let the sender node to keep transmitting at all the slots assigned to the current hop
to maximize the success probability.

3.2 Reliable Dynamic Scheduling
Our proposed solution for P1 ensures that both timing and reliability requirements are
met in the system nominal mode. However, upon the detection of any disturbance, the
corresponding tasks enter their rhythmic states and follow new release patterns and deadlines
as shown in Fig. 2. The static schedule may no longer be able to meet both requirements
especially for all the critical rhythmic packets. Therefore, a well-designed reliable dynamic
packet scheduling mechanism is needed to enable the system to be adaptive to any workload
change after the detection of a disturbance.

In our RD-PaS framework, the network generates the static schedule by assigning w+
i slots

to each task τi according to the retry vector function. When a disturbance is detected and
reported to the control node, the system follows the execution model outlined in Section 2.2

4 All the retry vectors for other w values stored in −→R∗
i (·) are used in the dynamic schedule generation,

which will be discussed in Section 3.2.

ECRTS 2019

11:12 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

to switch to the rhythmic mode. The main challenge here is to generate a temporary dynamic
schedule when tasks cannot be reliably delivered after the rhythmic tasks (in TRhy) enter
their rhythmic states. That is, problem P2∗ needs to be solved. The dynamic schedule must
be able to accommodate the increased rhythmic workload and minimizes the degradation on
both timing and reliability of other periodic tasks. Specifically, all the rhythmic packets must
meet their timing and reliability requirements. That is, Constraints 3 and 4 are satisfied.

To ensure this, we may have to sacrifice the reliability requirements, i.e. lowering the
e2e PDR values of some periodic packets, or even sacrifice their timing requirements, i.e.
dropping some periodic packets. That is, the number of slots assigned to each packet may
need to be updated. Since the PDR table for each task containing both the retry vector
function −→R ∗i (·) and PDR function λ∗i (·) is pre-calculated and stored at each node, Vc only
needs to piggyback on a broadcast packet the information of the updated total number of
slots (Wi,j) assigned to each periodic packet, and then each node can decode the updated
retry vector accordingly, once it receives this information.5

To formally define the dynamic schedule generation problem, we introduce some con-
cepts/notation. Let Γ denote the active packet set containing all the packets to be scheduled
within the rhythmic mode duration [tsp, tep). Since the payload size of a broadcast packet
is bounded, we set an upper bound on the number of periodic packets whose Wi,j can be
changed, and denote it as α. To capture the reliability degradation for periodic packet χi,j ,
let δi,j represent the difference between the required PDR λR and the updated PDR value
λi,j = λ∗i (Wi,j) in the dynamic schedule, i.e., δi,j = max{0, λR − λi,j}. Note that the timing
degradation of each packet can also be captured by δi,j where δi,j = λR if χi,j is dropped.
Now the dynamic schedule generation problem, which is defined formally below, becomes
finding Wi,j for each periodic packet in Γ to satisfy Constraint 3 and 4.

P2: Given the active packet set Γ, the PDR function λ∗i (·) of each task τi, the maximum
allowed number of updated packets α, determine the updated packet set ρ = {Wi,j |χi,j ∈ Γ}
such that i) the size of ρ is not larger than α, i.e., |ρ| ≤ α, and ii) the total reliability
degradation is minimized, i.e., ∀χi,j ∈ ρ,min

∑
δi,j .

The theorem below states that determining the updated packet set, i.e. solving P2, is
non-trivial.

I Theorem 6. The updated packet set generation problem P2, i.e., the dynamic schedule
generation problem, is NP-hard.

Proof of Theorem 6. We prove the theorem by reducing the 0-1 knapsack problem [15] to
a special case of the updated packet set generation problem.

The 0-1 knapsack problem is defined as follows: Given a set of n items numbered from 1
up to n, each with a weight wi and a value vi, along with a maximum weight capacity W .
Each item can either be included in the knapsack, denoted as xi = 1, or not which is denoted
by xi = 0. The 0-1 knapsack problem is to maximize the sum of the values of the items in
the knapsack, i.e. max

∑n
i=1 vixi, so that the sum of the weights is less than or equal to the

knapsack’s capacity W , i.e.
∑n
i=1 wixi ≤W and xi ∈ {0, 1}.

Given a knapsack problem, we construct a special case of the updated packet set generation
problem in polynomial time: Suppose the active packet set Γ = {χ1, χ2, ..., χn} such that
∀χi ∈ Γ, ri = 0, Di = W,Hi = wi. Each packet χi can either be scheduled, i.e. λi = vi or

5 In the system rhythmic mode, we adjust the assigned number of slots for each packet instead of each
task for more flexibility.

