MagpieBridge: A General Approach to Integrating
Static Analyses into IDEs and Editors

Linghui Luo
Heinz Nixdorf Institute, Paderborn University, Paderborn, Germany
linghui.luo@upb.de

Julian Dolby
IBM Research, New York, USA
dolby@us.ibm.com

Eric Bodden

Heinz Nixdorf Institute, Paderborn University, Paderborn, Germany
Fraunhofer IEM, Paderborn, Germany

eric.bodden@upb.de

—— Abstract

In the past, many static analyses have been created in academia, but only a few of them have

found widespread use in industry. Those analyses which are adopted by developers usually have
IDE support in the form of plugins, without which developers have no convenient mechanism to use
the analysis. Hence, the key to making static analyses more accessible to developers is to integrate
the analyses into IDEs and editors. However, integrating static analyses into IDEs is non-trivial:
different IDEs have different UI workflows and APIs, expertise in those matters is required to write
such plugins, and analysis experts are not typically familiar with doing this. As a result, especially
in academia, most analysis tools are headless and only have command-line interfaces. To make static
analyses more usable, we propose MAGPIEBRIDGE— a general approach to integrating static analyses
into IDEs and editors. MAGPIEBRIDGE reduces the m x n complexity problem of integrating m
analyses into n IDEs to m + n complexity because each analysis and type of plugin need be done just
once for MAGPIEBRIDGE itself. We demonstrate our approach by integrating two existing analyses,
Ariadne and CogniCrypt, into IDEs; these two analyses illustrate the generality of MAGPIEBRIDGE,
as they are based on different program analysis frameworks — WALA and Soot respectively — for
different application areas — machine learning and security — and different programming languages —
Python and Java. We show further generality of MAGPIEBRIDGE by using multiple popular IDEs
and editors, such as Eclipse, IntelliJ, PyCharm, Jupyter, Sublime Text and even Emacs and Vim.

2012 ACM Subject Classification Software and its engineering — Software notations and tools
Keywords and phrases IDE, Tool Support, Static Analysis, Language Server Protocol

Digital Object Identifier 10.4230/LIPIcs. ECOOP.2019.21

Category Tool Insights Paper

Funding This research was supported by the research training group “Human Centered Systems
Security” (NERD.NRW) sponsored by the state of North-Rhine Westphalia in Germany and by the
DFG’s collaborative research center 1119 CROSSING.

1 Introduction

Many static analyses have been created to find a wide range of issues in code. Given the
prominence of security exploits in practice, many analyses focus on security, such as TAJ [59],
Andromeda [58], HybriDroid [34], FlowDroid [31], CogniCrypt [48] and DroidSafe [44].
There are also many analyses that address other code quality issues, such as FindBugs [46],
SpotBugs [23], PMD [17] for common programming flaws (e.g. unused variables, dead code,
empty catch blocks, unnecessary creation of objects, etc.) and TRACKER [57] for resource
© Linghui Luo, Julian Dolby, and Eric Bodden;
37 licensed under Creative Commons License CC-BY
33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 21; pp. 21:1-21:25

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:linghui.luo@upb.de
mailto:dolby@us.ibm.com
mailto:eric.bodden@upb.de
https://doi.org/10.4230/LIPIcs.ECOOP.2019.21
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2

MagpieBridge

leaks. Other analyses target code performance, such as J2EE transaction tuning [41]. There
are also specialized analyses for specific domains, such as Ariadne [38] for machine learning.
These analyses collectively represent a large amount of work, as they embody a variety of
advanced analyses for a range of popular programming languages. To make this effort more
tractable, many analyses are built on existing program analysis frameworks that provide
state-of-the-art implementations of commonly-needed building blocks such as call-graph
construction, pointer analysis, data-flow analysis and slicing, which in turn all rest on an
underlying abstract internal representation (IR) of the program. Doop [7,33], Soot [21,49],
Safe [19], Soufflé [22] and WALA [29] are well-known.

While development of these analyses has been a broad success of programming language
research, there has been less adoption of such analyses in tools commonly used by de-
velopers, i.e., in interactive development environments (IDEs) such as Eclipse [8], IntelliJ [13],
PyCharm [18], Android Studio [1], Spyder [24] and editors such as Visual Studio Code [28],
Emacs [10], Atom [3], Sublime Text [26], Monaco [16] and Vim [27]. There have been
some positive examples: the J2EE transaction analysis shipped in IBM WebSphere [12],
Andromeda was included in IBM Security AppScan [2], both ultimately based on Eclipse
technology. Similarly, CogniCrypt comprises an Eclipse plugin that exposes the results of its
crypto-misuse analysis directly to the developer within the IDE. Each of these tools involved
a substantial engineering effort to integrate a specific analysis for a specific language into a
specific tool. Table 1 shows the amount of code in plugins for analyses is a significant fraction
of code in the analysis itself. Given that degree of needed effort, the sheer variety of popular
tools and potentially-useful analyses makes it impractical to build every combination.

Table 1 Comparison between the LOC (lines of Java code) for analysis and the LOC for plugin.

Tool Analysis (LOC) | Plugin (LOC) | Plugin/Analysis
FindBugs 132,343 16,670 0.13
SpotBugs 121,841 16,266 0.13
PMD 117,551 33,435 0.28
CogniCrypt 11,753 18,766 1.60
DroidSafe 41,313 8,839 0.21
Cheetah 4,747 864 0.18
SPLIift 1,317 3,317 2.52

While the difficulty of integrating such tools into different development environments has
lead to poor adoption of these tools and research results in practice, it also makes empirical
evaluations of them challenging. Evaluations of static analyses have been mostly restricted
to automated experiments where the analyses are run in “headless” mode as command-line
tools [31, 50,53, 62], paying little to no attention to usability aspects on the side of the
developer. As many recent studies show [35,36,47], however, those aspects are absolutely
crucial: if program analysis tools do not yield actionable results, or if they do not report
them in a way that developers can understand, then the tools will not be adopted. So to
develop and evaluate such tools, researchers need ways to bring tools into IDEs more easily
and quickly.

The ideal solution is the magic box shown in Figure 1, which adapts any analysis to any
editor,! and presents the results computed by the analysis, e.g., security vulnerabilities or
other bugs, using common idioms of the specific tool, e.g., problem lists or hovers.

1 Note: In the following, when we write editor, we mean any code editor, which comprises IDEs.

L. Luo, J. Dolby, and E. Bodden

In this work, we present MAGPIEBRIDGE,? a system which uses two mechanisms to realize
a large fraction of this ultimate goal:

1. Since many analyses are written using program analysis frameworks, MAGPIEBRIDGE
can focus on supporting the core data structures of these frameworks. For instance,
analyses based on data-flow frameworks can be supported if the magic box can render
their data-flow results naturally. Furthermore, while there are multiple frameworks, they
share many common abstractions such as data flow and call graphs, which allows one to
support multiple frameworks with relative ease.

2. More and more editors support the Language Server Protocol (LSP) [15], a protocol by
which editors can obtain information from arbitrary “servers”. LSP is designed in terms
of idioms common to IDEs, such as problem lists, hovers and the like. Thus, the magic
box can take information from a range of analyses and render it in a few common tooling
idioms. LSP support in each editor then displays these in the natural idiom of the editor.

Our system MAGPIEBRIDGE exploits these two mechanisms to implement the magic box
for analyses built using WALA or Soot, with more frameworks under development, and for
any editor that supports the LSP. In this paper, we present the MAGPIEBRIDGE workflow,
explaining the common APIs we defined for enabling integration. We demonstrate two
existing analyses — CogniCrypt and Ariadne, which are based on different frameworks (Soot
and WALA), for different application areas (cryptography misuses and machine learning)
and for different programming languages (Java and Python) into multiple popular IDEs
and editors (Eclipse, Visual Studio Code, PyCharm, IntelliJ, JupyterLab, Monaco, Vim,
Atom and Sublime Text) supporting different features (diagnostics, hovers and code lenses)
using MAGPIEBRIDGE. We make MAGPIEBRIDGE publicly available as https://github.
com/MagpieBridge/MagpieBridge.

2 In a Chinese legend, a human and a fairy fall in love, but this love angers the gods, who separate them
on opposite sides of the Milky Way. However, on the seventh day of the seventh lunar month each year,
thousands of magpies form a bridge, called ##7 in Chinese and Quegqiao in pinyin, allowing the lovers
to meet.

° (d
A -
d 2)4 Jupyter MS
= W g Monaco
Atom Vim Eclipse VSCode Intelli) Sublime Emacs Jupyterlab Monaco Web Editor
Magic Box
TA) Andromeda | | HybriDroid | ... CogniCrypt| | FlowDroid DroidSafe Tool A Tool B Tool C
I I I | I | | | I
I | I
| WALA | | Soot | | Doop

Figure 1 The desired solution: a magic box that connects arbitrary static analyses to arbitrary
IDEs and editors.

21:3

ECOOP 2019

https://github.com/MagpieBridge/MagpieBridge
https://github.com/MagpieBridge/MagpieBridge

21:4

MagpieBridge

2 Background and Related Work

Existing tools and frameworks

Given the importance of programming tools for IDEs, there have been a variety of efforts
to provide them, both commercial and open source. We here survey some significant ones,
focusing on those that use WALA [40] or Soot [49,60] and hence are most directly comparable
to our work.

