
Multiverse Debugging: Non-Deterministic
Debugging for Non-Deterministic Programs
Carmen Torres Lopez
Vrije Universiteit Brussel, Belgium
ctorresl@vub.be

Robbert Gurdeep Singh
Universiteit Gent, Belgium
Robbert.GurdeepSingh@ugent.be

Stefan Marr
School of Computing, University of Kent, United Kingdom
s.marr@kent.ac.uk

Elisa Gonzalez Boix
Vrije Universiteit Brussel, Belgium
egonzale@vub.be

Christophe Scholliers
Universiteit Gent, Belgium
Christophe.Scholliers@ugent.be

Abstract
Many of today’s software systems are parallel or concurrent. With the rise of Node.js and more
generally event-loop architectures, many systems need to handle concurrency. However, its non-
deterministic behavior makes it hard to reproduce bugs. Today’s interactive debuggers unfortunately
do not support developers in debugging non-deterministic issues. They only allow us to explore a
single execution path. Therefore, some bugs may never be reproduced in the debugging session,
because the right conditions are not triggered.

As a solution, we propose multiverse debugging, a new approach for debugging non-deterministic
programs that allows developers to observe all possible execution paths of a parallel program and
debug it interactively. We introduce the concepts of multiverse breakpoints and stepping, which
can halt a program in different execution paths, i.e. universes. We apply multiverse debugging to
AmbientTalk, an actor-based language, resulting in Voyager, a multiverse debugger implemented
on top of the AmbientTalk operational semantics. We provide a proof of non-interference, i.e.,
we prove that observing the behavior of a program by the debugger does not affect the behavior
of that program and vice versa. Multiverse debugging establishes the foundation for debugging
non-deterministic programs interactively, which we believe can aid the development of parallel and
concurrent systems.

2012 ACM Subject Classification Software and its engineering → Concurrent programming lan-
guages; Software and its engineering → Software testing and debugging

Keywords and phrases Debugging, Parallelism, Concurrency, Actors, Formal Semantics

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.27

Category Brave New Idea Paper

Supplement Material ECOOP 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.2.4

Funding Carmen Torres Lopez: Funded by FWO Research Foundation Flanders (FWO), project
number G004816N.
Robbert Gurdeep Singh: Doctoral fellowship from the Special Research Fund (BOF) of Ghent
University (reference number: BOF18/DOC/327).

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Carmen Torres Lopez, Robbert Gurdeep Singh, Stefan Marr, Elisa Gonzalez Boix,
and Christophe Scholliers;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 27; pp. 27:1–27:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3125-0921
mailto:ctorresl@vub.be
https://orcid.org/0000-0003-4394-0011
mailto:Robbert.GurdeepSingh@ugent.be
https://orcid.org/0000-0001-9059-5180
mailto:s.marr@kent.ac.uk
mailto:egonzale@vub.be
mailto:Christophe.Scholliers@ugent.be
https://doi.org/10.4230/LIPIcs.ECOOP.2019.27
https://dx.doi.org/10.4230/DARTS.5.2.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Multiverse Debugging

Acknowledgements We would like to thank Thomas Dupriez (ENS Paris-Saclay - RMoD, Inria,
Lille-Nord Europe) for an initial implementation of the underlying visualization and reduction code.

1 Introduction

Parallelism has become an integral part of modern software ranging from large-scale server
code to responsive web applications or networked embedded systems. While a wide range of
high-level concurrency abstractions are available for developers, understanding and debugging
parallel programs remains challenging. The main reason why parallel programs are so difficult
to debug is due to their non-determinism. Since the state of a parallel program at any
given moment in time can alter to one of many possible successor states, it is very difficult
to reason about their behavior and to reproduce bugs as they may only manifest in rare
execution traces.

Debugging tools for parallel and concurrent programs have been studied in the past
and can be categorized in two main families [48]: event-based debuggers (also known as
log-based debuggers) and breakpoint-based debuggers (also known as online or interactive
debuggers). While event-based approaches generate a program trace for offline browsing or
deterministic replay, breakpoint-based debuggers control the program execution allowing
developers to pause/resume program execution at well-defined points (e.g. on a breakpoint),
inspect program state, and perform step-by-step execution.

Despite the presence of online debuggers in modern IDEs, a recent study showed that
debugging parallel applications remains very problematic [53], because debuggers do not
account for the non-determinism of concurrent applications. Most of the existing tools only
provide support for deterministic debugging, i.e., they support the debugging of only one
parallel entity at a time rather than the program as a whole. This means that one run of the
debugger is very likely to miss the erroneous state in which the bug manifests itself, requiring
many debugging cycles before being able to reproduce the bug. Even worse, the mere
presence of a debugger may affect the order in which parallel entities are executed, making
the reproduction of a bug even rarer. This condition akin to the Heisenberg uncertainty
principle, is known as the probe effect [25].

In addition to debugging techniques, static analyses have been studied for parallel and
concurrent programs to detect certain types of program errors without executing the program,
e.g. static analysis to verify the boundedness of actor mailboxes [24], model checkers for
concurrent programs written in Erlang [15] or Scala [38], type systems to ensure type safety on
reciprocal communication channels [56]. These techniques detect synchronization errors such
as deadlocks [10, 23], incorrect ordering of locks [4], and incorrect interleaving of messages
in actor systems [15]. However, they often put severe restrictions on the way programs are
organized (e.g. on how futures are used in actor-based programs [26]). More importantly,
they expect developers to have a good understanding of what caused the bug as they verify
a well-defined property over a program, but they currently cannot be used interactively to
explore and search for a bug with an unknown cause. Finally, static analysis techniques are
almost always about approximations, when the analysis detects a bug it might be impossible
to find a concrete execution path which triggered the bug.

What is needed to debug non-deterministic programs is a technique which: 1) allows
programmers to observe all the possible states a parallel program can exhibit at run time
and 2) is probe-effect free. In this paper, we propose multiverse debugging, a novel debugging
technique for parallel programs which combines breakpoint-based debugging with state
exploration from static techniques. The key idea of multiverse debugging is that non-

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:3

deterministic programs require non-deterministic debugging. Contrary to current state-of-the-
art debuggers, which only execute the program in one execution path (i.e. one universe),
a multiverse debugger can observe all possible universes. A multiverse debugger is itself a
non-deterministic program which is able to explore all possible states of a parallel program
while leveraging breakpoints and stepping commands of online debuggers to interactively
search for the root cause of a bug. This means that regular breakpoints become multiverse
breakpoints which are potentially triggered multiple times in different universes. As such, a
multiverse debugger ensures that if a bug is in the program, it will be observed during the
debugging session.

In this paper we give an overview of how to design a multiverse debugger starting from
the operational semantics of a non-deterministic language. We evaluate multiverse debugging
by applying it to actor-based programs written in the AmbientTalk language. On top of the
existing AmbientTalk operational semantics (known as Featherweight AmbientTalk) [62],
we formalized the debugging semantics and developed Voyager, a tool that takes as input
Featherweight AmbientTalk programs written in PLT-Redex, and allows programmers to
interactively browse all possible execution states by means of multiverse breakpoints and
stepping commands. We also provide a proof of non-interference, i.e. the base language and
the debugger are observational equivalent.

The key contributions of this paper are:
Definition of multiverse debugging and multiverse stepping, i.e. novel stepping semantics
which allow developers to step to all possible states in the execution of a parallel program.
A semantics for a non-deterministic debugger & proof of non-interference.
An implementation of applying multiverse debugging to an actor-based language including
a tool to interact with the debugged program written in PLT-Redex.

2 Brave New Idea: Multiverse Debugging

The vision of multiverse debugging is to allow programmers to debug concurrent non-
deterministic programs with a debugging technique that allows them to observe all possible
states the program can exhibit at run time and to interactively explore these states for bugs
in a fashion similar to breakpointed-based debuggers while being probe-effect free. Current
debuggers for non-deterministic programming languages do not allow such exploration because
they only follow a single path of many possible execution paths. In this paper, we provide a
concrete recipe on how to build debuggers which allow programmers to observe all possible
states of a non-deterministic program. To this end, multiverse debugging builds on the
operational semantics of the language in which target programs are written.

2.1 Multiverse Debugging Recipe

We now give an overview of the basic recipe for defining the semantics of a multiverse
debugger:
1. Define the operational semantics of the base language, a language which can specify

programs that exhibit non-deterministic behavior.
2. Define the operational semantics of the debugger in terms of the base language semantics.

This implies to:
a. define a debugger configuration, which includes the state the debugger needs to

maintain to debug a target program.

ECOOP 2019

27:4 Multiverse Debugging

b. define the debugging operations that the debugger offers to developers to interactively
explore the target program, e.g. by pausing/resuming program execution on breakpoints,
or performing step-by-step execution of the target program.

In this paper, we apply this recipe to define the semantics of two multiverse debuggers.
First, in Section 3, we apply this recipe to build a debugger for a small language called
λamb. Afterwards, in Section 6, we show that our technique scales for a mid-size actor-based
language called AmbientTalk [62], a prototype-based object-oriented language with an event
loop concurrency model featured by mainstream languages such as JavaScript.

We believe that those two steps are general enough to be applicable to a wide range
of programming languages. Applying this recipe to other programming languages consists
of identifying where and how non-determinism originates. This is, however, tied to the
language’s concurrency model. The behavior and properties of concurrent entities (e.g.
threads, transactions, actors) differ and hence these properties should be carefully considered
when defining the operational semantics of the multiverse debugger.

2.2 Multiverse Debugging Main Challenges

It is our vision that the foundations explained in this paper, places multiverse debugging
where research in program analysis and verification was three decades ago. At that time,
static techniques were a new brave idea which could only be used to verify relatively small
programs [12]. Likewise, the approach towards multiverse debugging explained in this paper
is currently only feasible for relative small programs. Nevertheless, we hope that further
research can be spawned from the seed we plant here to expand on what is possible today.

The main challenge of our approach is the growth in the number of states; the number of
possible states increases exponentially by every non-deterministic step that is chosen in the
program. This problem, called state explosion, is a well-researched problem in the context of
program analysis and verification [61]. Multiverse debugging also suffers from this problem.
It is, however, essential to make the complexity of these non-deterministic programs explicit
to the programmer so that actions can be taken. We believe that providing a recipe on how
to build multiverse debuggers is an important first step which gives developers the tools to
explore parts of this state space interactively. After all, being able to inspect part of this
enormous state space is better than to have a debugging tool which can only explore one
execution path without any guarantees that the path being explored triggers the bug.

Symbolic execution and model checking have studied scalable solutions for the state
explosion problem [17, 14, 44, 41]. Future research is needed to investigate how to adopt
those techniques in a debugging tool to increase the scale on which multiverse debugging can
be applied. In section 8.2 we further compare multiverse debugging with symbolic execution
and model checking.

In our proof of concept implementation, we apply two techniques to help the programmer
to keep an overview of the state space. First, we do not blindly explore all the possible
states but let the developer decide which states to explore next, either explicitly or by using
multiverse breakpoints. We believe this makes multiverse debugging comparable to bounded
model checking [9]. Second, whenever two states are syntactically the same we merge those
states into one node. Depending on the programming language other means of equality could
be applied to further reduce the amount of states exposed to the programmer.

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:5

3 Multiverse Debugging for Ambiguous Programs

In this section, we apply the multiverse debugging recipe to debug ambiguous programs
written in λamb. In Section 3.1, we specify the base language semantics (step 1) and
Section 3.2 defines the semantics of a multiverse debugger on top of it (step 2). To simplify
the exposition and focus on the core idea of multiverse debugging, we do not model any
breakpoints, stepping commands nor user interaction with the debugger in this section. They
are detailed later when we apply the idea of multiverse debugging for actor-based programs
in Section 4.2. There, we will specify the semantics of a base language in which to write actor-
based concurrent programs (step 1), and Section 6 describes the semantics of a multiverse
debugger on top of it including multiverse breakpoints and stepping commands (step 2).

3.1 Syntax and Operational Semantics of the Base Language λamb
We now show how the multiverse debugging idea can be applied to the λamb calculus, a
small functional language. Non-determinism in this language is introduced by a variation of
McCarthy’s ambiguity operator [47] called amb which behaves as a non-deterministic choice.
Intuitively, when this operator is applied to a number of arguments it returns one of them in
an unpredictable way.

