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Abstract
Object-oriented programming has long been regarded as too inefficient for SIMD high-performance
computing, despite the fact that many important HPC applications have an inherent object structure.
On SIMD accelerators, including GPUs, this is mainly due to performance problems with memory
allocation and memory access: There are a few libraries that support parallel memory allocation
directly on accelerator devices, but all of them suffer from uncoalesed memory accesses.

We discovered a broad class of object-oriented programs with many important real-world
applications that can be implemented efficiently on massively parallel SIMD accelerators. We call
this class Single-Method Multiple-Objects (SMMO), because parallelism is expressed by running a
method on all objects of a type.

To make fast GPU programming available to domain experts who are less experienced in GPU
programming, we developed DynaSOAr, a CUDA framework for SMMO applications. DynaSOAr
consists of (1) a fully-parallel, lock-free, dynamic memory allocator, (2) a data layout DSL and (3)
an efficient, parallel do-all operation. DynaSOAr achieves performance superior to state-of-the-art
GPU memory allocators by controlling both memory allocation and memory access.

DynaSOAr improves the usage of allocated memory with a Structure of Arrays (SOA) data
layout and achieves low memory fragmentation through efficient management of free and allocated
memory blocks with lock-free, hierarchical bitmaps. Contrary to other allocators, our design is
heavily based on atomic operations, trading raw (de)allocation performance for better overall
application performance. In our benchmarks, DynaSOAr achieves a speedup of application code
of up to 3x over state-of-the-art allocators. Moreover, DynaSOAr manages heap memory more
efficiently than other allocators, allowing programmers to run up to 2x larger problem sizes with the
same amount of memory.
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Figure 1 N-body Simulation with Collisions. The simulation consists of multiple do-all operations
that are run in a loop for a fixed number of iterations (time steps)1. Every do-all operation runs in
parallel and is a synchronization point: The next one can start only if the previous one has finished.

1 Introduction

General-purpose GPU computing has long been a tedious job, requiring programmers to
write hand-optimized, low-level programs. In an attempt to make GPU computing available
to a broader range of developers, our efforts are centered around bringing fast object-oriented
programming (OOP) to low-level languages such as CUDA.

OOP has a wide range of applications in high-performance computing [9, 39, 6, 21,
17] but is often avoided due to bad performance [52]. Dynamic memory management
and the ability/flexibility of creating/deleting objects at any time is one of the corner
stones of OOP. Due to the massive parallelism and data-parallel execution of GPUs, the
number of simultaneous (de)allocations is significantly higher than on other parallel hardware
architectures. In recent years, fast, dynamic memory allocators have been developed for
GPUs [60, 37, 69, 66, 7, 58, 25, 31] and demanded by application developers [70, 61, 45, 54,
55, 43, 44], showing a growing interest in better programming models and abstractions that
have long been available on other platforms. However, while these allocators often provide
good (de)allocation performance, they miss key optimizations for structured data, leading to
poor data locality and memory bandwidth utilization when accessing allocated memory.

Single-Method Multiple-Objects (SMMO)

We identified a class of high-performance computing applications that can be expressed as
object-oriented programs and implemented efficiently on SIMD architectures such as GPUs.
We call this class Single-Method Multiple-Objects (SMMO). The most fundamental operation
of SMMO is parallel do-all: Running one method in parallel on all existing objects of a
type (object set). Such operations fit perfectly with the data-parallel SIMD execution model
of GPUs and can be implemented very efficiently. The main challenge lies is the fact that
the object set is dynamic: Objects can be created and deleted in GPU code. The main
contribution of our work is the design and implementation of a dynamic memory allocator
that works well with SMMO applications and runs entirely on the GPU.

SMMO is a broad class of problems with many real-world applications, such as social
simulations [27], evacuation simulations [44], predicting wildfire spreading [57], (adaptive [30])
finite element methods [28] or particle systems, to name just a few. As an example, consider
the n-body simulation with collisions in Fig. 1. Such simulations are used by astronomers to
simulate the collision of galaxies or the formation of planets [4]. Every body is an object in
SMMO and the simulation is a sequence of multiple do-all operations.

1 We implement merging behavior with multiple do-all operations to avoid race conditions.
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Body bodies[32000];

float Body_pos_x[32000];
float Body_pos_y[32000];
float Body_vel_x[32000];
float Body_vel_y[32000];
float Body_force_x[32000];
float Body_force_y[32000];
float Body_mass[32000];

(b) Structure of Arrays (SOA)(a) Array of Structures (AOS)
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struct Body {
  float pos_x, pos_y;
  float vel_x, vel_y;
  float force_x, force_y;
  float mass;
};
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strided memory access (slow) vector load possible (fast)

__device__ void move(int id) {
    /* Compute force, vel ... */

    pos_x[id] += Δt * vel_x[id];

    pos_y[id] += Δt * vel_y[id];
}

SIMD: All threads (in a warp) perform this load in parallel.
Current NVIDIA GPU coalesce these loads into as few
128-byte vector loads as possible. In SOA, fewer vector
loads are required to cover all pos_x values than in AOS.

...

(c) SOA Code Example 

Figure 2 Data Layout of N-body Simulation in AOS and SOA. In SOA, multiple values of a field
(e.g., pos_x1 and pos_x2) can be loaded into a vector register with a single vector load instruction.
In AOS, a less efficient, strided memory load or multiple smaller memory loads are necessary, because
accessed data is not contiguous.

Structure of Arrays Data Layout

Structure of Arrays (SOA) and Array of Structures (AOS) describe memory layouts for an
object set [12] (Fig. 2). In AOS, the standard layout of most platforms, objects are stored as
contiguous blocks of memory. In SOA, all values of a field are stored together. This allows
for better cache utilization if not all fields are used in a computation. Moreover, it allows
for efficient vector loads/stores on SIMD architectures. This is important, because SIMD
architectures achieve parallelism by executing the same processor instruction on a vector
register. Previous work has reported speedups over AOS by multiple factors (e.g., [36]).

Choosing the best data layout for an application is challenging and depends on the data
access patterns of the application. Previous work has shown that a mixture of AOS and SOA
can sometimes achieve the best performance [29, 40, 68]. How to find good data layouts has
been studied before [40, 1] and is out of the scope of this paper. We are focusing on SOA in
this work, but DynaSOAr could easily be extended to support other layouts in the future.
Unfortunately, custom memory layouts come with a number of disadvantages:

Missing OOP Abstractions. In a hand-written SOA layout, programmers refer to an object
with an integer index into SOA arrays (Fig. 2c). However, OOP language abstractions
(e.g., encapsulation, member access, method calls, type checking, inheritance) only work on
object pointers/classes in mainstream languages. To overcome such issues, new languages
(e.g., Shapes [29]) and language dialects (e.g., ispc [53]) with built-in support for custom
data layouts, as well as data layout libraries/DSLs for existing languages [63, 47, 59] have
been developed.

Dynamic Object Set Size. SOA and AOS are not suitable for applications in which the
number of objects changes over time, because programmers must specify a maximum
object set size per type (e.g., 32,000 in Fig. 2) ahead of time. Dynamic memory allocation
solves this problem. As one of our contributions, we show how to allocate memory
dynamically while preserving the performance characteristics of SOA.

Subclassing/Inheritance. Inherited methods are shared between superclasses and subclasses.
To allow a superclass method implementation to be used for a subclass, the subclass must
use the same SOA arrays (and indices) as its superclass. In Columnar Objects, inherited
SOA arrays are shared among all objects of all subclasses and newly introduced SOA
arrays have a null value for objects of a super class [47]. This approach works, but it
can waste a considerable amount of memory.

ECOOP 2019
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DynaSOAr: A Dynamic Allocator and C++/CUDA DSL for SOA Layout

In this work, we present DynaSOAr, a CUDA framework for SMMO applications. Dyna-
SOAr is a parallel, lock-free, dynamic memory allocator, combined with an efficient do-all
operation and an embedded C++/CUDA DSL to enable OOP abstractions with custom
object layouts.

We are focusing on DynaSOAr’s dynamic memory allocator and do-all operation in
this work. DynaSOAr controls the data layout through its memory allocator and data
access through its do-all operation. In SMMO applications, DynaSOAr achieves superior
performance compared to state-of-the-art allocators due to three main optimizations.

Objects are stored in a Structure of Arrays (SOA) data layout, a best practice for
structured data in SIMD programs, making usage of allocated memory more efficient
when used in conjunction with DynaSOAr’s do-all operation.
Memory fragmentation caused by dynamic object (de)allocation is minimized with hierar-
chical bitmaps. This is important because fragmentation diminishes the benefit of the
SOA layout through less efficient vectorized access (more vector transactions are need to
access fragmented data) and adversely affects cache performance [32].
Object allocation and deallocation performance is optimized with a number of low-level
techniques. For example, DynaSOAr combines allocation requests within SIMD thread
groups (warps) to reduce the number of memory accesses during allocations [37] and
takes advantage of efficient bit operations/intrinsics.

Contributions and Outline

This paper makes the following contributions.

The concept of Single-Method Multiple-Objects (SMMO) applications. We show that a
variety of important HPC problems are SMMO applications.
The design and implementation of DynaSOAr, a dynamic object allocator for CUDA;
with fast (de)allocation and a do-all operation. To the best of our knowledge, DynaSOAr
is the first dynamic allocator that stores objects in an SOA data layout.
An extension of the SOA data layout to dynamic object sets and subclassing.
A concurrent, lock-free, hierarchical bitmap, based on atomic operations and retry loops.
A comparison and evaluation of existing GPU memory allocators on SMMO applications.

The remainder of this paper is organized as follows. Sec. 2 gives an overview of the design
goals of DynaSOAr, focusing on memory access considerations of GPUs. Sec. 3 describes
the high-level architecture of DynaSOAr and Sec. 4 explains important optimizations such
as hierarchical bitmaps. Sec. 5 compares the design of DynaSOAr with other allocators
and Sec. 6 evaluates application performance and fragmentation using microbenchmarks and
multiple SMMO applications. Finally, Sec. 7 concludes the paper. Additionally, we provide a
systematic correctness analysis in the appendix.

2 Design Goals

DynaSOAr is a CUDA framework for SMMO applications and consists of three parts.

Memory Allocator. We developed a dynamic memory allocator that provides new/delete
operations in GPU code and stores objects in an SOA data layout. The main task of the
allocator is to decide where to store each field value of each object on the heap.
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Data Layout DSL. We developed an embedded C++ DSL to support OOP abstractions
while storing objects in a custom layout. We could alternatively implement DynaSOAr
in a language that allows programmers to specify custom data layouts (e.g., Shapes [29, 64]
or ispc [53]), but such languages have limited GPU support.

