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Abstract
We study the role of perfect completeness in probabilistically checkable proof systems (PCPs) and
give a way to transform a PCP with imperfect completeness to one with perfect completeness,
when the initial gap is a constant. We show that PCPc,s[r, q] ⊆ PCP1,s′ [r + O(1), q + O(r)] for
c− s = Ω(1) which in turn implies that one can convert imperfect completeness to perfect in linear-
sized PCPs for NP with a O(logn) additive loss in the query complexity q. We show our result by
constructing a “robust circuit” using threshold gates. These results are a gap amplification procedure
for PCPs, (when completeness is not 1) analogous to questions studied in parallel repetition [22]
and pseudorandomness [15] and might be of independent interest.

We also investigate the time-complexity of approximating perfectly satisfiable instances of 3SAT
versus those with imperfect completeness. We show that the Gap-ETH conjecture without perfect
completeness is equivalent to Gap-ETH with perfect completeness, i.e. MAX 3SAT(1−ε, 1−δ), δ > ε

has 2o(n) algorithms if and only if MAX 3SAT(1, 1 − δ) has 2o(n) algorithms. We also relate
the time complexities of these two problems in a more fine-grained way to show that T2(n) ≤
T1(n(log logn)O(1)), where T1(n), T2(n) denote the randomized time-complexity of approximating
MAX 3SAT with perfect and imperfect completeness respectively.
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1 Introduction

The PCP theorem [3] was a breakthrough result that proved that NP has proofs that can be
verified using just O(1) bits and constant probability of error, with a minimal blow-up in the
size of the proof. The theorem led to a flurry of activity in getting the best set of parameters:
the soundness, proof size and queries. These PCP constructions were instrumental in showing
optimal hardness of approximation results for a host of problems like k-SAT and 3LIN [18].
Despite this progress, many important questions remain wide open, for instance: Do there
exist linear-sized PCPs for NP, with constant queries and constant soundness? Hence we
believe it is important to understand the role of all the parameters in PCPs for NP and we
focus our attention on the completeness of these proof systems.

We investigate the question that can imperfect completeness help to get better PCPs?
The size versus query tradeoff in PCPs has been extensively studied: A long line of work
culminated in a PCP [11] with O(npolylog n) size and O(1) queries. On the other hand,
Ben-Sasson et al [6] achieved a linear-sized PCP with O(nε) query size for all constants
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32:2 Imperfect Gaps in Gap-ETH and PCPs

ε > 0.1 These results are far from the conjectured O(1) queries and linear-size. We show
that one can transform any PCP with imperfect completeness and constant gap (between
soundness and completeness) to one with perfect completeness with a mild additive loss in
the number of queries. The loss in query complexity that we get in the transformation from
imperfect to perfect completeness in the latter regime (of linear-size) is inconsequential in
comparison to the query complexity of [6].

Although in current PCP constructions perfect completeness might come for free when
one does not care about the verifier’s predicate, PCPs with imperfect completeness are
very important in showing optimal hardness of approximation for problems like 3LIN [18],
where deciding satisfiability is in polytime. For other CSPs like Max 1-in-k-SAT one can
get substantially better approximation algorithms for perfectly satisfiable instances [17].
The infamous Unique games conjecture of Khot [20] asks for a PCP with unique queries
and imperfect completeness, the latter being necessary due to the tractability of satisfiable
instances of Unique games. Although the imperfect completeness in the previous cases was
necessary, in the case of CSPs like 2-to-1 games and Max k-CSP one would guess that the
same hardness of approximation results should hold with perfect completeness. Unfortunately
all the current methods [13, 10] incur a loss in completeness and it is unclear whether this is
because of the nature of the problem or due to the inefficacy of current methods. This leads
to the central question that given a CSP, how hard is it to approximate instances that are
perfectly satisfiable as compared to those that are not?

We also study this question in a fine-grained way and compare the time complexities
of approximating satisfiable versus imperfectly satisfiable instances of 3SAT. NP-hardness
results while very useful in measuring intractability with respect to poly-time algorithms, do
not imply tight or even superpolynomial lower bounds for the running time. The Exponential
Time Hypothesis (ETH) [19] states that there are no 2o(n) time algorithms for deciding
satisfiability of 3SAT. Through the equivalence between PCPs and gap problems, using
state of the art PCPs [11, 7] there is a reduction from a 3SAT instance on n variables to a
Gap-3SAT instance with O(npolylog n) variables. This proves that under ETH, Gap-3SAT
does not have O(2n/ logc(n)) algorithms for some fixed c, whereas Gap-3SAT has eluded
even 2o(n) algorithms. To get around precisely this gap, the Gap-ETH hypothesis was
proposed [12, 21]. Gap-ETH states that Gap-3SAT does not have 2o(n) algorithms. This
hypothesis has led to several tight inapproximability results [9, 14, 8, 1] with respect to
the running time required. We study the role of perfect completeness in Gap-ETH, where
Gap-ETH without perfect completeness is the hypothesis that there are no 2o(n) algorithms
for Gap-3SAT without perfect completeness.

Gap amplification is in itself an important problem studied in the context of parallel
repetition [23], error reduction and pseudorandomness [15]. We study this problem in PCPs
and show a way to transform any PCP into a one-sided error one. Similar questions of gap
amplification when completeness is not 1, have been studied for parallel repetition [22], but
these results incur a huge blow-up in the alphabet, which soon becomes Ω(1) and cannot
be applied to get perfect completeness in PCPs. These techniques in parallel repetition
have been used in quantum computation, to show instances of multi-player games with
large separation between the entangled and classical value and amplification of entangled
games [22, 4].

1 This particular construction is non-uniform. To our knowledge no explicit PCPs with o(n) query
complexity, constant soundness and linear size are known.
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1.1 Our contributions
PCPs without perfect completeness

We show a way to boost the completeness of PCPs which makes the completeness 1. Our
results go via the construction of “robust circuits” for the approximate threshold function on
n bits. These circuits are of depth O(logn), fan-in O(1) and size O(n), and use successive
layers of threshold gates to boost the fraction of ones in inputs that have large Hamming
weight, while maintaining the fraction of ones in other inputs below a certain threshold. The
circuits are tolerant to some form of adversarial corruptions and this property allows us to
prove the soundness of the new PCP. Our main theorem is the following:

I Theorem 1. Let c, s ∈ (0, 1), s < c be constants then there exists a constant s′ ∈ (0, 1)
depending only on c, s such that,

PCPc,s[r, q] ⊆ PCP1,s′ [r, q +Os,c(r)]

furthermore if the original proof size was n then the final proof size in n+O(2r).

Note that in the above theorem, one can prove inclusion in a PCP class, with arbitrary
constant s′′ (instead of a fixed constant s′) by applying derandomized serial repetition
(PCP1,s′ [r, q] ⊆ PCP1,s′′ [r,O(q)] with same proof size). This does not blow up the size of
the PCP and the query complexity only increases by a constant factor.

