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Abstract

We give an explicit pseudorandom generator (PRG) for read-once AC0, i.e., constant-depth read-once
formulas over the basis {∧,∨,¬} with unbounded fan-in. The seed length of our PRG is Õ(log(n/ε)).
Previously, PRGs with near-optimal seed length were known only for the depth-2 case [22]. For a
constant depth d > 2, the best prior PRG is a recent construction by Forbes and Kelley with seed
length Õ(log2 n+ logn log(1/ε)) for the more general model of constant-width read-once branching
programs with arbitrary variable order [17]. Looking beyond read-once AC0, we also show that
our PRG fools read-once AC0[⊕] with seed length Õ(t+ log(n/ε)), where t is the number of parity
gates in the formula.

Our construction follows Ajtai andWigderson’s approach of iterated pseudorandom restrictions [1].
We assume by recursion that we already have a PRG for depth-d AC0 formulas. To fool depth-(d+1)
AC0 formulas, we use the given PRG, combined with a small-bias distribution and almost k-wise
independence, to sample a pseudorandom restriction. The analysis of Forbes and Kelley [17] shows
that our restriction approximately preserves the expectation of the formula. The crux of our work is
showing that after poly(log logn) independent applications of our pseudorandom restriction, the
formula simplifies in the sense that every gate other than the output has only polylogn remaining
children. Finally, as the last step, we use a recent PRG by Meka, Reingold, and Tal [32] to fool this
simpler formula.
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16:2 Near-Optimal PRGs for Constant-Depth Read-Once Formulas
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Figure 1 A depth-3 read-once AC0 formula on n = 13 bits.

1 Introduction

In complexity theory and algorithm design, randomness is a valuable yet scarce resource. A
powerful, black-box method for reducing the randomness used by a computationally bounded
process is to construct a pseudorandom generator (PRG). A PRG for a class of tests C is an
algorithm that stretches a short truly random seed to a long n-bit string that “fools” C, i.e.,
any test f ∈ C behaves the same on the output of the PRG as it does on a truly random
string, up to some error ε.

Ideally, one would like to construct explicit unconditional PRGs with short seed length that
fool powerful classes such as general polynomial-time algorithms. Unfortunately, constructing
such general-purpose PRGs requires proving circuit lower bounds that seem to be far beyond
the reach of state of the art techniques.

On the bright side, there has been a lot of success designing PRGs for more restricted
classes. The two most intensely studied classes are read-once small-space algorithms and
constant-depth circuits. In this work, we study constant-depth read-once formulas with
unbounded fan-in over the basis {∧,∨,¬} (Figure 1). This class is the read-once version of
AC0. We construct an explicit PRG for this class with seed length Õ(log(n/ε)), which is
optimal up to log log factors.1

I Theorem 1. For any positive integers n, d and for any ε > 0, there is an explicit ε-PRG
for depth-d read-once AC0 formulas over n variables with seed length

log(n/ε) ·O(d log log(n/ε))2d+2.

1 A standard probabilistic argument shows the existence of a PRG with seed length O(log(n/ε)). One
can show a matching Ω(log(n/ε)) lower bound even for the depth-2 case.
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1.1 Motivation and related work

Derandomizing Small-Space Algorithms

We are motivated by the L vs. BPL problem – namely whether every bounded-error
probabilistic algorithm can be fully derandomized with only a constant factor space blowup.
The way a log-space algorithm acts on its random bits can be modeled by a polynomial-width
read-once branching program (ROBP). A natural approach to the L vs. BPL problem is
thus coming up with a PRG for such ROBPs with seed length O(logn). Seminal work of
Nisan gave a PRG with seed length O(log2 n) for this model [35]. To this day, no better
PRG is known even for ROBPs where the width is a large constant, though better generators
are known in special cases [40, 14, 28, 41, 7, 22, 4, 10, 32].

Surprisingly, the study of fooling constant-width ROBPs has so far been closely entangled
with the study of fooling read-once AC0. A depth-d read-once AC0 formula can be computed
by a width-(d+ 1) ROBP, possibly after reordering the inputs [13]. In the other direction,
Gopalan et al. constructed a near-optimal PRG for read-once CNFs, and then used that PRG
to construct a near-optimal hitting set generator for width-3 ROBPs [22]. Very recently,
following the paradigm of Gopalan et al. [22], Meka, Reingold, and Tal gave a PRG for
general width-3 ROBPs with near-optimal seed length when ε is constant [32].

Meanwhile, for any constant d, Chen, Steinke and Vadhan constructed a PRG for depth-d
read-once AC0 formulas with seed length Õ(logd+1 n) [13].2 They obtained this PRG by
proving new Fourier tail bounds for such formulas. Subsequently, Chattopadhyay et al. proved
similar tail bounds for the stronger class of general width-(d+ 1) ROBPs with arbitrarily
ordered inputs; they used these tail bounds to construct a PRG with similar seed length for
that model [11].

In a recent breakthrough, Forbes and Kelley gave an elegant construction of a PRG for
ROBPs with arbitrarily ordered inputs [17]. In the polynomial-width case, their PRG has
seed length O(log3 n). For width-(d+ 1) ROBPs when d is small, their PRG has seed length
Õ(d log2 n); prior to the present work, this was also the best PRG for read-once AC0. Note
that Theorem 1 improves on the Forbes-Kelley PRG [17] even for non-constant d, e.g., if
d = 0.2 log logn/ log log logn and ε = 1/ poly(n).

Given the recent trend of connections between PRGs for ROBPs and PRGs for read-once
AC0, we hope that our result will serve as a stepping stone toward optimal PRGs for general
constant-width ROBPs.

Fooling General Constant-Depth Circuits

Ajtai and Wigderson were the first to consider the problem of fooling general AC0 circuits, and
in their pioneering work they achieved seed lengthO(nγ) for any constant γ > 0 [1]. A long line
of research has worked on improving this seed length [34, 29, 31, 3, 36, 6, 15, 21, 43, 42, 24, 38].
Today, for constant error, the best PRG for depth-d AC0 circuits known, by Tal, has seed
length Õ(logd+2 n) [42]. When ε is small, the best PRG is a very recent construction by
Servedio and Tan [38], which achieves seed length O(logd+C n log(1/ε)) for some unspecified
absolute constant C.

2 Note that Nisan’s generator [35] is not guaranteed to fool read-once AC0 formulas because of the issue
of variable ordering [5].
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16:4 Near-Optimal PRGs for Constant-Depth Read-Once Formulas

Fooling More General Read-Once Formulas

Bogdanov, Papakonstantinou, and Wan gave the first PRG for unbounded-depth read-once
formulas [5]. Their PRG has seed length (1 − Ω(1))n. More generally, their PRG fools
formulas over an arbitrary basis, provided the fan-in is at most O(n/ logn). For the case
that the basis is {∧,∨,¬}, Impagliazzo, Meka, and Zuckerman gave an improved PRG for
unbounded-depth read-once formulas with seed length O(n0.2342) [26]. This was further
improved by Forbes and Kelley [17]; their recent PRG with seed length O(log3 n) fools
unbounded-depth read-once formulas over an arbitrary basis with constant fan-in.

In another direction, Gavinsky, Lovett, and Srinivasan gave a PRG for constant-depth
read-once formulas over the basis {∧,∨,¬,MODm}, i.e., read-once ACC0 [19]. When the
modulus m and the error ε are constant, their PRG has seed length 2O(d2) · logO(d) n; this
result is also subsumed by the recent work of Forbes and Kelley [17]. As a reminder, in the
present work, we focus on constant-depth read-once formulas over the {∧,∨,¬} basis with
unbounded fan-in.

Fooling Read-k Depth-2 Formulas

De et al. gave a PRG for read-once CNFs with seed length O(logn log(1/ε)) [15]; this result
can also be deduced from earlier work by Chari, Rohatgi, and Srinivasan [8]. As mentioned
previously, Gopalan et al. gave a PRG for read-once CNFs with seed length Õ(log(n/ε)) [22].
Meanwhile, Klivans, Lee, and Wan constructed a PRG that fools read-k CNFs even for
small k > 1 [27]. Building on their work, Servedio and Tan recently gave an improved
PRG for read-k CNFs [39]; if the size of the CNF is poly(n), their PRG has seed length
logn · poly(k, log(1/ε)).

1.2 Overview of our Construction and Analysis

1.2.1 The Ajtai-Wigderson Approach
Our PRG follows the paradigm pioneered by Ajtai and Wigderson [1] and further developed
by Gopalan et al. [22]. We begin by briefly explaining this general approach for constructing
PRGs. Ultimately, to fool a test f , we want to pseudorandomly assign values to its inputs in
such a way that f accepts or rejects with approximately the same probability as it would
under a truly random input. As a first step, we pseudorandomly choose a partial assignment
to f . Equivalently, we pseudorandomly choose a restriction X ∈ {0, 1, ?}n, where Xi = ?

indicates that the variable Xi is still unset.
We need our pseudorandom distribution over restrictions to satisfy two key properties.

The first property is that the restriction should approximately preserve the expectation of the
function, i.e., in expectation over X, the restricted function f |X should have approximately
the same bias as f itself. This feature ensures that after sampling the pseudorandom
restriction X, our remaining task is simply to fool the restricted function f |X .

The second property is that the restriction should simplify f , i.e., with high probability3
over the pseudorandom restriction X, the restricted function f |X should in some sense be
simpler than f itself. The purpose of this feature is that simplifying f should make it easier
to fool, perhaps using a PRG from prior work. We shall now give a brief exposition of how
we achieve these two properties in our work.

3 In principle, it would actually suffice for f to merely simplify in expectation over X.
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1.2.2 Preserving the Expectation Using the Work of Forbes and Kelley
Building on several prior works [37, 23, 11], Forbes and Kelley constructed a very simple
pseudorandom distribution over restrictions that approximately preserves the expectation
of any constant-width ROBP [17], hence any read-once AC0 formula. In the Forbes-Kelley
distribution, the locations of the ?-s are chosen almost k-wise independently, and the non-?
coordinates are filled in using a small-bias space. Each coordinate is ? with probability
roughly 1

2 , and the distribution can be sampled using Õ(log(n/ε)) truly random bits.
In our setting, we will design our restriction in such a way that the distribution of ?

locations is almost k-wise independent and the distribution of bits in the non-? coordinates
has small bias, in addition to other properties we also need. That way, to argue that the
expectation of the formula is preserved under our pseudorandom restriction, we can simply
appeal to the Forbes-Kelley result [17].

1.2.3 Simplifying the Formula Given a PRG
The remaining challenge is to ensure that our pseudorandom restriction simplifies AC0

formulas. In the work of Forbes and Kelley [17], the measure of complexity was simply the
number of remaining unset variables. That is, Forbes and Kelley argued that after applying
O(logn) independent pseudorandom restrictions, with high probability, all variables are
set, and hence there is nothing left to fool [17].4 This gives them an overall seed length
of Õ(log(n/ε) logn).

In this work, to achieve seed length Õ(log(n/ε)), we use a more sophisticated pseudor-
andom restriction and subtler measures of complexity. That way, we can argue that after
applying just poly(log log(n/ε)) independent restrictions, the formula has simplified enough
that it can be fooled by a prior PRG.

