
Resolution and the Binary Encoding of
Combinatorial Principles
Stefan Dantchev
Department of Computer Science University of Durham, UK
s.s.dantchev@durham.ac.uk

Nicola Galesi
Dipartimento di Informatica, Sapienza Università di Roma, Italy
nicola.galesi@uniroma1.it

Barnaby Martin
Department of Computer Science University of Durham, UK
barnaby.d.martin@durham.ac.uk

Abstract
Res(s) is an extension of Resolution working on s-DNFs. We prove tight nΩ(k) lower bounds for the
size of refutations of the binary version of the k-Clique Principle in Res(o(log logn)). Our result
improves that of Lauria, Pudlák et al. [27] who proved the lower bound for Res(1), i.e. Resolution.
The exact complexity of the (unary) k-Clique Principle in Resolution is unknown. To prove the
lower bound we do not use any form of the Switching Lemma [35], instead we apply a recursive
argument specific for binary encodings. Since for the k-Clique and other principles lower bounds
in Resolution for the unary version follow from lower bounds in Res(logn) for their binary version
we start a systematic study of the complexity of proofs in Resolution-based systems for families of
contradictions given in the binary encoding.

We go on to consider the binary version of the weak Pigeonhole Principle Bin-PHPm
n for m > n.

Using the the same recursive approach we prove the new result that for any δ > 0, Bin-PHPm
n

requires proofs of size 2n1−δ
in Res(s) for s = o(log1/2 n). Our lower bound is almost optimal since

for m ≥ 2
√

n log n there are quasipolynomial size proofs of Bin-PHPm
n in Res(logn).

Finally we propose a general theory in which to compare the complexity of refuting the binary
and unary versions of large classes of combinatorial principles, namely those expressible as first order
formulae in Π2-form and with no finite model.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic

Keywords and phrases Proof complexity, k-DNF resolution, binary encodings, Clique and Pigeonhole
principle

Digital Object Identifier 10.4230/LIPIcs.CCC.2019.6

Acknowledgements We are grateful to Ilario Bonacina for reading a preliminary version of this
work and addressing us some useful comments and observations. We are further grateful to several
anonymous reviewers for further corrections and comments.

1 Introduction

Various fundamental combinatorial principles used in Proof Complexity may be given in
first-order logic as sentences ϕ with no finite models. Riis discusses in [34] how to generate
from ϕ a family of CNFs, the nth of which encodes that ϕ has a model of size n, which are
hence contradictions. Following Riis, it is typical to encode the existence of the witnesses
in longhand with a big disjunction, that we designate the unary encoding. As recently
investigated in the works [19, 12, 13, 27, 22], it may also be possible to encode the existence
of such witnesses succinctly by the use of a binary encoding. Essentially, the existence of
the witness is now given implicitly as any propositional assignment to the relevant variables

© Stefan Dantchev, Nicola Galesi, and Barnaby Martin;
licensed under Creative Commons License CC-BY

34th Computational Complexity Conference (CCC 2019).
Editor: Amir Shpilka; Article No. 6; pp. 6:1–6:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.s.dantchev@durham.ac.uk
mailto:nicola.galesi@uniroma1.it
mailto:barnaby.d.martin@durham.ac.uk
https://doi.org/10.4230/LIPIcs.CCC.2019.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Resolution and the Binary Encoding of Combinatorial Principles

gives a witness, whereas in the unary encoding a solitary true literal tells us which is the
witness. Combinatorial principles encoded in binary are interesting to study since, loosely
speaking, they still preserve the hardness of the combinatorial principle encoded while giving
a more succinct propositional representation. In certain cases this leads to obtain significant
lower bounds in an easier way than for the unary case [19, 13, 27].

The central thrust of this work is to contrast the proof complexity (size) between the
unary and binary encodings of natural combinatorial principles. This has not previously been
done systematically in Proof Complexity, though it has been better-studied the in the “dual”
area of SAT-solving [26, 29]. In the SAT community it is well-known one may try various
different encodings of the 1-from-n constraint to speed-up proofs of unsatisfiability as well
as satisfiability. In [29, 37], what we call the binary encoding is referred to as logarithmic.
The Pigeonhole Principle is explored experimentally in both [26] and Chapter 7 in [29, 37]
(though sadly the binary encoding is not among the tests).

A principal motivation is to approach size lower bounds of refutations in Resolution
for families of contradictions in the usual unary encoding, by looking at the complexity of
proofs in Res(s) for the corresponding families of contradictions where witnesses are given
in the binary encodings. Res(s), is a refutational proof system extending Resolution to
s-bounded DNFs, introduced by Krajíĉek in [23]. Our approach is justified by observing that
(see Lemma 26), for a family of contradictions encoding a principle which is expressible as
Π2 first-order formulae having no finite models, short Res(logn) refutations of their binary
encoding can be obtained from short Resolution refutations for the unary encoding. Lower
bounds for Res(s) have appeared variously in the literature. Of most interest to us are those
for the (moderately weak) Pigeonhole Principle PHP2n

n , for Res(
√

logn/ log logn) in [35],
improved to Res(ε logn/ log logn) in [2]. A hierarchy in Res(s) is uncovered by the use of
relativising the (Linear) Ordering Principle in [17].

Our first interest is the k-Clique Principle, whose precise Resolution complexity is still
unknown; but we also study other principles, to make progress in the direction of our
approach. The three combinatorial principles we deal with in this paper are: (1) the k-Clique
Formulae, Cliquen

k(G); (2) the (weak) Pigeonhole Principle PHPmn ; and (3) the (Linear)
Ordering Principle, (L)OPn. The k-Clique Formulae introduced in [10, 11, 6] are formulae
stating that a given graph G does have a k-clique and are therefore unsatisfiable when G does
not contain a k-clique. The Pigeonhole Principle states that a total mapping f : [m]→ [n] has
necessarily a collision when m > n. Its propositional formulation in the negation, PHPmn is
well-studied in proof complexity (see among others: [21, 35, 16, 31, 33, 32, 8, 15, 9, 7, 5, 3, 28]).
The LOPn formulae encode the negation of the Linear Ordering Principle which asserts that
each finite linearly ordered set has a maximal element and was introduced and studied,
among others, in the works [24, 36, 14].

1.1 k-Clique Principle
Deciding whether a graph has a k-clique it is one of the central problems in Computer
Science and can be decided in time nO(k) by a brute force algorithm. It is then of the
utmost importance to understand whether given algorithmic primitives are sufficient to
design algorithms solving the Clique problem more efficiently than the trivial upper bound.
Resolution refutations for the formula Cliquen

k(G) (respectively any CNF F), can be thought as
the execution trace of an algorithm, whose primitives are defined by the rules of the Resolution
system, searching for a k-Clique inside G (respectively deciding the satisfiability of F). Hence
understanding whether there are nΩ(k) size lower bounds in Resolution for refuting Cliquen

k(G)
would then answer the above question for algorithms based on Resolution primitives. This

S. Dantchev, N. Galesi, and B. Martin 6:3

question was posed in [10], where it was also answered in the case of refutations in the form
of trees (treelike Resolution). Recently in a major breakthrough Atserias et al. in [4] prove
the nΩ(k) lower bound for the case of read-once proofs (Regular resolution). The graph G
considered in [10, 4] to plug in the formula Cliquen

k(G) to make it unsatisfiable was a random
graph obtained by a slight variation of Erdös-Rényi distribution of random graphs as defined
in [10]. But the exact Resolution complexity of Cliquen

k(G), for G random is unknown. In
the work [27], Lauria et al. consider the binary encoding of Ramsey-type propositional
statements, having as a special case a binary version of Cliquen

k(G): Bin-Cliquen
k(G). They

obtain optimal lower bounds for Bin-Cliquen
k(G) in Resolution, which is Res(1).

Our main result (Theorem 7) is a nΩ(k) lower bound for the size of refutations of
Bin-Cliquen

k(G) in Res(o(log logn)), when G is a random graph as that defined in [10].
Lemma 2 in Section 3 proves that a lower bound in Res(log) for the Bin-Cliquen

k(G) would
prove a lower bound in Resolution for Cliquen

k(G).

1.2 Weak Pigeonhole Principle
An interesting example to test the relative hardness of binary versions of combinatorial
principle comes from the (weak) Pigeonhole Principle. In Section 4, we consider its binary
version Bin-PHPmn and we prove that in Res(s), for all ε > 0 and s ≤ log

1
2−ε (n), the shortest

proofs of the Bin-PHPmn , require size 2n1−δ , for any δ > 0 (Theorem 22). This is the first size
lower bound known for the Bin-PHPmn in Res(s). As a by-product of this lower bound we
prove a lower bound of the order 2Ω(n

logn) (Theorem 18) for the size of the shortest Resolution
refutation of Bin-PHPmn . Our lower bound for Res(s) is obtained through a technique that
merges together the random restriction method, an inductive argument on the s of Res(s)
and the notion of minimal covering of a k-DNF of [35]. Since we are not using any (even
weak) form of Switching Lemma (as for instance in [35, 1]), we consider how tight is our
lower bound in Res(s). We prove that Bin-PHPmn (Theorem 23) can be refuted in size 2O(n)

in treelike Res(1). Our upper bound is contrasting with the unary case of the Pigeonhole
Principle, PHPmn , which instead requires treelike Res(1) refutations of size 2Ω(n logn), as
proved in [9, 16].

For the Pigeonhole Principle, similarly to the k-Clique Principle, we can prove that short
Res(logn) refutations for Bin-PHPmn can be efficiently obtained from short Res(1) of PHPmn
(Lemma 15). This allows us to prove that our lower bound is almost optimal: Buss and
Pitassi, in [15], proved an upper bound of 2O(

√
n logn) for the size of refuting PHPmn in Res(1)

when m ≥ 2
√
n logn, which by our Lemma 15 holds also for Res(logn) proofs of Bin-PHPmn .

It follows that our exponential lower bound for Bin-PHPmn (Theorem 18) for any m > n in
Res(log1/2−ε n) is almost optimal.

1.3 Contrasting unary and binary principles
To work with a more general theory in which to contrast the complexity of refuting the binary
and unary versions of combinatorial principles, following Riis [34] we consider principles which
are expressible as first-order formulae with no finite model in Π2-form, i.e. as ∀~x∃~wϕ(~x, ~w)
where ϕ(~x, ~y) is a formula built on a family of relations ~R. For example the Ordering
Principle, which states that a finite partial order has a maximal element is one such principle.
Its negation can be expressed in Π2-form as: ∀x, y, z∃w ¬R(x, x) ∧ (R(x, y) ∧ R(y, z) →
R(x, z)) ∧ R(x,w). In Definition 25 we explain how to generate a binary encoding Bin-Cn
from any combinatorial principle Cn expressible as a first order formulae in Π2-form with
no finite models and whose unary encoding we denote by Un-Cn. Another example is the

CCC 2019

6:4 Resolution and the Binary Encoding of Combinatorial Principles

Pigeonhole Principle whose negation of its relational form can be expressed as a Π2-formula
as ∀x, y, z∃w ¬R(x, 0) ∧ (R(x, z) ∧ R(y, z) → x = y) ∧ R(x,w). Notice that in the case of
the Pigeonhole Principle, the existential witness w to the type pigeon is of the distinct type
hole. Furthermore, pigeons only appear on the left-hand side of atoms R(x, z) and holes only
appear on the right-hand side. This accounts for why, in the case of the Pigeonhole Principle,
one can give another more efficient (in terms of number of variables) binary encoding (see
Section 5 for details), than the one given by Bin-Cn applied to the PHP. Nevertheless in
Lemma 27 we observe that in Resolution efficient refutations for one encoding can be obtained
from refutations of the other encoding. We propose a framework to compare lower bounds
for the Bin-Cn in Res(s) with lower bounds for Un-Cn in Res(1) by proving in Lemma 26 that
short Resolution refutations for Un-Cn produces short Res(logn) refutations for Bin-Cn.