Parallel Do-All. We developed an object enumeration strategy for SMMO applications that
achieves efficient access of allocated memory on SIMD architectures. By controlling
memory allocation and memory access, applications can achive better performance with
DynaSOAr than with other state-of-the-art allocators, which are only concerned with
memory allocation.

DynaSOAr’s DSL builds on top of Ikra-Cpp, an embedded C++ DSL for object-oriented
programming with SOA layout [59]. Its purpose is to make DynaSOAr easier to use for
programmers. This paper is mainly about the memory allocator and the do-all operation.

2.1 Programming Interface
In contrast to general memory allocators, DynaSOAr is an object allocator. The types
(classes/structs) that can be allocated must be specified at compile time. DynaSOAr
provides five basic operations. All operations except for parallel_do and parallel_new
are device functions that can only be called from GPU code.

HAllocatorHandle::parallel_do<T, &T::func>(args...): Launches a GPU kernel
that runs a member function T::func for all objects of type T and subtypes2 existing
at launch time (parallel do-all). T::func may allocate new objects, but those are not
enumerated by the same parallel do-all operation. T::func may deallocate any object of
different type U 6= T , but the object it is bound to (this) is the only object of type T it
may deallocate (delete itself). This is to avoid race conditions.
HAllocatorHandle::parallel_new<T>(n, args...): Launches a GPU kernel that in-
stantiates n objects of type T . In addition to args..., the constructor receives an ID i

between 0 and n− 1 (for the ith object) as the first argument.
new(d_allocator) T(args...): Allocates a new object of type T and returns a pointer
to the object. The placement new notation [10] is a common C++ pattern for arena
allocation and d_allocator is the allocator/arena in which the object is allocated.
destroy(d_allocator, ptr): Deletes an object that was allocated with d_allocator3.
DAllocatorHandle::device_do<T, &T::func>(args...): Runs a member function
T::func for all objects of type T in the current GPU thread. Can only be used in-
side of a parallel_do or a manually launched GPU kernel. This is a sequential for-each
loop. It is typically used for processing all pairs of objects (e.g., in n-body simulations).

Listing 1 shows parts of the n-body simulation of Fig. 1 to illustrate DynaSOAr’s API
and DSL.

2.2 Memory Access Performance
The main insight of our work is that optimizing only for fast (de)allocations is not enough.
Optimizing the access of allocated memory can result in much higher speedups, because
device (global) memory access is the biggest bottleneck of memory-bound GPU applications:

2 To avoid branch divergence, we launch a separate kernel for every type.
3 There is no placement delete syntax, so it is a common pattern to provide a separate destroy function [62].

ECOOP 2019
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1 # include " dynasoar .h"
2
3 class Body; // Pre - declare all classes . This simple example has only one class .
4 using AllocatorT = SoaAllocator </* max_num_obj =*/ 16777216 , /*T...= */ Body >;
5 __device__ DAllocatorHandle < AllocatorT > d_allocator ;
6
7 class Body : public AllocatorT :: Base { // Can subclass other user - defined class .
8 public :
9 // Pre - declare all field types . DynaSOAr uses these to compute the size of blocks .

10 declare_field_types (Body , float /* pos_x_ */ , float /* pos_y_ */ ,
11 /* ... */ , bool /* was_merged_ */)
12
13 private :
14 // Declare fields with proxy types but use like normal C++ fields (as in Ikra -Cpp).
15 Field <Body , 0> pos_x_ ; // Position X
16 Field <Body , 1> pos_y_ ; // Position Y
17 /* other fields omitted ... */
18 Field <Body , 9> was_merged_ ; // Was this body merged into another one?
19
20 public :
21 __device__ Body( float pos_x , float pos_y , float vel_x , float vel_y , float mass)
22 : pos_x_ ( pos_x ), pos_y_ ( pos_y ), vel_x_ ( vel_x ), vel_y_ ( vel_y ), mass_ (mass) {}
23
24 // This constructor is invoked by parallel_new .
25 __device__ Body(int idx)
26 : Body(/* pos_x =*/ random_float (-kMaxPos , kMaxPos ),
27 /* pos_x =*/ random_float (-kMaxPos , kMaxPos ), /* ... */) {}
28
29 __device__ void apply_force (Body* other ) {
30 if ( other != this ) {
31 float dx = pos_x_ - other -> pos_x_ ; float dy = pos_y_ - other -> pos_y_ ;
32 float dist = sqrt(dx*dx + dy*dy);
33 float F = kGravityConstant * mass_ * other -> mass_ / (dist * dist);
34 other -> force_x_ += F * dx / dist; other -> force_y_ += F * dy / dist;
35 }
36 }
37
38 __device__ void step_1_compute_force () {
39 force_x_ = force_y_ = 0.0f;
40 d_allocator ->device_do <Body , &Body :: apply_force >( this );
41 }
42
43 __device__ void step_2_move ( float dt) {
44 vel_x_ += force_x_ * dt / mass_ ; vel_y_ += force_y_ * dt / mass_ ;
45 pos_x_ += dt * vel_x_ ; pos_y_ += dt * vel_y_ ;
46 }
47
48 __device__ void step_6_delete_merged () {
49 if ( was_merged_ ) { destroy ( d_allocator , this ); }
50 }
51 };
52
53 int main () {
54 // Create new allocator . This will allocate a large buffer (" heap ") on the GPU.
55 auto * h_allocator = new HAllocatorHandle < AllocatorT >();
56 // Copy device handle to d_allocator handle .
57 cudaMemcpyToSymbol ( d_allocator , h_allocator -> device_handle () ,
58 cudaMemcpyHostToDevice ); // a bit simplified ...
59
60 // Create 65536 random body objects . We do not use the new keyword in this example .
61 // Alternatively , we could run this in a kernel : new( d_allocator ) Body (...)
62 h_allocator -> parallel_new <Body >(65536) ;
63
64 for (int i = 0; i < kIterations ; ++i) {
65 h_allocator -> parallel_do <Body , &Body :: step_1_compute_force >();
66 h_allocator -> parallel_do <Body , &Body :: step_2_move >( /* dt=*/ 0.5);
67 /* some steps omitted ... */
68 h_allocator -> parallel_do <Body , &Body :: step_6_delete_merged >();
69 }
70
71 delete h_allocator ; // Deallocate buffer and all allocations within .
72 return 0;
73 }

Listing 1 DynaSOAr API Example: Excerpt from an n-body simulation with collisions.
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For illustration purposes, we assume:
• Warp size: 4 threads (instead of 32 threads)
• Vector length: 32 bytes (instead of 128 bytes)

(b) Clustered Layout with Structure Split: 6 memory transactions required
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(a) SOA Layout (Static Structure Split): 6 memory transactions required
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0x00A400 0x0FD800

means coalesced (vector) access:

Requires only 1 transaction if simultaneously accessed
by threads from the same warp, i.e.: 
threads { ti, ti+1, ti+2, ti+3 | i mod 4 = 0 }

Figure 3 Data Layouts: Number of required memory transactions to read 24 floats simultaneously.

Latency. Global memory access instructions have a very high latency at around 400–800
clock cycles, compared to arithmetic instructions at around 6–24 cycles. Programmers
can hide latency with high occupancy [67] (i.e., running many threads).

Memory Bandwidth. The global memory bandwidth is a limiting factor. Peak memory
transfer rates can be achieved only with memory coalescing: When the threads in a
GPU application simultaneously access different memory addresses, the GPU coalesces
accesses from the same SIMD thread group (warp in CUDA, every 32 consecutive threads)
into one physical transaction if the addresses are on the same 128-byte cache line [38].
However, if threads access data on multiple cache lines (e.g., non-contiguous, spread-out
addresses), more transactions are needed4, which reduces transfer rates significantly. The
CUDA Best Practices Guide puts a high priority note on coalesced memory accesses [19].

Caches. Hits in the L1/L2 cache are served much faster (less latency, memory bandwidth
pressure) than global memory loads. Field reordering and structure splitting are common
techniques for increasing the number of hot fields in cache [18].

DynaSOAr achieves good memory access performance with a SOA-style data layout:
First, SOA increases memory coalescing because values of the same field, which are accessed
simultaneously in SIMD, are stored together. Second, SOA is an extreme form of structure
splitting and can improve cache utilization because fields that are not accessed do not occupy
cache lines.

2.3 High Density Memory Allocation
A SOA data layout (Fig. 3a) achieves good memory performance but is not suitable for
dynamic allocation: The size of SOA arrays is fixed and new allocations cannot be accommo-
dated once all array slots are occupied.

DynaSOAr’s design is based on the insight that a clustered layout with SOA-style
structure splitting (Fig. 3b) has the same cache/vector performance characteristics as a SOA
layout, if scalar values are stored in dense clusters of at least 128 bytes (vector and cache
line size) and clusters are aligned to 128 bytes, regardless of where the clusters are located.
This gives DynaSOAr more freedom in the placement of allocations and is exploited by its
allocation policy.

2.4 Parallel Object Enumeration Strategy
Current GPUs follow the Single-Instruction Multiple-Threads (SIMT) execution model.
Intuitively, every SIMD lane corresponds to a thread and every group of consecutive 32
threads forms a warp which executes the same instruction on a vector register.

4 This is similar to vectorized loads/stores, but coalescing is performed by the hardware.

ECOOP 2019
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Spring Node PullNode (free) (free) Node...

heap: array of M blocks

...

NodeBase*[64] Spring::n1
NodeBase*[64] Spring::n2
float[64] Spring::initial_length
float[64] Spring::stiffness
float[64] Spring::max_force
int[64] Spring::bfs_distance

object allocation bitmap

0x01 type id + padding

data segment
(SOA arrays)
incl. inherited fields

all blocks have same size (bytes)

bit for object slot

0x03

Node (free)

Spring*[3][46] NodeBase::springs
float[46] NodeBase::pos_x
float[46] NodeBase::pos_y
float[46] Node::vel_x
float[46] Node::vel_y
float[46] Node::mass

always 64-bit bitmaps ...

... but smaller arrays

...
free

...
allocated[Node]

...
active[Node]

...
allocated[PullNode]

...
active[PullNode]

...
allocated[Spring]

...
active[Spring]

block (multi)state bitmaps:
(2 per type + 1 global, M bits per bitmap)

(no bitmaps for abstract class NodeBase)

...

...

...object iteration bitmap

slot just allocated

This block is active
(i.e., not entirely full)

This block is inactive
(i.e., entirely full)

Figure 4 Example: Heap layout for a FEM simulation of a crack in a composite material. The
heap is divided into M blocks of equal size. Every block has the same structure: an allocation
bitmap, an iteration bitmap, and a type identifier, followed by a data segment storing objects in
SOA layout.

To benefit from memory coalescing, the threads of a warp must access addresses on
the same 128-byte L1 cache line. In a SOA data layout, this is achieved when the threads
of a warp read/write the same fields of objects with contiguous indices at the same time.
Intuitively, threads in a warp should process neighboring (spatially local) objects.

