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Abstract
Determining the asymptotic algebraic complexity of matrix multiplication, succinctly represented
by the matrix multiplication exponent ω, is a central problem in algebraic complexity theory. The
best upper bounds on ω, leading to the state-of-the-art ω ≤ 2.37.., have been obtained via the laser
method of Strassen and its generalization by Coppersmith and Winograd. Recent barrier results
show limitations for these and related approaches to improve the upper bound on ω.

We introduce a new and more general barrier, providing stronger limitations than in previous
work. Concretely, we introduce the notion of “irreversibility” of a tensor and we prove (in some
precise sense) that any approach that uses an irreversible tensor in an intermediate step (e.g., as a
starting tensor in the laser method) cannot give ω = 2. In quantitative terms, we prove that the best
upper bound achievable is lower bounded by two times the irreversibility of the intermediate tensor.
The quantum functionals and Strassen support functionals give (so far, the best) lower bounds on
irreversibility. We provide lower bounds on the irreversibility of key intermediate tensors, including
the small and big Coppersmith–Winograd tensors, that improve limitations shown in previous work.
Finally, we discuss barriers on the group-theoretic approach in terms of “monomial” irreversibility.
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1 Introduction

1.1 Matrix multiplication
Determining the asymptotic algebraic complexity of matrix multiplication is a central open
problem in algebraic complexity theory. Several different methods for constructing fast matrix
multiplication algorithms have been developed, but on a high level they typically consist
of two parts: an efficient reduction of matrix multiplication to an intermediate problem
(some bilinear map, i.e. 3-tensor) and an efficient algorithm for the intermediate problem.
Recent results have shown “barriers” for such constructions to yield fast matrix multiplication
algorithms [4, 7, 8, 2, 3]. We give a barrier, based on a new notion called irreversibility, that
is more general and in some cases stronger than the barriers from previous work.

1.2 Matrix multiplication barriers
The matrix multiplication exponent ω is defined as the infimum over all real numbers β
such that any two n× n matrices can be multiplied with O(nβ) algebraic operations, and
thus ω represents the asymptotic algebraic complexity of matrix multiplication. Trivially
holds 2 ≤ ω ≤ 3. Strassen published the first non-trivial upper bound ω ≤ log2 7 in 1969 [20].
In the decades that followed, through the development of several ingenious methods by
several people, the upper bound was improved to the state-of-the-art bound ω ≤ 2.37.., and
the pursuit to prove whether ω = 2 or ω > 2 has been ongoing [12, 19, 27, 17, 10, 11]. As
mentioned before, these upper bound methods typically consist of a reduction of matrix
multiplication to an intermediate problem and an efficient algorithm for the intermediate
problem.

Ambainis et al. [4], for the first time, proved a “barrier” result for some collection of such
methods. Namely, they showed that a variety of methods that go via the big Coppersmith–
Winograd tensor as an intermediate problem cannot give ω = 2, and in fact not even
ω ≤ 2.30... We call any lower bound for all upper bounds on ω that can be obtained by some
method, a barrier for that method. In general, barriers in the sense of limitations to proof
methods have a long history in computational complexity theory and recognizing barriers is
a natural step towards finding proof methods that do solve the problem at hand.

Next, Alman and Williams [2, 3] extended the realm of barriers beyond the scope of the
Ambainis et al. barrier, to a larger collection of methods. Also Blasiak et al. [7, 8] did a
study of barriers, namely of barriers for a subset of the group-theoretic method. Both the
Blasiak et al. and the Alman and Williams barriers rely on studying versions of “asymptotic
subrank” of an intermediate problem.

We give a barrier that applies more generally than all previous barriers and that is in
some cases stronger. Our barrier also relies on studying versions of asymptotic subrank,
which together with the notion of asymptotic rank we combine into a single parameter called
irreversibility. Our barrier simplifies and generalises previous barriers and connects the
barrier literature to some central notions from the framework of Strassen [21, 22, 23, 9].
Alman reported similar independent results [1] shortly after our manuscript appeared on the
arxiv.

1.3 Our barrier: intuitive explanation
An intuitive explanation of our barrier is as follows. In the language of tensors, the matrix
multiplication exponent ω is the optimal “rate of transformation” from the “unit tensor” to
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the “matrix multiplication tensor”,

unit tensor ω−→ matrix multiplication tensor. (1)

The rate of transformation naturally satisfies a triangle inequality and thus upper bounds
on ω can be obtained by combining the rate of transformation α1 from the unit tensor to
some intermediate tensor and the rate of transformation α2 from the intermediate tensor to
the matrix multiplication tensor; this is the two-component approach alluded to earlier,

unit tensor α1−−→ intermediate tensor α2−−→ matrix multiplication tensor. (2)

We define the irreversibility of the intermediate tensor as the necessary “loss” that will occur
when transforming the unit tensor to the intermediate tensor followed by transforming the
intermediate tensor back to the unit tensor. It is well-know that the transformation rate
from the matrix multiplication tensor to the unit tensor is 1

2 , so we can extend (2) to

unit tensor α1−−→ intermediate tensor α2−−→ matrix multiplication tensor 1/2−−−→ unit tensor.
(3)

We thus see that α1α2 is directly related to the irreversibility of the intermediate tensor, and
hence the irreversibility of the intermediate tensor provides limitations on the upper bounds
on ω that can be obtained from (2). In particular, any fixed irreversible intermediate tensor
cannot show ω = 2 via (2), since the matrix multiplication tensor is reversible when ω = 2.

