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Abstract
Deep learning-based solutions and, in particular, deep neural networks (DNNs) are at the heart of
several functionalities in critical-real time embedded systems (CRTES) from vision-based perception
(object detection and tracking) systems to trajectory planning. As a result, several DNN instances
simultaneously run at any time on the same computing platform. However, while modern GPUs offer
a variety of computing elements (e.g. CPUs, GPUs, and specific accelerators) in which those DNN
tasks can be executed depending on their computational requirements and temporal constraints,
current DNNs are mainly programmed to exploit one of them, namely, regular cores in the GPU.
This creates resource imbalance and under-utilization of GPU resources when executing several
DNN instances, causing an increase in DNN tasks’ execution time requirements. In this paper, (a)
we develop different variants (implementations) of well-known DNN libraries used in the Apollo
Autonomous Driving (AD) software for each of the computing elements of the latest NVIDIA Xavier
SoC. Each variant can be configured to balance resource requirements and performance: the regular
CPU core implementation that can run on 2, 4, and 6 cores; the GPU regular and Tensor core
variants that can run in 4 or 8 GPU’s Streaming Multiprocessors (SM); and 1 or 2 NVIDIA’s Deep
Learning Accelerators (NVDLA); (b) we show that each particular variant/configuration offers
a different resource utilization/performance point; finally, (c) we show how those heterogeneous
computing elements can be exploited by a static scheduler to sustain the execution of multiple and
diverse DNN variants on the same platform.
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1 Introduction

Motivated by the higher accuracy achieved by deep learning (DL) solutions over traditional
algorithms based on shallow learning, the use of DL in the mainstream computing domain has
rapidly widespread. This covers a variety of areas ranging from pattern recognition to natural
language processing. Critical real-time embedded systems (CRTES) are not an exception to
this trend, with DL-based algorithms used in areas like robotics and autonomous driving
(AD). In fact, DL has emerged as the reference algorithmic solution for the realization of
several functionalities in AD such as computer vision (e.g., object detection and tracking),
path planning, driver-monitoring systems, and voice-based command and control [11].

The other side of the coin is that DL increased accuracy comes at the cost of a substan-
tial increase in the required computational demands. At software level, highly optimized
frameworks, tools, and low-level libraries are deployed to improve the hardware utilization
significantly, and also to facilitate the software development process [1, 26, 13, 27]. At
hardware level, high-performance hardware is used to satisfy the massive computation needs
of DL workloads [5, 2, 4], with GPUs at the forefront of those solutions and being extensively
evaluated by OEMs and TIER companies in the automotive domain [3]. Despite these efforts,
autonomous driving – the target domain of our work – still challenges the computational
capabilities of existing solutions. Just for advanced driver-assistance systems (ADAS), which
arguably require much lower performance than AD, ARM projects an 100x increase in
computation needs from 2016 to 2024 [17]. Capturing these demands requires a computation
capacity of tens of tera operations per second (TOPS), which can theoretically be achieved
by having a variety of specialized computing elements (accelerators) in the GPU platforms
and automotive system-on-chips (SoC), e.g., Tensor cores and deep learning accelerators.

Problem statement. Since DL is used in a variety of modules for different AD functionalities,
several DL instances will be running simultaneously on the underlying SoC. For instance,
while the object detector module analyzes the current frame, the tracking module processes
the objects recognized in previous frames and matches them with the objects in the current
frame. At the same time, the planning module calculates the best path trajectory. To make
things worse, (i) each module can require several DNN instances to implement the required
functionality, and (ii) the module can be instantiated several times, once per each input
sensor, e.g. camera, LiDAR, and radar. However, while modern GPUs offer a powerful
heterogeneous platform with several type of (accelerating) computing elements (CE), current
DL libraries are implemented to mostly exploit one of them, which at the time of writing this
paper are the regular cores in a GPU. Regardless of the specific CE, the fact that just one
CE is used, heavily under-exploits modern heterogeneous SoC computation capacity. Our
view is that the ability to run DL-based variants, each using different CEs, would improve
timing and throughput, and would pay off the extra effort required to implement those
different variants. As a matter of fact, recently, NVIDIA integrated powerful deep learning
accelerators (NVDLA) designed and specialized for DL workloads, and Tensor cores for DL
inference, which are capable of different data type operations, from int8 to fp16 and fp32,
and provide massive and flexible computation capacity.

Contributions. In this paper, with focus on the Xavier SoC and the Apollo AD framework [9],
we make the following main contributions:
1. DNN usage in Apollo. We perform an analysis of the number of DNN instances that

can be active during the execution of Apollo. We show that at least seven instances can
be active at the same time and each instance comes with different computation needs
and different time constraints. Also, based on observed indicators, we conclude that the
number of DNN instances is expected to increase in future AD systems.
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2. We implement distinct variants of different DL libraries so that each DL application can
be executed on different CEs in the NVIDIA’s Xavier SoC: CPU, GPU regular cores, GPU
Tensor cores, and NVDLA. Our variants are programmed such that they can be executed
under different thread-level parallelism (TLP) degrees. This allows more flexibility when
exploiting the existing CEs.

3. We make an in-depth analysis of the implications of running the different variants of the
DL libraries on the NVIDIA’s Xavier SoC and show that each implementation/TLP-setup
offers a different design point in terms of used resources and performance.

4. We model a multicore cyclic executive scheduler as a linear programming (LP) problem
to assess the increase in guaranteed performance enabled by heterogeneous resources.
We show how the variable execution requirements exhibited by tasks on the different
heterogeneous computing elements can be exploited to increase the number of advanced
neural network based functionalities on the same SoC, with clear advantages in terms of
reduction in procurement costs and reliability concerns.

The rest of this paper is structured as follows. Section 2 introduces DNNs and Apollo.
Section 3 analyzes the DNNs used in Apollo and the projection in the use of DNN in
CRTES. Section 4 presents the main details of our target platform, the NVIDIA’s Xavier
SoC. Section 5 details the different implementations we developed for different DL libraries
and their resource usage and performance in the Xavier SoC. Section 6 shows how scheduling
can benefit from this TLP-configurable implementations to increase system load or adapt
DL execution time requirements to its allocated time budget. Section 7 presents the most
relevant related works, and, finally, Section 8 summarizes the main conclusions of this work.

2 Deep Neural Networks and their use in AD

2.1 Introduction to DNN
Deep Neural Networks (DNNs) [35] provide high accuracy solutions in several domains
including computer vision for functions such as image classification and object detection.
Nowadays, DNNs are widely used in a variety of areas and CRTES are not an exception to
this. Recurrent neural networks (RNNs) are another class of artificial neural networks with
internal state that are very successful for history-based workloads such as speech recognition,
path planning and machine translation. RNNs are used as the state-of-the-art approach for
path planning in industrial autonomous driving systems.

2.2 Apollo Autonomous Driving Software
We study Apollo [9], arguably the most sophisticated open-source autonomous driving
framework available and already deployed on a variety of prototype vehicles (including
autonomous trucks). Apollo supports state-of-the-art hardware such as latest LIDARs and
cameras from Velodyne and other vendors, as well as GPU acceleration. Apollo comprises
8 main modules and several sub-modules, as shown in Figure 1. These software modules
operate in a software-pipelined fashion and work in general at frame level.
M0 Speech recognizer processes the voice-based commands from the driver/passengers and

transmit them to the control unit.
M1 Perception identifies the surrounding area around the autonomous car.

