
Slot-Based Transmission Protocol for Real-Time
NoCs – SBT-NoC
Borislav Nikolić
Institute of Computer and Network Engineering, TU Braunschweig, Germany
nikolic@ida.ing.tu-bs.de

Robin Hofmann
Institute of Computer and Network Engineering, TU Braunschweig, Germany
hofmann@ida.ing.tu-bs.de

Rolf Ernst
Institute of Computer and Network Engineering, TU Braunschweig, Germany
ernst@ida.ing.tu-bs.de

Abstract
Network on Chip (NoC) interconnects are some of the most challenging-to-analyse components of
multiprocessor platforms. This is primarily due to the following two reasons: (i) NoCs contain
numerous shared resources (e.g. routers, links), and (ii) the network traffic often concurrently
traverses multiple of those resources. Consequently, complex contention scenarios among traffic
flows might occur, some of the important implications being significant performance limitations,
and difficulties when performing the real-time analysis.

In this work, we propose a slot-based transmission protocol for NoCs (called SBT-NoC), and an
accompanying analysis method for deriving worst-case traffic latencies. The cornerstone of SBT-NoC
is a contention-less slot-based transmission, arbitrated via a protocol running on a dedicated network
medium. The main advantage of SBT-NoC is that, while not requiring any sophisticated hardware
support (e.g. virtual channels, a flit-level arbitration), it makes NoCs amenable to real-time analysis
and guarantees bounded low latencies of high-priority time-critical flows, which is a sine qua non for
the inclusion of NoCs, and multiprocessors in general, in the real-time domain. The experimental
evaluation, including both synthetic workloads and a use-case of an autonomous driving vehicle
application, reveals that SBT-NoC offers a plethora of configuration opportunities, which makes it
applicable to a wide range of diverse traffic workloads.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer
systems organization → Embedded systems

Keywords and phrases Real-Time Systems, Embedded Systems, Network-on-Chip, Protocols

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2019.26

1 Introduction

Even though multiprocessors are now ubiquitous in almost all computing areas, they are
still often considered as a new frontier technology in the real-time domain. Traditionally,
in the real-time analysis of multiprocessors, the emphasis is on a single type of shared
resources – processing elements (cores). However, due to the core proliferation trend in
the multiprocessor area, contentions for other shared resources, such as an interconnect
medium, become more apparent. This implies that, in order to perform the timing analysis
of real-time applications deployed on multiprocessors, it is no longer sufficient to only take
their computation requirements into account, but communication and memory traffic need
to be considered as well. Therefore, the real-time analysis of network interconnects became a
crucial prerequisite for the integration of multiprocessors in the real-time domain.

© Borislav Nikolic, Robin Hofmann, and Rolf Ernst;
licensed under Creative Commons License CC-BY

31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Editor: Sophie Quinton; Article No. 26; pp. 26:1–26:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nikolic@ida.ing.tu-bs.de
mailto:hofmann@ida.ing.tu-bs.de
mailto:ernst@ida.ing.tu-bs.de
https://doi.org/10.4230/LIPIcs.ECRTS.2019.26
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Slot-Based NoC

The Network-on-Chip architecture [2] (NoC) is among the prevalent choices for intercon-
nects in contemporary multiprocessors, mostly due to its good performance and scalability
potential [14]. However, the real-time analysis of NoCs is a challenging topic. This is
primarily due the following two reasons: (i) NoCs are composed of numerous shared resources
(e.g. routers, links), and (ii) network traffic flows often concurrently traverse multiple of
those resources. As a consequence, infamous contention scenarios among traffic flows might
occur (e.g. head of line blocking [5] and backpressure [27]), causing significant performance
degradations as well as making the worst-case timing analysis difficult to perform.

Interestingly, the worst-case timing analysis of NoCs with single-channel ports and a
fixed-priority packet-level arbitration (referred to as basic NoCs hereafter) is still an open
research topic. This can be largely attributed to the aspects from the previous paragraph,
implying that basic NoCs “out-of-the-box” (i.e. without any enhancements) are not amenable
to real-time analysis, and hence do not represent satisfactory solutions for the real-time
domain. This is discussed in more detail in Section 6 (Experiment 1).

How to make NoCs viable interconnect choices for the real-time domain? Intuitively,
mechanisms are needed to ensure that a low priority traffic interferes with a high priority
one only slightly (ideally not at all), thus effectively providing low latencies for high-priority
time-critical flows, and big latencies for low-priority ones – which may not even have any
timing requirements.

One promising solution to these problems is to use sophisticated hardware support and
advanced router functionalities (e.g. virtual channels [5, 6] and a flit-level arbitration [23]),
and in that way make NoCs both more performant and more amenable to the real-time
analysis (e.g. [11,17,26]). Some other notable solutions revolve around (i) organising NoC
accesses in a time-division-multiplexing manner (e.g. [18]), (ii) explicitly reserving entire
paths before transmissions, called the virtual circuit method (e.g. [4]), and (iii) utilising
single-cycle multihop transfers to bypass intermediate routers (e.g. [8]). All these approaches
suffer from one or more of the following limitations: complex and/or pessimistic timing
analysis, expensive hardware requirements, inefficient use of resources, limited applicability
to certain workload types, and finally, inability to meet real-time requirements (e.g. bounded
low latencies of time-critical flows). This is discussed in more detail in Section 2.

Contribution. In this work, we propose a novel approach for making NoCs more applicable to
the real-time domain. Specifically, we propose a slot-based transmission protocol, called SBT-
NoC, and an accompanying analysis method for deriving worst-case traffic latencies. SBT-NoC
ensures a contention-less slot-based transmission, arbitrated via a protocol running over a
dedicated communication medium. By explicitly separating arbitration and data transmission
domains, infamous contention scenarios are prevented by design, which contributes to a less
complex and less pessimistic worst-case analysis, and perhaps even more importantly, to a
better utilisation of network resources. At the same time, a slot-based transmission represents
an efficient means to protect high priority flows from the lower-priority interference, thus
guaranteeing their bounded low latencies, which is an essential real-time requirement. Finally,
it is worth mentioning that besides a dedicated arbitration medium, SBT-NoC does not
require any sophisticated router functionalities, nor any additional hardware support (e.g.
virtual channels, flit-level arbitration), which implies that SBT-NoC can be easily adopted
by next-generation commercial multiprocessors.

2 Related Work

All approaches for the integration of NoCs in the real-time domain can be broadly classified
into two categories: contention-less and contention-aware. The former category supports
uninterrupted transmissions by implementing a temporal and/or spatial allocation of NoC

B. Nikolic, R. Hofmann, and R. Ernst 26:3

resources to individual traffic flows. One popular strategy is to allocate resources in a
time-division multiplexing (TDM) manner (e.g. [9, 10,13,18,20]). The three limitations of
TDM-based approaches are: (i) it might be challenging to find an efficient slots assignment
configuration, (ii) significant buffer space might be required to store flits in traversed routers,
and (iii) providing bounded low latencies for time-critical flows might require either resource
over-provisioning (large slots for those flows), or workload type restrictions (e.g. strictly
periodic traffic sources). The other approach from this category is a virtual circuit method.
It achieves contention-less transmissions by reserving an entire path before a transmission
(e.g. [4]). One downside is that a path establishing stage might be time consuming, and
hence assuring bounded low latencies for time-critical flows might be non-trivial.

On the other hand, contention-aware approaches allow contentions among traffic flows,
which are resolved via in-router arbitration mechanisms. One such method called round-
robin is particularly popular among hardware manufacturers (e.g. [1, 25]). Its popularity
comes from the fact that it offers a fair treatment to all traffic flows, thus promoting good
performance. Several worst-case analysis methods for NoCs with the round-robin mechanism
have been proposed, including the Network Calculus framework (e.g. [19]), the Compositional
Performance Analysis framework (e.g. [24]) and the Recursive Calculus framework (e.g. [15]).
However, one limitation of this mechanism is that it does not have any means to establish a
notion of priorities, and it may be difficult to achieve low latencies of time-critical flows.

Another class of contention-aware approaches uses a priority-based flit-level arbitration
via dedicated virtual channels. Currently, there exist several worst-case analysis methods,
e.g. [11,17,26]. Although this type of NoCs fulfils almost all requirements of the real-time
domain, its biggest limitations are substantial hardware requirements in a form of dedicated
virtual channels to each traffic flow within each router along its path. Another relevant point
is that dedicated virtual channels and the accompanying logic elevate power requirements,
thus rendering such NoCs inapplicable in scenarios where low power consumption is required
(e.g. embedded domain). Moreover, these approaches require routing mechanisms that
guarantee a single continuous contention domain between any two interfering flows (e.g.
dimension-ordered routing), which may be a limiting factor in some scenarios.

Recently, a novel type of interconnect architecture called SMART NoC [8] was introduced.
This approach aims to avoid complex in-network interference patterns by utilising a router
bypass mechanism which allows single-cycle multihop transmissions. However, one limitation
of this approach is that it does not have a means to enforce prioritisation among traffic flows,
and hence it may be challenging to achieve low latencies of time-critical flows.

