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Abstract
We study the problem of approximating the commuting-operator value of a two-player non-local
game. It is well-known that it is NP-complete to decide whether the classical value of a non-local
game is 1 or 1 − ε, promised that one of the two is the case. Furthermore, as long as ε is small
enough, this result does not depend on the gap ε. In contrast, a recent result of Fitzsimons, Ji,
Vidick, and Yuen shows that the complexity of computing the quantum value grows without bound
as the gap ε decreases. In this paper, we show that this also holds for the commuting-operator
value of a game. Specifically, in the language of multi-prover interactive proofs, we show that the
power of MIPco(2, 1, 1, s) (proofs with two provers, one round, completeness probability 1, soundness
probability s, and commuting-operator strategies) can increase without bound as the gap 1− s gets
arbitrarily small.

Our results also extend naturally in two ways, to perfect zero-knowledge protocols, and to lower
bounds on the complexity of computing the approximately-commuting value of a game. Thus we get
lower bounds on the complexity class PZK-MIPcoδ (2, 1, 1, s) of perfect zero-knowledge multi-prover
proofs with approximately-commuting operator strategies, as the gap 1− s gets arbitrarily small.
While we do not know any computable time upper bound on the class MIPco, a result of the first author
and Vidick shows that for s = 1− 1/ poly(f(n)) and δ = 1/ poly(f(n)), the class MIPcoδ (2, 1, 1, s),
with constant communication from the provers, is contained in TIME(exp(poly(f(n)))). We give a
lower bound of coNTIME(f(n)) (ignoring constants inside the function) for this class, which is tight
up to polynomial factors assuming the exponential time hypothesis.
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1 Introduction

Non-local games are a subject of converging interest for quantum information theory and
computational complexity theory. A central question in both fields is the complexity of
approximating the optimal winning probability of a non-local game. Quantum mechanics
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25:2 Lower Bounds for Computing Non-Local Games to High Precision

allows non-local strategies in which the players share entanglement, and in quantum com-
plexity theory we are interested in understanding the optimal winning probability over these
entangled strategies. Answering this question is necessary for understanding the power of
multi-prover interactive proof systems with entangled provers and a classical verifier.

For classical strategies (i.e. strategies without entanglement), it is NP-hard to decide
whether a non-local game has winning probability 1. The PCP theorem implies that it is
NP-hard to decide whether a non-local game has winning probability 1 or winning probability
1 − ε, where ε is constant, promised that one of the two is the case [1, 2]. Therefore, for
classical games, the complexity of computing the winning probability is the same for constant
error as for zero error.

Two models for quantum strategies have historically been used when defining the entangled
value of a nonlocal game: the tensor product model and the commuting-operator model. The
optimal winning probability of a non-local game over tensor product strategies is called the
quantum value, and optimal winning probability over all commuting-operator strategies is
called the commuting-operator value.

A number of lower bounds on approximating the quantum value of a non-local game
are known. In particular, Ji has shown that it is NEXP-hard to compute the quantum
value of a non-local game with inverse polynomial precision, and NEEXP-hard to compute
the entangled value with inverse exponential precision [11]. Fitzsimons, Ji, Vidick, and
Yuen continue this line of results by showing, roughly, that for any computable function
f(n) : N → N, it is NTIME(exp(f(n))) hard to compute the quantum value of a nonlocal
game with 1/f(n) precision (here n is the input size) [7]. In particular, this implies that the
quantum value of a game behaves very differently from the classical winning probability, since
the complexity of computing the quantum value increases without bound as the required
precision increases.

It is also natural to ask whether one might be able to approximate the commuting-operator
value of a game efficiently. The study of the commuting-operator value goes back to [9],
where it is shown that it is NP-hard to distinguish whether the commuting operator value
is 1 or 1-1/poly(n). The complexity of the commuting operator value does not seem to be
explicitly studied in more recent work.

In this paper, we look at lower bounds on the complexity of approximating the commuting-
operator value of linear system nonlocal games, a type of nonlocal game closely connected
with the theory of finitely-presented groups [3]. We show that group-theoretic methods can
be used to lower bound the complexity of approximating the commuting-operator value
of a linear system nonlocal game. In particular we show that, just as with the quantum
value of a game, the complexity of computing the commuting operator value of a non-local
game to precision ε grows arbitrarily large as ε decreases. Because our results are based
on group-theoretic methods, we observe that they naturally extend to lower bounds on
approximately-commuting-operator strategies for games, a generalization of commuting-
operator strategies in which Alice and Bob’s strategies can interact slightly, but in such a
way that the interaction is bounded by a parameter δ. Thus we show:

I Theorem 1. There is a universal constant k such that for every language L ⊂ A∗ over a
finite alphabet A and contained in coNTIME(f(n)), where f(n) is at least polynomial, there
is a constant C > 0 and a family of two-player non-local games (Gw)w∈A∗ of size poly(|w|)
and computable in poly(|w|)-time, such that for any δ = o(1/f(Cn)2k), deciding whether
ωcoδ (Gw) = 1, or

ωcoδ (Gw) ≤ 1− 1/f(Cn)k +O(
√
δ),

promised that one of the two is the case, is as hard as deciding membership of w in L.
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Here ωcoδ (Gw) denotes the supremum of all winning probabilities for all δ-commuting-operator
strategies for the game Gw (see Definition 9). The proof of Theorem 1 is given in Section
5. Setting δ = 0 gives a hardness result for approximating the commuting-operator value
ωco := ωco0 of two-player non-local games.

The proof of Theorem 1 relies on a deep group theory result of Sapir, Birget, and Rips,
which shows that the acceptance problem for any Turing machine can be encoded in the
word problem of a finitely-presented group, in such a way that the Dehn function of the
group is equivalent to the running time of the Turing machine [16]. We then use [17] to
embed this group into linear system non-local games. In the case that a word w ∈ A∗ does
not belong to L, the provers demonstrate this fact by showing that a certain word in the
corresponding group is not equal to the identity. In this case, the representation of the
group forms the proof that the word is not equal to the identity, and this representation is
used to build the provers’ quantum strategy. The reason that we use commuting-operator
strategies in Theorem 1, and again in Theorem 2 below, is that this representation might
not be finite-dimensional.

Little is known about upper bounds on the complexity of computing the value of non-local
games. Most existing proposals for an algorithm are based on a hierarchy of semi-definite
programs [13, 14, 6]. It remains open whether such an algorithm can approximate the
commuting-operator value of a game to any precision ε in finite time. However, the first
author and Vidick have shown that the SDP hierarchy of [13, 14, 6] can be used to estimate
(with explicit convergence bounds) the optimal value of a non-local game over approximately-
commuting strategies [5]. In particular [5] gives an algorithm which, given a description of
a non-local game as a truth-table of size n, can decide whether the game has commuting-
operator value equal to 1, or has no δ-commuting-operator strategy with winning probability
higher than 1 − ε (for constant ε, promised that one of the two is the case), in time
nO(poly(`,1/δ)), where ` is the size of the output alphabet for the game. Theorem 1 shows
that the dependence of this algorithm on δ is necessary. For the games Gw in Theorem 1,
` = O(1), and ωcoδ (Gw) = 1 if and only if ωco(Gw) = 1. According to the exponential time
hypothesis, we might expect that the best deterministic upper bound for coNTIME(f(n)) is
TIME(2poly(f(n))). Thus, if we assume the exponential time hypothesis, the non-deterministic
lower bound in Theorem 1 matches the deterministic upper bound in [5] up to polynomial
factors (for families of games with a constant number of outputs).

