
Modeling Cache Coherence to Expose
Interference
Nathanaël Sensfelder
ONERA, Toulouse, France

Julien Brunel
ONERA, Toulouse, France

Claire Pagetti
ONERA, Toulouse, France

Abstract
To facilitate programming, most multi-core processors feature automated mechanisms maintaining
coherence between each core’s cache. These mechanisms introduce interference, that is, delays caused
by concurrent access to a shared resource. This type of interference is hard to predict, leading to
the mechanisms being shunned by real-time system designers, at the cost of potential benefits in
both running time and system complexity.

We believe that formal methods can provide the means to ensure that the effects of this interference
are properly exposed and mitigated. Consequently, this paper proposes a nascent framework relying
on timed automata to model and analyze the interference caused by cache coherence.

2012 ACM Subject Classification Computer systems organization → Multicore architectures; Com-
puter systems organization → Real-time systems

Keywords and phrases Real-time systems, multi-core processor, cache coherence, formal methods

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.18

Supplement Material ECRTS 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.1.7
https://github.com/nsensfel/phylog-cache-coherence/

Acknowledgements We would like to thank Mamoun Filali-Amine (IRIT-CNRS) for his helpful
insights on how to validate our model and related works suggestions.

1 Introduction

The next generation of aircrafts will embed multi-core processors. Indeed, it will be more and
more difficult to find mono-core processors on the market and, when correctly programmed,
multi-core processors offer huge opportunities to reduce the amount of equipment required
to host multiple applications compared to federated or single-core IMA (Integrated Modular
Avionics) architectures. However, multi-core processors come with several drawbacks, among
which is the lack of predictability [26, 27], one of the key elements of certification expectations.
This lack of predictability is caused by interference, a delay inherent to the concurrent access
to a shared resource.

Cache Coherence. In most multi-core processors, each core has its own cache memory, of
which it is virtually the sole accessor. A cache coherence protocol ensures that:

At any given time, a memory location can either be accessed by a single cache controller,
in which case both writing and reading are allowed, or by any number of cache controllers,
in which case only reading is allowed.
Any copy of a memory location held in a cache has the most up-to-date value.

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Nathanaël Sensfelder, Julien Brunel, and Claire Pagetti;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 18; pp. 18:1–18:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECRTS.2019.18
https://dx.doi.org/10.4230/DARTS.5.1.7
https://github.com/nsensfel/phylog-cache-coherence/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Modeling Cache Coherence to Expose Interference

Maintaining this cache coherence requires exchanges of information between cache memo-
ries. These exchanges can be the source of a large amount of additional traffic, a potential
hindrance that we qualify of implicit interference, because of how difficult to predict they
are. Additionally, it can result in the removal of elements from the cache, which may lead to
time consuming communications with the system’s memory (cache misses).

While multi-core processors feature hardware to efficiently and automatically handle
cache coherence, the black-box nature of commercial processors leads to a lack of control,
visibility, and predictability of the cache coherence protocol and, by extension, of the delays
it may create.

Current Research Practices. Several approaches have been developed in the literature to
deal with the interference found in multi-core processors. The main solutions to ensure
predictability are 1) preventing any kind of uncontrolled interference (e.g. run-time services
[15, 28]); 2) enforcing a unique access to any shared resource at any time, so as to be equivalent
to a single core situation (e.g. execution models [18, 5, 12]). Because its interference is
difficult to predict, most of the considered hardware do not have or use automatic cache
coherency. Instead, the burden of cache management is placed on the developers, forcing
an application-specific solution (e.g. scratchpad memory [25, 22]). Such solutions prevent
the gains in performance that would otherwise be provided by automatic hardware cache
management mechanisms.

Contributions. We believe that the implicit interference generated by the cache coherence
can be exposed and taken into account to achieve predictable programming of a multi-core
processor. In this work, we focus on exposing these unexpected delays, the analysis of a
formal model of the processor.

We start this paper by going into more details on how cache coherence can be achieved
(Section 2), the type of system we are interested in (Section 3), and the categories of
interference it can host (Section 4). We then present the tools that we use to model and
analyze it (Section 5). Afterwards, we explain our choices in how we modeled the cache
coherence in a multi-core processor (Section 6). Finally, we showcase some of the results that
can be extracted from our model (Section 7), before listing some related works (Section 8)
and concluding (Section 9).

2 Cache Coherence Protocols

We start by introducing archetypal systems on which coherence protocols run. We then
present how those protocols behave.

A number of components (see Figure 1) are involved in the coherence.

Interconnect

Coherency
Manager

Memory
Controller

Cache
Controller

. . . Cache
Controller

Core Core

Figure 1 Components involved in cache coherence.

N. Sensfelder, J. Brunel, and C. Pagetti 18:3

Memory Element: The main memory is composed of chunks (or memory elements) which
have a fixed size and contain multiple addressable elements. Reading/writing from/to an
address in the main memory actually corresponds to reading or writing a whole memory
element. The distinction between an addressable space and a memory element is not
relevant to cache coherence, and thus, for simplification purposes, this paper considers
that each memory element has a single address.

Core: The component actually using and modifying memory element values. Instead of
accessing the original memory elements through the interconnect, each core is linked to its
own private cache. The content of this cache is managed by an associated cache controller.
The core can ask its cache controller for the value held by the memory element at a
given address through a load request. It can also send a store request to modify this
value. Additionally, the core can issue an evict request, which tells its cache controller
to invalidate a memory element copy. While it is rare for cores to be the initiators of
evict requests, it remains a possibility (e.g. for micro-optimization). Cores can be made
to stall by their cache controller, delaying the emission of a request until the cache
controller is ready to accept it.

Cache Controller: Component that handles requests from its core, potentially initiating a
transaction by making a query on the interconnect. Such queries take the form of a GetS
when asking for a read-only copy of a memory element and that of a GetM when asking
for a read-and-write copy. Queries that indicate a new value for the memory element are
done through PutM messages. Depending on the protocol, variants of these messages may
be used. Cache controllers are also able to reply to the query of another cache controller
with a data reply (data). Additionally, cache controllers may initiate evict requests
on themselves to make space for new memory element copies. These self-requests are
controlled by a cache replacement policy, which is most commonly a speed-over-accuracy
variation on the Least Recently Used policy.

Coherency Manager: Component that stores information on the state of the cache con-
trollers, to help maintain the cache coherence. Using this stored information, it can tell if
a query should be answered by the memory controller or not. This component is very
much dependent on which protocol is being implemented, and can range from being a
simple link between the cache controllers to actually being multiple separate components
(e.g. all directory nodes of a directory-based cache coherence protocol). It is usually found
inside the interconnect.

Memory Controller: Component that handles the modification or copy of the original mem-
ory elements.

Interconnect: Component that regulates and handles the propagation of messages between
cache controllers, memory controllers, and the coherency manager.

I Definition 1 (Request, Message, Query, and Data Reply). To keep things separate, we use
the term request when talking about communications between a core and its cache controller,
and the term message when talking about communications that use the interconnect. As such,
queries (e.g. GetM, GetS, PutM) are messages, and so are data replies (e.g. data). Thus,
messages = queries ∪ data replies.

I Definition 2 (Transaction). A transaction is composed of a query and of all the data
messages the completion of that query requires.

Each message transiting through the interconnect, and each cache controller query, is
about a specific memory element. Upon receiving either one of those, cache controllers look
up the state they associate with their copy of the memory element for this address, and act
according to the cache coherence protocol.