1.4 Explicit numerical barriers
To exemplify our barrier we show that the support functionals [23] and quantum functionals [9]
give (so far, the best) lower bounds on the irreversibility of the following families of tensors:

the small Coppersmith–Winograd tensors

cwq =
q∑
i=1

e0,i,i + ei,0,i + ei,i,0

the big Coppersmith–Winograd tensors

CWq = e0,0,q+1 + e0,q+1,0 + eq+1,0,0 +
q∑
i=1

e0,i,i + ei,0,i + ei,i,0

the reduced polynomial multiplication tensors

tn =
n−1∑

i,j,k=0:
i+j=k

ei,j,k

which for small parameters lead to the following explicit barriers (Theorem 9 and Section 4.2):

q cwq-barrier

2 2
3 2.02..
4 2.06..
5 2.09..
6 2.12..
7 2.15..

q CWq-barrier

1 2.16..
2 2.17..
3 2.19..
4 2.20..
5 2.21..
6 2.23..

n tn-barrier

1 2.17..
2 2.16..
3 2.15..
4 2.15..
5 2.14..
6 2.14..

Indeed, as suggested by the values in the above tables, the cwq-barrier and CWq-barrier
increase with q (converging to 3), whereas the tn-barrier decreases with n (converging to 2).

CCC 2019
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1.5 Comparison and other applications

Compared to Ambainis, Filmus and Le Gall [4] our barriers are valid for a larger class of
approaches (and naturally we obtain lower barriers). Compared to Alman and Williams [3]
our barriers are valid for a larger class of approaches but our barriers are also higher. As a
variation on our barrier we introduce a “monomial” version. Compared to Blasiak, Church,
Cohn, Grochow, Naslund, Sawin and Umans [7], and Blasiak, Church, Cohn, Grochow and
Umans [8] our monomial barriers are valid for a class of approaches that includes their STPP
approach, and thus we provide a uniform view on the barriers that have appeared in the
literature. We have not tried to optimise the barriers that we obtain, but focus instead on
introducing the barrier itself. The barrier of Alman stated in [1] is very similar to ours,
but makes use of asymptotic slice rank instead of asymptotic subrank. Since asymptotic
subrank is at most asymptotic slice rank, our barriers are technically stronger. (It is not
known whether asymptotic slice rank and asymptotic subrank are equal in general.)

It will become clear to the reader during the development of our ideas that they not only
apply to the problem of fast matrix multiplication, but extend to give barriers for the more
general problem of constructing fast rectangular matrix multiplication algorithms or even
transformations between arbitrary powers of tensors. Such transformations may represent,
for example, asymptotic slocc (stochastic local operations and classical communication)
reductions among multipartite quantum states [5, 13, 25, 15].

We define irreversibility in Section 2. In Section 3 we introduce the irreversibility barrier.
Finally, in Section 4 we present explicit irreversibility barriers.

2 Irreversibility

We begin by introducing some standard notation and terminology. Then we discuss a useful
notion called the relative exponent and we define the irreversibility of a tensor. After that
we introduce the monomial versions of these ideas and discuss so-called balanced tensors.

2.1 Standard definitions

We assume familiarity with tensors and with the tensor Kronecker product and direct sum.
All our tensors will be 3-tensors over some fixed but arbitrary field F. For two tensors
t ∈ Fn1 ⊗ Fn2 ⊗ Fn3 and s ∈ Fm1 ⊗ Fm2 ⊗ Fm3 we write t ≥ s and say t restricts to s if
there are linear maps Ai : Fni → Fmi such that (A1, A2, A3) · t = s. For n ∈ N we define the
diagonal tensor (also called the rank-n unit tensor) 〈n〉 :=

∑n
i=1 ei,i,i ∈ Fn ⊗ Fn ⊗ Fn. The

tensor rank of t is defined as R(t) := min{n ∈ N : t ≤ 〈n〉} (this coincides with the definition
that R(t) is the smallest size of any decomposition of t into a sum of simple tensors) and the
subrank of t is defined as Q(t) := max{n ∈ N : 〈n〉 ≤ t}. The asymptotic rank of t is defined
as