M1.d The detection submodule is in charge of detecting obstacles and objects from
different sensors.

ECRTS 2019
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Figure 1 Modules, sub-modules and input sensors of Apollo.

M1.f fusion takes the results of all detected objects from different sensors and combines
them by a sensor fusion algorithm.

M1.t tracker follows the detected objects and matches them with the objects detected
in previous frames.

M2 The Planning plans the spatio-temporal trajectory for the vehicle to take.
M3 Localization leverages information received from different input sensors to estimate the

precise position of the vehicle.
M4 The Map provides ad-hoc structured information regarding the roads.
M5 Prediction anticipates the future motion trajectories of perceived obstacles/objects.
M6 Control generates control commands such as accelerating/braking and steering.
M7 CAN Bus passes all the control commands to the vehicle hardware and provides

information back to the autonomous system.

In this paper, we used Apollo default input data sets which are real data from sensors of
an AD car collected and provided by the Apollo team. In addition, we used similar neural
network architectures that Apollo employs in its different stages.

3 Analysis of the DL elements in Apollo

In the literature, we can find a wide range of DNNs and other DL algorithms. In this paper,
we focus on those normally used for DL-based solutions in AD systems. In this line, Table 1
shows different types of (state-of-the-art) neural networks widely used in key domains for AD
functionalities. We can observe that three modules (M0, M1, and M5) and 2 sub-modules
(M1.d and M1.t) use neural networks, DNNs and RNNs in particular. Table 1 shows:

The perception module, M1, relies on different DNNs for detecting (M1.d) obstacles and
objects from different sensors. The results of all detected objects are fused by a sensor
fusion algorithm (M1.f) that does not use DNNs. As a last step, an object tracker (M1.t)
deploys a DNN to track and follow detected objects.
The prediction module, M5, uses RNNs to build a model to predict the target lane that
the vehicle should take. One RNN model is for lane sequences and another RNN model
for the associated object states. The concatenation of these two RNNs is fed into another
neural network to estimate the probability for each lane sequence. Interestingly, the
modules using neural networks, Perception and Prediction, are the most compute-intensive
modules: they consume more than 70% of the time Apollo uses to process each frame.
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Table 1 Neural networks used in different modules of the Apollo autonomous driving system.

Deep Learning Software Description
M0. Speech Voice Command A DNN-based accurate speech recognition
Recognition and Control application to process speech commands

Camera Object Detection A DNN-based algorithm to identify objects
and traffic signals from camera sensors

M1. Perception LiDAR object Detection A DNN-based algorithm to identify objects
from LiDAR sensors

Object Tracker A DNN-based algorithm to track identified
objects in consecutive frames

Lane sequences (RNN1) A RNN for lane sequence-based prediction
Obstacle status (RNN2) A RNN for obstacle status

M5. Prediction A RNN using the output A RNN to compute the probability of each
produced by RNN1 and RNN2 lane sequence based on RNN1 and RNN2

Some AD systems suggest to deploy AI-assistant applications to be implemented inside
the cabin, which are all based on neural networks [11]. Such applications are proposed
for driver-monitoring, and command and control using gestures and voice. and RNNs.

Table 2 summarizes the modules using DNNs and RNNs.

Table 2 Modules of Apollo using DNNs (~) and RNNs (}).

M1 (Perception) Other Modules
Input M1.d M1.f M1.t M0 M2 M3 M4 M5 M6 M7
Camera ~
LiDAR ~ ~ ~ } } }
Radar

3.1 Real Execution Trace

Figure 2 shows a trace collected from an actual execution of Apollo when all DNN and RNN
instances in the different modules/sub-modules use the regular GPU cores in the Jetson
AGX Xavier. Each rectangle shows the span of execution of each DNN/RNN instance, i.e.
since it starts running (i.e. it is executable) until its execution finishes.

As Figure 2 shows, at a given time ti, several instances of different neural networks
are executed concurrently. Also, each particular DNN/RNN has diverse computational
requirements with more than 12× variability among them: the voice command runs for
4.5ms, whereas the different RNNs in the prediction module range from 48.61ms to 61.06ms;
finally in the perception module DNN instances span goes from 38.96ms to 50.18ms. It is
also the case that temporal constraints vary up to 10x across DNN/RNN instances. This
comes from the fact that the rate at which frames arrive across different input sensors can
vary from 10ms for Radars to 100ms for LiDARs.

3.2 DNN instances

Current trends show that the number of concurrent neural network instances can easily
reach dozens:

ECRTS 2019



23:6 DL Variants to Increase Utilization in NVIDIA Xavier

Figure 2 Concurrent execution of different modules or instances of a module in Apollo, an
industrial autonomous driving software.

More input sensors. Moving toward fully autonomous driving (Level 5 [8]) will naturally
require to increase the number of sensors to cover the car’s surrounding more accurately.
Today, some of the AD systems, which are still far from a Level 5 system, use more
than 8 cameras and radars (e.g., Telsa [28] uses 8 cameras and 12 ultrasonic sensors, and
NVIDIA autopilot [11] uses 8 high-resolution cameras, 8 radars and optionally up to 3
LiDARs). Therefore, more DNN-based workloads will have to be processed, increasing
the computation demand significantly.
More sophisticated algorithms. Perception submodules tend to use more sophisticated
DNNs, with larger number of layers and, therefore, higher computational needs for
further improvements in the accuracy of object and obstacle detection, specially in
conditions with reduced visibility such as fog, night, rain, and snow. The Prediction
module already uses 3 different neural networks either to achieve higher accuracy or to
cover more complex scenarios. Indeed, this type of modules normally use sophisticated
neural network architectures [44, 45].
More functionalities. Besides the main functions of an AD system, extra features are
introduced to improve the quality and safety of driving: from gesture detection and speech-
based command and control up to driver-monitoring to predict take-over readiness [30].

This trend towards exploiting multiple neural networks running in parallel and the
increasing number and type of accelerators we witness in modern GPUs motivate our idea of
assessing the benefits of DNN/RNN variants in modern GPUs.

4 Main Computing Elements in The Jetson AGX Xavier

NVIDIA has recently introduced the Xavier SoC as the cornerstone of its automotive
platforms. Xavier delivers over 30 TOPS for DL applications while consuming less than 30
Watts. Xavier comprises four main computing elements (CEs) capable of processing deep
learning workloads: traditional CPU cores, GPU cores, GPU Tensor cores, and the NVDLAs.
The Xavier SoC also integrates several other accelerators such as vision accelerator, video
encoder, etc. However, these accelerators cannot be used for DNN/RNN inference, due to
their limited programmability. Therefore, in this paper, we focus only on CPU, GPU (regular
and Tensor) cores, and the NVDLA.
1. CPU cores. The CPU complex (CCPLEX) comprises eight homogeneous carmel ARMv8.2

processors. Each core has its private instruction and data caches. In each cluster of two
cores (4 clusters in total), an L2 cache is shared between both cores. An L3 cache is
shared between all CPU cores.
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Figure 3 CEs in the Xavier SoC and granularity at which we exploit them.