ECRTS 2019

18:4 Modeling Cache Coherence to Expose Interference

2.1 Protocols
Most cache coherence protocols are based on the MSI protocol, named after the states given
to copies of the memory elements by the cache controllers. M stands for Modified, the
state a cache controller gives its copy of the memory element to indicate that it has both
read-and-write access to the original. S stands for Shared, and is the equivalent for read-only
access. I stands for Invalid, when a cache controller does not currently have a copy.

MSI-based protocols are all categorized as Write-Back, because caches may contain a
more up-to-date value of the memory element than the RAM.

The aforementioned protocols are referred to according to their states and general idea,
however, the definition of their behavior depends on the system they are implemented on.

There are two main families of cache coherence implementation: snooping-based and
directory-based. When using a snooping-based protocol, cache controller queries are broad-
casted to all cache controllers and to the coherency manager. The protocol also ensures
that only one of the components answers the query. This answer is not broadcasted, but is
instead only meant for the query’s originator. For such protocols to properly function, all
the components have to receive the queries in the same order. In the sequel, we only take
into consideration snooping-based protocols.

I S

M

load?GetS!data?

store?GetM!data?

evict?

GetM?

st
or

e?
Ge

tM
!da

ta
?

load?

Ge
tM

?d
at

a!

Ge
tS
?m

em
_d

at
a!d

at
a!

ev
ic

t?
Pu

tM
!m

em
_d

at
a!

load?
store?

Figure 2 Generic MSI Cache Controller.

U

M

GetM?data!

GetS?data!
Pu

tM
?m

em
_d

at
a?

Ge
tS

?m
em

_d
at

a?

Figure 3 Generic MSI Coherency
Manager.

Automata describing a generic snooping-based MSI protocol can be seen in Figure 2 and
Figure 3. Figure 2 shows how the state given to a memory element’s copy evolves when
receiving a request (store?, load?, or evict?), or a query (GetM? or GetS?). Data exchanges
between cache controllers are also represented (data! and data?). Cache controllers do not
differentiate between data sent from another cache controller and data sent from the memory
controller (both use data?). Sending data to the memory controller, however, is marked as
mem_data!. Figure 3 represents the coherency manager, which keeps track of whether the
memory has the most up-to-date value for a memory element (state U) or not (state M).

N. Sensfelder, J. Brunel, and C. Pagetti 18:5

This particular protocol considers that cache controllers delay incoming requests until
they are able to use the interconnect, and that transactions cannot take place simultaneously.

These automata actually describe a generic snooping-based MSI protocol. They feature
macro-transitions (a succession of atomic transitions). The next section presents a more
detailed protocol.

3 MSI Snooping-Based Protocol

3.1 A Few Caveats
These are the hypotheses made on the targeted hardware. Placing such hypotheses (or lack
thereof) is necessary to properly define the targeted cache coherence protocol.

I Hypothesis 1 (Non-Atomic Requests). Cores are able to issue load, store, and evict
requests to their cache controller regardless of whether the cache controller is currently able to
initiate a transaction on the interconnect. In this paper, we consider that this is implemented
through the use of a FIFO queue between each cache controller and the interconnect.

I Hypothesis 2 (Unique Interconnect). The interconnect is unique. As a result, all cache
controllers are able to see all transactions, and those transactions are all seen in the same
order. Examples of excluded hardware include many-core processors, which feature a Network-
On-Chip.

I Hypothesis 3 (Split-Transaction Interconnect). The interconnect supports simultaneous
transfer of data and queries and allows multiple transactions to take place simultaneously.

3.2 From Abstract to Concrete Behaviour
In Subsection 2.1, we have seen automata using macro-transitions to describe a generic
snooping-based MSI protocol. Let us now look in details at what is composing the transition
from I to S with the load?GetS!data? label. Let us consider two cache controllers, CC0 and
CC1, each of which is driven by its own core (CU0 and CU1, respectively) and a memory
element. Let us assume that, while CC1 already has read-only access to that memory element,
CC0 does not, and that core CU0 issues a load request to acquire it.

In the sequence diagram of Figure 4, we see the behavior of all components involved.
Once the core issues the load request, the cache controller generates a GetS query to the
interconnect. The latter broadcasts the GetS to all cache controllers, including the query’s
originator, and the coherency manager. As the owner of the data is the memory, the coherency
manager transmits that query to the memory controller, which, in turn, sends the data to
the core CU0.

In order to expose the interference, we need to model the atomic transitions and interme-
diate states, such as the ones shown in the figure.

3.3 Detailed Snooping-Based MSI Protocol
Instead of representing the full automaton as a graph, we use a matrix representation (see
Figure 6). The first column details every possible states. As in [20], the naming of each
state is determined by the following reasoning: Invalid (I), Shared (S), and Modified (M) are
the three stable states of the MSI protocol. The other states are transient. Reception of a
request that requires use of the interconnect will usually lead to a XYBD transient state, which
means that the cache controller is handling a transition between the stable states X and Y,

ECRTS 2019

18:6 Modeling Cache Coherence to Expose Interference

CU0 CC0 CU1 CC1
Inter-
connect

Coherency
Manager

Memory
Controller

load

GetS
GetSGetS

GetS

read

data

data

I
〈〉

S
〈〉

U

ISBD

〈GetS〉

ISD

〈〉

S
〈〉

Figure 4 load request.

CU0 CC0 CU1 CC1 CU2 CC2
Inter-
connect

Coherency
Manager

M
〈〉

I
〈〉

I
〈〉 M

o = CC0
evict store store

MIB

〈PutM〉
IMBD

〈GetM〉
IMBD

〈GetM〉
GetM

GetMGetM

GetM GetM
IMD

〈〉
IIB

〈PutM〉
o← CC1

GetM

GetMGetM

GetM GetM

IMDI
〈〉

IMD

〈〉
o← CC2

data

data
I
〈〉

data

data
M
〈〉

PutM

PutM PutM PutM PutM

I
〈〉

Figure 5 Double store.

with (B) indicating that this transition requires the acquisition of the interconnect and (D)
the reception of a related data reply (whether it comes from an other cache controller or
the memory). This can be followed by XYD if the cache controller sees its own query before
receiving a reply, or XYB if a reply is received before the query is processed. This happens
when, despite processing all queries in the same order, not all cache controllers take the same
time to do so. Another possibility is for an external query to be received when in the XYD

state. Indeed, at that point, the system pretty much considers that the cache controller is in
the Y state and thus has the responsibilities that the Y would require. This makes it possible
for a cache controller to see a query it needs to act upon before being actually ready to
do so (e.g. observing a GetM query while waiting for data). These states have a XYDA form
(which means that when all is handled, the cache controller ends up in the A state), or XYDAB
(which ends up leading to the B state). As it may be that the required action is to reply
to said query, it is sometimes necessary to remember the originator of the query. This is
marked as r←s.

When the core makes a request (load, store or evict), the second macro-column
indicates how the cache controller behaves. The a/b notation denotes the emission of an a
message on the interconnect, followed by a transition of the memory element copy’s state to
b. If you look at the load from the I state, the cell indicates that the GetS request will be
generated and the reached state is ISBD. We recognize the beginning of the sequence diagram
described in Figure 4. Grayed out cells indicate situations that cannot occur in the protocol,
due to our hypotheses.

