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Abstract
We show that if a system of degree-k polynomial constraints on n Boolean variables has a Sums-of-
Squares (SOS) proof of unsatisfiability with at most s many monomials, then it also has one whose
degree is of the order of the square root of n log s plus k. A similar statement holds for the more
general Positivstellensatz (PS) proofs. This establishes size-degree trade-offs for SOS and PS that
match their analogues for weaker proof systems such as Resolution, Polynomial Calculus, and the
proof systems for the LP and SDP hierarchies of Lovász and Schrijver. As a corollary to this, and to
the known degree lower bounds, we get optimal integrality gaps for exponential size SOS proofs for
sparse random instances of the standard NP-hard constraint optimization problems. We also get
exponential size SOS lower bounds for Tseitin and Knapsack formulas. The proof of our main result
relies on a zero-gap duality theorem for pre-ordered vector spaces that admit an order unit, whose
specialization to PS and SOS may be of independent interest.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases Proof complexity, semialgebraic proof systems, Sums-of-Squares, Positivstel-
lensatz, trade-offs, lower bounds, monomial size, degree

Digital Object Identifier 10.4230/LIPIcs.CCC.2019.24

Funding Both authors were partially funded by European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme, grant agreement ERC-2014-
CoG 648276 (AUTAR) and MICCIN grant TIN2016-76573-C2-1P (TASSAT3).

Acknowledgements We are grateful to Michal Garlik, Moritz Müller and Aaron Potechin for
comments on an earlier version of this paper. We are also grateful to Jakob Nordström for initiating
a discussion on the several variants of the definition of monomial size as discussed in Section 2.

1 Introduction

A key result in semialgebraic geometry is the Positivstellensatz [33, 20], whose weak form
gives a version of the Nullstellensatz for semialgebraic sets: A system of polynomial equations
p1 = 0, . . . , pm = 0 and polynomial inequalities q1 ≥ 0, . . . , q` ≥ 0 on n commuting variables
x1, . . . , xn has no solution over reals if and only if

−1 = s∅ +
∑
J⊆[`]
J 6=∅

sJ
∏
j∈J

qj +
∑
j∈[m]

tjpj , (1)

where the sJ are sums of squares of polynomials, and the tj are arbitrary polynomials. Based
on this, Grigoriev and Vorobjov [16] defined the Positivstellensatz (PS) proof system for
certifying the unsatisfiability of systems of polynomial inequalities, and initiated the study
of its proof complexity.

For most cases of interest, the statement of the Positivstellensatz stays true even if the
first sum in (1) ranges only over singleton sets [31]. This special case of PS yields a proof
system called Sums-of-Squares (SOS). Starting with the work in [3], SOS has received a good
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deal of attention for its applications in algorithms and complexity theory. For the former,
through the connection with the hierarchies of SDP relaxations [21, 27, 26, 8]. For the latter,
through the lower bounds on the sizes of SDP lifts of combinatorial polytopes [11, 24, 23].
We refer the reader to the introduction of [26] for a discussion on the history of these proof
systems and their relevance for combinatorial optimization.

In this paper we concentrate on the proof complexity of PS and SOS when their variables
range over the Boolean hypercube, i.e., the variables come in pairs of twin variables xi and x̄i,
and are restricted through the axioms x2

i − xi = 0, x̄2
i − x̄i = 0 and xi + x̄i − 1 = 0. This

case is most relevant in combinatorial contexts. It is also the starting point for a direct link
with the traditional proof systems for propositional logic, such as Resolution, through the
realization that monomials represent Boolean disjunctions, i.e., clauses. In return, this link
brings concepts and methods from the area of propositional proof complexity to the study of
PS and SOS proofs.

In analogy with the celebrated size-width trade-off for Resolution [6] or the size-degree
trade-off for Polynomial Calculus [17], a question that is suggested by this link is whether
the monomial size of a PS proof can be traded for its degree. For a proof as in (1), the
monomial size of the proof is the number of monomials in an explicit representation of the
summands of the right-hand side. The degree of the proof is the maximum of the degrees
of those summands. These are the two most natural measures of complexity for PS proofs
(and precise definitions for both these measures will be made in Section 2). The importance
of the question whether size can be traded for degree stems from the fact that, at the time
of writing, the complexity of PS and SOS proofs is relatively well understood when it is
measured by degree, but rather poorly understood when it is measured by monomial size.
If size could be traded for degree, then strong lower bounds on degree would transfer to
strong lower bounds on monomial size. The converse, namely that strong lower bounds on
monomial size transfer to strong lower bounds on degree, has long been known by elementary
linear algebra.

In this paper we answer the size-degree trade-off question for SOS, and for PS proofs of
bounded product width, i.e., the number of inequalities that are multiplied together in (1).
We show that if a system of degree-k polynomial constraints on n pairs of twin variables
has a PS proof of unsatisfiability of product width w and no more than s many monomials
in total, then it also has one of degree O(

√
n log s + kw). By taking w = 1, this yields a

size-degree trade-off for SOS as a special case.
Our result matches its analogues for weaker proof systems that were considered before.

Building on the work of [5] and [9], a size-width trade-off theorem was established for
Resolution: a proof with s many clauses can be converted into one in which all clauses have
size O(

√
n log s+ k), where k is the size of the largest initial clause [6]. The same type of

trade-off was later established for monomial size and degree for the Polynomial Calculus (PC)
in [17], and for proof length and rank for LS and LS+ [29], i.e., the proof systems that come
out of the Lovász-Schrijver LP and SDP hierarchies [25]. To date, the question for PS and
SOS had remained open, and is answered here1.

Our proof of the trade-off theorem for PS follows the standard pattern of such previous
proofs with one new key ingredient. Suppose Q is a system of equations and inequalities
that has a size s refutation. Going back to the main idea from [9], the argument for getting

1 Besides the proofs of the trade-off results for LS and LS+, the conference version of [29] claims the result
for the stronger Sherali-Adams and Lasserre/SOS proof systems, but the claim is made without proof.
The very last section of the journal version [29] includes a sketch of a proof that, unfortunately, is an
oversimplification of the LS/LS+ argument that cannot be turned into a correct proof. The forthcoming
discussion clarifies how our proof is based on, and generalizes, the one for LS/LS+ in [29].
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a degree d refutation goes in four steps: (1) find a variable x that appears in many large
monomials, (2) set it to a value b ∈ {0, 1} to kill all monomials where it appears, (3) induct
on the number of variables to get refutations of Q[x = b] and Q[x = b̄] which, if s is small
enough, are of degrees d− 1 and d, respectively, and (4) compose these refutations together
to get a degree d refutation of Q. The main difficulty in making this work for PS is step (4),
for two reasons.

The first difficulty is that, unlike Resolution and the other proof systems, whose proofs
are deductive, the proofs of PS are formal identities, also known as static. This means that,
for PS, the reasoning it takes to refute Q from the degree d − 1 refutation of Q[x = b]
and the degree d refutation of Q[x = b̄] needs to be witnessed through a single polynomial
identity, without exceeding the bound d on the degree. This is challenging because the
general simulation of a deductive proof by a static one incurs a degree loss. The second
difficulty comes from the fact that, for establishing this identity, one needs to use a duality
theorem that is not obviously available for degree-bounded PS proofs. What is needed is
a zero-gap duality theorem for PS proofs of non-negativity that, in addition, holds tight
at each fixed degree d of proofs. For SOS, the desired zero-gap duals are provided by the
levels of the Lasserre hierarchy. This was established in [19] under the sole assumption that
the inequalities include a ball contraint B2 −

∑n
i=1 x

2
i ≥ 0 for some B ∈ R. In the Boolean

hypercube case, this can be assumed without loss of generality. For PS, we are not aware
of any published result that establishes what we need, so we provide our own proof. At
any rate, one of our contributions is the observation that a zero-gap duality theorem for
PS-degree is a key tool for completing the step (4) in the proof of the trade-off theorem. We
reached this conclusion from trying to generalize the proofs for LS and LS+ from [29] to SOS.
In those proofs, the corresponding zero-gap duality theorems are required only for the very
special case where d = 2 and for deriving linear inequalities from linear constraints. The fact
that these hold goes back to the work of Lovász and Schrijver [25].

