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Preface

This volume contains the papers presented at ICALP 2019, the 46th edition of the Inter-
national Colloquium on Automata, Languages and Programming, held in Patras, Greece
during July 8–12, 2019. ICALP is a series of annual conferences of the European Association
for Theoretical Computer Science (EATCS), which first took place in 1972. This year, the
ICALP program consisted of three tracks:

Track A: Algorithms, Complexity, and Games,
Track B: Logic, Semantics, Automata and Theory of Programming,
Track C: Foundations of Networked Computation: Models, Algorithms, and Information
Management.

In response to the call for papers, a total 490 submissions were received: 316 for track A,
103 for track B, and 71 for track C. Each submission was assigned to at least three Program
Committee members, aided by many subreviewers. Out of these, the committee decided
to accept 146 papers for inclusion in the scientific program: 94 papers for Track A, 31 for
Track B, and 21 for Track C. The selection was made by the Program Committees based
on originality, quality, and relevance to theoretical computer science. The quality of the
manuscripts was very high, and many deserving papers could not be selected.

The EATCS sponsored awards for both a best paper and a best student paper for each of
the three tracks, selected by the Program Committees.

The best paper awards were given to the following papers:

Track A: Bingkai Lin. “A Simple Gap-producing Reduction for the Parameterized Set
Cover Problem”.
Track B: Christof Löding and Anton Pirogov. “Determinization of Büchi Automata:
Unifying the Approaches of Safra and Muller-Schupp”.
Track C: Keren Censor-Hillel and Mikaël Rabie. “Distributed Reconfiguration of Maximal
Independent Sets”.

The best student paper awards, for papers that are solely authored by students, were
given to the following papers:

Track A: Joran van Apeldoorn & András Gilyén. “Improvements in Quantum SDP-Solving
with Applications”.
Track B: Marie Fortin. “FO = FO3 for linear orders with monotone binary relations”.

Apart from the contributed talks, ICALP 2019 included invited presentations by Michal
Feldman, Martin Grohe, Ola Svensson, Frits Vaandrager and Mihalis Yannakakis. This
volume of the proceedings contains all contributed papers presented at the conference together
with the abstracts of the invited speakers.

The program of ICALP 2019 also included presentation of the EATCS Award 2019 to
Thomas Henzinger, the Alonzo Church Award 2019 to Murdoch J. Gabbay and Andrew M.
Pitts, the Presburger Award 2019 to Karl Bringmann and Kasper Green Larsen, and the
EATCS Distinguished Dissertation Awards.

Four satellite events of ICALP were held on July 8th, 2019:

Workshop on Theoretical Aspects of Fairness (WTAF)
Parameterized Approximation Algorithms Workshop (PAAW)
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Workshop on Algorithmic Aspects of Temporal Graphs II
Logic and Computational Complexity Workshop (LCC 2019)

We wish to thank all authors who submitted extended abstracts for consideration, the
Program Committees for their scholarly effort, and all referees who assisted the Program
Committees in the evaluation process. We are also grateful to the Conference Co-Chairs
Sotiris Nikoletseas and Christos Zaroliagis and all the support staff of the Organizing
Committee from the University of Patras and the Computer Technology Institute & Press
“Diophantus” for organizing ICALP 2019.

We are grateful for generous support from University of Patras and the Department of
Computer Engineering & Informatics for their support for the conference. We also thank
the Center for Perspicuous Computing CPEC (supported by CPEC - TRR 248) for their
support for the travelling costs of the invited speakers.

We would like to thank Anca Muscholl for her continuous support and Paul Spirakis, the
president of EATCS, for his generous advice on the organization of the conference.
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Ioannis Chatzigiannakis
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Auction Design under Interdependent Values
Michal Feldman
Blavatnik School of Computer Science, Tel-Aviv University, Israel
michal.feldman@cs.tau.ac.il

Abstract
We study combinatorial auctions with interdependent valuations. In such settings, every agent has a
private signal, and every agent has a valuation function that depends on the private signals of all
the agents. Interdependent valuations capture settings where agents lack information to determine
their own valuations. Examples include auctions for artwork or oil drilling rights. For single item
auctions and assume some restrictive conditions (the so-called single-crossing condition), full welfare
can be achieved. However, in general, there are strong impossibility results on welfare maximization
in the interdependent setting. This is in contrast to settings where agents are aware of their own
valuations, where the optimal welfare can always be obtained by an incentive compatible mechanism.

Motivated by these impossibility results, we study welfare maximization for interdependent
valuations through the lens of approximation. We introduce two valuation properties that enable
positive results. The first is a relaxed, parameterized version of single crossing; the second is a
submodularity condition over the signals. We obtain a host of approximation guarantees under these
two notions for various scenarios.

Related publications: [1, 2]
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Symmetry and Similarity
Martin Grohe
RWTH Aachen University, Lehrstuhl Informatik 7, Ahornstr. 55, 52074 Aachen, Germany
http://www.lics.rwth-aachen.de/~grohe
grohe@informatik.rwth-aachen.de

Abstract
Deciding if two graphs are isomorphic, or equivalently, computing the symmetries of a graph, is a
fundamental algorithmic problem. It has many interesting applications, and it is one of the few
natural problems in the class NP whose complexity status is still unresolved. Three years ago, Babai
(STOC 2016) gave a quasi-polynomial time isomorphism algorithm. Despite of this breakthrough,
the question for a polynomial algorithm remains wide open.

Related to the isomorphism problem is the problem of determining the similarity between graphs.
Variations of this problems are known as robust graph isomorphism or graph matching (the latter in
the machine learning and computer vision literature). This problem is significantly harder than the
isomorphism problem, both from a complexity theoretical and from a practical point of view, but
for many applications it is the more relevant problem.

My talk will be a survey of recent progress on the isomorphism and on the similarity problem.
I will focus on generic algorithmic strategies (as opposed to algorithms tailored towards specific
graph classes) that have proved to be useful and interesting in various context, both theoretical
and practical.
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Approximately Good and Modern Matchings
Ola Svensson
EPFL, Lausanne, Switzerland
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Abstract
The matching problem is one of our favorite benchmark problems. Work on it has contributed to
the development of many core concepts of computer science, including the equation of efficiency
with polynomial time computation in the groundbreaking work by Edmonds in 1965.

However, half a century later, we still do not have full understanding of the complexity of
the matching problem in several models of computation such as parallel, online, and streaming
algorithms. In this talk we survey some of the major challenges and report some recent progress.
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Automata Learning and Galois Connections
Frits Vaandrager
Department of Software Science, Radboud University, The Netherlands
http://www.cs.ru.nl/~fvaan/
F.Vaandrager@cs.ru.nl

Abstract
Automata learning is emerging as an effective technique for obtaining state machine models of
software and hardware systems. I will present an overview of recent work in which we used active
automata learning to find standard violations and security vulnerabilities in implementations of
network protocols such as TCP and SSH. Also, I will discuss applications of automata learning to
support refactoring of legacy control software and identifying job patterns in manufacturing systems.
As a guiding theme in my presentation, I will show how Galois connections (adjunctions) help us to
scale the application of learning algorithms to practical problems.
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Fixed Point Computation Problems and Facets of
Complexity
Mihalis Yannakakis
Department of Computer Science, Columbia University, 455 Computer Science Building,
1214 Amsterdam Avenue, New York, NY 10027, USA
mihalis@cs.columbia.edu

Abstract
Many problems from a wide variety of areas can be formulated mathematically as the problem of
computing a fixed point of a suitable given multivariate function. Examples include a variety of
problems from game theory, economics, optimization, stochastic analysis, verification, and others. In
some problems there is a unique fixed point (for example if the function is a contraction); in others
there may be multiple fixed points and any one of them is an acceptable solution; while in other cases
the desired object is a specific fixed point (for example the least fixed point or greatest fixed point of
a monotone function). In this talk we will discuss several types of fixed point computation problems,
their complexity, and some of the common themes that have emerged: classes of problems for which
there are efficient algorithms, and other classes for which there seem to be serious obstacles.
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Abstract
Blind delegation protocols allow a client to delegate a computation to a server so that the server
learns nothing about the input to the computation apart from its size. For the specific case of
quantum computation we know, from work over the past decade, that blind delegation protocols can
achieve information-theoretic security (provided the client and the server exchange some amount of
quantum information). In this paper we prove, provided certain complexity-theoretic conjectures
are true, that the power of information-theoretically secure blind delegation protocols for quantum
computation (ITS-BQC protocols) is in a number of ways constrained.

In the first part of our paper we provide some indication that ITS-BQC protocols for delegating
polynomial-time quantum computations in which the client and the server interact only classically
are unlikely to exist. We first show that having such a protocol in which the client and the server
exchange O(nd) bits of communication, implies that BQP ⊂ MA/O(nd). We conjecture that this
containment is unlikely by proving that there exists an oracle relative to which BQP 6⊂ MA/O(nd).
We then show that if an ITS-BQC protocol exists in which the client and the server interact only
classically and which allows the client to delegate quantum sampling problems to the server (such as
BosonSampling) then there exist non-uniform circuits of size 2n−Ω(n/log(n)), making polynomially-
sized queries to an NPNP oracle, for computing the permanent of an n× n matrix.

The second part of our paper concerns ITS-BQC protocols in which the client and the server
engage in one round of quantum communication and then exchange polynomially many classical
messages. First, we provide a complexity-theoretic upper bound on the types of functions that
could be delegated in such a protocol by showing that they must be contained in QCMA/qpoly ∩
coQCMA/qpoly. Then, we show that having such a protocol for delegating NP-hard functions implies
coNPNPNP

⊆ NPNPPromiseQMA
.
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1 Introduction

An important area of research in modern cryptography is that of performing computations
on encrypted data. The general idea is that a client wants to compute some function f

on some input x, but lacks the computational power to do this in a reasonable amount of
time. Luckily, the client has access to a computationally powerful server (cloud, cluster
etc) which can compute f(x) quickly. However, because the computation might involve
sensitive or classified information, or the server could be compromised remotely, we would
like the input x to be hidden from the server at all times. The client can simply encrypt x,
but this raises the question: how can the server compute f(x) if it doesn’t know x? The
general problem of computing on encrypted data was first considered by Rivest, Adleman
and Dertouzos [52]. Since then, instances of this problem have appeared in many areas of
modern research including those of electronic voting, machine learning on encrypted data,
program obfuscation and others [22, 32, 11, 28, 37, 41].

It was shown in 2009, when Gentry produced the first fully homomorphic encryption
scheme, that performing classical computations on encrypted data is possible [29]. In
homomorphic encryption the client has a pair of efficient algorithms (Enc, Dec), which
respectively perform encryption and decryption, and which satisfy the property Dec(f, x,

Eval(f, Enc(x))) = f(x), for any function f from some set C. In other words, the server
evaluates f on the encrypted input Enc(x) using Eval and returns this to the client which
can then decrypt it to f(x). Of course, the server should not be able to infer information
about x from Enc(x), a condition which is typically expressed through the criterion of
semantic security [40]. If the set C contains all polynomial-sized circuits then the scheme
becomes a fully homomorphic encryption scheme, commonly abbreviated FHE. All known
FHE schemes are secure under cryptographic assumptions.

Computing on encrypted data becomes particularly interesting when the server is a
quantum computer. This is because efficient quantum algorithms have been found for various
problems which are believed to be intractable for classical computers. In fact, it has been
shown that if a classical computer and a quantum computer are both given black-box or
oracle access to certain functions, then the quantum computer exponentially outperforms
the classical computer [13, 55, 23, 5]. Classical clients would therefore be highly motivated
to delegate problems to quantum computers. However, ensuring the privacy of their inputs
is challenging. In particular, we’d have to solve the following problems:

https://arxiv.org/abs/1704.08482
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Devise an encryption scheme which is secure against quantum computers and does not
leak information to the server about the client’s input.
Ensure that the encryption scheme allows the client to recover the output of the compu-
tation from the result provided by the quantum server.
Ensure that the protocol is efficient for the client. Ideally, the number of rounds of
interaction between the client and the server as well as the client’s local computations,
should scale at most polynomially with the size of the input.

In spite of these stringent requirements, protocols that achieve these properties already
exist and are known collectively as delegated blind quantum computing schemes [26]. In
such protocols, a probabilistic polynomial-time client is able to delegate polynomial-time
quantum computations to a server in such a way that the client’s input (apart from an upper
bound on its size) is kept hidden from the server in an information-theoretic sense. All of
the above schemes require the client and the server to share at least one round of quantum
communication. Universal Blind Quantum Computation (UBQC), shown schematically in
Figure 1, is an example of such a protocol [19].

Figure 1 Universal Blind Quantum Computation [19]. In UBQC, a classical client augmented
with the ability to prepare single-qubit states sends these qubits to the server along with instructions
on how to entangle and measure them in order to perform a computation. The M(δi) indicate
measurement instructions and the bi indicate the server’s responses for these instructions (if he
follows the protocol, these responses would represent the outcomes of the measurements that the
client instructed him to perform).

The first blind delegation protocol was devised by Childs in [21], and since then these
protocols have been improved and extended in various works [47, 31, 44, 27, 45, 46, 39, 38].
UBQC and related protocols require the client and the server to exchange only one quantum
message, while the rest of the communication is classical [19, 9, 18]. This quantum message
(which is sent by the client to the server) consists of a tensor product of single-qubit states. As
such, the only quantum capability the client needs is the ability to prepare single-qubit states.
In this paper, we explore two questions pertaining to blind delegation protocols:
(1) Is there a scheme for blind quantum computing that is information-theoretically secure,

and that requires only classical communication between client and server?
(2) For schemes in which the client and the server are allowed one round of quantum

communication, which functions can the client delegate to the server while maintaining
information-theoretic security? In particular, could the client delegate the evaluation of
NP-hard functions?

We provide some indication, based on complexity-theoretic conjectures, that the answer to
the first question is no. In other words, provided these complexity-theoretic conjectures
hold, a classical client running in polynomial time and communicating only classically with a
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6:4 Complexity-Theoretic Limitations on Blind Delegated Quantum Computation

server cannot delegate arbitrary polynomial-time quantum computations to that server while
keeping its input hidden in an information-theoretic sense. Importantly, our result does not
contradict recent results on quantum fully homomorphic encryption with a classical client
[43, 15], since those schemes are based on cryptographic assumptions: we are interested only
in information-theoretic security.

In answer to the second question, we provide a complexity-theoretic upper bound on the
types of functions that can be evaluated by UBQC-type protocols (i.e. protocols in which
the client can send one quantum message to the server2). We show that, under plausible
complexity-theoretic assumptions, this upper bound prevents the client from delegating
NP-hard functions to the server. Thus, allowing for quantum communication between the
client and the server expands the set of functions that the client can delegate to the server
to include BQP, but not enough so as to include NP as well.

1.1 Main results
We phrase our results formally using the concept of a generalised encryption scheme (GES)
introduced by Abadi, Feigenbaum and Killian [8]. Roughly speaking, a GES is a protocol
between a probabilistic polynomial-time classical client and a computationally unbounded
server for computing on encrypted data. The client sends the server a description of some
function3 f : {0, 1}n → {0, 1}. Using some polynomial-time algorithm denoted E, the client
encrypts its input x, and sends E(x) to the server. The server and the client then interact for
a number of rounds which is polynomial in the length of x. Finally, using a polynomial-time
decryption algorithm denoted D, the client decrypts the server’s responses and obtains f(x)
with probability 1/2 + 1/ poly(n). Importantly throughout the protocol, the server learns no
more than the length of x. Because the server is computationally unbounded, the scheme
requires information-theoretic security. Abadi et al. gave a complexity theoretic upper bound
on the types of functions that admit such a scheme. They showed that any function f that
the client could delegate in a GES must be contained in the class NP/poly ∩ coNP/poly.

The GES framework allows us to restate the questions we address in this paper as follows:
(1) Can we design a GES for delegating BQP functions? Note that, by the Abadi et al.

result, this is the same as asking whether BQP ⊂ NP/poly∩ coNP/poly. We will consider
two variants on the GES framework: one which allows the client to delegate sampling
problems to the server, and one in which the total communication between client and
server is bounded by O(nd), for some constant d > 0. For the former, we show that
having such a scheme for quantum sampling problems, like BosonSampling, implies
that circuits exist which can compute the permanent of a matrix more efficiently than
we believe is possible. For the latter, having a GES with bounded communication for
polynomial-time quantum computation implies that BQP ⊂ MA/O(nd), and we argue
that this containment is unlikely by providing an oracle separation between these classes.

(2) If we change the GES framework to allow one round of quantum communication between
the client and the server, what functions can the client delegate to the server? We
answer this question by “quantising” the Abadi et al. result and showing that such

2 In fact our result concerns protocols in which the client and the server start with one round of quantum
communication, followed by polynomially-many rounds of classical communication. In other words,
not only is there one quantum message from the client to the server, but the server is also allowed to
respond with a quantum message.

3 Unless otherwise specified, we restrict our attention to decision problems. This is why the function f
has the codomain {0, 1}.
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functions would be contained in QCMA/qpoly ∩ coQCMA/qpoly (a quantum analogue of
NP/poly ∩ coNP/poly). We also show that QCMA/qpoly ∩ coQCMA/qpoly is unlikely to
contain NP-hard functions.

The complete proofs for our results can be found in the full version of our paper [7].

1.1.1 Generalised encryption scheme for BQP decision problems
As we have mentioned, for the case of decision problems, Abadi et al. showed that the class
of problems that a client can delegate to a server using the GES framework is contained in
NP/poly ∩ coNP/poly. They also observed that if NP-hard functions could be delegated by
the client using a GES, then NP ⊂ NP/poly∩coNP/poly, and, in particular, NP ⊂ coNP/poly.
Yap showed that having such a containment leads to a collapse of the polynomial hierarchy
at the third level [58]. In other words, it seems unlikely that NP-hard problems would admit
a GES.

What about BQP-hard functions? The Abadi et al. result implies that having a GES for
BQP-hard functions leads to BQP ⊂ NP/poly ∩ coNP/poly. While we would like to argue,
similarly, that such a containment leads to a collapse of the polynomial hierarchy, even
BQP = P isn’t known to lead to such a collapse. We instead consider a modified GES in
which the total communication between the client and the server is upper bounded by a
polynomial of fixed degree, d > 0, in the size of the input4. In that case, it can be shown
that BQP ⊂ MA/O(nd) ∩ coMA/O(nd). We argue that this containment is unlikely based on
the following result:

I Theorem 1. For each d ∈ N, there exists an oracle Od such that BQPOd is not contained
in (MA/O(nd))Od .

Essentially, the theorem shows that relative to an oracle Od, there are problems that
can be solved by a polynomial-time quantum algorithm, but which a classical client cannot
delegate to a server in a GES with bounded communication. Since the oracle is parameterised
by d, we are in fact defining a family of oracles. The specific problem on which the oracle Od

is based is a version of Simon’s problem [55]. Simon’s problem is the following: for an input
of size n, and given oracle access to a function g : {0, 1}n → {0, 1}n that is guaranteed to be
either an injective function, or a 2-to-1 and periodic function5, the task is to decide which is
the case. Simon provided a polynomial-time quantum algorithm for solving this problem,
thus showing that it belongs to BQP (relative to the function oracle). For the case in which
one should accept when the function is 2-to-1, the problem can be shown to be outside of
MA (relative to the function oracle). As such, Simon’s problem provides an oracle separation
between BQP and MA.

In Simon’s original construction, the oracle function is the same for all inputs of size n.
Note that, this version of the problem can be solved with one bit of advice: for all inputs of
size n, the advice bit simply specifies whether the function is 1-to-1 or 2-to-1 and periodic.
Therefore such a setup would not be useful in our case. For this reason, in our proof of
Theorem 1, the function that the oracle provides access to is input-dependent. The problem
we define, relative to this oracle, is again to decide whether the function is 1-to-1 or the
function is 2-to-1 and periodic. However, we can show that, by considering a sufficiently

4 Note that we impose no such restriction on the running time of the client.
5 In other words, there exists a period s ∈ {0, 1}n, s 6= 0n, such that for all x, y ∈ {0, 1}n, x 6= y, it is the
case that g(x) = g(y) iff. x = s⊕ y.
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6:6 Complexity-Theoretic Limitations on Blind Delegated Quantum Computation

large domain for these functions – in other words, by letting g : {0, 1}nD → {0, 1}nD for
some D > d – the problem is not contained in (MA/O(nd))Od , but is nevertheless contained
in BQP. The proof uses a diagonalisation argument and can be found in the full version of
our paper [7].

Unfortunately, the same oracle cannot be used to separate BQP from NP/poly. This is
because D is a function of d; to prove a separation with respect to NP/poly, where the length
of the advice string can be any polynomial, we would have to find an oracle that works for
all possible values of d. It would be interesting to see whether the oracle that Raz and Tal
[51] recently used to prove a separation between BQP and PH could also be used in order to
separate BQP from NP/poly, or even from PH/poly. We leave this as an open problem.

One can argue that oracle results do not constitute compelling evidence on the relationships
between complexity classes. For example, it has been known for a while that there exist
oracles O1, O2 such that PO1 6= NPO1 but PO2 = NPO2 , and that, while IP = PSPACE, there
is an oracle such that IPO 6= PSPACEO. Nonetheless, oracles allow us to study the query
complexity of problems in different models of computation. In fact, there are situations in
practice where computer programs are restricted to making black-box calls to functions in
order to determine their properties [36]. Apart from this, oracle results have also inspired
a number of important developments in algorithms and complexity theory6. For more
arguments concerning the usefulness of oracle results, see Section 1.3 of [2].

1.1.2 Generalised encryption scheme for BQP sampling problems
We consider what would happen if we have a generalised encryption scheme which allowed
a client to delegate a sampling problem, such as BosonSampling, to the server. Boson-
Sampling, defined by Aaronson and Arkhipov in [6], is essentially the problem of simulating
the statistics of photons (bosons) passing through a linear optics network. One starts with a
configuration of identical photons in known locations (referred to as modes). The photons
then pass through the linear optics network, which consists of optical elements (beamsplitters
and phase shifters). Finally, one performs a measurement to determine the new locations of
the photons in the output modes of the system. The reason this is referred to as a sampling
problem is because we have a probability distribution over the different configurations of
photons in the output modes. In exact BosonSampling, which is the problem we consider,
the task is to produce a sample from that probability distribution. Aaronson and Arkhipov
showed that the probability of observing a particular configuration of photons is proportional
to the squared permanent of a matrix that can be obtained efficiently from the description of
the optical network. They also showed that no polynomial-time probabilistic algorithm can
sample from this distribution, unless the polynomial hierarchy collapses at the third level [6].
As such, while a quantum computer could simulate the optical network and sample from
the target distribution in polynomial time, it seems unlikely that classical computers could
do the same.

Sampling problems, like BosonSampling, are of interest because of their potential use
in demonstrating quantum computational supremacy [35]. This entails having a quantum
device perform a computational task that no classical computer would be able to reproduce
efficiently. Sampling problems are natural candidates for this task for two main reasons.
Firstly, many of the quantum sampling problems that have been considered could in principle
be performed on a small-scale quantum computer having up to (or on the order of) 100

6 A notable example is the fact that Simon’s oracle separation between BPP and BQP led to Shor’s
algorithm for factoring and computing the discrete logarithm [54]
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qubits and not requiring fault-tolerance [50]. Secondly, it has been shown that having a
polynomial-time classical algorithm that can sample from the distribution of the quantum
sampling problem leads to a collapse of the polynomial hierarchy. Contrast this to tasks such
as factoring for which the existence of an efficient classical algorithm is not known to lead to
any “disastrous” complexity-theoretic consequences.

Given that sampling problems are primarily considered in the context of demonstrating
quantum computational supremacy, one could ask why a client would like to delegate such a
problem to the server via a GES. Firstly, all existing schemes for blind delegated quantum
computation allow the client to delegate both decision and sampling problems [26]. It is
therefore natural to ask whether such a scheme, involving only classical communication, can
also exist. Secondly, there is currently no known way for a classical client to efficiently certify
whether the server has sampled from the correct distribution (at least with an information-
theoretic guarantee). In fact, in certain cases the client would require exponentially many
samples from the server in order to perform this verification [34]. However, if a GES for
quantum sampling problems existed, the client might be able to leverage it in order to
perform the certification, in the same way that many delegated quantum computation
protocols leverage blindess to achieve verifiability [30]. Finally, due to the equivalence
between sampling and searching shown in [3], our result holds if we substitute sampling
problems with search problems.

In a GES for exact BosonSampling, the client’s input would be a description of a linear
optics network7. The client would like to delegate to the server the task of sampling from the
BosonSampling distribution associated with this network, while keeping the description
of the network hidden from the server. In other words, upon interacting with the server
and decrypting its responses, the client should obtain a sample from the BosonSampling
distribution. At the same time, the server learns at most an upper bound on the size of the
network. We show the following:

I Theorem 2. If exact BosonSampling admits a GES, then for any matrix
X ∈ {−1, 0, 1}n×n, there exist circuits of size 2n−Ω( n

log n ), making polynomially-sized queries
to an NPNP oracle, for computing the permanent of X.

Computing the permanent of a matrix is a problem known to be #P-hard. By Toda’s
theorem, this means that if computing the permanent were possible at any level of the
polynomial hierarchy, the hierarchy would collapse at that level [56]. Moreover, the best known
algorithm for computing the permanent, by Björklund, has a run-time of 2n−Ω

(√
n/log(n)

)
[14].

Prior to that, the leading algorithm for computing the permanent was Ryser’s algorithm,
developed over 50 years ago, which requires O(n2n) arithmetic operations [53]. We conjecture
that the circuits of Theorem 2 do not exist and, thus, that there can be no GES for
BosonSampling.

1.1.3 Quantum generalised encryption scheme
While having a GES for delegating BQP computations seems unlikely, we know that giving
the client some minimal quantum capabilities removes this limitation: schemes such as
UBQC exist which allow for the information-theoretically secure blind delegation of quantum

7 In principle, one could also specify the configuration of the photons in the input modes as part of the
client’s input. Equivalently, however, one can always initialise the input modes to some fixed initial
state, and produce whichever starting state is in fact desired by altering the linear optics network.
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computations. In the spirit of the Abadi et al. result, it is natural to consider quantum
generalised encryption schemes (or QGES), in which the client is no longer classical, and
investigate the complexity-theoretic upper bounds on functions that admit such a protocol.
For the QGES, we are still assuming information-theoretic security and that the encryption
scheme leaks at most the size of the input. However, unlike the GES, the client is now
assumed to be a quantum computer performing polynomial-time computations8. Additionally,
the client and the server perform one round of quantum communication at the beginning of
the protocol. The rest of the communication is classical.

We impose one other restriction on the QGES, known as offline-ness. Roughly speaking,
an offline protocol is one in which the client does not need to commit to any particular input
(of a given size), after having sent the quantum message to the server. The quantum message
only depends on the size of the input. We note that offline-ness is a property which UBQC
and all other currently known blind quantum computing protocols share. From a practical
perspective, this presents the client with the option of sending the first quantum message
to the server and deciding at a later time on which input the server should perform the
computation. One could imagine, for instance, that the client and the server have access
to a quantum channel for a limited amount of time. In practice, such a situation can occur
if the communication between the parties is mediated by a satellite, as is the case with
satellite-based quantum-key distribution [42]. In this case, the satellite is in the line of sight
of the two parties for only a few minutes at a time. Our result is the following:

I Theorem 3. The class of functions that a client can delegate to a server in an offline
QGES is contained in QCMA/qpoly ∩ coQCMA/qpoly.

Note that the class QCMA/qpoly∩ coQCMA/qpoly can be seen as a quantum analogue of the
class NP/poly∩coNP/poly which we encounter in the GES case. We therefore view Theorem 3
as a “quantisation” of the Abadi et al. bound on the power of generalised encryption schemes.

Again, in the spirit of the Abadi et al. result, one can ask whether NP-complete functions
are contained in QCMA/qpoly ∩ coQCMA/qpoly. In other words: does giving quantum
capabilities to the client increase the class of functions that it can securely delegate so that
this class contains NP? We give an indication that the answer is no:

I Theorem 4. NP ⊂ QCMA/qpoly ∩ coQCMA/qpoly implies coNPNPNP ⊆ NPNPPromiseQMA
.

Note that if PromiseQMA in the above expression were replaced with NP, this would imply a
collapse of the polynomial hierarchy at the third level. Our result is as close to a collapse of
the polynomial hierarchy as one can reasonably hope to get, given a quantum hypothesis.
Hence, while a QGES does allow the client to delegate BQP computations, it seems to be no
more useful than the regular GES for delegating NP-hard functions.

One could ask why we would even be interested in delegating NP-hard problems to a
quantum computer, given that we do not expect quantum computers to be able to solve
such problems in polynomial time [1]. First of all, from a theoretical perspective, note
that in the QGES formalism we are not limiting the server to polynomial-time quantum
computations, but instead assuming that it has unbounded computational power. Therefore,
the way to view this result is not as “how can a client blindly delegate the evaluation of
NP-hard functions to a quantum computer?” but as “can quantum communication help in
blindly delegating the evaluation of NP-hard functions to an unbounded server?”.

From a practical perspective, while we do not believe that quantum computers can solve
NP-complete problems in polynomial time, they could, in principle, solve such problems
quadratically faster than classical computers, thanks to Grover’s algorithm [33]. Even

8 It should be noted that our upper bound on the power of QGES schemes also holds if the client is
restricted to BPP computations (as is the case in UBQC), since BPP ⊆ BQP.
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though the speedup of Grover’s algorithm is only quadratic, from (say) 2n to 2n/2, our result
is only concerned with the length of the computation performed on the client side, and
therefore applies to Grover’s algorithm just as it would to a quantum algorithm achieving
exponential speedup. In fact, as is mentioned in [4], there are NP-complete problems for
which quantum computers provide a superpolynomial speedup, at least with respect to the
best known classical algorithms. Our no-go theorem indicates that clients cannot exploit such
speedups by delegating the computation to the server, even when allowing some quantum
communication, if we also want to keep their inputs hidden in an information-theoretic sense.

Proofs of these results can be found in the full version of our paper [7].

1.2 Related work
As mentioned, the problem of computing on encrypted data was first considered by Rivest,
Adleman and Dertouzos [52], which then led to the development of homomorphic encryption
and eventually to fully homomorphic encryption with Gentry’s scheme [29]. Since then there
have been many other FHE protocols relying on more standard cryptographic assumptions
and having more practical requirements [17, 16, 57].

While FHE is similar to the GES in many respects, there are also significant differences.
For starters, FHE protocols have only one round of interaction between the client and the
server, whereas a GES allows for polynomially many rounds. Additionally, the GES assumes
the server is computationally unbounded and hence requires information-theoretic security. In
contrast, FHE relies on computational security. More precisely FHE schemes have semantic
security against polynomial-time (quantum) algorithms [29].

The problem of quantum computing on encrypted data was introduced by Childs [21]
and Arrighi and Salvail [12]. Further development eventually led to UBQC [19, 9] and a
scheme of Broadbent [18]. The latter was followed by the construction of the first schemes
for quantum fully homomorphic encryption (QFHE) [20, 24]. For a review of blind quantum
computing and related protocols see [26].

In the QFHE schemes of [20, 24], the server is a polynomial-time quantum computer
and the client has some quantum capabilities of its own, although it is not able to perform
universal quantum computations. Both the size of the exchanged messages and the number
of operations of the client are polynomial in the size of the input. More recently, QFHE
schemes have been proposed in which the client is completely classical [43, 15]. Similar
to FHE, these protocols rely on computational assumptions for security [10] and involve
one round of back and forth interaction between the client and the server. QFHE with
information-theoretic security (and a computationally unbounded server) has been considered
by Yu et al. in [59], where it is shown that it is impossible to have such a scheme for arbitrary
unitary operations (or even arbitrary reversible classical computations). This result was later
reproved by Newmann and Shi using quantum random-access codes [49]. In relation to our
work, QFHE with information-theoretic security can be viewed as a one-round QGES in
which the server responds with a quantum message. The complexity-theoretic upper bound
we prove for QGES computable functions would then apply to QFHE as well (provided that
in QFHE we only leak the size of the input to the server), since our proof allows a quantum
message from the server just as well as a classical message.

The possibility of a classical client delegating a blind computation to a quantum server
was considered by Morimae and Koshiba [48]. They showed that such a protocol in which
the client leaks no information about its input to the server and there is only one round of
interaction leads to BQP ⊆ NP, considered an unlikely containment. We consider the more
general setting of a GES for BQP functions, where the number of rounds can be polynomial
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in the size of the input and we allow the encryption to leak the size of the input. In fact, the
question of whether a GES, as defined in Abadi et al. [8], can exist for quantum computations
was raised before by Dunjko and Kashefi [25].

1.3 Future work
As we remarked in Section 1.1, in the case of decision problems, the existence of a GES with
bounded communication, for polynomial-time quantum computations, leads to the inclusion
BQP ⊂ MA/O(nd). We argue that this containment is unlikely based on the existence of an
oracle separating the two complexity classes. A natural extension of this result would be to
prove an oracle separation between BQP and NP/poly. This would provide more compelling
evidence that a GES for quantum computations cannot exist.

In the case of sampling problems, we showed that a GES for BosonSampling implies the
existence of circuits of size 2n−Ω( n

log n ), making polynomially-sized queries to an NPNP oracle,
for computing matrix permanents. Can this result be strengthened so as to provide circuits
for computing matrix permanents that would be ruled out by the strong exponential-time
hypothesis? Alternatively, could one use other quantum sampling problems (such as random
circuit sampling or IQP problems [35]) to show that having a GES for such a problem leads
to a collapse of the polynomial hierarchy?

We also defined the QGES, which extends the GES by allowing the client to send one
quantum message to the server, and gave an upper bound for the set of functions that can be
delegated using an offline version of such a scheme. The immediate question one could ask
is: what upper bound can we give for an online QGES? A related question is: what upper
bound can we give for a QGES that allows all of the communication between the client and
the server to be quantum? The difficulty in answering both of these questions is that the
offline property of the QGES is what allowed us to relate the set of functions that can be
delegated to advice classes. Without this property, it seems that a different approach would
be needed to provide a complexity-theoretic upper bound.

Another direction that can be explored has to do with the size of the quantum communic-
ation between the client and the server. In a QGES in which the client’s quantum message
is logarithmic or poly-logarithmic in the size of the input (while the classical communication
is still polynomial), is it still possible to delegate BQP functions to the server? Of course,
this question only makes sense if we assume that the client is not able to perform BQP
computations itself.
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Abstract
The All-Pairs Min-Cut problem (aka All-Pairs Max-Flow) asks to compute a minimum s-t cut
(or just its value) for all pairs of vertices s, t. We study this problem in directed graphs with unit
edge/vertex capacities (corresponding to edge/vertex connectivity). Our focus is on the k-bounded
case, where the algorithm has to find all pairs with min-cut value less than k, and report only those.
The most basic case k = 1 is the Transitive Closure (TC) problem, which can be solved in graphs
with n vertices and m edges in time O(mn) combinatorially, and in time O(nω) where ω < 2.38 is
the matrix-multiplication exponent. These time bounds are conjectured to be optimal.

We present new algorithms and conditional lower bounds that advance the frontier for larger k,
as follows:

A randomized algorithm for vertex capacities that runs in time O((nk)ω). This is only a factor
kω away from the TC bound, and nearly matches it for all k = no(1).
Two deterministic algorithms for edge capacities (which is more general) that work in DAGs
and further reports a minimum cut for each pair. The first algorithm is combinatorial (does
not involve matrix multiplication) and runs in time O(2O(k2) ·mn). The second algorithm can
be faster on dense DAGs and runs in time O((k log n)4k+o(k)

· nω). Previously, Georgiadis et al.
[ICALP 2017], could match the TC bound (up to no(1) factors) only when k = 2, and now our
two algorithms match it for all k = o(

√
log n) and k = o(log log n).

The first super-cubic lower bound of nω−1−o(1)k2 time under the 4-Clique conjecture, which
holds even in the simplest case of DAGs with unit vertex capacities. It improves on the previous
(SETH-based) lower bounds even in the unbounded setting k = n. For combinatorial algorithms,
our reduction implies an n2−o(1)k2 conditional lower bound. Thus, we identify new settings
where the complexity of the problem is (conditionally) higher than that of TC.
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Our three sets of results are obtained via different techniques. The first one adapts the network
coding method of Cheung, Lau, and Leung [SICOMP 2013] to vertex-capacitated digraphs. The
second set exploits new insights on the structure of latest cuts together with suitable algebraic
tools. The lower bounds arise from a novel reduction of a different structure than the SETH-
based constructions.
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1 Introduction

Connectivity-related problems are some of the most well-studied problems in graph theory
and algorithms, and have been thoroughly investigated in the literature. Given a directed
graph G = (V,E) with n = |V | vertices and m = |E| edges,1 perhaps the most fundamental
such problem is to compute a minimum s-t cut, i.e., a set of edges E′ of minimum-cardinality
such that t is not reachable from s in G \ E′. This minimum s-t cut problem is well-known
to be equivalent to maximum s-t flow, as they have the exact same value [17]. Currently, the
fastest algorithms for this problem run in time Õ(m

√
n logO(1) U) [24] and Õ(m10/7U1/7)

(faster for sparse graphs) [26], where U is the maximum edge capacity (aka weight).2
The central problem of study in this paper is All-Pairs Min-Cut (also known as All-Pairs

Max-Flow), where the input is a digraph G = (V,E) and the goal is to compute the minimum
s-t cut value for all s, t ∈ V . All our graphs will have unit edge/vertex capacities, in which
case the value of the minimum s-t cut is just the maximum number of disjoint paths from s

to t (aka edge/vertex connectivity), by [28]. We will consider a few variants: vertex capacities
vs. edge capacities,3 reporting only the value vs. the cut itself (a witness), or a general
digraph vs. a directed acyclic graph (DAG). For all these variants, we will be interested in the
k-bounded version (aka bounded min-cuts, hence the title of the paper) where the algorithm
needs to find which minimum s-t cuts have value less than a given parameter k, and report

1 We sometimes use arcs when referring to directed edges, or use nodes instead of vertices.
2 The notation Õ(·) hides polylogarithmic factors.
3 The folklore reduction where each vertex v is replaced by two vertices connected by an edge vin → vout

shows that in all our problems, vertex capacities are no harder (and perhaps easier) than edge capacities.
Notice that this is only true for directed graphs.
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only those. Put differently, the goal is to compute, for every s, t ∈ V , the minimum between
k and the actual minimum s-t cut value. Nonetheless, some of our results (the lower bounds)
are of interest even without this restriction.

The time complexity of these problems should be compared against the fundamental
special case that lies at their core – the Transitive Closure problem (aka All-Pairs Reach-
ability), which is known to be time-equivalent to Boolean Matrix Multiplication, and in
some sense, to Triangle Detection [34]. This is the case k = 1, and it can be solved in time
O(min{mn/ logn, nω}), where ω < 2.38 is the matrix-multiplication exponent [14, 23, 33, 11];
the latter term is asymptotically better for dense graphs, but it is not combinatorial.4 This
time bound is conjectured to be optimal for Transitive Closure, which can be viewed as
a conditional lower bound for All-Pairs Min-Cut; but can we achieve this time bound
algorithmically, or is All-Pairs Min-Cut a harder problem?

The naive strategy for solving All-Pairs Min-Cut is to execute a minimum s-t cut algorithm
O(n2) times, with total running time Õ(n2m10/7) [26] or Õ(n2.5m) [24]. For not-too-dense
graphs, there is a faster randomized algorithm of Cheung, Lau, and Leung [13] that runs in
time O(mω). For smaller k, some better bounds are known. First, observe that a minimum s-t
cut can be found via k iterations of the Ford-Fulkerson algorithm [17] in time O(km), which
gives a total bound of O(n2mk). Another randomized algorithm of [13] runs in better time
O(mnkω−1) but it works only in DAGs. Notice that the latter bound matches the running
time of Transitive Closure if the graphs are sparse enough. For the case k = 2, Georgiadis et
al. [18] achieved the same running time as Transitive Closure up to sub-polynomial factor
no(1) in all settings, by devising two deterministic algorithms, whose running times are Õ(mn)
and Õ(nω).

Other than the lower bound from Transitive Closure, the main previously known result is
from [21], which showed that under the Strong Exponential Time Hypothesis (SETH),5 All-
Pairs Min-Cut requires, up to sub-polynomial factors, time Ω(mn) in unit edge capacitated
digraphs of any edge density, and even in the simpler case of (unit) vertex capacities and of
DAGs. As a function of k their lower bound becomes Ω(n2−o(1)k) [21]. Combining the two,
we have a conditional lower bound of (n2k + nω)1−o(1).

Related Work. There are many other results related to the edge capacitated All-Pairs
Min-Cut problem, let us mention a few. Other than DAGs, the problem has also been
considered in the special cases of planar digraphs [6, 22], sparse digraphs and digraphs with
bounded treewidth [6].

In undirected graphs, the problem was studied extensively following the seminal work of
Gomory and Hu [19] in 1961, which introduced a representation of All-Pairs Min-Cuts via a
weighted tree, commonly called a Gomory-Hu tree, and further showed how to compute it
using n− 1 executions of maximum s-t flow. Bhalgat et al. [8] designed an algorithm that
computes a Gomory-Hu tree in unit edge capacitated undirected graphs in Õ(mn) time, and
this upper bound was recently improved [4]. The case of bounded min-cuts (small k) in
undirected graphs was studied by Hariharan et al. [20], motivated in part by applications in
practical scenarios. The fastest running time for this problem is Õ(mk) [31], achieved by
combining results from [20] and [8]. On the negative side, there is an n3−o(1) lower bound
for All-Pairs Min-Cut in sparse capacitated digraphs [21], and very recently, a similar lower
bound was shown for undirected graphs with vertex capacities [4].

4 Combinatorial is an informal term to describe algorithms that do not rely on fast matrix-multiplication
algorithms, which are infamous for being impractical. See [1, 3] for further discussions.

5 These lower bounds hold even under the weaker assumption that the 3-Orthogonal Vectors problem
requires n3−o(1) time.
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1.1 Our Contribution
The goal of this work is to reduce the gaps in our understanding of the All-Pairs Min-Cut
problem (see Table 1 for a list of known and new results). In particular, we are motivated by
three high-level questions. First, how large can k be while keeping the time complexity the
same as Transitive Closure? Second, could the problem be solved in cubic time (or faster)
in all settings? Currently no Ω(n3+ε) lower bound is known even in the hardest settings of
the problem (capacitated, dense, general graphs). And third, can the actual cuts (witnesses)
be reported in the same amount of time it takes to only report their values? Some of the
previous techniques, such as those of [13], cannot do that.

New Algorithms. Our first result is a randomized algorithm that solves the k-bounded
version of All-Pairs Min-Cut in a digraph with unit vertex capacities in time O((nk)ω). This
upper bound is only a factor kω away from that of Transitive Closure, and thus matches
it up to polynomial factors for any k = no(1). Moreover, any poly(n)-factor improvement
over our upper bound would imply a breakthrough for Transitive Closure (and many other
problems). Our algorithm builds on the network-coding method of [13], and in effect adapts
this method to the easier setting of vertex capacities, to achieve a better running time than
what is known for unit edge capacities. This algorithm is actually more general: Given
a digraph G = (V,E) with unit vertex capacities, two subsets S, T ⊆ V and k > 0, it
computes for all s ∈ S, t ∈ T the minimum s-t cut value if this value is less than k, all in
time O((n+ (|S|+ |T |)k)ω + |S||T |kω). Due to space constraints, we overview these results
in Section 3.1, with full details in the full version.

Three weaknesses of this algorithm and the ones by Cheung et al. [13] are that they
do not return the actual cuts, they are randomized, and they are not combinatorial. Our
next set of algorithmic results deals with these issues. More specifically, we present two
deterministic algorithms for DAGs with unit edge (or vertex) capacities that compute, for
every s, t ∈ V , an actual minimum s-t cut if its value is less than k. The first algorithm is
combinatorial (i.e., it does not involve matrix multiplication) and runs in time O(2O(k2) ·mn).
The second algorithm can be faster on dense DAGs and runs in time O((k logn)4k+o(k) · nω).
These algorithms extend the results of Georgiadis et al. [18], which matched the running
time of Transitive Closure up to no(1) factors, from just k = 2 to any k = o(

√
logn) (in the

first case) and k = o(log logn) (in the second case). We give an overview of these algorithms
in Section 3.2, and the formal results are in the full version.

New Lower Bounds. Finally, we present conditional lower bounds for our problem, the
k-bounded version of All-Pairs Min-Cut. As a result, we identify new settings where the
problem is harder than Transitive Closure, and provide the first evidence that the problem
cannot be solved in cubic time. Technically, the main novelty here is a reduction from the
4-Clique problem. It implies lower bounds that apply to the basic setting of DAGs with unit
vertex capacities, and therefore immediately apply also to more general settings, such as edge
capacities, capacitated inputs, and general digraphs, and they in fact improve over previous
lower bounds [5, 21] in all these settings.6 We prove the following theorem in Section 4.

I Theorem 1.1. If for some fixed ε > 0 and any k ∈ [n1/2, n], the k-bounded version of
All-Pairs Min-Cut can be solved on DAGs with unit vertex capacities in time O((nω−1k2)1−ε),
then 4-Clique can be solved in time O(nω+1−δ) for some δ = δ(ε) > 0.

6 It is unclear if our new reduction can be combined with the ideas in [4] to improve the lower bounds in
the seemingly easier case of undirected graphs with vertex capacities.
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Moreover, if for some fixed ε > 0 and any k ∈ [n1/2, n] that version of All-Pairs
Min-Cut can be solved combinatorially in time O((n2k2)1−ε), then 4-Clique can be solved
combinatorially in time O(n4−δ) for some δ = δ(ε) > 0.

To appreciate the new bounds, consider first the case k = n, which is equivalent to
not restricting k. The previous lower bound, under SETH, is n3−o(1) and ours is larger
by a factor of nω−2. For combinatorial algorithms, our lower bound is n4−o(1), which is
essentially the largest possible lower bound one can prove without a major breakthrough in
fine-grained complexity. This is because the naive algorithm for All-Pairs Min-Cuts is to
invoke an algorithm for Max-Flow O(n2) times, hence a lower bound larger than Ω(n4) for
our problem would imply the first non-trivial lower bound for minimum s-t cut. The latter
is perhaps the biggest open question in fine-grained complexity, and in fact many experts
believe that near-linear time algorithms for minimum s-t cut do exist, and can even be
considered “combinatorial” in the sense that they do not involve the infamous inefficiencies
of fast matrix multiplication. If such algorithms for minimum s-t cut do exist, then our lower
bound is tight.

Our lower bound shows that as k exceeds n1/2−o(1), the time complexity of k-bounded
of All-Pairs Min-Cut exceeds that of Transitive Closure by polynomial factors. The lower
bound is super-cubic whenever k ≥ n2−ω/2+ε.

Table 1 Summary of new and known results. Unless mentioned otherwise, all upper and lower
bounds hold both for unit edge capacities and for unit vertex capacitities.