Finally, it is worth mentioning that the arbitration protocol of SBT-NoC is, to an extent,
inspired by CAN [7], Byteflight [3] and FlexRay [16] technologies, which are used for bus-
based communication, predominantly in automotive in-vehicle networks. The common aspect
of these approaches is that, during the arbitration phase, all traffic sources indicate their
transmission requests, and at the end of the arbitration cycle one of them is granted the
permission to transmit. The arbitration in SBT-NoC is performed in a similar way, with the
following two fundamental distinctions: (i) instead of being interleaved with transmission
phases, the arbitration is performed continuously over a dedicated arbitration medium, and
(ii) instead of concluding the arbitration phase with a single transmission permission, multiple
traffic sources are able to gain the transmission permission and subsequently concurrently
transmit. The second aspect is of particular importance, because it allows to exploit the
full potential of an underlying NoC architecture. More details on the SBT-NoC arbitration
protocol (and the approach in general) are available in Section 5.

ECRTS 2019

26:4 Slot-Based NoC

Figure 1 Illustrative example of assumed platform architecture.

3 System Model

3.1 Platform Architecture

The assumed platform architecture is a multiprocessor systemM, comprising: (i) a compu-
tation plane, (ii) a data transmission plane and (iii) an arbitration plane. One example of
the assumed platform is illustrated in Figure 1.

A computation plane consists of m · n potentially heterogeneous processing elements
(cores) {µ1, µ2, ..., µm·n}.

A data transfer plane consists of m · n interconnected mutually synchronised routers
{ρ1, ρ2, ..., ρm·n}, with identical physical characteristics. Routers are connected in a way to
form a 2-D mesh topology, and each router ρi is, depending on its position, directly connected
with 2, 3 or 4 neighbouring ones. Each two neighbouring routers ρi and ρj are connected
via two unidirectional links of opposite directions, and it is assumed that all network links
have the same capacity, where dL stands for the transmission latency of one flit across one
link. The connection between the computation and the data transfer plane is also organised
in the form of two unidirectional links between each core µi and its corresponding router
ρi. These links have the same physical characteristics as router-to-router links. As in the
vast majority of NoCs, a data transfer is organised with the wormhole switching technique;
prior to transmission, a packet is divided into small elements of fixed size called flits, which
are successively injected into the NoC, where they travel to their destination in a pipelined
manner. Moreover, routers have single-channel ports (no virtual channels necessary), where
per-port buffers have the capacity to store at least two flits, so as to ensure a pipelined
transmission. Buffer overflows are prevented with credit-based flow control. As a routing
mechanism, any static technique can be applied (including source routing), with the only
requirement that a flow should not put itself in a deadlock. The packet routing overhead is
denoted by dR, and only the first flit of the packet (header) experiences this delay. Finally, all
routers have the same constant frequency ψ. Note that the link transfer latency dL and the
routing latency dR are typically expressed as a number of cycles (e.g. in Intel’s SCCC [12]
dL = 1 and dR = 3).

B. Nikolic, R. Hofmann, and R. Ernst 26:5

An arbitration plane1 consists of a bus system, to which all routers of the data transmission
plane are connected. The bus frequency is assumed to be the same as the frequency of the
routers. The term dB denotes the worst-case latency of one router writing one bit on the
bus, and all connected routers reading it. Similar to dR and dL, we also assume that dB can
be expressed as a number of cycles.

3.2 Workload
In this work, we take a communication-centric approach, and model the workload as a
sporadic traffic flow-set Φ, which is a collection of z flows Φ = {φ1, ..., φz}. Each flow φi is
characterised by: (i) a source core/router µsrci /ρsrci , (ii) a destination core/router µdsti /ρdsti ,
(iii) a path Li, expressed as a set of traversed network links (including those connecting µsrci
and µdsti to the NoC), (iv) a payload size σi, expressed as a number of bytes, (v) a minimum
inter-arrival time Ti, (vi) a constrained deadline2 Di ≤ Ti, and (vii) a unique priority Pi.

During each inter-arrival time, a flow may release at most one packet (consisting of a
header flit, payload flit(s) and a tail flit). If it can be analytically proven that each packet of
φi can complete its transfer before its deadline, even in the worst-case conditions, then φi is
considered to be schedulable. If all flows of Φ are schedulable, then Φ itself is considered to
be schedulable.

4 Problem Formulation

Given a platformM and workload Φ, propose a transmission protocol, and an accompanying
worst-case timing analysis method, such that the schedulabtility of Φ onM can be evaluated.
Additional requirements are as follows:

The transmission protocol should exploit the full potential of the underlying platform by
accommodating concurrent transmissions of multiple flows, whenever possible.
The transmission protocol should ensure low worst-case traversal times (WCTT) of high
priority time-critical flows, possibly at the expense of increased WCTTs of low priority
ones.
The timing analysis method should provide safe and tight upper-bounds on WCTTs, so
as to avoid resource over-provisioning.

5 SBT-NoC

In this section, we introduce a slot-based transmission protocol for real-time NoCs, called
SBT-NoC. As already mentioned, SBT-NoC provides contention-less packet transmissions.
Before explaining how the contentions are prevented, let us first discuss inter-flow relations.

5.1 Inter-flow Relations
NoC routers and links are shared resources, and it often happens that two packets, belonging
to different flows, simultaneously request to access the same resource. In such cases, a higher
priority packet should be transmitted as soon as possible, while the lower priority one should

1 An arbitration plane can be implemented in many different ways. In this work, we focus on one possible
implementation strategy – a bus system. Investigating other options is a potential future work.

2 Extending our approach to include arbitrary deadlines is a potential future work.

ECRTS 2019

26:6 Slot-Based NoC

be deferred until the shared resource is available. When reasoning about the interference
that packets of one flow may suffer, it is important to consider all potentially interfering
flows, i.e. all flows that share at least one link3 with the analysed one.

Let φi ∈ Φ be the analysed flow. We classify all its interfering flows into two disjoint sets,
namely FHi and FLi . The former set is formally introduced with Definition 1.

I Definition 1 (Set of directly interfering flows – FH). Consider fi ∈ Φ. Set FHi is a set of
directly interfering flows of fi, iff (if and only if) FHi contains all flows from Φ that have
higher priorities than fi, and share at least one link with it.

Set FHi can be formally described as follows:

∀fi, fj ∈ Φ | Pj > Pi ∧ Lj ∩ Li 6= ∅ ⇐⇒ fj ∈ FHi

Analogously, the latter set of flows FLi is formally introduced with Definition 2.

I Definition 2 (Set of directly interfered flows – FL). Consider fi ∈ Φ. Set FLi is a set of
directly interfered flows of fi, iff FLi contains all flows from Φ that have lower priorities than
fi, and share at least one link with it.

Set FLi can be formally described as follows:

∀fi, fj ∈ Φ | Pj < Pi ∧ Lj ∩ Li 6= ∅ ⇐⇒ fj ∈ FLi

In order to achieve low latencies of packets of φi, it is essential to ensure that: (i) a
transmission of any packet of φi can be delayed only by flows from FHi , and (ii) a transmission
of any packet of φi can delay transmissions of all flows from FLi . These two aspects are the
cornerstone of SBT-NoC.

5.2 Basic SBT-NoC
After defining flow relations, let us introduce a basic SBT-NoC variant. The advanced SBT-
NoC variants have additional configuration possibilities, and they are described in Section 5.3.

5.2.1 Arbitration Mechanism (Basic SBT-NoC)
The arbitration process for SBT-NoC is a continuous activity comprising a potentially infinite
sequence of arbitration slots. During one arbitration slot, all flows indicate their intentions
to transmit packets. An arbitration slot concludes with transmission permissions granted
to highest priority flows with pending requests, whose transmissions can be concurrently
accommodated without causing any mutual in-network contentions. Upon the completion of
one arbitration slot, and before the beginning of the next one, optionally, there might exist
a short pause termed ∆ of duration d∆. During the pause, all entities participating in the
arbitration should make sure that the decisions derived during the previous arbitration slot
have been implemented (e.g. flows that are granted a transmission permission should inject
their packets), and that everything is ready for the next arbitration slot. An illustrative
example of the basic SBT-NoC arbitration is illustrated in Figure 2.

3 Due to the crossbar switching fabric inside routers, router sharing is only a necessary condition for
interference between two flows, because two packets from different input ports can be transferred to
different output ports simultaneously. Conversely, link sharing (and hence port sharing) is both a
necessary and a sufficient condition for interference.

B. Nikolic, R. Hofmann, and R. Ernst 26:7

𝛽𝑧𝛽1 …𝛽2 𝛽𝑧−1

𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵

𝛼 = 𝑧 ∙ 𝑑𝐵

∆

𝑑∆

𝛽𝑧𝛽1 …𝛽2 𝛽𝑧−1

𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵

𝛼 = 𝑧 ∙ 𝑑𝐵

∆

𝑑∆

…

arbitration slot arbitration slot

time

Figure 2 Illustrative example of basic SBT-NoC arbitration.