There have been a few commercial tools, notably IBM AppScan [2] and RIGS IT
Xanitizer [30]. Both products make use of WALA and target JavaScript among other
languages. They comprise views to display analysis results as annotations to the source code,
and allow for some triaging of the often longish lists of potential vulnerabilities within the
IDEs. Among other issues, AppScan finds tainted flows and allows the user to focus on a
specific flow through the program, although the user needs to decide what flow is of interest.

There has been a wider variety of open-source tools. WALA has been used in e.g.
JOANA [43,45]. Soot is used in the widely adopted open-source crypto-misuse analyzer
Eclipse CogniCrypt [48], and is also part of the research tools Cheetah [36], SPLIift [32] and
DroidSafe [44]. All tools named so far integrate with the Eclipse IDE.

JOANA focuses on Java, including Android, and provides a range of advanced analyses
based on information flow control.

CogniCrypt is a tool to detect misuses of cryptographic APIs in Java and Android applica-
tions. Its current Ul integration is relatively basic, offering simple error annotations in the
program code and the problems view. CogniCrypt further comprises an XText-based [39]
Eclipse plugin that allows developers to edit API-specification files using syntax high-
lighting and code completion. Those specification files directly determine the definition
of the static analysis.

SPLIift is a research tool to analyze Java-based software product lines. Its Ul is an extension
to FeatureIDE [56], which allows it to show variations in the product line’s code base
through color coding. Detected programming errors are shown as code annotations and
in the problems view. FeaturelDE itself is also an extension to Eclipse.

Cheetah is a research prototype for the just-in-time static taint analysis within IDEs. In
Cheetah, the analysis is triggered upon saving a source-code file, but in its case the
analysis is automatically prioritized to provide rapid updates to the error messages in
those code regions that are in the developer’s current scope. From there the analysis
works its way outwards, potentially reporting errors in farther parts of the program only
after several seconds or even minutes. Due to this mechanism, Cheetah requires the IDE
to provide information about which file edit caused the analysis to be triggered, and what
the project layout looks like. Cheetah also provides a somewhat richer Ul integration
than the previously named tools. For instance, when users select an individual taint-flow
message in the problems view, it highlights in the code all statements involved in that
particular taint, and also shows a list of those statements in a separate view — useful in
case those are scattered across multiple source code files.

Analysis based on Doop [7,33] has been experimentally integrated into the ProGuard
optimizer for Android applications [61]. This is a once-off integration rather than a framework
for Doop analyses, and it is focused on the build processs rather than the IDE itself. Still, it
reflects the special-purpose integrations that show how analysis tends to be used.

L. Luo, J. Dolby, and E. Bodden

Until now, program-analysis frameworks have focused on making it easier to develop
analyses, with supportive infrastructure for basics such as scalable call graph, pointer analysis,
and data-flow analysis. There have been presentations® and tutorials? at conferences which
have provided both introductions and detailed tutorials for analysis construction; however,
until now, there has been little focus on assisting with integrating such analyses into
usable tools.

Language Server Protocol (LSP)

The Language Server Protocol (LSP) [15] is a JSON-based RPC protocol originally developed
by Microsoft for its Visual Studio Code to support different programming languages. LSP
follows a client/server architecture, in which “clients” are typically meant to be code editors,
i.e., IDEs such as IntelliJ, Eclipse, etc., or traditional editors such as Visual Studio Code,
Vim, Emacs or Sublime Text. Those clients can trigger certain actions in “servers”, e.g. by
opening a source-code file. Those servers can be of different flavours, but LSP allows them to
contribute certain contents to the editor’s user interface, such as code annotations, list items
or hovers. We will give concrete examples, including screenshots, in Section 4. As we show in
this work, the LSP’s design lends itself to implement static code analysis tools as servers. In
such a design, clients trigger analysis servers through LSP, and those servers communicate
back their results through LSP as well, causing analysis results to automatically be shown in
the client through the respective editor’s native interfaces.

SASP and SARIF

The Static Analysis Server Protocol (SASP) [25], although similar in name to LSP, is a
distinctly different protocol. Started in 2017 by the static code analysis vendor GrammaTech,
it describes a standardized communication protocol to facilitate communication between static
analysis tools and consumers of their results. Compared to LSP, it supports a richer data-
exchange format that is explicitly fine-tuned to static analysis. This is realized through the
Static Analysis Results Interchange Format (SARIF) [20,25] that SASP uses to communicate
static-analysis results from servers to clients. Generally, SASP therefore promises a more
tight coupled integration compared to LSP static analyses into editors, potentially needing
more work on the server. Also, as of now, SASP and SARIF have seen little adoption by
tool vendors. Currently, the standard is mostly put forward by GrammaTech, which through
SASP offers third-party static analysis tools to allow a triaging of those tools’ results in
GrammaTech’s CodeSonar [5]. SARIF exporters currently exist for some few static analysis
tools, including CogniCrypt [48], the Clang Static Analyzer [4], Cppcheck [6], and Facebook
Infer [11], which makes them amenable for an integration through SASP. However, right now,
CodeSonar appears to be the only client ready to consume SARIF results, and it is unclear
whether this will change in the near future. It is for this reason that MAGPIEBRIDGE builds,
for now, on top of LSP instead of SASP and SARIF. Furthermore, SASP is currently still in
the early stage of its development and there exists no formal specification of the protocol [25],
which makes it hard to compare it to LSP in detail and hard to use for our work.

3 e.g. https://souffle-lang.github.io/pdf/SoufflePLDITutorial .pdf
4 e.g. http://wala.sourceforge.net/wiki/index.php/Tutorial

21:5

ECOOP 2019

https://souffle-lang.github.io/pdf/SoufflePLDITutorial.pdf
http://wala.sourceforge.net/wiki/index.php/Tutorial

21:6

MagpieBridge

3 Approach
3.1 The MagpieBridge Workflow

MAGPIEBRIDCGE uses the Language Server Protocol to integrate program analyses into
editor and IDE clients. MAGPIEBRIDGE is implemented using the Eclipse LSP4J [9] LSP
implementation based on JSON-RPC [14], but MAGPIEBRIDGE hides LSP4J details and
presents an interface in terms of high-level analysis abstractions. The overall workflow is
shown in Figure 2.

There are multiple mechanisms by which LSP-based tools can be used, but the most
common mechanism is that an IDE or editor is configured to launch any desired tools. Each
tool is built as a jar file based on the MagpieServer, with a main method that creates a
MagpieServer (Listing 1), then adds the desired program analyses (ServerAnalysis in
Listing 2) with addAnalysis, and then launches MagpieServer with launch so that it
receives messages. This is shown with the addAnalysis and launch edges in Figure 2. With
such a jar, MAGPIEBRIDGE can be used simply by configuring an editor to launch it. Figure 3
shows our Sublime Text setup to launch both Ariadne and CogniCrypt analyses. The user
merely obtains jar files of the analyses and sets up Sublime Text to launch each of them for
the appropriate languages. That is all the setup that is needed.

Based on LSP4J, there are several mechanisms for sending and receiving messages. Most
clients/editors simply launch the server and then expect it to handle messages using standard
I/O (e.g. Eclipse, IntelliJ, Emacs and Vim); however some clients expect to talk using
a well-known socket (e.g. Spyder), Web-based tools communicate using WebSockets (e.g.

ServerAnalysis MagpieServer LSP Client
addAnalysis(ServerAnalysis)
Iaunch(...\/ Initialize(InitializeParams)
IProjectService <
setRootPath(...) I
- response: InitializeResult

didOpen(DidOpenTextDocumentParams)

analyze(Collection<Module>, MagpieServer)

consume(Collection<AnalysisResult>)

>

LSP4)

>
<
A
awiL

hover(TextDocumentPositionParams)

response: Hover

codeLens(CodeLensParams)

response: CodelLens
-

didChange(DidChangeTextDocumentParams)

didSave(DidSaveTextDocumentParams)

analyze(Collection<Module>, MagpieServer)

: v

Figure 2 Overall MAGPIEBRIDGE workflow.

L. Luo, J. Dolby, and E. Bodden

LSP.sublime-settings — User

iadne": {

"command": ["/Library/Java/JavaVirtualMachine
"enabled" rue,

""languageId": "python",

''scopes": source.python"],

"syntaxes": ["Packages/Python/Python.sublime-

}’

"cognicrypt":
"command": ["/Library/Java/JavaVirtualMachine
"enabled": e,
""languagel ‘java",
"scopes": ["source.java"l,
"syntaxes": ["Packages/Java/Java.sublime-synt

Figure 3 Configuration for Sublime Text to launch MagpieServer.

Jupyter and Monaco) and only few tools support both standard I/O and socket (e.g. Visual
Studio Code). Our MagpieServer supports all these channels out of the box and can be
configured to communicate with a client using any of the channels.

Once MagpieServer is launched, it interacts with the client tool using standard LSP
mechanisms:

The first step is initialization. The client sends an initialize message to the server,
which includes information about the project being analyzed, such as its project root
path. MagpieServer calls setRootPath on each IProjectService (service that resolves
project scope such as source code path and library code path) instance to initialize project
path information. MAGPIEBRIDGE currently understands Eclipse, Maven and Gradle
projects. MagpieServer also sends the response InitializeResult which declares its
capabilities back to the client. This is shown in the upper portion of Figure 2

Subsequently, the client informs MagpieServer whenever it works with a file: the didOpen,

didChange and didSave messages are sent to the server whenever files are opened, edited

and saved respectively. These messages allow MAGPIEBRIDGE to call the analysis via the
analyze method whenever anything changes. Each analysis server decides the granularity
of when it actually runs analysis and how much analysis it does. This is shown with the

didOpen and analyze edges in Figure 2

As shown in the rest of Figure 2, analysis uses the consume method to report analysis

results of type AnalysisResult (Listing 4) to MagpieServer, which handles them via

the appropriate LSP mechanism, specified by the kind method (Listing 4), which returns

a Kind (Listing 5):

Diagnostic denotes issues found in the code, corresponding to lists of errors and warnings
that might be reported by a compiler. Tools typically report them either in a list
of results or highlight the results directly in the code. When the program analysis
provides such results via consume, MagpieServer reports them to the client tool with
the LSP publishDiagnostics APL

Hover denotes annotations to be displayed for a specific program variable or location.

