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Abstract
We considerably sharpen the known connections between circuit-analysis algorithms and circuit lower
bounds, show intriguing equivalences between the analysis of weak circuits and (apparently difficult)
circuits, and provide strong new lower bounds for approximately computing Boolean functions with
depth-two neural networks and related models.

We develop approaches to proving THR ◦ THR lower bounds (a notorious open problem), by
connecting algorithmic analysis of THR ◦ THR to the provably weaker circuit classes THR ◦MAJ
and MAJ ◦MAJ, where exponential lower bounds have long been known. More precisely, we
show equivalences between algorithmic analysis of THR ◦ THR and these weaker classes. The
ε-error CAPP problem asks to approximate the acceptance probability of a given circuit to within
additive error ε; it is the “canonical” derandomization problem. We show:

There is a non-trivial (2n/nω(1) time) 1/ poly(n)-error CAPP algorithm for poly(n)-size
THR ◦ THR circuits if and only if there is such an algorithm for poly(n)-size MAJ ◦MAJ.
There is a δ > 0 and a non-trivial SAT (δ-error CAPP) algorithm for poly(n)-size THR ◦THR
circuits if and only if there is such an algorithm for poly(n)-size THR ◦MAJ.
Similar results hold for depth-d linear threshold circuits and depth-d MAJORITY circuits.

These equivalences are proved via new simulations of THR circuits by circuits with MAJ gates.
We strengthen the connection between non-trivial derandomization (non-trivial CAPP algorithms)
for a circuit class C, and circuit lower bounds against C. Previously, [Ben-Sasson and Viola,
ICALP 2014] (following [Williams, STOC 2010]) showed that for any polynomial-size class
C closed under projections, non-trivial (2n/nω(1) time) CAPP for ORpoly(n) ◦ AND3 ◦ C yields
NEXP 6⊂ C. We apply Probabilistic Checkable Proofs of Proximity in a new way to show it would
suffice to have a non-trivial CAPP algorithm for either ⊕2 ◦ C, AND2 ◦ C or OR2 ◦ C.
A direct corollary of the first two bullets is that NEXP 6⊂ THR ◦ THR would follow from either:

a non-trivial δ-error CAPP (or SAT) algorithm for poly(n)-size THR ◦MAJ circuits, or
a non-trivial 1/ poly(n)-error CAPP algorithm for poly(n)-size MAJ ◦MAJ circuits.

Applying the above machinery, we extend lower bounds for depth-two neural networks and
related models [R. Williams, CCC 2018] to weak approximate computations of Boolean functions.
For example, for arbitrarily small ε > 0, we prove there are Boolean functions f computable in
nondeterministic nlog n time such that (for infinitely many n) every polynomial-size depth-two
neural network N on n inputs (with sign or ReLU activation) must satisfy maxx∈{0,1}n |N(x)−
f(x)| > 1/2− ε. That is, short linear combinations of ReLU gates fail miserably at computing
f to within close precision. Similar results are proved for linear combinations of ACC ◦ THR
circuits, and linear combinations of low-degree Fp polynomials. These results constitute further
progress towards THR ◦ THR lower bounds.
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1 Introduction

Recall TC0 is the class of decision problems that are computable with circuit families of
constant depth, composed of MAJORITY and NOT gates. As this class remains the same
when “MAJORITY” is replaced by other more expressive functions such as linear threshold
functions [21, 32], TC0 naturally captures many mathematical models of neural computing,
and contains many natural arithmetic functions (for example, see [9, 38, 26]).

What interesting functions do not have polynomial-size TC0 circuits? Despite substantial
research effort [23, 2, 4, 17, 19, 21, 22, 24, 25, 29, 28, 35, 37, 40, 51, 44, 3, 31] it is consistent
with current knowledge that the huge class nondeterministic exponential time (NEXP) has
polynomial-size THR ◦ THR circuits, which are depth two and can compute arbitrary linear
threshold functions at both layers.1 It seems obvious that “shallow” nets cannot be so
powerful, but concrete proofs of their limitations have been elusive.

In 2011, R. Williams [49, 52] proved that NEXP does not have polynomial-size ACC0

circuits (a presumably weaker circuit class), by showing how circuit lower bounds follow from
non-trivial algorithms2 for problems such as circuit satisfiability or circuit derandomization.
The canonical circuit derandomization problem is CAPP, where the task is to approximate
the acceptance probability of a given circuit within an additive constant error (less than 1/3,
say). Along these lines, subsequent works have followed Williams’ program [50, 51, 12, 30, 3,
47, 44, 48], and more circuit lower bounds have been proved by either introducing new SAT
algorithms, or tightening the algorithms-to-lower-bounds connection. For an example of the
latter, Murray and Williams [34] recently showed that nondeterministic quasi-polynomial
time does not have polynomial-size ACC0 ◦ THR circuits using a strengthened connection.

A potential next step in this program would be to prove that NEXP does not have
polynomial-size depth-two threshold circuits (THR ◦THR). Partial progress has already been
made: for example, in [44, 3], it is shown that ENP does not have n2−o(1) size THR ◦ THR
circuits. Until now, essentially all lower bounds proven by this program have applied very
strong circuit-analysis algorithms, such as circuit satisfiability or #SAT algorithms. It looks
difficult to find such strong circuit-analysis algorithms for THR ◦ THR circuits. Indeed,
even for the simpler MAX-k-SAT problem (equivalent to the SAT problem for MAJ ◦ ANDk
circuits), no non-trivial algorithms are known for k(n) = ω(logn) (see [8]). For slightly larger
circuit classes such as NC1 (a.k.a. poly(n)-size formulas), it has been conjectured that there
are no non-trivial SAT algorithms [1].

An approach based on derandomizing a circuit class (finding non-trivial algorithms for
CAPP) looks more plausible than one based on SAT solving, because most researchers believe
“full” derandomization is possible and that CAPP is in P even for arbitrary circuits. However,
there is still a substantial obstacle for proving NEXP 6⊂ THR ◦ THR via derandomization
approaches. While previous works ([30, 13]) have shown that NEXP 6⊂ C would follow from a
non-trivial satisfiability algorithm for AND3 ◦ C (i.e., an AND of three C-circuits), the best

1 See Section 2.1 for formal definitions.
2 Throughout the paper, we use the term “non-trivial algorithm” to mean that, for every constant c ≥ 1,

the algorithm runs in 2n/nω(1) time on circuits of n inputs and nc gates.
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known connection theorem (namely, that of Ben-Sasson and Viola [13]) is that non-trivial
derandomization of ORpoly(n) ◦ AND3 ◦ C (i.e., a non-trivial CAPP algorithm for a 3-DNF
on poly(n) many C circuits) implies NEXP 6⊂ C. Finding a tighter correspondence (with no
“DNF overheads” in the connection) has been an intriguing open problem.

In this work, applying Probabilistically Checkable Proofs of Proximity (PCPPs), we
substantially tighten the connection given by Ben-Sasson and Viola, showing that non-trivial
derandomization for depth-d TC circuits would directly imply NEXP does not have depth-d
TC circuits. That is, in order to show NEXP 6⊂ THR ◦ THR, it suffices to find a non-trivial
derandomization of THR ◦ THR. Furthermore, we show that non-trivial derandomization
algorithms for THR ◦ THR is in fact equivalent to derandomization for the weaker class
THR ◦MAJ (tightly) and derandomization for the even weaker class MAJ ◦MAJ (with inverse
polynomial error). (THR ◦MAJ circuits are the special case of THR ◦ THR circuits where all
gates on the bottom layer only compute linear threshold functions with polynomial integer
weights; MAJ ◦MAJ circuits have that restriction on both layers. See Section 2.1 for formal
definitions.) Therefore, for our desired lower bounds against THR ◦THR, it suffices to obtain
non-trivial CAPP algorithms for THR◦MAJ or MAJ◦MAJ circuits, for which exponential-size
circuit lower bounds have long been known [19, 23].

As an additional application, we apply our new PCPP approach to strengthen recent depth-
two neural network lower bounds of R. Williams [48] for approximate computation of Boolean
functions. For example, we show that for every ε > 0 and every (non-uniform) polynomial-
size family of depth-two neural nets {Nn} with sign or ReLU activation functions, there
are Boolean functions f in nondeterministic nO(log? n) time such that maxx∈{0,1}n |Nn(x)−
f(x)| > 1/2− ε for infinitely many n. That is, arbitrary linear combinations of ReLU gates
fail miserably at computing f to within any close precision. Versions of the PCP theorem are
crucial elements in the proofs of these lower bounds; indeed, our overall argument involves
applications of a PCP in two different places. Previously, all concrete circuit lower bounds
proved via the algorithmic approach have not required the full power of the PCP theorem [5, 6]
for the argument to work.

To formally describe our results, we recall three circuit-analysis problems.

1. CAPP with error δ: Given a circuit C on n inputs, estimate the probability that
C(a) = 1 over uniformly random input a ∈ {0, 1}n, to within ±δ.

2. SAT: Given a circuit C, determine if there is an input a such that C(a) = 1.

3. Gap-UNSAT with gap δ: Given a circuit C, output YES when C(a) = 0 for all a, and
NO when C has at least δ · 2n satisfying assignments. Note that Gap-UNSAT with gap δ
is easier than the other two problems: either a SAT algorithm or a CAPP algorithm with
error δ would immediately imply a Gap-UNSAT algorithm with gap δ.

1.1 Equivalence Between Algorithmic Analysis of THR ◦ THR,
THR ◦ MAJ, MAJ ◦ MAJ

Our first results give equivalences between algorithmic analysis of THR ◦ THR, THR ◦MAJ,
and MAJ ◦MAJ circuits. These equivalences are surprising, because the latter two classes
are provably weaker than THR ◦ THR [16]. In fact, 2Ω(n)-size lower bounds are well-known
for them [23, 19].

CCC 2019
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Poly-Size THR ◦ MAJ and THR ◦ THR are Equivalent for Circuit-Analysis
Algorithms

We say an algorithm running on n-input circuits is non-trivial if for all c, it runs in 2n/nω(1)

time for all circuits of size nc. We first show that, in terms of designing non-trivial SAT or
CAPP algorithms, THR ◦MAJ and THR ◦ THR are equally hard or easy.

I Theorem 1. The following two statements hold:
Equivalence of Non-Trivial SAT Algorithms: There is a non-trivial SAT algorithm
for THR ◦ MAJ circuits of poly(n)-size if and only if there is such an algorithm for
poly(n)-size THR ◦ THR circuits.
Equivalence of Non-Trivial CAPP Algorithms With Constant Error: For any
constant δ > 0, If there is a non-trivial CAPP algorithm with error δ for THR ◦MAJ
circuits of poly(n) size, then there is a non-trivial CAPP algorithm with error δ+ 1/n for
poly(n)-size THR ◦ THR circuits.

Theorem 1 generalizes readily to TC circuits of any constant depth d. Let LTd be the
class of the depth-d circuits consisting entirely of arbitrary linear threshold functions, and
let L̂Td be the subclass of LTd with the restriction that all gates have polynomially-bounded
integer weights (see Section 2.1 for formal definitions). E.g., L̂T2 = MAJ ◦MAJ.

I Corollary 2. The following two statements hold for every constant d:
Equivalence of Non-Trivial SAT Algorithms: There is a non-trivial SAT algorithm
for THR ◦ L̂Td−1 circuits of poly(n)-size if and only if there is such an algorithm for
poly(n)-size LTd circuits.
Equivalence of Non-Trivial CAPP Algorithms With Constant Error: For any
constant ε > 0, if there is a non-trivial CAPP algorithm with error ε for THR ◦ L̂Td−1
circuits of poly(n)-size, then there is a non-trivial CAPP algorithm with error ε+ 1/n for
poly(n)-size LTd circuits.

Weaker Equivalence Between Poly-Size THR ◦ THR and MAJ ◦ MAJ

We also obtain some weaker equivalences between circuit-analysis algorithms for THR ◦ THR
and MAJ ◦MAJ circuits.

I Theorem 3. The following two statements hold:
Equivalence of 2(1−ε)n-time SAT Algorithms: If SAT for poly(n)-size MAJ ◦MAJ
circuits is in 2(1−ε)n time for an ε > 0, then SAT for poly(n)-size THR ◦ THR circuits is
in 2(1−ε′)n time for an ε′ > 0.
Equivalence of Non-Trivial CAPP Algorithms with Inverse Polynomial Error:
If there is a non-trivial CAPP algorithm with 1/poly(n) error for poly(n)-size MAJ ◦MAJ
circuits, then there is a non-trivial CAPP algorithm with 1/ poly(n) error for poly(n)-size
THR ◦ THR circuits.

Again, a similar result holds for TC circuits of any constant depth d.

I Corollary 4. The following two statements hold for any constant d:
Equivalence of 2(1−ε)n-time SAT Algorithms: If SAT for L̂Td circuits of poly(n)-size
is in 2(1−ε)n time for an ε > 0, then SAT for poly(n)-size LTd circuits is in 2(1−ε′)n time
for an ε′ > 0.



L. Chen and R. R. Williams 19:5

Equivalence of Non-trivial CAPP Algorithms with inverse polynomial error:
If there is a non-trivial CAPP algorithm with 1/poly(n) error for poly(n)-size L̂Td cir-
cuits, then there is a non-trivial CAPP algorithm with 1/poly(n) error for poly(n)-size
LTd circuits.

1.2 Tighter Connection Between Circuit Lower Bounds and Non-trivial
Derandomization

Our next results give a tighter connection between non-trivial circuit-analysis algorithms
for C, and circuit lower bounds against C. We say a circuit class C is typical if it is closed
under taking negations of the output, and variable projections.3 We show that, to prove
NEXP 6⊂ C, it suffices to obtain non-trivial derandomization of AND3 ◦ C, OR2 ◦ C, or ⊕2 ◦ C
(a.k.a. XOR2 ◦ C).

I Theorem 5 (Lower Bounds From Non-Trivial Gap-UNSAT or CAPP Algorithms). There is an
absolute constant δ > 0, such that for any typical circuit class C, if one of the following holds:

there is a non-trivial Gap-UNSAT algorithm with gap δ for poly(n)-size AND3 ◦C circuits,
or
there is a non-trivial CAPP algorithm with error δ for poly(n)-size OR2 ◦ C, ⊕2 ◦ C, or
AND2 ◦ C circuits,

then NEXP 6⊂ C. Moreover, in the second bullet, C does not need to be closed under negation.

Comparison with Ben-Sasson and Viola

Ben-Sasson and Viola [12] showed that non-trivial Gap-UNSAT algorithms for ORpoly(n) ◦
AND3 ◦ C, or non-trivial satisfiability algorithms for AND3 ◦ C would imply NEXP 6⊂ C.
Theorem 5 is a strict strengthening of these two connections, as Gap-UNSAT is an easier
problem than SAT. In particular, note we avoid the unbounded fan-in OR entirely.

Applying the “easy witness lemma for NP” results of Murray and Williams [34], we can
naturally generalize to circuit lower bounds for NP if faster algorithms are used.

I Theorem 6 (NP Lower Bounds From Faster Gap-UNSAT or CAPP Algorithms). There is an
absolute constant α > 0, such that for any typical circuit class C, if there is a constant δ such
that one of the following holds:

Gap-UNSAT for 2δn-size AND3 ◦ C circuits with gap α can be solved in 2n−δn time, or
CAPP for 2δn-size OR2 ◦ C, ⊕2 ◦ C, or AND2 ◦ C circuits with error α can be solved in
2n−δn time,

then for every k there is a function in NP that doesn’t have nk-size C circuits. Moreover, in
the second bullet, C does not need to be closed under negation.

I Remark 7. In Theorems 5 and 6, the desired algorithms can even be non-deterministic,
as long as on all computation paths the algorithm either outputs don’t know or the correct
answer, and the correct answer always appears on at least one path.

In terms of techniques, our approach is very different from that of the previous derandom-
ization connection proved by Ben-Sasson and Viola [12]. They constructed a highly efficient
PCP for NTIME[T (n)], where the queries are projections of random bits, and the verifier is a
3-CNF. Their results were then obtained by directly plugging this PCP construction into the
original argument of [49].

