
Response-Time Analysis of Limited-Preemptive
Parallel DAG Tasks Under Global Scheduling
Mitra Nasri
Delft University of Technology (TUDelft), Delft, The Netherlands

Geoffrey Nelissen
CISTER Research Centre, Polytechnic Institute of Porto (ISEP-IPP), Portugal

Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Abstract
Most recurrent real-time applications can be modeled as a set of sequential code segments (or blocks)
that must be (repeatedly) executed in a specific order. This paper provides a schedulability analysis
for such systems modeled as a set of parallel DAG tasks executed under any limited-preemptive
global job-level fixed priority scheduling policy. More precisely, we derive response-time bounds for
a set of jobs subject to precedence constraints, release jitter, and execution-time uncertainty, which
enables support for a wide variety of parallel, limited-preemptive execution models (e.g., periodic
DAG tasks, transactional tasks, generalized multi-frame tasks, etc.). Our analysis explores the
space of all possible schedules using a powerful new state abstraction and state-pruning technique.
An empirical evaluation shows the analysis to identify between 10 to 90 percentage points more
schedulable task sets than the state-of-the-art schedulability test for limited-preemptive sporadic
DAG tasks. It scales to systems of up to 64 cores with 20 DAG tasks. Moreover, while our analysis
is almost as accurate as the state-of-the-art exact schedulability test based on model checking
(for sequential non-preemptive tasks), it is three orders of magnitude faster and hence capable of
analyzing task sets with more than 60 tasks on 8 cores in a few seconds.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Software
and its engineering → Real-time schedulability

Keywords and phrases parallel DAG tasks, global multiprocessor scheduling, schedulability analysis,
non-preemptive jobs, precedence constraints, worst-case response time, OpenMP

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.21

Supplement Material The source code of the analysis tool is available at https://github.com/
brandenburg/np-schedulability-analysis.

Funding This work was partially supported by national funds through FCT/MCTES (Portuguese
Foundation for Science and Technology), within the CISTER Research Unit (UID/CEC/04234); by
the Operational Competitiveness Programme and Internationalization (COMPETE 2020) under
the PT2020 Partnership Agreement, through the European Regional Development Fund (ERDF),
and by national funds through the FCT, within project POCI-01-0145-FEDER-029119 (PReFECT);
as well as by the European Union through the Clean Sky 2 Joint Undertaking, under H2020
(H2020-CS2-CFP08-2018-01) grant agreement number 832011 (THERMAC).

1 Introduction

With the proliferation of multicore and many-core processing platforms, the embedded
systems world is steadily moving towards developing critical applications as (highly) parallel
programs. In embedded real-time systems in particular, parallel programming approaches
allow for more efficient use of a computing platform’s resources, resulting in lower response
times and improved power consumption. For instance, the automotive industry adopted

© Mitra Nasri, Geoffrey Nelissen, and Björn B. Brandenburg;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 21; pp. 21:1–21:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECRTS.2019.21
https://github.com/brandenburg/np-schedulability-analysis
https://github.com/brandenburg/np-schedulability-analysis
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

0.00

0.25

0.50

0.75

1.00

3 6 9 12 15 18 21 24 27

sc
h

ed
u

la
b

ili
ty

 r
at

io

number of tasks

4 cores, 30% utilization

exact test (timeout)

this paper

exact test

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sc
h

ed
u

la
b

ili
ty

 r
at

io

utilization

this paper

Serrano

0

500

1000

1500

2000

2500

3000

3 9 15 21 27 33 39 45 51 57

ru
n

ti
m

e
(s

ec
)

number of tasks

this paper

exact test

8 cores

4 cores

2 cores

1 core

this paper (8 cores)

(a) (b) (c) 10 DAG tasks, 4 cores

Figure 1 (a) schedulability ratio of the exact test [46] vs. our test for independent non-preemptive
periodic tasks, (b) average runtime of the exact test [46] vs. our test for schedulable independent
non-preemptive periodic task sets with total utilization of 30%, (c) schedulability ratio of Serrano
et al.’s test [39] vs our test for DAG tasks. In inset (a), given a one-hour budget, starting from 12
tasks the exact test reports lower schedulability than the proposed test due to frequent timeouts.
See Sec. 5 for a detailed description of the experimental setup.

multicore processors already more than six years ago, and their applications are routinely
composed of thousands of runnables executing in parallel [24]. Such runnables are sequential
code segments that perform simple operations, which are composed to produce complex
applications by imposing precedence constraints that must be respected at runtime (to
enforce a predictable ordering and to respect data dependencies). Because of the application
domain, additional constraints on release and completion times are also associated with
runnables to ensure temporal correctness, control performance, ease of synchronization and,
in consequence, ease of integration of concurrent applications on multicore platforms.

Similarly to the automotive case, a wide variety of industrially relevant systems boil
down to the execution of a set of functions with precedence constraints where a function
is simply a sequential execution segment of a bigger, potentially parallel, application. Such
applications (henceforth called tasks) may be modeled with Directed Acyclic Graphs (DAGs).
Nodes of a DAG represent sequential code segments, and edges model their precedence
constraints. Each application represented by a DAG releases jobs based on timer events or
inputs regularly received from the environment following periodic or non-periodic activation
patterns (e.g., multi-frame or multi-rate tasks [16, 6, 20]). Robotics applications executed
upon the ROS middleware, machine learning algorithms developed with the TensorFlow or
Pytorch frameworks, or applications developed with OpenMP are other notable examples
of systems that are often time-driven and that may be naturally modeled with DAGs. To
summarize, parallel DAG tasks are the characteristic real-time workload of the multicore age
and thus of central interest for schedulability analysis.

In this work, we consider a limited-preemptive task model, where nodes of a DAG must
execute non-preemptively, but higher-priority workload may preempt the execution of a DAG
between the execution of any two of its nodes. This execution model is motivated by many
previous studies [11, 34, 2, 29, 37, 39] that have shown that non-preemptive (or limited-
preemptive) scheduling improves the timing predictability of jobs running on a multicore
platform, since it reduces the number of context switches, increases cache predictability [45],
and improves the accuracy of worst-case execution time (WCET) estimates and worst-case
blocking bounds (e.g., due to contention for shared resources).

Two types of frameworks exist for the schedulability analysis of such systems today. Exact
solutions based on model checkers or constraint programming [46, 42], and sufficient (but
inexact) solutions usually based on some sort of response-time analysis [39, 15, 13, 14].

It has been demonstrated that exact analyses based on constrained programming or
model checkers such as Uppaal do not scale well [46, 42]. For example, Figure 1(b) shows the
time required to deem a simple non-preemptive periodic task set schedulable using Uppaal

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:3

as a function of the number of tasks for several different core counts on a 3.3 GHz Intel Xeon
machine with 256 GiB RAM. Even for such a simple model without intra-task parallelism
or precedence constraints, Uppaal requires an average of 45 minutes to analyze 24 tasks
on 4 cores used at only 30% of their capacity (i.e., the total platform utilization is 30%),
with nearly 50% of the tested workloads timing out after 1 hour (see Figure 1(a)). Worse, it
cannot solve the problem at all in less than one hour for 12 tasks (or more) on 8 cores with a
total utilization of only 30%. Clearly, such a solution can realistically be used only for very
small systems, which limits practicality.

On the other hand, classic sufficient schedulability analyses following the standard
response-time analysis paradigms are usually fast but very pessimistic. For instance, as seen
in Figure 1(c), the only sufficient test existing for the schedulability of limited-preemptive
DAGs scheduled by a global fixed-priority scheduler (proposed by Serrano et al. [39]) cannot
detect that any of the generated task sets with a total utilization larger than 50% (4 cores,
10 DAG tasks) is schedulable, when in fact at least 90% of them are. This pessimism reaches
a level that calls into question the utility of such tests in industrial settings.

In this paper, we propose a new approach for the schedulability analysis of limited-
preemptive DAG tasks that presents a more balanced tradeoff between runtime and accuracy.
Case in point, w.r.t. analysis speed, in the scenario shown in Figure 1(a), our solution solves
the schedulability problem of non-preemptive tasks almost optimally (empirically, almost all
schedulable workloads are in fact deemed schedulable) in less than 10 seconds on average,
while Uppaal needed tens of minutes to reach the same conclusion (and frequently exceeded
the one-hour timeout). Furthermore, w.r.t. analysis accuracy for DAG tasks, the proposed
analysis clearly increases the number of workloads successfully detected as being schedulable
in comparison to the solution of Serrano et al. by a substantial margin (see Figure 1(c)).

The analysis presented in this paper covers any global job-level fixed-priority (JLFP)
scheduler (e.g., global limited-preemptive earliest-deadline first (G-LP-EDF) or fixed-priority
(G-LP-FP) scheduling). Specifically, each node of each DAG instance released by a task can
have a distinct priority, a distinct release time, and is assumed to execute non-preemptively.
We allow for the practical, but analytically challenging complication that each node may
experience release jitter and execution-time uncertainty, which in combination with non-
preemptivity results in scheduling anomalies that are notoriously difficult to analyze precisely.

To strike a good balance between accuracy and runtime, our analysis constructs a schedule-
abstraction graph that abstracts all possible orderings of job dispatch times resulting from
the underlying JLFP scheduling policy, based on which we derive bounds on the best- and
worst-case response time of each job. This approach requires: (i) a system-state abstraction
that represents the state in which the system may be after a given sequence of scheduling
events, (ii) sound exploration rules that reflect how new system states may be reached from
a given state, and (iii) merging rules for the aggregation of similar states to defer, as long as
possible, the usual state-space explosion problem.

As a key technical contribution, this paper introduces a new system-state abstraction in
which the number of newly created states at the end of each exploration step is independent
of the number of cores, which ensures scalability to large multicore platforms. Furthermore,
our new abstraction also allows for aggressive merging rules, and hence greatly reduces the
number of system states that must be investigated to cover all relevant job schedules. Based
on this novel technique, (i) we devise a schedule-abstraction graph generation algorithm
that considers the precedence constraints of DAG tasks and ensures a small per-state
memory footprint and low per-state computational costs, (ii) we prove the system state-
space exploration and merging rules to be sound, and (iii) we report results on extensive

ECRTS 2019

21:4 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

experiments involving both synthetic DAGs and actual DAGs from parallel benchmark
applications. The experiments show the proposed method to scale to systems with up to
64 cores, to be able to identify up to 90 percentage points more schedulable task sets in
comparison to the state-of-the-art response-time analysis for limited-preemptive sporadic DAG
tasks [39], and to be three orders of magnitude faster than model-checking approaches [46].