Time Input Output Reference
O(mn), Õ(nω) deterministic digraphs cuts, only k = 2 [18]
O(n2mk) deterministic digraphs cuts [17]
O(mω) randomized digraphs cut values [13]
O(mnkω−1) randomized DAGs cut values [13]
O((nk)ω) randomized, vertex capacities digraphs cut values full version
2O(k2)mn deterministic DAGs cuts full version
(k log n)4k+o(k) · nω deterministic DAGs cuts full version
(mn + nω)1−o(1) based on Transitive Closure DAGs cut values
n2−o(1)k based on SETH DAGs cut values [21]
nω−1−o(1)k2 based on 4-Clique DAGs cut values Theorem 1.1

2 Preliminaries

We start with some terminology and well-known results on graphs and cuts. Next we will
briefly introduce the main algebraic tools that will be used throughout the paper. We note
that although we are interested in solving the k-bounded All-Pairs Min-Cut problem, where
we wish to find the all-pairs min-cuts of size at most k − 1, for the sake of using simpler
notation we compute the min-cuts of size at most k (instead of less than k) solving this way
the (k + 1)-bounded All-Pairs Min-Cut problem.

Directed graphs. The input of our problem consists of an integer k ≥ 1 and a directed
graph, digraph for short, G = (V,A) with n := |V | vertices and m := |A| arcs. Every arc
a = (u, v) ∈ A consists of a tail u ∈ V and a head v ∈ V . By G[S], we denote the subgraph
of G induced by the set of vertices S, formally G[S] = (S,A∩ (S×S)). By N+(v), we denote
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the out-neighborhood of v consisting of all the heads of the arcs leaving v. We denote by
outdeg(v) the number of outgoing arcs from v. All our results extend to multi-digraphs,
where each pair of vertices can be connected with multiple (parallel) arcs. For parallel arcs,
we always refer to each arc individually, as if each arc had a unique identifier. So whenever
we refer to a set of arcs, we refer to the set of their unique identifiers, i.e., without collapsing
parallel arcs, like in a multi-set.

Flows and cuts. We follow the notation used by Ford and Fulkerson [17]. Let G = (V,A) be
a digraph, where each arc a has a nonnegative capacity c(a). For a pair of vertices s and t, an
s-t flow of G is a function f on A such that 0 ≤ f(a) ≤ c(a), and for every vertex v 6= s, t the
incoming flow is equal to outgoing flow, i.e.,

∑
(u,v)∈A f(u, v) =

∑
(v,u)∈A f(v, u). If G has

vertex capacities as well, then f must also satisfy
∑

(u,v)∈A f(u, v) ≤ c(v) for every v 6= s, t,
where c(v) is the capacity of v. The value of the flow is defined as |f | =

∑
(s,v)∈A f(s, v). We

denote the existence of a path from s to t by s t and by s6 t the lack of such a path. Any
set M ⊆ A is an s-t-cut if s6 t in G \M . M is a minimal s-t-cut if no proper subset of M
is s-t-cut. For an s-t-cut M , we say that its source side is SM = {x | s x in G \M} and
its target side is TM = {x | x t in G \M}. We also refer to the source side and the target
side as s-reachable and t-reaching, respectively. An s-t k-cut is a minimal cut of size k. A
setM of s-t cuts of size at most k is called a set of s-t ≤ k-cuts. We can define vertex cuts
analogously.

Order of cuts. An s-t cut M is later (respectively earlier) than an s-t cut M ′ if and only if
TM ⊆ TM ′ (resp. SM ⊆ SM ′), and we denote it M ≥M ′ (resp. M ≤M ′). Note that those
relations are not necessarily complementary if the cuts are not minimal (see Figure 1 for an
example).

s t

M1

SM1 SM1
s t

M2

SM2 SM2

s t

M3

SM3 SM3

s
t

M3

TM3
TM3s t

M3

M2M1

Figure 1 A digraph with three s-t-cuts M1, M2, M3. While M1 and M2 are minimal, M3 is not.
Hence, the source side and target side differ only for M3. This illustrates that the earlier and later
orders might not be symmetric for non-minimal cuts. We have M3 < M2 yet M2 ≯ M3 (and also
M3 ≤M2 yet M2 � M3). Additionally, M1 ≮ M3 yet M3 > M1 (yet both M1 ≤M3 and M3 ≥M1).

We make these inequalities strict (i.e., ‘>’ or ‘<’) whenever the inclusions are proper. We
compare a cut M and an arc a by defining a > M whenever both endpoints of a are in TM .
Additionally, a ≥M includes the case where a ∈M . Definitions of the relations ‘≤’ and ‘<’
follow by symmetry. We refer to Figure 2 for illustrations.

s t
M1 M4

M3

M2

Figure 2 A digraph with several s-t cuts. Bold arcs represent parallel arcs which are too expensive
to cut. M1 is the earliest s-t min-cut and M3 is the latest s-t min-cut. M2 is later than M1, but M2

is not s-t-latest, as M4 is later and not larger than M2.
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This partial order of cuts also allows us to define cuts that are extremal with respect to
all other s-t cuts in the following sense:

I Definition 2.1 (s-t-latest cuts [27]). An s-t cut is s-t-latest (resp. s-t-earliest) if and only
if there is no later (resp. earlier) s-t cut of smaller or equal size.

Informally speaking, a cut is s-t-latest if we would have to cut through more arcs whenever
we would like to cut off fewer vertices. This naturally extends the definition of an s-t-latest
min-cut as used by Ford and Fulkerson [17, Section 5]. The notion of latest cuts has first been
introduced by Marx [27] (under the name of important cuts) in the context of fixed-parameter
tractable algorithms for multi(way) cut problems, but has been independently studied (or its
equivalent formulations), [7, 29]. Since we need both earliest and latest cuts, we do not refer
to latest cuts as important cuts. Additionally, we use the term s-t-extremal cuts to refer to
the union of s-t-earliest and s-t-latest cuts.

3 Overview of Our Algorithmic Approach

3.1 Randomized Algorithms on General Graphs
We will now briefly recap the framework of Cheung et al. [13] as we will modify them later
for our purposes. In this framework, edges are encoded as vectors, so that the vector of
each edge e = (u, v) is a randomized linear combination of the vectors correspond to edges
incoming to u, the source of e. One can compute all these vectors for the whole graph,
simultaneously, using some matrix manipulations. The bottleneck is that one has to invert a
certain m×m matrix with an entry for each pair of edges. Just reading the matrix that is
output by the inversion requires Ω(m2) time, since most entries in the inverted matrix are
expected to be nonzero even if the graph is sparse.

To overcome this barrier, while using the same framework, we define the encoding vectors
on the nodes rather than the edges. We show that this is sufficient for the vertex-capacitated
setting. Then, instead of inverting a large matrix, we need to compute the rank of certain
submatrices which becomes the new bottleneck. When k is small enough, this turns out to
lead to a significant speed up compared to the running time in [13].

3.2 Deterministic Algorithms with Witnesses on DAGs
Here we deal with the problem of computing certificates for the k-bounded All-Pairs Min-Cut
problem. Our contribution here is twofold. We first prove some properties of the structure of
the s-t-latest k-cuts and of the s-t-latest ≤k-cuts, which might be of independent interest.
This gives us some crucial insights on the structure of the cuts, and allows us to develop
an algorithmic framework which is used to solve the k-bounded All-Pairs Min-Cut problem.
As a second contribution, we exploit our new algorithmic framework in two different ways,
leading to two new algorithms which run in O(mn1+o(1)) time for k = o(

√
logn) and in

O(nω+o(1)) time for k = o(log logn).
Let G = (V,A) be a DAG. Consider some arbitrary pair of vertices s and t, and any

s-t-cut M . For every intermediate vertex v, M must be either a s-v-cut, or a v-t-cut. The
knowledge of all s-v and all v-t min-cuts does not allow us to convey enough information for
computing an s-t min-cut of size at most k quickly, as illustrated in Figure 3.

However, we are able to compute an s-t min-cut by processing all the s-v-earliest cuts and
all the v-t-latest cuts, of size at most k. We build our approach around this insight. We note
that the characterization that we develop is particularly useful, as it has been shown that
the number of all earliest/latest u-v ≤k-cuts can be upper bounded by 2O(k), independently
of the size of the graph.
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Figure 3 A digraph where each arc appears in at least one s-v or one v-t min-cut. The numbers
on the arcs denote the number of parallel arcs. Note that neither of the two s-t min-cuts of size 9
(marked in yellow) are contained within the union of any two s-v or v-t min-cuts. Thus, finding all
those min-cuts and trying to combine them in pairs in a divide-and-conquer-style approach is not
sufficient to find an s-t min-cut.

For a more precise formulation on how to recover a min-cut (or extremal ≤k-cuts) from
cuts to and from intermediate vertices, consider the following. Let A1, A2 be an arc split,
that is a partition of the arc set A with the property that any path in G consists of a
(possibly empty) sequence of arcs from A1 followed by a (possibly empty) sequence of arcs
from A2. Assume that for each vertex v we know all the s-v-earliest ≤k-cuts in G1 = (V,A1)
and all the v-t-latest ≤k-cuts in G2 = (V,A2). We show that a set of arcs M that contains
as a subset one s-v-earliest ≤k-cut in G1, or one v-t-latest ≤k-cut in G2 for every v, is a
s-t-cut. Moreover, we show that all the s-t-cuts of arcs with the above property include
all the s-t-latest ≤k-cuts. Hence, in order to identify all s-t-latest ≤k cuts, it is sufficient
to identify all sets M with that property. We next describe how we use these structural
properties to compute all s-t-extremal ≤k-cuts.

We formulate the following combinatorial problem over families of sets, which is indepen-
dent of graphs and cuts, that we can use to compute all s-t-extremal ≤k-cuts. The input
to our problem is c families of sets F1,F2, . . . ,Fc, where each family Fi consists of at most
K sets, and each set F ∈ Fi contains at most k elements from a universe U . The goal is to
compute all minimal subsets F ∗ ⊂ U, |F ∗| ≤ k, for which there exists a set F ∈ Fi such that
F ⊆ F ∗, for all 1 ≤ i ≤ c. We refer to this problem as Witness Superset. To create an
instance (s, t, A1, A2) of the Witness Superset problem, we set c = |V | and Fv to be all
s-v-earliest ≤k-cuts in G1 and all v-t-latest ≤k-cuts in G2. Informally speaking, the solution
to the instance (s, t, A1, A2) of the Witness Superset problem picks all sets of arcs that
cover at least one earliest or one latest cut for every vertex. In a post-processing step, we
filter the solution to the Witness Superset problem on the instance (s, t, A1, A2) in order
to extract all the s-t-latest ≤k-cuts. We follow an analogous process to compute all the
s-t-earliest ≤k-cuts.

Algorithmic framework. We next define a common algorithmic framework for solving the
k-bounded All-Pairs Min-Cut problem, as follows. We pick a partition of the vertices V1, V2,
such that there is no arc in V2 × V1. Such a partition can be trivially computed from a
topological order of the input DAG. Let A1, A2, A1,2 be the sets of arcs in G[V1], in G[V2],
and A ∩ (V1 × V2).

First, we recursively solve the problem in G[V1] and in G[V2]. The recursion returns
without doing any work whenever the graph is a singleton vertex.
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Second, for each pair of vertices (s, t), such that s ∈ V1 has an outgoing arc from A1,2
and t ∈ V2, we solve the instance (s, t, A1,2, A2) of Witness Superset. Notice that the
only non-empty earliest cuts in (V,A1,2) for the pair (x, y) are the arcs (x, y) ∈ A1,2.
Finally, for each pair of vertices (s, t), such that s ∈ V1, t ∈ V2, we solve the instance
(s, t, A1, A1,2 ∪A2) of Witness Superset.

The Witness Superset problem can be solved naively as follows. Let Fv be the set
of all s-v-earliest ≤k-cuts and all v-t-latest ≤k-cuts. Assume we have Fv1 ,Fv2 , . . . ,Fvc

, for
all vertices v1, v2, . . . , vc that are both reachable from s in (V,A1,2) and that reach t in
(V,A2). Each of these sets contains 2O(k) cuts. We can identify all sets M of arcs that
contain at least one cut from each Fi, in time O(k · (2O(k))c). This yields an algorithm with
super-polynomial running time. However, we speed up this naive procedure by applying
some judicious pruning, achieving a better running time of O(c · 2O(k2) · poly(k)), which is
polynomial for k = o(

√
logn). In the following, we sketch the two algorithms that we develop

for solving efficiently the k-bounded All-Pairs Min-Cut problem.

Iterative division. For the first algorithm, we process the vertices in reverse topological
order. When processing a vertex v, we define V1 = {v} and V2 to be the set of vertices that
appear after v in the topological order. Notice that V1 has a trivial structure, and we already
know all s-t-latest ≤k-cuts in G[V2]. In this case, we present an algorithm for solving the
instance (v, t, A1,2, A2) of the Witness Superset problem in time O(2O(k2) · c · poly(k)),
where c = |A1,2| is the number of arcs leaving v. We invoke this algorithm for each v-
w pair such that w ∈ V2. For k = o(

√
logn) this gives an algorithm that runs in time

O(outdeg(v) · n1+o(1)) for processing v, and O(mn1+o(1)) in total.

Recursive division. For the second algorithm, we recursively partition the set of vertices
evenly into sets V1 and V2 at each level of the recursion. We first recursively solve the problem
in G[V1] and in G[V2]. Second, we solve the instances (s, t, A1,2, A2) and (s, t, A1, A1,2 ∪A2)
of Witness Superset for all pairs of vertices from V1 × V2. Notice that the number of
vertices that are both reachable from s in (V,A1) and reach t in (V,A1,2 ∪A2) can be as high
as O(n). This implies that even constructing all Θ(n2) instances of the Witness Superset
problem, for all s, t, takes Ω(n3) time. To overcome this barrier, we take advantage of the
power of fast matrix multiplications by applying it into suitably defined matrices of binary
codes (codewords). At a very high-level, this approach was used by Fischer and Meyer [16]
in their O(nω) time algorithm for transitive closure in DAGs – there the binary codes where
of size 1 indicating whether there exists an arc between two vertices.

Algebraic framework. In order to use coordinate-wise boolean matrix multiplication with
the entries of the matrices being codewords we first encode all s-t-earliest and all s-t-latest
≤k-cuts using binary codes. The bitwise boolean multiplication of such matrices with binary
codes in its entries allows a serial combination of both s-v cuts and v-t cuts based on AND
operations, and thus allows us to construct a solution based on the OR operation of pairwise
AND operations. We show that superimposed codes are suitable in our case, i.e., binary
codes where sets are represented as bitwise-OR of codewords of objects, and small sets are
guaranteed to be encoded uniquely. Superimposed codes provide a unique representation for
sets of k elements from a universe of size poly(n) with codewords of length poly(k logn). In
this setting, the union of sets translates naturally to bitwise-OR of their codewords.
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Tensor product of codes. To achieve our bounds, we compose several identical superim-
posed codes into a new binary code, so that encoding set families with it enables us to solve
the corresponding instances of Witness Superset. Our composition has the cost of an
exponential increase in the length of the code. Let F = F1, . . . , Fc be the set family that we
wish to encode, and let S1, . . . , Sc be their superimposed codes in the form of vectors. We
construct a c-dimensional array M where M [i1, . . . , ic] = 1 iff Sj [ij ] = 1, for each 1 ≤ j ≤ c.
In other words, the resulting code is the tensor product of all superimposed codes. This
construction creates enough redundancy so that enough information on the structure of the
set families is preserved. Furthermore, we can extract the encoded information from the
bitwise-OR of several codewords. The resulting code is of length O((k logn)O(K)), where K is
the upperbound on the allowed number of sets in each encoded set family. In our case K ≈ 4k,
which results to only a logarithmic dependency on n at the price of a doubly-exponential
dependency on k, thus making the problem tractable for small values of k.

From slices to Witness Superset. Finally, we show how the Witness Superset can be
solved using tensor product of superimposed codes. Consider the notion of cutting the code
of dimension K with an axis-parallel hyperplane of dimension K − 1. We call this resulting
shorter codeword a slice of the original codeword. A slice of a tensor product is a tensor
product of one dimension less, or an empty set, and a slice of a bitwise-OR of tensor products
is as well a bitwise-OR of tensor products (of one dimension less). Thus, taking a slice of
the bitwise-OR of the encoding of families of sets is equivalent to removing a particular set
from some families and to dropping some other families completely and then encoding these
remaining, reduced families. Thus, we can design a non-deterministic algorithm, which at
each step of the recursion picks k slices, one slice for each element of the solution we want
to output, and then recurses on the bitwise-OR of those slices, reducing the dimension by
one in the process. This is always possible, since each element that belongs to a particular
solution of Witness Superset satisfies one of the following: it either has a witnessing slice
and thus it is preserved in the solution to the recursive call; or it is dense enough in the
input so that it is a member of each solution and we can detect this situation from scanning
the diagonal of the input codeword. This described nondeterministic approach is then made
deterministic by simply considering every possible choice of k slices at each of the K steps of
the recursion. This does not increase substantially the complexity of the decoding procedure,
since O(((K · poly(k logn))k)K) for K ≈ 4k is still only doubly-exponential in k.

4 Reducing 4-Clique to All-Pairs Min-Cut

In this section we prove Theorem 1.1 by showing new reductions from the 4-Clique problem to
k-bounded All-Pairs Min-Cut with unit vertex capacities. These reductions yield conditional
lower bounds that are much higher than previous ones, which are based on SETH, in addition
to always producing DAGs. Throughout this section, we will often use the term nodes for
vertices.

I Definition 4.1 (The 4-Clique Problem). Given a 4-partite graph G, where V (G) = A∪B ∪
C ∪D with |A| = |B| = |C| = |D| = n, decide whether there are four nodes a ∈ A, b ∈ B,
c ∈ C, d ∈ D that form a clique.

This problem is equivalent to the standard formulation of 4-Clique (without the restric-
tion to 4-partite graphs). The currently known running times are O(nω+1) using matrix
multiplication [15], and O(n4/ polylogn) combinatorially [35]. The k-Clique Conjecture
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[3] hypothesizes that current clique algorithms are optimal. Usually when the k-Clique
Conjecture is used, it is enough to assume that the current algorithms are optimal for every k
that is a multiple of 3, where the known running times are O(nωk/3) [30] and O(nk/ polylogn)
combinatorially [32], see e.g. [2, 3, 10, 12, 25]. However, we will need the stronger assumption
that one cannot improve the current algorithms for k = 4 by any polynomial factor. This
stronger form was previously used by Bringmann, Grønlund, and Larsen [9].

4.1 Reduction to the Unbounded Case
We start with a reduction to the unbounded case (equivalent to k = n), that is, we reduce to
All-Pairs Min-Cut with unit node capacities (abbreviated APMVC, for All-Pairs Minimum
Vertex-Cut). Later (in Section 4.1) we will enhance the construction in order to bound k.

I Lemma 4.2. Suppose APMVC on n-node DAGs with unit node capacities can be solved in
time T (n). Then 4-Clique on n-node graphs can be solved in time O(T (n) +MM(n)), where
MM(n) is the time to multiply two matrices from {0, 1}n×n.

To illustrate the usage of this lemma, observe that an O(n3.99)-time combinatorial
algorithm for APMVC would imply a combinatorial algorithm with similar running time
for 4-Clique.

Proof. Given a 4-partite graph G as input for the 4-Clique problem, the graph H is
constructed as follows. The node set of H is the same as G, and we abuse notation
and refer also to V (H) as if it is partitioned into A,B,C, and D. Thinking of A as the set of
sources and D as the set of sinks, the proof will focus on the number of node-disjoint paths
from nodes a ∈ A to nodes d ∈ D. The edges of H are defined in a more special way, see
also Figure 4 for illustration.

A

B

C

D

Figure 4 An illustration of H in the reduction. Solid lines between nodes represent the existence
of an edge in the input graph G, and dashed lines represent the lack thereof.

(A to B) For every a ∈ A, b ∈ B such that {a, b} ∈ E(G), add to E(H) a directed edge
(a, b).
(B to C) For every b ∈ B, c ∈ C such that {b, c} ∈ E(G), add to E(H) a directed edge
(b, c).
(C to D) For every c ∈ C, d ∈ D such that {c, d} ∈ E(G), add to E(H) a directed edge
(c, d).

The definition of the edges of H will continue shortly. So far, edges in H correspond to
edges in G, and there is a (directed) path a→ b→ c→ d if and only if the three (undirected)
edges {a, b}, {b, c}, {c, d} exist in G. In the rest of the construction, our goal is to make this
3-hop path contribute to the final a→ d flow if and only if (a, b, c, d) is a 4-clique in G (i.e.,

ICALP 2019
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all six edges exist, not only those three). Towards this end, additional edges are introduced,
that make this 3-hop path useless in case {a, c} or {b, d} are not also edges in G. This allows
“checking” for five of the six edges in the clique, rather than just three. The sixth edge is
easy to “check”.

(A to C) For every a ∈ A, c ∈ C such that {a, c} /∈ E(G), add to E(H) a directed edge
(a, c).
(B to D) For every b ∈ B, d ∈ D such that {b, d} /∈ E(G) in G, add to E(H) a directed
edge (b, d).

This completes the construction of H. Note that these additional edges imply that there
is a path a→ b→ d in H iff {a, b} ∈ E(G) and {b, d} /∈ E(G), and similarly, there is a path
a→ c→ d in H iff {a, c} /∈ E(G) and {c, d} ∈ E(G). Let us introduce notations to capture
these paths. For nodes a ∈ A, d ∈ D denote:

B′a,d = {b ∈ B | {a, b} ∈ E(G) and {b, d} /∈ E(G) } ,
C ′a,d = {c ∈ C | {a, c} /∈ E(G) and {c, d} ∈ E(G) } .

We now argue that if an APMVC algorithm is run on H, enough information is received
to be able to solve 4-Clique on G by spending only an additional post-processing stage of
O(n3) time.

B Claim 4.3. Let a ∈ A, d ∈ D be nodes with {a, d} ∈ E(G). If the edge {a, d} does not
participate in a 4-clique in G, then the node connectivity from a to d in H, denoted NC(a, d),
is exactly

NC(a, d) = |B′a,d|+ |C ′a,d|,

and otherwise NC(a, d) is strictly larger.

Proof of Claim 4.3. We start by observing that all paths from a to d in H have either two or
three hops.

Assume now that there is a 4-clique (a, b∗, c∗, d) in G, and let us exhibit a set P of
node-disjoint paths from a to d of size |B′a,d|+ |C ′a,d|+ 1. For all nodes b ∈ B′a,d, add to P
the 2-hop path a→ b→ d. For all nodes c ∈ C ′a,d, add to P the 2-hop path a→ c→ d. So
far, all these paths are clearly node-disjoint. Then, add the 3-hop path a→ b∗ → c∗ → d to
P . This path is node-disjoint from the rest because b∗ /∈ B′a,d (because {b∗, d} ∈ E(G)) and
c∗ /∈ C ′a,d (because {a, c∗} ∈ E(G)).

Next, assume that no nodes b ∈ B, c ∈ C complete a 4-clique with a, d. Then for every
set P of node-disjoint paths from a to d, there is a set P ′ of 2-hop node-disjoint paths from a

to d that has the same size. To see this, let a→ b→ c→ d be some 3-hop path in P . Since
(a, b, c, d) is not a 4-clique in G and {a, d}, {a, b}, {b, c}, {c, d} are edges in G, we conclude
that either {a, c} /∈ E(G) or {b, d} /∈ E(G). If {a, c} /∈ E(G) then a→ c is an edge in H and
the 3-hop path can be replaced with the 2-hop path a→ c→ d (by skipping b) and one is
remained with a set of node-disjoint paths of the same size. Similarly, if {b, d} /∈ E(G) then
b→ d is an edge in H and the 3-hop path can be replaced with the 2-hop path a→ b→ d.
This can be done for all 3-hop paths and result in P ′. Finally, note that the number of 2-hop
paths from a to d is exactly |B′a,d|+ |C ′a,d|, and this completes the proof of Claim 4.3. C



A. Abboud et al. 7:13

Computing the estimates. To complete the reduction, observe that the values |B′a,d|+|C ′a,d|
can be computed for all pairs a ∈ A, d ∈ D using two matrix multiplications. To compute
the |B′a,d| values, multiply the two matrices M,M ′ which have entries from {0, 1}, with
Ma,b = 1 iff {a, b} ∈ E(G) ∩ A× B and M ′b,d = 1 iff {b, d} /∈ E(G) ∩ B ×D. Observe that
|B′a,d| is exactly (M ·M ′)a,d. To compute |C ′a,d|, multiply M,M ′ over {0, 1} where Ma,c = 1
iff {a, c} /∈ E(G) ∩A× C and M ′c,d = 1 iff {c, d} ∈ E(G) ∩ C ×D.

After having these estimates and computing APMVC on H, it can be decided whether G
contains a 4-clique in O(n2) time as follows. Go through all edges {a, d} ∈ E(G) ∩ A×D
and decide whether the edge participates in a 4-clique by comparing |B′a,d|+ |C ′a,d| to the
node connectivity NC(a, d) in H. By the above claim, an edge {a, d} with NC(a, d) >
|B′a,d| + |C ′a,d| is found if and only if there is a 4-clique in G. The total running time is
O(T (n) +MM(n)), which completes the proof of Lemma 4.2. J

4.2 Reduction to the k-Bounded Case
Next, we exploit a certain versatility of the reduction and adapt it to ask only about min-cut
values (aka node connectivities) that are smaller than k. In other words, we will reduce to
the k-bounded version of All-Pairs Min-Cut with unit node capacities (abbreviated kAPMVC,
for k-bounded All-Pairs Minimum Vertex-Cut). Our lower bound improves on the Ω(nω)
conjectured lower bound for Transitive Closure as long as k = ω(n1/2).

I Lemma 4.4. Suppose kAPMVC on n-node DAGs with unit node capacities can be solved in
time T (n, k). Then 4-Clique on n-node graphs can be solved in time O(n

2

k2 ·T (n, k)+MM(n)),
where MM(n) is the time to multiply two matrices from {0, 1}n×n.

Due to space constraints, the proof appears in the full version.

Proof of Theorem 1.1. Assume there is an algorithm that solves kAPMVC in time
O((nω−1k2)1−ε). Then by Lemma 4.4 there is an algorithm that solves 4-Clique in time
= O(n

2

k2 ·(nω−1k2)1−ε+MM(n)) ≤ O(nω+1−ε′), for some ε′ > 0. The bound for combinatorial
algorithms is achieved similarly. J
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Abstract
This paper points at a connection between certain (classical) fine-grained reductions and the
question: Do quantum algorithms offer an advantage for problems whose (classical) best solution is
via dynamic programming?

A remarkable recent result of Ambainis et al. [SODA 2019] indicates that the answer is
positive for some fundamental problems such as Set-Cover and Travelling Salesman. They design a
quantum O∗(1.728n) time algorithm whereas the dynamic programming O∗(2n) time algorithms
are conjectured to be classically optimal. In this paper, fine-grained reductions are extracted from
their algorithms giving the first lower bounds for problems in P that are based on the intriguing
Set-Cover Conjecture (SeCoCo) of Cygan et al. [CCC 2010].

In particular, the SeCoCo implies:
a super-linear Ω(n1.08) lower bound for 3-SUM on n integers,
an Ω(n

k
ck

−ε) lower bound for k-SUM on n integers and k-Clique on n-node graphs, for any
integer k ≥ 3, where ck ≤ log2 k + 1.4427.

While far from being tight, these lower bounds are significantly stronger than what is known to
follow from the Strong Exponential Time Hypothesis (SETH); the well-known nΩ(k) ETH-based
lower bounds for k-Clique and k-SUM are vacuous when k is constant.

Going in the opposite direction, this paper observes that some “sequential” problems with
previously known fine-grained reductions to a “parallelizable” core also enjoy quantum speedups
over their classical dynamic programming solutions. Examples include RNA Folding and Least-
Weight Subsequence.
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1 Introduction

An increasing amount of effort is being dedicated to the question: When and by how much
can quantum algorithms beat classical ones? Perhaps the most successful approach for
getting quantum speedups is using Grover’s search [22], which offers a quadratic improvement
over classical exhaustive search, which is the bottleneck in the best-known algorithms for a
long list of problems. This list includes nearly all problems studied in fine-grained complexity
such as SAT, Orthogonal Vectors, 3-SUM, All-Pairs Shortest Paths, and so on. In fact, none
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8:2 Reductions and Quantum Speedups

of the popular conjectures in fine-grained complexity (e.g. SETH) remain plausible when
Grover’s quantum search is allowed (with one exception, to be discussed shortly). It gives
magical capabilities such as the following theorem.

I Theorem 1 (Quantum Minimum Finding [17]). Let a1, . . . , an be integers accessed by a
procedure P. There exists a quantum algorithm that finds minn

i=1{ai} with success probability
at least 2/3 using O(

√
n) applications of P.

But what about problems whose best known algorithm is via dynamic programming,
not exhaustive search? Could those problems be resilient to quantum speedups? A famous
open question in this context is whether we can solve sequence alignment problems such
Edit Distance and Longest Common Subsequence in truly-subquadratic quantum time. Such
an algorithm could lead to important progress in bioinformatics in the future. The main
challenge is the sequential nature of dynamic programming, which prevents us from using
a Grover-like approach; one first solves the problem on small instances and then combines
them to solve larger and larger instances. None of the steps involve an expensive exhaustive
search. Another example is the Set-Cover problem, which can be solved in O∗(2n) time1
with classical dynamic programming [19], and is conjectured by Cygan et al. [15] to have an
Ω((2− δ)n) lower bound, for all δ > 0. This is the so-called Set-Cover Conjecture (SeCoCo).
Would this popular conjecture remain plausible in a quantum world?

A recent breakthrough of Ambainis et al. [5] shows otherwise. The authors give quantum
O∗(1.728n) time algorithms for Set-Cover and Traveling Salesman, as well as other exponential
speedups for problems such as Graph Bandwidth and Feedback Arc Set. These are problems
where the best known classical algorithm is via dynamic programming. (It is unclear if their
techniques will lead to solving Edit Distance in truly subquadratic quantum time.)

Ambainis et al. find a way to use the quantum minimum finding theorem above to
solve Set-Cover. This can be viewed as a reduction from Set-Cover to a “parallelizable”
core, and for the final algorithm to be fast the reduction should be efficient, qualifying it
as a fine-grained reduction from Set-Cover to some minimum-finding problem. The main
observation here is that the parallelizable-nature of the latter problem allows for further
reductions to the popular problems in fine-grained complexity such as 3-SUM and k-Clique.
Previously, no interesting reductions from Set-Cover to natural problems in P were known,
and this gives a partial resolution to an open question in fine-grained complexity (see Section
5.1 in [39] and the discussion at the end of this paper). The sequential nature of Set-Cover
had been a barrier for reductions as well, and the ideas of Ambainis et al. overcome it. The
next subsection states the results and elaborates on their importance to the landscape of
fine-grained complexity.

Section 3 suggests that this connection between quantum speedups for sequential problems
and fine-grained reductions could be interesting also in the other direction.

1.1 The Consequences to Fine-Grained Complexity
The goal of fine-grained complexity and algorithms is to achieve upper and lower bounds
that are as tight as possible for the computational problems of interest. The lower bounds
are obtained via reductions and are based on a small set of popular conjectures, such as the
Strong Exponential Time Hypothesis (SETH)2 [23, 24], regarding the hardness of certain

1 The notation O∗(·) hides polynomial factors.
2 ETH states that 3-SAT cannot be solved in 2o(n) time. The stronger version, SETH, states that we

cannot solve k-SAT in O((2− ε)n) time for all k.
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core problems, e.g. CNF-SAT. By now, there is a very long and evergrowing list of lower
bounds that are tight up to no(1) factors. See the recent surveys [40, 37]. One of the main
gaps in knowledge, when it comes to this framework, is regarding the connections between
the conjectures. For example, the k-SUM and k-Clique conjectures were used to prove many
lower bound results that SETH (or any other conjectures) seem incapable of proving. Many
conjectures have their own “hardness-class” and the whole theory would be much better if
these conjectures can be supported by SETH or other (but different) conjectures.

k-SUM and k-Clique

The k-SUM problem asks to find k among n given numbers that sum to zero. It can be solved
in O(ndk/2e) time which is conjectured to be optimal up to no(1) factors [3]. The k = 3 case
is the 3-SUM conjecture which is an old and famous conjecture in computational geometry
[20]. This conjecture, for an even k, is supported by the hypothesis that Subset-Sum cannot
be solved in O(2(1/2−ε)n) for some ε > 0. A reduction of Patrascu and Williams [33] gives
an nΩ(k) lower bound for k-SUM assuming the ETH, when k is super-constant.

The k-Clique problem asks to find k among n nodes that form a clique. It can be solved
in O(nω

3 ·k) time3 [32, 18], where ω is the matrix multiplication exponent [38, 21], and this
is conjectured to be optimal (and that ω = 2 + o(1)) [1]. This conjecture, for k divisible
by 3, is supported by the hypothesis that Max-Cut cannot be solved exponentially faster
than its current runtime, since the current-best algorithm by Williams reduces Max-Cut to
k-Clique [36]. The k-SUM conjecture implies an ndk/2e−o(1) lower bound for k-Clique [4],
and the ETH implies an nΩ(k) lower bound for super-constant k [12, 13].

The aforementioned ETH lower bounds do not imply anything for these two problems
when k is constant. No nontrivial SETH-based lower bounds are known, for any constant k.

SeCoCo vs. SETH

In a seminal paper on fine-grained reductions among NP-complete problems, Cygan et al.
[15] introduced SeCoCo and used it to prove tight lower bounds for problems with dynamic
programming solutions. It states that Set-Cover on n elements cannot be solved in (2− δ)n

time, even when the sets have constant size (more formally defined in Section 2). Since then
SeCoCo has been utilized for lower bounds for other NP-hard problems [6, 9, 26, 28].

Currently, SETH and SeCoCo seem incomparable and each of them has some advantages
over the other as a hardness assumption. However, it is likely that SeCoCo will turn out to
be a strictly safer (weaker, more believable) conjecture; there is no known barrier for (tightly)
reducing SAT to Set-Cover and, at least back in 2010, Cygan et al. conjectured that such a
reduction exists. On the other hand, a (tight) reduction in the other way, from Set-Cover to
SAT, would be much more surprising. Unless the reduction is unusual, it would allow one to
use the trivial 2n algorithm for SAT to solve Set-Cover in 2n time in a way that is simpler
(no dynamic programming) and better in some ways (e.g. parallelizable). Even with today’s
knowledge, the latter point demonstrates an advantage of SeCoCo as a basis for reductions: it
gives barriers for (e.g.) solving the end problem without dynamic programming. Meanwhile,
SETH enjoys other benefits: First, it is much more popular. Second, SAT has been more
extensively studied than Set-Cover in many areas such as complexity theory and verification.
And third, refuting it implies some (weak) circuit lower bounds; this does not make it more
believable, but it does “raise the stakes” in a way that is not known for SeCoCo. The reader
is referred to [15, 31, 2, 27] for other discussions on the matter.

3 The bound is slightly more complicated bound when k is not divisible by 3.
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New Results

The main result of this paper is an extraction of fine-grained reductions from the quantum
algorithms of Ambainis et al. leading to the first nontrivial lower bounds in P that are
based on the Set-Cover Conjecture. The lower bounds can be based on a weaker form of the
conjecture (discussed in Section 2) where sets are allowed to have size up to no(1). The full
version of the paper shows the same lower bound for the k-Orthogonal Vectors problem, via
a minor modification to the reductions.

I Theorem 2. Let k ≥ 3 and4 ck = k · H(k−1) = log2 (k − 1) + k · log k
k−1 . If for some

ε > 0, either
the k-Sum problem on n integers, or
the k-Clique problem on n node graphs and n2−ε edges,

can be solved in O(n
k

ck
−ε) time, then the (weak) SeCoCo is false.

Recall that the conjectured lower bounds are 1/ck = 1/2 for k-SUM and 1/ck = 2/3 for
k-Clique. Whereas here, as k grows, the function ck approaches log2 k+ 1.4427, which means
that the lower bound is approximately Ω(n

k
log k ). It is non-trivial for k-Clique for all k ≥ 9,

while for k-SUM (where the input size is smaller) it is meaningful already in the most famous
case of k = 3.

I Corollary 3. If 3-SUM on n integers can be solved in O(n1/H(1/3)−ε) = O(n1.089−ε) time,
for some ε > 0, then the (weak) SeCoCo is false.

Perhaps the most exciting aspect of these results is that one can finally have a concrete
lower bound for k-Clique and k-SUM for constant k. For instance, it implies an n10 lower
bound for 211-Clique and 211-Sum. These two problems are canonical in parameterized
complexity as they can be reduced to many other problems while preserving the boundedness
of the natural parameter. Thus, the SeCoCo conjecture implies concrete lower bounds for all
those other problems as well, when the parameter is a fixed constant. It is still an important
open question to prove such lower bounds with a fixed ck > 0 that is independent of k.

Replacing SeCoCo with SETH is a big open question. It is likely to be possible; in
particular, it would follow if a reduction from SAT to Set-Cover is found. Such a reduction
was conjectured to exist by Cygan et al. [15]. Notably, this suggests a barrier for proving
much higher lower bounds for 3-SUM. It is known that the nondeterministic version of SETH
(NSETH) rules out a SETH lower bound for 3-SUM of Ω(n1.5+ε) [11], and by the conjecture
of Cygan et al. this is also a barrier for SeCoCo-based lower bounds.

Further open questions are discussed at the end of the paper. Since the algorithms of
Ambainis et al. [5] for Set-Cover and for TSP are very similar, the exact same lower bounds
above can be based on a corresponding assumption about the hardness of TSP. The modified
proofs are deferred to the full version of the paper.

Less-Fine-Grained Complexity: Linear vs. Super-Linear

Traditional complexity theory classifies problems into polynomial (efficient) vs. super-
polynomial (inefficient). Due, in part, to the increase in the data sizes this classification
is now viewed as often being too coarse. Fine-Grained complexity’s goal is to get a more
exact classification that will be more relevant in many scenarios. It is natural to view the

4 Let H(p) be the binary entropy function on p ∈ [0, 1]. See Section 2.
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first-order goal of such a theory as: classifying problems into near-linear time solvable ones,
those that can be solved “efficiently” even in “Big-Data” settings, vs. the ones that require
super-linear time to solve. The latter set of problems will have to be relaxed before they can
be solved at large scales. The more valuable and pleasing exact classification can be viewed
as the next-step after this less-fine-grained classification is achieved.

This less-fine-grained classification has been conditionally achieved for a long list of
problems, and the results of this paper strengthen the foundations for some of these results.
For example, many problems in computational geometry are 3-SUM-hard in the sense that
there is a linear-time reduction from 3-SUM to them. If these problems can be solved in
near-linear time, then 3-SUM can, which is conjectured to be impossible (by a much weaker
version of the 3-SUM conjecture). But what are other justifications for these “lower bounds”?
Corollary3 gives a new one: such near-linear time algorithms would refute SeCoCo.

1.2 Other Related Work
Another connection between fine-grained complexity and quantum computing was recently
demonstrated by Chen and Wang [14]. The authors show that a fast and communication-
efficient quantum protocol for a function f implies a fast classical approximate counting
algorithm for a related pair counting problem. They instantiate this connection in order to
show a new approximate counting algorithm for the #-Orthogonal-Vectors problem.

A very recent paper by Khadiev [25] suggests a new quantum dynamic programming
approach for problems on DAGs. It will be interesting to see if fine-grained reductions can
be extracted.

2 Fine-Grained Reductions

Preliminaries

The standard notation [n] = {1, . . . , n} will be used throughout the paper. The starting
point of the reductions in this paper is Set-Cover.

I Definition 4 (The Set-Cover Problem). Given m sets over the universe U = [n], return the
minimum number of sets required to cover U .

The Set-Cover Conjecture (SeCoCo) of Cygan et al. states that the problem requires
2n−o(n) time, even when all sets have constant size. Krauthgamer and Trabelsi [27] demon-
strate that the Log-Set-Cover Conjecture, where the sets can have size up to O(logn), is
equally useful but potentially more believable. They show that refuting it implies a break-
through algorithm for Directed Hamiltonicity and Directed n-Tree. For the lower bounds in
this paper, an even more relaxed conjecture is sufficient5, where the sets are allowed to be of
any size no(1). Note that this automatically bounds the number of sets by m = 2o(n) which
will be negligible.

The Weak Set-Cover Conjecture. No algorithm can solve Set-Cover over the universe [n]
with sets of size no(1) in time O((2− δ)n) where δ > 0.

The main idea in the reductions, which is the crux of the quantum algorithms in [5],
is an unusual split-and-list where all subsets of [n] of size up to d = n/k are enumerated.
The analysis will rely on the following approximation of binomial coefficients, bounding the
number of such sets:

5 Although the stronger assumption would allow to extend the lower bound for larger values of k beyond
n1−Ω(1).
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I Lemma 5 (Entropy Approximation). For all 1 ≤ d ≤ n/2,(
n

≤ d

)
=

d∑
i=1

(
n

d

)
≤ 2H(d/n)·n,

where H(ε) = −(ε log2 ε+ (1− ε) log2(1− ε)) is the binary entropy of 0 ≤ ε ≤ 1.

Observe that H(1/k) = log2 k+O(1)
k . In the proofs, the following bounds will be used

for any 1 ≤ k ≤ nε where ε < 1:
(

n
≤n/k

)
≤ 2H(1/k)·n and when t = no(1) then

(
n

≤n/k+t

)
≤

2(H(1/k)+o(1))·n. The last inequality follows because
(

n
≤n/k+t

)
≤ no(1) ·

(
n

n/k+t

)
≤ no(1) ·(

n
(1+o(1))·n/k

)
≤ 2H((1+o(1))/k)·n+o(n) ≤ 2(1+o(1))·H(1/k)·n+o(n) ≤ 2(H(1/k)+o(1))·n.

Key Observation

Following the notation in Ambainis et al., for a set system S over a universe U we denote
the size of the minimum set-cover by f(U,S). By definition, it follows that for any k sets
U1, . . . , Uk with union equal to U and any S:∑

i=1
f(Ui,S) ≥ f(U,S)

The central claim for all the reductions in this paper (and the quantum algorithm of Ambainis
et al.) states that the above will be an equality in some cases.

B Claim 6. If all sets in a set system S over a universe U have size at most t then for all
integers k ≥ 2 such that t < n/k there exist k disjoint subsets U1, . . . , Uk ⊆ U each of size
between n/k − t and n/k + t such that their union is equal to U and:

k∑
i=1

f(Ui,S) ≤ f(U,S).

Proof. Let C ⊆ S be a minimum set-cover of U of size ` = f(U,S). To define a partition of
U we consider this process: Start from an empty set X and add to it elements from U in
the following way. Pick an arbitrary ordering of the sets in C = {S1, . . . , S`} and go through
them in order, at the ith step we add all elements of Si to X, unless they were already
present.

Two observations about this process: (i) Since C is a Set-Cover we will end up with
X = U . And (ii) all sets in S have size at most t and therefore each step can add up to t
elements to X.

Define the sets U1, . . . , Uk as follows. U1 contains all elements added to X up until the
earliest step in which |X| became n/k or greater. Due to observation (ii) this guarantees
that U1 contains at most n/k + t− 1 elements. U2 contains “the next” about n/k elements,
and so on. More formally, Ui contains all elements added to X after the step in which its
size became ≥ i · n/k and up until the step in which its size became ≥ (i+ 1) · n/k. Again,
due to observation (ii) the size of each Ui is upper bounded by n/k + t and lower bounded
by n/k − t. The sets are disjoint by definition and their union is equal to U .

Finally, we prove the inequality by arguing that each Ui can be covered separately using
only the sets from C. This is because one can choose exactly the sets that are responsible for
adding the elements to Ui in the process in order to cover Ui. This is a cover by construction
and thus f(Ui,S) is upper bounded by this number of sets. And since the sets responsible
for each Ui are different, the total number we choose for all the Ui’s is exactly |C|. Thus,∑k

i=1 f(Ui,S) ≤ |C| = f(U,S). C
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Intermediate Problems

This now allows for two preliminary reductions from Set-Cover to a parameterizd version of
Exact Cover and to a simpler version of the k-Orthogonal-Vectors problem.

I Definition 7 (The k-Exact-Cover Problem). Given k lists of sets, each containing N subsets
of the same universe U , decide if there are k subsets, one from each list, that are an exact
cover of U , that is, they are disjoint and their union is equal to U .

The following reduction from Set-Cover to this problem is a combination of existing
tricks with the core idea of the algorithm by Ambainis et al. which is the enumeration of all
subsets of [n] of size equal to n/k up to plus-or-minus the size of a set in the instance, and
the preprocessing of their solutions. The correctness will follow from the above key claim.

I Lemma 8. For all 2 ≤ k ≤ nε where ε < 1, the Set-Cover problem on n elements and
m sets of size no(1) can be reduced to 2o(n) instances of the k-Exact-Cover problem on k

lists of N ≤ 2H(1/k)·n+o(n) subsets over a universe U of size n. The reduction runs in time
2H(1/k)·n+o(n).

Proof. First, reduce Set-Cover to the decision version: is there a set-cover of size exactly
`? This can be done simply with an overhead of n in the number of instances by trying all
possible values for 1 ≤ ` ≤ n, and returning the smallest one with a positive answer. Thus,
it is enough to only consider the decision version.

The goal is to look for a partition of U into k sets that can be covered separately
at no extra cost, as promised by Claim 6. Let U1, . . . , Uk be such sets, and let α′ =
(f(U1,S), . . . , f(Uk,S)) be the k-tuple of the sizes of their minimum covers. Note that for
all i: f(Ui,S) ≤ |Ui| ≤ n/k + t where t = no(1) is an upper bound on the size of the given
sets. As a second preliminary step, we enumerate all tuples α of k numbers in [n/k + t]
that sum to `, in an attempt to guess α′, and for each tuple there will be an instance of
k-Exact-Cover. The total number of tuples is at most (n/k + t)k = 2o(n). From now on fix a
tuple α = (α1, . . . , αk).

Enumerate all subsets of U that are of size up to n/k + t, call this collection P. In a
preprocessing step, compute the minimum set-cover f(P,S) for all sets P ∈ P. This can
be done in O(|P| ·m) time: In the classical dynamic programming algorithm we compute
f(X,S) for increasingly larger sets via the formula f(X,S) = minS∈S{f(X \ S,S) + 1}. Do
the same, but do not process sets such that |X| > n/k + t. Thus, the total running time for
this step, which is the most expensive in the reduction, is O(

(
n

≤n/k+t

)
·m) ≤ 2H(1/k)·n+o(n).

For all i ∈ [k], the ith list Li in the k-Exact-Cover instance contains all sets P ∈ P whose
minimum set-cover size matches the guess in α, that is,

Li = {P ∈ P | f(P,S) = αi}.

This completes the reduction: at least one of the k-Exact-Cover instances (for some tuple α)
is a yes-instance, if and only if there is a set-cover of size `.

For the correctness, observe that for any α and any k sets X1 ∈ L1, . . . , Xk ∈ Lk whose
union is equal to U we have that f(U,S) ≤

∑k
i=1 f(Xi,S) = `. Thus, if one of the k-Exact-

Cover instances is a yes, then f(U,S) ≤ `. For the other direction, assume that there is a
set-cover of size ` and consider the partition U1, . . . , Uk promised by Claim 6 and let α = α′

above be the tuple of minimum set-cover sizes for the k sets in that partition. The instance
corresponding to this α is a yes-instance because each Ui will exist in Li and their union is
equal to U and, moreover, they are disjoint. J
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8:8 Reductions and Quantum Speedups

The second intermediate problem superficially looks like the k-Orthogonal-Vectors problem
(which is the canonical problem for SETH-based lower bounds) but it is in fact easier and is
more closely related to k-Clique.