The third macro-column (named Interconnect access) indicates what happens when the
previously queued query is broadcasted on the interconnect. When in the ISBD state, we
know that, at some point, our previously queued GetS query is going to be broadcasted

N. Sensfelder, J. Brunel, and C. Pagetti 18:7

State Core Request Interconnect
Access

Data
Reply Received Queries

load store evict GetS GetM PutM
I GetS/ISBD GetM/IMBD - - -
ISBD stall stall stall -/ISD -/ISB - - -
ISB stall stall stall -/S - -
ISD stall stall stall -/S - -/ISDI
ISDI stall stall stall -/I - -
IMBD stall stall stall -/IMD -/IMB - - -
IMB stall stall stall -/M - - -

IMD stall stall stall -/M
r←s
-/IMDS

r←s
-/IMDI

IMDI stall stall stall
r!data
-/I

- -

IMDS stall stall stall
r!data
m!data
-/I

- -/IMDSI

IMDSI stall stall stall
r!data
m!data
-/I

- -

S hit GetM/SMBD -/I - -/I
SMBD hit stall stall -/SMD -/SMB - -/IMBD

SMB hit stall stall -/M - -/IMB

SMD hit stall stall -/M
r←s
-/SMDS

r←s
-/SMDI

SMDI hit stall stall
r!data
-/I

- -

SMDS hit stall stall
r!data
m!data
-/S

- -/SMDSI

SMDSI hit stall stall
r!data
m!data
-/I

- -

M hit hit PutM/MIB
m!data
s!data
-/S

s!data
-/I

MIB hit hit stall
m!data
-/I

m!data
s!data
-/IIB

s!data
-/IIB

IIB stall stall stall -/I - - -
Handling Requests Handling Queries

Figure 6 Cache Controller Memory Element State Changes (adapted from [20]).

on the interconnect. This will result in reaching the ISD state. As a side note, if the core
makes a second load request on the same memory element while the copy is ISBD, that new
request is stalled.

The fourth macro-column describes the behavior upon reception of a data reply.

The fifth macro-column (named Received Queries) defines the behavior of the cache
controller when snooping a transiting query that is not its own (which would otherwise
pertain to the third macro-column). For instance, from state S, when snooping a GetS,
the cache controller does not do anything, as can be seen with core CU1 in the sequence
diagram of Figure 4.

Replying with a message d, meant for t (t = m when sending to the memory controller
and the coherency manager, t = s when sending to the cache controller that initiated the
transaction, and t = r when sending to the initiator of an earlier query) is written as t!d.

ECRTS 2019

18:8 Modeling Cache Coherence to Expose Interference

I Example 3. Let us have a look at a more complex behavior: when 2 cores attempt
modification of the same memory element. This is illustrated in the sequence diagram of
Figure 5. CC0 starts with read-and-write access to the memory element (its copy being in
the M state), neither CC1 nor CC2 have a copy (state I), and the coherency manager knows
that its value is out of date (state M).

The sequence starts when CU0 issues an evict request and both CU1 and CU2 issue
a store request. CC0 receives the evict request, queues a PutM query and now considers
the memory element to be MIB (that is, “was Modified, will be Invalid once access to the
interconnect is granted”). On the other hand, the other two caches receive their store
requests, queue a GetM query, and now consider the memory element to be IMBD (“was Invalid,
will be Modified after access to the interconnect and reception of a data reply”).

All the cache controllers want to access the interconnect. The internal behavior of the
interconnect will drive this choice. Most of the time, the interconnect is based on Fair-RR
(Round Robin) [11]. In this scenario, the interconnect first broadcasts the GetM query from
CC1’s queue, which is now empty.

CC1, seeing its own query, confirms that it has accessed the interconnect, and switches
to the IMD state to await a data reply. The coherency manager ignores the query. Seeing
CC1’s GetM query passing through the interconnect, CC0 has to reply with a data message
(this corresponds to s!data in the protocol definition), containing its value for the memory
element, and to transition to the IIB state.

CC2’s GetM query is broadcasted. As it is about to receive the data with read-and-write
access, CC1 is the component that should reply to CC2’s query. Not having the data yet,
CC1 is currently unable to do so. Instead, it transitions to the IMDI, remembering that it
should send the data to CC2 as soon as possible.

Finally receiving the data, CC1 applies completes CU1’s request, sends the updated data
to CC2 and transitions to the I state (as CC2 wants read-and-write access).

CC2 receives the data and completes CU2’s request.
CC0’s PutM is broadcasted, but has been superseded by a previous GetM and thus causes

no reaction in the other cache controllers or the coherency manager. CC0 transitions to I,
completing its core’s request.

3.4 Coherency Manager

State Received Queries Data Reply
GetS GetM PutM (Owner) PutM (Other) data

U s!data
s!data
o←s
-/M

-

UD stall stall stall - -/U

UB o← ∅
-/U

- o← ∅
-/U

-

M
o← ∅
-/UD o←s

o← ∅
-/UD - -/UB

Figure 7 Coherency Manager Memory Element State Changes (adapted from [20]).

Figure 7 shows how the coherency manager keeps track of whether the RAM has the
most up-to-date value for a memory element (state U) or if a cache controller does (state M).
This is used to determine if the RAM should be the one to reply when either a GetS or a
GetM query passes through the interconnect. The U state indicates that the RAM currently

N. Sensfelder, J. Brunel, and C. Pagetti 18:9

has the most up-to-date value. The UD state indicates that the RAM should be the one to
respond to queries, but it still hasn’t received the latest value. Unlike the cache controller, it
will not switch to a dedicated state but instead force queries from the interconnect to stall
until the problematic query can be fulfilled. UB indicates that the RAM has received the
latest value, but has not yet seen the query that led this data to be sent.

The exact cache controller currently in charge of the memory element is kept track of.
Change of ownership are marked as o←s (the query originator becomes the new owner) and
o← ∅ (there is no longer an owner, meaning that the RAM is currently responsible for it).

I Example 4. Back to the sequence diagram of Figure 5 and to Example 3, let us observe
the behavior of the coherency manager. The coherency manager reacts to each GetM query,
updating its internal state to reflect the change of ownership. Thus, the coherency manager
starts by considering that CC0 is the only one to have a valid (i.e. up-to-date) value of the
memory element, then, upon seeing the first GetM, considers CC1 to be responsible for it
(o←s in the table). As a result, at the end of the execution, the coherency manager knows
that the PutM query is originating from a cache controller that is not currently responsible
for that memory element and can thus safely ignore it.

4 Interference

St
at

e
R

ec
ei

ve
d

Q
ue

ri
es

Ge
tS

Ge
tM

Pu
tM

I
Mi

.
Mi

.
Mi

.
IS

BD
Mi

.
Mi

.
Mi

.
IS

B
Mi

.
Mi

.
IS

D
Mi

.
Ex

.
IS

D
I

Mi
.

Mi
.

IM
BD

Mi
.

Mi
.

Mi
.

IM
B

Mi
.

Mi
.

Mi
.

IM
D

De
.

Ex
.

IM
D
I

Mi
.

Mi
.

IM
D
S

Mi
.

Ex
.

IM
D
SI

Mi
.

Mi
.

SM
BD

Mi
.

Ex
.

SM
B

Mi
.

Mi
.

SM
D

De
.

Ex
.

SM
D
I

Mi
.

Mi
.

SM
D
S

Mi
.

Ex
.

SM
D
SI

Mi
.

Mi
.

M
De

.
Ex

.
MI

B
Ex

.
Ex

.
II

B
Mi

.
Mi

.
Mi

.

Minor Expelling Demoting

Figure 8 Occurrences of Interference.