Figure 1 gives an overview of the syntax and reduction rules of the λamb calculus.
Expressions consist of numbers, addition, and the amb operator. We define an evaluation
context E which dictates a left to right evaluation order of the arguments. The only values v
in the language are numbers. The add rule shows how the addition of two numbers reduces
and the amb rule shows the amb operator non-deterministically picks one of its arguments.

e ::= (+ e e)|(amb e e)|number Expressions
E ::= (+ E e)|(+ v E)|(amb E e)|(amb v E) Context
v ::= number Values

(add)
n = bn1 + n2c

E[(+ n1 n2)]→amb E[n]

(amb)
ex ∈ [e1, e2]

E[(amb e1 e2)]→amb E[ex]

Figure 1 Semantic entities and reduction rules of the λamb calculus.

To get an intuition of the λamb calculus, consider the evaluation graph of the program
(+ (amb 1 2) (amb 3 4)) shown in Figure 2. While in a deterministic evaluator there is at most
one applicable rule for each expression in a non-deterministic evaluator it is possible that
multiple reduction rules apply for the same expression. In our example, this is clearly the
case. In the start state, there are two possible reductions leading to two execution paths the
program could take. We denote a universe to each distinct state in which a program can
be. In this example, the top universe denotes the state in which the amb operator selected
the value 1 while in the bottom universe it chose 2. For these two universes, there are again
two possible successor universes possible by choosing between number 3 and 4. Finally,
each of these universes can be reduced by applying the add rule leading to three possible
end universes.

3.2 Syntax and Operational Semantics of the Debugger Damb

Armed with the semantics of our non-deterministic language λamb, we can now define a
multiverse debugger for this base language, which allows us to pause a program and resume
its evaluation until it reaches an end state. Resuming a program corresponds to a user
stepping through the program, expression by expression.

ECOOP 2019

27:6 Multiverse Debugging

am b

am b

am b

am b

am b

am b

add

add

add

add
6

5

4

(+ 2 4)

(+ 2 3)

(+ 1 4)

(+ 1 3)

(+ 2 (amb 3 4))

(+ 1 (amb 3 4))

(+ (amb 1 2) (amb 3 4))

Figure 2 Multiverse evaluation graph of a λamb program.

Figure 3 gives an overview of Damb, the semantics of a debugger for the λamb calculus.
We first define the debugger configuration that keeps track of the state that the debugger
needs to store to debug a target λamb program. In this case, the debugger is either paused
or has resumed execution evaluating an expression at a time. The debugger configuration is
thus a pair which consists of a state label (either step or paused) and a λamb expression e.

The debugger operations are defined by two reduction rules. The Step rule takes one
evaluation step of the enclosing λamb expression e and transitions the debugger state by
changing the state label from step to paused. This means, we take one evaluation step,
and yield to the debugger, where a user could inspect the program. Though, for simplicity,
the only other operation our debugger has is the Resume rule, which transitions a paused
program back to the step state.

state ::= step | paused Debugger State
ed ::= (state, e) Debugger Configuration

(Step)
e →amb e′

(step, e)→debug (paused, e′)

(Resume)

(paused, e)→debug (step, e)

Figure 3 Semantic entities and reduction rules of the Damb calculus.

As an example of a multiverse debugging session, let us execute the program shown in
Figure 2 in Damb. The resulting session is shown in Figure 4. It starts by applying the Step
rule on the (+ (amb 1 2) (amb 3 4)) expression. The first step will cause the reduction of the
amb rule in λamb for the (amb 1 2) expression. This leads to two possible reductions the
debugger could take, i.e. one universe in which the amb rule reduces to 1 and one in which
it reduces to 2. This means stepping to a next state is non-deterministic. By defining the
debugger operations in terms of the non-deterministic evaluator of the base language, we
automatically obtain a multiverse debugger, i.e. a step does not lead to one possible next
universe but to a set of universes.

(debug step 4)

(debug step 5)

(debug step 6)

(debug paused 4)

(debug paused 5)

(debug paused 6)

(debug step (+ 1 4))

(debug step (+ 1 3))

(debug step (+ 2 3))

(debug step (+ 2 4))

(debug paused (+ 1 4))

(debug paused (+ 1 3))

(debug paused (+ 2 3))

(debug paused (+ 2 4))

(debug step (+ 1 (amb 3 4)))

(debug step (+ 2 (amb 3 4)))

(debug paused (+ 1 (amb 3 4)))

(debug paused (+ 2 (amb 3 4)))

(debug

 step

 (+ (amb 1 2) (amb 3 4)))

Figure 4 Multiverse debugging graph of a λamb program.

While this multiverse debugger is simplistic, it already shows two important characteristics.
First, all evaluation steps observed in the base-level semantic are also observed in the
multiverse debugger. This means that when programmers debug their programs in the
multiverse debugger, the error will manifest in the debugger. Second, there are no states in
the debugger which are not observed in the base-level semantics. This means that the act of
debugging the program does not introduces any state (and thus also no bugs) which are not
observed in the base-level semantics. As such, a multiverse debugger is probe-effect free.

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:7

4 Communicating Event Loops (CEL)

The overall goal of this work is to improve the debugging of parallel and concurrent programs.
To this end, we now apply the multiverse debugging recipe defined in Section 2.1 to create
a multiverse debugger for actor-based concurrent programs. To this end, we first need
to specify a base language in which target programs will be written in. In this work, we
use AmbientTalk [62], a distributed programming language originally designed to develop
mobile peer-to-peer applications. AmbientTalk is a prototype-based object-oriented language
featuring a concurrency model based on Communicating Event Loops (CEL). The language
paradigm is featured by mainstream languages such as JavaScript, the Proxy API of which
was actually inspired by AmbientTalk’s reflective model [50].

In this section, we first describe the necessary background information on Communicating
Event Loops.We then apply the first step of the multiverse debugging recipe by defining the
operational semantics of AmbientTalk in Section 4.2.

4.1 Communicating Event Loops Concurrency Model
The Communicating Event Loops is a non-blocking variant of the actor model [32] first
introduced by the E language [49]. The model was also adopted by languages such as
AmbientTalk [62], Newspeak [11], and it is embraced by the asynchronous programming
model of JavaScript and Node.js [58].

Actor Actor

A B

Message
queue

Event
Loop

Message from A to B

Object Far reference

Near
reference

Figure 5 Overview of the CEL model (from [62]).

Figure 5 shows an overview of the CEL model. Each actor is a container of objects, a
message queue (or mailbox), and an event loop (or thread of control). An actor executes
sequentially messages from its mailbox, i.e. messages are processed one by one in order of
arrival. The processing of one message by an actor defines a turn. Actors have exclusive
access to their mutable state. This means that each object is owned by one actor and only
the owner can directly access it. Communication with objects owned by other actors happens
using asynchronous messages via far references. When a far reference receives a message, it
forwards it to the mailbox of the actor owning the object. Objects passed as arguments in
asynchronous message sends are parameter-passed either by far reference, or by (deep) copy.

An asynchronous message send immediately returns a future (also known as a promise).
A future is a placeholder for the result that is to be computed. The future itself is an object,
which can receive asynchronous messages. Those messages are accumulated within the future
object and forwarded to the result value once it is available. Once the result value is available,
the future is said to be resolved with the value. Programmers can register a block of code
with a future which is asynchronously executed when the future becomes resolved. Access to
the result thus happens in a non-blocking way.

ECOOP 2019

27:8 Multiverse Debugging

4.2 Syntax and Operational Semantics of the AmbientTalk Language
Recall that in order to build a multiverse debugger for non-deterministic concurrent programs,
we first need to define the operational semantics of the base language (step 1 of the recipe
in Section 2.1). In this work, we employ the semantics of the AmbientTalk language, i.e
the Featherweight AmbientTalk (atf) semantics [62]. It formalizes common features of the
CEL model such as actors, objects, blocks, non-blocking functions and asynchronous message
sending. Non-determinism in the CEL model is exhibited in the order in which actors process
messages. Non-blocking futures also introduce additional non-determinism as messages sent
to futures, while futures are not resolved, messages are forwarded to the result value once it
is available.

The core calculus of atf consists of 30 evaluation rules (excluding helper functions).
Considering that Featherweight Java [34], a minimal core calculus for Java and GJ, only has
10 evaluation rules, we believe that the AmbientTalk semantics should be not be considered
a small language but at least a mid-size one. For brevity, we sketch only the parts of atf
that are necessary to follow the contributions of this work and refer to Van Cutsem et al. [62]
for the complete semantics. In a nutshell, atf specifies that actors evaluate messages as
expressions to obtain a result value.1 It is based on a small step operational semantics.
This means that the representation of each of the steps of the program execution is atomic,
i.e. there is no intermediate execution steps. This is useful because it is possible to get all
possible states of the evaluation of a non-deterministic program.

K ∈ Configuration ::= a Actor configurations
a ∈ Actor ::= A〈ιa, O,Qin, e〉 Actors

Object ::= O〈ιo, t, F,M〉 Objects
t ∈ Tag ::= o | i Object tags
Future ::= F〈ιf , Qin, v〉 Futures

Resolver ::= R〈ιr, ιf 〉 Resolvers
m ∈ Message ::= M〈v,m, v〉 Messages
Qin ∈ Queue ::= m Inbox queues
M ⊆ Method ::= m(x){e} Methods

F ⊆ Field ::= f := v Fields
v ∈ Value ::= r | null | ε Values

r ∈ Reference ::= ιa.ιo | ιa.ιf | ιa.ιr References

e ∈ E ⊆ Expr ::= . . . | e← m(e) | r Runtime
Expressions

o ∈ O ⊆ Object ∪ Future ∪ Resolver
ιa ∈ ActorId, ιo ∈ ObjectId, ιn ∈ NetworkId

ιf ∈ FutureId ⊂ ObjectId, ιr ∈ ResolverId ⊂ ObjectId

Figure 6 Semantic entities of the atf calculus.

Figure 6 shows the semantic entities of the operational semantics of atf . A configuration
K represents the set of actors that are executed concurrently in the program. An actor is
represented by an identity ιa, a set of objects O, an inbox queue Qin that stores the messages
to be processed and an expression e the actor is currently evaluating. An object O consists
of an identity ιo, a tag t and a set of fields F and methods M . The tag distinguishes between
objects passed by reference o, and passed by copy i. A future consists of an identity ιf ,
a queue for the pending messages Qin and a resolved value v. A resolver object allows to

1 In this work we use the subset of Featherweight AmbientTalk for concurrency, i.e. without the notion of
networks for distribution.

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:9

assign a value to its unique paired future and as such, it consists of an identity ιr and the
identity of its corresponding future ιf . A message m is represented by an identifier ιm, a
receiver value v, a method name m and a sequence of arguments values v. References to
objects r consist of an identifier for the actor ιa owning the referenced value and a local
component that can be ιo, ιf or ιr. The local component indicates that the reference refers
to either an object, a resolver or a future. An expression e can include references r or an
asynchronous message send e← m(e) .

5 Multiverse Debugging for Actor-based Programs

Having the operational semantics of AmbientTalk, we can now apply the second step of
the multiverse debugging recipe to create a multiverse debugger for actor-based programs
by defining the operational semantics of the debugger in terms of the AmbientTalk ones.
Before detailing this operational semantics in Section 6, we informally describe the debugger’s
breakpoints and stepping semantics. Additionally, we show a debugging session in the
resulting multiverse debugger called Voyager.

5.1 Breakpoint-based Debugging for Actor-based Programs
As explained before, multiverse debugging allows developers to interactively explore a target
program (step 2.b. in the multiverse debugging recipe of Section 2.1). In this section we
describe the two main features that multiverse debugging borrows from breakpoint-based
debuggers to enable such an interactive exploration of the program’s state, i.e. breakpoints
and stepping operations.

1 2

34 F V

msg send

future msg

Actor Actor

A
B

Figure 7 Points of interest for debugging actor-based programs.

A breakpoint defines a point of interest in a program in which to pause execution for
further inspection. The main idea of breakpoints is to allow developers to observe the effects
on an operation that may interleave with other operations in the system. Since turns run
till completion, operation interleavings in CEL programs happen at message level. As such,
breakpoints need to be applied to asynchronous message passing.

As a general principle, we consider the point in time right before and right after a message
is processed as relevant for breakpoints. Figure 7 shows the points of interests involved in an
asynchronous message send in CEL. When object A sends a message to object B, it is first
placed in the sender actor’s mailbox (point 1) and a future object F is immediately returned.
The message is then sent to the actor hosting the receiver object B, and is placed in its
mailbox (point 2). After the value for the future is computed, a message with the result value

ECOOP 2019

27:10 Multiverse Debugging

V is placed in the receiver actor’s mailbox (point 3) and sent back to the actor hosting the
sender object. The message carrying the result value is then placed in the sender’s mailbox
(point 4) and the future resolution listeners are finally executed.