Results about the complexity of non-local games have direct and natural implications for
the power of multi-prover interactive proofs. Multi-prover interactive proofs were originally
defined and studied in a purely classical setting. A seminal result of Babai, Fortnow, and
Lund, which studies the class MIP of languages which admit a multi-prover interactive
proof with polynomial time verifier, states that MIP = NEXP. Once again, this equality is
independent of the completeness-soundness gap, as long as this gap is a large enough constant.
For entangled strategies, there are, a priori, two analogs of the class MIP to consider, the
class MIP∗ of multi-prover interactive proofs in which provers may use finite-dimensional
entangled strategies, and MIPco, the equivalent class with commuting-operator strategies. A
result of Ito and Vidick states that the class MIP∗(4, 1, 1, 1− 1/poly(n)) with four provers,
one round, completeness probability 1, and soundness probability 1-1/poly(n) contains NEXP
[10]. Ji’s result mentioned earlier for computing the quantum value of game shows that with
a sufficient number of provers k, MIP∗(k, 1, 1, 1− 1/ exp(n)) contains NEEXP, in contrast
again to the classical case [11]. Ji’s result is based on a compression theorem for non-local
games, which also shows that the problem of computing the quantum value of a game is
complete for MIP∗.
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25:4 Lower Bounds for Computing Non-Local Games to High Precision

Theorem 1 can be translated into lower bounds on MIPcoδ , the class of languages with a
multiprover interactive proof sound against approximately commuting strategies. Further-
more, these lower bounds also apply to the class PZK-MIPcoδ of languages which admit a
perfect zero knowledge multiprover interactive proof sound against approximately commuting
strategies. In a perfect zero knowledge interactive proof the provers must reveal nothing to
the verifier except the proven statement itself. The formal definition of these two classes is
given in Definitions 18 and 20.

I Theorem 2. There is a universal constant k such that for any language L in NTIME(f(n)),
where f(n) is at least polynomial, there is a constant C such that for any δ = o(1/f(Cn)2k),

L ∈ PZK-MIPcoδ (2, 1, 1, 1− 1/f(Cn)k),

where L is the complement of L.

Note that, since the containment PZK-MIPcoδ ⊆ MIPcoδ is immediate (see Definition 20),
Theorem 2 represents both a lower bound for PZK-MIPcoδ and for MIPcoδ itself. Similarly to
Theorem 1, when δ = 0, we get a lower bound on the class MIPco := MIPco0 of multi-prover
interactive proofs with commuting-operator strategies, which is the direct analog of the
complexity class MIP∗ in the commuting operator setting (indeed, the term MIP∗ has been
used to denote MIPco in some previous works).

One reason we are interested in the class MIPcoδ is that the algorithm of [5] mentioned
above gives a (deterministic) time upper bound for MIPcoδ . For protocols with constant-sized
outputs, this upper bound is stated in Theorem 23. In contrast, no computable upper bounds
for MIP∗ or MIPco are known. Combining Theorem 2 with the upper bound in of [5] gives
the following series of containments (written here with constants, polynomial factors, and
some parameters of the MIPcoδ notation suppressed for conciseness, including a parameter
requiring a constant number of outputs). For any δ = o(1/f(Cn)2k):

coNTIME(f(n)) ⊆ PZK-MIPcoδ (1, 1− 1/ poly(f(n))) (1.1)
⊆ MIPcoδ (1, 1− 1/ poly(f(n)))
⊆ TIME(exp(1/poly(δ)))

Just as for the decision problem in Theorem 1, if we assume the exponential time hypothesis
then we can consider the left hand side and right hand side of Equation 1.1 above to be
matching up to polynomial factors.

Our results are complementary to the results of Fitzsimons, Ji, Vidick, and Yuen,
who show qualitatively similar lower bounds for computing the quantum value of k-player
games and for MIP∗(k, 1, 1, s), where k ≥ 15. Their results show that MIP∗ with 1/f(n)
completeness-soundness gap contains NTIME(2f(n)), matching the pattern seen in [11] for
inverse polynomial and inverse exponential gaps. In contrast, in our result the scaling
of the lower bound relative to the gap is weaker, requiring gap of order 1/f(n) to get a
lower bound of coNTIME(f(n)), and applying to commuting-operator strategies rather than
quantum strategies. However, our results apply to two-player protocols, while the results of
[7] apply to protocols with 15 or more players. That we get a lower bound of coNTIME(f(n))
rather than NTIME(2f(n)) can be explained by the fact that our lower bound extends to
MIPcoδ , which, with the restriction to protocols with constant-sized outputs, is contained
in TIME(2f(n)). Thus our results highlight the importance of considering soundness to
approximately-commuting strategies when seeking lower bounds on MIP∗ and MIPco. It
seems to be an interesting open problem to determine whether the improved bounds of [7]
can be done with algebraic methods.
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2 Group theory preliminaries

Recall that a finitely-presented group is a group G with a fixed presentation G = 〈S : R〉,
meaning that G is the quotient of the free group F(S) generated by a finite set S, by the
normal subgroup generated by a finite set of relations R ⊆ F(S). If G = 〈S : R〉, and
R′ ⊆ F(S ∪ S′), then the notation 〈G,S′ : R′〉 refers to the presentation 〈S ∪ S′ : R ∪ R′〉.
A (group) word of length k over the generators S is a string sa1

1 · · · s
ak
k where si ∈ S and

ai ∈ {±1} for all 1 ≤ i ≤ k. Such a word is said to be reduced if si = si+1 implies that
ai = ai+1 for all 1 ≤ i ≤ k − 1. Every element w ∈ F(S) is represented by a unique reduced
word, and the length |w| of w is defined to be the length of this reduced word. The word
problem for G is the problem of deciding whether the image of a given element w ∈ F(S) is
equal to the identity in G, or in other words, whether the word is in the normal subgroup
of F(S) generated by R. Since the reduced form of any non-reduced word over S can be
found in time linear in the length of that non-reduced word, we can ask that inputs to
the word problem be represented either as reduced or non-reduced words without changing
the problem.

A (unitary) representation of a group G is a homomorphism φ : G → U(H), where
U(H) is the unitary group of a Hilbert space H. If G = 〈S : R〉 is a finitely-presented
group, then a representation φ : G → U(H) can be specified by giving a homomorphism
φ̃ : F(S)→ U(H) such that φ̃(r) = 1 for every r ∈ R. If G is a group, then `2G is the Hilbert
space with Hilbert basis B = {|g〉 : g ∈ G}. This means that every element of H is of the form∑
g∈G cg |g〉, where

∑
g∈G |cg|2 ≤ +∞. Since every group G acts on itself by both left and

right multiplication, G also acts by left and right multiplication on B. Thus G acts unitarily
on `2G by left and right multiplication. The resulting representations L,R : G → U(`2G)
are called the left and right regular representations of G, respectively.

If w ∈ F(S) is a word which is equal to the identity in G, we let AreaG(w) be the
minimum t ≥ 1 such that

w = z1r
a1
1 z−1

1 · · · ztr
at
t z
−1
t

for some r1, . . . , rt ∈ R, z1, . . . , zt ∈ F(S), and a1, . . . , at ∈ {±1}.1 The Dehn function
DehnG of G is the function N→ N defined by

DehnG(n) = max{AreaG(w) : w ∈ F(S) has |w| ≤ n and w = 1 in G}.

If the word problem of G is decidable, then DehnG is computable. Conversely, the word
problem of G belongs to NTIME(DehnG(n)) [16]. An easy way to see that the complexity of
the word problem is bounded by the Dehn function (albeit with the slightly worse upper
bound of NTIME(poly(DehnG(n)))) is through the following lemma:

I Lemma 3 ([8], Lemma 2.2). Let G = 〈S : R〉 be a finitely-presented group, and let `
be the length of the longest relation in R. If w ∈ F(S) is equal to the identity in G and
k = AreaG(w), then

w = z1r
a1
1 z−1

1 · · · zkr
ak
k z−1

k

where r1, . . . , rk ∈ R, z1, . . . , zk ∈ F(S), a1, . . . , ak ∈ {±1}, and |zi| ≤ k` + ` + |w| for
all 1 ≤ i ≤ k.