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:13

Algorithm 2 Updated Packet Set Generation.
Input: Γ, α, λ∗

i (w)
Output: ρ
1: Schedule the rhythmic packets in Γ using w+

0 ;
//Suppose n is the number of periodic packets in Γ

2: if all periodic packets in Γ can be reliably scheduled then
3: No packet needs to be updated;
4: else
5: Find the first n − α schedulable periodic packets with the minimum w+

i using the packet-
dropping heuristic in [23];

6: if Such n− α periodic packets can be found then
7: if the α packets can be scheduled using Hi then
8: Assign extra slots to the α packets by Alg. 3;
9: else
10: Determine the dropped packet set (suppose m packets) using the dropping heuristic in

[23];
11: Assign extra slots to the α−m packets by Alg. 3;
12: end if
13: else
14: Drop all the periodic packets;
15: end if
16: end if

dropped, i.e. λi = 0. Let the required PDR value λR for all packets equals to max{vi}.
Then, the PDR degradation δi = λR − vi if χi is scheduled. Otherwise, δi = λR.

As minimizing the total PDR degradation for all packets equals to maximizing the
total PDR value, the updated packet set with the minimum total PDR degradation can be
determined if and only if a knapsack with the maximum value can be identified. J

Next we propose a heuristic to solve P2 and the high-level idea is as follows. Since
dropping any packet χi,j leads to a significant decrease in the PDR value of χi,j , i.e., δi,j = λR,
we always prefer to allocate at least the basic number of slots (i.e., Hi) to each packet. If
the network bandwidth is sufficient, we assign extra slots to periodic packets in a greedy
manner according to their PDR degradation. Alg. 2 summarizes the updated packet set
generation algorithm which uses the greedy extra slots assignment heuristic described in
Alg. 3. Specifically, at each iteration, Alg. 3 adds one slot to the packet resulting in the
minimum PDR degradation after an extra slot has been assigned. Using Alg. 2 and Alg. 3,
the updated packet set can be determined in O(α ·Wmax) time where Wmax is the maximum
w+
i among all the tasks.
Note that the proposed RD-PaS framework can be readily extended to handle concurrent

disturbances in RTWNs, following the similar way as elaborated in [24]. Specifically, we
need to handle two cases depending on the relative positions of any two consecutive disturb-
ances [24]. The first case is when both disturbances occur before an upcoming broadcast slot.
Then, Vc simply generates a dynamic schedule considering all rhythmic tasks triggered by the
two disturbances to handle them together. The second case is when a subsequent disturbance
arrives at Vc after the dynamic schedule information for handling the first disturbance has
been broadcast. In this case, Vc must update the dynamic schedule starting from the next
broadcast slot. The readers are referred to [24] for the details.

ECRTS 2019

11:14 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

Algorithm 3 Extra Slots Assignment.
1: Sextra ← {Packets to be assigned extra slots};
2: while Sextra 6= ∅ do
3: Add one slot to the packet χs if doing so leads to the minimum PDR degradation;
4: if the system is schedulable then
5: if χs is already reliable then
6: Remove χs from Sextra;
7: end if
8: else
9: Reduce one slot from χs;
10: Remove χs from Sextra;
11: end if
12: end while

4 Reliable Scheduling for PBS

In this section, we discuss how to support the RD-PaS framework for the packet-based
scheduling (PBS) model. At the highest level, reliable scheduling for PBS has three main
differences from that for TBS. First, since each time slot is assigned to a specific packet
instead of a dedicated hop, retry vector −→R i,j and its function −→R ∗i (·) are no longer needed.
Second, the computation for PDR function λ∗i (·) is different because the time slot allocation
mechanism has changed. Third, the retransmission mechanism of the broadcast task for
TBS, i.e., keep transmitting using all assigned slots at each hop, does not work for PBS since
each slot allocation is not dedicated to a hop but a packet.

Since PDR function is a key parameter in checking reliability, we first describe how to
compute the PDR value for a task with a given number of slots in PBS. Let Pri(0, w) denote
the probability of a packet of τi staying in the source node within w slots; Pri(h,w) denote
the probability of a packet of τi being transmitted to the receiver of the h-th hop along
the routing path (1 ≤ h ≤ Hi), and have not been successfully forwarded, within w slots.
Pri(h,w) can be computed by:

Pri(h,w) =

1 h = 0, w = 0
λLLi[h−1]Pri(h− 1, w − 1) h 6= 0, w = h

(1− λLLi[h])Pri(h,w − 1) h = 0, w 6= 0
Pri(h,w − 1) + λLLi[h−1]Pri(h− 1, w − 1) h = Hi, w 6= h

(1− λLLi[h])Pri(h,w − 1) + λLLi[h−1]Pri(h− 1, w − 1) otherwise.

(4)

In Fig. 3, we use an example task with 2 hops (links a and b with PDR λLa and λLb ,
respectively) and 4 slots to describe the computation of Pri(h,w). As shown in the figure,
Pri(h,w) can be either reached by Pri(h− 1, w − 1), followed by a successful transmission
(λLLi[h−1]), or Pri(h,w−1), followed by a failed transmission (1−λLLi[h]), except for boundary
conditions. These boundary conditions include the following:

Case 1: When h = 0, w = 0, the source node generates a packet (Pri(0, 0) = 1).
Case 2: When h 6= 0, w = h, it is not possible for Pri(h,w) to be reached by Pri(h,w − 1)

(Pri(1, 1), Pri(2, 2) in the figure). Thus only Pri(h− 1, w − 1) is considered.
Case 3: When h = 0, w 6= 0, it is not possible for Pri(h,w) to be reached by Pri(h−1, w−1)

(Pri(0, 1), Pri(0, 2) in the figure). Thus only Pri(h,w − 1) is considered.

