
Semantic Patches for Java Program Transformation
(Artifact)

Hong Jin Kang
School of Information Systems, Singapore Management University, Singapore
hjkang.2018@phdis.smu.edu.sg

Ferdian Thung
School of Information Systems, Singapore Management University, Singapore
ferdiant.2013@phdis.smu.edu.sg

Julia Lawall
Sorbonne Université/Inria/LIP6, France
Julia.Lawall@lip6.fr

Gilles Muller
Sorbonne Université/Inria/LIP6, France
Gilles.Muller@lip6.fr

Lingxiao Jiang
School of Information Systems, Singapore Management University, Singapore
lxjiang@smu.edu.sg

David Lo
School of Information Systems, Singapore Management University, Singapore
davidlo@smu.edu.sg

Abstract
The program transformation tool Coccinelle is de-
signed for making changes that is required in many
locations within a software project. It has been
shown to be useful for C code and has been been
adopted for use in the Linux kernel by many de-
velopers. Over 6000 commits mentioning the use of
Coccinelle have been made in the Linux kernel.

Our artifact, Coccinelle4J, is an extension to

Coccinelle in order for it to apply program trans-
formations to Java source code. This artifact accom-
panies our experience report “Semantic Patches for
Java Program Transformation”, in which we show
a case study of applying code transformations to
upgrade usage of deprecated Android API methods
to replacement API methods.

2012 ACM Subject Classification Software and its engineering → Software notations and tools
Keywords and phrases Java, semantic patches, automatic program transformation
Digital Object Identifier 10.4230/DARTS.5.2.10
Acknowledgements This research was supported by the Singapore National Research Foundation (award
number: NRF2016-NRF-ANR003) and the ANR ITrans project.

Related Article Hong Jin Kang, Ferdian Thung, Julia Lawall, Gilles Muller, Lingxiao Jiang, and David
Lo, “Semantic Patches for Java Program Transformation”, in 33rd European Conference on Object-
Oriented Programming (ECOOP 2019), LIPIcs, Vol. 134, pp. 22:1–22:27, 2019.
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.22
Related Conference 33rd European Conference on Object-Oriented Programming (ECOOP 2019), July
15–19, 2019, London, United Kingdom

© Hong Jin Kang, Ferdian Thung, Julia Lawall, Giles Muller, Lingxiao Jiang, and David Lo;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Dagstuhl Artifacts Series, Vol. 5, Issue 2, Artifact No. 10, pp. 10:1–10:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hjkang.2018@phdis.smu.edu.sg
mailto:ferdiant.2013@phdis.smu.edu.sg
mailto:Julia.Lawall@lip6.fr
mailto:Gilles.Muller@lip6.fr
mailto:lxjiang@smu.edu.sg
mailto:davidlo@smu.edu.sg
https://doi.org/10.4230/DARTS.5.2.10
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.22
https://creativecommons.org/licenses/by/3.0/de/deed.en
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


10:2 Semantic Patches for Java Program Transformation (Artifact)

1 Scope

In this document, instructions to set up Coccinelle4J are provided. Furthermore, we provide
a selection of semantic patches that can be applied by Coccinelle4J to source code extracted
from real-world Java projects. These semantic patches are written in SmPL, a scripting language
provided by Coccinelle [1].

2 Content

The artifact package includes:
a Dockerfile to build the Docker image coccinelle4j/coccinelle4j
a document that provides instructions on how to run Coccinelle4J (ecoop-artifact.pdf)
Coccinelle4J’s source code
The examples described in the experience report. For each example, we include

semantic patch specified in SmPL
some .java source files extracted from real-world Java projects
output of each semantic patch after applying it with Coccinelle4J

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). To minimize setup problems, we also
provide a Docker image.

3.1 Docker
A Docker image is similar to a virtual machine image, simplifying the set up of a project’s
environment. However, unlike a virtual machine, Docker containers are lightweight, sharing the
operating system’s kernel with the host machine.

We use Docker to run Coccinelle4J in a container so that the dependencies of Coccinelle4J can
be installed in an environment isolated from the rest of the machine. We provide a Docker image
coccinelle4j/coccinelle4j:ecoop to easily set up containers that already have Coccinelle4J
installed. This image also contains the examples described in the experience report.

The instructions to install Docker varies between operating systems and can be found on the
official Docker document at https://docs.docker.com/install/overview/.

With Docker installed, the following commands can be executed to create a container based
on our Docker image. We have uploaded the image at DockerHub and Docker will automatically
fetch the coccinelle4j image from DockerHub. This image is approximately 3.54GB.

docker pull coccinelle4j / coccinelle4j :ecoop
docker run -it coccinelle4j / coccinelle4j :ecoop /bin/bash

The command will start a new container of the coccinelle4j image and run bash on it. On
some machines, executing the above commands as root may be required.

3.2 Make
If Docker is unavailable, an alternative to set up Coccinelle4J is to build the Coccinelle4J executable
using make. OCaml (with a version >4.04), git, autoconf, make should be installed first.

https://docs.docker.com/install/overview/


H. J. Kang, F. Thung, J. Lawall, G. Muller, L. Jiang, and David Lo 10:3

git clone https :// github .com/ kanghj / coccinelle
cd coccinelle
git checkout java
./ autogen && ./ configure
make && sudo make install

4 Tested platforms

In general, Coccinelle4J is supported on any Unix-like platform. The Docker image we have
provided should work on any platform supporting Docker.

5 License

The artifact is available under GNU GPL version 2.

6 MD5 sum of the artifact

58763d6c633d1cc93c2ed3fd76e75960

7 Size of the artifact

The size of the zip file is 101.1MB. The size of the docker image is about 3.5GB

References
1 Yoann Padioleau, Julia L Lawall, and Gilles Muller.

SmPL: A domain-specific language for specify-
ing collateral evolutions in Linux device drivers.

Electronic Notes in Theoretical Computer Science,
166:47–62, 2007.

DARTS


	Scope
	Content
	Getting the artifact
	Docker
	Make

	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact

