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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 19092 “Beyond-Planar
Graphs: Combinatorics, Models and Algorithms” which brought together 36 researchers in the
areas of graph theory, combinatorics, computational geometry, and graph drawing. This seminar
continued the work initiated in Dagstuhl Seminar 16452 “Beyond-Planar Graphs: Algorithmics
and Combinatorics” and focused on the exploration of structural properties and the development
of algorithms for so-called beyond-planar graphs, i.e., non-planar graphs that admit a drawing
with topological constraints such as specific types of crossings, or with some forbidden crossing
patterns. The seminar began with four talks about the results of scientific collaborations ori-
ginating from the previous Dagstuhl seminar. Next we discussed open research problems about
beyond planar graphs, such as their combinatorial structures (e.g., book thickness, queue num-
ber), their topology (e.g., simultaneous embeddability, gap planarity, quasi-quasiplanarity), their
geometric representations (e.g., representations on few segments or arcs), and applications (e.g.,
manipulation of graph drawings by untangling operations). Six working groups were formed that
investigated several of the open research questions. In addition, talks on related subjects and
recent conference contributions were presented in the morning opening sessions. Abstracts of all
talks and a report from each working group are included in this report.
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1 Executive Summary

Seok-Hee Hong (The University of Sydney, AU)
Michael Kaufmann (Universität Tübingen, DE)
János Pach (EPFL – Lausanne, CH)
Csaba D. Tóth (California State University – Northridge, US)

License Creative Commons BY 3.0 Unported license
© Seok-Hee Hong, Michael Kaufmann, János Pach, Csaba D. Tóth

Most big data sets are relational, containing a set of objects and relations between the objects.
This is commonly modeled by graphs, with the objects as the vertices and the relations as the
edges. A great deal is known about the structure and properties of special types of graphs, in
particular planar graphs which are fundamental for both Graph Theory, Graph Algorithms
and Automatic Layout. Structural properties of planar graphs can often be expressed, for
example, in terms of excluded minors, low density, and small separators. These properties
lead to efficient algorithms; consequently a number of fundamental algorithms for planar
graphs have been discovered. As many of the characteristic properties of planar graphs have
been generalized (e.g., graph minor theory, topological obstructions, χ-boundedness), these
algorithms also extend in various directions to broad families of graphs.

Typical real world graphs, such as social networks and biological networks, are nonplanar.
In particular, the class of scale-free networks, which can be used to model web-graphs, social
networks and many kinds of biological networks, are sparse nonplanar graphs, with globally
sparse and locally dense structure. To analyze and visualize such real world networks, we
need to formulate and solve fundamental mathematical and algorithmic research questions on
sparse nonplanar graphs. Sparsity, in most cases, is explained by properties that generalize
those of planar graphs: in terms of topological obstructions or forbidden intersection patterns
among the edges. These are called beyond-planar graphs. Important beyond-planar graph
classes include the following:

k-planar graphs: graphs that can be drawn with at most k crossings per edge;
k-quasi-planar graphs: graphs which can be drawn without k mutually crossing edges;
k-gap-planar graphs: graphs that admit a drawing in which each crossing is assigned to
one of the two involved edges and each edge is assigned at most k of its crossings;
RAC (Right Angle Crossing) graphs: graphs that have straight-line drawings in which
any two crossing edges meet in a right angle;
bar k-visibility graphs: graphs whose vertices are represented as horizontal segments (bars)
and edges are represented as vertical lines connecting bars, intersecting at most k bars;
fan-crossing-free graphs: graphs which can be drawn without fan-crossings; and
fan-planar graphs: graphs which can be drawn such that every edge is crossed only by
pairwise adjacent edges (fans).

Compared to the first edition of the seminar, we planned to focus more on aspects of
computational geometry. Therefore, we included one new organizer as well as some more
participants from this field.

Thirty-six participants met on Sunday afternoon for a first informal get-together and
reunion since the last workshop which took place more than two years ago. From that event,
the four working groups nearly all have completed and published subsequent work. We
decided to build on the achievements of the previous meeting and scheduled short talks
recalling the previous seminar’s results. On Monday afternoon, we held an engaging open
problems session and formed new working groups. Notably, this time, more problems related
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to computational geometry as well as questions from combinatorics have been proposed. Open
problems included questions about the combinatorial structures (e.g, book thickness, queue
number), the topology (e.g., simultaneous embeddability, gap planarity, quasi-quasiplanarity),
the geometric representations (e.g., representations on few segments or arcs), and applications
(e.g., manipulation of graph drawings by untangling operations) of beyond-planar graphs.

In the opening session of every morning, we have drawn inspiration from additional talks,
fresh conference contributions on related topics (see abstracts). An impressive session on the
last day was devoted to progress reports that included plans for publications and follow-up
projects among researchers that would have been highly unlikely without this seminar. From
our personal impression and the feedback of the participants, the seminar has initiated
collaboration and lead to new ideas and directions.

We thank all the people from Schloss Dagstuhl for providing a positive environment and
hope to repeat this seminar, possibly with some new focus, for a third time.
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3 Overview of Talks

3.1 On the relationship between k-planar and k-quasiplanar graphs
Patrizio Angelini (Universität Tübingen, DE)

License Creative Commons BY 3.0 Unported license
© Patrizio Angelini

Joint work of Patrizio Angelini, Michael A. Bekos, Franz J. Brandenburg, Giordano Da Lozzo, Giuseppe Di
Battista, Walter Didimo, Giuseppe Liotta, Fabrizio Montecchiani, Ignaz Rutter, Michael Hoffmann,
Csaba Tóth

Main reference Patrizio Angelini, Michael A. Bekos, Franz J. Brandenburg, Giordano Da Lozzo, Giuseppe Di
Battista, Walter Didimo, Giuseppe Liotta, Fabrizio Montecchiani, Ignaz Rutter: “On the
Relationship Between k-Planar and k-Quasi-Planar Graphs”, in Proc. of the Graph-Theoretic
Concepts in Computer Science – 43rd International Workshop, WG 2017, Eindhoven, The
Netherlands, June 21-23, 2017, Revised Selected Papers, Lecture Notes in Computer Science,
Vol. 10520, pp. 59–74, Springer, 2017.

URL https://doi.org/10.1007/978-3-319-68705-6_5
Main reference Michael Hoffmann, Csaba D. Tóth: “Two-Planar Graphs Are Quasiplanar”, in Proc. of the 42nd

International Symposium on Mathematical Foundations of Computer Science, MFCS 2017, August
21-25, 2017 – Aalborg, Denmark, LIPIcs, Vol. 83, pp. 47:1–47:14, Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik, 2017.

URL http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.47

In the area of beyond planarity, the two most studied families of graph classes are those of
k-planar and k-quasiplanar graphs. A graph is k-planar if it admits a drawing in the plane so
that no edge is crossed by more than k edges, while it is k-quasiplanar if it admits a drawing
that contains no set of pairwise crossing edges.

We are interested in inclusion relationships between the classes belonging to these two
families. Clearly, every k-planar graph is (k + 1)-planar, and every k-quasiplanar graph is
(k + 1)-quasiplanar, and hence the two families define proper hierarchies. On the other hand,
the relationship between these two hierarchies is not well established yet. The only result,
which follows from the definitions, is that every k-planar graph is (k + 2)-quasiplanar.

In this work we prove that every k-planar graph is also (k+ 1)-quasiplanar. This result is
obtained by a rerouting technique that solves all sets of k+ 1 pairwise crossing edges without
introducing new ones. The question whether every k-planar graph is also k-quasiplanar, for
k > 2, remains open.

3.2 Z2-genus of graphs and minimum rank of partial symmetric
matrices

Radoslav Fulek (IST Austria – Klosterneuburg, AT)

License Creative Commons BY 3.0 Unported license
© Radoslav Fulek

Joint work of Radoslav Fulek, Jan Kynčl
Main reference Radoslav Fulek, Jan Kynčl: “Z2-Genus of Graphs and Minimum Rank of Partial Symmetric

Matrices”, in Proc. of the 35th International Symposium on Computational Geometry, SoCG 2019,
LIPIcs, Vol. 129, pp. 39:1–39:16, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019.