3 See Section 2.1 for the details.
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Our approach is less direct. Our key insight in proving Theorem 5 (and Theorem 6
similarly) is to use PCPs of Proximity to reduce circuit evaluation tasks to derandomization
tasks. Using efficient PCPs for NTIME[2n] [10], Williams [49] showed NEXP 6⊂ P/ poly follows
from non-trivial Gap-UNSAT algorithms for poly(n)-size general circuits. Applying PCPs of
Proximity to the Circuit Evaluation Problem, we design a Gap-UNSAT algorithm for general
circuits, only assuming that NEXP ⊂ C and a Gap-UNSAT algorithm for AND3 ◦ C, which
results in a contradiction when C ⊂ P/ poly. Therefore our overall argument applies PCP
constructions in two different ways: first on a nondeterministic 2n-time computation to reduce
to a Gap-UNSAT problem, and then on a poly(n)-size circuit evaluation. See Section 1.6 for
an overview of the whole argument.

1.3 Potential Approaches to THR ◦ THR Circuit Lower Bounds
As a direct corollary of Theorem 5 and the folklore result that and XOR of two THR◦THR can
be written as a polynomially-larger THR ◦THR,4 it follows that non-trivial CAPP algorithms
for THR ◦ THR circuits with small constant error would imply NEXP 6⊂ THR ◦ THR. With a
little additional work, the same can be shown for non-trivial SAT algorithms for THR ◦ THR
circuits.

I Theorem 8. There is an absolute constant δ > 0, such that if δ-error CAPP for poly(n)-
size THR◦THR circuits can be solved in 2n/nω(1) time, then NEXP 6⊂ THR◦THR. The same
is true with SAT in place of CAPP.

The above theorem generalizes to TC circuits of any constant depth d (LTd circuits).

I Theorem 9. There is an absolute constant δ > 0, such that for any constant d, if CAPP
for poly(n)-size LTd circuits with error δ can be solved in 2n/nω(1) time, then NEXP 6⊂ LTd.
The same is true with SAT in place of CAPP.

It still appears to be a tough challenge to obtain a non-trivial CAPP algorithm for
polynomial-size THR ◦ THR circuits, as it is usually the case that derandomizations come
from circuit lower bounds (and ironically, our goal here is to prove circuit lower bounds for
THR ◦THR!). However, armed with our new equivalence results between algorithmic analysis
of THR ◦THR circuits and THR ◦MAJ or MAJ ◦MAJ circuits (Theorem 1 and Theorem 3), it
suffices for us to obtain non-trivial CAPP algorithms for THR ◦MAJ or MAJ ◦MAJ circuits,
for which 2Ω(n) lower bounds are known.

I Corollary 10. There is an absolute constant δ > 0, such that if one of the following holds:
1. CAPP (or SAT) for poly(n)-size THR ◦MAJ circuits with error δ is in 2n/nω(1) time, or
2. CAPP for poly(n)-size MAJ ◦MAJ circuits with 1/poly(n) error is in 2n/nω(1) time,
then NEXP 6⊂ THR ◦ THR.

Therefore NEXP 6⊂ THR ◦ THR follows if we can “mine” the known 2Ω(n) lower bounds
for THR ◦MAJ or MAJ ◦MAJ, and design non-trivial circuit-analysis algorithms from them!

1.4 Lower Bounds on Representing Boolean Functions Approximately
by Linear Combinations of Simple Functions

Finally, we apply our new techniques to strengthen recent depth-two lower bounds of
R. Williams [48]. He studied the problem of representing a Boolean function f exactly by a
linear combination of simple functions from a class C. Here we introduce an approximate
form of such representations.

4 See e.g. Lemma 50 for a proof.
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I Definition 11. Let C be a class of functions from {0, 1}n → R and ε ∈ [0, 0.5). We
say f : {0, 1}n → {0, 1} admits a S̃umε ◦ C circuit of sparsity S, if there are S functions
C1, C2, . . . , CS from C, together with S coefficients α1, α2, . . . , αS in R, such that for all
x ∈ {0, 1}n,∣∣∣∣∣

S∑
i=1

αi · Ci(x)− f(x)

∣∣∣∣∣ ≤ ε.
We use Sum ◦ C to denote the special case of ε = 0, which was the case studied in prior

work [48].
When C is the class of AND gates (or PARITY gates, respectively), we are asking for the

sparsest ε-approximate polynomial for f , with respect to the standard (or Fourier basis,
respectively). This is related to the ε-approximate degree5 of f , which is already a highly-
nontrivial notion; for instance, the approximate degrees of simple natural functions have only
recently been determined [15, 14, 42].

In prior work, Williams [48] showed that non-trivial algorithms for the so-called “Sum-
Product”6 of O(1) functions from C implies sparsity lower bounds against Sum ◦ C, and he
obtained sparsity lower bounds against various Sum ◦ C circuits by designing corresponding
Sum-Product algorithms.

Applying our new techniques together with other new ideas, we show that Sum-Product
algorithms in fact yield sparsity lower bounds against S̃umε◦C. That is, we can systematically
“lift” the Sum ◦ C lower bounds in [48] to lower bounds for S̃umε ◦ C.

First, we generalize the lower bounds for Sum ◦THR in [48] to S̃umε ◦THR. Such circuits
are also known in the machine learning literature as depth-two neural networks with sign
activation functions.

I Theorem 12 (Lower Bound for S̃umε ◦ THR). For all k and constant ε < 1/2, there
is a function in NP without S̃umε ◦ THR circuits of nk sparsity. Furthermore, if α(n) is
unbounded such that nα(n) is time-constructible, then NTIME[nα(n)] 6⊂ S̃umε ◦ THR for all
constant ε < 1/2.

A ReLU (rectified linear unit) gate is a function f : {0, 1}t → R+ such that there is a
vector w ∈ Rt and scalar a ∈ R such that for all x,

f(x) = max{0, 〈x,w〉+ a}.

Linear combinations of ReLU gates are also known as depth-two neural networks with ReLU
activation functions, and they are intensely studied in machine learning.7

Next we generalize the lower bounds for Sum ◦ ReLU in [48] to S̃umε ◦ ReLU.

I Theorem 13 (Lower Bound for S̃umε ◦ ReLU). For all k and constant ε < 1/2, there
is a function in NP without S̃umε ◦ ReLU circuits of nk sparsity. Furthermore, if α(n) be
unbounded such that nα(n) is time-constructible, then NTIME[nα(n)] 6⊂ S̃umε ◦ ReLU for all
constant ε < 1/2.

We also obtain analogous lower bounds for S̃umε◦(O(1)-degree Fp-polynomials), strength-
ening lower bounds for exact linear combinations of O(1)-degree polynomials [48].

5 The ε-approximate degree of f is the lowest degree of all polynomial p : {0, 1}n → {0, 1} such that
‖p− f‖∞ ≤ ε. Note that a low degree polynomial is also sparse.

6 See Section 6 for a formal definition. Intuitively, the “Sum-Product” problem generalizes #SAT.
7 We refer the readers to [48] and the references therein for more discussion on this topic.
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I Theorem 14 (Lower Bound for S̃umε ◦ (Fp-polynomials)). For all prime p, integers k, d,
and constant ε < 1/2, there is a function in NP without S̃umε ◦MODp ◦ ANDd circuits of
nk sparsity. Furthermore, if α(n) be unbounded such that nα(n) is time-constructible, then
NTIME[nα(n)] 6⊂ S̃umε ◦MODp ◦ ANDd for all constant ε < 1/2.

Finally, using the known #SAT algorithm for ACC0 ◦ THR [51], we show a sparsity lower
bound for S̃umε ◦ ACC0 ◦ THR circuits.
I Theorem 15. For every d,m ≥ 1 and ε ∈ [0, 0.5), there is a b ≥ 1 and an f ∈
NTIME[nlogb n] that does not have S̃umε ◦ AC0

d[m] ◦ THR circuits of na size, for every a.
Therefore, no polynomially-sparse linear combination of AC0

d[m] ◦ THR circuits can
approximate the value of the hard function in Theorem 15.

This constitutes the strongest known circuit class for which we can presently prove lower
bounds for nondeterministic quasi-polynomial time (improving [34]).

1.5 Techniques: Two Structure Lemmas for THR ◦ THR
Two major technical ingredients in our results are structure lemmas for THR ◦ THR, which
are of interest in their own right. Informally, our first structure lemma says that every
THR ◦ THR is equivalent to a polynomial-sized OR of Threshold-of-Majority circuits. The
second structure lemma says that every THR ◦THR circuit is equivalent to a subexponential-
sized OR of Majority-of-Majority circuits. For the program of proving THR ◦ THR lower
bounds, this is significant, as exponential-size Majority-of-Majority and Threshold-of-Majority
lower bounds are well-known [23, 19].

In the following, DOR refers to a “disjoint” OR gate: an OR gate with the promise that
at most one of its inputs is ever true, and Gap-ORδ refers to a “gapped” OR gate with a
error parameter δ: an OR gate with the promise that either all inputs are false or at least a
1− δ fraction of the inputs are true. We also use Gap-OR to denote Gap-OR1/2 for simplicity.
(See Section 2.1 for formal definitions.)
I Lemma 16 (Structure Lemma I for THR ◦THR circuits). Let n be the number of inputs, let
s = s(n) ≥ n be a size function, and let δ = δ(n) ∈ (0, 1) be an error function. Every s-size
THR ◦ THR circuit C is equivalent to a Gap-ORδ ◦ THR ◦MAJ circuit C ′ such that:

The top Gap-ORδ gate of C ′ has poly(s, δ−1) fan-in.
Each THR ◦MAJ subcircuit of C ′ has size poly(s, δ−1).
The transformation from C to C ′ can be computed in deterministic poly(s, δ−1) time.

I Lemma 17 (Structure Lemma II for THR ◦ THR circuits). Let n be the number of inputs
and let s = s(n) ≤ 2o(n) be a size parameter. Let ε ∈

(
log s
n , 1

)
. Every s-size THR ◦ THR

circuit C is equivalent to a DOR ◦MAJ ◦MAJ circuit such that:

The top DOR gate has 2O(εn) fan-in.
Each sub MAJ ◦MAJ circuit has size sO(1/ε).
The reduction can be computed in randomized 2O(εn) · sO(1/ε) time.
Previously, Goldmann-Håstad-Razborov [21] showed that every THR ◦ THR circuit has

an equivalent MAJ ◦MAJ ◦MAJ circuit of polynomially larger size. The top OR gates in our
structure lemmas have additional benefits: for instance, an OR ◦ C circuit is satisfiable, if
and only if one of its C subcircuits is satisfiable. Therefore, solving SAT on an OR ◦ C circuit
is easily reduced to solving SAT on C circuits.

In Appendix C, we discuss more applications of the above two structure lemmas, beyond
the algorithmic equivalences for THR ◦ THR, THR ◦MAJ, and MAJ ◦MAJ circuits.



L. Chen and R. R. Williams 19:9

1.6 Intuition: Solving Gap-UNSAT with Probabilistic Checkable Proofs
of Proximity

Here we provide an overview of the ideas behind our new tightened connection between
circuit lower bounds and circuit-analysis algorithms.

Starting Point: Designing Gap-UNSAT Algorithms for General Circuits, Assuming
NEXP ⊂ C

Suppose C ⊂ P/ poly. We want to show that a non-trivial Gap-UNSAT algorithm with
a constant gap for poly(n)-size AND3 ◦ C circuits implies NEXP 6⊂ C. We start with the
following connection of R. Williams [49]:

If Gap-UNSAT with gap 1−1/n10 for (fan-in 2) circuits with n inputs and poly(n) size
is solvable in O(2n/nω(1)) nondeterministic time, then NEXP doesn’t have poly(n)-size
(fan-in 2) circuits.

Our strategy is to assume NEXP ⊂ C, and use our non-trivial Gap-UNSAT algorithm for
AND3 ◦ C to derive a non-trivial Gap-UNSAT algorithm for general fan-in-2 circuits. This
would imply a contradiction, since by the above connection, it follows that NEXP 6⊂ P/ poly
and therefore NEXP 6⊂ C.

So suppose we are given a poly(n)-size general circuit C : {0, 1}n → {0, 1} with the
promise that either C is unsatisfiable (the YES case) or C has at least (1 − 1/n10) · 2n
satisfying assignments (the NO case), where our goal is to distinguish the two cases in
2n/nω(1) non-deterministic time.

To simplify the discussion, we negate the circuit C. Now we are promised C is a tautology,
or C has at most 1/n10 · 2n satisfying assignments, and we must nondeterministically prove
C is a tautology (when that is the case) in 2n/nω(1) time.

Review of the Approach in Williams’ ACC Lower Bound

It will be useful to review the previous approach ([52]) first, and see where we deviate
from it.8 Let the circuit C be given as above. First, assuming NEXP ⊂ C (which implies
Circuit-Eval ∈ C), there is an equivalent poly(n)-size C circuit D equivalent to C. Since we
are allowed to use non-deterministic algorithms, we might try to guess a C circuit D, and
verify that D is equivalent to C. If this verification can be done in 2n/nω(1) time, then we
could apply the Gap-UNSAT algorithm for C to the circuit D, and solve Gap-UNSAT for C.
Indeed, this is the original approach of Wiliams [52].

Since the NAND gate (NAND(z1, z2) := ¬(z1∧z2)) is universal, we may assume C consists
of m = poly(n) NAND gates, the first n gates are the inputs (that is, the i-th gate is the
input bit xi for i ∈ [n]), and the m-th gate is the output gate. Let Ci be the subcircuit of C
where the i-th gate is the output. Since we are assuming Circuit-Eval ∈ C, for all Ci there is
always an equivalent C-circuit Ti of poly(n) size.

The overall guess-and-verify algorithm works as follows:
Guess m− n C-circuits Tn+1, Tn+2, . . . , Tm, such that Ti is intended to be equivalent to
Ci. For i ∈ [n], we set Ti to be a trivial circuit which always outputs the i-th bit of the
input.

8 Our presentation here is slightly different from the original proof.

CCC 2019



19:10 Stronger Connections Between Circuit Analysis and Circuit Lower Bounds

For i ∈ {n+ 1, n+ 2, . . . ,m}, let i1 and i2 be the indices of the two gates which are inputs
to the i-th gate of C. We want to verify

NAND(Ti1(x), Ti2(x)) = Ti(x) (1)

is true for all x ∈ {0, 1}n. This can be reduced to solving SAT for AND3 ◦ C circuits.
If all the above checks pass, then we know Tm is equivalent to C.

The Proof System View

The above approach requires using SAT algorithms to verify (1) is true for all x ∈ {0, 1}n,
whereas we only want to assume non-trivial Gap-UNSAT algorithms (which could be much
weaker). Here we present a different perspective on the above approach.

Letting π(x) := (Tn+1(x), Tn+2(x), . . . , Tm(x)), we can view π(x) as a certain “locally-
checkable proof” for C(x) = 1. That is, C(x) = 1 if and only if there is a proof
π(x) ∈ {0, 1}m−n such that for the string z = x ◦ π(x) (◦ means concatenation), we
have NAND(zi1 , zi2) = zi for all i ∈ {n+ 1, n+ 2, . . . ,m}, and zm = 1.

Can we obtain something better from the “locally-checkable” perspective? We may
write all the constraints checked in our proof system as a 3-CNF formula ϕ on z = x ◦ π(x)
of ` = O(m) = poly(n) clauses. (Note, this simply mimics the standard reduction from
Circuit-Eval to 3-SAT.) Suppose the i-th clause is Fi(z) := ∨3

j=1(zij ⊕ bi,j).

As before, we guess C circuits Tn+1(x), Tn+2(x), . . . , Tm(x), but this time with the
intention that T (x) = (Tn+1(x), Tn+2(x), . . . , Tm(x)) is the correct proof for input x.
When C is a tautology, there is a guess T (x) such that Ex∼Un Ei∈[`][Fi(x ◦ T (x))] = 1.
Otherwise, for all guessed T (x), we have Ex∼Un Ei∈[`][Fi(x ◦ T (x))] ≤ 1/n10 + `−1

` ,
since for at least a 1− 1/n10 fraction of inputs, we have C(x) = 0, and therefore at most
`− 1 clauses can be satisfied by x ◦ T (x).