In DynaSOAr, programmers invoke GPU kernels with parallel do-all operations. These
operations must (a) spawn enough GPU threads to hide latency, but not too many to avoid
inefficiencies, and (b) assign objects to threads in such a way that memory access is optimized.

2.5 Scalability
Memory allocations require some sort of synchronization between threads to prevent collisions,
i.e., two threads allocating the same memory location. To avoid collisions, some allocators
such as Cilk [14] utilize private heaps, but such designs can lead to high memory consumption
(blowup) [11] and are in feasible on massively parallel architectures with thousands of threads.

State-of-the-art GPU allocators such as ScatterAlloc [60] and Halloc [3] reduce collisions
with hashing, which scatters allocations almost randomly on the heap. This would render a
SOA layout useless and defeat one of DynaSOAr’s main optimizations.

With such design restrictions, DynaSOAr is bound to have less efficient allocations than
other allocators. However, as we show throughout this paper, DynaSOAr can more than
make up for slow allocations with more efficient memory access.

Previous CPU memory allocator designs emphasize mechanisms for reducing false sharing,
which can degrade performance [11]. This is not an issue on GPUs, because L1 caches are
not coherent. Programmers must use the volatile keyword or atomic operations to enfore
a read/write to the shared L2 cache or global memory.

3 Architecture Overview

DynaSOAr manages a single, large heap in global memory on device. The heap is divided
into M blocks of equal number of bytes. M is determined at compile time based on the
block size. Multiple objects of the same type (C++ class/struct) are stored in a block in a
Structure of Arrays (SOA) data layout (Fig. 4). Once a block is initialized (allocated) for a
certain type, only objects of that type can be stored in that block until the block (and all its
objects) is deallocated again and reinitialized to a different type.
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free
(uniniti-
alized)

allocated[T]
+ active[T] free

(invali-
dated)

allocated[T]

init block

dealloc,now empty

init block

dealloc

alloc,
now full

dealloc
alloc

Figure 5 Block State Transitions. At first, blocks are in an uninitialized state. As part of
allocation, new active blocks may be initialized (allocated). Active blocks become inactive when they
are full. Inactive blocks become active again an object is deallocated. Active blocks are invalidated
when their last object is deallocated. Invalidated blocks can be reinitialized (to any type) and are
handled similar to uninitialized blocks.

The maximum number of objects in a block depends on its type, because different
structs/classes may have different sizes. To improve clustering, DynaSOAr allocates new
objects in already existing, non-full blocks (fast path). We call such blocks active, because
they participate in allocations (Fig. 5). Only if no active block could be found, a new block
is allocated and becomes active (slow path).

3.1 Block Structure
Every block has two 64-bit object bitmaps: An object allocation bitmap and an object iteration
bitmap. The allocation bitmap tracks allocated slots in the block. The iteration bitmap is
used for object enumeration and overwritten with the allocation bitmap before every parallel
do-all operation. Its purpose is to ensure that objects that were created during a do-all
operation are not enumerated by the same do-all operation; that would a race condition.

The type identifier is a unique ID for the type T of a block. The remainder of the block
is occupied by padding and the data segment, storing 1 ≤ NT ≤ 64 objects in SOA layout.
The data segment begins with SOA arrays for inherited fields and ends with SOA arrays of
newly introduced fields.

Slots are marked as (de)allocated with atomic AND/OR operations that change a single
bit of the object allocation bitmap. Based on their return value5, we know ...

... if an allocation was successful or another thread was faster allocating the same slot.

... if a particular allocation filled up a block (i.e., allocated the last slot).

... if a particular deallocation emptied a block (i.e., deallocated the last slot).

If a thread filled up a block or emptied a block, it is that thread’s responsibility to update
the other internal data structures. This is a common pattern in lock-free designs [49]. Note
that every block has the same byte size and structure; e.g., the bitmaps are always at the
same offset. This is an important property for the correctness of our lock-free (de)allocation
algorithms and simplifies safe memory reclamation.

3.2 Block Capacity
The capacity of a block (maximum number of objects) depends on the size (bytes) of the
type of objects in the block. If DynaSOAr manages objects of types T1, T2, ..., Tn and

5 An atomic operation returns the value in memory before modification.
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...

Spring*[3][ ? ] NodeBase::springs
float[ ? ] NodeBase::pos_x
float[ ? ] NodeBase::pos_y

?

offsetNodeBase::pos_y = sizeof(Spring*[3]) + sizeof(float) = 28

(maybe additional SOA arrays of subclasses)

...

...

float dist(NodeBase* p1, NodeBase* p2) {
  float dx = p1->pos_x - p2->pos_x;
  float dy = p1->pos_y - p2->pos_y;
  return sqrt(dx*dx + dy*dy);
}

Object slot ID (bits 0-5): 8
Block address (bits 6-49): 0xb01fc0000
Block capacity (bits 50-55): 46
Type ID (bits 56-63): 3

Block capacity

Physical address?

...

heap

...?

sizeof(Block)

NodeBase
or subclass

Field<NodeBase, 2>0x03b8000b01fc0008

Figure 6 Object Pointer Example. The static type of p2 is NodeBase*. The corresponding block
has SOA arrays for NodeBase fields and for the additional fields of the runtime type of p2. The size
of those arrays is not statically known and depends on the runtime type of p2.

s = argmini∈1...n size(Ti) is the index of the smallest type, then the capacity NT of a block
of type T is determined as follows.

NT =
⌊

64 · size(Ts)
size(T )

⌋
(block capacity)

A block of the smallest type Ts has capacity 64. Given a fixed heap size, the size of Ts

determines the block size in bytes and thus the number of blocks M .
As soon as a type T is more than twice as big as Ts, the benefit of the SOA layout starts

fading away for T , because NT < 32. The maximum amount of memory coalescing can
only be achieved with vector loads (cluster sizes) of 32 values (assuming 32-bit scalar types).
Furthermore, DynaSOAr cannot handle cases in which a type is more than 64 times bigger
than the smallest type. In reality, these limitations proved to be insignificant. None of our
benchmarks experienced a slowdown due to unfavorable block sizes.

3.3 C++ Data Layout DSL and Object Pointers
Field access is simple in most object-oriented systems: Given an object pointer, which is a
memory location, a field value is stored at a fixed offset from the object pointer.

In DynaSOAr, an object pointer is not a memory location, but a combination of various
components (fake pointer [59]), similar to global references in Shapes [29]. Upon field access,
the DynaSOAr DSL transparently converts object pointers to memory locations, without
breaking C++’s OOP abstractions. We follow the implementation strategy of Ikra-Cpp,
where fields are declared with proxy types Field<B, N>, which are implicitly converted to
T& values [35], where T is the N-th predeclared field type of B [59]. This conversion is defined
by our DSL and computes the actual, physical memory location within a data segment.

A DynaSOAr object pointer (Fig. 6) is based on the address of the block in which the
object is located. All blocks are aligned to 64 bytes, so we can store the object slot ID in the
6 least significant bits. Since recent GPU architectures have at most 24 GB of memory and
no virtual memory, only the 35 least significant bits are used in memory addresses and the
remaining 29 bits are always zero6. We store additional information in these bits: The 8
most significant bits store the type identifier for fast instance-of checks. The next 6 bits store
the capacity of the block. Note that, while C++ stores runtime types with a vtable pointer
at the beginning of an object, we store runtime type information in unused pointer bits.

6 We experimentally verified this on NVIDIA Maxwell and NVIDIA Pascal.
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While in most object-oriented systems, runtime type information is only required for
virtual function calls, DynaSOAr needs the block capacity (a property of the runtime type)
also for field accesses, because SOA array offsets within the data segment depend on it.

For example, p2 in Fig. 6 is statically known to be of type NodeBase*, but the block
capacity (size of SOA arrays) depends on the runtime type, which can be any subclass of
NodeBase. Those subclasses can have different block capacities. The size of SOA arrays and
the object slot ID are required to compute the physical location of p2->pos_y, so we encode
both inside object pointers.

This computation, along with bit-shifting and bit-AND operations for extracting all
components from an object pointer, is performed on every field read/write (Sec. B). This
overhead may seem large, but arithmetic operations are much faster than memory access,
even in case of an L2 cache hit. Overall, the performance benefit of SOA is much larger than
the address computation overhead.

3.4 Block Bitmaps
To find blocks or free memory quickly during object enumeration or object allocation,
DynaSOAr maintains three bitmaps of size M , where M is the maximum number of blocks
on the heap.

The free block bitmap indexes block locations that are not yet allocated. This bitmap is
used to determine where new blocks are allocated. Bit i is 1 iff block i is free (uninitialized
or invalidated). Initially, every bit is 1.
There is one block allocation bitmap for every type T . That bitmap indexes blocks of
type T and is used for enumeration of all objects. Blocks of subclasses are not included
in bitmaps of the superclass. Initially, every bit is 0.
There is one active block bitmap for every type T , indexing allocated, non-full blocks. If
a bit is 1, then the same bit in the block allocation bitmap must also be 1. This bitmap
is used to find a block in which a new object can be allocated. Initially, every bit is 0.

Due to concurrent (de)allocations, block bitmaps cannot be kept consistent with the
actual block states all the time, as indicated by object allocation bitmaps and type identifiers
of blocks. However, we designed our algorithms in such a way that they can handle such
inconsistencies and keep block states and block bitmaps eventually consistent.

3.5 Object Slot Allocation
When a new object is created, DynaSOAr allocates memory and runs the constructor on
the object pointer. Alg. 1 shows how memory is allocated. This algorithm runs entirely on
the GPU and is completely lock-free.

DynaSOAr tries to allocate memory in an already existing, active block. If no block
could be found, it first initializes a new block at a location that is known to be free (slow
path). The state of the new block is allocated and active, so that the new block can also be
found by other threads.

Once a block was selected, an object slot is reserved by atomically finding and flipping a
bit from 0 to 1 in the object allocation bitmap (details in Alg. 6). Based on the return value
of the atomic operation, we know if this operation just allocated the last slot. In that case,
the block is marked as inactive in the active block bitmap (Line 12).
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Algorithm 1: DAllocatorHandle::allocate<T>() : T*. GPU
1 repeat . Infinite loop if OOM
2 bid ← active[T].try_find_set(); . Find and return the position of any set bit.
3 if bid = FAIL then . Slow path
4 bid ← free.clear(); . Find and clear a set bit atomically, return position.
5 initialize_block<T>(bid); . Set type ID, initialize object bitmaps.
6 allocated[T].set(bid);
7 active[T].set(bid);
8 alloc ← heap[bid].reserve(); . Reserve an object slot. See Alg. 6.
9 if alloc 6= FAIL then

10 ptr ← make_pointer(bid, alloc.slot);
11 t ← heap[bid].type; . Volatile read
12 if alloc.state = FULL then active[t].clear(bid) ;
13 if t = T then return ptr ;
14 deallocate<t>(ptr); . Type of block has changed. Rollback.