Let us now categorize how a cache controller may be negatively affected by the actions of
another. Figure 8 summarizes the occurrences of each interference category. In the Figures 9,
11, and 10, the dark gray area indicates when the cache controller is unavailable due to
having to handle the incoming query (deciding how to act and, potentially, updating its
internal state), and the light gray area shows when its core’s next request for that memory
element may be negatively impacted by the change of state.

I Definition 5 (Minor Interference). Cache controllers have actions to perform upon receiving
any type of request. Because of this, every time a cache controller has to deal with an incoming
query, there is a very small amount of time during which it cannot be used by its core. We call
this unavailability period minor interference. And, while the effect of each minor interference
is so small as to be considered negligible, their accumulation most definitely is not. Indeed,
minor interferences are one of the main motivations behind the use of a directory-based
coherency protocol (in which minor interferences are only experienced by cache controllers
likely to have a use for that query) over a snooping-based one (in which all cache controllers
are affected by every query).

ECRTS 2019

18:10 Modeling Cache Coherence to Expose Interference

Figure 9 Minor. Figure 10 Expelling. Figure 11 Demoting.

Figure 9 shows an example of minor interference: the CC1 cache controller has to
process the GetS broadcast, despite that message not requiring any reply or internal state
update from CC1.

I Definition 6 (Expelling Interference). To maintain the principles of cache coherency, it may
be required for a cache controller to dispense of its copy of a memory element, relinquishing
its access rights. This is caused by another cache controller demanding read-and-write access
to that memory element (a GetM query). We have, however, marked the reception of a GetS
query for an element in the MIB as being an expelling interference in Figure 8. It could be
argued that reaching the MIB indicates that the cache controller is already in the process of
evicting its copy of the memory element. But, as the MIB state allows immediate (i.e. hit)
access for both writing and reading that memory element, we still consider this event to have
a negative impact.

Figure 10 shows an example of expelling interference: the CC1 cache controller, receiving
a demand for read-and-write access, is forced to relinquish its read-only copy.

I Definition 7 (Demoting Interference). Another type of interference is the demoting inter-
ference, in which a cache controller has to abandon its writing access rights to a memory
element, while retaining its reading access.

Figure 11 shows an example of demoting interference: the CC1 cache controller, receiving
a demand for read access on that memory element, has to update the value from the main
memory and go from read-and-write access to read-only access.

5 Formal Modeling of Real-Time Systems with Timed Automata

To expose the interference presented in the previous section, we chose to use formal methods.
More precisely, we are relying on timed automata [1] to model and analyze our system.

A timed automaton is an extended automaton with variables and clocks. During the
system’s execution, the state of timed automaton is defined as a location, the value of its
integer variables and of its clocks. The evolution of these integer variables is controlled

N. Sensfelder, J. Brunel, and C. Pagetti 18:11

by the automaton’s transitions, whereas all of the system’s clocks progress at the same
rate, following the passing of time. To indicate that a location should be left immediately,
UPPAAL [4] offers the following location modifiers:
Urgent: The location must be left before any time passes.
Committed: The location must be left before any time passes, and the next transition must

originate from a committed location.
Invariant φ: The location is defined only if a linear constraint φ holds true. φ may reason

over the automaton’s integer variables, clocks, or both.

The automata transitions are composed of the following:
Guard: Prerequisite (linear constraint) for this transition to be able to fire. The condition

uses the automaton’s integer variables, clocks, or both.
Synchronization: Allows to have more than one automaton transitioning during a step, by

synchronizing multiple transitions over a channel. The channel can be used in either
receiver (with a ? suffix) or sender (with a ! suffix) mode. On a channel that was
declared without modifier, the transition requires exactly two automata to synchronize
during this step: the sender, and the receiver. It is also possible for a channel to have
been declared as a broadcast channel, in which case the sender synchronizes with all
available receivers. Furthermore, the channel may have been declared as urgent, which
prevents waiting in a location if the synchronization can occur. Finally, priorities between
channels may be put in place.

Update: Sequence of instructions to alter the automaton’s integer variables, or reset its
clocks.

Select: The transition selects the given integer variables’ next value from a specified range.

Example. This subsection presents an example of UPPAAL model: a processor attempts
to read a variable, which may be either in RAM or in its cache. The automaton in Figure 12
corresponds to the core, the one in Figure 13 to the RAM controller, and the remaining
one (Figure 14) is used to mark a transition as urgent by having an automaton always
ready to synchronize on a dedicated urgent channel (FORCE_URGENT). In this model, the
FORCE_URGENT and READ_LINE channels are both declared as urgent.

Figure 12 Core and cache. Figure 13 RAM. Figure 14 Urgence.

The Core Automaton (Figure 12). Its initial location is marked as committed, meaning
that it is left immediately. The exiting transition sets the x clock to 0, and the var_is_cached
variable to a value in the [0, 1] range. The x clock will be used to know how long it took for
the processor to get its variable. Two transitions are fireable from the S1 location, depending
on whether the targeted variable is cached or not. If it is indeed cached, the transition
labeled FORCE_URGENT is the only one fireable and it synchronizes with the automaton of
Figure 14, forcing it to be taken as soon as possible. Additionally, the transition increases an

ECRTS 2019

18:12 Modeling Cache Coherence to Expose Interference

integer variable that counts the number of times a variable was found in the cache. Taking
said transition leads to a location in which the only exiting transition requires the x clock to
equal 1 unit of time before arriving in the Done location.

If the variable was not in the cache, the other transition from S1 is active and leads to a
synchronization on the READ_LINE which is also to be taken as soon as possible. This time,
however, it is possible for that synchronization to not be immediately available, as the RAM
controller automaton may be handling another query and thus not be ready to synchronize
as it would not be in its initial location. This also justifies not marking the location as urgent
or committed: the automaton may have to wait an unknown amount of time. Once the
synchronization does happen, an integer variable counting the number of times the variable
was not found in the cache is incremented, then the automaton waits for the RAM automaton
to synchronize on the REPLY channel before considering it has acquired the variable.

The RAM Controller Automaton (Figure 13). Its initial location awaits synchronization
on the READ_LINE channel. Since READ_LINE is urgent, the transition happens as soon as
possible. It resets the automaton’s time clock back to 0. The synchronization leads to
a location which has to be left strictly before more than 2 units of time pass, as defined
by the invariant. To ensure that the automaton stays in this location for exactly 2 units
of time, the only exiting transition has a guard stating just that. This transition also
requires a synchronization on the REPLY channel before allowing a return to the automaton’s
initial location.

6 Model of the Cache Coherence

This sections describes the general ideas behind how we modeled the cache coherence in
UPPAAL. We have released the model under an LGPL v3 license at https://www.onera.
fr/sites/default/files/598/ecrts19.zip.

6.1 Modeling Strategy
The model contains one automaton per component present in Figure 1, an automaton in
charge of synchronizing on the FORCE_URGENT channel (in an identical manner to the one
in Figure 14), as well as message queues for both queries and data (Sub-section 6.6). Each
core runs exactly one program. To change the number of cores, one simply has to add
or remove cores (and associated cache controllers) and to change the value of a dedicated
system-wide constant. Moreover, each component has a unique identifier, which is used
both to target a specific automaton on some synchronization, and to indicate the emitter of
requests and queries.