Several “pseudorandom switching lemmas” are already known for AC0 [1, 43, 20, 38],
but we were not able to use these lemmas for our result. Instead, the starting point for
our approach to simplification is the work of Chen, Steinke, and Vadhan [13]. Chen et al.
analyzed the effect of truly random restrictions on read-once AC0 formulas [13]. They showed
that with high probability, a truly random restriction dramatically simplifies the formula in
the sense that every node in the restricted formula has very few remaining children5 [13].
Chen et al. mentioned that they would have liked to show that the same is true under
pseudorandom restrictions – this would have improved the parameters of their main result –
but they were not able to prove such a statement [13].

A key insight in our work is that roughly speaking, the predicate that some node is still
alive after a random restriction X can be computed by another read-once AC0 formula
whose inputs are the bits encoding X. Therefore, to pseudorandomly sample a restriction
X that kills off each node with approximately the right probability, it suffices to select the
bits encoding X using a PRG for read-once AC0. (Gavinsky, Lovett, and Srinivasan used a
similar idea to fool read-once ACC0 [19].)

1.2.4 Obtaining the Necessary PRG Through Recursion
It may strike the reader that we have reached a “chicken or egg” problem: we can simplify
formulas given a PRG for read-once AC0, but the whole reason we are interested in simplifying
formulas is to design an improved PRG for read-once AC0! We resolve this difficulty by

4 Actually, to get the best dependence on ε, Forbes and Kelley stop applying restrictions once the number
of remaining variables drops below O(logn).

5 A technicality is that this is only true “up to sandwiching.”
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16:6 Near-Optimal PRGs for Constant-Depth Read-Once Formulas

recursing on the depth of the formula we wish to fool. That is, we assume we already
have a PRG Gd that fools depth-d read-once AC0 formulas, and we use Gd to sample
pseudorandom restrictions that simplify depth-(d + 1) read-once AC0 formulas. (This is
similar to the approach of Gavinsky et al. [19].) Making this idea work requires overcoming
several technical challenges.

In more detail, consider a collection of nodes {φ1, . . . , φk} that form subformulas of depth
d′ ≤ d− 1. Roughly speaking, we show how to test the predicate that they are all still alive
by a formula T of depth d′ + 1 ≤ d.6 The recursive generator Gd fools T , so under our
pseudorandom restriction, the probability that φ1, . . . , φk all remain alive is roughly what it
would be under a truly random restriction.

Unfortunately, to ensure that the Forbes-Kelley analysis applies to our scenario, we are
forced to design our pseudorandom restriction so that each coordinate is ? with constant
probability. The pseudorandom restriction has a similar effect as a truly random restriction
with the same ?-probability, but that is not good enough. The analysis of truly random
restrictions by Chen et al. only applies to the case that the ?-probability is 1/ polylog(n/ε) [13].

Roughly speaking, we overcome this difficulty using a kind of hybrid argument. A
truly random restriction with ?-probability 1/ polylog(n/ε) is equivalent to the composi-
tion of t independent truly random restrictions, each with constant ?-probability, where
t = O(log log(n/ε)). We show that for the purpose of simplification, a composition of t
independent copies of our pseudorandom restriction is almost as good. Each individual step
of this hybrid argument relies on the fact that Gd fools a formula closely related to the
formula T mentioned earlier.

By applying an argument due to Gopalan et al. [22], we relate the condition that
a collection of gates all remain alive to the number of remaining children of each node.
Altogether, these arguments show that after applying poly(log log(n/ε)) independent copies
of our pseudorandom restriction, every gate other than the root has at most polylog(n)
remaining children.7 (We are not able to establish such a bound for the root gate, because
its children form subformulas of depth d′ = d.) Fortunately, this condition is strong enough
that the restricted formula is fooled by a recent PRG by Meka, Reingold, and Tal [32]. We
use the MRT PRG [32] as the last step in our construction.

1.3 Extension to Read-Once AC0[⊕] with a Few Parity Gates
AC0 is admittedly a fairly weak circuit class. The parity function is the most famous example
of a function that cannot be computed in AC0 (e.g., [18, 25]). Having shown how to fool
read-once AC0, the natural next problem is to fool read-once AC0[⊕], i.e., constant-depth
read-once formulas over the basis {⊕,∧,∨,¬} with unbounded fan-in. Read-once AC0[⊕]
can still be simulated by constant-width ROBPs (possibly after reordering the inputs), so
fooling read-once AC0[⊕] would be another step on the long road to derandomizing BPL.
The best prior PRG for this model is once again Forbes and Kelley’s PRG with seed length
Õ(log2 n+ logn log(1/ε)) [17].

Fooling general (not necessarily read-once) AC0[⊕] circuits is a notoriously difficult
problem in unconditional pseudorandomness. Currently, the best seed length is only slightly
less than n [16].

6 See Claim 10 for the precise statement.
7 Again, this is only true up to sandwiching.
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There has been more success fooling AC0[⊕] circuits under the assumption that the
circuit only has a few parity gates [44, 9, 30]. In the same spirit, we show that our PRG for
read-once AC0 formulas also fools read-once AC0[⊕] formulas with a bounded number of
parity gates. We achieve seed length Õ(t+ log(n/ε)), where t is the number of parity gates:

I Theorem 2. For any positive integers n, d, t and for any ε > 0, there is an explicit ε-PRG
for depth-d read-once AC0[⊕] formulas with at most t parity gates with seed length

(td+ log(n/ε)) ·O(d log log(n/ε) + d log(td))2d+2.

At a very high level, this extension to AC0[⊕] is possible because the MRT PRG [32]
was already designed for parities of small ROBPs. However, suitably extending the analysis
of truly random restrictions by Chen et al. [13] to the case of AC0[⊕] is nontrivial. We defer
further discussion to Section 9.

2 Preliminaries

2.1 Pseudorandomness Primitives
Let Un denote the uniform distribution over {0, 1}n. Suppose C is a class of functions
f : {0, 1}n → R and G is a distribution over {0, 1}n. We say that G ε-fools C if for
every f ∈ C,

|E[f(G)]− E[f(Un)]| ≤ ε.

As two special cases, a δ-biased distribution is one that δ-fools parity functions, and a
γ-almost k-wise independent distribution is one that γ-fools Boolean k-juntas [33, 2]. An
ε-PRG for C is a function G : {0, 1}s → {0, 1}n such that G(Us) ε-fools C. As a shorthand,
we will write E[f ] to denote E[f(Un)].

2.2 Read-Once Formulas
An AC0 formula on {0, 1}n is a rooted tree in which each internal node (“gate”) is labeled
with ∧ or ∨ and each leaf is labeled with a constant (0 or 1), a variable xi, or its negation
¬xi, where i ∈ [n]. Gates may have arbitrary fan-in. The formula computes a function
φ : {0, 1}n → {0, 1} in the natural way. The depth of the formula is the length of the longest
path from the output gate to a leaf. The formula is read-once if each variable xi appears
at most once. We make no assumptions about the order in which the variables appear. A
layered AC0 formula is one in which the gates are arranged in alternating layers of ∧ and ∨
gates. Any read-once AC0 formula can be simulated by a layered read-once AC0 formula of
the same depth.

2.3 Random Restrictions
A restriction is a string x ∈ {0, 1, ?}n. We define an associative composition operation on
{0, 1, ?}n by

(x ◦ x′)i =
{
xi if xi 6= ?

x′i if xi = ?.

Conceptually, x◦x′ corresponds to first restricting according to x and then further restricting
according to x′. As a special case, if x′ ∈ {0, 1}n, then x ◦ x′ ∈ {0, 1}n is the string obtained

CCC 2019



16:8 Near-Optimal PRGs for Constant-Depth Read-Once Formulas

by using x′ to “fill in the ? positions” of x. If f : {0, 1}n → {0, 1} is a function and x is a
restriction, we define the restricted function (f |x) : {0, 1}n → {0, 1} by

(f |x)(x′) = f(x ◦ x′).

We define Rn to be the distribution over X ∈ {0, 1, ?}n in which the coordinates are
independent, Pr[Xi = ?] = 1/2, and Pr[Xi = 0] = Pr[Xi = 1] = 1/4. If H1, H2 are
distributions over {0, 1, ?}n, we define H1 ◦ H2 to be the distribution over X ∈ {0, 1, ?}n
obtained by drawing independent samples X1 ∼ H1, X2 ∼ H2 and composing them, X =
X1 ◦X2. For a nonnegative integer s, we define

H◦s = H ◦H ◦ · · · ◦H︸ ︷︷ ︸
s times

.

For example, R◦sn is a random restriction where each coordinate is ? with probability 2−s
and the non-? positions are uniform random bits.

A restriction can be specified by two n-bit strings as follows. Define Res: {0, 1}n ×
{0, 1}n → {0, 1, ?}n by

Res(y, z)i =
{
? if yi = 1
zi if yi = 0.

In words, y indicates which positions have ?, and z specifies the bits in the non-? positions.
Observe that Res(U2n) ∼ Rn.

3 Our PRG Construction

The construction of our generator is by induction on the depth of the formula we wish to fool.
For the base case of depth-2 formulas, we use the PRG by Gopalan et al. for read-once CNFs
and DNFs [22]. For the inductive step, let d ≥ 2 be arbitrary, let Gd be a random variable
over {0, 1}n that α-fools depth-d read-once AC0 formulas, and let ε > 0 be arbitrary. We
will show how to ε-fool depth-(d+ 1) formulas, assuming α is sufficiently small.

Step 1: XORing with Small-Bias and Almost k-wise Independence

Let G′d be an independent copy of Gd. Sample T from a γ-almost k-wise independent
distribution over {0, 1}n, and sample D from a δ-biased distribution over {0, 1}n, where the
parameters γ, k, δ will be specified later. Define

Gd = (Gd ⊕ T,G′d ⊕D) ∈ {0, 1}n × {0, 1}n.

Step 2: Assigning Most Inputs Using Gd

Define a pseudorandom restriction Hd ∈ {0, 1, ?}n by

Hd = Res(Gd).

Since Res(U2n) ∼ Rn, each coordinate of Hd is ? with probability roughly 1/2. For a
parameter

s = O((d log log(n/ε)) · log logn),

we will restrict according to H◦sd , i.e., we will compose s independent copies of the restric-
tion Hd.
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Step 3: Assigning Remaining Inputs Using the MRT PRG

We rely on a PRG by Meka, Reingold, and Tal for XORs of short ROBPs [32]; we will discuss
this in more detail in Section 7. Sample GMRT ∈ {0, 1}n using this PRG. Our final PRG for
depth-(d+ 1) read-once AC0 is defined by

Gd+1 = H◦sd ◦GMRT,

i.e., we use GMRT to assign bits to all remaining ?-positions after restricting according to H◦sd .

4 Pseudorandom Restrictions Preserve Expectation

Toward proving the correctness of our PRG, in this section, we will show that restricting a
depth-(d+ 1) formula using the distribution Hd approximately preserves the expectation of
the formula.

The following lemma proved by Forbes and Kelley shows that bounded-width ROBPs
behave nicely under pseudorandom restrictions that are defined by small biased distributions
and almost k-wise independence. In the lemma, L(n,w; k) is defined to be the maximum
of
∑k
i=1
∑
S⊆[n],|S|=k |f̂(S)| over all width-w ROBPs f , where f̂(S) denotes the Fourier

coefficient of f at S.