2 Related Work

The schedulability analysis of a set of independent non-preemptive sporadic tasks scheduled
by a global scheduling policy such as G-LP-EDF or G-LP-FP has been studied in several
works [5, 19, 23, 22, 11]. These analyses, however, do not account for release jitter and
become needlessly pessimistic when applied to periodic tasks or jobs with regular, yet not
necessarily periodic, activation patterns [33] as they fail to discount many execution scenarios
that are impossible in such systems commonly found in industry.

In response to the need for supporting task models with more complicated job activation
patterns, Stigge et al. [41] and Abdullah et al. [1] provided schedulability analyses for non-
preemptive digraphs and digraphs with a mixed set of preemptive and non-preemptive nodes,
respectively. The digraph model was later extended to support a rendezvous synchronization
mechanism [31]. However, to the best of our knowledge, there is no result yet on digraphs
with non-preemptive nodes and complex inter-task precedence constraints.

To work around the lack of a schedulability test for non-preemptive DAGs, Saifullah et al.
[37] provided solutions to convert a DAG to a set of independent jobs whose arrival times and
deadlines are assigned in a way that respects the DAG’s given precedence constraints. This
job set is then converted to an equivalent periodic task set and evaluated using Baruah’s [5]
or Guan’s [19] schedulability analyses for independent, non-preemptive tasks. This approach,
however, suffers from the pessimism inherent in the decomposition step, i.e., regardless of the
accuracy of the underlying schedulability tests, many schedulable DAG tasks will be deemed
unschedulable simply because the decomposition technique may not be able to find feasible
parameters for the decomposed independent tasks.

Liu and Anderson extensively studied sporadic processing pipelines and DAGs under
global scheduling in a soft real-time context [25, 26, 27, 28], showing that deadline tardiness
remains bounded as long as the system is not overloaded (i.e., DAG instances may miss
deadlines, but are guaranteed to complete within an a priori fixed interval after their deadline).
In contrast to Liu and Anderson’s focus on establishing (non-tight) tardiness bounds, our goal
is to determine as accurate as possible response-time bounds given (possibly) hard deadlines.

Serrano et al. [39] proposed an analysis for limited-preemptive DAG tasks. This is the
closest work to our problem as it explicitly considers precedence constraints and limited-
preemptive global scheduling at the same time. Our work improves upon this result by:
(i) providing a much more accurate analysis for periodic DAGs and other types of tasks with
regular, yet non-periodic release patterns, (ii) including all JLFP global scheduling policies
in one uniform analysis framework, and (iii) supporting inter-task dependencies (rather than
only precedence constraints within individual DAG tasks).

Several works have proposed exact analyses for global preemptive sporadic tasks without
precedence constraints [4, 8, 9, 18, 43]. These analyses generally explore all system states that
can possibly be reached using model checking, timed automata, or linear-hybrid automata.
These solutions, however, are limited to the preemptive execution model and have limited
scalability w.r.t. the number of tasks, processors, and the granularity of time. For instance,
the analysis of Sun et al. [43] is reported to be limited to 7 tasks and 4 cores, and Guan et
al.’s approach [18] is applicable only if task periods are integers in the range from 8 to 20.

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:5

In our own prior work [33], we considered the schedulablity analysis of a set of independent
(i.e., non-DAG), non-preemptive sequential jobs scheduled with a global JLFP scheduling
policy. While this paper superficially resembles [33] in that it uses a similar general approach –
namely, the generation of a schedule-abstraction graph [32] – it actually follows a substantially
different design needed to support limited-preemptive parallel DAG tasks. Specifically, in
order to scale to non-trivial DAG tasks, the system state abstraction, exploration rules, and
merge rules presented in this paper are entirely novel, and in fact even incomparable, to
those previously used in [33]. Case in point, extensive experiments (see Sec. 5) revealed
that the solution presented in this paper is up to two orders-of-magnitude faster than [33]
when non-preemptive sequential tasks are analyzed, which reflects the nontrivial scalability
advantages of the novel approach introduced in this paper.

3 System Model and Definitions

We consider the problem of globally scheduling a set of limited-preemptive parallel tasks with
known arrival patterns upon a multiprocessor platform composed of m unit-speed processors.
Each task is modeled by a DAG (V,E), where V is the set of execution segments, and E is
the set of precedence constraints between execution segments in V . Each execution segment
vj ∈ V has an execution time, and may (or may not) be assigned a relative release offset and
relative deadline with respect to the arrival time of the task. For each arrival of a task, every
execution segment in V releases a job. Even though we assume that tasks have known arrival
patterns, we allow their execution segments, and hence their jobs, to be subject to release
jitter. Similarly, the exact execution time of each job is a priori unknown. In addition, we
allow precedence constraints to be specified among execution segments of different DAGs,
thereby allowing for arbitrary inter-task precedence constraints.

As the arrival pattern of each task is known, our problem reduces to the analysis of a
finite set of non-preemptive jobs J on an observation window whose length can be computed
a priori. For periodic tasks with constrained deadlines, release jitter and synchronous releases,
the observation window is equal to one hyperperiod (i.e., the least common multiple of all
periods). Bounds on the observation window length for periodic tasks with release offsets,
precedence constraints, and arbitrary deadlines were established by Goossens et al. [17].

Each job Ji = ([rmin
i , rmax

i], [Cmin
i , Cmax

i], di, pi, predi)) released in the observation win-
dow has an earliest-release time rmin

i , a latest-release time rmax
i , a best-case execution time

(BCET) Cmin
i , a WCET Cmax

i , an absolute deadline di, a priority pi, and a set of predecessors
predi ⊂ J , i.e., a set of jobs that must complete before Ji may start executing. The set of
successors of a job Ji is denoted by succi = {Jx | Ji ∈ predx}.

Each job is assigned a priority by a given job-level fixed-priority (JLFP) scheduling policy.
We assume that a numerically smaller value of pi implies higher priority. Any ties in priority
are broken arbitrarily in a deterministic way. For ease of notation, we assume that the “<”
operator implicitly reflects this tie-breaking rule. We assume a discrete-time model, i.e., all
job timing parameters are integer multiples of a basic time unit such as a processor cycle.

At runtime, each job is released at an a priori unknown time ri ∈ [rmin
i , rmax

i]. The
release bounds rmin

i and rmax
i are computed based on the arrival pattern (e.g., periodic,

multi-rate, or bursty) of Ji’s task, its offset, and its release jitter. We also assume that each
job Ji has an a priori unknown execution time requirement Ci ∈ [Cmin

i , Cmax
i]. We assume

that a job’s absolute deadline di is fixed and not affected by release jitter. We say that a job
Ji is possibly released at time t if t ≥ rmin

i , and certainly released if t ≥ rmax
i .

Any two jobs that are neither directly nor indirectly predecessor/successor of each other
are said to be independent. Independent jobs may execute in parallel. Each individual job
must execute sequentially, i.e., it cannot execute on more than one core at a time and must

ECRTS 2019

21:6 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

run to completion once started. A job Ji that starts its execution on a core at time t occupies
that core during the interval [t, t + Ci). In this case, we say that job Ji finishes by time
t+ Ci. At time t+ Ci, the core used by Ji becomes available to start executing other jobs.
A job’s response time is defined as the difference between the earliest-release time and the
actual completion time of the job1, i.e., t+ Ci − rmin

i . We say that a job is ready at time
t if it is released, did not start its execution before time t, and all of its predecessors have
finished by time t. Further, we assume that the system does not have a job-discarding policy,
i.e., released jobs remain pending until their execution is finished.

The paper assumes that shared resources that must be accessed in mutual exclusion are
protected by FIFO spin locks. Since jobs execute non-preemptively, it is easy to obtain
a bound on the worst-case time that any job spends spinning while waiting to acquire a
contested lock [44]; we assume the worst-case spin delay is included in each job’s WCET.

For ease of notation, we use max0{X} and min∞{X} over a set of positive values X ⊆ N
that is completed by 0 and ∞, respectively. That is, if X = ∅, then max0{X} = 0 and
min∞{X} =∞. Otherwise they yield the usual maximum and minimum values in X.

We consider any non-preemptive global JLFP scheduler upon an identical multiprocessor
platform. The scheduler is invoked whenever a job is released or completed. To simplify
the presentation of the proposed analysis, we make the modeling assumption that, without
loss of generality, at any invocation of the scheduling algorithm, at most one of the pending
jobs is picked by the scheduler and assigned to a core. The scheduler is invoked once for
each event if two or more release or completion events occur at the same time. The actual
scheduler implementation in the analyzed system need not adhere to this restriction and
may process more than one event during a single invocation. Our analysis remains safe if the
assumption is relaxed in this manner.

In this paper, we exclusively focus on priority-driven and work-conserving scheduling
algorithms, i.e., the scheduler dispatches a job only if the job has the highest priority among
all ready jobs, and it does not leave a core idle if there exists a ready job. We assume that
the WCET of each job is padded to cover all scheduling overheads and to account for any
micro-architectural interference (e.g., competition for shared caches or memory bandwidth).

A job set J is schedulable under a given scheduling policy if no execution scenario of J
results in a deadline miss, where an execution scenario is defined as follows [32].

I Definition 1. An execution scenario γ = {(r1, C1), (r2, C2), . . . , (rn, Cn)}, where n = |J |,
is an assignment of execution times and release times to the jobs of J such that, for each
job Ji, Ci ∈ [Cmin

i , Cmax
i] and ri ∈ [rmin

i , rmax
i].