IDefinition 9 (The k-Pairwise-Disjoint-Sets Problem, or k-Pairwise-Orthogonal-Vectors). Given
k lists of sets, each containing N subsets of the same universe U , decide if there are k subsets,
one from each list, that are pairwise disjoint.

The reduction is also by a combination of existing tricks with the key claim.

I Lemma 10. For all 2 ≤ k ≤ nε where ε < 1, the Set-Cover problem on n elements and m
sets of size no(1) can be reduced to 2o(n) instances of the k-Pairwise-Disjoint-Sets problem
on k lists of N ≤ 2H(1/k)·n+o(n) subsets over a universe U of size n. The reduction runs in
time 2(1/k+H(1/k))·n+o(n).

Moreover, in all instances, each subset can be disjoint to at most 2(1−1/k)·H( 1
k−1 )·n+o(n)

others.

The last sentence of the lemma will be helpful in reducing the sparsity of the k-Clique
instances later on.

Proof. The proof is similar to the one of Lemma 8 with a bit more. The additional challenge
here is that the end problem does not check that the union of the sets is equal to U , only
that they are disjoint. The trick to handle this is yet another guessing step making sure that
the sizes of the sets we are choosing sums up to n (before, we only checked that the sum of
their min covers is equal to `).

First, as before, we reduce to the decision version, and also enumerate k-tuples α ∈
[n/k + t]k with sum `, that try to guess the values f(Ui,S) in the partition U1, . . . , Uk

promised by Claim 6. The additional step here is to also enumerate all k-tuples β ∈ [n/k+ t]k
with sum equal to |U | = n, that try to guess the values |Ui|. The number of β’s is also upper
bounded by 2o(n). From now on fix both an α = (α1, . . . , αk) and a β = (β1, . . . , βk).

Then, as before, we enumerate the collection P of all subsets of U of size up to n/k + t,
and compute f(P,S) for each P ∈ P. These computations can be done with dynamic
programming in a total of 2H(1/k)·n+o(n) time.

For all i ∈ [k], the ith list Li in the k-Pairwise-Disjoint-Sets instance contains all sets
P ∈ P whose minimum set-cover size matches the guess in α and their size matches the
guess in β, that is,

Li = {P ∈ P | f(P,S) = αi and |Ui| = βi}.

This completes the reduction: at least one of the k-Pairwise-Disjoint-Sets instances (for some
tuples α, β) is a yes-instance, if and only if there is a Set-Cover of size `.

For the correctness, observe that for any α, β and any k sets X1 ∈ L1, . . . , Xk ∈ Lk that
are disjoint, we have that f(U,S) ≤

∑k
i=1 f(Xi,S) = ` and |X1 ∪ · · · ∪Xk| =

∑k
i=1 |Xi| =∑

i βi = n. The latter implies that the sets cover the entire U . Thus, if one of the k-Exact-
Cover instances is a yes, then f(U,S) ≤ `. For the other direction, assume that there is a
set-cover of size ` and consider the partition U1, . . . , Uk promised by Claim 6 and let α be
the tuple of minimum set-cover sizes for the k sets in that partition, and β be the tuple of
their sizes. The instance corresponding to this α, β pair is a yes-instance because each Ui

will exist in Li and they are disjoint.
Finally, observe that each subset in our instances has size at least n/k, and therefore it

can be disjoint to at most(
n− n/k
n/k + t

)
= 2(1−1/k)·H( 1

k−1 )·n+o(n)

other sets in every instance. J
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2.1 The Reduction to k-SUM
The following version of k-SUM is convenient for reductions.

I Definition 11 (The k-SUM Problem). Given k lists of N numbers in [M ] and a target
number t ∈ [M ], decide if there are k numbers, one from each list, that sum to t.

This “list” or “colored” version is equivalent to the more natural version (where we only
have one list and/or where the target is fixed to t = 0) up to a k factor in the number of
numbers and a k factor in their size.

The reduction to k-SUM is by a simple encoding of the k-Exact-Cover problem.

I Theorem 12. For all 2 ≤ k ≤ nε where ε < 1, the Set-Cover problem on n elements and
m sets of size no(1) can be reduced to 2o(n) instances of the k-SUM problem on k lists of
N = 2H(1/k)·n+o(n) integers and a target, where the numbers are n · dlog2 ke = O(k logN)
bits long. The reduction runs in time 2H(1/k)·n+o(n).

Proof. First, reduce Set-Cover instance to 2o(n) instance of k-Exact-Cover, as in Lemma 8,
and then reduce each instance to an equivalent k-SUM instance. The k-Exact-Cover instances
have k lists of N ≤ 2H(1/k)·n+o(n) subsets over the universe U = [n].

The following is a natural mapping g from sets X ⊆ [n] to (n · log2 k) bit integers: for all
i ∈ [n], the bit number (i− 1) · dlog2 ke+ 1 in g(X) is set to 1 if i ∈ X and to 0 otherwise.
All other bits are set to 0, and these are just “buffers” of length log2 k that prevent the
sum of k numbers to carry over from one “interesting” location to another. Another way to
think of the mapping is as writing a number in base k where the ith digit is 1 if i ∈ X and 0
otherwise.

Let Li be the i-th list in the k-Exact-Cover, and we will map it into a list of integers
Li by encoding each set X ∈ Li with the integer g(X). The target sum t for the k-SUM
instance is the number g(U), or in other words, the number that is all 1 in base k. This
completes the reduction.

For the correctness, one can check that for any k sets X1, . . . , Xk:
∑k

i=1 g(Xi) = g(U) if
and only if the Xi’s are disjoint and X1 ∪ · · · ∪Xk = U . J

This proves the k-SUM part of the main theorem, and the lower bound for 3-SUM.

2.2 The Reduction to k-Clique
A reduction from k-SUM on n numbers to no(1) instances of k-Clique on n nodes is known
[4], and it can be used directly to get the desired result. However, the instances generated by
that reduction could be dense (m = n2 edges), whereas the following direct reduction from
Set-Cover gives the same result but on sparser graphs.

The following version of k-Clique is most convenient for reductions and is equivalent up
to a factor k.

I Definition 13 (The k-Clique Problem). Given a k-partite graph with N nodes in each part
and M edges, decide if there is a k-clique (with one node in each part).

The reduction to k-Clique is almost immediate after one goes though the k-Pairwise-
Disjoint-Sets problem.

I Theorem 14. For all 2 ≤ k ≤ nε where ε < 1, the Set-Cover problem on n elements and m
sets of size no(1) can be reduced to 2o(n) instances of the k-Clique problem on k partite graphs
of N = 2H(1/k)·n+o(n) nodes and M = 2(H(1/k)+(1−1/k)·H( 1

k−1 ))·n+o(n) edges. The reduction
runs in time 2H(1/k)·n+o(n).
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Proof. First, reduce Set-Cover instance to 2o(n) instance of k-Pairwise-Disjoint-Sets, as in
Lemma 10, and then reduce each instance to an equivalent k-Clique instance. The nodes
correspond to the sets and two nodes are connected by an edge iff the corresponding sets are
disjoint. A k-clique corresponds directly to k pairwise-disjoint sets, and the correctness of
the reduction is immediate. The parameters in the statement follow from the parameters in
Lemma 10, including the bound on the number of edges which is:

M = N · 2(1−1/k)·H( 1
k−1 )·n+o(n). J

This proves the k-Clique part of the main theorem. A corollary of this reduction is an
Ω(M1.01−ε) lower bound for 9-Clique on M edge graphs under the Set-Cover Conjecture.

3 Quantum Algorithms

This section goes in the other direction and discusses a few examples where previously known
fine-grained reductions from a “sequential problem” to a “parallelizable core” can be used to
obtain quantum speedups. While these arguments are not the simplest way to obtain such
quantum speedup, they may still be interesting conceptually.

The first example is from the work of Künnemann et al. [29] who investigated the
fine-grained complexity of one-dimensional dynamic programming. Their results center
around instantiations of a generic Least-Weight Subsequence (LWS) problem where: Given
an ordered sequence of n data items, with a succinctly represented function that assigns a
weight to each pair, find a (non-contiguous) subsequence of the data points that minimizes the
total weight of pairs adjacent in the subsequence. The problem can be instantiated by fixing a
weight function, and it can model basic questions such as the coin change problem and finding
the longest chain of nested boxes. The authors prove subquadratic-equivalences between
these problems and a parallelizable core such as the (min,+)-Convolution problem or vector
domination. Thus, classically these problems are unlikely to be solvable in subquadratic time.
However, since the parallelizable core problems are easy to solve in O(n2−ε) time for some
ε > 0 (and even linear time) for Grover’s search, their reductions lead to O(n2−ε) quantum
time algorithms for coin change, finding the longest chain of nested boxes, and many other
problems as well.

Another example is the RNA Folding problem from bioinformatics and the related
problems of Language Edit Distance and Stochastic Context-Free Grammar Parsing. These
problems can be solved in cubic time with dynamic programming, and a reduction a la
Valiant’s Parser [35] shows that each of these problems can be solved in the same time as
the (min,+)-matrix multiplication problem, or distance product, which is equivalent to All
Pairs Shortest Paths and many other problems [41]. In fact, this reduction was recently used
by Bringmann et al. [10] to improve the upper bound to O(n2.8244) by utilizing a special
structure in the (min,+)-matrix multiplication instances produced by the reduction. This
is the fastest classical algorithm to date for each of these problems. Can it be improved
with a quantum algorithm? Yes, even without any special structure, the (min,+)-matrix
multiplication problem is parallelizable and can be solved in O(n2.5) time, and via Valiant’s
reduction, so can these problems. A detailed exposition of these reductions can be found
in [10], and related examples on how to incorporate such quantum matrix multiplication
algorithm to solve combinatorial problems can be found in [30].
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4 Open Questions

The results in this paper lead to the following thoughts.

From a technical perspective, the reductions in this paper and the quantum algorithms of
Ambainis et al. are via an unusual split-and-list approach: it is less efficient, increasing
the search space size from 2n to 2

k
H(1/k) ·n, but it can simplify the structure of the space. Is

this approach fruitful in other settings, not only when the problems are hard to parallelize?
Can it be applied to SAT to get SETH-based lower bounds, that may not be tight, but
could have a whole new flavor?
The efficiency of the reductions does not exactly match that of the quantum algorithm for
Set-Cover, since the algorithm benefits from more asymmetry in the splitting6. However,
it is plausible that better quantum algorithms will lead to better reductions (and lower
bounds), and vice versa. Intuitively, the best result one can hope for, without refuting
conjectures, is to solve Set-Cover in

√
2n quantum time and extract an nk/2 (classical)

lower bound for k-SUM (which would be tight, for an even k) and for k-Clique (which
would be tight if proven for sparse enough graphs). Perhaps this can be achieved by
incorporating some of the ideas from the more technically involved works on Set-Cover,
e.g. [8, 31, 7, 34], into the currently simple reduction/algorithm. This would be an
exciting finding.
Proving an Ω(nεk) lower bound for k-Clique for a fixed ε > 0 (ideally ε = 2/3) under
SETH (or even under SeCoCo) is still an important open question. The results here give
a qualitatively similar results for k that is a small constant, but one would hope for more.
This issue is often considered related to the frequently raised question: Does SETH (or
SeCoCo) imply an (1 + ε)n lower bound for 3-SAT or 100-SAT for any fixed ε > 0?
The open question of whether SeCoCo implies lower bounds for problems in P was
only answered in a limited sense here. Yes, interesting lower bounds for k-Clique and
k-SUM can be derived, but the real intent behind the question is: Can SeCoCo give
interesting lower bounds in P that other “established” or popular conjectures are incapable
of proving? The results here do not qualify, but perhaps they will lead to such results.
Can the structure of Set-Cover be utilized further in order to prove similar lower bounds
for easier problems? A natural candidate is the (min,+)-Convolution problem which is
considered to be the easiest problem without a truly subquadratic time algorithm [16].
In [5], the quantum speedup over classical dynamic programming for the Graph Bandwidth
problem is more substantial than it is for Set-Cover and TSP. The best classical algorithm
has O∗(5n) complexity while the quantum one runs in time O∗(2.945n), which is quite
close to

√
5n. This suggests that if one reduces the Graph Bandwidth problem to problems

in P, e.g. 3-SUM, a tighter relationship could be established, leading to higher “conditional
lower bounds”. This is more challenging than reducing from Set-Cover due to the more
complicated nature of their quantum algorithm.
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Abstract
We study the following separation problem: Given a collection of colored objects in the plane,
compute a shortest “fence” F , i.e., a union of curves of minimum total length, that separates every
two objects of different colors. Two objects are separated if F contains a simple closed curve that has
one object in the interior and the other in the exterior. We refer to the problem as GEOMETRIC
k-CUT, where k is the number of different colors, as it can be seen as a geometric analogue to
the well-studied multicut problem on graphs. We first give an O(n4 log3 n)-time algorithm that
computes an optimal fence for the case where the input consists of polygons of two colors and n
corners in total. We then show that the problem is NP-hard for the case of three colors. Finally, we
give a (2− 4/3k)-approximation algorithm.
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1 Introduction

Problem Definition. We are given k pairwise interior-disjoint, not necessarily connected,
sets B1, B2, . . . , Bk in the plane. We want to find a covering of the plane R2 = B̄1∪B̄2∪· · ·∪B̄k

such that the sets B̄i are closed and interior-disjoint, Bi ⊆ B̄i and the total length of the
boundary F =

⋃k
i=1 ∂B̄i between the different sets B̄i is minimized.
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9:2 Geometric Multicut

Figure 1 An instance of GEOMETRIC 3-CUT and an optimal fence in black. The fence contains
a cycle that does not touch any object. The grey fence shows how the cycle can be shrunk without
changing the total length of the fence.

We think of the k sets Bi as having k different colors and each set Bi as a union of simple
geometric objects like circular disks and simple polygons. An example is shown in Figure 1.
We call B̄i the territory of color i. The “fence” F is the set of points that separates the
territories. (Alternatively, F is the set of points belonging to more than one territory.) As
we can see, a territory can have more than one connected component.

An alternative view of the problem concentrates on the fence: A fence is defined as a
union of curves F such that each connected component of R2 \ F intersects at most one set
Bi. An interior-disjoint covering as defined above gives, by definition, such a fence. Likewise,
a fence F induces such a covering, by assigning each connected component of R2 \ F to an
appropriate territory B̄i. The total length of a fence F is also called the cost of F and is
denoted as |F |.

In our paper, we will focus on the case where the input consists of simple polygons (with
disjoint interiors). We refer to this problem as GEOMETRIC k-CUT. Each input polygon
is called an object. We use n to denote the total number of corners of the input polygons,
counted with multiplicity.

Even in this simple setting, the problem poses both geometric and combinatorial difficulties.
A set Bi can consist of disconnected pieces, and the combinatorial challenge is to choose
which of the pieces should be grouped into the same component of B̄i. The geometric task
is to construct a network of curves that surrounds the given groups of objects and thus
separates the groups from each other. For k = 2 colors, optimal fences consist of geodesic
curves around obstacles, which are well understood. As soon as the number k of colors
exceeds 2, the geometry becomes more complicated, and the problem acquires traits of the
geometric Steiner tree problem, as shown by the example in Figure 1.

The problem of enclosing a set of objects by a shortest system of fences has been considered
with a single set B1 by Abrahamsen et al. [1]. The task is to “enclose” the components of
B1 by a shortest system of fences. This can be formulated as a special case of our problem
with k = 2 colors: We add an additional set B2, far away from B1 and large enough so
that it is never optimal to enclose B2. Thus, we have to enclose all components of B1 and
separate them from the unbounded region. In this setting, there will be no nested fences.
Abrahamsen et al. gave an algorithm with running time O(n polylog n) for the case where
the input consists of n unit disks.



Mikkel Abrahamsen, Panos Giannopoulos, Maarten Löffler, and Günter Rote 9:3

Applications. Besides being a natural problem in its own right, the geometric multicut
problem may well find applications in image processing and computer vision. As we describe
in Section 3, a problem closely related to the case k = 2 has been studied from the perspective
of image segmentation. Simplified slightly, we are given a picture with some pixels known to
be black or white, and we have to choose colors for the remaining pixels so as to minimize the
boundary between black and white regions. The problem for k > 2 is equally well-motivated
in this context, although we have not found any explicit references to it (perhaps because of
the NP-hardness that we will prove in this case).

Our Results. In Section 3, we show how to solve the case with k = 2 colors in time
O(n4 log3 n). The algorithm works by reducing the problem to the multiple-source multiple-
sink maximum flow problem in a planar graph. In Section 4, we show that already the case
with k = 3 colors is NP-hard by a reduction from PLANAR POSITIVE 1-IN-3-SAT.

In Section 5, we discuss approximation algorithms. We first compare the optimal fence
FA consisting of line segments between corners of input polygons to the unrestricted optimal
fence F ∗. We show that |FA| ≤ 4/3 · |F ∗|. After applying a (3/2 − 1/k)-approximation
algorithm for the k-terminal multiway cut problem [6], we obtain a polynomial-time (2− 4

3k )-
approximation algorithm for GEOMETRIC k-CUT (Theorem 11).

Due to restricted space, many details and proofs have been removed and can be found in
the full version [2].

2 Structure of Optimal Fences

I Lemma 1. An optimal fence F ∗ is a union of (not necessarily disjoint) closed curves,
disjoint from the interior of the objects. Furthermore, F ∗ is the union of straight line segments
of positive length. Consider two non-collinear line segments `1, `2 ⊂ F ∗ with a common
endpoint p. If p is not a corner of an object, then exactly three line segments meet at p and
form angles of 2π/3.

Proof. It is clear that an optimal fence F ∗ never enters the interior of an object.
We next show that F ∗ is the union of a set of closed curves. Suppose not. Let F ′ ⊂ F ∗

be the union of all closed curves contained in F ∗ and let π be a connected component in
F ∗ \ F ′. Then π is the (not necessarily disjoint) union of a set of open curves, which do not
contribute to the separation of any objects. Hence, F ∗ \ π is a fence of smaller length than
F ∗, so F ∗ is not optimal.

In a similar way, one can consider the union L of all line segments of positive length
contained in F ∗, and if F ∗ \L is non-empty, a curve π in F ∗ \L can be replaced by a shortest
path homotopic to it, which consists of a sequence of line segments. (See the proof of Lemma
13 in the full version.)

The last claimed property is shared with the Euclidean Steiner minimal tree on a set of
points in the plane, and it can be proved in the same easy way by local optimality arguments,
see for example Gilbert and Pollak [10]. J

As it can be seen in Figure 1, optimal fences may contain cycles that do not touch any
object. As is also indicated in the figure, such a cycle can be shrunk until it eventually hits
an object and is eliminated. This does not increase the length, so there is always an optimal
fence with no cycle disjoint from all objects. See the full version for the details.

ICALP 2019
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Figure 2 Left: The arrangement A induced by an instance of GEOMETRIC 2-CUT with two
green and two red objects. The edges of the dual graph G are blue. Right: The optimal solution.

3 The Bicolored Case

In this section we consider the case of k = 2 different colors. Let N be the set of all corners of
the objects. A line segment is said to be free if it is disjoint from the interior of every object.
A vertex v of an optimal fence cannot have degree 3 or more unless v ∈ N , as otherwise two
of the regions meeting at v would be part of the same territory and could be merged, thus
reducing the length. We therefore get the following consequence of Lemma 1.

I Lemma 2. An optimal fence consists of free line segments with endpoints in N . J

Let S be the set of all free segments with endpoints in N . S includes all edges of the
objects. Let A be the arrangement induced by S, see Figure 2. Consider an optimal fence
F ∗ and the associated territories B̄1 and B̄2. Lemma 2 implies that F ∗ is contained in A.
Thus, each cell of A belongs entirely either to B̄1 or B̄2. The objects are cells of A whose
classification (i.e., membership of B̄1 versus B̄2) is fixed. In order to find F ∗, we need to
select the territory that each of the other cells belongs to. Since |S| = O(n2), A has size
O(|S|2) = O(n4) and can be computed in O(|A|) = O(n4) time [7]. For simplicity, we stick
with the worst-case bounds. In practice, set S can be pruned by observing that the edges of
an optimal fence must be bitangents that touch the objects in a certain way, because the
curves of the fence are locally shortest.

Finding an optimal fence amounts to minimizing the boundary between B̄1 and B̄2. This
can be formulated as a minimum-cut problem in the dual graph G(V,E) of the arrangement
A. There is a node in V for each cell and a weighted edge in E for each pair of adjacent cells:
the weight of the edge is the length of the cells’ common boundary. Let S1, S2 ⊂ V be the
sets of cells that contain the objects of B1, B2, respectively. We need to find the minimum
cut that separates S1 from S2. This can be obtained by finding the maximum flow in G from
the sources S1 to the sinks S2, where the capacities are the weights. As G is a planar graph,
we can use the algorithm by Borradaile et al. [5] with running time O(|V | log3 |V |). The
running time has since then been improved to O( |V | log3 |V |

log2 log |V | ) [9]. As |V | = O(|S|2) = O(n4),
we obtain the following theorem.

I Theorem 3. GEOMETRIC 2-CUT can be solved in time O( n4 log3 n
log2 log n

), where n is the total
number of corners of the objects.
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A similar algorithm has been described before in a slightly different context: image
segmentation [11], see also [5]. Here, we have a rectangular grid of pixels, each having a given
gray-scale value. Some pixels are known to be either black or white. The remaining pixels
have to be assigned either the black or the white color. Each pixel has edges to its (at most
four) neighbors. The weights of these edges can be chosen in such a way that the minimum
cut problem corresponds to minimizing a cost function consisting of two parts: One part,
the data component, has a term for each pixel, and it measures the discrepancy between the
gray-value of the pixel and the assigned value. The other part, the smoothing component,
penalizes neighboring pixels with similar gray-values that are assigned different colors.

4 Hardness of the Tricolored Case

We show how to construct an instance I of GEOMETRIC 3-CUT from an instance Φ of
PLANAR POSITIVE 1-IN-3-SAT. For ease of presentation, we first describe the reduction
geometrically, allowing irrational coordinates. We prove that if Φ is satisfiable, then I has a
fence of cost M∗, whereas if Φ is not satisfiable, then the cost is at least M∗ + 1/50. We
then argue that the corners can be slightly moved to make a new instance I ′ with rational
coordinates while still being able to distinguish whether Φ is satisfiable or not, based on the
cost of an optimal fence.

In order to make the proof as simple as possible, we introduce a new specialized problem
COLORED TRIGRID POSITIVE 1-IN-3-SAT in the following.

4.1 Auxiliary NP-complete problems
I Definition 4. In the POSITIVE 1-IN-3-SAT problem, we are given a collection Φ of
clauses containing exactly three distinct variables (none of which are negated). The problem
is to decide whether there exists an assignment of truth values to the variables of Φ such that
exactly one variable in each clause is true.

I Definition 5. In the TRIGRID POSITIVE 1-IN-3-SAT problem, we are given an instance
Φ of POSITIVE 1-IN-3-SAT together with a planar embedding of an associated graph G(Φ)
with the following properties:

G(Φ) is a subgraph of a regular triangular grid,
for each variable x, there is a simple cycle vx,
for each clause C = {x, y, z}, there is a path cC and three vertical paths `C

x , `
C
y , `

C
z with

one endpoint at a vertex of cC and one at a vertex of each of vx, vy, vz,
except for the described incidences, no edges share a vertex,
all vertices have degree 2 or 3,
any two adjacent edges form an angle of π or 2π/3,
the number of vertices is bounded by a quadratic function of the size of Φ.

The problem is to decide whether Φ has a satisfying assignment (see Definition 4).

Mulzer and Rote [13] showed that another problem, PLANAR POSITIVE 1-IN-3-SAT,
is NP-complete, which is similar but uses a slightly different embedding with axis-parallel
segments. It trivially follows that TRIGRID POSITIVE 1-IN-3-SAT is also NP-complete,
see Figure 3.

Consider an instance (Φ, G(Φ)) of TRIGRID POSITIVE 1-IN-3-SAT. There are some
vertices of degree three on the cycles vx corresponding to each variable x in Φ, and these we
denote as branch vertices of G(Φ). There is also one vertex of degree three on the path cC

corresponding to each clause C in Φ, which we denote as a clause vertex. Except for branch
and clause vertices, at most two edges meet at each vertex.

ICALP 2019
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vx1
vx2 vx3 vx4 vx5

cC1

cC2

cC3

vx1 vx2
vx3 vx4

vx5

cC1

cC2

cC3

Figure 3 Left: An instance of PLANAR POSITIVE 1-IN-3-SAT for the formula Φ = C1∧C2∧C3

for C1 = x1 ∨ x3 ∨ x5, C2 = x1 ∨ x2 ∨ x3, and C3 = x2 ∨ x4 ∨ x5. Right: A corresponding instance of
TRIGRID POSITIVE 1-IN-3-SAT. Clause vertices are drawn as dots and branch vertices as boxes.

Let C be the set of all clause vertices (considered as geometric points). Removing C from
G(Φ) (considered as a subset of R2) splits G(Φ) into one connected component Ex for each
variable x of Φ. The idea of our reduction to GEOMETRIC 3-CUT is to build a channel on
top of Ex for each variable x. The channel has constant width 1/2 and contains Ex in the
center. The channel contains small inner objects and is bounded by larger outer objects of
another color. There will be two equally good ways to separate the inner and outer objects,
namely taking an individual fence around each inner object and taking long fences along the
boundaries of the channel that enclose as many inner objects as possible. As it will turn out,
any other way of separating the inner from the outer objects will require more fence. These
two optimal fences play the roles of x being true and false, respectively.

At the clause vertices where three regions Ex, Ey, Ez meet, we make a clause gadget that
connects the three channels corresponding to x, y, z. The objects in the clause gadget can be
separated using the least amount of fence if and only if one of the channels is in the state
corresponding to true and the other two are in the false state. Therefore, this corresponds to
the clause in Φ being satisfied.

In order to make this idea work, we first assign every edge of G(Φ) an inner and an
outer color among {red, green,blue}. These will be used as the colors of the inner and outer
objects of the channel later on. We require the following of the coloring:
1. The inner and outer colors of any edge are distinct.
2. Any two adjacent collinear edges have the same inner or outer color.
3. Any two adjacent edges that meet at an angle of 2π/3 at a non-clause vertex have the

same inner and the same outer color.
4. The inner colors of the three edges meeting at a clause vertex are red, green, blue in

clockwise order, while the outer colors of the same edges are blue, red, green, respectively.
We now introduce the problem COLORED TRIGRID POSITIVE 1-IN-3-SAT, which we
will reduce to GEOMETRIC 3-CUT, see Figure 4. The problem is NP-complete, as shown
in the full version.

I Definition 6. In COLORED TRIGRID POSITIVE 1-IN-3-SAT, we are given an instance
(Φ, G(Φ)) of TRIGRID POSITIVE 1-IN-3-SAT together with a coloring of the edges of G(Φ)
satisfying the above requirements. We want to decide whether Φ has a satisfying assignment.

4.2 Building a GEOMETRIC 3-SAT instance from tiles
Consider an instance (Φ, G(Φ)) of COLORED TRIGRID POSITIVE 1-IN-3-SAT that we
will reduce to GEOMETRIC 3-CUT. We make the construction using hexagonal tiles of six
different types, namely straight, inner color change, outer color change, bend, branch, and
clause tiles. Each tile is a regular hexagon with side length 1/

√
3 and hence has width 1.

The tiles are rotated such that they have two horizontal edges.
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Figure 4 An instance of COLORED TRIGRID POSITIVE 1-IN-3-SAT based on the instance
from Figure 3.

The tiles are placed so that each tile is centered at a vertex p of G(Φ). Let Gp be the part
of G(Φ) within distance 1/2 from p (recall that each edge of G(Φ) has length 1). Figure 5
shows the tiles and how they are placed according to the shape and colors of Gp.

In order to define the outer objects of a tile, we consider the straight skeleton offset [3, 4]
of Gp at distance 1/4. With the exception of the bend tile, this offset is the same as the
Euclidean offset. By the outer and inner region, we mean the region of the tile outside,
resp. inside, this offset. The outer objects cover the outer region, and every point is colored
with the outer color of a closest edge in Gp. The inner region is empty except for the inner
objects described in each case below. We suppose that p = (0, 0).

The straight tile. If two collinear edges meet at p with the same inner and outer color, we
use a straight tile. Suppose in this and the following two cases that Gp is the vertical line
segment from (0,−1/2) to (0, 1/2) – tiles for edges of other slopes are obtained by rotation
of the ones described here. There are four axis-parallel squares of the inner color of Gp with
side length 1/8 centered at (±(1/4−1/16),±1/4). This size is chosen so their total perimeter
is 2, which is the length of the common boundary of the inner and outer regions.

The inner color change tile. If two collinear edges meet at p with different inner colors, we
use an inner color change tile. There are again four squares colored in the inner color of the
closest point in Gp. There are also four smaller axis-parallel squares with side length 1/28
centered at (±(1/4− 1/56),±1/56), likewise colored in the inner color of the closest point in
Gp. The size of these small squares is chosen so that they can be individually enclosed using
fences of total length 14 · 1/28 = 1/2, which is the width of the inner region.

The outer color change tile. If two collinear edges meet at p with different outer colors,
we use an outer color change tile. There are four axis-parallel squares of the inner color of
Gp with side length 3/32. Their centers are (±(1/4− 3/64),±1/4). The size of these squares
is chosen so that their total perimeter is 2− 1/2 = 3/2.

The bend tile. If two non-collinear edges meet at p, we use a bend tile. Consider the case
where Gp is the vertical line segment from p to (0, 1/2) and the segment of length 1/2 from p

with direction (cosπ/6,− sin π/6). The other cases are obtained by a suitable rotation of this
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straight inner color change outer color change

bend branch clause

Figure 5 Different kinds of tiles used in the reduction to GEOMETRIC 3-CUT. The dashed
colored segments show Gp and the inner and outer color of Gp. The tiles are colored accordingly.
The points in the clause tile are defined so that ‖ab‖ = ‖a′b′‖ = 6/25 = 0.24 and ‖bc‖ = ‖b′c‖ =
1/4 = 0.25. Point c has coordinates (x, x/

√
3), where x = 13

√
3

200 + 3/16−
√
−459+3900

√
3

400 is a solution
to 10000x2 + (−1300

√
3− 3750)x+ 507 = 0. The remaining points in the tile are given by rotations

by angles 2π/3 and 4π/3 around p.

tile. There is an axis parallel square of side length x = 6+
√

3
72 with center (−(1/4− x/2), 1/4)

and another with side length y = 6−
√

3
48 centered at (1/4− y/2, 3/8). The tile is symmetric

with respect to the angular bisector b of Gp, and so the reflections of the described squares
with respect to b are also inner objects. Note that there are two outer objects, one of which,
O, has a concave corner q with exterior angle 2π/3. We place a parallelogram with side
length x, a corner at q, and two edges contained in the edges of O incident at q. It is easy to
verify that the common boundary of the inner and outer regions has a total length of 2; the
inner objects are chosen such that their total perimeter is also 2.

The branch tile. If p is a branch vertex, we use the branch tile. There are two cases: Gp

either contains the vertical segment from p to (0, 1/2) or that from p to (0,−1/2). We specify
the tile in the first case – the other can be obtained by a rotation of π. There are axis-parallel
squares of side length y = 6−

√
3

48 centered at (±(1/4− y/2), 3/8) and their rotations around p
by angles 2π/3 and 4π/3. The common boundary of the inner and outer regions has a total
length of 6−

√
3

2 , and the total perimeter of the inner objects is also 6−
√

3
2 .

The clause tile. If p is a clause vertex, we use the clause tile (defined in Figure 5). The
other clause tiles are given by rotations of the described tile by angles kπ/3 for k = 1, . . . , 5.
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Ex

Ey

Ez

Ex

Ey

Ez

Ex

Ey

Ez

Figure 6 The optimal solutions to each type of tile. The edges in Gp are shown in dashed grey.
We denote the left solution of each of the first five types of tiles as the outer solution and the other
as the inner solution. For the clause tile, we define the solution as the z-outer, x-outer, and y-outer
solution in order from left to right, respectively.

4.3 Solving the tiles

Let an instance I of GEOMETRIC 3-SAT be given together with an associated fence F .
Consider the restriction of I to a convex polygon P and the part of the fence F ∩ P inside
P . Note that F ∩ P consists of (not necessarily disjoint) closed curves and open curves
with endpoints on the boundary ∂P , such that no two objects in P of different color can
be connected by a path π ⊂ P unless π intersects F . (An open curve is a subset of a larger
closed curve of F that continues outside P .) We say that a set of closed and open curves in
P with that property is a solution to I ∩ P . In the following, we analyze the solutions to the
tiles defined in Section 4.2 in order to characterize the solutions of minimum cost. We say
that two closed curves (disjoint from the interiors of the objects) are homotopic if one can be
continuously deformed into the other without entering the interiors of the objects. Two open
curves with endpoints on the boundary of the tile are homotopic if they are subsets of two
homotopic closed curves (that extend outside the tile).

The following lemma characterizes the optimal solutions to each type of tile. The
statement is that if a solution is not too much more expensive than the solutions shown in
Figure 6, then it will contain curves homotopic to each curve in one of the solutions in the
figure. The proof is deferred to the full version.
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I Lemma 7. Figure 6 shows optimal solutions to each kind of tile. The cost in each case is:
Straight tile: 2. Inner color change tile: 5/2. Outer color change tile:

(
2√
3 −

1
2

)
+ 2 ≈ 2.65.

Bend tile: 2. Branch tile: 6−
√

3
2 ≈ 2.13. Clause tile: ≈ 3.51 (the exact value is complicated

due to the coordinates and of no use).
If the cost of a solution F to a tile T exceeds the optimum by less than 1/50, then F is

homotopic to one of the optimal solutions F∗ of T in the following sense: For each curve π∗
in F∗, there is a curve π in F homotopic to π∗. If π is closed, the distance from any point
on π to the closest point on π∗ is less than

√
(1/8 + 1/100)2 − (1/8)2 < 0.06. If π is open

and π∗ has an endpoint f∗, there is a corresponding endpoint f of π with ‖f∗f‖ < 1/10.

I Theorem 8. The problem GEOMETRIC 3-CUT is NP-hard.

Proof. Let an instance (Φ, G(Φ)) of COLORED TRIGRID POSITIVE 1-IN-3-SAT be given
and construct the tiles on top of G(Φ) as described. Let T be the set of tiles and A the area
that the tiles cover (i.e., A is a union of the hexagons). We will cover any holes in A with
completely red tiles, and place red tiles all the way along the exterior boundary of A. Let
R be the set of these added red tiles and let I be the resulting instance of GEOMETRIC
3-CUT. It is now trivial how to place the fences in I everywhere except in the interior of A.

Consider a fence F to the obtained instance with cost M . Let M∗ be the sum of the cost
of an optimal solution to each tile in T plus the cost of the fence that must be placed along
the boundaries of the added red tiles in R. We claim that if Φ is satisfiable, then a solution
realizing the minimum M∗ exists. Furthermore, if M < M∗ + 1/50, then Φ is satisfiable.

Suppose that Φ is satisfiable and fix a satisfying assignment. Consider a clause tile where
Ex, Ey, and Ez meet. Now, we choose the v-outer state, where v ∈ {x, y, z} is the variable
that is satisfied. For each non-clause tile that covers a part of Ew for a variable w of Φ, we
choose the outer state if w is true and the inner otherwise. It is now easy to see that the
curves form a fence of the desired cost.

On the other hand, suppose that M < M∗ + 1/50. It follows that in each tile in T , the
cost exceeds the optimum by at most 1/50. Hence, the solution in each tile is homotopic
to one of the optimal states as described in Lemma 7. We now claim that the states of all
tiles representing one variable must agree on either the inner or outer state. Consider two
adjacent tiles where one is in the inner state. There are open curves with endpoints on the
shared edge of the two tiles with a distance of more than 1/2− 2 · 1/10 = 3/10. The other
tile cannot be in the outer state, because then there would have to be an extra open curve of
length at least 3/10 to connect those endpoints. It follows that the other tile must also be in
the inner state. Thus, both tiles are either in the inner or in the outer state, as desired.

We now describe how to obtain a satisfying assignment of Φ. Consider a clause tile where
Ex, Ey, and Ez meet and suppose the tile is in the x-outer state. It follows from the above
that each tile covering Ex is in the outer state or, in the case of the clause tile, in the x-outer
state. Similarly, each non-clause tile covering only Ey (resp. Ez) is in the inner state and
each clause tile covering a part of Ey (resp. Ez) is not in the y-outer (resp. z-outer) state.
We now set x to true and y and z to false and do similarly with the other clause tiles, and it
follows that we get a solution to Φ.

The proof that we can avoid the use of irrational corners is deferred to the full version.
The basic idea is as follows. For each object O with corner v with an irrational coordinate,
we choose a substitute v′ ∈ O with rational coordinates such that ‖vv′‖ < 1/50

4n and such that
v′ only requires polynomially many bits to represent. This results in a modified instance I ′,
and we prove that I ′ has a solution of cost M ′ := d100M∗e

100 if and only if Φ is satisfiable. J
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5 Approximation

The approach for k = 2 from Section 3 does not extend to k ≥ 3 because Lemma 2 does
not apply: The arrangement A (formed by the free segments between the corners N of the
input objects) is no longer guaranteed to contain an optimal fence, see Figure 1. However,
we can still search for an approximate solution in A: We show that the optimal fence FA
contained in A has a cost which is at most 4/3 times higher than the true optimal fence F ?

(Theorem 9). In the full version, we construct a corresponding lower-bound example with
|FA| > 1.15 · |F ?|.

The graph-theoretic problem that we then have to solve in the weighted dual graph
G = (V,E) of A is the colored multiterminal cut problem: We have terminals of k ≥ 3
different colors and want to make a cut that separates every pair of terminals of different
colors. This problem is NP-hard, but we can use approximation algorithms, see Section 5.1.

I Theorem 9. |FA| ≤ 4/3 · |F ?|.

Proof. From Section 2, we know that after cutting an optimal fence F ? at all points of N ,
the remaining components are Steiner minimal trees with leaves in N and internal Steiner
vertices of degree 3, where three segments make angles of 2π/3.

Consider such a Steiner tree T (Figure 7a). Since T is embedded in the plane, the leaves
can be enumerated in cyclic order as v1, . . . , vm. We will replace T by a connected system T̄

of fences that connects the same set of leaves v1, . . . , vm, but contains only segments from the
arrangement A. Furthermore, we prove that the total length of T̄ is bounded as |T̄ | ≤ 4

3 |T |.
Thus, carrying out this replacement for every Steiner tree leads to the fence FA of the desired
cost. If T consists of a single segment, we define T̄ to be the same segment, in which case
trivially |T̄ | ≤ 4

3 |T |. Assume therefore that T has at least one Steiner vertex.
Let Tij be the path in T from vi to vj . For each pair {i, j}, we define the path T̄ij as the

shortest path with the properties that

a) T̄ij has endpoints vi and vj , and
b) T̄ij is homotopic to Tij : this means that Tij can be continuously deformed into T̄ij while

keeping the endpoints fixed at vi and vj , without entering the interiors of the objects.
It is clear that
c) T̄ij is contained in the arrangement A, and
d) T̄ij is at most as long as Tij .

We will construct T̄ as the union of paths T̄ij that are specified by a certain set S of leaf
pairs {i, j}, and we will show that its total length is bounded |T̄ | ≤ 4

3 |T |. The fact that FA
is a valid fence is ensured by our choice of the set S, which we will now discuss.

If we overlay all paths Tij for {i, j} ∈ S, we get a multigraph T̃ , which has the same
vertices as T and uses the edges of T , some of them multiple times. We require these
three properties:
1. Every edge of T is used once or twice in T̃ .
2. Every Steiner vertex of T has even degree (4 or 6) in T̃ . (By contrast, the degree in T is

always 3.)
3. Any two paths Tij and Ti′j′ that have a point of T in common must cross in the following

sense: If we assume, by relabeling if necessary, that i < j and i′ < j′, then i ≤ i′ ≤ j ≤ j′
or i′ ≤ i ≤ j′ ≤ j.
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T ′
35

Tv1

v2

v3

v4v5
v1

v2

v3

v4v5 T ′
24
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15

(a) (b)

Figure 7 (a) a single Steiner tree T with 5 terminals v1, . . . , v5, part of a larger fence system F ?.
Steiner vertices are white, leaves are black. (b) The transformed graph T̄ , formed as the union of
three shortest homotopic paths T̄15, T̄24, and T̄35.

The last property is important to ensure that T̄ is connected.
As we prove in the full version, Properties 1 and 3 imply that for any two leaves vi and

vj (where the pair {i, j} is not necessarily in S), the set T̄ contains a path from vi to vj that
is homotopic to the path Tij . This means that after replacing T by T̄ in F ?, we get a system
of fences F ′ that encloses and separates the same objects as F ?, and thus we have indeed
produced a valid fence.

To bound the length of T̄ , we bound each path T̄ij , {i, j} ∈ S, by the corresponding
path Tij in T . This upper estimate is simply the total length of T plus the length of the
duplicated edges of T .

Our first task is to construct the multigraph T̃ . By Property 1, this boils down to selecting
which edges of T to duplicate. In order to fulfill Property 2, we require that the degree of
every inner vertex of T̃ becomes even. (We show later that this is sufficient to ensure that
the edges of T̃ can be partitioned into paths Tij subject to Property 3.)

I Lemma 10. The edges that should be duplicated can be chosen such that their total length
is at most |T |/3.

Proof. For a particular tree, the optimum can be computed easily by dynamic programming,
as follows. We root T at some arbitrary leaf. Consider a subtree U rooted at some vertex u
of T such that u has one child v in U . We define U1 and U2 as the cost of the optimal set of
duplicated edges in U , under the constraint that the multiplicity of the edge uv in T̃ is 1
and 2, respectively.

By induction, we will establish that

2U1 + U2 ≤ |U |. (1)

This gives min{U1, U2} ≤ |U |/3 and proves the lemma, since this also holds for U = T . In
the base case U has only one edge. Then U1 = 0 and U2 = ‖uv‖ = |U |, and (1) holds.

If U is larger, v has degree 3, and two subtrees L and R are attached there. If uv is not
duplicated, then exactly one of the other edges incident to v has to be duplicated in order
for v to get even degree in T̃ . On the other hand, if uv is duplicated, then either both or
none of the other edges should be duplicated. Hence, we can compute U1 and U2 by the
following recursion:

U1 = min{L1 +R2, L2 +R1} (2)
U2 = min{L1 +R1, L2 +R2}+ ‖uv‖ (3)
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We therefore get

U1 ≤ L2 +R1 (4)
U1 ≤ L1 +R2 (5)

from (2) and

U2 ≤ L1 +R1 + ‖uv‖ (6)

from (3).
Adding inequalities (4–6) and using the inductive hypothesis (1) for L and R gives

2U1 + U2 ≤ 2L1 + L2 + 2R1 +R2 + ‖uv‖ ≤ |L|+ |R|+ ‖uv‖ = |U |. J

We now have a multigraph T̃ where every internal vertex has even degree. It follows that
the edges of T̃ can be partitioned into leaf-to-leaf paths, much like when creating an Eulerian
tour in a graph where all vertices have even degree.

We still need to satisfy Property 3. Whenever two paths P1 and P2 violate this property,
we repair this by swapping parts of the paths, without changing the number of remaining
violating pairs, as follows: The paths P1 and P2 must have a common vertex, and thus also
a common edge uv, because the maximum degree in T is 3. Orient P1 and P2 so that they
use this edge in the direction uv, and cut them at v into P1 = Q1 ·R1 and P2 = Q2 ·R2. We
now make a cross-over at v, forming the new paths Q1 ·R2 and Q2 ·R1. These new paths
satisfy Property 3. To check that we did not create any new violations, we observe that, by
Property 1, no other path can use the edge uv, because the capacity of 2 is already taken
by P1 and P2. Thus, all other paths can either interact with Q1 and Q2, or with R1 and
R2. Thus, swapping the parts of P1 and P2 in the other half of the tree T does not affect
Property 3.

We have thus established Theorem 9. J

5.1 Finding a good fence in A

The problem of finding a small cut in a planar graph G = (V,E) that separates k different
classes T1, . . . , Tk ⊂ V of terminals was mentioned as a suggestion for future work by
Dahlhaus et al. [8], but we have not found any subsequent work on that except for the case
k = 2 [5]. We can, however, reduce the problem to the multiway cut problem in general
graphs (also known as the multiterminal cut problem): For each class Ti, we add an “apex
vertex” ti which is connected to all vertices in Ti by edges of infinite weight. We then ask
for the cut of minimum total weight that separates each pair ti, tj . Dahlhaus et al. gave a
(2− 2/k)-approximation algorithm for the problem. In our setup, the running time will be
O(kn8 logn). The approximation ratio was since then improved to 3/2− 1/k by Călinescu
et al. [6]. Finally, a randomized algorithm with approximation factor 1.3438 was given by
Karger et al. [12], who also gave the best known bounds for various specific values of k.
Together with Theorem 9, we obtain the following result.

I Theorem 11. There is a randomized 4/3 · 1.3438-approximation algorithm and a determ-
inistic (2− 4

3k )-approximation algorithm for GEOMETRIC k-CUT, each of which runs in
polynomial time.
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6 Concluding Remarks

We have initiated the study of the geometric multicut problem. As our NP-hardness
reduction does not imply APX-hardness, an interesting open question is whether there exists
a (1 + ε)-approximation algorithm for any ε > 0.

There are other versions of the problem that could also be interesting to study. For
example, apart from considering shortest paths in the plane, much attention has also been
paid to minimum-link paths, i.e., paths connecting two points and consisting of a minimum
number of line segments. The analogous problem in our setup is likewise interesting: Compute
a simplest possible fence, i.e., one that is the union of as few line segments as possible. The
fence can be required to be disjoint from the object interiors, or it can be allowed to pass
through the objects, leading to two different problems.
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Abstract
Multiplication is one of the most fundamental computational problems, yet its true complexity
remains elusive. The best known upper bound, very recently proved by Harvey and van der
Hoeven (2019), shows that two n-bit numbers can be multiplied via a boolean circuit of size
O(n lg n). In this work, we prove that if a central conjecture in the area of network coding is
true, then any constant degree boolean circuit for multiplication must have size Ω(n lg n), thus
almost completely settling the complexity of multiplication circuits. We additionally revisit classic
conjectures in circuit complexity, due to Valiant, and show that the network coding conjecture also
implies one of Valiant’s conjectures.
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1 Introduction

Multiplication is one of the most fundamental computational problems and the simple
“long multiplication” O(n2)-time algorithm for multiplying two n-digit numbers is taught
to elementary school pupils around the world. Despite its centrality, the true complexity
of multiplication remains elusive. In 1960, Kolmogorov conjectured that the thousands
of years old O(n2)-time algorithm is optimal and he arranged a seminar at Moscow State
University with the goal of proving this conjecture. However only a week into the seminar,
the student Karatsuba came up with an O(nlg2 3) ≈ O(n1.585) time algorithm [9]. The
algorithm was presented at the next seminar meeting and the seminar was terminated. This
sparked a sequence of improved algorithm such as the Toom-Cook algorithm [15, 4] and
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the Schönhage-Strassen algorithm [14]. The Schönhage-Strassen algorithm, as well as the
current fastest algorithm by Fürer [6], are both based on the Fast Fourier Transform (FFT).
Fürer’s algorithm can be shown to run in time O(n lgn · 4lg∗ n) when multiplying two n-bit
numbers [8]. It can even be implemented as a constant degree Boolean circuit of the same size.
Here lg∗ n is the very slowly growing iterated logarithm. A very recent and exciting result
by Harvey and van der Hoeven [7] removes the extra 4lg∗ n term, and presents an algorithm
for integer multiplication that runs in time O(n lgn). But what is the true complexity of
multiplying two n-bit numbers? Can it be done via e.g. a Boolean circuit of size O(n)
like addition? Or is multiplication strictly harder? Our main contribution is to show a
connection between multiplication and a central conjecture by Li and Li [10] in the area of
network coding. Our results show that if the conjecture by Li and Li [10] is true, then any
constant degree Boolean circuit for computing the product of two n-bit numbers must have
size Ω(n lgn). This establishes a conditional lower bound for multiplication that is tight
with respect to the upper bound presented by Harvey and van der Hoeven, and implies that
multiplication is strictly harder than addition.