I Lemma 3 (Lemma 7.2 from [17], rephrased). Let T and D be independent random variables
over {0, 1}n, which are sampled respectively from a γ-almost k-wise independent distribution
and a δ-biased distribution. Let f : {0, 1}n → {0, 1} be a width-w arbitrarily-ordered ROBP.
Then,∣∣∣∣∣∣ E

U∼Un

[f(U)]− E
T,D
V∼Un

[
f |Res(T,D)(V )

]∣∣∣∣∣∣ ≤
(
√
δ · L(n,w; k) +

(
1
2

)k/2
+√γ

)
· nw.

We are mainly interested in fooling AC0 formulas, but for the analysis, it will be helpful
to consider NAND formulas, i.e., formulas in which each internal node is a NAND gate
instead of an ∧ gate or an ∨ gate. In Section 8, we will explain why it suffices to reason
about NAND formulas.

Recall from Section 3 that Gd = (Gd ⊕ T,G′d ⊕D), where Gd and G′d are independent
random variables over {0, 1}n that α-fool depth-d read-once formulas, T is sampled from
a γ-almost k-wise independent distribution over {0, 1}n, and D is sampled from a δ-biased
distribution over {0, 1}n. We will use the following simple application of the above lemma
to our pseudorandom restriction Hd = Res(Gd). Looking ahead, we will eventually choose
ε0 = ε/ poly(log log(n/ε)).

I Lemma 4. There exist constants c1, c2, c3 > 0, such that for all positive integers n, d, for
every ε0 > 0, if we set

k = c1 log(nd/ε0), δ = ε0 ·
(

c2
logn

)−k(d+2)
and γ = c3ε0

nd
,

then Hd as defined above satisfies the following. For every depth-(d+ 1) read-once NAND
formula φ : {0, 1}n → {0, 1},∣∣∣∣ E

U∼Un

[φ(U)]− E
Hd,V∼Un

[φ|Hd
(V )]

∣∣∣∣ ≤ ε0.

CCC 2019
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Proof. We start by noting that Gd ⊕ T and G′d ⊕D are independent, Gd ⊕ T is γ-almost
k-wise independent, and G′d ⊕D is δ-biased. This is due to the fact that linear tests and
k-juntas are closed under shifts.

The lemma is then an immediate corollary of Lemma 3, because every depth-(d + 1)
read-once NAND formula can be computed by a width d+ 2 read-once branching program
[13], and L(n, d+ 2; k) is bounded by O(logn)k(d+2) [11]. Thus∣∣∣∣ E

U∼Un

[φ(U)]− E
Hd,V∼Un

[φ|Hd
(V )]

∣∣∣∣ ≤
(
√
δ ·O(logn)k(d+2) +

(
1
2

)k/2
+√γ

)
· n(d+ 2),

and it is easy to check that there are constants c1, c2, c3 such that the right hand side is
bounded by ε0 for a choice of δ, γ, k as in the statement of the lemma. J

We get the following corollary about repeated applications of Hd immediately since
depth-(d+ 1) read-once formulas are closed under restrictions.

I Corollary 5. Let φ be a depth-(d + 1) read-once NAND formula over n variables. Let
δ, k, γ be as in Lemma 4. Then, for every integer t ≥ 1,∣∣∣∣ E

U∼Un

[φ(U)]− E
H◦t

d
,V∼Un

[
φ|H◦t

d
(V )
]∣∣∣∣ ≤ ε0t.

5 Pseudorandom Restrictions Simplify Read-Once Formulas

In this section, we derandomize the analysis of Chen et al. [13] and show that our pseu-
dorandom restriction generator H◦td simplifies depth-(d + 1) formulas, as we discussed in
Section 1.2. We first introduce our progress measure.

I Definition 6. Given a read-once NAND formula φ, we let ∆(φ) be the maximum fan-in
of any gate in φ that is not the root.

Our goal is to show that when X is sampled from H◦td then a read-once formula φ is
simplified in the sense that ∆(φ|X) is roughly

√
∆(φ), with high probability. We will show

that t = O(d log log(n/ε)) is sufficient. Our analysis will closely follow the analysis by Chen et
al. [13] for truly random restrictions.

5.1 Truly Random Restrictions Simplify Depth-(d − 1) Formulas
Chen, Steinke and Vadhan proved that biased read-once formulas collapse to a constant
after a random restriction, with high probability [13]. Looking ahead, we will eventually set
θ = (ε/n)O(1).

I Lemma 7 ([13], Lemma A.3). Let ϕ be a depth-d read-once NAND formula over n variables
such that either E[¬ϕ] ≤ ρ or E[ϕ] ≤ ρ for some ρ ≤ 1

2 . Then, for every θ ∈ (0, 2
n ) and

p ≤ 1
(9 log(2·4dn/θ))d it holds that

Pr
X∼R◦dlog p−1e

n

[ϕ|X is not a constant] ≤ 2p · ρ · (9 log(2 · 4dn/θ))d + θ.

We use Lemma 7 to prove the following variation; note that this lemma considers the case of
several read-once formulas and analyzes the probability of collapsing to 1 instead of collapsing
to any constant.
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I Lemma 8. Let Φ = {φ1, . . . , φk} be a set of read-once NAND formulas over n variables,
each of depth d ≤ logn and over disjoint subsets of n variables. Further, assume that for
every i ∈ [k], E[¬φi] ≤ ρ for some ρ ≤ 1

2 . Then, there exists a constant c such that for every
θ ∈ (0, 2

n ) and integer t ≥ cd log log(n/θ),

Pr
X∼R◦t

n

[∀φ ∈ Φ, φ|X 6≡ 1] ≤ (2ρ+ θ)k.

Proof. Consider some φ ∈ Φ and let t be the smallest integer such that

2−t ≤ 1
2(9 log(2 · 4dn/θ))d ,

and indeed t = c (d log log(n/θ) + d log d) for some universal constant c. By Lemma 7,

Pr
X∼R◦t

n

[φ|X is not a constant] ≤ ρ+ θ.

Now,

Pr
X∼R◦t

n

[φ|X ≡ 0] ≤ E[¬φ] ≤ ρ,

so by the union bound

Pr
X∼R◦t

n

[φ|X 6≡ 1] ≤ 2ρ+ θ.

The lemma follows by the fact that each formula in Φ is over distinct variables and the
coordinates of R◦tn are independent. J

5.2 Hd Simplifies Depth-(d − 1) Formulas
Ultimately, we are interested in the simplification of depth-(d + 1) formulas with respect
to the ∆(·) measure of progress. However, in this subsection, our goal is to prove that our
iterated pseudorandom restriction H◦td simplifies depth-(d− 1) formulas just as well as truly
random restrictions up to an additive error. In this subsection, the notion of simplification is
the event in the statement of Lemma 8.

I Lemma 9. Let Φ = {φ1, . . . , φk} be a set of read-once NAND formulas over n variables,
each of depth d− 1 and over disjoint subsets of n variables. Then, for every integer t ≥ 1,

Pr
X∼Hd◦R◦(t−1)

n

[∀φ ∈ Φ, φ|X 6≡ 1] ≤ Pr
X∼R◦t

n

[∀φ ∈ Φ, φ|X 6≡ 1] + 2α,

where α is the error of the PRG for depth-d read-once formulas underlying Hd.

Proof. Fix some restriction v ∈ {0, 1, ?}n. (Think of v as some fixing of R◦(t−1)
n .) Let

Tv : {0, 1}2n → {0, 1} be the predicate indicating that with respect to v, the given initial
restriction does a poor job of simplifying Φ. That is,

Tv(y, z) = 1⇐⇒ ∀φ ∈ Φ, φ|Res(y,z)◦v 6≡ 1.

B Claim 10. For every d ≥ 2, Tv can be computed by a depth-d read-once AC0 formula.

Proof. We will prove, by induction on d, that for every φ ∈ Φ,
1. The test φ|Res(y,z)◦v 6≡ 1 can be computed by a depth-d read-once AC0 formula with an
∧ gate on top.
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2. The test φ|Res(y,z)◦v 6≡ 0 can be computed by a depth-d read-once AC0 formula with an
∨ gate on top.

The claim will then follow, as the “∀φ ∈ Φ” part is simply an ∧ over formulas with a top ∧
gate and thus the two top layers can be collapsed to a single layer.

For d = 2, φ is of depth 1 and so is simply a NAND of variables or their negation, say of
the literals `1, . . . , `m. Now,

NAND(`1, . . . , `m) 6≡ 1⇐⇒
∧
i∈[m]

(`i 6≡ 0),

and

NAND(`1, . . . , `m) 6≡ 0⇐⇒
∨
i∈[m]

(`i 6≡ 1).

For each b ∈ {0, 1}, let us express the condition `i 6≡ b in terms of the inputs y and z to Tv.
If `i is a variable xi, then

xi 6≡ b⇐⇒ ((yi = 1) ∧ (vi 6≡ b)) ∨ ((yi = 0) ∧ (zi = b)).

Now, v is fixed, so either vi 6≡ b is the constant 0, in which case the formula amounts
to (yi = 0) ∧ (zi = b), or it is the constant 1, in which case the formula amounts to
(yi = 1) ∨ (zi = b). Either way, this is a depth-1 read-once formula in terms of the inputs
y and z to Tv.
If `i is the negation ¬xi of some variable, then

¬xi 6≡ b⇐⇒ ((yi = 1) ∧ (vi 6≡ b)) ∨ ((yi = 0) ∧ (zi = b))

Again, by the same reasoning, the above is a depth-1 read-once formula, where the top
gate is determined by the value of vi 6≡ b.

Thus, the predicate NAND(`1, . . . , `m) 6≡ 1 can be tested by a depth-2 formula where the top
gate is an ∧, and the predicate NAND(`1, . . . , `m) 6≡ 0 can be tested by a depth-2 formula
where the top gate is an ∨.

Assume the claim holds for some d ≥ 2 and let φ = NAND(ϕ1, . . . , ϕm) be a read-once
NAND formula of depth d, so each ϕi is a depth-(d − 1) read-once NAND formula. We
already mentioned that

NAND(ϕ1, . . . , ϕm) 6≡ 1⇐⇒
∧
i∈[m]

(ϕi 6≡ 0).

By the induction’s hypothesis, the predicate ϕi|Res(y,z)◦v 6≡ 0 can be tested by a depth-d
read-once AC0 formula with a top ∨ gate, so overall we get a depth-(d+ 1) read-once AC0

formula with a top ∧ gate. Similarly,

NAND(ϕ1, . . . , ϕm) 6≡ 0⇐⇒
∨
i∈[m]

(ϕi 6≡ 1).

Again, by our assumption, the predicate ϕi|Res(y,z)◦v 6≡ 1 can be tested by a depth-d read-once
AC0 formula with a top ∧ gate, so overall we get a depth-(d+ 1) read-once AC0 formula
with a top ∨ gate. C

Recall from Section 3 the distribution

Gd = (Gd ⊕ T,G′d ⊕D).

We shall later show:
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B Claim 11. Gd (2α)-fools depth-d read-once AC0 formulas over {0, 1}2n.

With the above claim in mind, and Claim 10, we are now ready to proceed with proving the
lemma. We get that:

Pr
X∼Hd

[∀φ ∈ Φ, φ|X◦v 6≡ 1] = Pr
X∼Hd

[Tv(X) = 1] ≤ Pr
(Y,Z)∼U2n

[Tv(Y, Z) = 1] + 2α.