4 Schedulability Analysis

The schedulability analysis proceeds by exploring the space of all possible schedules using
the notion of a schedule-abstraction graph [32]. Each path in this graph reflects a sequence
of job-dispatch decisions made by the underlying scheduling policy. As discussed in Sec. 2, a
key innovation of this paper is a new system-state abstraction that more richly aggregates
the necessary information in each state and, ultimately, reduces the number of edges in the
final graph. After introducing the new abstraction (Sec. 4.2), we explain how to build the
graph (Sec. 4.3), define exploration rules for work-conserving global JLFP scheduling policies
(Sec. 4.4), describe how to soundly construct a new state (Sec. 4.5), and finally show how to
merge similar states to reduce the size of the graph (Sec. 4.6). A proof of correctness of the
analysis is presented in Sec. 4.7.

1 Any release jitter is counted as part of the job’s response time, as introduced by Audsley et al. [3].

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:7

4.1 Job Finish Times and System-Availability Intervals
Because jobs experience release jitter and execution time variation, exponentially many
execution scenarios exist, and the exact finishing time of each job cannot be known a priori.
Therefore, we compute an interval [EFT i,LFT i] in which a job Ji will finish after a given
sequence of scheduling decisions taken by the scheduler. This interval is lower-bounded by
Ji’s earliest finish time EFT i and upper-bounded by its latest finish time LFT i, that is, Ji

may possibly finish at or after EFT i and is certainly finished at LFT i. A key challenge
is that this uncertainty in job finish times introduces uncertainty in processor availability,
which in turn affects the finish-time intervals of subsequently scheduled jobs.

To address this challenge, in our new abstraction, a state represents the state of the system
after a possible sequence of scheduling decisions (corresponding to a subset of execution
scenarios) by indicating when one, two, three, . . ., m cores will possibly and certainly
become available. Namely, each state includes a set of system-availability intervals, denoted
A = {A1, A2, . . . , Am}, where Ax = [Amin

x ,Amax
x] means that x cores are possibly available

(PA) starting at time Amin
x and certainly available (CA) no later than at time Amax

x .

I Example 1. Consider a system with m = 3 cores and suppose that three jobs are scheduled,
with the following finish-time intervals: [10, 45], [30, 40], and [15, 25]. In this example, one
core becomes possibly available at time 10. Two cores can possibly be available from time 15
onward. Similarly, one core becomes certainly available at time 25, and two cores become
certainly available at time 40. Thus, A1 = [10, 25], A2 = [15, 40], and A3 = [30, 45].

4.2 Graph Definition
We define the schedule-abstraction graph as a directed-acyclic graph G = (V,E), where V
is a set of system states and E is the set of labeled edges. An edge e ∈ E is defined as
e = (vp, vq, Ji), where vp and vq are the source and destination vertices of the edge, and the
label Ji is the job that, by being scheduled, evolves state vp to state vq. We say job Ji is
dispatched next after vp or succeeds vp if it is on an outgoing edge from a state vp.

A path P from the initial state v1 to a state vp represents a possible sequence of job-
dispatching events (or scheduling decisions) that lead to state vp from the initial state v1,
which represents the initial idle system at time zero before any job is scheduled. The length
of a path refers to the number of jobs scheduled on that path, i.e., |P | , |J P |, where J P

is the set of jobs that appear as labels on the edges of path P .
In graph G, it is possible to have more than one incoming edge to a vertex vp. However,

in that case, the following property must hold for any two paths that connect v1 to vp.

I Property 1. For any two arbitrary paths P and Q that connect v1 to vp, J P = JQ.

Having defined edges and paths, we next define a system state v ∈ V as a three-tuple
that contains: (i) the set of m system-availability intervals as defined in Sec. 4.1, denoted
A(v), (ii) a set X (v) of jobs that are certainly executing on the platform in state v, and
(iii) a set of finish-time intervals {[EFTx(v),LFTx(v)] | Jx ∈ X (v)}, where EFTx(v) and
LFTx(v) represent the time at which job Jx is possibly and certainly finished considering
the sequence of job-dispatch events that led to state v.

The motivation for including the set of certainly running jobs X (v) is that, given
precedence constraints, the ready time of a job depends on the completion time of its
predecessors. This creates a challenge as storing the EFT and LFT of every job on every
path would require an exponentially increasing amount of memory w.r.t. the number of jobs
scheduled. As a tradeoff, to improve the accuracy of the analysis, we maintain the set of

ECRTS 2019

21:8 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

Algorithm 1: Schedule Graph Construction Algorithm.
Input : Job set J
Output : Schedule graph G = (V, E)

1 ∀Ji ∈ J , BRi ←∞, WRi ← 0;
2 Initialize G by adding v1 =

(
{[0, 0], . . . , [0, 0]},X = ∅, ∅

)
;

3 while ∃ path P from v1 to a leaf vertex s.th. |P | < |J | do
4 P ← the shortest path from v1 to a leaf vertex vp;
5 RP ← set of ready jobs obtained with Eq. (1);
6 for each job Ji ∈ RP do
7 if Ji can be dispatched after vp according to Eq. (9) then
8 Build v′

p using Algorithm 2;
9 BRi ← min{EFT i(v′

p)− rmin
i , BRi};

10 WRi ← max{LFT i(v′
p)− rmin

i , WRi};
11 Connect vp to v′

p by an edge with label Ji;
12 while ∃ path Q that ends to vq such that Rule 1 is satisfied for v′

p and vq do
13 Merge v′

p and vq by updating v′
p using Eq. (15);

14 Redirect all incoming edges of vq to v′
p;

15 Remove vq from V ;
16 end
17 end
18 end
19 end

certainly running jobs X (v) and their finishing time intervals in each system state v. Since
there are at most m such jobs per state, the amount of memory required per state remains
constant. This property of the algorithm is discussed in detail in Sec. 4.4.

4.3 Graph-Generation Algorithm
We next introduce the main state-space exploration algorithm for finding the schedule-
abstraction graph for a given workload and platform. We first provide an informal high-level
overview, and then present the algorithm more precisely as pseudocode in Algorithm 1.

The schedule-abstraction graph is built iteratively in two alternating phases: expansion
and merging. The expansion phase, expands (one of) the shortest path(s) P in the graph
by considering all jobs that can possibly be dispatched next in the job-dispatch sequence
represented by P . For each such job Ji, a new vertex v′p is created and added to the graph
via a directed edge from vp to v′p. The new state v′p is generated from vp by updating the core
availability intervals and the set of certainly running jobs (and their finish-time intervals)
when the execution of Ji is considered.

The merge phase slows down the growth of the graph by merging, whenever possible, the
terminal vertices of paths that have the same set of dispatched jobs. As a key soundness
condition, the merge phase guarantees that any possible execution scenario that can be
generated from two un-merged states vp and vq can still be generated after they are merged.

The search ends when there is no vertex left to expand, that is, when all paths represent
a valid schedule of all jobs in J , which implies that all possible schedules have been explored.

Algorithm 1 presents our iterative breadth-first method for generating the schedule-
abstraction graph in full detail. A set of variables keeping track of the smallest and largest
response times (BRi and WRi, respectively) observed for each job in all execution scenarios
explored so far is initialized in line 1; these bounds are updated whenever a job Ji can
possibly be dispatched on a core (lines 9 and 10). The graph is initialized in line 2 with a

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:9

root vertex v1 that represents m idle cores at time 0. The expansion phase corresponds to
lines 6–18 and lines 12–16 implement the merge phase. These phases repeat until every path
in the graph contains |J | distinct jobs (line 3). We next discuss each phase in detail.

4.4 Expansion Phase
In this section, we explain how to expand a path P ending in vp, as found in line 4 in
Algorithm 1, by dispatching an eligible job after the scheduling sequence represented by P .

Overview

The expansion phase starts by obtaining the set of potentially ready jobs for system state vp,
i.e., jobs whose predecessors have been dispatched previously on path P .

For each ready job Ji, we calculate the earliest and latest time at which Ji can be
dispatched on the platform after state vp. These times are called the earliest start time (EST)
and the latest start time (LST) of the job, denoted by EST i(vp) and LST i(vp), respectively.

If the earliest time at which the job can potentially start executing, i.e., EST i(vp), is
earlier than the latest time at which a work-conserving JLFP scheduler would allow that
job to start if it is to be the next scheduled job, i.e., LST i(vp), then the job is eligible to be
dispatched after state vp. For each eligible job, a new state v′p is created and appended to
path P after state vp.

We next explain in detail, and precisely define, each step of the expansion phase.

Ready Interval

As stated in Sec. 3, a job is ready only if it is released and all of its predecessors have been
completed. Thus, potentially ready jobs for path P are those that are not yet dispatched
and all of their predecessors are in J P , i.e.,

RP , {Ji | Ji ∈ J \ J P ∧ pred(Ji) ⊆ J P }. (1)

Since each job Ji may suffer release jitter and because the exact finish times of Ji’s
predecessors are not known, the exact time at which Ji becomes ready is also unknown. For
that reason, we compute a lower bound on the time at which a job Ji ∈ RP is possibly ready,
denoted Rmin

i , and an upper bound on the time at which Ji is certainly ready, denoted Rmax
i .

Since a job can start its execution only if (i) it is released, and (ii) all its predecessors have
completed, Rmin

i is the minimum of rmin
i and the earliest time at which all predecessors of

Ji have possibly completed, and Rmax
i is the maximum of rmax

i and the time at which all
predecessors of Ji have certainly completed, i.e.,

Rmin
i , max

{
rmin

i ,max0{EFT∗x(vp) | Jx ∈ pred(Ji)}
}
, and (2)

Rmax
i , max

{
rmax

i ,max0{LFT∗x(vp) | Jx ∈ pred(Ji)}
}
, (3)

where EFT∗x(vp) and LFT∗x(vp) are safe bounds (defined next) on the earliest and latest
finish time of Jx for all execution scenarios that lead to vp. The use of max0 in Eqs. (2) and
(3) ensures that the ready interval of jobs with no precedence constraint is equal to their
release jitter interval, i.e., Rmin

i = rmin
i and Rmax

i = rmax
i if Ji does not have predecessors.