1.3.1 Linear Ordering Principles

Linear ordering formulae LOPn encodes a Linear Ordering Principle. They were used in
[14, 20] as families of formulae witnessing the optimality of the size-width tradeoffs for
Resolution ([8]), so that they require high width to be refuted, but still admit polynomial size
refutations in Resolution. Here we face the following open question: is the binary encoding
of LOPn formula still efficiently refutable in Resolution? In answering this question we will
show something stronger, as we study under what conditions the complexity of proofs in
Resolution will not increase significantly (by more than a polynomial factor) when shifting
from the unary encoding to the binary encoding. In Lemma 24 we prove that this is true
for the negation of principles expressible as first order formula in Π2-form involving total
variable comparisons. Hence in particular the binary version of the Linear Ordering Principle
Bin-LOPn. Finally, we also prove that the binary encoding of the Ordering Principle Bin-OPn,
where antisymmetry is not encoded and hence there is no total variable comparison, is also
polynomially provable in Resolution. Broadly speaking, these results are saying that shifting
to the binary encodings is not destroying the hardness of a unary principle when working in
Resolution. Hence binary encodings of combinatorial principles are meaningful benchmarks
for Resolution to prove lower bounds for.

1.3.2 Binary encodings of principles versus their Unary functional
encodings

The unary functional encoding of a combinatorial principle replaces the big disjunctive
clauses of the form vi,1 ∨ . . . ∨ vi,n, with vi,1 + . . .+ vi,n = 1, where addition is made on the
natural numbers. This is equivalent to augmenting the axioms ¬vi,j ∨ ¬vi,k, for j 6= k ∈ [n].
One might argue that the unary functional encoding is the true unary analog to the binary
encoding, since the binary encoding naturally enforces that there is a single witness alone. It
is likely that the non-functional formulation was preferred for its simplicity (similarly as the
Pigeonhole Principle is often given in its non-functional formulation).

In Subsection 5.3, we prove that the Resolution refutation size increases by only a
quadratic factor when moving from the binary encoding to the unary functional encoding.
This is interesting because the same does not happen for treelike Resolution, where the unary
encoding has complexity 2Θ(n logn) [9, 16], while, as we prove in Subsection 4.1 (Theorem
23), the binary (functional) encoding is 2Θ(n). The unary encoding complexity is noted in
[17] and remains true for the unary functional encoding with the same lower-bound proof.
The binary encoding complexity is addressed directly in this paper.

S. Dantchev, N. Galesi, and B. Martin 6:5

1.4 Techniques and Organization
The method of random restrictions in Proof Complexity is often employed to prove size lower
bounds. Loosely speaking the method works as follows: we consider formulae having a given
specific combinatorial property P ; after hitting, with a suitable random partial assignment,
on an allegedly short proof of the formula we are refuting, we are left to prove that with
high probability a formula with property P is killed away from the proof. The growth rate
as the probability approaches to 1 together with a counting argument using averaging (as
the union bound), implies a lower bound on the number of formulae with property P in the
proof. Lower bounds in Res(s) using random restrictions were known only for s = 2 (see [5]).
Using a weak form of the Switching Lemma, lower bounds for Res(s) were obtained in [35, 1].
From the latter paper we use the notion of covering number of a k-DNF F , i.e. the minimal
size of a set of variables to hit all the k-terms in F . In this work we merge the covering
number with the random restriction method together with an inductive argument on the s,
to get size lower bounds in Res(s) specifically for binary encoding of combinatorial principles.

After a section with the preliminaries, the paper is divided into four sections: one with
the lower bound for the k-Clique Principle, one containing all the results for the (weak)
Pigeonhole Principle, one for the contrasting the proof complexity between unary and binary
principles containing all the results about the various Ordering Principles, and finally the last
section containing a general approach to unary vs binary encodings for principle expressible
as a Π2-formulae.

2 Preliminaries

We denote by > and ⊥ the Boolean values “true” and “false”, respectively. A literal is either
a propositional variable or a negated variable. We will denote literals by small letters, usually
l’s. An s-conjunction (s-disjunction) is a conjunction (disjunction) of at most k literals. A
clause with s literals is a s-disjunction. The width w(C) of a clause C is the number of literals
in C. A term (s-term) is either a conjunction (s-conjunction) or a constant, > or ⊥. A s-DNF
or s-clause (s-CNF) is a disjunction (conjunction) of an unbounded number of s-conjunctions
(s-disjunctions). We will use calligraphic capital letters to denote s-CNFs or s-DNFs, usually
Cs for CNFs, Ds for DNFs and Fs for both. For example, ((v1 ∧¬v2)∨ (v2 ∧ v3)∨ (¬v1 ∧ v3))
is an example of a 2-DNF and its negation ((v1 ∨¬v2)∧ (v2 ∨ v3)∧ (¬v1 ∨ v3)) is an example
of a 2-CNF.

We can now describe the propositional refutation system Res (s) ([23]). It is used to refute
(i.e. to prove inconsistency) of a given set of s-clauses by deriving the empty clause from the
initial clauses. There are four derivation rules:
1. The ∧-introduction rule is

D1 ∨
∧
j∈J1

lj D2 ∨
∧
j∈J2

lj

D1 ∨ D2 ∨
∧
j∈J1∪J2

lj
,

provided that |J1 ∪ J2| ≤ s.
2. The cut (or resolution) rule is

D1 ∨
∨
j∈J lj D2 ∨

∧
j∈J ¬lj

D1 ∨ D2
,

3. The two weakening rules are

D
D ∨

∧
j∈J lj

and
D ∨

∧
j∈J1∪J2

lj

D ∨
∧
j∈J1

lj
,

provided that |J | ≤ s.

CCC 2019

6:6 Resolution and the Binary Encoding of Combinatorial Principles

A Res(s) refutation can be considered as a directed acyclic graph (DAG), whose sources
are the initial clauses, called also axioms, and whose only sink is the empty clause. We
shall define the size of a proof to be the number of the internal nodes of the graph, i.e. the
number of applications of a derivation rule, thus ignoring the size of the individual s-clauses
in the refutation. In principle the s from “Res(s)” could depend on n – an important special
case is Res(logn).

Clearly, Res(1) is (ordinary) Resolution, working on clauses, and using only the cut rule,
which becomes the usual resolution rule, and the first weakening rule. Given an unsatisfiable
CNF C, and a Res(1) refutation π of C the width of π, w(π) is the maximal width of a
clause in π. The width refuting C in Res(1), w(` C), is the minimal width over all Res(1)
refutations of C.

A covering set for a s-DNF D is a set of literals L such that each term of D has at least
a literal in L. The covering number c(D) of a s-DNF D is the minimal size of a covering
set for D.

Let F(x1 . . . , xn) be a boolean s-DNF (resp. s-CNF) defined over variables X =
{x1, . . . , xn}. A partial assignment ρ to F is a truth-value assignment to some of the
variables of F : dom(ρ) ⊆ X. By F�ρ we denote the formula F ′ over variables in X \ dom(ρ)
obtained from F after simplifying in it the variables in dom(ρ) according to the usual boolean
simplification rules of clauses and terms.

2.1 Res(s) vs Resolution
Similarly to what was done for treelike Res(s) refutations in [18], if we turn a Res (s) refutation
of a given set of s-clauses Σ upside-down, i.e. reverse the edges of the underlying graph and
negate the s-clauses on the vertices, we get a special kind of restricted branching s-program
whose nodes are labelled by s-CNFs and at each node some s-disjunction is questioned. The
restrictions are as follows.

Each vertex is labelled by a s-CNF which partially represents the information that can
be obtained along any path from the source to the vertex (this is a record in the parlance of
[30]). Obviously, the (only) source is labelled with the constant >. There are two kinds of
queries, which can be made by a vertex:

1. Querying a new s-disjunction, and branching on the answer, which can be depicted
as follows.

C
?
∨
j∈J lj

> ↙ ↘ ⊥
C ∧

∨
j∈J lj C ∧

∧
j∈J ¬lj

(1)

2. Querying a known s-disjunction, and splitting it according to the answer:

C∧
∨
j∈J1∪J2

lj
?
∨
j∈J1

lj
> ↙ ↘ ⊥

C ∧
∨
j∈J1

lj C ∧
∨
j∈J2

lj

(2)

There are two ways of forgetting information,

C1 ∧ C2
↓
C1

and
C ∧

∨
j∈J1

lj
↓

C ∧
∨
j∈J1∪J2

lj

, (3)

S. Dantchev, N. Galesi, and B. Martin 6:7

the point being that forgetting allows us to equate the information obtained along two
different branches and thus to merge them into a single new vertex. A sink of the branching
s-program must be labelled with the negation of a s-clause from Σ. Thus the branching
s-program is supposed by default to solve the Search problem for Σ: given an assignment of
the variables, find a clause which is falsified under this assignment.

The equivalence between a Res (s) refutation of Σ and a branching s-program of the kind
above is obvious. Naturally, if we allow querying single variables only, we get branching
1-programs – decision DAGs – that correspond to Resolution. If we do not allow the forgetting
of information, we will not be able to merge distinct branches, so what we get is a class of
decision trees that correspond precisely to the treelike version of these refutation systems.

Finally, we mention that the queries of the form (1) and (2) as well as forget-rules of the
form (3) give rise to a Prover-Adversary game (see [30] where this game was introduced for
Resolution). In short, Adversary claims that Σ is satisfiable, and Prover tries to expose him.
Prover always wins if her strategy is kept as a branching program of the form we have just
explained, whilst a good (randomised) Adversary’s strategy would show a lower bound on
the branching program, and thus on any Res (k) refutation of Σ.

I Lemma 1. If a CNF φ has a refutation in Res(k + 1) of size N , whose corresponding
branching (k + 1)-program has no records of covering number ≥ d, then φ has a Res(k)
refutation of size 2d+2 ·N (which is ≤ ed when d > 4).

Proof. In the branching program, consider a (k + 1)-CNF record φ whose covering number
< d is witnessed by variable set V ′ := {v1, . . . , vd}. At this node some (k + 1)-disjunction
(l1 ∨ . . . ∨ lk ∨ lk+1) is questioned.