It could be used to report e.g. the type of a variable or the targets of a function
call. Tools often show them when the cursor highlights a specific location. When the
program analysis provides such results via consume, MagpieServer keeps them and
reports them to the client tool as responses to LSP hover API calls by the client tool.

21:7

ECOOP 2019

21:8

MagpieBridge

CodelLens denotes information to be added inline in the source code, analogous to
generated comments. Tools typically report them as distinguished lines of text inserted
between lines of source code. When the program analysis provides such results via
consume, MagpieServer keeps them and reports them to the client tool as responses
to LSP codeLens API calls by the client tool.

These analysis results have a position method that returns a Position (Listing 6)

denoting the source location to which the result pertains. The result requires a precise

location based on starting and ending line and column numbers, which is required
by the LSP protocol. Note that the Position of MAGPIEBRIDGE implements the

Java Comparable interface; MAGPIEBRIDGE exploits this to store analysis results in

NavigableMap structures so that it can find the nearest result if a user hovers in a

location near result, e.g. some whitespace immediately after a variable or expression.

public class MagpieServer implements LanguageServer, LanguageClientAware{
protected LanguageClient lspClient;
protected Map<String, IProjectService> languageProjectServices;
protected Map<String, Set<ServerAnalysis>> languageAnalyses;

public void addProjectService(String language, IProjectService projectService){...}
public void addAnalysis(String language, ServerAnalysis analysis){...}

public void doAnalyses(String language){...}

public void consume(Collection<AnalysisResult>){...}

protected Consumer<AnalysisResult> createDiagnosticConsumer (){...}
protected Consumer<AnalysisResult> createHoverConsumer(){...}
protected Consumer<AnalysisResult> createCodeLensConsumer(O{...}

Listing 1 The core of the server.

public interface ServerAnalysis{
public String source();
public void analyze(Collection<Module> files, MagpieServer server);

Listing 2 Interface for defining analysis on the server.

public interface IProjectService {
public void setRootPath(Path rootPath);
}

Listing 3 Interface for defining service which resolves project scope.

3.2 The MagpieBridge System

We explain our MAGPIEBRIDGE system with an overview in Figure 4. MAGPIEBRIDGE
needs to support various analysis tools that were built on top of different frameworks, e.g.,
TAJ, Andromeda and HybriDroid use WALA, while CogniCrypt, FlowDroid and DroidSafe
rely on Soot and many other analyses are based on Doop. These analysis frameworks have
different IRs, which MAGPIEBRIDGE needs to use to generate analysis results. One key
requirement for all the frameworks supported by MAGPIEBRIDGE is very precise source-code

L. Luo, J. Dolby, and E. Bodden

public interface AnalysisResult {
Kind kind();

String toString(boolean useMarkdown) ;
Position position();
Iterable<Pair<Position,String>> related();
DiagnosticSeverity severity();
Pair<Position, String> repair();

public
public
public
public
public
public

Listing 4 Interface for defining analysis result.

public enum Kind {
Diagnostic, Hover, CodeLens

}

Listing 5 Enum for defining kinds of analysis results.

public interface Position extends Comparable {

public
public
public
public
public
public
public

int
int
int
int
int
int
URL

getFirstLine();
getLastLine();
getFirstCol();
getLastCol();
getFirstOffset();
getLastO0ffset () ;
getURL() ;

Listing 6 Interface for defining position.

Source-Code

Results

Position

Informati WALA-Soot
IRConverter

Source
Code

WALA
—»{ Source-Code
Front Ends

-~

Soot-based
Analysis

T

WALA IR

 recceceannn
@'- WALA-Doop

Doop IR

IRConverter | |

)
o wong

Analysis

WALA-based Analvsij LSP

4] Results | | Notificatio

]

Doop-based |

Analysis

Library

Bytecode
Code Front Ends
g

MagpieServer

Eclipse
Intelli)
Emacs
Atom
Vim
VSCode
MS Monaco
Sublime

LSP Client

Figure 4 Overview of our MAGPIEBRIDGE system.

= Existing Flow

- Work in progress

21:9

ECOOP 2019

21:10

MagpieBridge

mappings, since in LSP all the messages communicate using starting and ending line and
column numbers. In the following we explain how MAGPIEBRIDGE achieves this requirement
for WALA-based analyses, Soot-based analyses and Doop-based analyses respectively.

3.2.1 WALA-based Analysis

The simplest code path in MagpieBridge (flow (1) in Figure 4) uses WALA source language
front ends for creating IR on which to perform analysis. WALA comprises both bytecode
and source-code front ends for different languages (Java, Python and JavaScript), and the
source-code front end preserves source-code positions very well. This information can be
consumed later in the LSP notifications, since it is kept in WALA’s IR. WALA’s IR is a
traditional three-address code in Static Single Assignment (SSA) form, which is translated
from WALA’s Common Abstract Syntax Tree (CAst).

The approach to source-code front ends for WALA is using existing infrastructure for
each supported language: Eclipse JDT for Java, Mozilla Rhino for JavaScript and Jython
for Python. Each of these front ends is maintained with respect to its respective language
standards, and all the front ends provide precise mappings of source locations for constructs.
To provide detailed source mapping for the generated IR, each WALA function body has
an instance of DebuggingInformation (Listing 7) which allows MAGPIEBRIDGE to map
locations from requests to IR elements at a very fine level.

public interface DebuggingInformation {
Position getCodeBodyPosition();
Position getCodeNamePosition();
Position getInstructionPosition(int instructionOffset);
String[][] getSourceNamesForValues();
Position getOperandPosition(int instructionOffset, int operand) ;
Position getParameterPosition(int param);

Listing 7 Debugging information interface.

Listing 7 details how much source mapping information is available. getCodeBodyPosition
is the source range of the entire function, and getCodeNamePosition is the position of
just the name in the body. getInstructionPosition is the source position of a given
IR instruction. getOperandPosition is the source position of a given operand in an IR
instruction. getParameterPosition is the position of a given parameter declaration in the
source.

3.2.2 Soot-based Analysis

Soot comprises a solid Java bytecode front end. The bytecode only has the line number of
each statement. This is not sufficient to support features such as hover, fix and codeLens
in an editor. For those features, position information about variable, expressions, calls and
parameters are necessary. However, they are lost in the bytecode. Soot further comprises
source-code front ends. Such front ends, however, require frequent updates due to the
frequently changing specification of the Java source language, which has caused Soot’s
source-code front ends to become outdated. Besides, Soot IR was not designed to keep
precise source-code position information, e.g., there is no API for getting the parameter
position in a method. Our approach is to take WALA’s source-code front end to generate
WALA IR and convert it to Soot IR. Soot has multiple IRs, the most commonly used IR

L. Luo, J. Dolby, and E. Bodden

is called Jimple [60]. Jimple is also a three-address code and has Java-like syntax, but is
simpler, e.g., no nested statements. Opposed to WALA IR, Jimple is not in SSA-form. Both
WALA and Soot are implemented in Java and manipulate the IR through Java objects. This
makes the conversion between the IRs feasible. In particular, we have implemented the
WALA-Soot IRConverter and defined the common APIs (Listing 4) to encode analysis results,
as well as the MagpieServer (Listing 1) that hosts the analysis. Currently the WALA-Soot
IRConverter only converts WALA IR generated by WALA’s Java source-code front end. In
fact, WALA uses a pre-IR before generating the actual WALA IR in SSA-form, and this
non-SSA pre-IR is actually the IR that we convert to Jimple. Since also Jimple is not in
SSA, this conversion is more direct. This pre-IR contains 24 different instructions as shown
in Figure 5. After studying both IRs, we found out that 15 instructions in WALA IR can be
converted to JAssignStmt in Jimple. Most of the times the conversion is one-to-one, only a
few cases are one-to-many. The precise source-code position information from WALA IR is
encapsulated in the tags (annotations) of the converted Soot IR. In the future, we plan to
convert WALA IR from front ends of other languages such as Python and JavaScript to a
potentially extended version of the Soot IR.