Stepping is a debugger feature that allows developers to follow the execution of a program
between various points of interest. In sequential programs, stepping operations typically
allow to step through the program line by line. In CEL programs, stepping also needs
to allow developers step through program execution concurrently, i.e. let them follow the
execution between the points of interest involved in asynchronous message passing. Stepping
operations can thus be applied at each of the points shown in Figure 7, and it will allow the
developer to step to the next point of interest. For example, the program may be paused at
point 2, before the receiver actor has processed a message. A possible stepping operation is
to step to the next turn, which will let the actor process the message sent by A, and halt
before processing the next message, i.e. at the beginning of the turn.

In prior work we have explored catalogs of breakpoint types and stepping operations for
actor-based programs [29, 46]. These debugging operations are used in breakpoint-based
debuggers for CEL programs written in AmbientTalk and SOMns2, respectively. In this
work, we apply the debugging operations that we proposed in [46] to our multiverse debugger.

5.2 Voyager: a Multiverse Debugger for AmbientTalk Programs

To showcase the use of a multiverse debugger for AmbientTalk programs, we implemented
a tool called Voyager, which allows developers to interactively explore a target program
through the debugger operational semantics. Voyager is a web application build on top of
PLT-Redex, which executes the operation semantics of a multiverse debugger. Both the
operational semantics of the debugger and atf are implemented in PLT-Redex. Target
programs are written in PLT-Redex and can be loaded in Voyager. Voyager then asks
PLT-Redex to reduce the program according to the debugger semantics, which results in the
reduction graph for the program. All states in this graph are stored in a graph database3 for
easy manipulation and exploration of the reduction graph.

5.2.1 Debugging a Sample Program

We now show a debugging session in Voyager for the AmbientTalk program depicted in
Listing 1. The program shows an interaction between 3 actors: a math actor (created in
Line 20, and two client actors, client1 (created in Line 21) and client2 (Line 22). The
math actor (Lines 1 to 7) understands the messages double, which doubles its argument and
stores the result for further operations, as well as the getResult message, which returns the
result of a number of operations. After creating the three actors, the program sends a start
message to both client actors (Lines 23 and 24). As a result, client1 sends a double(12)
message followed by a getResult one. Concurrently, client2 sends a double(33) message to
the math actor as well.

Despite being a simple program, it contains a bad message interleaving bug [60], which is
common for actor-based programs. It is possible that client1 gets the result of doubling 33
instead of doubling 12. Table 1 shows all possible interleavings that the program exhibits.

2 SOMns is a Newspeak implementation build on top of the Truffle platform. https://github.com/sma
rr/SOMns

3 Our prototype uses ArangoDB. https://www.arangodb.com/

https://github.com/smarr/SOMns
https://github.com/smarr/SOMns
https://www.arangodb.com/

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:11

1 def makeMath () {
2 actor :{
3 def result := 0;
4 def double (x){ result := x+x};
5 def getResult (){ result };
6 }
7 };
8 def makeClient1 (math){
9 actor :{ |math|

10 def start (){
11 math <- double (12);
12 when : math <- getResult () @FutureMessage becomes : {| res|
13 system . println (res);
14 }}}
15 };
16 def makeClient2 (math){
17 actor : { |math|
18 def start (){ math <- double (33) }}
19 };
20 def math := makeMath ();
21 def client1 := makeClient1 (math);
22 def client2 := makeClient2 (math);
23 client1 <- start ();
24 client2 <- start ();

Listing 1 AmbientTalk program containing a bad message interleaving bug.

It also depicts the message sender for each message. Line 13 would print the result value,
which is 24 for the correct interleavings and 66 for the faulty one.

Table 1 Message interleavings for the AmbientTalk program shown in Listing 1.

Faulty Interleaving Correct Interleaving Correct Interleaving
client 1 - double(12) client 1 - double(12) client 2 - double(33)
client 2 - double(33) client 1 - getResult() → 24 client 1 - double(12)
client 1 - getResult() → 66 client 2 - double(33) client 1 - getResult() → 24

5.2.2 Overview of a Debugging Session
Taking the faulty interleaving of our example program of Listing 1 as example, a developer
may choose to explore the issue in Voyager and identify why the unexpected result is 66.
Thus, the developer needs to find the cause of the bad message interleaving exhibited by
the program. For a screencast of the debugging session, we refer the reader to https:
//tinyurl.com/VoyagerYoutube.

Figure 8 shows the Voyager UI. The left panel allows developers to upload the target
program to debug (either by selecting an existing file or creating a new one directly), and
shows information on the selected node in the “Node data” section. The right panel shows
the reduction graph for the target program. In this case, Voyager shows all possible universes
for the sample program. The end states of the program are shown in red. As expected (cf.
Table 1), there are three possible end states. “Node Data” shows the information for the end
state under the cursor. The selected state corresponds to the end state of an execution path
with the faulty interleaving since the result stored in res is 66.

Let us now start a debugging session to understand how we arrived at the result being 66.
Since math actor is the central point of synchronization in the program, we set a breakpoint
that pauses the program’s execution each time the math actor receives a message (before
processing it). In Voyager, this is called a message receiver breakpoint; its semantics are
shown in Section 6. With this breakpoint activated, we run the program again in Voyager.

ECOOP 2019

https://tinyurl.com/VoyagerYoutube
https://tinyurl.com/VoyagerYoutube

27:12 Multiverse Debugging

Figure 8 Overview of the Voyager tool.

Figure 9(a) shows the new reduction graph, with the execution paused once the breakpoint
was reached. The blue nodes denote the state of a running debugger executing the program.
When the message receiver breakpoint on the math actor is reached, in one of the universes
the debugger halts the execution (in that universe) and highlights the node in pink. As a
result, the evaluation of the underlying AmbientTalk program pauses. The magnifier glass
shows the pink node representing the triggering of the Message-Receiver-Breakpoint rule
(later detailed in Section 6). At this point in the execution, a developer can click on the node
to inspect the state, resume execution, or execute one of the step commands. The debugging
operations applicable at this point are accessible by means of a radial menu.

For this example, we make Voyager step to the next turn of the math actor. Figure 9(b)
shows the resulting graph after applying that stepping command. The first pink node in
Figure 9(b) corresponds to the node shown with the magnified glass in Figure 9(a). Notice
that the dashed lines are used to indicate user interaction. The new graph shows how
the debugger stops again at all possible universes in which the math actor receives the
second message.

The initial expectation of a developer may be that the next message in the mailbox of
the math actor will always be the getResult message. However, in Figure 9(b) we see that
there are two possible kinds of universes the base level program can evolve to. Inspecting
the actors inbox reveals that in some universes the next processed message is from client2.
As shown in the figure the top universe corresponds to the interleaving in which the double
message from client2 arrives first, and the bottom universe corresponds to the interleaving
in which the getResult message from client1 correctly arrives after the doubling message.
At this point, a developer sees that the initial expectation does not hold and a fix can be
developed to account for this bad interleaving.

One might be tempted to think that the program could be debugged by a traditional
concurrent debugger using a deterministic message order. While single-stepping individual
messages in a deterministic pattern would create a deterministic message order, traditional
concurrent debuggers only keep track of one universe. Because such a debugger simply picks
one of many universes determined by the execution order of messages, and it may not be the

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:13

...

A

B
client2-double

client1-getResult

Figure 9 A debugging session in Voyager for the program displayed in Listing 1.

universe in which the bug manifests. Hence, traditional concurrent debuggers do not avoid
the probe effect. In contrast, multiverse debugging allows developers to explore all possible
non-deterministic execution paths of a concurrent application. In order to steer the state
exploration, Voyager provides query facilities that we detail below.

5.2.3 Querying the state graph
As previously mentioned, the Voyager debugger stores the state graph in a graph database
which we can use to query the state of the multiverse graph. The left panel of the Voyager
UI (Figure 8) has a button to create new queries. Figure 10(a) shows the original graph for
the program. Figure 10(b) shows a more simplified view on the multiverse after applying a
query to the original graph that filters all paths except the shortest path from the start node
to all end nodes, i.e., nodes that cannot be reduced any further.

Listing 2 shows the code for the query that generates the simplified graph shown in
Figure 10(b) with the shortest path to the three possible end states of our sample problem.
The used query language is AQL4 using Bind parameters5 (@start, @graph, and @@nodes).
The query computes the shortest path to all end states as follows:

First, it finds all stuck nodes, by querying the database for nodes that have been marked
as stuck. The FOR operation returns an array of the values that have been returned by
RETURN in its body.
Second, Line 5 to Line 9 find the shortest path from the start node to each stuck node
using ArangoDB’s SHORTEST_PATH. This primitive returns an array of the nodes and
edges on the shortest path between two nodes in a graph. Since the SHORTEST_PATH
is used for each of the stuck nodes, we end up with an array of arrays which is then
flattened. The path variable now holds an array of nodes and edges on the shortest path
from the start node to a stuck node.
Finally, in order to visualize the paths, this array is converted to an object that lists the
edges and nodes to be displayed separately (Line 12 to Line 15).

4 https://docs.arangodb.com/3.4/AQL/Fundamentals/Syntax.html
5 https://docs.arangodb.com/3.4/AQL/Fundamentals/BindParameters.html

ECOOP 2019

https://docs.arangodb.com/3.4/AQL/Fundamentals/Syntax.html
https://docs.arangodb.com/3.4/AQL/Fundamentals/BindParameters.html

27:14 Multiverse Debugging

1 // make an array containing all stuck nodes
2 LET stuckNodes = (FOR n in @@nodes FILTER n. _stuck == true RETURN n)
3
4 // find the path to each of them and join the results
5 LET path = FLATTEN (
6 FOR target IN stuckNodes
7 FOR n,e IN OUTBOUND SHORTEST_PATH
8 @start TO target ._id GRAPH @graph
9 RETURN {n,e})

10
11 // convert to the needed format
12 RETURN {
13 edges : (FOR d in path FILTER d.e != null RETURN DISTINCT d.e),
14 nodes : (FOR d in path FILTER d.n != null RETURN DISTINCT d.n)
15 }

Listing 2 AQL query to search the shortest path from the start state to all possible end states of
a program.

Add-New-Actor Add-New-Actor CEL-Step-Global CEL-Step-Local CEL-Step-Global CEL-Step-Local
CEL-Step-Global