15 until false;

Algorithm 2: DAllocatorHandle::deallocate<T>(T* ptr) : void. GPU

1 bid ← extract_block(ptr);
2 slot ← extract_slot(ptr);
3 state ← heap[bid].deallocate(slot);
4 if state = FIRST then
5 active[T].set(bid)

6 else if state = EMPTY then
7 if invalidate(bid) then
8 t ← heap[bid].type;
9 active[t].clear(bid);

10 allocated[t].clear(bid);
11 free.set(bid);

Since the allocator is used concurrently by many threads, we may select a block (Line 2)
that is full or no longer exists when attempting to reserve an object slot (Line 8). If the
block is full, object reservation fails and we retry by selecting a new active block. If the block
no longer exists, we have to consider three cases7.

1. There is currently no block at this location. In this case, object reserveration fails, because
all slots are marked as allocated in the object allocation bitmap when a block is deleted.
We call this process block invalidation.

2. The block was deleted and a new block of the same type was allocated at the same
location. Such ABA problems are harmless and allocation will succeed.

3. The block was deleted and there is now a block of different type at the same location. At
this point, the constructor has not run yet, so no data in the data segment was corrupted.
This is because all blocks have the same structure, i.e., the object allocation bitmap
is always at the same location. We can safely rollback the allocation by running the
deallocation routine.

7 We give a more systematic correctness argument in the appendix.
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......

NodeBase*[64] Spring::n1
NodeBase*[64] Spring::n2
float[64] Spring::initial_length
float[64] Spring::stiffness
float[64] Spring::max_force
int[64] Spring::bfs_distance
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...

...
object iteration
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__device__ void Spring::compute_force() {
    float disp = max(0, dist(n1, n2) - initial_length;
    float force = stiffness * disp;
    if (force > max_force) destroy(d_allocator, this); }

thread
mask

coalesced access

d_allocator->parallel_do<
   Spring, &Spring::compute_force>()

Figure 7 Thread Assignment Example. 64 threads with consecutive IDs (2 warps) are assigned
to every allocated block of type Spring. Since not all object slots are in use, as indicated by the
block iteration bitmap, some threads have no work to do. All other threads can benefit from memory
coalescing when reading/writing fields of the object that they are assigned to.

3.6 Object Deallocation
When an object is deleted, DynaSOAr extracts its runtime type T from the object pointer.
Then, DynaSOAr runs the C++ destructor and deallocates the memory (Alg. 2) as follows.

We first extract block and object slot IDs from the object pointer and free the object slot
by atomically flipping its bit in the object allocation bitmap from 1 to 0. Based on the return
value of the atomic operation we know the fill level of the block right before the deallocation.

If this deallocation freed the first object slot (block previously full), we mark the block as
active (Line 5), so that other threads can find it and allocate objects in it. If this deallocation
freed the last object slot (block now empty), we attempt to delete the block (Lines 7–11).
Safe memory reclamation is known to be difficult in lock-free algorithms [48]. The main
problem is that one or more contending threads, in the course of their lock-free operations,
may have selected the block that we are about to delete for new allocations.

To avoid the block from being modified by other threads, we invalidate it. Block
invalidation attempts to atomically flipping all bits in the object allocation bitmap from 0 to
1. If this atomic operation failed to flip at least one bit from 0 to 1 (because it was already 1),
another thread must have reserved an object slot in the meantime. In this case, we rollback
the changes to the object allocation bitmap and abort block invalidation and deletion.

If invalidation was successful, the block is guaranteed to be empty and cannot be modified
by other threads anymore because all bits in the object allocation bitmap are 1. The type of
the block may have changed in the meantime (Line 8), but it is now safe to mark this block
location as free, so that a new block can be initialized at this location.

3.7 Parallel Object Enumeration: parallel_do

Parallel do-all is the foundation of SMMO applications. It launches a GPU kernel that runs
a method T::func on all objects of a type T . That method may read and write fields of the
object that it is bound to (this). The goal of parallel do-all is to assign objects to GPU
threads in such a way that memory coalescing is maximized for those field accesses.

Memory coalescing is maximized when all threads of a warp access consecutive memory
addresses at the same time. In this case, all those memory accesses can be serviced by efficient
vector loads/writes. In CUDA, threads are identified by thread IDs. Each warp consists of
a consecutive range of threads. E.g., warp 0 consists of threads t0, t1, . . . t31. Assuming a
block capacity of NT , DynaSOAr assigns NT consecutive threads to the objects in a block
(Fig. 7). This leads to good memory coalescing on average. Perfect memory coalescing can
be achieved if the following two conditions apply.
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for i = 0 to M - 1 in parallel do
   if bitmap[i] then
     R[prefix_sum[i]] = i
   end
end

stream
compaction

result

(concept. same as compacting this arr.)

idO(tid) = tid % NT (assigned obj. slot idx.)

idB(tid) =
(
R

[
tid + k · n

NT

]
| k ∈ [0; numB(tid))

)
(assigned block indices)

numB(tid) =
⌈

r ·NT − tid
n

⌉
(number of assigned blocks)

Figure 8 Example: Compacting block allocation bitmap indices and assigning n = 256 threads
to 6 allocated blocks with NT = 64. This prefix sum-based implementation retains the order of
indices (i.e., R is sorted), but this is not necessary for correctness.

NT is a multiple of the warp size 32. If this is not the case, then there are warps whose
threads process elements in two or more different blocks at the same time.
Objects have good clustering, i.e., every block except for at most one is entirely full. Due
to the way objects are allocated (only in active blocks), we expect a high fill level.

DynaSOAr uses the block allocation bitmap to find blocks to which threads should be
assigned. Assigning only one object to a thread is too inefficient if the number of objects is
large. Therefore, a thread ttid may have to process an object slot in multiple blocks. Our
scheduling strategy always assigns the same object slot position idO(tid), but in multiple
blocks idB(tid) (strided by the number of threads [34]), to a thread. In those formulas, R

is an array of indices of all allocated blocks of type T , i.e., all blocks containing objects of
type T . The total number of threads n can be hand-tuned by the programmer. With those
formulas, every thread can by itself determine the objects that it should process.

The array R is required because every thread must by itself find the tid
NT

-th, tid+n
NT

-th,
etc. allocated block of type T quickly, without scanning the entire block allocation bitmap.
DynaSOAr precomputes R before every parallel-do operation (Fig. 8). Conceptually, this is
an application of stream compaction [8] and usually implemented with a prefix sum [56, 13]:
Given a bitmap of size M , generate an indices array of size M containing i at position i if the
i-th bit is set. Otherwise, store an invalid marker. Now filter/compact the array to retain
only valid values, resulting in an array R of size r. Note that we do not care if the original
ordering of indices is retained. Sec. 4.1 describes how this algorithm is further optimized
with hierarchical bitmaps to avoid scanning empty bitmap parts.

4 Optimizations

This section describes performance optimizations that DynaSOAr applies in addition to
the SOA data layout to achieve good (de)allocation performance.

4.1 Hierarchical Bitmaps
DynaSOAr uses bitmaps for finding blocks or free space for blocks. Since, with growing
heap sizes, bitmaps can reach several megabytes in size, we use a hierarchy of bitmaps, such
that set bits (ones) can be found with a logarithmic order of memory accesses.
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(2) clear
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b1
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Notation:
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1 ... b0

31C0
2 C0

3
(containers)(bits)

levelb index bit
Clevel

index container

... ...

Figure 9 Example: Hierarchical bitmap of size 32 with container size 4 (instead of 64). This
example illustrates how (1) a clear(18) operation triggers (2) a clear(4) operation in the nested
bitmap, which triggers (3) a clear(1) operation in the next nested bitmap.

Our hierarchical bitmaps are structurally recursive (i.e., bitmaps nested in each other)
and hide their hierarchy as an implementation detail from their interface. Such bitmaps
are used in database systems [50] and garbage collectors [65], but we do not know of any
hierarchical bitmaps that support concurrent modifications.

4.1.1 Data Structure
A hierarchical bitmap of size N bits consists of two parts: an array of size dN/64e of 64-bit
containers (uint64_t), and a nested bitmap of size dN/64e if N > 64. A container Cl

i consists
of bits bl

64·i, ..., bl
64·i+63 and is represented by one bit bl+1

i in the nested (higher-level) bitmap
(Fig. 9). That bit is set if at least one bit is set in the container.

bl+1
i =

63∨
k=0

bl
64·i+k (container consistency)

We chose a container size of 64 bits because C++ has a 64-bit integer type and CUDA
(and most other architectures) provide atomic operations for modifying 64-bit values. Bits
in a container are changed with atomic operations. Higher-level bits (and thus bitmaps)
are eventually consistent with their containers. Keeping both consistent all the time is
impossible without locking, because two different memory locations cannot be changed
together atomically. However, due to the design of the bitmap operations, the bitmap
is guaranteed to be in a consistent state when all bitmap operations (of all threads) are
completed, at the end of a GPU kernel. Bitmap operations retry or give up (FAIL) to handle
temporary inconsistencies. This is a key difference compared to other lock-free hierarchical
data structures such as SNZI [26], which have stronger runtime consistency guarantees and
require more complex algorithms.

4.1.2 Operations
All bitmap operations except for indices() are device functions that run entirely on the
GPU. All operations that modify memory are thread-safe and their semantics are atomic.
Internally, they are all implemented with atomic memory operations.

try_clear(pos) atomically sets the bit at position pos to 0. Returns true if the bit was
1 before and false otherwise.
clear(pos) switches the bit at position pos from 1 to 0. Retries until the bit was actually
changed by the current thread. This is identical to while (!try_clear(pos)) {}.
set(pos) switches the bit at position pos from 0 to 1. Retries until the bit was changed.
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Algorithm 3: Bitmap::try_clear(pos) : void. GPU

1 cid ← pos / 64;
2 offset ← pos % 64;
3 mask ← 1 << offset;
4 prev ← atomicAnd(&container[cid], ∼mask);

5 success ← (prev & mask) 6= 0;
6 if success ∧ has_nested ∧ popc(prev)=1 then
7 nested.clear(cid);
8

population cnt.:
number of set bitsreturn success;

Algorithm 4: Bitmap::try_find_set() : int. GPU

1 if has_nested then
2 cid ← nested.try_find_set();
3 if cid = FAIL then return FAIL ;
4 else
5 cid ← 0;

6 offset ← ffs (container[cid]);
7 if offset = NONE then
8 return FAIL
9 else

10

find first set: idx.
of 1st set bit

return 64*cid + offset;

try_find_set() returns the position of an arbitrary bit that is set to 1 or FAIL if none
was found. Must be used with caution, because the returned bit position might already
have changed when using the result.
clear() atomically clears and returns the position of an arbitrary set bit. This is identical
to while ((i = try_find_set()) != FAIL && try_clear(i)) {}; return i;.
get(pos) returns the value of the bit at position pos.
indices() returns an array of indices of all set bits. This is a host function and cannot
be used in a GPU kernel.