1 AreaG(w) can also be defined as the minimum number of regions in a van Kampen diagram with
boundary word w, and this is where the name comes from.
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25:6 Lower Bounds for Computing Non-Local Games to High Precision

In general, the Dehn function can be much larger than the time-complexity of the word
problem of G. However, Sapir, Birget, and Rips have shown that every recursive language
can be reduced to the word problem of a finitely-presented group for which the Dehn
function is polynomially equivalent to the time-complexity of the word problem. For
the statement of the theorem, recall that two functions T, T ′ : N → N are said to be
(asymptotically) equivalent if there are constants C,C ′ such that T (n) ≤ CT ′(Cn) +Cn+C

and T ′(n) ≤ C ′T (C ′n) + C ′n+ C ′ for all n ≥ 1.

I Theorem 4 ([16], Theorem 1.3). Let A be a finite alphabet, and L ⊂ A∗ a language over
A contained in NTIME(T (n)), where T (n) is computable and T (n)4 is at least superadditive
(i.e. T (n+m)4 ≥ T (n)4 + T (m)4. Then there exists a finitely-presented group G = 〈S : R〉
and an injective function κ : A∗ → F(S), such that
(a) |κ(u)| = O(|u|) and κ(u) is computable in time O(|u|),
(b) u ∈ L if and only if κ(u) = 1 in G, and
(c) DehnG(n) is bounded by a function equivalent to T (n)4.

A group over Z2 is a pair (G, J) where J is a central involution, i.e. an element of the
center of G with J2 = 1. Usually we just write G for the pair, and refer to J = JG in the
same way we refer to the identity 1 = 1G of a group. When JG 6= 1G, it can be used as a
substitute for −1. Theorem 4 implies that any recursive decision problem can be encoded in
the word problem of a group. We want an embedding of this type where the word w is a
central involution. For this, we use the following trick:

I Definition 5. Let G = 〈S : R〉 be a finitely-presented group, and let x, J, t be indeterminates
not in S. Given w ∈ F(S), let

G̃w := 〈G, x, J, t : J2 = 1, [g, J ] = 1 for all g ∈ G,
[x, J ] = 1, [t, J ] = 1, [t, [x,w]] = J〉,

where [a, b] := aba−1b−1 is the group commutator.

Note that if G is finitely-presented, then we only need to include the relations [g, J ] = 1 for
g in a generating set of G, and this gives a finite presentation of G̃w.

I Lemma 6. Given a group G = 〈S : R〉 and a word w ∈ F(S), let G̃w be the group defined
in Definition 5. Then
(a) J is a central involution in G̃w,
(b) w = 1 in G if and only if J = 1 in G̃w, and
(c) if w = 1 in G then Area

G̃w
(J) ≤ 4 AreaG(w) + 1.

Proof. Part (a) is clear. For part (b), let

G′ := 〈G, x, J : J2 = [x, J ] = [g, J ] = 1 for all g ∈ G〉2,

The element y = [x,w] is equal to 1 in G′ if and only if w = 1. If w 6= 1 then y has infinite
order. Hence the subgroup 〈y, J〉 is equal to Z×Z2 if w 6= 1, and Z2 if w = 1. In both cases,
the homomorphism induced by y 7→ Jy and J 7→ J is an automorphism of this subgroup, and

G̃w = 〈G′, t : tyt−1 = Jy, tJt−1 = J〉

is the Higman-Neumann-Neumman (HNN) extension of G′ by this automorphism (we refer
to [12, Chapter IV] for the properties of HNN extensions). As a result, G′ is a subgroup of
G̃w, and part (b) follows.
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For part (c), if w = 1 in G, then AreaG(w−1) = AreaG(w), so

AreaG′([x,w]) ≤ 2 AreaG(w)

and similarly

Area
G̃w

([t, [x,w]]) ≤ 2 AreaG′([x,w]) ≤ 4 AreaG(w).

Thus we can use the relation J = [t, [x,w]] to conclude that Area
G̃w

(J) ≤ 4 AreaG(w)+1. J

The last result we include in this section is a lemma which will be used to translate area
calculations into bounds on distances between vectors in Hilbert spaces. If u and v are two
vectors in a Hilbert space H, we write u ≈ε v to mean that ‖u− v‖ ≤ ε. We use the standard
terminology and notation of quantum information, so for instance, a state in a Hilbert space
H is a unit vector |ψ〉 in H.

IDefinition 7. Let G = 〈S : R〉 be a finitely-presented group. A (δ, ε)-bipartite representation
of G with respect to a state |ψ〉 in a Hilbert space H is a pair of homomorphisms Φ,Φ′ :
F(S)→ U(H) such that
(i) Φ(r) |ψ〉 ≈ε |ψ〉 for all r ∈ R,
(ii) Φ(s)−1 |ψ〉 ≈ε Φ′(s) |ψ〉 for all s ∈ S, and
(iii) ‖[Φ(s),Φ′(t)]− 1‖ ≤ δ for all s, t ∈ S (here 1 represents the identity operator in U(H)).
In Part (iii) and throughout this paper the notation ‖A‖ for an operator A refers to the
operator norm of A. Part (i) of Definition 7 essentially says that Φ is an approximate
representation of G with respect to the state |ψ〉. Parts (ii) and (iii) are less straightforward,
but these conditions arise naturally in the theory of non-local games.

I Lemma 8. Let (Φ,Φ′) be a (δ, ε)-bipartite representation of a finitely-presented group
G = 〈S : R〉 with respect to a state |ψ〉 ∈ H, and let ` be the length of the longest relation in
R. If w ∈ F(S) is equal to the identity in G, then

Φ(w) |ψ〉 ≈A(w)·(ε+δ) |ψ〉 ,

where A(w) ≤ 5`2 AreaG(w)2 + 2`|w|AreaG(w).

Proof. If r ∈ R, then Φ(r) |ψ〉 ≈ε |ψ〉, and consequently Φ(r)−1 |ψ〉 ≈ε |ψ〉. Thus for any
r ∈ R, z ∈ F(S), and a ∈ {±1},

Φ(zraz−1) |ψ〉 = Φ(z)Φ(r)aΦ(z)−1 |ψ〉 ≈|z|ε Φ(z)Φ(r)aΦ′(z)−1 |ψ〉
≈|r||z|δ Φ(z)Φ′(z)−1Φ(r)a |ψ〉 ≈ε Φ(z)Φ′(z)−1 |ψ〉
≈|z|ε Φ(z)Φ(z)−1 |ψ〉 = |ψ〉 .

We conclude that Φ(zraz−1) |ψ〉 ≈(2|z|+1)ε+`|z|δ |ψ〉. The result follows from Lemma 3. J

3 Approximately-commuting operator strategies and linear system
games

A two-party Bell scenario (IA, IB ,O∗A,O∗B) consists of finite input sets IA, IB, a finite set
of outputs OxA for every x ∈ IA, and a finite set of outputs OyB for every y ∈ IB.3 The

3 The sets OxA and OyB are often assumed to be independent of the inputs x and y. However, this
assumption is not essential, since we can make the output sets independent of the input sets by adding
filler answers to make all output sets the same size, and stipulating that Alice and Bob lose if they
output one of the filler answers. When working with linear system games, it is more convenient to have
the output sets depend on the inputs.

CCC 2019



25:8 Lower Bounds for Computing Non-Local Games to High Precision

number of outputs in a Bell scenario is the maximum of |OxA| and |O
y
B | over x ∈ IA and

y ∈ IB . A two-player non-local game consists of a Bell scenario (IA, IB ,O∗A,O∗B), a function
V (·, ·|x, y) : OxA ×O

y
B → {0, 1} for every x ∈ IA and y ∈ IB , and a probability distribution

π on IA × IB . In the operational interpretation of the game, the referee sends players Alice
and Bob inputs x ∈ IA and y ∈ IB with probability π(x, y), the players reply with outputs
a ∈ OxA and b ∈ OyB , and the players win if and only if V (a, b|x, y) = 1.