For the predecessors of Ji that are certainly running in system state vp, i.e., any job
Jx ∈ X (vp) ∩ pred(Ji), the bounds EFT∗x(vp) and LFT∗x(vp) can safely assume the values
EFTx(vp) and LFTx(vp) saved in state vp. However, for predecessors of Ji that are not
certainly running in state vp, i.e., any job Jx that is not in X (vp), there is no bound on

ECRTS 2019

21:10 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

EFTx(vp) and LFTx(vp) saved in vp (which, to recall, is an intentional space optimization).
Therefore, we instead use the current values of BRx and WRx (see Algorithm 1) as they
are safe bounds on the EFT and LFT of Jx for all system states explored up to this point
(lines 9 and 10 of Algorithm 1), which also includes vp.

To summarize, if a job Jx belongs to X (vp), then EFT∗x and LFT∗x are equal to EFTx(vp)
and LFTx(vp), respectively. Otherwise, they are equal to BRx and WRx, respectively.

Earliest and Latest Start Times

Consider a job Ji ∈ RP , i.e., all the precedence constraints of Ji are respected. Job Ji cannot
start executing prior to the earliest time at which it may become ready, i.e., Rmin

i , nor can it
start executing before the earliest time at which a core may become available, which is given
by Amin

1 . Thus, the earliest time at which Ji can start its execution after path P is given by

EST i = max{Rmin
i ,Amin

1 }. (4)

The latest start time of Ji after path P is decided by two factors: (i) the scheduler follows
a JLFP scheduling policy, and (ii) the scheduler is work-conserving.

Considering factor (i), since a JLFP scheduling policy always dispatches the highest-
priority ready job, the latest start time of Ji is upper-bounded by thigh − 1, where thigh is
the earliest point in time from which on Ji certainly is not the highest-priority ready job
anymore. An upper bound on thigh is given by Eq. (5) as proven in Lemma 2.

thigh , min
∞
{thx(Ji) | Jx ∈ RP ∧ px < pi}, where (5)

thx(Ji) , max
{
rmax

x ,max
0
{LFT∗y(vp) | Jy ∈ pred(Jx) \ pred(Ji)}

}
. (6)

I Lemma 2. Job Ji will not be the highest-priority ready job in RP for system state vp at
any time later than thigh − 1.

Proof. Suppose that thigh 6=∞ (otherwise the claim is trivially true as it does not actually
constrain Ji). Let Jx ∈ RP be the job with higher priority than Ji such that thx(Ji) = thigh .

At time thx(Ji), job Jx is certainly released (since according to Eq. (6), thx(Ji) ≥ rmax
x)

and all predecessors of Jx that are not predecessors of Ji have been certainly completed (since
∀Jy ∈ pred(Jx)\pred(Ji), thx(Ji) ≥ LFT∗y(vp) according to Eq. (6)). If pred(Jx)∩pred(Ji) =
∅, then according to Eq. (3), Jx is certainly ready at thx(Ji) and Ji cannot be the highest-
priority ready job from thx(Ji) onward.

If pred(Jx) ∩ pred(Ji) 6= ∅, then, at the first point in time t ≥ thx(Ji) such that all
precedence constraints of Ji are respected, all precedence constraints of Jx are also respected
(recall that the precedence constraints of Jx that are not common with Ji were already
respected before or at time thx(Ji)). In other words, if Ji becomes ready at or after thx(Ji)
then Jx also becomes ready and Ji is not the highest-priority ready job. J

Additionally, considering factor (ii), if there is a time where a core is certainly available
(which is the case from time Amax

1 onward), and a job is certainly ready, a work-conserving
scheduler must dispatch the job at that time, which is denoted twc and obtained as follows.

twc , max
{

Amax
1 , min

∞
{Rmax

x | Jx ∈ RP }
}

(7)

I Lemma 3. Job Ji ∈ RP will not be dispatched next after vp at any time later than twc.

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:11

Legend:

𝐴𝑚𝑖𝑛 𝐴𝑚𝑎𝑥 𝑟𝑚𝑖𝑛 𝑟𝑚𝑎𝑥

𝑝𝑥 < 𝑝𝑖 < 𝑝ℎ
𝑅𝑥 = 6, 16
𝑅𝑖 = 13, 18
𝑅ℎ = 12, 22

𝑣𝑝
𝐴2:

𝐴1:
8

10 18

15

𝜒 = 𝐽2 , 𝐸𝐹𝑇2 = 13, 𝐿𝐹𝑇2 = 18

𝐴3:
13 27

𝑡𝑗𝑜𝑏 = 16

𝑡𝑤𝑐 = max 15, 16
𝐿𝑆𝑇𝑖 = min 16, 21
𝐸𝑆𝑇𝑖 = max 8, 13

𝐽𝑥

14

6

𝐽ℎ

16

22

𝐽𝑖 9

12

𝐽𝑖
𝑡ℎ𝑖𝑔ℎ

22

𝑡𝑤𝑐

16 18

𝑅𝑖
𝑚𝑖𝑛

13

𝑅𝑖
𝑚𝑎𝑥𝐴1

𝑚𝑖𝑛

8

𝑟𝑖
𝑚𝑖𝑛

9
𝐸𝑆𝑇𝑖 𝐿𝑆𝑇𝑖

Figure 2 Calculating EST i and LST i for a successor job Ji of a certainly running job J2.

Proof. Assume that twc 6= ∞; otherwise the claim is trivial. At time twc, a not-yet-
dispatched job Jx whose precedence constraints are satisfied is certainly ready (because
twc ≥ min∞{Rmax

x | Jx ∈ RP }), and a core is certainly available (because twc ≥ Amax
1).

Hence, a work-conserving scheduler will dispatch Jx at twc. Consequently, Ji will be a direct
successor of state vp only if it starts no later than twc. J

Combining the facts that LST i ≤ thigh − 1 (Lemma 2) and LST i ≤ twc (Lemma 3), we
observe that Ji may be the next job scheduled after path P only if it starts no later than

LST i = min{twc, thigh − 1}. (8)

I Example 4. Figure 2 shows how EST i and LST i are calculated for Ji. The earliest time
at which one core becomes ready is 8, and Ji is released at the earliest at time rmin

i = 9.
However, since Ji must wait for its predecessor J2 to finish before it becomes ready, we have
EST i = 13, which is the earliest finish time of J2. Since Jx is certainly ready at time 16, and
since at least one core is certainly available from time 15 onward, the latest time at which
job Ji can be dispatched next after vp is 16; otherwise, a work-conserving scheduler would
schedule Jx after vp instead. In this example, thigh is 22, where a higher priority job Jh is
certainly released. However, since twc < thigh − 1, the LST i is bounded by twc = 16.

Eligibility Condition

A job Ji ∈ RP can be dispatched next after path P if its earliest start time EST i is not later
than its latest start time LST i, i.e., if

EST i ≤ LST i. (9)

I Lemma 5. Job Ji is a direct successor of vp only if Inequality (9) holds.

Proof. According to Lemmas 2 and 3, LST i is an upper bound on the time at which Ji can
be dispatched after vp. Therefore, if Ji cannot be dispatched by LST i, then it cannot be a
direct successor of vp. Since EST i is the earliest time at which Ji can be dispatched after vp,
if EST i > LST i, Ji cannot be a direct successor of vp. J

If a job Ji is dispatched next after vp, its earliest and latest finish times are trivially

EFT i = EST i + Cmin
i and (10)

LFT i = LST i + Cmax
i . (11)

ECRTS 2019

21:12 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

Algorithm 2: Create a new state v′p by dispatching job Ji after state vp.

1 Initialize PA and CA using Eqs. (12) and (13);
2 for each Jx ∈ X (vp) ∩ pred(Ji) do
3 if LST i < LFTx(vp) ∧ LFTx(vp) ∈ CA then
4 replace LFTx(vp) with LST i in CA;
5 end
6 end
7 Sort PA and CA in non-decreasing order;
8 ∀x, 1 ≤ x ≤ m, Ax(v′p)← [PAx,CAx];
9 X (v′p) is obtained from Eq. (14);

4.5 Creating a New State
If job Ji ∈ RP satisfies Inequality (9), it can be dispatched next after vp and a new system
state v′p is created to reflect this possibility. Algorithm 2 presents the procedure for creating
a new state v′p for job Ji. Line 1 creates two lists called PA and CA that contain bounds on
the instants at which each core becomes possibly and certainly available after dispatching
job Ji, respectively. Those lists are built using the following two lemmas.

I Lemma 6. Lower bounds (respectively, upper bounds) on the instants at which each core
becomes possibly (respectively, certainly) available after dispatching job Ji in system state vp

are given by PA (respectively, CA) defined as follows.

PA ,
{

max{EST i,Amin
x (vp)} | 2 ≤ x ≤ m

}
∪ {EFT i} (12)

CA ,
{

max{EST i,Amax
x (vp)} | 2 ≤ x ≤ m

}
∪ {LFT i} (13)

Proof. We rely on the following four facts:
Fact 1. Since Ji is the first job starting to execute after system state vp is reached, and

because Ji’s earliest start time is EST i(vp), either all cores are busy until EST i(vp), or
no other job is released until EST i(vp). In either case, after Ji is dispatched and the new
system state v′p is reached, none of the cores start executing another job before EST i(vp).
Therefore, for each core, its earliest and latest availability times for jobs other than Ji in
the new state v′p are no smaller than EST i(vp).

Fact 2. At most x cores are available in the interval [Amin
x (vp),Amin

x+1(vp)) for 1 ≤ x < m,
and no core is available for Ji to execute prior to Amin

1 (vp) (by definition of Amin
x (vp)).

Therefore, each instant Amin
x (vp) is a lower bound on the availability time of a different

core.
Fact 3. x cores are certainly available in the interval [Amax

x (vp),Amax
x+1 (vp)) for 1 ≤ x < m,

and all cores are certainly available after Amax
m (vp), by definition of Amax

x (vp). Each
instant Amax

x (vp) is thus an upper bound on the availability time of a different core.
Fact 4. When Ji starts executing, it starts on the first available core (whichever physical

core it is), and will occupy it until its finish time.