4.1.3 Set and Clear with Atomic Operations

As many other lock-free algorithms, our hierarchical bitmaps are based on a combination of
atomic operations and retries [20]. The return value of an atomic operation indicates if a
bit was actually changed and if it is this thread’s responsibility to update the higher-level
bitmap (Fig. 9).

As an example, Alg. 3 shows how to clear the bit at position pos. In Line 4, the respective
container is bit-ANDed with a mask containing ones everywhere except for that position.
This will clear the bit at position pos but leave all other bits unchanged. The current thread
actually changed the bit if it is set in prev (Line 5). If this operation cleared the last bit
(Line 6), then the bit in the higher-level bitmap must be cleared.

Note that higher-level bits are always changed with clear(pos)/set(pos) and not with their
respective try_ versions, because other concurrently running bitmap operations that are still
in process may not have updated all higher-level bitmaps yet, leaving the data structure
in a temporarily inconsistent state. If we were to use try_ versions, a mandatory update
of the higher-level bitmap could be accidentally dropped due to a bitmap inconsistency.
clear(pos)/set(pos) ensure that the update is performed eventually by retrying (and spin-
blocking the thread) until the update was successful.
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Algorithm 5: Bitmap::indices() : int[N]. CPU

1 if has_nested then
2 selected ← nested.indices()
3 else
4 selected ← [0]
5 R ← array(N);
6 r ← 0;

7 for cid ∈ selected in parallel do . GPU
8 c ← container[cid];
9 s ← atomicAdd(&r, popc(c));

10 for i← 0 to popc(c)) do
11 R[s + i] ← 64*cid + nth_bit (c, i);

12 idx. of ith

set bit in c
return R.subarray(0, r);

4.1.4 Finding an Arbitrary Set Bit
Instead of scanning the entire L0 bitmap, set bits can be found faster with a top-down
traversal of the bitmap hierarchy, as shown in Alg. 4. A request is first delegated to the
higher-level bitmap (Line 2) to select a container. When that call returns, a set bit is chosen
in the selected container (Line 6).

Even if the bitmap has set bits, this operation can fail if it reads an inconsistent combina-
tion of containers from different hierarchy levels. For example, consider that a container with
exactly one set bit is chosen by the recursive call. However, before reaching Line 6, another
thread clears that bit as part of a concurrent bitmap operation. In that case, try_find_set
fails even though there may be set bits in other containers.

DynaSOAr’s performance is affected by such bitmap inconsistencies when searching
for active blocks (Alg. 1, Line 2). While bitmap inconsistencies do not affect correctness,
they lead to higher fragmentation because DynaSOAr will initialize additional blocks even
though objects could be accommodated in already existing blocks. We analyze the effect of
such bitmap inconsistencies in our benchmarks (Sec. 6.3).

4.1.5 Enumerating Set Bit Indices
Before launching a parallel do-all kernel, DynaSOAr uses the indices operation to generate
a compact array of allocated block indices (R in Fig. 8). No GPU code is running at this
time, so the bitmap is guaranteed to be in a consistent state. To ensure good scaling with
increasing heap sizes, and thus increasing block bitmap sizes, DynaSOAr utilizes the bitmap
hierarchy to quickly skip containers without any set bits (Alg. 5).

First, an index array is generated for the higher-level bitmap (Line 2). This array is then
processed in parallel; the for loop in Line 7 is a GPU kernel and every thread processes one
or multiple containers selected by the recursive call. If a container Cl

i does not have any set
bits, then its corresponding bit bl+1

i is in a cleared state in the higher-level bitmap and not
included in selected. Every thread reserves space in the result array R by increasing an
atomic counter and fills its portion of the array with bit indices. This algorithm proved to
be faster and requires less memory than a prefix sum algorithm, which needs multiple array
copies/buffers per bitmap. Note that, in contrast to the prefix sum-based implementation of
Sec. 3.7, this algorithm does not retain the order of indices and R and is not sorted.

4.2 Reducing Thread Contention
In Alg. 4 and 6, threads are competing with each other for bits: Only one thread can reserve
any given object slot and only a limited number of threads can succeed with allocations in a
block. To guarantee correctness, our design is heavily based on atomic operations. These
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Algorithm 6: Block::reserve() : (int, state). GPU

1 repeat
2 pos ← ffs(∼bitmap);
3 if pos = NONE then return FAIL ;
4 mask ← 1 << pos;
5 before ← atomicOr(&bitmap, mask);
6 success ← (before & mask)) = 0;
7 block_full ← before = 0xFF...F;

8 until success ∨ block_full;
9 if success then

10 if popc(before) = 63 then
11 return (pos, FULL)
12 else
13 return (pos, REGULAR)

14 return FAIL;

operations became considerably faster with recent GPU architectures [22, 2], but performance
can still suffer when too many threads choose the same bit, because threads have to retry if
allocation fails. DynaSOAr employs two techniques to reduce such thread contention.

Allocation Request Coalescing. Originally proposed by XMalloc [37], DynaSOAr com-
bines memory allocation requests of the same type within a warp. One leader thread
reserves all object slots in a single block on behalf of all participating threads (optimized
version of Alg. 6). If the selected active block does not have enough free object slots,
DynaSOAr reserves as many slots as possible and then chooses another active block
for the remaining allocation requests. This reduces atomic memory operations, because
multiple bits in an object allocation bitmap are set in one operation. Furthermore, the
constructor for newly allocated objects can run more efficiently, because field accesses
are coalesced.

Bitmap Rotation. Instead of a plain find first set (ffs) in Alg. 4 and 6, bitmaps are first
rotating-shifted by a value depending on the warp ID and a seed that is changed with
every retry. This increases the probability of threads choosing different active blocks for
allocation and reduces the probability of threads trying to reserve the same object slots
in a block. This is a key optimization technique that improved performance by an order
of magnitude.

While bitmap traversals are relatively cheap, block initializations are expensive because in
addition to initializing object bitmaps, bits in three different bitmaps (plus hierarachy) must be
changed (slow path of Alg. 6). To avoid unnecessary block initializations, it proved beneficial
to retry the search for active blocks (Line 2) a constant number of times before entering the
slow path. This optimization resulted in lower fragmentation and improved performance.

4.3 Efficient Bit Operations
DynaSOAr is taking advantage of efficient bitwise operations such as ffs (“find first set”) and
popc (“population count”). Modern CPU and GPU architectures have dedicated instructions
for such operations. As an example, Alg. 6 shows how a single object slot is reserved. Instead
of checking all bits in a loop, ffs in Line 2 is used to find a free slot (index of a cleared bit) in
the object allocation bitmap and popc in Line 10 counts the number of previously allocated
slots (number of set bits) to decide if this request filled up the block.

As another example, due to allocation request coalescing, every thread must now extract
its reserved object slot from a set of allocations performed by a leader thread on behalf of
the entire warp. This boils down to finding the i-th set bit in a 64-bit bitmap b of newly
reserved object slots, where i is the rank of a thread among all allocating threads in the
warp. Instead of checking every bit in b one-by-one (loop with 64 iterations in the worst case)
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and keeping track of the number of set bits seen so far, we apply b ← b & (b - 1) in a loop
i− 1 times (to clear the first i− 1 bits) and then calculate ffs(b). We omit the details of this
optimization here, as it is only one example for a variety of similar low-level optimizations.

5 Related Work

CUDA provides an on-device dynamic memory allocator, but it is unoptimized and slow.
To solve this issue, multiple custom allocators have been developed over the last years.
These allocators achieve good performance by exploiting an allocation pattern that many
applications on massively parallel SIMD architectures exhibit: Most allocations are small in
size and due to mostly regular control flow, many allocations have the same byte size.

Halloc [3] is one of these allocators. It is a slab allocator and can allocate only a few dozen
predetermined byte sizes between 16 bytes and 3 KB. This is fast but can lead to internal
fragmentation. DynaSOAr can avoid such internal fragmentation because allocation sizes
are determined from compile-time type information of the application. A slab in Halloc
contains same-size allocations and tracks allocations with a bitmap. To avoid scanning large
bitmaps, a hash function determines which bits to check during allocations. Only one slab
can be active per allocation size and if the active slab becomes too full, it is replaced with a
new one. In contrast, more than one block per type can be active in DynaSOAr and blocks
are filled up entirely.

XMalloc [37] is the first allocator with allocation request coalescing, which was adopted by
many other allocators, including DynaSOAr. Coalesced requests are served from basicblocks,
which are organized in one of multiple lock-free free lists depending on their size.

FDGMalloc maintains a private heap for every warp [69], similar to Hoard [11]. It does
not have a general free operation and can only deallocate entire heaps, so it is not suitable
for SMMO applications.

CircularMalloc (CMalloc) [66] allocates memory in a ring buffer. Every allocation has
a pointer to the next allocation or free chunk, wrapping around at the end of the buffer.
CMalloc traverses the linked list for free chunks during allocations. To reduce allocation
contention, every multiprocessor starts its traversal at a different location. This is similar to
DynaSOAr’s bitmap rotation optimization.

ScatterAlloc [60] hashes allocation requests to memory pages depending on their allocation
size and the multiprocessor ID. Pages hold allocations of the same size, but slightly smaller
requests can be accommodated, leading to internal fragmentation. While DynaSOAr uses
hierarchical bitmaps, ScatterAlloc uses hashing with linear probing for finding pages during
allocations. For benchmarks, we use mallocMC [24], a reimplementation of ScatterAlloc that
is still maintained.

Both Halloc and ScatterAlloc maintain fill levels to quickly skip congested memory
areas that are above a certain threshold, because the performance of any hashing technique
degrades with an increasing number of collisions. In DynaSOAr, temporary inconsistencies
in bitmap hierarchies increase with the number of concurrent allocations, but DynaSOAr
can dynamically adapt to such cases by initializing additional blocks.

6 Benchmarks

We evaluated DynaSOAr with multiple real-world SMMO applications that exhibit different
memory allocation patterns (Table 1). We ran all benchmarks on a computer with an Intel
Core i7-5960X CPU, 32 GB main memory and an NVIDIA TITAN Xp GPU (12 GB device
memory), and compiled them with nvcc (-O3) from the CUDA Toolkit 9.1 on Ubuntu 16.04.4.
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Table 1 Description of Benchmark Applications.
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We compare the running time with different allocators. If possible, we also measured the
running time of baseline implementations that do not use any dynamic memory management.