Now in place of the record φ in our original branching program we expand a mini-tree
of size 2d+2 with 2d+1 leaves questioning all the variables of V ′ as well as the literal lk+1.
Clearly, each evaluation of these reduces φ to a k-CNF that logically implies φ. It remains
to explain how to link the leaves of these mini-trees to the roots of other mini-trees. At
each leaf we look to see whether we have the information lk+1 or ¬lk+1. If lk+1 then we link
immediately to the root of the mini-tree corresponding to the yes-answer to (l1∨ . . .∨ lk∨ lk+1)
(without asking a question). If ¬lk+1 then we question (l1 ∨ . . . ∨ lk and, if this is answered
yes, link the yes-answer to (l1 ∨ . . . ∨ lk ∨ lk+1), otherwise to its no-answer. J

3 The binary encoding of k-Clique

Consider a graph G such that G is formed from k blocks of n nodes each: G = (
⋃
b∈[k] Vb, E),

where edges may only appear between distinct blocks. Thus, G is a k-partite graph. Let the
edges in E be denoted as pairs of the form E((i, a), (j, b)), where i 6= j ∈ [k] and a, b ∈ [n].

The (unary) k-Clique CNF formulae Cliquen
k(G) for G, has variables vi,q with i ∈ [k], a ∈

[n], with clauses ¬vi,a ∨ ¬vj,b whenever ¬E((i, a), (j, b)) (i.e. there is no edge between node
a in block i and node b in block j), and clauses

∨
a∈[n] vi,a, for each block i. This expresses

that Gnk has a k-clique (with one vertex in each block), which we take to be a contradiction,
since we will arrange for G not to have a k-clique.

Bin-Cliquen
k(G) variables ωi,j range over i ∈ [k], j ∈ [logn]. Let us assume for simplicity of

our exposition that n is a power of 2, the general case is explained in Section 5.2. Let a ∈ [n]
and let a1 . . . alogn be its binary representation. Each (unary) variable vi,j semantically
corresponds to the conjunction (ωa1

i,1 ∧ . . . ∧ ω
alogn
i,logn), where

ω
aj
i,j =

{
ωi,j if aj = 1
ωi,j if aj = 0

CCC 2019

6:8 Resolution and the Binary Encoding of Combinatorial Principles

Hence in Bin-Cliquen
k(G) we encode the unary clauses ¬vi,a ∨ ¬vj,b, by the clauses

(ω1−a1
i,1 ∨ . . . ∨ ω1−alogn

i,logn) ∨ (ω1−b1
j,1 ∨ . . . ∨ ω1−blogn

j,logn)

The wide clauses from the unary encoding simply disappear in the binary encoding being
implicit.

By the next Lemma short Resolution refutations for Cliquen
k(G) can be translated into

short Res(logn) refutations of Bin-Cliquen
k(G). hence to obtain lower bounds for Cliquen

k(G)
in Resolution, it suffices to obtain lower bounds for Bin-Cliquen

k(G) in Res(logn).

I Lemma 2. Suppose there are Resolution refutations of Cliquen
k(G) of size S. Then there

are Res(logn) refutations of Bin-Cliquen
k(G) of size S.

Proof. Where the decision DAG for Cliquen
k(G) questions some variable vi,a, the decision

branching logn-program questions instead (ω1−a1
1,1 ∨ . . .∨ω1−alogn

1,logn) where the out-edge marked
true in the former becomes false in the latter, and vice versa. What results is indeed a
decision branching logn-program for Bin-Cliquen

k(G), and the result follows. J

Following [10, 4, 27] we consider Bin-Cliquen
k(G) formulae where G is a random graph

distributed according to a variation of the Erdös-Rényi as defined in [10]. In the standard
model, random graphs on n vertices are constructed by including every edge independently
with probability p. It is known that k-cliques appear at the threshold probability p∗ = n−

2
k−1 .

If p < p∗, then with high probability there is no k-clique. By Gnk,ε(p) we denote the distribution
on random multipartite Erdős-Renyi graph with k blocks Vi of n vertices each, where each
edge is present with probability p depending on ε. For p = n−(1+ε) 2

k−1 we just write Gnk,ε.
We use the notation G = (

⋃
b∈[k] Vb, E) ∼ Gnk (p) to say that G is a graph drawn at

random from the distribution Gnk (p).
In the next sections we explore lower bounds for Bin-Cliquen

k(G) in Res(s) for s ≥ 1,
when G ∼ Gnk (p).

3.1 Isolating the properties of G

Let α be a constant such that 0 < α < 1. Define a set of vertices U in G, U ⊆ V to be
an α-transversal if: (1) |U | ≤ αk, and (2) for all b ∈ [k], |Vb ∩ U | ≤ 1. Let B(U) ⊆ [k] be
the set of blocks mentioned in U , and let B(U) = [k] \B(U). We say that U is extendible
in a block b ∈ B(U) if there exists a vertex a ∈ Vb which is a common neighbour of all
nodes in U , i.e. a ∈ Nc(U) where Nc(U) is the set of common neighbours of vertices in U i.e.
Nc(U) = {v ∈ V | v ∈

⋂
u∈U N(u)}.

Let σ be a partial assignment (a restriction) to the variables of Bin-Cliquen
k(G) and β a

constant such that 0 < β < 1. We call σ, β-total if σ assigns bβ lognc bits in each block
b ∈ [k], i.e. bβ lognc variables νb,i in each block b. Let v = (i, a) be the a-th node in the
i-the block in G. We say that a restriction σ is consistent with v if for all j ∈ [logn], σ(ωi,j)
is either aj or not assigned.

I Definition 3. Let 0 < α, β < 1. A α-transversal set of vertices U is β-extendible, if
for all β-total restriction σ, there is a node vb in each block b ∈ B(U), such that σ is
consistent with vb.

S. Dantchev, N. Galesi, and B. Martin 6:9

I Lemma 4 (Extension Lemma). Let 0 < ε < 1, let k ≤ logn. Let 1 > α > 0 and
1 > β > 0 such that 1− β > α(2 + ε). Let G ∼ Gnk,ε. With high probability both the following
properties hold:

1. all α-transversal sets U are β-extendible;
2. G does not have a k-clique.

Proof. Let U be an α-transversal set and σ be a β-total restriction. The probability that a
vertex w is in Nc(U) is pαk. Hence w 6∈ Nc(U) with probability (1− pαk). After σ is applied,
in each block b ∈ B(U) remain 2logn−β logn = n1−β available vertices. Hence the probability
that we cannot extend U in each block of B(U) after σ is applied is (1 − pαk)n1−β . Fix
c = 2 + ε and δ = 1− β − αc. Notice that δ > 0 by our choice of α and β. Since p = 1

n
c
k
,

previous probability is (1− 1/nαc)n1−β , which is asymptotically e−n
1−β
nαc = e−n

δ .
There are

(
k
αk

)
possible α-transversal sets U and

(logn
β logn

)
· k possible β-total restrictions σ.(

k
αk

)
·
(logn
β logn

)
· k ≤ kαk · (logn)β logn · k

= 2αk log k+β logn log logn+log k

≤ 2log2 n

Notice that the last inequality holds since k ≤ logn. Hence the probability that there is in
G no α-transeversal set U which is β-extendible is going to 0 as n grows.

To bound the probability that G contains a k-clique, notice that the expected number of
k cliques is

(
n
k

)
·p(

k
2) ≤ nk ·p(k(k−1)/2). Recalling p = 1/nc/k, we get that the probability that

G does not have a k-clique is nk ·n−c(k−1)/2 = nk−c(k−1)/2. Since c = 2 + ε, k− c(k− 1)/2 =
1− ε

2 (k − 1). Hence nk · n−c(k−1)/2 ≤ 2− logn for sufficiently large n and since k ≤ logn.
So the probability that either property (1) or (2) does not hold is bounded above by

2log2 n · e−nδ + 2− log2 n which is below 1 for sufficiently large n. J

3.2 Res(s) lower bounds for Bin-Cliquen
k

Let s ≥ 1 be an integer. Call a 1
2s+1 -total assignment to the variables of Bin-Cliquen

k(G)
an s-restriction. A random s-restriction for Bin-Cliquen

k(G) is an s-restriction obtained by
choosing independently in each block i, b 1

2s+1 lognc variables among ωi,1, . . . , ωi,logn, and
setting these uniformly at random to 0 or 1.

Let s, k ∈ N, s, k ≥ 1 and let G be graph over nk nodes and k blocks which does not
contain a k-clique. Fix δ = 1

242 and p(s) = 2(s+1)2 and d(s) = (p(s)s)s.
Consider the following property.

I Definition 5 (Property Clique(G, s, k)). For any γ ≥ 2 and for any γ-restriction ρ, there
are no Res(s) refutations of Bin-Cliquen

k(G)�ρ of size less than n
δ(k−1)

d(s) .

If property Clique(G, s, k) holds, we immediately have nΩ(k) size lower bounds for refuting
Bin-Cliquen

k(G) in Res(s).

I Corollary 6. Let s, k be integers, s ≥ 1, k > 1. Let G be a graph and assume that
Clique(G, s, k) holds. Then there are no Res(s) refutations of Bin-Cliquen

k(G) of size smaller
that nδ

k−1
d(s) .

Proof. Choose ρ to be any s-restriction, for γ ≥ 1. The result follows from the previous
definition since the shortest refutation of a restricted principle can never be larger than the
shortest refutation of the unrestricted principle. J

CCC 2019

6:10 Resolution and the Binary Encoding of Combinatorial Principles

We use the previous corollary to prove lower bounds for Bin-Cliquen
k(G) in Res(s) as long

as s = o(log logn).

I Theorem 7. Let 0 < ε < 1 be given. Let k be an integer with k > 1. Let s be an
integer with 1 < s ≤ 1

2 log logn. Then there exists a graph G such that Res(s) refutations of
Bin-Cliquen

k(G) have size nΩ(k).

Proof. Let 1 > α > 0 and 1 > β > 0 such that 1− β > α(2 + ε). By Lemma 4, we can fix
G ∼ Gnk,ε such that:
1. all α-transversal sets U are β-extendible;
2. G does not have a k-clique.
We will prove, by induction on s = o(log logn), that property Clique(G, s, k) does hold.
The result then follows by Corollary 6. Lemma 8 is the base case and Lemma 9 the
inductive case. J

I Lemma 8 (Base Case). Clique(G, 1, k) does hold.

Proof. Fix β = 3
4 and α = 1

4(2+ε) ≥
1
12 . Notice that d(1) = 16. Let ρ be a 1-restriction, that is

a 1
4 -total assignment. We claim that any Resolution refutation of Bin-Cliquen

k(G)�ρ must have
width at least k logn

24 . This is a consequence of the extension property which allows Adversary
to play against Prover with the following strategy: for each block, while fewer than logn

2 bits
are known, Adversary offers Prover a free choice. Once logn

2 bits are set then Adversary chooses
an assignment for the remaining bits according to the extension property. Since 1

4 + 1
2 = 3

4 ,
this allows the game to continue until some record has width at least logn

2 · k12 = k logn
24 .