URL http://dx.doi.org/10.4230/LIPIcs.SoCG.2019.39

The genus g(G) of a graph G is the minimum g such that G has an embedding on the
orientable surface Mg of genus g. A drawing of a graph on a surface is independently even if
every pair of nonadjacent edges in the drawing crosses an even number of times. The Z2-genus
of a graph G, denoted by g0(G), is the minimum g such that G has an independently even
drawing on Mg. By a result of Battle, Harary, Kodama and Youngs from 1962, the graph
genus is additive over 2-connected blocks. In 2013, Schaefer and Štefankovič proved that the

19092

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1007/978-3-319-68705-6_5
https://doi.org/10.1007/978-3-319-68705-6_5
https://doi.org/10.1007/978-3-319-68705-6_5
https://doi.org/10.1007/978-3-319-68705-6_5
https://doi.org/10.1007/978-3-319-68705-6_5
https://doi.org/10.1007/978-3-319-68705-6_5
https://doi.org/10.1007/978-3-319-68705-6_5
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.47
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.47
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.47
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.47
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.47
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4230/LIPIcs.SoCG.2019.39
http://dx.doi.org/10.4230/LIPIcs.SoCG.2019.39
http://dx.doi.org/10.4230/LIPIcs.SoCG.2019.39
http://dx.doi.org/10.4230/LIPIcs.SoCG.2019.39


128 19092 – Beyond-Planar Graphs: Combinatorics, Models and Algorithms

Z2-genus of a graph is additive over 2-connected blocks as well, and asked whether this result
can be extended to so-called 2-amalgamations, as an analogue of results by Decker, Glover,
Huneke, and Stahl for the genus. We give the following partial answer. If G = G1 ∪ G2,
G1 and G2 intersect in two vertices u and v, and G − u − v has k connected components
(among which we count the edge uv if present), then |g0(G)− (g0(G1) + g0(G2))| ≤ k + 1.
For complete bipartite graphs Km,n, with n ≥ m ≥ 3, we prove that g0(Km,n)

g(Km,n) = 1−O( 1
n ).

Similar results are proved also for the Euler Z2-genus. We express the Z2-genus of a graph
using the minimum rank of partial symmetric matrices over Z2; a problem that might be of
independent interest.

3.3 Planar Graphs of Bounded Degree have Bounded Queue Number
Henry Förster (Universität Tübingen, DE), Michael Bekos (Universität Tübingen, DE), Mar-
tin Gronemann (Universität Köln, DE), Tamara Mchedlidze (KIT – Karlsruher Institut für
Technologie, DE), Fabrizio Montecchiani (University of Perugia, IT), Chrysanthi Raftopoulou
(National Technical University of Athens, GR), and Torsten Ueckerdt (KIT – Karlsruher
Institut für Technologie, DE)

License Creative Commons BY 3.0 Unported license
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Main reference Michael Bekos, Henry Förster, Martin Gronemann, Tamara Mchedlidze, Fabrizio Montecchiani,
Chrysanthi Raftopoulou, and Torsten Ueckerdt: “Planar Graphs of Bounded Degree Have Bounded
Queue Number”, in Proc. of the 51st Annual ACM SIGACT Symposium on the Theory of
Computing (STOC’19), June 23–26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 9 pages.

URL https://doi.org/10.1145/3313276.3316324

A queue layout of a graph consists of a linear order of its vertices and a partition of its edges
into queues, so that no two independent edges of the same queue are nested. The queue
number of a graph is the minimum number of queues required by any of its queue layouts.

A long-standing conjecture by Heath, Leighton and Rosenberg states that the queue
number of planar graphs is bounded. This conjecture has been partially settled in the positive
for several subfamilies of planar graphs (most of which have bounded treewidth). In this
talk, we present a new important step towards settling this conjecture. We prove that planar
graphs of bounded degree (which may have unbounded treewidth) have bounded queue
number.

A notable implication of this result is that every planar graph of bounded degree admits
a three-dimensional straight-line grid drawing in linear volume. Further implications are that
every planar graph of bounded degree has bounded track number, and that every k-planar
graph (i.e., every graph that can be drawn in the plane with at most k crossings per edge) of
bounded degree has bounded queue number.
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3.4 Orthogonal and Smooth Orthogonal Layouts of 1-Planar Graphs
with Low Edge Complexity

Chrysanthi Raftopoulou (National Technical University of Athens, GR)

License Creative Commons BY 3.0 Unported license
© Chrysanthi Raftopoulou

Joint work of Chrysanthi Raftopoulou, Evmorfia Argyriou, Sabine Cornelsen, Henry Förster, Michael Kaufmann,
Martin Nöllenburg, Yoshio Okamoto, Alexander Wolff

Main reference Evmorfia N. Argyriou, Sabine Cornelsen, Henry Förster, Michael Kaufmann, Martin Nöllenburg,
Yoshio Okamoto, Chrysanthi N. Raftopoulou, Alexander Wolff: “Orthogonal and Smooth
Orthogonal Layouts of 1-Planar Graphs with Low Edge Complexity”, in Proc. of the Graph
Drawing and Network Visualization – 26th International Symposium, GD 2018, Barcelona, Spain,
September 26-28, 2018, Proceedings, Lecture Notes in Computer Science, Vol. 11282, pp. 509–523,
Springer, 2018.

URL https://doi.org/10.1007/978-3-030-04414-5_36

While orthogonal drawings have a long history, smooth orthogonal drawings have been
introduced only recently. So far, only planar drawings or drawings with an arbitrary number
of crossings per edge have been studied. Recently, a lot of research effort in graph drawing
has been directed towards the study of beyond-planar graphs such as 1-planar graphs, which
admit a drawing where each edge is crossed at most once. In this talk, we consider graphs
with a fixed embedding. For 1-planar graphs, we present algorithms that yield orthogonal
drawings with optimal edge complexity and smooth orthogonal drawings with small edge
complexity. For the subclass of outer-1-planar graphs, which can be drawn such that all
vertices lie on the outer face, we achieve optimal edge complexity for both, orthogonal and
smooth orthogonal drawings.

3.5 Inserting an Edge into a Geometric Embedding
Ignaz Rutter (Universität Passau, DE)

License Creative Commons BY 3.0 Unported license
© Ignaz Rutter

Joint work of Marcel Radermacher, Ignaz Rutter
Main reference Marcel Radermacher, Ignaz Rutter: “Inserting an Edge into a Geometric Embedding”, in Proc. of

the Graph Drawing and Network Visualization – 26th International Symposium, GD 2018,
Barcelona, Spain, September 26-28, 2018, Proceedings, Lecture Notes in Computer Science,
Vol. 11282, pp. 402–415, Springer, 2018.

URL https://doi.org/10.1007/978-3-030-04414-5_29

The algorithm to insert an edge e in linear time into a planar graph G with a minimal
number of crossings on e [1], is a helpful tool for designing heuristics that minimize edge
crossings in drawings of general graphs. Unfortunately, some graphs do not have a geometric
embedding Γ such that Γ + e has the same number of crossings as the embedding G + e.
This motivates the study of the computational complexity of the following problem: Given a
combinatorially embedded graph G, compute a geometric embedding Γ that has the same
combinatorial embedding as G and that minimizes the crossings of Γ+e. We give polynomial-
time algorithms for special cases and prove that the general problem is fixed-parameter
tractable in the number of crossings. Moreover, we show how to approximate the number of
crossings by a factor (∆− 2), where ∆ is the maximum vertex degree of G.

References
1 Gutwenger, C., Mutzel, P., Weiskircher, R.: Inserting an Edge into a Planar Graph. Al-

gorithmica 41(4), 289–308 (2005). 10.1007/s00453-004-1128-8
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3.6 A crossing lemma for multigraphs
Géza Tóth (Alfréd Rényi Institute of Mathematics – Budapest, HU) and János Pach (EPFL –
Lausanne, CH)

License Creative Commons BY 3.0 Unported license
© Géza Tóth and János Pach

Joint work of Géza Tóth, János Pach
Main reference János Pach, Géza Tóth: “A Crossing Lemma for Multigraphs”, in Proc. of the 34th International

Symposium on Computational Geometry, SoCG 2018, June 11-14, 2018, Budapest, Hungary,
LIPIcs, Vol. 99, pp. 65:1–65:13, Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2018.

URL http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.65

Let G be a drawing of a graph with n vertices and e > 4n edges, in which no two adjacent
edges cross and any pair of independent edges cross at most once. According to the celebrated
Crossing Lemma of Ajtai, Chvátal, Newborn, Szemerédi and Leighton, the number of crossings
in G is at least c e3

n2 , for a suitable constant c > 0. In a seminal paper, Székely generalized this
result to multigraphs, establishing the lower bound c e3

mn2 , where m denotes the maximum
multiplicity of an edge in G. We get rid of the dependence on m by showing that, as in the
original Crossing Lemma, the number of crossings is at least c′ e3

n2 for some c′ > 0, provided
that the “lens” enclosed by every pair of parallel edges in G contains at least one vertex.
This settles a conjecture of Bekos, Kaufmann, and Raftopoulou.

This work started at the Dagstuhl Seminar “Beyond-Planar Graphs: Algorithmics and
Combinatorics”, November 6-11, 2016, in a working group, together with Stefan Felsner,
Michael Kaufmann, Vincenzo Roselli, Torsten Ueckerdt, and Pavel Valtr. We are very grateful
to them for their valuable comments, suggestions, and for many interesting discussions.

3.7 The Number of Crossings in Multigraphs with No Empty Lens
Torsten Ueckerdt (KIT – Karlsruher Institut für Technologie, DE)

License Creative Commons BY 3.0 Unported license
© Torsten Ueckerdt

Joint work of Michael Kaufmann, János Pach, Géza Tóth, Torsten Ueckerdt
Main reference Michael Kaufmann, János Pach, Géza Tóth, Torsten Ueckerdt: “The Number of Crossings in

Multigraphs with No Empty Lens”, in Proc. of the Graph Drawing and Network Visualization –
26th International Symposium, GD 2018, Barcelona, Spain, September 26-28, 2018, Proceedings,
Lecture Notes in Computer Science, Vol. 11282, pp. 242–254, Springer, 2018.