Note that Fi(x◦T (x)) is an OR3◦C circuit. We can try to estimate Ex∼Un [Fi(x◦T (x))] for
each i ∈ [`] to distinguish between the above two cases. Note there is only a 1/` = 1/poly(n)
gap between the above two cases. Therefore, this argument does show that, if we assume to
have non-trivial CAPP algorithms for OR3◦C with 1/ poly(n) error, the above guess-and-verify
approach already suffices to obtain lower bounds against C.

However, in our case, we are only assuming to have a Gap-UNSAT algorithm with a
constant gap. It is not clear how to make further progress with the above idea.

A Better Proof System?

The above idea does not work, essentially because the described “proof system” is a pretty
bad PCP! Given the pair (x, T (x)), if the verifier draws a random i ∈ [`] and checks whether
the clause Fi is satisfied, it is only promised to detect an error with probability ≥ 1/` when
C(x) = 0 and the proof T (x) is incorrect. In other words, it has a completeness/soundness
gap of only 1/` = 1/poly(n). A natural response to this observation is to try using a better
proof system for proving that C(x) = 1; it comes as no surprise that we turn to the PCP
Theorem [5, 6].

However, there is a subtle issue. In the above proof system, the verifier does not need to
know the input x beforehand, and only needs to query a bit of x when verifying a clause Fi
containing that bit. The most important property here is that the verifier’s queries do not
depend on the input x, as otherwise we cannot formulate the condition “the verifier accepts
with the random index i and proof T (x) on input x” as a simple function Fi(x ◦ T (x)) which
can be represented by an OR3 ◦ C circuit.
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Suppose we forced the verifier to access the input x using only O(1) queries, as in the
above proof system, but the circuit is computing a highly-sensitive function such as the
parity of x. There is no way that a verifier querying x for only O(1) times can correctly
infer (with high probability) that the parity of x is odd! This is because if the parity of x is
odd, the parity will change if we flip a random bit of x, so it is not possible for a verifier to
distinguish between these two cases with constant probability, if the verifier can only query
x for O(1) times.

Error Correcting Codes and Probabilistic Checkable Proofs of Proximity

To avoid the above trivial counterexample, our next key idea is to provide the PCP verifier
an error-correcting encoding of the input. Now we are at the right position to introduce
the main technical concept used in this paper: Probabilistic Checkable Proofs of Proximity
(PCPP) for the Circuit-Eval problem. When properly applied, PCPPs allow us to reduce the
error requirement on the CAPP algorithms from inverse polynomial to only a constant.

In this type of proof system9, a circuit E is fixed in advance, the verifier V (E) gets
oracle access to the input x of length n and a proof string π, tosses some random coins, and
makes at most 3 non-adaptive queries. The proof system has constant parameters δ > 0 and
s ∈ (0, 1), and satisfies two important properties:

(Perfect Completeness.) E(x) = 1 ⇒ there is a π such that Pr[V (E) accepts x ◦ π] = 1.
(Soundness on inputs far from being correct.) If x is δ-far from the set {y : E(y) = 1},
where δ is the proximity parameter, then for all possible proofs π, V (E) accepts x ◦ π
with probability at most s < 1.

To clarify the second point, we are saying that if x has hamming distance more than δn
from all y that satisfy E, then V (E) has decent probability of rejection on any proof π.

Suppose we use a linear error correcting code with an efficient encoder Enc and decoder
Dec, and define the circuit E by E(y) := C(Dec(y)). That is, E treats its input y as an
encoding of an input to the circuit C; it first decodes y to a string z, then feeds z to C to
get its output.

Let x ∈ {0, 1}n be an input to C. We instantiate a PCP of proximity proof system with
the circuit E and the input Enc(x). It is not hard to see that when C(x) = 0, Enc(x) is
δ1-far from the accepting inputs for E for a constant δ1 depending on the error correcting
code. We can ensure that δ1 > δ.

The Final Reduction

Now, suppose there are ` possible outcomes of the random coins, and assume that the
proof π is of length ` as well. Let Fi(Enc(x) ◦ T (x)) be the indicator that given a random
outcome i ∈ [`], whether the verifier V (E) accepts the oracle Enc(x) ◦ T (x). By definition,
Fi(Enc(x) ◦ T (x)) is a function on 3 coordinates of Enc(x) ◦ T (x) (we can assume WLOG
that Fi is simply an OR, by using a special PCP of proximity proof system; see Lemma 24).
Note that a bit of Enc(x) is just a parity over a subset of bits in x. For simplicity, let us
further assume C = THR ◦ THR, which can compute parity (note, this assumption can be
removed). Then Fi(Enc(x) ◦ T (x)) can now be formulated as an OR3 ◦ C circuit. Now we
proceed similarly as before.

9 see Definition 20
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We again try to guess C circuits T1(x), T1(x), . . . , T`(x), but this time with the hope that
T (x) = (T1(x), T2(x), . . . , T`(x)) is the correct proof for the verifier V (E) given input
Enc(x).
When C is a tautology, there is a guess T (x) such that Ex∼Un Ei∈[`][Fi(Enc(x)◦T (x))] = 1.
Otherwise, for all guesses T (x), Ex∼Un Ei∈[`][Fi(Enc(x) ◦ T (x))] ≤ 1/n10 + s, since for at
least a 1− 1/n10 fraction of inputs, we have C(x) = 0, and therefore at most an s fraction
of Fi’s can be satisfied by Enc(x) ◦ T (x), because Enc(x) is δ-far from any accepting
input to E.

In this new situation, it now suffices to estimate Ex∼Un [Fi(x ◦ T (x))] for each i ∈ [`]
within sufficiently small constant error. A careful examination of the above argument shows
it suffices to use a non-trivial Gap-UNSAT algorithm for AND3 ◦C circuits with a constant gap
(note that the negation of Fi is an AND3 ◦ C circuit), because we have perfect completeness
in the case where C is a tautology.

Lower Bounds From CAPP Algorithms for OR2 ◦ C, AND2 ◦ C, or ⊕2 ◦ C Circuits

The above shows how to use a non-trivial CAPP algorithm for OR3 ◦ C; how can we use
a non-trivial CAPP algorithm for OR2 ◦ C, AND2 ◦ C, or ⊕2 ◦ C? The natural idea is to
instead use a 2-query PCPP for Circuit-Eval. Unfortunately, there is no PCPP with only 2
queries with perfect completeness for Circuit-Eval, unless P = NP.10 Thus we must use a
construction with imperfect completeness. Luckily, there is a 2-query PCPP for Circuit-Eval
with a constant soundness/completeness gap (Lemma 25). We use that PCPP in the above
argument, together with other ideas, to establish the connection with a non-trivial CAPP
algorithm for OR2 ◦ C, AND2 ◦ C or ⊕2 ◦ C circuits.

1.7 Related Work

For more history on previous works on lower bounds for constant-depth threshold circuits,
see the corresponding sections in [51, 31]. We only discuss a few recent results here.

In 2014, Williams [51] showed that NEXP is not contained in ACC0◦THR, by devising a fast
satisfiability algorithm for ACC0 ◦ THR. The lower bound was recently improved by Murray
and Williams [34] to show NTIME[npolylog(n)] is not contained in ACC0 ◦ THR. Tamaki [44],
Alman, Chan and Williams [3] proved that ENP does not have n2−o(1) size THR◦THR circuits.
Most recently, Williams [48] showed that there are functions in NTIME[nlogω(1)(n)] that can
not be represented by a linear combination of polynomially many ACC0 ◦ THR circuits.

Tell [46] constructed a quantified derandomization algorithm for TC circuits with depth d
and n1+exp(−d) wires, and showed that a modest improvement of his algorithm would imply
standard derandomization of TC0, and consequently NEXP 6⊆ TC0.

Using random restrictions, Kane and Williams [31] proved that any THR ◦ THR circuits
computing Andreev’s function requires Ω̃(n1.5) gates and Ω̃(n2.5) wires. Chattopadhyay
and Mande [16] recently showed an exponential size separation between THR ◦MAJ and
THR ◦ THR, by constructing a function in THR ◦ THR with exponential sign-rank.

10A 2-query PCPP for Circuit-Eval with perfect completeness implies a 2-query PCP for NP with perfect
completeness [11], which in turn implies P = NP, as 2-SAT is in P.
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1.8 Organization of the Paper
In Section 2 we discuss necessary preliminaries. In Section 3 we prove equivalences between
non-trivial circuit analysis tasks of THR ◦ THR and that of THR ◦MAJ or MAJ ◦MAJ. In
Section 4 we establish a tighter connection between non-trivial derandomization and circuit
lower bounds. In Section 5, we propose approaches toward proving NEXP 6⊂ THR ◦ THR. In
Section 6 we prove lower bounds for various S̃umε ◦ C circuits. In Section 7 we prove two
new structure lemmas for THR ◦ THR circuits.

2 Preliminaries

The Circuit Evaluation Problem (Circuit-Eval) is the language of pairs {(C,w)} such that
when C is a general fan-in-2 circuit and w is a Boolean input, (C,w) ∈ Circuit-Eval if and
only if C(w) = 1. For two strings a, b, we use a ◦ b to denote their concatenation11.

2.1 Circuit Classes
Let C be a circuit class. We use Csn to denote the set of C of circuits with n inputs and size at
most s. Slightly abusing notation, we also use Csn to denote the Boolean functions computed
by circuits in Csn, when convenient.

We say a circuit class C is typical, if given the description of a circuit C from Csn, for all
indices 1 ≤ i, j ≤ n and b ∈ {0, 1}, the following functions are in Csn:

¬C, C(x1, . . . , xi−1, xj ⊕ b, xi+1, . . . , xn), C(x1, . . . , xi−1, b, xi+1, . . . , xn).

Furthermore, we require that given a description of C, descriptions of all the above circuits
can be constructed in poly(s) time. That is, C is typical if it is closed under both efficiently-
computable negation and efficiently-computable projection.

Notations for Circuit Classes
As many circuit classes are discussed in this work, we begin with some notation for such
classes.

Let x ∈ {0, 1}n. For w ∈ Rn and t ∈ R, we define THRw,t(x) (the threshold function)
to be the indicator function for the condition w · x ≥ t. Similarly, ETHRw,t(x) (the exact
threshold function) is the indicator function for the condition w · x = t. The values in the
vector w are called the weights, and the real t is called the threshold of THRw,t and ETHRw,t.
We say these weights and thresholds are realizations of the Boolean functions they define. A
fixed Boolean function may have many different realizations. It is known that, without loss of
generality, the weights and thresholds are integers of absolute value at most 2O(n logn) [33, 7].
For a threshold or exact threshold function with weight w, we call L(x) := w ·x its associated
linear function.

We use MAJn and EMAJn to denote the corresponding threshold (exact threshold)
functions on n inputs where all weights are 1 and the threshold value is n/2. Slightly abusing
notation, we also use THR,ETHR,MAJ,EMAJ to denote the classes of all such functions. We
also consider ⊕k (PARITY), ANDn, and ORn, with their usual meanings. We use DORn
to denote the disjoint OR function, that is, an OR function with the promise that at most

11Note that we also use ◦ for the composition of two circuits, but throughout the paper the meaning of
the symbol ◦ will always be clear from the context
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one input bit is true over all inputs. We use Gap-ORn,δ to denote the gap-OR function on
n inputs, that is, an OR function with the promise that either all n inputs are false, or at
least a 1− δ fraction of the n inputs are true. (The function may have undefined behavior
on other inputs.)

For two classes of functions like THR and MAJ, we use THR ◦ MAJ to denote the
corresponding class of depth-two circuits. Similar notations are used for more than two classes.

We use AC0[m]d to denote depth-d AC0[m] circuits (with unbounded fan-in OR, AND,
and MODm gates). We use LTd to denote the depth-d THR circuit class, that is, LTd :=
THR ◦ . . . ◦ THR︸ ︷︷ ︸

d times

. Similarly, we use L̂Td to denote its unweighted version, that is, L̂Td :=

MAJ ◦ . . . ◦MAJ︸ ︷︷ ︸
d times

.

Previous Known Containment Results
We need the following known circuit classes containment results for this paper.

I Proposition 18. The following hold:
1. THR ⊆ MAJ ◦MAJ [21, 27].
2. THR ⊆ DOR ◦ ETHR [24]. (also see Appendix B)
3. MAJ ◦ THR and MAJ ◦ ETHR are contained in MAJ ◦MAJ [21, 24].
4. ETHR ◦ ETHR ⊆ THR ◦ THR [24].
5. AND ◦ ETHR ⊆ ETHR [24].
6. EMAJ ⊆ MAJ ◦ AND2 [24].
7. ⊕k ◦ THR ◦ THR ⊆ THR ◦ THR for a constant k. (see Appendix B)
8. THR ◦ EMAJ ⊆ THR ◦MAJ [24].

Moreover, all the above have corresponding polynomial-time, deterministic constructions.

For the containment THR ⊆ DOR◦ETHR, we present an alternative proof in Appendix B,
which is more efficient than the previously known construction of Hansen and Podolskii [24].12
The last containment is folklore; we present a proof in Appendix B for completeness.

2.2 Approximation Theory
We need the following standard result from approximation theory.

I Lemma 19 ([39] Corollary.1.4.1). Let 0 < ε1 < ε2 < 1/2 be two constants, there is an
Oε1,ε2(1) degree polynomial P : R→ R, such that:

for all z ∈ [−ε2, ε2], P (z) ∈ [−ε1, ε1], and
for all z ∈ [1− ε2, 1 + ε2], P (z) ∈ [1− ε1, 1 + ε1].

2.3 Probabilistic Checkable Proofs of Proximity
The concept of probabilistically checkable proofs of proximity is crucial for this paper. In
the following we introduce its definition and several instantiations useful for this paper.

12Hansen and Podolskii [24] proved that a THR gate on n bits with weights of absolute value no greater
than W , can be written as a DOR of O(n2 · logW ) many ETHR gates. In Appendix B we show it can
be improved to O(n · logW ) many ETHR gates.
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I Definition 20 (Probabilistic Checkable Proofs of Proximity (PCP of proximity, or PCPP)).
For s, δ : N→ [0, 1] and r, q : N→ N, a verifier V is a PCP of proximity system for a pair
language L with proximity parameter δ, soundness parameter s, number of random bits r
and query complexity q if the following holds for all x, y:

If (x, y) ∈ L, there is a proof π such that V (x) accepts oracle y ◦ π with probability 1.

If y is δ(|x|)-far from L(x) := {z : (x, z) ∈ L}, then for all proofs π, V (x) accepts oracle
y ◦ π with probability at most s(|x|).

V (x) tosses r(|x|) random coins, and makes at most q(|x|) non-adaptive queries.

I Remark 21. We can also relax the first condition to be that there is a proof π such that
V (x) accepts oracle y ◦ π with probability at least c = c(|x|), where c is the completeness
parameter. In the above definition we assume c = 1, i.e., the perfect completeness.

I Lemma 22 (Theorem 3.3 in [11]). For any constants 0 < δ, s < 1, there is a PCP of
proximity system for Circuit-Eval with proximity δ, soundness s, number of random bits
r = O(logn) and query complexity q = O(1). Moreover, given the pair (C,w) ∈ Circuit-Eval,
a proof π making V (C) always accepts can be constructed in poly(|C|+ |w|) time.

I Remark 23. The moreover part is not explicitly stated in [11], but it is evident from the
constructions.

The exact number of queries used in a PCPP will be significant for us, so we use query-
efficient PCPPs. They are already implicit in the literature; for completeness, we provide
expositions for them in Appendix A.

I Lemma 24 (3-query PCPP with perfect completeness). For any constant δ > 0 there is
a constant 0 < s < 1, such that there is a PCP of proximity system for Circuit-Eval with
proximity δ, soundness s, random bits r = O(logn), and query complexity q = 3. Moreover,
the system satisfies two additional properties:

(1) Given the random coins, the verifier simply computes an OR on these 3 queried bits or
their negations, and accepts iff the OR is true.

(2) Given the pair (C,w) ∈ Circuit-Eval, we can construct a proof π in poly(|C|+ |w|) time
that makes V (C) accept with probability 1.