2. GPU regular and Tensor cores. The Volta GPU microarchitecture comprises 512 regular
cores (CUDA cores in NVIDIA terminology) and 64 Tensor cores. The GPU is structured
in 8 Streaming Multiprocessors (SMs) each containing 64 regular and 8 Tensor cores.
Tensor cores [12] accelerate large matrix operations, which are at the heart of many
AI functions. While each regular core can perform up to one single precision multiply-
accumulate operation per 1 GPU clock, each Tensor core can perform one matrix multiply-
accumulate operation per 1 GPU clock. The Tensor core can multiply two fp16 4× 4
matrices and adds the multiplication product fp32 matrix to the accumulator, which is
also a fp32 4× 4 matrix.
In each SM, threads can use either the regular cores or the Tensor cores. Hence, at most,
512 regular or 64 Tensor cores can be used in parallel.

3. NVDLA provides a flexible, robust inference acceleration solution. Xavier SoC has two
NVDLAs which can be configured to run deep learning workloads. To the best of our
knowledge, this is the very first work that considers NVDLAs in the real-time domain.

Overall, the NVIDIA Xavier SoC offers four different CEs that we will use to illustrate the
benefits of our proposal. In order to reduce the exploration space we reduce the granularity
at which we explore each CE, see the table on the right in Figure 3.

At the CCPLEX level, we restrict our approach to core clusters. Also, since all DNN/RNN
instances using the GPU or the NVDLA are initiated from the CPU, we reserve 2 CPUs
for them. Overall, at the CPU level, a DNN/RNN instance can use 2, 4, or 6 of the
remaining cores.
At the GPU level, we setup a minimum granularity of 4 SMs. Hence, a DNN/RNN task
can use either 4/8 SMs to exploit 256/512 GPU regular or 32/64 tensor cores, respectively.
Each task can use one or two NVDLA accelerators.

5 Diverse DNN Implementations

This work started with a massive effort to port Apollo to the Jetson AGX Xavier. In fact,
to our knowledge, this is the first work showing results of Apollo industrial framework on
NVIDIA GPUs. To that end, we change the implementation in the baseline source code which
is based on x86 and GPU. Depending on the target CE, we need to use appropriate libraries
and re-implement Apollo modules. Deep learning workloads, in general, are implemented
layer by layer by defining specific functions for each layer. Then, depending on the layer
and on the highly-optimized low-level target library (e.g., cuBLAS) input data needs to be
transformed to match the proper format expected by the low-level library function.

ECRTS 2019
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The current version of Apollo exploits only regular cores in the GPU for inferencing
DNNs. The most computationally-intensive part of inference, such as convolution or fully
connected layers, are usually reduced to GEneral Matrix Multiplication (GEMM), which are
implemented with cuBLAS 1. It is worth mentioning that, to our knowledge, the version of
Apollo that we studied in this paper does not use TensorRT.

5.1 Specialized per-CE libraries
Table 3 presents the optimized libraries that we have used to implement our software. As it
can be seen, for each specific CE, we used different libraries. In addition, we modified the
baseline code in order to run the optimized code. Recently, as part of the introduction of
Tensor cores, NVIDIA provided some low-level libraries to support their use. NVDLA, which
can be accessed through TensorRT [6], is a platform for high-performance deep learning
inference. TensorRT offers a deep learning inference optimizer and runtime that can deliver
low latency and high-throughput for DL inference applications.

Table 3 Optimized libraries used to implement the Apollo software for each particular CE.

CE Optimized Libraries
CPU We used openMP [29] to implement all the functions to run on the CPU cores.

Our implementation allows fixing the maximum number of cores that can be used.
GPU Regular The baseline implementation targets regular cores to run the kernels.

Cores
GPU Tensor We used specific libraries and adapted our code to exploit the Tensor cores.

Cores Some of our target deep neural networks consist of 100+ layers.
The implementations of all the layers had to be modified.

NVDLA We adapted each neural network configuration to be compatible with TensorRT [6],
except the RNNs as they are not supported by NVDLA [7]. We use the TensorRT
framework to launch applications on the NVDLAs.

5.2 Implementation for different CEs
We illustrate the required effort to modify all the functions in the source code to run the
entire workload on a specific CE, by focusing on a small function performing a matrix
multiplication (GEMM) operation without transposing the operand matrices. It is worth
noting that each of the functions that implement the different layers of the neural networks
are functionally different and therefore, each of them requires different modifications.

In this example, the matrix multiplication function builds on the following formulation,
in which A, B, and C are matrices and α and β are floating-point coefficients.

C = αA×B + βC (1)

5.2.1 CPU implementation
Figure 4 shows the CPU version of the matrix multiplication operation presented in Equation 1.
As input parameters the function takes ALPHA and BETA as shown in Equation 1; M , N ,
and K that are the dimensions of the matrices; and lda, ldb, and ldc are leading dimensions

1 For completeness, we have performed several experiments comparing the same DNN operations using
cuDNN and cuBLAS. Our results show that cuBLAS achieves very competitive results w.r.t. cuDNN.
However, note that main idea of the paper, i.e. having diverse DNN implementations, does not depend
on the particular library used.
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of matrices A, B, and C respectively. In other words, lda, ldb, and ldc determine the forward
move in memory when is reached the end of a row (in row-major order) or column (in column
major). In fact, these parameters define strides that provide plenty of flexibility to work with
smaller tile sizes inside a larger matrix.

In the first loop, lines 4-8, the βC operation is executed according to Equation 1. In
lines 10-17, the main loops are implemented to perform the matrix operations. The openMP
pragma at line 9 will automatically parallelize the outer loop so that independent loop
iterations can be executed in parallel.

1 void OpenMPgemmNN( in t M, i n t N, i n t K, f l o a t ALPHA, f l o a t const ∗A, in t lda , f l o a t
const ∗B, i n t ldb , f l o a t BETA, f l o a t ∗C, i n t ldc )

2 {
3 i n t i , j , k ;
4 f o r ( i = 0 ; i < M; ++i ) {
5 f o r ( j = 0 ; j < N; ++j ) {
6 C[ i ∗ l dc + j ] ∗= BETA;
7 }
8 }
9 #pragma omp p a r a l l e l f o r

10 f o r ( i = 0 ; i < M; ++i ) {
11 f o r ( k = 0 ; k < K; ++k){
12 r e g i s t e r f l o a t A_PART = ALPHA∗A[ i ∗ lda+k ] ;
13 f o r ( j = 0 ; j < N; ++j ) {
14 C[ i ∗ l dc+j ] += A_PART∗B[ k∗ ldb+j ] ;
15 }
16 }
17 }
18 }

Figure 4 CPU implementation of the reference matrix multiplication (gemm) operation.

5.2.2 GPU regular core implementation
Figure 5 shows the implementation for the GPU regular cores, with the function requiring
the same parameters as for CPU version. Also note that in this example, we assume that
the matrices are already in the device’s memory space.