As a corollary we show that linear-sized PCPs for NP with imperfect completeness, can
be converted to a linear-sized PCPs with perfect completeness and q + O(logn) queries.
Current PCP constructions with constant rate and alphabet have query complexity nΩ(1)[6],
so we show that for improving upon this, it is enough to get linear sized PCPs with imperfect
completeness and better query complexity.

We also consider the notion of “randomized reduction between PCPs”, defined below.
Bellare et al [5] considered the notion of a randomized reduction R between two promise
problems given by sets (A1, B1) and (A2, B2). A randomized polynomial time reduction R
from promise problems (A1, B1) ≤R (A2, B2) with error probability p satisfies:
1. if x ∈ A1 then w.p. ≥ 1− p, R(x) ∈ A2.
2. if x ∈ B1 then w.p. ≥ 1− p, R(x) ∈ B2.

This notion naturally extends to PCP complexity classes. We give a randomized reduction
between PCP classes with imperfect and perfect completeness.

I Theorem 2. Let c, s ∈ (0, 1), s < c be constants then there exists a constant s′ ∈ (0, 1)
depending only on c, s such that,

PCPc,s[r, q] ≤R PCP1,s′ [r, q +Os,c(log r)]

with probability 1− 2−Ω(r). Furthermore if the original proof size was n then the final proof
size in n+O(2r).

Gap-ETH without perfect completeness

We study the relation between time complexities of approximating satisfiable instances
of MAX 3SAT versus that of approximating unsatisfiable instances. We first show the
equivalence of the Gap-ETH conjecture with perfect and imperfect completeness. We
formally state the Gap-ETH conjecture below:

CCC 2019



32:4 Imperfect Gaps in Gap-ETH and PCPs

I Conjecture 1 (Gap Exponential-Time Hypothesis (Gap-ETH) [12, 21]). For some constants
δ, ε > 0, no algorithm can, given a 3-SAT formula φ on n variables and m = O(n) clauses,
solve the decision problem MAX 3-SAT(1, 1− ε) in O(2δn) time.

There are many versions of the Gap-ETH conjecture that one can consider. Many works study
the randomized Gap-ETH conjecture which says that there are not even any randomized
algorithms that can decide Max 3-SAT(1, 1− ε). We show the following theorem:

I Theorem 3. If there exists a randomized (with no false positives) 2o(n) time algorithm
for MAX 3SAT(1, 1− γ) for all constant γ > 0 then there exists a randomized(with no false
positives) 2o(n) time algorithm for MAX 3SAT(s(1 + ε), s) for all constants s, ε > 0.

Algorithms with no false positives are interesting as a) Randomized SAT (not MAX-SAT)
algorithms can be modified to have no false positives by self-reduction b) some of the hardness
results from Gap-ETH go through reductions which do not produce false positives [8]. This
allows us to compose without losing in hardness by assuming Gap-ETH with one sided error.
This was also the notion considered by Applebaum [2] to give hardness of Gap-ETH. As the
original Gap-ETH hypothesis [12, 21] talks about deterministic algorithms we would prefer
to get a deterministic reduction between these two problems.

We can get more fine-grained results relating the time-complexities of MAX 3SAT with
perfect and imperfect completeness using the Theorem 2 stated earlier.

I Corollary 4. If there exists a T (n) time algorithm for MAX 3SAT(1, 1− δ) for all δ > 0
then there exists a T (n(log logn)O(1)) time randomized algorithm for MAX 3SAT(1− ε, 1−γ)
for all ε, γ, 0 < ε < γ.

1.2 Previous work
Bellare et al [5] also studied the problem transforming probabilistically checkable proofs with
imperfect completeness to those with perfect completeness. Their techniques do not yield
any inclusions for PCP classes. They proved the following randomized reduction between
PCP classes:

PCPc,s[r, q] ≤R PCP1,rs/c[r, qr/c]

For constant c and r = ω(1), they lose a multiplicative factor of r in the soundness, which
makes the theorem non-trivial only when s = o(1).

2 Preliminaries

Throughout the paper we follow this notation:

Notation

Thrδ(xi1 , . . . , xir ) = threshold at δ-fraction taken on the set of bits {xi1 , . . . , xir}. We also
use Thrδ(x|S) to mean that the threshold is with respect to the bits of x restricted to S ⊆ [n]
and sometimes drop the x and δ to use Thr(S), when the input/fraction being used is clear
from context. exp(x) refers to ex. For a string x ∈ {0, 1}n, let x̄ = 1

n

∑
i xi, denote the

average number of 1’s in x.
MAX k-CSP(c, s) - the promise problem of deciding whether there exists an assignment

satisfying more than c-fraction clauses or every assignment satisfies at most s fraction of
clauses. When the CSP is a 3SAT instance, it is denoted by MAX 3SAT(c, s).

Firstly we discuss some standard probability bounds like the Chernoff bound and the
Lovász local lemma.
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2.1 Chernoff Bounds
1. Multiplicative Chernoff bound 1: Let X = 1

nXi, where X1, . . . , Xn are random variables
in {0, 1}, with E[X] = µ. Then for all δ ≥ 1,

Pr[X > (1 + δ)µ] ≤ exp(−Ω(δµ))

for δ ≤ 1,

Pr[X > (1 + δ)µ] ≤ exp(−δ2µ/3))

Pr[X < (1− δ)µ] ≤ exp(−δ2µ/2))

2. Multiplicative Chernoff bound 2: Let X = 1
nXi, where X1, . . . , Xn are random variables

in {0, 1}, with E[X] = µ. Then for all δ ≥ 2,

Pr[X > (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
≤ exp(−Ω(δ(log(1/δ))µ)).

I Lemma 5 (Lovász local lemma). Let E1, E2, . . . , En with Pr[Ei] = 1 be events such that
any Ei is independent of all but d other events. Then if pe(d+ 1) ≤ 1 then

Pr
[⋂

Ei

]
≥ (1− 1/d)n

Let us now define probabilistic proof systems. Firstly, we define the notion of an
(r, q)-restricted verifier: For integer valued functions r(·) and q(·), a verifier is said to be
(r, q)-restricted if on every input of length n, it tosses at most r(n) coins and queries the
proof in at most q(n) bits non-adaptively.

I Definition 6 (PCP). For integer-valued functions r(·), q(·) and functions c(·), s(·) mapping
to [0, 1], the class PCPc,s[r, q] consists of all languages for which there exists an (r, q)-restricted
non-adaptive verifier V with the following properties:
1. Completeness: For all x ∈ L, there exists a proof π such that V π(x) accepts with probability

at least c (over the coin tosses of V ).
2. Soundness: For all x /∈ L, for all proofs π, V π(x) accepts with probability at most s.

We now go to the notion of averaging samplers. Averaging samplers are used to deran-
domize the process of random sampling to estimate the average number of ones in a string
x = {0, 1}n, see survey of [16]. We use the following sampler therein:

I Lemma 7. The expander sampler with parameters (δ, ε,N) is an expander graph on N

vertices, such that the neighbors of a vertex i, specify a sample Si ⊆ [N ]. The set family
satisfies the following properties:
1. For all i, |Si| = 1

δε2

2. For every Si the number of sets Sj which intersect with it are O
( 1
δ2ε4

)
.