URL http://dx.doi.org/10.1007/978-3-030-04414-5_17

Let G be a multigraph with n vertices and e > 4n edges, drawn in the plane such that
any two parallel edges form a simple closed curve with at least one vertex in its interior
and at least one vertex in its exterior. Pach and Tóth [1] extended the Crossing Lemma of
Ajtai et al. [2] and Leighton [3] by showing that if no two adjacent edges cross and every
pair of nonadjacent edges cross at most once, then the number of edge crossings in G is at
least αe3/n2, for a suitable constant α > 0. The situation turns out to be quite different if
nonparallel edges are allowed to cross any number of times. It is proved that in this case
the number of crossings in G is at least αe2.5/n1.5. The order of magnitude of this bound
cannot be improved.

This project initiated at the Dagstuhl seminar 16452 “Beyond-Planar Graphs: Al-
gorithmics and Combinatorics,” November 2016. We would like to thank all participants,
especially Stefan Felsner, Vincenzo Roselli, and Pavel Valtr, for fruitful discussions.
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3.8 Every collinear set in a planar graph is free
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We show that if a planar graph G has a plane straight-line drawing in which a subset S of
its vertices are collinear, then for any set of points, X, in the plane with |X| = |S|, there is a
plane straight-line drawing of G in which the vertices in S are mapped to the points in X.
This solves an open problem posed by Ravsky and Verbitsky in 2008. In their terminology,
we show that every collinear set is free.

This result has applications in graph drawing, including untangling, column planarity,
universal point subsets, and partial simultaneous drawings.

Preprint of the full paper: http://arxiv.org/abs/1811.03432

4 Working groups

4.1 Traversing Edges
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Budapest, HU), János Pach (EPFL – Lausanne, CH), Günter Rote (FU Berlin, DE), Csaba
D. Tóth (California State University – Northridge, US), Géza Tóth (Alfréd Rényi Institute
of Mathematics – Budapest, HU), and Torsten Ueckerdt (KIT – Karlsruher Institut für
Technologie, DE)
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A geometric graph is a graph drawn in the plane such that its vertices are distinct points
in a general position (no three on a line) and its edges are straight-line segments. Two
edges in a geometric graph are either adjacent, crossing or disjoint. Disjoint edges may be
further classified as avoiding (or parallel) and nonavoiding, where two disjoint edges are
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called avoiding if their endpoints are in convex position. Define two edges to be traversing
if they are crossing or they are disjoint and nonavoiding. In other words, two edges are
traversing if at least one of them contains in its interior the intersection point of the two
lines that contain the two edges.

It is a natural question to ask for the density of a geometric graph with no k pairwise
conflicting edges, where ‘conflicting’ refers to one of the above-mentioned relations between
two edges.1 The case of no k pairwise adjacent edges is not interesting as it implies that the
maximum degree is k− 1. Considering geometric graphs with no k pairwise disjoint edges, it
was first proved by Pach and Törőcsik [11] that they have linearly many edges. The best
bound is due to G. Tóth [13]:

I Theorem 1 ([13]). An n-vertex geometric graph with no k pairwise disjoint edges has
O(k2n) edges.

Valtr [15] proved a linear bound considering pairwise avoiding edges.

I Theorem 2 ([15]). An n-vertex geometric graph with no k pairwise avoiding edges has
Ok(n) edges.

The case of pairwise crossing edges is a special case of a famous and rather old conjecture [6,
8] concerning the density of k-quasi-planar graphs.2

I Conjecture 3. An n-vertex k-quasi-planar graph has Ok(n) edges.

This conjecture is known to hold for k ≤ 4 [1, 4, 5] but for k > 4 it is open even for
geometric graphs. The best bound is due to Valtr:

I Theorem 4 ([14]). An n-vertex geometric graph with no k pairwise crossing edges has
Ok(n logn) edges.

The main goal of our workgroup was to prove the following relaxed variant of Conjecture 3:

I Conjecture 5 ([3]). An n-vertex geometric graph with no k pairwise traversing edges has
Ok(n) edges.

An n-vertex geometric graph with no pair of traversing edges is outerplanar and therefore
has at most 2n− 3 edges (for n > 1). For k ≤ 4 Conjecture 5 holds since Conjecture 3 holds.
For k > 4 a possible approach to prove Conjecture 5 would have been to provide a positive
answer to the following question.

I Problem 6. Is it true that every set of m segments in the plane without k pairwise
traversing segments contains a subset of Ωk(m) segments no two of which are traversing?

Indeed, if this question had an affirmative answer, then it would imply Conjecture 5
as follows. Given an n-vertex geometric graph with m edges, no k of which are pairwise
traversing, one can slightly shorten each edge and obtain a set of m segments, no k of which
are pairwise traversing. Suppose that this set contains ckm segments such that no two
of them are traversing, for some ck > 0. Then the corresponding edges of the graph are
pairwise nontraversing and hence ckm ≤ 2n − 3 and Conjecture 5 follows. Unfortunately,
by modifying a construction by Pawlik et al. [12] and Walczak [16] we provide a negative
answer to Problem 6.

1 We consider k to be a fixed integer and use the notation Ok(·) to indicate that the constant hiding in
the big O notation depends only on k.

2 Recall that a graph is k-quasi-planar if it admits a drawing in which no k edges are pairwise crossing.
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I Theorem 7. There exist sets of m segments, no three of which are pairwise traversing,
such that the maximum size of a pairwise nontraversing subset is o(m).

The maximum size of a subset with no two traversing segments in this construction is
O(m/ log logm). It is an interesting problem to determine the maximum size of such a subset
in any set of m segments no k of which are pairwise traversing. The best lower bound we
were able to find was Ω(

√
m)

In the special case of a (bipartite) geometric graph G in which all edges cross a single line
`, we were able to prove Conjecture 5. In fact in this case, a linear upper bound is known
even when no k edges pairwise cross [14]. However, for traversing edges we have devised a
simpler proof: Denote by e the complement of an edge e on the line that supports e and
observe that e1 and e2 are traversing if and only if e1 and e2 are disjoint. Therefore, as `
goes to infinity we obtain a graph with no k pairwise disjoint edges and the linear bound on
its density follows from Theorem 1. This result, along with a standard divide-and-conquer
argument, shows that an n-vertex geometric graph with no k pairwise traversing edges has
Ok(n logn) edges, without relying on the same known bound for k-quasi-planar graphs.

Alas, we were unable to make any further progress on Conjecture 5. Still, to get a better
understanding of the notion of traversing edges we reverted to simpler questions involving
such edges. Recall that an embedded graph is k-plane if each of its edges is crossed at most
k times. The maximum densities of n-vertex k-plane graphs for k = 1, 2, 3, 4 are known to be
4n−8 [10], 5n−10 [10], 5.5n−11 [9], and 6n−O(1) [2], respectively. We considered analogue
graphs with respect to traversing edges, that is, the density of k-traversing geometric graphs
– graphs in which each edge is involved in at most k traversings. Since, by definition, these
graphs are k-plane we are interested in exact bounds on their densities.

I Theorem 8. Let G be an n-vertex 1-traversing geometric graph. Then |E(G)| ≤ b2.5nc−4,
if n ≥ 2. This bound is tight.

Note that there might be asymmetry when two edges e1 and e2 are traversing according
to which of them contains the intersection point of the two supporting lines. Suppose that
e1 contains that point. Then we say that e1 is traversed by e2 and that e2 is traversing e1.
Note that if e1 and e2 are crossing, then each of them is traversing and traversed by the
other. Theorem 8 is in fact implied by each of following two variants.

I Theorem 9. Let G be an n-vertex geometric graph in which each edge is traversing at
most one edge. Then |E(G)| ≤ b2.5nc − 4, if n ≥ 2. This bound is tight.

I Theorem 10. Let G be an n-vertex geometric graph in which each edge is traversed by at
most one edge. Then |E(G)| ≤ b2.5nc − 4, if n ≥ 2. This bound is tight.

The upper bound b2.5nc − 4 matches the maximum size of an n-vertex outer 1-plane
graph [7] (an outer k-plane graph is a geometric k-plane graph in which the vertices are
in convex position). Note that for a convex geometric graph the notions of crossing and
traversing edges coincide. We only found one example of a nonconvex 1-traversing geometric
graph with the maximum possible density, namely a nonconvex drawing of K4. Call a
k-traversing geometric graph optimal if there is no other k-traversing geometric graph with
the same number of vertices and a greater number of edges.