From Facts 1 and 2, the availability times of the cores in the new state v′p are lower-
bounded by {max{EST i,Amin

x (vp)} | 1 ≤ x ≤ m}. Furthermore, from Facts 2 and 4, Ji

starts its execution at the earliest at time Amin
1 (vp) and keeps the core that was potentially

available at Amin
1 (vp) certainly busy until EFT i(vp). Equivalently, that core will be possibly

available at the earliest at EFT i(vp) in the new system state v′p. Therefore, the earliest

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:13

times at which cores are potentially available in the new state v′p are lower-bounded by
{max{EST i,Amin

x (vp)} | 2 ≤ x ≤ m} ∪ {EFT i}. This proves Eq. (12).
Similarly, from Facts 3 and 4, Ji starts executing on the first available core, which becomes

certainly available at the latest at time Amax
1 . Ji keeps that core possibly busy until LFT i(vp),

or equivalently said, the core that became available no later than Amax
1 will be certainly

available at LFT i(vp) in the new system state v′p. Therefore, considering Facts 1 and 3,
the times at which cores are certainly available in the new state v′p are upper-bounded by
{max{EST i,Amax

x (vp)} | 2 ≤ x ≤ m} ∪ {LFT i}. This proves Eq. (13). J

I Lemma 7. If Ji is the job scheduled after vp, all cores running predecessors of Ji in system
state vp become available by time LST i(vp).

Proof. As all predecessors of Ji must complete before Ji starts executing, and as the
latest start time of Ji is LST i(vp), all running predecessors of Ji must complete before time
LST i(vp). Hence, all cores running predecessors of Ji become available by time LST i(vp). J

Line 1 in Algorithm 2 computes PA and CA according to Lemma 6. Lines 2–6 further
ensure that the availability times of cores that are certainly executing predecessors of Ji are
not larger than LST i(vp), hence complying with Lemma 7.

Finally, Algorithm 2 computes the system-availability intervals for v′p by sorting the lists
PA and CA in non-decreasing order (lines 7–8). The correctness of this step is proven next.

I Lemma 8. For any state v′p built with Algorithm 1, let us define t(v′p) as follows: if
vp = v1 then t(v′p) = 0, otherwise t(v′p) is the EST of the last job dispatched to reach v′p. For
1 ≤ x ≤ m, x cores cannot be simultaneously available within [t(v′p), Amin

x (v′p)), and x cores
are certainly available after time Amax

x (v′p).

Proof. We prove the claim by structural induction on the states in the schedule-abstraction
graph. The base case is state v1, in which all cores are idle and, for 1 ≤ x ≤ m, Amin

x (v1) =
Amax

x (v1) = 0. The claim trivially holds as the interval [t(v1), Amin
x (v1)) = [0, 0) is empty,

and x cores are certainly available at time Amax
x (v1) = 0, for all 1 ≤ x ≤ m.

Next, in the inductive step, assume the claim holds for state vp, that is x cores cannot be
simultaneously available within [t(vp), Amin

x (vp)), and x cores are certainly available after
time Amax

x (vp) for all 1 ≤ x ≤ m. We prove that the claim holds in state v′p resulting from
dispatching Ji after vp.

Assuming that Amin
x (vp) and Amax

x (vp) were safe bounds in state vp (which holds by the
induction hypothesis), Lemmas 6 and 7 prove that PA and CA provide safe lower bounds
(resp., upper bounds) on the potential (resp., certain) availability times of each core in
system state v′p following the dispatch of job Ji, which happens no earlier than t(v′p) = EST i.
Therefore, the xth smallest element in PA is a lower bound on the time at which the xth core
may become available after t(v′p). Hence, the xth smallest element in PA is also a lower bound
on the time at which x cores may be simultaneously available after t(v′p). Since Algorithm 2
assigns the xth smallest element in PA to Amin

x (v′p), the inductive claim holds for Amin
x (v′p).

Similarly, the xth smallest element in CA is an upper bound on the time at which an xth
core becomes certainly available in state v′p. Hence, the xth smallest element in CA is an
upper bound on the time at which x cores are certainly available in v′p. Since Amax

x (v′p) is
assigned the xth smallest element in CA, the inductive claim holds for Amax

x (v′p). J

Finally, Algorithm 2 updates the set of jobs that are certainly running in system state v′p
using the following property.

I Property 2. If the earliest finish time of a running job Jx ∈ X (vp) is later than Ji’s latest
start time, then Jx is still certainly running after Ji starts executing.

ECRTS 2019

21:14 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

𝒗𝒑

1 core 5 15

(a) Before merging 𝒗𝒑 and 𝒗𝒒

2 cores 12 30

(b) After merging 𝒗𝒑 and 𝒗𝒒

2 cores 2510
𝒗𝒒

1 core 8 20

𝜒 𝑣𝑞 = 𝐽𝑥
𝐸𝐹𝑇𝑥 𝑣𝑝 = 8, 𝐿𝐹𝑇𝑥 𝑣𝑝 = 25

2 cores 3010
𝒗𝒛

1 core 5 20

𝜒 𝑣𝑧 = 𝐽𝑥
𝐸𝐹𝑇𝑥 𝑣𝑧 = 8, 𝐿𝐹𝑇𝑥 𝑣𝑧 = 25

𝜒 𝑣𝑝 = 𝐽𝑥
𝐸𝐹𝑇𝑥 𝑣𝑝 = 12,𝐿𝐹𝑇𝑥 𝑣𝑝 = 15

Figure 3 States vp and vq (a) before and (b) after merging.

Therefore, certainly running jobs in state v′p include Ji and all jobs that were running in
state vp and respect Property 2, i.e.,

{
Jx | Jx ∈ X (vp) ∧ LST i ≤ EFTx(vp)}. Moreover,

all predecessors of Ji must have been completed by LST i. Hence, Eq. (14) below excludes
the predecessors of Ji from the list of jobs that are certainly running in state v′p.

X (v′p)← {Ji} ∪
{
Jx | Jx ∈ X (vp) \ pred(Ji) ∧ LST i ≤ EFTx(vp)

}
(14)

4.6 Merge Phase

To slow down the growth of the graph (in terms of the number of system states generated),
we merge paths with intersecting availability intervals that have the same set of jobs.

I Rule 1 (Merge Rule). Two states vp and vq can be merged if J P = JQ and ∀x, 1 ≤ x ≤ m,
Ax(vp) ∩Ax(vq) 6= ∅.

When two states vp and vq are merged, the system-availability intervals Ax(vz) in the
merged state vz are set to include the availability intervals of both vp and vq:

Ax(vz) =
[

min{Amin
x (vp),Amin

x (vq)}, max{Amax
x (vp),Amax

x (vq)}
]
. (15)

Eq. (15) expresses the fact that x cores become potentially available in the merged state vz

when x cores become potentially available in either of the original states vp or vq, and x core
are certainly available in vz when x cores are certainly available in both vp and vq.

Additionally, it is easy to see that the set of certainly running jobs in the merged state
vz comprises the jobs that were certainly running in both vp and vq, that is,

X (vz) = {Jx | Jx ∈ X (vp) ∩ X (vq)}. (16)

The finish time interval of each job Jx that is certainly running in vz is updated to
consider the bounds that were previously derived for all execution scenarios that lead to
either vp or vq, and hence also to the merged state vz. Therefore, we have that the EFT of
Jx in vz is the minimum between the EFTs in vp and vq. Similarly, the LST of Jx in vz is
the maximum LST reported for Jx in vp and vq, that is,

EFTx(vz) = min{EFTx(vp),EFTx(vq)} and
LFTx(vz) = max{LFTx(vp),LFTx(vq)}. (17)

Figure 3 shows two states before and after merging. Lemma 9 proves that merging is safe.

I Lemma 9. Merging two states vp and vq according to Rule 1 and Eqs. (15), (16) and (17)
is safe, i.e., it does not remove any potentially reachable system state from the graph.

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:15

Proof. First, Rule 1 enforces that the set of jobs scheduled on the path to vp and vq is
identical for vp and vq. Therefore, the set of jobs that remain to be dispatched after vz is
the same as for vp and vq.

Second, removing jobs from the set of certainly running jobs X (·) as done by Eq. (16),
only increases the uncertainty in state vz and therefore the set of system states reachable
from vz. Similarly, increasing the size of the possible finish intervals of the certainly running
jobs (as done by Eq. (17)) increases the number of possible execution scenarios covered by
vz in comparison to vp and vq.

Finally, by Eq. (15) the system-availability intervals of the merged state vz include the
availability intervals of vp and vq. Therefore, all possible combinations of times at which
a given number of cores is available either in state vp or in state vq are also possible in vz.
Thus, all sequences of dispatch events that are possible in vp and vq are possible in vz and
the system states reachable from vz include all system states reachable from vp and vq. J

4.7 Correctness of the Proposed Solution
This section establishes the correctness of our analysis by showing that, for any possible
execution scenario, there exists a path in the graph created by Algorithm 1 that represents
the schedule of all jobs in the given scenario (i.e., Algorithm 1 is sound, but not exact).

I Theorem 10. For any execution scenario such that a job Ji ∈ J finishes at some time
t, there exists a path P = 〈v1, . . . , vp, v

′
p〉 in the schedule-abstraction graph generated by

Algorithm 1 such that Ji is the label of the edge from the state vp to the state v′p and
t ∈ [EFT i(vp),LFT i(vp)].

Proof. Initially, assume that the path 〈v1, . . . , vp〉 respects the claim for all jobs dispatched
before Ji in the execution scenario that led Ji to finish at time t. Furthermore, assume
that (i) the availability intervals of state vp correctly bound the availability time of x
simultaneous cores in state vp, ∀x, 1 ≤ x ≤ m, (ii) X (vp) correctly includes a subset of the
jobs that are certainly running on the platform before Ji is dispatched, and (iii) for each
job Jx ∈ X (vp), the interval [EFTx(vp),LFTx(vp)] safely lower- and upper-bounds (i.e.,
contains) the completion time of Jx. We prove that there exists a vertex v′p that is directly
connected to vp with an edge labeled Ji, that all three requirements (i)–(iii) hold for state
v′p, and that the interval [EFT i(vp),LFT i(vp)] contains the completion time of Ji.