In the end, the zero-gap duality theorem for PS-degree turned out to follow from very
general results in the theory of ordered vector spaces. Using a result from [28] that whenever
a pre-ordered vector space has an order-unit a zero-gap duality holds, we are able to establish
the following general fact: for any convex cone C of provably non-negative polynomials and its
restriction C2d to proofs of some even degree 2d, if the ball constraints R− x2 ≥ 0 belong to
C2 for all variables x and some R ≥ 0, then a zero-gap duality holds for C2d in the sense that

sup{r ∈ R : p− r ∈ C2d} = inf{E(p) : E ∈ E2d},

where E2d is an appropriate dual space for C2d. The conditions are easily seen to hold for
PS-degree and SOS-degree in the Boolean hypercube case, and we have what we want. We
use this in Section 3, where we prove the trade-off lemma, but defer its proof to Section 5.

In Section 4 we list some of the applications of the size-degree trade-off for PS that follow
from known degree lower bounds. Among these we include exponential size SOS lower bounds
for Tseitin formulas, Knapsack formulas, and optimal integrality gaps for sparse random
instances of MAX-3-XOR and MAX-3-SAT. Except for Knapsack formulas, for which size
lower bounds follow from an easy random restriction argument applied to the degree lower
bounds in [13, 15], these size lower bounds for SOS appear to be new.

2 Preliminaries

For a natural number n we use the notation [n] for the set {1, . . . , n}. We write R≥0 and R>0
for the sets of non-negative and positive reals, respectively and N for the set of natural
numbers. The natural logarithm is denoted log, and exp denotes base e exponentiation.

CCC 2019
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2.1 Polynomials and the Boolean ideal
Let x1, . . . , xn and x̄1, . . . , x̄n be two disjoint sets of variables. Each xi, x̄i is called a pair of
twin variables, where xi is the basic variable and x̄i is its twin. We consider polynomials
over the ring of polynomials with real coefficients and commuting variables {xi, x̄i : i ∈ [n]},
which we write simply as R[x]. The intention is that all the variables range over the Boolean
domain {0, 1}, and that x̄i = 1−xi. Accordingly, let In be the Boolean ideal, i.e., the ideal of
polynomials generated by the following set of Boolean axioms on the n pairs of twin variables:

Bn = {x2
i − xi : i ∈ [n]} ∪ {x̄2

i − x̄i : i ∈ [n]} ∪ {xi + x̄i − 1 : i ∈ [n]}

We write p ≡ q mod In if p− q is in In.
A monomial is a product of variables. A term is the product of a non-zero real

and a monomial. A polynomial is a sum of terms. For α ∈ N2n, we write xα for the
monomial

∏n
i=1 x

αi
i x̄

αn+i

i , so polynomials take the form
∑
α∈I aαx

α for some finite I ⊆ N2n.
The monomial size of a polynomial p is the number of terms, and is denoted size(p). A
sum-of-squares polynomial is a polynomial of the form s =

∑k
i=1 r

2
i , where each ri is a

polynomial in R[x]. For a polynomial p ∈ R[x] we write deg(p) for its degree. We think
of R[x] as an infinite dimensional vector space, and we write R[x]d for the subspace of
polynomials of degree at most d.

2.2 Sums-of-Squares proofs
Let Q = {q1, . . . , q`, p1, . . . , pm} be an indexed set of polynomials. We think of the qj
polynomials as inequality constraints, and of the pj polynomials as equality constraints:

q1 ≥ 0, . . . , q` ≥ 0, p1 = 0, . . . , pm = 0. (2)

Let p be another polynomial. A Sums-of-Squares (SOS) proof of p ≥ 0 from Q is a formal
identity of the form

p = s0 +
∑
j∈[`]

sjqj +
∑
j∈[m]

tjpj +
∑
q∈Bn

uqq, (3)

where s0 and s1, . . . , s` are sums of squares of polynomials, sj =
∑kj

i=1 r
2
i,j for j ∈ [`] ∪ {0},

and t1, . . . , tm and all uq are arbitrary polynomials. The proof is of degree at most d if
deg(p) ≤ d, deg(s0) ≤ d, deg(sj) + deg(qj) ≤ d for each j ∈ [`], and deg(tj) + deg(pj) ≤ d

for each j ∈ [m]. The proof is of monomial size at most s if

k0∑
i=1

size(ri,0) +
∑
j∈[`]

kj∑
i=1

size(ri,j) +
∑
j∈[m]

size(tj) ≤ s.

This definition of size corresponds to the number of monomials of an explicit SOS proof given
in the form (s0, s1, . . . , s`, t1, . . . , tm), where each sj is given in the form (r1,j , . . . , rkj ,j), and
all the ri,j and tj polynomials are represented as explicit sums of terms. Accordingly, the
monomials of the ri,j ’s and the tj ’s are called the explicit monomials of the proof.

Note that the uq polynomials are not considered in the definition we have chosen of an
explicit SOS proof, so they do not contribute to its monomial size or its degree. The rationale
for this is that typically one thinks of the identity in (3) as an equivalence

p ≡ s0 +
∑
j∈[`]

sjqj +
∑
j∈[m]

tjpj mod In
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and we want proof size and degree to not depend on how the computations modulo the
Boolean ideal In are performed. For degree this choice is further justified from the fact that
one may always assume that the degrees of the products uqq do not surpass the degree d
in a proof of degree d. This follows from the fact that Bn is a Gröbner basis for In with
respect to any monomial ordering – one can see this quite easily using Buchberger’s Criterion
(see e.g. [10]). In particular upper and lower bounds for the restricted definition of degree
imply the same upper and lower bounds for our liberal definition of degree, and vice versa.
For monomial size, this goes only in one direction: lower bounds on our liberal definition
of monomial size translate into lower bounds for a restricted definition of monomial size
that takes

∑
q∈Bn

size(uq) also into account. Since our aim is to prove lower bounds on
the number of monomials in a proof, proving our results for our more liberal definition of
monomial size makes our results only stronger.

2.3 Positivstellensatz proofs
This proof system is an extension of SOS. Let Q = {q1, . . . , q`, p1, . . . , pm} be an indexed set
of polynomials interpreted as in (2). A Positivstellensatz proof (PS) of p ≥ 0 from Q is a
formal identity of the form

p = s∅ +
∑
J∈J

sJ
∏
j∈J

qj +
∑
j∈[m]

tjpj +
∑
q∈Bn

uqq, (4)

where J is a collection of non-empty subsets of [`], each sJ is a sum-of-squares polynomial, sJ =∑kJ

i=1 r
2
i,J , and each tj and uq is an arbitrary polynomial. The proof is of degree at most d if

deg(p) ≤ d, deg(s∅) ≤ d, deg(sJ )+
∑
j∈J deg(qj) ≤ d for each J ∈ J, and deg(tj)+deg(pj) ≤ d

for each j ∈ [m]. The proof is of monomial size at most s if

k0∑
i=1

size(ri,∅) +
∑
J∈J

kJ∑
i=1

size(ri,J) +
∑
j∈[m]

size(tj) ≤ s.

The proof has product-width at most w if each J ∈ J has cardinality at most w. The explicit
monomials of the proof are the monomials of the ri,J ’s and the tj ’s. It should be noted
that PS applied to a Q that contains at most one inequality constraint (i.e., ` ≤ 1) is literally
equivalent to SOS: any power of a single inequality is either a square, or the lift of that
inequality by a square.

As in SOS proofs, the definitions of monomial size and degree of a proof do not take
into account the uq polynomials. Likewise, the monomials in the products

∏
j∈J qj do not

contribute to the definition of monomial size. As above, this liberal definition plays in favour
of lower bounds in the case of monomial size. For degree, ignoring the uq’s does not really
matter, again, because Bn is a Gröbner basis for In.