I Problem 11. Is it true that for every integer k there is an integer nk such that every
optimal k-traversing graph with more than nk vertices is an outer k-plane graph?
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A possible way to provide a negative answer to this question would be to show that in
some cases we get different maximum densities for the different notions of traversing. Perhaps
an easier problem would be to show that the class of graphs that can be drawn such that
every edge is traversing at most k other edges and the class of graphs that can be drawn
such that every edge is traversed by at most k other edges are not the same.
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4.2 Variants of the Segment Number of a Graph
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When drawing a graph, a way to keep the visual complexity low is to use few geometric
objects for drawing the edges. This idea is captured by the segment number of a graph, that
is, the smallest number of line segments that together constitute a straight-line drawing of the
given graph. The arc number of a graph is defined analogously with respect to circular-arc
drawings. For a graph G, we denote its segment number by seg(G) and its arc number
by arc(G). So far, both numbers have only been studied for planar graphs. Two obvious
lower bounds for seg(G) are known [1]: the slope number of G and η(G)/2, where η(G)
is the number of odd-degree vertices of G. Dujmović et al. [1], who introduced slope and
segment number, showed among others that trees can be drawn such that the optimum
segment number and the optimum slope number are achieved simultaneously. In other words,
any tree T admits a drawing with η(T )/2 segments and ∆(T )/2 slopes, where ∆(T ) is the
maximum degree of T . Unfortunately, these drawings need exponential area. Therefore,
Schulz [9] suggested to study the arc number of planar graphs. Among others, he showed
that any n-vertex tree can be drawn on a polynomial-size grid (O(n1.81)× n) using at most
3n/4 arcs.

Upper bounds for the segment number and the arc number (in terms of the number of
vertices, n, ignoring constant additive terms) are known for series-parallel graphs (3n/2 vs.
n), planar 3-trees (2n vs. 11n/6), and triconnected planar graphs (5n/2 vs. 2n) [1, 9]. The
upper bound on the segment number for triconnected planar graphs has been improved for
the special cases of triangulations and 4-connected triangulations (from 5n/2 to 7n/3 and
9n/4, respectively) by Durocher and Mondal [2]. Hültenschmidt et al. [4] provided bounds
for segment and arc number under the additional constraint that vertices must lie on a
polynomial-size grid. They also showed that n-vertex triangulations can be drawn with at
most 5n/3 arcs, which is better than the lower bound of 2n for the segment number on this
class of graphs. For 4-connected triangulations, they need at most 3n/2 arcs. Kindermann
et al. [6] recently strengthened some of these results by showing that many classes of planar
graphs admit non-trivial bounds on the segment number even when restricting vertices to
a grid of size O(n)×O(n2). For drawing n-vertex trees with at most 3n/4 segments, they
reduced the grid size to n × n. Durocher et al. [3] showed that the segment number is
NP-hard to compute, even in the special case of arrangement graphs. It is still open, however,
whether the segment number is fixed-parameter tractable.

In this report, we consider several variants of the planar segment number seg that has
been studied extensively. In particular, we study the 3D segment number seg3, which is the
most obvious generalization of the planar segment number. It is the smallest number of
straight-line segments needed for a crossing-free straight-line drawing of a given graph in 3D.
We also study the crossing segment number seg× in 2D, where edges are allowed to cross, but
they are not allowed to overlap or to contain vertices in their interiors. Finally, for planar
graphs, we study the bend segment number seg∠ in 2D, which is the smallest number of
straight-line segments needed for a crossing-free polyline drawing of a given graph in 2D. For
a given polyline drawing δ of a graph in 2D or 3D, let seg(δ) be the number of straight-line
segments of which the drawing δ consists.
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Table 1 Overview over our results for cubic graphs. The lower and upper bounds depend on the
vertex connectivity γ of the given n-vertex graph G. Note that seg and seg∠ are defined only for
planar graphs.

γ seg(G) seg3(G) seg∠(G) seg×(G)

1 ≥ 5n/6 (Prop. 4) ≥ 5n/6 (Prop. 4) ≥ 5n/6 (Prop. 4) ≥ 5n/6 (Prop. 4)
2 ≤ 5n/4 + 1/2 (Thm. 5) ≤ n+ 1 (Prop. 6)

≥ 3n/4 (Prop. 8) ≥ 5n/6 (Prop. 7) ≥ 3n/4 (Prop. 8) ≥ 3n/4 (Prop. 8)
3 n/2 + 3 [5, 8] ≤ n (except K3,3; Thm. 9)

≥ 9n/14 (Prop. 10) seg∠(G) = seg(G)

Table 1 gives an overview over our results for connected (γ = 1), biconnected (γ = 2),
and triconnected (γ = 3) cubic graphs. We sketch some of the proofs in Section 4.2.2. First,
however, we establish some relationships between the variants of the segment number; see
Section 4.2.1.

4.2.1 Relationships Between Variants of the Segment Number

I Proposition 1. For any graph G it holds that seg×(G) ≤ seg3(G).

Proof. Let δ be a (crossing-free) straight-line drawing of G in 3D with seg(δ) = seg3(G). For
each triple u, v, w of three distinct vertices of G in δ let P (u, v, w) be a plane spanned by the
vectors u− v and w− v and let P be the set of all such planes. Choose a point A in R3 \

⋃
P

that does not lie in the xy-plane. Let δ′ be the drawing that results from projecting δ parallel
to the vector OA onto the xy-plane. Due to the choice of our projection, δ′ may contain
crossings, but no edge contains a vertex it is not incident to and no two edges overlap. Hence,
seg×(G) ≤ seg3(G). J

I Proposition 2. There is an infinite family of planar graphs (Ti)i≥4 such that Ti has i
vertices and the ratios seg(Ti)/ seg3(Ti), seg(Ti)/ seg∠(Ti), and seg(Ti)/ seg×(Ti) all tend
to 2 with increasing i.

Proof sketch. We construct the graph Ti starting from a triangulation with maximum
degree 6 and ti = i vertices (and, hence, 3i− 6 edges and 2i− 4 faces). For example, take
two triangular grids and glue their boundaries. We assume that i is even. To each vertex v
of the triangulation, we attach an i-fan, that is, a path of length i each of whose vertices is
connected to v. Now the idea of the proof is that, for every i-fan that must be drawn inside
one of the interior faces, we need roughly i segments if we cannot bend edges, use crossings,
or exploit 3D. Otherwise, we need only about i/2 segments. J

4.2.2 Cubic Graphs

Now we turn to cubic graphs. Consider a straight-line drawing δ of a cubic graph (in 2D or
3D). Note that there are two types of vertices; those where exactly one segment ends and
those where three segments end. We call these vertices flat vertices and tripods, respectively.
Let f(δ) be the number of flat vertices, and let t(δ) be the number of tripods in δ.

I Lemma 3. For any straight-line drawing δ of a cubic graph with n vertices, seg(δ) =
3n/2− f(δ) = n/2 + t(δ).
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· · ·

Figure 1 The graph Gk (here k = 4) is a caterpillar with k − 2 inner vertices of degree 3 where
each leaf has been replaced by a copy of the 5-vertex graph H (shaded gray).

Proof. The number of “segment ends” is 3t(δ) + f(δ) = 3n− 2f(δ) = n+ 2t(δ). The claim
follows since every segment has two ends. J

I Proposition 4. There is an infinite family (Gk)k≥1 of connected cubic graphs such that
Gk has nk = 6k − 2 vertices and seg(Gk) = seg3(Gk) = seg∠(Gk) = seg×(Gk) = 5k − 1 =
5nk/6 + 2/3.

Proof sketch. Consider the graph Gk depicted in Fig. 1 (for k = 4). In each gray-shaded
subgraph, at least two vertices are tripods. Hence, for any drawing δ of G, t(δ) ≥ 2k. Now
Lemma 3 yields that seg(δ) ≥ 5k − 1. For the drawing in Fig. 1, the bound is tight. J

Every biconnected cubic graph G admits an st-ordering, that is, an ordering 〈v1, . . . , vn〉
of the vertex set {v1, . . . , vn} of G such that for every j ∈ {2, n− 1} vertex vj has at least
one predecessor (that is, a neighbor vi with i < j) and at least one successor (that is, a
neighbor vk with k > j). Using an st-ordering of the given graph, we can construct a
straight-line drawing of the graph in 3D and bound the number of segments in the drawing
as follows.

I Theorem 5. For any biconnected cubic graph G with n vertices, seg3(G) ≤ 5n/4 + 1/2.

I Proposition 6. For any biconnected planar cubic graph G with n vertices, it holds that
seg∠(G) ≤ n+ 1. A corresponding drawing can be found in linear time.

Proof. We draw G using the algorithm of Liu et al. [7] that draws any planar biconnected
cubic graph except the tetrahedron orthogonally with at most one bend per edge and at
most n/2 + 1 bends in total. It remains to count the number of segments in this drawing. In
any vertex exactly one segment ends; in any bend exactly two segments end. In total, this
yields at most n+ 2 · (n/2 + 1) = 2n+ 2 segment ends and at most n+ 1 segments.

Concerning the special case of the tetrahedron (K4), note that it can be drawn with five
segments when bending one of its six edges. J

I Proposition 7. There is an infinite family of cubic graphs (Hk)k≥3 such that Hk has
nk = 6k vertices, seg3(Hk) = 5k = 5nk/6, and seg×(Hk) = 4k = 2nk/3.