Each arbitration slot has a fixed duration termed α, and it contains a sequence of z
dedicated arbitration intervals {β1, β2, ..., βz}, one for each flow (recall that z denotes the
number of flows in the flow-sets). All arbitration intervals have an equal duration dB, and
they are assigned to flows in order, with respect to their priorities, non-decreasingly, i.e. β1
to the highest priority flow, and βz to the lowest priority one. For the ease of exposition, let
us assume that flow indexes are also assigned in the same manner, i.e. φ1 and φz are the
highest and the lowest priority flows, respectively.

During the arbitration interval βi, a transmission of packets of φi is assessed. Similar
to the CAN protocol, we assume a dominant “0” and a recessive “1” on the arbitration
bus. At the beginning of βi, the bus is in the recessive state. If φi has packets ready for
transmission, its source router ρsrci will not attempt to change the state of the bus. The
recessive “1” indicates a transmission request. In the opposite case (no packets of φi ready
for transmission), ρsrci will, on behalf of φi, change the state of the bus to “0”, and in that
way indicate that it does not have packets ready for transmission.

However, φi (via ρsrci) is not the only flow that can manipulate the bus state during βi.
In fact, all flows from FHi can do that. The fact that these flows have higher priorities than
φi implies that their respective arbitration intervals have already concluded, and that these
flows are already either granted or denied transmission permissions. If flow φh ∈ FHi was
granted a transmission permission (manifested by a recessive “1” on the bus during βh),
then it will enforce, via ρsrch , a dominant “0” on the bus during βi, and in that way deny
transmission requests of φi. Conversely, if φh does not have packets ready for transmission,
it will not manipulate the bus state during βi. Additionally, if φi and φh originate from the
same core, and φh already has a transmission permission, then during βi the precedence will
be given to φh to set the dominant state “0” on the bus via the common router, regardless
of transmission intentions of φi.

In summary, from the perspective of flow φi, during arbitration interval βi, only φi and
flows from FHi are able to manipulate the bus state. Additionally, if the resulting bus state at
the end of βi is a recessive “1” (φi received a permission to transmit), φi will also manipulate
the bus state during arbitration intervals dedicated to flows from FLi by setting a dominant
state “0” (transmission denied).

5.2.2 Transmission Mechanism (Basic SBT-NoC)
All transmissions granted during one arbitration slot should start during a subsequent pause
∆, and should occur concurrently with the next arbitration slot. Granted transmissions must
complete before the next pause. Large packets, which cannot complete an entire transfer
during one arbitration slot, are transmitted in several stages. During the first transmission
stage, the maximum number of flits that could complete the transfer before the next pause
are selected, and those flits are transmitted as one sub-packet. A transmission of remaining

ECRTS 2019

26:8 Slot-Based NoC

slot n+1
∆

slot n+2
∆

slot n+3
∆

φ𝑖 (1/3) φ𝑖 (2/3) φ𝑖 (3/3)

φ𝑗

φ𝑘 (1/2) φ𝑘 (2/2)
ar

b
it

ra
ti

o
n

p
la

n
e

tr
an

sm
is

si
o

n
p

la
n

e

𝑪𝒋

𝑪𝒌

𝑪𝒊

time𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9

1 11 1 1

slot n
∆

1 0

𝑡2𝑡1

0 0 0 00

𝛽𝑖 𝛽𝑗 𝛽𝑘 𝛽𝑖 𝛽𝑗 𝛽𝑘 𝛽𝑖 𝛽𝑗 𝛽𝑘 𝛽𝑖 𝛽𝑗 𝛽𝑘 …

Figure 3 Illustrative example of basic SBT-NoC transmission.

flits is requested during the current arbitration slot. If the permission is granted, during the
second transmission stage the maximum number of remaining flits that could complete the
transfer before the next pause are selected, and those flit are transmitted as one sub-packet.
This process is repeated until eventually the entire packet is transferred.

An illustrative example of a transmission process in SBT-NoC is presented in Figure 3.
Three flows φi, φj and φk have packets ready for transmission at time instant t1 (illustrated
with three upward arrows). A packet of φi is the largest and it requires 3 transmission slots,
a packet of φk requires 2 slots, while a packet of φj requires only one slot. Flow φi does not
interfere with the remaining two flows, while φj ∈ FHk .

During arbitration slot n, all three flows try to indicate their transmission requests by
setting a recessive “1” during their intervals βi, βj and βk. In cases of φi and φj , the recessive
value remains, i.e. βi = βj = 1, while in the case of φk, due to a potential contention, φj
overrides the value with a dominant “0”, i.e. βk = 0. Consequently, during slot n+ 1, the
first sub-packet of φi and a packet of φj are transmitted.

During slot n+ 1, flow φj does not participate because it does not have packets ready
for transmission, and just sets a dominant “0” during βj . Flows φi and φk have sub-packets
ready for transmission, so they set recessive “1” during βi and βk. The bus remains in the
recessive state during those intervals. Consequently, during slot n+ 2, the second sub-packet
of φi and the first one of φk are being transmitted.

A similar scenario occurs during slot n+ 2, and therefore, during slot n+ 3, the third
sub-packet of φi and the second sub-packet of φk are being transmitted.

Finally, during slot n+ 3, all three flows yield transmission opportunities to other flows by
setting a dominant “0” during their respective intervals, because none of them have packets
ready for transmission during slot n+ 4.

In Figure 3, we also illustrated the transmission latencies of the analysed flows, denoted by
Ci, Cj and Ck. These latencies are formally introduced in the next section, and they represent
the basic components for deriving the worst-case timing analysis method for SBT-NoC.

5.2.3 Packet Splitting and Transmission Latencies (Basic SBT-NoC)
In the previous section, it was mentioned that transmissions of large packets are performed
in several stages, each including a transfer of one sub-packet. Before we discuss the process
of packet splitting, let us introduce NoC transmission latency.

B. Nikolic, R. Hofmann, and R. Ernst 26:9

I Definition 3 (NoC transmission latency). Consider one packet of flow φi. NoC transmission
latency of φi, termed Ci, is the time interval between the injection of a header flit from
µsrci into the NoC, and the arrival of a tail flit at µdsti , where a packet traversed its path
without interference.

NoC transmission latency is often also called the isolation latency. It can be computed
by solving Equation 1.

Ci =
header routing︷ ︸︸ ︷

(|Li| − 1) · dR +
header traversal︷ ︸︸ ︷
|Li| · dL +

payload and tail traversal︷ ︸︸ ︷(⌈
σi
σF

⌉
+ 1
)
· dL (1)

Term |Li| denotes the number of elements of Li, also called the number of hops, σF
represents a size of a flit, in bytes, while dL and dR and σi were introduced in Section 3.
NoC transmission latency is equal to the latency of a header flit reaching a destination (the
first two terms of Equation 1), augmented by a traversal of payload flits and a tail flit across
the last link, due to the pipelined transmission (the last term of Equation 1).

In SBT-NoC, each transmission needs to start during the pause, and complete before the
end of the subsequent arbitration slot, which imposes a limit on the amount of payload that
can be transferred within a single (sub-)packet. That limit, denoted by σ̂i, can be computed
by solving Equation 2.

σ̂i =
(
α− (|Li| − 1) · dR

dL
− |Li| − 1

)
· σF (2)

Equation 2 was derived from Equation 1 by substituting σi with σ̂i and Ci with α. Recall
that α denotes a slot duration.

Now we can obtain the minimum number of sub-packets ωi, which are needed to transfer
one packet of φi (Equation 3).

ωi =
⌈
σi
σ̂i

⌉
(3)

In SBT-NoC, large packets are transmitted with the minimum number of sub-packets
in the following way: the first ωi − 1 sub-packets have the maximum payload size σ̂i, and
the last sub-packet has the payload size σi − (ωi − 1) · σ̂i, also denoted by σai . Incidentally,
these packet splitting and transmission rules also apply to flows φi, φj and φk from Figure 3,
where a packet of φi is transmitted via 3 sub-packets, a packet of φj via a single sub-packet,
and a packet of φk via 2 sub-packets.

In order to reason about transmission latencies in SBT-NoC, we need to slightly revise
Definition 3, so as to account for large packets transmitted in several stages (Definition 4).

I Definition 4 (SBT-NoC transmission latency). Consider one packet of flow φi. SBT-NoC
transmission latency of φi is the time interval between the injection of the header flit of the
first sub-packet from µsrci into the NoC, and the arrival of the tail flit of the last sub-packet
at µdsti , where all transmission requests of φi during that interval were granted.

Now we can express transmission latencies of flows in SBT-NoC. If an entire packet
of a flow can be transmitted during α, then its transmission latency can be computed by
solving Equation 1, i.e., a packet is transmitted in the same way as if it was a regular NoC.
This is the case for flow φj from Figure 3. Conversely, if a packet of a flow is large and
its transmission cannot finish during α, then its transmission latency can be computed by
solving Equation 4. This is the case for flows φi and φk from Figure 3.