2.4 More on the definition of monomial size
Starting at [9, 1], counting monomials in algebraic proof systems such as the Polynomial
Calculus (PC) is a well-established practice in propositional proof complexity. One motivation
for it comes from the fact that PC with twin variables, called PCR in [1], polynomially
simulates Resolution, and the natural transformation that is given by the proof turns the
clauses of the Resolution proof into monomials. Another motivation comes from the fact that,
in the area of computational algebra, the performance of the Gröbner basis method appears
to depend significantly on how the polynomials are represented. In this respect, the sum of

CCC 2019



24:6 Size-Degree Trade-Offs for Sums-of-Squares and Positivstellensatz Proofs

monomials representation of polynomials features among the first and most natural choices
to be used in practice. That said, for the natural static version of PC called Nullstellensatz
(NS) [4], let alone for SOS and PS, counting monomials does not appear to have such a
well-established tradition. Note that in the presence of twin variables, SOS monomial size is
known to polynomially simulate Resolution (see Lemma 4.6 in [2], where this is proved with
a slightly different definition of SOS and monomial size from the one above; the difference is
minor). It follows that the first of the two motivations for counting monomials in PC carries
over to SOS, and hence to PS.

In the original Beame et al. and Grigoriev-Vorobjov papers [4, 16] where NS and PS
were defined first, size is never considered, only degree. The subsequent Grigoriev’s papers
on SOS [13, 14] did not consider size either. To the best of our knowledge, the first reference
that defines a notion of size for (the version of) PS proofs (with w = 0) appears to be
[15], where the size of a proof is defined as “the length of a reasonable bit representation
of all polynomials” in the proof. The same paper proves lower bounds on the “number of
monomials” of an SOS proof (see Lemma 9.1 in [15]) without being precise as to whether it
is counting monomials in the ri,0 polynomials (in the notation of (3)), or in the expansion
of s0 as a sum of terms. Note, however, that size(s0) ≤

∑
i size(ri,0)2, hence the difference

between these two possibilities is not terribly critical. As with the squares sj , the definitions
in [15] are not explicit as to whether the monomials in the tj polynomials (in the notation
of (3) again) contribute to the monomial size by themselves, or whether one is to take into
account the expansions of the products tjpj . Unlike ours, the definitions in [15] do not
distinguish between the uq polynomials that multiply the Boolean axioms and the rest.

The difference between counting the monomials of the sj (or the ri,j) polynomials versus
counting those in the expansions of the products sjqj and tjpj is again not critical if one
is satisfied with a notion of size up to a polynomial factor that depends on the size of the
input. If one is to care about such refinements of monomial size that take into account
polynomial factors, then a natural size measure for, say, tjpj could well be size(tj) + size(pj)
or even size(tj) · size(pj), instead of size(tjpj). Note that size(tj) · size(pj) corresponds to the
number of monomials that one would encounter while expanding the product tjpj in the naive
way before merging terms with the same monomial, and in particular, before any potential
cancelling of terms occurs. In [2], the monomial size of (their slightly different version of)
Lasserre/SOS is defined in terms of the expanded summands, which in the notation of (3),
would correspond to size(s0) +

∑
j size(sjqj) +

∑
j size(tjpj) +

∑
q size(uqq). In [22] the same

convention for defining monomial size is used but the last sum over q is omitted since they
work mod In by default. For PS proofs as in (4) that have large product-width w, whether we
count the monomials in the sJ polynomials or in the expansions of the products sJ

∏
j∈J qj

could make a significant difference, i.e., exponential in w. If we think of the proof in (4)
as given by the indexed sequences (sJ : J ∈ J ∪ {∅}) and (tj : j ∈ [m]), then counting
only the monomials in the sJ polynomial, or even better in the ri,J polynomials, looks
like the natural choice.

3 Size-Degree Trade-Off

In this section we prove the following.

I Theorem 1. For every two natural numbers n and k, every indexed set Q of polynomials of
degree at most k with n pairs of twin variables, and every two positive integers s and w, if there
is a PS refutation from Q of product-width at most w and monomial size at most s, then there
is a PS refutation from Q of product-width at most w and degree at most 4

√
2(n+ 1) log(s) +

kw + 4.
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An immediate consequence is a degree criterion for size lower bounds:

I Corollary 2. Let Q be an indexed set of polynomials of degree at most k with n pairs
of twin variables, and let w be a positive integer. If d is the minimum degree and s is
the minimum monomial size of PS refutations from Q of product-width at most w, and
d ≥ kw + 4, then s ≥ exp((d− kw − 4)2/(32(n+ 1))).

The proof of Theorem 1 will follow the standard structure of proofs for degree-reduction
lemmas for other proof systems, except for some complications in the unrestricting lemmas.
These difficulties come from the fact that PS proofs are static. The main tool around these
difficulties is a tight Duality Theorem for degree-bounded proofs with respect to so-called
cut-off functions as defined next.

3.1 Duality modulo cut-off functions
Let Q = {q1, . . . , q`, p1, . . . , pm} be an indexed set of polynomials interpreted as constraints as
in (2). A cut-off function for Q is a function c : P([`]) ∪̇ [m]→ N with c(J) ≥

∑
j∈J deg(qj)

for each J ⊆ [`], and c(j) ≥ deg(pj) for each j ∈ [m]. A PS proof as in (4) has degree mod c at
most d if deg(p) ≤ d, deg(s0) ≤ d, deg(sJ ) ≤ d− c(J) for each J ∈ J, and deg(tj) ≤ d− c(j)
for each j ∈ [m].

Let PScw,d(Q) denote the set of all polynomials q of degree at most d such that q ≥ 0
has a PS proof from Q of degree mod c at most d and product-width at most w. We
write Q `cw,d q ≥ p if q − p ∈ PScw,d(Q). A pseudo-expectation for Q of degree mod c at
most d and product-width at most w is a linear functional E from the set of all polynomials
of degree at most d such that E(1) = 1 and E(q) ≥ 0 for all q ∈ PScw,d(Q). We denote
by Ecw,d(Q) the set of pseudo-expectations for the indicated parameters.

I Theorem 3. Let d be a positive integer, let Q be an indexed set of polynomials, let c be
a cut-off function for Q, let w be a positive integer, and let p be a polynomial of degree at
most 2d. Then

sup{r ∈ R : Q `cw,2d p ≥ r} = inf{E(p) : E ∈ Ecw,2d(Q)}.

Moreover, if the set Ecw,2d(Q) is non-empty, then there is a pseudo-expectation achieving the
infimum; i.e., min{E(p) : E ∈ Ecw,2d(Q)} is well-defined.

Note that the statement of Theorem 3 applies only to even degrees. This comes as an
artifact of the proof but is in no way a severe restriction for the applications that we have in
mind. The definitions of degree for SOS and PS proofs as defined in Section 2 are special
cases of the definitions above for appropriate choices of w and c. Thus, Theorem 3 gives
Duality Theorems for them. The role of the cut-off function c in our application below will be
explained in due time; i.e., after its use in the unrestricting Lemma 6 below. It is important
for the lemmas that follow that these duality theorems are tight in two ways: that they have
zero duality gap and that they respect the degree; i.e., the degree bound is the same for
proofs and pseudo-expectations. We defer the proof of Theorem 3 to Section 5 where a more
general statement is proved.

3.2 Unrestricting lemmas
For this section, fix three positive integers n, d and w for the numbers of pairs of twin
variables, degree, and product width. We also fix an indexed set Q = {q1, . . . , q`, p1, . . . , pm}
of polynomials on the n pairs of twin variables, and a cut-off function c for Q.

CCC 2019
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I Lemma 4. Let p and q be polynomials of degree at most 2d. If p ≡ q mod In, then
E(p) = E(q) for any E ∈ Ecw,2d(Q).