Benchmark Applications

We describe all benchmarks and their implementation in detail (incl. their SMMO structure)
on GitHub8. Our benchmarks are from different domains and fall into four categories.

1. Objects allocated up front, no deallocation: nbody
2. Objects allocated up front, then only deallocation: collision, structure
3. Cellular automaton (CA) with static cells network: sugarscape, traffic, wa-tor
4. Other: barnes-hut, game-of-life

Baselines (SOA/AOS) are application variants without any dynamic memory allocation.
Baselines of category (1) are trivial to implement with static allocation. In category (2),
every object has a boolean active flag to prevent deleted objects from being enumerated in
the future. In category (3), classes are merged with the underlying static cell data structure,
which wastes memory in case of empty cells (Sec. 6.2). Category (4) applications cannot be
implemented with static allocation, unless the application is changed fundamentally.

Parallel do-all in Custom Allocators

Other allocators do not provide do-all operations, which are required for SMMO applications.
To compare DynaSOAr with other allocators, we developed standalone parallel_do and
device_do implementations that can be used with any allocator.

These components maintain arrays for allocated and deleted objects of each type. Pointers
are inserted into these arrays with atomic operations. At the end of a parallel do-all operation,
deleted pointers are removed from the array of allocated pointers. Then, the array of allocated
pointers is compacted with a prefix sum operation (same as Fig. 8).

Depending on the number of (de)allocations, this mechanism may take a long time. A
better allocator-specific mechanism could likely be developed with some reverse engineering.
For that reason, we show the amount of time spent on parallel enumeration. This time should
not be taken into account when comparing the performance of different allocators.

BitmapAlloc

To analyze the performance of pure bitmap-based object allocation without SOA layout,
blocks and fake pointers, we developed a second allocator BitmapAlloc. This allocator treats
the entire heap as one large object array, whose slots are managed by hierarchical bitmaps,
similarly to DynaSOAr: one allocation bitmap per type and one free slot bitmap. Allocation
bitmaps are also used for parallel_do and device_do.

The main downside of BitmapAlloc is its inefficient memory usage. It supports only a
single allocation size, potentially leading to high internal fragmentation.

8 https://github.com/prg-titech/dynasoar/wiki/Benchmark-Applications (also see artifact)
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Table 2 Comparison of Allocators. Coal. means Allocation Request Coalescing.

Allocator Coal. SOA Container Finding Free Memory
DynaSOAr 3 3 Block Hierarchical Bitmap
DynaSOAr-NoCoal 7 3 Block Hierarchical Bitmap
BitmapAlloc 7 7 7 Hierarchical Bitmap
CircularMalloc 7 7 7 Linked List, Ring Buffer
Default CUDA Allocator 7 7 (Unknown) (Unknown)
FDGMalloc 3 7 Priv. Heap, Superblock Linked List
Halloc 7 7 Slab Bitmap, Hashing
mallocMC (ScatterAlloc) 3 7 Superblock, Region, Page Hashing
XMalloc 3 7 (4 block hierarchies) Lock-free Free Lists

6.1 Performance Overview
Fig. 10 shows the running time of all benchmarked SMMO applications. DynaSOAr achieves
superior performance over other allocators due to the SOA layout, a dense object allocation
policy and an efficient parallel do-all operation.

All applications except for structure see a speedup by switching from AOS to SOA
(compare baselines). In structure, most fields are used together, so SOA does not pay off.

Despite having no dynamic (de)allocation during the benchmark, nbody can see a slight
speedup with dynamic memory allocation. This is likely due to fewer cache associativity
collisions compared to a denser allocation in array [41].

In collision, DynaSOAr/BitmapAlloc enumerate objects with a bitmap scan of the object
allocation bitmap (device_do; 1 bit/object), more efficently than other allocators. Other
allocators read objects pointers from an array (8 bytes/object). The baseline versions read
an active flag (1 byte/object) from every object, including deleted ones.

game-of-life and wa-tor are applications that (de)allocate a large number of objects, so
enumeration takes a long time. DynaSOAr and BitmapAlloc have much more efficient
parallel-do operations than other allocators.

sugarscape and wa-tor exhibit a 2D grid structure of cells. Baseline versions take advantage
of this geometric structure, leading to more coalesced memory access, while programmers
have no control over where objects are placed in memory by dynamic allocators. For this
reason, the baseline versions are faster than the versions with dynamic memory management.

In general, in applications with dynamic memory management, objects are referred
to with 64-bit object pointers, while all baseline versions use 32-bit integer indices. This
penalizes especially benchmarks with small objects; their object sizes grow considerably just
by switching from 32-bit integers indices to 64-bit pointers.

6.2 Space Efficiency
To evaluate how efficiently allocators manage memory, we gave them the same heap size and
experimentally determined the max. problem size before running out of memory (Fig. 11).

For category (1) and (2) applications that allocate all memory during startup (collision,
nbody, structure), the baseline versions are more space-efficient. The exact number of objects
per type is known ahead of time, so placing objects in memory is trivial. However, even though
category (2) applications delete objects throughout their runtime, the memory consumption
of the baseline versions does not decrease over time. This is a problem even for DynaSOAr
because blocks can only be deleted when they are entirely empty, which can take some time.
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Figure 10 Running Time of SMMO Application Benchmarks. We gave every allocator some
extra memory to avoid memory scarcity slowdowns: The heap size is 8 GiB, at least 4 times bigger
than the maximum amount of all allocated memory at any point throughout the program execution.

Figure 11 Space Efficiency. We measured the max. problem size of every allocator with the same
heap size. Does not take into account enumeration arrays. Results are relative to DynaSOAr.

iterations

(a) Comparison with other allocators.

problem size

(b) Fixed heap size, increasing problem size.

iterations

(c) Isolating single DynaSOAr optimizations.

iterations

(d) Number of (de)allocations and fragmentation.

Figure 12 Detailed Analysis of wa-tor. Does not include enumeration time, unless indicated.
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Category (3) applications (sugarscape, traffic, wa-tor) exhibit a fixed grid/network structure
of cells, upon which a dynamic set of agents is moving. The baseline versions allocate the
fields of agents directly inside cells. Classes for agents are combined with the cell class and
some fields have null values (or garbage) if they are not used. This wastes memory because
not all cells are occupied by agents all the time. Here, DynaSOAr is not as fast as optimized
SOA baseline implementations, but it can handle significantly larger problem sizes.

Out of all allocators, DynaSOAr is most space-efficient. MallocMC and Halloc are based
on a hashing approach. With rising heap fill levels, it becomes increasingly difficult to find
free memory for allocations, so they fail to use the entire heap memory. DynaSOAr and
BitmapAlloc can avoid this problem with bitmaps, which act as an index for free memory.

Albeit negligible in these benchmarks, DynaSOAr and Baseline (SOA) also benefit from
slightly smaller object sizes: Only SOA arrays must be aligned and not every object.

6.3 Detailed Analysis of wa-tor
wa-tor is a particularly interesting benchmark. It exhibits a massive number of (de)allocations
in waves, until an equilibrium between fish and sharks is reached. This allows us to measure
performance at a massive and at a lower number of concurrent (de)allocations. For a fair
comparison of allocators, we do not include time spent on enumeration in this section.

Fig. 12a shows that DynaSOAr always provides superior performance compared to other
allocators; during (de)allocation spikes (around iteration 50), as well as if fewer concurrent
(de)allocations take place. The performance of mallocMC degrades after a few iterations and
does not recover, possibly due to a fragmented heap.

In (b), all allocators were given a heap size of 1 GB and the problem size increases
gradually on the x-axis. mallocMC performs well at first, but its performance drops rapidly
as soon as the heap starts filling up. DynaSOAr can handle much larger problem sizes,
given the same amount of heap memory. The running time grows linearly with the problem
size, showing that recent GPU architectures can handle atomic operations quite well.

Fragmentation in DynaSOAr is different from other allocators: DynaSOAr does not
have internal or external fragmentation by design, but memory within allocated blocks is
only available for a certain type. This sort of fragmentation decreases with better clustering.
In DynaSOAr, fragmentation F is the relative number of unused objects slots among all
allocated blocks Blocks (gray area in (b) and (d)).

F =
∑

b∈Blocks(Ntype(b) − used(b))∑
b∈Blocks Ntype(b)

≈ 1
#blocks

∑
b∈Blocks

#free slots(b)
#slots(b) (fragmentation)

At iterations 60–80 in (d), DynaSOAr has high fragmentation because many fish
objects were deallocated. However, a block can only be deallocated when all of its objects
are deallocated. The fragmentation level decreases gradually because new allocations are
performed in existing (active) blocks. Therefore, new blocks are rarely allocated and there is
a chance that an active block will eventually run empty. As can be seen in (b), fragmentation
is independent of the problem size and constant at around 18% after 500 Wa-Tor iterations.

We implemented multiple DynaSOAr variants to pinpoint the source of DynaSOAr’s
speedup over other allocators (Fig. 12c. The most important optimization is the rotation-
shifting of bitmaps. Without shifting (*-NoShift), performance degrades severely due to
thread contention. Allocation request coalescing is another optimization that reduces thread
contention significantly (compare DynaSOAr-NoCoal-NoShift and DynaSOAr-NoShift), but
it cannot improve performance much further if we are already rotation-shifting bitmaps
(compare DynaSOAr and DynaSOAr-NoCoal).
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iterations

Figure 13 Memory fragmentation (wa-tor) by #active block lookup attemps r (Alg. 6, Line 2).
With only 1 retry (r = 2), frag. is reduced by 50%. DynaSOAr uses r = 5 by default, which
is close to the lowest achievable frag. level (i.e., without thread contention). Due to unfortunate
alloc.-delloc. patterns, a frag. rate of 0% is not achievable without manually relocating objects or
predicting future (de)allocations.
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(a) Linux Scalability: Increasing #allocations.

heap size (GB)

(b) Scaling study: Heap size (wa-tor).

Figure 14 Scaling Study: Number of Allocations and Heap Size.

In Fig. 13, we experiment with the number of active block lookup attempts before entering
the slow path, which strongly affects fragmentation.

6.4 Raw Allocation Performance
The Linux Scalability microbenchmark [42] measures the raw (de)allocation time of allocators.
We set the heap size to 1 GiB and one CUDA kernel allocates n 64-byte objects in each of
the 16,384 threads. A second CUDA kernel deallocates all objects. Allocated memory is
never accessed. In Fig. 14a, the x-axis denotes the number of allocations per thread n and
the y-axis shows the total benchmark running time divided by n.

We chose the size of the heap such that it can hold exactly 16384 × n objects with
n = 1024 (100% heap utilization). No allocator can reach perfect utilization because some
memory is used for internal data structures such as bitmaps.