I Lemma 25 (2-query PCPP with constant completeness/soundness gap). For any constant
δ > 0 there two constants 0 < s < c < 1, such that there is a PCP of proximity system
for Circuit-Eval with proximity δ, soundness s, completeness c, number of random bits
r = O(logn) and query complexity q = 2. Moreover, it satisfies two additional properties:

(1) Given the random coins, the verifier computes an OR on the 2 queried bits or their
negations, and accepts iff the OR is true.

(2) Given the pair (C,w) ∈ Circuit-Eval, a proof π can be constructed in poly(|C|+ |w|) time
that makes V (C) accept with probability at least c.
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2.4 Error Correcting Codes
We also need standard constructions of constant-rate linear error correcting codes.

I Lemma 26 ([43]). There is a constant δ > 0 such that there is a constant-rate linear
error correcting code ECC with minimum relative distance δ, an efficient encoder Enc and an
efficient decoder Dec recovering error up to c1 · δ, where c1 is a universal constant.

We use a slight modification of the above construction, which is convenient when we want
to guess-and-verify a circuit for the encoder.

I Lemma 27. There is a constant δ > 0 such that there is a constant-rate linear error
correcting code ECC with minimum relative distance δ, an efficient encoder Enc and an
efficient decoder Dec recovering error up to c1 · δ, where c1 is a universal constant. Moreover,
each bit of the codeword depends on at most n/2 bits of the input.

Proof. Given a message x ∈ {0, 1}n, we split it into three parts x1, x2, x3, each of length
between bn/3c and dn/3e. Let Enc′ and Dec′ be the corresponding encoder and decoder of
Lemma 26.

We construct our new error correcting code by setting Enc(x) := Enc′(x1) ◦ Enc′(x2) ◦
Enc′(x3). Given a codeword y, we split it into three strings y1, y2, y3 of appropriate lengths,
and let Dec(y) := Dec′(y1) ◦ Dec′(y2) ◦ Dec′(y3). J

2.5 Norms and Inequalities for Functions on Boolean Cube
For our lower bounds on approximate sums of functions, we will require a bit of Fourier
analysis on Boolean functions. Here we introduce some notations and inequalities for real-
valued functions on the Boolean hypercube. (See [36] for an excellent reference on this
topic.)

Let f : {0, 1}n → R be a function and p ∈ R+. We define

‖f‖p :=
(

E
x∼Un

[|f(x)|p]
)1/p

.

We also define the infinity norm in the usual way:

‖f‖∞ = max
x∈{0,1}n

|f(x)|.

By the standard relations between different Lp-norms, for all 0 < p < q ≤ ∞, we have
‖f‖p ≤ ‖f‖q.

For two functions f, g : {0, 1}n → R, we define their inner product as

〈f, g〉 := E
x∼Un

[f(x) · g(x)].

Note that the Cauchy-Schwarz inequality implies 〈f, g〉 ≤ ‖f‖2 · ‖g‖2. We need the following
simple lemma for this paper.

I Lemma 28. For functions f1, f2 and g1, g2 from {0, 1}n → R and positive ε, α ∈ R,
suppose for all i ∈ [2] we have:
‖fi‖2 ≤ α and ‖gi‖2 ≤ α,
‖fi − gi‖2 ≤ ε.

Then 〈f1, f2〉 − 〈g1, g2〉‖ ≤ 2 · α · ε.
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Proof. We have

‖〈f1, f2〉 − 〈g1, g2〉‖ ≤ ‖〈f1, f2〉 − 〈f1, g2〉‖+ ‖〈f1, g2〉 − 〈g1, g2〉‖
≤ ‖〈f1, f2 − g2〉‖+ ‖〈f1 − g1, g2〉‖
≤ 2 · α · ε. J

2.6 Connections Between Nondeterministic Gap-UNSAT Algorithms
and Circuit Lower Bounds

We also appeal to several known connections between Gap-UNSAT algorithms which improve
upon exhaustive search and circuit lower bounds against nondeterministic time classes [49,
30, 41, 13].

I Theorem 29 ([49]). If Gap-UNSAT with gap 1− 1/n10 for (general) circuits with n inputs
and poly(n) size is solvable in O(2n/nω(1)) nondeterministic time, then NEXP doesn’t have
poly(n)-size (general) circuits.

I Theorem 30 ([34]). If there is an ε > 0 such that Gap-UNSAT with gap 1 − 1/n10 for
(general) circuits with n inputs and 2εn size is solvable in O(2n−εn) nondeterministic time,
then for every k there is a function in NP that does not have nk-size (general) circuits.

I Theorem 31 (Corollary 12 in Tell [45], following [34]). If there is a δ > 0 and c ≥ 1 such
that Gap-UNSAT with gap 1− 1/n10 for (general) circuits with n variables and m gates is
solvable in O(2n(1−δ) ·mc) nondeterministic time, then for every unbounded α(n) such that
nα(n) is time-constructible, there is a function in NTIME[nα(n)] that is not in P/ poly.

I Theorem 32 ([34]). If there is an ε > 0 such that Gap-UNSAT with gap 1 − 1/n10 for
(general) circuits with n inputs and 2nε size is solvable in O(2n−nε) nondeterministic time,
then for every k there is a function in NTIME[npoly(logn)] that does not have nlogk n-size
(general) circuits.

3 Equivalence Between Algorithmic Analysis of THR ◦ THR and of
THR ◦ MAJ or MAJ ◦ MAJ

In this section, building on our new structure lemmas for THR◦THR circuits. We show several
equivalence results between canonical circuit-analysis tasks (SAT or CAPP) of THR ◦ THR
circuits and that of THR ◦MAJ or MAJ ◦MAJ circuits.

3.1 Poly-Size THR ◦ MAJ and THR ◦ THR are Equivalent for
Circuit-Analysis Algorithms

We first show that, in terms of designing non-trivial circuit-analysis algorithms, THR ◦ THR
and THR ◦MAJ circuits are essentially equivalent.

I Reminder of Theorem 1. The following two statements hold:
Equivalence of Non-Trivial SAT Algorithms: There is a non-trivial SAT algorithm
for THR ◦ MAJ circuits of poly(n)-size if and only if there is such an algorithm for
poly(n)-size THR ◦ THR circuits.
Equivalence of Non-Trivial CAPP Algorithms With Constant Error: For any
constant δ > 0, If there is a non-trivial CAPP algorithm with error δ for THR ◦MAJ
circuits of poly(n) size, then there is a non-trivial CAPP algorithm with error δ+ 1/n for
poly(n)-size THR ◦ THR circuits.
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Proof. We begin with the first equivalence. We only have to show that a 2n/nω(1) time
SAT algorithm for poly(n)-size THR ◦MAJ circuits implies such an algorithm for THR ◦THR
circuits. By Lemma 16, given any THR ◦THR circuit of poly(n) size, in poly(n) time we can
construct an equivalent poly(n)-size Gap-OR ◦ THR ◦MAJ circuit C. Applying the assumed
SAT algorithm for THR◦MAJ circuits on all THR◦MAJ subcircuits of C completes the proof
of the first equivalence.

For the second equivalence, given any THR ◦ THR circuit C of poly(n) size, we construct
in poly(n) time a Gap-OR1/n ◦ THR ◦MAJ circuit D that is equivalent to C, by Lemma 16.
Let D1, D2, . . . , Dm be the THR ◦MAJ subcircuits of C, where m = poly(n).

By the definition of a Gap-OR1/n gate, for all x ∈ {0, 1}n, we have∣∣∣∣C(x)− E
i∈[m]

Di(x)
∣∣∣∣ ≤ 1/n.

Therefore, to estimate Ex∼Un [C(x)] within error δ+ 1/n, it suffices to estimate Ex∼Un [Di(x)]
for each i ∈ [m] within error δ. Applying the non-trivial CAPP algorithm for THR ◦MAJ
circuits from the assumption completes the proof. J

With an argument similar to the proof of Theorem 1 and using the fact that MAJ◦THR ⊆
MAJ ◦MAJ (potentially multiple times), it is not hard to generalize Theorem 1 to hold for
TC circuits of any constant depth d.

I Reminder of Corollary 2. The following two statements hold for any constant d:
Equivalence of Non-Trivial SAT Algorithms: There is a non-trivial SAT algorithm
for THR ◦ L̂Td−1 circuits of poly(n)-size if and only if there is such an algorithm for
poly(n)-size LTd circuits.
Equivalence of Non-Trivial CAPP Algorithms With Constant Error: For any
constant ε > 0, if there is a non-trivial CAPP algorithm with error ε for THR ◦ L̂Td−1
circuits of poly(n)-size, then there is a non-trivial CAPP algorithm with error ε+ 1/n for
poly(n)-size LTd circuits.

3.2 Weaker Equivalence Between Poly-Size THR ◦ THR and
MAJ ◦ MAJ

We also show a weaker equivalence for THR ◦ THR and MAJ ◦MAJ circuits.

I Reminder of Theorem 3. The following two statements hold:
Equivalence of 2(1−ε)n-time SAT Algorithms: If SAT for poly(n)-size MAJ ◦MAJ
circuits is in 2(1−ε)n time for some constant ε > 0, then SAT for poly(n)-size THR ◦THR
circuits is in 2(1−ε′)n time for some ε′ > 0.
Equivalence of Non-Trivial CAPP Algorithms with Inverse Polynomial Error:
If there is a non-trivial CAPP algorithm with 1/poly(n) error for poly(n)-size MAJ ◦MAJ
circuits, then there is a non-trivial CAPP algorithm with 1/ poly(n) error for poly(n)-size
THR ◦ THR circuits.

Proof. We begin with the first equivalence.

The first equivalence. Suppose we have a 2(1−ε1)n time SAT algorithm for poly(n) size
MAJ ◦ MAJ circuits for a constant ε1 > 0, and want to design a 2n−Ω(n) time SAT
algorithm for poly(n) size THR ◦ THR circuits.
Let c be the hidden constant in the big-O of the fan-in of the top DOR gate from
Lemma 17. Set ε := ε1/2c, and apply Lemma 17 to the given poly(n)-size THR ◦ THR
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circuit. We obtain an equivalent DOR ◦MAJ ◦MAJ circuit with top fan-in 2cεn = 2ε1/2·n

and poly(n)-size MAJ ◦ MAJ subcircuits. Then we can apply our SAT algorithm for
poly(n)-size MAJ ◦MAJ circuits to solve the SAT problem for poly(n) size THR ◦ THR
circuits, which completes the proof of the first equivalence.

The second equivalence. To show the second equivalence, suppose for all constants k′, there
is a CAPP algorithm for poly(n)-size MAJ ◦MAJ circuits with error 1/nk′ . We have to
design such an algorithm for poly(n)-size THR ◦ THR circuits.
Given a THR ◦ THR circuit C of s = poly(n) ≤ nc1 size and a constant k, we want to
estimate

E
x∼Un

[C(x)] (2)

within error 1/nk.
Since THR ⊆ DOR ◦ ETHR (item (2) of Proposition 18), we can write C as a DOR of
m = poly(s) = poly(n) ETHR ◦ THR subcircuits C1, C2, . . . , Cm. By the definition of
DOR, we have

E
x∼Un

[C(x)] = E
x∼Un

[
m∑
i=1

Ci(x)
]

=
m∑
i=1

E
x∼Un

[Ci(x)].

Therefore, in order to estimate (2) within error 1/nk, it suffices to estimate

E
x∼Un

[Ci(x)]

within error 1/(m · nk) for each i ∈ [m].
So fix an i ∈ [m]. Let D = Ci, and let D’s top ETHR gate be G. By construction, G
has weights of absolute value at most 2nc , for a constant c depending on c1. Define
L : {0, 1}n → Z so that L(x) is the value of the linear function associated with G on
input x. That is, D(x) = 1 if and only if L(x) = T for the threshold T of G.
Suppose we pick a random prime number p in the interval [2,M ], where M = n2c · (2m ·
nk)2 ≤ poly(n). Then for a fixed x ∈ {0, 1}n, if L(x) 6= T , the probability that L(x) ≡ T
(mod p) is less than 1/(2m · nk).
Recall that for a prime p and an ETHR gate G(x) = [

∑n
i=1 wi · xi = T ], we use Gp to

denote its “mod p” version (see Definition 41). Let Dp denote the circuit obtained by
replacing the top G gate in D by Gp. For all x ∈ {0, 1}n, by the above discussion, we
have∣∣∣∣D(x)− E

prime p ∈ [2,M ]
[Dp(x)]

∣∣∣∣ ≤ 1/(2m · nk).

Therefore, in order to estimate Ex∼Un [D(x)] within error 1/(m ·nk), it suffices to estimate

E
x∼Un

[Dp(x)]

for all primes p ≤M , within error 1/(2m · nk).
By Lemma 42, each Dp can be written as a DOR of O(n) EMAJ◦ETHR circuits of poly(n)
size. Since EMAJ ⊆ MAJ ◦AND2, AND ◦ ETHR ⊆ ETHR and MAJ ◦ ETHR ⊆ MAJ ◦MAJ
(items (6), (5), and (3) of Proposition 18), Dp can be further written as a DOR of cn
MAJ ◦MAJ circuits Dp

1 , D
p
2 , . . . , D

p
cn of poly(n) size, for a universal constant c.
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Therefore, to estimate Ex∼Un [Dp(x)] within error 1/(2m · nk), it suffices to estimate
Ex∼Un [Dp

i (x)] within error 1/(2m · nk · cn), for each i ∈ [cn].
Observe that 2m · nk · cn ≤ poly(n), and all Dp

i ’s are poly(n)-size MAJ ◦MAJ circuits.
Applying the assumed CAPP algorithm completes the proof of the second equivalence. J

Again applying the fact that MAJ ◦ THR ⊆ MAJ ◦MAJ, the generalization to TC circuits
of any constant depth d is immediate.

I Reminder of Corollary 4. The following two statements hold for any constant d:
Equivalence of 2(1−ε)n-time SAT Algorithms: If SAT for L̂Td circuits of poly(n)-size
is in 2(1−ε)n time for a constant ε > 0, then SAT for poly(n)-size LTd circuits is in
2(1−ε′)n time for some ε′ > 0.
Equivalence of Non-trivial CAPP Algorithms with inverse polynomial error:
If there is a non-trivial CAPP algorithm with 1/poly(n) error for poly(n)-size L̂Td circuits,
then there is a non-trivial CAPP algorithm with 1/poly(n) error for poly(n)-size LTd
circuits.

4 Tighter Connection Between Derandomization and Circuit Lower
Bounds

In this section we show that C circuit lower bounds for NEXP or NP follow from better-than-2n
time derandomization of AND3 ◦ C, OR2 ◦ C, ⊕2 ◦ C or AND2 ◦ C circuits.

I Reminder of Theorem 5. There is an absolute constant δ > 0, such that for any typical
circuit class C, if one of the following holds:

there is a non-trivial Gap-UNSAT algorithm with gap δ for poly(n)-size AND3 ◦C circuits,
or
there is a non-trivial CAPP algorithm with error δ for poly(n)-size OR2 ◦ C, ⊕2 ◦ C, or
AND2 ◦ C circuits,

then NEXP 6⊂ C. Moreover, in the second bullet, C does not need to be closed under negation.

Proof. We use Un to denote the uniform distribution on {0, 1}n.
We will show there is an absolute constant δ > 0, such that if one of the algorithmic

assumptions of the theorem holds and NEXP ⊂ C, then Gap-UNSAT with gap 1− 1/n10 for
poly(n)-size general circuits can be solved in 2n/nω(1) non-deterministic time. This proves
the theorem, since by Theorem 29, we have NEXP 6⊂ P/ poly, which is a contradiction to
NEXP ⊂ C.

We are given a poly(n)-size general circuit C : {0, 1}n → {0, 1} with the promise that
either C is unsatisfiable, or C has at least (1− 1/n10) · 2n satisfying assignments. Our goal
is to distinguish between these two cases in 2n/nω(1) non-deterministic time.

Let δ1 > 0 be the constant of Lemma 27. We fix a constant-rate linear error correcting code
with minimum relative distance δ1, as guaranteed by Lemma 27. Let Enc : {0, 1}n → {0, 1}cn
and Dec : {0, 1}cn → {0, 1}n be the corresponding encoder and decoder, where c ≥ 1 is a
constant corresponding to the rate of the code. Let δDec = c1 · δ1, which is error rate that
Dec can recover.