˜R(t) := lim
n→∞

R(t⊗n)1/n = inf
n

R(t⊗n)1/n (4)

and the asymptotic subrank of t is defined as

˜Q(t) := lim
n→∞

Q(t⊗n)1/n = sup
n

Q(t⊗n)1/n. (5)
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The above limits exist and equal the respective infimum and supremum by Fekete’s lemma.
For a, b, c ∈ N≥1 the matrix multiplication tensor 〈a, b, c〉 is defined as

〈a, b, c〉 :=
a∑
i=1

b∑
j=1

c∑
k=1

e(i,j), (j,k), (k,i) ∈ (Fa ⊗ Fb)⊗ (Fb ⊗ Fc)⊗ (Fc ⊗ Fa). (6)

The matrix multiplication exponent is defined as ω := log2 ˜R(〈2, 2, 2〉). The meaning of ω
in terms of algorithms is: for any ε > 0 there is an algorithm that for any n ∈ N multiplies
two n × n matrices using O(nω+ε) scalar additions and multiplications. The difficulty of
determining the asymptotic rank of 〈2, 2, 2〉 is to be contrasted with the situation for the
asymptotic subrank; to put it in Strassen’s words: Unlike the cynic, who according to Oscar
Wilde knows the price of everything and the value of nothing, we can determine the asymptotic
value of 〈h, h, h〉 precisely [22],

˜Q(〈h, h, h〉) = h2. (7)

2.2 Relative exponent
For a clean exposition of our barrier we will use the notion of relative exponent, which we
will define in this section. This notion is inspired by the notion of rate from information
theory and alternatively can be seen as a versatile version of the notion of the asymptotic
preorder for tensors of Strassen. In the context of tensors, the relative exponent previously
appeared in [28] and [26].

I Assumption 1. To avoid irrelevant technicalities, we will from now on, without further
mentioning, only consider tensors that are not of the form u⊗ v ⊗ w.

I Definition 2. For two tensors t ∈ Fn1 ⊗ Fn2 ⊗ Fn3 and s ∈ Fm1 ⊗ Fm2 ⊗ Fm3 we define
the relative exponent from t to s as

ω(t, s) := lim
n→∞

1
n min{m ∈ N : t⊗m ≥ s⊗n} (8)

= sup
n

1
n min{m ∈ N : t⊗m ≥ s⊗n}. (9)

The limit is a supremum by Fekete’s lemma. Let us briefly relate the relative exponent to
the basic notions and results stated earlier. The reader verifies directly that the identities

ω(〈2〉, t) = log2 ˜R(t) (10)
ω(t, 〈2〉) = 1/(log2 ˜Q(t)) (11)

hold. By definition of the matrix multiplication exponent ω holds

ω(〈2〉, 〈2, 2, 2〉) = ω. (12)

We know from (7) that

ω(〈2, 2, 2〉, 〈2〉) = 1
2 . (13)

The relative exponent has the following two basic properties that the reader verifies directly.

I Proposition 3. Let s, t and u be tensors.
(i) ω(t, t) = 1.
(ii) ω(s, t)ω(t, u) ≥ ω(s, u) (triangle inequality).

CCC 2019
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2.3 Irreversibility
Our barrier framework relies crucially on the irreversibility of a tensor, a new notion that we
define now.

I Definition 4. We define the irreversibility of a tensor t as the product of the relative
exponent from 〈2〉 to t and the relative exponent from t to 〈2〉, i.e.

i(t) := ω(〈2〉, t)ω(t, 〈2〉). (14)

Thus i(t) measures the extent to which the asymptotic conversion from 〈2〉 to t is irreversible,
explaining the name. Equivalently, the irreversibility is the ratio of the logarithms of the
asymptotic rank and the asymptotic subrank, i.e.

i(t) = log2 ˜R(t)
log2 ˜Q(t) . (15)

From the basic properties of the relative exponent (Proposition 3) follows directly the
inequality i(t) = ω(〈2〉, t)ω(t, 〈2〉) ≥ ω(〈2〉, 〈2〉) = 1.

I Proposition 5. For any tensor t holds that

i(t) ≥ 1. (16)

I Definition 6. Let t be a tensor.
If i(t) = 1, then we say that t is reversible.
If i(t) > 1, then we say that t is irreversible.

For example, for any n ∈ N the diagonal tensor 〈n〉 =
∑n
i=1 ei,i,i is reversible. In fact,

any reversible tensor t that we know of is equivalent to 〈n〉 for some n, in the sense that
〈n〉 ≤ t ≤ 〈n〉.

For the matrix multiplication tensor 〈2, 2, 2〉 we have 2 i(〈2, 2, 2〉) = ω (using (13)). Thus
if ω = 2, then 〈2, 2, 2〉 is reversible (and also any other 〈n, n, n〉). As we will see in Section 3,
this is ultimately the source of our barrier.