The flow (2) in Figure 4 for integrating Soot-based analysis starts by dividing the analyzed
program code into application source code and library code (which can be in binary form).
The source code is parsed by one of WALA’s source-code front end and it outputs WALA
IR, as well as precise source code position information associated in the IR. For a Soot-
based analysis, the WALA IR is translated by a WALA-Soot IRConverter into Soot IR

WALAIR —T% SootIR

. SSAArrayStorelnstruction
. SSAAmrayloadInstruction \
. SSAArraylengthinstruction

. AstLexicalWrite

AstLexicalRead

. EnclosingObjectReference

. SSACheck Castinstruction

. SSALoadMetadatalnstruction =] JAssignStmt
9. SSAUnaryOplnstruction

10. SSAPutInstruction

11. SSANewlnstruction

12. SSAlnstanceofinstruction

13. SSAConversioninstruction

14. SSABinaryOplnstruction /
15. SSAGetinstruction

ONOUBWNE

16. SSAGetCaughtExceptioninstruction | JidentityStmt

17. SSAMonitorinstruction JEnterMonitorStmt/JExitMonitorStmt
18. SSASwitchlInstruction JLookupSwitchStmt

19. SSAThrowlnstruction JThrowStmt

20. Astlavainvokelnstruction JInvokeStmt/JAssignStmt

21. SSAConditionalBranchinstruction JIfStmt

22. SSAReturninstruction JReturnStmt/JReturnVoidStmt

23. SSAGotolnstruction JGotoStmt

24. AstAssertioninstruction synthetic staticfield +JIfStmt

Figure 5 Conversion from WALA IR to Soot IR.

21:11

ECOOP 2019

21:12

MagpieBridge

public class ExampleAnalysis implements ServerAnalysis{

@0veride
public String source(){
return "Example Analysis"

}

@0veride

public void analyze(Collection<Module> sources, MagpieServer server){
ExampleTransformer t = getExampleTransformer();
loadSourceCodeWithWALA (sources) ;
JavaProjectService service = (JavaProjectService)

server.getProjectService("java");

loadLibraryCodeWithSoot (service.getLibraryPath()) ;
runSootPacks (t) ;
List<AnalysisResult> results = t.getAnalysisResults();
server.consume (results) ;

}
public class Example{

public static void main(String... args){
MagpieServer server = new MagpieServer();
IProjectService service = new JavaProjectService();
ExampleAnalysis analysis = new ExampleAnalysis();
String language = "java";
server.addProjectService(language, service);
server.addAnalysis(language, analysis);
server.launch(...);

Listing 8 The MagpieServer runs a Soot-based analysis.

(Jimple). The library code is parsed by Soot’s bytecode front end and then complements the
program’s IR obtained from the source code. The Soot IR in Figure 4 thus consists of two
parts: Jimple converted by the WALA-Soot IRConverter, which represents the source-code
portion/application code of the program, and Jimple generated by Soot’s bytecode front end
which represents the library code. Based on the composite Soot IR, Soot further conducts
a call graph and optionally also pointer analysis, which can then be followed by arbitrary
data-flow analyses.

Listing 8 shows an example of running a Soot-based analysis ExampleTransformer
(analyses are called transformers in Soot) on the MagpieServer. The ExampleTransformer
accesses the program through the singleton object Scene in order to analyze the program.
Once the MagpieServer receives the source code, the method loadSourceCodeWithWALA
parses the source code, converts it to Soot IR with the WALA-Soot IRConverter and stores
the IR in the Scene. The class JavaProjectService resolves library path for the current
project. loadLibraryCodeWithSoot loads the necessary library code from the path and adds
the IR into Scene. The method runSootPacks invokes Soot to build call-graph and run the
actual analysis. The analysis results will be then consumed by the server. In this example,
only the source files sent to the server are analyzed together with the library code. However,
it can be configured to perform a whole-program analysis, since the source code path can
also be resolved by JavaProjectService.

We explain how the class JavaProjectService which implements IProjectService
resolves the full Java project scope, i.e., source code path and library code path. As

L. Luo, J. Dolby, and E. Bodden

specified in LSP, the editors send the project root path (rootURI) to the server in the first
request initialize. Library and source code path can be resolved by using the build-tool
dependency plugins (e.g. caching results of mvn dependency:list) or parsing the configuration
(e.g. pom.xml, build.gradle) and source code files located in the root path. Project structure
conventions for different kinds of projects are also considered in MAGPIEBRIDGE. For more
customized projects, MAGPIEBRIDGE also allows the user to specify the library and source
code path manually as program arguments.

3.2.3 Doop-based Analysis

Doop uses Datalog to allow for declarative analysis specifications, encoding instructions as
Datalog relations as well as instruction source positions. There is code to convert from the
WALA Python IR to Datalog, and that captures both the semantics of statements as well
as source mapping, and these declarations capture the information needed for analysis tool
support. For instance, there is a Datalog relation that captures instruction positions and is
generated directly from WALA IR:

.decl Instruction_SourcePosition(?insn:Instruction,
?startLine:number, ?endLine:number, ?startColumn:number, ?endColumn:number)

This code has been used experimentally for analysis using Doop of machine code written
in Python. This code path could be used to express analyses in editors using MAGPIEBRIDGE,
and such work is under development.

4 Demonstration

To make MAGPIEBRIDGE more concrete, we use two illustrative analyses, based on different
frameworks — Soot and WALA, respectively — for different languages — Java and Python — in
different domains — security and bug finding — both in a range of editors:

CogniCrypt analyzes how cryptographic APIs are used in a program, and reports a variety
of vulnerabilities such as encryption protocols being misused or when protocols are used
in situations where they should not. The tool then also gives suggestions on how to fix
the problem. CogniCrypt comprises a highly efficient demand-driven, inter-procedural
data-flow analysis [55] based on Soot, and has its own Eclipse-based plugin. As Table 1
shows, its plugin actually required substantially more code than the analysis itself. The
plugin also is limited to Eclipse. We illustrate what it looks like to use CogniCrypt in
multiple tools using MAGPIEBRIDGE. To keep exposition simple, we focus on a case in
which a weak encryption mode is used (Electronic Codebook Mode, ECB). In the general
case the analysis can also report complex flows through the program. Screenshots in
Figure 6, Figure 7, Figure 8 and Figure 9 show the crypto warning reported by CogniCrypt
in different editors. As we can see, only the call Cipher.getInstance with the insecure
parameter is marked in each editor.

Ariadne analyzes how tensor (multi-dimensional array) data structures are used in machine-
learning code written in Python, and reports a range of information. It presents basic
tensor-shape information for program variables, and finds and fixes certain kinds of
program bugs. A key operation is reshaping a tensor: the reshape operation takes a
tensor and a new shape, and returns a new tensor with the desired shape when that is
possible. To simplify complex tensor semantics, a tensor can be reshaped only when its
total size is equal to size of the desired new shape. Another operation is performing a
convolution, e.g. conv2d, which requires the input tensor to have a specific number of
dimensions. We illustrate cases of these bugs, and how they are shown in multiple editors
(Figure 10, Figure 11, Figure 12, Figure 13, and Figure 14).

21:13

ECOOP 2019

21:14

MagpieBridge

We illustrate how the aspects of LSP used by MAGPIEBRIDGE are rendered in a variety of
editors; while there are common notions such as a list of diagnostics, different tools make
different choices in how those elements are displayed. We describe in turn several LSP aspects
and how analysis information is displayed using them.

4.1 Diagnostics

The most straightforward interface is for an analysis to report a set of issues, but even this

simple concept is handled differently in different editors.
Some editors have a problem view, i.e., a list summarizing all outstanding issues. An
example of this interface is Sublime Text, illustrated in Figure 8 where a warning about
weak encryption is shown in a list.
Some editors do not have such a list, but choose to highlight issues directly in the code. An
example of this interface is Monaco, illustrated in Figure 7; the same warning about weak
encryption is shown inline. To minimize clutter, editors typically make such warnings as
hovers, and we show it displayed in Monaco. A somewhat different visualization of the
same idea is in Figure 13, in which Atom shows an invalid use of reshape in Tensorflow.
Some editors do both. An example of this interface is Eclipse, illustrated in Figure 6
where a warning about weak encryption is shown both inline and in a list. Again to
minimize clutter, the inline message is realized via a hover.

Note that all issues displayed here are computed by the very same analysis in all editors and

rendered as the same LSP objects; however, they appear natural in each editor, due to the

editor-specific LSP client implementations.

4.2 Code Lenses

Code lenses look like comments, but are inserted into the code by analyses and are used to
reflect generally-useful information about the program. An example is shown in Figure 10,
in which the shapes of tensors are listed explicitly for various program variables and function
arguments.

4.3 Hovers

Hovers are used to reflect generally-useful information about the program, but, unlike code
lenses, they are visible only on demand. As such, an analysis can sprinkle them liberally
in the program and they will not be distracting since they are only visible when needed.
Different tools have different ways of user interaction. In Figure 11, the user hovers over the
variable x_dict in PyCharm to reveal the shape of tensors that it holds. In Figure 12, the
user enters a Vim command with the cursor over the variable x_dict.

4.3.1 Repairs

LSP provides the ability to specify fixes for diagnostics; a diagnostic can specify replacement
text for the text to which the given diagnostic applies. The method repair () in the interface
AnalysisResult is designed exactly for this purpose (see Listing 4). Figure 14 shows an
example of this: the top half shows an error report in Visual Studio Code that a call to
conv2d is invalid, since such calls require a tensor with four dimensions whereas the provided
argument has only 2. However, the analysis determines that a plausible fix is to reshape
the provided argument to have more dimensions, and the lower part of the figure shows a
prompt, in Emacs, suggesting a reshape call to insert.

L. Luo, J. Dolby, and E. Bodden 21:15

\stConstantColl CAstPattern.jav [J) WALAServerCore. [J) WALAServerSootC &) ConstraintError 33 99, =]

1] WALAServer.java

» 4 SootLsPDemo b & CryptoTarget » % CogniCryptDemoExample b (G src b & example b) ConstraintErrorExample b g° main(String... : void
=5 &3 o 7 Cog &3 =4 3 9.