We also need a C circuit for the parity function on n/2 bits for computing Enc (by
Lemma 27, the code is linear, and each output bit depends on at most n/2 input bits). By
the assumption NEXP ⊂ C, the parity function must have a C-circuit of poly(n) size. We
can guess a C-circuit Parn/2, and brute-force verify that it is correct in 2n/2 · poly(n) time.
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Let D : {0, 1}cn → {0, 1} be the circuit defined as D(y) = ¬C(Dec(y)). Since C has
poly(n) size and Dec is efficient, D also has poly(n) size. Then we can see

Pr
x∼Un

[C(x) = 0] = Pr
x∼Un

[D(Enc(x)) = 1] = Pr
x∼Un

[(D,Enc(x)) ∈ Circuit-Eval].

With non-trivial Gap-UNSAT algorithms for poly-size AND3 ◦ C circuits. We first prove
the theorem under the first assumption. For that purpose we make use of a PCP of
proximity system V for Circuit-Eval, with δPCPP < δDec, r = O(logn), q = 3 and a constant
s < 1, whose existence is guaranteed by Lemma 24. We fix the circuit to be D, and write
the verifier as V (D).
We can view the verification of V (D) as m = 2r(|D|) = poly(n) many constraints on the
oracle y ◦ π. We can also assume |π| = ` = poly(n). Suppose there are F1, F2, . . . , Fm
constraints on y ◦ π, each constraint is an OR on q = 3 variables or their negations.
Then the properties of PCP of proximity system translate to:

If y = Enc(x) such that C(x) = 0, then D(y) = 1 and there is a proof π ∈ {0, 1}` such
that all constraints Fi’s are satisfied by y ◦ π.
If y = Enc(x) such that C(x) = 1, then for all z ∈ {0, 1}cn with dist(z, y) ≤ δDec, we
have D(z) = C(Dec(z)) = C(x) = 0. Therefore, y is δDec-far from Circuit-Eval(D) =
{z : z ∈ {0, 1}cn and (D, z) ∈ Circuit-Eval}. Since δDec > δPCPP, we have that for all
proofs π ∈ {0, 1}`, at most a s fraction of constraints Fi’s are satisfied by y ◦ π.

When C is unsatisfiable, then there is a proof π(x) for each y = Enc(x), such that V (D)
accepts y ◦ π(x) with probability 1. Note that by Lemma 24, such a proof π(x) can be
computed in polynomial time from y and D, which in particular means that π(x) admits
a polynomial-size circuit, hence each bit of π(x) admits a nproof = poly(n) size C circuit
(here we use the assumption that NEXP ⊂ C).
Next, we guess a list of nproof-size C circuits T1, T2, . . . , T` such that

T (x) = (T1(x), T2(x), . . . , T`(x))

is intended to be the proof π(x) for y = Enc(x). Slightly abusing notation, we also use Fi
to denote the function Fi(x) := Fi(Enc(x) ◦ T (x)). Since a bit of Enc(x) is just a parity
on at most n/2 bits in x, and since C is typical, each Fi can be written as an OR3 ◦ C
circuit. We also set Ei(x) = ¬Fi(x), which is an AND3 ◦ C circuit.
Therefore, when C is unsatisfiable, by the previous discussion, on some guesses of the
Ti’s, we have

Pr
x∼Un

[V (D)Enc(x)◦T (x) = 1] = E
x∼Un

E
i∈[m]

[Fi(x)] = 1.

Therefore, for all i ∈ [m],

E
x∼Un

[Ei(x)] = 0.

When C has at most 2n/n10 unsatisfying assignments, for all possible T1, T2, . . . , T`, we
have

E
x∼Un

E
i∈[m]

[Fi(x)] ≤ 1/n10 + s.

By an averaging argument, there must be an i such that

E
x∼Un

[Fi(x)] ≤ 1/n10 + s,
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or equivalently

E
x∼Un

[Ei(x)] ≥ 1− s− 1/n10 ≥ 1− s
2 .

Next, we set δ = 1−s
2 . When C is unsatisfiable, all Ei’s are unsatisfiable on the correct

guesses. When C has at most 1/n10 · 2n unsatisfying assignments, then for all guesses,
there is at least one i such that Ei has at least δ ·2n satisfying assignments. Hence, solving
Gap-UNSAT with gap δ for all Ei’s suffices to non-deterministically distinguish between
the two cases. By the first assumption, that takes 2n/nω(1) time, and the theorem follows
from Theorem 29.

With non-trivial CAPP algorithms for poly(n)-size AND2 ◦C, ⊕2 ◦C or OR2 ◦C circuits.
The theorem under the second assumption can be proved similarly if we use the 2-query
PCP of proximity system for Circuit-Eval instead, which is given by Lemma 25. The proof
here is similar in parts to the one we just described for AND3 ◦ C; for completeness we
will give the proof in full.
Now we make use of a PCP of proximity system V for Circuit-Eval, with δPCPP < δDec,
r = O(logn), q = 2 and constants 0 < s < c < 1, whose existence is guaranteed by
Lemma 25. We again fix the circuit to be D, and write the verifier as V (D).
Similarly, we can view the verification of V (D) as m = 2r(|D|) ≤ poly(n) many con-
straints on the oracle y ◦ π. We can also assume |π| = ` ≤ poly(n). Suppose there
are F1, F2, . . . , Fm constraints on y ◦ π, where each constraint is a function on q = 2
coordinates of y ◦ π.
Then the properties of PCP of proximity system translate to:

If y = Enc(x) such that C(x) = 0, then D(y) = 1 and there is a proof π ∈ {0, 1}` such
that at least a c-fraction of Fi’s are satisfied by y ◦ π.
If y = Enc(x) such that C(x) = 1, then for all z ∈ {0, 1}cn with dist(z, y) ≤ δDec, we
have D(z) = C(Dec(z)) = C(x) = 0. Therefore, y is δDec-far from Circuit-Eval(D).
Since δDec > δPCPP, we have that for all proofs π ∈ {0, 1}`, at most an s-fraction of
Fi’s are satisfied by y ◦ π.

If C is unsatisfiable, then there is a proof π(x) for each y = Enc(x) that makes V (D)
accept y ◦ π(x) with probability at least c. By Lemma 24, such a proof π(x) can be
computed in polynomial time from y and D, which in particular means that π(x) has a
polynomial-size circuit. Therefore each output bit of π(x) has an nproof = poly(n) size
C-circuit, from the assumption that NEXP ⊂ C.
The next step is to guess a list of nproof-size C circuits T1, T2, . . . , T` such that T (x) =
(T1(x), T2(x), . . . , T`(x)) is supposed to the proof π(x) given input y = Enc(x). Slightly
abusing notation, Fi is also used to denote the function Fi(x) := Fi(Enc(x) ◦ T (x)).
When C is unsatisfiable, by the previous discussion, there is a guess of Ti’s such that

Pr
x∼Un

[V (D)Enc(x)◦T (x) = 1] = E
x∼Un

E
i∈[m]

[Fi(x)] ≥ c.

When C has at most 2n/n10 unsatisfying assignments, then for all possible T1, T2, . . . , T`,
we have

E
x∼Un

E
i∈[m]

[Fi(x)] ≤ 1/n10 + s.

Now set δ1 := c−s
2 . In order for us to non-deterministically distinguish between the above

two cases, it suffices to estimate

E
x∼Un

[Fi(x)]
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to within δ1, for each i ∈ [m].
Since each output bit of Enc(x) is simply a parity on at most n/2 bits of x, each Fi can
be written as a function Fi(x) = P (C1(x), C2(x)), where C1, C2 are two C circuits, and
P is a function from {0, 1}2 → {0, 1}. (Recall that in this case, we do not require C to be
closed under negation.)
Now we write P as a polynomial:

P (z1, z2) =
∑
S⊆[2]

αS ·
∏
i∈S

zi =
∑
S⊆[2]

αS ·
∧
i∈S

zi,

where each coefficient αS ∈ [−4, 4]. Given two C circuits C1, C2, to estimate

E
x∼Un

[P (C1(x), C2(x))] =
∑
S⊆[2]

αS · E
x∼Un

[∧
i∈S

Ci(x)
]

within error δ1, it suffices to estimate each

E
x∼Un

[∧
i∈S

Ci(x)
]

within error δ = δ1/16. Finally, we can apply our assumed non-trivial CAPP algorithm
for poly(n)-size AND2 ◦ C circuits to non-deterministically distinguish the two cases, and
the theorem follows from Theorem 29.
When we only have non-trivial CAPP algorithms for ⊕2 ◦ C or OR2 ◦ C circuits, we can
simply write P in the basis of OR functions or ⊕ functions instead. That is, we can write

P (z1, z2) =
∑
S⊆[2]

α′S ·
⊕
i∈S

zi,

or

P (z1, z2) =
∑
S⊆[2]

α′′S ·
∨
i∈S

zi.

The rest of the argument is the same as the case of AND2 ◦ C circuits. J

Using Theorem 30, the following theorem can be proved with the same argument as of
Theorem 5.

I Reminder of Theorem 6. There is an absolute constant α > 0, such that for any typical
circuit class C, if there is a constant δ such that one of the following holds:

Gap-UNSAT for 2δn-size AND3 ◦ C circuits with gap α can be solved in 2n−δn time, or
CAPP for 2δn-size OR2 ◦ C, ⊕2 ◦ C, or AND2 ◦ C circuits with error α can be solved in
2n−δn time,

then for every k there is a function in NP that doesn’t have nk-size C circuits. Moreover, in
the second bullet, C does not need to be closed under negation.

5 Approaches For THR ◦ THR Circuit Lower Bounds

In this section we propose approaches for proving NEXP 6⊂ THR ◦ THR. We will see that
surprisingly weak algorithms suffice for proving this lower bound.

Applying Theorem 5 and the fact that ⊕2 ◦ THR ◦ THR ⊆ THR ◦ THR, we first show
that NEXP 6⊂ THR ◦ THR would follow from a non-trivial CAPP algorithm for poly(n)-size
THR ◦ THR circuits.

CCC 2019



19:24 Stronger Connections Between Circuit Analysis and Circuit Lower Bounds

I Reminder of Theorem 8. There is an absolute constant δ > 0, such that if δ-error CAPP
for poly(n)-size THR◦THR circuits can be solved in 2n/nω(1) time, then NEXP 6⊂ THR◦THR.
The same is true with SAT in place of CAPP.

Proof. The theorem for CAPP follows directly from the fact that ⊕2◦THR◦THR ⊆ THR◦THR
(item (7) of Proposition 18) and Theorem 5.

Suppose SAT for poly(n)-size THR ◦ THR circuits can be solved in 2n/nω(1) time. By
Theorem 5, it suffices to give a 2n/nω(1) time algorithm for solving SAT for AND3◦THR◦THR
circuits of poly(n) size (note that Gap-UNSAT is easier than SAT).

Given such an AND3 ◦THR◦THR circuit C, we first use the fact that THR ⊆ DOR◦ETHR
(item (2) of Proposition 18) to transform it into a poly(n) size AND3 ◦DOR ◦ ETHR ◦ ETHR
circuit C ′.

Treating the DOR as an addition gate (that has at most one true input), and the
AND3 as a multiplication, we can apply distributivity to the circuit. Together with the
fact that AND ◦ ETHR ⊆ ETHR (item (5) of Proposition 18), C ′ is then equivalent to a
DOR ◦ ETHR ◦ ETHR circuit C ′′ of poly(n) size.

Finally, observe that solving SAT for C ′′ can be reduced to solving SAT for its poly(n)
ETHR ◦ ETHR subcircuits, and note that ETHR ◦ ETHR can be converted efficiently into
THR◦THR (item (4) of Proposition 18). Therefore, applying the 2n/nω(1) time SAT algorithm
for poly(n)-size THR ◦ THR circuits from the assumption completes the proof. J

In fact, similar results apply to TC circuits of any constant depth d (i.e., LTd circuits).
The following theorem can be proved in exactly the same way.

I Reminder of Theorem 9. There is an absolute constant δ > 0, such that for any constant
d, if CAPP for poly(n)-size LTd circuits with error δ can be solved in 2n/nω(1) time, then
NEXP 6⊂ LTd. The same is true with SAT in place of CAPP.

Now, combing Theorem 8 and our equivalence theorems (Theorem 1 and Theorem 3),
the following corollary follows immediately.

I Reminder of Corollary 10. There is an absolute constant δ > 0, such that if one of the
following holds:
1. CAPP (or SAT) for poly(n)-size THR◦MAJ circuits with error δ can be solved in 2n/nω(1)

time, or
2. CAPP for poly(n)-size MAJ ◦MAJ circuits with 1/poly(n) error can be solved in 2n/nω(1)

time.
Then NEXP 6⊂ THR ◦ THR.

6 Lower Bounds for S̃umε ◦ C Circuits

We now present our lower bounds for various S̃umε ◦ C circuits. In the following we slightly
abuse notation, by also using C to denote a class of functions from {0, 1}n → R. Note that
Boolean circuit classes are special cases of real-valued function classes. We also assume C

contains the constant functions 0 and 1 for simplicity.
We first define the Sum-Product problem over functions from C.

Sum-Product over C

Given k functions f1, . . . , fk : {0, 1}n → R from C, compute

∑
x∈{0,1}n

k∏
i=1

fi(x).
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6.1 The Main Challenge: Guessed Sumε ◦ C Circuits Could be Invalid

The main idea is to follow the proof of Theorem 5. Suppose we are given S̃umε ◦ C circuits
C1 and C2 computing two Boolean functions f1 and f2, respectively. One can see that their
product C(x) := C1(x) ·C2(x) (which is a real function on {0, 1}n), is an (3 ·ε)-approximation
to f1 ∧ f2, for small enough ε > 0.

Therefore, if we simply computed∑
x∈{0,1}n

C1(x) · C2(x), (3)

we would have estimated Prx∈{0,1}n [(f1(x) ∧ f2(x)) = 1] within 3ε. Note that if C1 (C2)
is a linear sum of m1 (m2) C-circuits, then the above quantity can be reduced to m1 ·m2
instances of the sum-product problem over C.

However, the above reasoning does not complete the proof. The problem is that in the
proof of Theorem 5, one actually has to guess the S̃umε ◦ C circuits which are supposed to
compute the PCPP proofs. It could well be the case that our guessed representations are not
valid at all. That is, it could be that for some x ∈ {0, 1}n,

∑S
i=1 αi · Ci(x) is much larger

than 1, or much less than 0. If C1 and C2 are not valid Sumε ◦ C circuits to begin with, then
the quantity (3) would not be useful.

6.2 Testing Whether a Linear Representation is Close to Boolean

This issue also occurs in Williams’ lower bounds on Sum ◦C circuits [48]. There, the problem
is solved by using a clever algorithm to verify whether a given Sum ◦ C circuit is valid. In
particular, the test of whether a Sum ◦ C outputs 0 or 1 on every Boolean input is effectively
reduced to a small number of Sum-Product calls. But this argument crucially uses the fact
that the Sum ◦ C must output one of two discrete values on every Boolean input. It appears
to be much harder to verify that a given S̃umε ◦ C circuit is valid.

We will later show that it suffices to test whether a given S̃umε ◦ C circuit is close to a
Boolean function with respect to `2 distance, in which case we know how to get an algorithm.

It will be convenient to introduce some notation. Let dbin(z) = minb∈{0,1} |z − b|. Intuit-
ively, dbin(z) measures how close z is to a bit-value. For a function f : {0, 1}n → R, define
its closest binary function binf as follows: for all x ∈ {0, 1}, if f(x) ≥ 1/2, binf (x) := 1,
otherwise binf (x) := 0. By definition, for any p > 0 we have

‖f − binf‖p =
(

E
x∼Un

[|dbin(f(x))|p]
)1/p

,

and

‖f − binf‖∞ = max
x∈{0,1}n

|dbin(f(x))| .