Irreversible tensors exist. For example,W = e0,0,1+e0,1,0+e1,0,0 is irreversible. Namely, it
is well-known that log2 ˜R(W ) = 1 and that log2 ˜Q(W ) = h(1/3) = 0.918.. [23, Theorem 6.7],
so i(W ) = 1.088.. > 1. In Section 4 we will compute lower bounds on the irreversibility of
the small and big Coppersmith–Winograd tensors (that play a crucial role in the best upper
bounds on ω).

2.4 Monomial relative exponent and monomial irreversibility
The following restrained version of relative exponent and irreversibility will be relevant.
For two tensors t ∈ Fn1 ⊗ Fn2 ⊗ Fn3 and s ∈ Fm1 ⊗ Fm2 ⊗ Fm3 we write t ≥M s and
say t monomially restricts to s if there are linear maps Ai : Fni → Fmi , the corresponding
matrices of which are generalised sub-permutation matrices in the standard basis, such that
(A1, A2, A3) · t = s [21, Section 6]. Replacing the preorder ≥ by ≥M in Section 2 gives the
notions of monomial subrank QM, monomial asymptotic subrank ˜QM and monomial relative
exponent ωM. (For simplicity we will use monomial restriction here, but our results will also
hold with ≥M replaced by monomial degeneration DM defined in [21, Section 6].) Note that
the notions QM and ˜QM only depend on the support of the tensor, and not on the particular
values of the nonzero coefficients. We define the monomial irreversibility iM(t) of t as the
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product of the (normal) relative exponent from 〈2〉 to t and the monomial relative exponent
from t to 〈2〉,

iM(t) := ω(〈2〉, t)ωM(t, 〈2〉). (17)

Equivalently, we have

iM(t) = log2 ˜R(t)
log2 ˜QM(t) . (18)

(This notion may depend on the tensor and not only on the support.)

I Proposition 7. Let s, t and u be tensors.
(i) ωM(t, t) = 1.
(ii) ωM(s, t)ωM(t, u) ≥ ωM(s, u) (triangle inequality).
(iii) ωM(s, t) ≥ ω(s, t).
(iv) iM(t) ≥ i(t).

I Definition 8. Let t be a tensor.
If iM(t) = 1, then we say that t is monomially reversible.
If iM(t) > 1, then we say that t is monomially irreversible.

There exist tensors that are reversible and monomially irreversible. For example, let C be
the structure tensor of the algebra C[Z/3Z] in the natural basis,

C = e0,0,0 + e0,1,1 + e1,0,1 + e2,0,2 + e0,2,2 + e1,1,2 + e1,2,0 + e2,1,0 + e2,2,1. (19)

Then we have ˜R(C) = 3, ˜Q(C) = 3 and ˜QM(C) = 2.75.. (this is proven in [14, 24], see also [9]
for the connection to [23]), so that i(C) = 1 and iM(C) = 1.08.. We note that C is equivalent
to the diagonal tensor 〈3〉, see e.g. [9] for the basis transformation that shows this.

With regards to matrix multiplication, the standard construction for (13) in fact shows
that

ωM(〈2, 2, 2〉, 〈2〉) = 1
2 . (20)

2.5 Balanced tensors
We finish this section with a general comment on upper bounds on irreversibility. A tensor
t ∈ V1 ⊗ V2 ⊗ V3 with dim(V1) = dim(V2) = dim(V3) is called balanced if the corresponding
maps t1 : V1 → V2 ⊗ V3, t2 : V2 → V1 ⊗ V3 and t3 : V3 → V1 ⊗ V2 (called flattenings) are
full-rank and for each i ∈ [3] there is an element v ∈ Vi such that ti(v) has full-rank [22,
page 121]. For any tensor space with cubic format Fn ⊗ Fn ⊗ Fn over an algebraically closed
field F, being balanced is a generic condition, i.e. almost all elements in such a space are
balanced. Balanced tensors are called 1-generic tensors in [16]. Let t ∈ Fn ⊗ Fn ⊗ Fn be
balanced. Then [22, Proposition 3.6]

˜R(t) ≤ n
2
3ω (21)

˜Q(t) ≥ n
2
3 (22)

and so

i(t) ≤ ω. (23)

If moreover ˜R(t) = n, then

i(t) ≤ 3/2. (24)

CCC 2019
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3 Barriers through irreversibility

With the new notion of irreversibility available, we present a barrier for approaches to upper
bound ω via an intermediate tensor t.

3.1 The irreversibility barrier
For any tensor t the inequality

ω(〈2〉, t)ω(t, 〈2, 2, 2〉) ≥ ω (25)

holds by the triangle inequality. Any such approach to upper bound ω respects the following
barrier in terms of the irreversibility i(t) of t.