The states and transitions seen on the automata do not visibly reflect any program
or protocol. This means that the stable states (M, S, I) and the transient states (ISBD,
ISD, . . .) will not appear explicitly. Instead, the automata’s designs are focused on their
synchronizations, with the logic (and state) of the protocols being held in their variables
instead. As such, the same automaton can easily be used for any program or protocol
(provided the hypotheses from Sub-Section 3.1 remain), only requiring small changes in the
definition of the functions found in its transitions.

Priorities on synchronizations are used to reduce the number of redundant system states.
For example, any transition that exits a waiting location (i.e. location in which nothing
happens until a clock has reached a certain count) has a higher priority than any other type
of transition.

https://www.onera.fr/sites/default/files/598/ecrts19.zip
https://www.onera.fr/sites/default/files/598/ecrts19.zip

N. Sensfelder, J. Brunel, and C. Pagetti 18:13

6.2 Core

Figure 15 Model of the Core.

program_line_t program_0 [7] =
{

{ INSTR_LOAD , 1},
{ INSTR_LOAD , 2},
{ INSTR_STORE , 3},
{ INSTR_LOAD , 3},
{ INSTR_STORE , 1},
{ INSTR_EVICT , 1},
{INSTR_END , 0}

};

Figure 16 Model of a Program.

Programs are modeled using arrays of address-targeting instructions, not so dissimilar
to their binary executable. These arrays only contain instructions related to memory
accesses (INSTR_LOAD, INSTR_STORE, INSTR_EVICT), and one (INSTR_END) to indicate that
the execution of the program is completed. An example can be seen in Figure 16.

The automaton corresponding to the core is shown in Figure 15. Progress of the program’s
execution is tracked by the program_counter, which is incremented each time an instruction
has been started. Another integer variable, received_acks, counts how many times the cache
controller has confirmed that a request has been fulfilled. The sending of each instruction to
the cache controller is separated by at least the time of a clock cycle.

To ensure that synchronization occurs with the right automaton, the request uses the
cache controller’s identifier to select a sub-channel of CPU_REQ. Conversely, acknowledgments
are received on the sub-channel of CPU_ACK corresponding to the core’s identifier. Upon
reaching the INSTR_END instruction, the automaton has to wait until all of its outstanding
requests have been fulfilled before being able to reach the TERMINATED state.

6.3 Coherency Manager and Memory Controller

Figure 17 Model of the Coherency Manager. Figure 18 Model of the Memory Con-
troller.

The timed automaton modeling the coherency manager can be seen on Figure 17. The
coherency manager has to know for which memory elements the RAM copy is to be considered
as superseded by a cache controller. For this purpose, it maintains an array associating a
state to each memory element address. The size of this array must be able to accommodate
all cache controllers having their caches full of superseding copies of memory elements. In
effect, |mem_array| = |cache_array| × |caches|.

ECRTS 2019

18:14 Modeling Cache Coherence to Expose Interference

After initializing its array with default values, the timed automaton waits for either
a cache controller query or a data message.Receiving any of these leads to an update of
the internal state associated with the related memory element, as described by the array
in Figure 7.

Upon receiving a cache controller query, the update to the internal state may indicate
the need to provide data from the RAM, leading the automaton to synchronize with the
memory controller to wait for RAM_READ_TIME units of time before providing a reply to the
query’s originator. Alternatively, when receiving data, the automaton synchronizes with
the memory controller to wait for RAM_WRITE_TIME units of time. The memory controller’s
automaton is shown in Figure 18. It has a local clock, clk, which is used to wait either
RAM_WRITE_TIME or RAM_READ_TIME, depending on what the coherency manager demands.

6.4 Interconnect

Figure 19 Model of the Interconnect.

Figure 19 shows the timed automaton for the interconnect. It starts (S1) by waiting for
cache controllers to synchronize through the ADD_BUS_MASTER so that they can be added to
the bus policy. The order in which the cache controllers make that synchronization is not
deterministic. This results in all possible orders being explored when analyzing the system.
Once all cache controllers have been added, the automaton proceeds and synchronizes with
all the other components by broadcasting on the SYS_INIT channel.

Using a component identifier to select the appropriate sub-channel, the interconnect
awaits either an incoming cache controller query, or a notice that the cache controller does
not have any to send (Ready). If the latter happens, the access policy is followed to determine
which cache controller should be made able to send its query (e.g. with a Fair-Round-Robin
the next cache controller is chosen). With the former, the query is first received by the
interconnect (Ready→S2), then, in a second transition (S2→Ready), it is broadcasted to all
components that listen for cache controller queries. This broadcast is stalled if any of the
components that need to receive it indicate that they are not ready to do so (e.g. because
their incoming query queue is full).

6.5 Cache Controller
The automaton used to model a cache controller is rather complex. As previously stated,
it does not feature any of the states found in the protocol description (e.g. the ones of the
matrix in Figure 6). Instead, this automaton keeps an array that indicates the protocol state
associated with a given memory element. The automaton starts by synchronizing with the
interconnect so that it is taken into account by the interconnect’s access policy (S0→S1). It
then waits for the broadcast on the SYS_INIT channel (S1→Ready).

N. Sensfelder, J. Brunel, and C. Pagetti 18:15

Figure 20 Model of the Cache Controller.

CPU Communications. Each cache controller has a queue of outstanding requests from its
core, as well as a queue of completed requests to inform the core of. Both queues are first in,
first out. Upon receiving a request from its core (middle Ready→S5 transition), the cache
controller attempts to find a line in its array either corresponding to the associated address,
or, if none exists, one that is not currently used (Invalid). If no such line is found, the
request is stalled, meaning that it is simply put in the outstanding requests queue for later.
Otherwise, the behavior of the cache controller depends on the cache coherence protocol and
the state held by the line, such as indicated in Figure 6. If the eviction policy is applicable
and no line can currently accommodate the request, an automated eviction occurs. The
cache controller is re-evaluated once the eviction has been completed (leftmost Ready→S5
transition). In our model, we use an accurate LRU eviction policy, meaning that the cache
controller keeps track of the order in which its cache lines have been used and will allow an
automated eviction to occur if the least recently used line points to a state for which the
protocol does not indicate stall in case of evict request.

There are two possible reasons for a request to be acted upon: it is an incoming request
from a core, or it is a previously stalled request on a memory element which just changed state.
hit: the request is moved to the completed requests queue. The handling of stalled requests

continues. This also counts as a use of the line according to the eviction policy, if the
request is not an evict.

stall: the request is put in the outstanding requests queue, if it is not already there. The
handling of stalled requests is stopped.

msg/state: the state of the line is set to state, the request is put in the outstanding requests
queue, if it is not already there. If this is encountered during the un-stalling of requests,
the request is re-evaluated. In the latter case, this counts as a use of the line according
to the eviction policy, if the request is not an evict.

ECRTS 2019

18:16 Modeling Cache Coherence to Expose Interference

Interconnect Communications. Handling of pending incoming queries is done through the
Ready→S2→S3 transitions. This updates the internal state of the cache following what
was indicated by Figure 6 and has a waiting period that accounts for the simulated query
handling time period. Handling of pending incoming data is similar (Ready→S3). The S3
location is where data emission is handled. Data can be sent to either memory or another
cache controller (the latter introducing yet another delay). This data is actually sent to a
FIFO queue and not to the other components directly. When there is no data to send, the
S3→S5 transition evaluates the impact the changes had on the currently stalled core requests.

6.6 Message Queues

Figure 21 Model of the Data FIFOs. Figure 22 Model of the Query FIFOs.