Before diving into the details of our results, we first give a brief introduction to net-
work coding.

Network Coding. Network coding studies communication problems in graphs. Given a
graph G with capacity constraints on the edges and k data streams, each with a designated
source-sink pair of nodes (si, ti) in G, what is the maximum rate at which data can be
transmitted concurrently between the source-sink pairs? One solution is to just forward the
data, which reduces the problem to a multicommodity flow problem. The central question in
network coding is whether one can achieve a higher rate by using coding/bit tricks. This
question is known to have a positive answer in directed graphs, where the rate increase
may be as high as a factor Ω(|G|) (by sending XOR’s of carefully chosen input bits), see
e.g. [1]. However the question remains wide open for undirected graphs where there are
no known examples for which network coding can do better than the multicommodity flow
rate. A central conjecture in network coding, due to Li an Li [10], says that coding yields no
advantage in undirected graphs.

I Conjecture 1 (Undirected k-pairs Conjecture [10]). The coding rate is equal to the Multi-
commodity-Flow rate in undirected graphs.

Despite the centrality of this conjecture, it has heretofore resisted all attempts at either
proving or refuting it. Conjecture 1 has been used twice before for proving lower bounds for
computational problems. Adler et al. [1] were the first to initiate this line of study. They
presented conditional lower bounds for computing the transpose of a matrix via an oblivious
algorithm. Here oblivious means that the memory access pattern is fixed and independent
of the input. Very recently Farhadi et al. [5] showed how to remove the obliviousness
assumption for external memory problems. Their main result was a tight lower bound for
external memory integer sorting, conditioned on Conjecture 1 being true.

1.1 Our Results
Our main result is an exciting new connection between network coding and the complexity
of multiplication. Formally, we prove the following theorem:

I Theorem 1. Assuming Conjecture 1, every boolean circuit with arbitrary gates and bounded
in and out degrees that computes the product of two numbers given as two n-bit strings has
size Ω(n lgn).
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In fact, we prove our Ω(n lgn) lower bound for an even simpler problem than multiplication,
namely the shift problem: In the shift problem, we are given an n-bit string x and an index
j ∈ [n]. The goal is to construct a circuit that outputs the 2n-bit string y whose ith bit
equals the (i− j + 1)th bit of x for every j ≤ i ≤ j + n− 1. Here we think of the index j as
being given in binary using dlgne bits. We prove the following result:

I Theorem 2. Assuming Conjecture 1, every boolean circuit with arbitrary gates and bounded
in and out degrees that computes the shift problem has size Ω(n lgn).

Theorem 1 follows as a corollary of Theorem 2 by observing that shifting x by j positions
is equivalent to multiplication by 2j . Moreover, it is not hard to see that there is a linear
sized circuit that has dlgne input gates and n output gates, where on an index j ∈ [n], it
outputs the number 2j in binary (i.e. a single 1-bit at position j).

We find it quite fascinating that even a simple instruction such as shifting requires circuits
of size Ω(n lgn), at least if we believe Conjecture 1.

Valiant’s Depth Reduction and Circuit Complexity Lower Bounds. In addition to our
main lower bound results for multiplication, we also demonstrate that the network coding
conjecture sheds new light on some fundamental conjectures by Valiant. In a 1977 survey
Valiant [16] outlined potentially plausible attacks on the problem of proving a lower bound
for the size of any circuit that can compute a permutation or even shifts of a given input.
The goal was to prove that achieving both O(n) size and O(lgn) depth for such circuits is
impossible. While most of his attacks were rebuffed due to existence of complex and highly
connected graphs that only had O(n) edges (superconcentrators), Valiant outlined one last
potential approach that could still be fruitful. His main brilliant idea was to start with a
circuit of some depth and by applying graph theoretical approaches reducing the depth of
the circuit while eliminating only a small number of edges. The hope was that information
theoretical approaches could finish the job once the depth of the circuit was very low and
once the (graph theoretical) complexity of the circuit was peeled away.

More formally, Valiant showed that for every circuit C with n input and output gates,
of size O(n), depth O(lgn) and fan-in 2, and for every ε > 0, the function computed by C
can be computed by a boolean circuit with arbitrary gates C ′ of depth 3 with n input and
output gates and εn extra nodes. Moreover, the number of input gates directly connected to
an output gate is bounded. That is, if we denote the set of input and output gates by X and
Y respectively, then for every y ∈ Y , there are at most O(nε) wires connecting y and X.

In turn, this reduction shows that it is enough to prove lower bounds on such depth 3
circuits. Almost 20 years later and based on these ideas, Valiant [17] put forward several
conjectures that if resolved could open the way for proving circuit complexity lower bounds.
Loosely speaking, Valiant conjectured that if ε ≤ 1/2 then such depth 3 circuits cannot
compute cyclic-shift permutation. Before discussing Valiant’s conjectures more formally, we
first state our second main result, which essentially shows that Conjecture 1 implies one of
Valiant’s conjectures, albeit with a smaller (but still constant) bound on ε.

I Theorem 3. Let C be a depth 3 circuit that computes multiplication such that the following
holds.
1. The number of gates in the second layer of C is at most εn for ε ≤ 1/300; and
2. for every output gate y of C, the number of input gates directly connected to y is at most

c.
Then assuming Conjecture 1, c = Ω

(
lgn

lg lgn

)
.
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As with Theorem 1, we prove Theorem 3 on an even restricted set of circuits, namely circuits
that compute the shift function. We now turn to give a formal description of Valiant’s
Conjectures, and demonstrate how Theorem 3 brings us closer to settling them.

Valiant’s Conjectures. Let Γ be a bipartite graph on two independent sets X and Y such
that X = {x1, . . . , xn} denotes a set of inputs and Y = {y1, . . . , yn} denotes a set of outputs.
Furthermore assume, let f1, . . . fεn be εn extra nodes and connect them by edges to all
the nodes in Γ. Denoting the resulting graph by G consider all possible boolean circuits
with arbitrary gates whose underlying topology is G. We say such a circuit computes a
permutation π : Y → X if for every assignment x1, . . . , xn ∈ {0, 1}n to the input gates, after
the evaluation of the circuit yj is assigned π(yj) for every j ∈ [n]. Valiant conjectured that
this should be impossible if ε is too small or if Γ has too few edges. In particular, he proposed
the following.

I Conjecture 2. If Γ has maximum degree at most 3 and if ε ≤ 1/2, then there exists a
permutation π such that no circuit that has G as its underlying topology can compute the
permutation π. Moreover, there exists such π that is a cyclic shift.

Theorem 3 shows that conditioned on Conjecture 1, if ε ≤ 1/300 then Valiant’s first
conjecture holds. We note that our proof for Theorem 3 continues to hold even if the gates’
boolean functions are fixed after the shift offset is given. That is, if only the topology is
fixed in advance. This coincides exactly with the formulation of Valiant’s conjecture. Valiant
further conjectured the following.

I Conjecture 3. If Γ has at most n2−δ edges for some constant δ > 0, and if ε ≤ 1/2, then
there exists a permutation π such that no circuit that has G as its underlying topology can
compute the permutation π. Moreover, there exists such π that is a cyclic shift.

1.2 Related Work
Lower Bounds for Multiplication. There are a number of previous lower bounds for multi-
plication in various restricted models of computation. Clifford and Jalsenius [3] considered a
streaming variant of multiplication, where one number is fixed and the other is revealed one
digit at a time. They require that a digit of the output is reported before the next digit of
the input is revealed. In this streaming setting, they prove an Ω((δ/w)n lgn) lower bound,
where δ is the number of bits in a digit and w is the word size. For δ = 1 and w = O(1),
this is Ω(n lgn). Ponzio [12] considered multiplication via read-once branching programs,
i.e. programs that have bounded working memory and may only read each input bit exactly
once. He proved that any read-once branching program for computing the middle bit of the
product of two n-bit numbers, must use Ω(

√
n) bits of working memory. Finally, we also

mention the work of Morgenstern [11] who proved lower bounds for computing the related
FFT. Morgenstern proved an Ω(n lgn) lower bound for computing the unnormalied FFT via
an arithmetic circuit when all constants used in the circuit are bounded. Unfortunately this
doesn’t say anything about the complexity of multiplying two n-bit numbers.

Valiant’s Conjectures. Despite their importance, Valiant’s conjectures are still mostly open.
One interesting development by Riis [13], shows that Conjecture 3 as stated is incorrect. Riis
proved that all cyclic shifts are realizable for ε = 1

2 −
1

2n1−δ where n1+δ is the total number of
edges of Γ. Riis further conjectured that replacing the bound on ε by a slightly stricter bound
should result in a correct conjecture. Specifically, Riis suggest bounding ε = Θ

(
1

lg lgn

)
.
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2 Preliminaries

We now give a formal definition of Boolean circuits with arbitrary gates, followed by definitions
of the k-pairs communication problem, the multicommodity flow problem. In the two latter
problems we reuse some of the definitions used by Farhadi et al. [5], which have been
simplified a bit compared to the more general definition by Adler et al. [1]. In particular,
we have forced communication networks to be directed acyclic graphs. This is sufficient to
prove our lower bounds and simplifies the definitions considerably.

Boolean Circuits with Arbitrary Gates. A Boolean Circuit with Arbitrary Gates with n
source or input nodes and m target or output nodes is a directed acyclic graph C with
n nodes of in-degree 0, which are called input gates, and are labeled with input variables
X = {xi}i∈[n] and m nodes out-degree 0, which are called output gates and are labeled with
output variables Y = {yi}i∈[m]. All other nodes are simply called gates. For every gate u of
in-degree k ≥ 1, u is labeled with an arbitrary function fu : {0, 1}k → {0, 1}. The circuit is
also equipped with a topological ordering v1, . . . , vt of C, in which vi = xi for i ∈ [n] and
vt−i+1 = ym−i+1 for all i ∈ [m]. The depth of a circuit C is the length of the longest path
between an input and an output node in C. An evaluation of a circuit on an n bit input
x = (x1, . . . , xn) ∈ {0, 1}n is conducted as follows. For every i ∈ [n], assign xj to vj . For
every j ≥ n+ 1, assign to vj the value fvj (u1, . . . , uk), where u1, . . . , uk are the nodes of C
with edges going into vj in the order induced by the topological ordering. The output of C on
an n bit input x = (x1, . . . , xn), denoted C(x1, . . . , xn) is the value assigned to (y1, . . . , ym)
in the evaluation. We say a circuit computes a function f : {0, 1}n → {0, 1}m if for every
x = (x1, . . . , xn) ∈ {0, 1}n, f(x1, . . . , xn) = C(x1, . . . , xn).

For every j ∈ [t] and b ∈ {0, 1}, we hardwire b for vj in C by removing vj and all adjacent
edges from C, and replacing vj for b in the evaluation of fvi for every i > j such that vjvi is
an edge in C.

k-Pairs Communication Problem. The input to the k-pairs communication problem is a
directed acyclic graph G = (V,E) where each edge e ∈ E has a capacity c(e) ∈ R+. There
are k sources s1, . . . , sk ∈ V and k sinks t1, . . . , tk ∈ V .

Each source si receives a message Ai from a predefined set of messages A(i). It will be
convenient to think of this message as arriving on an in-edge. Hence we add an extra node
Si for each source, which has a single out-edge to si. The edge has infinite capacity.

A network coding solution specifies for each edge e ∈ E an alphabet Γ(e) representing the
set of possible messages that can be sent along the edge. For a node v ∈ V , define In(u) as
the set of in-edges at u. A network coding solution also specifies, for each edge e = (u, v) ∈ E,
a function fe :

∏
e′∈In(u) Γ(e′) → Γ(e) which determines the message to be sent along the

edge e as a function of all incoming messages at node u. Finally, a network coding solution
specifies for each sink ti a decoding function σi :

∏
e∈In(ti) Γ(e)→ A(i). The network coding

solution is correct if, for all inputs A1, . . . , Ak ∈
∏
iA(i), it holds that σi applied to the

incoming messages at ti equals Ai, i.e. each source must receive the intended message.
In an execution of a network coding solution, each of the extra nodes Si starts by

transmitting the message Ai to si along the edge (Si, si). Then, whenever a node u has
received a message ae along all incoming edges e = (v, u), it evaluates fe′(

∏
e∈In(u) ae) on all

out-edges and forwards the message along the edge e′.
We define the rate of a network coding solution as follows: Let each source receive a

uniform random and independently chosen message Ai from A(i). For each edge e, let Ae
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denote the random variable giving the message sent on the edge e when executing the network
coding solution with the given inputs. Let H(·) denote the binary Shannon entropy. The
network coding solution achieves rate r if:

H(Ai) ≥ r for all i.
For each edge e ∈ E, we have H(Ae) ≤ c(e).

The intuition is that the rate is r, if the solution can handle sending a message of entropy r
bits between every source-sink pair.

Multicommodity Flow. A multicommodity flow problem in an undirected graph G = (V,E)
is specified by a set of k source-sink pairs (si, ti) of nodes in G. We say that si is the source
of commodity i and ti is the sink of commodity i. Each edge e ∈ E has an associated capacity
c(e) ∈ R+. A (fractional) solution to the multicommodity flow problem specifies for each
pair of nodes (u, v) and commodity i, a flow f i(u, v) ∈ [0, 1]. Intuitively f i(u, v) specifies
how much of commodity i that is to be sent from u to v. The flow satisfies flow conservation,
meaning that:

For all nodes u that is not a source or sink, we have
∑
w∈V f

i(u,w)−
∑
w∈V f

i(w, u) = 0.
For all sources si, we have

∑
w∈V f

i(si, w)−
∑
w∈V f

i(w, si) = 1.
For all sinks we have

∑
w∈V f

i(w, ti)−
∑
w∈V f

i(ti, w) = 1.
The flow also satisfies that for any pair of nodes (u, v) and commodity i, there is only flow in
one direction, i.e. either f i(u, v) = 0 or f i(v, u) = 0. Furthermore, if (u, v) is not an edge in
E, then f i(u, v) = f i(v, u) = 0. A solution to the multicommodity flow problem achieves a
rate of r if:

For all edges e = (u, v) ∈ E, we have r ·
∑
i(f i(u, v) + f i(v, u)) ≤ c(e).

Intuitively, the rate is r if we can handle a demand of r for every commodity.

The Undirected k-Pairs Conjecture. Conjecture 1 implies the following for our setting:
Given an input to the k-pairs communication problem, specified by a directed acyclic graph
G with edge capacities and a set of k source-sink pairs, let r be the best achievable network
coding rate for G. Similarly, let G′ denote the undirected graph resulting from making each
directed edge in G undirected (and keeping the capacities and source-sink pairs). Let r′ be
the best achievable flow rate in G′. Conjecture 1 implies that r ≤ r′.

Having defined coding rate and flow rate formally, we also mention that a result of
Braverman et al. [2] implies that if there exists a graph G where the network coding rate
r, and the flow rate r′ in the corresponding undirected graph G′, satisfies r ≥ (1 + ε)r′
for a constant ε > 0, then there exists an infinite family of graphs {G∗} for which the
corresponding gap is at least (lg |G∗|)c for a constant c > 0. So far, all evidence suggest that
no such gap exists, as formalized in Conjecture 1.

3 Key Tools and Techniques

The main idea in the heart of both proofs is the simple fact that in a graph with t vertices
and maximum degree at most c, most node pairs lie far away from one another. Specifically,
for every node u in G, at least t −

√
t nodes have distance ≥ 1

2 logc t from u. While this
key observation is almost enough to prove Theorem 2, the proof of Theorem 3 requires a
much more subtle approach, as there is no bound on the maximum degree in the circuits in
question. The only bound we have is on the number of wires going directly between from
input gates into output gates. Specifically, every two nodes in the underlying undirected
graph are at distance ≤ 3 (see Figure 1).
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In order to overcome this obstacle, we present a construction of a communication network
based on the circuit C that essentially eliminates the middle layer in the depth-3 circuit C,
thus leaving a bipartite graph with bounded maximum degree. To this end, we observe that
since the size of the middle layer is bounded by εn, then there exists a large set F of inputs
in {0, 1}n such that on all inputs from F , the gates f1, . . . , fεn attain the same values. By
hardwiring these values to the circuit, we can evaluate the circuit for all inputs in F on a
depth-2 circuit Γ obtained from C by removing f1, . . . , fεn. We next turn to construct the
communication network. Employing ideas recently presented by Farhadi et al. [5], we “wrap”
the depth-2 circuit by adding source and target nodes. In order to cope with inputs that do
not belong to F , we add a designated supervisor node u (see figure 2). Loosely speaking, the
source nodes transmit their input to u, and u sends back the information needed to “edit”
the input string x and construct an input string x′ ∈ F , which is then transferred to the
circuit Γ as blackbox.

The Correction Game. In order to bound the edge capacities of the network G in a way
that the supervisor node can transmit enough information to achieve a high communication
rate, but then again not allow to much flow to go through the supervisor when considering
G as a multicommodity flow instance, Farhadi et al. [5] defined a game between a set
of m players and a supervisor, where given a fixed set F ⊆ {0, 1}n and a random string
β ∈ {0, 1}n given as a concatenation of m strings β1, . . . , βm of length n/m each, the goal is
to “correct” β and produce a string χ ∈ {0, 1}n such that β ⊕ χ ∈ F . The caveat is that
the only communication allowed is between the players and the supervisor. That is, no
communication, and thus no cooperation, is allowed between the m players. Formally, the
game is defined as follows.

I Definition 4. Let F ⊆ {0, 1}n. The F-correction game with m+ 1 players is defined as
follows. The game is played by m ordinary players p1, . . . , pm and one designated supervisor
player u. The supervisor u receives m strings β1, . . . , βm ∈ {0, 1}n/m chosen independently at
random. For every ` ∈ [m], u then sends p` a message R`. Given R`, the player p` produces
a string χ` ∈ {0, 1}n/m such that (β1 ⊕ χ1) ◦ (β2 ⊕ χ2) ◦ (βm ⊕ χm) ∈ F .

Farhadi et al. additionally present a protocol for the F-correction game in which the
supervisor player sends prefix-free messages to the m players, and moreover, they give a
bound on the amount of communication needed as a function of the number of players and
the size of F .

I Lemma 5 ([5]). If |F| ≥ 2(1−ε)n, then there exists a protocol for the F-correction game
with m+ 1 players such that the messages {R`}`∈[m] are prefix-free and

∑
`∈[m]

E[|R`|] ≤ 3m+ 2m lg
(√

ε

2 ·
n

m
+ 1
)

+
√
ε

8 · n lg 2
ε
,

4 A Lower Bound for Boolean Circuits Computing Multiplication

In this section we show that conditioned on Conjecture 1, every bounded degree circuit
computing multiplication must have size at least Ω(n lgn), thus proving Theorems 1 and 2.
In fact, we will prove something slightly stronger. Define the shift function s : {0, 1}n× [n]→
{0, 1}2n as follows. For every x = (x1, . . . , xn) ∈ {0, 1}n and ` ∈ [n], s(x, `) = (y1, . . . , y2n)
where yj = xj−`+1 if ` ≤ j ≤ `+ n− 1 and yj = 0 otherwise. We will show that every circuit
with bounded in and out degrees that computes the shift function on n-bit numbers has size
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x1 . . . xn d1 . . . dn

y1 y2 y3 . . . y2n

f1 . . . fεn

c c c c

c c c c

Figure 1 The depth 3 circuit C.

Ω(n lgn). Clearly, a circuit that can compute the product of two n-bit numbers can also
compute the shift function. Let c denote the maximum in and out degree in C, and let j ∈ [n].
Then in the undirected graph induced by C, there are at most

√
n nodes whose distance from

xj is at most 1
2 log2c n. Therefore among yj , . . . , yj+n−1, at least n−

√
n−1 ≥ n−2

√
n are at

distance at least 1
2 log2c n. In other words, Pr`∈[n][dC̄(xj , yj+`−1) ≥ 1

2 log2c n] ≥ 1− 2√
n
, where

C̄ denotes the undirected graph induced by C (by removing edge directions). Therefore there
exists a shift `0 ∈ [n] such that |{j ∈ [n] : dC̄(xj , yj+`0−1) ≥ 1

2 log2c n}| ≥ n− 2
√
n ≥ n/2.

Fixing `0, consider the following communication problem. For each j ∈ [n], let sj = xj
and tj = yj+`0−1 be a source-sink pair, and let Aj = {0, 1} be the set of possible messages.
The circuit C equipped with 1-uniform edge capacities is a network coding solution to this
problem with rate r ≥ 1. By the undirected n-pairs conjecture, there is a multicommodity
flow in C̄ that transfers one unit of flow from each source to its corresponding sink. For
every j, let f j : E → [0, 1] be the flow associated with commodity j. Then

|E| =
∑
e∈E

ce ≥
∑
e∈E

∑
j∈[n]

f j(e) ≥ Ω(n logc n) .

5 A Lower Bound for Depth 3 Boolean Circuits Computing
Multiplication

Let C be a depth 3 circuit that computes multiplication such that the number of gates
in the second layer of C is at most εn for some small ε ∈ (0, 1) and for every u ∈ Y ,
degC̄[X∪Y ](u) ≤ c, where once again C̄ denotes the undirected graph induced by C, and
C̄[X ∪ Y ] is the subgraph of C̄ induced by X ∪ Y . By slightly increasing c and ε (by a small
constant factor) and without loss of generality, we can assume that this applies for all u ∈ X
as well. To see this, note that by the assumption on Y , the total number of edges in C̄[X ∪Y ]
is at most cn. Therefore there are at most n/10 nodes in X whose degree in C̄[X ∪Y ] is more
than 10c. For each such node u ∈ X, we can replace all edges adjacent to u in C̄[X∪Y ] by an
extra second-layer node fu connected to u and its neighbors in C̄[X ∪ Y ]. Denote the input
and output gates of C by X = {x1, . . . , xn, x̂1, . . . , x̂n} and Y = {y1, . . . , y2n} respectively,
and denote the set of the middle-layer gates by F = {f1, . . . , fεn} (see Figure 1).

As before, we focus on computing the shift function, thus limiting the input to (x̂1, . . . , x̂n)
to have exactly one 1-entry. We next partition (x1, . . . , xn) into consecutive blocks of size
k = 20 bits each. For every ` ∈ [n/k] let B` = {k(` − 1) + 1, . . . , k`} be the set of indices
belonging to the `th block.

I Definition 6. For every α ∈ [n] and ` ∈ [n/k], we say B` is far from all targets (with
respect to α) if for all sources in the block are at distance at least 1

2 log2c n from all respective
destinations in C̄[X ∪ Y ]. That is for every u, v ∈ B`, dC̄[X∪Y ](xu, yv+α−1) ≥ 1

2 log2c n.
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x1 . . . xk xk+1 . . . xn
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t1 . . . tn/k

u
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cn/k
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c1

k

c c c c

c c c c

Figure 2 Given the 2-layer circuit Γ spanned by x1, . . . , xn, y1, . . . , yn, we construct the commu-
nication network graph G.

Let α ∈R [n]. By the constraint on the degrees, for every j ∈ [n], there are at most
√
n

nodes whose distance from xj is at most 1
2 log2c n in C̄[X ∪Y ]. Therefore for every ` ∈ [n/k],

Pr
α∈R[n]

[B` is far from all targets] ≥ 1− k2
√
n
.

By averaging we get that for large enough n there is some α0 ∈ [n] such that there are at
least n

k − k
√
n ≥ 9n

10k blocks which are far from all targets. Without loss of generality, we
may assume for ease of notation that α0 = 1. By hardwiring 1 for α0 into the circuit C, the
circuit now simply transfers (x1, . . . , xn) to (y1, . . . , yn).

Reduction to Network Coding. Let x = (x1, . . . , xn) and i ∈ [εn]. By slightly abusing
notation, we denote the value of the gate fi when evaluating the circuit by fi(x1, . . . , xn). By
averaging, there exist a string (f̂1, . . . , f̂εn) and a set F ⊆ {0, 1}n such that |F| ≥ 2(1−ε)n and
such that for every x = (x1, . . . , xn) ∈ F and i ∈ [εn], fi(x1, . . . , xn) = f̂i. By hardwiring
(f̂1, . . . , f̂εn) for (f1, . . . , fn) into the circuit C, we get a new circuit denoted Γ that contains
only the input and output gates of C, and transfers (x1, . . . , xn) to (y1, . . . , yn) for every
(x1, . . . , xn) ∈ F . Moreover, the set of edges between X and Y in Γ is equal to the set of
edges between X and Y in C.

Next, we construct a communication network G by adding some nodes and edges to Γ, as
demonstrated also in Figure 2. We add a new set of nodes {sj , aj , tj}n/kj=1 ∪ {u}. For every
` ∈ [n/k], add edges s`a` and s`u of capacity k and edges ua` and ut` of capacity c` = E[|R`|],

ICALP 2019
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where R` is the message sent to player p` by the supervisor player in the F -correction game
protocol for n/k + 1 players guaranteed in Lemma 5. In addition, for every ` ∈ [n/k] and
every j ∈ B` add edges a`xj and yjt` of capacity 1. All edges of Γ are assigned capacity of 1.

Transmitting Data. In what follows, we will lower bound the communication rate of the
newly constructed network G.

I Lemma 7. There exists a network coding solution on G that achieves rate k.

To this end, let A1, . . . , An/k ∈ {0, 1}k be independent uniform random variables. We
next give a protocol by which the sources s1, . . . , sn/k transmit A1, . . . , An/k to the targets
t1, . . . , tn/k. The protocol employs as an intermediate step the correction game protocol
guaranteed by Lemma 5.
1. For every ` ∈ [n/k], s` sends A` to a` over the edge s`a` and to u over the edge s`u.
2. Employing the F-correction game protocol with n/k + 1 players, for every ` ∈ [n/k], u

sends a message R` to a` over the edge ua` and to t` over the edge ut`. Following the
correction game protocol, for every `, given R`, a` and t` produce a string χ` satisfying
that (A1 ⊕ χ1) ◦ . . . ◦ (An/k ⊕ χn/k) ∈ F .

3. For every ` ∈ [n/k] and every i ∈ [k], a` transmits the ith bit ofA`⊕χ` to the ith gate in the
`th block, namely x(`−1)k+i. Note that (x1, . . . , xn) = (A1⊕χ1)◦ . . .◦ (An/k⊕χn/k) ∈ F .

4. Next, the communication network employs the circuit Γ and transmits (x1, . . . , xn) to
(y1, . . . , yn). For every ` ∈ [n/k] and every i ∈ B`, yi transmits xi to t`.

5. Finally, for every ` ∈ [n/k], t` now holds both A`⊕χ` and χ`. Therefore t` can recover A`.
By invoking the protocol described above, every one of the n/k sources sends k bits to the
corresponding target. For every edge e ∈ G, let Ae denote the random variable giving the
message sent on the edge e when executing the protocol.

B Claim 8. For every e ∈ G, H(Ae) ≤ ce.

Proof. First note that for every ` ∈ [n/k], every edge e leaving s` has capacity k and transmits
A`. Therefore H(A`) = k ≤ ce. Every edge e that is not leaving any source nor u has
capacity 1 and transmits exactly one bit (not necessarily uniformly random) of information.
Therefore ce = 1 ≥ H(Ae). Finally, let e be an edge leaving u. Then there exists some
` ∈ [n/k] such that e = ua` or e = ut`. In both cases the message transmitted on e is R`
and the capacity ce of e satisfies ce = c` = E[|R`|] ≥ H(R`), where the last inequality follows
from Shannon’s Source Coding theorem, as all messages are prefix-free. C

We can therefore conclude that the network G achieves rate ≥ k, and the proof of Lemma 7
is complete.

Deriving the Lower Bound. By Conjecture 1, the underlying undirected graph Ḡ achieves
a multicommodity-flow rate ≥ k. Therefore there exists a multicommodity flow {f `}`∈[n/k] ⊆
[0, 1]E(Ḡ) that achieves rate k. We first observe that at most a constant fraction of the flow
can go through the supervisor node u. To see this, we note that as |F| ≥ 2(1−ε)n, then
by Lemma 5, for small enough (constant) ε, the expected total information sent by the
supervisor in the F-correction game with n/k players is at most

3n
k

+ 2n
k

lg
(
k

√
ε

2 + 1
)

+
√
ε

8 · n lg 2
ε
≤ 5n

k
(1)
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Therefore by the definition of the capacities {c`}`∈[n/k] we get that∑
`∈[n/k]

cua` =
∑

`∈[n/k]

cut` =
∑

`∈[n/k]

c` ≤
5n
k

(2)

Since {f `}`∈[n/k] achieves rate k we conclude that for every v ∈ V (Ḡ) adjacent to u we have
k
∑
`∈[n/k] (f `(u, v) + f `(v, u)) ≤ cuv. Therefore

k ·
∑

v∈V (Ḡ):uv∈E(Ḡ)

∑
`∈[n/k]

(f `(u, v) + f `(v, u)) ≤
∑

v∈V (Ḡ):uv∈E(Ḡ)

cuv

=
∑

`∈[n/k]

cus` +
∑

`∈[n/k]

(cua` + cut`) ≤ n + 10n

k
.

Rearranging we get that∑
v∈V (Ḡ):uv∈E(Ḡ)

∑
`∈[n/k]

(f `(u, v) + f `(v, u)) ≤ n

k
+ 10n

k2 ≤ 1.5n
k
. (3)

By the flow-conservation constraint, we know that therefore the total amount of flow that
can go through u is ≤ 0.75nk . By averaging, at least a 1/6 fraction of the sources send at
least 1/10 units of flow through Ḡ− u. By the choice of α0, in Ḡ− u, at least a 1/15 of the
sources are at least 1

2 log2c(n) away from their targets. Without loss of generality, assume
these are the first n

15k sources. We conclude that

cn ≥ |E[X ∪ Y ]| =
∑

e∈E[X∪Y ]

ce ≥ k ·
∑

e=vw∈E[X∪Y ]

∑
`∈[n/k]

f `(v, w) + f `(w, v)

≥ k ·
∑

`∈[n/15k]

∑
e=vw∈E[X∪Y ]

f `(v, w) + f `(w, v) ≥ n

30 log2c(n) , (4)

and therefore c ≥ Ω
(

lgn
lg lgn

)
, and the proof of Theorem 3 is now complete.

5.1 Remarks and Extensions
For sake of fluency, some minor remarks and extensions were intentionally left out of the
text, and will be discussed now.

Circuits with Bounded Average Degree. Our results still hold if we relax the second
requirement of Theorem 3 and require instead that the number of edges in C̄[X ∪ Y ] is at
most cn. That is, the average degree in C̄[X ∪ Y ] is at most c. To see this, note that under
this assumption, there are at most 0.001n gates in X ∪ Y whose degree in C̄[X ∪ Y ] is larger
than 1000c. For each such gate v, add a new node f in the middle layer, and connect v and
all the neighbors of v in C̄[X ∪ Y ] to f . Then delete all the edges adjacent to v in C̄[X ∪ Y ].
The number of nodes added to the middle layer is at most 0.001n, and the degree of all nodes
in C̄[X ∪ Y ] is now bounded by 1000c. The rest of our proof continues as before.

Shifts vs. Cyclic Shifts. In order to prove lower bounds for circuits computing multiplic-
ation, our results are stated in terms of shifts (which are a special case of products, as
mentioned). This is in contrast to Valiant’s conjectures, which are stated in terms of cyclic
shifts. However, we draw the readers attention to the fact that our proofs work for cyclic
shifts as well. The exact same arguments apply, and the proofs remain unchanged.
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Abstract
A graph G is contractible to a graph H if there is a set X ⊆ E(G), such that G/X is isomorphic to H.
Here, G/X is the graph obtained from G by contracting all the edges in X. For a family of graphs F ,
the F-Contraction problem takes as input a graph G on n vertices, and the objective is to output
the largest integer t, such that G is contractible to a graph H ∈ F , where |V (H)| = t. When F is
the family of paths, then the corresponding F-Contraction problem is called Path Contraction.
The problem Path Contraction admits a simple algorithm running in time 2n · nO(1). In spite
of the deceptive simplicity of the problem, beating the 2n · nO(1) bound for Path Contraction
seems quite challenging. In this paper, we design an exact exponential time algorithm for Path
Contraction that runs in time 1.99987n · nO(1). We also define a problem called 3-Disjoint
Connected Subgraphs, and design an algorithm for it that runs in time 1.88n · nO(1). The above
algorithm is used as a sub-routine in our algorithm for Path Contraction.
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1 Introduction

Graph editing problems are one of the central problems in graph theory that have received
a lot of attention in algorithm design. Some of the natural graph editing operations are
vertex/edge deletion, edge addition, and edge contraction. For a family of graphs F , the
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11:2 Path Contraction Faster Than 2n

F-Editing problem takes as input a graph G, and the objective is to find the minimum
number of operations required to transform G into a graph from F . In fact, the F-Editing
problem, where the edit operations are restricted to one of vertex deletion, edge deletion, edge
addition, or edge contraction have also received a lot of attention in algorithm design. The
F-Editing problems encompass several classical NP-hard problems like Vertex Cover,
Feedback Vertex Set, Odd Cycle Transversal, etc.

The F-Editing problem where the only allowed edit operation is edge contraction, is
called F-Contraction. For a graph G and an edge e = uv ∈ E(G), contraction of an
edge uv in G results in a graph G/e, which is obtained by deleting u and v from G, adding
a new vertex we and making we adjacent to the neighbors of u or v (other than u, v). A
graph G is contractible to a graph H, if there exists a subset X ⊆ E(G), such that if we
contract each edge from X, then the resulting graph is isomorphic to H. For several families
of graphs F , early papers by Watanabe et al. [18, 19] and Asano and Hirata [1] showed that
F-Contraction is NP-hard. The NP-hardness of problems like Tree Contraction and
Path Contraction, which are the F-Contraction problems for the family of trees and
paths, respectively, follows easily from [1, 3]. A restricted version of Path Contraction,
is the problem Pt Contraction, where t is a fixed constant. Pt-Contraction is shown
to be NP-hard even for t = 4, while for t ≤ 3, the problem is polynomial time solvable [3].
Pt-Contraction alone had received lot of attention for smaller values of t, even when the
input graph is from a very structured family of graphs (for instance, see [3, 17, 10, 6, 8, 13],
and the references therein).

Several NP-hard problem like SAT, k-SAT, Vertex Cover, Hamiltonian Path, etc.
are known to admit an algorithm running in time O?(2n)1. These results are obtained by
techniques like brute force search, dynamic programming over subsets, etc. One of the main
questions that arise in this context is: can we break the O?(2n) barrier for these problems.
In fact, the hardness of SAT gives rise to the Strong Exponential Time Hypothesis (SETH)
of Impagliazzo and Paturi [12, 11], which rules out existence of O?((2− ε)n)-time algorithm
for SAT, for any ε > 0. SETH has been used to obtain such algorithmic lower bounds for
many other NP-hard problems (see for example, [4, 14]). Not all NP-hard problems seem
to be as “hard” as SAT. For many NP-hard problems, it is possible to break the O?(2n)
barrier. For instance problems like Vertex Cover and (undirected) Hamiltonian Path
are known to admit algorithms running in time O?((2− ε)n), for some ε > 0 [2, 15]. Thus,
one of the natural question is for which NP-hard problems can we avoid the “brute force
search”, and say obtain algorithms that are better than O?(2n).

In this article, we focus on the problem Path Contraction, which is formally defined
below.

Path Contraction
Input: Graph G.
Output: Largest integer t, such that G is contractible to Pt.

Path Contraction is known to admit a simple algorithm that runs in time O?(2n). Such
an algorithm can be obtained by coloring the input graph with two colors and contracting
connected components in the colored subgraphs. For a deceptively simple problem like
Path Contraction, it seems quite challenging to break the O?(2n) barrier. The problem
2-Disjoint Connected Subgraphs (2-DCS), can be “roughly” interpreted as solving
P4-Contraction. (We can use the algorithm for 2-DCS to solve P4-Contraction.) There

1 The O? notation hides polynomial factors in the running time expression.
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have been studies, which break theO?(2n) brute force barrier, for 2-DCS. In particular, Cygan
et al. [5] designed a O?(1.933n) algorithm for 2-DCS. This result was improved by Telle and
Villanger, who designed an algorithm running in time O?(1.7804n), for the problem [16]. The
main goal of this article is to break the O?(2n) barrier for Path Contraction. Obtaining
such an algorithm for Path Contraction was stated as an open problem in [17].

Our Results. We design an algorithm for Path Contraction running in time
O?(1.99987n), where n is the number of vertices in the input graph. To the best of our
knowledge, this is the first non-trivial algorithm for the problem, which breaks the O?(2n)
barrier. To obtain our main algorithm for Path Contraction, we design four different
algorithms for the problem, which are used as subroutines to the main algorithm. We exploit
the property that certain types of algorithms are better for certain instance, but may be
inefficient for certain other instances. Roughly speaking, we look for solutions using different
algorithms, and then the best suited algorithm for the instance is used to return the solution.
When one of the four algorithms is called as a subroutine, it does not necessarily return
an optimum solution for the instance, rather it only looks for solutions that satisfy certain
conditions. These conditions are quantified by fractions associated with the input graph. We
note that for appropriate values of these “fractions”, each of our subroutine still serve as
an algorithm for Path Contraction (and thus, can compute the optimal solution). We
argue that there is always a solution which satisfies the conditions for one of the subroutines,
by setting the values of the fractions appropriately. A saving over O?(2n), in the running
time achieved by our algorithm, also exploits the property that “small” connected sets with
bounded neighborhood can be enumerated “efficiently”.

In the following we very briefly explain the type of solutions we look for, in our subroutines.
Consider a path Pt, such that G can be contracted to Pt, where t is the largest such integer.
The solution t, can be “witnessed” by a partitionW = {W1,W2, · · · ,Wt} of V (G), where the
vertices from Wi “merge” to the ith vertex of Pt (a formal definition for it can be found in
Section 2). Such a “witness” is called a Pt-witness structure. The first (subroutine) algorithm
for Path Contraction searches for a solution where the Pt-witness structure can be “split”
into two connected disjoint parts which are “small”. Then, it exploits the “smallness” of
the parts to compute solutions efficiently, and combines them to compute the solution for
whole graph. The second subroutine searches for a pair of sets in the Pt-witness structure
which are very dense. Then it exploit the sparseness of the remaining graph to efficiently
compute partial solutions for them. Moreover, the pair of dense parts are resolved using the
algorithm of Telle and Villanger for 2-Disjoint Connected Subgraph [16]. The third
routine works with a hope that the total number of vertices in one of odd/even sets from
W can be bounded. Finally, the fourth subroutine work by exploiting a similar odd/even
property as the third subroutine, but it relaxes the condition to “nearly” small odd/even set.

To design our algorithm, we also define a problem called 3-Disjoint Connected
Subgraphs (3-DCS), which is a generalization of the 2-Disjoint Connected Subgraphs
(2-DCS) problem. 3-DCS takes as input a graph G and disjoint sets Z1, Z2 ⊆ V (G), and
the goal is to partition V (G) into three sets (V1, U, V2), such that graphs induced on each of
the parts is connected and Zi ⊆ Vi, for i ∈ [2]. We design an algorithm for 3-DCS running
in time O?(1.88n). The fourth subroutine of our algorithm uses the algorithm for 3-DCS as
a subroutine. As a corollary to our O?(1.88n)-time algorithm for 3-DCS, we obtain that
P5-Contraction admits an algorithm running in time O?(1.88n).

Due to space limitation, most proofs appear in full version of the paper.
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2 Preliminaries

In this section, we state some basic definitions and introduce terminologies from graph theory.
We use standard terminology from the book of Diestel [7] for the graph related terminologies
which are not explicitly defined here. We also establish some notations that will be used
throughout. We note that all graphs considered in this article are connected graphs on at
least two vertices (unless stated otherwise).

We denote the set of natural numbers by N (including 0). For k ∈ N, [k] denotes the
set {1, 2, . . . , k}. A graph G is isomorphic to a graph H if there exists a bijective function
φ : V (G)→ V (H), such that for v, u ∈ V (G), uv ∈ E(G) if and only if (φ(v), φ(u)) ∈ E(H).
A graph G is contractible to a graph H if there exists F ⊆ E(G), such that G/F is isomorphic
toH. In other words, G is contractible toH if there is a surjective function ϕ : V (G)→ V (H),
with W (h) = {v ∈ V (G) | ϕ(v) = h}, for h ∈ V (H), with the following properties:

for any h ∈ V (H), the graph G[W (h)] is connected, and
for any two vertices h, h′ ∈ V (H), hh′ ∈ E(H) if and only ifW (h) andW (h′) are adjacent
in G.

Let W = {W (h) | h ∈ V (H)}. The sets in W are called witness sets, and W is an H-witness
structure of G.

In this paper, we will restrict ourselves to contraction to paths. This allows us to use an
ordered notation for witness sets, rather than just the set notation. This ordering of the sets in
witness set is given by the ordering of vertices in the path. That is, for a Pt = (h1, h2, · · · , ht)-
witness structure,W = {W (h1),W (h2), · · · ,W (ht)} of a graph G, we use the ordered witness
structure notation, (W (h1),W (h2), · · · ,W (ht)), or simply, (W1,W2, · · · ,Wt). We note that
we use both unordered and ordered notation, as per the convenience.

In the following, we give some useful observations regarding contraction to paths.

I Observation 2.1. Let G be a graph contractible to Pt. Then, there is a Pt-witness structure,
W = (W1, . . . ,Wt), of G such that W1 is a singleton set. Moreover, if t ≥ 3, then there is a
Pt-witness structure, W = (W1, . . . ,Wt), of G such that both W1 and Wt are singleton set.

I Observation 2.2. For a set U with n elements and a constant δ < 1/2, the number
of subsets of U of size at most δn is bounded by O?([g(δ)]n), where g(δ) = 1

δδ·(1−δ)(1−δ) .
Moreover, all such subsets can be enumerated in the same time.

For a graph G, a non-empty set Q ⊆ V (G), and integers a, b ∈ N, a connected set A in G
is a (Q, a, b)-connected set if Q ⊆ A, |A| = a, and |N(A)| ≤ b. Moreover, a connected set A
in G is an (a, b)-connected set if |A| ≤ a and |N(A)| ≤ b. Next, we state results regarding
(Q, a, b)-connected sets and connected sets, which follow from Lemma 3.1 of [9]. (We note
that their result give slightly better bounds, but for simplicity, we only use the bounds stated
in the following lemmas.)

I Lemma 1. For a graph G, a non-empty set Q ⊆ V (G), and integers a, b ∈ N, the
number of (Q, a, b)-connected sets in G is at most 2a+b−|Q|. Moreover, we can enumerate all
(Q, a, b)-connected sets in G in time 2a+b−|Q| · nO(1).

I Lemma 2. For a graph G and integers a, b ∈ N the number of (a, b)-connected sets in G

is at most 2a+b · nO(1). Moreover, we can enumerate all such sets in 2a+b · nO(1) time.

3 3-Disjoint Connected Subgraph

In this section, we define a generalization of 2-Disjoint Connected Subgraphs (2-DCS),
called 3-Disjoint Connected Subgraphs (3-DCS). We design an algorithm for 3-DCS
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running in time O?(1.88n), where n is number of vertices in input graph. This algorithm
will be useful in designing our algorithm for Path Contraction.

In the following, we formally define the problem 2-DCS which is studied in [5, 16].

2-Disjoint Connected Subgraphs (2-DCS)
Input: A connected graph G and two disjoint sets Z1 and Z2.
Question: Does there exist a partition (V1, V2) of V (G), such that for each i ∈ [2],
Zi ⊆ Vi and G[Vi] is connected?

In the following we state a result regarding 2-DCS which will be useful later sections.

I Proposition 3 ([16] Theorem 3). There exists an algorithm that solves 2-Disjoint Connec-
ted Subgraphs problem in O?(1.7804n) time where n is number of vertices in input graph.

In the 3-DCS problem, the input is same as that of 2-DCS, but we are interested in a
partition of V (G) into three sets, rather than two. We formally define the problem below.

3-Disjoint Connected Subgraphs (3-DCS)
Input: A connected graph G and two disjoint sets Z1 and Z2.
Question: Does there exist a partition (V1, U, V2) of V (G), such that 1) for each i ∈ [2],
Zi ⊆ Vi and G[Vi] is connected, 2) G[U ] is connected, and 3) G − U has exactly two
connected components, namely, G[V1] and G[V2]?

We note that the problem definitions for 2-DCS and 3-DCS do not require the sets
Z1, Z2 to be non-empty. If either of this set is empty, we can guess a vertex for each of the
non-empty sets. Since there are at most n2 such guesses, it will not affect the running time
of our algorithm. Thus, here after we assume that both Z1 and Z2 are non-empty sets.

In the following theorem, we state our result regarding 3-DCS.

I Theorem 4. 3-DCS admits an algorithm running in time O?(1.88n), where n is number
of vertices in the input graph.

4 Exact Algorithm for Path Contraction

In this section we design our algorithm for Path Contraction running in timeO?(1.99987n),
where n is the number of vertices in the input graph. To design our algorithm, we design
four different subroutines each solving the problem Path Contraction. Each of these
subroutines are better than the other when a specific “type” of solution exists for the input
instance. Thus the main algorithm will use these subroutines to search for solutions of the
type they are the best for. We also design a sub-routine for enumerating special types of
partial solution, which will be used in some of our algorithms for Path Contraction.

In the following we briefly explain the four subroutines and describe when they are useful.
Let G be an instance for Path Contraction, where G is a graph on n vertices. Let t be
the largest integer (which we do not know a priori), such that G is contractible to Pt with
(W1,W2, · · · ,Wt) as a Pt-witness structure of G. We let OS and ES be the union of vertices
in odd and even witness sets, respectively. That is, OS = ∪dt/2e

x=1 W2x−1 and ES =
⋃bt/2c
x=1 W2x.