Halloc is the fastest allocator. Both Halloc and mallocMC fail to allocate more than 510
objects (49.8% utilization). This is better than in some other benchmarks, likely because
only objects of one size are allocated. DynaSOAr (96.9% utilization), BitmapAlloc (98.4%
utilization) and Halloc scale almost perfectly with the number of allocations.

6.5 Parallel Object Enumeration
The overhead of object enumeration (parallel do-all) is negible in most benchmarks (Fig. 10,
Fig. 12b). In Fig. 14b, the problem size is fixed but the heap size increases on the x-axis.
DynaSOAr’s performance (and that of object enumeration) is independent of the size of
the heap, if enough memory is available for the application. This shows that our hierarchical
bitmaps work well with various heap sizes.
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7 Conclusion

We presented DynaSOAr, a new dynamic object allocator for SIMD architectures. The main
insight of our work is that memory allocators should not only aim for good raw (de)allocation
performance, but also optimize the usage of allocated memory. DynaSOAr was designed
for GPUs, but its basic ideas are applicable to other architectures and systems with good or
guaranteed vectorization such as the Intel SPMD compiler [53].

DynaSOAr achieves good memory access performance by controlling (a) memory alloca-
tion and (b) memory access with a parallel do-all operation. DynaSOAr’s main speedup over
other allocators is due to an SOA-style object layout, which can benefit memory bandwidth
utilization (through coalesced memory access) and cache utilization. To allow for dynamic
(de)allocation of objects, DynaSOAr allocates objects in blocks instead of a plain SOA
layout. DynaSOAr utilizes hierarchical bitmaps for fast and compact allocations with
low fragmentation.

Our benchchmarks show that DynaSOAr can achieve significant speedups over state-of-
the-art allocators of more than 3x in application code with structured data, due to better
memory access performance. DynaSOAr also has a significantly lower memory footprint
than other allocators, mainly because DynaSOAr has no internal fragmentation by design
and is not based on hashing. Our work also shows how an SOA layout can support class
inheritance without wasting memory: by allocating objects in blocks and encoding block
sizes in object pointers.

In the future, we will investigate how DynaSOAr can be extended to support virtual
functions and other custom object layouts.
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Algorithm 7: Block::deallocate(pos) : state . Assuming block size 64. GPU

1 mask ← 1 << pos;
2 before ← atomicAnd(&bitmap, ∼mask);
3 success ← (before & mask)) 6= 0;
4 assert(success); . Precondition.
5 if popc(before) = 1 then
6 return EMPTY ;

7 else if popc(before) = 64 then
8 return FIRST ;
9 else

10 return REGULAR;

A Concurrency and Correctness

CUDA has a weak consistency model for global memory access [5]. Writes to memory
performed by one thread are not guaranteed to become visible to other threads in the same
order. However, atomic writes have that property (sequential consistency). Furthermore,
thread fences can be used between two memory writes to enforce sequential consistency,
if necessary.

Moreover, global memory reads/writes may be buffered in registers/caches, without a
global memory load/store. Thus, memory writes by one thread may not become visible to
other threads until the next GPU kernel, unless reads/writes are volatile or performed
with atomic operations.

All bitmap operations are sequentially consistent and do not suffer from load/store
buffering because they are based on atomic memory operations.

A.1 Object Slot Reservation/Freeing

Inside a block, object allocations are tracked with the object allocation bitmap. Every object
allocation bitmap has 64 bits, regardless of the block capacity. If a block’s capacity is smaller
than 64, then the last 64−N bits are set to 1 during block initialization to prevent threads
from reserving these slots during object allocation.

Object slots are reserved/freed with atomic operations. These bypass the incoherent L1
caches and are thread-safe: E.g., based on their return value, we know if the current thread
reserved a slot or if a contending thread was faster (Alg. 6, Line 5). Based on their return
value, we also know if the current thread reserved the last slot (Line 11), in which case the
block should be marked as inactive by the allocation algorithm.

A.1.1 Slot Reservation

Block::reserve() (Alg. 6) reserves a single object slot in the block. Our actual implemen-
tation may reserve multiple slots at once due to allocation request coalescing.

1. Preconditions: Block was initialized at least once. (Calling this method on invalidated
blocks or full blocks is OK. This function will simply return FAIL.)

2. Postconditions: If the result is different from FAIL, the resulting slot at position is
reserved for this thread (and no other thread).

3. Return Value: Success indicator, atomically reserved slot position, block state.
4. Linearization Point: Atomic OR operation (Line 5).
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Algorithm 8: DAllocatorHandle::initialize_block<T>(int bid) : void. GPU
1 heap[bid].type ← T; . Volatile write.
2 __threadfence();
3 heap[bid].bitmap ← 0; . Volatile write, assuming block capacity 64.

A.1.2 Slot Freeing

Block::deallocate(pos) (Alg. 7) frees a single object slot in the block. To support
allocation request coalescing, we have a modified version of this function that can rollback
multiple slots at once.

1. Preconditions: Bit pos is set to 1 in the object allocation bitmap. (Deleting an object
multiple times or trying to delete an arbitrary pointer is illegal.)

2. Postconditions: Bit pos is set to 0 in the object allocation bitmap.

3. Return Value: Block state.

4. Linearization Point: Atomic AND operation (Line 2).

A.2 Safe Memory Reclamation with Block Invalidation

Safe memory reclamation (SMR) in lock-free algorithms is notoriously difficult. An SMR
problem arises in DynaSOAr when deleting blocks. A block should be deleted as soon as its
last object has been deleted. This by itself is easy to detect with atomic operations (Alg. 7,
Line 6). However, a contending thread may already have selected the now empty block in
the course of its own concurrent allocate operation, before the block is actually deleted. Now
it is no longer safe to delete the block, but the deleting thread is not aware of that.

Elaborate techniques for SMR such as hazard pointers and epoch-based reclamation have
been proposed in previous work [15, 48]. DynaSOAr is able to exploit a key characteristic
of its data structure to solve this SMR problem in a simple way: Since all blocks have the
same size and structure, object allocation bitmaps are always located at the same position.
Therefore, we can optimistically proceed with bitmap modifications and rollback changes
if necessary.

Our solution to SMR is block invalidation. Before deleting a block, a thread tries to
invalidate (atomically set to 1) all bits in the object allocation bitmap. Bits that were
already 1 are not considered invalidated because those object slots are in use. After successful
invaldation, bits remain invalidated until a new block is initialized in the same location.
Other threads may still be able to find the block in the active block bitmap for a while, but
object slot reservations can no longer succeed.

Allocating threads can detect changes in the block type. Before a previously invalidated
block becomes available for allocations again (by initializing its object allocation bitmap),
we update the block type. We put a thread fence between both writes to ensure that threads
see the new block type before they see free slots in the bitmap (Alg. 8). Threads allocate
objects optimistically and rollback changes should they detect a different block type (Alg. 1,
Line 14; also see Sec. A.3).
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Algorithm 9: DAllocatorHandle::invalidate(int bid) : bool. GPU
1 bitmap_ptr ← &heap[bid].bitmap;
2 before ← atomicOr(bitmap_ptr, 0xFF...F); . Invalidate (set) all obj. allocation bitmap bits.
3 if before 6= 0xFF...F then . ≥ 1 bit was invalidated.
4 t ← heap[bid].type;
5 if before = 0 then . All 64 bits invalidated by this atomicOr.
6 return true;
7 else . Not all bits invalidated. Rollback.
8 before_rollback ← atomicAnd(bitmap_ptr, before);
9 if before_rollback 6= 0xFF...F then . Other thread cleared a bit.

10 active[t].clear(bid); . Other thread expects an inactive block.
11 if (before_rollback & before) = 0 then . Empty again. Retry invalidation.
12 return invalidate(bid);

13 return false;

Details

Block invalidation9 (Alg. 9) fails if a thread is unable to invalidate at least one bit. In that
case, if at least one bit was changed through invalidation, this change must be rolled back
(Line 8): In before exactly those bits are zero that were invalidated by the thread.

While a thread is running an invalidation operation, other threads may continue to
concurrently reserve/free object slots in the same block, unaware of the fact that a thread is
trying to invalidate the block. Those threads will update block bitmaps based on the object
allocation bitmap state that they are seeing. Therefore, block invalidation must update block
bitmaps, as every invalidated bit appears to be an allocated object slot to other threads.

Since block invalidation fills up a block, the block’s active[t] state should be removed
after Line 7, because, if we enter this else branch, the thread just filled up the block by
reserving the remaining object slots (however, not all 64 slots, otherwise, we would be in
the then branch of Line 5). However, we defer this step, as an invalidation rollback would
likely have to mark the same block as active[t] again. Unless, another thread concurrently
freed an object slot in-between invalidation and invalidation rollback. For such a thread it
will seem as if its deallocation just freed the first slot, causing it activate the block (Alg. 2,
Line 5). However, since we defered block deactivation, this set(bid) operation will spin until
we deactivate the block (Alg. 9, Line 10). If invalidation rollback empties the block again,
we try to invalidate the block one more time10.

Note that block invalidation is independent of the type of a block. After invalidating
at least one bit, the block type is fixed until invalidation rollback or block initialization,
since other threads do not change invalidated bits. As such, the block cannot be deleted
or reinitialized to another type by another thread. Other threads can, however, delete and
initialize a block with different type after invalidation rollback. It is, nevertheless, safe to
assume a block type of t in Line 10, since this is merely an execution of a defered operation
that should have happened earlier when the block type was known to be t.

9 For presentation reasons, we assume a block capacity of 64 in all algorithms in this paper.
10Our actual implementation is iterative instead of recursive.
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A.3 Object Allocation
The critical parts during allocations (Alg. 1) are block selection (Line 2) and object slot
reservation (Line 8). Both operations by themselves are atomic, but not together. Block
selection returns the index of an active block of type T , so we expect that after Line 8, we
reserved an object slot in a block of type T . However, due to concurrent operations of other
threads, some of these assumptions may be violated.

Block Full. An active block was selected by try_find_set but the block filled up before
making an allocation (i.e., the block is no longer active). In this case, object slot
reservation will fail. Whenever allocation fails, it will restart from the beginning.

Block Deallocated. A block was selected by try_find_set but deallocated before reserving
a slot. In this case, slot reservation will fail because the block is now in an invalidated
state.

Block Replaced (ABA). A block was selected by try_find_set but deallocated and reini-
tialized to a block of same type T . This is harmless: We do not care about block
identity.

Block Replaced (Different Type). A block was selected by try_find_set but deallocated
and reinitialized to another type11 t 6= T . In this case, the allocation must be rolled
back (Line 14). All blocks have the same basic structure, so no data can be overwritten
accidentally during bitmap updates. Note that the rollback may trigger additional block
bitmap updates.

Active Block Not Selected. A block becomes active shortly after try_find_set fails. Or,
due to bitmap hierarchy inconsistencies, try_find_set fails to find an active block even
though active blocks exist. This is harmless: No assumption is violated. A new block
will be initialized, which merely increases fragmentation.