Access to the bus is done through message queues. We use separate automata for data and
query queues to avoid over-encumbering the automata that use them (we would otherwise
need to add their transitions to nearly all the locations of the cache controller automaton).
These automata actually handle both an incoming and outgoing queue. Each cache controller
has a dedicated instance of both automata. The memory controller has an instance of the
data queues automaton.

The data and query queues automata are fairly straightforward, having one transition to
take and one transition to push items in either direction. However, the actual condition for
incoming queries to be allowed in is hidden behind a shared variable. Indeed, the queries
come from broadcasts made by the bus and UPPAAL does not allow conditions on transitions
receiving from a broadcast channel. Thus, the condition of having all query message queues
ready to receive is actually handled on the side of the interconnect.

7 Checking Properties

UPPAAL lets users check if their model verify properties. These properties can be
used to know if at least one (E) or all (A) execution paths always (�) or at least once (♦)
verify a given formula over the automata’s clocks, integer variables, or location. In addition,
UPPAAL has an operator that looks for the highest value reachable by an automaton’s
clock or integer variable.

For example, taking the system from Section 5, with two CPUs (C0 and C1), we can
know if both processors always end up getting their variable (all paths lead to both automata
reaching the Done location, A♦(C0.Done && C1.Done)), or the longest time it would take for
one of them to do so (what is the maximum value the clock can reach before the automaton
reaches its Done location, sup{not C0.Done}: C0.x).

N. Sensfelder, J. Brunel, and C. Pagetti 18:17

program_line_t program_200 [11] =
{

{ INSTR_STORE , 1},
{ INSTR_STORE , 2},
{INSTR_LOAD , 1},
{ INSTR_STORE , 1},

{INSTR_LOAD , 2},
{ INSTR_STORE , 2},
{INSTR_LOAD , 1},
{ INSTR_STORE , 1},

{INSTR_LOAD , 2},
{ INSTR_STORE , 2},
{INSTR_END , 0}

};

Figure 23 Program Model 200.

program_line_t program_201 [11] =
{

{ INSTR_STORE , 3},
{ INSTR_STORE , 4},
{INSTR_LOAD , 3},
{ INSTR_STORE , 3},

{INSTR_LOAD , 4},
{ INSTR_STORE , 4},
{INSTR_LOAD , 3},
{ INSTR_STORE , 3},

{INSTR_LOAD , 4},
{ INSTR_STORE , 4},
{INSTR_END , 0}

};

Figure 24 Program Model 201.

7.1 Exposing Interference
Using such properties, we are able to expose the interference in a number of fashions. The
example we will take for showcasing them is that of a dual core on which two instances of
the program modeled by Figure 23 are running.

Counting Hits & Misses: An easy metric to measure is the number of cache hits
and misses for each address. This can be achieved by simply looking at the state of
the memory element upon reception of a core’s request, and increasing the right integer
variable accordingly (much like in Section 5).
In the dual core example, this shows that each core has 2 cache hits and 3 cache misses
for the first address; one core has 2 cache hits and 3 cache misses for the second address,
whereas whereas the other has 1 cache hit and 4 cache misses.
Counting All Occurrences: We can expose interference by counting all of its occur-
rences, without regards for whether it had an impact on the system’s execution or not.
In effect, this equates to having one integer variable per address and type of interference,
and increasing the right one according to what is described in Figure 8.
When applied to the dual core example, we can see that for the second address, both
caches have 4 occurrences of minor interference, 1 occurrence of demoting interference,
and 2 occurrences of expelling ones. For the first address, one cache has 4 minors, 1
demoting, and 1 expelling, whereas the other has 3 minors, no demoting, and 3 expelling.
Counting Meaningful Occurrences: Another pertinent information is an account of
the interference that actually has an impact on the system. Since we are already able to
detect any occurrence of the interference, we simply have to isolate the occurrences which
impacted the cache’s completion of core’s requests. To do so, each cache keeps track, for
each address, of whether an interference occurred since that address was last involved in
a core request. Thus, if the CPU requests a read on an address for which the expelling
flag is active, we consider that a meaningful expelling interference occurred.
Using this with the dual core example, we can see that, for the second address, both caches
are affected by the effects of 1 demoting and 1 expelling interference. For the first address,
one cache has the same and the other experiences the effects of 2 expelling interferences.
Execution Time Analysis: A more general metric is the execution time. Indeed, we
can measure the impact that cache coherence has on an application’s execution time. This
can be achieved by simply replacing all accesses to shared variables made by the target

ECRTS 2019

18:18 Modeling Cache Coherence to Expose Interference

application with accesses to new variables, setting the time impact of minor interferences
to nil, and having the framework compute the new maximum execution time so that it
can be compared to the one with shared variables left intact.
On the dual core example, we first measure the execution time with the system as is,
then replace the program running on one of the two cores by Figure 24 and set the cost
of minor interferences to zero. Our first analysis indicates a maximum execution time
of 1602 time units, the second one indicates 1050 time units. This implies that cache
coherence causes a 16 percent increase in execution time.
Alternatively, by keeping the time impact of minor interferences to its default value,
a WCET of these two programs lets us deduce how much time is lost due to minor
interferences. In the dual core example, the result is still 1050 time units, showing a lack
of negative effects from minor interference.

7.2 Model Validation
In addition, we can assert that the behavior of our model does indeed correspond to what
we expect. The successful verification of all these properties gives us a reasonable confidence
in the validity of the protocol used in our model. The validation of the chosen timing
parameters, however, would still require a few judicious benchmarks.

Programs Always Terminate: By checking that all possible execution paths lead all
cores to the Terminated location, we ensured that there are no deadlocks in our model.
No Incompatible States: As stated in Section 1, there should never be two cache
controllers simultaneously having writing access to the same memory element. Thus, we
checked that if a cache controller is in a state where it may write to a memory element,
then the others are not in a state where they may read that memory element.
Values Are Always Up-To-Date: Another point stated in Section 1 is that the values
in cache should be up-to-date. We verified that it is the case in our model by creating a
version in which the exact value of each memory element is taken into account. Using a
shared variable to keep track of the expected system-wide value, we tested that every
time an action (either read or write) was taken on a memory element, it the local copy
of that memory element had a value equal to the system-wide one. This is a standard
property to validate coherency protocol [10, 19].

8 Related Works

WCET Analysis for Single-Core: The authors of [9] introduce METAMOC, a
UPPAAL-based framework for modular WCET analysis of programs running on single-
core processors. It transforms program binary executables into timed automata, one for
each function of the program. These programs are simplified. For example, a conditional
jump may be removed if it would lead to less instructions being executed. This is justified
by the assumption that the more instructions there are, the longer the execution time
is (the reverse of which is called a time anomaly). METAMOC supports instruction
pipelines, which are modeled using five timed automata (fetch, decode, execute, memory,
and writeback). These five automata have to be manually made for the targeted archi-
tecture. Caching is also supported, and requires a similar attention the architecture’s
specifics. As it is intended for single-core architectures, METAMOC obviously does not
have any concept of cache coherence. We are, however, taking a very similar approach to
tackle our problematic.