Size-width tradeoffs for Resolution [8] tells us that minimal size to refute any unsat CNF F

is lower bounded by 2
(w(`F)−w(F))2

16V(F) 1. In our case w(F) = 2 logn and V (F) = k logn, hence

the minimal size required is ≥ 2
(k logn

24 −2 logn)2

16k logn = 2
logn(k24−2)2

16k = n
(k24−2)2

16k . It is not difficult to
see that (k24−2)2

16k ≥ (k−1)
16·242 . Since δ = 1

242 and d(1) = 16 the result is proved. J

I Lemma 9 (Inductive Case). Clique(G, s− 1, k) implies Clique(G, s, k).

Proof. Recall that we fixed p(s) = 2(s+1)2 and d(s) = (p(s)s)s. Set L(s) = n
δ(k−1)

d(s) and
χ(s) = (s−1)s−1

ss23s2+s . (Proof of the next claim is postponed after the proof.)

B Claim 10. lnL(s) = χ(s) lnL(s− 1)

We prove the contrapositive of the statement of the Lemma. Assume there is some
s-restriction ρ such that there exists a Res(s) refutation π of Bin-Cliquen

k(G)�ρ with size less
than L(s). We prove that that there is a (s− 1)-restriction τ such that there are Res(s− 1)
proofs of Bin-Cliquen

k(G)�τ of size < L(s− 1).
Consider the function:

f(s, n) = (1− χ(s))
(ln 2) d(s− 1) −

4
δ(k − 1) lnn.

f(s, n) is lower bounded as follows (see the proof after the the proof of this Lemma).

B Claim 11. For sufficiently large n and for all s ≥ 2,

f(s, n) > 1
(p(s)s)s−1 .

1 According to [25] Th 8.11

S. Dantchev, N. Galesi, and B. Martin 6:11

Fix the covering number as:

c = f(s, n)δ(k − 1) lnn

Define r = c
s and let us call a bottleneck a record R in π whose covering number is ≥ c.

Hence in such a record it is always possible to find r pairwise disjoint s-tuples of literals
T1 = (`11, . . . , `s1), . . . , Tr = (`1r, . . . , `sr) such that the

∧
Ti’s are the terms of the s-DNF

forming the record R.
Let σ be a s-random restriction on the variables of Bin-Cliquen

k(G)�ρ. Let us say that σ
kills a tuple T if it sets to 0 all literals in T (notice that a record is the negation of a s-DNF)
and that T survives σ otherwise. And that σ kills R if it kills at at least one of the tuples in
R. Let Σi be the event that Ti survives σ and ΣR the event that R survives σ. We claim
(postponing the proof) that

B Claim 12. Pr[ΣR] ≤ (1− 1
p(s))r.

Consider now the restriction τ = ρσ. This is a (s − 1)-restriction on the variables of
Bin-Cliquen

k(G). We argue that in π�τ there is no bottleneck. Notice that by the union bound
the probability that there exists such a record in π�τ , is bounded by

Pr[∃R ∈ π�τ : ΣR] ≤ |π�τ|(1−
1

p(s))r.

We claim that this probability is < 1. Notice that (1− 1
p(s))r ≤ e−

c
s p(s) using the definition

of r. So to prove the claim it is sufficient to prove that |π �τ | < e
c

p(s)s or equivalently
that ln |π�τ | < c

s p(s) . But ln |π�τ | ≤ ln |π| = lnL(s) = 1
s p(s)

δ(k−1) lnn
(p(s)s)s−1 . Since by Claim 11

f(s, n) > 1
(p(s)s)s−1 , then ln |π�τ| < f(s,n)δ(k−1) lnn

s p(s) = c
s p(s) , where the last inequality follows

by definition of c.
Since in π�τ there is no bottleneck, by Lemma 1, we can morph π�τ through the restriction

τ to a Res(s − 1) refutation of Bin-Cliquen
k(G)�τ of size 2c+2 · L(s). Hence the Lemma is

proved arguing that

2c+2 · L(s) < L(s− 1) (4)

Since by Claim 10, lnL(s) = χ(s) lnL(s− 1), we have the following equivalences:

(c+ 2) ln 2 + lnL(s) < lnL(s− 1) Passing to ln of Eq. 4 (5)
(c+ 2) ln 2 < lnL(s− 1)(1− χ(s)) (6)

(f(s, n)δ(k − 1) lnn+ 2) ln 2 < δ(k − 1) lnn
d(s− 1) · (1− χ(s)) def of c and of L(s− 1) (7)

f(s, n)δ(k − 1) lnn+ 2 < δ(k − 1) lnn
d(s− 1) · (1− χ(s))

ln 2 dividing by ln 2 (8)

f(s, n)δ(k − 1) lnn < δ(k − 1) lnn
d(s− 1) · (1− χ(s))

ln 2 − 2 subtracting 2 (9)

f(s, n) < (1− χ(s))
(ln 2) d(s− 1) −

2
δ(k − 1) lnn. dividing by δ(k − 1) lnn

(10)

The last line is true since by its definition f(s, n) = (1−χ(s))
(ln 2) d(s−1) −

4
δ(k−1) lnn . J

Notice that the due to the definition of L(s) the proof can be carried as long as (s p(s))s ≤
lnn which means s = o(log logn).

CCC 2019

6:12 Resolution and the Binary Encoding of Combinatorial Principles

Proof of Claim 10. Notice that p(s − 1) = 2s2 and that p(s) = 2s222s+1 = p(s − 1)22s+1.
Consider the following equalities

lnL(s) = δ(k − 1) lnn
(p(s)s)s (11)

= δ(k − 1) lnn
(p(s− 1)22s+1)sss ·

(s− 1)s−1

(s− 1)s−1 (12)

= δ(k − 1) lnn
p(s− 1)s−1(s− 1)s−1 ·

(s− 1)s−1

ss p(s− 1)(22s+1)s (13)

= δ(k − 1) lnn
p(s− 1)s−1(s− 1)s−1 ·

(s− 1)s−1

ss p(s− 1)22s2+s (14)

= δ(k − 1) lnn
d(s− 1) · (s− 1)s−1

ss2s222s2+s (15)

= L(s− 1) · (s− 1)s−1

ss23s2+s (16)

Notice that χ(s) = (s−1)s−1

ss23s2+s so the result follows. C

Proof of Claim 11. For n→∞, 4
δ(k−1) lnn → 0, so for a sufficiently large n we can ignore the

term 4
δ(k−1) lnn . Moreover since ln 2 < 1 we forgot the factor 1

ln 2 in f(s, n). We have to show
that for all s ≥ 2

(1− χ(s))
(p(s− 1)(s− 1))s−1 >

1
(p(s)s)s−1 . (17)

First we bound the RHS in a convenient form. First since 1
s−1 >

1
s the claim in Eq 17

follows from proving that

(1− χ(s))
(p(s− 1)(s− 1))s−1 >

1
(p(s)(s− 1))s−1 . (18)

Recall from proof of Claim 10 that p(s) = p(s − 1)22s+1. Hence we can write the
denominator (p(s)(s− 1))s−1 of RHS of Eq. 18 as

(p(s)(s− 1))s−1 =(p(s− 1)(s− 1))s−1 · (22s+1)s−1 (19)

=(p(s− 1)(s− 1))s−1 · 22s2−(s+1) (20)

Hence Eq. 18 follows from proving

(1− χ(s))
(p(s− 1)(s− 1))s−1 >

1
(p(s− 1)(s− 1))s−1 · 22s2−(s+1) (21)

Multiplying both sides by (p(s− 1)(s− 1))s−1 this is equivalent to prove that

(1− χ(s)) > 1
22s2−(s+1) (22)

Which is equivalent to prove that

(1− χ(s)) > 2s+1

22s2 (23)

S. Dantchev, N. Galesi, and B. Martin 6:13

Now we work on a more convenient form of LHS. Recall that

χ(s) = (s− 1)s−1

ss23s2+s

so that

1− χ(s) = ss23s2+s − (s− 1)s−1

ss23s2+s (24)

So Eq 23 can be rewritten as

ss23s2+s − (s− 1)s−1

ss23s2+s >
2s+1

22s2 (25)

Multiplying both sides by ss23s2+s we have the equivalent equation

ss23s2+s − (s− 1)s−1 > 2s+1ss2s
2+s (26)

which, dividing both sides by ss is equivalent to prove

23s2+s − (s− 1)s−1

ss
> 2s

2+2s+1 (27)

First we claim that (s−1)s−1

ss < 1, which is equivalent tor prove that (s− 1) ln(s− 1)−
s ln(s) < 0 by passing to logarithms. But (s− 1) ln(s− 1)− s ln(s) < (s− 1) ln(s− 1)− (s−
1) ln(s) < (s− 1) ln(s− 1)− (s− 1) ln(s− 1) = 0.

So

23s2+s − (s− 1)s−1

ss
> 2s

2+s − 1

and Eq 27 follows from proving that

23s2+s − 1 ≥ 2s
2+2s+1 (28)

divide both sides by the RHS, which is 2s2+2s+1 so that we want to prove that

23s2+s−(s2+2s+1) − 1
2s2+2s+1 ≥ 1 (29)

Again 1
2s2+2s+1 ≤ 1 and 23s2+s−(2s2+2s+1) = 22s2−(s+1), so that Eq 29 follows from

proving that

22s2−(s+1) − 1 ≥ 1 (30)

22s2−(s+1) is a growing function in s and for s = 2 is value is exactly 25 = 32 > 2. Hence
it is always true that 2s2−(s+1) ≥ 2, which proves Eq 29 and hence our Claim. C

Proof of Claim 12. Since T1, . . . , Tr are tuples in R, then Pr[ΣR] ≤ Pr[Σ1∧. . .∧Σr]. Moreover
Pr[Σ1 ∧ . . . ∧ Σr] =

∏r
i=1 Pr[Σi|Σ1 ∧ . . . ∧ Σi−1]. We will prove that for all i = 1, . . . , r,

Pr[Σi|Σ1 ∧ . . . ∧ Σi−1] ≤ Pr[Σi] (31)

CCC 2019

6:14 Resolution and the Binary Encoding of Combinatorial Principles

Hence the result follows from Lemma 13 which is proving that Pr[Σi] ≤ 1− 1
p(s) .

By Lemma 14 (i), to prove that Equation 31 holds, we show that Pr[Σi|¬Σ1∨. . .∨¬Σi−1] ≥
Pr[Σi]. We claim that for j ∈ [r], i 6= j:

Pr[Σi|¬Σj] ≥ Pr[Σi] (32)

Hence repeated applications of Lemma 14 (ii), prove that Pr[Σi|¬Σ1 ∨ . . .∨¬Σi−1] ≥ Pr[Σi].
To prove Equation 32, let B(Ti) be the set of blocks mentioned in Ti. If B(Ti) and B(Tj)

are disjoint, then clearly Pr[Σi|¬Σj] = Pr[Σi]. When B(Ti) and B(Tj) are not disjoint, we
reason as follows: For each ` ∈ B(Ti), let T `i be the set of variables in Ti mentioning block
`. Ti is hence partitioned into

⋃
`∈B(Ti) T

`
i and hence the event “Ti surviving σ”, can be

partitioned into the sum of the events that T `i survives to σ, for ` ∈ B(Ti). Denote by Σ`
i

the event “T `i survives σ” and let A=B(Ti) ∩B(Tj) and B = B(Ti) \ (B(Ti) ∩B(Tj)). The
following inequalities holds:

Pr[Σi|¬Σj] = Pr[∃` ∈ B(Ti) : Σ`i |¬Σj] (33)

=
∑

`∈B(Ti)

Pr[Σ`i |¬Σj] (34)

=
∑
`∈A

Pr[Σ`i |¬Σj] +
∑
`∈B

Pr[Σ`i |¬Σj] (35)

(36)

Since B is disjoint from B(Tj), as for the case above for each ` ∈ B, Pr[Σ`i |¬Σj] = Pr[Σ`i].
Then:∑

`∈B

Pr[Σ`i |¬Σj] =
∑
`∈B

Pr[Σ`i] (37)

(38)

Notice that Ti and Tj are disjoint, hence knowing that some indices in blocks ` ∈ A are
already chosen to kill Tj , only increase the chances of Ti to survive (since less positions are
left in the blocks ` ∈ A to potentially kill Ti).