1 package example;

2

3 import java.security.NoSuchAlgorithmException;

5 import javax.crypto.Ciphe|
¢ inport Javax.crypto.NoSuchbaddingException;
7

85 fax

9 x This code contains a misuse example CogniCrypt_SAST of a Cipher object.
10 x (ognl[rypt SAST reports that the string argument to Cipher.getInstance("AES/ECB/PKCSSPadding") does not correspond the Cry

12
13 pubuc class ConstramtErrorExample {

145 public static void main(Stris throws NoSuchAlgorithmException, NoSuchPaddingException {
a15 Cipher instance = Cadﬁex*ue.mna;an;ﬁL"AES/E.CH/F&CﬁEFaddAnq"l =
%? N } © ConstraintError violating CrySL rule for Cipher. First parameter (with value "AES/ECB/PKCS5Padding") should be any of AES/
s {CBC, GCM, PCBC, CTR, CTS, CFB, OFB}
152 Problems 5% B Console @ Javadoc € Declaration < Search = Progress %5 Debug & Error Log [ga Coverage ¥ Gradle Tasks a Gradle Bxecuti = OI
‘: <
297 errors, 2,254 warnings, 10 others (Filter matched 210 of 2561 items)
Description Resource Path ~ Location Type
(& Constrainteor violating CrySL rule for Cipher. First para... /S00tLSPDemo/C fine 15 org.eclipse.Ispae.diagnostic

Figure 6 Insecure crypto warning in Eclipse.

Monaco Example

package example;

import java.security.NoSuchAlgorithmException;

1
2

3

4

5 import javax.crypto.Cipher;

6 import javax.crypto.NoSuchPaddingException;
7

8

9

[k
* This code contains a misuse example CogniCrypt_SAST of a Cipher object.

10 % CogniCrypt_SAST reports that tha ctrina araument fo Cinhar natTnctance("AES/ECB/PKC |

1« [CryptoAnalysis] ConstraintError violating CryS

12w L rule for Cipher. First parameter (with value

13 public class ConstraintErr “AES/ECB/PKCSSPadding”) should be any of AES/

14 public static void mai {CBC, GCM, PCBC, CTR, CTS, CFB, OFB} NoSuchPadd

15 Cipher instance = Cipher,getInstance("AES/ECB/PKCSSPadding”);

16 ¥

17}

18

19

Figure 7 Insecure crypto warning in Monaco.

[] @ = ConstraintErrorExample.java UNREGISTERED

4)r ConstraintErrorExample.java
java.security.NoSuchAlgorithmException;

javax.crypto.Cipher;
Jjavax.crypto.NoSuchPaddingException;

class ConstraintErrorExample {

void main(String args) NoSuchAlgorithmException, NoSuchPe
Cipher instance - Cipher.getInstance("AES/ECB/PKCS5Padding

ConstraintError violating CrySL rule for Cipher. First

[cognicrypt, Line 14, Column 39 Tab Size: 4 Java

Figure 8 Insecure crypto warning in Sublime Text.

ConstraintErrorExample,java

exanple:

ConstraintErrorExample {
main(String... args) NosuchAlgorithmException, NoSuchPaddingException {
Cipher instance = Cipher. getInstance("AES/ECB/PKCS5Padding")

Figure 9 Insecure crypto warning in IntelliJ.

ECOOP 2019

21:16 MagpieBridge

File Edit View Run Kernel Tabs Settings Help

p E3 (] % Settings. buggy._convolutional_netw« X
f
Name Last Modified

Create the neural network
ixel

x_dict: {image N
B lib 8 days ago 32 def conv_net(x_dict, n_classes, dropout, reuse, is_training):

o) TS e 33 # Define a scope for reusing the variables
34 with tf.variable_scope('ConvNet', reuse=reuse):
0 schema 8 days ago 35 # TF Estimator input is a dict, in case of multiple inputs
[screenshots 4 days ago vixel[n][28 * 28
36 xxx = x_dict['images']

B sre 3 days ago

Figure 10 Code lenes showing tensor types in JupyterLab.

@ o 7| test [~/PycharmProjects/test] - ~/git/ML/com.ibm.wala.cast.|
iy Users) dolby) ait) ML) com.ibm.wala.cast.python.test) data) ' buggy_convoli

« buggy_convolutional_network.py

5z UET LUV _IIECUA_ULLL; 11I_CLa@33C3, Ul UpUuL, 1SUST, Ld_CIaliiiing/ s

33 L i variables

3 x_dict type: {images: pixel[n][28 * 28]} |, reuse=reuse):

ct, in case of multiple inputs

I 1: Project

36 xxx = x_dict['images']

Figure 11 Hover tip showing tensor types in PyCharm.

[] [] N xterm
«Idict

type: 1images: pixelln]

rit/H /com, ibm,wala, cast . python, test/data/bugoy coowolutional _network
Retrieving hover ...

Figure 12 Hover tip showing tensor types in Vim

bad_x = tf.reshape(xxx, shape=[-1, 11, 28, 1])
Ariadne

Cannot reshape pixelln][28 % 28] to pixell?][11][28][1]

Figure 13 Diagnostic warning showing an incompatible reshape in Atom.

bad_convl = tf.layers.conv2d(xxx, 32, 5, activation=tf.nn.relu)

[Ariadne]l Bad type to convolve pixellnl[28 * 28], needs 4 dimension

s (possible fix: tf.reshape(xxx, [-1, 28, 28, 11))
tf.contrib.lc

fcl = tf.layers.der

images": mnist.train.images}
: mnist
buggy_convolutional_network.py ~, : mnist.train.images

@ [Ariadne] Bad type to convolve : definition

PROBLEMS 4 OUTPUT aee

A [Ariadne] Cannot reshape pixe XXX

[Ariadne] possible calls (75, 2! type: pixel[n*][28 | 28]
Ariadne] possible calls (77, 1%

1 bad_convl = tf.layers.conv2d(;™

Flatten the data to a 1-D w¢ T
fcl = tf.contrib.layers.flatt¢ tf.reshape(xxx, [-1, 28, 28, 1])

Figure 14 Diagnostic error showing fixable incorrect dimensions for conv2d. Error shown in
Visual Studio Code and quick fix in Emacs.

L. Luo, J. Dolby, and E. Bodden

5 Comparison Between MagpieBridge-Based Approach and
Plugin-Based Approach

While MAGPIEBRIDGE enables analyses to run in a larger set of IDEs, the question remains
of how the support in any specific IDE using MAGPIEBRIDGE compares to a custom-built
plugin for that same IDE. Because most analysis tools do not have integration with most
IDEs, we are going to focus our comparison on one existing combination: the CogniCrypt
plugin for Eclipse. Afterwards, we discuss in more general terms the range of functionality
exploited by custom plugins that is supported by LSP.

5.1 Comparison Between MagpieBridge-Based CogniCrypt and
CogniCrypt Eclipse Plugin

The CogniCrypt Eclipse Plugin [48] consists of two components: code generation, which
generates secure implementations for user-defined cryptographic programming tasks, and
cryptographic misuse detection, which runs static code analysis in the background and
reports insecure usage of cryptographic APIs. MAGPIEBRIDGE focuses on analysis, and so
we do not consider the code-generation component here. For comparison, we integrated the
static crypto analysis of CogniCrypt with MAGPIEBRIDGE into Eclipse IDE.

Figure 15 and Figure 16 are screenshots in which the original CogniCrypt Eclipse
Plugin reports insecure crypto warnings. In comparison, Figure 17 shows our CogniCrypt-
integration with MAGPIEBRIDGE. Figure 15 shows two buttons that CogniCrypt adds to
the toolbar: “Generate Code For Cryptographic Task” and “Apply CogniCrypt Misuse
to Selected Project”. By clicking the latter, one triggers the misuse detection using the
plugin in its default configuration. The plugin can also be configured to trigger the analysis
whenever a Java file is saved. On the other hand, MAGPIEBRIDGE-based CogniCrypt starts
the analysis automatically whenever a Java file is opened or saved. In either case, after the
analysis has been run, any detected misuses are indicated in Eclipse in several ways, which
the corresponding numbers show in Figure 15 and Figure 17:

1. In the Package Explorer view, the error ticks appear on the affected Java element and
their parent elements.

2. In the Problems view, the detected misuses are listed as errors.

3. The editor tab is annotated with an error marker.

4. In the editor’s vertical ruler / gutter, an error marker is displayed near the affected line.

As shown in Figure 16, one can hover over an error marker next to the affected line to view

the description of the misuse. The appearance of the MAGPIEBRIDGE-based and plugin-based

CogniCrypt is rather similar, with just a few differences:

MAGPIEBRIDGE-based CogniCrypt does not change the appearance of the IDE. To work

with the MagpieServer which runs the crypto analysis, end-users do not have to do

anything different. The analysis runs automatically whenever a Java file is opened or
saved by an end-user. In contrast, in the Eclipse Plugin, one can trigger the analysis
manually, or (optionally) have it started automatically whenever a file is saved.

Results are indicated similarly in the CogniCrypt Eclipse Plugin MAGPIEBRIDGE-based

CogniCrypt; however, in MAGPIEBRIDGE-based CogniCrypt in addition to the error

markers, squiggly lines appear under the affected lines.