1 void GRCSgemmNN( in t M, i n t N, i n t K, f l o a t ALPHA, f l o a t const ∗A,
2 i n t lda , f l o a t const ∗B, i n t ldb , f l o a t BETA, f l o a t ∗C, i n t ldc )
3 {
4 s t a t i c i n t i n i t [ 1 6 ] = {0}; // Vector f o r i n i t i a l i z e d handles
5 s t a t i c cublasHandle_t handle [ 1 6 ] ; // Vector o f ac tua l handles
6 i n t i ;
7 cudaGetDevice(& i ) ; // Get cur rent dev i ce
8 i f ( ! i n i t [ i ] ) { // I f not i n i t i a l i z e d
9 cublasCreate (&handle [ i ] ) ; // Creates the handle

10 i n i t [ i ] = 1 ;
11 }
12 cudaError_t s t a tu s = cublasSgemm( handle [ i ] ,
13 CUBLAS_OP_N, CUBLAS_OP_N, // S e l e c t the non−t ranspose matr i ce s
14 N, M, K, // S i z e s o f the matr i ce s
15 &ALPHA,
16 B, ldb , // B and i t ’ s l e ad ing s i z e
17 A, lda , // A and i t ’ s l e ad ing s i z e
18 &BETA,
19 C, ldc ) ; // C and i t ’ s l e ad ing s i z e
20 i f ( s t a tu s != cudaSuccess ) // Check i f the re i s any e r r o r
21 p r i n t f ( "CUDA Error : %s\n" , cudaGetErrorStr ing ( s t a tu s ) ) ;
22 }

Figure 5 GPU implementation for regular cores.
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First, we get the device ID and we check whether we have initialized a cuBLAS handle for
it. If it is not the case we create a new one. Once we obtain the handle, we call cublasSgemm
but with the matrices in reversed order. This is because C/C++ assumes a row major
layout whereas CUDA assumes column major layout, which means that CUDA is reading
the matrices in a transposed manner. Then, since everything is transposed, we can simply
reverse the operators:

A×B = C ⇐⇒ B′ ×A′ = C ′

Finally, we check whether cuBLAS triggered any error during the GEMM.

5.2.3 GPU Tensor core implementation
Reprogramming the GPU code to be run on the Tensor cores only requires to change the
math mode to CUBLAS_TENSOR_OP_MATH. Nonetheless, this implementation builds on some
preconditions to run on the Tensor cores: K, lda, ldb and ldc have to be multiple of 8 and
N has to be multiple of 4. Figure 6 shows the implementation for the GPU Tensor cores.

1 void GTCSgemmNN( in t M, i n t N, i n t K, f l o a t ALPHA, f l o a t const ∗A, in t lda , f l o a t
const ∗B, i n t ldb , f l o a t BETA, f l o a t ∗C, i n t ldc )

2 {
3 s t a t i c i n t i n i t [ 1 6 ] = {0}; // Vector f o r i n i t i a l i z e d handles
4 s t a t i c cublasHandle_t handle [ 1 6 ] ; // Vector o f ac tua l handles
5 i n t i ;
6 cudaGetDevice(& i ) ; // Get cur rent dev i ce
7 i f ( ! i n i t [ i ] ) { // I f not i n i t i a l i z e d
8 cublasCreate (&handle [ i ] ) ; // Creates the handle
9 i n i t [ i ] = 1 ;

10 }
11 cublasSetMathMode ( handle [ i ] , CUBLAS_TENSOR_OP_MATH) ; // Set math mode to

enable Tensor co r e s
12 cudaError_t s t a tu s = cublasSgemm( handle [ i ] ,
13 CUBLAS_OP_N, CUBLAS_OP_N, // S e l e c t the non−t ranspose matr i ce s
14 N, M, K, // S i z e s o f the matr i ce s
15 &ALPHA,
16 B, ldb , // B and i t ’ s l e ad ing s i z e
17 A, lda , // A and i t ’ s l e ad ing s i z e
18 &BETA,
19 C, ldc ) ; // C and i t ’ s l e ad ing s i z e
20 i f ( s t a tu s != cudaSuccess ) // Check i f the re i s any e r r o r
21 p r i n t f ( "CUDA Error : %s\n" , cudaGetErrorStr ing ( s t a tu s ) ) ;
22 }

Figure 6 GPU implementation for Tensor cores.

5.2.4 NVDLA
The steps we have followed to run the neural network workload on the NVDLAs, are shown
in Figure 7. As a first step, the DNN configuration needs to be in the proper format, prototxt
that is compatible with TensorRT. To that end, we developed a script that goes layer by
layer in the configuration file of the neural network and changes its format to prototxt.
It is worth mentioning that some layers in the original format are translated into several
layers in prototxt. For instance, a Convolutional layer that has Batch Normalization and an
activation of type Leaky is divided into four different layers: a regular convolution, a Batch
Normalization, a scale, and a ReLU (Rectified Linear Unit) with negative slope.

Following this step, we obtain a functional configuration file in the proper format. However,
in most cases, some layers are not supported yet by TensorRT. At the time of writing this
paper, several types of layers, especially for RNNs, are not implemented, and therefore, cannot
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Figure 7 The steps required to specify neural network layers in order to be run on the NVDLAs.

be executed on the NVDLA. To overcome this limitation, we adapted some of the available
layers using equivalent and currently supported methods. The conflicting layers in our neural
networks are Upsample layer and Leaky ReLU layer. To solve this issue, we implemented the
layers according to TensorRT specification. After this modifications, configuration files are
in the correct format required by TensorRT. Using the generated configurations, TensorRT
can parse and build the model of neural network and run it in the NVDLAs. Note that
TensorRT can allow unimplemented layers to fallback and run on the GPU cores. In our
experiments for this paper, we avoid any fallback by adapting all the unimplemented layers
using other equivalent layers (this process does not include RNN layers which, as stated
before, are not supported) and the entire neural network is running on the NVDLA.

5.3 Timing Analysis Results
We analyse the results obtained for each DNN variant under different CE and TLP levels:
CPU cores (2 cores, 4 cores, and 6 cores), GPU regular cores (4 SMs, 8 SMs), GPU Tensor
cores (4 SMs, 8 SMs), and NVDLAs (1 or 2 NVDLAs). Note that we always reserve 2 cores
of the CPU for managing the operating system tasks and the tasks that are running in the
GPU or NVDLA, since they are also triggered by their corresponding CPU processes.

Figure 8 shows the timing results of different neural network instances of Apollo running
on each CE. Timing characterization has been performed with other DNN/RNN instances run
in parallel. While we did not run specific experiments to hit the worst-case timing interference
among computing elements, we assume the obtained results also factor in contention effects.
We can derive the following conclusions.