A uniform (Y,Z) corresponds to a truly random restriction, so

Pr
X∼Hd

[∀φ ∈ Φ, φ|X◦v 6≡ 1] ≤ Pr
X∼Rn

[∀φ ∈ Φ, φ|X◦v 6≡ 1] + 2α.

As the above is true for every restriction v, obviously

E
V∼R◦(t−1)

n

[
Pr

X∼Hd

[∀φ ∈ Φ, φ|X◦V 6≡ 1]
]
≤ E
V∼R◦(t−1)

n

[
Pr

X∼Rn

[∀φ ∈ Φ, φ|X◦V 6≡ 1]
]

+ 2α,

so

E
X∼Hd

[
Pr

V∼R◦(t−1)
n

[∀φ ∈ Φ, φ|X◦V 6≡ 1]
]
≤ Pr
X∼R◦t

n

[∀φ ∈ Φ, φ|X 6≡ 1] + 2α,

which amounts to what we wanted to prove. All that is left is to prove Claim 11.

Proof of Claim 11. We start by noting that since depth-d read-once AC0 is closed under
shifts, Gd ⊕ T and G′d ⊕D both α-fool depth-d read-once AC0.

We will next use the fact that depth-d read-once AC0 is closed under restrictions. Suppose
φ : {0, 1}n × {0, 1}n → {0, 1} is a depth-d read-once AC0 formula. We have∣∣∣∣∣ E

U,V∼Un

[φ(U, V )]− E
(X,Y )∼Gd

[φ(X,Y )]

∣∣∣∣∣
≤
∣∣∣∣ E
V∼Un

[
E

U∼Un

[φ(U, V )]− E
X∼Gd⊕T

[φ(X,V )]
]∣∣∣∣

+
∣∣∣∣ E
X∼Gd⊕T

[
E

V∼Un

[φ(X,V )]− E
Y∼G′

d
⊕D

[φ(X,Y )]
]∣∣∣∣

≤ E
V∼Un

∣∣∣∣ E
U∼Un

[φ(U, V )]− E
X∼Gd⊕T

[φ(X,V )]
∣∣∣∣

+ E
X∼Gd⊕T

∣∣∣∣ E
V∼Un

[φ(X,V )]− E
Y∼G′

d
⊕D

[φ(X,Y )]
∣∣∣∣

≤ 2α,

where we used the fact that Gd ⊕ T and G′d ⊕D are independent and α-fool the formulas
φ(·, v) and φ(x, ·) respectively. C

J

Iterating Hd for t times, we get the following lemma. Roughly speaking, the proof is a
hybrid argument of which Lemma 9 is a single step.

I Lemma 12. Let Φ = {φ1, . . . , φk} be a set of read-once NAND formulas over n variables,
each of depth d− 1 and over disjoint subsets of n variables. Then, for every integer t ≥ 1,

Pr
X∼H◦t

d

[∀φ ∈ Φ, φ|X 6≡ 1] ≤ Pr
X∼R◦t

n

[∀φ ∈ Φ, φ|X 6≡ 1] + 2tα,

where α is the error of the PRG for depth-d read-once AC0 formulas underlying Hd.
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Proof. We prove the lemma by induction on t. The case of t = 0 is trivial. Now, assume
that

Pr
X∼H◦(t−1)

d

[∀φ ∈ Φ, φ|X 6≡ 1] ≤ Pr
X∼R◦(t−1)

n

[∀φ ∈ Φ, φ|X 6≡ 1] + 2(t− 1)α.

Thus,

Pr
X∼H◦t

d

[∀φ ∈ Φ, φ|X 6≡ 1] = E
X1∼Hd

[
Pr

X2∼H◦(t−1)
d

[∀φ ∈ Φ, φ|X1◦X2 6≡ 1]
]

= E
X1∼Hd

[
Pr

X2∼H◦(t−1)
d

[∀φ ∈ Φ, (φ|X1) |X2 6≡ 1]
]

≤ E
X1∼Hd

[
Pr

X2∼R◦(t−1)
n

[∀φ ∈ Φ, (φ|X1) |X2 6≡ 1]
]

+ 2(t− 1)α

≤ Pr
X∼R◦t

n

[∀φ ∈ Φ, φ|X 6≡ 1] + 2tα.

The third transition used the induction’s hypothesis and the last one is due to Lemma 9. J

Combining Lemma 12 with Lemma 8 we immediately get the following corollary.

I Corollary 13. Let Φ = {φ1, . . . , φk} be a set of NAND read-once formulas over n variables,
each of depth d− 1 and over disjoint subsets of n variables. Further, assume that d ≤ logn
and that for every i ∈ [k], E[¬φi] ≤ ρ for some ρ ≤ 1

2 . Then, there exists a constant c such
that for every θ ∈ (0, 2

n ) and integer t ≥ cd log log(n/θ),

Pr
X∼H◦t

d

[∀φ ∈ Φ, φ|X 6≡ 1] ≤ (2ρ+ θ)k + 2tα,

where α is the error of the PRG for depth-d read-once AC0 formulas underlying Hd.

5.3 H◦t
d Simplifies Depth-(d + 1) Formulas

We are now ready to prove our main result for this section.

I Lemma 14. Let φ be a depth-(d + 1) read-once NAND formula over n variables where
d ≤ logn. Let ε0 > 0 and let c be the constant guaranteed by Corollary 13. Further assume
that θ ∈ (0, 2

n ) is such that for every gate ψ in φ, possibly excluding the root, E[¬ψ] ≥ θ.
Then, for every integer t ≥ cd log log(n/θ) and every α ≤ ε2

0
8(dn)2√n log2(1/θ)t ,

Pr
X∼H◦t

d

[
∆(φ|X) ≤ 10

√
∆(φ) log2(1/θ)

]
≥ 1− ε0,

where the PRG for depth-d read-once AC0 formulas underlying Hd is instantiated with
error α.

Note that we assume here that every gate in φ has a non-negligible probability of rejecting,
which may not always be the case. Following Chen et al. [13], in Section 6 we will get rid
of that assumption by a sandwiching argument. The proof of Lemma 14 is based on an
argument introduced by Gopalan et al. [22], later also used by Chen et al. [13].



D. Doron, P. Hatami, and W.M. Hoza 16:15

Proof. Let ψ be any gate in φ other than the root, so ψ is a depth-d read-once NAND
formula. We shall partition its children Ψ according to their rejection probability. Namely,
for every integer 0 ≤ i ≤ log(1/θ)− 1 define

Ψi =
{
ϕ ∈ Ψ : 2iθ ≤ E[¬ϕ] < 2i+1θ

}
.

Note that if E[¬ϕ] = 1 then ψ is fixed to 1 so we can simply ignore it.
Let us fix some 0 ≤ i ≤ log(1/θ)− 1 and consider the set of formulas Ψi. In hindsight,

set the parameters

M = 5e ln(1/θ)
√

∆(φ)

and

k =
⌈

2
log ∆(φ) log

(
2dn log(1/θ)

ε0

)⌉
.

Write Ψi = {ϕ1, . . . , ϕw}. For every j ∈ [w], let Yj be the indicator for the event that ϕj is
not identically 1 after a pseudorandom restriction, namely ϕj |X 6≡ 1. We wish to bound

Pr

∑
j∈[w]

Yj ≥M

 ,
where the probability is taken over X ∼ H◦td . Let

Sk(x1, . . . , xw) =
∑

I⊆[w],|I|=k

∏
i∈I

xi

be the k-th elementary symmetric polynomial. Note that if
∑
j∈[w] Yj ≥ M then

Sk(Y1, . . . , Yw) is at least
(
M
k

)
, and so

Pr

∑
j∈[w]

Yj ≥M

 ≤ 1(
M
k

) E[Sk(Y1, . . . , Yw)]

≤
(
k

M

)k ∑
I⊆[w],|I|=k

Pr [∀j ∈ I, Yj = 1] .

We know that E[¬ϕ] ≤ 2i+1θ and ϕ is a depth-(d− 1) NAND formula, so by Corollary 13
we get

Pr

∑
j∈[w]

Yj ≥M

 ≤ ( k

M

)k (
w

k

)(
(2 · 2i+1θ + θ)k + 2tα

)
. (1)

Now,

B Claim 15. It holds that w ≤ ln(1/θ)
2iθ .

Proof. On the one hand,∏
ϕ∈Ψ

E[ϕ] = E[¬ψ] ≥ θ.

On the other hand,∏
ϕ∈Ψ

E[ϕ] ≤
∏
ϕ∈Ψi

E[ϕ] ≤ (1− 2iθ)w ≤ e−2iwθ.

Combining the two gives the desired bound. C
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Plugging in the above bound to Equation (1), we get

Pr

∑
j∈[w]

Yj ≥M

 ≤ ( k

M

)k (we
k

)k (
(2 · 2i+1θ + θ)k + 2tα

)
≤
(
ew · (2i+2θ + θ)

M

)k
+ 2

(we
M

)k
tα

≤
(

5e ln(1/θ)
M

)k
+ 2

(
∆(φ)e
M

)k
tα,

where for the second summand we only used the trivial fact that w ≤ ∆(φ).
Plugging in M , we achieve

Pr

∑
j∈[w]

Yj ≥M

 ≤ 1
∆(φ)k/2

+ 2(∆(φ))k/2 · tα. (2)

As k ≥ 2
log ∆(φ) log

(
2dn log(1/θ)

ε0

)
we have that the first summand of Equation (2) is at most

ε0
2dn log(1/θ) . Also, the bound on α implies

2dn log(1/θ)
ε0

≤ ε0

4dn log(1/θ)tα ·
1√

∆(φ)

so

k ≤ 2
log ∆(φ) log

(
2dn log(1/θ)

ε0

)
+ 1 ≤ 2

log ∆(φ) log
(

ε0

4dn log(1/θ)tα

)
and the second summand of Equation (2) is at most ε0

2dn log(1/θ) as well. Thus,

Pr

∑
j∈[w]

Yj ≥M

 ≤ ε0

dn log(1/θ) .

Define Ei =
∑
j∈[w] Yj . By union-bounding over Ψ0, . . . ,Ψlog(1/θ)−1 we get that

Pr

log(1/θ)−1∑
i=0

Ei ≥M log(1/θ)

 ≤ log(1/θ)−1∑
i=0

Pr [Ei] ≤
ε0

dn
.

Another union bound over all possible ψ-s (at most dn of them) gives us the desired bound. J

6 Ensuring Noticeable Chance of Rejecting

In Section 5, we showed that H◦t simplifies formulas with high probability under the
assumption that every gate rejects with noticeable probability. In this section, following
Chen, Steinke, and Vadhan [13], we will use a sandwiching argument to handle gates with
negligible probability of rejecting. Our starting point is a helpful lemma implicit in the work
of Chen et al. [13]:

I Lemma 16 ([13]). Suppose φ is a depth-d read-once NAND formula over n variables with
d ≤ n and let ε0 > 0. Define θ = ε2

0
4n2 . Then, there exist read-once NAND formulas `φ, uφ

with the following properties.
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1. `φ ≤ φ ≤ uφ and E[uφ − `φ] ≤ ε0.
2. The underlying tree structure of `φ is a subgraph of the underlying tree structure of φ,

and the underlying tree structure of uφ is a subgraph of the underlying tree structure of φ.
3. Every non-constant gate ψ in either `φ or uφ satisfies E[ψ] ≥ θ and E[¬ψ] ≥ θ.