Let f =
∑S
i=1 αi ·Ci be a linear combination of functions from C; we wish to verify that f is

a S̃umε ◦ C circuit for some Boolean function. With respect to the above definitions, f is a
valid S̃umε ◦ C circuit for some Boolean function if and only if ‖f − binf‖∞ ≤ ε.

The following algorithm shows that, given an algorithm for evaluating the Sum-Product
of 4 functions from C, the algorithm can be used to distinguish between the case that
‖f − binf‖∞ is small and the case that ‖f − bin‖2 is large.
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I Lemma 33. For S ∈ N, suppose we are given S reals {αi}i∈[S], S functions from C

{Ci}i∈[S], and parameter ε < 0.01. Suppose Sum-Product of 4 functions on n bits from C

can be solved in T (n) time. Let f =
∑S
i=1 αi · Ci.

There is an algorithm A such that:
If ‖f − binf‖∞ ≤ ε, then A always accepts. (That is, if

∑S
i=1 αi · Ci is a valid S̃umε ◦ C

circuit for some Boolean function, then A always accepts.)
If ‖f − binf‖2 ≥ 3 · ε, then A always rejects.
Otherwise, A can output anything.
A runs in T (n) · (S + 1)4 + 2o(n) time.

Proof. We define a polynomial of degree 4,

P (z) := z2 · (1− z)2,

to approximate dbin(z). Simple calculations confirm the following facts about P (z):

P (z) ≤ dbin(z)2 · (1 + dbin(z))2, and
P (z) ≥ dbin(z)2 · 2−2.

When dbin(z) ≤ ε, we have P (z) ≤ ε2 · (1 + ε)2. This means that if ‖f − binf‖∞ ≤ ε, then
we have

E
x∼Un

[P (f(x))] ≤ ε2 · (1 + ε)2 ≤ ε2 · (1 + 0.01)2.

On the other hand, if ‖f − binf‖2 ≥ 3 · ε, then by definition we have

E
x∼Un

[
dbin(f(x))2] ≥ (3 · ε)2,

therefore

E
x∼Un

[P (f(x))] ≥ (3/2)2 · ε2.

Therefore, it suffices to compute

E
x∼Un

[P (f(x))] (4)

to distinguish between these two cases.
Expanding out P (f(x)) = P (

∑S
i=1 αi · Ci), it can be written as a R-sum of at most

(S + 1)4 products of 4 functions from C. By rearranging the order of summation (summing
all (S + 1)4 terms first), we see that (4) can be evaluated by making at most (S + 1)4 calls
to the assumed Sum-Product algorithm. Assuming that algorithm runs in T (n) time, the
sum (4) can be evaluated in time T (n) · (S + 1)4 + 2o(n). J

6.3 Meta-Theorem for S̃umε ◦ C Lower Bounds
Now we are ready to prove the following meta theorem for lower bounds on S̃umε ◦ C circuits.

I Theorem 34. Suppose every C ∈ C has a poly(n)-bit representation, where each C can be
evaluated in poly(n) time. Assume there is a δ > 0 such that for all constant integers k > 0,
there is a poly(n) · 2n−δn-time algorithm for computing the Sum-Product of k functions on n
bits from C. Then:
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For every k and constant ε < 1/2, there is a function in NP without S̃umε ◦ C circuits of
nk sparsity.
For every unbounded function α(n) such that nα(n) is time-constructible, NTIME[nα(n)]
doesn’t have S̃umε ◦ C circuits of polynomial sparsity for all constant ε < 1/2.

The most important component in the proof of the above meta-theorem is an argument
that we can solve Gap-UNSAT faster, given a non-trivial algorithm for evaluating Sum-
Product of functions from C and the assumption that Circuit-Eval has a small S̃umε ◦C circuit.
Formally, we have the following lemma, whose proof follows similar reasoning as the proof of
Theorem 5, while taking care of the issue that a guessed S̃umε ◦ C circuit may not be a valid
one with the algorithm from Lemma 33.

I Lemma 35. There is an absolute constant ε > 0 such that if:
there is a δ > 0 such that for all integers k ≤ 4, there is a poly(n) · 2n−δn-time algorithm
for computing the Sum-Product of k functions on n bits from C, and
Circuit-Eval has a S̃umε ◦ C circuit of sparsity nk for some k > 0,

then there is a non-deterministic 2n−δn · poly(n, s) time algorithm for Gap-UNSAT with gap
1− 1/n10, on general (fan-in 2) circuits with n inputs and s gates.

Proof. Suppose we are given an s-size general circuit C : {0, 1}n → {0, 1} with the promise
that either C is unsatisfiable or C has at least (1− 1/n10) · 2n satisfying assignments. We
want to distinguish between these two cases in 2n−δn · poly(n, s) non-deterministic time.

Let δ1 be the constant from Lemma 27. Fix a constant-rate linear error correcting code
with minimum relative distance δ1, as guaranteed by Lemma 27, letting Enc : {0, 1}n →
{0, 1}cn and Dec : {0, 1}cn → {0, 1}n be the corresponding encoder and decoder, for a
constant c corresponding to the rate of the code. Let δDec = c1 · δ1, which is error rate that
Dec can recover.

We also need a S̃umε ◦ C circuit for the parity function on n/2 bits for computing Enc
(by Lemma 27, the code is linear and each output bit depends on at most n/2 input bits).
Applying the second assumption of the theorem, and the fact that parity reduces easily to
Circuit-Eval (parity has linear-size circuits), there is a S̃umε◦C circuit of sparsity nparity = nO(k)

for the parity function on n/2 inputs. We can guess such a S̃umε ◦ C circuit Parn/2 of nparity
size, and verify it is correct in 2n/2 · poly(nparity) = 2n/2 · poly(n) time, as in the proof of
Theorem 5.

Let D : {0, 1}cn → {0, 1} be the circuit defined as D(y) = ¬C(Dec(y)). Since C is of s
size and Dec is efficient, D is of size nD = poly(n, s).

Then we observe that

Pr
x∼Un

[C(x) = 0] = Pr
x∼Un

[D(Enc(x)) = 1] = Pr
x∼Un

[(D,Enc(x)) ∈ Circuit-Eval].

Now we make use of a PCP of proximity system V for Circuit-Eval, with parameters
δPCPP < δDec, r = O(logn), q = 2, and constants 0 < s < c < 1, with existence guaranteed
by Lemma 25. We fix the circuit to be D, and write the verifier as V (D).

We can view the verification of V (D) as m = 2r(|D|) = poly(nD) ≤ poly(n, s) constraints
on the oracle y ◦π. We can also assume |π| = ` ≤ poly(n, s). Suppose there are m constraints
F1, F2, . . . , Fm on y ◦π, where each constraint is a function on two coordinates of y ◦π. Then
the properties of the PCP of proximity yield the following consequences:

If y = Enc(x) such that C(x) = 0, then D(y) = 1 and there is a proof π ∈ {0, 1}` such
that such that at least a c-fraction of the Fi’s are satisfied by y ◦ π.
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If y = Enc(x) such that C(x) = 1, then for all z ∈ {0, 1}cn with dist(z, y) ≤ δDec, we
have D(z) = C(Dec(z)) = C(x) = 0. Therefore, y is δDec-far from Circuit-Eval(D). Since
δDec > δPCPP, we have that for all proofs π ∈ {0, 1}`, at most an s-fraction of the Fi’s are
satisfied by y ◦ π.

When C is unsatisfiable, it means there is a proof π(x) for each y = Enc(x), so that V (D)
accepts y ◦ π(x) with probability at least c. Note that by Lemma 25, such a proof π(x) can
be computed in polynomial time from y and D, which in particular means that π(x) admits
a poly(n, nD) = poly(n, s)-size circuit. By our second assumption, each bit of π(x) therefore
has a S̃umε ◦ C circuit of sparsity nproof = poly(n, s)O(k) ≤ poly(n, s).

Now, we guess a list of (presumably) S̃umε ◦C circuits T1, T2, . . . , T` each of sparsity nproof,
and denote Hi = binTi . We want H(x) = (H1(x), H2(x), . . . ,H`(x)) to be the proof π(x) for
the input y = Enc(x). Let each Ti =

∑nproof
j=1 αi,j · Ei,j , where each αi,j ∈ R and Ei,j ∈ C.

Slightly abusing notation, we also use Fi to denote the function Fi(x) := Fi(Enc(x) ◦H(x)).
First, for all i, we apply the test of Lemma 33 on Ti with parameter ε. We reject

immediately if some test rejects. Note that by Lemma 33 and our first assumption, all the
tests take 2n−δn · poly(n, s) time in total.

If all guesses are valid S̃umε ◦ C circuits, (that is, ‖Hi − Ti‖∞ ≤ ε for all i), then all the
tests are passed by Lemma 33. Furthermore if all tests passed, we know that ‖Hi−Ti‖2 ≤ 3 ·ε
for all i ∈ [`] by Lemma 33.

Therefore, when C is unsatisfiable, by the previous discussion, there is some guess of Ti’s
such that

Pr
x∼Un

[V (D)Enc(x)◦H(x) = 1] = Pr
x∼Un

Pr
i∈[m]

[Fi(x) = 1] ≥ c.

When C has at most 2n/n10 unsatisfying assignments, then for all possible T1, T2, . . . , T`,
we have

Pr
x∼Un

Pr
i∈[m]

[Fi(x)] ≤ 1/n10 + s.

Note that Fi is a function on two coordinates of Enc(x) ◦H(x). In particular, since each bit
of Enc(x) is a just a parity of some inputs in x (it is a linear code), we only need to estimate
the following quantity for a function P : {0, 1}2 → {0, 1}:

E
x∼Un

[P (L1(x), L2(x))], (5)

where for each function Li(x), we have an approximate linear representation Ti =
∑nfinal
j=1 αi,j ·

Ei,j , such that ‖Ti − Li‖2 ≤ 3 · ε, where each Ei,j ∈ C and nfinal = max(nproof, nparity) ≤
poly(n, s).13 (Note that when Li(x) is a bit in the error correcting code, we can simply use
the guessed circuit Parn/2.)

Let ε2 = c−s
2 . In order to non-deterministically distinguish between the above two cases,

we only have to estimate (5) within error ε2.
We can write P : {0, 1}2 → {0, 1} as a multi-linear polynomial, with

P (z) :=
∑
S⊆[2]

αS ·
∏
i∈S

zi,

13Here we don’t need the fact that Fi is an OR on variables or their negations.
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where each αS ∈ [−22, 22]. Therefore, to estimate (5) within ε2, we only need to estimate

E
x∼Un

[∏
i∈S

Li(x)
]

within error ε2/16, for each |S| ≥ 1. (when S = ∅, it is 1 by definition.)
Now, instead of the above, we compute

E
x∼Un

[∏
i∈S

Ti(x)
]
. (6)

When |S| = 1 and in particular S = {i}, we have

E
x∼Un

[Li(x)]− E
x∼Un

[Ti(x)] ≤ ‖Li − Ti‖1 ≤ ‖Li − Ti‖2 ≤ 3 · ε.

When |S| = 2, we want to bound

|〈L1, L2〉 − 〈T1, T2〉|.

Since Li is Boolean, we have ‖Li‖2 = 1, and therefore ‖Ti‖2 ≤ 1 + 3 · ε by the triangle
inequality. By Lemma 28, we have

|〈L1, L2〉 − 〈T1, T2〉| ≤ (1 + 3ε) · 2 · 3ε.

Now we set ε such that (1 + 3ε) · 2 · 3ε = ε2/16.
Finally, for each S ⊆ [2], computing (6) can be reduced to n|S|final ≤ poly(n, s) evaluations

of Sum-Products of |S| ≤ 2 functions on n bits from C. By assumption, thse evaluations can
be computed in 2n−δn · poly(n, s) time, which completes the proof. J

Now we are ready to prove Theorem 34.

Proof of Theorem 34. For the first consequence, assume every function in NP has a S̃umε

circuit of nk sparsity, for some fixed k > 0 and 0 < ε < 0.5. Let ε1 be the absolute constant
specified in Lemma 35. By Lemma 19, there is a polynomial P of degree d = O(1), such that
for all b ∈ {0, 1}, if |z − b| ≤ ε then |P (z)− b| ≤ ε1.

Let L : {0, 1}? → {0, 1} be any function in NP and
∑nk

i=1 αi · Ci be the S̃umε ◦ C circuit
for Ln : {0, 1}n → {0, 1}, where each Ci ∈ C.

Consider the function

P

 nk∑
i=1

αi · Ci

 . (7)

By the definition of P , for all x ∈ {0, 1}n, we have∣∣∣∣∣∣P
 nk∑
i=1

αi · Ci(x)

− Ln(x)

∣∣∣∣∣∣ ≤ ε1.

Expanding the expression of (7) into a sum of products, we obtain a S̃umε1 ◦ C⊗d circuit
for Ln of sparsity nk′ , where C⊗d consists of all possible products of d functions from C, and
k′ ≤ O(d · k) ≤ O(k). Observe that the Sum-Product problem for at most 4 functions from
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C⊗d is simply the Sum-Product problem for at most 4 · d functions from C, which admits a
poly(n) · 2n−δn time algorithm by assumption.

Since Circuit-Eval ∈ NP, both conditions of Lemma 35 are now satisfied for C⊗d. Therefore
Gap-UNSAT with gap 1− 1/n10 for s-gate n-input circuits of fan-in 2 has a 2n−δn · poly(n, s)
time non-deterministic algorithm. It follows from Lemma 30 that, for every k, there is
a function in NP which does not have general circuits of nk size and fan-in 2. This is a
contradiction, since every S̃umε ◦ C circuit of nk sparsity can be simulated by an nα·k-size
general fan-in-2 circuit, for a universal constant α ≥ 1.

The second consequence follows the same way, by applying Theorem 31 instead. J

6.4 Lower Bounds for S̃umε ◦ THR/ReLU/Fp-polynomials
In order to apply Theorem 34, we need the following algorithms from [48], for computing the
Sum-Product of O(1) functions from the function classes we care about.

I Lemma 36 (Theorem 4.1 in [48]). The Sum-Product of k THR functions on n variables
(with weight in [−nn, nn]) can be computed in 2n/2 · nO(k) time.

I Lemma 37 (Theorem 5.1 in [48]). The Sum-Product of k ReLU functions on n variables
(with weight in [−W,W ]) can be computed in 2n/2 · nO(k) · poly(k, n, logW ) time.

I Lemma 38 (Theorem 6.1 in [48]). The Sum-Product of k degree-d polynomials p1, . . . , pk ∈
Fp[x1, . . . , xn] can be computed in p2k · (1.9n + 2n−n/(6dp)) · poly(n) time.

Applying Theorem 34 with the above algorithms for computing the Sum-Product for
functions from THR, ReLU and O(1)-degree Fp-polynomials, Theorem 12, Theorem 13 and
Theorem 14 follow immediately.

6.5 Lower Bounds for S̃umε ◦ ACC0 ◦ THR
Theorem 15 follows via a similar argument as Theorem 34, and the known #SAT algorithms
for ACC0 ◦ THR [52]. Formally, we prove

I Reminder of Theorem 15. For every d,m ≥ 1 and ε ∈ [0, 0.5), there is a b ≥ 1 and an
f ∈ NTIME[nlogb n] that does not have S̃umε ◦ AC0

d[m] ◦ THR circuits of na size, for every a.

Using the argument of Lemma 35, we can show:

I Lemma 39. There is an absolute constant ε > 0 such that if the following two conditions
hold:

there is a δ > 0 such that for all integer k ≤ 4, there is a poly(n) · 2n−nδ -time algorithm
for computing the Sum-Product of k functions on n bits from C, and
Circuit-Eval has a S̃umε ◦ C of sparsity nk for some k > 0.

Then there is non-deterministic 2n−nδ · poly(n, s) time algorithm for Gap-UNSAT with
gap 1− 1/n10 and a general fan-in-2 circuit with n input and s gates.

Theorem 15 then follows from exactly the same arguments as that of Theorem 34,
combining the following two facts:

1. For every depth d and integer m ≥ 2, there is an ε > 0 such that the Sum-Product of
O(1) AC0

d[m] ◦ THR circuits of 2nε size can be computed in 2n−nε time. This simply
applies the algorithm for counting satisfying assignments of AC0

d[m] ◦ THR circuits ([51]).
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2. If for some α > 0 there is a nondeterministic 2n−nα-time Gap-UNSAT algorithm with
gap 1 − 1/n10 for 2nα-size circuits, then for every a ≥ 1, there is a b ≥ 1 such that
NTIME[nlogb n] does not have nloga n-size circuits (this is a theorem of Murray and
Williams [34]).