Proof. The assumption that p ≡ q mod In implies that both p − q and q − p belong
to PScw,2d(Q). Hence E(p) = E(q) for any E ∈ Ecw,2d(Q). J

I Lemma 5. Let x be one of the 2n variables and let m be a monomial of degree at most 2d−1.
Then E(x) = 0 implies E(xm) = 0 for any E ∈ Ecw,2d(Q).

Proof. Let m1 and m2 be two monomials of degree at most d− 1 and d, respectively, such
that m = m1m2. Note first that E((xm1)2) = 0, since x − (xm1)2 ≡ (x − xm1)2 mod In
and all degrees are at most 2d. Hence, 0 = E(x) ≥ E((xm1)2) ≥ 0 by Lemma 4. Let
then a = E(m2

2) and note that a ≥ 0. For every positive integer k we have

E(xm) ≤ 1
2k (E(2kxm1m2) + E((kxm1 −m2)2)) = a

2k ,

E(xm) ≥ 1
2k (E(2kxm1m2)− E((kxm1 +m2)2)) = − a

2k ,

where in both cases the equalities follow from E((xm1)2) = 0 and E(m2
2) = a. Since a ≥ 0

and the inequalities hold for every k > 0 it must be that E(xm) = 0 and the lemma
is proved. J

For q a polynomial on the n pairs of twin variables, i ∈ [n] an index, and b ∈ {0, 1} a
Boolean value, we denote by q[i/b] the polynomial that results from assigning xi to b and x̄i
to 1− b in q. We extend the notation to indexed sets of such polynomials through Q[i/b] to
mean {qj [i/b] : j ∈ [`]} ∪ {pj [i/b] : j ∈ [m]}. Note that qj [i/b] and pj [i/b] are polynomials
on n− 1 pairs of twin variables, and their degrees are at most those of qj and pj , respectively.

I Lemma 6. Let i ∈ [n], let Q0 and Q1 be the extensions of Q with the polynomials pm+1 = xi
and pm+1 = x̄i, respectively, and let c′ be the extension of c that maps m + 1 to 1. The
following hold:
(i) The function c′ is a cut-off function for both Q0 and Q1,
(ii) If Q[i/0] `cw,2d −1 ≥ 0, then Q0 `c

′

w,2d −1 ≥ 0.
(iii) If Q[i/1] `cw,2d −1 ≥ 0, then Q1 `c

′

w,2d −1 ≥ 0.

Proof. (i) is obvious. By symmetry we prove only (ii). Suppose that Q[i/0] `cw,2d −1 ≥ 0,
say:

−1 = s0 +
∑
J∈J

sJ
∏
j∈J

qj [i/0] +
∑
j∈[m]

tjpj [i/0] +
∑
q∈Bn

tqq[i/0]. (5)

For j ∈ [`], write qj =
∑
α∈Ij

aj,αx
α, let Jj = {α ∈ Ij : αi ≥ 1} and Kj = {α ∈ Ij : αi =

0 and αn+i ≥ 1} and note that

qj [i/0] = qj +
∑
α∈Jj

aj,α(xα/xαi
i )(−xαi

i ) +
∑
α∈Kj

aj,α(xα/x̄αn+i

i )(1− x̄αn+i

i ).

Therefore qj [i/0] ≡ qj + rjxi mod In where

rj =
∑
α∈Kj

aj,α(xα/x̄αn+i

i )−
∑
α∈Jj

aj,α(xα/xαi
i ).
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Note that deg(rj) ≤ deg(qj)− 1 since αi ≥ 1 for α ∈ Jj and αn+i ≥ 1 for α ∈ Kj . Now

sJ
∏
j∈J

qj [i/0] ≡ sJ
∏
j∈J

(qj + rjxi) mod In

≡ sJ
∏
j∈J

qj +
(∑
T⊆J
T 6=J

sJ
∏
j∈T

qj
∏

j∈J\T

rj

)
xi mod In.

Because c is a cut-off function forQ and c′(J) = c(J), we have deg(sJ ) ≤ 2d−c(J) = 2d−c′(J).
Likewise for every T 6= J , we have:

deg
(
sJ
∏
j∈T

qj
∏

j∈J\T

rj

)
≤ deg(sJ) +

∑
j∈T

deg(qj) +
∑
j∈J\T

deg(rj)

≤ 2d− c(J) +
∑
j∈J

deg(qj)− 1 ≤ 2d− 1 = 2d− c′(m+ 1).

The second inequality follows from the facts that J \ T 6= ∅ and deg(rj) ≤ deg(qj) − 1
for all j ∈ [m], the third inequality follows from the fact that c is a cut-off function for
Q, and the equality follows from the definition of c′. Hence, Q0 `c

′

w,2d sJ
∏
j∈J qj [i/0].

A similar and easier argument with tj and pj in place of sJ and
∏
j∈J qj shows that

Q0 `c
′

w,2d tjpj [i/0]. This gives proofs for all terms in the right-hand side of (5), and the proof
of the lemma is complete. J

Some comments are in order about the role of the cut-off function in the above proof.
First note that, at the semantic level, the constraint qj [i/0] ≥ 0 is equivalent to the pair
of constraints qj ≥ 0 and xi = 0. At the level of syntatic proofs, though, these two
representations of the same constraint behave differently: although a lift sjqj [i/0] of the
restriction qj [i/0] ≡ qj + rjxi of qj may have its degree bounded by 2d, the degree of its
direct simulation through sjqj + sjrjxi could exceed 2d. The role of the cut-off function is to
restrict the lifts sjqj [i/0] in such a way that their simulation through sjqj + sjrjxi remains a
valid lift of degree at most 2d; this is the case if, indeed, the allowed lifts sjqj [i/0] of qj [i/0]
are those satisfying deg(sj) ≤ 2d− c(j), where c(j) ≥ deg(qj). This is why c is designed to
depend only on the index j (or J) and not on the polynomial indexed by j (or J).

I Lemma 7. Let i ∈ [n], let Q0 and Q1 be the extensions of Q with the polynomials pm+1 = xi
and pm+1 = x̄i, respectively, and let c′ be the extension of c that maps m + 1 to 1. The
following hold:
(i) The function c′ is a cut-off function for both Q0 and Q1.
(ii) If Q0 `c

′

w,2d −1 ≥ 0, then E(xi) > 0 for any E ∈ Ecw,2d(Q).
(iii) If Q1 `c

′

w,2d −1 ≥ 0, then E(x̄i) > 0 for any E ∈ Ecw,2d(Q).

Proof. (i) is obvious. We prove (ii); the proof of (iii) is symmetric. Suppose towards a
contradiction that there is E ∈ Ecw,2d(Q) such that E(xi) = 0. We want to show that E is
also in Ec

′

w,2d(Q0). This contradicts the assumption that Q0 `c
′

w,2d −1 ≥ 0. Let

s∅ +
∑
J∈J

sJ
∏
j∈J

qj +
∑
j∈[m]

tjpj + tm+1xi +
∑
q∈Bn

tqq (6)

be a proof from Q0 of degree mod c′ at most 2d and product-width at most w. First note
that deg(tm+1) ≤ 2d− c′(m+ 1) ≤ 2d− 1. Therefore, Lemma 5 applies to all the monomials
of tm+1, so E(tm+1xi) = 0. The rest of (6) will get a non-negative value through E, since by
assumption E is in Ecw,2d(Q) and c is c′ restricted to P([`]) ∪̇ [m]. Thus, E is in Ec

′

w,2d(Q0). J
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I Lemma 8. Let i ∈ [n] and assume that d ≥ 2. The following hold:
(i) If Q[i/0] `cw,2d−2 −1 ≥ 0 and Q[i/1] `c2d −1 ≥ 0, then Q `cw,2d −1 ≥ 0.
(ii) If Q[i/0] `cw,2d −1 ≥ 0 and Q[i/1] `c2d−2 −1 ≥ 0, then Q `cw,2d −1 ≥ 0.