Hence:∑
`∈A

Pr[Σ`i |¬Σj] ≥
∑
`∈A

Pr[Σ`i] (39)

(40)

Which proves the claim since:∑
`∈A

Pr[Σ`i] +
∑
`∈B

Pr[Σ`i] = Pr[Σi] (41)

C

I Lemma 13. Let ρ be a s-random restriction. For all s-tuples S:

Pr[S survives ρ] ≤ 1− 1
p(s)

S. Dantchev, N. Galesi, and B. Martin 6:15

Proof. Let T = (`i1,j1 , . . . , `is,js) be an s-tuple made of of disjoint literals of Bin-Cliquen
k(G).

We say that T is perfect if all literals are bits of a same block.
Let γ = 1

2s+1 . A block with r distinct bits contributes a factor of(
γ logn
r

)(logn
r

) · 1
2r

to the probability that the s-tuple does not survive. Expanding the left-hand part of this
we obtain

γ logn · γ logn − 1 · · · γ logn − r + 1
logn · logn − 1 · · · logn − r + 1 = γ

logn
logn · γ

logn − 1
γ

logn − 1 · · · γ
logn − r

γ + 1
γ

logn − r + 1

Next, let us note that

1 = logn
logn >

logn − 1
γ

logn − 1 > · · · >
logn − r

γ + 1
γ

logn − r + 1

The result now follows when we recall that the probability of surviving is maximised when
the probability of not surviving is minimised. J

I Lemma 14. Let A,B,C three events such that Pr[A],Pr[B],Pr[C] > 0:
(i) If Pr[A|¬B] ≥ Pr[A] then Pr[A|B] ≤ Pr[A];
(ii) Pr[A|B] ≥ Pr[A] and Pr[A|C] ≥ Pr[A]. Then Pr[A|B ∨ C] ≥ Pr[A].

Proof. For part (i) consider the following equivalences:

Pr[A] = Pr[A|B] Pr[B] + Pr[A|¬B] Pr[¬B]
Pr[A] = Pr[A|B] Pr[B] + Pr[A|¬B](1− Pr[B])
Pr[A] ≥ Pr[A|B] Pr[B] + Pr[A](1− Pr[B])
Pr[A] Pr[B] ≥ Pr[A|B] Pr[B]
Pr[A] ≥ Pr[A|B]

For part (ii) consider the following inequalities:

Pr[A|B ∨ C] = Pr[A∧(B∨C)]
Pr[B∨C]

≥ Pr[A∧B]
Pr[B∨C] + Pr[A∧C]

Pr[B∨C]
= Pr[A∧B]

Pr[B] ·
Pr[B]

Pr[B∨C] + Pr[A∧C]
Pr[C] ·

Pr[C]
Pr[B∨C]

= Pr[A|B] · Pr[B]
Pr[B∨C] + Pr[A|C] · Pr[C]

Pr[B∨C]
≥ Pr[A] · (Pr[B]+Pr[C]

Pr[B∨C])
≥ Pr[A]

J

4 The weak Pigeonhole Principle

For n < m, let Bin-PHPmn be the binary encoding of the (weak) Pigeonhole Principle.
Bin-PHPmn is a well-known formula and its definition can be found in Section 5. First notice
that an analogous of Lemma 2 holds for the Pigeonhole Principle too.

I Lemma 15. Suppose there are Resolution refutations of PHPmn of size S. Then there are
Res(logn) refutations of Bin-PHPmn of size S.

CCC 2019

6:16 Resolution and the Binary Encoding of Combinatorial Principles

Let ρ be a partial assignment (a restriction) to the variables of Bin-PHPmn . We call ρ
a t-bit restriction if ρ assigns t bits of each pigeon b ∈ [m], i.e. t variables ωb,i for each
pigeon b. Let v = (i, a) be an assignment meaning that pigeon i is assigned to hole a and
let a1 . . . alogn be the binary representation of a. We say that a restriction ρ is consistent
with v if for all j ∈ [logn], σ(ωi,j) is either aj or not assigned. We denote by Bin-PHPmn�ρ,
Bin-PHPmn restricted by ρ. We will also consider the situation in which an s-bit restriction is
applied to some Bin-PHPmn�ρ, creating Bin-PHPmn�τ , where τ is an s+ t-bit restriction.

Throughout this section, let u = u(n, t) := (logn) − t. We do not use this shorthand
universally, but sometimes where otherwise the notation would look cluttered. We also
occasionally write (logn)− t as logn − t (note the extra space).

I Lemma 16. Let ρ be a t-bit restriction for Bin-PHPmn . Any decision DAG for Bin-PHPmn�ρ
must contain a record which mentions n

2t pigeons.

Proof. Let Adversary play in the following fashion. While some pigeon is not mentioned at
all, let him give Prover a free choice to answer any one of its bits as true or false. Once a
pigeon is mentioned once, then let Adversary choose a hole for that pigeon by choosing some
assignment for the remaining unset bits (we will later need to prove this is always possible).
Whenever another bit of an already mentioned pigeon is queried, then Adversary will answer
consistently with the hole he has chosen for it. Only once all of a pigeon’s bits are forgotten
(not including those set by ρ), will Adversary forget the hole he assigned it.

It remains to argue that Adversary must force Prover to produce a record of width ≥ n
2t+1

and for this it suffices to argue that Adversary can remain consistent with Bin-PHPmn�ρ up
until the point that such a record exists. For that it is enough to show that there is always a
hole available for a pigeon for which Adversary gave its only currently questioned bit as a
free choice (but for which ρ has already assigned some bits).

The current record is assumed to have fewer than n
2t literals and therefore must mention

fewer than n
2t pigeons, each of which Adversary already assigned a hole. Each hitherto

unmentioned pigeon that has just been given a free choice has logn −t bits which corresponds
to n

2t holes. Since we have assigned fewer than n
2t pigeons to holes, one of these must be

available, and the result follows. J

Let ξ(s) satsify ξ(1) = 1 and ξ(s) = ξ(s− 1) + 1 + s. Note that ξ(s) = Θ(s2).

I Definition 17 (Property PHP(s, t)). Let s, t ≥ 1. For any t-bit restriction ρ to Bin-PHPmn ,
there are no Res(s) refutations of Bin-PHPmn�ρ of size smaller than e

n

4ξ(s)+1s!2tuξ(s) .

I Theorem 18. Let ρ be a t-bit restriction for Bin-PHPmn . Any decision DAG for Bin-PHPmn�ρ
is of size 2Ω(n

logn) (indeed, asymptotically of size ≥ e
n

2t+2u).

Proof. Call a bottleneck a record in the decision DAG that mentions n
2t+1 pigeons. Now

consider a random restriction that picks for each pigeon one bit uniformly at random and
sets this to 0 or 1 with equal probability. The probability that a bottleneck survives (is not
falsified by) the random restriction is no more than(

u− 1
u

+ 1
2u

) n
2t+1

=
(

1− 1
2u

)u· n
2t+1u

≤ 1
e

n
2t+2u

,

since e−x = limm→∞(1− x/m)m and indeed e−x ≥ (1− x/m)m when x,m ≥ 1.
Now suppose for contradiction that we have fewer than e

n
2t+2u bottlenecks in a decision

DAG for Bin-PHPmn �ρ. By the union bound there is a random restriction that kills all
bottlenecks and this leaves a decision DAG for some Bin-PHPmn�σ, where σ is a (t+ 1)-bit
restriction for Bin-PHPmn . However, we know from Lemma 16 that such a refutation must
involve a record mentioning n

2t+1 pigeons. This is now the desired contradiction. J

S. Dantchev, N. Galesi, and B. Martin 6:17

Note that the previous theorem could have been proved, like Lemma 8, by the size-width
trade-off. However, the method of random restrictions used here could not be easily applied
there, due to the randomness of G.

I Corollary 19. Property PHP(1, t) holds, for each t < logn.

Note that, PHP(1, t) yields only trivial bounds as t approaches logn.
Let (`i1,j1 , . . . , `is,js) be an s-tuple made of disjoint literals of Bin-PHPmn �ρ. We say that

a tuple is perfect if all literals come from the same pigeon.

I Lemma 20. Let s be an integer, s ≥ 1 and s+t < logn. Let σ be a random s-bit restriction
over Bin-PHPmn�ρ where ρ is itself some t-bit restriction over Bin-PHPmn . Let T be a perfect
s-tuple of Bin-PHPmn�ρ. Then for all s-tuples S:

Pr[T survives σ] ≥ Pr[S survives σ].

and so Pr[S survives σ] ≤ 1− 1
us .

Proof. A pigeon with r distinct bits contributes to not surviving a factor of

s

logn − t ·
s− 1

logn − t− 1 · · ·
s− r + 1

logn− t− r + 1 ·
1
2r .

Noting that

s

logn − t ·
s− 1

logn − t− 1 · · ·
1

logn− t− s+ 1 ·
1
2r >

1
us

the result now follows when we recall that the probability of surviving is maximised when
the probability of not surviving is minimised. J

I Theorem 21. Let s > 1 and s+ t < logn. Then, PHP(s− 1, s+ t) implies PHP(s, t).