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:15

Pri(0, 0)

Pri(0, 1)

Pri(0, 2)

Pri(1, 1)

Pri(1, 2)

Pri(1, 3)

Pri(2, 2)

Pri(2, 3)

Pri(2, 4)

Failure Success
1−

λ
L
a

1−
λ
L
a

1−
λ
L
b

1−
λ
L
b 1

1

λ L
a

λ L
a

λ L
b

λ L
b

λ L
a

λ L
b

· · · Slot 1

· · · Slot 2

· · · Slot 3

· · · Slot 4

Link a

Link b

Figure 3 PDR computation for a task with two hops under the PBS model.

Algorithm 4 PDR Table Computation under PBS for Task τi.
Input: G = (V,E), τi, λR

Output: The PDR function of τi and w+
i

1: w ← 0;
2: while λi(w) < λR or w < Hi do
3: w ← w + 1;
4: for h = 0 to Hi do
5: Compute Pri(h,w) following Eq.(4);
6: end for
7: if w >= Hi then
8: λ∗

i (w)← Pri(Hi, w);
9: end if
10: end while
11: w+

i ← w

Case 4: When h = Hi, w 6= h, Pri(h,w − 1) always reaches Pri(h,w) (Pri(2, 3), Pri(2, 4)
in the figure).

Different from TBS, which finds the optimal PDR values by using retry vectors for a
given w, the PDR values in PBS is solely determined by w, i.e., λ∗i (w) = Pri(Hi, w). Based
on Eq.(4), we propose a dynamic programming algorithm (Alg. 4) to compute Pri(h,w) and
finally λ∗i (w). In Alg. 4, the iteration starts from w = 1, and stops when λR is reached. In
each iteration, it computes all Pri(h,w) for 0 ≤ h ≤ Hi, and stores them to λ∗i (·) if w ≥ Hi.

After the PDR function is computed, we can apply the same method proposed in Section
2.2 and 3 to generate reliable static and dynamic schedule, respectively. More specifically, we
use Observation 1 with computed PDR function to generate a reliable static schedule, and
use Alg. 2 and Alg. 3 to determine the updated W in the rhythmic mode.

Now let us consider the broadcast task. Because the link layer multicast does not have
ACK and in PBS each slot is allocated to a packet instead of a hop, it is not possible for the
broadcast task to track its progress. Thus the broadcast task still needs to follow the TBS
model. That is, for the broadcast task, we adopt the lowest link PDR for each hop among
all the receivers, and use Alg. 1 to compute −→R ∗i (·) and λ∗i (·).

5 Testbed Implementation and Validation

To validate the functionality of the proposed RD-PaS framework in real-life RTWNs, we
implemented RD-PaS on a 7-node RTWN testbed (see Fig. 4) running the 6TiSCH protocol.

ECRTS 2019

11:16 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

Vc

V0

V1 V2

V3 V4

V5

82
.5
%

89
.1%

86.0%

76.9% 90
.9%

87
.6%

Figure 4 Left: the RTWN testbed with 7 CC2538 evaluation boards; Right: the testing topology
with emulated link PDR values.

The testbed consists of seven CC2538 evaluation boards. One of these boards is configured
as the controller node, while the others are configured as device nodes. A 16-channel 802.15.4
sniffer and an 8-channel logic analyzer are used to capture and analyze the activities of each
device node. Our modified 6TiSCH stack utilizes 5KB more ROM and 2KB more RAM
space for implementing RD-PaS (in TBS and PBS). These are relatively small compared
to the original 6TiSCH stack which needs 69KB ROM and 6KB RAM. Due to the page
limit, the implementation details of the RD-PaS framework is omitted. Below, we focus on
discussing the functional validation of RD-PaS on the testbed.

The testing topology is shown on the right side of Fig. 4. To attain the link PDRs as
specified in the topology, we implemented a random packet dropper at the MAC layer of each
device node. Six tasks are installed in the testbed and the task specifications are summarized
in Table 3. The desired e2e PDR for all the tasks, λR, is set to 99%. τ0, τ1, τ2 and τ3 are
unicast tasks, τ5 is a broadcast task, and τ4 is a task that handles all network management
packets. Since we always allocate two shared slots at the beginning of τ4’s period, we set
D4 = 2. For simplicity, only τ0 enters the rhythmic state when a rhythmic event occurs.