Since Chen, Steinke, and Vadhan did not state Lemma 16 exactly as we have stated it
here, for completeness, we include a proof of Lemma 16 in Appendix A.

The sandwiching formulas in Lemma 16 satisfy the hypothesis of Lemma 14, so after
restricting according to H◦t, they simplify in the sense that ∆ goes down by roughly a square
root. We would like to apply H◦t again to simplify the formulas even further. Unfortunately,
after the first application of H◦t, the restricted formulas might no longer satisfy the hypothesis
of Lemma 14. Therefore, before applying H◦t the second time, we must apply Lemma 16
again. We will continue in this manner, alternately applying H◦t to simplify and applying
Lemma 16 to eliminate gates with negligible probability of rejecting. In this way, we will
prove the following lemma.

I Lemma 17. Suppose φ is a depth-(d + 1) read-once NAND formula over n variables
where d ≤ logn and let ε0 > 0. Assume the parameters α, k, δ, γ underlying Hd satisfy the
hypotheses of Lemma 14 and Lemma 4. Let θ be the value in Lemma 16, let t be as in
Lemma 14, let r = d3 log logne, and let s = rt.

Sample independent restrictions X1, . . . , Xr ∼ H◦td . For any such vector of restrictions ~X,
there exist depth-(d+ 1) read-once NAND formulas `φ, ~X , uφ, ~X with the following properties.
1. (Bounding.) For every sample ~X,

`φ, ~X ≤ φ|X1◦···◦Xr
≤ uφ, ~X .

2. (Sandwiching.) For U ∼ Un independent of ~X,

E
~X,U

[
uφ, ~X(U)− `φ, ~X(U)

]
≤ 3sε0.

3. (Simplicity.) Let ∆0 = 404 log8(2n/ε0). Then,

Pr
~X

[
∆
(
`φ, ~X

)
≤ ∆0 and ∆

(
uφ, ~X

)
≤ ∆0

]
≥ 1− 2rε0.

Toward proving Lemma 17, fix a depth-(d+1) read-once NAND formula φ, define X0 = ?n,
and define `(0)

~X
= u

(0)
~X

= φ. Then, for i < r, inductively define

`
(i+1)
~X

= `(`(i)
~X
|Xi

).

That is, `(i+1)
~X

is the lower sandwiching formula when Lemma 16 is applied to `(i)~X
∣∣
Xi

. Similarly,
define

u
(i+1)
~X

= u(u(i)
~X
|Xi

),

i.e., u(i+1)
~X

is the upper sandwiching formula when Lemma 16 is applied to u(i)
~X

∣∣
Xi

. Finally,
define

`φ, ~X = `
(r)
~X

∣∣
Xr

uφ, ~X = u
(r)
~X

∣∣
Xr
.
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Proof of Item 1 of Lemma 17. We show by induction on i that `(i)~X
∣∣
Xi
≤ φ|X1◦···◦Xi

≤
u

(i)
~X

∣∣
Xi

. In the base case i = 0, this is trivial. For the inductive step, we have

`
(i+1)
~X

∣∣
Xi+1

≤
(
`
(i)
φ

∣∣
Xi

)
|Xi+1 By Item 1 of Lemma 16

≤ (φ|X1◦···◦Xi)|Xi+1 By the induction’s hypothesis
= φ|X1◦···◦Xi+1 .

A completely analogous argument works for the upper bound as well. J

Proof of Item 2 of Lemma 17. We show by induction on i that

E
~X,U

[
u

(i)
~X

∣∣
Xi

(U)− `(i)~X
∣∣
Xi

(U)
]
≤ (2t+ 2)iε0. (3)

In the base case i = 0, the statement is trivial. For the inductive step, we have

E
~X,U

[
u

(i+1)
~X

∣∣
Xi+1

(U)− `(i+1)
~X

∣∣
Xi+1

(U)
]

≤ E
~X,U

[
u

(i+1)
~X

(U)− `(i+1)
~X

(U)
]

+ 2tε0 By Corollary 5

≤ E
~X,U

[
u

(i)
~x

∣∣
Xi

(U) + `
(i)
~X

∣∣
Xi

(U)
]

+ (2t+ 2)ε0 By Item 1 of Lemma 16

≤ (2t+ 2)(i− 1)ε0 + (2t+ 2)ε0. By the induction’s hypothesis

Finally, Item 2 of Lemma 17 follows from Equation (3) by plugging-in i = r and as s = rt. J

Proof of Item 3 of Lemma 17. By construction, for every i ≥ 1, the formula `(i)~X and the
formula u(i)

~X
both have the property that every gate ψ satisfies E[¬ψ] ≥ θ, where

θ = ε2
0

4n2 .

Furthermore, as the restrictions are independent, Xi is independent of
(
`
(i)
~X
, u

(i)
~X

)
. Therefore,

by Lemma 14,

Pr
~X

[
∆
(
`
(i)
~X

∣∣
Xi

)
> 10

√
∆
(
`
(i)
~X

)
· log2(1/θ)

]
≤ ε0,

and

Pr
~X

[
∆
(
u

(i)
~X
|Xi

)
> 10

√
∆
(
u

(i)
~X

)
· log2(1/θ)

]
≤ ε0.

By the union bound, we may assume that none of these bad events occur and accumulate an
error of 2ε0 for every restriction. Based on this assumption, we now show by induction on i
that

∆
(
`
(i)
~X

∣∣
Xi

)
≤ max

{
104 log8(1/θ), n(3/4)i

}
, (4)

and

∆
(
u

(i)
~X

∣∣
Xi

)
≤ max

{
104 log8(1/θ), n(3/4)i

}
. (5)
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The base case i = 0 follows from the trivial bound ∆(φ) ≤ n. Now the inductive step. We
have

∆
(
`

(i+1)
~X

∣∣
Xi+1

)
≤ 10

√
∆
(
`

(i+1)
~X

)
· log2(1/θ) By our assumption

≤ 10
√

∆
(
`

(i)
~X

∣∣
xi

)
· log2(1/θ) By Item 2 of Lemma 16

≤ 10
√

max
{

104 log8(1/θ), n(3/4)i
}
· log2(1/θ) By the induction’s hypothesis

Now we have two cases. First, suppose n(3/4)i ≤ 104 log8(1/θ). Then the bound becomes

∆
(
`
(i+1)
~X

)
≤ 10

√
104 log8(1/θ) · log2(1/θ)

= 103 log6(1/θ)
≤ 104 log8(1/θ),

completing the proof of Equation (4) in this case. Now, suppose instead that 104 log8(1/θ) <
n(3/4)i . Then the bound becomes

∆
(
`
(i+1)
~X

)
≤ 10

√
n(3/4)i · log2(1/θ)

≤
√
n(3/4)i · (n(3/4)i

)1/4

= n(3/4)i+1
,

once again completing the proof of Equation (4). The proof of Equation (5) is completely
analogous and we omit it. Item 3 of Lemma 17 follows because by our choice of r, n(3/4)r ≤ 2,
and by the definition of θ,

104 log8(1/θ) = 404 log8(2n/ε0). J

7 Fooling Formulas When ∆ is Small

Recall from Section 3 that our pseudorandom distribution for depth-(d + 1) read-once
formulas is

H◦sd ◦GMRT.

So far, we have shown that up to sandwiching, applying H◦sd substantially simplifies the
formula with high probability while approximately preserving its expectation (Lemma 17).
It remains to show that GMRT fools these simpler formulas. Meka, Reingold, and Tal studied
the problem of fooling XORs of short ROBPs and achieved the following parameters.

I Theorem 18 ([32]). For any positive integers n, w, b and any ε0 > 0 there is an explicit
PRG that ε0-fools all functions f : {0, 1}n → {±1} of the form

f(x) =
m∏
i=1

gi(x),

where g1, . . . , gm : {0, 1}n → {±1} are defined over disjoint variable sets of size at most b
and each gi can be computed by an arbitrarily ordered width-w ROBP. The seed length of the
PRG is

log(n/ε0) ·O(log b+ log log(n/ε0))2w+2.
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It immediately follows that we can fool formulas when ∆ is small with the following
parameters.

I Corollary 19. For any integers n, d, ∆0 and any ε0 > 0, there is an explicit distribution
GMRT that ε0-fools depth-d read-once NAND formulas φ satisfying ∆(φ) ≤ ∆0 that can be
sampled using

log(n/ε0) ·O(d log ∆0 + log log(n/ε0))2d+2

truly random bits.

Proof. Write φ = NAND(ϕ1, . . . , ϕm). Then ¬φ = ∧mi=1ϕi. Applying the Fourier expansion
of the m-input ∧ function gives

¬φ =
∑
S⊆[m]

(−1)|S|

2m ·
∏
i∈S

(−1)ϕi .

Since
∑
S

∣∣∣ (−1)|S|
2m

∣∣∣ = 1, it suffices to fool each function
∏
i∈S(−1)ϕi separately.

Since ∆(φ) ≤ ∆0, each ϕi depends on at most ∆d−1
0 variables. Since φ is read-once, the

ϕi-s depend on disjoint sets of variables. Since each ϕi is a depth-(d− 1) read-once NAND
formula, it can be computed by a width-d ROBP under some ordering of the variables [13].
Applying Theorem 18 completes the proof, since fooling φ is equivalent to fooling ¬φ. J

8 Putting Everything Together: Proof of Theorem 1

To prove the correctness of our PRG, we first need to justify the fact that our analysis has so
far focused on NAND formulas whereas our main result governs AC0 formulas, i.e., formulas
over the {∧,∨,¬} basis.

I Lemma 20. For any layered read-once AC0 formula φ, either φ or ¬φ can be computed
by a read-once NAND formula with the same underlying tree structure as φ.

Proof. We proceed by induction on the depth d of φ to show that if the output gate of φ is
∨, then φ can be computed by a read-once NAND formula with the same underlying tree
structure as φ. In the base case d = 1, we have φ = ∨mi=1`i, where each `i is a literal. Then
we can also write

φ = NAND(¬`1, . . . ,¬`m).

Now, for the inductive step, assume φ = ∨mi=1ϕi, where each ϕi is a depth-d read-once
formula with output gate ∧. Then once again,

φ = NAND(¬ϕ1, . . . ,¬ϕm).

By moving ¬ gates downward, ¬ϕi can be converted to a depth-d read-once formula with
output gate ∨ without altering its underlying tree structure. Applying the induction’s
hypothesis completes the proof. Finally, the lemma follows, because if the output gate of φ is
∧, then ¬φ can be computed by a read-once formula with the same underlying tree structure
with output gate ∨. J

Conversely, any read-once NAND formula can be straightforwardly simulated by a layered
read-once AC0 formula with the same underlying tree structure. We are now ready to
complete the analysis of our PRG.
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Proof of Theorem 1. Recall that our PRG is Gd+1 = H◦sd ◦GMRT.

Parameters. Assume d ≤ log log(n/ε). (Otherwise, Theorem 1 follows already from the work
of Forbes and Kelley [17].) Let c be the constant from Lemma 8. Let r = d3 log logne,
and define

ε0 = ε

10r · cd log log(n/ε) .

Let θ = ε2
0

4n2 . Let t = cddlog log(n/θ)e (without loss of generality, take c to be an integer),
and let s = tr. Let α = ε4/n3; this is small enough to satisfy the hypothesis of Lemma 14.
Let k, δ, γ be the values required by Lemma 4. Let ∆0 be the value specified by Lemma 17.