We now give an intuitive idea of the purposes of each of our subroutines in the main
algorithm, while deferring their implementations to the subsequent sections. We also describe
a subroutine which will help us build “partial solutions”, and this subroutine will be used in
two of our subroutines for Path Contraction. (We refer the reader to Figure 1 for an
illustration of it.)
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11:6 Path Contraction Faster Than 2n
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<latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit>

Wt�2
<latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit>

(small OS)
<latexit sha1_base64="dQ7QDSctUQJ60MGUKDO25WNcRrg="></latexit><latexit sha1_base64="dQ7QDSctUQJ60MGUKDO25WNcRrg="></latexit><latexit sha1_base64="dQ7QDSctUQJ60MGUKDO25WNcRrg="></latexit><latexit sha1_base64="dQ7QDSctUQJ60MGUKDO25WNcRrg="></latexit>

(small ES)
<latexit sha1_base64="RASx+CQcJDy/R4qM4jVcrMiwvWY="></latexit><latexit sha1_base64="RASx+CQcJDy/R4qM4jVcrMiwvWY="></latexit><latexit sha1_base64="RASx+CQcJDy/R4qM4jVcrMiwvWY="></latexit><latexit sha1_base64="RASx+CQcJDy/R4qM4jVcrMiwvWY="></latexit>

W1
<latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit>

W2
<latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit>

W3
<latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit><latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit><latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit><latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit>

Wt
<latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit><latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit><latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit><latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit>

Wt�1
<latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit>

Wt�2
<latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit>

Small Odd/Even PC
<latexit sha1_base64="gQzthvjHefbNNB8hv7U+U4l+AlY=">AAACM3icZVBNixpBEO3efKwxX5q9JZcmEvAgZiYs7B4FWcgthkR3QQfp6Sm12f4YumskMgj5NXvdveTHhL2FXPMf0mM8RH3Q1OuqVzzqpbmSHqPoJz168PDR4+Pak/rTZ89fvGw0X428LZyAobDKuquUe1DSwBAlKrjKHXCdKrhMr/vV/HIJzktrvuIqh0TzuZEzKTiG1rTxeoLwDb0ov2iuFPuUZe8vlmDYoL+eNlpRN9qAHZJ4S1pki8G0Sekks6LQYFAo7v04jnJMSu5QCgXr+qTwkHNxzecwLnB2npTS5AWCEXszD4Zr8Em5OXDN3oVOxmbWhWeQbbr/b5Rc+2riO4HgQldFc1xU1a902qk+aK3yO0Zlmupd50rnhUtKKEKROa7rlfesUAwtqwJkmXQgUK0C4UESTmNiwR0XGGKuh9Di/YgOyehDN4668efTVq+9ja9G3pC3pE1ickZ65CMZkCER5Du5Ibfkjv6g9/QX/f1PekS3OydkB/TPX8Fsqqw=</latexit><latexit sha1_base64="gQzthvjHefbNNB8hv7U+U4l+AlY="></latexit><latexit sha1_base64="gQzthvjHefbNNB8hv7U+U4l+AlY="></latexit><latexit sha1_base64="gQzthvjHefbNNB8hv7U+U4l+AlY="></latexit>

 �n/2
<latexit sha1_base64="1ocMUNnsmDMZiF7Via1mu0WGpr8=">AAACJXicZVBNSwMxEE38tn7r0UuwCB6k7hZBj4IXjxVsFdpVsunUBvOxJrNCWfo/vOrFX+NNBE/+FbO1B2sfhHmZecNjXpop6TGKvujM7Nz8wuLScmVldW19Y3Nru+Vt7gQ0hVXW3aTcg5IGmihRwU3mgOtUwXX6cF7Or5/AeWnNFQ4ySDS/N7InBcfQuu0oeGSdFJAzc1S/26xGtWgENk3iMamSMRp3W5R2ulbkGgwKxb1vx1GGScEdSqFgWOnkHjIuHvg9tHPsnSaFNFmOYMS/mQfDNfikGJ00ZPuh02U968IzyEbdvxsF176c+MNAsK/Lojn2y+oHOj0sP2it8hNGRZrqSedS54VLCshDkRkOK6V3L1cMLSsjY13pQKAaBMKDJJzGRJ87LjAEWwmhxf8jmiatei2OavHlcfXsYBzfEtkle+SAxOSEnJEL0iBNIogjz+SFvNI3+k4/6OevdIaOd3bIBOj3D8btpRk=</latexit><latexit sha1_base64="1ocMUNnsmDMZiF7Via1mu0WGpr8=">AAACJXicZVBNSwMxEE38tn7r0UuwCB6k7hZBj4IXjxVsFdpVsunUBvOxJrNCWfo/vOrFX+NNBE/+FbO1B2sfhHmZecNjXpop6TGKvujM7Nz8wuLScmVldW19Y3Nru+Vt7gQ0hVXW3aTcg5IGmihRwU3mgOtUwXX6cF7Or5/AeWnNFQ4ySDS/N7InBcfQuu0oeGSdFJAzc1S/26xGtWgENk3iMamSMRp3W5R2ulbkGgwKxb1vx1GGScEdSqFgWOnkHjIuHvg9tHPsnSaFNFmOYMS/mQfDNfikGJ00ZPuh02U968IzyEbdvxsF176c+MNAsK/Lojn2y+oHOj0sP2it8hNGRZrqSedS54VLCshDkRkOK6V3L1cMLSsjY13pQKAaBMKDJJzGRJ87LjAEWwmhxf8jmiatei2OavHlcfXsYBzfEtkle+SAxOSEnJEL0iBNIogjz+SFvNI3+k4/6OevdIaOd3bIBOj3D8btpRk=</latexit><latexit sha1_base64="1ocMUNnsmDMZiF7Via1mu0WGpr8=">AAACJXicZVBNSwMxEE38tn7r0UuwCB6k7hZBj4IXjxVsFdpVsunUBvOxJrNCWfo/vOrFX+NNBE/+FbO1B2sfhHmZecNjXpop6TGKvujM7Nz8wuLScmVldW19Y3Nru+Vt7gQ0hVXW3aTcg5IGmihRwU3mgOtUwXX6cF7Or5/AeWnNFQ4ySDS/N7InBcfQuu0oeGSdFJAzc1S/26xGtWgENk3iMamSMRp3W5R2ulbkGgwKxb1vx1GGScEdSqFgWOnkHjIuHvg9tHPsnSaFNFmOYMS/mQfDNfikGJ00ZPuh02U968IzyEbdvxsF176c+MNAsK/Lojn2y+oHOj0sP2it8hNGRZrqSedS54VLCshDkRkOK6V3L1cMLSsjY13pQKAaBMKDJJzGRJ87LjAEWwmhxf8jmiatei2OavHlcfXsYBzfEtkle+SAxOSEnJEL0iBNIogjz+SFvNI3+k4/6OevdIaOd3bIBOj3D8btpRk=</latexit><latexit sha1_base64="1ocMUNnsmDMZiF7Via1mu0WGpr8=">AAACJXicZVBNSwMxEE38tn7r0UuwCB6k7hZBj4IXjxVsFdpVsunUBvOxJrNCWfo/vOrFX+NNBE/+FbO1B2sfhHmZecNjXpop6TGKvujM7Nz8wuLScmVldW19Y3Nru+Vt7gQ0hVXW3aTcg5IGmihRwU3mgOtUwXX6cF7Or5/AeWnNFQ4ySDS/N7InBcfQuu0oeGSdFJAzc1S/26xGtWgENk3iMamSMRp3W5R2ulbkGgwKxb1vx1GGScEdSqFgWOnkHjIuHvg9tHPsnSaFNFmOYMS/mQfDNfikGJ00ZPuh02U968IzyEbdvxsF176c+MNAsK/Lojn2y+oHOj0sP2it8hNGRZrqSedS54VLCshDkRkOK6V3L1cMLSsjY13pQKAaBMKDJJzGRJ87LjAEWwmhxf8jmiatei2OavHlcfXsYBzfEtkle+SAxOSEnJEL0iBNIogjz+SFvNI3+k4/6OevdIaOd3bIBOj3D8btpRk=</latexit>

 �n/2
<latexit sha1_base64="1ocMUNnsmDMZiF7Via1mu0WGpr8=">AAACJXicZVBNSwMxEE38tn7r0UuwCB6k7hZBj4IXjxVsFdpVsunUBvOxJrNCWfo/vOrFX+NNBE/+FbO1B2sfhHmZecNjXpop6TGKvujM7Nz8wuLScmVldW19Y3Nru+Vt7gQ0hVXW3aTcg5IGmihRwU3mgOtUwXX6cF7Or5/AeWnNFQ4ySDS/N7InBcfQuu0oeGSdFJAzc1S/26xGtWgENk3iMamSMRp3W5R2ulbkGgwKxb1vx1GGScEdSqFgWOnkHjIuHvg9tHPsnSaFNFmOYMS/mQfDNfikGJ00ZPuh02U968IzyEbdvxsF176c+MNAsK/Lojn2y+oHOj0sP2it8hNGRZrqSedS54VLCshDkRkOK6V3L1cMLSsjY13pQKAaBMKDJJzGRJ87LjAEWwmhxf8jmiatei2OavHlcfXsYBzfEtkle+SAxOSEnJEL0iBNIogjz+SFvNI3+k4/6OevdIaOd3bIBOj3D8btpRk=</latexit><latexit sha1_base64="1ocMUNnsmDMZiF7Via1mu0WGpr8=">AAACJXicZVBNSwMxEE38tn7r0UuwCB6k7hZBj4IXjxVsFdpVsunUBvOxJrNCWfo/vOrFX+NNBE/+FbO1B2sfhHmZecNjXpop6TGKvujM7Nz8wuLScmVldW19Y3Nru+Vt7gQ0hVXW3aTcg5IGmihRwU3mgOtUwXX6cF7Or5/AeWnNFQ4ySDS/N7InBcfQuu0oeGSdFJAzc1S/26xGtWgENk3iMamSMRp3W5R2ulbkGgwKxb1vx1GGScEdSqFgWOnkHjIuHvg9tHPsnSaFNFmOYMS/mQfDNfikGJ00ZPuh02U968IzyEbdvxsF176c+MNAsK/Lojn2y+oHOj0sP2it8hNGRZrqSedS54VLCshDkRkOK6V3L1cMLSsjY13pQKAaBMKDJJzGRJ87LjAEWwmhxf8jmiatei2OavHlcfXsYBzfEtkle+SAxOSEnJEL0iBNIogjz+SFvNI3+k4/6OevdIaOd3bIBOj3D8btpRk=</latexit><latexit sha1_base64="1ocMUNnsmDMZiF7Via1mu0WGpr8=">AAACJXicZVBNSwMxEE38tn7r0UuwCB6k7hZBj4IXjxVsFdpVsunUBvOxJrNCWfo/vOrFX+NNBE/+FbO1B2sfhHmZecNjXpop6TGKvujM7Nz8wuLScmVldW19Y3Nru+Vt7gQ0hVXW3aTcg5IGmihRwU3mgOtUwXX6cF7Or5/AeWnNFQ4ySDS/N7InBcfQuu0oeGSdFJAzc1S/26xGtWgENk3iMamSMRp3W5R2ulbkGgwKxb1vx1GGScEdSqFgWOnkHjIuHvg9tHPsnSaFNFmOYMS/mQfDNfikGJ00ZPuh02U968IzyEbdvxsF176c+MNAsK/Lojn2y+oHOj0sP2it8hNGRZrqSedS54VLCshDkRkOK6V3L1cMLSsjY13pQKAaBMKDJJzGRJ87LjAEWwmhxf8jmiatei2OavHlcfXsYBzfEtkle+SAxOSEnJEL0iBNIogjz+SFvNI3+k4/6OevdIaOd3bIBOj3D8btpRk=</latexit><latexit sha1_base64="1ocMUNnsmDMZiF7Via1mu0WGpr8=">AAACJXicZVBNSwMxEE38tn7r0UuwCB6k7hZBj4IXjxVsFdpVsunUBvOxJrNCWfo/vOrFX+NNBE/+FbO1B2sfhHmZecNjXpop6TGKvujM7Nz8wuLScmVldW19Y3Nru+Vt7gQ0hVXW3aTcg5IGmihRwU3mgOtUwXX6cF7Or5/AeWnNFQ4ySDS/N7InBcfQuu0oeGSdFJAzc1S/26xGtWgENk3iMamSMRp3W5R2ulbkGgwKxb1vx1GGScEdSqFgWOnkHjIuHvg9tHPsnSaFNFmOYMS/mQfDNfikGJ00ZPuh02U968IzyEbdvxsF176c+MNAsK/Lojn2y+oHOj0sP2it8hNGRZrqSedS54VLCshDkRkOK6V3L1cMLSsjY13pQKAaBMKDJJzGRJ87LjAEWwmhxf8jmiatei2OavHlcfXsYBzfEtkle+SAxOSEnJEL0iBNIogjz+SFvNI3+k4/6OevdIaOd3bIBOj3D8btpRk=</latexit>

W1
<latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit>

W2
<latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit>

W3
<latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit><latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit><latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit><latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit>

Wt
<latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit><latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit><latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit><latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit>

Wt�2
<latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit>

W1
<latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit>

W2
<latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit>

W3
<latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit><latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit><latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit><latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit>

Wt
<latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit><latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit><latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit><latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit>

Wt�1
<latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit>

Wt�2
<latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit>

Wi
<latexit sha1_base64="GK2kFQgZ8wJfDQpCXNCZeCPqMj4=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AzEoFz16/4C3joJlqRKlmgOKpT2h5qnCmLkklnbC/wEw4wZFFzCvNRPLSSMT9kYeimObsJMxEmKEPN/MwsxU2DDbHHH3Dt3naE30sa9GL1F9+9GxpTNJ/bCEZyovCiGk7zamYou8g9qLe2KURZFatU511luwgxSV0SC81LuPUqlh9rLc/KGwgBHOXOEOYk7zeMTZhhHl2bJhRb8j2idtC/rgV8P7q+qjdoyviI5JWekRgJyTRrkjjRJi3AyJs/khbzSN/pOP+jnr7RAlzsnZAX06wcOJ6El</latexit><latexit sha1_base64="GK2kFQgZ8wJfDQpCXNCZeCPqMj4=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AzEoFz16/4C3joJlqRKlmgOKpT2h5qnCmLkklnbC/wEw4wZFFzCvNRPLSSMT9kYeimObsJMxEmKEPN/MwsxU2DDbHHH3Dt3naE30sa9GL1F9+9GxpTNJ/bCEZyovCiGk7zamYou8g9qLe2KURZFatU511luwgxSV0SC81LuPUqlh9rLc/KGwgBHOXOEOYk7zeMTZhhHl2bJhRb8j2idtC/rgV8P7q+qjdoyviI5JWekRgJyTRrkjjRJi3AyJs/khbzSN/pOP+jnr7RAlzsnZAX06wcOJ6El</latexit><latexit sha1_base64="GK2kFQgZ8wJfDQpCXNCZeCPqMj4=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AzEoFz16/4C3joJlqRKlmgOKpT2h5qnCmLkklnbC/wEw4wZFFzCvNRPLSSMT9kYeimObsJMxEmKEPN/MwsxU2DDbHHH3Dt3naE30sa9GL1F9+9GxpTNJ/bCEZyovCiGk7zamYou8g9qLe2KURZFatU511luwgxSV0SC81LuPUqlh9rLc/KGwgBHOXOEOYk7zeMTZhhHl2bJhRb8j2idtC/rgV8P7q+qjdoyviI5JWekRgJyTRrkjjRJi3AyJs/khbzSN/pOP+jnr7RAlzsnZAX06wcOJ6El</latexit><latexit sha1_base64="GK2kFQgZ8wJfDQpCXNCZeCPqMj4=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AzEoFz16/4C3joJlqRKlmgOKpT2h5qnCmLkklnbC/wEw4wZFFzCvNRPLSSMT9kYeimObsJMxEmKEPN/MwsxU2DDbHHH3Dt3naE30sa9GL1F9+9GxpTNJ/bCEZyovCiGk7zamYou8g9qLe2KURZFatU511luwgxSV0SC81LuPUqlh9rLc/KGwgBHOXOEOYk7zeMTZhhHl2bJhRb8j2idtC/rgV8P7q+qjdoyviI5JWekRgJyTRrkjjRJi3AyJs/khbzSN/pOP+jnr7RAlzsnZAX06wcOJ6El</latexit>

Wt�1
<latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit>

(i even)
<latexit sha1_base64="zItGWJ6SmekUwUdyrzffUuVI4H0=">AAACKnicZVBNSwMxEE38tn61evQSrEIFKbsi6FHw4lHBqmCXkk2nNpiPJZmtlqU/xate/DXexKs/xGztweqDMC8zb3jMSzMlPUbRB52ZnZtfWFxarqysrq1vVGub197mTkBLWGXdbco9KGmghRIV3GYOuE4V3KQPZ+X8ZgDOS2uucJhBovm9kT0pOIZWp1pr69Q+FY1ductgAGZ/1KnWo2Y0BvtP4gmpkwkuOjVK210rcg0GheLe38VRhknBHUqhYFRp5x4yLh74Pdzl2DtJCmmyHMGIPzMPhmvwSTG+a8T2QqfLetaFZ5CNu783Cq59OfEHgWBfl0Vz7JfVD3V6UH7QWuWnjIo01dPOpc4LlxSQhyIzHFVK716uGFpW5sa60oFANQyEB0k4jYk+d1xgSLcSQov/RvSfXB8246gZXx7VTxuT+JbINtkhDRKTY3JKzskFaRFBHskzeSGv9I2+0w/6+SOdoZOdLTIF+vUN0d2mnQ==</latexit><latexit sha1_base64="zItGWJ6SmekUwUdyrzffUuVI4H0=">AAACKnicZVBNSwMxEE38tn61evQSrEIFKbsi6FHw4lHBqmCXkk2nNpiPJZmtlqU/xate/DXexKs/xGztweqDMC8zb3jMSzMlPUbRB52ZnZtfWFxarqysrq1vVGub197mTkBLWGXdbco9KGmghRIV3GYOuE4V3KQPZ+X8ZgDOS2uucJhBovm9kT0pOIZWp1pr69Q+FY1ductgAGZ/1KnWo2Y0BvtP4gmpkwkuOjVK210rcg0GheLe38VRhknBHUqhYFRp5x4yLh74Pdzl2DtJCmmyHMGIPzMPhmvwSTG+a8T2QqfLetaFZ5CNu783Cq59OfEHgWBfl0Vz7JfVD3V6UH7QWuWnjIo01dPOpc4LlxSQhyIzHFVK716uGFpW5sa60oFANQyEB0k4jYk+d1xgSLcSQov/RvSfXB8246gZXx7VTxuT+JbINtkhDRKTY3JKzskFaRFBHskzeSGv9I2+0w/6+SOdoZOdLTIF+vUN0d2mnQ==</latexit><latexit sha1_base64="zItGWJ6SmekUwUdyrzffUuVI4H0=">AAACKnicZVBNSwMxEE38tn61evQSrEIFKbsi6FHw4lHBqmCXkk2nNpiPJZmtlqU/xate/DXexKs/xGztweqDMC8zb3jMSzMlPUbRB52ZnZtfWFxarqysrq1vVGub197mTkBLWGXdbco9KGmghRIV3GYOuE4V3KQPZ+X8ZgDOS2uucJhBovm9kT0pOIZWp1pr69Q+FY1ductgAGZ/1KnWo2Y0BvtP4gmpkwkuOjVK210rcg0GheLe38VRhknBHUqhYFRp5x4yLh74Pdzl2DtJCmmyHMGIPzMPhmvwSTG+a8T2QqfLetaFZ5CNu783Cq59OfEHgWBfl0Vz7JfVD3V6UH7QWuWnjIo01dPOpc4LlxSQhyIzHFVK716uGFpW5sa60oFANQyEB0k4jYk+d1xgSLcSQov/RvSfXB8246gZXx7VTxuT+JbINtkhDRKTY3JKzskFaRFBHskzeSGv9I2+0w/6+SOdoZOdLTIF+vUN0d2mnQ==</latexit><latexit sha1_base64="zItGWJ6SmekUwUdyrzffUuVI4H0=">AAACKnicZVBNSwMxEE38tn61evQSrEIFKbsi6FHw4lHBqmCXkk2nNpiPJZmtlqU/xate/DXexKs/xGztweqDMC8zb3jMSzMlPUbRB52ZnZtfWFxarqysrq1vVGub197mTkBLWGXdbco9KGmghRIV3GYOuE4V3KQPZ+X8ZgDOS2uucJhBovm9kT0pOIZWp1pr69Q+FY1ductgAGZ/1KnWo2Y0BvtP4gmpkwkuOjVK210rcg0GheLe38VRhknBHUqhYFRp5x4yLh74Pdzl2DtJCmmyHMGIPzMPhmvwSTG+a8T2QqfLetaFZ5CNu783Cq59OfEHgWBfl0Vz7JfVD3V6UH7QWuWnjIo01dPOpc4LlxSQhyIzHFVK716uGFpW5sa60oFANQyEB0k4jYk+d1xgSLcSQov/RvSfXB8246gZXx7VTxuT+JbINtkhDRKTY3JKzskFaRFBHskzeSGv9I2+0w/6+SOdoZOdLTIF+vUN0d2mnQ==</latexit>

(i odd)
<latexit sha1_base64="qzzv7XXqBfcfzOvxxyGXsNSCOF4=">AAACKXicZVBNSwMxEE3qd/2qevQSrEIFKbsi6FHw4lHB2oJdSjY7taHJZklmxbL0n3jVi7/Gm3r1j5itPVh9EOZl5g2PeXGmpMMg+KCVufmFxaXllerq2vrGZm1r+9aZ3ApoCaOM7cTcgZIptFCigk5mgetYQTseXpTz9gNYJ016g6MMIs3vU9mXgqNv9Wq1ro7NY9HYl/vMJMnhuFerB81gAvafhFNSJ1Nc9bYo7SZG5BpSFIo7dxcGGUYFtyiFgnG1mzvIuBjye7jLsX8WFTLNcoRU/Jk5SLkGFxWTs8bswHcS1jfWvxTZpPt7o+DalRN35AkOdFk0x0FZ3UjHR+UHjVFuxqiIYz3rXOqcsFEBuS8yw3G19O7niqFhZWwskRYEqpEn3Ev8aUwMuOUCfbhVH1r4N6L/5Pa4GQbN8Pqkft6YxrdMdskeaZCQnJJzckmuSIsI8kCeyDN5oa/0jb7Tzx9phU53dsgM6Nc33B+mHA==</latexit><latexit sha1_base64="qzzv7XXqBfcfzOvxxyGXsNSCOF4=">AAACKXicZVBNSwMxEE3qd/2qevQSrEIFKbsi6FHw4lHB2oJdSjY7taHJZklmxbL0n3jVi7/Gm3r1j5itPVh9EOZl5g2PeXGmpMMg+KCVufmFxaXllerq2vrGZm1r+9aZ3ApoCaOM7cTcgZIptFCigk5mgetYQTseXpTz9gNYJ016g6MMIs3vU9mXgqNv9Wq1ro7NY9HYl/vMJMnhuFerB81gAvafhFNSJ1Nc9bYo7SZG5BpSFIo7dxcGGUYFtyiFgnG1mzvIuBjye7jLsX8WFTLNcoRU/Jk5SLkGFxWTs8bswHcS1jfWvxTZpPt7o+DalRN35AkOdFk0x0FZ3UjHR+UHjVFuxqiIYz3rXOqcsFEBuS8yw3G19O7niqFhZWwskRYEqpEn3Ev8aUwMuOUCfbhVH1r4N6L/5Pa4GQbN8Pqkft6YxrdMdskeaZCQnJJzckmuSIsI8kCeyDN5oa/0jb7Tzx9phU53dsgM6Nc33B+mHA==</latexit><latexit sha1_base64="qzzv7XXqBfcfzOvxxyGXsNSCOF4=">AAACKXicZVBNSwMxEE3qd/2qevQSrEIFKbsi6FHw4lHB2oJdSjY7taHJZklmxbL0n3jVi7/Gm3r1j5itPVh9EOZl5g2PeXGmpMMg+KCVufmFxaXllerq2vrGZm1r+9aZ3ApoCaOM7cTcgZIptFCigk5mgetYQTseXpTz9gNYJ016g6MMIs3vU9mXgqNv9Wq1ro7NY9HYl/vMJMnhuFerB81gAvafhFNSJ1Nc9bYo7SZG5BpSFIo7dxcGGUYFtyiFgnG1mzvIuBjye7jLsX8WFTLNcoRU/Jk5SLkGFxWTs8bswHcS1jfWvxTZpPt7o+DalRN35AkOdFk0x0FZ3UjHR+UHjVFuxqiIYz3rXOqcsFEBuS8yw3G19O7niqFhZWwskRYEqpEn3Ev8aUwMuOUCfbhVH1r4N6L/5Pa4GQbN8Pqkft6YxrdMdskeaZCQnJJzckmuSIsI8kCeyDN5oa/0jb7Tzx9phU53dsgM6Nc33B+mHA==</latexit><latexit sha1_base64="qzzv7XXqBfcfzOvxxyGXsNSCOF4=">AAACKXicZVBNSwMxEE3qd/2qevQSrEIFKbsi6FHw4lHB2oJdSjY7taHJZklmxbL0n3jVi7/Gm3r1j5itPVh9EOZl5g2PeXGmpMMg+KCVufmFxaXllerq2vrGZm1r+9aZ3ApoCaOM7cTcgZIptFCigk5mgetYQTseXpTz9gNYJ016g6MMIs3vU9mXgqNv9Wq1ro7NY9HYl/vMJMnhuFerB81gAvafhFNSJ1Nc9bYo7SZG5BpSFIo7dxcGGUYFtyiFgnG1mzvIuBjye7jLsX8WFTLNcoRU/Jk5SLkGFxWTs8bswHcS1jfWvxTZpPt7o+DalRN35AkOdFk0x0FZ3UjHR+UHjVFuxqiIYz3rXOqcsFEBuS8yw3G19O7niqFhZWwskRYEqpEn3Ev8aUwMuOUCfbhVH1r4N6L/5Pa4GQbN8Pqkft6YxrdMdskeaZCQnJJzckmuSIsI8kCeyDN5oa/0jb7Tzx9phU53dsgM6Nc33B+mHA==</latexit>

Wi
<latexit sha1_base64="GK2kFQgZ8wJfDQpCXNCZeCPqMj4=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AzEoFz16/4C3joJlqRKlmgOKpT2h5qnCmLkklnbC/wEw4wZFFzCvNRPLSSMT9kYeimObsJMxEmKEPN/MwsxU2DDbHHH3Dt3naE30sa9GL1F9+9GxpTNJ/bCEZyovCiGk7zamYou8g9qLe2KURZFatU511luwgxSV0SC81LuPUqlh9rLc/KGwgBHOXOEOYk7zeMTZhhHl2bJhRb8j2idtC/rgV8P7q+qjdoyviI5JWekRgJyTRrkjjRJi3AyJs/khbzSN/pOP+jnr7RAlzsnZAX06wcOJ6El</latexit><latexit sha1_base64="GK2kFQgZ8wJfDQpCXNCZeCPqMj4=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AzEoFz16/4C3joJlqRKlmgOKpT2h5qnCmLkklnbC/wEw4wZFFzCvNRPLSSMT9kYeimObsJMxEmKEPN/MwsxU2DDbHHH3Dt3naE30sa9GL1F9+9GxpTNJ/bCEZyovCiGk7zamYou8g9qLe2KURZFatU511luwgxSV0SC81LuPUqlh9rLc/KGwgBHOXOEOYk7zeMTZhhHl2bJhRb8j2idtC/rgV8P7q+qjdoyviI5JWekRgJyTRrkjjRJi3AyJs/khbzSN/pOP+jnr7RAlzsnZAX06wcOJ6El</latexit><latexit sha1_base64="GK2kFQgZ8wJfDQpCXNCZeCPqMj4=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AzEoFz16/4C3joJlqRKlmgOKpT2h5qnCmLkklnbC/wEw4wZFFzCvNRPLSSMT9kYeimObsJMxEmKEPN/MwsxU2DDbHHH3Dt3naE30sa9GL1F9+9GxpTNJ/bCEZyovCiGk7zamYou8g9qLe2KURZFatU511luwgxSV0SC81LuPUqlh9rLc/KGwgBHOXOEOYk7zeMTZhhHl2bJhRb8j2idtC/rgV8P7q+qjdoyviI5JWekRgJyTRrkjjRJi3AyJs/khbzSN/pOP+jnr7RAlzsnZAX06wcOJ6El</latexit><latexit sha1_base64="GK2kFQgZ8wJfDQpCXNCZeCPqMj4=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AzEoFz16/4C3joJlqRKlmgOKpT2h5qnCmLkklnbC/wEw4wZFFzCvNRPLSSMT9kYeimObsJMxEmKEPN/MwsxU2DDbHHH3Dt3naE30sa9GL1F9+9GxpTNJ/bCEZyovCiGk7zamYou8g9qLe2KURZFatU511luwgxSV0SC81LuPUqlh9rLc/KGwgBHOXOEOYk7zeMTZhhHl2bJhRb8j2idtC/rgV8P7q+qjdoyviI5JWekRgJyTRrkjjRJi3AyJs/khbzSN/pOP+jnr7RAlzsnZAX06wcOJ6El</latexit>

 ✏n
<latexit sha1_base64="bSLccJ1xyG+J+Hv+k0Kj4N/UrJA=">AAACKHicZVBNSwMxEE38tn606tFLsAgepOyKoEfBi0cFWwvtUrLp1AbzsSazQln6S7zqxV/jTXr1l5itPVg7EOblzRse89JMSY9RNKFLyyura+sbm5Wt7Z3dam1vv+Vt7gQ0hVXWtVPuQUkDTZSooJ054DpV8JA+XZfzhxdwXlpzj6MMEs0fjRxIwTFQvVq1q+CZdSHzUlnDAlOPGtG02CKIZ6BOZnXb26O027ci12BQKO59J44yTAruUAoF40o395Bx8cQfoZPj4DIppMlyBCP+zTwYrsEnxfSqMTsOTJ8NrAvPIJuyfzcKrn058acB4FCXTXMclt2PdHpaftBa5eeMijTV886lzguXFJCHJjMcV0rvQa4YWlamxvrSgUA1CoAHSTiNiSF3XGDIthJCi/9HtAhaZ404asR35/Wrk1l8G+SQHJETEpMLckVuyC1pEkFy8kreyDv9oJ/0i05+pUt0tnNA5op+/wAffKZR</latexit><latexit sha1_base64="bSLccJ1xyG+J+Hv+k0Kj4N/UrJA=">AAACKHicZVBNSwMxEE38tn606tFLsAgepOyKoEfBi0cFWwvtUrLp1AbzsSazQln6S7zqxV/jTXr1l5itPVg7EOblzRse89JMSY9RNKFLyyura+sbm5Wt7Z3dam1vv+Vt7gQ0hVXWtVPuQUkDTZSooJ054DpV8JA+XZfzhxdwXlpzj6MMEs0fjRxIwTFQvVq1q+CZdSHzUlnDAlOPGtG02CKIZ6BOZnXb26O027ci12BQKO59J44yTAruUAoF40o395Bx8cQfoZPj4DIppMlyBCP+zTwYrsEnxfSqMTsOTJ8NrAvPIJuyfzcKrn058acB4FCXTXMclt2PdHpaftBa5eeMijTV886lzguXFJCHJjMcV0rvQa4YWlamxvrSgUA1CoAHSTiNiSF3XGDIthJCi/9HtAhaZ404asR35/Wrk1l8G+SQHJETEpMLckVuyC1pEkFy8kreyDv9oJ/0i05+pUt0tnNA5op+/wAffKZR</latexit><latexit sha1_base64="bSLccJ1xyG+J+Hv+k0Kj4N/UrJA=">AAACKHicZVBNSwMxEE38tn606tFLsAgepOyKoEfBi0cFWwvtUrLp1AbzsSazQln6S7zqxV/jTXr1l5itPVg7EOblzRse89JMSY9RNKFLyyura+sbm5Wt7Z3dam1vv+Vt7gQ0hVXWtVPuQUkDTZSooJ054DpV8JA+XZfzhxdwXlpzj6MMEs0fjRxIwTFQvVq1q+CZdSHzUlnDAlOPGtG02CKIZ6BOZnXb26O027ci12BQKO59J44yTAruUAoF40o395Bx8cQfoZPj4DIppMlyBCP+zTwYrsEnxfSqMTsOTJ8NrAvPIJuyfzcKrn058acB4FCXTXMclt2PdHpaftBa5eeMijTV886lzguXFJCHJjMcV0rvQa4YWlamxvrSgUA1CoAHSTiNiSF3XGDIthJCi/9HtAhaZ404asR35/Wrk1l8G+SQHJETEpMLckVuyC1pEkFy8kreyDv9oJ/0i05+pUt0tnNA5op+/wAffKZR</latexit><latexit sha1_base64="bSLccJ1xyG+J+Hv+k0Kj4N/UrJA=">AAACKHicZVBNSwMxEE38tn606tFLsAgepOyKoEfBi0cFWwvtUrLp1AbzsSazQln6S7zqxV/jTXr1l5itPVg7EOblzRse89JMSY9RNKFLyyura+sbm5Wt7Z3dam1vv+Vt7gQ0hVXWtVPuQUkDTZSooJ054DpV8JA+XZfzhxdwXlpzj6MMEs0fjRxIwTFQvVq1q+CZdSHzUlnDAlOPGtG02CKIZ6BOZnXb26O027ci12BQKO59J44yTAruUAoF40o395Bx8cQfoZPj4DIppMlyBCP+zTwYrsEnxfSqMTsOTJ8NrAvPIJuyfzcKrn058acB4FCXTXMclt2PdHpaftBa5eeMijTV886lzguXFJCHJjMcV0rvQa4YWlamxvrSgUA1CoAHSTiNiSF3XGDIthJCi/9HtAhaZ404asR35/Wrk1l8G+SQHJETEpMLckVuyC1pEkFy8kreyDv9oJ/0i05+pUt0tnNA5op+/wAffKZR</latexit>

 ✏n
<latexit sha1_base64="bSLccJ1xyG+J+Hv+k0Kj4N/UrJA=">AAACKHicZVBNSwMxEE38tn606tFLsAgepOyKoEfBi0cFWwvtUrLp1AbzsSazQln6S7zqxV/jTXr1l5itPVg7EOblzRse89JMSY9RNKFLyyura+sbm5Wt7Z3dam1vv+Vt7gQ0hVXWtVPuQUkDTZSooJ054DpV8JA+XZfzhxdwXlpzj6MMEs0fjRxIwTFQvVq1q+CZdSHzUlnDAlOPGtG02CKIZ6BOZnXb26O027ci12BQKO59J44yTAruUAoF40o395Bx8cQfoZPj4DIppMlyBCP+zTwYrsEnxfSqMTsOTJ8NrAvPIJuyfzcKrn058acB4FCXTXMclt2PdHpaftBa5eeMijTV886lzguXFJCHJjMcV0rvQa4YWlamxvrSgUA1CoAHSTiNiSF3XGDIthJCi/9HtAhaZ404asR35/Wrk1l8G+SQHJETEpMLckVuyC1pEkFy8kreyDv9oJ/0i05+pUt0tnNA5op+/wAffKZR</latexit><latexit sha1_base64="bSLccJ1xyG+J+Hv+k0Kj4N/UrJA=">AAACKHicZVBNSwMxEE38tn606tFLsAgepOyKoEfBi0cFWwvtUrLp1AbzsSazQln6S7zqxV/jTXr1l5itPVg7EOblzRse89JMSY9RNKFLyyura+sbm5Wt7Z3dam1vv+Vt7gQ0hVXWtVPuQUkDTZSooJ054DpV8JA+XZfzhxdwXlpzj6MMEs0fjRxIwTFQvVq1q+CZdSHzUlnDAlOPGtG02CKIZ6BOZnXb26O027ci12BQKO59J44yTAruUAoF40o395Bx8cQfoZPj4DIppMlyBCP+zTwYrsEnxfSqMTsOTJ8NrAvPIJuyfzcKrn058acB4FCXTXMclt2PdHpaftBa5eeMijTV886lzguXFJCHJjMcV0rvQa4YWlamxvrSgUA1CoAHSTiNiSF3XGDIthJCi/9HtAhaZ404asR35/Wrk1l8G+SQHJETEpMLckVuyC1pEkFy8kreyDv9oJ/0i05+pUt0tnNA5op+/wAffKZR</latexit><latexit sha1_base64="bSLccJ1xyG+J+Hv+k0Kj4N/UrJA=">AAACKHicZVBNSwMxEE38tn606tFLsAgepOyKoEfBi0cFWwvtUrLp1AbzsSazQln6S7zqxV/jTXr1l5itPVg7EOblzRse89JMSY9RNKFLyyura+sbm5Wt7Z3dam1vv+Vt7gQ0hVXWtVPuQUkDTZSooJ054DpV8JA+XZfzhxdwXlpzj6MMEs0fjRxIwTFQvVq1q+CZdSHzUlnDAlOPGtG02CKIZ6BOZnXb26O027ci12BQKO59J44yTAruUAoF40o395Bx8cQfoZPj4DIppMlyBCP+zTwYrsEnxfSqMTsOTJ8NrAvPIJuyfzcKrn058acB4FCXTXMclt2PdHpaftBa5eeMijTV886lzguXFJCHJjMcV0rvQa4YWlamxvrSgUA1CoAHSTiNiSF3XGDIthJCi/9HtAhaZ404asR35/Wrk1l8G+SQHJETEpMLckVuyC1pEkFy8kreyDv9oJ/0i05+pUt0tnNA5op+/wAffKZR</latexit><latexit sha1_base64="bSLccJ1xyG+J+Hv+k0Kj4N/UrJA=">AAACKHicZVBNSwMxEE38tn606tFLsAgepOyKoEfBi0cFWwvtUrLp1AbzsSazQln6S7zqxV/jTXr1l5itPVg7EOblzRse89JMSY9RNKFLyyura+sbm5Wt7Z3dam1vv+Vt7gQ0hVXWtVPuQUkDTZSooJ054DpV8JA+XZfzhxdwXlpzj6MMEs0fjRxIwTFQvVq1q+CZdSHzUlnDAlOPGtG02CKIZ6BOZnXb26O027ci12BQKO59J44yTAruUAoF40o395Bx8cQfoZPj4DIppMlyBCP+zTwYrsEnxfSqMTsOTJ8NrAvPIJuyfzcKrn058acB4FCXTXMclt2PdHpaftBa5eeMijTV886lzguXFJCHJjMcV0rvQa4YWlamxvrSgUA1CoAHSTiNiSF3XGDIthJCi/9HtAhaZ404asR35/Wrk1l8G+SQHJETEpMLckVuyC1pEkFy8kreyDv9oJ/0i05+pUt0tnNA5op+/wAffKZR</latexit>

Near Small Odd/Even PC
<latexit sha1_base64="x4sdmve1gi7RZU1BPY3lmpZ9m8s="></latexit><latexit sha1_base64="x4sdmve1gi7RZU1BPY3lmpZ9m8s="></latexit><latexit sha1_base64="x4sdmve1gi7RZU1BPY3lmpZ9m8s="></latexit><latexit sha1_base64="x4sdmve1gi7RZU1BPY3lmpZ9m8s=">AAACOnicZVBNTxsxELWhUAgfTeDIxW2ExAGFXVSpHJGiSj1BqjaARFaR1zshVvyxsmcR0Srn/hqu9MIf4coNceUH4E1zaOBJ1jzPvNHTvDRX0mMUPdCFxQ9Lyx9XVmtr6xubn+qNrTNvCyegK6yy7iLlHpQ00EWJCi5yB1ynCs7TUbuan1+D89Ka3zjOIdH8ysiBFBxDq1//3NOpvSl7XrAT4I790lwpdpplB9+vwbBOe9KvN6NWNAV7T+IZaZIZOv0Gpb3MikKDQaG495dxlGNScodSKJjUeoWHnIsRv4LLAgdHSSlNXiAY8WbmwXANPimnd07YbuhkbGBdeAbZtPv/Rsm1ryZ+PxAc6qpojsOq+rFO96sPWqv8nFGZpnreudJ54ZISilBkjpNa5T0oFEPLqhxZJh0IVONAeJCE05gYcscFhrRrIbT4bUTvydlhK45a8c+vzeO9WXwrZId8IXskJt/IMflBOqRLBPlDbskd+Uvv6SN9os//pAt0trNN5kBfXgGTH60F</latexit>

W1
<latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit>

W2
<latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit>

W3
<latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit><latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit><latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit><latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit>

Wt
<latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit><latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit><latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit><latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit>

Wt�1
<latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit>

Wt�2
<latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit>

 ↵n
<latexit sha1_base64="403ZKwl1F2a56GFqnKGDQ2ii/B4=">AAACJHicZVA9SwNBEN312/iVaGmzGASLEO5E0DJgYxnBqGAO2dtMksX9uOzOCeHI77DVxl9jJxY2/hb3YgqjD5Z5O/OGx7w0U9JjFH3ShcWl5ZXVtfXKxubW9k61tnvtbe4EdIRV1t2m3IOSBjooUcFt5oDrVMFN+nBezm8ewXlpzRWOM0g0HxjZl4JjaCVdBSPW5Sobcmbuq/WoGU3B/pN4RupkhvZ9jdJuz4pcg0GhuPd3cZRhUnCHUiiYVLq5h4yLBz6Auxz7Z0khTZYjGPFn5sFwDT4pphdN2GHo9FjfuvAMsmn390bBtS8nvhEIDnVZNMdhWf1Yp43yg9YqP2dUpKmedy51XrikgDwUmeGkUnr3c8XQsjIx1pMOBKpxIDxIwmlMDLnjAkOulRBa/Dei/+T6uBlHzfjypN46msW3RvbJATkiMTklLXJB2qRDBBmRJ/JMXugrfaPv9ONHukBnO3tkDvTrG6z4pRg=</latexit><latexit sha1_base64="403ZKwl1F2a56GFqnKGDQ2ii/B4=">AAACJHicZVA9SwNBEN312/iVaGmzGASLEO5E0DJgYxnBqGAO2dtMksX9uOzOCeHI77DVxl9jJxY2/hb3YgqjD5Z5O/OGx7w0U9JjFH3ShcWl5ZXVtfXKxubW9k61tnvtbe4EdIRV1t2m3IOSBjooUcFt5oDrVMFN+nBezm8ewXlpzRWOM0g0HxjZl4JjaCVdBSPW5Sobcmbuq/WoGU3B/pN4RupkhvZ9jdJuz4pcg0GhuPd3cZRhUnCHUiiYVLq5h4yLBz6Auxz7Z0khTZYjGPFn5sFwDT4pphdN2GHo9FjfuvAMsmn390bBtS8nvhEIDnVZNMdhWf1Yp43yg9YqP2dUpKmedy51XrikgDwUmeGkUnr3c8XQsjIx1pMOBKpxIDxIwmlMDLnjAkOulRBa/Dei/+T6uBlHzfjypN46msW3RvbJATkiMTklLXJB2qRDBBmRJ/JMXugrfaPv9ONHukBnO3tkDvTrG6z4pRg=</latexit><latexit sha1_base64="403ZKwl1F2a56GFqnKGDQ2ii/B4=">AAACJHicZVA9SwNBEN312/iVaGmzGASLEO5E0DJgYxnBqGAO2dtMksX9uOzOCeHI77DVxl9jJxY2/hb3YgqjD5Z5O/OGx7w0U9JjFH3ShcWl5ZXVtfXKxubW9k61tnvtbe4EdIRV1t2m3IOSBjooUcFt5oDrVMFN+nBezm8ewXlpzRWOM0g0HxjZl4JjaCVdBSPW5Sobcmbuq/WoGU3B/pN4RupkhvZ9jdJuz4pcg0GhuPd3cZRhUnCHUiiYVLq5h4yLBz6Auxz7Z0khTZYjGPFn5sFwDT4pphdN2GHo9FjfuvAMsmn390bBtS8nvhEIDnVZNMdhWf1Yp43yg9YqP2dUpKmedy51XrikgDwUmeGkUnr3c8XQsjIx1pMOBKpxIDxIwmlMDLnjAkOulRBa/Dei/+T6uBlHzfjypN46msW3RvbJATkiMTklLXJB2qRDBBmRJ/JMXugrfaPv9ONHukBnO3tkDvTrG6z4pRg=</latexit><latexit sha1_base64="403ZKwl1F2a56GFqnKGDQ2ii/B4=">AAACJHicZVA9SwNBEN312/iVaGmzGASLEO5E0DJgYxnBqGAO2dtMksX9uOzOCeHI77DVxl9jJxY2/hb3YgqjD5Z5O/OGx7w0U9JjFH3ShcWl5ZXVtfXKxubW9k61tnvtbe4EdIRV1t2m3IOSBjooUcFt5oDrVMFN+nBezm8ewXlpzRWOM0g0HxjZl4JjaCVdBSPW5Sobcmbuq/WoGU3B/pN4RupkhvZ9jdJuz4pcg0GhuPd3cZRhUnCHUiiYVLq5h4yLBz6Auxz7Z0khTZYjGPFn5sFwDT4pphdN2GHo9FjfuvAMsmn390bBtS8nvhEIDnVZNMdhWf1Yp43yg9YqP2dUpKmedy51XrikgDwUmeGkUnr3c8XQsjIx1pMOBKpxIDxIwmlMDLnjAkOulRBa/Dei/+T6uBlHzfjypN46msW3RvbJATkiMTklLXJB2qRDBBmRJ/JMXugrfaPv9ONHukBnO3tkDvTrG6z4pRg=</latexit>  ↵n