3. For any string x ∈ {0, 1}N , Pr
S∼ES(δ,ε,N)

[|(x|S) − x| > ε] ≤ δ, where (x|S) denotes the

average of x taken over the positions specified by S.

We analyse the standard expander sampler given above and prove that one can get a
sampler with the following properties. In the appendix, we provide a detailed proof.

I Theorem 8 (Sampler). For all constants ε, δ, γ, there exists a constant C such that, there
is a set family S(ε, δ, γ,N) = (Si)N/2i=1 on [N ] with the following properties:

CCC 2019
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1. For any string x ∈ {0, 1}N , Pr
S∼S

[|(x|S)− x| > ε] ≤ δ.
2. For all η < (1 − γ)/2, for any string x ∈ {0, 1}N , where x ≥ 1 − η, we get that,

Pr
S∼S

[(x|S) < γ] ≤ η/2.
3. For all i, |Si| = C = Oε,δ,γ(1).
4. The number of sets in S is N/2.

3 PCPs without perfect completeness

In this section we prove that PCPs with imperfect completeness can be converted to ones
with perfect completeness with a mild blow-up in queries.

3.1 Reductions with minimal Query Blow-up
We first show a reduction that preserves the randomness complexity while losing an additive
factor in the queries.

I Reminder of Theorem 1. For all constants c, s ∈ (0, 1), s < c, there exists a constant
s′ ∈ (0, 1), such that for all integer-valued functions r(·), q(·), the following is true:

PCPc,s[r, q] ⊆ PCP1,s′ [r, q +Os,c(r)].

Furthermore if the original proof size was n, then the final proof size will be n+O(2r).
For notational simplicity we will prove that:

PCP9/10,6/10[r, q] ⊆ PCP1,9/10[r, q +O(r)],

with proof size n+O(2r). All constants that follow are universal constants, although in full
generality, they only depend on c, s that we have fixed to (9/10, 6/10).

The rest of this section is devoted to the proof of this theorem. The main idea here is
to build a “robust circuit” of small depth, using threshold gates of small fan-in, over the
proof oracle of the original PCP. We then ask the new prover to provide the original proof
and along with that, also ask for what each gate in the circuit evaluates to, when provided
the original clause evaluations as input. As discussed earlier, the circuit boosts the fraction
of ones in every layer, for inputs x that satisfy x ≥ 9/10, while maintaining the fraction of
ones for inputs that satisfy x ≤ 7/10. We need to do this boosting step by step so that the
fan-in does not blow up, and also need to use threshold gates that take “random” subsets of
inputs from the previous layer, so that the ones in the input get distributed across all the
gates. We get rid of the random subsets, by using any standard sampler over the gates of
the previous layer.

Let us now describe the circuit more formally. Later we will give a way to get complete
PCPs from incomplete ones using this circuit.

Description of Circuit Γm(·):
The circuit has d = logm layers, L1, . . . , Ld, with layer i composed of wi = m/2i
gates denoted by Li1, . . . , Liwi . The zeroth layer L0 is the m inputs to the circuit.
Every gate L(i+1)j is a threshold gate Thr0.8. Let the set family given by the
sampler from Theorem 8 on wi nodes with parameters S(1/10, 6/10, 8/10, wi) =
(S(i+1)j)

wi+1
j=1 . Let L(i+1)j = Thr0.8(Li|S(i+1)j

). By property 3 of expander sampler
fan-in = |S(i+1)j | = O(1).

We now use this circuit to give our main reduction.
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Proof of Theorem 1. Let L ⊆ {0, 1}∗ be a language in PCP9/10,6/10[r, q] via the proof
system P = (Π, Q), where Π and Q denote the proof and the set of queries. We can now use
the equivalence between MAX q-CSP(c, s) and PCPs, to get a set of clauses C = {C1, . . . , Cm}
of width q, for m = 2r, such that L ≤ MAX q-C(9/10, 6/10). (When y ∈ L, then there
exists an assignment x, such that 9/10-fraction of the clauses when evaluated on x output 1,
whereas when y /∈ L, for every assignment x, at most 6/10 of the clauses evaluate to 1.)

To prove the theorem, we will give a new proof system P ′ = (Π′, Q′) for L, that has
perfect completeness and soundness equal to 9/10. We will transform P using the circuit
Γm(·) described above, to get P ′. We consider the circuit Γm(C1(Π), . . . , Cm(Π)) and ask
the new prover to give one bit for every gate of the circuit. More precisely, we ask the new
prover to give bits of Π (interpreted as an assignment x ∈ {0, 1}n for the MAX q-CSP: C)
and in addition gives bits for every layer in the circuit Γm:

`i = {`i1, . . . , `iwi
},∀i ∈ {0, 1, . . . , d}.

These bits are supposed to correspond to a correct evaluation of the circuit Γm when
given (C1(x), . . . , Cm(x)) (Π = x) as input. That is, ideally the prover should give us,
`0j = Cj(x),∀j ∈ [m] and `(i+1)j = L(i+1)j(`i),∀i ∈ [d], j ∈ wi, where L(i+1)j(`i) denotes the
gate L(i+1)j evaluated on the output bit vector `i of the previous layer. We probabilistically
test this using a new set of queries Q′, described below.

Verifier Checks (Q′). For notational simplicity in describing the queries of the new verifier,
we will do the following. For each layer i (that has m/2i gates), consider 2i copies of the
set of gates Li, and let this new set be denoted by L′i1, . . . , L′im with corresponding proof
bits by `′i = {`′i1, . . . , `′im} and each gate having its set of inputs (S′i1, . . . , S′im). Note
that this duplication of bits/gates is only for description of the queries, and the prover
will only give m/2i bits for every layer i.
Intuitively, we will check whether every gate is correct with respect to its immediate inputs
(from the layer below it) and whether the final gate (on the topmost layer) evaluates to 1.
To do so, the verifier tosses logm random coins and on random string j ∈ [m], it checks
whether the following is true:

Q′j := (Cj(x) ?= `′0j) ∧ (L′1j(`0) ?= `′1j) . . . ∧ (L′dj(`d−1) ?= `′dj) ∧ `′dj ,

where the clause (L′ij(`i−1) ?= `′ij) outputs 1 iff (L′ij(`i−1) equals `′ij). As explained earlier,
each of the clauses, checks whether the gate L′ij is correct, with respect to its input layer
`(i−1). Notice here that each check Qj , checks one gate in every layer and furthermore
these checks are uniform across a layer, i.e. every gate in a layer is checked with the same
probability.
To perform the check above, we query the proof bits `i−1|S′

ij
, making a constant number

of queries, since the fanin of every gate is a fixed constant, i.e. Lij has fanin |S′ij | = O(1).
We then evaluate the threshold gate Lij on these bits and take the ∧ across the layers.
The check (Cj(x) ?= `′0j) needs to query q queries to x, hence the total number of queried
proof bits is q +O(logm) = q +O(r). Further note that the randomness complexity of
the verifier remains the same as before i.e. = r = logm.
We now prove the completeness and soundness of the protocol P ′.