In MAGPIEBRIDGE-based CogniCrypt, the hover message also includes a quick fix that

can replace the insecure parameter AES/ECB/PKCS5Padding with a secure parameter

ASE/CBC/PKCS5Padding automatically. Since MAGPIEBRIDGE preserves the precise source

21:17

ECOOP 2019

21:18

MagpieBridge

2 eclipse-workspace - DemoAllErrors/src/Demajava - Eclipse IDE

CogniCrypt toolbar buttons
File Edit Source Refactor Mavigate Search Project Run WmW
i mild ‘\q| ‘ :Tso_l(_‘;c Q- Q- OGO i L CR =R =

mojava 3
J talin \paurauuLigALEpLIn =) |
c.printstackTrace();
} catch (InvalidKeySpecException e) {
e.printStackTrace();
} catch (GeneralSecurityException) {
41 e.printStackTrace();

}

public void showConstraintError() throws NoSuchAlgorithmException, NoSuchPaddingExceptior
I1legalBlockSizeException, BadPaddingException {
String data = “"some data”;
String key = "secret key";

[# Package Explorer 53 BEE|® = 3
52 DemoAllErors

~

default package)

& main(String..) : void

getPrivateKey() : Privatekey
showCenstraintError() : void
showForbiddenMethadError() : void
showlncompleteOperationError(: void
showNeverTypeOfEror() : void
showRequiredPredicateError() : void
showTypeStateError()
=) JRE System Library [jdk1.5.
(= lsp

=| DemoAllErrars.iml

PR

CogniCrypt reports the parameter passed in the following line is insecure.
oid

Cipher cipher = Cipher.getInstance("AES/ECB/PKCSSPadding”);
SecretKeySpec secretkey = new SecretKeySpec(key.getBytes(), "AES");
cipher.init(Cipher.DECRYPT _MODE, secretkey);
cipher.doFinal(data.getBytes());

1

public void showTypeStateError() throws GeneralSecurityException {

gl Problems 3% | @ Javadec [} Declaration B Console 4 Debug
12 errors, 4 wamings, 0 others

Description

rs (12items)
i3 [First parameter (with value "AES/ECB/PKCS5Padding”) should be any of AES/{CBC, GCM, PCBC, CTR, CTS, CFB, OFB}

Figure 15 The appearance of CogniCrypt Eclipse Plugin.

a g
55 |First parameter (with value "AES/ECE/PKC55Padding") should be any of AES/{CBC, GCM, PCBC, CTR, CTS, CFB, OFB}L
56 SecretkKeySpec secretKey = new SecretkKeySpec(key.getBytes(), "AES");

57 cipher.init(Cipher.DECRYPT_MODE, secretkey);

58 cipher.doFinal(data.getBytes());

56}

68

Figure 16 CogniCrypt Eclipse Plugin: insecure crypto warning message shown by hovering.

code position from the WALA source-code front end, e.g., the exact code range (start-
ing/ending line/column numbers) of each parameter of a method call, we were able to
build such quick fix easily with the codeAction feature supported by LSP. Such quick fix
is not available in the CogniCrypt Eclipse Plugin, although the warning message already
indicates what a secure parameter should look like.

Another difference is that, since MAGPIEBRIDGE does not add buttons to the IDE, it
needs to invoke the analysis automatically. When the end-user changes the opened file, the
MagpieServer clears the warnings when it receives the didChange notification from the IDE.
The analysis is then restarted whenever the end-user saves the file, i.e., the MagpieServer
receives a didSave notification. Once the MagpieServer receives the notification from the
Eclipse IDE;, it resolves the source code and library code path required for the inter-procedural
crypto analysis. This analysis is all asynchronous, so that the analysis always runs in the
background and updated error messages are shown once they are available. If they want to,
end-users have the ability to connect and disconnect the MagpieServer at runtime, e.g., via
“Preferences” in Eclipse IDE.

5.2 Comparison to Other Plugin-Based Approaches

As shown in Figure 18, LSP offers a set of Ul features to present the analysis results to
end-users that are sufficient to capture the majority of Ul features used in a range of existing
plugins for a single analysis tool in a specific IDE. Most of the plugin approaches we identified
were implemented as Eclipse plugins (Cheetah [37], SpotBugs [23] and ASIDE [63]), but

L. Luo, J. Dolby, and E. Bodden

£ edlipse-workspace - DemoAllErrors/src/Demojjava - Eclipse IDE
File Edit Source Refactor Navigate Search Project Run Window Help

[v pIENLRIEF P ACRE T -0~ Q- - FE-BS i HrF OO

[% Package Explorer 53 mojava 52

} catch (Illegal8lockSizeException) {
e.printStackTrace();

} catch (BadPaddingException &) {
e.printStackTrace();

} catch (InvalidKeySpecException e) {
e.printstackTrace();

} catch (GeneralSecurityException &) {
e.printStackTrace();

v 52 DemoAllErrors

i e

~ # (default package)
i
1
v L [pemo

& main(String..) : void

@ getPrivateKey() : PrivateKey 1 ’
@ showConstraintError() : void
showForbiddenMethodError([43= public void showonstraintError() throws NoSuchAlgorithmException, NoSuchPaddingException, TnvalidKeyException,
& sho - IllegalBlocksi tion, BadPaddi tion {
. String data = "some data”;
® showNeverTypeOfErmor(): voi String key = "secret Key"s
#® showRequiredPredicateError e

@ showTypeStateError() : void

CogniCrypt reports the parameter passed in the following line is insecure.
> @i JRE System Library [jdk1.2.0202] /

> B bp a Cipher dipher = Cipher & (BES/ECB/PKC ing")s
=] DemoAllErrors.iml SecreteySpec sscrethey = i First parameter (with value "AES/ECB/PKCS5Padding”) should be any of AES/{CBC, GCM, PCBC, CTR, CTS,
CFB, OFB}

cipher.doFinal(data.getBytes());
K 1 quick fix available:

Replace it with "AES/CBC/PKCS5Padding”

615 public void showTypeStateError() thr|

L Problems 53

11 errors, 4 warnings, 0 others

Descipt Resource Path

v @ Enprs (11 items)
2 © [etected call o forbidden method void <init>(charl]) of class javax.crypto.spec.PBEKeySpec. Instead, call method <javax.crypto.specPBEKey! Demojava /Dema
o [First parameter (with value "AES/ECB/PKCS5Padding”) should be any of AES/[CBC, GCM, PCBC, CTR, CTS, CFB, OFB} Demajava /Demo,

Figure 17 The appearance of MAGPIEBRIDGE-based CogniCrypt: insecure crypto warning
message and quick fix shown by hovering.

some of them were created for other popular IDEs such as Android Studio (FixDroid [52]),
IntelliJ (wIDE [51]) and Visual Studio (GhostFactor [42]). Figure 18 shows the comparison
between features that can be supported with LSP to features supported by these existing
plugin approaches.

Some plugins do use IDE features that are not explicitly supported by LSP; however,
there are often analogs in LSP that could be used instead. For instance, Cheetah uses a
custom view, essentially a separate window panel in the IDE, to show an example data-flow
trace for a bug; in LSP, related information capturing a trace can be attached to problems
as illustrated in Figure 14. Other uses of custom views and wizards are mainly for analysis
configuration. Simple forms of such analysis configuration could be supported by the message
protocol in LSP.

Feature Comparison

LSP-based FixDroid wlIDE GhostFactor Cheetah SpotBugs ASIDE # Plugins
Approach (Android Studio) (Intellid) (Visual Studio) (Eclipse) (Eclipse) (Eclipse) support the
feature

Warning Marker v v v v v V4 5
Code Highlighting ~ v v v ~ 4
Code Actions v v v v 3
(quick fix, code
Hover Tips « v v v v v ~ 6
Pop-ups v v v 2
Code Change Detection « v « 2
Customized Icons v v v 3
Customized Views v v v 3
Customized Wizards v 1

Figure 18 Feature comparison between LSP-based approach and other plugin-based approaches.

21:19

ECOOP 2019

21:20

MagpieBridge

One minor feature unsupported by LSP appeared in the plugins: customized icons (see
Figure 19, Figure 20 and Figure 21) are not supported by the LSP-based approach, since
that requires changes to the appearance of the IDEs, which LSP intends not to. Although
studies have shown customized icons are useful to catch end-users’ attention [52,54,63], it is
not clear if it is more effective than the default error icon supported by each editor.

As we can see in Figure 18, the major features such as hover tips, warning marker and
code highlighting, which are supported by a majority of the plugins, can be supported by an
LSP-based approach. However, LSP support varies across IDEs, both in what features are
handled and how they are shown. In LSP, hover tips are specified as the hover request sent
from the client to the server, warning marker can be realized by the publishDiagnostics
notification and documentHighlight is the corresponding request for code highlighting.
However, the implementation of documentHighlight varies from editor to editor, since the
specification for this feature in LSP is unclear. Most plugins listed in Figure 18 support code
highlighting. This features means changing the background color of affected lines of code as
shown in Figure 19, Figure 20 and Figure 21. While Visual Studio Code limits this feature to
only highlights all references to a symbol scoped in a file, sublime Text choses an underline
for highlighting (see Figure 23). In addition, there is no possibility with LSP to specify the
background color used in this feature, all editors have their pre-defined colors.

Some advanced features such as code actions (we have shown quick fix with MAG-
PIEBRIDGE-based CogniCrypt), pop-ups and code change detections can also be supported
by LSP. There are two interfaces (showMessage and showMessageRequest) defined in LSP
which are implemented as pop-up windows in editors. Figure 24 shows a message sent from a
server to the Eclipse IDE that is displayed in a pop-up window. Where more interactions are
required, the interface showMessageRequest allows to pass actions and wait for an answer
from the client. Figure 25 shows a pop-up windows with a message and available actions in
Visual Studio Code.