Correctness. Let φ be a depth-(d+ 1) read-once AC0 formula. We can straightforwardly
make φ a layered read-once AC0 formula without changing its depth. Since fooling φ
is equivalent to fooling ¬φ, by Lemma 20, we may assume that φ is a depth-(d + 1)
read-once NAND formula. Since s = tr, we can write H◦sd = (H◦td )◦r. Consider drawing
independent samples X1, . . . , Xr ∼ H◦td . Let `φ, ~X , uφ, ~X be the formulas guaranteed to
us by Lemma 17. For brevity, let G = GMRT, and let U ∼ Un be independent of G and
H◦sd . Let E be the high-probability event of Item 3 of Lemma 17, so whether E occurs
depends only on ~X. Then,

E
Gd+1

[φ(Gd+1)] = E
~X

[
E
G

[φ|X1◦···◦Xr (G)]
]

By the definition of Gd+1

≤ E
~X

[
E
G

[uφ, ~X(G)]
]

By Item 1 of Lemma 17

≤ E
~X

[
E
G

[uφ, ~X(G)]
∣∣∣ E]+ Pr

~X
[¬E]

≤ E
~X

[
E
U

[uφ, ~X(U)] + ε0

∣∣∣ E]+ Pr
~X

[¬E] By Corollary 19

≤ E
~X

[
E
U

[uφ, ~X(U)] + ε0

]
+ 2 Pr

~X
[¬E]

≤ E
~X,U

[uφ, ~X(U)] + (1 + 2r)ε0 By Item 3 of Lemma 17

≤ E
~X,U

[φ|X1◦···◦Xr
(U)] + (1 + 2r + 3s)ε0 By Item 2 of Lemma 17

≤ E[φ] + (1 + 2r + 4s)ε0 By Corollary 5.

A completely analogous argument handles the lower bound. To complete the proof of
correctness, we verify that with our choice of parameters, the error is bounded by ε:

(1 + 2r + 4s)ε0 ≤ 5sε0 ≤
1 + log log(n/θ)
2 log log(n/ε) · ε ≤ ε.

Seed Length. Let q(n, d, ε) denote the seed length of our ε-PRG for depth-d read-once AC0.
We will prove by induction on d that

q(n, d, ε) ≤ log(n/ε) · (Cd log log(n/ε))2d+2, (6)

where C is an absolute constant to be specified later.
In the base case d = 2, our PRG is just the PRG by Gopalan et al. [22], which has seed
length C1 log(n/ε)(log log(n/ε))3 for some absolute constant C1. Since 2d + 2 > 3, we
can ensure that Equation (6) holds by choosing C > C1.
Now, for the inductive step, fix d ≥ 2 and consider Gd+1. We can divide the seed length
of Gd+1 into three components.

CCC 2019



16:22 Near-Optimal PRGs for Constant-Depth Read-Once Formulas

(The inductive seed length.) To sample from H◦sd , we must draw 2s independent
samples from Gd. The number of truly random bits required for this process is bounded
by 2s · q(n, d, α). There is an absolute constant C2 so that s ≤ (C2d log log(n/ε))2.
By induction and our choice of α = ε4/n3, the number of truly random bits for this
component, q1, is bounded by

q1 ≤ 8 log(n/ε) · (Cd)2d+2 · (2 + log log(n/ε))2d+2 · s.

To handle the additive 2 term in the middle, we can bound

(2 + log log(n/ε))2d+2 = (log log(n/ε))2d+2 ·
(

1 + 2
log log(n/ε)

)2d+2

≤ (log log(n/ε))2d+2 · exp
(

4d+ 4
log log(n/ε)

)
≤ e8,

since we assumed d ≤ log log(n/ε). Therefore,

q1 ≤ 8 · e8 · log(n/ε) · (Cd log log(n/ε))2d+2 · (C2d log log(n/ε))2

≤ 1
3 log(n/ε) · (C(d+ 1) log log(n/ε))2(d+1)+2

as long as we choose C > C2.
(The seed length for D and T .) To sample from H◦sd , we must also draw 2s independent
samples from D and T . Using standard constructions [33, 2], the number of truly
random bits required for this process, q2, is 2s ·O(k + log(n/δ) + log(1/γ)). For some
absolute constant C3, by our choices of k, δ, γ, this is bounded by

q2 ≤ C3d
2 log(n/ε) log log(n/ε) log logn

≤ 1
3 log(n/ε) · (C(d+ 1) log log(n/ε))2(d+1)+2,

provided C > C3.
(The seed length for the MRT generator.) Because of our choices for the parameters
ε0 and ∆0, there is an absolute constant C4 such that in the construction of Gd+1, the
seed length q3 of the distribution GMRT from Corollary 19 satisfies

q3 ≤ log(n/ε) · (C4(d+ 1) log log(n/ε))2(d+1)+2.

Choosing C > C4 ensures

q3 ≤
1
3 log(n/ε) · (C(d+ 1) log log(n/ε))2(d+1)+2.

Summing up q1, q2, q3 completes the proof of Equation (6).

Explicitness. Our PRG construction combines explicit PRGs in a straightforward way, so it
is explicit as well, i.e., it can be computed in space proportional to its seed length. J
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9 Fooling Read-Once AC0[⊕] Formulas With a Few Parity Gates

In this section, as outlined in Section 1.3, we prove Theorem 2, which extends our main
theorem to the case of AC0[⊕] formulas with a bounded number of parity gates. (An AC0[⊕]
formula is defined just like an AC0 formula except that the gates may be labled ∧, ∨, or ⊕.)
The main challenge in proving Theorem 2 is that the sandwiching argument from Section 6
does not easily generalize. The trouble is that the parity function is not monotone, so it does
not compose well with sandwiching formulas. This difficulty already arises in the special case
of PARITY ◦AC0, i.e., the case that the root gate is a parity gate and there are no other
parity gates. Instead of true sandwiching formulas, we merely get the following: For every
read-once PARITY ◦AC0 formula φ, there is a PARITY ◦AC0 formula φ̃ in which every
gate rejects with non-negligible probability; this formula φ̃ approximates φ in the sense that

Pr
X∼Un

[
φ(X) = φ̃(X)

]
≈ 1.

This does not straightforwardly imply correctness of our PRG, because it says nothing about
the expectation of φ under our pseudorandom distribution.

Briefly, to resolve this difficulty, we also design an auxiliary AC0 formula Tφ that certifies
that most points x satisfy φ(x) = φ̃(x). Since Tφ is itself fooled by our PRG, φ̃ must be
a good approximation of φ under our pseudorandom distribution as well as the uniform
distribution, i.e.,

Pr
X∼Gd

[
φ(X) = φ̃(X)

]
≈ 1.

This condition is a suitable alternative to the sandwiching condition. (A similar approach
has been taken in several other works, e.g., [6, 12, 32].)

9.1 Special Case: Read-Once PARITY◦AC0

Toward proving Theorem 2, we begin by considering read-once formulas of the form PARITY◦
AC0. Fix any positive integers n, d and any ε1 > 0. Let H◦sd ◦ GMRT be our ε1-PRG for
depth-(d+ 1) read-once AC0 formulas used to prove Theorem 1, but with different values
for the parameters k, δ, γ (we will explain the changes later). We will prove the following.

I Lemma 21 (Fooling Read-Once PARITY ◦AC0). Let φ =
⊕m

j=1 φj, where each φj is a
depth-d read-once AC0 formula, φ1, . . . , φm are on disjoint variable sets, and φ is defined
over {0, 1}n. Then H◦2sd ◦GMRT fools φ with error n2ε1.

Note that the PRG in Lemma 21 applies twice as many independent copies of Hd as the
PRG in the proof of Theorem 1. Note also that the PRG Gd that underlies Hd is merely
assumed to fool depth-d read-once AC0 formulas (i.e., without any parity gates).

In the remainder of this subsection, we sketch the proof of Lemma 21 by reviewing the
proof of Theorem 1 and making the necessary alterations.

9.1.1 Hd Still Preserves the Expectation
The analogue of Corollary 5 still holds in the PARITY ◦AC0 setting, with suitable changes
to the constants:

I Lemma 22. There exist absolute constants c′1, c′2, c′3 > 0, such that if we set

k = c′1 log(nd/ε0), δ = ε0 ·
(

c′2
logn

)−k(2d+2)
, and γ = c′3ε0

nd
,
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then Hd satisfies the following. Let φ =
⊕m

j=1 φj, where each φj is a depth-d read-once
NAND formula, φ1, . . . , φm are on disjoint variable sets, and φ is defined on {0, 1}n. Then,
for every integer t ≥ 1,∣∣∣∣ E

U∼Un

[φ(U)]− E
H◦t

d
,V∼Un

[
φ|H◦t

d
(V )
]∣∣∣∣ ≤ ε0t.

Proof sketch. The argument is essentially the same as the proof of Corollary 5. The only
change is the width bound. The parity function can be computed by a width-2 ROBP and
each φj can be simulated by a width-(d+ 1) ROBP, so we can simulate φ by a width-(2d+ 2)
ROBP. J

9.1.2 H◦t
d Still Simplifies Formulas Where Each Gate Rejects with

Noticeable Probability

Once again, for a formula φ as in Lemma 22, we define ∆(φ) to be the maximum fan-in of
any gate other than the root. The analogue of Lemma 14 also still holds in this setting:

I Lemma 23. Let φ be as in Lemma 22. Assume d ≤ logn, let ε0 > 0, and let c be the
constant guaranteed by Corollary 13. Further assume that θ ∈ (0, 2

n ) is such that for every
gate ψ in φ, possibly excluding the root, E[¬ψ] ≥ θ. Then, for every integer t ≥ cd log log(n/θ)
and every α ≤ ε2

0
8(dn)2√n log2(1/θ)t ,

Pr
X∼H◦t

d

[
∆(φ|X) ≤ 10

√
∆(φ) log2(1/θ)

]
≥ 1− ε0,

where the PRG for depth-d read-once formulas underlying Hd is instantiated with error α.

Proof. The proof of Lemma 9 still works in this setting, because if ψ is a gate other than the
root, then the subformula rooted at ψ is a read-once NAND formula of depth at most d. J

9.1.3 Ensuring Noticeable Chance of Rejecting

As discussed at the beginning of this section, we are not able to generalize Lemma 16 to the
PARITY◦AC0 setting. However, in the original setting of NAND formulas, we can strengthen
Lemma 16 by obtaining a read-once AC0 formula that certifies that the sandwiching formulas
are good approximations. Here, for simplicity and because it is sufficient, we focus on the
lower sandwiching formula:

I Lemma 24. Let φ, ε0, and `φ be as in Lemma 16. There is a depth-d read-once AC0

formula T `φ : {0, 1}n → {0, 1} such that E[T `φ] ≥ 1 − ε0, and for every x ∈ {0, 1}n, if
T `φ(x) = 1 then

`φ(x) = φ(x).

We defer the proof of Lemma 24 to Appendix A, where we prove the generalization
involving both the lower and the upper sandwiching formulas (Lemma 30). Just like in
Section 6, we must alternately apply Lemma 24 to ensure non-negligible chance of rejection
and Lemma 23 to argue that the formula simplifies. The following lemma is analogous
to Lemma 17.
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I Lemma 25. Let φ be as in Lemma 22. Assume the parameters α, k, δ, γ underlying Hd

satisfy the hypotheses of Lemma 23 and Lemma 22. Let θ be the value in Lemma 16, let t be
as in Lemma 23, let r = d3 log logne, and let s = rt.