Completeness. If the original proof system P had completeness 9/10, then there exists
a proof Π = x which satisfies 9/10 of the clauses C. The new prover can give us the
bit vectors, x and in addition the evaluations of the circuit Γ(C1(x), . . . , Cm(x)), i.e.
x, `0 := (Cj(x))mj=1 and `i := (Lij(`i−1))mj=1.

CCC 2019



32:8 Imperfect Gaps in Gap-ETH and PCPs

In Lemma 9, we prove that, `i ≥ 1− 2−i

10 . Since d = logm and the number of gates on
level d is O(1), we get that the fraction of 1s in zd is ≥ 1 − 1/m, which gets rounded
to 1, since there is only one gate in the topmost layer. Since every query Q′j checks the
consistency of a set of gates and if the bit `dj = 1, we get completeness equals 1.

Soundness. If the original proof system P had soundness 6/10, then for all proofs Π that
the prover might give, Π satisfies ≤ 6/10 of the clauses C. Let Π′ = (x, `0, . . . , `d) be the
proof provided by the new prover.
Let z0 := (Cj(x))mj=1 and zi+1 := (L(i+1)j(`i))wi

i=1 be the true local evaluations. Note
here that, zi+1 is the evaluation bits of layer Li+1 evaluated on the bits that the prover
provides in the previous layer, `i. By the soundness of P we get that x satisfies at most
6/10 of C which means that z0 ≤ 6/10.
Now we have two cases:
1. The prover provided the bit vectors `i such that they agree with the true evaluations

zi in most places, i.e.

∀i, Pr
j∼[wi]

[`ij 6= zij ] ≤ 1/10.

Hence we have that `0 ≤ z0 + 1/10 ≤ 7/10. Lemma 10 gives us that for `i ≤ 7/10,
Li+1(`i) ≤ 6/10 and therefore zi+1 ≤ 6/10. Hence we get that by induction, for all
i, zi ≤ 6/10 and `i ≤ 7/10, and more importantly `d ≤ 7/10. Recall that our verifier
checks are uniform over the every layer, and since `dj = 1 is required for verifier’s jth
check, Qj to succeed, we get that soundness is ≤ 7/10.

2. There exists a layer i ∈ {0, . . . , d} such that:

Pr
j∼[wi]

[`ij 6= zij ] > 1/10.

Since zij ’s are the correct evaluations, the above implies that, the prover’s proof will
fail the local checks in 1/10-fraction of the gates of layer i. Since the verifier checks
are uniform over the gates of every layer, (i.e. they check the gate of each layer with
the same probability), the verifier checks the incorrect gates with probability at least
1/10. Hence the soundness in this case is ≤ 9/10.

Note that one of these cases has to occur, hence the overall soundness is the maximum of
the two cases, i.e. ≤ 9/10.

Proof Length. Every layer Li has width m/2i. Thus the total number of gates in the circuit
is m+m/2 + . . . = O(m) = O(2r). Since Π′ consists of the original proof appended with
the circuit evaluations, the proof length is n+O(2r). J

We now complete the proofs of completeness and soundness in Theorem 1.

I Lemma 9 (Completeness). Let y0 ∈ {0, 1}m be such that y0 ≥ 9/10. Let yi ∈ {0, 1}wi

denote the output string of layer i, when C is evaluated with the zeroth layer set to y0. Then
we have that for all i, yi satisfies yi ≥ 1− 2−i

10 .

Proof. We will prove the lemma by induction on i. Note that the base case i = 0, holds
trivially. Now consider the (i+ 1)th layer of the circuit and the gates L(i+1)j that take as
input the set S(i+1)j corresponding to the expander sampler on wi bits. By the induction
hypothesis we have that yi is such that yi ≥ 1− 2−i

10 . By the expander sampler property 2
with parameters (1/10, 6/10, 8/10, wi) we get that,

Pr
j∼[wi+1]

[L(i+1)j(yi) = Thr(yi|S(i+1)j
) = 0] ≤ Pr

j∼[wi+1]
[(yi|S(i+1)j

) < 0.8] ≤
(

1
2

)(
2−i

10

)
.
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Which directly implies

Pr
j∼[wi+1]

[L(i+1)j(yi) = 1] ≥ 1− 2−i−1

10 ⇔ yi+1 ≥ 1− 2−i−1

10

which completes the induction. J

I Lemma 10 (Soundness). Let yi ∈ {0, 1}wi denote an instantiation of the output gates of
layer i with yi ≤ 7/10. Let yi+1 = Li+1(yi) denote the output of layer i+ 1 when evaluated
on the string yi. Then we have that yi+1 satisfies yi+1 ≤ 6/10.

Proof. Recall that in the circuit, the gate L(i+1)j took as input the set S(i+1)j corres-
ponding to the sampler on wi bits. By the expander sampler property 1, with parameters
(1/10, 6/10, 8/10, wi) we get that, for any string yi ∈ {0, 1}wi with yi ≤ 7/10:

Pr
j∼[wi+1]

[|(yi|S(i+1)j
)− 7/10| > 1/10] ≤ Pr

j∼[wi+1]
[L(i+1)j(yi) = Thr(yi|S(i+1)j

) = 1] ≤ 6/10

which directly implies yi+1 ≤ 6/10 completing the proof.
J

Theorem 1 implies the following transformation from linear sized PCPs with imperfect
completeness to linear sized PCPs with perfect completeness.

I Corollary 11. If NP ⊆ PCP9/10,6/10[logn+O(1), q] then NP ⊆ PCP1,9/10[logn+O(1), q+
O(logn)].

4 Randomized reductions between PCPs

In this section we prove that PCPs with imperfect completeness can be reduced using
randomness to ones with perfect completeness with a lesser blow-up in queries compared to
Section 3. We construct a circuit similar to the one in the previous section, but this time we
use a randomized circuit to get better parameters and show that our reduction works with
high probability. This is our main theorem:

I Reminder of Theorem 2. For all constants c, s ∈ (0, 1), s < c, there exists a constant
s′ ∈ (0, 1), such that for all integer-valued functions r(·), q(·), the following is true:

PCPc,s[r, q] ≤R PCP1,s′ [r, q +Os,c(log r)].

Furthermore if the original proof size was n, then the final proof size will be n+O(2r).

For notational simplicity we will prove that:

PCP9/10,6/10[r, q] ≤R PCP1,9/10[r, q +O(log r)],

with proof size n+O(2r). All constants that follow are universal constants, although in full
generality, they only depend on c, s that we have fixed to (9/10, 6/10).

This immediately implies the following corollary using the query reduction2 result
by Dinur [11],

2 This result reduces queries to a constant but blows-up the proof size.
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I Corollary 12. If there exists a T (n) time algorithm for MAX 3SAT(1, 1− δ) for all δ > 0
then there exists a T (n(log logn)O(1)) time randomized algorithm for MAX 3SAT(1− ε, 1−γ)
for all ε, γ, 0 < ε < γ.