Proof. Since in this proof c and w remain fixed, we write `2d instead of `cw,2d and E2d(Q)
instead of Ecw,2d(Q), and act similarly for degree 2d− 2. First note that −x̄ixi = (x2

i − xi)−
xi(xi + x̄i − 1), and d ≥ 1, so

`2d −x̄ixi ≥ 0. (7)

We prove (i); the proof of (ii) is entirely analogous.
Assume Q[i/0] `2d−2 −1 ≥ 0. By Lemmas 6 and 7 and d ≥ 2 we have E(xi) > 0 for

any E ∈ E2d−2(Q). Then, by the Duality Theorem, there exist ε > 0 such that Q `2d−2 xi ≥ ε.
To see this, let γ = sup{r ∈ R : Q `2d−2 xi ≥ r} = inf{E(xi) : E ∈ E2d−2(Q)}. If E2d−2(Q)
is empty, then γ = +∞ and any ε > 0 serves the purpose. If E2d−2(Q) is non-empty, then
the Duality Theorem says that the infimum is achieved, hence γ = E(xi) > 0 for some E
in E2d−2(Q), and ε = γ/2 > 0 serves the purpose. Using d ≥ 2 again, Q `2d x̄

2
ixi ≥ x̄2

i ε, so

Q `2d x̄ixi ≥ x̄iε. (8)

Assume also Q[i/1] `2d −1 ≥ 0. By Lemmas 6 and 7 we have E(x̄i) > 0 for any E ∈ E2d(Q),
and this time d ≥ 1 suffices. By the same argument as before, by the Duality Theorem there
exist δ > 0 such that Q `2d x̄i ≥ δ. Now d ≥ 1 suffices to get

Q `2d x̄iε ≥ δε. (9)

Adding (7), (8) and (9) gives Q `2d 0 ≥ δε, i.e., Q `2d −1 ≥ 0. J

3.3 Inductive proof
We need one more technical concept: a PS proof as in (4) is multilinear if s0 and sJ are
sums-of-squares of multilinear polynomials for each J ∈ J, and tj is a multilinear polynomial
for each j ∈ [m].

I Lemma 9. For every two positive integers s and w and every indexed set Q of polynomials,
if there is a PS refutation from Q of monomial size at most s and product-width at most w,
then there is a multilinear PS refutation from Q of monomial size at most s and product-width
at most w.

Proof. Assume that Q = {q1, . . . , q`, p1, . . . , pm} and that there is a refutation from Q

as in (4), with s0 =
∑k0
i=1 r

2
i,0 and sJ =

∑kJ

i=1 r
2
i,J for J ∈ J, where the total number of

monomials among the ri,0, ri,J and tj is at most s. For each polynomial r let r be its direct
multilinearization; i.e., each power xl with l ≥ 2 that appears in r is replaced by x. It is
obvious that r ≡ r mod In and also r2 ≡ r2 mod In, where n is the number of pairs of
twin variables in Q. Moreover, the number of monomials in r does not exceed that of r.
Thus, setting s′0 =

∑k0
i=1 ri,0

2, s′J =
∑kJ

i=1 ri,J
2 and t′j = tj we get

−1 ≡ s′0 +
∑
J∈J

s′J
∏
j∈J

qj +
∑
j∈[m]

t′jpj mod In,

It follows that Q has a multilinear refutation of monomial size at most s. J

Theorem 1 will be a consequence of the following lemma for a suitable choice of d and c:
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I Lemma 10. For every natural number n, every indexed set Q of polynomials with n pairs
of twin variables, every cut-off function c for Q, every real s ≥ 1 and every two positive
integers w and d, if there is a multilinear PS refutation from Q of product-width at most w
with at most s many explicit monomials of degree at least d (counted with multiplicity), then
there is a PS refutation from Q of product-width at most w and degree mod c at most 2d′+2d′′
where d′ = d+ b2(n+ 1) log(s)/dc and d′′ = max{1, d(max c)/2e}.

Proof. The proof is an induction on n. Let Q be an indexed set of polynomials with n

pairs of twin variables, let c be a cut-off function for Q, let s ≥ 1 be a real, let w and
d be positive integers, and let Π be a multilinear refutation from Q of product-width at
most w and at most s many explicit monomials of degree at least d. For n = 0 the statement
is true because 2d′′ ≥ 2d(max c)/2e ≥ max c. Assume now that n ≥ 1. Let t ≤ s be
the exact number of explicit monomials of degree at least d in Π. The total number of
variable occurrences in such monomials is at least dt. Therefore, there exists one among
the 2n variables that appears in at least dt/2n of the explicit monomials of degree at least d.
Let i ∈ [n] be the index of such a variable, basic or twin. If it is basic, let a = 0. If it is twin,
let a = 1. Our goal is to show that

Q[i/a] `c2d′+2d′′−2 −1 ≥ 0 and Q[i/1− a] `c2d′+2d′′ −1 ≥ 0, (10)

for d′ and d′′ as stated in the lemma. If we achieve so, then d′ + d′′ ≥ 2 because d′ ≥ d ≥ 1
and d′′ ≥ 1, so Lemma 8 applies on (10) to give Q `c2d′+2d′′ −1 ≥ 0, which is what we are
after.

Consider Q[i/a] first. This is a set of polynomials on n − 1 pairs of twin variables,
and Π[i/a] is a multilinear refutation from it of product-width at most w that has at
most s′ := t(1 − d/2n) explicit monomials of degree at least d. Moreover c is a cut-off
function for it. We distinguish the cases s′ < 1 and s′ ≥ 1. If s′ < 1, then all explicit
monomials in Π[i/a] have degree at most d− 1. Since 2d′′ ≥ max c, this refutation has degree
mod c at most 2(d− 1) + 2d′′ ≤ 2d′ + 2d′′ − 2. This gives the first part of (10). If s′ ≥ 1,
then first note that d < 2n. Moreover, the induction hypothesis applied to Q[i/a] and s′,
and the same c, d and w, gives that there is a refutation from Q[i/a] of product-width at
most w and degree mod c at most 2da + 2d′′, where

da = d+ b2n log(t(1− d/2n))/dc ≤ d+ b2(n+ 1) log(s)/dc − 1.

Here we used the inequality log(1 + x) ≤ x which holds true for every real x > −1, and the
fact that d < 2n. This gives the first part of (10) since da ≤ d′ − 1.

Consider Q[i/1 − a] next. In this case, the best we can say is that c is still a cut-off
function for it, and that Π[i/1− a] is a multilinear refutation from it of product-width at
most w, that still has at most s many explicit monomials of degree at least d. But Q[i/1− a]
has at most n− 1 pairs of twin variables, so the induction hypothesis applies to it. Applied
to the same c, s, d and w, it gives that there is a refutation from Q[i/1− a] of degree mod c
at most 2d1−a + 2d′′, where

d1−a = d+ b2n log(s)/dc ≤ d+ b2(n+ 1) log(s)/dc.

This gives the second part of (10) since d1−a ≤ d′. The proof is complete. J

Proof of Theorem 1. Assume that Q has a refutation of product-width at most w and
monomial size at most s. Applying Lemma 9 we get a multilinear refutation with at most s
many explicit monomials, and hence with at most s many explicit monomials of degree at
least d0, for any d0 of our choice. We choose

d0 := b
√

2(n+ 1) log(s)c+ 1.
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By assumption s ≥ 1 and we chose d0 in such a way that d0 ≥ 1. Thus, Lemma 10 applies to
any cut-off function c for Q, in particular for the cut-off function that is kw everywhere. This
gives a refutation of product-width at most w and degree mod c at most 2d′ + kw + 2 with

d′ ≤ d0 + 2(n+ 1) log(s)/d0 ≤ 2
√

2(n+ 1) log(s) + 1.

Since a proof of product-width at most w and degree mod c at most 2d′ + kw + 2 is also a
proof of standard degree at most 2d′ + kw + 2, the proof is complete. J

4 Applications

The obvious targets for applications of Theorem 1 are the examples from the literature that
are known to require linear degree to refute. For some of them, such as Knapsack, the size
lower bound that follows was already known. For some others, the application of Theorem 1
yields a new result.