N. Sensfelder, J. Brunel, and C. Pagetti 18:19

The work in [6] also shares similarities with [9], as UPPAAL is used to estimate WCET for
programs running on single core processors with pipeline and cache, in what is presented
as a modular framework. It attempts to improve on the weaknesses of METAMOC by
replacing the value analysis based control flow graphs with program slicing. In effect,
statements that do not affect dynamic jump addresses are replaced with nop (i.e. “do
nothing”) operations. In [7], they address the state explosion issue.
WCET Analysis for Multi-Core with Private Caches: Readers can refer to [17] for
an overview of Multi-Core WCET Analysis. [16], proposes a UPPAAL-based framework
to estimate the WCET of applications running on a multi-core processor. They consider
the delays caused by contention on the interconnect and a private instruction cache for
each core (data caches are not considered). They perform analysis on the memory blocks
pertinent to the instructions of the program. A memory block may contain one or more
instruction. For each instruction, they are only interested in whether it: is always found
in the cache; is always found except on the first access; is never found in the cache; is
undecided. They have defined a timed automaton to model each of these possibilities
(modeling the need for interconnect access, time to read the memory blocks, and updates
to the cache). They consider programs as control flow graphs in which each node is a
memory block. As such, they model each program by a single timed automaton based
on the control flow graph, but in which each instruction has been replaced by one of
the aforementioned timed automata corresponding to its impact. Their paper presents
models for two types of interconnects: TDMA and FCFS, which control the order the
bus can be accessed by the timed automata modeling the instructions. Cache coherence
is not addressed.
WCET Analysis for Multi-Core with Shared Caches: The authors of [8] focus
on the estimation of WCET on multi-core processors. Their point of interests are the
delays caused by hierarchical caches, the use of a shared cache, and the interconnect.
They do not use UPPAAL, but instead model the applications as task-dependency graphs
and perform computations to estimate the WCET. Their approach starts by analyzing
how the L1 caches are accessed, to remove elements that are sure to always be present
from further consideration. The other accesses are dependent on both the content of the
L2 cache, and access to the bus. The content of the L2 cache depends on which tasks
are running, which in turns, depends on bus access time access. To resolve the circular
dependency, they propose an iterative approach: starting by considering the worse case
scenario in which all tasks interfere, they estimate the running time of the tasks, which
lets them remove any interference between two tasks whose running time are disjoint,
and start over until a fix point is reached. Data caches are not taken into account and
are assumed to have no effect on the calculations. Cache coherence is not addressed.
The authors of [29] study the impact of a shared cache (including data caches) on
execution time. To do so, they represent each program as an address flow graph, in which
edges correspond to instruction, and vertices correspond to the state of the cache and its
access history. They actually build a combined cache conflict graph, which is pretty much
the combination of each core’s address flow graph into a single graph. Cache coherence
is not addressed.
The work done in [13] has similarities with ours, as it uses UPPAAL to calculate WCET
of programs running on multi-core processors. Their focus is not on cache coherence, but
it does feature some, as write requests lead to the invalidation of the memory element in
the other caches.

ECRTS 2019

18:20 Modeling Cache Coherence to Expose Interference

Cache Coherence Protocol Comparison: The authors of [2] compare the efficiency of
common snooping-based cache coherence protocols. To do so, they described a multi-core
processor and the cache coherence protocols in Simula. Much like ours, the programs
running on this simulation are described as a succession of memory related instructions.
However, they do not use explicit addresses for these instructions. Instead, they have
defined system-wide weights to regulate the probability of an instruction to be applied
on a private memory element (i.e. a memory element the cache is the sole user of) or a
shared block (i.e. a memory element used by multiple blocks). Thus, cache coherence is
addressed, but only in a very broad context. Indeed, whereas our work focuses on the
impact of cache coherence on specific applications on a specific architecture, the cache
coherence protocol comparison made by the authors of [2] provides a general idea of
which protocol is more fitted for which type of application.
Predictable Cache Coherence: An alternative to trying to predict how cache coher-
ence is going to behave is to use a kind of cache coherence designed to be predictable.
[24] lists the cache coherence related latencies that need to be known before predictability
of the protocol can be achieved. Its authors argue that write-through, update-based
protocols (i.e. writes are propagated to other caches and to the memory) can be made to
be predictable.
[14] presents PMSI, a variation on the MSI protocol that uses a TDM bus to achieve
predictability. Emission of coherence queries and is restricted to a core’s TDM slots.
As a result, a cache does not suffer from interference during its own TDM slots. [21]
expands on this by introducing HourGlass, which allows separate handling of critical
and non-critical cores. HourGlass uses timers to allow cores to hold access to a memory
element for a predefined time duration. The evaluation of queries that would remove
an access currently protected a timer are delayed until its time is up. Both PMSI and
HourGlass require hardware modification, which prevents them from being used in a
context that relies on COTS.

9 Conclusion and Future Work

When using cache coherence, the execution of a program running on a core is affected by
the execution of the programs running on the other cores. Because of this, analysis of the
execution time becomes much more difficult. In this paper, we categorized the types of
interference that cache coherence induces: minor interference, caused by the handling of
queries irrelevant to the cache controller; demoting interference, when an external event
forces the loss of writing rights; and expelling interference, when an external event forces
eviction of a cache line.

We also presented timed automata as a way to model cache coherence so that this
interference can be studied and exposed. For this purpose, we also showed and explained our
current model for the analysis of cache coherence, as well as the hypotheses made for that
model to be applicable.

We are also working on a tool to automatically switch which MSI variant (MESI, MOSI,
MOESI, MESIF) is used by the model. We also intend to add another type of instruction
to programs soon, adding more non-determinism to the model by having a INSTR_CALC
instruction that causes the CPU to wait for any amount of time in a given range. Lastly, we
have planned to perform a benchmark comparison on the Keystone TCI6630K2L [23] from
Texas Instruments to further validate our approach.

Our current model was tested with up to 6 cores. We are working on its scalability issues,
and intend to make use of SAT/SMT [3] to tackle this limitation.

N. Sensfelder, J. Brunel, and C. Pagetti 18:21

References
1 Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theor. Comput. Sci., 126(2):183–

235, April 1994. doi:10.1016/0304-3975(94)90010-8.
2 James Archibald and Jean-Loup Baer. Cache Coherence Protocols: Evaluation Using a

Multiprocessor Simulation Model. ACM Trans. Comput. Syst., 4(4):273–298, September 1986.
doi:10.1145/6513.6514.

3 Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Handbook of
Satisfiability, chapter Satisfiability Modulo Theories, pages 825–885. IOS Press, 2009.

4 Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on Uppaal, pages 200–236.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. doi:10.1007/978-3-540-30080-9_7.

5 Frédéric Boniol, Hugues Cassé, Eric Noulard, and Claire Pagetti. Deterministic Execution
Model on COTS Hardware. In Proceedings of the 25th International Conference on Architecture
of Computing Systems (ARCS’12), pages 98–110, 2012.

6 Franck Cassez and Jean-Luc Béchennec. Timing Analysis of Binary Programs with UPPAAL.
In 13th International Conference on Application of Concurrency to System Design, ACSD
2013, pages 41–50. IEEE Computer Society, July 2013. doi:10.1109/ACSD.2013.7.

7 Franck Cassez and Pablo González de Aledo Marugán. Timed Automata for Modelling
Caches and Pipelines. In Rob J. van Glabbeek, Jan Friso Groote, and Peter Höfner, editors,
Proceedings Workshop on Models for Formal Analysis of Real Systems, MARS 2015, Suva, Fiji,
November 23, 2015., volume 196 of EPTCS, pages 37–45, 2015. doi:10.4204/EPTCS.196.4.

8 Sudipta Chattopadhyay, Abhik Roychoudhury, and Tulika Mitra. Modeling Shared Cache and
Bus in Multi-cores for Timing Analysis. In Proceedings of the 13th International Workshop on
Software & Compilers for Embedded Systems, SCOPES ’10, pages 6:1–6:10, New York, NY,
USA, 2010. ACM. doi:10.1145/1811212.1811220.