5.1 Validation of reliable static scheduling
To validate the static schedule construction in RD-PaS, we run the specified task set on the
testing topology in the nominal mode under both TBS and PBS models. The PDR tables
computed by the testbed are exactly the same as those obtained from simulation. The PDR
table for task τ1 is given in Table 4 (while others are not shown due to the page limit). The
highlighted rows indicate the corresponding w+

i ’s for TBS (w+
i = 13) and PBS (w+

i = 7)
when λR is reached.

Table 3 Parameters of the task set deployed on the testbed.

Task Routing Path Pi(Di)
−→
P i = −→D i

τ0 V3 → V0 → Vc → V1 30 (30) [20, 20, 20, 20, 20, 20]
τ1 V5 → V2 → Vc → V0 → V4 45 (45) -
τ2 V0 → Vc → V1 40 (40) -
τ3 V2 → Vc → V1 60 (60) -
τ4 - 60 (2) -
τ5 Vc → (V0, V1, V2), V0 → (V3, V4), V2 → (V5) 120 (120) -

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:17

Table 4 PDR table for task τ1 in TBS and PBS models.

PDR Table in TBS Model PDR Table in PBS Model
w

λ∗
i (w) −→

R ∗
i (w) λ∗

i (w)
4 0.564963 1,1,1,1 0.564963
5 0.663832 1,1,2,1 0.864394
6 0.756769 1,2,2,1 0.964613
7 0.850608 2,2,2,1 0.991720 (λ∗

i (w+
i))

8 0.928013 2,2,2,2
9 0.952201 2,2,3,2
10 0.968572 2,3,3,2
11 0.981822 3,3,3,2
12 0.989274 3,3,3,3
13 0.993672 (λ∗

i (w+
i)) 3,3,4,3

Table 5 Reliable static schedule validation in TBS and PBS models on the testbed.

Task TBS Model PBS Model
−→
R ∗

i λ∗
i (w+

i) Measured PDR w+
i or −→R ∗

i λ∗
i (w+

i) Measured PDR
τ0 [4,3,3] 99.01% 99.21% 7 99.68% 99.22%
τ1 [3,3,4,3] 99.37% 99.61% 7 99.17% 99.65%
τ2 [3,3] 99.34% 99.41% 5 99.80% 99.34%
τ3 [3,3] 99.60% 99.71% 4 99.29% 99.65%
τ5 [4,4,3] 99.38% 100% [4,4,3] 99.38% 100%

We further test 5000 packets for each unicast and broadcast task under both models, and
compare the actual e2e PDR values collected from the testbed with the simulated values
from Alg. 1 and Alg. 4. These results are summarized in Table 5. τ4 is omitted in the table
since it is a task dedicated for network management packets. It can be concluded from the
table that the reliable static scheduling function in RD-PaS executes correctly as the actual
e2e PDRs are improved to the desired values (≥ 99%) in both models in the presence of
specified packet loss. The slight differences between the measured and predicted e2e PDR
values are expected due to the limited sample size.

5.2 Validation of reliable dynamic scheduling
To validate the functional correctness of reliable dynamic scheduling in RD-PaS on our
testbed, we let the network trigger rhythmic events, and use the logic analyzer to capture
the radio activities through a physical pin on each device node and plot the waveforms. We
configure the network to enter the rhythmic mode at slot 720. The hyperperiod of the task
set is 360 according to Table 3. (Rhythmic events can happen at any time. We chose this
integer multiple of the hyperperiod to simplify the waveform demo.) Fig. 5 illustrates a
sample waveform for 240 consecutive slots (slot 600-840) in the TBS model. (Both TBS
and PBS models are validated. We present the results in the TBS model here for ease of
explanation.) The network runs in the nominal mode for the first 120 time slots (Fig. 5b)
and then switches to the rhythmic mode in the next 120 slots (Fig. 5c). Seven waveforms
represent the radio activities, either transmitting, receiving, or listening, for all the 7 nodes,
as labeled on the left side of the figures. Each rising and falling edge in the Slot row (lower
part of the figures) mark the start of a new time slot. In the schedule row (lower part of the
figures), slot assignments are indicated using different colors.

From Fig. 5b, we observe that each task τi releases its packets according to Pi, and

ECRTS 2019

11:18 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

Release (τ0/τ1/τ2/τ3/τ4/τ5) Transmission (τ0/τ1/τ2/τ3/τ5)Schedule (τ0/τ1/τ2/τ3/τ4/τ5)

(a) Legend.
Vc

V0

V1
V2

V3

V4

V5

Slot
Schedule

(b) Radio activities in slots 600 to 720 (nominal mode).

Vc

V0

V1
V2

V3

V4

V5

Slot
Schedule

(c) Radio activities in slots 720 to 840 (rhythmic mode). Task τ0 is in the rhythmic state and releases
packets following −→P 0 given in Table 3.