<latexit sha1_base64="403ZKwl1F2a56GFqnKGDQ2ii/B4=">AAACJHicZVA9SwNBEN312/iVaGmzGASLEO5E0DJgYxnBqGAO2dtMksX9uOzOCeHI77DVxl9jJxY2/hb3YgqjD5Z5O/OGx7w0U9JjFH3ShcWl5ZXVtfXKxubW9k61tnvtbe4EdIRV1t2m3IOSBjooUcFt5oDrVMFN+nBezm8ewXlpzRWOM0g0HxjZl4JjaCVdBSPW5Sobcmbuq/WoGU3B/pN4RupkhvZ9jdJuz4pcg0GhuPd3cZRhUnCHUiiYVLq5h4yLBz6Auxz7Z0khTZYjGPFn5sFwDT4pphdN2GHo9FjfuvAMsmn390bBtS8nvhEIDnVZNMdhWf1Yp43yg9YqP2dUpKmedy51XrikgDwUmeGkUnr3c8XQsjIx1pMOBKpxIDxIwmlMDLnjAkOulRBa/Dei/+T6uBlHzfjypN46msW3RvbJATkiMTklLXJB2qRDBBmRJ/JMXugrfaPv9ONHukBnO3tkDvTrG6z4pRg=</latexit><latexit sha1_base64="403ZKwl1F2a56GFqnKGDQ2ii/B4=">AAACJHicZVA9SwNBEN312/iVaGmzGASLEO5E0DJgYxnBqGAO2dtMksX9uOzOCeHI77DVxl9jJxY2/hb3YgqjD5Z5O/OGx7w0U9JjFH3ShcWl5ZXVtfXKxubW9k61tnvtbe4EdIRV1t2m3IOSBjooUcFt5oDrVMFN+nBezm8ewXlpzRWOM0g0HxjZl4JjaCVdBSPW5Sobcmbuq/WoGU3B/pN4RupkhvZ9jdJuz4pcg0GhuPd3cZRhUnCHUiiYVLq5h4yLBz6Auxz7Z0khTZYjGPFn5sFwDT4pphdN2GHo9FjfuvAMsmn390bBtS8nvhEIDnVZNMdhWf1Yp43yg9YqP2dUpKmedy51XrikgDwUmeGkUnr3c8XQsjIx1pMOBKpxIDxIwmlMDLnjAkOulRBa/Dei/+T6uBlHzfjypN46msW3RvbJATkiMTklLXJB2qRDBBmRJ/JMXugrfaPv9ONHukBnO3tkDvTrG6z4pRg=</latexit><latexit sha1_base64="403ZKwl1F2a56GFqnKGDQ2ii/B4=">AAACJHicZVA9SwNBEN312/iVaGmzGASLEO5E0DJgYxnBqGAO2dtMksX9uOzOCeHI77DVxl9jJxY2/hb3YgqjD5Z5O/OGx7w0U9JjFH3ShcWl5ZXVtfXKxubW9k61tnvtbe4EdIRV1t2m3IOSBjooUcFt5oDrVMFN+nBezm8ewXlpzRWOM0g0HxjZl4JjaCVdBSPW5Sobcmbuq/WoGU3B/pN4RupkhvZ9jdJuz4pcg0GhuPd3cZRhUnCHUiiYVLq5h4yLBz6Auxz7Z0khTZYjGPFn5sFwDT4pphdN2GHo9FjfuvAMsmn390bBtS8nvhEIDnVZNMdhWf1Yp43yg9YqP2dUpKmedy51XrikgDwUmeGkUnr3c8XQsjIx1pMOBKpxIDxIwmlMDLnjAkOulRBa/Dei/+T6uBlHzfjypN46msW3RvbJATkiMTklLXJB2qRDBBmRJ/JMXugrfaPv9ONHukBnO3tkDvTrG6z4pRg=</latexit><latexit sha1_base64="403ZKwl1F2a56GFqnKGDQ2ii/B4=">AAACJHicZVA9SwNBEN312/iVaGmzGASLEO5E0DJgYxnBqGAO2dtMksX9uOzOCeHI77DVxl9jJxY2/hb3YgqjD5Z5O/OGx7w0U9JjFH3ShcWl5ZXVtfXKxubW9k61tnvtbe4EdIRV1t2m3IOSBjooUcFt5oDrVMFN+nBezm8ewXlpzRWOM0g0HxjZl4JjaCVdBSPW5Sobcmbuq/WoGU3B/pN4RupkhvZ9jdJuz4pcg0GhuPd3cZRhUnCHUiiYVLq5h4yLBz6Auxz7Z0khTZYjGPFn5sFwDT4pphdN2GHo9FjfuvAMsmn390bBtS8nvhEIDnVZNMdhWf1Yp43yg9YqP2dUpKmedy51XrikgDwUmeGkUnr3c8XQsjIx1pMOBKpxIDxIwmlMDLnjAkOulRBa/Dei/+T6uBlHzfjypN46msW3RvbJATkiMTklLXJB2qRDBBmRJ/JMXugrfaPv9ONHukBnO3tkDvTrG6z4pRg=</latexit>

Balanced PC
<latexit sha1_base64="uC8IRBO3q8iznwUkOFLy5jmgPLU=">AAACLXicZVDLSgNBEJzxbXzFx83LYBA8SNgVQY9BLx4jGBXMEmYnHTM4j2WmV4xL/sWrXvwaD4J49TecjTkYLRi6pruaoivNlPQYRe90anpmdm5+YbGytLyyulZd37j0NncCWsIq665T7kFJAy2UqOA6c8B1quAqvTst51f34Ly05gIHGSSa3xrZk4JjaHWqW22EB/SiOOGKGwFd1jwddqq1qB6NwP6TeExqZIxmZ53SdteKXINBobj3N3GUYVJwh1IoGFbauYeMizt+Czc59o6TQposRzDiz8yD4Rp8UoxOG7Ld0OmynnXhGWSj7u+NgmtfTvx+INjXZdEc+2X1A53ulx+0VvkJoyJN9aRzqfPCJQXkocgMh5XSu5crhpaV0bGudCBQDQLhQRJOY6LPHRcYAq6E0OK/Ef0nlwf1OKrH54e1xt44vgWyTXbIHonJEWmQM9IkLSLII3kiz+SFvtI3+kE/f6RTdLyzSSZAv74BeH6ojQ==</latexit><latexit sha1_base64="uC8IRBO3q8iznwUkOFLy5jmgPLU=">AAACLXicZVDLSgNBEJzxbXzFx83LYBA8SNgVQY9BLx4jGBXMEmYnHTM4j2WmV4xL/sWrXvwaD4J49TecjTkYLRi6pruaoivNlPQYRe90anpmdm5+YbGytLyyulZd37j0NncCWsIq665T7kFJAy2UqOA6c8B1quAqvTst51f34Ly05gIHGSSa3xrZk4JjaHWqW22EB/SiOOGKGwFd1jwddqq1qB6NwP6TeExqZIxmZ53SdteKXINBobj3N3GUYVJwh1IoGFbauYeMizt+Czc59o6TQposRzDiz8yD4Rp8UoxOG7Ld0OmynnXhGWSj7u+NgmtfTvx+INjXZdEc+2X1A53ulx+0VvkJoyJN9aRzqfPCJQXkocgMh5XSu5crhpaV0bGudCBQDQLhQRJOY6LPHRcYAq6E0OK/Ef0nlwf1OKrH54e1xt44vgWyTXbIHonJEWmQM9IkLSLII3kiz+SFvtI3+kE/f6RTdLyzSSZAv74BeH6ojQ==</latexit><latexit sha1_base64="uC8IRBO3q8iznwUkOFLy5jmgPLU=">AAACLXicZVDLSgNBEJzxbXzFx83LYBA8SNgVQY9BLx4jGBXMEmYnHTM4j2WmV4xL/sWrXvwaD4J49TecjTkYLRi6pruaoivNlPQYRe90anpmdm5+YbGytLyyulZd37j0NncCWsIq665T7kFJAy2UqOA6c8B1quAqvTst51f34Ly05gIHGSSa3xrZk4JjaHWqW22EB/SiOOGKGwFd1jwddqq1qB6NwP6TeExqZIxmZ53SdteKXINBobj3N3GUYVJwh1IoGFbauYeMizt+Czc59o6TQposRzDiz8yD4Rp8UoxOG7Ld0OmynnXhGWSj7u+NgmtfTvx+INjXZdEc+2X1A53ulx+0VvkJoyJN9aRzqfPCJQXkocgMh5XSu5crhpaV0bGudCBQDQLhQRJOY6LPHRcYAq6E0OK/Ef0nlwf1OKrH54e1xt44vgWyTXbIHonJEWmQM9IkLSLII3kiz+SFvtI3+kE/f6RTdLyzSSZAv74BeH6ojQ==</latexit><latexit sha1_base64="uC8IRBO3q8iznwUkOFLy5jmgPLU=">AAACLXicZVDLSgNBEJzxbXzFx83LYBA8SNgVQY9BLx4jGBXMEmYnHTM4j2WmV4xL/sWrXvwaD4J49TecjTkYLRi6pruaoivNlPQYRe90anpmdm5+YbGytLyyulZd37j0NncCWsIq665T7kFJAy2UqOA6c8B1quAqvTst51f34Ly05gIHGSSa3xrZk4JjaHWqW22EB/SiOOGKGwFd1jwddqq1qB6NwP6TeExqZIxmZ53SdteKXINBobj3N3GUYVJwh1IoGFbauYeMizt+Czc59o6TQposRzDiz8yD4Rp8UoxOG7Ld0OmynnXhGWSj7u+NgmtfTvx+INjXZdEc+2X1A53ulx+0VvkJoyJN9aRzqfPCJQXkocgMh5XSu5crhpaV0bGudCBQDQLhQRJOY6LPHRcYAq6E0OK/Ef0nlwf1OKrH54e1xt44vgWyTXbIHonJEWmQM9IkLSLII3kiz+SFvtI3+kE/f6RTdLyzSSZAv74BeH6ojQ==</latexit>

Wi
<latexit sha1_base64="GK2kFQgZ8wJfDQpCXNCZeCPqMj4=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AzEoFz16/4C3joJlqRKlmgOKpT2h5qnCmLkklnbC/wEw4wZFFzCvNRPLSSMT9kYeimObsJMxEmKEPN/MwsxU2DDbHHH3Dt3naE30sa9GL1F9+9GxpTNJ/bCEZyovCiGk7zamYou8g9qLe2KURZFatU511luwgxSV0SC81LuPUqlh9rLc/KGwgBHOXOEOYk7zeMTZhhHl2bJhRb8j2idtC/rgV8P7q+qjdoyviI5JWekRgJyTRrkjjRJi3AyJs/khbzSN/pOP+jnr7RAlzsnZAX06wcOJ6El</latexit><latexit sha1_base64="GK2kFQgZ8wJfDQpCXNCZeCPqMj4=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AzEoFz16/4C3joJlqRKlmgOKpT2h5qnCmLkklnbC/wEw4wZFFzCvNRPLSSMT9kYeimObsJMxEmKEPN/MwsxU2DDbHHH3Dt3naE30sa9GL1F9+9GxpTNJ/bCEZyovCiGk7zamYou8g9qLe2KURZFatU511luwgxSV0SC81LuPUqlh9rLc/KGwgBHOXOEOYk7zeMTZhhHl2bJhRb8j2idtC/rgV8P7q+qjdoyviI5JWekRgJyTRrkjjRJi3AyJs/khbzSN/pOP+jnr7RAlzsnZAX06wcOJ6El</latexit><latexit sha1_base64="GK2kFQgZ8wJfDQpCXNCZeCPqMj4=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AzEoFz16/4C3joJlqRKlmgOKpT2h5qnCmLkklnbC/wEw4wZFFzCvNRPLSSMT9kYeimObsJMxEmKEPN/MwsxU2DDbHHH3Dt3naE30sa9GL1F9+9GxpTNJ/bCEZyovCiGk7zamYou8g9qLe2KURZFatU511luwgxSV0SC81LuPUqlh9rLc/KGwgBHOXOEOYk7zeMTZhhHl2bJhRb8j2idtC/rgV8P7q+qjdoyviI5JWekRgJyTRrkjjRJi3AyJs/khbzSN/pOP+jnr7RAlzsnZAX06wcOJ6El</latexit><latexit sha1_base64="GK2kFQgZ8wJfDQpCXNCZeCPqMj4=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AzEoFz16/4C3joJlqRKlmgOKpT2h5qnCmLkklnbC/wEw4wZFFzCvNRPLSSMT9kYeimObsJMxEmKEPN/MwsxU2DDbHHH3Dt3naE30sa9GL1F9+9GxpTNJ/bCEZyovCiGk7zamYou8g9qLe2KURZFatU511luwgxSV0SC81LuPUqlh9rLc/KGwgBHOXOEOYk7zeMTZhhHl2bJhRb8j2idtC/rgV8P7q+qjdoyviI5JWekRgJyTRrkjjRJi3AyJs/khbzSN/pOP+jnr7RAlzsnZAX06wcOJ6El</latexit>

Wi+1
<latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit><latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit><latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit><latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit>

W1
<latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit>

W2
<latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit>

W3
<latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit><latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit><latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit><latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit>

Wt
<latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit><latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit><latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit><latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit>

Wt�1
<latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit>

Wt�2
<latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit>

Wi
<latexit sha1_base64="GK2kFQgZ8wJfDQpCXNCZeCPqMj4=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AzEoFz16/4C3joJlqRKlmgOKpT2h5qnCmLkklnbC/wEw4wZFFzCvNRPLSSMT9kYeimObsJMxEmKEPN/MwsxU2DDbHHH3Dt3naE30sa9GL1F9+9GxpTNJ/bCEZyovCiGk7zamYou8g9qLe2KURZFatU511luwgxSV0SC81LuPUqlh9rLc/KGwgBHOXOEOYk7zeMTZhhHl2bJhRb8j2idtC/rgV8P7q+qjdoyviI5JWekRgJyTRrkjjRJi3AyJs/khbzSN/pOP+jnr7RAlzsnZAX06wcOJ6El</latexit><latexit sha1_base64="GK2kFQgZ8wJfDQpCXNCZeCPqMj4=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AzEoFz16/4C3joJlqRKlmgOKpT2h5qnCmLkklnbC/wEw4wZFFzCvNRPLSSMT9kYeimObsJMxEmKEPN/MwsxU2DDbHHH3Dt3naE30sa9GL1F9+9GxpTNJ/bCEZyovCiGk7zamYou8g9qLe2KURZFatU511luwgxSV0SC81LuPUqlh9rLc/KGwgBHOXOEOYk7zeMTZhhHl2bJhRb8j2idtC/rgV8P7q+qjdoyviI5JWekRgJyTRrkjjRJi3AyJs/khbzSN/pOP+jnr7RAlzsnZAX06wcOJ6El</latexit><latexit sha1_base64="GK2kFQgZ8wJfDQpCXNCZeCPqMj4=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AzEoFz16/4C3joJlqRKlmgOKpT2h5qnCmLkklnbC/wEw4wZFFzCvNRPLSSMT9kYeimObsJMxEmKEPN/MwsxU2DDbHHH3Dt3naE30sa9GL1F9+9GxpTNJ/bCEZyovCiGk7zamYou8g9qLe2KURZFatU511luwgxSV0SC81LuPUqlh9rLc/KGwgBHOXOEOYk7zeMTZhhHl2bJhRb8j2idtC/rgV8P7q+qjdoyviI5JWekRgJyTRrkjjRJi3AyJs/khbzSN/pOP+jnr7RAlzsnZAX06wcOJ6El</latexit><latexit sha1_base64="GK2kFQgZ8wJfDQpCXNCZeCPqMj4=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AzEoFz16/4C3joJlqRKlmgOKpT2h5qnCmLkklnbC/wEw4wZFFzCvNRPLSSMT9kYeimObsJMxEmKEPN/MwsxU2DDbHHH3Dt3naE30sa9GL1F9+9GxpTNJ/bCEZyovCiGk7zamYou8g9qLe2KURZFatU511luwgxSV0SC81LuPUqlh9rLc/KGwgBHOXOEOYk7zeMTZhhHl2bJhRb8j2idtC/rgV8P7q+qjdoyviI5JWekRgJyTRrkjjRJi3AyJs/khbzSN/pOP+jnr7RAlzsnZAX06wcOJ6El</latexit>

Wi+1
<latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit><latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit><latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit><latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit>

2-Union Heavy PC
<latexit sha1_base64="bPq4lv4xqEfVLSblpdJeNVOo4uU="></latexit><latexit sha1_base64="bPq4lv4xqEfVLSblpdJeNVOo4uU="></latexit><latexit sha1_base64="bPq4lv4xqEfVLSblpdJeNVOo4uU="></latexit><latexit sha1_base64="bPq4lv4xqEfVLSblpdJeNVOo4uU="></latexit>

� �n
<latexit sha1_base64="6pYfg0IE4IyelfgdEsIA1sFqTCE=">AAACJHicZVA9SwNBEN31M8ZvLW0Wg2Ah4U4ELQUbywhGA8kR9jaTZHE/zt05IRz5Hbba+GvsxMLG3+JeTGHMg2XezrzhMS/NlPQYRV90YXFpeWW1slZd39jc2t7Z3bvzNncCmsIq61op96CkgSZKVNDKHHCdKrhPH67K+f0TOC+tucVRBonmAyP7UnAMraQzgEfWGXCtOTPdnVpUjyZg8ySekhqZotHdpbTTsyLXYFAo7n07jjJMCu5QCgXjaif3kHHxwAfQzrF/kRTSZDmCEf9mHgzX4JNictGYHYVOj/WtC88gm3T/bhRc+3LiTwLBoS6L5jgsqx/p9KT8oLXKzxgVaapnnUudFy4pIA9FZjiult79XDG0rEyM9aQDgWoUCA+ScBoTQ+64wJBrNYQW/49ontyd1uOoHt+c1S6Pp/FVyAE5JMckJufkklyTBmkSQR7JM3khr/SNvtMP+vkrXaDTnX0yA/r9A58RpRA=</latexit><latexit sha1_base64="6pYfg0IE4IyelfgdEsIA1sFqTCE=">AAACJHicZVA9SwNBEN31M8ZvLW0Wg2Ah4U4ELQUbywhGA8kR9jaTZHE/zt05IRz5Hbba+GvsxMLG3+JeTGHMg2XezrzhMS/NlPQYRV90YXFpeWW1slZd39jc2t7Z3bvzNncCmsIq61op96CkgSZKVNDKHHCdKrhPH67K+f0TOC+tucVRBonmAyP7UnAMraQzgEfWGXCtOTPdnVpUjyZg8ySekhqZotHdpbTTsyLXYFAo7n07jjJMCu5QCgXjaif3kHHxwAfQzrF/kRTSZDmCEf9mHgzX4JNictGYHYVOj/WtC88gm3T/bhRc+3LiTwLBoS6L5jgsqx/p9KT8oLXKzxgVaapnnUudFy4pIA9FZjiult79XDG0rEyM9aQDgWoUCA+ScBoTQ+64wJBrNYQW/49ontyd1uOoHt+c1S6Pp/FVyAE5JMckJufkklyTBmkSQR7JM3khr/SNvtMP+vkrXaDTnX0yA/r9A58RpRA=</latexit><latexit sha1_base64="6pYfg0IE4IyelfgdEsIA1sFqTCE=">AAACJHicZVA9SwNBEN31M8ZvLW0Wg2Ah4U4ELQUbywhGA8kR9jaTZHE/zt05IRz5Hbba+GvsxMLG3+JeTGHMg2XezrzhMS/NlPQYRV90YXFpeWW1slZd39jc2t7Z3bvzNncCmsIq61op96CkgSZKVNDKHHCdKrhPH67K+f0TOC+tucVRBonmAyP7UnAMraQzgEfWGXCtOTPdnVpUjyZg8ySekhqZotHdpbTTsyLXYFAo7n07jjJMCu5QCgXjaif3kHHxwAfQzrF/kRTSZDmCEf9mHgzX4JNictGYHYVOj/WtC88gm3T/bhRc+3LiTwLBoS6L5jgsqx/p9KT8oLXKzxgVaapnnUudFy4pIA9FZjiult79XDG0rEyM9aQDgWoUCA+ScBoTQ+64wJBrNYQW/49ontyd1uOoHt+c1S6Pp/FVyAE5JMckJufkklyTBmkSQR7JM3khr/SNvtMP+vkrXaDTnX0yA/r9A58RpRA=</latexit><latexit sha1_base64="6pYfg0IE4IyelfgdEsIA1sFqTCE=">AAACJHicZVA9SwNBEN31M8ZvLW0Wg2Ah4U4ELQUbywhGA8kR9jaTZHE/zt05IRz5Hbba+GvsxMLG3+JeTGHMg2XezrzhMS/NlPQYRV90YXFpeWW1slZd39jc2t7Z3bvzNncCmsIq61op96CkgSZKVNDKHHCdKrhPH67K+f0TOC+tucVRBonmAyP7UnAMraQzgEfWGXCtOTPdnVpUjyZg8ySekhqZotHdpbTTsyLXYFAo7n07jjJMCu5QCgXjaif3kHHxwAfQzrF/kRTSZDmCEf9mHgzX4JNictGYHYVOj/WtC88gm3T/bhRc+3LiTwLBoS6L5jgsqx/p9KT8oLXKzxgVaapnnUudFy4pIA9FZjiult79XDG0rEyM9aQDgWoUCA+ScBoTQ+64wJBrNYQW/49ontyd1uOoHt+c1S6Pp/FVyAE5JMckJufkklyTBmkSQR7JM3khr/SNvtMP+vkrXaDTnX0yA/r9A58RpRA=</latexit>

Wi�1
<latexit sha1_base64="l2gN4oQGOmseCqbzwQw6BxedRhg=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXJxFhaDaj1oBjP4yySckzqZoz2oUdofap4pSJBLZu1DGKQY5cyg4BIKr59ZSBmfsEd4yHB0FeUiSTOEhP+bWUiYAhvls1sK/8R1hv5IG/cS9Gfdvxs5U7ac2FNHcKzKohiOy2qnKj4tP6i1tAtGeRyrRedSZ7mJcshcESkWXuk9yqSP2i+z8ofCAEc5dYQ5iTvN52NmGEeXqOdCC/9HtEy6580waIa3F/VWYx5fhRyRY9IgIbkkLXJD2qRDOJmQZ/JCXukbfacf9PNXukLnO4dkAfTrB++zoqM=</latexit><latexit sha1_base64="l2gN4oQGOmseCqbzwQw6BxedRhg=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXJxFhaDaj1oBjP4yySckzqZoz2oUdofap4pSJBLZu1DGKQY5cyg4BIKr59ZSBmfsEd4yHB0FeUiSTOEhP+bWUiYAhvls1sK/8R1hv5IG/cS9Gfdvxs5U7ac2FNHcKzKohiOy2qnKj4tP6i1tAtGeRyrRedSZ7mJcshcESkWXuk9yqSP2i+z8ofCAEc5dYQ5iTvN52NmGEeXqOdCC/9HtEy6580waIa3F/VWYx5fhRyRY9IgIbkkLXJD2qRDOJmQZ/JCXukbfacf9PNXukLnO4dkAfTrB++zoqM=</latexit><latexit sha1_base64="l2gN4oQGOmseCqbzwQw6BxedRhg=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXJxFhaDaj1oBjP4yySckzqZoz2oUdofap4pSJBLZu1DGKQY5cyg4BIKr59ZSBmfsEd4yHB0FeUiSTOEhP+bWUiYAhvls1sK/8R1hv5IG/cS9Gfdvxs5U7ac2FNHcKzKohiOy2qnKj4tP6i1tAtGeRyrRedSZ7mJcshcESkWXuk9yqSP2i+z8ofCAEc5dYQ5iTvN52NmGEeXqOdCC/9HtEy6580waIa3F/VWYx5fhRyRY9IgIbkkLXJD2qRDOJmQZ/JCXukbfacf9PNXukLnO4dkAfTrB++zoqM=</latexit><latexit sha1_base64="l2gN4oQGOmseCqbzwQw6BxedRhg=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXJxFhaDaj1oBjP4yySckzqZoz2oUdofap4pSJBLZu1DGKQY5cyg4BIKr59ZSBmfsEd4yHB0FeUiSTOEhP+bWUiYAhvls1sK/8R1hv5IG/cS9Gfdvxs5U7ac2FNHcKzKohiOy2qnKj4tP6i1tAtGeRyrRedSZ7mJcshcESkWXuk9yqSP2i+z8ofCAEc5dYQ5iTvN52NmGEeXqOdCC/9HtEy6580waIa3F/VWYx5fhRyRY9IgIbkkLXJD2qRDOJmQZ/JCXukbfacf9PNXukLnO4dkAfTrB++zoqM=</latexit>

Wi+1
<latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit><latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit><latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit><latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit>

(1 � �/2)n
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Figure 1 Various subroutines for the algorithm and their usage.

Balanced PC. This subroutine is useful when we can “break” the graph into two parts
after a witness set, such that the closed neighborhood for each of the parts have small size,
or in other words, the parts are “balanced”. The quantification of the “balancedness” after
a witness set will be done with the help of a rational number 0 < α ≤ 1, which will be
part of the input for the subroutine. The subroutine will only look for those Pt-witness
structures for G for which there is an integer i ∈ [t], such that the sizes of both N [∪j∈[i]Wj ]
and N [∪j∈[t]\[i]Wj ] are bounded by αn. Moreover, the algorithm will return the largest such
t. Our algorithm for Balanced PC will run in time O?(2αn). Note that when α = 1,
Balanced PC is an algorithm for Path Contraction running in time O?(2n).

2-Union Heavy PC. This subroutine will be used when “large” part of the graph is
concentrated in two consecutive witness sets and the neighborhood of the rest of the graph
into them is “small”. The quantification of term “large/small” will be done by a a fraction
0 < γ < 1, which will be part of the input. The algorithm will only search for those
Pt-witness structure of G where there is an integer i ∈ [t− 1], such that |Wi ∪Wi+1| ≥ γn,
and |N [∪j∈[i−1]Wj ]|, |N [∪j∈[t]\[i+1]Wj ]| ≤ (1− γ/2)n. Moreover, the algorithm will return
largest such t.

Small Odd/Even PC. Roughly speaking, this subroutine is particularly useful when one of
OS or ES is “small”. The “smallness” of OS/ES is quantified by a rational number 0 < β ≤ 1,
which will be part of the input. The subroutine will only look for those Pt-witness structures
for G where one of |OS| ≤ βn/2 or |ES| ≤ βn/2 holds. Moreover, the algorithm will return the
largest integer t ≥ 1, for which such a Pt-witness structure for G exists. Small Odd/Even
PC will run in time O?(cn), where c = g(β/2). We note that when β = 1, then one of
|OS| ≤ βn/2 or |ES| ≤ βn/2 definitely holds. Thus, for β = 1, Small Odd/Even PC is an
algorithm for Path Contraction running in time O?(2n) (see Observation 2.2).
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Near Small Odd/Even PC. In the case when both OS and ES are “large”, it may be the
case that for one of OS/ES, there is just one witness set which is large. That is, when we
remove this large witness set, then one of OS/ES becomes “small”. The “smallness” of the
remaining OS/ES (after removing a witness set) will be quantified by a rational number
0 < ε ≤ 1, which will be part of the input. The subroutine will only look for those Pt-witness
structures for G where the size of one of |OS| or |ES| after removal of a witness set is bounded
by εn. Moreover, the algorithm will return the largest such t.

Our subroutines Balanced PC and 2-Union Heavy PC use a subroutine called
Enum-Partial-PC for enumerating solutions for “small” subgraphs. The efficiency of the
algorithm for Enum-Partial-PC is centered around the bounds for (Q, a, b)-connected
sets. In Section 4.1 we (define and) design an algorithm for Enum-Partial-PC. In Sec-
tion 4.2, 4.3, 4.4 and 4.5 we present our algorithms for Balanced PC, 2-Union Heavy
PC, Small Odd/Even PC, and Near Small Odd/Even PC, respectively. Finally, in
Section 4.6 we show how we can use the above algorithms to obtain an algorithm for Path
Contraction, running in time O?(1.99987n).

4.1 Algorithm for Enum-Partial-PC
In this section, we describe an algorithm which computes “nice solution” for all “ρ-small”
subset of vertices of an input graph. In an input graph G, for a set S ⊆ V (G), by Φ(S) we
denote the set of vertices in S that have a neighbor outside S. That is, Φ(S) = {s ∈ S |
N(s) \ S 6= ∅}. A set S ⊆ V (G) is ρ-small if N [S] ≤ ρn. For an ρ-small set S ⊆ V (G), the
largest integer tS is called the nice solution if G[S] is contractible to PtS with all the vertices
in Φ(S) in the end bag. That is, there is a PtS -witness structure (W1,W2, · · ·WtS ) of G[S],
such that Φ(S) ⊆WtS . We formally define the problem Enum-Partial-PC in the following
way.

Enum-Partial-PC
Input: A graph G on n vertices and a fraction 0 < ρ ≤ 1.
Output: A table Γ which is indexed by ρ-small sets. For any ρ-small set S, Γ[S] is the
largest integer t for which G[S] has a Pt-witness structure W = (W1,W2, · · · ,Wt), such
that Φ(S) ⊆Wt.

We design an algorithm for Enum-Partial-PC running in time O?(2ρn). We briefly
explain how we can compute nice solutions for ρ-small set. Consider an ρ-small set S. Note
that |S| ≤ ρn. Thus, by the method of 2-coloring (as was explained in the introduction), we
can obtain the nice solution in time 2ρn. This would lead us to an algorithm running in time
O?(2ρng(ρ)n). By doing a simple dynamic programming we can also obtain an algorithm
running in time O?(3n). We will improve upon these algorithms by a dynamic programming
algorithm where we update the values “forward” instead of looking “backward”.

The Algorithm. We start by defining the tables entries for our dynamic programming
routine, which is used for computation of nice solutions. Let S be the set of all connected sets S
in G, such that |N [S]| ≤ ρn. That is, S = {S ⊆ V (G) | G[S] is connected and |N [S]| ≤ ρn}.
For each S ∈ S, we have an entry denoted by Γ[S]. Γ[S] is the largest integer q ≥ 1 for which
G[S] can be contracted to Pq with a Pq-witness structure W = (W1,W2, · · · ,Wq) of G[S],
such that Φ(S) ⊆Wq. The algorithm starts by initializing Γ[S] = 1, for each S ∈ S.

In the following we introduce some notations that will be useful in stating the algorithm.
Consider S ∈ S. We will define a set A[S], which will be the set of all “potential extenders
bags” for S, when we look at contraction to paths for larger graphs (containing S). For the
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 ↵n
<latexit sha1_base64="403ZKwl1F2a56GFqnKGDQ2ii/B4=">AAACJHicZVA9SwNBEN312/iVaGmzGASLEO5E0DJgYxnBqGAO2dtMksX9uOzOCeHI77DVxl9jJxY2/hb3YgqjD5Z5O/OGx7w0U9JjFH3ShcWl5ZXVtfXKxubW9k61tnvtbe4EdIRV1t2m3IOSBjooUcFt5oDrVMFN+nBezm8ewXlpzRWOM0g0HxjZl4JjaCVdBSPW5Sobcmbuq/WoGU3B/pN4RupkhvZ9jdJuz4pcg0GhuPd3cZRhUnCHUiiYVLq5h4yLBz6Auxz7Z0khTZYjGPFn5sFwDT4pphdN2GHo9FjfuvAMsmn390bBtS8nvhEIDnVZNMdhWf1Yp43yg9YqP2dUpKmedy51XrikgDwUmeGkUnr3c8XQsjIx1pMOBKpxIDxIwmlMDLnjAkOulRBa/Dei/+T6uBlHzfjypN46msW3RvbJATkiMTklLXJB2qRDBBmRJ/JMXugrfaPv9ONHukBnO3tkDvTrG6z4pRg=</latexit><latexit sha1_base64="403ZKwl1F2a56GFqnKGDQ2ii/B4=">AAACJHicZVA9SwNBEN312/iVaGmzGASLEO5E0DJgYxnBqGAO2dtMksX9uOzOCeHI77DVxl9jJxY2/hb3YgqjD5Z5O/OGx7w0U9JjFH3ShcWl5ZXVtfXKxubW9k61tnvtbe4EdIRV1t2m3IOSBjooUcFt5oDrVMFN+nBezm8ewXlpzRWOM0g0HxjZl4JjaCVdBSPW5Sobcmbuq/WoGU3B/pN4RupkhvZ9jdJuz4pcg0GhuPd3cZRhUnCHUiiYVLq5h4yLBz6Auxz7Z0khTZYjGPFn5sFwDT4pphdN2GHo9FjfuvAMsmn390bBtS8nvhEIDnVZNMdhWf1Yp43yg9YqP2dUpKmedy51XrikgDwUmeGkUnr3c8XQsjIx1pMOBKpxIDxIwmlMDLnjAkOulRBa/Dei/+T6uBlHzfjypN46msW3RvbJATkiMTklLXJB2qRDBBmRJ/JMXugrfaPv9ONHukBnO3tkDvTrG6z4pRg=</latexit><latexit sha1_base64="403ZKwl1F2a56GFqnKGDQ2ii/B4=">AAACJHicZVA9SwNBEN312/iVaGmzGASLEO5E0DJgYxnBqGAO2dtMksX9uOzOCeHI77DVxl9jJxY2/hb3YgqjD5Z5O/OGx7w0U9JjFH3ShcWl5ZXVtfXKxubW9k61tnvtbe4EdIRV1t2m3IOSBjooUcFt5oDrVMFN+nBezm8ewXlpzRWOM0g0HxjZl4JjaCVdBSPW5Sobcmbuq/WoGU3B/pN4RupkhvZ9jdJuz4pcg0GhuPd3cZRhUnCHUiiYVLq5h4yLBz6Auxz7Z0khTZYjGPFn5sFwDT4pphdN2GHo9FjfuvAMsmn390bBtS8nvhEIDnVZNMdhWf1Yp43yg9YqP2dUpKmedy51XrikgDwUmeGkUnr3c8XQsjIx1pMOBKpxIDxIwmlMDLnjAkOulRBa/Dei/+T6uBlHzfjypN46msW3RvbJATkiMTklLXJB2qRDBBmRJ/JMXugrfaPv9ONHukBnO3tkDvTrG6z4pRg=</latexit><latexit sha1_base64="403ZKwl1F2a56GFqnKGDQ2ii/B4=">AAACJHicZVA9SwNBEN312/iVaGmzGASLEO5E0DJgYxnBqGAO2dtMksX9uOzOCeHI77DVxl9jJxY2/hb3YgqjD5Z5O/OGx7w0U9JjFH3ShcWl5ZXVtfXKxubW9k61tnvtbe4EdIRV1t2m3IOSBjooUcFt5oDrVMFN+nBezm8ewXlpzRWOM0g0HxjZl4JjaCVdBSPW5Sobcmbuq/WoGU3B/pN4RupkhvZ9jdJuz4pcg0GhuPd3cZRhUnCHUiiYVLq5h4yLBz6Auxz7Z0khTZYjGPFn5sFwDT4pphdN2GHo9FjfuvAMsmn390bBtS8nvhEIDnVZNMdhWf1Yp43yg9YqP2dUpKmedy51XrikgDwUmeGkUnr3c8XQsjIx1pMOBKpxIDxIwmlMDLnjAkOulRBa/Dei/+T6uBlHzfjypN46msW3RvbJATkiMTklLXJB2qRDBBmRJ/JMXugrfaPv9ONHukBnO3tkDvTrG6z4pRg=</latexit>

 ↵n
<latexit sha1_base64="403ZKwl1F2a56GFqnKGDQ2ii/B4=">AAACJHicZVA9SwNBEN312/iVaGmzGASLEO5E0DJgYxnBqGAO2dtMksX9uOzOCeHI77DVxl9jJxY2/hb3YgqjD5Z5O/OGx7w0U9JjFH3ShcWl5ZXVtfXKxubW9k61tnvtbe4EdIRV1t2m3IOSBjooUcFt5oDrVMFN+nBezm8ewXlpzRWOM0g0HxjZl4JjaCVdBSPW5Sobcmbuq/WoGU3B/pN4RupkhvZ9jdJuz4pcg0GhuPd3cZRhUnCHUiiYVLq5h4yLBz6Auxz7Z0khTZYjGPFn5sFwDT4pphdN2GHo9FjfuvAMsmn390bBtS8nvhEIDnVZNMdhWf1Yp43yg9YqP2dUpKmedy51XrikgDwUmeGkUnr3c8XQsjIx1pMOBKpxIDxIwmlMDLnjAkOulRBa/Dei/+T6uBlHzfjypN46msW3RvbJATkiMTklLXJB2qRDBBmRJ/JMXugrfaPv9ONHukBnO3tkDvTrG6z4pRg=</latexit><latexit sha1_base64="403ZKwl1F2a56GFqnKGDQ2ii/B4=">AAACJHicZVA9SwNBEN312/iVaGmzGASLEO5E0DJgYxnBqGAO2dtMksX9uOzOCeHI77DVxl9jJxY2/hb3YgqjD5Z5O/OGx7w0U9JjFH3ShcWl5ZXVtfXKxubW9k61tnvtbe4EdIRV1t2m3IOSBjooUcFt5oDrVMFN+nBezm8ewXlpzRWOM0g0HxjZl4JjaCVdBSPW5Sobcmbuq/WoGU3B/pN4RupkhvZ9jdJuz4pcg0GhuPd3cZRhUnCHUiiYVLq5h4yLBz6Auxz7Z0khTZYjGPFn5sFwDT4pphdN2GHo9FjfuvAMsmn390bBtS8nvhEIDnVZNMdhWf1Yp43yg9YqP2dUpKmedy51XrikgDwUmeGkUnr3c8XQsjIx1pMOBKpxIDxIwmlMDLnjAkOulRBa/Dei/+T6uBlHzfjypN46msW3RvbJATkiMTklLXJB2qRDBBmRJ/JMXugrfaPv9ONHukBnO3tkDvTrG6z4pRg=</latexit><latexit sha1_base64="403ZKwl1F2a56GFqnKGDQ2ii/B4=">AAACJHicZVA9SwNBEN312/iVaGmzGASLEO5E0DJgYxnBqGAO2dtMksX9uOzOCeHI77DVxl9jJxY2/hb3YgqjD5Z5O/OGx7w0U9JjFH3ShcWl5ZXVtfXKxubW9k61tnvtbe4EdIRV1t2m3IOSBjooUcFt5oDrVMFN+nBezm8ewXlpzRWOM0g0HxjZl4JjaCVdBSPW5Sobcmbuq/WoGU3B/pN4RupkhvZ9jdJuz4pcg0GhuPd3cZRhUnCHUiiYVLq5h4yLBz6Auxz7Z0khTZYjGPFn5sFwDT4pphdN2GHo9FjfuvAMsmn390bBtS8nvhEIDnVZNMdhWf1Yp43yg9YqP2dUpKmedy51XrikgDwUmeGkUnr3c8XQsjIx1pMOBKpxIDxIwmlMDLnjAkOulRBa/Dei/+T6uBlHzfjypN46msW3RvbJATkiMTklLXJB2qRDBBmRJ/JMXugrfaPv9ONHukBnO3tkDvTrG6z4pRg=</latexit><latexit sha1_base64="403ZKwl1F2a56GFqnKGDQ2ii/B4=">AAACJHicZVA9SwNBEN312/iVaGmzGASLEO5E0DJgYxnBqGAO2dtMksX9uOzOCeHI77DVxl9jJxY2/hb3YgqjD5Z5O/OGx7w0U9JjFH3ShcWl5ZXVtfXKxubW9k61tnvtbe4EdIRV1t2m3IOSBjooUcFt5oDrVMFN+nBezm8ewXlpzRWOM0g0HxjZl4JjaCVdBSPW5Sobcmbuq/WoGU3B/pN4RupkhvZ9jdJuz4pcg0GhuPd3cZRhUnCHUiiYVLq5h4yLBz6Auxz7Z0khTZYjGPFn5sFwDT4pphdN2GHo9FjfuvAMsmn390bBtS8nvhEIDnVZNMdhWf1Yp43yg9YqP2dUpKmedy51XrikgDwUmeGkUnr3c8XQsjIx1pMOBKpxIDxIwmlMDLnjAkOulRBa/Dei/+T6uBlHzfjypN46msW3RvbJATkiMTklLXJB2qRDBBmRJ/JMXugrfaPv9ONHukBnO3tkDvTrG6z4pRg=</latexit>

G[S]
<latexit sha1_base64="WmmegwB2mSDBAkERioKNrsMb4G8=">AAACG3icZVBNSwMxEE38tn5VPXpZLEIPpeyKoMeCBz1WtK1QF8mmszaYbJZkVihL/4JXvfhrvIlXD/4bk9qDrQ/CvMy84TEvyaWwGIbfdGFxaXlldW29srG5tb1T3d3rWl0YDh2upTa3CbMgRQYdFCjhNjfAVCKhlzye+3nvCYwVOrvBUQ6xYg+ZSAVn6FsX/ev4vloLm+EEwX8STUmNTNG+36X0bqB5oSBDLpm1/SjMMS6ZQcEljCt3hYWc8Uf2AP0C07O4FFleIGR8bmYhYwpsXE4OGQdHrjMIUm3cyzCYdP9ulExZP7ENR3CofFEMh77akUoa/oNaSztjVCaJmnX2OstNXELhishxXPHeaSED1IEPKhgIAxzlyBHmJO60gA+ZYRxdnBUXWjQf0X/SPW5GYTO6Oqm16tP41sgBOSR1EpFT0iKXpE06hJMheSYv5JW+0Xf6QT9/pQt0urNPZkC/fgCK7KFi</latexit><latexit sha1_base64="WmmegwB2mSDBAkERioKNrsMb4G8=">AAACG3icZVBNSwMxEE38tn5VPXpZLEIPpeyKoMeCBz1WtK1QF8mmszaYbJZkVihL/4JXvfhrvIlXD/4bk9qDrQ/CvMy84TEvyaWwGIbfdGFxaXlldW29srG5tb1T3d3rWl0YDh2upTa3CbMgRQYdFCjhNjfAVCKhlzye+3nvCYwVOrvBUQ6xYg+ZSAVn6FsX/ev4vloLm+EEwX8STUmNTNG+36X0bqB5oSBDLpm1/SjMMS6ZQcEljCt3hYWc8Uf2AP0C07O4FFleIGR8bmYhYwpsXE4OGQdHrjMIUm3cyzCYdP9ulExZP7ENR3CofFEMh77akUoa/oNaSztjVCaJmnX2OstNXELhishxXPHeaSED1IEPKhgIAxzlyBHmJO60gA+ZYRxdnBUXWjQf0X/SPW5GYTO6Oqm16tP41sgBOSR1EpFT0iKXpE06hJMheSYv5JW+0Xf6QT9/pQt0urNPZkC/fgCK7KFi</latexit><latexit sha1_base64="WmmegwB2mSDBAkERioKNrsMb4G8=">AAACG3icZVBNSwMxEE38tn5VPXpZLEIPpeyKoMeCBz1WtK1QF8mmszaYbJZkVihL/4JXvfhrvIlXD/4bk9qDrQ/CvMy84TEvyaWwGIbfdGFxaXlldW29srG5tb1T3d3rWl0YDh2upTa3CbMgRQYdFCjhNjfAVCKhlzye+3nvCYwVOrvBUQ6xYg+ZSAVn6FsX/ev4vloLm+EEwX8STUmNTNG+36X0bqB5oSBDLpm1/SjMMS6ZQcEljCt3hYWc8Uf2AP0C07O4FFleIGR8bmYhYwpsXE4OGQdHrjMIUm3cyzCYdP9ulExZP7ENR3CofFEMh77akUoa/oNaSztjVCaJmnX2OstNXELhishxXPHeaSED1IEPKhgIAxzlyBHmJO60gA+ZYRxdnBUXWjQf0X/SPW5GYTO6Oqm16tP41sgBOSR1EpFT0iKXpE06hJMheSYv5JW+0Xf6QT9/pQt0urNPZkC/fgCK7KFi</latexit><latexit sha1_base64="WmmegwB2mSDBAkERioKNrsMb4G8=">AAACG3icZVBNSwMxEE38tn5VPXpZLEIPpeyKoMeCBz1WtK1QF8mmszaYbJZkVihL/4JXvfhrvIlXD/4bk9qDrQ/CvMy84TEvyaWwGIbfdGFxaXlldW29srG5tb1T3d3rWl0YDh2upTa3CbMgRQYdFCjhNjfAVCKhlzye+3nvCYwVOrvBUQ6xYg+ZSAVn6FsX/ev4vloLm+EEwX8STUmNTNG+36X0bqB5oSBDLpm1/SjMMS6ZQcEljCt3hYWc8Uf2AP0C07O4FFleIGR8bmYhYwpsXE4OGQdHrjMIUm3cyzCYdP9ulExZP7ENR3CofFEMh77akUoa/oNaSztjVCaJmnX2OstNXELhishxXPHeaSED1IEPKhgIAxzlyBHmJO60gA+ZYRxdnBUXWjQf0X/SPW5GYTO6Oqm16tP41sgBOSR1EpFT0iKXpE06hJMheSYv5JW+0Xf6QT9/pQt0urNPZkC/fgCK7KFi</latexit>

G � S
<latexit sha1_base64="W+QpThLnJ7eUAa5umG65YOexwaU=">AAACGnicZVBNSwMxEE38dv1q9ehlsQg9aNkVQY8FD3pUtLagS8mm0zY02SzJrFCW/gSvevHXeBOvXvw3ZuserH0Q5mXmDY95cSqFxSD4pguLS8srq2vr3sbm1vZOpbp7b3VmOLS4ltp0YmZBigRaKFBCJzXAVCyhHY8uinn7CYwVOrnDcQqRYoNE9AVn6Fq3l8e33UotaART+PMkLEmNlLjuVil97GmeKUiQS2btQxikGOXMoOASJt5jZiFlfMQG8JBh/zzKRZJmCAn/N7OQMAU2yqd3TPxD1+n5fW3cS9Cfdv9u5EzZYmKPHMGhKopiOCyqHav4qPig1tLOGOVxrGadC53lJsohc0WkOPEK734mfdR+kZPfEwY4yrEjzEncaT4fMsM4ujQ9F1r4P6J5cn/SCINGeHNaa9bL+NbIPjkgdRKSM9IkV+SatAgnA/JMXsgrfaPv9IN+/koXaLmzR2ZAv34Ad+agzQ==</latexit><latexit sha1_base64="W+QpThLnJ7eUAa5umG65YOexwaU=">AAACGnicZVBNSwMxEE38dv1q9ehlsQg9aNkVQY8FD3pUtLagS8mm0zY02SzJrFCW/gSvevHXeBOvXvw3ZuserH0Q5mXmDY95cSqFxSD4pguLS8srq2vr3sbm1vZOpbp7b3VmOLS4ltp0YmZBigRaKFBCJzXAVCyhHY8uinn7CYwVOrnDcQqRYoNE9AVn6Fq3l8e33UotaART+PMkLEmNlLjuVil97GmeKUiQS2btQxikGOXMoOASJt5jZiFlfMQG8JBh/zzKRZJmCAn/N7OQMAU2yqd3TPxD1+n5fW3cS9Cfdv9u5EzZYmKPHMGhKopiOCyqHav4qPig1tLOGOVxrGadC53lJsohc0WkOPEK734mfdR+kZPfEwY4yrEjzEncaT4fMsM4ujQ9F1r4P6J5cn/SCINGeHNaa9bL+NbIPjkgdRKSM9IkV+SatAgnA/JMXsgrfaPv9IN+/koXaLmzR2ZAv34Ad+agzQ==</latexit><latexit sha1_base64="W+QpThLnJ7eUAa5umG65YOexwaU=">AAACGnicZVBNSwMxEE38dv1q9ehlsQg9aNkVQY8FD3pUtLagS8mm0zY02SzJrFCW/gSvevHXeBOvXvw3ZuserH0Q5mXmDY95cSqFxSD4pguLS8srq2vr3sbm1vZOpbp7b3VmOLS4ltp0YmZBigRaKFBCJzXAVCyhHY8uinn7CYwVOrnDcQqRYoNE9AVn6Fq3l8e33UotaART+PMkLEmNlLjuVil97GmeKUiQS2btQxikGOXMoOASJt5jZiFlfMQG8JBh/zzKRZJmCAn/N7OQMAU2yqd3TPxD1+n5fW3cS9Cfdv9u5EzZYmKPHMGhKopiOCyqHav4qPig1tLOGOVxrGadC53lJsohc0WkOPEK734mfdR+kZPfEwY4yrEjzEncaT4fMsM4ujQ9F1r4P6J5cn/SCINGeHNaa9bL+NbIPjkgdRKSM9IkV+SatAgnA/JMXsgrfaPv9IN+/koXaLmzR2ZAv34Ad+agzQ==</latexit><latexit sha1_base64="W+QpThLnJ7eUAa5umG65YOexwaU=">AAACGnicZVBNSwMxEE38dv1q9ehlsQg9aNkVQY8FD3pUtLagS8mm0zY02SzJrFCW/gSvevHXeBOvXvw3ZuserH0Q5mXmDY95cSqFxSD4pguLS8srq2vr3sbm1vZOpbp7b3VmOLS4ltp0YmZBigRaKFBCJzXAVCyhHY8uinn7CYwVOrnDcQqRYoNE9AVn6Fq3l8e33UotaART+PMkLEmNlLjuVil97GmeKUiQS2btQxikGOXMoOASJt5jZiFlfMQG8JBh/zzKRZJmCAn/N7OQMAU2yqd3TPxD1+n5fW3cS9Cfdv9u5EzZYmKPHMGhKopiOCyqHav4qPig1tLOGOVxrGadC53lJsohc0WkOPEK734mfdR+kZPfEwY4yrEjzEncaT4fMsM4ujQ9F1r4P6J5cn/SCINGeHNaa9bL+NbIPjkgdRKSM9IkV+SatAgnA/JMXsgrfaPv9IN+/koXaLmzR2ZAv34Ad+agzQ==</latexit>