In a non-local game, the players are not usually allowed to communicate while the game is
in progress. Thus, in a quantum strategy for a game, it’s assumed that each player determines
their output by measuring their own local system. Locality can be enforced in one of two ways:
by requiring that the joint system is the tensor product of the subsystems, or by requiring
that measurement operators for different players commute with each other. Strategies of
the former type are called tensor-product strategies, while strategies of the latter type are
called commuting-operator strategies. Tensor-product strategies are commuting-operator
strategies by definition, and finite-dimensional commuting-operator strategies can be turned
into equivalent tensor-product strategies. In infinite dimensional Hilbert spaces, there are
commuting-operator strategies for which the corresponding correlations do not have a tensor-
product model [17]. However, it’s still an open question as to whether all correlations arising
from commuting-operator strategies can be realized as a limit of tensor-product strategies.
By a theorem of Ozawa, this question is equivalent to the Connes embedding problem. In
[15, 5], the notion of a quantum strategy has been generalized to approximately-commuting
strategies, where Alice and Bob’s systems are allowed to interact slightly. In this paper,
we focus on the case of approximately-commuting operator strategies. Unlike [5], we use
projective measurements rather than the more general POVM measurements in this definition.
We refer to Remark 19 for some of the consequences of this difference.

I Definition 9. A δ-approximately-commuting operator strategy S (or δ-AC operator
strategy for short) for a Bell scenario (IA, IB ,O∗A,O∗B) consists of a Hilbert space H,
a projective measurement {P xa }a∈OxA on H for every x ∈ IA, a projective measurement
{Qyb}b∈OyB on H for every y ∈ IB, and a state |ψ〉 ∈ H such that

‖P xaQ
y
b −Q

y
bP

x
a ‖ ≤ δ

for all (x, y) ∈ IA × IB and (a, b) ∈ OxA ×O
y
B. A δ-approximately-commuting quantum (or

δ-AC quantum) strategy is a δ-AC operator strategy in which H is finite-dimensional.
Let G = (IA, IB ,O∗A,O∗B , V, π) be a non-local game. The winning probability of G with

strategy S is

ω(G;S) =

∣∣∣∣∣∣
∑

x∈IA,y∈IB

π(x, y)
∑

a∈OA,b∈OB

V (a, b|x, y) 〈ψ|P xaQ
y
b |ψ〉

∣∣∣∣∣∣ .
The δ-AC operator value ωcoδ (G) (resp. δ-AC quantum value ω∗δ (G)) of G is defined to be the
supremum of ω(G;S) across δ-AC operator strategies (resp. δ-AC quantum strategies).

With this definition, a commuting-operator strategy is simply a 0-AC operator strategy, and
the usual commuting-operator value of a game is ωco(G) := ωco0 (G). Since commuting-operator
strategies are the same as tensor product strategies in finite dimensions, a (tensor-product)
quantum strategy is simply a 0-AC quantum strategy, and the usual quantum value of a game
is ω∗(G) := ω∗0(G). Note that when δ = 0, the absolute value can be dropped in the definition
of ω(G;S). When δ > 0, the values 〈ψ|P xaQ

y
b |ψ〉 can be complex, and the absolute value is

necessary. This also means that ω(G,S) cannot necessarily be interpreted as a probability
when S is approximately but not exactly commuting.
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We look at a specific class of non-local games called linear system games. Let Mx = c

be an m × n linear system over Z2, so M ∈ Zm×n2 and c ∈ Zm2 . For each 1 ≤ i ≤ m, let
Vi = {1 ≤ j ≤ n : Mij 6= 0}. The linear system game GMx=c is the non-local game with

IA = {1, . . . ,m}, IB = {1, . . . , n},

OiA =

a ∈ ZVi2 :
∑
j∈Vi

aj = ci

 , OjB = Z2,

V (a, b|i, j) =
{

1 j 6∈ Vi or aj = b

0 otherwise
,

and π the uniform distribution over pairs (i, j) such that j ∈ Vi. In other words, Alice receives
the index i of an equation and Bob receives the index j of a variable, chosen uniformly
at random from pairs (i, j) with j ∈ Vi. Alice replies with a satisfying assignment to the
variables which appear in the ith equation, and Bob replies with an assignment for the jth
variable. The players win if Alice and Bob both give the same assignment to variable j.

For linear system games, it is often convenient to express strategies in terms of observables,
rather than measurement operators (see, for instance, [4, 3]). If S = (H, {P ia}a∈OiA , {Q

j
b}b∈Z2 ,

|ψ〉) is a δ-AC strategy for GMx=c, the corresponding observables are

Aij :=
∑
a∈Oi

A

(−1)ajP ia for 1 ≤ i ≤ m, j ∈ Vi, (3.1)

and

Bj := Qj0 −Q
j
1 for 1 ≤ j ≤ n. (3.2)

These operators are ±1-valued observables (meaning, self-adjoint unitary operators) satisfying
the equations∏

j

A
Mij

ij = (−1)ci for all 1 ≤ i ≤ m, (3.3)

[Aij , Aij′ ] = 1 whenever j, j′ ∈ Vi for some 1 ≤ i ≤ m, and (3.4)

‖[Aij , Bk]− 1‖ ≤ 2|Vi|+1δ for all 1 ≤ i ≤ m, j ∈ Vi, and 1 ≤ k ≤ n. (3.5)

We can recover the projections P ia, a ∈ OiA, and Q
j
b, b ∈ O

j
B , from the observables Aik and

Bj via the formulas

P ia =
∏
k∈Vi

(
1 + (−1)akAik

2

)
and Qjb = 1 + (−1)bBj

2 . (3.6)

We define bias of strategy S to be

β(GMx=c;S) :=
∑

1≤i≤m

∑
j∈Vi

π(i, j) 〈ψ|AijBj |ψ〉 .
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It is not hard to see that

ω(GMx=c;S) = 1
2 |β(GMx=c,S) + 1|,

so we can work with the winning probability using observables as well.
It follows from [3] that when δ = 0, perfect commuting-operator strategies of GMx=c can

be understood using the following group.

I Definition 10. Let Mx = c be an m× n linear system over Z2. Then the solution group
of the system is the finitely presented group ΓMx=c generated by x1, . . . , xn, J , and satisfying
relations
1. [xi, J ] = x2

i = J2 = 1 for all 1 ≤ i ≤ n,
2.
∏
j x

Mij

j = Jci for all 1 ≤ j ≤ m, and
3. [xj , xk] = 1 if there is some 1 ≤ i ≤ m with Mij ,Mik 6= 0.
We consider Γ = ΓMx=c to be a group over Z2 with JΓ equal to the generator J .

In particular, we can characterize when the optimal winning probability of the game is
equal to 1 using this group.

I Theorem 11 ([3, 18]). Let Mx = c be a linear system over Z2. Then
(a) ωco(GMx=c) = 1 if and only if J 6= 1 in ΓMx=c, and
(b) ω∗(GMx=c) = 1 if and only if J is non-trivial in approximate representations of ΓMx=c.
For the definition of non-trivial in approximate representations, we refer to [18].

Near-perfect finite-dimensional strategies of GMx=c correspond to approximate represent-
ations of ΓMx=c [18]. We want to develop this theory when δ > 0.