6.6 A Note on the Coefficients in the S̃umε ◦ C Circuits
In our proof, we have to guess a S̃umε ◦ C circuit, so it is crucial that all S̃umε ◦ C circuits we
consider have “reasonable” coefficients, with in poly(n)-bit complexity. When all functions
in C are Boolean-valued, the following proposition provides this guarantee.

I Proposition 40. Let ε ∈ [0, 0.5) be a constant of bit complexity b.14 Let C be a class of
functions with co-domain {0, 1}, and let C be a Sumε ◦ C circuit of sparsity s for a Boolean
function f : {0, 1}n → {0, 1}. There is an equivalent S̃umε ◦ C circuit C ′ such that every
weight in the linear combination of C has the form j/k, where both j and k are integers in
[−spoly(s,b), spoly(s,b)].

Proof. Let C be a linear combination of s functions from C. We may assume without loss of
generality that these s functions are linearly independent. The problem of finding coefficients
for these s functions to ε-approximate a given boolean function f is equivalent to finding a
solution to a certain linear programming instance ‖Ax− b‖∞ ≤ ε in s unknowns over the
rationals, where b ∈ {0, 1}2n represents the truth-table of the function f and A ∈ {0, 1}2n×s.

Standard results from the theory of linear programming show that, if the instance is
feasible, then there is a valid solution corresponding to the unique solution of a linear system
where some of the inequalities are tight (that is (Ax − b)i = ε or (Ax − b)i = −ε). Then
proposition then follows from Cramer’s rule. J

The case for S̃umε ◦ ReLU circuits is more involved. Luckily, Maass [32] showed that the
weights for such a circuit of sparsity s needs only poly(s, n) bits of precision.

7 Structure Lemmas for THR ◦ THR Circuits

In this section we present our structure lemmas for THR ◦ THR circuits. We first need a
simple construction, which will be used in both proofs.

I Definition 41 (Mod p Exact Threshold Gate). Let G be an ETHR gate with n inputs, p
be a prime and Gp be the “mod p” version of G. That is, let L and T be the corresponding
linear function and threshold of G, Gp(x) := [L(x) ≡ T (mod p)].

I Lemma 42. Let G be an ETHR gate with n inputs and p be a prime. Then Gp can be
written as a DOR ◦ ETHR circuit such that

The top DOR gate has O(n) fan-in.
All ETHR gates have positive weights and thresholds smaller than O(np).15

Proof. Let w1, w2, . . . , wn and T be the corresponding weights and threshold of G. Reduce
each weight wi in G to wi mod p (the corresponding integer between 0 and p − 1). This
yields another circuit with associate top linear function L′(x), whose value is always at
most np. Setting t = T mod p, L(x) ≡ T (mod p) is equivalent to L′(x) = t + k · p for

14That is, we assume ε can be specified as the ratio of two b-bit integers.
15Therefore, when p ≤ poly(n), the ETHR gate can be seen as an EMAJ gate.
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some k ∈ {0, 1, 2, . . . , n}. Therefore, by taking an OR over all possible k on the condition
L′(x) = t+ k · p, it is a disjoint OR, and we obtain the equivalent DOR ◦ ETHR circuit. J

7.1 Proof of Structure Lemma I
We begin with the proof of Structure Lemma I for THR ◦ THR circuits (restated below).

I Reminder of Lemma 16. Let n be number of inputs, s = s(n) ≥ n be a size parameter
and δ = δ(n) be the error parameter. Every s-size THR ◦ THR circuit C is equivalent to a
Gap-ORδ ◦ THR ◦MAJ circuit such that:

The top Gap-ORδ gate has poly(s, δ−1) fan-in.
Each sub THR ◦MAJ circuit has size poly(s, δ−1).

Moreover, the reduction can be computed in deterministic poly(s, δ−1) time.

Proof. Let C ′ be the given THR ◦ THR circuit. By negating some of its input gates (THR is
closed under negation), we may assume all weights in the top THR gate of C ′ are ≤ 0. Since
every THR can be converted into a DOR ◦ ETHR (item (2) of Proposition 18), C ′ can be
transformed into an equivalent THR ◦ ETHR circuit C of size t = poly(s).

Let G1, G2, . . . , Gt, w1, w2, . . . , wt be the ETHR gates on the bottom layer and their
corresponding weights in the top gate of C. By assumption, we also have wi ≤ 0 for all i.
Let T be the threshold of the top gate. For all inputs x of n bits, we have

C(x) =
[

t∑
i=1

wi ·Gi(x) ≥ T
]
.

By construction, we may assume that the weights in Gi are bounded by 2nc for a constant c.
Suppose we fix an input x, and let p be a random prime from 2 to n2c · t2 · δ−1 = poly(s, δ−1).
With probability at least 1− δ/t, we have Gpi (x) = Gi(x). Let Cp be the circuit obtained by
replacing all Gi’s in C by corresponding Gpi ’s.

When C(x) = 1, it follows from a union bound that Cp(x) = C(x) = 1 with probability
at least 1− δ. When C(x) = 0, note that for all primes p, we have Gpi (x) ≥ Gi(x) for all i,
therefore we must have

∑s
i wi ·G

p
i (x) ≤

∑s
i wi ·Gi(x) < T (all wi’s are ≤ 0) and Cp(x) = 0.

Therefore C is equivalent to a Gap-ORδ over all Cp’s, for every prime p (recall their
total number is poly(s, δ−1)). By Lemma 42, each Cp can be expressed as a poly(s, δ−1)-
size THR ◦ EMAJ circuit. Converting each THR ◦ EMAJ into a THR ◦ MAJ (item (8) of
Proposition 18) completes the proof. J

7.2 Proof of Structure Lemma II
Now we turn to proving Lemma 17. The proof has two steps, provided by Lemma 43 and
Lemma 45.

I Lemma 43 (Weight Reduction at the Top THR gate). Every size-s THRd ◦C circuit (having
a top THR gate of fan-in d) is equivalent to a DOR ◦ ETHR ◦ C circuit such that:

The top DOR gate has poly(d) fan-in.
Each ETHR gate has fan-in d, with positive weights and threshold value, all of which are
less than poly(d) · 2n.
The C-part is unchanged.

The same statement also holds for ETHRd ◦ C circuits. Moreover, the reductions can be
computed in randomized poly(s) time.
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Proof. We only consider the THRd ◦ C case (the ETHRd ◦ C case is even easier).
Let C be the given circuit. First, by the fact that THR ⊆ DOR ◦ ETHR (item (2) of

Proposition 18), C can be transformed to an equivalent DOR ◦ ETHR ◦ C circuit C ′.
Let G be a ETHR gate in C ′; note that G has fan-in d. Let D be the subcircuit with top

gate G. By construction, G has weights of absolute value at most Mold = 2poly(d).
Next, we define L : {0, 1}n → Z such that L(x) is the value of the linear function

associated with the gate G when the input is x. That is D(x) = 1 if and only if L(x) = T

for the threshold T of G.
Pick a random prime number m in the interval [2,Mnew], where Mnew = dc · 2n and c

is a sufficiently large constant. For a fixed x ∈ {0, 1}n, if L(x) 6= T , the probability that
L(x) ≡ T (mod m) is smaller than

log(Mold)
Mnew/ ln(Mnew) = poly(d)

Θ(2n · dc/(n+ c log d)) ≤ d
−c/2/2n,

for a sufficiently large c. Applying the union bound over all inputs x, with probability at
least 1− d−c/2, we have L(x) ≡ T (mod m) if and only if L(x) = T for all x ∈ {0, 1}n.

Finally, applying Lemma 42 with prime m, we can replace G with an equivalent DOR ◦
ETHR subcircuit, whose ETHR gates have positive weights and thresholds smaller than
poly(d) · 2n.

Union-bounding over all ETHR gates, and choosing c to be a large enough constant, this
completes the randomized reduction. J

I Remark 44. One can observe that the above reduction indeed only introduces one-sided
error. That is, even if it chooses some “bad” primes, the resulting circuit D satisfies the
property that D(x) = 1 whenever C(x) = 1.

I Lemma 45 (Decomposition of the top ETHR gate). Given an ETHRd ◦ C circuit C (a
circuit with a top ETHR gate of fan-in d) of size s and a real ε ∈

(
log d
n , 1

)
, suppose the top

ETHR gate in C has positive weights and threshold smaller than 22n. C is equivalent to a
DOR ◦MAJ ◦ AND2 ◦ C circuit such that:

The top DOR gate has 2O(εn) fan-in.
Each MAJ gate has fan-in dO(1/ε).
The C part is unchanged.

Moreover, the reduction can be computed in deterministic

2O(εn) · dO(1/ε) + poly(s)

time.

Proof. Let Gtop be the top ETHR in C, and let G1, G2, . . . , Gd be its input gates. Let wi’s
and T be the weights and the threshold of Gtop and L(x) be the associated linear function.
We have for all x ∈ {0, 1}n that

L(x) =
d∑
i=1

wi ·Gi(x).

Observe that the binary representations of wi’s and T are of length at most log(22n) ≤ 2n.
Break each of their binary representations into D =

⌈
ε·n

log d

⌉
blocks, where each block has

B ≤ 2/ε·log d bits. Let wi,j , Tj ∈ [2B−1] be the values of wi’s and T ’s j-th block, respectively
(where blocks are numbered from the least significant bit to the most significant bit).

CCC 2019



19:34 Stronger Connections Between Circuit Analysis and Circuit Lower Bounds

Consider adding the wi ·Gi(x)’s in base 2B, keeping track of all D − 1 carries on each
position, except for the highest one. Let c = (c1, c2, . . . , cD−1) ∈ {0, 1, . . . , d− 1}D−1 be such
a carry sequence. Observe that

∑d
i=1 wi ·Gi(x) = T with carry sequence c if and only if for

all j ∈ [D]:

d∑
i=1

wi,j ·Gi(x) + cj−1 = Tj + 2B · cj ,

where we set CD and C0 to be 0 for notational convenience. That is, after we fix the carries
cj ’s for all j, the sums

∑d
i=1 wi,j · Gi(x) are also forced to be T cj = Tj + 2B · cj − cj−1.

Therefore, consider the sum

ε·n∑
j=1

(
d∑
i=1

wi,j ·Gi(x)− T cj

)2

.

Checking whether this sum is at most 0 can be formulated as a poly(d) · 2O(B) = dO(1/ε) size
MAJ ◦ AND2 subcircuit, with input gates G1, G2, . . . , Gd.

Each of these addition checks corresponds to one carry sequence. By enumerating all
possible dD−1 carry sequences, the above transforms Gtop into a DOR◦MAJ◦AND2 subcircuit
with input gates G1, G2, . . . , Gd, having top fan-in:

dD−1 = dO(ε·n/ log d) = 2O(ε·n),

which completes the proof. J

Finally, the Structure Lemma II for THR ◦THR circuits follows from applying Lemma 43
and Lemma 45 in the appropriate way.

I Reminder of Lemma 17. Let n be the number of inputs and let s = s(n) ≤ 2o(n) be a
size parameter. Let ε ∈

(
log s
n , 1

)
. Every s-size THR ◦ THR circuit C is equivalent to a

DOR ◦MAJ ◦MAJ circuit such that:

The top DOR gate has 2O(εn) fan-in.
Each sub MAJ ◦MAJ circuit has size sO(1/ε).

The reduction can be computed in randomized 2O(εn) · sO(1/ε) time.

Proof. First, since THR ⊆ DOR ◦ ETHR (item (2) of Proposition 18), C is equivalent to a
poly(s)-size THR ◦ETHR circuit C1. Moreover, we can convert C into C1 in polynomial time.

Second, we apply Lemma 43 to transform C1 into a DORpoly(s) ◦ ETHR ◦ ETHR circuit
C2, such that all middle-layer ETHR gates have positive weights and thresholds smaller than
poly(s) · 2n < 22n.

Third, we apply Lemma 45 to C2, which changes all middle-layer ETHR gates of C2 into
DOR ◦MAJ ◦ AND2 subcircuits, with top gate fan-in 2O(ε·n). This yields a DOR ◦MAJ ◦
AND ◦ ETHR circuit. Converting the remaining AND ◦ ETHR subcircuits into ETHR’s (item
(5) of Proposition 18), we obtain a DOR2O(ε·n) ◦MAJ ◦ ETHR circuit where all MAJ ◦ ETHR
subcircuits have size at most sO(1/ε).

Finally, converting each MAJ ◦ ETHR into a MAJ ◦ MAJ (item (3) of Proposition 18)
completes the reduction. The running time bound follows from plugging in the time bounds
of Lemma 43 and Lemma 45. J

Setting the parameter ε carefully in Lemma 17, we have the following corollary.
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I Corollary 46. Let n be the number of inputs and let s = s(n) ≤ 2o(n) be a size parameter.
Let ε ∈

(
log s
n , 1

)
. Every s-size THR ◦ THR circuit C is equivalent to a DOR ◦MAJ ◦MAJ

circuit C ′ such that:
The top DOR gate of C ′ has sO(1/ε) fan-in.
Every sub MAJ ◦MAJ circuit of C ′ has size 2O(ε·n).

The reduction can be computed in randomized 2O(εn) · sO(1/ε) time.
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A Constructions of Super Query-Efficient PCP of Proximity Systems

In this appendix we present proofs for Lemma 24 and Lemma 25 for completeness. We
remark that we did not make any effort to optimize the soundness/completeness constants s
and c in our construction; any universal constant suffices in our applications.16

We start with Lemma 24 (restated below).

I Reminder of Lemma 24 (3-query PCPP with perfect completeness). For any constant
δ > 0 there is a constant 0 < s < 1, such that there is a PCP of proximity system for
Circuit-Eval with proximity δ, soundness s, random bits r = O(logn), and query complexity
q = 3. Moreover, the system satisfies two additional properties:
(1) Given the random coins, the verifier simply computes an OR on these 3 queried bits or

their negations, and accepts if the OR is true.
(2) Given the pair (C,w) ∈ Circuit-Eval, we can construct a proof π in poly(|C|+ |w|) time

that makes V (C) accept with probability 1.

Proof. By Lemma 22, there is a PCP of proximity system V for Circuit-Eval with proximity
δ, soundness s = 1/2, number of random bits r = O(logn) and query complexity q = Oδ(1).

Let the circuit be C. Suppose we are given random bits R ∈ {0, 1}r, so that V (C) queries
positions k1 = k1(C,R), k2 = k2(C,R), . . . , kq = kq(C,R) of the oracle z = w ◦ π, computes
a predicate P = P (C,R) on these bits, and outputs P (zk1 , zk2 , . . . , zkq ).

We construct a new PCP of proximity system V ′ as follows. Fix the circuit C. and let
PR = P (C,R). Slightly abusing notation, we let xj denote the bit zkj . PR can be computed
by a circuit DR of Oq(1) size; therefore PR can computed in size S for a universal constant
S only depending on q. We can construct a group of auxiliary variables {yR,`}`∈[S], and
a group of constraints {Fw,`}`∈[S], where each constraint is an OR of three bits (or their
negations) from the xj ’s and yR,`’s, such that Pw(x1, x2, . . . , xq) = 1 if and only if there
exists an assignment to the yR,`’s such that all constraints FR,`’s are satisfied.

The verifier V ′(C) treats its oracle as three parts. The first two parts are w and π

(where π is supposed to be a proof for V (C)), while the third part πy is supposed to contain
assignments to all yR,`’s for all R ∈ {0, 1}r and ` ∈ [S]. V ′(C) first tosses r random coins
to get a random string R ∈ {0, 1}r, then tosses log(S) more coins to pick a random integer
` ∈ [S]. Then V ′(C) queries the 3 bits appearing in the constraint FR,`, and accepts if and
only if the constraint is satisfied by those 3 bits. We denote its proof to be π′ = (π, πy).