Wi�1
<latexit sha1_base64="l2gN4oQGOmseCqbzwQw6BxedRhg=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXJxFhaDaj1oBjP4yySckzqZoz2oUdofap4pSJBLZu1DGKQY5cyg4BIKr59ZSBmfsEd4yHB0FeUiSTOEhP+bWUiYAhvls1sK/8R1hv5IG/cS9Gfdvxs5U7ac2FNHcKzKohiOy2qnKj4tP6i1tAtGeRyrRedSZ7mJcshcESkWXuk9yqSP2i+z8ofCAEc5dYQ5iTvN52NmGEeXqOdCC/9HtEy6580waIa3F/VWYx5fhRyRY9IgIbkkLXJD2qRDOJmQZ/JCXukbfacf9PNXukLnO4dkAfTrB++zoqM=</latexit><latexit sha1_base64="l2gN4oQGOmseCqbzwQw6BxedRhg=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXJxFhaDaj1oBjP4yySckzqZoz2oUdofap4pSJBLZu1DGKQY5cyg4BIKr59ZSBmfsEd4yHB0FeUiSTOEhP+bWUiYAhvls1sK/8R1hv5IG/cS9Gfdvxs5U7ac2FNHcKzKohiOy2qnKj4tP6i1tAtGeRyrRedSZ7mJcshcESkWXuk9yqSP2i+z8ofCAEc5dYQ5iTvN52NmGEeXqOdCC/9HtEy6580waIa3F/VWYx5fhRyRY9IgIbkkLXJD2qRDOJmQZ/JCXukbfacf9PNXukLnO4dkAfTrB++zoqM=</latexit><latexit sha1_base64="l2gN4oQGOmseCqbzwQw6BxedRhg=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXJxFhaDaj1oBjP4yySckzqZoz2oUdofap4pSJBLZu1DGKQY5cyg4BIKr59ZSBmfsEd4yHB0FeUiSTOEhP+bWUiYAhvls1sK/8R1hv5IG/cS9Gfdvxs5U7ac2FNHcKzKohiOy2qnKj4tP6i1tAtGeRyrRedSZ7mJcshcESkWXuk9yqSP2i+z8ofCAEc5dYQ5iTvN52NmGEeXqOdCC/9HtEy6580waIa3F/VWYx5fhRyRY9IgIbkkLXJD2qRDOJmQZ/JCXukbfacf9PNXukLnO4dkAfTrB++zoqM=</latexit><latexit sha1_base64="l2gN4oQGOmseCqbzwQw6BxedRhg=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXJxFhaDaj1oBjP4yySckzqZoz2oUdofap4pSJBLZu1DGKQY5cyg4BIKr59ZSBmfsEd4yHB0FeUiSTOEhP+bWUiYAhvls1sK/8R1hv5IG/cS9Gfdvxs5U7ac2FNHcKzKohiOy2qnKj4tP6i1tAtGeRyrRedSZ7mJcshcESkWXuk9yqSP2i+z8ofCAEc5dYQ5iTvN52NmGEeXqOdCC/9HtEy6580waIa3F/VWYx5fhRyRY9IgIbkkLXJD2qRDOJmQZ/JCXukbfacf9PNXukLnO4dkAfTrB++zoqM=</latexit>

Wi
<latexit sha1_base64="y24FdX3OhAUj1AbqCnt2MMpt/+E=">AAACHHicZVBNSwMxEE38rPWr1aOXxSL0UMquCHosePFYwX5Au5RsOm1Dk82SzApl6W/wqhd/jTfxKvhvzNYebPsgzMvMGx7zokQKi77/Q7e2d3b39gsHxcOj45PTUvmsbXVqOLS4ltp0I2ZBihhaKFBCNzHAVCShE03v83nnGYwVOn7CWQKhYuNYjARn6FqtziAT80Gp4tf9BbxNEixJhSzRHJQp7Q81TxXEyCWzthf4CYYZMyi4hHmxn1pIGJ+yMfRSHN2FmYiTFCHmazMLMVNgw2xxydy7cp2hN9LGvRi9Rff/RsaUzSe25ghOVF4Uw0le7UxFtfyDWku7YpRFkVp1znWWmzCD1BWR4LyYe49S6aH28qS8oTDAUc4cYU7iTvP4hBnG0eVZdKEF6xFtkvZ1PfDrweNNpVFdxlcgF+SSVElAbkmDPJAmaRFOBHkhr+SNvtMP+km//qRbdLlzTlZAv38BAaKiMQ==</latexit><latexit sha1_base64="y24FdX3OhAUj1AbqCnt2MMpt/+E=">AAACHHicZVBNSwMxEE38rPWr1aOXxSL0UMquCHosePFYwX5Au5RsOm1Dk82SzApl6W/wqhd/jTfxKvhvzNYebPsgzMvMGx7zokQKi77/Q7e2d3b39gsHxcOj45PTUvmsbXVqOLS4ltp0I2ZBihhaKFBCNzHAVCShE03v83nnGYwVOn7CWQKhYuNYjARn6FqtziAT80Gp4tf9BbxNEixJhSzRHJQp7Q81TxXEyCWzthf4CYYZMyi4hHmxn1pIGJ+yMfRSHN2FmYiTFCHmazMLMVNgw2xxydy7cp2hN9LGvRi9Rff/RsaUzSe25ghOVF4Uw0le7UxFtfyDWku7YpRFkVp1znWWmzCD1BWR4LyYe49S6aH28qS8oTDAUc4cYU7iTvP4hBnG0eVZdKEF6xFtkvZ1PfDrweNNpVFdxlcgF+SSVElAbkmDPJAmaRFOBHkhr+SNvtMP+km//qRbdLlzTlZAv38BAaKiMQ==</latexit><latexit sha1_base64="y24FdX3OhAUj1AbqCnt2MMpt/+E=">AAACHHicZVBNSwMxEE38rPWr1aOXxSL0UMquCHosePFYwX5Au5RsOm1Dk82SzApl6W/wqhd/jTfxKvhvzNYebPsgzMvMGx7zokQKi77/Q7e2d3b39gsHxcOj45PTUvmsbXVqOLS4ltp0I2ZBihhaKFBCNzHAVCShE03v83nnGYwVOn7CWQKhYuNYjARn6FqtziAT80Gp4tf9BbxNEixJhSzRHJQp7Q81TxXEyCWzthf4CYYZMyi4hHmxn1pIGJ+yMfRSHN2FmYiTFCHmazMLMVNgw2xxydy7cp2hN9LGvRi9Rff/RsaUzSe25ghOVF4Uw0le7UxFtfyDWku7YpRFkVp1znWWmzCD1BWR4LyYe49S6aH28qS8oTDAUc4cYU7iTvP4hBnG0eVZdKEF6xFtkvZ1PfDrweNNpVFdxlcgF+SSVElAbkmDPJAmaRFOBHkhr+SNvtMP+km//qRbdLlzTlZAv38BAaKiMQ==</latexit><latexit sha1_base64="y24FdX3OhAUj1AbqCnt2MMpt/+E=">AAACHHicZVBNSwMxEE38rPWr1aOXxSL0UMquCHosePFYwX5Au5RsOm1Dk82SzApl6W/wqhd/jTfxKvhvzNYebPsgzMvMGx7zokQKi77/Q7e2d3b39gsHxcOj45PTUvmsbXVqOLS4ltp0I2ZBihhaKFBCNzHAVCShE03v83nnGYwVOn7CWQKhYuNYjARn6FqtziAT80Gp4tf9BbxNEixJhSzRHJQp7Q81TxXEyCWzthf4CYYZMyi4hHmxn1pIGJ+yMfRSHN2FmYiTFCHmazMLMVNgw2xxydy7cp2hN9LGvRi9Rff/RsaUzSe25ghOVF4Uw0le7UxFtfyDWku7YpRFkVp1znWWmzCD1BWR4LyYe49S6aH28qS8oTDAUc4cYU7iTvP4hBnG0eVZdKEF6xFtkvZ1PfDrweNNpVFdxlcgF+SSVElAbkmDPJAmaRFOBHkhr+SNvtMP+km//qRbdLlzTlZAv38BAaKiMQ==</latexit>

Wi+1
<latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit><latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit><latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit><latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit>

Wt
<latexit sha1_base64="jKQpcdpqUBuAwyfZFcN3xS99LvE=">AAACHHicZVBNSwMxEE38rPWr1aOXxSL0UMquCHosePFYwX5Au5RsOm1Dk82SzApl6W/wqhd/jTfxKvhvzNYebPsgzMvMGx7zokQKi77/Q7e2d3b39gsHxcOj45PTUvmsbXVqOLS4ltp0I2ZBihhaKFBCNzHAVCShE03v83nnGYwVOn7CWQKhYuNYjARn6FqtziDD+aBU8ev+At4mCZakQpZoDsqU9oeapwpi5JJZ2wv8BMOMGRRcwrzYTy0kjE/ZGHopju7CTMRJihDztZmFmCmwYba4ZO5duc7QG2njXozeovt/I2PK5hNbcwQnKi+K4SSvdqaiWv5BraVdMcqiSK065zrLTZhB6opIcF7MvUep9FB7eVLeUBjgKGeOMCdxp3l8wgzj6PIsutCC9Yg2Sfu6Hvj14PGm0qgu4yuQC3JJqiQgt6RBHkiTtAgngryQV/JG3+kH/aRff9Itutw5Jyug378UaaI8</latexit><latexit sha1_base64="jKQpcdpqUBuAwyfZFcN3xS99LvE=">AAACHHicZVBNSwMxEE38rPWr1aOXxSL0UMquCHosePFYwX5Au5RsOm1Dk82SzApl6W/wqhd/jTfxKvhvzNYebPsgzMvMGx7zokQKi77/Q7e2d3b39gsHxcOj45PTUvmsbXVqOLS4ltp0I2ZBihhaKFBCNzHAVCShE03v83nnGYwVOn7CWQKhYuNYjARn6FqtziDD+aBU8ev+At4mCZakQpZoDsqU9oeapwpi5JJZ2wv8BMOMGRRcwrzYTy0kjE/ZGHopju7CTMRJihDztZmFmCmwYba4ZO5duc7QG2njXozeovt/I2PK5hNbcwQnKi+K4SSvdqaiWv5BraVdMcqiSK065zrLTZhB6opIcF7MvUep9FB7eVLeUBjgKGeOMCdxp3l8wgzj6PIsutCC9Yg2Sfu6Hvj14PGm0qgu4yuQC3JJqiQgt6RBHkiTtAgngryQV/JG3+kH/aRff9Itutw5Jyug378UaaI8</latexit><latexit sha1_base64="jKQpcdpqUBuAwyfZFcN3xS99LvE=">AAACHHicZVBNSwMxEE38rPWr1aOXxSL0UMquCHosePFYwX5Au5RsOm1Dk82SzApl6W/wqhd/jTfxKvhvzNYebPsgzMvMGx7zokQKi77/Q7e2d3b39gsHxcOj45PTUvmsbXVqOLS4ltp0I2ZBihhaKFBCNzHAVCShE03v83nnGYwVOn7CWQKhYuNYjARn6FqtziDD+aBU8ev+At4mCZakQpZoDsqU9oeapwpi5JJZ2wv8BMOMGRRcwrzYTy0kjE/ZGHopju7CTMRJihDztZmFmCmwYba4ZO5duc7QG2njXozeovt/I2PK5hNbcwQnKi+K4SSvdqaiWv5BraVdMcqiSK065zrLTZhB6opIcF7MvUep9FB7eVLeUBjgKGeOMCdxp3l8wgzj6PIsutCC9Yg2Sfu6Hvj14PGm0qgu4yuQC3JJqiQgt6RBHkiTtAgngryQV/JG3+kH/aRff9Itutw5Jyug378UaaI8</latexit><latexit sha1_base64="jKQpcdpqUBuAwyfZFcN3xS99LvE=">AAACHHicZVBNSwMxEE38rPWr1aOXxSL0UMquCHosePFYwX5Au5RsOm1Dk82SzApl6W/wqhd/jTfxKvhvzNYebPsgzMvMGx7zokQKi77/Q7e2d3b39gsHxcOj45PTUvmsbXVqOLS4ltp0I2ZBihhaKFBCNzHAVCShE03v83nnGYwVOn7CWQKhYuNYjARn6FqtziDD+aBU8ev+At4mCZakQpZoDsqU9oeapwpi5JJZ2wv8BMOMGRRcwrzYTy0kjE/ZGHopju7CTMRJihDztZmFmCmwYba4ZO5duc7QG2njXozeovt/I2PK5hNbcwQnKi+K4SSvdqaiWv5BraVdMcqiSK065zrLTZhB6opIcF7MvUep9FB7eVLeUBjgKGeOMCdxp3l8wgzj6PIsutCC9Yg2Sfu6Hvj14PGm0qgu4yuQC3JJqiQgt6RBHkiTtAgngryQV/JG3+kH/aRff9Itutw5Jyug378UaaI8</latexit>

Wt�1
<latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit>

Wi+2
<latexit sha1_base64="3WYWaohXUGX5/q2sFOGjDaCX2rM=">AAACHnicZVBNSwMxEE38rPWr1aOXxSIULGW3CHosePGoYG1Bl5JNp21oslmSWaEs/RFe9eKv8SZe9d+YrXuw7YMwLzNveMyLEiks+v4PXVvf2NzaLu2Ud/f2Dw4r1aMHq1PDocO11KYXMQtSxNBBgRJ6iQGmIgndaHKdz7vPYKzQ8T1OEwgVG8ViKDhD1+p2+5k4b836lZrf9OfwVklQkBopcNuvUvo00DxVECOXzNrHwE8wzJhBwSXMyk+phYTxCRvBY4rDqzATcZIixHxpZiFmCmyYzW+ZeWeuM/CG2rgXozfv/t/ImLL5xDYcwbHKi2I4zqudqqiRf1BraReMsihSi865znITZpC6IhKclXPvYSo91F6elTcQBjjKqSPMSdxpHh8zwzi6RMsutGA5olXy0GoGfjO4u6i160V8JXJCTkmdBOSStMkNuSUdwsmEvJBX8kbf6Qf9pF9/0jVa7ByTBdDvX+38oqI=</latexit><latexit sha1_base64="3WYWaohXUGX5/q2sFOGjDaCX2rM=">AAACHnicZVBNSwMxEE38rPWr1aOXxSIULGW3CHosePGoYG1Bl5JNp21oslmSWaEs/RFe9eKv8SZe9d+YrXuw7YMwLzNveMyLEiks+v4PXVvf2NzaLu2Ud/f2Dw4r1aMHq1PDocO11KYXMQtSxNBBgRJ6iQGmIgndaHKdz7vPYKzQ8T1OEwgVG8ViKDhD1+p2+5k4b836lZrf9OfwVklQkBopcNuvUvo00DxVECOXzNrHwE8wzJhBwSXMyk+phYTxCRvBY4rDqzATcZIixHxpZiFmCmyYzW+ZeWeuM/CG2rgXozfv/t/ImLL5xDYcwbHKi2I4zqudqqiRf1BraReMsihSi865znITZpC6IhKclXPvYSo91F6elTcQBjjKqSPMSdxpHh8zwzi6RMsutGA5olXy0GoGfjO4u6i160V8JXJCTkmdBOSStMkNuSUdwsmEvJBX8kbf6Qf9pF9/0jVa7ByTBdDvX+38oqI=</latexit><latexit sha1_base64="3WYWaohXUGX5/q2sFOGjDaCX2rM=">AAACHnicZVBNSwMxEE38rPWr1aOXxSIULGW3CHosePGoYG1Bl5JNp21oslmSWaEs/RFe9eKv8SZe9d+YrXuw7YMwLzNveMyLEiks+v4PXVvf2NzaLu2Ud/f2Dw4r1aMHq1PDocO11KYXMQtSxNBBgRJ6iQGmIgndaHKdz7vPYKzQ8T1OEwgVG8ViKDhD1+p2+5k4b836lZrf9OfwVklQkBopcNuvUvo00DxVECOXzNrHwE8wzJhBwSXMyk+phYTxCRvBY4rDqzATcZIixHxpZiFmCmyYzW+ZeWeuM/CG2rgXozfv/t/ImLL5xDYcwbHKi2I4zqudqqiRf1BraReMsihSi865znITZpC6IhKclXPvYSo91F6elTcQBjjKqSPMSdxpHh8zwzi6RMsutGA5olXy0GoGfjO4u6i160V8JXJCTkmdBOSStMkNuSUdwsmEvJBX8kbf6Qf9pF9/0jVa7ByTBdDvX+38oqI=</latexit><latexit sha1_base64="3WYWaohXUGX5/q2sFOGjDaCX2rM=">AAACHnicZVBNSwMxEE38rPWr1aOXxSIULGW3CHosePGoYG1Bl5JNp21oslmSWaEs/RFe9eKv8SZe9d+YrXuw7YMwLzNveMyLEiks+v4PXVvf2NzaLu2Ud/f2Dw4r1aMHq1PDocO11KYXMQtSxNBBgRJ6iQGmIgndaHKdz7vPYKzQ8T1OEwgVG8ViKDhD1+p2+5k4b836lZrf9OfwVklQkBopcNuvUvo00DxVECOXzNrHwE8wzJhBwSXMyk+phYTxCRvBY4rDqzATcZIixHxpZiFmCmyYzW+ZeWeuM/CG2rgXozfv/t/ImLL5xDYcwbHKi2I4zqudqqiRf1BraReMsihSi865znITZpC6IhKclXPvYSo91F6elTcQBjjKqSPMSdxpHh8zwzi6RMsutGA5olXy0GoGfjO4u6i160V8JXJCTkmdBOSStMkNuSUdwsmEvJBX8kbf6Qf9pF9/0jVa7ByTBdDvX+38oqI=</latexit>

Figure 2 An illustration of construction of the solution using solutions for instances of smaller
sizes.

sake of notational simplicity, we will define Aa,b[S] ⊆ A[S], where the sets in Aa,b[S] will be
of size exactly a and will have exactly b neighbors outside S. We will define the above sets
only for “relevant” as and bs. We now move to the formal description of these sets. Consider
S ∈ S and integers a, b, such that |S|+ a+ b ≤ ρn and |N(S)| ≤ b. We let Aa,b[S] = {A ⊆
V (G− S) | G− S[A] is connected, NG(S) ⊆ A, |A| = a, and |NG−S(A)| = b}.

The algorithm now computes nice solutions. The algorithm considers sets from S ∈ S,
in increasing order of their sizes and does the following. (Two sets that have the same size
can be considered in any order.) For every pair of integer a, b, such that |S|+ a+ b ≤ ρn

and |N(S)| ≤ b, it computes the set Aa,b[S]. Note that Aa,b[S] can be computed in time
O?(2a+b−|S|), using Lemma 1. Now the algorithm considers A ∈ Aa,b[S]. Intuitively speaking,
A is the ”new” witness set to be “appended” to the witness structure of G[S], to obtain a
witness structure for G[S ∪A]. Thus, the algorithm sets Γ[S ∪A] = max{Γ[S ∪A],Γ[S] + 1}.
This finishes the description of our algorithm.

In the following few lemmas we establish the correctness and runtime analysis of the
algorithm.

I Lemma 5. For each S ∈ S, the algorithm computes Γ[S] correctly.

I Lemma 6. The algorithm presented for Enum-Partial-PC runs in time O?(2ρn).

4.2 Algorithm for Balanced PC
We formally define the problem Balanced PC in the following.

Balanced PC
Input: A graph G on n vertices and a fraction 0 < α ≤ 1.
Output: Largest integer t ≥ 2 for which G has a Pt-witness structure W = (W1,W2,

· · · ,Wt), such that there is i ∈ [t] with N [∪j∈[i]Wj ] ≤ αn and N [∪j∈[t]\[i]Wj ] ≤ αn.
Moreover, if no such t exists, then output 1.

We design an algorithm for Balanced PC running in time O?(2αn). Let (G,α) be an
instance of Balanced PC.

We begin by explaining the intuition behind the algorithm. Recall that for a α-small set
S ⊆ V (G), integer tS is called the nice solution if G[S] is contractible to PtS with all the
vertices in Φ(S) in the end bag. That is, there is a PtS -witness structure (W1,W2, · · ·WtS )
of G[S], such that Φ(S) ⊆WtS . Suppose that we know the value of tS for every α-small set
S. Now we see how we can use these nice solutions for α-small sets to solve our problem (see
Figure 2). Recall that we are looking for the largest integer t, such that G is contractible to
Pt, withW = (W1,W2, · · · ,Wt) as a Pt-witness structure of G, such that there is i ∈ [t] with
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G � S
<latexit sha1_base64="W+QpThLnJ7eUAa5umG65YOexwaU=">AAACGnicZVBNSwMxEE38dv1q9ehlsQg9aNkVQY8FD3pUtLagS8mm0zY02SzJrFCW/gSvevHXeBOvXvw3ZuserH0Q5mXmDY95cSqFxSD4pguLS8srq2vr3sbm1vZOpbp7b3VmOLS4ltp0YmZBigRaKFBCJzXAVCyhHY8uinn7CYwVOrnDcQqRYoNE9AVn6Fq3l8e33UotaART+PMkLEmNlLjuVil97GmeKUiQS2btQxikGOXMoOASJt5jZiFlfMQG8JBh/zzKRZJmCAn/N7OQMAU2yqd3TPxD1+n5fW3cS9Cfdv9u5EzZYmKPHMGhKopiOCyqHav4qPig1tLOGOVxrGadC53lJsohc0WkOPEK734mfdR+kZPfEwY4yrEjzEncaT4fMsM4ujQ9F1r4P6J5cn/SCINGeHNaa9bL+NbIPjkgdRKSM9IkV+SatAgnA/JMXsgrfaPv9IN+/koXaLmzR2ZAv34Ad+agzQ==</latexit><latexit sha1_base64="W+QpThLnJ7eUAa5umG65YOexwaU=">AAACGnicZVBNSwMxEE38dv1q9ehlsQg9aNkVQY8FD3pUtLagS8mm0zY02SzJrFCW/gSvevHXeBOvXvw3ZuserH0Q5mXmDY95cSqFxSD4pguLS8srq2vr3sbm1vZOpbp7b3VmOLS4ltp0YmZBigRaKFBCJzXAVCyhHY8uinn7CYwVOrnDcQqRYoNE9AVn6Fq3l8e33UotaART+PMkLEmNlLjuVil97GmeKUiQS2btQxikGOXMoOASJt5jZiFlfMQG8JBh/zzKRZJmCAn/N7OQMAU2yqd3TPxD1+n5fW3cS9Cfdv9u5EzZYmKPHMGhKopiOCyqHav4qPig1tLOGOVxrGadC53lJsohc0WkOPEK734mfdR+kZPfEwY4yrEjzEncaT4fMsM4ujQ9F1r4P6J5cn/SCINGeHNaa9bL+NbIPjkgdRKSM9IkV+SatAgnA/JMXsgrfaPv9IN+/koXaLmzR2ZAv34Ad+agzQ==</latexit><latexit sha1_base64="W+QpThLnJ7eUAa5umG65YOexwaU=">AAACGnicZVBNSwMxEE38dv1q9ehlsQg9aNkVQY8FD3pUtLagS8mm0zY02SzJrFCW/gSvevHXeBOvXvw3ZuserH0Q5mXmDY95cSqFxSD4pguLS8srq2vr3sbm1vZOpbp7b3VmOLS4ltp0YmZBigRaKFBCJzXAVCyhHY8uinn7CYwVOrnDcQqRYoNE9AVn6Fq3l8e33UotaART+PMkLEmNlLjuVil97GmeKUiQS2btQxikGOXMoOASJt5jZiFlfMQG8JBh/zzKRZJmCAn/N7OQMAU2yqd3TPxD1+n5fW3cS9Cfdv9u5EzZYmKPHMGhKopiOCyqHav4qPig1tLOGOVxrGadC53lJsohc0WkOPEK734mfdR+kZPfEwY4yrEjzEncaT4fMsM4ujQ9F1r4P6J5cn/SCINGeHNaa9bL+NbIPjkgdRKSM9IkV+SatAgnA/JMXsgrfaPv9IN+/koXaLmzR2ZAv34Ad+agzQ==</latexit><latexit sha1_base64="W+QpThLnJ7eUAa5umG65YOexwaU=">AAACGnicZVBNSwMxEE38dv1q9ehlsQg9aNkVQY8FD3pUtLagS8mm0zY02SzJrFCW/gSvevHXeBOvXvw3ZuserH0Q5mXmDY95cSqFxSD4pguLS8srq2vr3sbm1vZOpbp7b3VmOLS4ltp0YmZBigRaKFBCJzXAVCyhHY8uinn7CYwVOrnDcQqRYoNE9AVn6Fq3l8e33UotaART+PMkLEmNlLjuVil97GmeKUiQS2btQxikGOXMoOASJt5jZiFlfMQG8JBh/zzKRZJmCAn/N7OQMAU2yqd3TPxD1+n5fW3cS9Cfdv9u5EzZYmKPHMGhKopiOCyqHav4qPig1tLOGOVxrGadC53lJsohc0WkOPEK734mfdR+kZPfEwY4yrEjzEncaT4fMsM4ujQ9F1r4P6J5cn/SCINGeHNaa9bL+NbIPjkgdRKSM9IkV+SatAgnA/JMXsgrfaPv9IN+/koXaLmzR2ZAv34Ad+agzQ==</latexit>

Wi
<latexit sha1_base64="y24FdX3OhAUj1AbqCnt2MMpt/+E=">AAACHHicZVBNSwMxEE38rPWr1aOXxSL0UMquCHosePFYwX5Au5RsOm1Dk82SzApl6W/wqhd/jTfxKvhvzNYebPsgzMvMGx7zokQKi77/Q7e2d3b39gsHxcOj45PTUvmsbXVqOLS4ltp0I2ZBihhaKFBCNzHAVCShE03v83nnGYwVOn7CWQKhYuNYjARn6FqtziAT80Gp4tf9BbxNEixJhSzRHJQp7Q81TxXEyCWzthf4CYYZMyi4hHmxn1pIGJ+yMfRSHN2FmYiTFCHmazMLMVNgw2xxydy7cp2hN9LGvRi9Rff/RsaUzSe25ghOVF4Uw0le7UxFtfyDWku7YpRFkVp1znWWmzCD1BWR4LyYe49S6aH28qS8oTDAUc4cYU7iTvP4hBnG0eVZdKEF6xFtkvZ1PfDrweNNpVFdxlcgF+SSVElAbkmDPJAmaRFOBHkhr+SNvtMP+km//qRbdLlzTlZAv38BAaKiMQ==</latexit><latexit sha1_base64="y24FdX3OhAUj1AbqCnt2MMpt/+E=">AAACHHicZVBNSwMxEE38rPWr1aOXxSL0UMquCHosePFYwX5Au5RsOm1Dk82SzApl6W/wqhd/jTfxKvhvzNYebPsgzMvMGx7zokQKi77/Q7e2d3b39gsHxcOj45PTUvmsbXVqOLS4ltp0I2ZBihhaKFBCNzHAVCShE03v83nnGYwVOn7CWQKhYuNYjARn6FqtziAT80Gp4tf9BbxNEixJhSzRHJQp7Q81TxXEyCWzthf4CYYZMyi4hHmxn1pIGJ+yMfRSHN2FmYiTFCHmazMLMVNgw2xxydy7cp2hN9LGvRi9Rff/RsaUzSe25ghOVF4Uw0le7UxFtfyDWku7YpRFkVp1znWWmzCD1BWR4LyYe49S6aH28qS8oTDAUc4cYU7iTvP4hBnG0eVZdKEF6xFtkvZ1PfDrweNNpVFdxlcgF+SSVElAbkmDPJAmaRFOBHkhr+SNvtMP+km//qRbdLlzTlZAv38BAaKiMQ==</latexit><latexit sha1_base64="y24FdX3OhAUj1AbqCnt2MMpt/+E=">AAACHHicZVBNSwMxEE38rPWr1aOXxSL0UMquCHosePFYwX5Au5RsOm1Dk82SzApl6W/wqhd/jTfxKvhvzNYebPsgzMvMGx7zokQKi77/Q7e2d3b39gsHxcOj45PTUvmsbXVqOLS4ltp0I2ZBihhaKFBCNzHAVCShE03v83nnGYwVOn7CWQKhYuNYjARn6FqtziAT80Gp4tf9BbxNEixJhSzRHJQp7Q81TxXEyCWzthf4CYYZMyi4hHmxn1pIGJ+yMfRSHN2FmYiTFCHmazMLMVNgw2xxydy7cp2hN9LGvRi9Rff/RsaUzSe25ghOVF4Uw0le7UxFtfyDWku7YpRFkVp1znWWmzCD1BWR4LyYe49S6aH28qS8oTDAUc4cYU7iTvP4hBnG0eVZdKEF6xFtkvZ1PfDrweNNpVFdxlcgF+SSVElAbkmDPJAmaRFOBHkhr+SNvtMP+km//qRbdLlzTlZAv38BAaKiMQ==</latexit><latexit sha1_base64="y24FdX3OhAUj1AbqCnt2MMpt/+E=">AAACHHicZVBNSwMxEE38rPWr1aOXxSL0UMquCHosePFYwX5Au5RsOm1Dk82SzApl6W/wqhd/jTfxKvhvzNYebPsgzMvMGx7zokQKi77/Q7e2d3b39gsHxcOj45PTUvmsbXVqOLS4ltp0I2ZBihhaKFBCNzHAVCShE03v83nnGYwVOn7CWQKhYuNYjARn6FqtziAT80Gp4tf9BbxNEixJhSzRHJQp7Q81TxXEyCWzthf4CYYZMyi4hHmxn1pIGJ+yMfRSHN2FmYiTFCHmazMLMVNgw2xxydy7cp2hN9LGvRi9Rff/RsaUzSe25ghOVF4Uw0le7UxFtfyDWku7YpRFkVp1znWWmzCD1BWR4LyYe49S6aH28qS8oTDAUc4cYU7iTvP4hBnG0eVZdKEF6xFtkvZ1PfDrweNNpVFdxlcgF+SSVElAbkmDPJAmaRFOBHkhr+SNvtMP+km//qRbdLlzTlZAv38BAaKiMQ==</latexit>

Wi+1
<latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit><latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit><latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit><latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit>

G[S1]
<latexit sha1_base64="NsbItSjoliAjQ/f4tp7kXkbcD3w=">AAACHXicZVBNSwMxEE3qV63fevSyWIQeStkVQY8FD3qsaKtQl5JNZ2002SzJrFCW/gevevHXeBOv4r8xW/dg64MwLzNveMyLUiks+v43rSwsLi2vVFdra+sbm1vbO7s9qzPDocu11OY2YhakSKCLAiXcpgaYiiTcRI9nxfzmCYwVOrnGcQqhYveJiAVn6Fq98/7VIAgH23W/5U/h/SdBSeqkRGewQ+ndUPNMQYJcMmv7gZ9imDODgkuY1O4yCynjj+we+hnGp2EukjRDSPjczELCFNgwn54y8Q5dZ+jF2riXoDft/t3ImbLFxDYdwZEqimI4Kqodq6hZfFBraWeM8ihSs86FznIT5pC5IlKc1ArvOJMeaq+IyhsKAxzl2BHmJO40j4+YYRxdoDUXWjAf0X/SO2oFfiu4PK63G2V8VbJPDkiDBOSEtMkF6ZAu4eSBPJMX8krf6Dv9oJ+/0gotd/bIDOjXD81KogY=</latexit><latexit sha1_base64="NsbItSjoliAjQ/f4tp7kXkbcD3w=">AAACHXicZVBNSwMxEE3qV63fevSyWIQeStkVQY8FD3qsaKtQl5JNZ2002SzJrFCW/gevevHXeBOv4r8xW/dg64MwLzNveMyLUiks+v43rSwsLi2vVFdra+sbm1vbO7s9qzPDocu11OY2YhakSKCLAiXcpgaYiiTcRI9nxfzmCYwVOrnGcQqhYveJiAVn6Fq98/7VIAgH23W/5U/h/SdBSeqkRGewQ+ndUPNMQYJcMmv7gZ9imDODgkuY1O4yCynjj+we+hnGp2EukjRDSPjczELCFNgwn54y8Q5dZ+jF2riXoDft/t3ImbLFxDYdwZEqimI4Kqodq6hZfFBraWeM8ihSs86FznIT5pC5IlKc1ArvOJMeaq+IyhsKAxzl2BHmJO40j4+YYRxdoDUXWjAf0X/SO2oFfiu4PK63G2V8VbJPDkiDBOSEtMkF6ZAu4eSBPJMX8krf6Dv9oJ+/0gotd/bIDOjXD81KogY=</latexit><latexit sha1_base64="NsbItSjoliAjQ/f4tp7kXkbcD3w=">AAACHXicZVBNSwMxEE3qV63fevSyWIQeStkVQY8FD3qsaKtQl5JNZ2002SzJrFCW/gevevHXeBOv4r8xW/dg64MwLzNveMyLUiks+v43rSwsLi2vVFdra+sbm1vbO7s9qzPDocu11OY2YhakSKCLAiXcpgaYiiTcRI9nxfzmCYwVOrnGcQqhYveJiAVn6Fq98/7VIAgH23W/5U/h/SdBSeqkRGewQ+ndUPNMQYJcMmv7gZ9imDODgkuY1O4yCynjj+we+hnGp2EukjRDSPjczELCFNgwn54y8Q5dZ+jF2riXoDft/t3ImbLFxDYdwZEqimI4Kqodq6hZfFBraWeM8ihSs86FznIT5pC5IlKc1ArvOJMeaq+IyhsKAxzl2BHmJO40j4+YYRxdoDUXWjAf0X/SO2oFfiu4PK63G2V8VbJPDkiDBOSEtMkF6ZAu4eSBPJMX8krf6Dv9oJ+/0gotd/bIDOjXD81KogY=</latexit><latexit sha1_base64="NsbItSjoliAjQ/f4tp7kXkbcD3w=">AAACHXicZVBNSwMxEE3qV63fevSyWIQeStkVQY8FD3qsaKtQl5JNZ2002SzJrFCW/gevevHXeBOv4r8xW/dg64MwLzNveMyLUiks+v43rSwsLi2vVFdra+sbm1vbO7s9qzPDocu11OY2YhakSKCLAiXcpgaYiiTcRI9nxfzmCYwVOrnGcQqhYveJiAVn6Fq98/7VIAgH23W/5U/h/SdBSeqkRGewQ+ndUPNMQYJcMmv7gZ9imDODgkuY1O4yCynjj+we+hnGp2EukjRDSPjczELCFNgwn54y8Q5dZ+jF2riXoDft/t3ImbLFxDYdwZEqimI4Kqodq6hZfFBraWeM8ihSs86FznIT5pC5IlKc1ArvOJMeaq+IyhsKAxzl2BHmJO40j4+YYRxdoDUXWjAf0X/SO2oFfiu4PK63G2V8VbJPDkiDBOSEtMkF6ZAu4eSBPJMX8krf6Dv9oJ+/0gotd/bIDOjXD81KogY=</latexit>

W1
<latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit>

W2
<latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit>

Wi�1
<latexit sha1_base64="l2gN4oQGOmseCqbzwQw6BxedRhg=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXJxFhaDaj1oBjP4yySckzqZoz2oUdofap4pSJBLZu1DGKQY5cyg4BIKr59ZSBmfsEd4yHB0FeUiSTOEhP+bWUiYAhvls1sK/8R1hv5IG/cS9Gfdvxs5U7ac2FNHcKzKohiOy2qnKj4tP6i1tAtGeRyrRedSZ7mJcshcESkWXuk9yqSP2i+z8ofCAEc5dYQ5iTvN52NmGEeXqOdCC/9HtEy6580waIa3F/VWYx5fhRyRY9IgIbkkLXJD2qRDOJmQZ/JCXukbfacf9PNXukLnO4dkAfTrB++zoqM=</latexit><latexit sha1_base64="l2gN4oQGOmseCqbzwQw6BxedRhg=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXJxFhaDaj1oBjP4yySckzqZoz2oUdofap4pSJBLZu1DGKQY5cyg4BIKr59ZSBmfsEd4yHB0FeUiSTOEhP+bWUiYAhvls1sK/8R1hv5IG/cS9Gfdvxs5U7ac2FNHcKzKohiOy2qnKj4tP6i1tAtGeRyrRedSZ7mJcshcESkWXuk9yqSP2i+z8ofCAEc5dYQ5iTvN52NmGEeXqOdCC/9HtEy6580waIa3F/VWYx5fhRyRY9IgIbkkLXJD2qRDOJmQZ/JCXukbfacf9PNXukLnO4dkAfTrB++zoqM=</latexit><latexit sha1_base64="l2gN4oQGOmseCqbzwQw6BxedRhg=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXJxFhaDaj1oBjP4yySckzqZoz2oUdofap4pSJBLZu1DGKQY5cyg4BIKr59ZSBmfsEd4yHB0FeUiSTOEhP+bWUiYAhvls1sK/8R1hv5IG/cS9Gfdvxs5U7ac2FNHcKzKohiOy2qnKj4tP6i1tAtGeRyrRedSZ7mJcshcESkWXuk9yqSP2i+z8ofCAEc5dYQ5iTvN52NmGEeXqOdCC/9HtEy6580waIa3F/VWYx5fhRyRY9IgIbkkLXJD2qRDOJmQZ/JCXukbfacf9PNXukLnO4dkAfTrB++zoqM=</latexit><latexit sha1_base64="l2gN4oQGOmseCqbzwQw6BxedRhg=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXJxFhaDaj1oBjP4yySckzqZoz2oUdofap4pSJBLZu1DGKQY5cyg4BIKr59ZSBmfsEd4yHB0FeUiSTOEhP+bWUiYAhvls1sK/8R1hv5IG/cS9Gfdvxs5U7ac2FNHcKzKohiOy2qnKj4tP6i1tAtGeRyrRedSZ7mJcshcESkWXuk9yqSP2i+z8ofCAEc5dYQ5iTvN52NmGEeXqOdCC/9HtEy6580waIa3F/VWYx5fhRyRY9IgIbkkLXJD2qRDOJmQZ/JCXukbfacf9PNXukLnO4dkAfTrB++zoqM=</latexit>

G[S2]
<latexit sha1_base64="siOe1bINZeN9wKBLl74Qp2I5IiI=">AAACHXicZVBNSwMxEE3qV12/9ehlsQg9lLIrgh4LHvRY0VahLiWbTm1sslmSWaEs/Q9e9eKv8SZexX9jtu7B6oMwLzNveMyLUyksBsEXrSwsLi2vVFe9tfWNza3tnd2u1Znh0OFaanMbMwtSJNBBgRJuUwNMxRJu4vFZMb95BGOFTq5xkkKk2H0ihoIzdK3uee+qfxT1t2tBM5jB/0/CktRIiXZ/h9K7geaZggS5ZNb2wiDFKGcGBZcw9e4yCynjY3YPvQyHp1EukjRDSPifmYWEKbBRPjtl6h+6zsAfauNegv6s+3sjZ8oWE9twBEeqKIrhqKh2ouJG8UGtpZ0zyuNYzTsXOstNlEPmikhx6hXew0z6qP0iKn8gDHCUE0eYk7jTfD5ihnF0gXoutPBvRP9J96gZBs3w8rjWqpfxVck+OSB1EpIT0iIXpE06hJMH8kSeyQt9pW/0nX78SCu03Nkjc6Cf387/ogc=</latexit><latexit sha1_base64="siOe1bINZeN9wKBLl74Qp2I5IiI=">AAACHXicZVBNSwMxEE3qV12/9ehlsQg9lLIrgh4LHvRY0VahLiWbTm1sslmSWaEs/Q9e9eKv8SZexX9jtu7B6oMwLzNveMyLUyksBsEXrSwsLi2vVFe9tfWNza3tnd2u1Znh0OFaanMbMwtSJNBBgRJuUwNMxRJu4vFZMb95BGOFTq5xkkKk2H0ihoIzdK3uee+qfxT1t2tBM5jB/0/CktRIiXZ/h9K7geaZggS5ZNb2wiDFKGcGBZcw9e4yCynjY3YPvQyHp1EukjRDSPifmYWEKbBRPjtl6h+6zsAfauNegv6s+3sjZ8oWE9twBEeqKIrhqKh2ouJG8UGtpZ0zyuNYzTsXOstNlEPmikhx6hXew0z6qP0iKn8gDHCUE0eYk7jTfD5ihnF0gXoutPBvRP9J96gZBs3w8rjWqpfxVck+OSB1EpIT0iIXpE06hJMH8kSeyQt9pW/0nX78SCu03Nkjc6Cf387/ogc=</latexit><latexit sha1_base64="siOe1bINZeN9wKBLl74Qp2I5IiI=">AAACHXicZVBNSwMxEE3qV12/9ehlsQg9lLIrgh4LHvRY0VahLiWbTm1sslmSWaEs/Q9e9eKv8SZexX9jtu7B6oMwLzNveMyLUyksBsEXrSwsLi2vVFe9tfWNza3tnd2u1Znh0OFaanMbMwtSJNBBgRJuUwNMxRJu4vFZMb95BGOFTq5xkkKk2H0ihoIzdK3uee+qfxT1t2tBM5jB/0/CktRIiXZ/h9K7geaZggS5ZNb2wiDFKGcGBZcw9e4yCynjY3YPvQyHp1EukjRDSPifmYWEKbBRPjtl6h+6zsAfauNegv6s+3sjZ8oWE9twBEeqKIrhqKh2ouJG8UGtpZ0zyuNYzTsXOstNlEPmikhx6hXew0z6qP0iKn8gDHCUE0eYk7jTfD5ihnF0gXoutPBvRP9J96gZBs3w8rjWqpfxVck+OSB1EpIT0iIXpE06hJMH8kSeyQt9pW/0nX78SCu03Nkjc6Cf387/ogc=</latexit><latexit sha1_base64="siOe1bINZeN9wKBLl74Qp2I5IiI=">AAACHXicZVBNSwMxEE3qV12/9ehlsQg9lLIrgh4LHvRY0VahLiWbTm1sslmSWaEs/Q9e9eKv8SZexX9jtu7B6oMwLzNveMyLUyksBsEXrSwsLi2vVFe9tfWNza3tnd2u1Znh0OFaanMbMwtSJNBBgRJuUwNMxRJu4vFZMb95BGOFTq5xkkKk2H0ihoIzdK3uee+qfxT1t2tBM5jB/0/CktRIiXZ/h9K7geaZggS5ZNb2wiDFKGcGBZcw9e4yCynjY3YPvQyHp1EukjRDSPifmYWEKbBRPjtl6h+6zsAfauNegv6s+3sjZ8oWE9twBEeqKIrhqKh2ouJG8UGtpZ0zyuNYzTsXOstNlEPmikhx6hXew0z6qP0iKn8gDHCUE0eYk7jTfD5ihnF0gXoutPBvRP9J96gZBs3w8rjWqpfxVck+OSB1EpIT0iIXpE06hJMH8kSeyQt9pW/0nX78SCu03Nkjc6Cf387/ogc=</latexit>

Wt
<latexit sha1_base64="jKQpcdpqUBuAwyfZFcN3xS99LvE=">AAACHHicZVBNSwMxEE38rPWr1aOXxSL0UMquCHosePFYwX5Au5RsOm1Dk82SzApl6W/wqhd/jTfxKvhvzNYebPsgzMvMGx7zokQKi77/Q7e2d3b39gsHxcOj45PTUvmsbXVqOLS4ltp0I2ZBihhaKFBCNzHAVCShE03v83nnGYwVOn7CWQKhYuNYjARn6FqtziDD+aBU8ev+At4mCZakQpZoDsqU9oeapwpi5JJZ2wv8BMOMGRRcwrzYTy0kjE/ZGHopju7CTMRJihDztZmFmCmwYba4ZO5duc7QG2njXozeovt/I2PK5hNbcwQnKi+K4SSvdqaiWv5BraVdMcqiSK065zrLTZhB6opIcF7MvUep9FB7eVLeUBjgKGeOMCdxp3l8wgzj6PIsutCC9Yg2Sfu6Hvj14PGm0qgu4yuQC3JJqiQgt6RBHkiTtAgngryQV/JG3+kH/aRff9Itutw5Jyug378UaaI8</latexit><latexit sha1_base64="jKQpcdpqUBuAwyfZFcN3xS99LvE=">AAACHHicZVBNSwMxEE38rPWr1aOXxSL0UMquCHosePFYwX5Au5RsOm1Dk82SzApl6W/wqhd/jTfxKvhvzNYebPsgzMvMGx7zokQKi77/Q7e2d3b39gsHxcOj45PTUvmsbXVqOLS4ltp0I2ZBihhaKFBCNzHAVCShE03v83nnGYwVOn7CWQKhYuNYjARn6FqtziDD+aBU8ev+At4mCZakQpZoDsqU9oeapwpi5JJZ2wv8BMOMGRRcwrzYTy0kjE/ZGHopju7CTMRJihDztZmFmCmwYba4ZO5duc7QG2njXozeovt/I2PK5hNbcwQnKi+K4SSvdqaiWv5BraVdMcqiSK065zrLTZhB6opIcF7MvUep9FB7eVLeUBjgKGeOMCdxp3l8wgzj6PIsutCC9Yg2Sfu6Hvj14PGm0qgu4yuQC3JJqiQgt6RBHkiTtAgngryQV/JG3+kH/aRff9Itutw5Jyug378UaaI8</latexit><latexit sha1_base64="jKQpcdpqUBuAwyfZFcN3xS99LvE=">AAACHHicZVBNSwMxEE38rPWr1aOXxSL0UMquCHosePFYwX5Au5RsOm1Dk82SzApl6W/wqhd/jTfxKvhvzNYebPsgzMvMGx7zokQKi77/Q7e2d3b39gsHxcOj45PTUvmsbXVqOLS4ltp0I2ZBihhaKFBCNzHAVCShE03v83nnGYwVOn7CWQKhYuNYjARn6FqtziDD+aBU8ev+At4mCZakQpZoDsqU9oeapwpi5JJZ2wv8BMOMGRRcwrzYTy0kjE/ZGHopju7CTMRJihDztZmFmCmwYba4ZO5duc7QG2njXozeovt/I2PK5hNbcwQnKi+K4SSvdqaiWv5BraVdMcqiSK065zrLTZhB6opIcF7MvUep9FB7eVLeUBjgKGeOMCdxp3l8wgzj6PIsutCC9Yg2Sfu6Hvj14PGm0qgu4yuQC3JJqiQgt6RBHkiTtAgngryQV/JG3+kH/aRff9Itutw5Jyug378UaaI8</latexit><latexit sha1_base64="jKQpcdpqUBuAwyfZFcN3xS99LvE=">AAACHHicZVBNSwMxEE38rPWr1aOXxSL0UMquCHosePFYwX5Au5RsOm1Dk82SzApl6W/wqhd/jTfxKvhvzNYebPsgzMvMGx7zokQKi77/Q7e2d3b39gsHxcOj45PTUvmsbXVqOLS4ltp0I2ZBihhaKFBCNzHAVCShE03v83nnGYwVOn7CWQKhYuNYjARn6FqtziDD+aBU8ev+At4mCZakQpZoDsqU9oeapwpi5JJZ2wv8BMOMGRRcwrzYTy0kjE/ZGHopju7CTMRJihDztZmFmCmwYba4ZO5duc7QG2njXozeovt/I2PK5hNbcwQnKi+K4SSvdqaiWv5BraVdMcqiSK065zrLTZhB6opIcF7MvUep9FB7eVLeUBjgKGeOMCdxp3l8wgzj6PIsutCC9Yg2Sfu6Hvj14PGm0qgu4yuQC3JJqiQgt6RBHkiTtAgngryQV/JG3+kH/aRff9Itutw5Jyug378UaaI8</latexit>