Figure 5 Slot information and radio activities in the reliable dynamic scheduling test case
captured by the logic analyzer.

w+
i number of slots are allocated to each packet before its deadline (shown in the schedule

row). In each scheduled slot, the sender attempts to transmit the packet and may succeed
(marked by the arrows). Although some attempts fail, all the packets are still delivered to
the destination node because of the right amount of retransmission slots as determined by
the reliable static scheduling function. In Fig. 5c, τ0 enters the rhythmic state, and its period
is reduced according to −→P 0 given in Table 3. Also as shown in the schedule row, the Wi,j

values for τ0 do not change, while those for τ1, τ2, τ3, τ5 are reduced to [9, 9, 9], [4, 5, 5], [4, 4],
[7], respectively. The −→R i,j vectors are also selected correctly by the updated Wi,j values in
the rhythmic mode, and all the packets from the rhythmic task (τ0) are successfully delivered
to the destination. The captured results match the results from the simulation, and this
validates the correctness of the reliable dynamic scheduling function in RD-PaS.

6 Simulation-based Performance Evaluation

In this section, we evaluate the performance of RD-PaS through extensive simulations and
compare RD-PaS with a state-of-the-art dynamic approach, D2-PaS.6 The first three sets
of simulations compare packet delivery ratio, network bandwidth usage and number of
extra slots produced by RD-PaS with those by D2-PaS. The last set of simulations studies

6 [26] shows that D2-PaS has a clear advantage in packet dropping performance compared to the fully
distributed scheduling framework FD-PaS, so we omit the comparison between RD-PaS and FD-PaS.
Also, since we have proved the optimality of our retransmission slots assignment in Sec. 3.1, we omit to
compare with the retransmission mechanism in [2] in the static setting.

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:19

2
4

6
8

10

0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

H

Average λL

Pa
ck
et

D
el
iv
er
y
R
at
io

D2-PaS

Figure 6 PDR in D2-PaS framework.

2
4

6
8

0.5
0.6

0.7
0.8

0.9

0

0.2

0.4

H

Average λL

T
hr
ou

gh
pu

t
(P

PS
)

D2-PaS
RD-PaS-TBS

RD-PaS-PBS

Figure 7 Throughput comparison among
different scheduling frameworks.

2
4

6
8

0.5
0.6

0.7
0.8

0.9

0
20
40
60
80

H

Average λL

w
+ i

RD-PaS-TBS

RD-PaS-PBS

Figure 8 Comparison of w+
i in TBS and

PBS.

0.4
0.5

0.6
0.7

0.8
0.9

0.4
0.5

0.6
0.7

0.8

0

20

U∗
γ

Av
er
ag

e
PD

R
D
R

(%
)

eD2-PaS
RD-PaS-PBS

Figure 9 Comparison of the PDR degrad-
ation rate.

the behavior of the rhythmic mode. We evaluate the reliability degradation by comparing
RD-PaS with D2-PaS on handling disturbances in RTWNs.

6.1 Comparison of Packet Delivery Ratio

As RD-PaS utilizes retransmission slots to guarantee the required e2e PDR value for each task,
there is no doubt that the system reliability will be improved compared with a traditional
scheduling framework not considering reliablity. To quantify such improvements, we calculate
the e2e PDR resulted from applying D2-PaS in lossy links with randomly generated link
PDRs. Since the e2e PDR for each task is independent, we use different settings to randomly
generate tasks and compute the PDR value for each task. The number of hops for a task,
H, is drawn from the uniform distribution over {1, 2, ..., 10} and the PDR value of each link
on the routing path is randomly generated by controlling the average value of link PDR,
λL, following a uniform distribution in {0.5, 0.55, ..., 1}. As periods and deadlines do not
affect the packet delivery ratio, we only study PDR’s dependcy on H and λL. Fig. 6 shows
the e2e PDR of a task as a function of λL and H. Because RD-PaS can always guarantee
the required PDR value, its results are always at the ceiling (above 99%) of the figure and
are thus omitted. From Fig. 6, we can observe the large gap between RD-PaS and D2-PaS
(60.6% on average) in guaranteeing the e2e PDR of the task.

ECRTS 2019

11:20 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

6.2 Comparison of Network Bandwidth Usage
Allocating extra retransmission slots can significantly improve the reliability of packet delivery.
However, higher network bandwidth is required which may affect system schedulability. In
this set of experiments, we study the efficiency of using time slots to deliver packets, in
different scheduling frameworks, according to the performance metric throughput. Throughput
is defined as the number of packets delivered per slot (PPS) and is the ratio between the e2e
PDR value and the number of allocated slots assigned to the task, i.e. λ∗

i (w)
w . The parameter

settings of this set of experiments are the same as that in Section 6.1.
Fig. 7 summarizes throughputs for different scheduling frameworks with varied average

link PDR λL and the number of hops, H, for the generated task. From the results, we can
observe that D2-PaS has a higher throughput when H is small and when λL is close to
1. However when the link PDR drops and H increases, RD-PaS (in both TBS and PBS
models) gains better throughput. This is mainly due to the fact that using a time slot for
retransmission can gain more throughput than transmitting a new packet in these cases.
The simulation results also show that RD-PaS in the PBS model can always achieve a better
throughput than in the TBS model. The reason is that the PBS model can always achieve
same PDR with less number of slots, compared to the TBS model due to the PBS’s ability
in sharing slots among transmissions of a packet.