A note is in order: all the examples below are either systems of polynomial equations, i.e.,
` = 0, or have a single inequality, i.e., ` = 1. For such systems of constraints, PS and SOS are
literally equivalent. For this reason, our size lower bounds for them are stated only for SOS
(stating them for PS would be accurate, but also misleading).

4.1 Tseitin, Knapsack, and Random CSPs
The first set of examples that come to mind are the Tseitin formulas: If Gn = (V,E)
is an n-vertex graph from a family {Gn : n ∈ N} of constant degree regular expander
graphs, then the formula TSn has one Boolean variable xe for each e ∈ E and one parity
constraint

∑
e:u∈e xe = 1 mod 2 for each u ∈ V . Whenever the degree d of the graphs is even,

this is unsatisfiable when n is odd. In the encoding of the constraints given by the system of
polynomial equations Q = {

∏
e:u∈e(1− 2xe) = −1 : u ∈ V }, the Tseitin formulas TSn were

shown to require degree Ω(n) to refute in PS in Corollary 1 from [14]. Since the number of
variables of TSn is dn/2, the constraints in Q are equations of degree d, and d is a constant,
Theorem 1 gives:

I Corollary 11. There exists ε ∈ R>0 such that for every sufficiently large n ∈ N, every SOS
refutation of TSn has monomial size at least 2εn.

Among the semialgebraic proof systems in the literature, exponential size lower bounds
for Tseitin formulas were known before for a proof system called static LS+ in [15, 18]. Up
to at most doubling the degree, this can be seen as the subsystem of SOS in which every
square sj is of the very special form

sj =
((∑

i∈[n]

aixi + b
)∏
i∈I

xi
∏
j∈J

(1− xj)
)2
.

A second set of examples are the Knapsack equations 2x1 + · · · + 2xn = k, which are
unsatisfiable for odd integers k. We denote them KSn,k. These are known to require
degree Ω(min{k, 2n− k}) to refute in SOS [13]. Since the number of variables is n and the
degree is one, Theorem 1 gives an exponential size 2Ω(n) lower bound when k = n. For this
example, an exponential size lower bound for SOS was also proved in Theorem 9.1 from
[15] when k = Θ(n), so this result is not new. We state the precise relationship that the
degree-reduction theorem gives in terms of n and k, which yields superpolynomial lower
bounds for k = ω(

√
n logn).
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I Corollary 12. There exist ε ∈ R>0 such that for every sufficiently large n ∈ N and k ∈ [n],
every SOS refutation of KSn,k has monomial size at least 2εk2/n.

The third set of examples come from sparse random instances of constraint satisfaction
problems. As far as we know, monomial size lower bounds for these examples do not follow
from earlier published work without using our result, so we give the details.

When C is a clause with k literals, say xi1 ∨· · ·∨xi` ∨ x̄i`+1 ∨· · ·∨ x̄ik , we write pC for the
unique multilinear polynomial on the variables xi1 , . . . , xik of C that evaluates to the same
truth-value as C over Boolean assignments; concretely pC = 1−

∏`
j=1(1− xij )

∏k
j=`+1 xij .

More generally, if C denotes a constraint on k Boolean variables, we write pC for the unique
multilinear polynomial on the variables of C that represents C over Boolean assignments;
i.e., such that pC(x) = 1 if x satisfies C, and pC(x) = 0 if x falsifies C, for any x ∈ {0, 1}n.

I Theorem 13 (see Theorem 12 in [32]). For every δ ∈ R>0 there exist c, ε ∈ R>0 such that,
asymptotically almost surely as n goes to infinity, if m = dcne and C1, . . . , Cm are random
3-XOR (resp. 3-SAT) constraints on x1, . . . , xn that are chosen uniformly and independently
at random, then there is a degree-εn SOS pseudo-expectation for the system of polynomial
equations pC1 = 1, . . . , pCm

= 1, and at the same time every truth assignment for x1, . . . , xn
satisfies at most a 1/2 + δ fraction (resp. 7/8 + δ) of the constraints C1, . . . , Cm.

It should be noted that it is not immediately obvious, from just reading the definitions,
that the statement of Theorem 12 in [32] gives the pseudo-expectation as stated in Theorem 13.
However, the proof of Theorem 12 in [32] is by now sufficiently well understood to know
that Theorem 13 holds true as stated. One way of seeing this is by noting that the proof of
Theorem 12 in [32] and the proof of the lower bound for the Tseitin formulas in Corollary 1
of [14] are essentially the same. In particular Theorem 12 in [32] holds true also for proving
the existence of SOS pseudo-expectations as stated in Theorem 13.

As an immediate consequence we get:

I Corollary 14. There exist c, ε ∈ R>0 such that, asymptotically almost surely as n goes
to infinity, if m = dcne and C1, . . . , Cm are random 3-XOR (resp. 3-SAT) constraints on
x1, . . . , xn that are chosen uniformly and independently at random, then every SOS refutation
of pC1 = 1, . . . , pCm

= 1 has monomial size at least 2εn.

It is often stated that Theorem 13 gives optimal integrality gaps for the approximability
of MAX-3-XOR and MAX-3-SAT by linear degree SOS. Corollary 14 is its analogue for
subexponential size SOS. There is however a subtelty in that the validity of the integrality
gap statement could depend on the encoding of the objective function. The next section is
devoted to clarify this.

4.2 MAX-CSPs
An instance I of the Boolean MAX-CSP problem is a sequence C1, . . . , Cm of constraints on
n Boolean variables. We are asked to maximize the fraction of satisfied constraints. If pj
denotes the unique multilinear polynomial on the variables of Cj that represents Cj , then
the optimal value for an instance I can be formulated as follows:

opt(I) := maxx∈{0,1}n
1
m

∑m
j=1 pj(x). (11)

We could ask for the least upper bound on (11) that can be certified by an SOS proof of
some given complexity c, i.e., monomial size at most s, degree at most 2d, etc. There are at
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least three formulations of this question. Using the notation `c to denote SOS provability
with complexity c, the three formulations are:

sos′′c(I) := inf{γ ∈ R : `c 1
m

∑m
j=1 pj(x) ≤ γ}, (12)

sos′c(I) := inf{γ ∈ R : {pj(x) = yj : j ∈ [m]} `c 1
m

∑m
j=1 yj ≤ γ}, (13)

sosc(I) := inf{γ ∈ R : {pj(x) = yj : j ∈ [m]} ∪ { 1
m

∑m
j=1 yj ≥ γ} `c −1 ≥ 0}. (14)

The first formulation asks directly for the least upper bound on the objective function of (11)
that can be certified in complexity c. The second formulation is similar but stronger since it
allows m additional Boolean variables y1, . . . , ym, and their twins. The third is the strongest
of the three as it asks for the least value that can be proved impossible. In addition, unlike the
other two, the set of hypotheses in (14) mixes equations and inequality constraints. It should
be obvious that (for natural complexity measures) we have sosc(I) ≤ sos′c(I) ≤ sos′′c(I) so
lower bounds on sosc imply lower bounds for the other two.

Theorem 13 gives, by itself, optimal integrality gaps for MAX-3-XOR and MAX-3-SAT for
linear degree SOS in the sos′′c formulation, when c denotes SOS-degree. However, the degree
lower bound that follows from this formulation does not let us apply our main theorem; the
statement is not about refutations, it is about proving an inequality, so Theorem 1 does not
apply. In the following we argue that Theorem 13 also gives optimal integrality gaps in the
sos′c and sosc formulations of the problems. Since the sosc formulation is about refutations,
our main theorem will apply.