CEL-Step-Local

CEL
-Ste

p-G
lob

al CEL-Step-Local

CE
L-S
tep
-Lo
ca
l

CEL-Step-Global

CEL
-Ste

p-G
lob
al

CEL-Step-Local

CEL
-St
ep-
Glo

bal

CEL-Step-Global

CE
L-S
tep
-Lo
ca
l

CEL-Step-Global

CEL-Step-Local

CE
L-
St
ep
-G
lo
ba
l

CE
L-
St
ep
-G
lo
ba
l

CEL-Step-Global

CEL-Step-Local

CEL
-St
ep-
Glo

bal

CEL-Step-Local

CEL-Ste
p-Local

CE
L-S
te
p-
Gl
ob
al

CEL-Step-Global

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL-Step-Local

CEL-Step-Global

CE
L-S
tep
-Lo
cal

CEL
-Ste

p-L
oca

l

CEL-Step-Global

CEL-Step-Global

CE
L-
St
ep
-G
lo
ba
l

CE
L-S
tep
-G
lob
al

CEL-Step-Local

CEL-Step-Global

CEL-Ste
p-Globa

l

CEL-Step-Local
CEL-Step-Global

CEL
-St
ep-
Glo

bal

CEL-Step-Local

CEL
-Ste

p-G
lob
al

CEL
-St
ep-
Loc

al

CEL-Step-Local

CEL-Step-Local

CEL-Step-Local

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL
-Ste

p-Lo
cal

CE
L-S
te
p-
Lo
ca
l

CEL-Step-Local

CE
L-S
tep
-Lo
cal

CEL-Step-Local

CEL
-Ste

p-G
lob

al

CEL-Step-LocalCEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL
-Ste

p-G
lob
al

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-Step-Global

CE
L-S
tep
-Gl
ob
al

CEL-Step-Local

CEL-Step-Global

CEL
-St
ep-
Loc

al

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL
-Ste

p-L
oca

l

CE
L-S
te
p-
Lo
ca
l

CE
L-S
tep
-Gl
ob
al

CEL
-St
ep-
Loc

al

CE
L-S
te
p-
Gl
ob
al

CEL-Step-Local

CE
L-S
tep

-Gl
ob
al

CEL-Step-Local

CE
L-S
tep
-G
lob
al

CEL
-Ste

p-Gl
oba

l

CE
L-S
tep
-Lo
ca
l

CEL
-Ste

p-Lo
cal

CEL
-Ste

p-G
lob

al

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CE
L-S
tep
-G
lob
al

CEL-Step-Local

CEL-Step-Local

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL
-Ste

p-G
lob

al

CEL
-Ste

p-L
oca

l

CEL-Step-Local

CEL-Step-Local
CEL-Step-Local

CEL
-Ste

p-G
lob

al

CEL-Step-Global

CEL-Step-Local

CE
L-S
tep
-Gl
ob
al

CEL-Step-Global

CEL
-St
ep-
Glo

bal

CE
L-S
tep

-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL
-Ste

p-G
lob

al

CEL-Step-Local

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL
-Ste

p-L
oca

l

CEL-Step-Local

CEL-Step-Local

CEL-Step-Global

CEL
-Ste

p-Lo
cal

CEL-Step-Local

CEL-S
tep-G

lobal

CEL-Step-Local

CE
L-S
tep
-Gl
ob
al

CEL-Step-Local

CEL-Step-G
lobal

CE
L-S
te
p-
Gl
ob
al

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-S
tep-L

ocal

CEL
-Ste

p-G
lob

al

CEL
-Ste

p-L
oca

l

CEL-Step-Global

CEL-Ste
p-Loca

l
CE
L-S
tep
-Gl
ob
al

CE
L-S
tep
-Lo
cal

CEL-S
tep-G

lobal

CEL-Step-Loc
al

CEL
-Ste

p-L
oca

l

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL-Step-Loca
l

CE
L-S
tep
-Lo
cal

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CE
L-S
tep
-G
lob
al

CEL
-Ste

p-G
loba

l

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL-Step-Local

CEL-Step-
Global

CEL-Step-Local

CEL
-Ste

p-G
lob

al

CEL-S
tep-L

ocal

CEL-Step-Local

CEL-Step-Local

CEL
-Ste

p-Lo
cal

CEL-Step-Local

CEL-Step-L
ocal

CEL
-Ste

p-L
oca

l

CEL-Step-G
lobal

CEL
-Ste

p-G
loba

l

CEL-Step-Local

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL-Step-Local

CEL
-Ste

p-Lo
cal

CEL-S
tep-L

ocal
CE
L-S
tep
-Gl
ob
al

CEL-Step-Local

CEL-Step-Local

CEL
-Ste

p-G
lob

al

CEL-Step-Local

CEL-Step
-Global

CEL-Step-Local

CEL-Step-Local

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-Step-Global

CE
L-S
tep
-Lo
cal

CEL-S
tep-G

lobal

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL
-Ste

p-Gl
oba

l

CEL-Step-Local

CEL-Step-Loc
al

CEL
-Ste

p-Lo
cal

CEL-
Step

-Glo
bal

CEL-Step-Local

CEL-
Step

-Loc
al

CEL-Step-Global

CEL-Ste
p-Globa

l

CEL-Step-Local

CEL-Step-Local

CEL-Step-Global

CEL
-Ste

p-G
loba

l

CEL-Step-Global

CEL-Step-Local

CEL
-Ste

p-G
lob

al
CEL-Ste

p-Local
CEL

-Ste
p-L

oca
l

CEL-Step-Local

CEL-St
ep-Glo

bal

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL-Step-Local

CEL
-Ste

p-Lo
cal

CEL-Step-Local

CEL-S
tep-G

lobal

CEL-Step-Global

CEL-Step-Local

CEL-S
tep-G

lobal

CEL-Step-Global

CEL-S
tep-G

lobal

CEL-Step-Local

CEL
-Ste

p-Lo
cal

CEL
-Ste

p-L
oca

l

CEL-S
tep-G

lobal

CEL-Step-Local

CEL
-Ste

p-G
loba

l

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL-Step-Local

CEL-Step-Global

CEL-Ste
p-Local

CEL-Step-Local

CEL-Step
-Global

CEL-S
tep-Lo

cal

CEL-Step-Local

CEL-Step
-Local

CEL-Step-Glo
bal

CEL
-Ste

p-Lo
cal

CEL-Step-Local

CEL-
Step

-Glo
bal

CEL-S
tep-Lo

cal
CEL

-Ste
p-L

oca
l

CEL-S
tep-G

lobal

CEL-Step-Global

CEL-Step-Local

CEL-S
tep-G

lobal

CEL-Step-Local

CEL-Step-Global

CEL-
Step

-Glob
al

CEL-Step-Global

CEL-Step-Global

CEL-St
ep-Glo

balCEL-Step-Local

CEL-Step-Global

CEL-S
tep-Lo

cal

CEL-Step-Local

CEL-Step-Loc
al

CEL
-Ste

p-L
oca

l

CEL-Step-G
lobal

CEL-
Step

-Loc
al

CEL-Step-Local

CEL-
Step

-Glob
al

CEL-Step-Local

CEL-Step-Globa
l

CEL-Step-Local
CEL-Step-Global

CEL-
Step

-Glob
al

CEL-Step-Local

CEL-St
ep-Glo

bal

CEL-Step-Local

CEL-Step-
Local

CEL-Step-Local

CEL-Step-Loc
al

CEL-Step-
Local

CEL-Step-Global

CEL-Step-Local

CEL-St
ep-Glo

bal

CEL-St
ep-Loc

al

CEL-Step-Local

CEL
-Ste

p-L
oca

l

CEL-Step-G
lobal

CEL-Step-Local

CEL-Step-Global

CE
L-S
tep
-Lo
cal

CEL-Step-Global

CEL-S
tep-G

lobal

CEL-Step-Local

CEL-Step-Local

CEL-S
tep-L

ocal

CEL-Step-Local

Add-New-Actor Add-New-Actor CEL-Step-Global CEL-Step-Local CEL-Step-Global CEL-Step-Local CEL-Step-Global CEL-Step-Local

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL-Step-Local
CEL-Step-Global CEL-Step-Local CEL-Step-Global CEL-Step-Local

CEL-Step-Global
CEL-Step-Local

CEL-Ste
p-Globa

l

CEL-Step-L
ocal

CEL-Step-Glo
bal

CEL-Step-Local
CEL-Step-Global

CEL-Step-Global
CEL-Step-Global

CEL-Step-Local
CEL-Step-Global

CEL-Step-Local CEL-Step-Global CEL-Step-Local CEL-Step-Global CEL-Step-Local

CE
L-S
tep
-Gl
ob
al

CEL
-Ste

p-L
oca

l

CEL
-Ste

p-G
loba

l

CEL-
Step

-Glob
al

CEL-S
tep-G

lobal

CEL-St
ep-Loc

al

CEL-Step
-Local

CEL-Step-G
lobal

CEL-Step-Glob
al

CEL-Step-Local
CEL-Step-Global

CEL-Step-Local CEL-Step-Global CEL-Step-Local CEL-Step-Global
CEL-Step-Local

A B

Figure 10 Application of a shortest-path-to-end-states query to the program displayed in Listing 1.

The breakpoints and stepping operations combined with the query facilities of Voyager
provide an interactive experience of browsing the multiverse graph of a program to find the
root cause of bugs. It is important to note that in contrast to static analyses, a multiverse
debugger allows developers to explore and query states of the concrete program execution
interactively. This enables developers to focus on relevant elements and thereby directly
steer the state exploration.

6 Syntax and Operational Semantics of the Voyager Multiverse
Debugger

In this section we finally apply step 2 of the multiverse debugging recipe and describe the
syntax and operational semantics of our multiverse debugger, Voyager. We first describe
the general strategy of the debugger to be able to debug AmbientTalk programs, and we
then detail the elements of the debugger configuration of Voyager (step 2a) and the key
mechanisms for supporting breakpoints and stepping operations as the one described in the
previous section (step 2b).

6.1 Overview of the Debugger Semantics
The Voyager debugger keeps track of both the state of the underlying AmbientTalk program
and its own state. The semantics of the debugger consists of a set of reduction rules which
transition from one debugger state to the next one. In order to model the catalog of

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:15

breakpoints and stepping operations that we proposed in [46], we define the debugger state
D, which consists of six elements, Bp, Bc, ds, C,As,K.

The first two elements Bp and Bc are respectively the list of pending breakpoints and
the list of already checked breakpoints.
To keep track of which action the debugger is performing, the debugger configuration
contains a debugger state ds for representing the state run and pause. When the debugger
is in the run state it verifies whether there is an applicable breakpoint. When a breakpoint
hits, the debugger transitions itself to the pause state and halts execution.
To model the possible debugging operations offered to the user, e.g. stepping, resume,
and pause, the debugger state contains a list of commands C.
To keep track of the state of the actor the debugger configuration contains a map As.
Finally, K is the state of the actor configuration being debugged, i.e. the state of the
AmbientTalk program.

The general form of the reduction rules of the Voyager debugger consists of transitions
between debugger states:

D〈Bp, Bc, ds, C,As,K〉 →d D〈B′p, B′c, d′s, C ′, A′s,K ′〉

Note that the transition relation of the debugger is denoted by →d while the transition
rules of the base language are defined as→k. The evaluation strategy of the debugger consists
of traversing the list of pending breakpoints Bp one-by-one from left to right, moving the
debugger to a stopped state when a breakpoint hits. When a breakpoint does not apply for
the current state of the actor configuration, it is moved from the list of pending breakpoints
to the list of checked ones. When there are no pending breakpoints left the debugger instructs
the actor configuration to take one step and swaps the checked breakpoints with the pending
breakpoints, this continues till either a breakpoint is hit or an end state is reached.

6.2 Syntax of the Debugger Semantics
Figure 11 shows the semantics of two elements that we needed to extend in the AmbientTalk
semantics atf presented in Figure 6.

The first element corresponds to the message entity m, which we extended with an id ιm
to identify the message.
The second element corresponds to the send expression e ←id m(e) that we extended
also with an identifier id to determine which message is breakpointed. This identifier is
needed because different types of breakpoints can be set on the same message.

m ∈ Message ::= M〈ιm, v,m, v〉 Messages

e ∈ E ⊆ Expr ::= . . . | e←id m(e) Runtime
Expressions

Figure 11 Extended semantic entities in atf for debugging in Voyager calculus.

Figure 12 shows an overview of the elements of the Voyager calculus. More concretely, it
includes all the entities of the semantics that are needed by the six elements of the debugger
configuration D, i.e. bu, bt, c, cs, as, tub, ttb, tc.

ECOOP 2019

27:16 Multiverse Debugging

d ∈ Debugger ::= D〈Bp, Bc, ds, C,As,K〉 Debugger configurations

Bp ∈ Pending breakpoint ::= bu | bt Pending breakpoints
Bc ∈ Checked breakpoint ::= bt Checked breakpoints

ds ∈ Debugger state ::= run | pause Debugger states
C ∈ Command ::= c Commands

As ∈ Actor state map ::= cs Actor state map

bu ∈ User breakpoint ::= B〈tub, ιi〉 User Breakpoints
bt ∈ Trigger breakpoint ::= B〈ttb, ιa, ιi〉 Trigger Breakpoints

c ∈ C ::= C〈tc〉 | C〈tc, n〉 Commands
cs ∈ Current actor state ::= CS〈ιa, as〉 Current actor state

as ∈ Actor state ::= run | pause | hold | step n Actor states

tub ∈ User breakpoint tag ::= msb | mrb User breakpoint tags
ttb ∈ Trigger breakpoint tag ::= mrb-trigger Trigger breakpoint tags

tc ∈ Command tag ::= step-next-turn ιa | Command tags
resume |
pause

ιi ∈ BreakpointId

Figure 12 Semantic entities of the Voyager calculus.

To define a breakpoint bu we use a two-element tuple consisting of a breakpoint tag tub
and an expression id ιi.
Additionally, we define breakpoints at the level of the debugger semantics, i.e. breakpoints
which are defined by the semantics itself rather than by the developer debugging a target
program. We call these breakpoints trigger breakpoints to distinguish them from the
user ones aforementioned. A trigger breakpoint bt consists of a tuple of three elements, a
breakpoint tag ttb, an actor id ιa, and an expression id ιi.
A command c is defined by a tag tc. In the case of a step to next turn we need to define
also the number of steps n the command needs to take in the evaluation of the program,
i.e. C〈c, step n〉.
The map of actors As keeps a list of pairs CS〈ιa, as〉 consisting of the id of the actor ιa
and the current state as.
An actor can be in run, pause or hold state. In addition, an actor can have a state
step n.
The breakpoint tags tub indicate the tags a user can identify when defining a breakpoint.
The trigger breakpoint tags ttb correspond to the tags built-in in the semantics to actually
trigger the breakpoint.
The command tags tc refer to the debugging commands the user can specify to debug
the program, i.e. several stepping operations and resume/pause commands.

6.3 Operational Semantics of the Voyager Debugger
Having defined the syntax of the Voyager debugger and the debugger configuration (step
2a of the multiverse debugging recipe), we can now define the semantics of the debugger
operations that Voyager offers to developers to interactively explore the target program
(step 2b).