ECRTS 2019

26:10 Slot-Based NoC

Ci =

transmission of first ωi−1 sub-packets︷ ︸︸ ︷
(ωi − 1) · (α+ d∆) +

transmission of the last sub-packet︷ ︸︸ ︷
(|Li| − 1) · dR + |Li| · dL +

(⌈
σai
σF

⌉
+ 1
)
· dL (4)

5.2.4 Worst-case Analysis (Basic SBT-NoC)
In this section, we provide a method to obtain upper bounds on WCTTs of flows in SBT-NoC.
Several factors can contribute to the WCTT of the analysed flow, and in order to derive a
safe upper bound, we need to cover all of them.

First, a packet release of φi may occur after its arbitration interval, in which case its
router ρsrci must wait for the next arbitration slot to indicate the transmission request. In
the worst case, a packet may arrive just after its arbitration interval and will have to wait for
the remaining part of the slot, augmented by the pause, before it will be able to participate
in the arbitration process. This delay is denoted by Oi.

Oi = α− i · dB + d∆ (5)

Moreover, before a packet can start traversing the NoC, a recessive “1” must be indicated
during βi in one of the subsequent arbitration slots. Once φi gains a transmission permission,
during the next pause its packet is injected into the network. Assuming no higher priority
interference, the worst-case delay of acquiring a transmission permission and preparing a
packet for transmission is denoted by Ai (Equation 6).

Ai = α+ d∆ (6)

Note, regardless of a packet size, only the delay of obtaining the first transmission
permission needs to be considered. For large packets, remaining permissions are acquired
concurrently with transmissions of preceding sub-packets (e.g. φi and φk in Figure 3).

Finally, a transmission of a packet of φi can be delayed by higher priority flows. This
happens when φh ∈ FHi also has a packet ready for transmission and participates in the
same arbitration slot as φi. Consequently, φh prevents a transmission of φi by setting a
dominant “0” during the βi arbitration interval, and φi has to wait for the next arbitration
slot to again attempt to gain a transmission permission.

The delay that higher priority flows inflict on φi is equal to the cumulative duration of
full arbitration slots (augmented with respective pauses), in which a transmission request of
φi was denied with a dominant “0” during βi. Incidentally, each of these arbitration slots
corresponds to one subsequent (sub-)packet transmission of higher priority flows. Therefore,
the delay that one packet of a higher priority flow φh can cause to φi can be computed by
multiplying the number of sub-packets of φh, with the full number of slots (augmented with
respective pauses), i.e. ωh · (α+ d∆).

After computing the interference that one packet of φh can cause to φi, now we need to
compute the maximum number of packets of φh that can interfere with one packet of φi. An
assumption that each two consecutive packets of φh interfering with φi must be at least Th
apart may be unsafe. This is due to the indirectly interfering flows (Definition 5).

IDefinition 5 (Indirectly interfering flow). Consider three flows φg, φh and φi, where φg ∈ FHh
and φh ∈ FHi , but φg 6∈ FHi . Flow φg is an indirectly interfering flow of φi.

B. Nikolic, R. Hofmann, and R. Ernst 26:11

slot n+1
∆

slot n+2
∆

slot n+3
∆

φ𝑖

φ𝑗

ar
b

it
ra

ti
o

n
p

la
n

e
tr

an
sm

is
si

o
n

p
la

n
e

𝑪𝒊

𝑪𝒋

time𝑡5 𝑡6 𝑡7 𝑡9 𝑡10𝑡2 𝑡11

1 00

slot n
∆

0

𝑡4𝑡1

0 1 0 0

𝛽𝑖 𝛽𝑗 𝛽𝑖 𝛽𝑗 𝛽𝑖 𝛽𝑗 𝛽𝑖 𝛽𝑗 …

𝑡3 𝑡8

𝑨𝒋𝑰𝒊→𝒋𝑶𝒋

𝑹𝒋

𝑨𝒊𝑶𝒊

𝑹𝒊

Figure 4 Illustrative example of transmissions of two flows.

Even though φg cannot cause direct interference to φi (no common parts of the path),
φg can still cause indirect interference to φi in the following way: by interfering with φh, it
may cause two consecutive packets of φh to interfere with φi within a time interval which is
shorter than Th.

In order to take indirect interference effects into account, from the perspective of φi, the
first occurrence of φh should be assumed as late as possible, while remaining occurrences
should be assumed as early as possible. Under the assumption that φh is schedulable, the
effects of indirect interference on φi can be modelled with jitter Jh→i (Equation 7), which
corresponds to the difference between the latest and the earliest time instants when a packet
of φh can interfere with φi.

Jh→i =


latest occurrence︷ ︸︸ ︷
Rh − Ch −

earliest occurrence︷ ︸︸ ︷
Ah − d∆ , if ∃φg | φg ∈ FHh ∧ φg 6∈ FHi

0, otherwise
(7)

Now, the worst-case interference that φh causes to one packet of φi, termed Ih→i, can be
obtained from Equation 8.

Ih→i =

maximum number of packets︷ ︸︸ ︷⌈
Ri + Jh→i

Th

⌉
·

per-packet interference︷ ︸︸ ︷
ωh · (α+ d∆) (8)

In Equation 7 and Equation 8, the terms Rh and Ri denote the WCTTs of φi and φh,
respectively.

Finally, the WCTT of φi can be obtained from Equation 9, which should be solved
iteratively, until reaching a fixed converging point (if it exists).

Ri = Oi +Ai + Ci +
∑

∀φh∈FH
i

Ih→i (9)

An illustrative example of transmissions of two flows φi and φj , and their WCTT
components are shown in Figure 4.

ECRTS 2019

26:12 Slot-Based NoC

5.3 Advanced SBT-NoC Variants
From the previous discussion it is noticeable that Ri is to a large extent affected by the
duration of the arbitration slot α. This is because Oi and Ai directly depend on α, while the
interference from higher priority flows is inflicted in multiples of α+ d∆ intervals. Shorter α
would lead to shorter Oi and Ai, but also to increased transmission times due to sequential
transmissions of numerous sub-packets. On the other hand, longer α would increase Oi and
Ai, but would lead to fewer sub-packets and more efficient transmissions.

Basic SBT-NoC operates under the assumption that an arbitration slot size α is fixed, and
consists of z arbitration intervals, each dedicated to a single flow, i.e. α = z · dB . However,
based on the workload characteristics, in some scenarios it may be beneficial to either increase
or decrease the duration of the arbitration slot. In this section, we present and discuss two
advanced SBT-NoC variants, which allow to modify the size of the arbitration slot.

5.3.1 Advanced SBT-NoC with Slot Extension
One viable strategy to extend the duration of the arbitration slot is to introduce empty
(non-used) arbitration intervals. These intervals should be added after the used, per-flow
dedicated intervals. Therefore, assuming that γ intervals are added, the extended arbitration
slot αE consists of z + γ intervals, of which only the first z are being used. The duration of
the extended arbitration slot is αE = (z + γ) · dB .

Regardless of the number of added arbitration intervals, the worst-case analysis can be
performed in the same way as for the basic SBT-NoC, with the only difference that instead of
the basic arbitration slot α, the extended arbitration slot αE should be used. This SBT-NoC
variant is evaluated in Section 6 (Experiment 3).

Note that, an alternative approach for increasing the duration of the arbitration slot to a
desired value αE is to reduce the bus frequency and in that way increase the bus read/write
latency to d∗B > dB. Such an approach can in fact be perceived as the basic SBT-NoC,
because in this case the equality αE = z · d∗B would remain valid.

5.3.2 Advanced SBT-NoC with Slot Reduction
One viable strategy to reduce the duration of the arbitration slot is to allow arbitration
interval sharing among different lower-priority flows. This allows to achieve αR < z · dB,
where αR denotes the desired arbitration slot length. This SBT-NoC variant is explained in
detail in the reminder of this section and evaluated in Section 6 (Experiment 2).

5.3.2.1 Arbitration Mechanism (Advanced SBT-NoC with Slot Reduction)

In this variant, each flow φi has two additional parameters. The first is νi, which defines how
frequently φi participates in the arbitration. For example, νi = 1 means that φi participates
in every arbitration slot, νi = 1

2 every second, νi = 1
4 every fourth, etc. The closer νi is to 1,

the more frequently φi is able to participate in the arbitration, and consequently, the smaller
its WCTT is (analysed in Section 5.3.2.3). Therefore, we assume that ν values are assigned
to flows according to their priorities (and indexes) non-increasingly. Note that the basic
variant is a special case of this advanced variant where νi = 1,∀φi ∈ Φ.