We write αc(I) for the supremum of the α ∈ [0, 1] for which

α · sosc(I) ≤ opt(I) ≤ sosc(I) (15)

holds. If C is a class of instances, then we write α∗c(C) := inf{αc(I) : I ∈ C}; the sosc-
approximation factor for C. It is our goal to show that Theorem 13 implies that, for SOS
proofs of sublinear degree, the sosc-approximation factor of MAX-3-XOR is at most 1/2, and
that of MAX-3-SAT is at most 7/8. These are optimal. This will follow from Theorem 13 and
the following general fact about pseudo-expectations that (pseudo-)satisfy all the constraints:
I Lemma 15. Let I be a MAX-CSP instance with n Boolean variables and m constraints of
arity at most k, represented by multilinear polynomials p1, . . . , pm, and let Q = {pj(x) = 1 :
j ∈ [m]} and Q′ = {pj(x) = yj : j ∈ [m]} ∪ { 1

m

∑m
j=1 yj ≥ 1}. If there is a degree-2dk SOS

pseudo-expectation E for Q, then there is a degree-2d SOS pseudo-expectation E′ for Q′.
Proof. Let σ be the substitution that sends yj to pj(x) and ȳj to 1− pj(x) for j = 1, . . . ,m.
For each polynomial p on the x and y variables, define E′(p) := E(p[σ]), where p[σ] denotes
the result applying the substitution to p. The proof that this works relies on the fact
that if p and q are polynomial in the x and y variables, then (pq)[σ] = p[σ]q[σ], and
deg((pq)[σ]) ≤ deg(p[σ]q[σ]) ≤ 2k(deg(p) + deg(q)). In particular, squares maps to squares
by the substitution. It is obvious that each equation pj(x) = yj lifts: E′(t(pj(x) − yj)) =
E(t[σ](pj(x)−pj(x))) = E(0) = 0. It is equaly obvious that the inequality 1

m

∑m
j=1 yj−1 ≥ 0

lifts: E′(s( 1
m

∑m
j=1 yj − 1)) = 1

m

∑m
j=1E(s[σ](pj(x)− 1)) ≥ 0. This completes the proof of

the lemma. J

Combining this with Theorem 13 and Theorem 1 we get:
I Corollary 16. For every δ ∈ R>0, there exist r, ε ∈ R>0 such that if c denotes SOS monomial
size at most 2εn, where n is the number of variables, then α∗c(MAX-3-XOR) ≤ 1/2 + δ (resp.
α∗c(MAX-3-SAT) ≤ 7/8 + δ), and the gap is witnessed by an instance I with m = drne
many uniformly and independently chosen random constraints, for which sosc(I) = 1 and
opt(I) ≤ 1/2 + δ (resp. opt(I) ≤ 7/8 + δ), asymptotically almost surely as n goes to infinity.
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5 Duality

In this section we finally prove the stated Duality Theorem for PS in a more general setting.
We start by recalling some basic facts about ordered vector spaces from [28]. We prove the
results for pre-ordered vector spaces rather than ordered ones since the polynomial spaces
we will apply the results to carry a natural pre-order.

5.1 Vector spaces with order unit
A pre-ordered vector space is a pair 〈V,≤〉, where V is a real vector space and ≤ is a pre-order
that respects vector addition and multiplication by a non-negative scalar, i.e. the following
hold for all p, q, p1, p2, q1, q2 ∈ V and a ∈ R≥0:
(i) p1 ≤ q1 and p2 ≤ q2 only if p1 + p2 ≤ q1 + q2;
(ii) p ≤ q only if ap ≤ aq.

Pre-ordered vector spaces arise naturally from convex cones of real vector spaces. If C ⊆ V is
a convex cone, then the relation defined by p ≤C q if q−p ∈ C satisfies the above requirements.
An element e ∈ V is an order unit for 〈V,≤〉 if for any p ∈ V there is some r ∈ R≥0 such
that re ≥ p.

For the rest of this section let 〈V,≤〉 be a pre-ordered vector space with an order unit e.

I Lemma 17. The following hold.
(i) e ≥ 0;
(ii) For every p ∈ V and r1, r2 ∈ R with r1 ≤ r2, if r1e ≥ p, then r2e ≥ p.
(iii) For every p ∈ V there is r ∈ R≥0 such that re ≥ p ≥ −re;
(iv) If −e ≥ 0, then p ≥ 0 for every p ∈ V .

Proof. (i) There is some r ∈ R≥0 such that re ≥ −e, i.e. (r + 1)e ≥ 0, and so e ≥ 0.
(ii) Now r2 − r1 ≥ 0 and so (r2 − r1)e ≥ 0. Thus (r2 − r1)e + r1e ≥ p, i.e. r2e ≥ p.
(iii) Let r1 be such that r1e ≥ p and let r2 be such that r2e ≥ −p, and let r = max{r1, r2}.
Now re ≥ p ≥ −re. (iv) Suppose −e ≥ 0 and let r ∈ R≥0 be such that re ≥ −p. Now
also −re ≥ 0 and so 0 ≥ −p, i.e. p ≥ 0. J

Let U be a subspace of V . A linear functional L : U → R is positive if u ≥ 0 implies L(u) ≥
0 for all u ∈ U . Equivalently, L is positive if it is order-preserving, i.e., if u ≤ v implies
L(u) ≤ L(v) for all u, v ∈ U . A positive linear functional L on V is a pseudo-expectation if
L(e) = 1. We denote the set of all pseudo-expectations of V by E(V ).

Suppose U contains the order unit and let p ∈ V . By Lemma 17.(iii) the following two
sets are non-empty:

p ↓ U = {v ∈ U : p ≥ v},
p ↑ U = {v ∈ U : v ≥ p}.

If L is any positive linear functional that is defined on U , then dLp = sup{L(v) : v ∈ p ↓ U}
and uLp = inf{L(v) : v ∈ p ↑ U} are real numbers and dLp ≤ uLp . Note also that if p ∈ U ,
then dLp = L(p) = uLp .

I Lemma 18. Let U be a subspace of V containing the order unit e, and let L be a positive
linear functional on U . Then for any p ∈ V \ U and for any γ ∈ R satisfying dLp ≤ γ ≤ uLp
there is a positive linear functional L′ that is defined on span({p} ∪ U), that extends L, and
such that L′(p) = γ.

CCC 2019



24:16 Size-Degree Trade-Offs for Sums-of-Squares and Positivstellensatz Proofs

Proof. Every element of span({p} ∪U) can be written uniquely in form ap+ v, where a ∈ R
and v ∈ U . Define L′ by

L′(ap+ v) = aγ + L(v).

It is easy to check that L′ is linear map. We show that L′ is positive by considering a
few cases.

Case (i) a = 0. If ap + v ≥ 0 and a = 0, then v ≥ 0 and L′(ap + v) = L(v) ≥ 0.
Case (ii) a > 0. Suppose that ap+v ≥ 0 and a > 0. Then p ≥ −(v/a), and so L(−(v/a)) ≤ γ,
i.e. 0 ≤ aγ + L(v). Case (iii) a < 0. Suppose that ap+ v ≥ 0 and a < 0. Then −a > 0, and
so −(v/a) ≥ p. Hence γ ≤ L(−(v/a)), and so 0 ≤ aγ + L(v). J

Now we can prove the general duality theorem for pre-ordered vector spaces that admit
an order unit. For a more general version of this result, see [28].

I Theorem 19. For any p ∈ V it holds that

sup{r ∈ R : p ≥ re} = inf{E(p) : E ∈ E(V )}.

Moreover, if the set E(V ) is non-empty, then there is a pseudo-expectation achieving the
infimum, i.e., min{E(p) : E ∈ E(V )} is well-defined.