Under the assumption that hypotheses (i)–(iii) hold for vp, Lemma 5 proves that Algo-
rithm 1 expands the graph for any job that can possibly be dispatched next after vp, hence
also for Ji. Further, as proven in Sec. 4.4, Eq. (10) and Eq. (11) provide a lower and an upper
bound on the completion time of Ji, respectively. Moreover, by Lemma 8, the availability
intervals of v′p correctly bound the simultaneous availability of x cores for all 1 ≤ x ≤ m.

Eq. (14) computes the set X (v′p) of certainly running jobs in state v′p. Therefore,
Requirement (ii) directly follows from Property 2 and the discussion of its role in obtaining
Eq. (14) in Section 4.5. Requirement (iii) is the consequence of the assumption that the
interval [EFTx(vp),LFTx(vp)] computed for every job Jx dispatched before Ji in a state
reached prior to vp (and certainly running in vp) is correct. Finally, according to Lemma 9,
merging two states as in lines 12–16 of Algorithm 1 does not invalidate Requirements (i)-(iii).

Crucially, requirements (i)–(iii) are true for any state vp’ that is a direct successor of
the initial system state v1 because (a) in the initial state no job has been dispatched yet
and all cores are available, and (b) Algorithm 1 initializes v1’s availability intervals to [0, 0]
(satisfying (i)), and sets the certainly running jobs set X (v1) to ∅ (thus also satisfying (ii)
and (iii)). The claim thus follows by induction on the states created by Algorithm 1. J

ECRTS 2019

21:16 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

5 Empirical Evaluation

We conducted experiments to answer two main questions: (i) does the proposed test detect
more schedulable workloads than state-of-the-art schedulability tests? And (ii) is the runtime
of our analysis practical? We applied Algorithm 1 to the global limited-preemptive scheduling
policy G-LP-FP. For the sake of simplicity, we used simple rate-monotonic priorities. As a
baseline, we compared our results with the schedulability test of Serrano et al. [39] (identified
as Serrano in the graphs) designed for sporadic limited-preemptive DAG tasks as it is the only
available schedulability test in the state of the art for global limited-preemptive scheduling
of DAG tasks based on the classical response-time analysis approach.

Since our test may also be used to analyze the special case of independent sequential
non-preemptive tasks (NPR), we also performed experiments on such task sets, and compared
our results to the test of Baruah for G-NP-EDF [5] (denoted by Baruah in the graphs), the
test of Guan et al. for G-NP-FP [19] (denoted by Guan), the test of Lee for G-NP-FP [22]
(denoted by Lee), and the test of Nasri et al. [33] for any G-NP-JLFP scheduling algorithm
(denoted by Nasri18). Finally, we compare against the test of Yalcinkaya et al. [46] (denoted
as Exact), an exact UPPAAL-based schedulability test for G-NP-FP (and EDF) that is
designed for periodic tasks with fixed-preemption points and segmented self-suspensions.

We note that the Serrano, Baruah, Guan, and Lee tests are designed for sporadic DAG
tasks; hence, we expect them to be pessimistic when applied to periodic workloads since
sporadic tasks can generate more interference scenarios than periodic tasks. However, we
believe that quantifying this pessimism serves to signify the need for schedulability tests that
take task-activation patterns into account in order to provide more accurate results.

We implemented Algorithm 1 as a multi-threaded C++ program and performed the
analysis on a cluster of machines each equipped with 256GiB RAM and Intel Xeon E5-
2667 v2 processors clocked at 3.3GHz. We parallelized the breadth-first exploration of the
schedule-abstraction graph using Intel’s open-source Thread Building Blocks (TBB) library.
Specifically, the while-loop in lines 3–19 can be easily parallelized since each iteration works
on a different path. We report the CPU time as the runtime of the analysis, i.e., the total
sum of the runtime of all threads used to analyze a task set. In the experiments, a task set
was claimed unschedulable as soon as an execution scenario with a deadline miss was found.

Experiments on synthetic task sets. We generated tasks using the same established tech-
niques as used in prior studies [30, 35, 38, 39, 10]. The method generates series-parallel DAGs
with nested fork-joins by recursively expanding blocks (a.k.a. non-terminal nodes) to either
terminal nodes or parallel sub-graphs until a maximum depth of recursion (which limits the
number of nested branches), a maximum length of the critical path, or a maximum number
of nodes in the DAG is reached. The generation algorithm allows to define the branching
factor, i.e., the maximum number of branches of parallel sub-graphs (denoted by npar). In
our experiment, the probability that a node is terminal, i.e., that it does not immediately fork
a new branch, was set to pterm = 0.4, the probability of adding a random edge (precedence
constraint) between two siblings was set to padd = 0.1, the maximum number of nested
branches was 3, the maximum number of nodes in the DAG was 50, and the maximum
critical path length was set to 10 nodes. The WCET of each node was selected uniformly at
random from the range [1, 50]. The BCET of each node was set to be 70% of the WCET.

To generate periodic DAG tasks with total utilization U , we used uUniFast [7] to
generate random utilization values with a total sum U , and then assigned a period to each
task using max{C̄i/Ui, C̄i}, where C̄i is the total sum of the WCET of all nodes of the

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:17

task and Ui is the task utilization. To avoid cases where periods are co-prime and hence
systems for which the hyperperiod is impractically large, we scaled the obtained periods so
that they are contained in the interval [500, 100000] with possible values given by the set
{x · 10y | 1 ≤ x ≤ 9, 3 ≤ y ≤ 5}ms. This covers periods that are three orders of magnitude
apart with a log-uniform distribution and includes periods commonly used by the automotive
industry [21]. After assigning periods, we proportionally scale the WCET of the nodes so
that tasks keep their intended utilization Ui (as assigned by uUniFast). We assumed that
all tasks are first released at time 0 and that their deadlines are equal to their periods.
Moreover, we assumed that all DAG nodes have an arrival time equal to the arrival time of
the corresponding task. To filter out trivial task sets, we discarded task sets that cannot be
successfully scheduled by G-LP-FP when each node of each task executes for its WCET. That
is, we simulated the schedule of one hyperperiod using the WCET of each node and checked
if there is a deadline miss (note that this initial test is only a necessary schedulability test,
not a sufficient one because of the schedulability anomalies that exist under non-preemptive
and limited preemptive scheduling).

The experiments were performed by varying (Exp1) the total system utilization U for 10
DAG tasks on 4 cores (Figures 4(a) and (d)), and (Exp2) the number of cores m and DAG
tasks n ∈ {5, 10, 15, 20} with U = 0.5 ·m (Figures 4(b) and (e)). For each combination of
parameters (e.g., DAG tasks with U = 30%, n = 10,m = 4), more than 100 random task sets
were generated. For each setup, we report the schedulability ratio (ratio of schedulable task
sets to the number of task sets generated for that setup) and the runtime of Algorithm 1 for
the task sets that were deemed schedulable. We excluded the runtime of unschedulable task
sets since it would otherwise favor our solution and bias the results due to the fact that we
stop the analysis as soon as a deadline miss is found. In other words, we only report the
runtime of experiments that ran to the end, which is the worst case from an analysis runtime
perspective. Since the runtime of the Serrano test never exceeded one second, it was omitted
from all diagrams depicting runtimes.

Figure 4(a) shows a significant gap between the schedulability ratio determined by our
solution and the baseline analysis for DAG tasks. For example, the Serrano test could only
identify 10% of schedulable task sets for U = 0.3, while our test shows that at least 99% of
them are schedulable. Furthermore, with the increase in the number of cores, the Serrano
test becomes more pessimistic, e.g., it cannot find any schedulable task set with U ≥ 0.3
when there are 16 cores, while the proposed test still finds schedulable task sets until U = 0.6.

Figure 4(b) shows the schedulability ratio as a function of the ratio between the number
of DAG tasks and the number of cores (denoted by n/m). We observe that schedulability
decreases when the number of tasks is close to the number of cores (i.e., the ratio n/m is
around 1). We explain this trend by the fact that when there are more tasks than cores
(n/m > 1), the per-task utilization and hence the blocking times caused by nodes of lower-
priority tasks are smaller. As a result, the schedulability ratio is larger. This can be easily
seen for m = 4 and m = 8 (since most values of n are larger than 4 or 8). The effect of
smaller blocking times shows itself for m = 16, too, as an increase in the schedulability ratio
for n = 20. When there are more cores than tasks (n/m < 1), there are enough cores to
execute all tasks in parallel, hence the increase in schedulability. Further, more cores for
a fixed number of tasks implies increased opportunity for tasks to execute their nodes in
parallel; hence their response times approach their critical path lengths. This can be seen for
larger values of m, e.g., 16 to 64. For instance the schedulability ratio for m = 64 is 100%
for 10, 15 and 25 tasks, while it varies between 30% and 75% for m = 16.

ECRTS 2019

21:18 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

sc
h

ed
u

la
b

ili
ty

 r
at

io

utilization

Nasri18 this paper Baruah
Guan Lee Serrano

(c) Exp3: 10 sequential NPR tasks (4 cores)(b) Exp2: DAG tasks (U=50%)
for 5, 10, 15, and 20 DAG tasks

(a) Exp1: 10 DAG tasks

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sc
h

ed
u

la
b

ili
ty

 r
at

io

utilization

this paper (m=4) Serrano (m=4)

this paper (m=8) Serrano (m=8)

this paper (m=16) Serrano (m=16)

(d) Exp1: 10 DAG tasks (f) Exp4: sequential NPR tasks (4 cores, U=70%)(e) Exp2: DAG tasks (U=50%)

39

294

41

8

0

100

200

300

m=4 m=8 m=16

ru
n

ti
m

e
(s

)

average

0.90 percentile

0.95 percentile

0.98 percentile

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

sc
h

ed
u

la
b

ili
ty

 r
at

io

ratio of tasks to cores (n / m)

m=4 m=8 m=16
m=32 m=64

0.01

0.1

1

10

100

1000

10000

100000

 m=4 m=8 m=16 m=32 m=64

ru
n

ti
m

e
(s

ec
)

0
.9

5
 p

er
ce

n
ti

le

n=5 n=10 n=15 n=20

2,115

166

0

500

1,000

1,500

2,000

2,500

6 9 12 15 18 21 24 27 30

ru
n

ti
m

e
(s

)
0

.9
5

 p
er

ce
n

ti
le

tasks

Nasri18 this paper

Figure 4 Experimental results for synthetic task sets for different experiments: (a, d) Exp1,
(b, e) Exp2, (c) Exp3, and (f) Exp4. In (b), all task sets with m = 64 are schedulable. Hence, the
curve overlaps with other curves (prior to the point n/m < 0.4).