Features that are not supported by LSP for now can be extended to LSP in the future,
since LSP is a moving target with ever-growing functionality and support. One just has to
keep in mind that, as the LSP is extended, the IDEs/editors that support it, might require
extensions as well.

[3) MainActivity java 32 B X Detil 12 B
2 Bundle extras = getIntent().getExtras(); Statement
id = extras.getString("secret™, "id"); ¥ Bundle extras = getlnt

a8 Log.d("Secret1d”, 1d); id = extras.getString(

2 == Log.d("Secretid”, id):
- Sink from source: Bundle extras = getintent().getExtras(y| ~
X Overview =

Id Source Sink

1 Bundie extras = getintent().getExtras(); Log.d("Secretid", id);

2 Bundle extras = getintent().getExtras(); Log.d("Secretid", id);
3 Bundle extras = getlntent().getExtras() sm.sendTextMessage(number,null, id, null

5 Bundle extras = getlntent().getExtras(); sm.sendTextMessage(number,null id,null

Figure 19 Cheetah: code highlighting, hover tips, customized icon and views.

Figure 20 FixDroid: code highlighting, hover tips and customized icon.

L. Luo, J. Dolby, and E. Bodden

100 } else {

101
|_FReFS

103 ¥

Figure 21 ASIDE: code highlighting and customized icon.

] Preferences
Browser Version
Browser Version Compatibility

Firefox Chrome IE Safari Opera
Previews Previews Previews Previews Previews
V| Latest (48.0) v/ Latest (52.0) v/ Latest (11.0) ¥/ Latest(9.1) |v/| Latest(39.0)

Cancel | LI

3

demo.sh ionError(

Figure 23 Highlighting in Sublime Text.

£ LSP (cryptol SP) X

Do you see me?

Figure 24 Pop-up in Eclipse.

¥ Do you see me?

Source: crypto-lsp-demo (Extension) Yes

Ln54 Col3 Spaces2 UTF-8 CRIF Jama ¢y @ A1

Figure 25 Pop-up with actions in Visual Studio Code.

6 Conclusion and Future Work

The difficulty of integrating static tools into different IDEs and editors has caused little
adoption of the tools by developers and researchers, and MAGPIEBRIDGE addresses this

problem by providing a general approach to integrating static analyses into IDEs and editors.

MAGPIEBRIDGE uses the increasingly popular Language Server Protocol and supports from
rich analysis frameworks, WALA and Soot. We have shown MAGPIEBRIDGE supporting
CogniCrypt, but this is just the beginning; we conclude and presage future work by showing
what is, to the best of our knowledge, the first ever IDE integration of the well-known
FlowDroid security analysis. Figure 26 shows FlowDroid analyzing the data flow starting
from a parameter of the HT'TP request, finding a cross-site scripting vulnerability which
can be exploited by attackers, and showing a witness trace of it. The expressions in the

21:21

ECOOP 2019

21:22

MagpieBridge

witness are shown precisely, which is possible since the IRConverter of MAGPIEBRIDGE is
able to run FlowDroid unchanged on the converted IR and recover precise source mappings.
As far as we know, this has never been done before with FlowDroid. MAGPIEBRIDGE then
renders this precise trace from FlowDroid in the IDE, also the first time this has been done.
While FlowDroid is one of the best-known security analyses, this is just one example of
what more can be done with MAGPIEBRIDGE, and our future work includes handling many
more analyses.

Terminal Help

Demojava *

"eq . getParam

Found a sensitive flow to sink [writer.println(s2)] from the source [req.getParameter(“name”)]
req.getParameter(“name™);
doStuff(
return string;

writer.println(s2);

writer.println(s2);
writer.println(

g doStuff(String string){

PROBLEMS 1

4 Demo.ja

4 © Found

1: doStuffis1);
um string

iter.printin(s2);

Figure 26 A sensitive data flow reported by FlowDroid in Visual Studio Code.

—— References

-

Android Studio. https://developer.android.com/studio. Accessed: 2019-01-10.
AppScan. https://www.ibm.com/security/application-security/appscan. Accessed:
2019-01-10.

Atom. https://atom.io/. Accessed: 2019-01-10.

Clang Static Analyzer. https://clang-analyzer.llvm.org/. Accessed: 2019-01-10.
CodeSonar. https://www.grammatech.com/products/codesonar. Accessed: 2019-01-10.
Cppcheck. http://cppcheck.sourceforge.net/. Accessed: 2019-01-10.

Doop. http://doop.program-analysis.org/. Accessed: 2019-01-10.

Eclipse. https://www.eclipse.org/. Accessed: 2019-01-10.

Eclipse LSP4J. https://projects.eclipse.org/proposals/eclipse-1sp4j. Accessed: 2019-
01-10.

10 Emacs. https://www.gnu.org/software/emacs/. Accessed: 2019-01-10.

11 Facebook Infer. https://fbinfer.com/. Accessed: 2019-01-10.

12 IBM WebSphere. https://wuw.ibm.com/cloud/websphere-application-platform. Ac-
cessed: 2019-01-10.

N

oo ~NOOGO A~ W

https://developer.android.com/studio
https://www.ibm.com/security/application-security/appscan
https://atom.io/
https://clang-analyzer.llvm.org/
https://www.grammatech.com/products/codesonar
http://cppcheck.sourceforge.net/
http://doop.program-analysis.org/
https://www.eclipse.org/
https://projects.eclipse.org/proposals/eclipse-lsp4j
https://www.gnu.org/software/emacs/
https://fbinfer.com/
https://www.ibm.com/cloud/websphere-application-platform

L. Luo, J. Dolby, and E. Bodden

13
14
15

16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31

32

33

34

35

36

37

38

IntelliJ. https://www.jetbrains.com/idea/. Accessed: 2019-01-10.

JSON-RPC. https://www.jsonrpc.org/. Accessed: 2019-01-10.

Language Server Protocol. https://microsoft.github.io/language-server-protocol/. Ac-
cessed: 2019-01-10.

Monaco. https://microsoft.github.io/monaco-editor/index.html. Accessed: 2019-01-10.
PMD. https://pmd.github.io/. Accessed: 2019-01-10.

PyCharm. https://wuw.jetbrains.com/pycharm/. Accessed: 2019-01-10.

Safe. https://github.com/sukyoung/safe. Accessed: 2019-01-10.

SARIF Specification. https://github.com/oasis-tcs/sarif-spec. Accessed: 2019-01-10.
Soot. https://github.com/Sable/soot. Accessed: 2019-01-10.

Souffle. https://github.com/oracle/souffle/wiki. Accessed: 2019-01-10.

SpotBugs. https://spotbugs.github.io/. Accessed: 2019-01-10.

Spyder. https://wuw.spyder-ide.org/. Accessed: 2019-01-10.

Static Analysis Results: A Format and a Protocol: SARIF and SASP. http://blogs.
grammatech.com/static-analysis-results-a-format-and-a-protocol-sarif-sasp. Ac-
cessed: 2019-01-10.

Sublime. https://www.sublimetext.com/. Accessed: 2019-01-10.

Vim. https://www.vim.org/. Accessed: 2019-01-10.

Visual Studio Code. https://code.visualstudio.com/. Accessed: 2019-01-10.

WALA. https://github.com/wala/WALA. Accessed: 2019-01-10.

Xanitizer. https://wuw.rigs-it.com/xanitizer/. Accessed: 2019-01-10.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein,
Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. FlowDroid: precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis for Android apps. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’1}, Edinburgh,
United Kingdom - June 09 - 11, 2014, pages 259-269, 2014. doi:10.1145/2594291.2594299.
Eric Bodden, Tarsis Tolédo, Marcio Ribeiro, Claus Brabrand, Paulo Borba, and Mira Mezini.
SPLLIFT: statically analyzing software product lines in minutes instead of years. In Proceedings
of the 34th ACM SIGPLAN conference on Programming language design and implementation
(PLDI), pages 355-364, 2013. URL: http://www.bodden.de/pubs/bmb+13spllift.pdf.
Martin Bravenboer and Yannis Smaragdakis. Exception analysis and points-to analysis:
better together. In Proceedings of the Eighteenth International Symposium on Software
Testing and Analysis, ISSTA 2009, Chicago, IL, USA, July 19-23, 2009, pages 1-12, 2009.
doi:10.1145/1572272.1572274.

Hongyi Chen, Ho-fung Leung, Biao Han, and Jinshu Su. Automatic privacy leakage detection
for massive android apps via a novel hybrid approach. In IEEE International Conference
on Communications, ICC 2017, Paris, France, May 21-25, 2017, pages 1-7, 2017. doi:
10.1109/ICC.2017.7996335.

Maria Christakis and Christian Bird. What developers want and need from program analysis:
an empirical study. In ASE, pages 332—-343, 2016.

Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden, Justin Smith, and
Emerson Murphy-Hill. Just-in-time Static Analysis. In Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2017, pages 307-317, New
York, NY, USA, 2017. ACM. doi:10.1145/3092703.3092705.

Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden, Justin Smith, and
Emerson R. Murphy-Hill. Cheetah: just-in-time taint analysis for Android apps. In Proceedings
of the 39th International Conference on Software Engineering, ICSE 2017, Buenos Aires,
Argentina, May 20-28, 2017 - Companion Volume, pages 39-42, 2017. doi:10.1109/ICSE-C.
2017.20.