Proof sketch. Consider the graph Hk depicted in Fig. 2 (for k = 4). It is a k-cycle where
each vertex is replaced by a copy of a 6-vertex graph K (K3,3 minus an edge). The graph Hk

has nk = 6k vertices and is not planar. In any 2D drawing with crossings at least one vertex
in each copy of K is a tripod; in 3D at least two vertices in each copy are tripods. Now
Lemma 3 yields that seg×(Hk) ≥ 4k and seg3(Hk) ≥ 5k.

Figure 2 shows that seg×(Hk) ≤ 4k and, by lifting in each copy of K the white vertex
that is not on the convex hull out of the drawing plane, that seg3(Hk) ≤ 5k. J
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Figure 2 The cubic graph Hk (here k = 4) is
a k-cycle whose vertices are replaced by the sub-
graphs in the gray shaded regions (K3,3 minus
an edge). The graph Hk has nk = 6k vertices,
seg3(Hk) = 5nk/6, and seg×(Hk) = 2nk/3.

Figure 3 The planar Hamiltonian cubic
graph Ik (here k = 9) is a k-cycle whose ver-
tices are replaced by copies of K4 minus an edge.
The graph Ik has nk = 4k vertices and seg(Ik) =
seg3(Ik) = seg∠(Ik) = seg×(Ik) = 3nk/4.

I Proposition 8. There is an infinite family of planar cubic Hamiltonian graphs (Ik)k≥3 such
that Ik has nk = 4k vertices and seg(Ik) = seg3(Ik) = seg∠(Ik) = seg×(Ik) = 3k = 3nk/4.

Proof sketch. Consider the graph Ik depicted in Fig. 3 (for k = 9). The proof is similar to
that of the crossing case in Proposition 7. J

I Theorem 9. Every triconnected cubic n-vertex graph admits a straight-line drawing in 3D
with at most n segments – except K3,3, which needs seven segments.

Proof sketch. Partition the given graph into a perfect matching and a collection of pairwise
disjoint cycles. Treat each cycle separately and draw it on a copy of the moment curve. J

I Proposition 10. There is an infinite family of triconnected cubic graphs (Fk)k≥4 such
that Fk has nk = 14k vertices and seg3(Fk) = 9k = 9nk/14.

Proof sketch. Let K ′ be the graph that results from removing one edge from K3,3 and
subdividing another edge. Now take any triconnected cubic graph with 2k vertices and
replace each of its vertices by a copy of the 7-vertex graph K ′. The resulting graph Fk has
nk = 14k vertices and is not planar.

The proof that seg3(Fk) = 9k is similar to that of the 3D case in Proposition 7. J
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Abstract. Simultaneous Graph Embedding asks the question whether a set of graphs G
with shared vertex set V can be embedded in the plane such that each graph in G is drawn
planar. We study this problem in the beyond planarity framework by allowing the graphs in
G to have crossings between their edges as long as they respect certain crossing configurations.
We call this setting Beyond-Simultaneous. In addition, we also study a setting called
Beyond-Union, where we require the union of all graphs in G to fulfill restrictions on the
crossing configurations.

We show that in setting Beyond-Simultaneous two planar graphs and a tree can always
be realized such that each of the graphs is drawn quasiplanar, we also prove that the
same holds for a 1-planar graph and a planar graph. Further, we show that in setting
Beyond-Union, a path and a matching cannot always be embedded such that their union is
k-planar for a fixed k whereas five cycles cannot always be drawn such that their union is
quasiplanar.

4.3.1 Introduction

Simultaneous Graph Embedding is a family of problems where you are given a set of graphs
G = {G1, . . . , Gk} with shared vertex set V and you are required to produce drawings
{Γ1, . . . ,Γk} of them in such a way that each vertex has the same position in every Γi

and each Γi satisfies certain readability properties. Usually, the readability property that
is pursued while searching for a simultaneous embedding is planarity and a large body of
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research has been dedicated to the complexity of deciding whether a set of graphs admits
such simultaneous embeddings or to determine if such embeddings always exist given the
number and the types of the input graphs; for a survey refer to [6].

Simultaneous Graph Embedding has been studied both from a geometric point of view
(Geometric Simultaneous Embedding – GSE) [5, 10] and from a topological point of view
(Simultaneous Embedding with Fixed Edges – SEFE) [7, 8]. In particular, in GSE, the edges
are required to be straight-line segments while in SEFE they can be drawn as topological
curves, but the edges shared between two graphs Gi and Gj have to be drawn in the same
way in Γi and Γj . In the following, we focus on the topological setting unless otherwise
specified.

We study two variants of the simultaneous embedding problem in the beyond planarity
framework by allowing the graphs in G to be drawn non-planar. In the first problem, we
only restrict the crossings in each of the graphs G ∈ G.

I Problem 1 (Beyond-Simultaneous). Is it possible to simultaneously embed a set of graphs
G with shared vertex set V in the plane such that each graph G ∈ G is drawn k-(quasi)planar?

Recall that in a k-planar drawing, each edge is crossed at most k times whereas in a
k-quasiplanar drawing, there is no k-tuple of pairwise intersecting edges. Also recall, that
3-quasiplanar is often referred to as quasiplanar. In the second problem, we additionally
restrict the crossings in the union of all graphs in G.

I Problem 2 (Beyond-Union). Is it possible to simultaneously embed a set of graphs G
with shared vertex set V in the plane such that the union graph G∪ =

⋃
G∈G G is drawn

k-(quasi)planar?

Note that in setting Beyond-Union we could also ask each G ∈ G to satisfy stronger
restrictions on the crossing configurations.

In the remainder of this report, we first present preliminary results in Section 4.3.2 which
will be used in our proofs. Then, we investigate the more restricted Beyond-Union setting
in Section 4.3.3 and show very restrictive negative results. Afterwards, we show positive
results in the Beyond-Simultaneous setting in Section 4.3.4. We conclude the report by
listing open problems in Section 4.3.5.

4.3.2 Preliminaries

We make use of a result on the partially embedded planarity problem (PEP) which is defined
as follows.

I Problem 3 (PEP). Let G be a planar graph, H a subgraph of G and H an embedding of
H. Can G be embedded in the plane such that H is drawn with embedding H?

Problem PEP has been introduced and studied in [4] where a linear-time algorithm is
presented. In particular, this algorithm is based on a characterization that we will exploit in
the following.

I Lemma 4 ([4]). Let (G,H,H) be an instance of PEP and let G be a planar embedding of
G. G is a solution for (G,H,H) if and only if the following conditions hold:
1. for every vertex v ∈ V , the edges incident to v in H appear in the same cyclic order in

the rotation schemes of v in H and in G; and
2. for every cycle C of H, and for every vertex v of H \C, we have that v lies in the interior

of C in G if and only if it lies in the interior of C in H.
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Another important tool that we will exploit is the following theorem due to Pach and
Wenger [12].

I Theorem 5 ([12]). Every planar graph on n vertices admits a planar embedding which
maps each vertex to an arbitrarily prespecified distinct location and each edge to a polygonal
curve with O(n) bends. Further, there exists a path, whose vertices are mapped to a point set
in convex position, such that in any embedding of this graph that respects the mapping of
vertices to points there exists one edge with a linear number of bends.

4.3.3 Setting Beyond-Union

Here, we first attempt to maintain k-planarity for a fixed k. Unfortunately, this already fails
for a path and a matching.

I Theorem 6. There exists a family of paths P and a family of matchings M such that
P ∈ P and M ∈M on n shared vertices cannot be simultaneously embedded such that their
union is k-planar for any k ∈ o(n/ log2 n).

Proof. To prove the theorem, we exploit a family of 3-regular graphs which is known to be
not k-planar for any k ∈ o(n/ log2 n) [3]. Consider the hypercube graph Hd of dimension
d. Let v be a vertex of Hd and let u1, . . . , ud be its neighbors. We replace v by a cycle
(v1, . . . , vd) such that vi is connected to ui for 1 ≤ i ≤ d. By repeating this procedure for all
vertices of Hd, we obtain the cube connected cycle graph CCCd of dimension d which is a
cubic graph on n = d · 2d vertices.

It is known that the crossing number cr(CCCd) = Ω(4d) [13]. Hence, the average number
of crossings per edge is Ω(2d/d) = Ω(n/ log2 n). Further, it is known, that CCCd is a
Hamiltonian graph [11]. Hence, CCCd is composed of a cycle (the Hamiltonian cycle) and a
matching. To obtain the the statement of the theorem, it is possible to show that removing
one edge does not alter the arguments. J

In addition, when further restricting each of the subgraphs to be drawn planar, there
exist even two paths that cannot be drawn with a sublinear number of crossings per edge.
We state this fact in the following Theorem, which can be proved with the same reasoning
used to prove Lemma 10 and Theorem 8 of a recent manuscript [9]. We repeat the argument
for completeness.

I Theorem 7. There exist two families of paths P1 and P2 such that P1 ∈ P1 and P2 ∈ P2
on n shared vertices cannot be simultaneously embedded such that their union is k-planar for
any k ∈ o(n) if P1 and P2 are embedded planar.