Figures 4(d) and (e) show either a decrease or only a small linear increase in the runtime
of the analysis w.r.t. to the increase in the number of cores in all experiments. Thanks to
our new system state abstraction, the number of direct successors of a state does not depend
on the number of cores in the system (unlike Nasri18 [33]) and hence the dependence on m
is limited to the cost of calculating thigh, twc, etc. for each state.

For DAG tasks, with an increase in the number of tasks, the runtime of our analysis
increases rapidly as the number of nodes and hence the number of jobs increases. While our
analysis efficiently handles most task sets with up to 15 tasks within a couple of hours, it
becomes notably slower for larger numbers of tasks. This, in particular, affects systems with
a smaller number of cores, e.g., 4 and 8 cores, because when the system has insufficient cores
to fully exploit the available task parallelism, the number of pending nodes in each system
state increases. Since all nodes exhibit execution time variation, this drastically increases the
number of possible scheduling decisions. As a result, the schedule abstraction graph grows
rapidly since it must consider all possible interleavings.

In Figure 4(e) we observe a decrease in the runtime of the analysis from m = 16 to
m = 32 and then an increase from m = 32 to m = 64. This decrease is due to the decrease
in blocking times and an increase in the number of available cores (e.g., from 16 to 32 for 20
tasks). As a result, the busy windows become shorter, and hence paths merge very quickly
as there are only relatively few interleavings to consider. On the other hand, the increase in
the runtime of the analysis for m = 64 comes from the fact that, in a task set with 20 DAG
tasks with U = 50%, there are more tasks with large per-task utilizations. This situation
increases the length of busy windows since tasks have only little slack. Moreover, due to the
execution time variation of the tasks, there will be more scenarios that must be covered in
the graph, which leads to an increase in the runtime of the analysis.

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:19

Experiments on non-preemptive sequential tasks (NPR). For the experiments on inde-
pendent sequential non-preemptive tasks, we used the same task set generation setup as
in [33]. To randomly generate a non-preemptive periodic task set with n tasks and a given
utilization U , we used Emberson et al. [12] method to select the periods with a log-uniform
distribution from the range [10000, 100000] microseconds with a granularity of 5000µs. We
then used the RandFixSum [40] algorithm to generate n random task utilizations that sum to
U . From the task utilization, we obtained Cmax

i from the task utilization and the period and
then set Cmin

i to be 10% of Cmax
i . Tasks were assumed to have implicit deadlines and any

task set that had more than 100,000 jobs per hyperperiod was discarded from the experiment.
The experiments were performed by varying (Exp3) the total system utilization U

(n = 10 and m = 4) for sequential non-preemptive tasks (Figure 4(c)), and (Exp4) the
number of tasks n (U = 70% and m = 4) for sequential non-preemptive tasks (Figure 4(f)).

For sequential NPR tasks, as seen in Figure 4(c), our test performs similarly to Nasri18
(event though those tests are incomparable since task sets may be deemed schedulable by
one and unschedulable by the other and vice versa). Both tests find many more schedulable
task sets than the tests of Baruah, Guan, Lee, and Serrano. For example, for U = 0.6, our
test and Nasri18 improve accuracy by 66 percentage points over the other baseline tests.

We have tried to run the exact test of Yalcinkaya et al. [46] on the data from Exp3.
However, due to the scalability issue discussed in the introduction, the test could not complete
the analysis of enough task sets to extract any meaningful results. Instead, we ran our
analysis on the dataset used by Yalcinkaya et al. for sequential NPR task sets (see Exp2 in
[46] for details). The results are depicted in Figure 1(a); the difference in accuracy between
our test and the exact test is indistinguishable for the considered NPR task sets.

Figure 4(f) shows a neat improvement of our new analysis w.r.t. Nasri18, i.e., the best
known analysis for G-NP-JLFP scheduling. For example, the 95th percentile runtime of
Nasri18 [33] for 4 cores and 30 NPR tasks is more than 2,115 s while the 95th percentile
runtime of the analysis presented in this paper is 166 s (i.e., a more than one order-of-
magnitude difference). The maximum runtime of Nasri18 on all experiments that finished
was 3027 s and one task set reached the time out of 1 h, while the maximum runtime of our
new analysis was 275 s. The average runtime of the Nasri18 test was 327 s while our new
analysis took an average of 25s only. These numbers strongly suggest that the proposed
analysis is at least one order of magnitude faster than the Nasri18 test.

Experiments on benchmark task sets. We used the StreamIT benchmarks, which consist
of a set of digital signal processing applications to evaluate the performance of our analysis
on a realistic application workload. We used the DAG structure and WCET information of
the tasks obtained by Rouxel et al. [36]. Table 1 reports the number of DAG nodes, width
of the DAG graph (i.e., maximum number of parallel nodes), and the number of fork/join
nodes. This table also presents the number of states, edges, and the runtime of the analysis
for each of the benchmark applications when executed on a 4-core platform. As it can be
seen, the analysis takes less than a minute even when there are more than 400 nodes in the
DAG or when there are 80 fork/join constructs.

Discussion. Overall, we conclude that: (i) the proposed analysis is practical for realistic
workload sizes and benchmarks, (ii) it has high accuracy when compared with the state-
of-the-art exact schedulability analysis of sequential non-preemptive tasks with a global
scheduling policy while being able to scale to much bigger systems (i.e., with more tasks

ECRTS 2019

21:20 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

Table 1 Analysis of Benchmark Tasks.

Benchmark #nodes w forks states edges runtime (ms)

802.11a 119 7 17 10,164 28,656 483.15
Audiobeam 20 15 1 20 20 0.18
BeamFormer 56 12 2 6,036 29,686 494.45
CFAR 4 1 0 4 4 0.05
Complex-FIR 3 1 0 3 3 0.04
DCT2 40 16 2 40 40 0.63
DES 423 8 80 2,343 4,983 849.63
FFT2 26 2 1 74 122 1.24
FFT4 42 2 10 42 42 0.27
Filterbank 52 6 1 810,425 5,293,419 25,339.02
FMRadio 43 12 7 53,199 258,781 1,402.83

and more cores), (iii) it identifies a significantly larger portion of schedulable DAG tasks in
comparison to the existing test, and (iv) the new system state abstraction allows a significant
improvement in terms of scalability in comparison to the state-of-the-art test Nasri18.

However, even though the new abstraction allows scaling to much larger workloads, the
treatment of execution time variation still needs further improvement. In the presence of
precedence constraints, the impact of the response-time jitter of a job on its successors is the
same as if the successors had a large release jitter. This induced jitter accumulates over chains
of jobs with precedence constraints and greatly increases the degree of non-determinism in
the graph exploration, and eventually forces the algorithm to consider all combinations of
job orderings. This, for example, happens often in highly parallel DAG tasks or when the
number of DAG tasks increases. Consequently, new techniques will have to be developed to
allow the analysis to scale to highly parallel DAGs with large execution-time jitter.

6 Conclusion

We have considered the problem of analyzing the schedulability of a set of limited-preemptive
DAG tasks with internal parallelism and precedence constraints scheduled upon a multicore
platform using a global job-level fixed-priority (JLFP) scheduling policy. Our analysis
conceptually enumerates all possible schedules using a novel system state abstraction that
keeps track of the times at which a certain number of cores will become available. We have
shown how the space of possible schedules can be explored with the abstraction, provided
a proof of correctness, and conducted extensive experiments to assess the efficiency of the
solution. Our analysis finds between 10 and 90 percentage points more schedulable task sets
for most system configurations, in comparison with the best available baseline. It also scales
to systems with up to 64 cores and 20 DAG tasks. A comparison with the state-of-the-art
exact schedulability test for sequential non-preemptive tasks scheduled by a global JLFP
scheduling policy has shown our analysis to scale much better while being almost as accurate
as the exact test. The proposed analysis, however, does not yet scale to highly parallel DAG
tasks or systems with a large number of cores (e.g., more than 64). In the future, we will
investigate better ways of managing jitter, e.g., by applying partial-order reduction to skip
over redundant paths that do not contribute to the worst-case response time of a task.

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:21

References
1 Jakaria Abdullah, Morteza Mohaqeqi, Gaoyang Dai, and Wang Yi. Schedulability Analysis and

Software Synthesis for Graph-Based Task Models with Resource Sharing. In IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 261–270, 2018.

2 Ahmed Alhammad and Rodolfo Pellizzoni. Schedulability Analysis of Global Memory-
predictable Scheduling. In ACM International Conference on Embedded Software, pages
20:1–20:10, 2014.

3 Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J. Wellings. Applying New
scheduling Theory to Static Priority Preemptive Scheduling. Software Engineering Journal,
8(5):284–292, 1993.

4 Theodore P. Baker and Michele Cirinei. Brute-Force Determination of Multiprocessor Schedu-
lability for Sets of Sporadic Hard-Deadline Tasks. In International Conference on Principles
of Distributed Systems (OPODIS), pages 62–75, 2007.

5 Sanjoy Baruah. The Non-preemptive Scheduling of Periodic Tasks upon Multiprocessors.
Real-Time Systems, 32(1):9–20, 2006.

6 Sanjoy Baruah, Vincenzo Bonifaci, and Alberto Marchetti-Spaccamela. The Global EDF
Scheduling of Systems of Conditional Sporadic DAG Tasks. In Euromicro Conference on
Real-Time Systems (ECRTS), pages 222–231, 2015.

7 Enrico Bini and Giorgio C. Buttazzo. Measuring the Performance of Schedulability Tests.
Real-Time Systems, 30(1-2):129–154, 2005.