For the camera object detector (M1.d), Figure 8 (a) shows that using more CPU cores
significantly improves the performance. Regarding the timings on GPU CEs, as expected
for this workload, Tensor cores provide better performance in comparison to the regular
cores, with 8 SMs providing significantly higher performance in comparison to 4 SMs.
Also, the NVDLA accelerates this NN achieving the best performance results.
Figure 8 (b) shows the results for (M1.d) under another configuration for the object
detector with the same neural network architecture, but with a higher camera resolution.
As the results show, we have the same trends as in Figure 8 (a), however, due to the
increase in the workload size, execution times increase.
Figure 8 (c) shows the results for the LiDAR object detector, M1.d. Similarly to the
previous results, GPU CEs provide better performance than CPU cores, though this time
Tensor cores do not result in significant improvements over GPU regular cores. NVDLA
again provides the best results. As the workload is smaller than for camera detector, the
times are proportionally reduced.
Figure 8 (d) shows the timing results for object tracker, M1.t. For this specific workload,
GPU regular cores provide higher performance than the Tensor cores. After a detailed
analysis and designing some experiments, we find out that Tensor cores achieve worse
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(a) M1.d normal camera resolution (b) M1.d high camera resolution (c) M1.d LIDAR

(d) M1.t (e) M5 (RNN1) (f) M5 (RNN2)

(g) M5 (RNN3) (h) M0 (Speech and comm. control)

Figure 8 Timing results of different Apollo neural network instances on different CEs.

performance than regular cores whenever we run a GEMM of AM×KBK×N , in which N
has a very small value. More specifically as Figure 9(a) shows for N ≤ 12 Tensor cores
exhibit worse performance than regular cores. This particular case directly affects the
Object Tracker (M1.t) since all the GEMMs that are performed by this DNN have N = 1.
However, by increasing the value of N , (in this particular experiment, for N > 12) Tensor
cores provide considerably better performance, see Figure 9 (b).
Figures 8 (e), (f), and (g) show the timing results for the three recurrent neural networks
in the prediction module. Due to the nature of the RNNs, these workloads cannot highly
benefit from increased parallelization. Also GPUs provide up to an order of magnitude
better performance in comparison with CPUs. However, this is too far from highly
utilizing the GPU resources. In terms of the NVDLA, since several key layers of the RNN
networks are not implemented in the TensorRT, we are unable to run these workloads on
the NVDLA [10].
Finally, Figure 8 (h) shows the speech recognizer module (M0) which uses a DNN as
discussed in previous sections. This DNN network improves performance by one order
of magnitude with GPU cores. Instead the NVDLA, while better than the CPU cores,
performs significantly worse than the GPU cores.

Overall we can see that, (i) for some DNNs the NVDLA variant and the GPUrc (regular
cores) and GPUtc (Tensor cores) variants offer comparable performance. (ii) Some times
the GPUrc variant provides better results than GPUtc. (iii) It is also the case that in some
cases the performance of CPU is relatively close (≈ 2x) of that obtained with the GPUtc
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(a) N ranging from 1 to 20. (b) N ranging from 1 to 211.

Figure 9 Time spent in a GEMM (AM×KBK×N ) where M = K = 1024.

and GPUrc variants. (iv) Across the different neural networks, we see that the CPU time
requirements for some of them (e.g. (e), (f), (g), (h)) is comparable to that required by others
in the GPU and NVDLA (e.g. (a), (b), (c), (d)). This makes it worth exploiting all CEs.

5.4 Other Considerations

TLP controllability. Fully exploiting variants requires exercising control on TLP as provided
by NVIDIA’s MPS (Multiprocessing Service), which allows multiple kernels from different
processes to be executed concurrently in the GPU, while limiting their resource usage i.e.,
how many SMs each kernel will be using. The use of MPS has been shown to provide positive
results in real-time systems [42], which paves the way for its ubiquitous adoption in all GPUs.
Furthermore, MPS only requires driver updates. As this feature is not present in the Xavier
SoC, we emulate its effect in our experiments by executing the GPU tasks in isolation and
using the Xavier’s capability to enable only a certain number of SMs in the GPU.

Contention effects on timing behavior is a widely studied topic in the real-time community
mainly for CPUs, with few techniques proposed for GPUs [25] to reduce contention bounds.
Contention bounding techniques, e.g. [38, 31] produce a factor ∆cont to be added on top of
the in-isolation timing estimates. In the scope of this paper we assume that the observed
execution time factor in relevant contention effects.

Accuracy. Different implementations may use different standards for floating-point (FP)
number representation (e.g. 16-bit or 32-bit representations), different FP operations or,
at least, different FP operation orders. Due to rounding effects, this may lead to slightly
different numerical results, whose impact on the system-level functionality needs to be
assessed. However, functional results (i.e. objects detected, driving decisions, etc.) match
since those tiny numerical variations have no impact in the semantics of the framework. For
instance, whether the probability of recognizing an object varies by ±0.1% makes no practical
difference in general (e.g. 90.7% vs 90.8%). Hence, despite the different implementations
across CEs, the results of all implementations match functionally.

Multi-CE variants. In our current implementation, each neural network instance exploits
a single CE. As future work, we consider adding a multi-CE capability, so that a single
instance can exploit several CEs, e.g. 4 cores, 1 SM, and 1 NVDLA. While this offers
more flexibility, our current single-CE per neural network instance approach already shows
significant improvements over the baseline in which all instances use the same CE.

ECRTS 2019



23:14 DL Variants to Increase Utilization in NVIDIA Xavier

6 Exploiting Diversity to Increase Schedulability

With platforms supporting “diverse” computing elements and TLP degrees, the timing
behavior of an application is inherently dependent on the deployed configuration. Applications
will exhibit different execution time bounds depending on the actual CE they are mapped
to. The overall mapping strategy is thus fundamental to determine the schedulability of
a given set of applications as a whole. The identification of optimal mapping strategy, is
not a specific requirement for heterogeneous platforms [19], but is a well-studied problem
at the basis of several scheduling approaches for homogeneous systems, from partitioned to
cyclic-executive scheduling approaches (e.g., [36, 23]). Computing an optimal partitioning is
NP-hard in the general case: depending on the complexity of the problem instance, provided
solutions range from exact optimization frameworks to heuristic-based approaches.

In this paper, we are interested in assessing the benefits, in terms of system schedulability,
that can be enjoyed with execution platforms supporting diverse CE/TLP configurations. As
a common characteristic, the different DNN instances realizing the functionalities of the AD
framework can be modeled as recurrent applications that are periodically executed according
to a given frame rate. The frame rate depends on the frequency at which inputs need to
be elaborated. Static scheduling or cyclic-executive approaches are particularly suitable for
this kind of systems: despite their known limitations in term of flexibility and scalability,
they are relatively easy to implement and provably predictable, even on multicores. For this
reasons, cyclic-executive is still widely adopted in the critical embedded real-time system
domains, and is at the basis of standard frameworks (e.g., AUTOSAR [18], ARINC [16]) in
critical embedded real-time system domains.

A static schedule results in the repeated execution of a sequence of intervals or frames.
Tasks associated to a frame must execute and complete within that frame (i.e., performance
guarantees are enforced at each frame boundary). A sequence of frames is then periodically
repeated as part of a major frame, corresponding to the hyperperiod. The recurrent behavior
of the diverse DNN instances (and the relative independence between them) is naturally
modeled with a static schedule. Constructing a schedule for a cyclic executive consists in
finding a task-to-core mapping that allows all tasks to complete within their frame (or,
reciprocally, that the cumulative utilization of all tasks in a frame does not exceed 1). While
there exist specific rules to define appropriate frame number and size, the schedulability of a
cyclic executive systems reduces to showing that all computations have completed within the
frame. A common approach to construct a valid static schedules consists in formulating the
scheduling problem as a linear programming (LP) model.