I Theorem 9. For any tensor t holds

ω(〈2〉, t)ω(t, 〈2, 2, 2〉) ≥ 2 i(t). (26)

Proof. By the triangle inequality (Proposition 3),

ω(〈2〉, t)ω(t, 〈2, 2, 2〉)ω(〈2, 2, 2〉, 〈2〉) ≥ ω(〈2〉, t)ω(t, 〈2〉) = i(t). (27)

Therefore, using the fact ω(〈2, 2, 2〉, 〈2〉) = 1
2 from (13), we have

ω(〈2〉, t)ω(t, 〈2, 2, 2〉) ≥ i(t)
ω(〈2, 2, 2〉, 〈2〉) = 2 i(t). (28)

This proves the claim. J

Theorem 9, in particular, implies that if i(t) > 1, then ω(〈2〉, t)ω(t, 〈2, 2, 2〉) > 2, i.e. one
cannot prove ω = 2 via any fixed irreversible intermediate tensor. (Of course one can consider
sequences of intermediate tensors with irreversibility converging to 1.)

3.2 Better barriers through more structure
Naturally, we should expect that imposing more structure on the approach to upper bound ω
leads to stronger barriers. In this section we impose that the final step of the approach is
an application of the Schönhage τ -theorem. The Schönhage τ -theorem (Strassen’s general
version [22]) says that

˜R(
q⊕
i=1
〈ai, bi, ci〉

)
≥

q∑
i=1

(aibici)ω/3. (29)

In particular holds

˜R(〈q〉 ⊗ 〈a, a, a〉) ≥ qaω. (30)

Therefore, in the language of rates, for any α, β ∈ N holds that

ω(〈2〉, 〈2〉α〈2, 2, 2〉β) ≥ α+ βω (31)

that is

ω(〈2〉, 〈2〉α〈2, 2, 2〉β)− α
β

≥ ω. (32)
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(Here α corresponds to log2 q and β corresponds to log2 a. For simplicity and concreteness
we will consider only integer α and β.) Thus for any tensor t and for any α, β ∈ N holds that

ω(〈2〉, t)ω(t, 〈2〉α〈2, 2, 2〉β)− α
β

≥ ω. (33)

We prove the following barrier in terms of α, β and the irreversibility i(t) of t.

I Theorem 10. For any tensor t and α, β ∈ N holds

ω(〈2〉, t)ω(t, 〈2〉α〈2, 2, 2〉β)− α
β

≥ 2 i(t) + α

β

(
i(t)− 1

)
≥ 2 i(t). (34)

Proof. By the triangle inequality,

ω(〈2〉, t)ω(t, 〈2〉α〈2, 2, 2〉β)ω(〈2〉α〈2, 2, 2〉β , 〈2〉) ≥ ω(〈2〉, t)ω(t, 〈2〉) = i(t). (35)

Therefore,

ω(〈2〉, t)ω(t, 〈2〉α〈2, 2, 2〉β) ≥ i(t)
ω(〈2〉α〈2, 2, 2〉β , 〈2〉) = (α+ 2β) i(t). (36)

Subtracting α, dividing by β and using that i(t)− 1 ≥ 0 (Proposition 5) gives the barrier

ω(〈2〉, t)ω(t, 〈2〉α〈2, 2, 2〉β)− α
β

≥ (α+ 2β) i(t)− α
β

= 2 i(t) + α

β
(i(t)− 1) ≥ 2 i(t). (37)

This proves the claim. J

As a corollary of the above theorem we present a barrier on any approach of the following
form. The Schönhage τ -theorem implies that for any a, b, c ∈ N≥1 and any tensor t holds

ω(〈2〉, t)ω(t, 〈2〉α〈a, b, c〉)− α
1
3 log2(abc)

≥ ω. (38)

We prove the following barrier in terms of a, b, c, α and the irreversibility of the cyclically
symmetrized cyc(t) := t⊗ ((1, 2, 3) · t)⊗ ((1, 2, 3)2 · t).

I Corollary 11. For any tensor t and α ∈ N and a, b, c ∈ N≥1 holds

ω(〈2〉, t)ω(t, 〈2〉α〈a, b, c〉)− α
1
3 log2(abc)

≥ 2 i(cyc(t)) + α
1
3 log2(abc)

(i(cyc(t))− 1) (39)

≥ 2 i(cyc(t)). (40)

One verifies that i(t) ≥ i(cyc(t)). If t is cyclically symmetric, then cyc(t) = t⊗3 and we
have the equality i(t) = i(cyc(t)).