The rest of this section is devoted to the proof of theorem 2. The main idea as in
Theorem 1 is to build a “robust circuit” of small depth, using threshold gates of small fan-in,
over the proof oracle of the original PCP. We then ask the new prover to provide the original
proof and along with that, also ask for what each gate in the circuit evaluates to, when
provided the original clause evaluations as input. As discussed earlier, the circuit boosts
the fraction of ones in every layer, for inputs x that satisfy x ≥ 9/10, while maintaining the
fraction of ones for inputs that satisfy x ≤ 7/10. We need to do this boosting step by step so
that the fan-in does not blow up, and also need to use threshold gates that take random
subsets of inputs from the previous layer, so that the ones in the input get distributed across
all the gates.

Let us now describe the circuit more formally. Later we will give a way to get complete
PCPs from incomplete ones using this circuit.

Description of Circuit Γm(·):
The circuit has d = log logm layers, L1, . . . , Ld, with layer i composed of wi = m/2i
gates denoted by Li1, . . . , Liwi

. The zeroth layer L0 is the m inputs to the circuit.
Every gate Lij is a threshold gate Thr0.8. A gate Lij takes as inputs a random set
of f gates from the previous layer Li−1, i.e. we pick a uniformly random set Sij of
size f , (sampled with replacement) from [m/2i−1] and connect gate Lij with gates
L(i−1)k,∀k ∈ Sij .

We now use this circuit to give our main reduction.

Proof of Theorem 2. Let L ⊆ {0, 1}∗ be a language in PCP9/10,6/10[r, q] via the proof
system P = (Π, Q), where Π and Q denote the proof and the set of queries. We can now use
the equivalence between MAX q-CSP(c, s) and PCPs to get a set of clauses C = {C1, . . . , Cm}
of width q, for m = 2r, such that L ≤ MAX q-C(9/10, 6/10). (When y ∈ L, then there
exists an assignment x, such that 9/10-fraction of the clauses when evaluated on x output 1,
whereas when y /∈ L, for every assignment x, at most 6/10 of the clauses evaluate to 1.)

To prove the theorem, we will give a new proof system P ′ = (Π′, Q′) for L, that has
perfect completeness and soundness equal to 9/10. We will transform P using the circuit
Γm(·) described above, to get P ′. We consider the circuit Γm(C1(Π), . . . , Cm(Π)) and ask
the new prover to give one bit for every gate of the circuit. More precisely, we ask the new
prover to give bits of Π (interpreted as an assignment x ∈ {0, 1}n for the MAX q-CSP: C)
and in addition gives bits for every layer in the circuit Γm:

`i = {`i1, . . . , `iwi},∀i ∈ {0, 1, . . . , d}.

These bits are supposed to correspond to a correct evaluation of the circuit Γm when
given (C1(x), . . . , Cm(x)) (Π = x) as input. That is, ideally the prover should give us,
`0j = Cj(x),∀j ∈ [m] and `(i+1)j = L(i+1)j(`i),∀i ∈ [d], j ∈ wi, where L(i+1)j(`i) denotes the
gate L(i+1)j evaluated on the output bit vector `i of the previous layer. We probabilistically
test this using a new set of queries Q′, described below.

Verifier Checks (Q′). For notational simplicity in describing the queries of the new verifier,
we will do the following. For each layer i (that has m/2i gates), consider 2i copies of the
set of gates Li, and let this new set be denoted by L′i1, . . . , L′im with corresponding proof
bits by `′i = {`′i1, . . . , `′im} and each gate having its set of inputs (S′i1, . . . , S′im). Note
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that this duplication of bits/gates is only for description of the queries, and the prover
will only give m/2i bits for every layer i.
Intuitively, we will check whether every gate is correct with respect to its immediate inputs
(from the layer below it) and whether the final gate (on the topmost layer) evaluates to 1.
To do so, the verifier tosses logm random coins and on random string j ∈ [m], it checks
whether the following is true:

Q′j := (Cj(x) ?= `′0j) ∧ (L′1j(`0) ?= `′1j) . . . ∧ (L′dj(`d−1) ?= `′dj) ∧ `′dj ,

where the clause (L′ij(`i−1) ?= `′ij) outputs 1 iff (L′ij(`i−1) equals `′ij). As explained earlier,
each of the clauses, checks whether the gate L′ij is correct, with respect to its input layer
`(i−1). Notice here that each check Qj , checks one gate in every layer and furthermore
these checks are uniform across a layer, i.e. every gate in a layer is checked with the
same probability.
To perform the check above, we query the proof bits `i−1|S′

ij
, making a constant number

of queries, since the fanin of every gate is a fixed constant, i.e. Lij has fanin |S′ij | = O(1).
We then evaluate the threshold gate Lij on these bits and take the ∧ across the layers.
The check (Cj(x) ?= `′0j) needs to query q queries to x, hence the total number of queried
proof bits is q+O(log logm) = q+O(log r). Further note that the randomness complexity
of the verifier remains the same as before, = r = logm.
We now prove the completeness and soundness of the protocol P ′. Since the reduction is
randomized, this boils down to proving that, 1) Completeness: given a Max q-CSP that
was c-satisfiable, with high probability it gets mapped to a Max q′-CSP that is perfectly
satisfiable and 2) Soundness: given a Max q-CSP that was at most s-satisfiable, with
high probability it gets mapped to a Max q′-CSP that is at most s′-satisfiable.

Completeness. If the original proof system P had completeness 9/10, then there exists a
proof Π = x which satisfies 9/10 of the clauses C. The new prover can give us the bit
vectors, x and in addition the evaluations of the circuit Γ(x), i.e. x, `1 := (Cj(x))mj=1 and
`i := (Lij(`i−1))mj=1. In Lemma 13, we prove that with probability ≥ 1− 1/m1/4, `d = 1.
Since every query Q′j checks the consistency of a set of gates and if the bit `dj = 1 we get
that with probability 1− 1/m1/4 = 1− 2−Ω(r), completeness equals 1.

Soundness. We will call a circuit Γm(C) “good” if the following property holds:
For all layers i, ∀`i ∈ {0, 1}wi such that `i ≤ 7/10, the circuit is such that Li+1(`i) ≤ 6/10.
(Recall that Li+1(z) denotes the output of layer Li+1 when evaluated on the string z.)
Lemma 13 gives us that,

Pr[∀`i with `i ≤ 7/10, Li+1(`i) ≤ 6/10] ≥ 1− 2−m/2
i

Taking a union bound over the layers of the circuit, we get that,

Pr[Γm(C) is good ] = Pr[∀i,∀`i with `i ≤ 7/10, Li+1(`i) ≤ 6/10]

≥ 1− (log logm)2−m/2
d

≥ 1− 2−
√
m = 1− 2−Ω(r)

We will now show that if the randomized circuit Γm(C) is good then the new PCP is
sound. Since the circuit is good with high probability, showing this is enough to complete
the randomized reduction claimed in Theorem 2.
From now on, we will assume that the circuit is good. If the original proof system P had
soundness 6/10, then for all proofs Π that the prover might give, Π satisfies ≤ 6/10 of
the clauses C. Let Π′ = (x, `0, . . . , `d) be the proof provided by the new prover.
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Let z0 := (Cj(x))mj=1 and zi+1 := (L(i+1)j(`i))wi
i=1 be the true local evaluations. Note

here that, zi+1 is the evaluation bits of layer Li+1 evaluated on the bits that the prover
provides in the previous layer, `i. By the soundness of P we get that x satisfies at most
6/10 of C which means that z0 ≤ 6/10.
Now we have two cases:
1. The prover provided the bit vectors `i such that they agree with the true evaluations

zi in most places, i.e.