8 Vincenzo Bonifaci and Alberto Marchetti-Spaccamela. Feasibility Analysis of Sporadic Real-
time Multiprocessor Task Systems. In ESA, pages 230–241. Springer, 2010.

9 Artem Burmyakov, Enrico Bini, and Eduardo Tovar. An Exact Schedulability Test for Global
FP Using State Space Pruning. In International Conference on Real-Time Networks and
Systems (RTNS), pages 225–234, 2015.

10 Daniel Casini, Alessandro Biondi, Geoffrey Nelissen, and Giorgio C. Buttazzo. Partitioned
Fixed-Priority Scheduling of Parallel Tasks Without Preemptions. In IEEE Real-Time Systems
Symposium (RTSS), 2018.

11 UmaMaheswari Devi and James H. Anderson. Tardiness bounds under global EDF scheduling
on a multiprocessor. In IEEE International Real-Time Systems Symposium (RTSS), pages
12–341, 2005.

12 Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques For The Synthesis Of
Multiprocessor Tasksets. In International Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS), pages 6–11, 2010.

13 José Fonseca, Geoffrey Nelissen, and Vincent Nélis. Improved Response Time Analysis of
Sporadic DAG Tasks for Global FP Scheduling. In Proceedings of the 25th international
conference on real-time networks and systems, pages 28–37. ACM, 2017.

14 José Fonseca, Geoffrey Nelissen, and Vincent Nélis. Schedulability Analysis of DAG Tasks
With Arbitrary Deadlines Under Global Fixed-Priority Scheduling. Real-Time Systems,
55(2):387–432, April 2019.

15 José Fonseca, Geoffrey Nelissen, Vincent Nelis, and Luís Miguel Pinho. Response Time
Analysis of Sporadic DAG Tasks Under Partitioned Scheduling. In 11th IEEE Symposium on
Industrial Embedded Systems (SIES). IEEE, 2016.

16 José Carlos Fonseca, Vincent Nélis, Gurulingesh Raravi, and Luís Miguel Pinho. A multi-DAG
Model for Real-time Parallel Applications with Conditional Execution. In Annual ACM
Symposium on Applied Computing (SAC), pages 1925–1932, 2015.

17 Joël Goossens, Emmanuel Grolleau, and Liliana Cucu-Grosjean. Periodicity of real-time
schedules for dependent periodic tasks on identical multiprocessor platforms. Real-Time Syst.,
52(6):808–832, 2016.

18 Nan Guan, Zonghua Gu, Qingxu Deng, Shuaihong Gao, and Ge Yu. Exact Schedulability
Analysis for Static-Priority Global Multiprocessor Scheduling Using Model-Checking. In
Software Technologies for Embedded and Ubiquitous Systems (SEUS), pages 263–272, 2007.

ECRTS 2019

21:22 Response-Time Analysis of Parallel DAG Tasks Under Global Scheduling

19 Nan Guan, Wang Yi, Qingxu Deng, Zonghua Gu, and Ge Yu. Schedulability analysis for
non-preemptive fixed-priority multiprocessor scheduling. Journal of Systems Architecture,
57(5):536–546, 2011.

20 Zhishan Guo, Ashikahmed Bhuiyan, Abusayeed Saifullah, Nan Guan, and Haoyi Xiong.
Energy-Efficient Multi-Core Scheduling for Real-Time DAG Tasks. In Euromicro Conference
on Real-Time Systems (ECRTS), pages 22:1–22:21, 2017.

21 Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world automotive benchmark for
free. In International Workshop on Analysis Tools and Methodologies for Embedded Real-Time
Systems (WATERS), 2015.

22 Jinkyu Lee. Improved Schedulability Analysis Using Carry-In Limitation for Non-Preemptive
Fixed-Priority Multiprocessor Scheduling. IEEE Transactions on Computers, 66(10):1816–1823,
2017.

23 Jinkyu Lee and Kang G. Shin. Improvement of Real-Time Multi-CoreSchedulability with Forced
Non-Preemption. IEEE Transactions on Parallel and Distributed Systems, 25(5):1233–1243,
2014.

24 Robert Leibinger. Software Architectures for Advanced Driver Assistance Sys-
tems (ADAS), 2015. URL: https://people.mpi-sws.org/~bbb/events/ospert15/pdf/
ospert15-talk-keynote.pdf.

25 Cong Liu and James H Anderson. Supporting pipelines in soft real-time multiprocessor systems.
In 21st Euromicro Conference on Real-Time Systems (ECRTS), pages 269–278. IEEE, 2009.

26 Cong Liu and James H Anderson. Scheduling suspendable, pipelined tasks with non-preemptive
sections in soft real-time multiprocessor systems. In 16th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 23–32. IEEE, 2010.

27 Cong Liu and James H Anderson. Supporting soft real-time DAG-based systems on multipro-
cessors with no utilization loss. In 31st IEEE Real-Time Systems Symposium (RTSS), pages
3–13. IEEE, 2010.

28 Cong Liu and James H Anderson. Supporting graph-based real-time applications in distributed
systems. In 17th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), volume 1, pages 143–152. IEEE, 2011.

29 Cláudio Maia, Geoffrey Nelissen, Luis Nogueira, Luis Miguel Pinho, and Daniel Gracia Pérez.
Schedulability analysis for global fixed-priority scheduling of the 3-phase task model. In IEEE
International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pages 1–10, 2017.

30 Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, and
Giorgio C. Buttazzo. Response-Time Analysis of Conditional DAG Tasks in Multiprocessor
Systems. In Euromicro Conference on Real-Time Systems, (ECRTS), pages 211–221, 2015.

31 Morteza Mohaqeqi, Jakaria Abdullah, Nan Guan, and Wang Yi. Schedulability Analysis
of Synchronous Digraph Real-Time Tasks. In Euromicro Conference on Real-Time Systems
(ECRTS), pages 176–186, 2016.

32 Mitra Nasri and Björn B. Brandenburg. An Exact and Sustainable Analysis of Non-Preemptive
Scheduling. In IEEE Real-Time Systems Symposium (RTSS), pages 1–12, 2017.

33 Mitra Nasri, Geoffrey Nelissen, and Björn B. Brandenburg. A Response-Time Analysis for
Non-Preemptive Job Sets under Global Scheduling. In Euromicro Conference on Real-Time
Systems (ECRTS), pages 9:1–9:23, 2018.

34 Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo,
and Russell Kegley. A Predictable Execution Model for COTS-Based Embedded Systems.
In IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pages
269–279, 2011.

35 Bo Peng, Nathan Fisher, and Marko Bertogna. Explicit Preemption Placement for Real-Time
Conditional Code. In Euromicro Conference on Real-Time Systems (ECRTS), pages 177–188,
2014.

https://people.mpi-sws.org/~bbb/events/ospert15/pdf/ospert15-talk-keynote.pdf
https://people.mpi-sws.org/~bbb/events/ospert15/pdf/ospert15-talk-keynote.pdf

M. Nasri, G. Nelissen, and B. B. Brandenburg 21:23

36 Benjamin Rouxel and Isabelle Puaut. STR2RTS: Refactored streamit benchmarks into
statically analysable parallel benchmarks for WCET estimation & real-time scheduling. In
OASIcs-OpenAccess Series in Informatics, volume 57, pages 1:1–1:12, 2017.

37 Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher D.
Gill. Parallel Real-Time Scheduling of DAGs. IEEE Transactions on Parallel and Distributed
Systems, 25(12):3242–3252, 2014.

38 Maria A. Serrano, Alessandra Melani, Marko Bertogna, and Eduardo Quiñones. Response-time
analysis of DAG tasks under fixed priority scheduling with limited preemptions. In Europe
Conference on Design, Automation & Test & Exhibition (DATE), pages 1066–1071, 2016.

39 Maria A. Serrano, Alessandra Melani, Sebastian Kehr, Marko Bertogna, and Eduardo Quiñones.
An Analysis of Lazy and Eager Limited Preemption Approaches under DAG-Based Global
Fixed Priority Scheduling. In IEEE International Symposium on Real-Time Distributed
Computing (ISORC), pages 193–202, 2017.

40 Roger Stafford. Random vectors with fixed sum. Technical report, University of Oxford, 2006.
URL: http://www.mathworks.com/matlabcentral/fileexchange/9700.

41 Martin Stigge and Wang Yi. Combinatorial Abstraction Refinement for Feasibility Analysis of
Static Priorities. Real-Time Systems, 51(6):639–674, 2015.

42 Youcheng Sun and Marco Di Natale. Assessing the Pessimism of Current Multicore Global
Fixed-Priority Schedulability Analysis. Research report, University of Oxford, 2017. URL:
https://hal.archives-ouvertes.fr/hal-01468067.

43 Youcheng Sun and Giuseppe Lipari. A pre-order relation for exact schedulability test of
sporadic tasks on multiprocessor Global Fixed-Priority scheduling. Real-Time Systems Journal,
52(3):323–355, 2016.

44 Alexander Wieder and Björn B. Brandenburg. On Spin Locks in AUTOSAR: Blocking Analysis
of FIFO, Unordered, and Priority-Ordered Spin Locks. In IEEE Real-Time Systems Symposium
(RTSS), pages 45–56, 2013.

45 Jun Xiao, Sebastian Altmeyer, and Andy Pimentel. Schedulability Analysis of Non-preemptive
Real-time Scheduling for Multicore Processors with Shared Caches. In IEEE Real-Time
Systems Symposium (RTSS), pages 199–208, 2017.

46 Beyazit Yalcinkaya, Mitra Nasri, and Björn B. Brandenburg. An Exact Schedulability Test
for Non-Preemptive Self-Suspending Real-Time Tasks. In IEEE/ACM Design, Automation
and Test in Europe (DATE), pages 1222–1227, 2019.

ECRTS 2019

http://www.mathworks.com/matlabcentral/fileexchange/9700
https://hal.archives-ouvertes.fr/hal-01468067

	Introduction
	Related Work
	System Model and Definitions
	Schedulability Analysis
	Job Finish Times and System-Availability Intervals
	Graph Definition
	Graph-Generation Algorithm
	Expansion Phase
	Creating a New State
	Merge Phase
	Correctness of the Proposed Solution

	Empirical Evaluation
	Conclusion