6.3 Comparison of Required Numbers of Slots
In this set of experiments, we make further evaluation on RD-PaS in TBS and PBS models.
As discussed in Section 4, the PBS model provides more flexibility on the retransmission slot
assignment, and a less number of slots, w+

i , is required to achieve the same λR as compared
to the TBS model. Fig. 8 gives the comparison on the required number of slots under different
settings of average λL and H, and the required end-to-end PDR value λR is set to 99%. As
can be observed, tasks in PBS model require less number of slots than in TBS model, when
H > 1. The required number of slots in the PBS model is 55.0% less on average compared
to that in TBS model. This is consistent with the observation that one packet requires less
number of slots to achieve the same λR in the PBS model.

6.4 Effectiveness in Handling Rhythmic Events
To evaluate the performance of RD-PaS in handling rhythmic events, we compare the
degradation rate (DR) between RD-PaS and D2-PaS. DR is defined as the ratio between the
sum of reliability degradation (i.e., δi,j) from all periodic packets and the total number of
generated periodic packets in the rhythmic mode. As D2-PaS does not consider unreliable
wireless links, we first extend D2-PaS to support reliable transmission, denoted as eD2-PaS.
Specifically, all packets in eD2-PaS are reliably transmitted using w+

i slots in the static
schedule. In the dynamic schedule, transmission and retransmission slots assigned for each
packet are not differentiated, i.e., each packet can either be reliably scheduled or dropped.

To better control the system workload, we vary the nominal utilization of the task set.
Specifically, we use a random periodic task set generated according to a target nominal
utilization U∗. The generation of each random task τi is controlled by the following parameter
settings: i) the number of hops Hi is drawn from the uniform distribution over {2, 3, ..., 16},
ii) the nominal period Pi is equal to deadline Di and follows a uniform distribution in
{50, 51, ...100}. As the simulation results in the last sub-section have shown, the PBS model
requires less total number of slots to achieve the same transmission reliability. Thus, here we
use the PBS model to generate the PDR function λ∗i (·) for each task τi.

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:21

After a task set is generated, we randomly select two tasks to be the rhythmic tasks. To
better control the workload of the rhythmic event, we assume that all the rhythmic periods
(deadlines) are the same in −→P i(

−→
D i) and the number of elements in −→P i equals to 10. The

value of each element Pi,R is thus controlled by the rhythmic period ratio, γ = Pi,R

Pi
.

Fig. 9 shows the results of DR as a function of both the nominal task set utilization U∗
and the rhythmic period ratio γ. Each data point is the average value of 1, 000 trials. From
Fig. 9, we can observe that RD-PaS has a lower PDR degradation rate (58.4% on average)
over eD2-PaS. The main reason is that eD2-PaS either schedules or drops any packet χi,j ,
i.e. Wi,j ∈ {0, w+

i }. However, RD-PaS has more flexibility on tuning the number of slots
assigned to χi,j , i.e. Wi,j ∈ {0, Hi, . . . , w

+
i }.

7 Conclusion and Future Work

In this paper, we present RD-PaS, a reliable dynamic packet scheduling framework for
RTWNs. RD-PaS provides guaranteed reliability of packet delivery in RTWNs for both
transmission-based scheduling model and packet-based scheduling model in a hybrid manner.
In the presence of unexpected disturbances, RD-PaS makes dynamic schedule adjustment
judiciously to guarantee timely and reliable delivery of the critical rhythmic packets while
minimizes reliability degradation for noncritical packets. A provably optimal algorithm (for
the static case) as well as a heuristic (for the dynamic case) are introduced for realizing
RD-PaS. Extensive testbed and simulation based experiments are conducted to validate
the correctness and effectiveness of RD-PaS. Our experimental results show that RD-PaS
can significantly improve the QoS (in terms of reliability) compared with the state-of-the-
art approaches. As future work, we will extend RD-PaS to further support RTWNs with
multi-channel scheduling and multi-path routing capabilities, and evaluate its performance
in large-scale RTWN testbeds.

References

1 Johan Åkerberg, Mikael Gidlund, and Mats Björkman. Future research challenges in wireless
sensor and actuator networks targeting industrial automation. In 2011 9th IEEE International
Conference on Industrial Informatics, pages 410–415, July 2011. doi:10.1109/INDIN.2011.
6034912.

2 Ryan Brummet, Dolvara Gunatilaka, Dhruv Vyas, Octav Chipara, and Chenyang Lu. A
Flexible Retransmission Policy for Industrial Wireless Sensor Actuator Networks. In 2018
IEEE International Conference on Industrial Internet (ICII), pages 79–88, October 2018.
doi:10.1109/ICII.2018.00017.

3 Yu Chen, Hongwei Zhang, Nathan Fisher, Le Yi Wang, and George Yin. Probabilistic Per-
Packet Real-Time Guarantees for Wireless Networked Sensing and Control. IEEE Transactions
on Industrial Informatics, 14(5):2133–2145, May 2018. doi:10.1109/TII.2018.2795567.