∀i, Pr
j∼[wi]

[`ij 6= zij ] ≤ 1/10.

Hence we have that `0 ≤ z0 + 1/10 ≤ 7/10. Lemma 14 gives us that for `i ≤ 7/10,
Li+1(`i) ≤ 6/10 and therefore zi+1 ≤ 6/10. Hence we get that by induction, for all
i, zi ≤ 6/10 and `i ≤ 7/10, and more importantly `d ≤ 7/10. Recall that our verifier
checks are uniform over the every layer, and since `dj = 1 is required for verifier’s jth
check, Qj to succeed, we get that soundness is ≤ 7/10.

2. There exists a layer i ∈ {0, . . . , d} such that:

Pr
j∼[wi]

[`ij 6= zij ] > 1/10.

Since zij ’s are the correct evaluations, the above implies that, the prover’s proof will
fail the local checks in 1/10-fraction of the gates of layer i. Since the verifier checks
are uniform over the gates of every layer, (i.e. they check the gate of each layer with
the same probability), the verifier checks the incorrect gates with probability at least
1/10. Hence the soundness in this case is ≤ 9/10.

Note that one of these cases has to occur, hence the overall soundness is the maximum of
the two cases, i.e. ≤ 9/10.

Proof Length. Every layer Li has width m/2i. Thus the total number of gates in the circuit
is m+m/2 + . . . = O(m) = O(2r). Since Π′ consists of the original proof appended with
the circuit evaluations, the proof length is n+O(2r). J

We now complete the proofs of completeness and soundness claims used in the proof of
Theorem 2.

I Lemma 13 (Completeness). Let y0 ∈ {0, 1}m be such that y0 ≥ 9/10. Let yi ∈ {0, 1}wi

denote the output string of layer i, when C is evaluated on y0. Then we have that with
probability ≥ 1− 1/m1/4 for all i, yi satisfies yi ≥ 1−

( 1
10
)2i

and hence yd = 1.

Notice here that the completeness 1− η increases to 1− (η)2 at each step, instead of 1− η
to 1− η/2, like it did in the previous section. This increase allows us to use only log logm
layers to get perfect completeness, albeit with high probability. Now we prove the lemma.

Proof. The theorem statement is implied by proving that with probability ≥ 1− 1/m1/4 for
all i, (1− yi+1) ≤ (1− yi)2.
We will prove the lemma by induction on i. Note that the base case i = 0, holds trivially.
Now consider the (i+ 1)th layer of the circuit and the gates L(i+1)j that take as input the
set S(i+1)j corresponding to random sets of size f from [wi].

By induction yi ≥ 1−
( 1

10
)2i

≥ .9 and .2/(1−yi) ≥ 2. For a fixed L(i+1)j , by the Chernoff
bound 2 on number of 0’s we get,

Pr[L(i+1)j(yi) = Thr.8(yi|S(i+1)j
) = 0] = Pr[Thr.2((1− yi)|S(i+1)j

) = 1]
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≤ exp(Ω((.2/(1− yi)) log((.2/(1− yi))(1− yi)f))
= exp(Ω(log((.2/(1− yi))f))
≤ (1− yi)3

for some large enough constant f .
Chernoff bound 1 over all the gates in Li+1 for the number of 0’s gives gives that,

Pr[(1−yi+1) ≥ (1−yi)2] < exp(−Ω(((1−yi)2/(1−yi)3)(1−yi)3(m/2i))) = exp(−Ω((1−yi)2(m/2i)))

As we have log logm layers m/2i > m/ logm, hence

Pr[(1− yi+1) ≥ (1− yi)2] < exp(−Ω((1− yi)2(m/ logm)))

A Markov bound over all the gates in Li+1 for the number of 0’s gives gives that,

Pr[(1− yi+1) ≥ (1− yi)2] ≤ (1− yi).

Together these bounds imply

Pr[(1− yi+1) ≥ (1− yi)2] ≤ log2(m)/
√
m.

Union bound over all logm layers gives probability ≤ (log logm) log2(m)/
√
m ≤ 1/m1/4.

Hence with probability ≥ 1− 1/m1/4, yd ≥ 1−
( 1

10
)2log log(m)

≥ 1− 1/m2. As there are ≤ m
gates at last layer this means with probability ≥ 1− 1/m1/4, yd = 1. J

I Lemma 14 (Soundness). Let yi ∈ {0, 1}wi denote an instantiation of the output gates of
layer i with yi ≤ 7/10. Let Li+1(yi) denote the output of layer i+ 1 when evaluated on the
string yi. Then with probability 1 − 2−m/2i , for all yi, Li+1(yi) satisfies Li+1(yi) ≤ 6/10.
Formally,

Pr[∀yi with yi ≤ 7/10, Li+1(yi) ≤ 6/10] ≥ 1− 2−m/2
i

.

Proof. Fix a gate L(i+1)j . Given that the fraction of 1s in layer i is at most 7/10, using
Chernoff bound 1, we get that,

Pr[Thr0.8(S(i+1)j) = 1] = Pr[
1
f

∑
k∈S(i+1)j

`ik − 7/10 > 8/10 = 7/10(1 + 1/7)] < exp(−(1/7)2(7f/10)/3) < 1/f

for large enough constant f .
By applying Chernoff bound 2 (assuming large enough f) over all gates L(i+1)j , we get

that,

Pr[Li+1(yi) > 6/10] < exp(−Ω((6f/10)(log(6f/10))(m/(f2i+1))))
= exp(−Ω((log(6f/10))(m/2i)))
< exp(−2m/2i).

for large enough constant f.
Hence a union bound over all possible 2m/2i strings yi gives that,

Pr[∃yi, Li+1(yi) > 6/10] ≤ 2m/2
i

e−2m/2i

< 2−m/2
i

. J
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5 Gap-ETH without perfect completeness

In this section we study the relation between the time complexities of the MAX 3-SAT
problem with and without perfect completeness. We show that the Gap-ETH conjecture
with and without perfect completeness is equivalent by giving an algorithm for MAX 3-
SAT without perfect completeness, that uses an algorithm for MAX 3-SAT with perfect
completeness as a subroutine and runs in 2o(n)-time iff the latter does so.

We first prove that Gap-ETH conjecture with and without perfect completeness are
equivalent for randomized algorithms with two-sided error. We show this by showing
that the Gap-ETH conjecture without perfect completeness is false if the one with perfect
completeness is false.