Proof. One verifies directly that ω(〈2〉, t) ≥ ω(〈2〉, cyc(t)
1
3 ) and

ω(t, 〈2〉α〈a, b, c〉) ≥ ω(cyc(t)
1
3 , 〈2〉α〈2, 2, 2〉

1
3 log2(abc)). (41)

Note that we are using real powers here, which is justified by taking powers of the relevant
tensors and taking a limit. Using both inequalities and then applying Theorem 10 gives

ω(〈2〉, t)ω(t, 〈2〉α〈a, b, c〉)− α
1
3 log2(abc)

≥ ω(〈2〉, cyc(t))ω(cyc(t), 〈2〉α〈2, 2, 2〉
1
3 log2(abc))− α

1
3 log2(abc)

(42)

≥ 2 i(cyc(t)). (43)

This proves the statement of the theorem. J

CCC 2019
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I Remark 12. For cyclically symmetric tensors t our Corollary 11 implies the lower bound

ωg(t) ≥ ωu(t) ≥ 2 i(t), (44)

on the parameter ωg (and the “universal” version ωu) studied in [3], which is a significant
improvement over the barrier

ωg(t) ≥
3

1
2 i(t) + 1

(45)

proven in [3, Theorem IV.1].

3.3 Better barriers through monomial irreversibility
Finally, we impose as an extra constraint that the transformation from the intermediate
tensor t to the matrix multiplication tensor happens via monomial restriction (Section 2.4),
i.e. we consider the approach

ω(〈2〉, t)ωM(t, 〈2, 2, 2〉) ≥ ω (46)

and the more structured approaches

ω(〈2〉, t)ωM(t, 〈2〉α〈2, 2, 2〉β)− α
β

≥ ω (47)

and

ω(〈2〉, t)ωM(t, 〈2〉α〈a, b, c〉)− α
1
3 log2(abc)

≥ ω. (48)

The proofs in the previous sections can be directly adapted to prove:

I Theorem 13. For any tensor t holds

ω(〈2〉, t)ωM(t, 〈2, 2, 2〉) ≥ 2 iM(t). (49)

I Theorem 14. For any tensor t and α, β ∈ N holds

ω(〈2〉, t)ωM(t, 〈2〉α〈2, 2, 2〉β)− α
β

≥ 2 iM(t) + α

β

(
iM(t)− 1

)
≥ 2 iM(t). (50)

I Corollary 15. For any tensor t and α ∈ N and a, b, c ∈ N≥1 holds

ω(〈2〉, t)ωM(t, 〈2〉α〈a, b, c〉)− α
1
3 log2(abc)

≥ 2 iM(cyc(t)) + α
1
3 log2(abc)

(iM(cyc(t))− 1) (51)

≥ 2 iM(cyc(t)). (52)

4 Explicit irreversibility lower bounds

We have seen how barriers arise from lower bounds on irreversibility. In this section we
compute lower bounds on the irreversibility of two well-known intermediate tensors that play a
crucial role in the best upper bounds on ω: the small and big Coppersmith–Winograd tensors.
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4.1 Irreversibility and the asymptotic spectrum of tensors
We begin with a general discussion of how to compute irreversibility. The asymptotic spectrum
of tensors is the set of ≤-monotone semiring homomorphisms from the semiring of tensors
(with tensor product and direct sum as multiplication and addition) to the nonnegative reals,

∆ = {F ∈ Hom({tensors},R≥0) : a ≤ b⇒ F (a) ≤ F (b)}. (53)

Strassen proves in [22] that ˜Q(t) = minF∈∆ F (t) and ˜R(t) = maxF∈∆ F (t) and he also proves
(implicitly) that ω(s, t) = maxF∈∆ log2 F (t)/ log2 F (s). From this we directly obtain:

I Proposition 16. Let t be a tensor. Then

i(t) = maxF∈∆ logF (t)
minF∈∆ logF (t) . (54)

In an ideal world we would know ∆ and use it to compute i(t) (or better, we would use
it to compute ω). In practice we currently only have partial knowledge of ∆. This partial
knowledge is easiest to describe in terms of the best known lower bounds on ˜R(t) and the
best known upper bounds on ˜Q(t). The best known lower bounds on ˜R(t) are simply the
matrix ranks of each of the three flattenings t1, t2, t3 of t as described in Section 2.5. For
arbitrary fields, the best general upper bounds on ˜Q(t) that we are aware of are the Strassen
upper support functionals ζθ from [23], which we will define and use in the next section.
They relate asymptotically to slice rank via [9]

˜Q(t) ≤ lim sup
n

slicerank(t⊗n)1/n ≤ min
θ
ζθ(t). (55)

We are not aware of any example for which any of the inequalities in (55) is strict. For
oblique tensors 1 the right inequality is an equality [9] and for tight tensors 2 both inequalities
are equalities [23]. We thus have:

I Proposition 17. Let t be a tensor. Then

i(t) ≥ maxi log2 R(ti)
minθ log2 ζ

θ(t) . (56)

For tensors over the complex numbers (i.e. F = C) we have a deeper understanding of
the theory of upper bounds on the asymptotic subrank, via the quantum functionals F θ
introduced in [9]. The quantum functionals satisfy F θ ≤ ζθ and their minimum equals the
asymptotic slice rank [9], i.e.