Proof. We proceed by contraposition. Assume there is some t-bit restriction ρ so that there
exists a Res(s) refutation π of Bin-PHPmn�ρ with size less than e

n

4ξ(s)+1·s!2tuξ(s) .
Call a bottleneck a record that has covering number ≥ n

4ξ(s)·(s−1)!2tuξ(s−1) . In such a
record, by dividing by s and u, it is always possible to find r := n

4ξ(s)s!2tuξ(s−1)+1 s-tuples
of literals (`11, . . . , `s1), . . . , (`1r, . . . , `sr) so that each s-tuple is a clause in the record and no
pigeon appearing in the ith s-tuple also appears in the jth s-tuple (when i 6= j). This
important independence condition plays a key role. Now consider a random restriction that,
for each pigeon, picks uniformly at random s bit positions and sets these to 0 or 1 with
equal probability. The probability that the ith of the r s-tuples survives the restriction is
maximised when each variable among the s describes a different pigeon (by Lemma 20) and
is therefore bound above by(

1− 1
us

)
whereupon(

1− 1
us

) n

4ξ(s)s!2tuξ(s−1)+1

=
(

1− 1
us

) nus

4ξ(s)s!2tu(ξ(s−1)+1+s)

CCC 2019

6:18 Resolution and the Binary Encoding of Combinatorial Principles

which is ≤ 1/e
n

4ξ(s)+1s!·2tuξ(s) . Supposing therefore that there are fewer than e
n

4ξ(s)+1s!·2tuξ(s)

bottlenecks, one can deduce a random restriction that kills all bottlenecks. What remains after
doing this is a Res(s) refutation of some Bin-PHPmn�σ, where σ is a s+ t-bit restriction, which
moreover has covering number < n

4ξ(s)·(s−1)!2tuξ(s−1) . But if the remaining Res(s) refutation
is of size < e

n

4ξ(s)+1s!·2tuξ(s) then, from Lemma 1, it would give a Res(s− 1) refutation of size

< e
n

4ξ(s)·(s−1)!2tuξ(s−1) · e
n

4ξ(s)+1s!·2tuξ(s) = e
n

4ξ(s)·(s−1)!2tuξ(s−1) (1+ 1
4sus+1)

< e
2n

4ξ(s)·(s−1)!2tuξ(s−1) < e
n

4ξ(s)·(s−1)!2t−1uξ(s−1)
< e

n

4ξ(s)−s·(s−1)!2s+tuξ(s−1) ,

since 4s > 2s+1, which equals e
n

4ξ(s−1)+1·(s−1)!2s+tuξ(s−1) in contradiction to the inductive
hypothesis. J

I Theorem 22. Fix λ, µ > 0. Any refutation of Bin-PHPmn in Res(
√

2 log
1

2+λ n) is of size
2Ω(n1−µ).

Proof. First, let us claim that PHP(
√

2 log
1

2+λ n, 0) holds (and this would hold also at λ = 0).
Applying Theorem 21 gives ` such that `(`+1)

2 < logn. Noting `2

2 < `(`+1)
2 , the claim follows.

Now let us look at the bound we obtain by plugging in to e
n

4ξ(s)+1·s!2tuξ(s) at s =
√

2 log
1

2+λ n

and t = 0. We recall ξ(s) = Θ(s2). It follows, since λ > 0, that each of 4ξ(s)+1, s! and
logξ(s) n is o(nµ). The result follows. J

4.1 The treelike case
Concerning the Pigeonhole Principle, we can prove that the relationship between PHP and
Bin-PHP is different for treelike Resolution from general Resolution. In particular, for very
weak Pigeonhole Principles, we know the binary encoding is harder to refute in general
Resolution; whereas for treelike Resolution it is the unary encoding which is the harder.

I Theorem 23. The treelike Resolution complexity of Bin-PHPmn is 2Θ(n).

Proof. For the lower bound, one can follow the proof of Lemma 16 with t = 0 and finds
n free choices on each branch of the tree. Following the method of Riis [34], we uncover a
subtree of the decision tree of size 2n.

For an upper bound of 22n we pursue the following strategy. First we choose some n+ 1
pigeons to question. We then question all of them on their first bit and separate these into
two sets T1 and F1 according to whether this was answered true or false. If n is a power of
2, choose the larger of these two sets (if they are the same size then choose either). If n is
not a power of two, the matter is mildly complicated, and one must look at how many holes
are available with the first bit set to 1, say h1

1; versus 0, say h0
1. At least one of |T1| > h1

1 or
|F1| > h0

1 must hold and one can choose between T1 and F1 correspondingly. Now question
the second bit, producing two sets T2 and F2, and iterate this argument. We will reach a
contradiction in logn iteration since we always choose a set of maximal size. The depth of
our tree is bound above by n+ n

2 + n
4 + · · · < 2n and the result follows. J

5 Contrasting unary and binary encodings

To work with a more general theory in which to contrast the complexity of refuting the binary
and unary versions of combinatorial principles, following Riis [34] we consider principles which
are expressible as first order formulae with no finite model in Π2-form, i.e. as ∀~x∃~wϕ(~x, ~w)
where ϕ(~x, ~y) is a formula built on a family of relations ~R. For example the Ordering

S. Dantchev, N. Galesi, and B. Martin 6:19

Principle, which states that a finite partial order has a maximal element is one of such
principle. Its negation can be expressed in Π2-form as:

∀x, y, z∃w ¬R(x, x) ∧ (R(x, y) ∧R(y, z)→ R(x, z)) ∧R(x,w).

This can be translated into a unsatisfiable CNF OPn using a unary encoding of the witness,
as shown below. In Definition 25 we explain how to generate a binary encoding Bin-Cn from
any combinatorial principle Cn expressible as a first order formulae in Π2-form with no finite
models and whose unary encoding we denote by Un-Cn. For example Bin-OPn would be the
conjunction of the clauses below.

OPn : Unary encoding Bin-OPn : Binary encoding

vx,x x ∈ [n]
vx,y ∨ vy,z ∨ vx,z x, y, z ∈ [n]∨

i∈[n] vx,i x ∈ [n]

νx,x x ∈ [n]
νx,y ∨ νy,z ∨ νx,z x, y, z ∈ [n]∨

i∈[log n] ω
1−ai
x,i ∨ νx,a x, a ∈ [n]

a1 . . . alog n binary representation of a

ω
aj
x,j =

{
ωx,j aj = 1
ωx,j aj = 0

As a second example we consider the Pigeonhole Principle which states that a total
mapping from [m] to [n] has necessarily a collision when m and n are integers with m > n.
Following Riis [34], for m = n+ 1, the negation of its relational form can be expressed as a
Π2-formula as

∀x, y, z∃w ¬R(x, 0) ∧ (R(x, z) ∧R(y, z)→ x = y) ∧R(x,w)

and its usual unary and binary propositional encoding are:

PHP : Unary encoding Bin-PHP : Binary encoding∨n

j=1 vi,j i ∈ [m]
vi,j ∨ vi′,j i, 6= i′ ∈ [m], j ∈ [n]

∨log n

j=1 ωi,j ∨
∨log n

j=1 ωi′,j i 6= i′ ∈ [m]

Notice that in the case of Pigeonhole Principle, the existential witness w to the type
pigeon is of the distinct type hole. Furthermore, pigeons only appear on the left-hand side
of atoms R(x, z) and holes only appear on the right-hand side. For the Ordering Principle
instead, the transitivity axioms effectively enforce the type of y appears on both the left-
and right-hand side of atoms R(x, z). This account for why, in the case of the Pigeonhole
Principle, we did not need to introduce any new variables to give the binary encoding, yet
for the Ordering Principle a new variable w appears.

5.1 Binary encodings of principles involving total comparison
We will now argue that the proof complexity in Resolution of principles involving total
comparison will not increase significantly (by more than a polynomial factor) when shifting
from the unary encoding to the binary encoding. Total comparison is here indicated by the
axioms vi,j ⊕ vj,i, where ⊕ indicates XOR, for each i 6= j. It follows that it does not make
sense to consider the binary encoding of such principles in the search for strong lower bounds.
Examples of natural principles involving total comparison include the totally ordered variant
of the Ordering Principle (known to be polynomially refutable in Resolution [14]) as well as
all of its unary relativisations (which can be exponentially hard for any Res(s) [17]).

Let TC-Prin be some Π2 first-order principle involving relations of arity no more than 2.
Let n ∈ N and discover TC-Prin(n) with variables vi,j , for i, j ∈ [n], of arity 2, including

CCC 2019

6:20 Resolution and the Binary Encoding of Combinatorial Principles

axioms of total comparison: vi,j ⊕ vj,i, for each i 6= j. There may additionally be unary
variables, of the form ui, for i ∈ [n], but no further variables of other arity. Let Un-TC-Prin(n)
have axioms vi,1 ∨ . . . ∨ vi,n, for each i ∈ [n] (for the Ordering Principle this would most
naturally correspond to the variant stating a finite total order has a maximal element).
To make our translation to the binary encoding, we tacitly assume n is a power or 2.
When this is not the case, we need clauses forbidding certain evaluations, and we defer
this treatment to Section 5.2. Let Bin-TC-Prin(n) have corresponding variables ωi,` for
i ∈ [n], ` ∈ [logn], where vi,j from the unary encoding semantically corresponds to the
conjunction (ωa1

i,1 ∧ . . . ∧ ω
alogn
i,logn), where

ω
ap
i,p =

{
ωi,p if ap = 1
ωi,p if ap = 0

with a1 · · · alogn being the binary representation of j. The unary variables stay as they are.
From this, the axioms of Bin-TC-Prin(n), including total comparison, can be canonically
calculated from the corresponding axioms of Un-TC-Prin(n) as explained in Section 5.2 in
Defintion 25. Note that the large disjunctive clauses of Un-TC-Prin(n), that encode the
existence of the witness, disappear completely in Bin-TC-Prin(n).

I Lemma 24. Suppose there is a Resolution refutation of Un-TC-Prin(n) of size S(n). Then
there is a Resolution refutation of Bin-TC-Prin(n) of size at most n2 · S(n).

Proof. Take a decision DAG π for Un-TC-Prin(n) and consider the point at which some
variable vi,j is questioned. Each node in π will be expanded to a small tree in π′, which will
be a decision DAG for Bin-TC-Prin(n). The question “vi,j?” in π will become a sequence
of 2 logn questions on variables ωi,1, . . . , ωi,logn, ωj,1, . . . , ωj,logn, giving rise to a small tree
of size 22 logn = n2 questions in π′. Owing to total comparison, many of the branches
of this mini-tree must end in contradiction. Indeed, many of their leaves would imply
the impossible ¬vi,j ∧ ¬vj,i, while precisely one would imply the impossible vi,j ∧ vj,i (see
Figure 1 for an example). Those that don’t will always have a sub-branch labelled by
(ωa1
i,1 ∧ . . . ∧ ω

alogn
i,logn), where

ω
ap
i,p =

{
ωi,p if ap = 1
ωi,p if ap = 0

with a1 · · · alogn being the binary representation of j; or (ωb1
j,1 ∧ . . . ∧ ω

blogn
j,logn), where

ω
bp
j,p =

{
ωj,p if bp = 1
ωj,p if bp = 0

with b1 · · · blogn being the binary representation of i. By forgetting information along these
branches and unifying branches with the same labels of their sub-branches, we are left with
precisely these two outcomes, corresponding to “vi,j” and “¬vi,j”, which is “vj,i”. Indeed,
this is the crux, ¬vi,j being equivalent to vj,i, and thus being expressible as some conjunction
of variables ωbpj,p. Thus, π gives rise to π′ of size n2 · S(n) and the result follows. J

5.2 Binary versus unary encodings in general
Let Cn be some combinatorial principle expressible as a first-order Π2-formula F of the
form ∀~x∃~wϕ(~x, ~w) where ϕ(~x, ~w) is a quantifier-free formula built on a family of relations ~R.
Following Riis [34] we restrict to the class of such formulae having no finite model.

S. Dantchev, N. Galesi, and B. Martin 6:21

ω2,1

qq --ω2,2
rr ,,

ω2,2
rr ,,ω3,1

vv ((

ω3,1
vv ((

ω3,1
vv ((

ω3,1
vv ((

ω3,2
}} !!