Proof. Assume for contradiction that every two paths P1 and P2 on n shared vertices admit a
simultaneous embedding such that both are drawn planar and that their union is o(n)-planar.
Since we have a simultaneous embedding we can construct a drawing on a point set so that
P1 is drawn monotone and straight-line and each edge of P2 has as many bends as it has
intersections with P1. In such a drawing, P1 describes a convex point set for P2. Hence,
every path P2 admits a planar drawing on every point set such that each of its edges is only
bent o(n) times. This is a contradiction to Theorem 5. J

In the next step, we shift our attention to quasiplanar embeddings of unions of graphs.
Since the union of two planar graphs has thickness two, two planar graphs can always be
simultaneously embedded such that their union is quasiplanar [12]. We show however, that
even for a few cycles quasiplanarity cannot be maintained:
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(a) (b)

Figure 4 (a) K11 is the union of five cycles. (b) K13 is the union of six cycles.

I Theorem 8. There exist five cycles C1 = (V,E1), C2 = (V,E2), C3 = (V,E3), C4 = (V,E4)
and C5 = (V,E5) on |V | = 11 vertices which cannot be simultaneously embedded such that
their union is simple quasiplanar. In addition, there exist six cycles C ′1 = (V ′, E′1), . . . , C ′6 =
(V ′, E′6) on |V ′| = 13 vertices which cannot be simultaneously embedded such that their union
is quasiplanar.

Proof. Consider K11. It has
(11

2
)

= 55 edges. Since simple quasiplanar graphs have density
6.5n − 20 [2], K11 cannot be quasiplanar. Further K11 is the union of the following five
cycles:

C1 = (v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11)
C2 = (v1, v3, v5, v7, v9, v11, v2, v4, v6, v8, v10)
C3 = (v1, v4, v7, v10, v2, v5, v8, v11, v3, v6, v9)
C4 = (v1, v5, v9, v2, v6, v10, v3, v7, v11, v4, v8)
C5 = (v1, v6, v11, v5, v10, v4, v9, v3, v8, v2, v7)

For an illustration, refer to Fig. 4a.
Similar arguments for K13 apply for the non-simple case; see Fig. 4b. J

4.3.4 Setting Beyond-Simultaneous

I Theorem 9. Let G1 = (V,E1) and G3 = (V,E3) be planar graphs and T2 = (V,E2) be a
tree with shared vertex set V . Then G1, T2 and G3 can be simultaneously embedded in the
plane such that G1 and T2 are drawn planar and G3 is drawn quasiplanar.

Proof. Our strategy is to construct first a simultaneous embedding of G1 and T2 and then
of the resulting graph with G3. When constructing a simultaneous embedding of two graphs,
we consider the graph induced by their common edges as a subgraph for which we want to
satisfy the conditions of Lemma 4. Since this subgraph is always a forest due to the fact
that T2 is a tree, Condition 2 is always satisfied. For Condition 1, we already take into
account the conditions imposed by the planar embedding of G3 to the embedding of T2 while
constructing the simultaneous embedding of G1 and T2. Namely, we first embed G1 in the
plane such that G1 is planar. Then, we add the edges E2 \ E1 without intersecting an edge
of E2 ∩E1. Finally, we draw G′3 = (V,E3 \E1) planar. Hence, edges of G′3 can only intersect
edges of G3 which are part of G1 resulting in a quasiplanar drawing of G3.

We draw the remaining edges of T2 without intersecting E2 ∩ E1 as follows: We observe,
that (V,E2 ∩E1) is a planar drawn subforest of T2. Since T2 is a tree any of its embeddings
is planar. Hence, Condition 1 stated in Lemma 4 is trivially fulfilled. Moreover, for edges
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E3 ∩ (E2 \ E1), we can chose an ordering around each vertex such that it corresponds to
a planar embedding G′3 of planar graph G′3. The remaining edges of T2 can be arbitrarily
embedded.

When embedding G′3, we already have embedded edges E3 ∩ (E2 \ E1). Since we have
chosen the embedding of these edges such that they respect the proper planar embedding G′3
of G′3, Condition 1 stated in Lemma 4 is again fulfilled. Thus, we can extend the partial
embedding of G′3 to planar embedding G′3. J

I Corollary 10. Let G1 = (V,E1) be a 1-planar graph and G2 = (V,E2) be a planar graph.
Then G1 and G2 can be simultaneously embedded in the plane such that both G1 and G2 are
drawn quasiplanar.

Proof. Since G1 is 1-planar, it is the union of a planar graph G′1 and a forest F1 with shared
vertex set [1]. By Theorem 9, there exists a simultaneous embedding of G′1, F1, and G2
such that G′1 and F1 are drawn planar and G2 is drawn quasiplanar. Since the union of two
planar drawings with same vertex set is quasiplanar, G1 is drawn quasiplanar, as well. J

4.3.5 Open Problems

Our results show that asking for k-planarity is too restrictive in setting Beyond-Union,
while for quasiplanarity we have a counterexample for a set of five cycles. What about
the quasiplanarity of the union of a small set of paths (e.g. 3 or 4)?
In the setting Beyond-Simultaneous, we ask what is the smallest set of graph families
which cannot be always simultaneously embedded so that each graph is quasiplanar. In
particular, can three planar graphs (or two 1-planar graphs, or four paths) always be
simultaneously embedded such that each one is drawn quasiplanar?
How difficult is it to test whether a given set of graphs admits a Beyond-Union or
Beyond-Simultaneous embedding?
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4.4.1 Introduction and Related Work

A linear layout of a graph G consists of a linear order of the vertices of G and of a partition
of the edges of G that satisfies a certain property and whose size is given. In what follows,
we study two well-known types of linear layouts, namely stack and queue layouts. Moreover,
we consider linear layouts in which these two types are mixed.

4.4.1.1 Stack Layouts

We first consider stack layouts, also known as book embeddings, which form a fundamental
problem in graph theory (see, e.g., [7] for an overview). In a stack layout, the edge partition
is such that no two edges of the same part, which is called stack, cross; see Figure 5b. The
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stack number, or book thickness, of a graph is the smallest number of stacks that are required
by any stack layout of the graph.

Problems on stack layouts are mainly classified into two categories based on whether the
graph to be embedded is planar or not. For non-planar graphs, it is known that there exist
graphs on n vertices that have stack number Θ(n), e.g., the stack number of the complete
graph Kn is dn/2e [6]. Sublinear stack number is achieved by graphs with, e.g., subquadratic
number of edges [28], subquadratic genus [27] or sublinear treewidth [13]. Constant stack
number is achieved by graphs that are, e.g., in a minor-closed family [8] or in a bounded-
treewidth family [21]. Another class of non-planar graphs that was proved to have constant
stack number is the class of 1-planar graphs [4].

For planar graphs, a remarkable result is due to Yannakakis, who back in 1986 proved
that for any planar graph four stacks suffice [34]. However, more restricted subclasses of
planar graphs allow layouts with fewer stacks. Bernhart and Kainen [6] showed that the
graphs which can be embedded using a single stack are the outerplanar graphs, while the
graphs which can be embedded using two stacks are the subhamiltonian ones.

It is known that not all planar graphs are subhamiltonian and the corresponding decision
problem whether a maximal planar graph is Hamiltonian (and therefore admits a 2-stack
layout) is NP-complete [32]. However, several subclasses of planar graphs are known to be
Hamiltonian or subhamiltonian, see, e.g., [3, 9, 10, 22, 25, 29].

4.4.1.2 Queue Layouts

A queue layout is a linear layout such that no two independent edges that are assigned to
the same part, which is called a queue, are nested [24]; see Figure 5c for an illustration. The
queue number of a graph G is the minimum number of queues in any queue layout of G.

It is known that there exist non-planar graphs on n vertices with Θ(n) queue number, for
example, the queue number of the complete graph Kn is bn/2c [24]. Moreover, there exist
graphs of bounded degree that may require arbitrarily many queues [33]. Among the graphs
having sublinear queue number are those with a subquadratic number of edges [23], and
those that belong to any minor-closed graph family [17]. Bounded queue number is achieved
by all graphs of bounded treewidth [16]. In particular, a graph with treewidth w has queue
number O(2w) [31]. Improved bounds (linear in the parameter) are known for graphs of
bounded pathwidth [16], bounded track number [19], bounded bandwidth [23], or bounded
layered pathwidth [2]; for a survey we refer the reader to [17].

A rich body of literature focuses on planar graphs. In fact, it is known that the graphs
that admit queue layouts with only one queue are the arched-level planar graphs [24], which
are planar graphs with at most 2n − 3 edges over n vertices (note that testing whether a
graph is arched-level planar is NP-complete [23]). Trees are arched-level planar and therefore
have queue number one [24]. Outerplanar graphs have queue number at most two [23], Halin
graphs and series-parallel graphs have queue number at most three [20, 30], and planar
3-trees have queue number at most five [1]. Back in 1992, Heath, Leighton and Rosenberg [23]
conjectured that every planar graph has bounded queue number. Notably, this conjecture
has been an open problem for almost three decades. Recently, the conjecture was settled
in the positive first for planar graphs with bounded degree [5, 18], and subsequently for
general planar graphs [15], thus improving the previous logarithmic and poly-logarithmic
upper bounds [2, 11, 14]. On the other hand, the best-known lower bound is due to a family
of planar 3-trees that require four queues [1].
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4.4.2 Problems and Progress

In what follows we give a high-level description of the problems we studied and of the progress
we made for them. In particular, we mainly focused on two research problems: linear layouts
of directed planar graphs and nonplanar graphs that can be drawn with few crossings per
edge.