9 Andreas E. Dalsgaard, Mads Chr. Olesen, Martin Toft, René Rydhof Hansen, and Kim Guld-
strand Larsen. METAMOC: Modular Execution Time Analysis using Model Checking. In Björn
Lisper, editor, 10th International Workshop on Worst-Case Execution Time Analysis (WCET
2010), volume 15 of OpenAccess Series in Informatics (OASIcs), pages 113–123, Dagstuhl,
Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. The printed version of
the WCET’10 proceedings are published by OCG (www.ocg.at) - ISBN 978-3-85403-268-7.
doi:10.4230/OASIcs.WCET.2010.113.

10 Giorgio Delzanno. Automatic Verification of Parameterized Cache Coherence Protocols. In
Proceedings of the 12th International Conference on Computer Aided Verification, CAV ’00,
pages 53–68, London, UK, UK, 2000. Springer-Verlag. URL: http://dl.acm.org/citation.
cfm?id=647769.734088.

11 Philip Enslow, Jr. Multiprocessor Organization - a Survey. ACM Comput. Surv., 9(1):103–129,
March 1977.

12 Sylvain Girbal, Xavier Jean, Jimmy le Rhun, Daniel Gracia Pérez, and Marc Gatti. Determin-
istic Platform Software for Hard Real-Time systems using multi-core COTS. In 34th Digital
Avionics Systems Conference (DASC’15), 2015.

13 Andreas Gustavsson, Andreas Ermedahl, Björn Lisper, and Paul Pettersson. Towards WCET
Analysis of Multicore Architectures Using UPPAAL. In 10th International Workshop on
Worst-Case Execution Time Analysis, WCET 2010, July 6, 2010, Brussels, Belgium, pages
101–112, 2010. doi:10.4230/OASIcs.WCET.2010.101.

14 Mohamed Hassan, Anirudh M. Kaushik, and Hiren D. Patel. Predictable Cache Coherence
for Multi-core Real-Time Systems. In 2017 IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS 2017, Pittsburg, PA, USA, April 18-21, 2017, pages 235–246,
2017. doi:10.1109/RTAS.2017.13.

15 Xavier Jean, David Faura, Marc Gatti, Laurent Pautet, and Thomas Robert. Ensuring
robust partitioning in multicore platforms for IMA systems. In 31st Digital Avionics Systems
Conference (DASC’16), 2012.

ECRTS 2019

http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1145/6513.6514
http://dx.doi.org/10.1007/978-3-540-30080-9_7
http://dx.doi.org/10.1109/ACSD.2013.7
http://dx.doi.org/10.4204/EPTCS.196.4
http://dx.doi.org/10.1145/1811212.1811220
http://dx.doi.org/10.4230/OASIcs.WCET.2010.113
http://dl.acm.org/citation.cfm?id=647769.734088
http://dl.acm.org/citation.cfm?id=647769.734088
http://dx.doi.org/10.4230/OASIcs.WCET.2010.101
http://dx.doi.org/10.1109/RTAS.2017.13

18:22 Modeling Cache Coherence to Expose Interference

16 M. Lv, W. Yi, N. Guan, and G. Yu. Combining Abstract Interpretation with Model Checking
for Timing Analysis of Multicore Software. In 2010 31st IEEE Real-Time Systems Symposium,
pages 339–349, November 2010. doi:10.1109/RTSS.2010.30.

17 Claire Maiza, Hamza Rihani, Juan Maria Rivas, Joël, Godelieve Goossens, Sebastian Altmeyer,
and Robert I. Davis. A Survey of Timing Verification Techniques for Multi-Core Real-Time
Systems. Technical report, Grenoble INP/Ensimag/Verimag, 2018.

18 Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo,
and Russell Kegley. A Predictable Execution Model for COTS-Based Embedded Systems. In
17th IEEE Real-Time and Embedded Technology and Applications Symposium RTAS 2011,
pages 269–279, 2011.

19 Fong Pong and Michel Dubois. A New Approach for the Verification of Cache Coherence
Protocols. IEEE Trans. Parallel Distrib. Syst., 6(8):773–787, August 1995. doi:10.1109/71.
406955.

20 Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory Consistency and
Cache Coherence. Morgan & Claypool Publishers, 1st edition, 2011.

21 Nivedita Sritharan, Anirudh M. Kaushik, Mohamed Hassan, and Hiren D. Patel. HourGlass:
Predictable Time-based Cache Coherence Protocol for Dual-Critical Multi-Core Systems.
CoRR, abs/1706.07568, 2017. arXiv:1706.07568.

22 V. Suhendra, T. Mitra, and A. Roychoudhury and. WCET centric data allocation to scratchpad
memory. In 26th IEEE International Real-Time Systems Symposium (RTSS’05), pages 10
pp.–232, December 2005. doi:10.1109/RTSS.2005.45.

23 Texas Instruments. TCI6630K2L Multicore DSP+ARM KeyStone II System-on-Chip. Techni-
cal Report SPRS893E, Texas Instruments Incorporated, 2013.

24 Sascha Uhrig, Lillian Tadros, and Arthur Pyka. MESI-Based Cache Coherence for Hard
Real-Time Multicore Systems. In Luís Miguel Pinho Pinho, Wolfgang Karl, Albert Cohen, and
Uwe Brinkschulte, editors, Architecture of Computing Systems – ARCS 2015, pages 212–223,
Cham, 2015. Springer International Publishing.

25 L. Wehmeyer and P. Marwedel. Influence of memory hierarchies on predictability for time
constrained embedded software. In Design, Automation and Test in Europe, pages 600–605
Vol. 1, March 2005. doi:10.1109/DATE.2005.183.

26 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank
Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The Worst-case
Execution-time Problem - Overview of Methods and Survey of Tools. ACM Transactions
Embedded Computing Systems, 7(3):36:1–36:53, May 2008.

27 Reinhard Wilhelm and Jan Reineke. Embedded systems: Many cores - Many problems. In 7th
IEEE International Symposium on Industrial Embedded Systems (SIES’12), pages 176–180,
2012.

28 Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. MemGuard: Mem-
ory bandwidth reservation system for efficient performance isolation in multi-core platforms.
In 19th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’13),
pages 55–64, 2013.

29 Wei Zhang and Jun Yan. Static Timing Analysis of Shared Caches for Multicore Processors.
JCSE, 6(4):267–278, 2012. doi:10.5626/JCSE.2012.6.4.267.

http://dx.doi.org/10.1109/RTSS.2010.30
http://dx.doi.org/10.1109/71.406955
http://dx.doi.org/10.1109/71.406955
http://arxiv.org/abs/1706.07568
http://dx.doi.org/10.1109/RTSS.2005.45
http://dx.doi.org/10.1109/DATE.2005.183
http://dx.doi.org/10.5626/JCSE.2012.6.4.267

	Introduction
	Cache Coherence Protocols
	Protocols

	MSI Snooping-Based Protocol
	A Few Caveats
	From Abstract to Concrete Behaviour
	Detailed Snooping-Based MSI Protocol
	Coherency Manager

	Interference
	Formal Modeling of Real-Time Systems with Timed Automata
	Model of the Cache Coherence
	Modeling Strategy
	Core
	Coherency Manager and Memory Controller
	Interconnect
	Cache Controller
	Message Queues

	Checking Properties
	Exposing Interference
	Model Validation

	Related Works
	Conclusion and Future Work