I Theorem 15. If there exists a randomized (two-sided error) 2o(n) time algorithm for MAX
3SAT(1, 1− γ), for all constants γ > 0, then there exists a randomized (two-sided error) 2o(n)

time algorithm for MAX 3SAT(s(1 + ε), s) for all constants s, ε.

We will prove the above in its contra-positive form. Suppose there is a 2o(n) algorithm
for MAX 3SAT(1, 1− γ) for all constants γ. We will then show that for all constants ε, s, δ,
there exists an algorithm for MAX 3SAT(s(1 + ε), s) with running time less than 2δn. Our
randomized algorithm for MAX 3SAT(s(1 + ε), s) will use the algorithm for satisfiable MAX
3SAT(1, 1− γ) as a subroutine and run in time less than 2δn. The following lemma forms
the crux of the proof.

I Lemma 16. For all constant s, ε > 0 there exists a large enough constant k, such that
there exists a randomized reduction from MAX 3-SAT(s(1 + ε), s) on n variables and O(n)
clause to MAX O(k)-CSP(1, 1/2) on n variables and O(n) variables, such that:

If the original instance was a NO instance, then the reduction produces an instance which
is not a NO instance with probability ≤ 2−n.
If the original instance was a YES instance, then the reduction produces a YES instance
with probability ≥ 2−n/k.

Proof. Let C = {C1, . . . , Cm} be a MAX 3SAT(s(1 + ε), s) instance. We can assume without
loss of generality, that ε < 1/100, since the result for a smaller gap implies the result for a
larger gap.

Let (Si)ni=1 be a set family in which every set Si is a random set chosen by sampling with
replacement from [m]. Consider new clauses Bi such that each clause is a threshold gate:
Bi = Thrs(1+ε/2)(C|Si

), where C denotes the vector (C1(x), . . . , Cm(x)).
Our final CSP will be over the original set of variables xi. We will have a clause for each

of the n Bi’s. For the ith clause Bi, we will find the values of all Cj such that j ∈ Si and
then verify that their threshold value is ≥ s(1 + ε/2). Our query size is 3k as we find values
for variables in k clauses each of them on 3 variables.

Soundness. For a NO instance and a fixed assignment x the fraction of clauses satisfied
by x is ≤ s. By the Chernoff bound 1, the probability that clause Bi is satisfied is
≤ exp(−(ε/2)2sk/3). The probability that at least half of the Bi’s are satisfied is at most,(
n
n/2
)
exp(−Ω(ε2skn)) which is less than exp(−2n), when k is taken to be a large enough

constant, depending only on ε, s. Therefore by a union bound, the probability that there
exists an assignment x that satisfies at least half of the Bi’s is ≤ 2nexp(−2n) ≤ 2−n.

Completeness. For a YES instance there exists an assignment x that satisfies ≥ s(1 + ε)-
fraction of the clauses. By the Chernoff bound 1 the probability that the clause Bi is
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unsatisfied is ≤ exp(−(ε/3)2sk/2) as ε < 1/100. Therefore the probability that all the
Bi’s are satisfied is (1− exp(−Ω(ε2sk)))n ≥ (1− 10/k)n which is ≥ 2−n/k when k is a
large enough constant. J

Proof of Theorem 15. The randomized algorithm for solving MAX 3SAT(s(1 + ε), s) is
as follows: We will run the reduction from Lemma 16 2n/kn2 times and then convert the
resulting MAX O(k)-CSP(1, 1/2) instances to MAX 3SAT(1, 1− γ) instances on O(k2kn)
variables and O(k2kn) clauses where γ is a constant depending on k. Then we run the 2o(n)

algorithm for MAX 3SAT(1, 1−γ) (still 2o(n) as k, γ are constants) on the resulting instances
and if any of the outputs is YES we will also output YES.

By repeating the algorithm for MAX 3SAT(1, 1− γ) poly(n) times we can assume the
the probability that the algorithm errs is ≤ 2−n2 , hence we will assume this wlog.

Pr[Error on a YES instance] ≤ Pr[Algorithm errs on one of the produced instances]

+ Pr[None of the 2n/kn2 runs produce a YES instance]

≤ 2−n
2
2n/kn2 + (1− 2−n/k)2n/kn2

≤ 2−n/2

Pr[Error on a NO instance] ≤ Pr[Algorithm errs on one of the produced instances]

+Pr[On one of the 2n/kn2 runs the output was not a NO instance]

≤ 2−n2
2n/kn2 + 2n/kn22−n

≤ 2−n/2

Total running time = 2n/kn22o(n) which for large enough k is < 2δn. This gives us the
desired contradiction. J

We now prove that in fact Gap-ETH conjecture with and without perfect completeness
are equivalent for randomized algorithms with no false positives.

I Reminder of Theorem 3. If there exists a randomized (with no false positives) 2o(n) time
algorithm for MAX 3SAT(1, 1− γ) for all constant γ > 0 then there exists a randomized(with
no false positives) 2o(n) time algorithm for MAX 3SAT(s(1 + ε), s) for all constants s, ε > 0.

As in the proof of Theorem 15, we will prove by the above by contradiction. Assume
there exists no algorithm for MAX 3SAT(s(1+ ε), s) with running time less than 2δn for some
constant δ > 0, while there is a 2o(n) algorithm for MAX 3SAT(1, 1− γ) for all constants γ.
We then give a randomized algorithm for MAX 3SAT(s(1 + ε), s) using the algorithm for
satisfiable MAX 3SAT(1, 1− γ) as a subroutine running in time less than 2δn. The following
lemma which is a stronger version of Lemma 16 with only one-sided error forms the crux
of the proof.

I Lemma 17. For all constant s, ε > 0 there exists a large enough constant k, such that
there exists a randomized reduction from MAX 3SAT(s(1 + ε), s) to MAX O(k)-CSP(1, 1/2)
with O(n) variables such that:

If the original instance was NO then the reduced instance is also a NO instance.
If the original instance was YES then the reduced instance is YES with probability ≥ 2−n/k.

Proof of Theorem 3. The randomized algorithm for solving MAX 3SAT(s(1 + ε), s) is as
follows: We will run the reduction from Lemma 17 2n/kn2 times and then convert the
resulting MAX O(k)-CSP(1, 1/2) instances to a MAX 3SAT(1, 1− γ) instances on O(k2kn)
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variables and O(k2kn) clauses where γ is a constant depending on k. Then we run the 2o(n)

algorithm for MAX 3SAT(1, 1− γ) algorithm (still 2o(n) as k, γ are constants) on them and
if any of the outputs is YES we will also output YES.

By repeating the algorithm poly(n) times we can assume the the probability that the
algorithm errs (one sided error) is ≤ 2−n2 , hence we will assume this wlog.

For a NO original instance we will always output a NO instance.