4 Octav Chipara, Chengjie Wu, Chenyang Lu, and William Griswold. Interference-Aware Real-
Time Flow Scheduling for Wireless Sensor Networks. In 2011 23rd Euromicro Conference on
Real-Time Systems, pages 67–77, July 2011. doi:10.1109/ECRTS.2011.15.

5 Li Da Xu, Wu He, and Shancang Li. Internet of Things in Industries: A Survey. IEEE
Transactions on Industrial Informatics, 10(4):2233–2243, November 2014. doi:10.1109/TII.
2014.2300753.

6 Diego Dujovne, Thomas Watteyne, Xavier Vilajosana, and Pascal Thubert. 6TiSCH: determin-
istic ip-enabled industrial internet (of things). IEEE Communications Magazine, 52(12):36–41,
December 2014. doi:10.1109/MCOM.2014.6979984.

ECRTS 2019

http://dx.doi.org/10.1109/INDIN.2011.6034912
http://dx.doi.org/10.1109/INDIN.2011.6034912
http://dx.doi.org/10.1109/ICII.2018.00017
http://dx.doi.org/10.1109/TII.2018.2795567
http://dx.doi.org/10.1109/ECRTS.2011.15
http://dx.doi.org/10.1109/TII.2014.2300753
http://dx.doi.org/10.1109/TII.2014.2300753
http://dx.doi.org/10.1109/MCOM.2014.6979984

11:22 Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

7 Vehbi C Gungor, Gerhard P Hancke, et al. Industrial Wireless Sensor Networks: Challenges,
Design Principles, and Technical Approaches. IEEE Transactions on Industrial Electronics,
56(10):4258–4265, October 2009. doi:10.1109/TIE.2009.2015754.

8 Song Han, Xiuming Zhu, Aloysius K Mok, Deji Chen, and Mark Nixon. Reliable and
Real-Time Communication in Industrial Wireless Mesh Networks. In 2011 17th IEEE Real-
Time and Embedded Technology and Applications Symposium, pages 3–12, April 2011. doi:
10.1109/RTAS.2011.9.

9 Shengyan Hong, Xiaobo Sharon Hu, Tao Gong, and Song Han. On-Line Data Link Layer
Scheduling in Wireless Networked Control Systems. In 2015 27th Euromicro Conference on
Real-Time Systems, pages 57–66, July 2015. doi:10.1109/ECRTS.2015.13.

10 ISA Standard. Wireless systems for industrial automation: process control and related
applications. ISA-100.11 a-2009, 2009.

11 Junsung Kim, Karthik Lakshmanan, and Ragunathan Raj Rajkumar. Rhythmic Tasks: A
New Task Model with Continually Varying Periods for Cyber-Physical Systems. In 2012
IEEE/ACM Third International Conference on Cyber-Physical Systems, pages 55–64, April
2012. doi:10.1109/ICCPS.2012.14.

12 Bo Li, Lanshun Nie, Chengjie Wu, Humberto Gonzalez, and Chenyang Lu. Incorporating
Emergency Alarms in Reliable Wireless Process Control. In Proceedings of the ACM/IEEE
Sixth International Conference on Cyber-Physical Systems, ICCPS ’15, pages 218–227, New
York, NY, USA, 2015. ACM. doi:10.1145/2735960.2735983.

13 Chung Laung Liu and James W Layland. Scheduling algorithms for multiprogramming in a
hard-real-time environment. Journal of the ACM, 1973.

14 Chenyang Lu, Abusayeed Saifullah, Bo Li, Mo Sha, Humberto Gonzalez, Dolvara Gunatilaka,
Chengjie Wu, Lanshun Nie, and Yixin Chen. Real-Time Wireless Sensor-Actuator Networks
for Industrial Cyber-Physical Systems. Proceedings of the IEEE, 104(5):1013–1024, May 2016.
doi:10.1109/JPROC.2015.2497161.

15 Silvano Martello, David Pisinger, and Paolo Toth. New trends in exact algorithms for the
0–1 knapsack problem. European Journal of Operational Research, 123(2):325–332, 2000.
doi:10.1016/S0377-2217(99)00260-X.

16 Abusayeed Saifullah, Dolvara Gunatilaka, Paras Tiwari, Mo Sha, Chenyang Lu, Bo Li,
Chengjie Wu, and Yixin Chen. Schedulability Analysis under Graph Routing in WirelessHART
Networks. In 2015 IEEE Real-Time Systems Symposium, pages 165–174, December 2015.
doi:10.1109/RTSS.2015.23.

17 Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen. Real-Time Scheduling for
WirelessHART Networks. In 2010 31st IEEE Real-Time Systems Symposium, pages 150–159,
November 2010. doi:10.1109/RTSS.2010.41.

18 Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen. End-to-End Communication
Delay Analysis in Industrial Wireless Networks. IEEE Transactions on Computers, 64(5):1361–
1374, May 2015. doi:10.1109/TC.2014.2322609.