I Proposition 12. LetMx = c be an m×n linear system, let Vi := {1 ≤ j ≤ n : Mij 6= 0}, let
r := maxi |Vi| be the maximum number of non-zero entries in any row, and let K :=

∑m
i=1 |Vi|

be the number of non-zero entries inM . Suppose S = (H, {P xa }, {Q
y
b}, |ψ〉) is a δ-AC operator

strategy with ω(GMx=c;S) ≥ 1 − ε for some ε, δ ≥ 0. Let Aij, Bk be the corresponding
observables defined in Equations (3.1) and (3.2). Then
(a) Aij |ψ〉 ≈2

√
K(ε+2r−1δ) Bj |ψ〉 for all 1 ≤ i ≤ m and j ∈ Vi,

(b)
∏m
j=1B

Mij

ij |ψ〉 ≈2r
√
K(ε+2r−1δ)+(r2)2r+1δ

(−1)ci |ψ〉 for all 1 ≤ i ≤ m, and
(c) [Bj , Bk] |ψ〉 ≈8

√
K(ε+2r−1δ)+6·2r+1δ

|ψ〉 whenever there is 1 ≤ i ≤ m with j, k ∈ Vi.

Proof. For part (a), any two unit vectors |ψ〉 and |φ〉 satisfy |ψ〉 ≈2 |φ〉, so we can assume
that ε+ 2r−1δ ≤ 1. Write β for β(GMx=c,S), and observe that

|2 Im β| = |β − β| =

∣∣∣∣∣∣
∑
i,j

π(i, j) 〈ψ|AijBj −BjAij |ψ〉

∣∣∣∣∣∣
≤
∑
i,j

π(i, j) ‖AijBj −BjAij‖ ≤ 2r+1δ

by Equation (3.5). Since ω(GMx=c;S) ≥ 1− ε, we have that

(1− ε)2 ≤
∣∣∣∣β + 1

2

∣∣∣∣2 = (Reβ + 1)2 + (Im β)2

4 ≤ (Reβ + 1)2 + (2rδ)2

4 .

Since Aij |ψ〉 and Bj |ψ〉 are unit vectors, −1 ≤ Reβ ≤ 1, and in particular Reβ + 1 ≥ 0.
Thus

Reβ + 1 ≥
√

4(1− ε)2 − (2rδ)2 =
√

(2− 2ε− 2rδ)(2− 2ε+ 2rδ) ≥ 2− 2ε− 2rδ,
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where the last inequality holds because of the assumption 2ε+ 2rδ ≤ 2. We conclude that
Reβ ≥ 1− 2ε− 2rδ, or 1− Reβ ≤ 2ε+ 2rδ.

Now π(i, j) = 1/K for all 1 ≤ i ≤ m, j ∈ Vi, so

1− Reβ = 1
K

∑
i,j

(1− Re 〈ψ|AijBj |ψ〉) ≤ 2ε+ 2rδ.

Since Re 〈ψ|AijBj |ψ〉 ≤ 1, we have that 1 − Re 〈ψ|AijBj |ψ〉 ≤ 2K(ε + 2r−1δ) for all
1 ≤ i ≤ m and j ∈ Vi. So

‖Aij |ψ〉 −Bj |ψ〉‖2 = 2− 2 Re 〈ψ|AijBj |ψ〉 ≤ 4K(ε+ 2r−1δ),

finishing the proof of part (a).
For parts (b) and (c), let τ = 2

√
K(ε+ 2r−1δ). Given 1 ≤ i ≤ m, let Vi = {j1, . . . , jk},

where 1 ≤ j1 < . . . < jk ≤ n. Then

Bj1 · · ·Bjk |ψ〉 ≈τ Bj1 · · ·Bjk−1Aijk |ψ〉 ≈(k−1)2r+1δ AijkBj1 · · ·Bjk−1 |ψ〉 .

Continuing this pattern, we see that

Bj1 · · ·Bjk ≈kτ+(k2)2r+1δ AijkAijk−1 · · ·Aij1 |ψ〉 = (−1)ci |ψ〉 ,

where the last equality is Equation (3.3). Part (c) follows similarly from Equation (3.4). J

I Corollary 13. Using the notation and hypotheses of Proposition 12, if we define Φ,Φ′ :
F(x1, . . . , xn, J)→ U(H) by

Φ(xj) = Bj for all 1 ≤ j ≤ n, Φ(J) = −1

and

Φ′(xj) =
{
Aij any i such that j ∈ Vi
1 if no such i exists

, Φ′(J) = −1

then (Φ,Φ′) is a (τ, κ)-bipartite representation of ΓMx=c with respect to |ψ〉, where

τ = 2 max(r, 4)
√
K(ε+ 2r−1δ) +

(
max(r, 4)

2

)
2r+1δ

and κ = 2r+1δ.

Proof. Follows immediately from Proposition 12, Equation (3.5), and the fact that B2
j =

1. J

4 Embedding finitely-presented groups in solution groups

By Theorem 4, every recursive language can be efficiently encoded as the word problem of a
finitely-presented group. By Lemma 6, the word problem for finitely-presented groups reduces
to the problem of determining whether JG = 1 in finitely-presented groups G over Z2. By
Theorem 11, if G = ΓMx=c is a solution group, then JG = 1 if and only if ωco(GMx=c) = 1.

The main result of [17] is that the problem of determining whether JG = 1 for general
finitely-presented groups G over Z2 reduces to the problem of determining whether JΓ = 1
for solution groups Γ = ΓMx=c. In this paper, we use the following version of this result:
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I Theorem 14 ([17]). Let G = 〈S : R〉 be a finitely presented group over Z2, such that
JG ∈ S, and let N = |S|+

∑
r∈R |r| be the size of the presentation. Then there is an m× n

linear system Mx = c and a map φ : F(S)→ F(x1, . . . , xn, J) such that
(a) φ(JG) = JΓ, and φ descends to an injection G → ΓMx=c (in other words, for all

w ∈ F(S), φ(w) is trivial in ΓMx=c if and only if w is trivial in G);
(b) for all w ∈ F(S), |φ(w)| ≤ 4|w|, and if w is trivial in G, then AreaΓ(φ(w)) = O(N ·

AreaG(w)); and
(c) M has exactly three non-zero entries in every row, the dimensions m and n of M are

O(N), and M and b can be constructed from 〈S : R〉 in time polynomial in N .
Note that if G = 〈S : R〉 and G′ = 〈S′ : R′〉 are finitely-presented groups, and φ :
F(S) → F(S′) is a homomorphism which descends to a homomorphism G → G′, then
AreaG′(φ(w)) = O(AreaG(w)), with a constant which depends on G, G′, and φ. The
statement in part (b) of Theorem 14 is stronger, in that the constant is independent of G (so
the only dependence on G comes from N).

Proof of Theorem 14. Part (a) is Theorem 3.1 of [17]. For the complexity statements in
parts (b) and (c), we need to analyze the construction ofM and b, which occurs in Proposition
4.3, Corollary 4.8, and Theorem 5.1 of [17]. For this purpose, suppose that G = 〈S : R〉 is
a finitely presented group over Z2. For simplicity, we assume that JG = J ∈ S, and that
all relations containing J are of the form J · r = 1 for some word r ∈ F(S \ {J}). This
assumption can always be satisfied by adding an extra generator.

For the first step of the construction, we also need some notation. If x ∈ F(S′) is equal to
the reduced word sa1

1 · · · s
ak
k , where si ∈ S′ and ai ∈ {±1} for all 1 ≤ i ≤ k, let x+ = s1 · · · sk.

Note that this word is still reduced, and that x and x+ represent the same element in
the group

〈S′ : s2 = 1 for all s ∈ S′〉.