˜Q(t) ≤ lim sup
n

slicerank(t⊗n)1/n = min
θ
F θ(t) ≤ min

θ
ζθ(t). (57)

For free tensors3 the right inequality in (57) is an equality [9]. We thus have:

I Proposition 18. Let t be a tensor over the complex numbers. Then

i(t) ≥ maxi log2 R(ti)
minθ log2 F

θ(t) . (58)

1 a tensor t ∈ Fn1 ⊗ Fn2 ⊗ Fn3 is called oblique if the support supp(t) ∈ [n1]× [n2]× [n3] in some basis is
an antichain in the product of the natural orders on the [ni]

2 a tensor t is called tight if for some choice of basis there are injective maps α1, α2, α3 such that for
every a ∈ supp(t) holds α1(a1) + α2(a2) + α3(a3) = 0

3 a tensor t is called free if in some basis any two different a, b ∈ supp(t) differ in at least two entries
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4.2 Irreversibility of Coppersmith–Winograd tensors
We now compute lower bounds for the irreversibility of the Coppersmith–Winograd tensors.
As mentioned, we will use the support functionals of Strassen [23] in our computation to
upper bound the asymptotic subrank. For any θ ∈ R3

≥0 with θ1 + θ2 + θ3 = 1 the upper
support functional ζθ is defined as

ζθ(t) := 2ρ
θ(t) (59)

ρθ(t) := min
s∼=t

max
P∈P(supp(s))

3∑
i=1

θiH(Pi), (60)

where the minimum is over all tensors s isomorphic to t, the maximum is over all probability
distributions on the support of s in the standard basis, and H(Pi) denotes the Shannon
entropy of the ith marginal of P . Strassen proves in [23] that 1/ω(t, 〈2〉) = log2 ˜Q(t) ≤ ρθ(t).

(Besides from the Strassen support functionals, upper bound on the asymptotic subrank
of complex tensors may be obtained from the quantum functionals. For the tensors in
Theorem 19 and Theorem 22, however, this will give the same bound, since these tensors are
free [9, Section 4.3].)

I Theorem 19 (Small Coppersmith–Winograd tensors [12, Section 6]). For the small Copper-
smith–Winograd tensor

cwq :=
q∑
i=1

e0,i,i + ei,0,i + ei,i,0 (61)

the lower bound

2 i(cwq) ≥
2 log2(q + 1)

log2 3− 2
3 + 2

3 log2 q
(62)

holds.

Proof. The rank of each flattening of cwq equals q+ 1. Therefore, ˜R(cwq) ≥ q+ 1. To upper
bound the asymptotic subrank ˜Q(cwq) one can upper bound the Strassen upper support
functional with θ = (1/3, 1/3, 1/3) as in [9, Example 4.22] by

ρθ(cwq) ≤ log2 3− 2
3 + 2

3 log2 q. (63)

We find that

i(cwq) ≥
log2(q + 1)

log2 3− 2
3 + 2

3 log2 q
. (64)

This proves the theorem. J

I Remark 20. If q > 2, then the right-hand side of (62) is at least 2.02.. See the table in
Section 1 for more values. If q = 2, however, then the right-hand side of (62) equals 2.
Theorem 19 thus does not rule out using cw2 to prove that ω = 2. Indeed, as observed in
[12, Section 11]), if ω(〈2〉, cw2) = log2 3, then ω = 2.

Currently, the best upper bound we have on ω(〈2〉, cwq) is log2(q + 2). If ω(〈2〉, cwq) =
log2(q + 2), then instead of (62) we get the better barrier

2 i(cwq) ≥
2 log2(q + 2)

log2 3− 2
3 + 2

3 log2 q
. (65)
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The right-hand side of (65) has a minimum value of

18
5 log2 3 = 2.27.. (66)

attained at q = 6.
I Remark 21. The following computation serves as a sanity check for our barrier. Namely
we see in an example how by putting some extra assumption the barrier becomes tight.
Coppersmith and Winograd in [12] used cwq as an intermediate tensor in combination with
the laser method and a certain “outer structure”, see also [6, Section 9]. When we impose
that we apply the laser method on cwq with this outer structure to upper bound ω we get
the following better barrier via Theorem 10/Corollary 11:

2 i(cwq) + h(1/3)
1
3 log2(q)

(i(cwq)− 1) (67)

where

i(cwq) ≥
log2(q + 1)

log2(3)− 2
3 + 2

3 log2(q)
. (68)

Some values of (67) are:

q

2 2
3 2.04..
4 2.10..
5 2.15..
6 2.19..
7 2.22..