Sample independent restrictions X1, . . . , Xr ∼ H◦td . For any such vector of restrictions
~X, there is a formula φ̃ ~X =

⊕m
j=1 φ̃j, where each φ̃j is a depth-d read-once NAND formula

and φ̃1, . . . , φ̃m are on disjoint variable sets, and there is a function Tφ, ~X : {0, 1}n → {0, 1}
with the following properties.
1. (Success indication.) For every sample ~X and every point x ∈ {0, 1}n, if Tφ, ~X(x) = 1,

then

φ̃ ~X(x) = (φ|X1◦···◦Xr
)(x).

2. (Approximation.) If G ε1-fools depth-d read-once AC0 formulas and is independent of
~X, then

E
~X,G

[
Tφ, ~X(G)

]
≥ 1−mr(ε1 + (s+ 1)ε0).

3. (Simplicity.) Let ∆0 = 404 log8(2n/ε0). Then,

Pr
~X

[
∆
(
φ̃ ~X

)
≤ ∆0

]
≥ 1− rε0.

The proof of Lemma 25 is similar to the proof of Lemma 17, and we defer it to Appendix B.

9.1.4 GMRT Still Fools Formulas When ∆ Is Small
The analogue of Corollary 19 still holds in the PARITY ◦AC0 setting:

I Lemma 26. Fix any positive integers n, d,∆0 and any ε0 > 0. Let φ be as in Lemma 22,
assume ∆(φ) ≤ ∆0, and let GMRT be as in Corollary 19. Then GMRT fools φ with error ε0/2.

Proof sketch. We can write

φ =
m⊕
j=1

φj = 1
2 −

1
2

m∏
j=1

(−1)φj .

The rest of the argument is the same as in the proof of Corollary 19. J

9.1.5 Putting Everything Together for PARITY◦AC0

Proof Sketch of Lemma 21. We can straightforwardly make each φj a layered read-once
formula without changing its depth. By Lemma 20, either φj or ¬φj can be computed by a
read-once NAND formula with the same underlying tree structure. Furthermore, ¬ gates
can be pushed upward through ⊕ gates. Therefore, since fooling φ is the same as fooling ¬φ,
we may simply assume that φ1, . . . , φm are NAND formulas.

Since s = tr, we can write H◦2sd = (H◦td )◦r ◦H◦sd . Consider drawing independent samples
X1, . . . , Xr ∼ H◦td , Y ∼ H◦sd . Let φ̃ ~X , Tφ, ~X be the functions guaranteed to us by Lemma 25.
For brevity, let G = GMRT, and let U ∼ Un, all independent of X1, . . . , Xr, Y . Let E be
the high-probability event of Item 3 of Lemma 25, so whether E occurs depends only on ~X.
Then,

E
H◦2s

d
,G

[φ(H◦2sd ◦G)] = E
~X,Y,G

[φ|X1◦···◦Xr (Y ◦G)] .
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By Item 2 of Lemma 25,∣∣∣∣∣ E
~X,Y,G

[φ|X1◦···◦Xr (Y ◦G)]− E
~X,Y,G

[
φ̃ ~X(Y ◦G)

]∣∣∣∣∣ ≤ E
~X,Y,G

[
¬Tφ, ~X(Y ◦G)

]
.

Observe that Y ◦ G is exactly the pseudorandom distribution used to prove Theorem 1.
Therefore, it ε-fools depth-d read-once AC0 formulas. Therefore, by Item 1 of Lemma 25,

E
~X,Y,G

[
¬Tφ, ~X(Y ◦G)

]
≤ nr(ε1 + (s+ 1)ε0).

This will be one term in the overall error. Next, we have∣∣∣∣∣ E
~X,Y,G

[
φ̃ ~X(Y ◦G)

]
− E

~X,Y,U

[
φ̃ ~X(Y ◦ U)

]∣∣∣∣∣
≤
∣∣∣∣E~X
[
E
Y,G

[(
φ̃ ~X |Y

)
(G)
] ∣∣∣∣ E]− E

~X

[
E
Y,U

[(
φ̃ ~X |Y

)
(U)
] ∣∣∣∣ E]∣∣∣∣+ 2 Pr

~X
[¬E]

≤ ε0

2 + 2 Pr
~X

[¬E],

where the last step was by Lemma 26 (note that ∆
(
φ̃ ~X |Y

)
≤ ∆

(
φ̃ ~X

)
.) This is another

term in the overall error. For the next step, by Lemma 22, we have∣∣∣∣∣ E
~X,Y,U

[
φ̃ ~X(Y ◦ U)

]
− E

~X,U

[
φ̃ ~X(U)

]∣∣∣∣∣ ≤ sε0.

Now, trivially, U fools read-once AC0 with error 0, so∣∣∣∣∣ E~X,U
[
φ̃ ~X(U)

]
− E

~X,U
[φ|X1◦···◦Xr

(U)]

∣∣∣∣∣ ≤ E
~X,U

[
¬Tφ, ~X(U)

]
By Item 1 of Lemma 25

≤ nr(s+ 1)ε0 By Item 2 of Lemma 25.

Invoking Lemma 22 one more time gives∣∣∣∣∣ E~X,U [φ|X1◦···◦Xr (U)]− E
U

[φ(U)]

∣∣∣∣∣ ≤ sε0.

Adding up all the errors by the triangle inequality, we get∣∣∣∣∣ E
H◦2s

d
,G

[φ(H◦2sd ◦G)]− E
U

[φ(U)]

∣∣∣∣∣ ≤ nr(ε+ (s+ 1)ε0) + ε0

2 + 2 Pr[¬E]

+ sε0 + nr(s+ 1)ε0 + sε0

≤ nrε1 + 5nrsε0

< n2ε1

as claimed. J

9.2 The General Case of Read-Once AC0[⊕] with t Parity Gates
We first prove a seemingly weak bound on the spectral norm (i.e. the sum of the absolute
value of the Fourier coefficients) of a read-once AC0[⊕] formula φ in terms of the number of
its gates, denoted as size(φ).
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I Lemma 27. Let φ be an AC0[⊕] formula. Then,∥∥∥φ̂∥∥∥
1
≤ 3size(φ).

Proof. The proof uses the fact that spectral norm behaves nicely under composition.

B Claim 28. Let f(x) = g(h1(x), ..., hm(x)), where f : {0, 1}n → {−1, 1}, g : {−1, 1}m →
{−1, 1}. Then,∥∥∥f̂∥∥∥

1
≤ ‖ĝ‖1 ·

m∏
i=1

∥∥∥ĥi∥∥∥
1

Proof. Note that,

f(x) =
∑
S⊆[n]

ĝ(S)
∏
i∈S

hi(x).

The triangle inequality and submultiplicativity of the spectral norm give∥∥∥f̂∥∥∥ ≤ ∑
S⊆[n]

|ĝ(S)|
∏
i∈S

∥∥∥ĥi∥∥∥
1
≤
∑
S⊆[n]

|ĝ(S)|
m∏
i=1

∥∥∥ĥi∥∥∥
1

= ‖ĝ‖1 ·
m∏
i=1

∥∥∥ĥi∥∥∥
1
,

where the second inequality uses the fact that
∥∥∥ĥi∥∥∥

1
≥ 1, as can be seen as follows. Choose

an arbitrary x ∈ {0, 1}n, we have

1 = |hi(x)| =

∣∣∣∣∣∣
∑
S⊆[n]

ĥi(S)χS(x)

∣∣∣∣∣∣ ≤
∑
S⊆[n]

∣∣∣ĥi(S)
∣∣∣ =

∥∥∥ĥi∥∥∥
1
. J

Let ∧m,∨m,⊕m : {0, 1}m → {0, 1} denote an ∧ gate with m inputs, an ∨ gate with m inputs,
and a ⊕ gate with m inputs respectively. We use the fact that for any m > 0,∥∥∥ ̂(−1)∧m

∥∥∥
1
,
∥∥∥ ̂(−1)∨m

∥∥∥
1
,
∥∥∥ ̂(−1)⊕m

∥∥∥
1
≤ 3.

Let G denote the set of the gates in the circuit φ. Applying Claim 28 recursively over all the
gates of φ implies that∥∥∥φ̂∥∥∥

1
≤ 1

2 + 1
2 ·
∥∥∥(̂−1)φ

∥∥∥
1
≤ 1

2 + 1
2 ·
∏
g∈G

∥∥∥(̂−1)g
∥∥∥ ≤ 1

2 + 1
2 · 3

|G| ≤ 3size(φ). J

I Proposition 29. Let φ be a depth-(d + 1) read-once AC0[⊕] formula with t ≥ 1 parity
gates. Then H◦2sd ◦GMRT fools f with error n2ε1 · 3(d+1)t.

Proof. Let A denote the set of all gates of φ that are either a parity gate or have a descendant
that is a parity gate. It is easy to see that |A| ≤ (d+ 1)t, since each parity gate contributes
to at most d+ 1 ancestors. Define Y = {y1, ..., ym} to be the set of all nodes outside A that
have an immediate parent in A, moreover, let h1, ..., hm to be the functions computed at
these nodes respectively. It is easy to see that

φ(x) = g(h1, ..., hm),

where g is a depth-d read-once AC0[⊕] formula of size at most (d+ 1)t. Using the Fourier
expansion of g,

φ(x) =
∑
S⊆[m]

ĝ(S) ·
∏
i∈S

(−1)hi =
∑
S⊆[m]

ĝ(S) · (1− 2 ·
⊕
i∈S

hi).

By Lemma 27, ‖ĝ‖1 ≤ 3(d+1)t, and by Lemma 21, each
⊕

i∈S hi is n2ε fooled by H◦2sd ◦GMRT.
As a result H◦2sd ◦GMRT fools φ with error at most 2 · n2ε1 · 3(d+1)t. J
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Proof of Theorem 2. By Proposition 29, the generator H◦2sd ◦GMRT ε-fools depth-(d+ 1)
read-once AC0[⊕] formulas with at most t parity gates provided we set ε1 := ε

n2·3(d+1)t . Now
we bound the seed length. The seed length for the distributions D and T underlying Hd

is still bounded by O(d2 log(n/ε1) log log(n/ε1) log logn), just as in the proof of Theorem 1.
Similarly, the seed length for Gd and GMRT is still bounded by

log(n/ε1) ·O((d+ 1) log log(n/ε1))2(d+1)+2

((d+ 1)t+ log(n/ε)) ·O((d+ 1)(log log(n/ε) + log((d+ 1)t))2(d+1)+2.

This second term dominates. Replacing d with d− 1 completes the proof. J
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A Proofs of Lemma 16 and Lemma 24

Recall that Lemma 16 states that every read-once NAND formula can be sandwiched by two
similar structured NAND formulas where every gate has a non-negligible chance of rejecting.
We now present the proof of Lemma 16. We emphasize that this argument was already given
by Chen, Steinke, and Vadhan [13]; we are reproducing it here to verify the exact parameters
of Lemma 16 and so that we can reference the proof when proving Lemma 24.