The second parameter is θi ∈ [0, 1, ... 1
νi

), and together with νi, it defines exactly in which
arbitration slots φi participates. The arbitration eligibility condition for φi is expressed with
Equation 10, where n denotes the number of an arbitration slot.

n− bn · νic ·
1
νi

= θi (10)

B. Nikolic, R. Hofmann, and R. Ernst 26:13

𝛽1 𝛽2

𝑑𝐵 𝑑𝐵 𝑑𝐵

𝛼𝑅 = (𝑧 − 8) ∙ 𝑑𝐵

𝑑∆

slot n

time

𝛽3
∗

ν = 1 ν = ൗ1 2 ν = ൗ1 4

𝛽4
∗ 𝛽5

∗ 𝛽6
∗

2 flows 4 flows 8 flows

𝛽1 𝛽2 ∆𝛽3
∗ 𝛽4

∗ 𝛽5
∗ 𝛽6

∗

φ1 φ2 φ3 φ5 φ7 φ11

𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵

𝛼𝑅 = (𝑧 − 8) ∙ 𝑑𝐵

𝑑∆

𝛽1 𝛽2 ∆𝛽3
∗ 𝛽4

∗ 𝛽5
∗ 𝛽6

∗

φ1 φ2 φ4 φ6 φ8 φ12

𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵

𝛼𝑅 = (𝑧 − 8) ∙ 𝑑𝐵

𝑑∆

𝛽1 𝛽2 ∆𝛽3
∗ 𝛽4

∗ 𝛽5
∗ 𝛽6

∗

φ1 φ2 φ3 φ5 φ9 φ13

𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵 𝑑𝐵

𝛼𝑅 = (𝑧 − 8) ∙ 𝑑𝐵

𝑑∆

𝛽1 𝛽2 ∆𝛽3
∗ 𝛽4

∗ 𝛽5
∗ 𝛽6

∗

φ1 φ2 φ4 φ6 φ10φ14

𝑑𝐵 𝑑𝐵 𝑑𝐵

slot 1 slot 2 slot 3 slot 4

…

𝜃1 = 𝜃2 = 𝜃4 = 𝜃6 = 𝜃10 = 𝜃14 = 0

𝜃3 = 𝜃5 = 𝜃7 = 𝜃11 = 1

𝜃8 = 𝜃12 = 2

𝜃9 = 𝜃13 = 3

arbitration eligibility condition for φ𝑖:

𝑛 − 𝑛 ∙ ν𝑖 ∙
1

ν𝑖
= 𝜃𝑖

Figure 5 Illustrative arbitration example of advanced SBT-NoC with slot reduction.

In Figure 5 is illustrated an example of 14 flows φ1 − φ14. Flows φ1 and φ2 have
ν1 = ν2 = 1. The next four flows φ3−φ6 have ν3 = ν4 = ν5 = ν6 = 1

2 . Finally, the remaining
eight flows φ7 − φ14 have ν7 = ... = ν14 = 1

4 . Moreover, θ values are also illustrated in
Figure 5. Flows participate only in slots for which their arbitration eligibility condition is
fulfilled. For example, φ1 and φ2 participate in all slots, φ3 and φ5 in odd ones, φ4 and φ6 in
even ones, φ7 and φ11 in slots {1, 5, 9, 13, ...}, φ8 and φ12 in slots {2, 6, 10, 14, ...}, etc.

5.3.2.2 Packet Splitting, Transmission Mechanism and Transmission Latencies
(Advanced SBT-NoC with Slot Reduction)

The packet splitting in this variant is similar to that of the basic one. For flow φi, the
maximum sub-packet payload size σ̂i and the number of sub-packets ωi can be obtained from
Equations 2-3 (Section 5.2.3), where α is replaced by αR.

The transmission mechanism in this variant is also very similar to the one from the basic
variant. After a flow receives a transmission permission during one arbitration slot, a transfer
of one of its (sub-)packets is accommodated in the subsequent slot. One important difference
from the basic variant is that, for flows with ν < 1, two successive arbitration slots are
separated from each other by 1

νi
−1 slots, and hence the corresponding transmission slots will

be separated from each other as well. This implies that transmission latencies between the
basic and this variant may differ, and assuming the latter case, the transmission latency of φi
can be obtained from Equation 11. For flows with ν = 1, Equation 11 becomes Equation 4.

Ci =

transmission of first ωi−1 sub-packets︷ ︸︸ ︷
(ωi − 1) · (αR + d∆) · 1

νi
+

transmission of the last sub-packet︷ ︸︸ ︷
(|Li| − 1) · dR + |Li| · dL +

(⌈
σai
σF

⌉
+ 1
)
· dL (11)

5.3.2.3 Worst-case Analysis (Advanced SBT-NoC with Slot Reduction)

In this section, we provide a method to obtain upper-bounds on WCTTs of flows in advanced
SBT-NoC with slot reduction. Several components constitute the WCTT, and in order to
derive a safe upper bound, we need to cover all of them.

Recall from Section 5.2.4 that Oi corresponds to the time interval between a packet
release and a beginning of the next slot when φi can participate in the arbitration. In the
worst-case, a packet may arrive just after its arbitration interval, and has to wait until the

ECRTS 2019

26:14 Slot-Based NoC

next slot in which it can participate in the arbitration. This is covered with Equation 12,
where i stands for the index of the arbitration interval of φi in αR. For flows with ν = 1,
Equation 12 becomes Equation 5.

Oi =
until beginning of next slot︷ ︸︸ ︷
αR − i · dB + d∆ +

until beginning of next φi-eligible slot︷ ︸︸ ︷(
1
νi
− 1
)
· (αR + d∆) (12)

The worst-case delay of acquiring a transmission permission and preparing a packet for
transmission, denoted by Ai, requires a single slot (augmented by the pause). This term is
the same as in basic SBT-NoC (Equation 6), where α is replaced by αR.

The last component contributing to the WCTT of φi is the higher priority interference.
Let us first discuss the effects of indirect interferences. Similar to the basic variant, the effects
of the indirect interference from indirectly interfering flows to φi via φh can be modelled
with jitter Jh→i. The term Jh→i can be computed as before (Equation 7), because, relative
to a packet release of φh, terms Rh − Ch and Ah − d∆ cover the latest and the earliest time
instants, respectively, when a packet of φh may interfere with φi.

Now, let us obtain the interference that one packet of higher-priority flow φh can cause
to φi. We have to analyse several cases:
Case 1 (νh = νi = 1): In this scenario, φi can suffer interference only from flows with

ν = 1. From the perspective of φi, the system behaves in the same way as the basic
SBT-NoC, and the maximum interference caused by φh to a packet of φi can be obtained
from Equation 8, where α is replaced by αR.

Case 2 (νh = 1 ∧ νi < 1 ∧ 6 ∃φg | φg ∈ FH
h ∧ φg 6∈ FH

i): In this scenario, φi does
not suffer indirect interference via φh. Therefore, apart from flows in FHi , there exist no
other flows which can disrupt successive transmission requests of sub-packets of φh. This
allows to compute the maximum interference from φh to a packet of φi by considering
that sub-packets of φh traverse in consecutive slots (Equation 13).

Ih→i =

maximum number of packets︷ ︸︸ ︷⌈
Ri
Th

⌉
·

per-packet interference︷ ︸︸ ︷
dωh · νie ·

1
νi
· (αR + d∆) (13)

In Equation 13, a multiplication by νi, a ceiling operator, and a division by νi are needed,
because φi participates in the arbitration in every 1

νi
th slot.

Case 3 (νh = νi ∧ θh 6= θi): In this scenario, φi and φh participate in different arbitration
slots and hence φh cannot cause interference to φi (Equation 14).

Ih→i = 0 (14)

Case 4 (All other scenarios): In these scenarios, it is not safe to assume that sub-packets of
φh are transmitted in consecutive slots, either due to the existence of indirectly interfering
flows, or due to νh < 1. Separated transmissions of successive sub-packets of φh may
cause more interference to φi, than what would otherwise be caused by their transmissions
in consecutive slots. A safe assumption is that, as long as φh has sub-packets ready for
transmission, it will participate in the same arbitration slots with φi, and after each of
them, transmit a single sub-packet. By following this reasoning, an upper-bound on the
interference from φh to a packet of φi can be obtained by solving Equation 15.

I◦h→i =

maximum number of packets︷ ︸︸ ︷⌈
Ri + Jh→i

Th

⌉
·

per-packet interference︷ ︸︸ ︷
ωh ·

1
νi
· (αR + d∆) (15)

B. Nikolic, R. Hofmann, and R. Ernst 26:15

slot 4
∆

slot 5
∆

slot 6
∆

φ𝑖

φ𝑗

ar
b

it
ra

ti
o

n
p

la
n

e
tr

an
sm

is
si

o
n

p
la

n
e

𝑪𝒋

time𝑡9 𝑡11 𝑡12 𝑡13 𝑡14 𝑡15

0 00

slot 3
∆

1

𝑡8𝑡7

1 0

𝛽𝑖
∗ 𝛽𝑗

∗ 𝛽𝑖
∗ 𝛽𝑖

∗ 𝛽𝑗
∗ 𝛽𝑖

∗ …

𝑨𝒋𝑰𝒊→𝒋

𝑹𝒋

𝑪𝒊𝑨𝒊

𝑹𝒊

𝑡10

∆

00

∆

0

𝛽𝑖
∗ 𝛽𝑗

∗ 𝛽𝑖
∗

𝑶𝒊

𝑶𝒊

𝑡2 𝑡3 𝑡4 𝑡5 𝑡6

slot 1 slot 2

𝑡1

Figure 6 Illustrative example of transmissions of two flows.