The reduction rules of Voyager can be separated in five groups:
1. Reduction rules for modeling the connection of the debugger with the base level language

(cf. Section 6.3.1)

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:17

2. Reduction rules for breakpoints (cf. Section 6.3.2), including rules needed to model
breakpoints which require trigger breakpoints for their functioning.

3. Bookkeeping reduction rules (cf. Section 6.3.3), i.e. rules that are related to the actor
state when breakpoints are not applicable and when new actors are created.

4. Reduction rules for the stepping operations (cf. Section 6.3.4), consists of the rules for
stepping commands that can be applied on the level of messages, futures, and turns.

5. Reduction rules for other debugging commands (cf. Section 6.3.5), i.e. rules that will
resume and pause the program’s execution.

For brevity, the following sections focus on the rules required to define the semantics
for the message receiver breakpoint and the step to next turn command employed in the
debugging session shown in Section 5.2. The complete set of reduction rules is included in
Appendix A.

6.3.1 Connection with the Base Level Language

Recall that the semantics of a multiverse debugger is defined in terms of the underlying base
language semantics, atf in the case of Voyager. Two reductions rules (shown below) govern
the connection of Voyager’s semantics with atf : cel-step-global and cel-step-local.
The cel-step-global rule transitions the actor configuration K to the actor configuration
K ′ by applying the global AmbientTalk reduction relation (→k). This relation governs all
the actor transitions rules that affect two or more actors, i.e. sending asynchronous messages
and creating new actors. The cel-step-local rule, on the other hand, non-deterministically
picks an actor a from the actor configuration K and transitions it to an actor a′ by applying
the local multi-step AmbientTalk relation ∗−→a. This reduction relation applies one or more
single-step local reduction which can be applied to the actor, all these single-step reductions
are deterministic. Finally, we require that the actor which we transition is in a local running
state and update it accordingly, i.e. when the actors local state is (step n) the update
meta-function will update the actors state to (step n− 1).

Both the cel-step-global and cel-step-local rule can only be triggered when all
the pending breakpoints are checked. Note that after taking a step in atf , the checked
breakpoints and the pending breakpoints are swapped. At certain points during the execution
it could be that both cel-step-global and cel-step-local are applicable at the same time.
This is intentional and is part of the non-deterministic nature of executing the AmbientTalk
semantics that we want to capture in the debugger.

(cel-step-global)
K →k K

′

not− applicable− add− new − actor
D〈(), Bc, run, C,As,K〉 →d D〈Bc, (), run, C,As,K ′〉

(cel-step-local)
K = K ′∪̇{a} a

∗−→a a
′ A′s = update(As, a)

not− applicable− add− new − actor
D〈(), Bc, run, C,As,K〉 →d D〈Bc, (), run, C,A′s,K ′∪̇a′〉

ECOOP 2019

27:18 Multiverse Debugging

6.3.2 Reduction Rules for Breakpoints
As mentioned before, the Voyager semantics features two families of breakpoints: user
breakpoints denote breakpoints that are activated by the user while trigger breakpoints denote
breakpoints generated by the debugger. As an example of user breakpoint consider the
message receiver breakpoint, which we explained in the debugging session shown in Section 5.2.
It halts execution of an actor before it processes a message (identified by a unique id).

Generally, we only know during program execution which actor hosts the receiver object
of a message. Therefore, the debugger monitors the program and inserts a new trigger
breakpoint when the id of the receiver actor becomes known. The trigger breakpoint is used
by the debugger semantics to later halt the execution when the message is actually received
at the receiver side.

The save-mrb reduction rule below governs the semantics of transforming a message
receiver breakpoint into a trigger message receiver breakpoint. When the message is about
to be sent the user breakpoint B〈mrb, ιi〉 that is in the list of pending breakpoints, the
save-mrb is triggered if the actor id of the breakpoint corresponds to the actor id of the
receiver actor. In this case, the breakpoint is removed from the pending list and a trigger
breakpoint B〈mrb − trigger, ιa′ , ιi〉 is added in the list of checked breakpoints. Note that
the sender and receiver actors of that message continue with run state, but the addition of
the trigger message breakpoint will make the execution of the debugger pause at the receiver
actor (the actor id of which is included in the trigger breakpoint itself).

(save-mrb)
A〈ιa, O,Qin, e�[ιa′ .ιo ←ιi m(v)]〉 ∈ K

D〈B〈mrb, ιi〉 ·Bp, Bc, run, C,As,K〉 →d D〈Bp, Bc · B〈mrb− trigger, ιa′ , ιi〉, run, C,As,K〉

The next reduction rule is trigger-mrb and it governs the semantics of the trigger
breakpoint added for a message receiver breakpoint. Back in the example debugging session,
Figure 9 showed that the triggering of this rule resulted in the pink node under the magnifying
glass. In the trigger breakpoint the id of the actor ιa is saved to identify the actor the
user wants to halt, and the ιi is saved to identify in which message. When the message
arrives in the queue of the receiver actor, the trigger breakpoint is removed from the pending
list Bp and the debugger and the receiver actor changes its state to pause. Note that the
receiver actor cannot process local operations but it can execute global ones, e.g. receive a
new message from another actor. The two operations of the message receiver breakpoint
for saving the information needed when the message is about to be sent and triggering the
breakpoint are shown in Appendix A, i.e. save-mrb and trigger-mrb.

(trigger-mrb)
A〈ιa, O,m ·Qin, v〉 ∈ K A′s = As + {CS〈ιa, pause〉}

D〈B〈mrb− trigger, ιa, ιi〉 ·Bp, Bc, run,C,As,K〉 →d D〈Bp, Bc,pause, C,A′s,K〉

6.3.3 Bookkeeping Reduction Rules
For each of the breakpoint triggering rules there should be a rule which instructs the debugger
to move the breakpoint to the list of checked breakpoints when the breakpoint does not
hit. Instead of listing all these individual rules we compressed them into one rule called
breakpoint-not-applicable which should be triggered when the breakpoint at the head
of the list is not applicable. The breakpoint-not-applicable rule is shown Appendix A.

Appendix A also includes the add-new-actor reduction rule for the creation of new
actors. This rule basically updates the As map when an actor is created.

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:19

6.3.4 Reduction Rules for Stepping Operations

Similarly to the formalisation of the message sender breakpoint, some stepping commands
need to be encoded with several reduction rules. For example, the step-next-turn employed in
debugging session in Section 5.2, is formalised with two reduction rules: prepare-step-next-
turn and trigger-step-next-turn. The prepare-step-next-turn rule is triggered
when the debugger is in the paused state and transitions a particular actor with id ιa from
the paused state to the (step 1) state indicating that the actor is allowed to take exactly one
local step (cf. cel-step-local in Section 6.3.1).

The trigger-step-next-turn rule is triggered when a particular actor with id ιa is in
the state (step 0). When this rule is triggered, the debugger moves form the run state to
the paused state. At the same time, the local actor state is also changed to the pause state.

(prepare-step-next-turn)
A〈ιa, O,m ·Qin, e〉 ∈ K A′s = As∪̇{CS〈ιa, (step 1)〉}

D〈Bp, Bc,pause, (StepNextTurn ιa) · C,As ∪̇ CS〈ιa, (pause)〉,K〉 →d

D〈Bp, Bc, run, (StepNextTurn ιa) · C,A′s,K〉

(trigger-step-next-turn)
A〈ιa, O,m ·Qin, v〉 ∈ K A′s = As∪̇{CS〈ιa, pause〉}

D〈Bp, Bc, run, (StepNextTurn ιa) · C,As ∪̇ CS〈ιa, (step 0)〉,K〉 →d D〈Bp, Bc,pause, C,A′s,K〉

Note that other breakpoints and stepping commands can be encoded in a similar vain as
we have shown for the message receiver breakpoint and step to next turn. Some of these
breakpoints such as the message sender breakpoint (cf. Appendix A) are easier because they
do not require any bookkeeping, i.e. all the information to pause the execution is known at
the start of the program.

6.3.5 Reduction Rules for Basic Debugging Commands

Finally, we show below the rules which govern basic debugging commands to control the
execution of a program, namely pause and resume. The resume-execution rule guarantees
that the execution of the program continues from any pause state of the debugger. As such,
the debugger state transits from pause to run. The rule updates the state of the local actors
to run.

The pause-execution rule halts the execution of all actors in the actor configuration,
transitioning the debugger state from run to pause. The rule updates the state of the local
actors to pause.

(resume-execution)
A′s = run(As)

D〈Bp, Bc,pause, Resume · C,As,K〉 →d D〈Bp, Bc, run, C,A′s,K〉

(pause-execution)
A′s = pause(As)

D〈Bp, Bc, run, Pause · C,As,K〉 →d D〈Bp, Bc,pause, C,A′s,K〉

ECOOP 2019

27:20 Multiverse Debugging

6.3.6 Discussion
There are a number of design decisions and limitations worth discussing. First, in an early
prototype of the debugger semantics [59], we did not separate the global from the local atf
reduction rules. This turned out to be problematic because it makes it hard to pause a
specific actor from processing messages while still allowing it to receive messages in its inbox.
Separating the global from the local semantics simplified the semantics significantly.

Second, the early prototype used the single-step operational semantics to transition
the local actor semantics [59], while in the final version reported here, we are using a
multi-step relation. As previously mentioned, in the actor model the only points where
the non-determinism matters is when messages are being exchanged between the actors.
However, when using the single-step local reduction relation a lot of additional and irrelevant
non-determinism is introduced. This made working with the Voyager debugger very tedious
and reduced its usefulness for larger programs. By switching to the local multi-step relation
the amount of states being shown to the end user is significantly reduced while the non-
deterministic behavior due to message passing is completely preserved.

Finally, it is worth noting that even though the multi-step relation alleviates the problem
of growing number of states, the number of states still grows depending on the program size,
as previously mentioned. Further research is needed to investigate ways to reduce the number
of states without removing relevant sources of non-determinism in the program. To this end,
advances in the context of static techniques like symbolic execution and model checking can
be employed as starting point (cf. Section 8.2). We believe that with the current hardware
evolution of multicore machines, the size of programs which can be debugged with multiverse
debugging is steadily growing as well. At this point, we have used the Voyager tool to debug
programs of the size of dining philosophers. Further research is also needed to investigate
techniques to guide the exploration of the state graph, e.g. novel stepping semantics that work
at the level of universes. Of course, applying this technique to industrial-strength languages
will also required further work. But the goal would be that a traditional breakpoint-based
debugger can be a foundation for such multiverse debugging.

7 Proof of Non-Interference

In this section we provide a proof of non-interference for the semantics of the Voyager
debugger. More specifically, we prove observational equivalence between the debugger and
the base language semantics. Intuitively, this means that any execution of the Voyager
debugger corresponds to an execution of an AmbientTalk program, and any execution of an
AmbientTalk program is observed by Voyager. Formally,

I Theorem 1 (Equivalence of evaluation steps). Let K be an actor configuration in the atf
semantics, for which there exists a transition to an actor configuration K ′. Let D be a
debugging configuration for K and Bp, Bc, ds, C,As elements of D such that the commands
C resume all the paused actors then:

(K →k K
′) ⇐⇒

(D〈Bp, Bc, ds, C,As,K〉 →dk
D〈B′p, B′c, d′s, C ′, A′s,K ′〉)

The left handside of the biconditional relation represents the evaluation of the program
in the AmbientTalk semantics atf , i.e. the configuration of actors K, to another program
state K ′. Where →k corresponds to the evaluation regarding the reduction rules of the
base language.

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:21

The right handside of the biconditional relation represents the evaluation of the program in
the debugger semantics D〈Bp, Bc, ds, C,As,K〉, which yields in an another debugger configu-
ration D〈B′p, B′c, d′s, C ′, A′s,K ′〉. Where→dk

represents one or more evaluation steps taken by
the debugger transition rules in K, until the debugger configuration D〈B′p, B′c, d′s, C ′, A′s,K ′〉
is reached.

To prove the biconditional relation of Theorem 1 we divide our proof in two parts, which
corresponds to the two implications of the relation.

Implication 1. An evaluation step in the AmbientTalk semantics implies
equivalent evaluation steps in the debugger semantics
Proof sketch. We proceed by induction over the set of pending breakpoints Bp.

Base case: In this case the list Bp is empty. Either the actor is in running or in the paused
state. By assumption, when the debugger is in a pause state, the commands C will
un-pause the debugger.
In general a step in the base-level language can be done in two modes. In case the base
level semantics performed a global reduction, there is a corresponding transition in the
debugger by taking a step with cel-step-global. Similarly if it was a local rule, there
is a possible transition with the cel-step-local rule.