4.4.2.1 Upward Planar Graphs

An upward stack (queue) layout of a directed graph G is a stack (queue) layout of G such
that the linear ordering of the vertices is a linear extension of the partial order induced by
the directions on the edges of G; that is, for any edge directed from a vertex u to a vertex v,
we have that u precedes v in the linear ordering. We consider upward planar graphs, that
is, planar directed graphs that can be drawn without crossings and such that each edge
is a y-monotone curve from its source to its target. It is a longstanding open question to
determine the asymptotic behavior of the upward stack number of upward planar graphs.
Surprisingly, the best known bounds are only the trivial ones, O(n) and Ω(1). Contrastingly,
it is known that the upward queue number of upward planar graphs is Θ(n) in the worst
case.

During the Dagstuhl seminar, we proved that every n-vertex upward planar graph has
a mixed layout with O(

√
n) stacks and O(

√
n) queues. We proved that this bound is tight

if the vertex ordering is fixed in advance. We also proved that O(logn) stacks are enough
to construct stack layouts of n-vertex upward outerplanar graphs. Constant bounds can be
achieved for upward outerplanar st-graphs and upward outerplanar single-source graphs.

4.4.2.2 k-Planar Graphs

A graph is k-planar, for a positive integer k, if it can be drawn in the plane such that each
edge is crossed at most k times (see [12, 26] for surveys). Recall that every 1-planar graph
admits a stack layout with a constant number of stacks [4]. Moreover, for a fixed value of k,
every k-planar graph admits a queue layout with a constant number of queues [15].

During the Dagstuhl seminar, we sketched a proof that every graph that admits a drawing
in the plane such that the uncrossed edges form a biconnected planar drawing in which
each face has length at most ` admits a stack layout with a number of stacks that depends
polynomially in ` and that does not depend on the size of the graph. Observe that any such
a graph is also k-planar, where k ≤ `2

4 .

4.4.3 Open Problems

The main objectives for our research are the following open problems.

What is the asymptotic behavior of the upward stack number of n-vertex upward planar
graphs? The question is interesting even for n-vertex upward planar graphs without
transitive edges.
What is the largest integer k such that every directed acyclic graph whose underlying
graph has treewidth at most k has upward stack number in O(1)? We proved that k ≤ 2;
further, it is known that k ≥ 1. We conjecture that k = 2; this strengthens a conjecture of
Heath, Pemmaraju and Trenk on the upward stack number of directed outerplanar graphs.
The above question is interesting even for upward planar graphs whose underlying graph
has treewidth at most k, where we are not aware of any upper bound on k.
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Establish a worst-case optimal upper bound for the stack number of general k-planar
graphs, ideally O(k).
Establish upper bounds for the stack number of other families of nonplanar graphs, such
as fan-planar graphs, fan-crossing-free graphs and k-quasiplanar graphs (see [12] for
definitions and results about these families of graphs).
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Figure 6 Homotopy moves 1→ 0, 2→ 0, and 3→ 3.
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Abstract. Given a planar graph drawn in the plane with edge crossings, our goal is to
untangle it to a crossing-free drawing using a sequence of moves that never increase the
number of crossings. We consider two types of moves: continuous homotopy moves; and
the more general edge moves that remove and redraw one edge at a time. We call a move
monotone if it does not increase the number of crossings. Thus our goal is to untangle the
graph drawing using monotone homotopy moves or monotone edge moves.

4.5.1 Our Results

1. With homotopy moves, if the tangled drawing has been created from a planar drawing
with homotopy moves that never move an edge across a vertex, then the drawing can be
untangled using monotone homotopy moves that never move an edge across a vertex.

2. With monotone edge moves we can untangle any drawing of a cactus graph, and we
can untangle any drawing of a banana cactus graph if the drawing has a planar rotation
system.

3. Not every drawing of a planar graph can be untangled with monotone edge moves.

4.5.2 Background and Concepts

In one well-studied version of untangling a straight-line graph drawing, the goal is to move as
few vertices as possible in order to get a planar straight-line drawing, see [9, 1] and references
therein. In this version, the vertices are re-positioned all at once. By contrast, we fix the
vertices and consider a sequence of incremental changes to the curves representing the edges.

There is considerable work on untangling a curve or a set of curves using incremental
homotopy moves. Homotopy moves, which are the “shadows” of the classical Reidemeister
moves, are defined as follows:

These moves are monotone, but the reversals of 1→ 0 and 2→ 0 are not.
Our preliminary understanding of the relevant background work is as follows. An algorithm

to simplify any planar closed curve using at most O(n2) monotone homotopy moves is implicit
in Steinitz’s proof [10, 11] that every 3-connected planar graph is the 1-skeleton of a convex
polyhedron. For more information, see [5, 7, 4, 2]. Chang and Erickson [2] improved the
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number of moves to a tight bound of Θ(n3/2) but at the expense of losing monotonicity. For
monotone moves, no bound better than O(n2) is known.

One of Steinitz’s basic ideas was extended by Hass and Scott [6, 7] to Theorem 3 (stated
below), which has been used in many subsequent works and which we will also use.

For generalizations to multiple curves, tangles, and other surfaces (with boundary and/or
of higher genus), see [2] and the references therein. Chang’s thesis [3] is an excellent resource.

Homotopy moves, and in particular, the result of Hass and Scott, have been applied to
graph drawings, for example in the work by Kynčl [8] on simple realizability of complete
abstract topological graphs. Proofs of versions of the Hanani-Tutte theorem may also be
relevant.

4.5.3 Untangling via Monotone Homotopy Moves

We may interpret a drawing of the graph G as a set of curves on the punctured plane, where
each curve starts and ends at a boundary component. With this interpretation, two curves
are homotopic if one can be continuously deformed to the other in the punctured plane (i.e.,
this replaces the condition that we never move an edge across a vertex). In order to deal
with multiple curves (edges), we allow the homotopy move shown in Figure 7a.

I Theorem 1. Let D and D∗ be two drawings of a planar graph G such that D∗ is plane, the
vertex positions coincide, and for each edge e of G the curve representing e in D is homotopic
to the curve representing e in D∗.

Then D can be transformed into D∗ by a sequence of monotone homotopy moves. The
number of moves is at most k + 1

4k
2 where k is the number of crossings in D.

We start with some definitions: A curve is simple if it has no self-intersections. A loop is
a section of a curve such that its endpoints coincide and it has no other self-intersections,
i.e., it is simple.

A lens consists of two sections of curves (either two disjoint sections of the same curve
or sections of distinct curves) such that each is simple and connects two distinct points;
moreover, between the two sections there exist no other intersections. See Fig. 7b.

(a) A 1→ 0 homotopy move in the presence of
a vertex.

(b) An empty loop and two empty lenses.

Figure 7

Note that a loop or lens forms a simple closed curve which has an interior and an exterior.
We say that a loop is empty if neither its interior nor the loop itself contains a vertex; a
lens is empty if its interior does not contain any vertex and the lens is incident to at most
one vertex placed on an intersection point of the two sections (of two different curves) of
the lens. We call a loop or a lens clean with respect to a set of curves if it is not involved
in any crossing (except for the one crossing of a loop and the two crossings of the lens by
definition). Note that a clean lens does not need to be empty; it may contain many vertices
in its interior.

The idea of our procedure is to untangle empty lenses until we arrive at a crossing-free
drawing. To do so, we first show that a non-simple curve (edge) guarantees the existence
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of an empty loop or empty lens (Lemma 2). Moreover, two simple and intersecting curves
guarantee the existence of an empty lens (Lemma 4). Finally, we show that given an empty
lens or empty loop, there exists a sequence of monotone homotopy moves that removes the
empty lens or loop and reduces the number of crossings (Lemma 5).

I Lemma 2. If a curve in D representing an edge of G (a curve homotopic to a simple
curve) is not simple then it contains an empty loop or an empty lens (not incident to any
vertex).

Lemma 2 follows from a theorem of Hass and Scott. We state their theorem in the original
language of the paper: an embedded 1-gon is an empty loop and an embedded 2-gon is an
empty lens; two arcs between vertices are homotopic rel boundary if they are homotopic (in
the punctured plane).

I Theorem 3 (Hass and Scott [6], Theorem 2.1). Let f be a general position arc on a
surface F such that f is homotopic rel boundary to a simple arc g on F, but f is not simple.
Then, the arc f has an embedded 1-gon or 2-gon.

When we overlay D and D∗, every edge is represented by two curves which together form
a closed curve that is incident to two vertices. We call the curves from D curvy and the
curves from D∗ straight.