In the scope of our evaluation, we model the problem of scheduling an heterogeneous
workload of several diverse DNN instances as a cyclic executive system. We exploit a LP-
based representation of the problem to assess the increase in schedulability that can arise
when multiple CE/TLP configurations are supported. Without loss of generality, we assume
in this paper that all DNN/RNN variants share a common time frame: the ILP formulation
allows intercepting those deployment scenarios where it is impossible to schedule all the DNN
variant within a frame. In the following we first discuss our assumptions in terms of schedule
constraints and LP formulation, and then we present the experimental set-up.

6.1 Task Model and Linear Programming Model
We consider a periodic task system T and we model DNN variants as a set of n independent
periodic tasks τ1, . . . , τn ∈ T that have to be statically scheduled on a multiprocessor platform,
comprising a set of heterogeneous m cores. We assume an implicit-deadline periodic task
model where each task τi is characterized by a period pi and a relative deadline di (in this
work we assume implicit-deadline tasks, thus di = pi).
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Given the heterogeneous nature of the platform, a task cannot be associated to a single-
valued computational requirement. Moreover, it is not even sufficient to model the variation
in the time as a function of the specific core the task is executing on. As an example, the
GPU in the Xavier SoC include 8 Streaming Multiprocessors, which can be used as regular
(CUDA) cores or can be configured to exploit also the Tensor cores, and an application (e.g.,
a DNN instance) may be executed on a variable number of SMs. Therefore, each task may
exhibit different time bounds depending on the computational element (and mode) it is
executed, and the TLP degree it is granted. We capture this dimensions as a set of CE/TLP
configurations CE := {ce1, . . . , cek} so that each task is associated a set of time bound
C = {ci,1, ci,2, . . . ci,k} with ci,j denoting the time of task τi under configuration cej ∈ CE .

In line with our assessment objective, we are not interested in modeling a full static
schedule over a full major frame. We limit our scope to the problem of finding a feasible
schedule (if it exists) at the smallest time interval (frame) at which timing constraints are
enforced. Given a set of tasks T ′ ⊆ T to be statically scheduled on a set of CE/TLP
configurations CE within a frame f , a static schedule for T ′ in f under configuration cej ∈ CE
is valid only if the cumulative task utilization does not exceed f .

We modeled the cyclic executive scheduling problem on multiple CE/TLP configurations
as an LP problem. LP-based approaches have been exploited for deriving static schedules in
both homogeneous [23] and heterogeneous [19] multiprocessor systems. While the considered
optimization problem is NP-hard [37], LP approaches have been shown to be effective in
most cases; heuristic-based methods have been proposed to overcome scalability concerns.

An LP model comprises a set of decision variables (possibly constrained to assume only
integer values), a set of linear constraints, and an objective function. Constraints and
objective function are expressed as (linear) inequalities over the decision variables. The
cyclic executive schedule can be modeled as an instance of a 0/1 optimization, as the sought
solution will model whether or not a task is mapped to a given computational element.
Intuitively, the objective function aims at minimizing the total utilization and failing to
find a solution to the LP problem means that the task set is not schedulable under any
feasible configuration. Other criteria can be specified in the form of weights to guide mapping
decisions. It is worth noting that, in our particular case, we are not interested in finding an
optimal solution, but only in proving or disproving the task set schedulability.

To instantiate the task model to the Xavier SoC, and consistently with the investiga-
tion conducted in the paper, we consider a sub-set of all the supported CE/TLP config-
urations CEXavier = {CPU, GPURC, GPURC−comb, GPUTC, GPUTC−comb, GPURC+TC, NVDLA, NVDLAcomb}.
Here comb configurations for the NVDLA and GPU cores hints at the possibility of being
constrained to always use the multiple instances of the CE as a block. The set of tasks’
timing bounds per configuration is given in input to the ILP as a static bi-dimensional
matrix U [τi ∈ T ][cej ∈ CE ] holding the timing budget of task τi when deployed to node cej .
The main decision variable consists in a bi-dimensional boolean matrix B[τi ∈ T ][cej ∈ CE ]
representing whether τi is deployed to cej . Accordingly, the objective function would consist
in minimizing the cumulative utilization,

∑
τi∈T , cej∈CE U [τi][cej ] ∗B[τi][cej ]. A set of LP

constraints has been defined to guarantee a task can only be mapped to one CE/TLP (we
assume tasks cannot be deployed to multiple CEs) and to enforce the maximum utilization
on a CE/TLP configuration not to exceed 100% [23]. Constraints also handle the inter-
correlations between CE/TLP, such as the fact that while two applications can be mapped to
NVDLA at the same time, NVDLAcomb is a configuration that implies exclusive use of the NVDLA.
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6.2 Experimental setup

In our experiments we assess the impact that supporting different CE and thread-level
parallelism (TLP) may have on the schedulability of several DNN instances on the same
platform. We build on the information we derived from the Apollo software to perform a
scenario-based evaluation. We used the timing profile of the applications analyzed in Section 5
to derive a predefined set of DNN (or RNN) applications (DNN1−5, RNN1−3), with varying
computational and timing requirements under the different CE/TLPs configuration (where
the set of CE/TLP configurations matches the one considered in Section 5). Each application
is represented as a recurrent task with a worst-case execution time distribution, in the range
[Umax, Umin] milliseconds, which depends on the concrete CE/TLP configuration. The time
interval has been derived by applying a ±15% inflation factor to the values observed on the
Xavier SoC reported in Figure 8. As observed in Section 5.3 those reference values also factor
in contention effects and we assume the timing requirements are not changing depending on
the deployment configuration of corunning applications.

Table 4 Utilization distributions for the DNN/RNN types and CE/TLP.

CPU
GPU

NVDLA
GPURC GPUTC

2 4 6 4 8 4 8 1 2

DNN1
Umax × × × 83.95 49.45 44.85 33.35 20.70 12.65
Umin × × × 62.05 36.55 33.15 24.65 15.30 9.35

DNN3
Umax × × × 27.60 17.25 25.30 17.25 12.65 8.05
Umin × × × 20.40 12.75 18.70 12.75 9.35 5.95

DNN4
Umax × × × 67.85 65.55 81.65 72.45 19.55 11.50
Umin × × × 50.15 48.45 60.35 53.55 14.45 8.50

RNN1
Umax 68.19 34.38 23.80 2.30 2.19 2.19 2.19 - -
Umin 50.41 25.42 17.60 1.70 1.62 1.62 1.62 - -

RNN2
Umax 21.05 11.62 8.28 2.19 2.07 2.19 2.07 - -
Umin 15.56 8.59 6.12 1.62 1.53 1.62 1.53 - -

RNN3
Umax 6.44 3.57 2.53 1.50 1.38 1.50 1.38 - -
Umax 4.76 2.64 1.87 1.11 1.02 1.11 1.02 - -

DNN5
Umax 24.50 13.46 10.35 1.50 1.27 1.50 1.15 4.72 3.45
Umax 18.11 9.95 7.65 1.11 0.94 1.11 0.85 3.49 2.55

For each CE/TLP configuration, we generated 16,000 synthetic task sets under different
overall utilization thresholds (with a mechanism similar to UUnifast [22]). Task set were
generated by randomly selecting several instances of the diverse DNN/RNN types. The
utilization of each DNN (RNN) is drawn from the intervals reported in Table 4 above (values
are in milliseconds), which is in turn built on the timing characterization results in Section 5.3.
DNN2, the object detector version working with high resolution images in Figure 8, was not
included in the evaluation as it is corresponds to a high-resolution variant of object detection
application that is clearly over-demanding for the target platform. We use instead DNN1,
the object detector working with standard resolution images. Still on Table 4, it is also
worth noting that applications (DNN1, DNN3, DNN4) could not be scheduled on CPU cores
(utilization larger than 100%), and RNNs execution is not supported on NVDLA). This is
supported in the ILP model by forcing B[τi][cej ] = 0 for specific combinations.