Now, starting from G = 〈S : R〉, we take a new set of indeterminates S′ = {us, vs : s ∈
S \ {J}}, and define φ1 : F(S)→ F(S′ ∪ {J}) by φ1(s) = usvsusvs for all s ∈ S \ {J} and
φ1(J) = J . We then let

G′ = 〈S′ ∪ {J} : R′ ∪ {u2
s = v2

s = 1 : s ∈ S \ {J}} ∪ {J2 = 1}〉,

where R′ = {φ1(r)+ : r ∈ R}. Since u2
s = v2

s = J2 = 1 in G′, we conclude that φ1 descends
to a homomorphism φ1 : G→ G′. It is not hard to see that this morphism is injective (see,
for instance, [17, Proposition 4.3]), and clearly |φ1(w)| ≤ 4|w|. If r ∈ R, then φ1(r) can be
turned into φ1(r)+ in at most 4|r| applications of the relations u2

s = v2
s = 1, s ∈ S \ {J}. (In

particular, AreaG′(φ1(w)) ≤ 4N AreaG(w), although we use a more refined calculation for
bound on AreaΓ in part (b).) The size of the presentation of G′ is

N ′ = |S′|+ 1 +
∑
r∈R′
|r|+ 4|S| − 2 ≤ 6|S|+ 4

∑
r∈R
|r| ≤ 6N,

and the presentation can be constructed from 〈S : R〉 in O(N) time.
To finish the construction of Mx = c, we apply the wagon wheel construction from

Section 5 of [17] to the group G′. This construction is best understood pictorially. An m× n
matrix M with entries in Z2 can be represented graphically by drawing a hypergraph with
a vertex for each row of M , and an edge for each column, such that the jth hyperedge is
incident to the ith vertex if and only if Mij = 1. With this representation, a vector b ∈ Zm2 is
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Figure 1 Pictorial depiction of the linear system associated to each relation in the wagon wheel
embedding as described in the proof of Theorem 14. Figure reproduced from [17, Figure 2].

the same as function from the vertices of the hypergraph to Z2. So a linear system Mx = c

can thus be represented by a hypergraph with a (not necessarily proper) Z2-vertex colouring,
where the edges correspond to the variables of the system, and the vertices to the equations.

In the wagon wheel construction, Mx = c is defined as a union of subsystems Mrxr = cr,
each corresponding to a relation r ∈ R′. The variables ofMx = c consist of the indeterminates
S′, as well as an additional set of ancillary variables S′′. Each ancillary variable appears in
exactly one of the subsystemsMrxr = cr, while the variables S′ are shared. If r = Jps1 · · · sn,
where p ∈ Z2 and s1, . . . , sn ∈ S′, then the portion of the hypergraph ofMx = c corresponding
to Mrxr = cr is shown in Figure 1, with the ancillary variables denoted by ai, bi, ci, di,
1 ≤ i ≤ n. The vertex colouring is also shown in Figure 1: one vertex is given colour p, and
the remaining vertices are coloured 0.

As can be seen from Figure 1, the number of ancillary variables added for subsystem
Mrxr = cr is 4|r|, and the number of equations added is 3|r|. Since every vertex in the
hypergraph has degree three, every row of Mr has exactly three non-zero entries. Theorem
5.1 of [17] then states that the natural inclusion φ2 : F(S′∪{J})→ F(S′∪{J}∪S′′) : s 7→ s

descends to an injection G′ → ΓMx=c.
Recall from Definition 10 that every linear equation in Mx = c becomes a defining

relation of Γ := ΓMx=c. The wagon wheel construction is designed so that if r ∈ R′, then
φ2(r) can be turned into the identity by applying each defining relation from Mrx = cr
exactly once, so AreaΓ(φ2(r)) ≤ 3|r| for all r ∈ R′. This is easiest to see using pictures of
the group, for which we refer to Section 7 of [17]; with this formalism, Figure 1 is itself a
proof that φ2(r) = 1, with each vertex corresponding to a use of the corresponding relation.
For relations r = Jps1 · · · sn with p 6= 1, we start with the relation coloured by p, after which
J no longer appears in the word. If r ∈ R, then φ2(φ1(r)) can be turned into the identity
with at most 7|r| applications of the relations of Γ, by first changing φ2(φ1(r)) to φ2(φ1(r)+)
using the relations s2 = 1, s ∈ S′, and then applying the linear relations of Γ. It follows
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that AreaΓ(φ2(w)) = O(N AreaG(w)) for all w ∈ F(S) which are trivial in G. It should also
be clear from Figure 1 that Mrxr = cr can be constructed in time polynomial in |r|. We
conclude that Mx = c is an m× n linear system with m and n equal to O(N), and that M
and b can be constructed in time polynomial in N , so the theorem holds with φ = φ2 ◦φ1. J

Theorem 14 is sufficient to prove Theorem 1. However, to get perfect zero-knowledge
protocols for MIPcoδ , we need to prove an additional fact about the embedding in Theorem 14.

I Lemma 15. Let Mx = c be an m× n linear system from the wagon wheel construction in
the proof of Theorem 14. In the solution group ΓMx=c, the generator xi is not equal to 1 or J
for all 1 ≤ i ≤ n, and similarly the product xixj is not equal to 1 or J for all 1 ≤ i 6= j ≤ n.

Proof. We revisit the wagon wheel construction in the proof of Theorem 14. We need to
show that xi 6= 1 and xi 6= xj in Γ0 := ΓMx=c/〈J〉 for all 1 ≤ i 6= j ≤ n. This is the same as
showing that xi 6= 1 and xi 6= xj in ΓMx=0 = Γ0 × Z2. Recall that the generators of ΓMx=0
are split into two sets, the generators S′ of G′, and the ancillary variables S′′. The group
G′0 := G′/〈J〉 has a presentation where every generator s ∈ S′ occurs an even number of
times in every relation. Thus for any s ∈ S′, we can define a representation G′ → Cx by
sending s ∈ S′ to −1, and t ∈ S′ \ {s} to 1. It follows that s 6= 1 and s 6= t in G′0 for every
s 6= t ∈ S′. Since G′0 → Γ0 is an injection, we conclude that the same holds in Γ0.

For the ancillary variables, consider the hypergraph description of the system Mx = 0.
Given a subset of edges C, let y ∈ Zn2 be the vector with yi = 1 if and only if the ith edge is
in C. Then y is a classical solution to Mx = 0 if and only if every vertex of the hypergraph is
incident with an even number of edges from C. The classical solutions of Mx = 0 correspond
to 1-dimensional representations of Γ0; if y is a solution of Mx = 0, then the corresponding
1-dimensional representation of Γ0 sends xi 7→ (−1)yi .

Inspecting the wagon wheel hypergraph in Figure 1, we see that every ancilla variable
s ∈ S′′ belongs to a cycle C which does not contain any edges from S′. Using the corresponding
representation of Γ0, we see that s 6= 1 and s 6= t in Γ0 for all s ∈ S′′ and t ∈ S′. Similarly, if
s 6= t ∈ S′′, and {s, t} is not one of the pairs {ai, bi}, then there is a cycle C containing s
and not containing t, so s 6= t in Γ0.

For the pairs {ai, bi}, fix s ∈ S′′, and recall that if r = s1 · · · sn is a relation of G′, where
s1, . . . , sn ∈ S′, then s occurs an even number of times in r. Let 1 ≤ i1 < · · · < i2k ≤ n be
the indices such that sij = s, and let

Cr := {si1 , bi1 , ai1+1, bi1+1, . . . , ai2 , si2 ,

si3 , bi3 , ai3+1, bi3+1, . . . , ai4 , si4 ,

. . . ,

si2k−1 , bi2k−1 , ai2k−1+1, bi2k−1+1, . . . , ai2k , si2k}.

be the collection of paths along the outer cycle of the wagon wheel connection si1 with si2 ,
si3 with si4 , and so on. Let C :=

⋃
r∈R′ Cr. Then every vertex of the hypergraph of Mx = 0

is incident to an even number of edges in C. If we look at a particular relation r, then for
every 1 ≤ j ≤ 2k, exactly one of the edges aij , bij belongs to Cr, so aij 6= bij in Γ0. It follows
that all of the pairs of ancillary generators ai, bi are distinct in Γ0. J
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I Proposition 16. Let Mx = c be an m×n linear system from the wagon wheel construction
in the proof of Theorem 14, and suppose J 6= 1 in ΓMx=c. Then GMx=c has a commuting-
operator strategy S = (H, {P ia}a∈Oia , {Q

j
b}b∈Z2 , |ψ〉) such that ω(GMx=c;S) = 1, and

〈ψ|P iaQ
j
b |ψ〉 =

{
1+(−1)aj+b

8 j ∈ Vi
1
8 j 6∈ Vi

for all 1 ≤ i ≤ m, a ∈ OiA, 1 ≤ j ≤ m, b ∈ Z2.