I Lemma 4. Let C1 and C2 be two simple closed curves that contain no vertex and such
that each curve Ci is incident to two distinct vertices that split it into two parts, the straight
and the curvy part. If C1 and C2 intersect but their straight parts do not intersect, then
(parts of) C1 and C2 form an empty lens (that may be incident to one vertex).

Proof Sketch. Let e be a part of C1 that intersects C2. We keep track of the sequence of
intersections with the parts of C2 by a word over the alphabet {s, c}, where s represents an
intersection with the straight part and c an intersection with the curvy part of C2. First we
consider the case that the vertices of C1 and C2 are distinct. Thus, in particular, e starts
and ends outside of C2. Note that a subword ss or cc represents a lens (since both curves are
simple) which is empty (since it is contained in the interior of C2 which contains no vertices).
Assume for the sake of a contradiction that any two consecutive letters are different in the
word. Note that the word has even length, otherwise C2 contains a vertex of e. Thus the
word has the form (sc)k or (cs)k for some k ∈ N. Since e intersects s, it must be the curvy
part of C1. Consequently, C1 − e is the straight part of C1, and does not intersect s by
assumption.

Analogous argument for C2 implies that all intersections between C1 and C2 are in their
curvy parts. Consequently, the word representing the intersections of e is sk for some k ∈ N,
which is a contradiction.

Now, we consider the case that C1 and C2 share a vertex v. If both edges of C1 start
and end outside of C2, the above argument yields an empty lens. Thus, at least one edge e
of C1 starts inside C2 at v. Clearly, it ends outside of C2 since its endvertex is not incident
to C2 and C2 does not contain any vertex. The first intersection point on e from v certifies
an empty lens; as before, it is a lens since the curves are simple and it is empty since it is
contained in C2. J

Remark: Note that the fact that no two straight parts intersect is necessary for the existence
of a lens, see Fig. 8a.
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(a) An example without a lens. However, the
two straight parts intersect.

(b) A 1-0-move is necessary to change the rota-
tion system.

Figure 8

I Lemma 5. If there exists an empty loop or an empty lens (in the union of D and D∗)
of one or two curves (possibly with one vertex), then there exists a sequence of monotone
homotopy moves to decrease the number of crossings of the set of curves.

Note that a monotone homotopy move never introduces a new pair of crossing curves; hence
even the (multi-)set of crossings is monotonically non-increasing. Thus artificial/imaginary
crossings between curves of D and D∗ will never make up for real crossings. The proof of
Lemma 5 is similar to a result by Hass and Scott [7, Lemma 2.6], but we also handle the
case that one crossing of the lens is a vertex.

Proof Sketch. Suppose we are given an empty loop. We may assume that it contains neither
a loop nor a lens in its interior; otherwise we consider the minimal such loop or lens, which
would be empty and not contain any vertex on the boundary. Thus this loop is clean and
the loop can be removed with a 1-0-move.

Suppose we are given an empty lens. Without loss of generality we consider the case with
precisely one vertex (formed by different curves); the case with no vertex can be handled by
inserting an artificial vertex on one of the two intersection points. We may assume that the
lens contains no loop; otherwise we take a minimal loop which is empty and has no vertex
on the boundary. We may further assume that it contains no lens, since every contained lens
is empty and not incident to the vertex since its sections belong to different curves (or the
vertex is artificial). By definition, the lens consists of two parts which meet at a (artificial)
vertex v and a further intersection point p. Note that every section of a curve intersecting
the interior of the lens connects the two parts of the lens. We clean the lens by moving the
crossings inside the lens outside, by 3-3-moves. (Here we use the fact that any arrangement
of chords in a circle where at least two chord cross contains at least two triangles incident to
the circle. One of these triangles is not incident to the vertex on the loop and a crossing can
be moved outside the loop by a 3-3-move. Consequently, there is a linear order of the edges
of the arrangement in the interior of the lens. They can be moved outside the lens one by
one with 3-3-moves over p in this order. Thus, we have a clean and empty lens, which can be
removed via a 2-0 or 1-0 move. J

With these lemmas at hand, we are ready to prove the theorem.

Proof of Theorem 1. As long as the drawing has crossings, Lemmas 2 and 4 guarantee the
existence of an empty loop or lens. Given an empty loop or lens, there exists a sequence of
monotone homotopy moves to reduce the number of crossings by Lemma 5. Thus, in the
end, we have transformed D + D∗ into a crossing-free drawing D̃ + D̃∗. Since D̃ + D̃∗ is
crossing-free, D̃ and D̃+ have the same rotation system and are thus equivalent drawings.
Moreover, since the set of crossing is monotonically decreasing, the drawings D′∗ and D+

have the same rotation system. Consequently, we have transformed D into D∗ by a sequence
of monotone homotopy moves.
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Number of moves: Note that the number of moves to clean an empty lens is upper
bounded by the number of remaining crossings. Untangling the lens by a 2-0 move reduces
the number of crossings by 2. Recall that a minimal loop is already clean and hence, it takes
one move to reduce the number of crossings by one. Consequently, the number of homotopy
moves is upper bounded by k + 1

4k
2. J

4.5.4 Untangling via Edge Moves

In this section we consider a more general move called an edge move that removes one edge
and then redraws it. Note that the vertices remain fixed (as for homotopy moves). We
examine the power of monotone edge moves to untangle some special graphs. Firstly, we
observe that

I Theorem 6. Not every drawing of a planar graph can be untangled with monotone edge
moves.

Proof. We show that the statement holds for two interlaced K4’s as depicted in Fig. 9a.
Note that every edge is involved in exactly one crossing and redrawing it in a non-equivalent
way introduces at least two crossings. J

(a) A drawing of two interlaced K4’s that cannot
be untangled with monotone edge moves, nor,
consequently, with monotone homotopy moves.

(b) The rotation system is that of a planar draw-
ing, but it must change during homotopy moves.

Figure 9

A cactus graph is a graph such that every 2-connected component is an edge or a cycle.
A banana graph is a graph with two vertices joined by an edge that has multiplicity at least
2. A banana cactus is a cactus graph in which each edge may be replaced by a banana. We
prove:

I Lemma 7. The following can be untangled using monotone edge moves:
Any drawing of a cactus graph.
Any drawing of a banana graph.
Any drawing of a banana cactus in which the rotation system of the drawing (the cyclic
order of edges incident to each vertex) belongs to a planar drawing.
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Recently, Bae et al. [2] defined k-gap-planar graphs, for k ∈ N, that admit drawings in which
each edge is “responsible” for up to k crossings. By Hall’s matching theorem, it is equivalent
to the following.

I Definition 1. A graph G = (V,E) is k-gap-planar if it has a drawing in the plane so that
for every subgraph G = (V ′, E′) there are at most k|E′| crossings between the edges in E′.

Ossona de Mendez, Oum, and Wood [3] introduced a similar definition.

I Definition 2. A graph G = (V,E) is k-close-to-planar if every subgraph G′ = (V ′, E′) has
a drawing in the plane with at most k|E′| crossings (i.e., cr(G′) ≤ k|E′|).

It is clear that every k-gap-planar graph is k-close-to-planar. Is the converse true?

Answer: No. We show that graph K6,6 is a counterexample. Bachmaier, Rutter, and
Stumpf [1] show that K6,6 is not 1-gap-planar. We claim that K6,6 is 1-close-to-planar.

First, cr(K6,6) = 36 = |E(K6,6)|; see Fig. 10 for a crossing-minimal drawing of K6,6. In
the drawing in Fig. 10 the set of edges with precisely 4 crossings contains both adjacent and
independent pairs of edges. By symmetry, we have cr(K6,6 − e) ≤ 32 for any edge e, and
cr(K6,6 − {e, f}) ≤ 28 for any pair of distinct edges e, f . In particular, the crossing number
of K6,6 − e and K6,6 − {e, f}, resp., is clearly less than the number of edges in these graphs.
It follows that any subgraph G′ = (V ′, E′) obtained by removing 3 or more edges from K6,6
satisfies cr(G′) ≤ 28. Hence, if cr(G′) > |E′| it follows that |E′| ≤ 28, and hence |E \E′| ≥ 8.

An easy counting argument shows that E \ E′ contains a set A of three edges that are
incident to a common vertex or a set B of three edges, two of which are adjacent and the
third is independent from the other two. However, Figure 11 shows that both K6,6 − A
and K6,6 −B are 1-gap planar, and hence also 1-close-to-planar. Both drawings are based
on a 1-gap-planar drawing of K5,6 by Bae et al. [2].
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Figure 10 Crossing-minimal drawing of K6,6. The bold edges are pairwise noncrossing and they
each have four crossings, which shows that removing any two of these edges (and by symmetry any
two edges) decreases the crossing number by at least 8.

Figure 11 1-gap-planar drawings of K6,6 − A and K6,6 − B, respectively. In the left drawing,
A contains three edges incident to the square vertex. In the right drawing, B contains two edges
incident to the square vertex and the dashed edge.

Open Problem. The negative answer raises the following question. Is there a function
f : N→ N such that every k-close-to-planar graph is f(k)-gap-planar?
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