As commented above, focusing on a single scheduling frame is sufficient to fulfill our
evaluation objective. We therefore assumed all applications to fit in the same frame, with a
reference size of 100ms.
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6.3 Schedulability results

We used our LP formulation to assess the schedulability of the task sets under specific
CE/TLP configurations. All DNNs (RNNs) are required to run concurrently on the same
system, as observed in the case of Apollo. A task set is considered to be infeasible if the LP
problem admits no solution. We consider different CE/TLP setting, ranging from single-CE
configurations (CPU, GPURC, GPUTC, and NVDLA only), to mixture configuration, up to the most
flexible setting where all CE/TLP configurations are supported. The experiments aim
at confirming that being able to configure and exploit different computing elements with
different task-level parallelism is a fundamental enabler for successfully deploying multiple
DNN variants on the same system. We asses how support for different CE/TLP can be
leveraged to sustain the schedulability of systems that would have been not schedulable
otherwise. Also, when a system admits multiple feasible schedules, the ILP could be also
instructed to identify, among the existing feasible CE/TLP configuration, the one satisfying
a predefined criterion, such as maximizing performance.

In order to analyze the benefits of our neural network variant proposal, we use, as a
baseline reference, single-CE setups, where only one CE is exploited. We create several
scenarios in which an increasing subset of all CEs are used (CPU, GPURC, GPUTC, NVDLA). In
each scenario, the utilization thresholds considered for the experiments are computed on the
reference utilization of the CE providing the highest performance.

The scenarios we addressed are the following:
nvdla+gpu_rc+gpu_tc+cpu: takes NVDLAcomb as reference highest-performance CE, and
considers the CE/TLP configurations CPU, GPUTC, GPURC+TC, NVDLAcomb, NVDLA;
gpu_tc+gpu_rc+cpu: takes GPUTC as reference highest-performance CE, and considers
the CE/TLP configurations CPU, GPUTC, GPURC+TC;
gpu_rc+cpu: only uses CPU and GPURC, with the latter being the highest-performing CE.

This approach lets us assess our variants approach under different scenarios with increasing
number of supported CEs, each with its specific performance characteristics. Additionally,
we assess the flexibility of considering all the units of the highest-performing CE as a single
element with their combined performance (NVDLAcomb) versus providing the scheduler the
flexibility to allocate NN instances to independent CE units (NVDLA).

As explained in Section 6.2, a large set of workloads with different NN instances has been
generate for each scenario, using the cumulative utilization relative to the highest-performing
CE as a threshold. In all scenarios we considered such threshold to vary in 100% to 400%
utilization over the scheduling interval.

NVDLA. Figure 10 shows the ratio of feasible task sets under the considered utilization
thresholds (relative to NVDLA) and CE/TLP configurations in the nvdla+gpu_rc+gpu_tc+cpu
scenario. Under 100% NVDLA utilization, the NVDLA alone can always schedule the task set:
both in the NVDLAcomb and NVDLA setups we observed a 100% success ratio. This is obviously
the case for NVDLAcomb, as it is the scenario used to compute the utilization threshold. But it
also normally holds for two separate instances of NVDLA as the combined use of the NVDLAcomb

does not necessarily exploit full parallelism. Clearly, with increasing utilization, NVDLAcomb

cannot schedule any workload. NVDLA instead still exhibits a high success ratio at 120%
utilization, that only falls rapidly at 140% and becomes zero after 160%. This is explained by
the fact that the utilization is relative to the combined use of NVDLA which is not providing
exactly double performance when compared to a single NVDLA instance.
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Figure 10 Percentage of schedulable workload when the NVDLA is the highest-performance CE.

Table 5 Average DNN/RNNs per workload in nvdla+gpu_rc+gpu_tc+cpu scenarios.

NVDLA NVDLA NVDLA
NVDLAcomb NVDLA GPUTC GPUTC+RC GPUTC+RC CPU

1.0 12.16 12.16 12.16 12.16 12.16
1.2 × 14.66 14.66 14.66 14.66
1.4 × 16.50 17.23 17.23 17.23
1.6 × × 19.83 19.83 19.83
1.8 × × 22.46 22.46 22.46
2.0 × × 24.93 24.93 24.93
2.2 × × 27.56 27.56 27.56
2.4 × × 30.13 30.13 30.13
2.6 × × 32.63 32.63 32.63
2.8 × × 35.29 35.29 35.24
3.0 × × 38.46 38.31 38.13
3.2 × × 43.30 43.22 42.72
3.4 × × × × 49.50

Analyzing the benefits of our variants approach, we can see that enabling the use of other
CEs allows to sustain the execution of all NN instances (100% success ratio) for loads up
to 2.8, significantly beyond what is observed with NVDLAs only. In between 2.8 and 3.4,
the flexibility of CE/TLP deployment is exploited at most, allowing to successfully schedule
some task sets. The average numbers of NN-base functionalities successfully scheduled under
the considered workloads and CE/TLP configurations are reported in Table 5. Within the
feasibility region, all scenarios behaves quite similarly as the average task set population
grows as long as the computational load increases. Still within the feasibility region, the
average number of instances does not increase when adding more CEs. The only minimal
variation happens at 140% utilization, where enabling the GPU allows for one additional
NN-based functionality to be successfully deployed in the average case. When the NVDLAs
are saturated, the GPU elements alone are capable of providing up to 340% utilization
(NVDLA-defined) and changing the GPU configuration (enabling regular CUDA cores) or
introducing the CPUs is slightly affecting both schedulability and number of allocated DNNs.

GPU Tensor cores. The ratio of feasible task sets under the gtc+grc+cpu scenario is
reported in Figure 11. The considered utilization thresholds are relative to the use of 8 GPUTC

as a block. Similarly to the NVDLA, the more flexible configuration, where GPU cores are
used as two separate clusters, guarantees an improved schedulability ratio.

The improvement in terms of schedulability is even larger than in the NVDLA case, as
the flexible use of the GPU allows to schedule almost 80% of the task sets even under a 150%
workload. When other CEs are enabled, as suggested by our approach, the schedulability ratio
further improves and reaches 85% at 160% utilization. It is interesting to note the performance
improvement obtained by moving from using only GPUTC as two independent clusters to using
potentially both GPUTC and GPURC. In fact, one would expect regular cores not to bring any
improvement over the Tensor cores scenario, being the Tensor a more advanced accelerator
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Figure 11 Percentage of schedulable workload when GPUTC is the highest-performance CE.