ω3,2
|| !!

ω3,2
}} !!

ω3,2
|| !!

ω3,2
}} !!

ω3,2
|| !!

ω3,2
}} !!

ω3,2
}} !!# # B # # # B # # # B # A A # A

Figure 1 Example converting the question v2,3? from a Resolution refutation of Un-TC-Prin(n)
to a small tree in a refutation of Bin-TC-Prin(n). The variables ω2,1, ω2,2, ω3,1, ω3,2 are questioned
in order. The left-hand and right-hand branches correspond to false and true, respectively. Note
that 2 and 3 are 10 and 11 in binary, respectively. Thus, v2,3 is equivalent to ω2,1 ∧ ω2,2 (labelled A
at the leaves) and v3,2 is equivalent to ω3,1 ∧ ω3,2 (labelled B at the leaves). The remaining leaves
contradict the total comparison clauses (including one that would be labelled both A and B).

Let Un-Cn be the standard unary (see Riis in [34]) CNF propositional encoding of F .
For each set of first-order variables ~a := {x1, . . . , xk} of (first order) variables, we consider
the propositional variables vxi1 ,xi2 ,...,xik (which we abbreviate as v~a) whose semantics are to
capture at once the value of variables in ~a if they appear in some relation in ϕ. For easiness
of description we restrict to the case where F is of the form ∀~x∃wϕ(~x,w), i.e. ~w is a single
variable w. Hence the propositional variables of Un-Cn are of the type v~a for ~a ⊆ ~x (type
1 variables) and/or of the type v~xw for w ∈ ~w (type 2 variables) and which we denote by
simply vw, since each existential variable in F depends always on all universal variables.
Notice that we consider the case of F = ∀~x∃wϕ(~x,w), since the generalisation to higher arity
is clear as each witness w ∈ ~w may be treated individually.

I Definition 25 (Canonical form of Bin-Cn). Let Cn be a combinatorial principle expressible as
a first-order formula ∀~x∃wϕ(~x,w) with no finite models. Let Un-Cn be its unary propositional
encoding. Let 2r−1 < n ≤ 2r ∈ N (r = dlogne). The binary encoding Bin-Cn of C is defined
as follows:

The variables of Bin-Cn are defined from variables of Un-Cn as follows:
1. For each variable of type 1 v~a, for ~a ⊆ ~x, we use a variable ν~x, for ~a ⊆ ~x, and
2. For each variable of type 2 vw, we have r variables ω1, . . . ωr, where we use the convention

that if z1 . . . zr is the binary representation of w, then

ω
zj
j =

{
ωj zj = 1
ωj zj = 0

so that vw can be represented using binary variables by the clause (ω1−z1
1 ∨ . . . ∨ ω1−zr

r)

The clauses of Bin-Cn are defined form the clauses of Un-Cn as follows:
1. If C ∈ Un-Cn contains only variables of type 1, v~b1

, . . . , v~bk , hence C is mapped as follows

C :=
∨k1
j=1 v~bj ∨

∨k2
j=1 v~cj 7→

∨k1
j=1 ν~bj ∨

∨k2
j=1 ν~cj

2. If C ∈ Un-Cn contains type 1 and type 2 variables, it is mapped as follows:

C := vw ∨
∨k1
j=1 v~cj ∨

∨k2
l=1 v~dj 7→

(∨
i∈[r] ω

1−zi
i

)
∨
∨k1
j=1 ν~cj ∨

∨k2
l=1 ν ~dj

C := vw ∨
∨k1
j=1 v~cj ∨

∨k2
l=1 v~dj 7→

(∨
i∈[r] ω

zi
i

)
∨
∨k1
j=1 ν~cj ∨

∨k2
l=1 ν ~dj

where ~cj , ~dl ⊆ ~x and where z1, . . . , zr is the binary representation of w.
3. If n 6= 2r, then, for each n < a ≤ 2r we need clauses

ω1−a1
1 ∨ . . . ∨ ω1−ar

r

where a1, . . . , ar is the binary representation of a.

CCC 2019

6:22 Resolution and the Binary Encoding of Combinatorial Principles

Getting short proofs for the binary version Bin-Cn in Res(logn) form short Res(1) proofs
of the unary version Un-Cn is possible also in the general case.

I Lemma 26. Let Cn be a combinatorial principle expressible as a first-order formula
∀~x∃~wϕ(~x, ~w) with no finite models. Let Un-Cn and Bin-Cn be respectively the unary and
binary propositional encoding. Let n ∈ N. If there is a size S refutation for Un-Cn in Res(1),
then there is a size S refutation for Bin-Cn in Res(logn)

Proof Sketch. Where the decision DAG for Un-Cn questions some variable v~a,b, the decision
branching logn-program questions instead (ω1−z1

~a,1 ∨ . . .∨ω1−zlogn
~a,logn) where the out-edge marked

true in the former becomes false in the latter, and vice versa. What results is indeed a
decision branching logn-program for Bin-Cn, and the result follows. J

As one can easily notice reading Subsection 1.3, the binary version Bin-PHP of the
Pigeonhole Principle we displayed there, is different from the one we would get applying
the canonical transformation of Definition 5.2. However, we can easily and efficiently move
between these versions in Resolution (we leave the proof to the reader below), and the version
we have chosen is easier to handle, having fewer variables.

I Lemma 27. The two versions of the binary Pigeonhole Principle (Bin-PHP and the one
arising from Definition 5.2 to PHP) are linearly equivalent in Resolution.

5.3 Binary encodings of principles versus their Unary functional
encodings

Recall the unary functional encoding of a combinatorial principle C, denoted Un-Fun-C(n),
replaces the big clauses from Un-C(n), of the form vi,1 ∨ . . . ∨ vi,n, with vi,1 + . . .+ vi,n = 1,
where addition is made on the natural numbers. This is equivalent to augmenting the axioms
¬vi,j ∨ ¬vi,k, for j 6= k ∈ [n].

I Lemma 28. Suppose there is a Resolution refutation of Bin-C(n) of size S(n). Then there
is a Resolution refutation of Un-Fun-C(n) of size at most n2 · S(n).

Proof. Take a decision DAG π′ for Bin-C(n), where w.l.o.g. n is even, and consider the point
at which some variable ν′i,j is questioned. Each node in π′ will be expanded to a small tree
in π, which will be a decision DAG for Un-Fun-C(n). The question “ν′i,j?” in π will become a
sequence of questions vi,1, . . . , vi,n where we stop the small tree when one of these is answered
true, which must eventually happen. Suppose vi,k is true. If the jth bit of k is 1 we ask
now all vi,b1 , . . . , vi,bn2

, where b1, . . . , bn2 are precisely the numbers in [n] whose jth bit is 0.
All of these must be false. Likewise, if the jth bit of k is 0 we ask all vi,b1 , . . . , vi,bn2

, where
b1, . . . , bn2 are precisely the numbers whose jth bit is 1. All of these must be false. We now
unify the branches on these two possibilities, forgetting any intermediate information. (To
give an example, suppose j = 2. Then the two outcomes are ¬vi,1 ∧¬vi,3 ∧ . . .∧¬vi,n−1 and
¬vi,2 ∧¬vi,4 ∧ . . .∧¬vi,n.) Thus, π′ gives rise to π of size n2 ·S(n) and the result follows. J

5.4 The Ordering Principle in binary
Recall the Ordering Principle specified in Π2 first-order logic

∀x, y, z∃w ¬R(x, x) ∧ (R(x, y) ∧R(y, z)→ R(x, z)) ∧R(x,w)

S. Dantchev, N. Galesi, and B. Martin 6:23

with propositional translation to the binary encoding of witnesses, Bin-OPn, as follows.

νx,x x ∈ [n]
νx,y ∨ νy,z ∨ νx,z x, y, z ∈ [n]∨
i∈[logn] ω

1−ai
x,i ∨ νx,a x, a ∈ [n]

where

ω
aj
i,j =

{
ωi,j if aj = 1
ωi,j if aj = 0

and a1 . . . alogn is the binary representation of a.

I Lemma 29. Bin-OPn has refutations in Resolution of polynomial size.

Proof. We follow the well-known proof for the unary version of the Ordering Principle, from
[36]. Consider the domain to be [n] = {1, . . . , n}. At the ith stage of the decision DAG we
will find a maximal element, ordered by R, among [i] = {1, . . . , i}. That is, we will have a
record of the special form

νj,1 ∧ . . . ∧ νj,j−1 ∧ νj,j+1 ∧ . . . ∧ νj,i

for some j ∈ [i]. The base case i = 1 is trivial. Let us explain the inductive step. From the
displayed record above we ask the question νj,i+1? If νj,i+1 is true, then ask the sequence
of questions νi+1,1, . . . , νi+1,i, all of which must be false by transitivity. Now, by forgetting
information, we uncover a new record of the special form. Suppose now νj,i+1 is false. Then
we equally have a new record again in the special form. Let us consider the size of our
decision tree so far. There are n2 nodes corresponding to special records and navigating
between special records involves a path of length n, so we have a DAG of size n3. Finally, at
i = n, we have a record of the form

νj,1 ∧ . . . ∧ νj,j−1 ∧ νj,j+1 ∧ . . . ∧ νj,n.

Now we expand a tree questioning the sequence wj,1, . . . , wj,logn, and discover each leaf
labels a contradiction of the clauses of the final type. We have now added n · 2logn nodes, so
our final DAG is of size at most n3 + n2. J

I Theorem 30. Bin-OPn has poly size resolution refutations in Res(1).

6 Final remarks

Various questions are left unanswered in our exposition. Primarily, there is the question as
to the optimality of our lower bounds for the binary encodings of k-Clique and the (weak)
Pigeonhole Principle. In terms of the strongest refutation system Res(s) (largest s) for which
we can prove superpolynomial bounds, then it is not hard to see that our method can go
no further than s = Θ(log logn) for the former, and s = o(log1/2 n) for the latter. This is
because we run out of space with the random restrictions as they become nested in the
induction. We have no reason, however to think that our results are truly optimal, only that
another method is needed to improve them.

Similarly, one might ask whether converses to our lemmas might hold. For example, to
Lemmas 24 and 26. In these cases, we do not know about the converses. The converse of
Lemma 28(even for n2 replaced by some polynomial) is false. For example, consider the very
weak Pigeonhole Principle of [15].

CCC 2019

6:24 Resolution and the Binary Encoding of Combinatorial Principles

References
1 Michael Alekhnovich. Lower Bounds for k-DNF Resolution on Random 3-CNFs. Computational

Complexity, 20(4):597–614, 2011. doi:10.1007/s00037-011-0026-0.
2 Razborov Alexander A. Pseudorandom generators hard for k-DNF resolution and polynomial

calculus resolution. Annals of Mathematics, 181(41):415–472, 2015.
3 Albert Atserias. Improved bounds on the Weak Pigeonhole Principle and infinitely many primes

from weaker axioms. Theor. Comput. Sci., 295:27–39, 2003. doi:10.1016/S0304-3975(02)
00394-8.