Proof. Suppose J 6= 1 in ΓMx=c. We recall the construction of a perfect commuting-operator
strategy for GMx=c from [3]. Let H = `2ΓMx=c be the regular representation of ΓMx=c,
and given g ∈ ΓMx=c, let L(g) (resp. R(g)) denote left (resp. right) multiplication by g.
Then L(g) and R(g) are unitaries for all g ∈ ΓMx=c, and we can get a perfect strategy for
GMx=c by taking Aij = L(Xj) for all 1 ≤ i ≤ m, j ∈ Vi, Bj = R(Xj) for all 1 ≤ j ≤ n, and
|ψ〉 = 1−J√

2 considered as an element of H. Since J is central of order 2, we have that

〈ψ|AikBj |ψ〉 = 〈ψ|L(Xk)R(Xj) |ψ〉 = 〈ψ|R(XkXj) |ψ〉 =


1 XkXj = 1
−1 XkXj = J

0 otherwise.
.

Recall from Equation (3.6) that

P ia =
∏
k∈Vi

(
1 + (−1)akAik

2

)

for all a ∈ OiA and Qjb = 1+(−1)bBj
2 for all b ∈ OjB. Using the fact that

∏
k∈Vi Aik = (−1)ci

in perfect strategies, and that |Vi| = 3 in the linear system constructed in Theorem 14, we
get that

P ia =
∏
k∈Vi

(
1 + (−1)akAik

2

)
= 1

4 + 1
4
∑
k∈Vi

(−1)akAik.

By Lemma 15

〈ψ|P iaQ
j
b |ψ〉 = 1

8 + 1
8 〈ψ|

∑
k∈Vi

(−1)ak+bAikBj |ψ〉 =
{

1
8 j 6∈ Vi
1+(−1)aj+b

8 j ∈ Vi.
. J

5 Proof of Theorem 1

In this section we prove Theorem 1, by proving the main technical result of the paper.

I Theorem 17. Let L ⊂ A∗ be a language over a finite alphabet A, and contained in
NTIME(T (n)), where T (n)4 is superadditive. Then for any string w ∈ A∗, there is a
non-local game Gw such that
(a) the game Gw has question sets of size O(|w|) and output sets of size at most 8,
(b) the function w 7→ Gw is computable in O(|w|k)-time, where k is some universal constant,
(c) if w 6∈ L then ωco(Gw) = 1, and
(d) if w ∈ L then

ωcoδ (Gw) ≤ 1− 1
T (O(|w|))k′ +O (δ)

for some universal constant k′.
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While the constants k, k′ in Theorem 17 are independent of L, the other constants appearing
in the big-O can depend on L. The game Gw will be a linear system game GM(w)x=c(w),
where M(w)x = c(w) is an O(|w|) × O(|w|)-linear system. Since the linear system game
of an m × n linear system Mx = c can be constructed in O(mn)-time from M and b, the
goal in proving Theorem 17 will be to show that the linear system M(w)x = c(w) can be
constructed in time polynomial in |w|. Theorem 1 is an immediate corollary of Theorem 17.

Proof of Theorem 17. Given the language L, let G = 〈S : R〉 be the group from Theorem
4, and let κ be the function A∗ → F(S). Given w ∈ A∗, we let G̃κ(w) be the group over
Z2 constructed in Definition 5, and M(w)x = c(w) be the linear system constructed from
G̃κ(w) in Theorem 14. Finally, we let Gw := GM(w)x=c(w) and Γw := ΓM(w)x=c(w). The only
part of the presentation of G̃κ(w) that changes with w is the relation [t, [x, κ(w)]] = 1, so the
presentation of G̃κ(w) has size O(|κ(w)|) = O(|w|), and M(w)x = c(w) is an O(|w|)×O(|w|)
linear system. Because M(w) has only three non-zero entries per equation, Alice’s output
sets in Gw will have size 23 = 8, while Bob’s output sets will have size 2. Thus parts (a) and
(b) of Theorem 17 follow from part (c) of Theorem 14.

By Theorem 4 and Lemma 6, if w 6∈ L then κ(w) 6= 1 in G, and hence J 6= 1 in G̃κ(w).
Since the inclusion G̃κ(w) ↪→ Γw sends J

G̃κ(w)
7→ JΓw , we conclude that J 6= 1 in Γw. By

Theorem 11, ωco(Gw) = 1, proving part (c).
This leaves part (d). Suppose w ∈ L. Then κ(w) = 1 in G, J = 1 in G̃κ(w), and hence

J = 1 in Γw. Suppose S is a δ-AC operator strategy for Gw with ω(Gw;S) ≥ 1 − ε. Since
M has only three non-zero entries per row, the parameters r and K appearing in Corollary
13 are O(1) and O(|w|) respectively. Also, because we are interested in δ ≤ 2, we can say
that δ = O(

√
δ). Thus Corollary 13 states that there is a (O(

√
|w|(ε+ δ)), O(δ))-bipartite

representation (Φ,Φ′) of Gw with respect to the state |ψ〉 used in S. By construction, this
bipartite representation has Φ(J) = −1. The length of the longest relation in Γw is 4, and
the length of J in Γw is 1, so Lemma 8 implies that

− |ψ〉 = Φ(J) |ψ〉 ≈
O
(

AreaΓw (J)2
√
|w|(ε+δ)

) |ψ〉 . (5.1)

By Theorem 14, part (b) and Lemma 6, part (c),

AreaΓw(J) = O
(
|w| ·Area

G̃κ(w)
(J)
)

= O (|w| ·AreaG(κ(w))) .

Finally, by Theorem 4, |κ(u)| = O(|u|) and DehnG is bounded by a function equivalent to
T (n)4, so there is a constant C such that AreaG(κ(w)) = O(T (C|w|)4 + |w|). Since T (n)4

is superadditive by assumption, |w| = O(T (|w|)4), and we can conclude that AreaΓw(J) =
O(T (C|w|)8). Returning to Equation (5.1), since ‖− |ψ〉 − |ψ〉‖ = 2, we see that there is a
constant C0 > 0 such that

C0T (C|w|)18√ε+ δ ≥ 2.

Hence

C2
0T (C|w|)36(ε+ δ) ≥ 4.

so,

ε ≥ 4
C2

0T (C|w|)36 − δ,
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So we conclude that

ω(Gw;S) ≤ 1− Ω
(

1
T (C|w|)36

)
+O(δ).

Because T (n)4 is superadditive, T (C0 ·C|w|)36 ≥ C0T (C|w|)36 for any integer C0, so we can
move the constant from the big-Ω inside T , proving part (d). J

6 Multi-prover interactive proofs

In this section we define the complexity class PZK-MIPcoδ (2, 1, 1, 1 − 1/f(n)), and prove
Theorem 2. We first recall the definition of MIPcoδ . The definition given here is a simple
variant on Definition 8 of [5].

I Definition 18. A language L over an alphabet A is in the class MIPcoδ (2, 1, 1, 1− 1/f(n))
of multi-prover interactive proofs with two provers, one round, completness probability 1, and
soundness probability 1− 1/f(n), if and only if there is family of two-player non-local games
Gw = (IwA , IwB ,O

∗,w
A ,O∗,wB , Vw, πw) indexed by strings w ∈ A∗, such that

the input sets IwA , IwB and output sets O∗,wA , O∗,wB for Gw are subsets of strings of length
poly |w| (and hence can have size at most 2poly |w|).
the function Vw can be computed in polynomial time in |w| and the lengths of its inputs,
the distribution πw can be sampled in polynomial time in |w| and the lengths of its inputs,
(completeness) if w ∈ L then ωco(Gw) = 1, and
(soundness) if w 6∈ L then ωcoδ (Gw) ≤ 1− 1/f(|w|).