Table 6 Average DNN/RNNs per workload in gpu_tc+gpu_rc+cpu scenarios.

GPUTC+RC

GPUTC−comb GPUTC GPUTC+RC CPU
1.0 10.52 10.52 10.52 10.52
1.2 × 11.27 11.27 11.27
1.4 × 11.55 11.58 11.60
1.6 × 11.41 11.72 12.45
1.8 × 11.33 11.90 12.47
2.0 × × 13.00 14.10
2.2 × × × 9.00

than regular GPU cores. However, while being more advanced, Tensor cores are also more
specialized and their use can be counter-productive for generic applications, as can be also
observed in Table 4. Exploiting the CPU, instead, allows a comparatively smaller increase
in computational power, as expected. The average numbers of NN-based functionalities
successfully scheduled under the considered workloads and CE/TLP configurations (see
Table 6) show substantially similar values for all configurations. The configuration using
Tensor cores in clusters of four shows slightly different values than those observed when
enabling the regular cores and the CPU. Similarly to the NVDLA scenario, a flexible use of
the GPUTC alone allows sustaining up to 200% utilization. Again, introducing the CPUs is
not affecting schedulability and is not allowing a larger number of DNN instances.

GPU Regular cores. As final step in our incremental evaluation, we assess the benefits
of our approach in an CE/TLP configuration where only the CPU and the GPU regular
cores are made available. In this case, the benefit of the flexible approach GPURC over the
combined GPURC−comb is remarkable. Conversely, the benefit offered by enabling additional
CEs is less consistent, when compared to the flexible use of the reference CE. The reason
is that regular GPU cores do not seem to be able to support a good degree of parallelism
for NN-based functionalities, as confirmed by relatively close performance between using 4
or 8 GPU cores in Table 4. Enabling the use of CPUs only makes a negligible difference in
the success ratio, which is explained by the relatively small increase in computational power
provided by the CPU cores. The average number of NN-based functionalities scheduled
under these configurations (see Table 7), confirms the trend observed for the NVDLA and
Tensor cores scenarios. The number of scheduled instances increases with the utilization.
Only few DNN instances are added in the average after enabling the use of CPUs.

7 Related Works

DL techniques are increasingly used in critical domains for they deliver substantially more
precise functional results compared to other approaches. GPUs are being considered for
the execution of DL software because of their capability of performing massively-parallel
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Figure 12 Percentage of schedulable workload when GPURC is the highest-performance CE.

Table 7 Average DNN/RNNs per workload in gpu_rc+cpu scenarios.

GPURC

GPURC−comb GPURC CPU
1.0 9.59 9.59 9.59
1.2 × 10.54 10.54
1.4 × 11.35 11.45
1.6 × 11.96 12.08
1.8 × 12.49 12.65
2.0 × 12.88 13.39
2.2 × 14.01 14.71
2.4 × 18.00 18.35

general-purpose computations and efficiency supporting DL libraries [21]. However, the use
of GPUs in CRTES, such as vehicles, brings plenty of challenges for safety [14, 40] and timing.
The latter, which can be categorized into three groups, have been addressed by different
works: (i) some works focus on the implications of GPUs in the real-time properties of the
system, (ii) others aim at improving utilization and efficiency of the existing DL and machine
vision software, and (iii) other works propose low-level modifications to support DL such as
scheduling algorithms or hardware support.

Research on the real-time properties of GPUs has been conducted for almost a decade.
Initial works focused on scheduling proposals for the special timing behavior of GPUs, which
is based on interrupts [32], and deal with their non-preemptive nature, which requires task
synchronization [34]. Multiple CPU-GPU allocation strategies have been considered in [33],
where the authors evaluate different partitioning and clustering schemes to enable sharing
multiple instances of the same GPU across multiple cores. In our work we deal with a
heterogeneous set of accelerators, and GPU regular/Tensor cores. We consider a set of
diverse parallel tasks that can be scheduled under varying TLP through multiple CPUs, GPU
SMs, as well as on other specialized accelerators; we study how their execution requirements
varies depending on the computing element they are scheduled on. More recent works have
focused on exposing undocumented or mis-documented features of NVIDIA GPUs and their
benchmarking [15, 42, 39]. Moreover, [42] is the first real-time paper evaluating NVIDIA’s
MPS system, which allows multiple processes to execute kernels concurrently in the GPU,
containing their SM usage, which is an essential feature for our work. Similarly to our work,
[41] considers fine-grained vision-related schedulable entities that can be executed on CPU
or GPU, but it does not consider several accelerators beyond the GPU’s SMs.

Authors in [43] apply sensor fusion and propose a supervised scheduling algorithm for
multiple DNN layers, considering each one as a separate dynamically schedulable entity on a
GPU. Similarly to our work, the proposed approach focuses on multiple DNN instances. The
focus, however, is limited to a single computational element and does not include the use of
multiple elements and thread-level parallelism configurations. Bateni et al. [20] proposed
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ApNet, an approximation-aware real-time neural network, to guarantee that DNN workloads
meet their deadlines by using an efficient approximation. Despite their proposal can incur some
accuracy loss, it can guarantee the timing predictability. Our work is orthogonal to the ApNet
and applying both approaches can further improve resource utilization and performance. In
another work, Bateni et al. [21] proposed Predjoule, which is a timing predictable energy
optimization framework. Predjoule targets DNN workloads and guarantees the latency
and energy efficiency of such workloads. We believe that this work can be extended to
support various hardware resources and, in combination with our work, could provide better
improvements in latency and energy consumption.

Capodieci et al. [24] presented a real-time scheduler for GPU activities on SoC systems such
as NVIDIA Jetson TX2. They implement and test Earliest Deadline First (EDF) for GPU
tasks, which is enhanced with a Constant Bandwith Server (CBS) based timing isolation
mechanism. On the contrary, our work allows the co-scheduling of different computing
resources such as CPU cores, GPU cores and Tensor cores, and DL accelerators.

Overall, to the best of our knowledge, this is the first work to study the performance
variability of diverse DNN/RNN variants with different computing elements and TLP setups
in the Xavier SoC. Also, we exploit a LP model of a heterogeneous static scheduler to assess
the capability of the platform to sustain the execution of multiple DNN/RNN instances.

8 Conclusions

As the number of DNN/RNN instances running in parallel continues to increase in future
AD systems, so does the ability to exploit the heterogeneous computing elements in modern
computing SoCs. In this paper, in support to the first claim, we have analyzed the neural
networks concurrently running in the Apollo AD and the current projections in their number.
To sustain the latter claim, instead, we have created distinct variants of the different neural-
network libraries used in Apollo. Our results show high diversity in the performance obtained
by each variant in each of the computing elements of the Jetson AGX Xavier. This diversity
provides an opportunity for exploiting the scheduling strategy to simultaneously deploy
multiple NN-based instances on the same platform. We used an LP formulation for a multicore
cyclic executive scheduler to demonstrate the performance increase potentially enabled by
different heterogeneous computing elements, and to show how this allows deploying multiple
advanced NN-based functionalities on the same SoC.
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