Inductive case: Assuming that there is list of pending breakpoints Bp leading to the actor
configuration K ′. When adding one breakpoint to that list we need to consider two cases.
Either the breakpoint is applicable or it is not. When the breakpoint does not apply
the corresponding not-applicable-breakpoint rule will move the breakpoint to the
list of checked breakpoints and the induction hypothesis applies. In the other case the
breakpoint applies, in which by assumption the commands C will transition the debugger
back to the run state at which point the induction hypothesis can be applied. J

Implication 2. An evaluation step in the debugger semantics implies an
equivalent evaluation step in the AmbientTalk semantics
Proof sketch. By construction, the only two rules cel-step-local and cel-step-global
where the debuggers K field transitions to K ′ directly rely on the underlying AmbientTalk
semantics. J

8 Related Work

To the best of our knowledge, multiverse debugging is the first debugging approach that
allows developers to interactively browse all execution paths of parallel programs. In this
section, we compare our work to other efforts on formalizing debuggers for actor languages
and other programming paradigms. We also relate our work to static analysis techniques for
debugging non-deterministic programs such as model checking and symbolic execution.

8.1 Formal specifications for debuggers
The first formal specification for debuggers was proposed by Da Silva [19]. He used a structural
operational semantics that considers a debugger as a system, which transitions from one state
to another using an evaluation history. He defines the semantics of his debugging approach on
top of a deterministic relation specification of a programming language. To prove debugger
correctness, Da Silva presented a proof of equivalence between two debugger approaches.

ECOOP 2019

27:22 Multiverse Debugging

This work served as inspiration for multiverse debugging, but we focus on proving the
equivalence between the base language and the debugger, i.e., their non-interference. While
Da Silva does not address non-deterministic languages, he argues that non-repeatability
of evaluation can be avoided by recording all choices where more than one evaluation rule
could be chosen. However, to the best of our knowledge Da Silva never put this theory into
practice. Our approach differs from Da Silva by embracing the non-deterministic nature of
the base language and using it to derive a non-deterministic debugger.

Bernstein et al. [8] developed a debugging semantics based on transitions for a deterministic
functional programming language. The evaluation steps in the debugging session correspond
to executing subexpressions of the program. Similar to Voyager, developers can select
terms (represented as nodes in the graph) corresponding to the program states and create
new programs from them to debug. Bernstein et al. did not apply their techniques to
non-deterministic languages.

In the context of distributed systems, Ferrari et al. [22] proposed a debugging calculus
for mobile ambients. Similar to our approach, they model a debugger as an extension of the
operational semantics of an underlying programming language. Their operational semantics
is a causal model of behaviors which they represent using Petri nets. In a later work, Ferrari
et al. [21] proposed Causal Nets which allows the developer to query a causal message graph
generated by the execution of a set of distributed processes. We have experimented with
converting the multiverse execution graph into a Petri net, but due to the size of the execution
graphs the resulting Petri nets offered few additional insight into the program behavior.

In the context of algorithmic debugging, Luo et al. [45] proposed a formal model of tracing
for functional programs. The authors proved correctness of evaluation dependency trees to
identify faulty nodes, i.e. a node with erroneous computation. They consider correctness
when the debugging algorithm detects a faulty node that matches the answer of the user. In
contrast to multiverse debugging, this approach does not show an exploration of different
non-deterministic paths, but the exploration of one path of execution of a functional program
based on a trace. Similarly, Caballero et al. [13] uses a technique of algorithmic debugging
to detect liveness issues in Erlang programs. Their approach can analyze sequential and
concurrent programs using a calculus based on proofs to build execution trees.

Li et al. [40] introduced a formal semantics for debugging synchronous message-passing
programs, e.g. MPI, Occam, and JCSP. They propose a structural operational semantics for
a tracing procedure and bug/fix locating procedure. The goal of these procedures is to record
useful information that helps to build the execution history of the program. More concretely,
the tracing procedure records to one execution path in the evaluation of the program, ignoring
non-determinism. In contrast, our approach considers all possible execution paths.

Giachino et al. [27] provide a causal consistent reversible semantics for the µOz language,
featuring thread-based concurrency and asynchronous communication over ports. These
semantics however, do not explore different paths of the execution of a concurrent program.
Following the idea of reversible semantics, Lanese et al. [37] proposed a causal consistent
reversible debugger for Erlang processes. More concretely, they use a reversible semantics for
Erlang [52], in which they record a history of all the computed expressions, corresponding to
each execution step. In contrast, our semantics only keep track of the state of actors and
breakpoint information. In addition, the rules related to the reversible semantics are said to
be non-deterministic, but no concrete exploration examples of different execution paths are
included in the paper.

In the context of Petri nets, Van Mierlo et al. [63] proposed a debugging tool for observing
erroneous states of non-deterministic behavior. The tool takes a model of a system as input,
and builds a Petri net reachability graph which can be debugged in an interactive way. Similar

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:23

to our approach, they provide online debugging operations, e.g., breakpoints and stepping,
to explore specific program states. Multiverse debugging however, takes as input programs
based on the operational semantics of the programming language and allows to debug the
execution graph of the program.

8.2 Static Analysis Techniques
Since multiverse debugging allows developers to explore all possible paths of execution of an
application, it can be considered closely related to static analysis techniques such as model
checking and symbolic execution. Below, we provide an overview of such techniques, with a
focus on actor-based approaches, and compare them to multiverse debugging.

Model checking. Model checking is a static technique for automatically verifying correctness
properties of programs given a specification of the property. It has been studied for thread-
based concurrency models to verify safety requirements such as the absence of deadlocks
[31, 51, 36]. Ignoring recursion or relying on finite state models avoids undecidability problems
due to synchronization as well as applying bounded analysis using testing or bounded model
checking techniques [18].

Model checking has also been explored in the context of actor-based languages to verify
properties like boundedness of actor mailboxes, and incorrect interleavings of messages. In
the context of Erlang programs, Fredlund et al. [24] proposed a model checker that verifies
boundedness of their mailboxes and process spawning. Other approaches have focused on
verifying the property of mutual exclusion in Erlang programs [33, 20] or to analyze message
interleavings between Erlang processes [16]. There exist model checkers for other actor-based
languages such as Basset [39], a model checker that can analyze message schedules in actor-
based programs written in Scala and ActorFoundry library for Java. Tasharofi et al. proposed
an algorithm based on partial order reduction to prune the number of message interleavings
in Scala and ActorFoundry programs [57]. Additionally, a more theoretic approach uses
model checking to verify actors behavior based on compositional analysis of schedules [35].

Model checking tools excel at finding a set of bugs of which the programmer knows
exactly how to describe them. Multiverse debugging is meant for debugging and interactively
exploring the state space in order to discover bugs for which the programmer may not have
a good description. Similar to model checking, multiverse debugging can suffer from the
state explosion problem. As mentioned before, our approach does not blindly explore all the
possible states but lets the developer decide which states to explore next, either explicitly
or by using multiverse breakpoints, which makes multiverse debugging similar to bounded
model checking [9]. Other techniques in model checking have been proposed to handle the
state explosion problem including symbolic model checking with binary decision diagrams,
partial order reductions and counter example guided abstraction refinement [17].

Symbolic execution. Symbolic execution is a static technique to test whether certain
predefined properties can be violated by a program [5]. A key idea in symbolic execution is
to explore programs taking as input symbolic values rather than concrete ones. According
to [42], most symbolic execution techniques can be categorized in either techniques that
create and search in a subset of the concrete search space (i.e. an under-approximation), or
techniques that create and search in a superset of it (i.e. an over-approximation). Under-
approximation techniques lead to false negatives (i.e. missing real errors) but are preferred
over over-approximation techniques because the latter ones introduce false positives (report

ECOOP 2019

27:24 Multiverse Debugging

errors that do not exist) and do not scale as well because of the cost of handling infeasible
states. Many research efforts on symbolic execution for multi-threaded programs have focused
on improving the efficiency of over-approximation techniques [7, 43].

Concolic execution is a mix of concrete and symbolic execution which has been throughly
studied for thread-based programs [5, 3, 28, 55]. In the context of actors, much work has also
focused on concolic execution. Sen et al. [54] proposed a testing algorithm based on concolic
execution together with runtime partial order reduction for detecting deadlock states in a
language related to the actor semantics. Albert et al. [1] developed a test case generation
framework which avoids redundant computations when exploring the order of several tasks.
More recently, Albert et al. [2] proposed a variant of a dynamic partial order reduction
algorithm which can be used when searching for deadlocks. Their algorithm aims to reduce
state space exploration by distinguishing between two sources of non-determinism: actor
selection and task selection. Recently, Li et al. proposed an exploration of the state space
using symbolic execution based on heuristics that consider paths where only interact with a
small number of actors [41].

Like multiverse debugging, symbolic execution can explore all possible execution paths of
a program. While the use of abstract states alleviates the state explosion problem, that may
imply missing execution paths (i.e. universes) containing a bug due to under approximation.
In contrast to symbolic execution, multiverse debugging models the program execution only
with concrete values, and can not miss executions paths. While multiverse debugging does not
solve the state explosion problem, developers can pause and resume the program, and select
themselves the different execution paths to explore. In the context of thread-based programs,
some work in symbolic execution has studied solutions for reducing the complexity of path
exploration based on merging paths [14], state pruning [30], probabilistic computations [44]
and search heuristics [41].

9 Conclusion

We proposed multiverse debugging as a new debugging approach to tackle the problem of
non-determinism in concurrent and parallel programs. Contrary to traditional concurrent
debugging approaches, multiverse debugging allows developers to explore non-deterministic
execution paths corresponding to the evaluation of a program. This is meant to simplify the
reproduction and inspection of concurrency bugs, because it removes chance and probability
from the equation of hitting the problematic interleaving. Instead, an execution path that
can lead to a bug can be explored interactively and a developer can see the state in all
possible universes.

To build a multiverse debugger, we provided a recipe with two steps. First, we need to
define the operational semantics of a non-deterministic base language. Second, we need to
define a debugger configuration and its operational semantics in terms of the base language
semantics. In this paper, we have applied this recipe to provide a proof-of-concept multiverse
debugger for actor-based programs called Voyager. Voyager uses as input a PLT-Redex
program implemented in the AmbientTalk operational semantics and gives as output the
reduction graph corresponding to all possible universes of the program. To make this
exploration manageable, the graph can be explored interactively as one would do in a classic
breakpoint-based debugger. Besides providing the semantics of a multiverse debugger, we
also demonstrate that there is no interference between the debugger and the target program
by proving non-interference. This shows that the debugger is probe-effect free.

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:25

We consider multiverse debugging to be a good basis for further experiments in debugging
non-deterministic concurrent programs. Voyager’s debugging operations merely scratch
the surface of a new branch in debugging tools. The main open research question is how
to make multiverse debugging practical for complex concurrent applications. While we
believe that the interactive nature alleviates some of the scalability issues of static analyses,
exploring the multiverses of larger programs can become unwieldy. Thus, research is needed
to guide the exploration of the state graph, e.g. novel stepping semantics that work at the
level of universes. Furthermore, the technique needs to be applied to a concrete language
implementation beyond a PLT-Redex-based formalism. Efficient runtime techniques will be
cornerstone to make it practical, but we may be able to leverage work of static analyses and
back-in-time debugging [6].

References
1 Elvira Albert, Puri Arenas, and Miguel Gómez-Zamalloa. Test Case Generation of Actor

Systems. In Bernd Finkbeiner, Geguang Pu, and Lijun Zhang, editors, ATVA, volume
9364 of Lecture Notes in Computer Science, pages 259–275. Springer, 2015. doi:10.1007/
978-3-319-24953-7_21.

2 Elvira Albert, Puri Arenas, and Miguel Gómez-Zamalloa. Systematic testing of actor systems.
Softw. Test., Verif. Reliab., 28(3), 2018. doi:10.1002/stvr.1661.

3 Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. Enhancing
symbolic execution with veritesting. In Pankaj Jalote, Lionel C. Briand, and André van der
Hoek, editors, ICSE, pages 1083–1094. ACM, 2014. doi:10.1145/2568225.2568293.

4 Thibaut Balabonski, Franccois Pottier, and Jonathan Protzenko. Type Soundness and
Race Freedom for Mezzo. In Michael Codish and Eijiro Sumii, editors, Functional and
Logic Programming, pages 253–269, Cham, 2014. Springer International Publishing. doi:
10.1007/978-3-319-07151-0_16.

5 Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi.
A Survey of Symbolic Execution Techniques. ACM Comput. Surv., 51(3):50:1–50:39, May
2018. doi:10.1145/3182657.

6 Earl T. Barr, Mark Marron, Ed Maurer, Dan Moseley, and Gaurav Seth. Time-travel Debugging
for JavaScript/Node.Js. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, pages 1003–1007. ACM, 2016.
doi:10.1145/2950290.2983933.