19 Emiliano Sisinni, Abusayeed Saifullah, Song Han, Ulf Jennehag, and Mikael Gidlund. Industrial
Internet of Things: Challenges, Opportunities, and Directions. IEEE Transactions on Industrial
Informatics, 14(11):4724–4734, November 2018. doi:10.1109/TII.2018.2852491.

20 Jianping Song, Song Han, Al Mok, Deji Chen, Mike Lucas, Mark Nixon, and Wally Pratt.
WirelessHART: Applying wireless technology in real-time industrial process control. In 2008
IEEE Real-Time and Embedded Technology and Applications Symposium, pages 377–386, April
2008. doi:10.1109/RTAS.2008.15.

21 Federico Terraneo, Paolo Polidori, Alberto Leva, and William Fornaciari. TDMH-MAC: Real-
time and multi-hop in the same wireless mac. In 2018 IEEE Real-Time Systems Symposium
(RTSS), pages 277–287, December 2018. doi:10.1109/RTSS.2018.00044.

22 Haibo Zhang, Pablo Soldati, and Mikael Johansson. Performance Bounds and Latency-Optimal
Scheduling for Convergecast in WirelessHART Networks. IEEE Transactions on Wireless
Communications, 12(6):2688–2696, June 2013. doi:10.1109/TWC.2013.050313.120543.

http://dx.doi.org/10.1109/TIE.2009.2015754
http://dx.doi.org/10.1109/RTAS.2011.9
http://dx.doi.org/10.1109/RTAS.2011.9
http://dx.doi.org/10.1109/ECRTS.2015.13
http://dx.doi.org/10.1109/ICCPS.2012.14
http://dx.doi.org/10.1145/2735960.2735983
http://dx.doi.org/10.1109/JPROC.2015.2497161
http://dx.doi.org/10.1016/S0377-2217(99)00260-X
http://dx.doi.org/10.1109/RTSS.2015.23
http://dx.doi.org/10.1109/RTSS.2010.41
http://dx.doi.org/10.1109/TC.2014.2322609
http://dx.doi.org/10.1109/TII.2018.2852491
http://dx.doi.org/10.1109/RTAS.2008.15
http://dx.doi.org/10.1109/RTSS.2018.00044
http://dx.doi.org/10.1109/TWC.2013.050313.120543

T. Gong, T. Zhang, X. Hu, Q. Deng, M. Lemmon, and S. Han 11:23

23 Tianyu Zhang, Tao Gong, Chuancai Gu, Huayi Ji, Song Han, Qingxu Deng, and Xiaobo Sharon
Hu. Distributed Dynamic Packet Scheduling for Handling Disturbances in Real-Time Wireless
Networks. In 2017 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 261–272, April 2017. doi:10.1109/RTAS.2017.11.

24 Tianyu Zhang, Tao Gong, Song Han, Qingxu Deng, and X Sharon Hu. Distributed Dynamic
Packet Scheduling Framework for Handling Disturbances in Real-Time Wireless Networks.
IEEE Transactions on Mobile Computing, pages 1–1, 2018. doi:10.1109/TMC.2018.2877681.

25 Tianyu Zhang, Tao Gong, Song Han, Qingxu Deng, and Xiaobo Sharon Hu. Fully Distributed
Packet Scheduling Framework for Handling Disturbances in Lossy Real-TimeWireless Networks,
2019. arXiv:1902.02023.

26 Tianyu Zhang, Tao Gong, Zelin Yun, Song Han, Qingxu Deng, and Xiaobo Sharon Hu. FD-PaS:
A fully distributed packet scheduling framework for handling disturbances in real-time wireless
networks. In 2018 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 1–12, April 2018. doi:10.1109/RTAS.2018.00007.

27 Marco Zimmerling, Luca Mottola, Pratyush Kumar, Federico Ferrari, and Lothar Thiele.
Adaptive Real-Time Communication for Wireless Cyber-Physical Systems. ACM Transactions
on Cyber-Physical Systems, 1(2):8:1–8:29, February 2017. doi:10.1145/3012005.

ECRTS 2019

http://dx.doi.org/10.1109/RTAS.2017.11
http://dx.doi.org/10.1109/TMC.2018.2877681
http://arxiv.org/abs/1902.02023
http://dx.doi.org/10.1109/RTAS.2018.00007
http://dx.doi.org/10.1145/3012005

	Introduction
	Preliminaries
	System Model and Problem Definition
	Overview of the RD-PaS Framework

	Reliable Scheduling for TBS
	Reliable Static Scheduling
	Reliable Dynamic Scheduling

	Reliable Scheduling for PBS
	Testbed Implementation and Validation
	Validation of reliable static scheduling
	Validation of reliable dynamic scheduling

	Simulation-based Performance Evaluation
	Comparison of Packet Delivery Ratio
	Comparison of Network Bandwidth Usage
	Comparison of Required Numbers of Slots
	Effectiveness in Handling Rhythmic Events

	Conclusion and Future Work