Proof of Lemma 16. We proceed by induction on size(φ), i.e., the number of NAND gates,
to prove the lemma with the modified bound E[uφ − `φ] ≤ n

√
θ + size(φ)θ. In the base case

size(φ) = 0, if φ is non-constant, it is a single literal, which has expectation 1
2 , so we can

simply take `φ = uφ = φ. Now for the inductive step, suppose φ = NAND(φ1, . . . , φm). Let
ni be the number of inputs to φi, so

∑
i ni = n (recall φ is read-once). By induction, for

each i ∈ [m], there exist formulas `φi
≤ φi ≤ uφi

with the following properties:
E[uφi

− `φi
] ≤ ni

√
θ + size(φi)θ.

Each of uφi
and `φi

has an underlying tree structure that is a subgraph of the underlying
tree structure of φi.
Every non-constant gate ψ in either `φi or uφi satisfies E[ψ] ≥ θ and E[¬ψ] ≥ θ.
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We consider two cases. For the first case, suppose E[¬φ] ≥ θ. In this case, define

`φ = NAND(uφ1 , . . . , uφm)

uφ =
{
NAND(`φ1 , . . . , `φm

) if that gives E[¬uφ] ≥ θ
1 otherwise.

Because NAND is anti-monotone, `φ ≤ φ ≤ uφ. In the first case of the definition of uφ, by
the union bound, we have

E[uφ − `φ] ≤
m∑
i=1

(ni
√
θ + size(φi)θ) = n

√
θ + (size(φ)− 1)θ

as desired. In the second case of the definition of uφ, the error only increases by at most
θ, which is still within the bound of n

√
θ + size(φ)θ. Finally, we must verify that every

non-constant gate ψ in these formulas satisfies E[ψ] ≥ θ and E[¬ψ] ≥ θ. For gates other than
the output gate, this is true by induction, so let us verify that it holds for the output gates.
We have E[¬`φ] ≥ E[¬φ] ≥ θ. On the other hand, if `φ is non-constant, then some child uφi

is non-constant, hence E[`φ] ≥ E[¬uφi ] ≥ θ. Similarly, by construction, if uφ is non-constant,
then E[¬uφ] ≥ θ and E[uφ] ≥ E[¬`φi

] ≥ θ.
Now, for the second case, suppose E[¬φ] < θ. In this case, define

˜̀
φ = NAND(uφ1 , . . . , uφm

)
uφ = 1.

As before, ˜̀φ ≤ φ ≤ uφ, and if ˜̀φ is non-constant, then E[˜̀φ] ≥ E[¬uφi
] ≥ θ. Furthermore,

E[uφ − ˜̀φ] ≤ n
√
θ + size(φ)θ. So if E[¬˜̀φ] ≥ θ, we can just set `φ = ˜̀

φ and we’re done.
Assume, therefore, that E[¬˜̀φ] < θ.

In this case, we divide into two subcases. First, suppose that for some i, we have
E[uφi

] ≤
√
θ. Then we define `φ = NAND(uφi

). Clearly, we still have `φ ≤ φ. Furthermore,

E[uφ − `φ] = E[¬`φ] = E[uφi ] ≤
√
θ.

For the second and final subcase, suppose that for every i, E[uφi ] >
√
θ. In this case, since∏m

i=1 E[uφi
] = E[¬˜̀φ] < θ, there must be some j such that

θ ≤
j∏
i=1

E[uφi ] ≤
√
θ.

Therefore, define

`φ = NAND(uφ1 , . . . , uφj ).

That way, `φ ≤ φ ≤ uφ, and E[¬`φ] ≥ θ, and

E[uφ − `φ] = E[¬`φ] ≤
√
θ.

That completes the induction. To get the parameters claimed in the lemma statement, just
observe that size(φ) ≤ nd and n

√
θ + ndθ < ε0. J

Now we state and prove a strengthening of Lemma 24.
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I Lemma 30. Let φ be a depth-d read-once NAND formula over n variables with d ≤ n and
let ε0 > 0. Let `φ and uφ be the read-once NAND formulas guaranteed to us by Lemma 16.
Then, there exist T `φ, Tuφ : {0, 1}n → {0, 1} satisfying the following conditions:
1. If x ∈ {0, 1}n is such that φ(x) 6= `φ(x) then T `φ(x) = 0.
2. If x ∈ {0, 1}n is such that φ(x) 6= uφ(x) then Tuφ (x) = 0.
3. Both E[T `φ] ≥ 1− ε0 and E[T `φ] ≥ 1− ε0.
4. Both T `φ and Tuφ are computable by depth-d read-once AC0 formulas.
Roughly speaking, the lemma gives us an “error-indicator” read-once formula that is guar-
anteed to be zero whenever the sandwiching formula does not give the same value as the
original formula. The proof of the lemma will heavily use the proof of Lemma 16.

Proof. The proof is by induction on size(φ), as in Lemma 16. In the base case size(φ) = 0,
we simply take T `φ = Tuφ = 1 since `φ = uφ = φ. For the inductive step, suppose φ =
NAND(φ1, . . . , φm) where for each i, size(φi) = ni so that

∑
i ni = n. By our hypothesis,

for every i ∈ [m] there exist formulas `φi
and uφi

guaranteed to us by Lemma 16, as well as
formulas Tuφi

and Tuφi
with the following properties:

T `φi
(x) = 0 whenever φi(x) 6= `φi .

Tuφi
(x) = 0 whenever φi(x) 6= uφi

.

E[¬T `φi
] ≤ ni

√
θ + size(φi)θ and E[¬Tuφi

] ≤ ni
√
θ + size(φi)θ, for θ = ε2

0
4n2 .

T `φi
and Tuφi

are computable by depth-(d− 1) read-once AC0 formulas.
Let us first handle Tuφ . For uφ there are two possibilities. It can be either set to uφ = 1 or
set to uφ = NAND(`φ1 , . . . , `φm

).
1. In the first case, where uφ = 1, we set Tuφ = φ and so when Tuφ (x) = 1 clearly φ(x) =

uφ(x) = 1. To bound E[Tuφ ] = E[φ], recall that this case is invoked only when either
E[¬φ] < θ, in which case the bound is clear, or when E[`φ1 ∧ . . . ∧ `φm

] =
∏
i E[`φi

] < θ.
In the latter case, since E[φi − `φi ] ≤ ni

√
θ + size(φi)θ , ζi, we obtain

E[¬Tuφ ] =
m∏
i=1

E[φi]

=
m∏
i=1

E[`φi
] +

m∑
i=1

(E[φi]− E[`φi
])
i−1∏
j=1

E[φj ]
m∏

j=i+1
E[`φj

]


≤ θ +

m∑
i=1

ζi = θ + n
√
θ + (size(φ)− 1)θ = n

√
θ + size(φ)θ ≤ ε0.

2. In the second case, where uφ = NAND(`φ1 , . . . , `φm), set Tuφ =
∧m
i=1 T

`
φi
. If x ∈

{0, 1}n is such that Tuφ (x) = 1 then T `φi
(x) = 1 for every i ∈ [m] and so uφ(x) =

NAND(φ1(x), . . . , φm(x)) = φ(x). To bound E[Tuφ ], note that

Pr[Tuφ = 0] ≤
m∑
i=1

Pr[T `φi
= 0] ≤

m∑
i=1

(ni
√
θ + size(φi)θ) = n

√
θ + (size(φ)− 1)θ ≤ ε0,

as desired.
In both cases, the depth requirement is immediate.

We shall now handle T `φ. The two possibilities for `φ are as follows.
1. In the first case, `φ = NAND(uφ1 , . . . , uφm). Here, we set T `φ =

∧m
i=1 T

u
φi

and the
correctness is similar to case (2) of Tuφ .
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2. In the second case, up to reordering of the formulas, there exists j ∈ [m− 1] such that
`φ = NAND(uφ1 , . . . , uφj

). We choose T `φ = `φ, and surely if x ∈ {0, 1}n is such that
`φ(x) = 1 then φ(x) = 1 since φ ≥ `φ.
To bound E[T `φ], recall that j is chosen (again, up to reordering) so that E[uφ1∧. . .∧uφj

] ≤√
θ. Thus, E[¬T `φ] ≤

√
θ ≤ ε0.

Again, in both cases, the depth requirement is immediate. J

B Proof of Lemma 25

Toward proving Lemma 25, fix φ, define X0 = ?n, and define `(0)
j, ~X

= φj for each j ∈ [m].
Then, for i < r, inductively define

`
(i+1)
j, ~X

= `(`(i)
j, ~X
|Xi

)

That is, `(i+1)
j, ~X

is the lower sandwiching formula when Lemma 16 is applied to `
(i)
j, ~X
|Xi .

Furthermore, define

T
(i+1)
j, ~X

= T `
(`(i)

j, ~X
|Xi

)

∣∣
Xi+1◦···◦Xr

.

That is, T (i+1)
j, ~X

is the success certifier of Lemma 24 for the sandwiching formula `
(i+1)
j, ~X

,
restricted according to Xi+1 ◦ · · · ◦Xr. Finally, define

φ̃ ~X =
m⊕
j=1

(
`
(r)
j, ~X
|Xr

)
Tφ, ~X =

r∧
i=1

m∧
j=1

T
(i)
j, ~X

.

Proof of Item 1 of Lemma 25. Fix x and assume Tφ, ~X(x) = 1. Fix an arbitrary j ∈ [m].
We’ll show by backward induction on i that

(`(r)
j, ~X
|Xr

)(x) = (`(i)
j, ~X
|Xi◦Xi+1◦···◦Xr

)(x). (7)

In the base case i = r, this is trivial. Now for the inductive step, assume Equation (7) is
true for i+ 1, and we’ll prove it for i. Since Tφ, ~X(x) = 1, we must have T (i+1)

φ, ~X
(x) = 1. That

is, (T `
(`(i)

j, ~X
|Xi

)
|Xi+1◦···◦Xr

)(x) = 1. This implies that

`
(i+1)
j, ~X

(Xi+1 ◦ · · · ◦Xr ◦ x) = `
(i)
j, ~X

(Xi ◦Xi+1 ◦ · · · ◦Xr ◦ x).

Applying the induction hypothesis completes the proof of Equation (7). Now, plugging in
i = 0 to Equation (7), we find that

(`(r)
j, ~X
|Xr

)(x) = (φj |X1◦···◦Xr
)(x). (8)

Since Equation (8) holds for all j simultaneously, we can apply the parity operation from
j = 1 to m to complete the proof. J
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Proof of Item 2 of Lemma 25. Fix any arbitrary i ∈ [r], j ∈ [m]. Let U ∼ Un be independ-
ent of ~X. We have

E
~X,G

[
T

(i)
j, ~X

(G)
]
≥ E

~X,U

[
T

(i)
j, ~X

(U)
]
− ε1 T

(i)
j, ~X

is a depth-d formula

= E
~X,U

[
T `

(`(i−1)
j, ~X

|Xi−1 )
(Xi ◦ · · · ◦Xr ◦ U)

]
− ε1 By the definition of T (i)

j, ~X

≥ E
~X,U

[
T `

(`(i−1)
j, ~X

|Xi−1 )
(U)
]
− ε1 − sε0 By Corollary 5

≥ 1− ε1 − (s+ 1)ε0 By Lemma 24.

Taking a union bound over i and j completes the proof. J

The proof of Item 3 of Lemma 25 is essentially the same as the proof of Item 3 of
Lemma 17 and we omit it.
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