Additionally, assuming that φh is schedulable, the distance between the first and the
last sub-packets of its one packet is limited by Rh. Thus, by considering that sub-packets
of φh may interfere with φi during the entire interval Rh, yet another upper bound on the
interference can be derived (Equation 16).

I•h→i =

maximum number of packets︷ ︸︸ ︷⌈
Ri + Jh→i

Th

⌉
·

per-packet interference︷ ︸︸ ︷⌈⌈
Rh

αR + d∆

⌉
· νi
⌉
· 1
νi

(αR + d∆) (16)

Note that Equation 16 is derived using similar reasoning to that of Equation 13. The
difference is that instead of ωh slots, it is conservatively assumed that

⌈
Rh

αR+d∆

⌉
slots are

needed to transfer one packet of φh.
Since both these bounds are safe, the minimum of them can be used (Equation 17).

Ih→i = min{I◦h→i, I•h→i} (17)

Finally, the WCTT of φi can be computed by summing all components, as in the basic
variant (Equation 9).

In Figure 6 are shown transmissions of two flows φi and φj for the advanced SBT-NoC
with slot reduction, where φi ∈ FHj , νi = 1, νj = 1

2 and θj = 1. Moreover, the components
contributing to the WCTTs of φi and φj are also illustrated.

6 Experimental Evaluation

In this section, we present the results of the experimental evaluation of SBT-NoC. The relevant
NoC parameters which are common to all experiments are summarised in Table 1. The
experiment-specific parameters are separately introduced in the context of each experiment.
An asterisk sign denotes a randomly generated value, assuming a uniform distribution. Flow
source and destination cores/routers are assigned randomly, with a restriction that they have
to be different entities, i.e. ∀φi ∈ Φ : µsrci 6= µdsti ∧ ρsrci 6= ρdsti .

6.1 Experiment 1: SBT-NoC Run-time Performance Evaluation
In order to evaluate the performance of SBT-NoC, we have implemented a simulator of a
multiprocessor platform. The simulator supports two different types of NoCs: (i) a regular
NoC architecture with single-channel ports and 2-flit buffers, utilising the fixed-priority

ECRTS 2019

26:16 Slot-Based NoC

Table 1 Analysis and simulation parameters.

NoC topology 2-D mesh
Routing mechanism X-Y
Router frequency (ψ) 100MHz

Router latency (dR) + link latency (dL) 3 + 1 cycles
Bus writing/reading latency (dB) 1 cycle

Pause between arbitration slots (d∆) 0 cycles
Link width = flit size (σF) 4B

Flow source core/router (µsrc
i / ρsrc

i) Random
Flow destination core/router (µdst

i / ρdst
i) Random

Flow deadline (Di) = flow period (Ti) [10ms - 50ms]*
Flow priority assignment policy Rate monotonic

1 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

Flow priority

F
lo

w
 W

C
T

T
 (

in
 µ

s
)

SBT NoC (simulation)
Regular NoC (simulation)

Figure 7 WCTTs of regular NoC (simulation) and basic SBT-NoC (simulation).

packet-level arbitration mechanism (in Section 1 referred to as the basic NoC), and (ii) the
SBT-NoC with the basic arbitration variant (introduced in Section 5.2). In both cases, NoC
parameters are identical to those from Table 1. The assumed NoC size is 4× 4.

The workload characteristics are as follows. There exist 200 flows with unique priorities
assigned with the rate-monotonic policy. Smaller numbers represent higher priorities. The
flow periods and deadlines are as specified in Table 1. Regarding flow sizes, the following
trend applies: higher priority flows have smaller sizes. The highest priority flow has the
smallest payload size of 500B, the lowest priority flow has the biggest payload size of 10kB,
and the sizes of intermediate flows are assigned equidistantly.

We run the simulations of the two aforementioned approaches, each for 100 seconds of
simulated time. For each approach, we recorded the observed WCTTs of all 200 flows.

The results are illustrated in Figure 7. It is evident that basic NoCs do not have efficient
mechanisms to leverage high priorities to achieve low WCTTs, which is one of the basic
real-time requirements. In fact, when a lower priority flow starts its transmission through
a shared router, it can block any later arriving higher priority flow for the duration of
its entire traversal through that router. During a single transmission, a higher priority
flow can experience blocking from multiple lower priority flows across different routers.
Consequently, there exists an almost negligible difference in WCTTs of flows with highest
and lowest priorities, despite the fact that higher priority ones have significantly smaller

B. Nikolic, R. Hofmann, and R. Ernst 26:17

1 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

Flow priority

F
lo

w
 W

C
T

T
 (

in
 µ

s
)

SBT NoC (analysis)
SBT NoC (simulation)
Regular NoC (simulation)

(a)

1 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

Flow priority

F
lo

w
 W

C
T

T
 (

in
 µ

s
)

SBT NoC (analysis)
SBT NoC (simulation)
Regular NoC (simulation)

(b)

Figure 8 WCTTs of regular NoC (simulation) and basic SBT-NoC (simulation & analysis).

sizes. This result coincides with the statement from Section 1 that basic NoCs without any
enhancements do not represent satisfactory solutions for the real-time domain, and further
motivates research activities in the area of real-time oriented NoCs.

SBT-NoC demonstrates a significantly different behaviour. For high priority flows, SBT-
NoC provides substantially smaller WCTTs than a regular NoC, and for the highest priority
ones WCTTs are even several times smaller. These WCTT reductions are achieved at the
expense of the lower priority traffic, and for low priority flows SBT-NoC provides bigger
WCTTs than a regular NoC. The observed WCTTs suggest that SBT-NoC does not have
negative effects on the run-time performance (no unusual and unexpected spikes in WCTTs),
thus we conclude that SBT-NoC fulfils the first two objectives from Section 4.

Additionally, we derived the analytical WCTT upper-bounds by applying the method
proposed in Section 5.2.4. A comparison of analytical and simulation results is illustrated
in Figure 8a, where the focus is on 30% of flows with high priorities, (priorities 1 to 60).
Interestingly, for the highest priority flows, even the SBT-NoC analytical method provides
smaller WCTTs than the regular NoC simulations. The trends remain until priority 30, and
imply that SBT-NoC, in conjunction with an analysis method, can produce low bounded4
WCTTs of high priority flows. This means that the third objective from Section 4 is fulfilled.

For completeness, we have extended the observation interval to include all flows (Figure 8b).
Unsurprisingly, as priorities decrease (i.e. bigger numbers on the X-axis), a difference between
analytical and simulation results grows. This can be attributed to the fact that simulations
are performed for only a limited time, which makes it unlikely that all worst-case scenarios
were indeed captured. Moreover, the analysis method might contain a certain degree of
pessimism, and reducing it is a potential future work activity.

Summary. SBT-NoC provides efficient means to achieve low WCTTs of high-priority flows
at the expense of increased WCTTs of low priority ones. SBT-NoC does not have a negative
effect on the run-time performance, which makes it a promising solution for soft real-time
systems, where good performance might also be one of the requirements. Perhaps even more
importantly, SBT-NoC provides low bounded WCTTs of high priority flows, which makes it
a viable choice for hard real-time systems as well.

4 Recall that for a regular NoC there exists no worst-case analysis method.

ECRTS 2019

26:18 Slot-Based NoC

1−5 45−50 95−100 145−150 195−200
−80

−60

−40

−20

0

20

40

60

80
W

C
T

T
 r

e
d
u
c
ti
o
n
 (

in
 %

)

Flow priority

(a) C1: σi ∈ [8B − 256B],∀φi ∈ Φ.

1−5 45−50 95−100 145−150 195−200

−80

−60

−40

−20

0

20

40

60

W
C

T
T

 r
e
d
u
c
ti
o
n
 (

in
 %

)

Flow priority

(b) C2: σi ∈ [1kB − 4kB],∀φi ∈ Φ.

1−25 225−250 475−500 725−750 975−1000

−60

−40

−20

0

20

40

60

W
C

T
T

 r
e
d
u
c
ti
o
n
 (

in
 %

)

Flow priority

(c) C3: σi ∈ [8B − 256B],∀φi ∈ Φ.

1−25 225−250 475−500 725−750 975−1000

−80

−60

−40

−20

0

20

40

60

W
C

T
T

 r
e
d
u
c
ti
o
n
 (

in
 %

)

Flow priority

(d) C4: σi ∈ [1kB − 4kB],∀φi ∈ Φ.

Figure 9 Relative ruction in analytically derived WCTTs of the advanced SBT-NoC with slot
reduction – “A” against the basic SBT-NoC – “B”.