Proof. The inequality from left to right is clear. For the inequality from right to left we
distinguish two cases: whether −e ≥ 0 or not. If −e ≥ 0, then E(V ) = ∅, since −1 � 0,
so inf{E(p) : E ∈ E(V )} = +∞. On the other hand sup{r ∈ R : p ≥ re} = +∞ by
Lemma 17.(iv), so the claim follows. If −e 6≥ 0, then re ≥ 0 implies r ≥ 0, so the map
defined by L0(re) = r for all r ∈ R is a positive linear functional on U0 = span({e}). Note
now that dL0

p = sup{r ∈ R : p ≥ re}, and so, to prove the theorem, it suffices to show that
there is some pseudo-expectation E extending L0 such that E(p) = dL0

p .
If p ∈ U0, then L0(p) = dL0

p . On the other hand if p 6∈ U0, then by Lemma 18, there
is a positive linear functional L′ extending L0 on span({e, p}) such that L′(p) = dL0

p . Now
consider the set A of all positive linear functionals L that are defined on a subspace U ⊆ V
containing both e and p, and satisfy L(e) = 1 and L(p) = dL0

p . By the argument above A 6= ∅.
On the other hand A is closed under unions of chains and so, by Zorn’s lemma, there is some
maximal E ∈ A.

Now the domain of E is the whole of V , since otherwise we could extend E by using
Lemma 18, contradicting the maximality of E. Hence E is the pseudo-expectation we
are after. J

5.2 Order units for semi-algebraic proof systems
For the purposes of this section we define a more general notion of Positivstellensatz proof
that works modulo an arbitrary ideal I, not only the Boolean ideal In. Let I be an ideal of
the polynomial space R[x], and let Q = {q1 ≥ 0, . . . , q` ≥ 0, p1 = 0, . . . , pm = 0} be a set of
constraints. A PS proof mod I of p ≥ 0 from Q is an identity (of R[x]/I) of the form

p ≡ s∅ +
∑
J⊆J

sJ
∏
j∈J

qj +
∑
j∈[m]

tjpj mod I, (16)

where J is a collection of non-empty subsets of [`], each sJ is a sum-of-squares polynomial, sJ =∑kJ

i=1 r
2
i,J , and each tj is an arbitrary polynomial.
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A cut-off function for Q is a function c : P([`]) ∪̇ [m]→ N with c(J) ≥
∑
j∈J deg(qj) for

each J ⊆ [`], and c(j) ≥ deg(pj) for each j ∈ [m]. A PS proof as in (16) has degree mod c at
most d if deg(p) ≤ d, deg(s0) ≤ d, deg(sJ ) ≤ d− c(J) for each J ∈ J, and deg(tj) ≤ d− c(j)
for each j ∈ [m]. It has product-width at most w if each J ∈ J has cardinality at most w. We
write PSc,Iw,d(Q) for the convex cone of all polynomials p such that p ≥ 0 has a PS proof mod I
from Q of degree mod c at most d and product-width at most w. We will write Q `c,Iw,d p ≥ q if
p−q ∈ PSc,Iw,d(Q), and denote by E

c,I
w,2d(Q) the set of pseudo-expectations over the pre-ordered

vector space determined by this cone. These definitions agree with those used in Section 3
when I = In.

We show that over any ideal I, any cut-off function c and any product-width w, if Q
proves that each variable is bounded in degree two, then the constant polynomial 1 is an
order unit for Q. We prove this in a series of lemmas. In order to simplify the notation, for
these lemmas we write `d instead of `c,Iw,d.

I Lemma 20. If Q `2 R ≥ x2 for every variable x for some R ∈ R≥0, then for any monomial
m of degree at most d and any a ∈ R there is b ∈ R≥0 such that

Q `2d am
2 + b ≥ 0.

Proof. We prove the claim by induction on the degree of m. If deg(m) = 0, then the
claim is trivial. Suppose then that deg(m) > 0. If a ≥ 0, then the claim is again clear:
am2 = (

√
am)2. Suppose that a < 0 and let x and m0 be such thatm = xm0. By assumption

Q `2 R − x2 ≥ 0, and so Q `2d (
√
−am0)2(R − x2) ≥ 0. By induction hypothesis applied

to m0 and aR there is b0 ∈ R≥0 such that Q `2d aRm
2
0 + b0 ≥ 0. By adding we have that

Q `2d am
2 + b0 ≥ 0. J

I Lemma 21. If Q `2 R ≥ x2 for every variable x for some R ∈ R≥0, then for any monomial
m of degree at most 2d and any a ∈ R there is b ∈ R≥0 such that

Q `2d am+ b ≥ 0.

Proof. Let m0 and m1 be monomials of degree at most d such that m = m0m1. Now if a ≥ 0,
then (

√
a/2m0 +

√
a/2m1)2 = (a/2)m2

0 +am+ (a/2)m2
1. Now, by previous lemma, there are

non-negative b0 and b1 such that Q `2d (−a/2)m2
i + bi ≥ 0 for i ∈ {0, 1}. Hence Q `2d am+

b0 + b1 ≥ 0. If a < 0, then (
√
−a/2m0 −

√
−a/2m1)2 = (−a/2)m2

0 + am+ (−a/2)m2
1. Now,

again by previous lemma, there are non-negative b0 and b1 such that Q `2d (a/2)m2
i + bi ≥ 0

for i ∈ {0, 1}. Hence Q `2d am+ b0 + b1 ≥ 0. J

I Lemma 22. If Q `2 R ≥ x2 for every variable x for some R ∈ R≥0, then for any
polynomial p of degree at most 2d there is r ∈ R≥0 such that

Q `2d r ≥ p.

Proof. Immediate from Lemma 21. J

This establishes the existence of an order-unit and hence, by Theorem 19, we have:

I Corollary 23. Let d be a positive integer, let Q be an indexed set of polynomials, let c
be a cut-off function for Q, let w be a positive integer, let I be an ideal of R[x], and let
p be a polynomial of degree at most 2d. If Q `c,Iw,2 R ≥ x2 for every variable x for some
R ∈ R≥0, then

sup{r ∈ R : Q `c,Iw,2d p ≥ r} = inf{E(p) : E ∈ E
c,I
w,2d(Q)}.

Moreover, if the set Ec,Iw,2d(Q) is non-empty, then there is a pseudo-expectation achieving the
infimum; i.e., min{E(p) : E ∈ E

c,I
w,2d(Q)} is well-defined.
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For the Boolean ideal In, the assumption that Q `c,Iw,2 R ≥ x2 holds for every variable x
is fulfilled with R = 1 since 1 − x2 ≡ (1 − x)2 mod In. This gives Theorem 3. In
the ±1 representation of the Boolean hypercube, i.e., modulo the ideal I ′n generated by the
axioms B′n := {1− x2

i , 1− x̄i2, xi + x̄i : i ∈ [n]}, the assumption is fulfilled also with R = 1
since in this case 1− x2 ≡ 0 mod I ′n.

6 Concluding Remarks

In this paper we addressed the question of size-degree trade-offs for PS and SOS. Some
questions remain open. Most importantly, is the O(

√
n log(s) + kw) upper bound in the

degree-reduction lemma tight? For Resolution and PC, whose size-width/degree trade-
offs adopt the same form, the bound is known to be tight. In both cases the Ordering
Principle (OP) witnesses the necessity of the square root of the number of variables in the
upper bound [7, 12]. In this respect, it should be noted that it was recently shown that OPn,
which has N = n2 variables, can be refuted in degree O(

√
n), whence degree O( 4

√
N), in SOS

[30]. Since the relationship between N and
√
n is a 4-th root, this means that OPn cannot

be used for witnessing the necessity of the square root of the number of variables in our
theorem. But can OPn be used to show that at least some fixed root r

√
n of n is required?

So far, the best SOS degree lower bound for OPn known is superconstant [30].
Although it looks unlikely that the dependence of O(

√
n log(s) + kw) on the product-

width w could be improved by refining the current method, it is not even known whether
there are examples that separate PS from SOS. Could PS collapse to SOS with respect to size
or degree? Related to this, a comment worth making is that there is a general well-known
technique for transforming inequalities P ≥ 0 into equalities P − z2 = 0, where z is a fresh
variable. This looks relevant since, in the absence of inequalities, PS collapses to SOS just
by definition. On the other hand, note that the new variable z that is introduced by this
method is not Boolean, which takes us outside the Boolean hypercube.
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