We claim that V ′(C) is a correct PCP of Proximity system. If (C,w) ∈ Circuit-Eval, let π
be a proof such that V (C) accepts w ◦ π with probability 1. Then by our construction of
V ′(C), there is a πy such that V ′(C) accepts w ◦ (π ◦ πy) with probability 1.

16Here we are actually composing the PCPP from [11] with some trivial PCPP constructions for constant-
size functions. There are much better constructions, see e.g. [18].
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Otherwise, suppose w is δ-far from the set {z : C(z) = 1}. Then for any proof π, V (C)
accepts (w◦π) with probability at most 1/2. This means for all additional proofs πy, at least a
1/2-fraction of R ∈ {0, 1}r are such that at least one constraint from {FR,`}`∈[S] is not satisfied
by w ◦ (π ◦ πy). Therefore, V ′(C) rejects with probability at least 1/2 · 1/S = Ωq(1) = Ωδ(1),
which completes the proof. J

In order to get a 2-query PCP of proximity system from the above, we use the following
classical gadget by Garey, Johnson, and Stockmeyer [20], originally used to prove the
NP-hardness of MAX-2-SAT.

I Lemma 47. Let X1, X2, X3 and Y be 4 Boolean variables. Consider the following 10
constraints:

X1, X2, X3,¬X1 ∨ ¬X2,¬X2 ∨ ¬X3,¬X3 ∨ ¬X1,

Y,X1 ∨ ¬Y,X2 ∨ ¬Y,X3 ∨ ¬Y.

If X1 ∨X2 ∨X3, then there exists an assignment to Y such that 7 of the above constraints
are satisfied. Otherwise, all assignments to Y satisfy at most 6 of the above constraints.

I Reminder of Lemma 25 (2-query PCPP with constant completeness/soundness gap). For
any constant δ > 0 there two constants 0 < s < c < 1, such that there is a PCP of proximity
system for Circuit-Eval with proximity δ, soundness s, completeness c, number of random
bits r = O(logn) and query complexity q = 2. Moreover, the system satisfies two additional
properties:
(1) Given the random coins, the verifier computes an OR on the 2 queried bits or their

negations, and accepts iff the OR is true.
(2) Given the pair (C,w) ∈ Circuit-Eval, a proof π can be constructed in poly(|C|+ |w|) time

that makes V (C) accept with probability at least c.

Proof. By Lemma 24, there is a PCP of proximity system V for Circuit-Eval with proximity
δ, soundness s = s(δ) < 1, number of random bits r = O(logn) and query complexity q = 3.
The verifier computes an OR on these 3 queried bits or their negations, and accepts if it is
true.

Let the circuit be C. We begin as in the previous proof. Suppose we have randomness
R ∈ {0, 1}r, and V (C) queries positions k1 = k1(C,R), k2 = k2(C,R), k3 = k3(C,R) of
the oracle z = w ◦ π, computes a predicate P = P (C,R) on these bits, then outputs
P (zk1 , zk2 , zk3). Slightly abusing notation, we use xj to denote the bit zkj . By Lemma 24,
we can assume

P (x1, x2, x3) = ∨j∈[3](xj ⊕ bj),

where bj = bj(C,R) is whether it negates the bit xj .
Our new PCP of proximity system V ′ works as follows. Fix the circuit C and let

PR = P (C,R). By Lemma 47, we can construct an auxiliary variable yR and a group of
constraints {FR,`}`∈[10], each is an OR of 2 bits (or their negations) from xj ’s and yR17 such
that if Pw(x1, x2, x3) = 1 then there is an assignment to the yR such that 7 constraints from
{FR,`}`∈[10] are satisfied; otherwise, for all assignments to yR, at most 6 constraints from
{FR,`}`∈[10] are satisfied.

17 In Lemma 47, constraint Xi can be written as Xi ∨Xi, which is an OR of 2 bits.
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As in the 3-query PCPP, V ′(C) treats its oracle as three parts: the first two are w
and π (π is intended to be a proof in V (C)), and the third part πy is intended to contain
assignments to all yR’s, for all R ∈ {0, 1}r. Our V ′(C) first tosses r random coins to get
R ∈ {0, 1}r, then tosses O(1) more coins to pick a random integer ` ∈ [10]. Then it simply
queries the 2 bits appearing in the constraint FR,`, and accepts iff that constraint is satisfied.
We denote its proof to be π′ = (π, πy).

Let us argue V ′(C) satisfies our requirement. If (C,w) ∈ Circuit-Eval, let π be a proof
such that V (C) accepts w ◦ π with probability 1. Then by our construction of V ′(C), there
is a πy such that V ′(C) accepts w ◦ (π ◦ πy) with probability at least 7/10.

Now suppose w is δ-far from the set {z : C(z) = 1}. Then for all proofs π, V (C) accepts
(w ◦ π) with probability at most s. This means that for any additional proof πy, there is
at most an s-fraction of R ∈ {0, 1}r such that 7 constraints from {FR,`}`∈[S] are satisfied
by w ◦ (π ◦ πy); for the remaining R’s, at most 6 constraints from {FR,`}`∈[S] are satisfied.
Therefore, V ′(C) accepts with probability at most s · 7/10 + (1 − s) · 6/10 < 7/10, which
completes the proof. J

B Proofs for THR ⊆ DOR ◦ ETHR and
⊕k ◦ THR ◦ THR ⊆ THR ◦ THR

Here we present an alternative proof that THR ⊆ DOR ◦ ETHR, which has a better weight
dependence than prior work [24] and is arguably simpler. We first give a construction for the
special case when all the weights and the threshold value are non-negative. Then we show
that the general case can be easily reduced to this case.

I Lemma 48. Let G be a THR gate on n bits defined as G(x) := [
∑n
i=1 wi · xi > T ], such

that all wi’s and T are integers in [0, 2L − 1] for some L ∈ N. Then G can be written as a
DOR of O(n · L) many ETHR gates, each with weights and threshold from [0, 2L+1 − 1].

Proof. For each weight wi ∈ [0, 2L − 1], write it in its binary representation

wi,L, wi,L−2, . . . , wi,1 ∈ {0, 1}L,

such that

wi =
L∑
j=1

2j−1 · wi,j .

In this way, we can view w as a Boolean matrix from {0, 1}n×L. For each position (a, b) ∈
[n]× [L], we build a partial matrix w(a,b) as follows: for (i, j) ∈ [n]× [L],

w
(a,b)
i,j =

{
wi,j (j > b) or ((j = b) and (i ≥ a))
0 otherwise

That is, w(a,b) is the sub-matrix of w, consisting of entries which are either to the right of
(a, b), or directly above (a, b). (We number the rows of the matrix from bottom to top, and
the columns of the matrix from left to right.)

Given x ∈ {0, 1}n, we define

w(a,b) · x :=
n∑
i=1

 L∑
j=1

2j−1 · w(a,b)
i,j

 · xi.
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That is, we treat each row of w(a,b) as the L-bit binary representation of the corresponding
weight on xi. By definition, we have w(1,1) · x = w · x =

∑n
i=1 wi · xi.

Now, fix x ∈ {0, 1}n, and consider the sequence S, defined as:

w(n,L) ·x,w(n−1,L) ·x, . . . , w(1,L) ·x,w(n,L−1) ·x, . . . , w(1,L−1) ·x, . . . , w(n,1) ·x, . . . , w(1,1) ·x.

By definition of w(a,b), we are including 1-entries of the matrix w one-by-one, hence the
sequence S is non-decreasing (and begins with 0).

Suppose w · x = w(1,1) · x > T . Then there must be a unique position (a, b) ∈ [n]× [L]
such that w(a,b) · x is the first value in the sequence S which is greater than T . For each
(a, b) ∈ [n]× [L], we will use an ETHR gate E(a,b) to specify the condition that w(a,b) · x is
the first value greater than T from S. Then when G(x) is true, exactly one of the E(a,b)(x)’s
is true, and when G(x) is false, all of the E(a,b)(x)’s are false.

To see that an ETHR gate suffices, we observe that w(a,b) · x is the first value greater
than T from the sequence S, if and only if the following conditions hold:
1. w(a,b) · x > T (it is greater than T ),
2. (wa,b = 1) ∧ (xa = 1) (it is bigger than the previous value), and
3. w(a,b) · x− 2b−1 ≤ T (the previous value is no greater than T ).
We crucially observe that w(a,b) ·x is a multiple of 2b−1. In the matrix w(a,b), we only include
nonzero wi,j ’s where j ≥ b. Thus in w(a,b) · x, every 1 in x is getting multiplied by a power
of two which is at least 2b−1.

By division, T = 2b−1 · Tb + Tr, for some 0 ≤ Tr < 2b−1 and Tb > 0. Then w(a,b) · x > T

if and only if w(a,b) · x ≥ 2b−1 · (Tb + 1). Furthermore, w(a,b) · x − 2b−1 ≤ T if and only if
w(a,b) · x ≤ 2b−1 · (Tb + 1). Therefore, the above conditions are equivalent to
1. (wa,b = 1) ∧ (xa = 1), and
2. w(a,b) · x = 2b−1 · (Tb + 1).
Now all these conditions are linear equations, so we can define an ETHR function E(a,b)

that checks all of them. In particular, set E(a,b) to be the constant function 0 if wa,b = 0;
otherwise set

E(a,b)(x) :=
[
(2 · w(a,b) · x) + xa = 2b · (Tb + 1) + 1

]
.

This completes the proof. J

Now we reduce the general case to the non-negative weights and thresholds case, and
complete the reduction from THR to DOR ◦ ETHR.

I Lemma 49. Let G be a THR gate on n bits, G(x) := [
∑n
i=1 wi · xi > T ], such that all wi’s

and T are integers from [−W,W ] for some W ∈ N. Then G can be written as a DOR of
O(n · logW ) many ETHR gates, each with weights and threshold from [−Θ(W ),Θ(W )].

Proof. We start by defining n new variables z1, z2, . . . , zn ∈ {0, 1}n. Set zi := xi if wi ≥ 0,
and zi := 1− xi otherwise. Letting S = {i : wi ≥ 0}, we have

n∑
i=1

wi · xi =
∑
i∈S

wi · zi +
∑
i/∈S

wi · (1− zi)

=
∑
i∈S

wi · zi +
∑
i/∈S

−wi · zi +
∑
i/∈S

wi.

Let ŵi = |wi|, and T̂ = T −
∑
i/∈S wi. Observe that[

n∑
i=1

wi · xi > T

]
⇔

[
n∑
i=1

ŵi · zi > T̂

]
.
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If T̂ is negative, then G(x) = 1 on all Boolean inputs x (since all ŵi’s are non-negative,
and the zi are Boolean) and we are done. Otherwise, we can apply Lemma 48 with
Ĝ(z) :=

[∑n
i=1 ŵi · zi > T̂

]
. Substituting each zi by 1 − xi, we obtain the desired DOR

decomposition for G(x). J

I Lemma 50. Let k be a constant, a ⊕k ◦ THR ◦ THR circuit of s = s(n) size on n bits is
equivalent to a THR ◦ THR circuit of sO(k) size. Moreover, the corresponding THR ◦ THR
circuit can be constructed deterministically in sO(k) time.

Proof. First, by Lemma 49, the given ⊕k ◦ THR ◦ THR circuit can be transformed into a
⊕k ◦ THR ◦ ETHR circuit C of t = poly(s) size.

Let C1, C2, . . . , Ck be the THR ◦ETHR subcircuits of C. For each Ci, let Ei,1, . . . , Ei,t be
its ETHR gates, wi,1, . . . , wi,t be the corresponding weights in the output threshold function,
and Ti be the threshold value of the output threshold function. We have

Ci(x) :=

 t∑
j=1

wi,j · Ei,j(x) > Ti

 .
By slightly perturbing the wi,j ’s and Ti, we can ensure that

∑t
j=1 wi,j ·Ei,j(x)− Ti is never

equal to 0, over all x ∈ {0, 1}n. Next, we define

F (x) =

 k∏
i=1

Ti − t∑
j=1

wi,j · Ei,j(x)

 < 0

 . (8)

Noting that Ci(x) = 1 if and only if Ti−
∑t
j=1 wi,j ·Ei,j(x) < 0, we observe that F (x) = 1

when an odd number of Ci(x)’s are 1, and F (x) = 0 otherwise. Therefore, F computes the
same function as the original circuit C.

Finally, expanding the product of k sums in (8) into a sum of sO(k) products, and recalling
that AND ◦ ETHR ⊆ ETHR (Proposition 18), F can be written as a THR ◦ ETHR circuit.
Converting this back to a THR ◦ THR circuit (Proposition 18), the proof is complete. J

C More Applications of Structure Lemmas for THR ◦ THR Circuits

Here we discuss more applications of Lemma 16 and Lemma 17.

C.1 Generalization to Threshold Circuits of Constant Depth
Lemma 17 generalizes readily to threshold circuits of any constant depth. In the following
LTd denotes threshold circuits of depth-d, while L̂Td denotes depth-d majority circuits (see
Section 2.1 for formal definitions).

I Corollary 51. Let n be number of inputs and s = s(n) be a size parameter. Let ε ∈
(

log s
n , 1

)
and d be a constant. For s = 2o(n), every s-size LTd circuit is equivalent to a DOR ◦ L̂Td
circuit such that:

The top DOR gate has 2O(ε·n) fan-in.
Each sub L̂Td circuit has size O

(
sO(1/ε)).

Proof. We apply Lemma 17 to the top 2 layers, and then apply item (5) of Proposition 18
recursively to obtain an equivalent DOR ◦ L̂Td circuit. J
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C.2 A Structure Lemma for Polynomial Threshold Functions
Our ideas can also be used to derive a structure lemma for polynomial threshold functions of
degree k, i.e., THR ◦ ANDk circuits:

I Corollary 52. Let n be number of inputs and s = s(n) be a size parameter. Let ε ∈
(

log s
n , 1

)
and k be a constant. Assuming s = 2o(n), an s-size THR ◦ ANDk circuit is equivalent to a
DOR ◦MAJ ◦ AND2k circuit such that:

The top DOR gate has 2O(ε·n) fan-in.
Each sub MAJ ◦ AND2k circuit has size O

(
sO(1/ε)).

The above still holds if we replaced both ANDk and AND2k by unbounded fan-in AND
gates.

Proof. We simply apply Lemma 43 and Lemma 45, and merge each AND2 ◦ANDk subcircuits
into a single AND2k gate. J

That is, every polynomial threshold function of degree k with arbitrary weights can be
simulated by a subexponential-size disjoint OR of polynomial threshold functions of degree
2k with small weights.

The following corollary follows from that the SAT problem for THR ◦ ANDk circuits is
equivalent to the weighted MAX-k-SAT problem (given a CNF formula ϕ with weights on
each clause, find an assignment satisfying clauses of maximum total weight), and that SAT
for MAJ ◦ AND2k is equivalent to the (unweighted) MAX-2k-SAT problem.

I Corollary 53. For any integer k, if there is a 2(1−Ω(1))n time algorithm for polynomial
size unweighted MAX-2k-SAT, then so does polynomial size weighted MAX-k-SAT.18

To prove the above corollary, we need the following folklore lemma, which helps us to
transform between MAJ ◦ AND circuits and MAJ ◦ OR circuits.

I Lemma 54. Let x = x1, x2, . . . , xk be the inputs, there are k OR functions O1, O2, . . . , Ok
on the inputs (or their negations) such that:

AND(x) =
(

k∑
i=1

Oi(x)
)
− (k − 1).

Proof. We define

Oi(x) :=

i−1∨
j=1
¬xj

 ∨ xi.
That is, Oi(x) = 0 if and only if the first i− 1 bits are 1, and the i-th bit is 0. Now, note

that if AND(x) = 1, then all bits are 1, which means all Oi(x)’s are 1. When AND(x) = 0,
let i be the index of the first 0-bit, it is easy to see that Oi(x) = 0 and all other Oj(x)’s are
1, and hence

∑k
i=1Oi(x) = k − 1. J

Proof of Corollary 53. We can use Lemma 54 to transform the bottom AND gates to OR
gates for THR ◦ AND and MAJ ◦ AND circuits. From there, the proof is the same as of
Theorem 3. J

18We assume the weights are at most 2poly(n) for making the input polynomial size.
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