4 Albert Atserias, Ilario Bonacina, Susanna F. de Rezende, Massimo Lauria, Jakob Nordström,
and Alexander A. Razborov. Clique is hard on average for regular resolution. In Ilias
Diakonikolas, David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA,
June 25-29, 2018, pages 866–877. ACM, 2018. doi:10.1145/3188745.3188856.

5 Albert Atserias, Maria Luisa Bonet, and Juan Luis Esteban. Lower Bounds for the Weak
Pigeonhole Principle and Random Formulas beyond Resolution. Inf. Comput., 176(2):136–152,
2002. doi:10.1006/inco.2002.3114.

6 Paul Beame, Russell Impagliazzo, and Ashish Sabharwal. Resolution Complexity of Inde-
pendent Sets in Random Graphs. In Proceedings of the 16th Annual IEEE Conference on
Computational Complexity, Chicago, Illinois, USA, June 18-21, 2001, pages 52–68. IEEE
Computer Society, 2001. doi:10.1109/CCC.2001.933872.

7 Paul Beame and Toniann Pitassi. Simplified and Improved Resolution Lower Bounds. In 37th
Annual Symposium on Foundations of Computer Science, FOCS ’96, Burlington, Vermont,
USA, 14-16 October, 1996, pages 274–282. IEEE Computer Society, 1996. doi:10.1109/SFCS.
1996.548486.

8 Eli Ben-sasson and Avi Wigderson. Short proofs are narrow - resolution made simple. In
Journal of the ACM, pages 517–526, 1999.

9 Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. A lower bound for the pigeonhole
principle in tree-like Resolution by asymmetric Prover-Delayer games. Inf. Process. Lett.,
110(23):1074–1077, 2010. doi:10.1016/j.ipl.2010.09.007.

10 Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. Parameterized Complexity of DPLL
Search Procedures. ACM Trans. Comput. Logic, 14(3):20:1–20:21, August 2013. doi:10.1145/
2499937.2499941.

11 Olaf Beyersdorff, Nicola Galesi, Massimo Lauria, and Alexander A. Razborov. Parameterized
Bounded-Depth Frege Is not Optimal. TOCT, 4(3):7:1–7:16, 2012. doi:10.1145/2355580.
2355582.

12 Ilario Bonacina and Nicola Galesi. A Framework for Space Complexity in Algebraic Proof
Systems. J. ACM, 62(3):23:1–23:20, 2015. doi:10.1145/2699438.

13 Ilario Bonacina, Nicola Galesi, and Neil Thapen. Total Space in Resolution. SIAM J. Comput.,
45(5):1894–1909, 2016. doi:10.1137/15M1023269.

14 Maria Luisa Bonet and Nicola Galesi. Optimality of size-width tradeoffs for resolution.
Computational Complexity, 10(4):261–276, 2001. doi:10.1007/s000370100000.

15 Samuel R. Buss and Toniann Pitassi. Resolution and the Weak Pigeonhole Principle. In
Computer Science Logic, 11th International Workshop, CSL ’97, Annual Conference of the
EACSL, Aarhus, Denmark, August 23-29, 1997, Selected Papers, pages 149–156, 1997. doi:
10.1007/BFb0028012.

16 Stefan S. Dantchev and Søren Riis. Tree Resolution Proofs of the Weak Pigeon-Hole Principle.
In Proceedings of the 16th Annual IEEE Conference on Computational Complexity, Chicago,
Illinois, USA, June 18-21, 2001, pages 69–75, 2001. doi:10.1109/CCC.2001.933873.

17 Stefan S. Dantchev and Søren Riis. On Relativisation and Complexity Gap. In Matthias Baaz
and Johann A. Makowsky, editors, Computer Science Logic, 17th International Workshop,
CSL 2003, 12th Annual Conference of the EACSL, and 8th Kurt Gödel Colloquium, KGC
2003, Vienna, Austria, August 25-30, 2003, Proceedings, volume 2803 of Lecture Notes in
Computer Science, pages 142–154. Springer, 2003. doi:10.1007/978-3-540-45220-1_14.

https://doi.org/10.1007/s00037-011-0026-0
https://doi.org/10.1016/S0304-3975(02)00394-8
https://doi.org/10.1016/S0304-3975(02)00394-8
https://doi.org/10.1145/3188745.3188856
https://doi.org/10.1006/inco.2002.3114
https://doi.org/10.1109/CCC.2001.933872
https://doi.org/10.1109/SFCS.1996.548486
https://doi.org/10.1109/SFCS.1996.548486
https://doi.org/10.1016/j.ipl.2010.09.007
https://doi.org/10.1145/2499937.2499941
https://doi.org/10.1145/2499937.2499941
https://doi.org/10.1145/2355580.2355582
https://doi.org/10.1145/2355580.2355582
https://doi.org/10.1145/2699438
https://doi.org/10.1137/15M1023269
https://doi.org/10.1007/s000370100000
https://doi.org/10.1007/BFb0028012
https://doi.org/10.1007/BFb0028012
https://doi.org/10.1109/CCC.2001.933873
https://doi.org/10.1007/978-3-540-45220-1_14

S. Dantchev, N. Galesi, and B. Martin 6:25

18 Juan Luis Esteban, Nicola Galesi, and Jochen Messner. On the complexity of resolution with
bounded conjunctions. Theor. Comput. Sci., 321(2-3):347–370, 2004. doi:10.1016/j.tcs.
2004.04.004.

19 Yuval Filmus, Massimo Lauria, Jakob Nordström, Noga Ron-Zewi, and Neil Thapen. Space
Complexity in Polynomial Calculus. SIAM J. Comput., 44(4):1119–1153, 2015. doi:10.1137/
120895950.

20 Nicola Galesi and Massimo Lauria. Optimality of size-degree tradeoffs for polynomial calculus.
ACM Trans. Comput. Log., 12(1):4:1–4:22, 2010. doi:10.1145/1838552.1838556.

21 Armin Haken. The Intractability of Resolution. Theor. Comput. Sci., 39:297–308, 1985.
22 Pavel Hrubes and Pavel Pudlák. Random Formulas, Monotone Circuits, and Interpolation. In

Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 121–131. IEEE Computer Society,
2017. doi:10.1109/FOCS.2017.20.

23 Jan Krajíček. Bounded arithmetic, propositional logic and complexity theory. Cambridge
University Press, 1995.

24 Balakrishnan Krishnamurthy. Short Proofs for Tricky Formulas. Acta Inf., 22(3):253–275,
1985. doi:10.1007/BF00265682.

25 Oliver Kullmann. Investigating a general hierarchy of polynomially decidable classes of CNF’s
based on short tree-like resolution proofs. Electronic Colloquium on Computational Complexity
(ECCC), 41, 1999. URL: http://eccc.hpi-web.de/eccc-reports/1999/TR99-041/index.
html.

26 G. Kwon and W. Klieber. Efficient CNF Encoding for Selecting 1 from N Objects. In Fourth
Workshop on Constraints in Formal Verification (CFV ’07), 2007.

27 Massimo Lauria, Pavel Pudlák, Vojtech Rödl, and Neil Thapen. The complexity of proving that
a graph is Ramsey. Combinatorica, 37(2):253–268, 2017. doi:10.1007/s00493-015-3193-9.

28 Alexis Maciel, Toniann Pitassi, and Alan R. Woods. A New Proof of the Weak Pigeonhole
Principle. J. Comput. Syst. Sci., 64(4):843–872, 2002. doi:10.1006/jcss.2002.1830.

29 Justyna Petke. Bridging Constraint Satisfaction and Boolean Satisfiability. Artifi-
cial Intelligence: Foundations, Theory, and Algorithms. Springer, 2015. doi:10.1007/
978-3-319-21810-6.

30 P. Pudlák. Proofs as games. American Mathematical Monthly, pages 541–550, June-July 2000.
31 Ran Raz. Resolution lower bounds for the weak pigeonhole principle. J. ACM, 51(2):115–138,

2004. doi:10.1145/972639.972640.
32 Alexander A. Razborov. Proof Complexity of Pigeonhole Principles. In Werner Kuich, Grzegorz

Rozenberg, and Arto Salomaa, editors, Developments in Language Theory, pages 100–116,
Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

33 Alexander A. Razborov. Resolution lower bounds for the weak functional pigeonhole principle.
Theor. Comput. Sci., 1(303):233–243, 2003. doi:10.1016/S0304-3975(02)00453-X.

34 Søren Riis. A complexity gap for tree resolution. Computational Complexity, 10(3):179–
209, 2001. URL: http://link.springer.de/link/service/journals/00037/bibs/1010003/
10100179.htm.

35 Nathan Segerlind, Samuel R. Buss, and Russell Impagliazzo. A Switching Lemma for Small
Restrictions and Lower Bounds for k-DNF Resolution. SIAM J. Comput., 33(5):1171–1200,
2004. doi:10.1137/S0097539703428555.

36 Gunnar Stålmarck. Short Resolution Proofs for a Sequence of Tricky Formulas. Acta Inf.,
33(3):277–280, 1996. doi:10.1007/s002360050044.

37 Toby Walsh. SAT v CSP. In Principles and Practice of Constraint Programming - CP 2000,
6th International Conference, Singapore, September 18-21, 2000, Proceedings, pages 441–456,
2000. doi:10.1007/3-540-45349-0_32.

CCC 2019

https://doi.org/10.1016/j.tcs.2004.04.004
https://doi.org/10.1016/j.tcs.2004.04.004
https://doi.org/10.1137/120895950
https://doi.org/10.1137/120895950
https://doi.org/10.1145/1838552.1838556
https://doi.org/10.1109/FOCS.2017.20
https://doi.org/10.1007/BF00265682
http://eccc.hpi-web.de/eccc-reports/1999/TR99-041/index.html
http://eccc.hpi-web.de/eccc-reports/1999/TR99-041/index.html
https://doi.org/10.1007/s00493-015-3193-9
https://doi.org/10.1006/jcss.2002.1830
https://doi.org/10.1007/978-3-319-21810-6
https://doi.org/10.1007/978-3-319-21810-6
https://doi.org/10.1145/972639.972640
https://doi.org/10.1016/S0304-3975(02)00453-X
http://link.springer.de/link/service/journals/00037/bibs/1010003/10100179.htm
http://link.springer.de/link/service/journals/00037/bibs/1010003/10100179.htm
https://doi.org/10.1137/S0097539703428555
https://doi.org/10.1007/s002360050044
https://doi.org/10.1007/3-540-45349-0_32

	Introduction
	k-Clique Principle
	Weak Pigeonhole Principle
	Contrasting unary and binary principles
	Linear Ordering Principles
	Binary encodings of principles versus their Unary functional encodings

	Techniques and Organization

	Preliminaries
	Res(s) vs Resolution

	The binary encoding of k-Clique
	Isolating the properties of G
	Res(s) lower bounds for Bin-Clique_k^n

	The weak Pigeonhole Principle
	The treelike case

	Contrasting unary and binary encodings
	Binary encodings of principles involving total comparison
	Binary versus unary encodings in general
	Binary encodings of principles versus their Unary functional encodings
	The Ordering Principle in binary

	Final remarks