Pr[Error on a YES instance] ≤ Pr[Algorithm errs on one of the produced instances]

+ Pr[None of the 2n/kn2 runs produce a YES instance]

≤ 2−n
2
2n/kn2 + (1− 2−n/k)2n/kn2)

≤ 2−n

Total running time = 2n/kn22o(n) which for large enough k is < 2δn. This gives us the
desired contradiction. J

Proof of Lemma 17. Let C = {C1, . . . , Cm} be a MAX 3SAT(s(1 + ε), s). We can assume
without loss of generality, that ε < 1/100, since the result for a smaller gap implies the result
for a larger gap. Let the number of clauses in C be m = ρn. We will sample with repetition
from C to produce a list L of clauses of size tρn, for some t > 1. We call a list balanced if:
1. For every set S ⊆ C, |S| = sρn, each clause in S occurs in L at most s(1 + ε/3)tρn times.
2. For every set S ⊆ C, |S| = s(1 + ε)ρn, each clause in S occurs in L at least s(1 + 2ε/3)tρn

times.

It is easy to see that the probability of sampling an unbalanced list is:

Pr[L is unbalanced] ≤
(
ρn

sρn

)
exp(−ε2stρn/9) +

(
ρn

s(1 + ε)ρn

)
exp(−ε2s(1 + ε)tρn/16)

≤ exp(−10ρn),

when t is large enough and since ε < 1/100.
Let C′ be the CSP given by the set of clauses in L (repeated clauses might be present in

C). If L is balanced then the soundness of C′ is ≤ s(1+ε/3) and completeness is ≥ s(1+2ε/3).
If our list is not balanced we will reject it and output any NO instance. This can be done in
polynomial time as we can check the condition 1 by finding a set of clauses of size sρn which
occurs the most and checking that it occurs at most s(1 + ε/3)tρn in L. We can similarly
check condition 2.

Let (Si)|L|i=1 be the set family given to us by the expander sampler from Lemma 7 with
parameters ES((100/(s2ε2k)), (sε/6), |L|). Consider new clauses Bi such that each clause is
a threshold gate, i.e. Bi = Thrs(1+ε/2)(C′|Si

), where C′ denotes the vector of clauses of L.
By the sampler property |Si| ≤ k and the number of Bi’s is equal to |L| = tρn.

Our final CSP will be given by the set of clauses Bi. For the ith clause will find the values
of all C ′j such that j ∈ Si and then verify that their threshold value is ≥ s(1 + ε/2). Our
query size is 3k as we find values for variables in k clauses each of them on 3 variables.

Soundness . If L is balanced, in the NO case the soundness is ≤ s(1 + ε/3). Then we get
that,
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Pr
i

[Bi(C′) = 1] = Pr

 1
|Si|

∑
j∈Si

C′j ≥ s(1 + ε/2)


= Pr

 1
|Si|

∑
j∈Si

C′j − s(1 + ε/3) ≥ s(ε/6)


≤ 100/(s2ε2k)

where the last inequality follows from the properties of expander sampler in Lemma 7.
Now for large enough k we get 100/(s2ε2k) ≤ 1/2 hence starting from all NO instances
gives us NO instances.
If L is unbalanced we always output a NO instance.

Completeness. By the property of the expander sampler in Lemma 7, the number of query
sets that intersect with some query set Si are at most O(k2) for large enough k. As
the original instance was a YES instance there exists an x = xc which satisfies s(1 + ε)
fraction of the clauses. As each clause of list L is a random clause from the original set
of clauses, the probability that any specific Bi evaluates to 1 is ≥ 1− exp(−Ω(−ε2ks))
by the Chernoff bound for assignment xc.
As each clause of list L is a random clause from the original set of clauses, we get that the
random variables (randomness from choosing the list L, after fixing the sets Si) Bi and
Bj are independent, if two query sets Si and Sj do not intersect. As calculated above,
the probability that any clause fails is ≤ exp(−Ω(−ε2ks)). For large enough constants k,

e ·O(k2)exp(−Ω(−ε2ks)) < 1,

which allows us to apply the Lovász local lemma as given in Lemma 5. This gives us that,

Pr
L

[∧Bi(C′) = 1] ≥ (1− 1/k3)tρn ≥ 2−n/(2k).

Taking into account the case where L is unbalanced, the probability of outputting a YES
instance is ≥ 2−n/(2k) − 2−10ρn ≥ 2−n/k for large enough k. J

6 Conclusion

The reduction in Section 3 is not useful to get perfect completeness for PCPs, while
preserving their query complexity and losing some factor in the randomness complex-
ity. When the construction is composed with query reduction, it only gives us that
PCPc,s[logn+O(1), O(1)] ⊆ PCP1,s′ [logn+O(log logn), O(1)], which is anyway the blow-up
incurred in state of the art PCPs for NP [11]. Hence we pose the following problem:

I Open Problem 1. Let c, s, s′ ∈ (0, 1) with s < c be constants. Then is it true that,

PCPc,s[logn+O(1), O(1)] ⊆ PCP1,s′(logn+ o(log logn), O(1))?
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A Proof of Theorem 8

We first consider an expander sampler from Lemma 7 with parameters (ε, δ/2, N). This is
an expander graph G over N nodes, with the set family ES = (Sv)v∈[N ], where Sv = set of
neighbors of v in G. From the proof given in the sampler survey [16], one can check that if
one takes the second eigenvalue λ to be small enough, ≤ poly(ε, δ), then the following holds:

For any string x ∈ {0, 1}N ,

Pr
S∼ES

[|(x|S)− x| > ε] ≤ δ/2. (1)

Now let us see, how to achieve property (2). We use the Expander Mixing Lemma, and
show (proof deferred to later in this section) that if λ is small enough (≤ poly(γ)) then
the following holds: For all η < (1 − γ)/2, for any string x ∈ {0, 1}N , where x ≥ 1 − η,
we get that,

Pr
S∼ES

[(x|S) < γ] ≤ η/4. (2)

Taking the second eigenvalue λ less than the minimum required in both proofs above,
we get that both the above statements hold, for some λ = Oε,δ,γ(1). Note that the degree
of an expander, which is also the sample complexity, is poly(1/λ) = Oε,δ,γ(1) = C, hence
property (3) holds.

To get property (4), we arbitrarily take N/2 of the samples and define this as the set
family S given by the sampler. This hurts the probabilities in equations 1 and 2 by a factor
of at most 2 and hence we get properties (1), (2) for the new set family.

Proof of property (2). Let B ⊂ [N ] be the positions of zeros in x and let C ⊂ [N ] be the
set of vertices that have at least 1 − γ-fraction of their neighbors in B. Notice that the
vertices S in C are exactly those samples on which x|S < 1− γ, hence it is enough to bound
|C|/N = η′.

We know that |B|/N = η and let |C|/N = η′. By the Expander mixing lemma we
get that,
|E(B,C)|
|E(G)| ≤ ηη

′ + λ
√
ηη′,

where λ is the second eigenvalue of graph G. But by the property of C, we get, |E(B,C)|
|E(G)| ≥

(1− γ)η′. Combining these two we get that η′ ≤ (λ2/(1− γ − η)2)η ≤ (4λ2/(1− γ)2)η. We
can take λ to be small enough in terms of γ, to get that η′ < η/4. J
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