If in addition we assume that ω(〈2〉, cwq) = log2(q + 2), then we obtain the barrier

2 i(cwq) + h(1/3)
1
3 log2(q)

(i(cwq)− 1) (69)

where

i(cwq) ≥
log2(q + 2)

log2(3)− 2
3 + 2

3 log2(q)
. (70)

Some values of (69) are:

q

2 3.24..
3 2.65..
4 2.50..
5 2.44..
6 2.41..
7 2.40..
8 2.40..
9 2.40..
10 2.40..
11 2.41..
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with minimum value of 2.40... These barriers in fact match the upper bound

ω ≤ logq
4(q + 2)3

27 (71)

that was obtained by Coppersmith and Winograd by applying the laser method in the way
described above. Other intermediate tensors with a given outer structure may be analyzed
similarly.

I Theorem 22 (Big Coppersmith–Winograd tensors [12, Section 7]). For the big Coppersmith–
Winograd tensor

CWq := e0,0,q+1 + e0,q+1,0 + eq+1,0,0 +
q∑
i=1

e0,i,i + ei,0,i + ei,i,0 (72)

the lower bound

2 i(CWq) ≥



2 log2(3)
f( 1

18 (
√

33− 3))
= 2.16.. q = 1

2 log2(4)
f( 1

9 )
= 2.17.. q = 2

2 log2(q + 2)

f
( 3q−
√

32+q2

6(q2−4)
) q ≥ 3

(73)

holds, where

f(x) := −
(2

3 − qx
)

log2

(2
3 − qx

)
− q2x log2(2x)−

(1
3 − qx

)
log2

(1
3 − qx

)
. (74)

Proof. The rank of each flattening of CWq equals q+ 2, which coincides with the well-known
border rank upper bound R(CWq) ≤ q + 2. Therefore, ˜R(CWq) = q + 2.

To upper bound the asymptotic subrank ˜Q(CWq) we use the Strassen upper support
functional with θ = (1/3, 1/3, 1/3). In the standard basis, the support of CWq is the set

{(0, i, i), (i, 0, i), (i, i, 0) : i ∈ [q]} ∪ {(0, 0, q + 1), (0, q + 1, 0), (q + 1, 0, 0)}. (75)

The symmetry implies that we can assign probability x to each of (0, i, i), (i, 0, i) and (0, i, i),
and 1

3 − qx to (0, 0, q + 1), (0, q + 1, 0) and (q + 1, 0, 0). This leads to an average marginal
entropy of f(x) as defined in the theorem statement. The maximum of f(x) is attained at

x =


1
18 (
√

33− 3) q = 1
1
9 q = 2

3q −
√

32 + q2

6(q2 − 4) q ≥ 3.

(76)

This proves the theorem. J

I Remark 23. The lowest value of the right-hand side of (73) is 2.16.. attained at q = 1. See
the table in Section 1 for more values.

I Remark 24. A lower bound on the irreversibility of the tensors tn mentioned in the
introduction follows directly from the results in [23, Theorem 6.7].
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4.3 Monomial irreversibility of structure tensors of finite group algebras
We now discuss irreversibility and monomial irreversibility in the context of the group-
theoretic approach developed in [10]. This approach produces upper bounds on ω via
intermediate tensors that are structure tensors of complex group algebras of finite groups.
Let 〈G〉 denote the structure tensor of the complex group algebra C[G] of the finite group G, in
the standard basis. The group-theoretic approach (in particular [10, Theorem 4.1]) produces
an inequality of the form

〈G〉 ≥M 〈a, b, c〉 (77)

which ultimately (see [10, Eq. (1)]) leads to the bound

ω(〈2〉, 〈G〉)ωM(〈G〉, 〈a, b, c〉)
1
3 log2(abc)

≥ ω (78)

where ≥M and ωM are the monomial restriction and monomial relative exponent defined in
Section 2.4.

Now the monomial irreversibility barrier from Section 3.3 comes into play. Upper bounds
on the monomial asymptotic subrank of 〈G〉 have (using different terminology) been obtained
in [7, 8, 18]. Those upper bounds imply that 〈G〉 is monomially irreversible for every
nontrivial finite group G. Together with our results in Section 3.3 and the fact that the
tensor 〈G〉 is symmetric up to a permutation of the basis of one of the tensor legs, this
directly leads to nontrivial barriers for the left-hand side of (78) for any fixed nontrivial
group G, thus putting the work of [7, 8, 18] in a broader context. We have not tried to
numerically optimise the monomial irreversibility barriers for group algebras.

Finally we mention that the irreversibility barrier (rather than the monomial irreversibility
barrier) does not rule out obtaining ω = 2 via 〈G〉. Namely, 〈G〉 is isomorphic to a
direct sum of matrix multiplication tensors, 〈G〉 ∼=

⊕
i〈di, di, di〉 and, therefore, we have

i(〈G〉) = (log2
∑
i d
ω
i )/(log2

∑
i d

2
i ). Thus, if ω = 2, then 〈G〉 is reversible.
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