7 Tom Bergan, Dan Grossman, and Luis Ceze. Symbolic execution of multithreaded programs
from arbitrary program contexts. In Andrew P. Black and Todd D. Millstein, editors, OOPSLA,
pages 491–506. ACM, 2014. doi:10.1145/2660193.2660200.

8 Karen L. Bernstein and Eugene W. Stark. Operational Semantics of a Focusing De-
bugger. Electronic Notes in Theoretical Computer Science, 1:13–31, 1995. MFPS XI,
Mathematical Foundations of Programming Semantics, Eleventh Annual Conference. doi:
10.1016/S1571-0661(04)80002-1.

9 Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic Model
Checking Without BDDs. In Proceedings of the 5th International Conference on Tools and
Algorithms for Construction and Analysis of Systems, TACAS ’99, pages 193–207, Berlin,
Heidelberg, 1999. Springer-Verlag. doi:10.1007/3-540-49059-0_14.

10 Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership Types for Safe Pro-
gramming: Preventing Data Races and Deadlocks. In Proceedings of the 17th ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA
’02, pages 211–230, New York, NY, USA, 2002. ACM. doi:10.1145/582419.582440.

11 Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William Maddox, and Eliot
Miranda. Modules as Objects in Newspeak. In Theo D’Hondt, editor, ECOOP 2010 –

ECOOP 2019

http://dx.doi.org/10.1007/978-3-319-24953-7_21
http://dx.doi.org/10.1007/978-3-319-24953-7_21
http://dx.doi.org/10.1002/stvr.1661
http://dx.doi.org/10.1145/2568225.2568293
http://dx.doi.org/10.1007/978-3-319-07151-0_16
http://dx.doi.org/10.1007/978-3-319-07151-0_16
http://dx.doi.org/10.1145/3182657
http://dx.doi.org/10.1145/2950290.2983933
http://dx.doi.org/10.1145/2660193.2660200
http://dx.doi.org/10.1016/S1571-0661(04)80002-1
http://dx.doi.org/10.1016/S1571-0661(04)80002-1
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1145/582419.582440

27:26 Multiverse Debugging

Object-Oriented Programming, volume 6183 of LNCS, pages 405–428. Springer, 2010. doi:
10.1007/978-3-642-14107-2_20.

12 Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang.
Symbolic Model Checking: 102̂0 States and Beyond. In LICS, pages 428–439. IEEE Computer
Society, 1990. doi:10.1016/0890-5401(92)90017-A.

13 Rafael Caballero, Enrique Martin-Martin, Adrián Riesco, and Salvador Tamarit. Declarative
debugging of concurrent Erlang programs. Journal of Logical and Algebraic Methods in
Programming, 101:22–41, 2018. doi:10.1016/j.jlamp.2018.07.005.

14 Cristian Cadar and Koushik Sen. Symbolic Execution for Software Testing: Three Decades
Later. Commun. ACM, 56(2):82–90, February 2013. doi:10.1145/2408776.2408795.

15 M. Christakis, A. Gotovos, and K. Sagonas. Systematic Testing for Detecting Concurrency
Errors in Erlang Programs. In 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation, pages 154–163, March 2013.

16 Maria Christakis, Alkis Gotovos, and Konstantinos F. Sagonas. Systematic Testing for
Detecting Concurrency Errors in Erlang Programs. In ICST, pages 154–163. IEEE Computer
Society, 2013.

17 Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Progress on
the State Explosion Problem in Model Checking. In Reinhard Wilhelm, editor, Informatics,
volume 2000 of Lecture Notes in Computer Science, pages 176–194. Springer, 2001. doi:
10.1007/3-540-44577-3_12.

18 Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors.
Handbook of Model Checking. Springer, 2018. doi:10.1007/978-3-319-10575-8.

19 Fabio Q. B. da Silva. Correctness proofs of compilers and debuggers: an approach based on
structural operational semantics. PhD thesis, University of Edinburgh, UK, 1992. British
Library, EThOS. URL: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.649061.

20 Emanuele D’Osualdo, Jonathan Kochems, and C. H. Luke Ong. Automatic Verification
of Erlang-Style Concurrency. In Francesco Logozzo and Manuel Fähndrich, editors, 20th
International Symposium on Static Analysis, SAS 2013, pages 454–476. Springer, June 2013.
doi:10.1007/978-3-642-38856-9_24.

21 Gian Luigi Ferrari, Roberto Guanciale, Daniele Strollo, and Emilio Tuosto. Debugging
Distributed Systems with Causal Nets. ECEASST, 14:1–10, 2008. doi:10.14279/tuj.eceasst
.14.190.181.

22 GianLuigi Ferrari and Emilio Tuosto. A Debugging Calculus for Mobile Ambients. In
Proceedings of the 2001 ACM Symposium on Applied Computing, SAC ’01, page 2, New York,
NY, USA, 2001. ACM. doi:10.1145/372202.380701.

23 Cormac Flanagan and Stephen N. Freund. Type-based Race Detection for Java. In Proceedings
of the ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation,
PLDI ’00, pages 219–232, New York, NY, USA, 2000. ACM. doi:10.1145/349299.349328.

24 Lars-Ake Fredlund, Dilian Gurov, Thomas Noll, Mads Dam, Thomas Arts, and Gennady
Chugunov. A verification tool for ERLANG. STTT, 4(4):405–420, 2003. doi:10.1007/
s100090100071.

25 Jason Gait. A probe effect in concurrent programs. Software: Practice and Experience,
16(3):225–233, 1986. doi:10.1002/spe.4380160304.

26 Elena Giachino, Carlo A. Grazia, Cosimo Laneve, Michael Lienhardt, and Peter Y. H. Wong.
Deadlock Analysis of Concurrent Objects: Theory and Practice. In Einar Broch Johnsen and
Luigia Petre, editors, Integrated Formal Methods, pages 394–411, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg. doi:10.1007/978-3-642-38613-8_27.

27 Elena Giachino, Ivan Lanese, and Claudio Antares Mezzina. Causal-Consistent Reversible
Debugging. In Stefania Gnesi and Arend Rensink, editors, FASE, volume 8411 of Lecture Notes
in Computer Science, pages 370–384. Springer, 2014. doi:10.1007/978-3-642-54804-8_26.

28 Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed Automated Random
Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language

http://dx.doi.org/10.1007/978-3-642-14107-2_20
http://dx.doi.org/10.1007/978-3-642-14107-2_20
http://dx.doi.org/10.1016/0890-5401(92)90017-A
http://dx.doi.org/10.1016/j.jlamp.2018.07.005
http://dx.doi.org/10.1145/2408776.2408795
http://dx.doi.org/10.1007/3-540-44577-3_12
http://dx.doi.org/10.1007/3-540-44577-3_12
http://dx.doi.org/10.1007/978-3-319-10575-8
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.649061
http://dx.doi.org/10.1007/978-3-642-38856-9_24
http://dx.doi.org/10.14279/tuj.eceasst.14.190.181
http://dx.doi.org/10.14279/tuj.eceasst.14.190.181
http://dx.doi.org/10.1145/372202.380701
http://dx.doi.org/10.1145/349299.349328
http://dx.doi.org/10.1007/s100090100071
http://dx.doi.org/10.1007/s100090100071
http://dx.doi.org/10.1002/spe.4380160304
http://dx.doi.org/10.1007/978-3-642-38613-8_27
http://dx.doi.org/10.1007/978-3-642-54804-8_26

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:27

Design and Implementation, PLDI ’05, pages 213–223, New York, NY, USA, 2005. ACM.
doi:10.1145/1065010.1065036.

29 Elisa Gonzalez Boix, Carlos Noguera, and Wolfgang De Meuter. Distributed Debugging for
Mobile Networks . Journal of Systems and Software, 90:76–90, 2014. doi:10.1016/j.jss
.2013.11.1099.

30 Shengjian Guo, Markus Kusano, and Chao Wang. Conc-iSE: Incremental Symbolic Execution
of Concurrent Software. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, pages 531–542, New York, NY, USA, 2016. ACM.
doi:10.1145/2970276.2970332.

31 K. Havelund and T. Pressburger. Model Checking Java Programs using Java PathFinder.
International Journal on Software Tools for Technology Transfer, 2(4), 1998. doi:10.1007/
s100090050043.

32 Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular ACTOR Formalism for
Artificial Intelligence. In IJCAI’73: Proceedings of the 3rd International Joint Conference on
Artificial Intelligence, pages 235–245. Morgan Kaufmann, 1973.

33 Frank Huch. Verification of Erlang Programs Using Abstract Interpretation and Model
Checking. In Proceedings of the Fourth ACM SIGPLAN International Conference on Functional
Programming, ICFP ’99, pages 261–272, New York, NY, USA, 1999. ACM. doi:10.1145/
317636.317908.

34 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.
doi:10.1145/503502.503505.

35 Mohammad Mahdi Jaghoori, Frank S. de Boer, Delphine Longuet, Tom Chothia, and Marjan
Sirjani. Compositional schedulability analysis of real-time actor-based systems. Acta Inf.,
54(4):343–378, 2017. doi:10.1007/s00236-015-0254-x.

36 Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. Effective
stateless model checking for C/C++ concurrency. PACMPL, 2(POPL):17:1–17:32, 2018.
doi:10.1145/3158105.

37 Ivan Lanese, Naoki Nishida, Adrián Palacios, and Germán Vidal. CauDEr: A Causal-Consistent
Reversible Debugger for Erlang. In John P. Gallagher and Martin Sulzmann, editors, Functional
and Logic Programming, volume 10818 of FLOPS’18, pages 247–263, Cham, 2018. Springer.
doi:10.1007/978-3-319-90686-7_16.

38 Steven Lauterburg, Mirco Dotta, Darko Marinov, and Gul Agha. A Framework for State-Space
Exploration of Java-Based Actor Programs. In Proceedings of the 2009 IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE ’09, pages 468–479, Washington,
DC, USA, 2009. IEEE Computer Society. doi:10.1109/ASE.2009.88.

39 Steven Lauterburg, Rajesh K. Karmani, Darko Marinov, and Gul Agha. Basset: A Tool for
Systematic Testing of Actor Programs. In Proceedings of the Eighteenth ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE ’10, pages 363–364,
New York, NY, USA, 2010. ACM. doi:10.1145/1882291.1882349.

40 He Li, Jie Luo, and Wei Li. A formal semantics for debugging synchronous message passing-
based concurrent programs. Science China Information Sciences, 57(12):1–18, December 2014.
doi:10.1007/s11432-014-5150-4.

41 Sihan Li, Farah Hariri, and Gul Agha. Targeted Test Generation for Actor Systems. In
Todd D. Millstein, editor, ECOOP, volume 109 of LIPIcs, pages 8:1–8:31. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.ECOOP.2018.8.

42 Yude Lin. Symbolic execution with over-approximation. PhD thesis, The University of
Melbourne, 2017.

43 Yude Lin, Tim Miller, and Harald Søndergaard. Compositional Symbolic Execution: Incre-
mental Solving Revisited. In Alex Potanin, Gail C. Murphy, Steve Reeves, and Jens Dietrich,
editors, APSEC, pages 273–280. IEEE Computer Society, 2016. doi:10.1109/ASWEC.2015.32.

ECOOP 2019

http://dx.doi.org/10.1145/1065010.1065036
http://dx.doi.org/10.1016/j.jss.2013.11.1099
http://dx.doi.org/10.1016/j.jss.2013.11.1099
http://dx.doi.org/10.1145/2970276.2970332
http://dx.doi.org/10.1007/s100090050043
http://dx.doi.org/10.1007/s100090050043
http://dx.doi.org/10.1145/317636.317908
http://dx.doi.org/10.1145/317636.317908
http://dx.doi.org/10.1145/503502.503505
http://dx.doi.org/10.1007/s00236-015-0254-x
http://dx.doi.org/10.1145/3158105
http://dx.doi.org/10.1007/978-3-319-90686-7_16
http://dx.doi.org/10.1109/ASE.2009.88
http://dx.doi.org/10.1145/1882291.1882349
http://dx.doi.org/10.1007/s11432-014-5150-4
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.8
http://dx.doi.org/10.1109/ASWEC.2015.32

27:28 Multiverse Debugging

44 Kasper Søe Luckow, Corina S. Pasareanu, Matthew B. Dwyer, Antonio Filieri, and Willem
Visser. Exact and approximate probabilistic symbolic execution for nondeterministic programs.
In Ivica Crnkovic, Marsha Chechik, and Paul Grünbacher, editors, ASE, pages 575–586. ACM,
2014. doi:10.1145/2642937.2643011.