The family {Gw} is referred to as a protocol for L.

Here δ can also be a function of |w|. When δ = 0, MIPco0 is the class of commuting-operator
multi-prover interactive proofs, which dates back to [9]. Note that, in Definition 18, the
protocol must be sound against δ-AC operator strategies, whereas the completeness condition
requires a perfect commuting-operator strategy. As a result, MIPcoδ ⊂ MIPco for all δ.
Similarly, MIP∗δ ⊂ MIP∗.

I Remark 19. Our definition is slightly different from [5] in that we use δ-AC strategies with
projective measurements, rather than POVMs. It’s not clear how this changes the complexity
class in general, since we are restricting the class of strategies that a protocol must be sound
against (which potentially strengthens the class) and restricting the class of strategies that can
be used for completeness (which potentially weakens the class). However, Claim 9 of [5] shows
that projective measurements and POVMs are equivalent up to an increase in δ proportional
to the size of the output sets. Since our lower bounds use protocols with a constant number
of outputs, the lower bounds will also apply if we define MIPcoδ using POVMs.

Next we will define the perfect zero knowledge version of MIPcoδ , called PZK-MIPcoδ .
Informally, a multi-prover interactive proof is perfect zero-knowledge if the verifier gains no
new information from interacting with the provers. This is formalized by requiring that, for
every yes instance, the provers have a strategy for which the verifier can efficiently simulate
the provers’ behaviour.

Let G = (IA, IB ,O∗A,O∗B , V, π) be a non-local game. If the players use a commuting-
operator strategy given by measurements {P xa } and {Q

y
b} and a state |ψ〉 in a Hilbert space

H, then to an outside party (such as the verifier), the players actions are described by the
probabilities

p(a, b|x, y) = 〈ψ|P xaQ
y
b |ψ〉 .

CCC 2019
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When x, y are fixed, p(a, b|x, y) gives a probability distribution over outcomes (a, b) ∈ OxA×O
y
B .

The family of probability distributions p = {p(a, b|x, y) : (x, y) ∈ IA×IB , (a, b) ∈ OxA×O
y
B}

is called the correlation matrix of the strategy.
In a interactive proof system, a record of interactions between verifier and provers is

called a transcript. Let {Gw} be a MIPcoδ (2, 1, 1, s) protocol for a language L as in Definition
18. During the game Gw, the transcript consists simply of the inputs (x, y) ∈ IwA × IwB sent
to the provers, and the outputs (a, b) ∈ OxA×O

y
B received back. If the verifier asks questions

x, y with probability π(x, y), then the distribution over transcripts (x, y, a, b) is given by
π(x, y)p(a, b|x, y), where {p(a, b|x, y)} is the correlation matrix of the provers’ strategy. A
strategy is said to be perfect zero-knowledge against an honest verifier if it is possible to
sample from the distribution {πw(x, y)p(a, b|x, y)}(x,y,a,b) in polynomial time. However, this
assumes that the verifier chooses questions x, y according to the probability distribution πw
given in the protocol, something that the provers cannot validate themselves while the game is
in progress. To be perfect zero-knowledge against a possibly dishonest verifier, it is necessary
that the verifier be able to simulate π(x, y)p(a, b|x, y) for any (simulable) distribution π(x, y)
on inputs. This is equivalent to being able to simulate the distributions {p(a, b|x, y)}, so we
make the following definition:

I Definition 20. Let {Gw} be a MIPcoδ (2, 1, 1, 1− s)-protocol for a language L. Then {Gw}
is said to be perfect zero-knowledge if for each string w and pair (x, y) ∈ IA × IB, there is a
probability distribution {pw(a, b|x, y) : (a, b) ∈ OxA ×O

y
B} over OxA ×O

y
B such that

1. the distribution {pw(a, b|x, y)} can be sampled in polynomial time in |w|, |x|, and |y|, and
2. if w ∈ L, then {pw(a, b|x, y) : (x, y) ∈ IA × IB , (a, b) ∈ OxA × O

y
B} is the correlation

matrix of a commuting-operator strategy S with winning probability ω(Gw;S) = 1.
The class PZK-MIPcoδ (2, 1, 1, 1−1/f(n)) is the class of languages in MIPcoδ (2, 1, 1, 1−1/f(n))
with a perfect zero-knowledge protocol.

Proof of Theorem 2. Theorem 17 immediately implies that any language
L ∈ coNTIME(f(n)) has a protocol in MIPcoδ (2, 1, 1, 1 − 1/f(Cn)k) for some constants
C and k, where δ = o(1/f(Cn)2k). Since the games constructed in the proof of Theorem
17 come from the wagon wheel construction, Proposition 16 implies that when w ∈ L, the
game Gw has a perfect commuting operator strategy with a correlation that can easily be
simulated by the verifier. J

6.1 Upper bounds
As mentioned in the introduction, no upper bound on MIPco is known, but an upper bound
on MIPcoδ follows from [5] as we will now describe. Consider the following theorem, which is
a restatement of Theorem 2 in [5]:

I Theorem (Theorem 2 [5]). Let G be a 2-prover non-local game with classical messages
in which each prover has ` possible answers, and ωNQCSDP (G) is the optimum of the N-
th level of the QC SDP hierarchy for G. Then there exists a δ = Θ(`2/

√
N) such that

ω∗δ (G) = ωNQCSDP (G).4

Here the QC SDP hierarchy for a non-local game G is as in Definition 10 of [5]. For our
purposes the only properties of the QC SDP hierarchy that we will require are the following:

4 The same statement could be made for non-local games with more players by raising the exponent on `.
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I Fact 21. The QC SDP hierarchy gives an upper bound on the entangled winning probability
of a game G at every level. That is, ωNQCSDP (G) ≥ ωco(G) for all N . This is an elementary
property of this hierarchy and is discussed in [5].

I Fact 22. The quantity ωNQCSDP (G) can be computed in time polynomial in (Q`)N where Q
is the maximum number of questions to either prover in G, and ` is the maximum number of
answers. This is because ωNQCSDP (G) is defined (in Definition 10 of [5]) to be the optimal value
of an semi-definite program on poly((Q`)N ) dimensional space, with poly((Q`)N ) constraints.

Now, suppose that one wishes to decide whether a non-local game G has ωco(G) = 1, or
has ωcoδ (G) ≤ 1− 1/f promised that one of the two is the case. By Theorem 2 of [5], there
existsM = O(`4/δ2) such that ω∗δ (G) = ωMQCSDP (G). To resolve the decision problem it then
suffices to compute the quantity ωMQCSDP (G). In the case that ωco(G) = 1 we know by Fact
21 that we will have ωMQCSDP (G) = 1. On the other hand, in the case that ωcoδ (G) ≤ 1− 1/f
we know that ωMQCSDP (G) = ω∗δ (G) ≤ ωcoδ (G) ≤ 1 − 1/f . It follows by Fact 22 that this
decision problem can be solved in time that is polynomial in (Q`)M = (Q`)O(`4/δ2) where Q
and ` are the sizes of the question and answer sets in G respectively.

This upper bound uses strategies with POVM measurements, but if we restrict to protocols
with constant size output sets, we can state this result for the class defined in Definition 18.

I Theorem 23 ([5]). If L ∈ MIPcoδ (2, 1, 1, 1 − 1/f(n)) has a protocol with constant size
output sets, and δ = o(1/f(n)), then L is contained in TIME(exp(poly(n)/δ2)).

Proof. While the result in [5] is stated for MIP∗δ which has completeness and soundness
conditions stated for finite-dimensional strategies, the proof is still valid for the analogously
defined MIPcoδ , which has completeness and soundness conditions stated for commuting-
operator strategies. J
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