Julian Dolby, Avraham Shinnar, Allison Allain, and Jenna Reinen. Ariadne: Analysis for
Machine Learning Programs. In Proceedings of the 2Nd ACM SIGPLAN International

21:23

ECOOP 2019

https://www.jetbrains.com/idea/
https://www.jsonrpc.org/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/monaco-editor/index.html
https://pmd.github.io/
https://www.jetbrains.com/pycharm/
https://github.com/sukyoung/safe
https://github.com/oasis-tcs/sarif-spec
https://github.com/Sable/soot
https://github.com/oracle/souffle/wiki
https://spotbugs.github.io/
https://www.spyder-ide.org/
http://blogs.grammatech.com/static-analysis-results-a-format-and-a-protocol-sarif-sasp
http://blogs.grammatech.com/static-analysis-results-a-format-and-a-protocol-sarif-sasp
https://www.sublimetext.com/
https://www.vim.org/
https://code.visualstudio.com/
https://github.com/wala/WALA
https://www.rigs-it.com/xanitizer/
http://dx.doi.org/10.1145/2594291.2594299
http://www.bodden.de/pubs/bmb+13spllift.pdf
http://dx.doi.org/10.1145/1572272.1572274
http://dx.doi.org/10.1109/ICC.2017.7996335
http://dx.doi.org/10.1109/ICC.2017.7996335
http://dx.doi.org/10.1145/3092703.3092705
http://dx.doi.org/10.1109/ICSE-C.2017.20
http://dx.doi.org/10.1109/ICSE-C.2017.20

21:24

MagpieBridge

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Workshop on Machine Learning and Programming Languages, MAPL 2018, pages 1-10, New
York, NY, USA, 2018. ACM. doi:10.1145/3211346.3211349.

Moritz Eysholdt and Heiko Behrens. Xtext: implement your language faster than the quick
and dirty way. In Proceedings of the ACM international conference companion on Object
oriented programming systems languages and applications companion, pages 307-309. ACM,
2010.

Stephen Fink and Julian Dolby. WALA-The TJ Watson Libraries for Analysis, 2012.
Stephen Fink, Julian Dolby, and L. Colby. Semi-automatic J2EE transaction configuration,
January 2019.

Xi Ge and Emerson R. Murphy-Hill. Manual refactoring changes with automated refactoring
validation. In 36th International Conference on Software Engineering, ICSE ’14, Hyderabad,
India - May 31 - June 07, 2014, pages 1095-1105, 2014. doi:10.1145/2568225.2568280.
Dennis Giffhorn and Gregor Snelting. A new algorithm for low-deterministic security.
International Journal of Information Security, 14(3):263-287, June 2015. doi:10.1007/
s10207-014-0257-6.

Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen, and
Martin C Rinard. Information Flow Analysis of Android Applications in DroidSafe. In NDSS,
volume 15, page 110, 2015.

Christian Hammer and Gregor Snelting. Flow-Sensitive, Context-Sensitive, and Object-sensitive
Information Flow Control Based on Program Dependence Graphs. International Journal of
Information Security, 8(6):399-422, December 2009. doi:10.1007/s10207-009-0086-1.
David Hovemeyer and William Pugh. Finding More Null Pointer Bugs, but Not Too Many.
In Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, PASTE ’07, pages 9-14, New York, NY, USA, 2007. ACM.
doi:10.1145/1251535.1251537.

Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill, and Robert W. Bowdidge. Why
don’t software developers use static analysis tools to find bugs? In ICSE, pages 672—681, 2013.
Stefan Kriiger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric Bodden, Florian
Gopfert, Felix Giinther, Christian Weinert, Daniel Demmler, et al. CogniCrypt: supporting
developers in using cryptography. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, pages 931-936. IEEE Press, 2017.

Patrick Lam, Eric Bodden, Ondrej Lhotak, and Laurie Hendren. The Soot framework for
Java program analysis: a retrospective. In Cetus Users and Compiler Infastructure Workshop
(CETUS 2011), volume 15, page 35, 2011.

Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon, Steven
Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick D. McDaniel. IccTA:
Detecting Inter-Component Privacy Leaks in Android Apps. In 87th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1,
pages 280-291, 2015. doi:10.1109/ICSE.2015.48.

Alfonso Murolo, Fabian Stutz, Maria Husmann, and Moira C. Norrie. Improved Developer
Support for the Detection of Cross-Browser Incompatibilities. In Web Engineering - 17th
International Conference, ICWE 2017, Rome, Italy, June 5-8, 2017, Proceedings, pages
264—281, 2017. doi:10.1007/978-3-319-60131-1_15.

Duc-Cuong Nguyen, Dominik Wermke, Yasemin Acar, Michael Backes, Charles Weir, and
Sascha Fahl. A Stitch in Time: Supporting Android Developers in Writing Secure Code.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 10651077,
2017. doi:10.1145/3133956.3133977.

Damien Octeau, Patrick D. McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. Effective Inter-Component Communication Map-
ping in Android: An Essential Step Towards Holistic Security Analysis. In Proceed-
ings of the 22th USENIX Security Symposium, Washington, DC, USA, August 14-16,

http://dx.doi.org/10.1145/3211346.3211349
http://dx.doi.org/10.1145/2568225.2568280
http://dx.doi.org/10.1007/s10207-014-0257-6
http://dx.doi.org/10.1007/s10207-014-0257-6
http://dx.doi.org/10.1007/s10207-009-0086-1
http://dx.doi.org/10.1145/1251535.1251537
http://dx.doi.org/10.1109/ICSE.2015.48
http://dx.doi.org/10.1007/978-3-319-60131-1_15
http://dx.doi.org/10.1145/3133956.3133977

L. Luo, J. Dolby, and E. Bodden

54

55

56

57

58

59

60

61

62

63

2013, pages 543-558, 2013. URL: https://www.usenix.org/conference/usenixsecurity13/
technical-sessions/presentation/octeau.

S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The Emperor’s New Security
Indicators. In 2007 IEEE Symposium on Security and Privacy (SP ’07), pages 51-65, May
2007. doi:10.1109/SP.2007.35.

Johannes Spéth, Karim Ali, and Eric Bodden. Context-, Flow-, and Field-sensitive Data-flow
Analysis Using Synchronized Pushdown Systems. Proc. ACM Program. Lang., 3(POPL):48:1—
48:29, January 2019. doi:10.1145/3290361.

Thomas Thiim, Christian Késtner, Fabian Benduhn, Jens Meinicke, Gunter Saake, and Thomas
Leich. FeatureIDE: An extensible framework for feature-oriented software development. Science
of Computer Programming, 79:70-85, 2014.

Emina Torlak and Satish Chandra. Effective Interprocedural Resource Leak Detection. In
Proceedings of the 32Nd ACM/IEEE International Conference on Software Engineering -
Volume 1, ICSE ’10, pages 535-544, New York, NY, USA, 2010. ACM. doi:10.1145/1806799.
1806876.

Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salvatore Guarnieri. An-
dromeda: Accurate and Scalable Security Analysis of Web Applications. In Fundamental Ap-
proaches to Software Engineering - 16th International Conference, FASE 2013, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy,
March 16-24, 2013. Proceedings, pages 210-225, 2013. doi:10.1007/978-3-642-37057-1_15.
Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman. TAJ:
Effective Taint Analysis of Web Applications. In Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’09, pages 87-97,
New York, NY, USA, 2009. ACM. doi:10.1145/1542476.1542486.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot: A Java bytecode optimization framework. In CASCON First Decade High
Impact Papers, pages 214-224. IBM Corp., 2010.

Christos V. Vrachas. Integration of static analysis results with ProGuard optimizer for Android
applications. Bachelor Thesis, 2017.

Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid: A Precise and General
Inter-component Data Flow Analysis Framework for Security Vetting of Android Apps. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
Scottsdale, AZ, USA, November 3-7, 201/, pages 1329-1341, 2014. doi:10.1145/2660267.
2660357.

Jing Xie, Bill Chu, Heather Richter Lipford, and John T. Melton. ASIDE: IDE support
for web application security. In Twenty-Seventh Annual Computer Security Applications
Conference, ACSAC 2011, Orlando, FL, USA, 5-9 December 2011, pages 267-276, 2011.
do0i:10.1145/2076732.2076770.

21:25

ECOOP 2019

https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/octeau
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/octeau
http://dx.doi.org/10.1109/SP.2007.35
http://dx.doi.org/10.1145/3290361
http://dx.doi.org/10.1145/1806799.1806876
http://dx.doi.org/10.1145/1806799.1806876
http://dx.doi.org/10.1007/978-3-642-37057-1_15
http://dx.doi.org/10.1145/1542476.1542486
http://dx.doi.org/10.1145/2660267.2660357
http://dx.doi.org/10.1145/2660267.2660357
http://dx.doi.org/10.1145/2076732.2076770

	Introduction
	Background and Related Work
	Approach
	The MagpieBridge Workflow
	The MagpieBridge System
	WALA-based Analysis
	Soot-based Analysis
	Doop-based Analysis

	Demonstration
	Diagnostics
	Code Lenses
	Hovers
	Repairs

	Comparison Between MagpieBridge-Based Approach and Plugin-Based Approach
	Comparison Between MagpieBridge-Based CogniCrypt and CogniCrypt Eclipse Plugin
	Comparison to Other Plugin-Based Approaches

	Conclusion and Future Work