Note that a block cannot be deallocated after an object slot was already reserved, because
block invalidation would fail. Thus, the type of a block can also no longer change.

A.4 Object Deallocation
The critical part during deallocations (Alg. 2) is consistency between object slot deallocation
(Line 3) and block state updates. If the current thread deallocated the first object (i.e., the
block was full), then the block bit must be set to active. If the current thread deleted the
last object (i.e., the block is empty), then the block must be deleted. The problem is that
object slot deallocation and the corresponding block state update together are not atomic.

Allocate After Delete-First. A thread t1 deleted the first object of a block. However, before
marking the block active (Line 6), another thread t2 allocated this slot again; the block
should be inactive. In this case, t2 reserved the last slot, so it will mark the block as
inactive (Alg. 1, Line 12). This operation expects the bit to be in a set state and it will
retry until t1 sets the bit.

Block Deleted after Delete-First. A thread t1 deleted the first object of a block. However,
before marking the block active, other threads deallocated all other objects and a thread
t2 deleted the block. This is not possible because t2 expects the block to be active (Line 9),
i.e., bit set to 1, and blocks until then.

11Block initialization (Alg. 8) has a thread fence between setting the block type and resetting the object
allocation bitmap, so threads are guaranteed to read the correct type t after an allocation succeeded.



M. Springer and H. Masuhara 17:35

Block Replaced after Delete-First. A thread t1 deleted the first object of a block. However,
before marking the block active, the block was reinitialized to another type. This is not
possible because only deleted blocks can be reinitialized (see previous point).

Allocate after Delete-Last A thread t1 deleted the last object of a block. However, before
deleting the block, another thread t2 allocated an object again, so it is unsafe to delete
the block now. This case in handled by block invalidation.

Block Deleted after Delete-Last. A thread t1 deleted the last object of a block. However,
before deleting the block, another thread t2 allocated an object and yet another thread
t3 deleted that object, rendering the block empty again and deleting it. Now the block is
already deleted when t1 is trying to delete the block. In this case, block invalidation of
t1 will fail because the block is still in an invalidated state and t1 fails to invalidate all
object slot bits.

Block Replaced after Delete-Last. Same as before, but yet another thread t4 reininitializes
the block to a different type. Now t1 will invalidate and delete a new block whose type is
different. This is OK. Block invalidation will succeed only if the block is empty. Both
block invalidation and block deletion are independent of the block type.

A.5 Correctness of Hierarchical Bitmap Operations
A container Cl

i consists of bits bl
64·i, ..., bl

64·i+63 and is represented by one bit bl+1
i in the

nested (higher-level) bitmap. That bit is set if and only if at least one bit is set in the
container.

I Definition 1 (Consistency). A bit in level bl+1
i is consistent with its corresponding

container Cl
i in the lower-level bitmap if and only if:

bl+1
i =

63∨
k=0

bl
64·i+k = 1

(∑
Cl
bi/64c > 0

)
We say that the Ll+1 bitmap is in a consistent state with the Ll bitmap if all bits bl+1

i in
the Ll+1 bitmap satisfy the consistency criterion. The bitmap data structure as a whole is
in a consistent state if all bitmap levels Li satisfy the consistency criterion.

I Definition 2 (Semantics of Bitmap Operations). Every bitmap Ll provides operations for
setting and clearing bits (Sec. 4.1.2). These operations may update bits in the higher-level
bitmap Ll+1 if they set the first bit (SF l

bi/64c) or clear the last bit (CLl
bi/64c) of a container

Cl
i , respectively:

set(bl
i) and 1

(∑
Cl
bi/64c = 0

)
︸ ︷︷ ︸

set-first: SFl
bi/64c

then set(bl+1
bi/64c) ∀i ∈ [0; 64)

clear(bl
i) and 1

(∑
Cl
bi/64c = 1

)
︸ ︷︷ ︸

clear-last: CLl
bi/64c

then clear(bl+1
bi/64c) ∀i ∈ [0; 64)

We would like to show that, assuming that a bitmap data structure is initially in a
consistent state and given a multiset of bitmap operations O0 on the L0 bitmap, the entire
bitmap data structure is in a consistent state after executing all operations.

I Definition 3 (Legal Bitmap Operations). Let #set(bl
i) and #clear(bl

i) be the number of
set and clear operations of bl

i in a multiset of bitmap operations Ol. We call S(bl
i) =

#set(bl
i)−#clear(bl

i) the set-surplus of bl
i. Ol is legal if it satifies the following conditions.
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1. Overall bit operation is clear, remain or set: S(bl
i) ∈ {−1, 0, 1}.

2. Bit is in a cleared or set state afterwards: bl
i + S(bl

i) ∈ {0, 1}.

E.g., setting a cleared bit twice and clearing it once (S = 2 − 1 = 1 and 0 + 1 = 1) is
OK, but setting the bit three times and clearing it once (S = 3− 1 = 2) would be an illegal
usage of the bitmap data structure. Note that illegal bitmap operations deadlock in our
implementation because set and clear spin-block and retry until they acutally changed the
bit. If a legal bitmap operations multiset is executed fully concurrent (i.e., one thread per
operation), then there is always a thread/operation that can make progress.

I Induction Hypothesis 4. Let us assume that a multiset of bitmap operations Ol on the Ll

bitmap is legal according to Definition 3 for an arbitrary l and that Ll is initially consistent
with Ll+1.

I Lemma 5. Under the induction hypothesis, the bitmap operations multiset Ol+1 that is
generated by the operations in Ol according to Definition 2 is also legal. Furthermore, after
executing Ol, Ll is still consistent with Ll+1.

Proof. Let us first consider the bitmap operations of a single container Cl
i . Let #SF l

i be
the number of times a first bit is set in the container and #CLl

i be the number of times a
last bit is cleared in the container. Then, according to Definition 2, bl+1

bi/64c is set #SF l
i times

and cleared #CLl
i times. We have to prove that the set-surplus S(bl+1

bi/64c) = #SF l
i −#CLl

i

satisfies the legality criteria of Definition 3.
Without loss of generality, let us assume that all set-first and clear-last operate on the

same bit bl
k. Then, S(bl+1

bi/64c) = S(bl
k) ∈ {−1, 0, 1}. Hence, the generated bitmap operations

Ol+1 for any bit on the Ll+1 bitmap satisfy the first legality condition of Definition 3.
Now we have to show that also the second legality condition holds and that bl+1

bi/64c is
consistent with Cl

i after executing Ol. We consider two cases.

1. bl+1
bi/64c = 0. Therefore, due to initial consistency,

∑
Cl
bi/64c = 0. Therefore, #SF l

i −
#CLl

i ∈ {0, 1}, otherwise, Ol would not be legal. Therefore, bl+1
bi/64c + S(bl+1

bi/64c) ∈ {0, 1}.
a. If #SF l

i −#CLl
i = 0, then ∨63

k=0bl
64·i+k = 0 after Ol. At the same time, S(bl+1

bi/64c) = 0,
so bl+1

bi/64c = 0 after Ol, which is consistent with the state of Cl
i after Ol.

b. If #SF l
i −#CLl

i = 1, then ∨63
k=0bl

64·i+k = 1 after Ol. At the same time, S(bl+1
bi/64c) = 1,

so bl+1
bi/64c = 1 after Ol, which is consistent with the state of Cl

i after Ol.
2. bl+1

bi/64c = 1. Therefore, due to initial consistency,
∑

Cl
bi/64c > 0. Therefore, #SF l

i −
#CLl

i ∈ {−1, 0}, otherwise, Ol would not be legal. Therefore, bl+1
bi/64c+ S(bl+1

bi/64c) ∈ {0, 1}.
a. If #SF l

i −#CLl
i = −1, then ∨63

k=0bl
64·i+k = 0 after Ol. At the same time, S(bl+1

bi/64c) =
−1, so bl+1

bi/64c = 0 after Ol, which is consistent with the state of Cl
i after Ol.

b. If #SF l
i −#CLl

i = 0, then ∨63
k=0bl

64·i+k = 1 after Ol. At the same time, S(bl+1
bi/64c) = 0,

so bl+1
bi/64c = 1 after Ol, which is consistent with the state of Cl

i after Ol.

If all containers in Ll are consistent with their respective bits in Ll+1, then the entire Ll

bitmap is consistent with the Ll+1 bitmap. Futhermore, all generated bitmap operations
Ol+1 are legal because they satisfy both legality criteria. J

I Base Case 6. The bitmap data structure is initially in a consistent state. Furthermore,
O0 is legal. Otherwise, programmers use the bitmap data structure incorrectly.
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B Field Address Computation

This section describes a key implementation technique of the DynaSOAr DSL, that was
taken from Ikra-Cpp [59]: Proxy Types. This technique allows us to implement custom data
layouts in C++ 11 without breaking OOP abstractions or modifying the compiler.

Even though fields are declared with type Field<B, N>, they can be used almost like
normal C++ types. There are certain limitations with respect to automatic type deduction
(auto keyword). Internally, this is implemented with operator overloading, e.g.:

1. Implicit Conversion Operator: Field<B, N> values can be implicitly converted to
the N-th predeclared type in B, without an explicit type cast. We call B the base type.

2. Member of Object/Pointer Operators: It is possible to call non-virtual member
functions if the base type is (pointer to) a class or struct.

3. Subscript Operator: It is possible to use array access syntax ([]) for array base types.
4. Indirection/Address-of Operators: It is possible to dereference a value of pointer

base type and to take the address of a field value.

Listing 2 shows the implementation of the implicit conversion operator. This code first
extracts all components that are required for address computation from an object pointer.
Then it returns a reference to an object of the base type at the computed memory location.

1 // Implicit conversion operator : E.g., convert Field <NodeBase , 2> to float & in Figure 6.
2 template < typename B, int N>
3 Field <B, N >:: operator typename B:: predeclared_type <N >&() {
4 int offset = ...; // Computed with template metaprogramming . offsetB::fieldname in Figure 6.
5 auto obj_ptr = reinterpret_cast <uint64_t >( this ) - 2; // p2 in Figure 6.
6 // Bits 0 -49 and clear 6 least significant bits.
7 auto * block_address = reinterpret_cast < char *>( obj_ptr & 0 x3FFFFFFFFFFC0 );
8 int obj_slot_id = obj_ptr & 0x3F; // Bits 0-5
9 int block_capacity = ( obj_ptr & 0 xFC000000000000 ) >> 50; // Bits 50 -55

10 auto * soa_array = reinterpret_cast < typename B:: predeclared_type <N >* >(
11 block_address + field_offset * block_capacity );
12 return soa_array [ obj_slot_id ];
13 }

Listing 2 Address Computation in Proxy Field Types.
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