6.2 Experiment 2: SBT-NoC Analytical Evaluation (Synthetic
Workload)

In this experiment, we compare analytical results of the basic SBT-NoC variant – “B”, and the
advanced SBT-NoC variant with slot reduction – “A”, for different workload configurations.
“A” is configured as follows: 12.5% flows with the highest priorities have ν = 1, the next
12.5% have ν = 1

2 , the next 25% have ν = 1
4 and the remaining 50% have ν = 1

8 . Phases (θ
values) are derived from flow priorities in the following way: θi = Pi − bPi · νic · 1

νi
.

The NoC size is extended to 8x8. Flow deadlines, periods, priorities, source and destination
cores are assigned in the same way as in Experiment 1 (Table 1). Moreover, the evaluation
includes 2 different setups for the workload size: (i) z = 200 flows and (ii) z = 1000 flows, as
well as 2 different setups for the payload size: (i) σi ∈ [8B− 256B] and (ii) σi ∈ [1kB− 4kB].
Assuming a certain payload size range, flow payloads are randomly generated values (a
uniform distribution). The combinations of payload and workload size setups produce 4
distinctive evaluation configurations (C1-C4). For each of them, we generate 1000 flow-sets
and analytically obtain WCTT upper-bounds with both evaluated SBT-NoC variants. We
compare derived bounds by calculating the relative reduction in WCTTs achieved by “A”
against “B”. In cases where “B” outperforms “A”, the WCTT reduction has negative values.

The results are illustrated in Figure 9. It is visible that a selection of the parameter
ν has a significant impact on WCTTs. Therefore, let us analyse different sub-domains
independently. For ν = 1 (highest priority flows), in all configurations except C2, “A” derives

B. Nikolic, R. Hofmann, and R. Ernst 26:19

tighter bounds. This is expected, because “A” utilises shorter arbitration slots, and as
discussed in Section 5.3.2.3, this reduces several WCTT components. As a number of flows
increases, so do the improvements, because the difference in the durations of arbitration
slots of “A” and “B” also grows. On the other hand, the increase in payload sizes leads to
reduced improvements. This is because shorter slots yield more sub-packets, which limits
the effects of a pipelined flit traversal and increases transmission overheads (more header
and tail flits). These factors cause longer transmission latencies of analysed flows, and also
inflate the interference they suffer from higher priority flows.

For flows with ν = 1
2 , the observations regarding the effects of flow numbers and payload

sizes on WCTT improvements are similar to those for flows with ν = 1. In configurations
C1 and C3, “A” is beneficial for flows with ν = 1

2 . This implies that in scenarios with
numerous flows and relatively small payload sizes, a strategy of assigning ν = 1

2 to flows with
intermediate priorities may still lead to more favourable conditions for them, than what they
could experience in “B”. Another interesting observation from all evaluated configurations is
that, within an observed sub-domain (ν = 1

2), improvements of “A” over “B” increase with
decreasing priorities. This is because in “B” a flow can suffer interference from all higher
priority flows sharing a part of the path with it, while in “A” that is not the case. In fact, if
two flows in “A” have the same parameter ν, they can interfere only if they have the same θ.
For ν = 1

4 , “A” outperforms “B” only in C3, and in rare cases in C1.
Finally, for flows with ν = 1

8 , in none of scenarios “A” produces smaller WCTTs than
“B”. This is expected, because the improvements of “A” over “B” for high priority flows were
in fact achieved at the expense of increased latencies of the low priority traffic.

Summary. Variant “A” allows to even further reduce WCTTs of highest priority flows by
decreasing a duration of an arbitration slot via an arbitration interval sharing among low
priority flows. The improvements against variant “B” are the most significant for the highest
priority flows (ν = 1), while depending on the nature of the workload, significant WCTT
reductions can also be achieved for flows with ν < 1. Of course, WCTT reductions for high
priority flows are achieved at the expense of increased WCTTs of the low priority traffic.

6.3 Experiment 3: SBT-NoC Analytical Evaluation (Use Case of
Autonomous Driving Vehicle Application)

In this experiment, we perform the analytical evaluation of SBT-NoC. The workload is
modeled after the use-case of the autonomous driving vehicle application [22]. The use-case
consists of 33 functionalities producing 38 traffic flows in total. For a more detailed description
of the use-case, a reader is advised to consult the work of Shi et al. [22].

The evaluation is performed in the following way. First, assuming the basic SBT-NoC
variant – “B”, the WCTT upper bounds of all flows are analytically obtained. Then, the
same is performed for the two configurations of the advanced SBT-NoC with slot extension.
The first one, referred to as “E10”, has the slot length αE10 which is 10 times bigger than
the slot length αB of the basic variant, i.e. αE10 = 10 · αB. The second one, referred to
as “E100”, has the slot length αE100, where αE100 = 10 · αE10 = 100 · αB. The incentive
to evaluate “E10” and “E100” comes from the fact that there exist only 38 flows in this
use-case, and the approach “B” is likely to lead to inefficient sequential transmissions of lots
of small sub-packets, causing large WCTTs. Finally, in order to compare the performance
of SBT-NoC with some other available approaches for real-time NoCs, we included priority
preemptive NoCs with flit-level arbitration and per flow dedicated virtual channels in this
evaluation [21], hereafter referred to as “PP”. The WCTTs of all flows are obtained using the
latest available analysis for such NoCs [17].

ECRTS 2019

26:20 Slot-Based NoC

0

0.5

1

1.5

2

2.5

Flows

F
lo

w
 W

C
T

T
 (

in
 m

s
)

F
B

U
3

 →
 V

O
D

1
F

B
U

8
 →

 V
O

D
2

F
B

U
1

 →
 B

F
E

1
F

B
U

2
 →

 B
F

E
2

F
B

U
3

 →
 B

F
E

3
F

B
U

4
 →

 B
F

E
4

F
B

U
5

 →
 B

F
E

5
F

B
U

6
 →

 B
F

E
6

F
B

U
7

 →
 B

F
E

7
F

B
U

8
 →

 B
F

E
8

F
D

F
1

 →
 S

T
P

H
F

D
F

2
 →

 S
T

P
H

S
T

P
H

 →
 O

B
M

G
B

F
E

1
 →

 F
D

F
1

B
F

E
2

 →
 F

D
F

1
B

F
E

3
 →

 F
D

F
1

B
F

E
4

 →
 F

D
F

1
B

F
E

5
 →

 F
D

F
2

B
F

E
6

 →
 F

D
F

2
B

F
E

7
 →

 F
D

F
2

B
F

E
8

 →
 F

D
F

2
V

O
D

1
 →

 N
A

V
C

V
O

D
2

 →
 N

A
V

C
N

A
V

C
 →

 T
H

R
C

U
S

O
S

 →
 O

B
M

G
S

P
E

S
 →

 S
T

A
C

S
T

A
C

 →
 T

H
R

C
N

A
V

C
 →

 D
IR

C
S

P
E

S
 →

 N
A

V
C

V
IB

S
 →

 S
T

A
C

O
B

D
B

 →
 N

A
V

C
O

B
D

B
 →

 O
B

M
G

N
A

V
C

 →
 O

B
D

B
T

P
M

S
 →

 S
T

A
C

P
O

S
I

→
 N

A
V

C
P

O
S

I
→

 O
B

M
G

O
B

M
G

 →
 O

B
D

B
S

T
A

C
 →

 T
P

R
C

NoC with VCs & flit−level preemptions

SBT−NoC with α
B

SBT−NoC with α
E10

SBT−NoC with α
E100

Figure 10 Analytically derived WCTTs of flows of the autonomous driving vehicle application [22].

The evaluation results are illustrated in Figure 10. As expected “B” displays the worst
performance. Even though it offers short arbitration slots and short out-of-interval-arrival
penalties (the first two terms in Equation 9), the transmissions are performed via numerous
short sequentially transmitted sub-packets, thus causing large transmission latencies of
entire packets (the third term in Equation 9). On the other hand, “E10” utilises 10 times
longer arbitration slots, which may lead to 10 times longer out-of-interval-arrival penalties.
However, “E10” performs transmissions with fewer sub-packets, which causes significantly
shorter transmission latencies of entire packets. Consequently, “E10” produces 17.47−43.75%
smaller WCTTs than “B”. The average WCTT reduction is 26.25%.

In the case of “E100”, arbitration slots and out-of-interval-arrival penalties are 10 times
larger than in “E10”. On the other hand, “E100” performs more efficient (shorter) packet
transmissions via fewer larger sub-packets, however, the achieved gains cannot compensate for
the penalties arising from the increased slot size. Therefore, “E100” produces 8.72− 233.28%
larger WCTTs than “E10”. The average WCTT increase is 39.37%.

Finally, compared to the priority-preemptive approach “PP”, the best performing SBT-
NoC scheme “E10” produces 1.17− 31.21% larger WCTTs. The average WCTT increase is
7.33%. However, it is fair to point out that “PP” has more substantial hardware requirements
than SBT-NoC schemes. Specifically, it operates under the assumption that there exist
per-flow dedicated virtual channels in each of the traversed router ports, and that the
arbitration is performed on a flit level. Implementing these features requires a sophisticated
in-router logic and buffer space, which are typically not available in commercial NoCs. On
the other hand, SBT-NoC requires a dedicated bus-based arbitration mechanism, which we
believe is less costly and less demanding to implement.

Please note that “E10” may not be the most efficient SBT-NoC configuration for this
use-case. It is only the best performing of the three SBT-NoC variants covered in this
preliminary evaluation. In order to uncover the full potential of SBT-NoC, more detailed
evaluations are necessary, and these activities are a potential future work.

B. Nikolic, R. Hofmann, and R. Ernst 26:21

Summary. A decision regarding arbitration slot sizes should be thoughtfully derived, because
it significantly impacts the efficiency of SBT-NoC. The important aspects are platform
architecture properties and a workload structure. Too short slots may lead to packet
fragmentation into numerous sequentially transmitted sub-packets, which may cause longer
WCTTs. On the other hand, too large slots may lead to significantly longer arbitration
procedures, and longer out-of-interval-arrival penalties, both contributing to longer WCTTs.
When compared with the priority-preemptive NoC scheme, the best of the three evaluated
SBT-NoC approaches shows comparable results, and given the substantially higher hardware
requirements associated with the former scheme, we believe that SBT-NoC is an attractive
alternative, and a promising communication solution for real-time NoCs.

7 Conclusions and Future Work

In this work, we presented SBT-NoC – a slot-based transmission protocol for NoCs, and the
accompanying worst-case analysis. SBT-NoC features contention-less slot-based transmissions,
arbitrated via a protocol running on a dedicated network medium. SBT-NoC provides
bounded low latencies of high-priority time-critical flows, at the expense of low priority ones.
In this work, an SBT-NoC implementation via a dedicated bus medium was presented.

Moreover, this work includes a preliminary experimental evaluation of SBT-NoC. The
initial results suggest that the proposed approach fulfils several important requirements of
the real-time domain, and that it presents a viable choice for interconnect mediums in next-
generation real-time-oriented multiprocessors. SBT-NoC offers a plethora of configuration
options, of which only few have been evaluated in this work. Our future work plans include
investigations of alternative technologies for an arbitration medium (e.g. a NoC interconnect),
a practical implementation, and a design space exploration for deriving the most efficient
SBT-NoC configurations for given platform and workload characteristics. This includes
finding answers to the following questions: how to assign priorities, configure slot durations
and assign parameters ν and θ?

References

1 Adapteva. Epiphany Architecture. URL: www.adapteva.com/docs/epiphany_arch_ref.pdf.
2 L. Benini and G. De Micheli. Networks on chips: a new SoC paradigm. The Comp. J.,

35(1):70–78, January 2002.
3 Josef Berwanger, Martin Peller, and Robert Griessbach. byteflight - A new protocol for

safety-critical applications. In FISITA World Automotive Congress, 2000.
4 T. Bjerregaard and J. Sparso. Implementation of guaranteed services in the MANGO clockless

network-on-chip. IEE Proc. - Computers & Digital Techniques, 153(4):217–229, July 2006.
5 W.J. Dally. Virtual-channel flow control. Trans. Parall. & Distr. Syst., 3(2):194–205, March

1992.
6 W.J. Dally and C.L. Seitz. Deadlock-Free Message Routing in Multiprocessor Interconnection

Networks. Trans. Computers, 1987.
7 Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. Controller Area Network

(CAN) schedulability analysis: Refuted, revisited and revised. Real-Time Syst. J., 2007.
8 K. Duraisamy and P. P. Pande. Enabling High-Performance SMART NoC Architectures Using

On-Chip Wireless Links. Trans. Very Large Scale Integration Syst., 2017.
9 K. Goossens, J. Dielissen, and A. Radulescu. AEthereal network on chip: concepts, architec-

tures, and implementations. IEEE Design & Test Computers, 2005.

ECRTS 2019

www.adapteva.com/docs/epiphany_arch_ref.pdf

26:22 Slot-Based NoC

10 Tim Harde, Matthias Freier, Georg von der Brüggen, and Jian-Jia Chen. Configurations and
Optimizations of TDMA Schedules for Periodic Packet Communication on Networks on Chip.
In 26th RTNS, 2018.

11 Leandro Soares Indrusiak, Alan Burns, and Borislav Nikolić. Buffer-aware bounds to multi-
point progressive blocking in priority-preemptive NoCs. In 21st DATE, 2018.

12 Intel. Single-Chip-Cloud Computer, 2010. URL: www.intel.com/content/dam/www/public/us
/en/documents/technology-briefs/intel-labs-single-chip-cloud-article.pdf.

13 E. Kasapaki, M. Schoeberl, R. B. Sørensen, C. Müller, K. Goossens, and J. Sparsø. Argo: A
Real-Time Network-on-Chip Architecture With an Efficient GALS Implementation. Trans.
Very Large Scale Integration Syst., 2016.

14 N. K. Kavaldjiev and G. J. M. Smit. A Survey of Efficient On-Chip Communications for SoC.
In 4th Symp. Emb. Syst., 2003.

15 M. Liu, M. Becker, M. Behnam, and T. Nolte. A tighter recursive calculus to compute the
worst case traversal time of real-time traffic over NoCs. In 22nd ASPDAC, 2017.

16 R. Makowitz and C. Temple. Flexray - A communication network for automotive control
systems. In Int. WS Factory Comm. Syst., 2006.

17 Borislav Nikolić, Sebastian Tobuschat, Leandro Soares Indrusiak, Rolf Ernst, and Alan Burns.
Real-time analysis of priority-preemptive NoCs with arbitrary buffer sizes and router delays.
Real-Time Syst. J., 2018.

18 C. Paukovits and H. Kopetz. Concepts of Switching in the Time-Triggered Network-on-Chip.
In 14th RTCSA, pages 120–129, 2008.

19 Yue Qian, Zhonghai Lu, and Wenhua Dou. Analysis of worst-case delay bounds for best-effort
communication in wormhole networks on chip. In NOCS, 2009.

20 Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele Capasso, Jamie
Garside, Kees Goossens, Sven Goossens, Scott Hansen, Reinhold Heckmann, Stefan Hepp,
Benedikt Huber, Alexander Jordan, Evangelia Kasapaki, Jens Knoop, Yonghui Li, Daniel
Prokesch, Wolfgang Puffitsch, Peter Puschner, Andrć Rocha, Cláudio Silva, Jens Sparsø, and
Alessandro Tocchi. T-CREST: Time-predictable multi-core architecture for embedded systems.
J. Syst. Arch., 2015.

21 Zheng Shi and A. Burns. Real-Time Communication Analysis for On-Chip Networks with
Wormhole Switching. In NOCS, 2008.

22 Zheng Shi, Alan Burns, and Leandro Soares Indrusiak. Schedulability Analysis for Real Time
On-Chip Communication with Wormhole Switching. Int. J. Emb. & Real-Time Comm. Syst.,
2010.

23 Hyojeong Song, Boseob Kwon, and Hyunsoo Yoon. Throttle and preempt: a new flow control
for real-time communications in wormhole networks. In 1997 Int. Conf. Parall. Processing,
August 1997.

24 S. Tobuschat and R. Ernst. Real-time communication analysis for Networks-on-Chip with
backpressure. In 20th DATE, 2017.

25 D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina, C. Miao,
J. F. Brown III, and A. Agarwal. On-Chip Interconnection Architecture of the Tile Processor.
MICRO, 2007.

26 Q. Xiong, F. Wu, Z. Lu, and C. Xie. Extending Real-Time Analysis for Wormhole NoCs.
Trans. Computers, 66(9), 2017.

27 Qin Xiong, Zhonghai Lu, Fei Wu, and Changsheng Xie. Real-Time Analysis for Wormhole
NoC: Revisited and Revised. In 26th ACM Great Lakes Symp. VLSI, 2016.

	Introduction
	Related Work
	System Model
	Platform Architecture
	Workload

	Problem Formulation
	SBT-NoC
	Inter-flow Relations
	Basic SBT-NoC
	Arbitration Mechanism (Basic SBT-NoC)
	Transmission Mechanism (Basic SBT-NoC)
	Packet Splitting and Transmission Latencies (Basic SBT-NoC)
	Worst-case Analysis (Basic SBT-NoC)

	Advanced SBT-NoC Variants
	Advanced SBT-NoC with Slot Extension
	Advanced SBT-NoC with Slot Reduction

	Experimental Evaluation
	Experiment 1: SBT-NoC Run-time Performance Evaluation
	Experiment 2: SBT-NoC Analytical Evaluation (Synthetic Workload)
	Experiment 3: SBT-NoC Analytical Evaluation (Use Case of Autonomous Driving Vehicle Application)

	Conclusions and Future Work