45 Yong Luo and Olaf Chitil. Proving the correctness of algorithmic debugging for functional
programs. In Henrik Nilsson, editor, Trends in Functional Programming, volume 7 of Trends
in Functional Programming, pages 19–34. Intellect, 2006.

46 Stefan Marr, Carmen Torres Lopez, Dominik Aumayr, Elisa Gonzalez Boix, and Hanspeter
Mössenböck. A Concurrency-Agnostic Protocol for Multi-Paradigm Concurrent Debugging
Tools. In Davide Ancona, editor, Proceedings of the 13th Symposium on Dynamic Languages,
pages 3–14. ACM, 2017. doi:10.1145/3133841.3133842.

47 John McCarthy. A Basis for a Mathematical Theory of Computation, Preliminary Report. In
Papers Presented at the May 9-11, 1961, Western Joint IRE-AIEE-ACM Computer Conference,
IRE-AIEE-ACM ’61 (Western), pages 225–238, New York, NY, USA, 1961. ACM. doi:
10.1145/1460690.1460715.

48 Charles E McDowell and David P Helmbold. Debugging concurrent programs. ACM Computing
Surveys (CSUR), 21(4):593–622, 1989. doi:10.1145/76894.76897.

49 Mark S Miller, E Dean Tribble, and Jonathan Shapiro. Concurrency among strangers. In
International Symposium on Trustworthy Global Computing, pages 195–229. Springer, 2005.
doi:10.1007/11580850_12.

50 Stijn Mostinckx, Tom Van Cutsem, Stijn Timbermont, Elisa Gonzalez Boix, Éric Tanter,
and Wolfgang De Meuter. Mirror-based reflection in AmbientTalk. Softw. Pract. Exper.,
39(7):661–699, 2009. doi:10.1002/spe.v39:7.

51 Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for systematic testing of
multithreaded programs. In Jeanne Ferrante and Kathryn S. McKinley, editors, PLDI, pages
446–455. ACM, 2007. doi:10.1145/1250734.1250785.

52 Naoki Nishida, Adrián Palacios, and Germán Vidal. A Reversible Semantics for Er-
lang. In Manuel V. Hermenegildo and Pedro López-García, editors, LOPSTR, volume
10184 of Lecture Notes in Computer Science, pages 259–274. Springer, 2016. doi:10.1007/
978-3-319-63139-4_15.

53 Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert Hirschfeld. Studying
the advancement in debugging practice of professional software developers. Software Quality
Journal, 25(1):83–110, 2016. doi:10.1007/s11219-015-9294-2.

54 Koushik Sen and Gul Agha. Automated Systematic Testing of Open Distributed Programs. In
Luciano Baresi and Reiko Heckel, editors, FASE, volume 3922 of Lecture Notes in Computer
Science, pages 339–356. Springer, 2006. doi:10.1007/11693017_25.

55 Koushik Sen and Gul Agha. CUTE and jCUTE: Concolic Unit Testing and Explicit Path
Model-Checking Tools. In Thomas Ball and Robert B. Jones, editors, Computer Aided
Verification, pages 419–423, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. doi:10.1007/
11817963_38.

56 Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language and its
typing system. In Costas Halatsis, Dimitrios Maritsas, George Philokyprou, and Sergios
Theodoridis, editors, PARLE’94 Parallel Architectures and Languages Europe, pages 398–413,
Berlin, Heidelberg, 1994. Springer Berlin Heidelberg. doi:10.1007/3-540-58184-7_118.

57 Samira Tasharofi, Rajesh K. Karmani, Steven Lauterburg, Axel Legay, Darko Marinov, and
Gul Agha. TransDPOR: A Novel Dynamic Partial-Order Reduction Technique for Testing
Actor Programs. In Holger Giese and Grigore Rosu, editors, Formal Techniques for Distributed
Systems: Joint 14th IFIP WG 6.1 International Conference, FMOODS 2012 and 32nd IFIP
WG 6.1 International Conference, FORTE 2012, Stockholm, Sweden, June 13-16, 2012.
Proceedings, pages 219–234. Springer, 2012. doi:10.1007/978-3-642-30793-5_14.

http://dx.doi.org/10.1145/2642937.2643011
http://dx.doi.org/10.1145/3133841.3133842
http://dx.doi.org/10.1145/1460690.1460715
http://dx.doi.org/10.1145/1460690.1460715
http://dx.doi.org/10.1145/76894.76897
http://dx.doi.org/10.1007/11580850_12
http://dx.doi.org/10.1002/spe.v39:7
http://dx.doi.org/10.1145/1250734.1250785
http://dx.doi.org/10.1007/978-3-319-63139-4_15
http://dx.doi.org/10.1007/978-3-319-63139-4_15
http://dx.doi.org/10.1007/s11219-015-9294-2
http://dx.doi.org/10.1007/11693017_25
http://dx.doi.org/10.1007/11817963_38
http://dx.doi.org/10.1007/11817963_38
http://dx.doi.org/10.1007/3-540-58184-7_118
http://dx.doi.org/10.1007/978-3-642-30793-5_14

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:29

58 Stefan Tilkov and Steve Vinoski. Node.js: Using JavaScript to Build High-Performance
Network Programs. IEEE Internet Computing, 14(6):80–83, November 2010. doi:10.1109/MI
C.2010.145.

59 Carmen Torres Lopez, Elisa Gonzalez Boix, Christophe Scholliers, Stefan Marr, and Hanspeter
Mössenböck. A Principled Approach Towards Debugging Communicating Event-loops. In
Proceedings of the 7th ACM SIGPLAN International Workshop on Programming Based on
Actors, Agents, and Decentralized Control, AGERE!’17, pages 41–49. ACM, October 2017.
doi:10.1145/3141834.3141839.

60 Carmen Torres Lopez, Stefan Marr, Elisa Gonzalez Boix, and Hanspeter Mössenböck. A
Study of Concurrency Bugs and Advanced Development Support for Actor-based Programs,
chapter 6, pages 155–185. Springer International Publishing, Cham, 2018. doi:10.1007/
978-3-030-00302-9_6.

61 Antti Valmari. The state explosion problem, chapter 9, pages 429–528. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1998. doi:10.1007/3-540-65306-6_21.

62 Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lombide Carreton,
Dries Harnie, Kevin Pinte, and Wolfgang De Meuter. AmbientTalk: programming responsive
mobile peer-to-peer applications with actors. Computer Languages, Systems & Structures,
40(3-4):112–136, 2014. doi:10.1016/j.cl.2014.05.002.

63 Simon Van Mierlo and Hans Vangheluwe. Debugging non-determinism: a petrinets modelling,
analysis, and debugging tool. In CEUR workshop proceedings, volume 2019, pages 460–462,
2017.

A Reduction Rules of the Operational Semantics of Voyager

In this appendix we give an overview of all the reduction rules of the Voyager debugger to
debug the example application. We split the reduction rules into five groups:

1. Reduction rules for modeling the connection of the debugger with the base level language
(cf. Section 6.3.1)

2. Reduction rules for breakpoints (cf. Section 6.3.2), including rules needed to model
breakpoints which require trigger breakpoints for their functioning.

3. Bookkeeping reduction rules (cf. Section 6.3.3), i.e. rules that are related to the actor
state when breakpoints are not applicable and when new actors are created.

4. Reduction rules for the stepping operations (cf. Section 6.3.4), consists of the rules for
stepping commands that can be applied on the level of messages, futures, and turns.

5. Reduction rules for other debugging commands (cf. Section 6.3.5), i.e. rules that will
resume and pause the program’s execution.

(cel-step-global)
K →k K

′

not− applicable− add− new − actor
D〈(), Bc, run, C,As,K〉 →d D〈Bc, (), run, C,As,K′〉

(cel-step-local)
K = K′∪̇{a} a

∗−→a a
′ A′s = update(As, a)

not− applicable− add− new − actor
D〈(), Bc, run, C,As,K〉 →d D〈Bc, (), run, C,A′s,K′∪̇a′〉

Figure 13 Reduction rules for connecting the debugger with the base language.

ECOOP 2019

http://dx.doi.org/10.1109/MIC.2010.145
http://dx.doi.org/10.1109/MIC.2010.145
http://dx.doi.org/10.1145/3141834.3141839
http://dx.doi.org/10.1007/978-3-030-00302-9_6
http://dx.doi.org/10.1007/978-3-030-00302-9_6
http://dx.doi.org/10.1007/3-540-65306-6_21
http://dx.doi.org/10.1016/j.cl.2014.05.002

27:30 Multiverse Debugging

(trigger-msb)
A〈ιa, O,Qin, e�[ιa′ .ιo ←ιi m(v)]〉 ∈ K A′s = As + {CS〈ιa, pause〉}
D〈B〈msb, ιi〉 ·Bp, Bc, run, C,As,K〉 →d D〈Bp, Bc,pause, C,A′s,K〉

(save-mrb)
A〈ιa, O,Qin, e�[ιa′ .ιo ←ιi m(v)]〉 ∈ K

D〈B〈mrb, ιi〉 ·Bp, Bc, run, C,As,K〉 →d D〈Bp, Bc · B〈mrb− trigger, ιa′ , ιi〉, run, C,As,K〉

(trigger-mrb)
A〈ιa, O,m ·Qin, v〉 ∈ K A′s = As + {CS〈ιa, pause〉}

D〈B〈mrb− trigger, ιa, ιi〉 ·Bp, Bc, run,C,As,K〉 →d D〈Bp, Bc, pause, C,A′s,K〉

Figure 14 Reduction rules for breakpoints.

(add-new-actor)
A〈ιa, O,Qin, e�[actor{f := e,m(x){e}}]〉 ∈ K CS〈ιnew, as〉 6∈ As
D〈Bp, Bc, run, C,As,K〉 →d D〈Bp, Bc, run, C,As · CS〈ιnew, run〉,K〉

(not-applicable-breakpoint[trigger-msb,save-mrb,trigger-mrb])
not− applicable− breakpoint

D〈B〈tub, ιi〉 ·Bp, Bc, run, C,As,K〉 →d D〈Bp, Bc · B〈tub, ιi〉, run, C,As,K〉

Figure 15 Reduction rules for bookkeeping information about the program state needed for
breakpoints and stepping operations.

(prepare-step-next-turn)
A〈ιa, O,m ·Qin, e〉 ∈ K A′s = As∪̇{CS〈ιa, (step 1)〉}

D〈Bp, Bc,pause, (StepNextTurn ιa) · C,As ∪̇ CS〈ιa, (pause)〉,K〉 →d D〈Bp, Bc, run, (StepNextTurn ιa) · C,A′s,K〉

(trigger-step-next-turn)
A〈ιa, O,m ·Qin, v〉 ∈ K A′s = As∪̇{CS〈ιa, pause〉}

D〈Bp, Bc, run, (StepNextTurn ιa) · C,As ∪̇ CS〈ιa, (step 0)〉,K〉 →d D〈Bp, Bc,pause, C,A′s,K〉

Figure 16 Reduction rules for stepping operations.

(resume-execution)
A′s = run(As)

D〈Bp, Bc,pause, Resume · C,As,K〉 →d D〈Bp, Bc, run, C,A′s,K〉

(pause-execution)
A′s = pause(As)

D〈Bp, Bc, run, Pause · C,As,K〉 →d D〈Bp, Bc,pause, C,A′s,K〉

Figure 17 Reduction rules for basic debugging commands.

	Introduction
	Brave New Idea: Multiverse Debugging
	Multiverse Debugging Recipe
	Multiverse Debugging Main Challenges

	Multiverse Debugging for Ambiguous Programs
	Syntax and Operational Semantics of the Base Language lambda_{amb}
	Syntax and Operational Semantics of the Debugger D_{amb}

	Communicating Event Loops (CEL)
	Communicating Event Loops Concurrency Model
	Syntax and Operational Semantics of the AmbientTalk Language

	Multiverse Debugging for Actor-based Programs
	Breakpoint-based Debugging for Actor-based Programs
	Voyager: a Multiverse Debugger for AmbientTalk Programs
	Debugging a Sample Program
	Overview of a Debugging Session
	Querying the state graph

	Syntax and Operational Semantics of the Voyager Multiverse Debugger
	Overview of the Debugger Semantics
	Syntax of the Debugger Semantics
	Operational Semantics of the Voyager Debugger
	Connection with the Base Level Language
	Reduction Rules for Breakpoints
	Bookkeeping Reduction Rules
	Reduction Rules for Stepping Operations
	Reduction Rules for Basic Debugging Commands
	Discussion

	Proof of Non-Interference
	Related Work
	Formal specifications for debuggers
	Static Analysis Techniques

	Conclusion
	Reduction Rules of the Operational Semantics of Voyager