Wt�1
<latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit>

Wi+2
<latexit sha1_base64="3WYWaohXUGX5/q2sFOGjDaCX2rM=">AAACHnicZVBNSwMxEE38rPWr1aOXxSIULGW3CHosePGoYG1Bl5JNp21oslmSWaEs/RFe9eKv8SZe9d+YrXuw7YMwLzNveMyLEiks+v4PXVvf2NzaLu2Ud/f2Dw4r1aMHq1PDocO11KYXMQtSxNBBgRJ6iQGmIgndaHKdz7vPYKzQ8T1OEwgVG8ViKDhD1+p2+5k4b836lZrf9OfwVklQkBopcNuvUvo00DxVECOXzNrHwE8wzJhBwSXMyk+phYTxCRvBY4rDqzATcZIixHxpZiFmCmyYzW+ZeWeuM/CG2rgXozfv/t/ImLL5xDYcwbHKi2I4zqudqqiRf1BraReMsihSi865znITZpC6IhKclXPvYSo91F6elTcQBjjKqSPMSdxpHh8zwzi6RMsutGA5olXy0GoGfjO4u6i160V8JXJCTkmdBOSStMkNuSUdwsmEvJBX8kbf6Qf9pF9/0jVa7ByTBdDvX+38oqI=</latexit><latexit sha1_base64="3WYWaohXUGX5/q2sFOGjDaCX2rM=">AAACHnicZVBNSwMxEE38rPWr1aOXxSIULGW3CHosePGoYG1Bl5JNp21oslmSWaEs/RFe9eKv8SZe9d+YrXuw7YMwLzNveMyLEiks+v4PXVvf2NzaLu2Ud/f2Dw4r1aMHq1PDocO11KYXMQtSxNBBgRJ6iQGmIgndaHKdz7vPYKzQ8T1OEwgVG8ViKDhD1+p2+5k4b836lZrf9OfwVklQkBopcNuvUvo00DxVECOXzNrHwE8wzJhBwSXMyk+phYTxCRvBY4rDqzATcZIixHxpZiFmCmyYzW+ZeWeuM/CG2rgXozfv/t/ImLL5xDYcwbHKi2I4zqudqqiRf1BraReMsihSi865znITZpC6IhKclXPvYSo91F6elTcQBjjKqSPMSdxpHh8zwzi6RMsutGA5olXy0GoGfjO4u6i160V8JXJCTkmdBOSStMkNuSUdwsmEvJBX8kbf6Qf9pF9/0jVa7ByTBdDvX+38oqI=</latexit><latexit sha1_base64="3WYWaohXUGX5/q2sFOGjDaCX2rM=">AAACHnicZVBNSwMxEE38rPWr1aOXxSIULGW3CHosePGoYG1Bl5JNp21oslmSWaEs/RFe9eKv8SZe9d+YrXuw7YMwLzNveMyLEiks+v4PXVvf2NzaLu2Ud/f2Dw4r1aMHq1PDocO11KYXMQtSxNBBgRJ6iQGmIgndaHKdz7vPYKzQ8T1OEwgVG8ViKDhD1+p2+5k4b836lZrf9OfwVklQkBopcNuvUvo00DxVECOXzNrHwE8wzJhBwSXMyk+phYTxCRvBY4rDqzATcZIixHxpZiFmCmyYzW+ZeWeuM/CG2rgXozfv/t/ImLL5xDYcwbHKi2I4zqudqqiRf1BraReMsihSi865znITZpC6IhKclXPvYSo91F6elTcQBjjKqSPMSdxpHh8zwzi6RMsutGA5olXy0GoGfjO4u6i160V8JXJCTkmdBOSStMkNuSUdwsmEvJBX8kbf6Qf9pF9/0jVa7ByTBdDvX+38oqI=</latexit><latexit sha1_base64="3WYWaohXUGX5/q2sFOGjDaCX2rM=">AAACHnicZVBNSwMxEE38rPWr1aOXxSIULGW3CHosePGoYG1Bl5JNp21oslmSWaEs/RFe9eKv8SZe9d+YrXuw7YMwLzNveMyLEiks+v4PXVvf2NzaLu2Ud/f2Dw4r1aMHq1PDocO11KYXMQtSxNBBgRJ6iQGmIgndaHKdz7vPYKzQ8T1OEwgVG8ViKDhD1+p2+5k4b836lZrf9OfwVklQkBopcNuvUvo00DxVECOXzNrHwE8wzJhBwSXMyk+phYTxCRvBY4rDqzATcZIixHxpZiFmCmyYzW+ZeWeuM/CG2rgXozfv/t/ImLL5xDYcwbHKi2I4zqudqqiRf1BraReMsihSi865znITZpC6IhKclXPvYSo91F6elTcQBjjKqSPMSdxpHh8zwzi6RMsutGA5olXy0GoGfjO4u6i160V8JXJCTkmdBOSStMkNuSUdwsmEvJBX8kbf6Qf9pF9/0jVa7ByTBdDvX+38oqI=</latexit>� �n

<latexit sha1_base64="6pYfg0IE4IyelfgdEsIA1sFqTCE=">AAACJHicZVA9SwNBEN31M8ZvLW0Wg2Ah4U4ELQUbywhGA8kR9jaTZHE/zt05IRz5Hbba+GvsxMLG3+JeTGHMg2XezrzhMS/NlPQYRV90YXFpeWW1slZd39jc2t7Z3bvzNncCmsIq61op96CkgSZKVNDKHHCdKrhPH67K+f0TOC+tucVRBonmAyP7UnAMraQzgEfWGXCtOTPdnVpUjyZg8ySekhqZotHdpbTTsyLXYFAo7n07jjJMCu5QCgXjaif3kHHxwAfQzrF/kRTSZDmCEf9mHgzX4JNictGYHYVOj/WtC88gm3T/bhRc+3LiTwLBoS6L5jgsqx/p9KT8oLXKzxgVaapnnUudFy4pIA9FZjiult79XDG0rEyM9aQDgWoUCA+ScBoTQ+64wJBrNYQW/49ontyd1uOoHt+c1S6Pp/FVyAE5JMckJufkklyTBmkSQR7JM3khr/SNvtMP+vkrXaDTnX0yA/r9A58RpRA=</latexit><latexit sha1_base64="6pYfg0IE4IyelfgdEsIA1sFqTCE=">AAACJHicZVA9SwNBEN31M8ZvLW0Wg2Ah4U4ELQUbywhGA8kR9jaTZHE/zt05IRz5Hbba+GvsxMLG3+JeTGHMg2XezrzhMS/NlPQYRV90YXFpeWW1slZd39jc2t7Z3bvzNncCmsIq61op96CkgSZKVNDKHHCdKrhPH67K+f0TOC+tucVRBonmAyP7UnAMraQzgEfWGXCtOTPdnVpUjyZg8ySekhqZotHdpbTTsyLXYFAo7n07jjJMCu5QCgXjaif3kHHxwAfQzrF/kRTSZDmCEf9mHgzX4JNictGYHYVOj/WtC88gm3T/bhRc+3LiTwLBoS6L5jgsqx/p9KT8oLXKzxgVaapnnUudFy4pIA9FZjiult79XDG0rEyM9aQDgWoUCA+ScBoTQ+64wJBrNYQW/49ontyd1uOoHt+c1S6Pp/FVyAE5JMckJufkklyTBmkSQR7JM3khr/SNvtMP+vkrXaDTnX0yA/r9A58RpRA=</latexit><latexit sha1_base64="6pYfg0IE4IyelfgdEsIA1sFqTCE=">AAACJHicZVA9SwNBEN31M8ZvLW0Wg2Ah4U4ELQUbywhGA8kR9jaTZHE/zt05IRz5Hbba+GvsxMLG3+JeTGHMg2XezrzhMS/NlPQYRV90YXFpeWW1slZd39jc2t7Z3bvzNncCmsIq61op96CkgSZKVNDKHHCdKrhPH67K+f0TOC+tucVRBonmAyP7UnAMraQzgEfWGXCtOTPdnVpUjyZg8ySekhqZotHdpbTTsyLXYFAo7n07jjJMCu5QCgXjaif3kHHxwAfQzrF/kRTSZDmCEf9mHgzX4JNictGYHYVOj/WtC88gm3T/bhRc+3LiTwLBoS6L5jgsqx/p9KT8oLXKzxgVaapnnUudFy4pIA9FZjiult79XDG0rEyM9aQDgWoUCA+ScBoTQ+64wJBrNYQW/49ontyd1uOoHt+c1S6Pp/FVyAE5JMckJufkklyTBmkSQR7JM3khr/SNvtMP+vkrXaDTnX0yA/r9A58RpRA=</latexit><latexit sha1_base64="6pYfg0IE4IyelfgdEsIA1sFqTCE=">AAACJHicZVA9SwNBEN31M8ZvLW0Wg2Ah4U4ELQUbywhGA8kR9jaTZHE/zt05IRz5Hbba+GvsxMLG3+JeTGHMg2XezrzhMS/NlPQYRV90YXFpeWW1slZd39jc2t7Z3bvzNncCmsIq61op96CkgSZKVNDKHHCdKrhPH67K+f0TOC+tucVRBonmAyP7UnAMraQzgEfWGXCtOTPdnVpUjyZg8ySekhqZotHdpbTTsyLXYFAo7n07jjJMCu5QCgXjaif3kHHxwAfQzrF/kRTSZDmCEf9mHgzX4JNictGYHYVOj/WtC88gm3T/bhRc+3LiTwLBoS6L5jgsqx/p9KT8oLXKzxgVaapnnUudFy4pIA9FZjiult79XDG0rEyM9aQDgWoUCA+ScBoTQ+64wJBrNYQW/49ontyd1uOoHt+c1S6Pp/FVyAE5JMckJufkklyTBmkSQR7JM3khr/SNvtMP+vkrXaDTnX0yA/r9A58RpRA=</latexit>

 (1 � �)n
<latexit sha1_base64="bkPC9TbZ6Y5G17KXBk9zrbGQ0MM=">AAACKXicZVBNSwMxEE38rPWr1aOXYBEqaNkVQY+CF48K1hbsItl02oYmmzWZFcrSf+JVL/4ab+rVP2K29mDtQJiXN294zItTJR0GwSddWFxaXlktrZXXNza3tivVnTtnMiugKYwyth1zB0om0ESJCtqpBa5jBa14eFnMW09gnTTJLY5SiDTvJ7InBUdPPVQqHQWPrB4ed/pca37oqVrQCCbF5kE4BTUyreuHKqWdrhGZhgSF4s7dh0GKUc4tSqFgXO5kDlIuhrwP9xn2zqNcJmmGkIh/MwcJ1+CifHLWmB14pst6xvqXIJuwfzdyrl0xcUce4EAXTXMcFN2NdHxUfNAY5WaM8jjWs86Fzgkb5ZD5JlMclwvvXqYYGlbExrrSgkA18oB7iT+NiQG3XKAPt+xDC/9HNA/uThph0AhvTmsX9Wl8JbJH9kmdhOSMXJArck2aRJAn8kxeyCt9o+/0g379ShfodGeXzBT9/gGSmKXz</latexit><latexit sha1_base64="bkPC9TbZ6Y5G17KXBk9zrbGQ0MM=">AAACKXicZVBNSwMxEE38rPWr1aOXYBEqaNkVQY+CF48K1hbsItl02oYmmzWZFcrSf+JVL/4ab+rVP2K29mDtQJiXN294zItTJR0GwSddWFxaXlktrZXXNza3tivVnTtnMiugKYwyth1zB0om0ESJCtqpBa5jBa14eFnMW09gnTTJLY5SiDTvJ7InBUdPPVQqHQWPrB4ed/pca37oqVrQCCbF5kE4BTUyreuHKqWdrhGZhgSF4s7dh0GKUc4tSqFgXO5kDlIuhrwP9xn2zqNcJmmGkIh/MwcJ1+CifHLWmB14pst6xvqXIJuwfzdyrl0xcUce4EAXTXMcFN2NdHxUfNAY5WaM8jjWs86Fzgkb5ZD5JlMclwvvXqYYGlbExrrSgkA18oB7iT+NiQG3XKAPt+xDC/9HNA/uThph0AhvTmsX9Wl8JbJH9kmdhOSMXJArck2aRJAn8kxeyCt9o+/0g379ShfodGeXzBT9/gGSmKXz</latexit><latexit sha1_base64="bkPC9TbZ6Y5G17KXBk9zrbGQ0MM=">AAACKXicZVBNSwMxEE38rPWr1aOXYBEqaNkVQY+CF48K1hbsItl02oYmmzWZFcrSf+JVL/4ab+rVP2K29mDtQJiXN294zItTJR0GwSddWFxaXlktrZXXNza3tivVnTtnMiugKYwyth1zB0om0ESJCtqpBa5jBa14eFnMW09gnTTJLY5SiDTvJ7InBUdPPVQqHQWPrB4ed/pca37oqVrQCCbF5kE4BTUyreuHKqWdrhGZhgSF4s7dh0GKUc4tSqFgXO5kDlIuhrwP9xn2zqNcJmmGkIh/MwcJ1+CifHLWmB14pst6xvqXIJuwfzdyrl0xcUce4EAXTXMcFN2NdHxUfNAY5WaM8jjWs86Fzgkb5ZD5JlMclwvvXqYYGlbExrrSgkA18oB7iT+NiQG3XKAPt+xDC/9HNA/uThph0AhvTmsX9Wl8JbJH9kmdhOSMXJArck2aRJAn8kxeyCt9o+/0g379ShfodGeXzBT9/gGSmKXz</latexit><latexit sha1_base64="bkPC9TbZ6Y5G17KXBk9zrbGQ0MM=">AAACKXicZVBNSwMxEE38rPWr1aOXYBEqaNkVQY+CF48K1hbsItl02oYmmzWZFcrSf+JVL/4ab+rVP2K29mDtQJiXN294zItTJR0GwSddWFxaXlktrZXXNza3tivVnTtnMiugKYwyth1zB0om0ESJCtqpBa5jBa14eFnMW09gnTTJLY5SiDTvJ7InBUdPPVQqHQWPrB4ed/pca37oqVrQCCbF5kE4BTUyreuHKqWdrhGZhgSF4s7dh0GKUc4tSqFgXO5kDlIuhrwP9xn2zqNcJmmGkIh/MwcJ1+CifHLWmB14pst6xvqXIJuwfzdyrl0xcUce4EAXTXMcFN2NdHxUfNAY5WaM8jjWs86Fzgkb5ZD5JlMclwvvXqYYGlbExrrSgkA18oB7iT+NiQG3XKAPt+xDC/9HNA/uThph0AhvTmsX9Wl8JbJH9kmdhOSMXJArck2aRJAn8kxeyCt9o+/0g379ShfodGeXzBT9/gGSmKXz</latexit>

S
<latexit sha1_base64="4uMripI20F5QE27knlXfqdP1IlQ=">AAACGHicZVBNSwMxEE38rOtXq0cvi0XwUMquCHosePHYotWCLpJNZ20w2SzJrFCW/gKvevHXeBOv3vw3ZusebPsgzMvMGx7z4kwKi0HwQ5eWV1bX1msb3ubW9s5uvbF3Y3VuOPS5ltoMYmZBihT6KFDCIDPAVCzhNn66KOe3z2Cs0Ok1jjOIFHtMRSI4Q9fqXT3Um0E7mMJfJGFFmqRC96FB6f1Q81xBilwya+/CIMOoYAYFlzDx7nMLGeNP7BHuckzOo0KkWY6Q8rmZhZQpsFExvWLiH7nO0E+0cS9Ff9r9v1EwZcuJbTmCI1UWxXBUVjtWcav8oNbSzhgVcaxmnUud5SYqIHdFZDjxSu8klz5qv0zJHwoDHOXYEeYk7jSfj5hhHF2WngstnI9okdyctMOgHfZOm53jKr4aOSCH5JiE5Ix0yCXpkj7hBMgLeSVv9J1+0E/69SddotXOPpkB/f4FZ2KgRQ==</latexit><latexit sha1_base64="4uMripI20F5QE27knlXfqdP1IlQ=">AAACGHicZVBNSwMxEE38rOtXq0cvi0XwUMquCHosePHYotWCLpJNZ20w2SzJrFCW/gKvevHXeBOv3vw3ZusebPsgzMvMGx7z4kwKi0HwQ5eWV1bX1msb3ubW9s5uvbF3Y3VuOPS5ltoMYmZBihT6KFDCIDPAVCzhNn66KOe3z2Cs0Ok1jjOIFHtMRSI4Q9fqXT3Um0E7mMJfJGFFmqRC96FB6f1Q81xBilwya+/CIMOoYAYFlzDx7nMLGeNP7BHuckzOo0KkWY6Q8rmZhZQpsFExvWLiH7nO0E+0cS9Ff9r9v1EwZcuJbTmCI1UWxXBUVjtWcav8oNbSzhgVcaxmnUud5SYqIHdFZDjxSu8klz5qv0zJHwoDHOXYEeYk7jSfj5hhHF2WngstnI9okdyctMOgHfZOm53jKr4aOSCH5JiE5Ix0yCXpkj7hBMgLeSVv9J1+0E/69SddotXOPpkB/f4FZ2KgRQ==</latexit><latexit sha1_base64="4uMripI20F5QE27knlXfqdP1IlQ=">AAACGHicZVBNSwMxEE38rOtXq0cvi0XwUMquCHosePHYotWCLpJNZ20w2SzJrFCW/gKvevHXeBOv3vw3ZusebPsgzMvMGx7z4kwKi0HwQ5eWV1bX1msb3ubW9s5uvbF3Y3VuOPS5ltoMYmZBihT6KFDCIDPAVCzhNn66KOe3z2Cs0Ok1jjOIFHtMRSI4Q9fqXT3Um0E7mMJfJGFFmqRC96FB6f1Q81xBilwya+/CIMOoYAYFlzDx7nMLGeNP7BHuckzOo0KkWY6Q8rmZhZQpsFExvWLiH7nO0E+0cS9Ff9r9v1EwZcuJbTmCI1UWxXBUVjtWcav8oNbSzhgVcaxmnUud5SYqIHdFZDjxSu8klz5qv0zJHwoDHOXYEeYk7jSfj5hhHF2WngstnI9okdyctMOgHfZOm53jKr4aOSCH5JiE5Ix0yCXpkj7hBMgLeSVv9J1+0E/69SddotXOPpkB/f4FZ2KgRQ==</latexit><latexit sha1_base64="4uMripI20F5QE27knlXfqdP1IlQ=">AAACGHicZVBNSwMxEE38rOtXq0cvi0XwUMquCHosePHYotWCLpJNZ20w2SzJrFCW/gKvevHXeBOv3vw3ZusebPsgzMvMGx7z4kwKi0HwQ5eWV1bX1msb3ubW9s5uvbF3Y3VuOPS5ltoMYmZBihT6KFDCIDPAVCzhNn66KOe3z2Cs0Ok1jjOIFHtMRSI4Q9fqXT3Um0E7mMJfJGFFmqRC96FB6f1Q81xBilwya+/CIMOoYAYFlzDx7nMLGeNP7BHuckzOo0KkWY6Q8rmZhZQpsFExvWLiH7nO0E+0cS9Ff9r9v1EwZcuJbTmCI1UWxXBUVjtWcav8oNbSzhgVcaxmnUud5SYqIHdFZDjxSu8klz5qv0zJHwoDHOXYEeYk7jSfj5hhHF2WngstnI9okdyctMOgHfZOm53jKr4aOSCH5JiE5Ix0yCXpkj7hBMgLeSVv9J1+0E/69SddotXOPpkB/f4FZ2KgRQ==</latexit>

N(S1)
<latexit sha1_base64="Gdxg85pS2el3Lbid4v6fFCidljw=">AAACHXicZVBNSwMxEE3qV62f1aOXxSJUkLIrgh4FL56kov2AdinZdNpGk82SzApl6X/wqhd/jTfxKv4bs7UHax+EeZl5w2NelEhh0fe/aWFpeWV1rbhe2tjc2t7ZLe81rU4NhwbXUpt2xCxIEUMDBUpoJwaYiiS0oserfN56AmOFju9xnECo2DAWA8EZulbzpnrXC457uxW/5k/hLZJgRipkhnqvTGm3r3mqIEYumbWdwE8wzJhBwSVMSt3UQsL4IxtCJ8XBRZiJOEkRYv5vZiFmCmyYTU+ZeEeu0/cG2rgXozft/t3ImLL5xJ44giOVF8VwlFc7VtFJ/kGtpZ0zyqJIzTvnOstNmEHqikhwUsq9B6n0UHt5VF5fGOAox44wJ3GneXzEDOPoAi250IL/ES2S5mkt8GvB7VnlsjqLr0gOyCGpkoCck0tyTeqkQTh5IM/khbzSN/pOP+jnr7RAZzv7ZA706wcpIaGm</latexit><latexit sha1_base64="Gdxg85pS2el3Lbid4v6fFCidljw=">AAACHXicZVBNSwMxEE3qV62f1aOXxSJUkLIrgh4FL56kov2AdinZdNpGk82SzApl6X/wqhd/jTfxKv4bs7UHax+EeZl5w2NelEhh0fe/aWFpeWV1rbhe2tjc2t7ZLe81rU4NhwbXUpt2xCxIEUMDBUpoJwaYiiS0oserfN56AmOFju9xnECo2DAWA8EZulbzpnrXC457uxW/5k/hLZJgRipkhnqvTGm3r3mqIEYumbWdwE8wzJhBwSVMSt3UQsL4IxtCJ8XBRZiJOEkRYv5vZiFmCmyYTU+ZeEeu0/cG2rgXozft/t3ImLL5xJ44giOVF8VwlFc7VtFJ/kGtpZ0zyqJIzTvnOstNmEHqikhwUsq9B6n0UHt5VF5fGOAox44wJ3GneXzEDOPoAi250IL/ES2S5mkt8GvB7VnlsjqLr0gOyCGpkoCck0tyTeqkQTh5IM/khbzSN/pOP+jnr7RAZzv7ZA706wcpIaGm</latexit><latexit sha1_base64="Gdxg85pS2el3Lbid4v6fFCidljw=">AAACHXicZVBNSwMxEE3qV62f1aOXxSJUkLIrgh4FL56kov2AdinZdNpGk82SzApl6X/wqhd/jTfxKv4bs7UHax+EeZl5w2NelEhh0fe/aWFpeWV1rbhe2tjc2t7ZLe81rU4NhwbXUpt2xCxIEUMDBUpoJwaYiiS0oserfN56AmOFju9xnECo2DAWA8EZulbzpnrXC457uxW/5k/hLZJgRipkhnqvTGm3r3mqIEYumbWdwE8wzJhBwSVMSt3UQsL4IxtCJ8XBRZiJOEkRYv5vZiFmCmyYTU+ZeEeu0/cG2rgXozft/t3ImLL5xJ44giOVF8VwlFc7VtFJ/kGtpZ0zyqJIzTvnOstNmEHqikhwUsq9B6n0UHt5VF5fGOAox44wJ3GneXzEDOPoAi250IL/ES2S5mkt8GvB7VnlsjqLr0gOyCGpkoCck0tyTeqkQTh5IM/khbzSN/pOP+jnr7RAZzv7ZA706wcpIaGm</latexit><latexit sha1_base64="Gdxg85pS2el3Lbid4v6fFCidljw=">AAACHXicZVBNSwMxEE3qV62f1aOXxSJUkLIrgh4FL56kov2AdinZdNpGk82SzApl6X/wqhd/jTfxKv4bs7UHax+EeZl5w2NelEhh0fe/aWFpeWV1rbhe2tjc2t7ZLe81rU4NhwbXUpt2xCxIEUMDBUpoJwaYiiS0oserfN56AmOFju9xnECo2DAWA8EZulbzpnrXC457uxW/5k/hLZJgRipkhnqvTGm3r3mqIEYumbWdwE8wzJhBwSVMSt3UQsL4IxtCJ8XBRZiJOEkRYv5vZiFmCmyYTU+ZeEeu0/cG2rgXozft/t3ImLL5xJ44giOVF8VwlFc7VtFJ/kGtpZ0zyqJIzTvnOstNmEHqikhwUsq9B6n0UHt5VF5fGOAox44wJ3GneXzEDOPoAi250IL/ES2S5mkt8GvB7VnlsjqLr0gOyCGpkoCck0tyTeqkQTh5IM/khbzSN/pOP+jnr7RAZzv7ZA706wcpIaGm</latexit>

N(S2)
<latexit sha1_base64="aeWA2JPbgmj+XlcOHqGPK6rulY0=">AAACHXicZVBNSwMxEE3qV61fVY9eFotQQcpuEfQoePEkFW0V7FKy6dTGJpslmRXK0v/gVS/+Gm/iVfw3ZusebH0Q5mXmDY95USKFRd//pqWFxaXllfJqZW19Y3Orur3TsTo1HNpcS23uImZBihjaKFDCXWKAqUjCbTQ6z+e3T2Cs0PENjhMIFXuIxUBwhq7Vuaxf95qHvWrNb/hTeP9JUJAaKdDqbVPa7WueKoiRS2btfeAnGGbMoOASJpVuaiFhfMQe4D7FwWmYiThJEWI+N7MQMwU2zKanTLwD1+l7A23ci9Gbdv9uZEzZfGKPHMGhyotiOMyrHavoKP+g1tLOGGVRpGadc53lJswgdUUkOKnk3oNUeqi9PCqvLwxwlGNHmJO40zw+ZIZxdIFWXGjBfET/SafZCPxGcHVcO6sX8ZXJHtkndRKQE3JGLkiLtAknj+SZvJBX+kbf6Qf9/JWWaLGzS2ZAv34AKtahpw==</latexit><latexit sha1_base64="aeWA2JPbgmj+XlcOHqGPK6rulY0=">AAACHXicZVBNSwMxEE3qV61fVY9eFotQQcpuEfQoePEkFW0V7FKy6dTGJpslmRXK0v/gVS/+Gm/iVfw3ZusebH0Q5mXmDY95USKFRd//pqWFxaXllfJqZW19Y3Orur3TsTo1HNpcS23uImZBihjaKFDCXWKAqUjCbTQ6z+e3T2Cs0PENjhMIFXuIxUBwhq7Vuaxf95qHvWrNb/hTeP9JUJAaKdDqbVPa7WueKoiRS2btfeAnGGbMoOASJpVuaiFhfMQe4D7FwWmYiThJEWI+N7MQMwU2zKanTLwD1+l7A23ci9Gbdv9uZEzZfGKPHMGhyotiOMyrHavoKP+g1tLOGGVRpGadc53lJswgdUUkOKnk3oNUeqi9PCqvLwxwlGNHmJO40zw+ZIZxdIFWXGjBfET/SafZCPxGcHVcO6sX8ZXJHtkndRKQE3JGLkiLtAknj+SZvJBX+kbf6Qf9/JWWaLGzS2ZAv34AKtahpw==</latexit><latexit sha1_base64="aeWA2JPbgmj+XlcOHqGPK6rulY0=">AAACHXicZVBNSwMxEE3qV61fVY9eFotQQcpuEfQoePEkFW0V7FKy6dTGJpslmRXK0v/gVS/+Gm/iVfw3ZusebH0Q5mXmDY95USKFRd//pqWFxaXllfJqZW19Y3Orur3TsTo1HNpcS23uImZBihjaKFDCXWKAqUjCbTQ6z+e3T2Cs0PENjhMIFXuIxUBwhq7Vuaxf95qHvWrNb/hTeP9JUJAaKdDqbVPa7WueKoiRS2btfeAnGGbMoOASJpVuaiFhfMQe4D7FwWmYiThJEWI+N7MQMwU2zKanTLwD1+l7A23ci9Gbdv9uZEzZfGKPHMGhyotiOMyrHavoKP+g1tLOGGVRpGadc53lJswgdUUkOKnk3oNUeqi9PCqvLwxwlGNHmJO40zw+ZIZxdIFWXGjBfET/SafZCPxGcHVcO6sX8ZXJHtkndRKQE3JGLkiLtAknj+SZvJBX+kbf6Qf9/JWWaLGzS2ZAv34AKtahpw==</latexit><latexit sha1_base64="aeWA2JPbgmj+XlcOHqGPK6rulY0=">AAACHXicZVBNSwMxEE3qV61fVY9eFotQQcpuEfQoePEkFW0V7FKy6dTGJpslmRXK0v/gVS/+Gm/iVfw3ZusebH0Q5mXmDY95USKFRd//pqWFxaXllfJqZW19Y3Orur3TsTo1HNpcS23uImZBihjaKFDCXWKAqUjCbTQ6z+e3T2Cs0PENjhMIFXuIxUBwhq7Vuaxf95qHvWrNb/hTeP9JUJAaKdDqbVPa7WueKoiRS2btfeAnGGbMoOASJpVuaiFhfMQe4D7FwWmYiThJEWI+N7MQMwU2zKanTLwD1+l7A23ci9Gbdv9uZEzZfGKPHMGhyotiOMyrHavoKP+g1tLOGGVRpGadc53lJswgdUUkOKnk3oNUeqi9PCqvLwxwlGNHmJO40zw+ZIZxdIFWXGjBfET/SafZCPxGcHVcO6sX8ZXJHtkndRKQE3JGLkiLtAknj+SZvJBX+kbf6Qf9/JWWaLGzS2ZAv34AKtahpw==</latexit>

Figure 3 An intuitive illustration of the algorithm for 2-Union Heavy PC.

| ∪j∈[i+1] Wj | ≤ αn and | ∪j∈[t]\[i−1] Wj | ≤ αn. Let S = ∪j∈[i]Wj . As | ∪j∈[i+1] Wj | ≤ αn

and N(S) ⊆ Wi+1, the set S is an α-small set. Similarly, we can argue that V (G) \ S
is an α-small set. Thus, for S and V (G) \ S, we know the nice solutions tS and tV (G)\S ,
respectively. Notice that the solution to the whole graph is actually tS + tV (G)\S .

The Algorithm. The algorithm initializes t = 1. (At the end, t will be the output of the
algorithm.) The algorithm computes table Γ =Enum-Partial-PC(G,α) using algorithm
from Section 4.1. Let S be the set of all connected sets S in G, such that |N [S]| ≤ αn.
That is, S = {S ⊆ V (G) | G[S] is connected and |N [S]| ≤ αn}. For each S ∈ S, we have
an entry denoted by Γ[S]. The algorithm considers each S ∈ S for which V (G) \ S ∈ S. It
sets t = max{t,Γ[S] + Γ[V (G) \ S]}. Finally, the algorithm returns t as the output. This
completes the description of the algorithm.

I Lemma 7. The algorithm presented for Balanced PC is correct.

I Lemma 8. The algorithm presented for Balanced PC runs in time O?(2αn).

4.3 Algorithm for 2-Union Heavy PC
We formally define the problem 2-Union Heavy PC in the following (also see Figure 1).

2-Union Heavy PC
Input: A graph G on n vertices and a fraction 0 < γ ≤ 1.
Output: Largest integer t ≥ 3 for which G has a Pt-witness structure W = (W1,W2,

· · · ,Wt), such that there is i ∈ [t − 1] for which the following conditions hold: 1)
|Wi ∪Wi+1| ≥ γn and 2) |N [∪j∈[i−1]Wj ]|, |N [∪j∈[t]\[i+1]Wj ]| ≤ (1− γ/2)n. Moreover, if
no such t exists, then output 2.

We design an algorithm for 2-Union Heavy PC running in time O?(2(1−γ/2)n + cn),
where c = maxγ≤δ≤1{1.7804δ · g(1− δ)}. The first term in the running time expression will
be due to a call made to Enum-Partial-PC with ρ = (1− γ/2), and the second term will
be due to enumerating sets of size at most (1− γ)n and running the algorithm for solving
2-Disjoint Connected Subgraphs for an instance created for each of them, using the
algorithm of Telle and Villanger [16].

Let (G, γ) be an instance of 2-Union Heavy PC. We start by explaining the intuitive idea
behind our algorithm (see Figure 3). Consider a Pt-witness structure W = (W1,W2, · · · ,Wt)
of G, such that there is i ∈ [t−1] for which the following conditions hold: 1) |Wi∪Wi+1| ≥ γn
and 2) |N [∪j∈[i−1]Wj ]|, |N [∪j∈[t]\[i+1]Wj ]| ≤ (1− γ/2)n. Let S = Wi ∪Wi+1. As Wi ∪Wi+1
is “large”, the number of vertices in S = V (G) \ (Wi ∪Wi+1) is “small”. That is, we can
bound |S| by (1 − γ)n. Note that G[S] has exactly two connected components, which we
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11:10 Path Contraction Faster Than 2n

denote by G[S1] and G[S2]. Also note that N [S1], N [S2] ≤ (1− γ/2)n. The algorithm starts
by enumerating all such “potential candidates” for S. As for each of the two components of
G[S], the sizes of N [S1] and N [S2] can be bounded, the algorithm computes the “optimum
solution” for them using the algorithm for Enum-Partial-PC. In the above we use the
algorithm for Enum-Partial-PC because we are only interested in those solutions where
the vertices of Φ(S1) and Φ(S2) are contained in one of the “end bags” of their respective
solutions. Now we see how we can use these solutions to obtain the solution for the whole
graph. Note that we have to “split” vertices in V (G) \ S into two “connected sets”, where
the first set must contain all the vertices from N(S1) and the second set must contain all the
vertices from N(S1). For the above we employ the algorithm for 2-Disjoint Connected
Subgraphs (see Section 3 for its definition) by Telle and Villanger [16].

We now formally describe our algorithm. The algorithm will output an integer t, which is
initially set to 2. Let S = {S ⊆ V (G) | |S| ≤ (1− γ)n and G[S] has exactly two connected
components G[S1], G[S2], s.t. |N [S1]|, |N [S2]| ≤ (1−γ/2)n}. Let Ŝ = {Ŝ ⊆ V (G) | |N [Ŝ]| ≤
(1− γ/2)n and G[Ŝ] is connected}. The algorithm will now computes a table Γ, which has
an entry Γ[Ŝ], for each Ŝ ∈ Ŝ. The definition of Γ is the same as that in Section 4.2,
where ρ = 1 − γ/2. That is, for Ŝ ∈ Ŝ, Γ[Ŝ] is the largest integer q ≥ 1 for which G[Ŝ]
can be contracted to Pq with a Pq-witness structure W = (W1,W2, · · · ,Wq) of G[Ŝ], such
that Φ(Ŝ) ⊆ Wq. Compute the value of Γ[Ŝ], for each Ŝ ∈ Ŝ, by using Enum-Partial-
PC(G, 1 − γ/2). For each S ∈ S, the algorithm does the following. Recall that G[S]
has exactly two connected components. Let the two connected components in G[S] be
G[S1] and G[S2], where S1 ∪ S2 = S. Recall that |N [S1]|, N [S1]| ≤ (1 − γ/2)n. Thus,
S1, S2 ∈ Ŝ. If (G− S,NG(S1), NG(S2)) is a yes-instance of 2-DCS, then the algorithm sets
t = max{t,Γ[S1] + Γ[S2] + 2}, and otherwise, it moves to the next set in S. Finally, the
algorithm outputs t. This completes the description of the algorithm.

In the following two lemmas we present the correctness and runtime analysis of the
algorithm, respectively.

I Lemma 9. The algorithm presented for 2-Union Heavy PC is correct.

I Lemma 10. The algorithm presented for 2-Union Heavy PC runs in time O?(2(1−γ/2)n+
cn), where c = maxγ≤δ≤1{1.7804δ · g(1− δ)}.

4.4 Algorithm for Small Odd/Even PC
We formally define the problem Small Odd/Even PC in the following.

Small Odd/Even PC
Input: A graph G on n vertices and a fraction 0 < β ≤ 1.
Output: Largest integer t for which G can be contracted to Pt, with W =
(W1,W2, · · · ,Wt) as a Pt-witness structure of G, such that |OSW | ≤ βn/2 or |ESW | ≤
βn/2, where OSW = ∪i∈[dt/2e]W2i−1 and ESW = ∪i∈[bt/2c]W2i.

In this section, we design an algorithm for Small Odd/Even PC running in time
O?(cn), where c = g(β/2).

Let (G, β) be an instance of Small Odd/Even PC. The algorithm is fairly simple. It
starts by enumerating all “potential candidates” for OSW (resp. ESW), i.e., the set of all
subsets of V (G) of size at most βn/2. Then, for each such “potential set”, it contracts G
appropriately, and finds the length of the path to which G is contracted (and stores 0, if the
contracted graph is not a path). Finally, it returns the maximum over such path lengths.
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W1
<latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit><latexit sha1_base64="TZyo5yIJzeo7JCck0APUH2TBhXs=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AyCQbnq1/0FvHUSLEmVLNEcVCjtDzVPFcTIJbO2F/gJhhkzKLiEeamfWkgYn7Ix9FIc3YSZiJMUIeb/ZhZipsCG2eKOuXfuOkNvpI17MXqL7t+NjCmbT+yFIzhReVEMJ3m1MxVd5B/UWtoVoyyK1KpzrrPchBmkrogE56Xce5RKD7WX5+QNhQGOcuYIcxJ3mscnzDCOLs2SCy34H9E6aV/WA78e3F9VG7VlfEVySs5IjQTkmjTIHWmSFuFkTJ7JC3mlb/SdftDPX2mBLndOyAro1w+uuKDt</latexit>

W2
<latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit><latexit sha1_base64="nGtBpxKhPSG2Sa15xydLShd+AaM=">AAACGnicZVBNSwMxEE38rOtXq0cvi0XwIGVXBD0WvHisaFvBLiWbzrbBZLMks0JZ+hO86sVf4028evHfmK092PZBmJeZNzzmxZkUFoPgh66srq1vbFa2vO2d3b39au2gY3VuOLS5lto8xMyCFCm0UaCEh8wAU7GEbvx0Xc67z2Cs0Ok9jjOIFBumIhGcoWvddfvn/Wo9aART+MsknJE6maHVr1HaG2ieK0iRS2btYxhkGBXMoOASJl4vt5Ax/sSG8JhjchUVIs1yhJQvzCykTIGNiukdE//EdQZ+oo17KfrT7v+NgilbTuyZIzhSZVEMR2W1YxWflR/UWto5oyKO1bxzqbPcRAXkrogMJ17pneTSR+2XOfkDYYCjHDvCnMSd5vMRM4yjS9NzoYWLES2TznkjDBrh7UW9eTqLr0KOyDE5JSG5JE1yQ1qkTTgZkhfySt7oO/2gn/TrT7pCZzuHZA70+xewbKDu</latexit>

W3
<latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit><latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit><latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit><latexit sha1_base64="bKv1FZCuHQpAXU08RF/fdCoq4Kg=">AAACGnicZVBNSwMxEE38dv2qevSyWIQeStlVQY8FLx4VrRV0Kdl0tg1NNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1T2927szo3HDpcS23uY2ZBihQ6KFDCfWaAqVhCNx5dlPPuExgrdHqL4wwixQapSARn6Fo33d5Jr1YPWsEU/jwJK1InFa56u5Q+9jXPFaTIJbP2IQwyjApmUHAJE+8xt5AxPmIDeMgxOY8KkWY5Qsr/zSykTIGNiukdE//Idfp+oo17KfrT7t+NgilbTmzTERyqsiiGw7LasYqb5Qe1lnbGqIhjNetc6iw3UQG5KyLDiVd6J7n0UftlTn5fGOAox44wJ3Gn+XzIDOPo0vRcaOH/iObJ3XErDFrh9Wm93ajiWyMH5JA0SEjOSJtckivSIZwMyDN5Ia/0jb7TD/r5K12g1c4+mQH9+gGyIKDv</latexit>

Wt
<latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit><latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit><latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit><latexit sha1_base64="iy7brJVy9P9zUcLvUt/Tuk252CE=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AxwUK76dX8Bb50ES1IlSzQHFUr7Q81TBTFyyaztBX6CYcYMCi5hXuqnFhLGp2wMvRRHN2Em4iRFiPm/mYWYKbBhtrhj7p27ztAbaeNejN6i+3cjY8rmE3vhCE5UXhTDSV7tTEUX+Qe1lnbFKIsiteqc6yw3YQapKyLBeSn3HqXSQ+3lOXlDYYCjnDnCnMSd5vEJM4yjS7PkQgv+R7RO2pf1wK8H91fVRm0ZX5GckjNSIwG5Jg1yR5qkRTgZk2fyQl7pG32nH/TzV1qgy50TsgL69QMg46Ew</latexit>

Wt�2
<latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit><latexit sha1_base64="hF8HEg4yUEWwYp6ZjGODz3tevi0=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hgWeN2fDSjVoBHP4/0m4IFWyQHt4SOlgpHmuIEUumbX9MMgwKphBwSXMvEFuIWN8wh6gn2NyFRUizXKElP+ZWUiZAhsV81tm/pnrjPxEG/dS9Ofd3xsFU7ac2LojOFZlUQzHZbVTFdfLD2ot7ZJREcdq2bnUWW6iAnJXRIYzr/ROcumj9sus/JEwwFFOHWFO4k7z+ZgZxtEl6rnQwr8R/SfdZiMMGuHtRbVVW8S3RU7IKamRkFySFrkhbdIhnEzIE3kmL/SVvtF3+vEjXaGLnWOyBPr5DQRUoq8=</latexit>

Wi
<latexit sha1_base64="GK2kFQgZ8wJfDQpCXNCZeCPqMj4=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AzEoFz16/4C3joJlqRKlmgOKpT2h5qnCmLkklnbC/wEw4wZFFzCvNRPLSSMT9kYeimObsJMxEmKEPN/MwsxU2DDbHHH3Dt3naE30sa9GL1F9+9GxpTNJ/bCEZyovCiGk7zamYou8g9qLe2KURZFatU511luwgxSV0SC81LuPUqlh9rLc/KGwgBHOXOEOYk7zeMTZhhHl2bJhRb8j2idtC/rgV8P7q+qjdoyviI5JWekRgJyTRrkjjRJi3AyJs/khbzSN/pOP+jnr7RAlzsnZAX06wcOJ6El</latexit><latexit sha1_base64="GK2kFQgZ8wJfDQpCXNCZeCPqMj4=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AzEoFz16/4C3joJlqRKlmgOKpT2h5qnCmLkklnbC/wEw4wZFFzCvNRPLSSMT9kYeimObsJMxEmKEPN/MwsxU2DDbHHH3Dt3naE30sa9GL1F9+9GxpTNJ/bCEZyovCiGk7zamYou8g9qLe2KURZFatU511luwgxSV0SC81LuPUqlh9rLc/KGwgBHOXOEOYk7zeMTZhhHl2bJhRb8j2idtC/rgV8P7q+qjdoyviI5JWekRgJyTRrkjjRJi3AyJs/khbzSN/pOP+jnr7RAlzsnZAX06wcOJ6El</latexit><latexit sha1_base64="GK2kFQgZ8wJfDQpCXNCZeCPqMj4=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AzEoFz16/4C3joJlqRKlmgOKpT2h5qnCmLkklnbC/wEw4wZFFzCvNRPLSSMT9kYeimObsJMxEmKEPN/MwsxU2DDbHHH3Dt3naE30sa9GL1F9+9GxpTNJ/bCEZyovCiGk7zamYou8g9qLe2KURZFatU511luwgxSV0SC81LuPUqlh9rLc/KGwgBHOXOEOYk7zeMTZhhHl2bJhRb8j2idtC/rgV8P7q+qjdoyviI5JWekRgJyTRrkjjRJi3AyJs/khbzSN/pOP+jnr7RAlzsnZAX06wcOJ6El</latexit><latexit sha1_base64="GK2kFQgZ8wJfDQpCXNCZeCPqMj4=">AAACGnicZVBNSwMxEE3qV61frR69LBahBym7Iuix4MVjRfsB7VKy6bQNTTZLMiuUpT/Bq178Nd7Eqxf/jdnag7UPwrzMvOExL0qksOj737Swsbm1vVPcLe3tHxwelSvHbatTw6HFtdSmGzELUsTQQoESuokBpiIJnWh6m887T2Cs0PEjzhIIFRvHYiQ4Q9d66AzEoFz16/4C3joJlqRKlmgOKpT2h5qnCmLkklnbC/wEw4wZFFzCvNRPLSSMT9kYeimObsJMxEmKEPN/MwsxU2DDbHHH3Dt3naE30sa9GL1F9+9GxpTNJ/bCEZyovCiGk7zamYou8g9qLe2KURZFatU511luwgxSV0SC81LuPUqlh9rLc/KGwgBHOXOEOYk7zeMTZhhHl2bJhRb8j2idtC/rgV8P7q+qjdoyviI5JWekRgJyTRrkjjRJi3AyJs/khbzSN/pOP+jnr7RAlzsnZAX06wcOJ6El</latexit>

Wt�1
<latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit><latexit sha1_base64="nZUZy5n+Gtq1l/PjKEo82gCXz0s=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXI8C4tBtR40gxn8ZRLOSZ3M0R7UKO0PNc8UJMgls/YhDFKMcmZQcAmF188spIxP2CM8ZDi6inKRpBlCwv/NLCRMgY3y2S2Ff+I6Q3+kjXsJ+rPu342cKVtO7KkjOFZlUQzHZbVTFZ+WH9Ra2gWjPI7VonOps9xEOWSuiBQLr/QeZdJH7ZdZ+UNhgKOcOsKcxJ3m8zEzjKNL1HOhhf8jWibd82YYNMPbi3qrMY+vQo7IMWmQkFySFrkhbdIhnEzIM3khr/SNvtMP+vkrXaHznUOyAPr1AwKfoq4=</latexit>

(i odd)
<latexit sha1_base64="qzzv7XXqBfcfzOvxxyGXsNSCOF4=">AAACKXicZVBNSwMxEE3qd/2qevQSrEIFKbsi6FHw4lHB2oJdSjY7taHJZklmxbL0n3jVi7/Gm3r1j5itPVh9EOZl5g2PeXGmpMMg+KCVufmFxaXllerq2vrGZm1r+9aZ3ApoCaOM7cTcgZIptFCigk5mgetYQTseXpTz9gNYJ016g6MMIs3vU9mXgqNv9Wq1ro7NY9HYl/vMJMnhuFerB81gAvafhFNSJ1Nc9bYo7SZG5BpSFIo7dxcGGUYFtyiFgnG1mzvIuBjye7jLsX8WFTLNcoRU/Jk5SLkGFxWTs8bswHcS1jfWvxTZpPt7o+DalRN35AkOdFk0x0FZ3UjHR+UHjVFuxqiIYz3rXOqcsFEBuS8yw3G19O7niqFhZWwskRYEqpEn3Ev8aUwMuOUCfbhVH1r4N6L/5Pa4GQbN8Pqkft6YxrdMdskeaZCQnJJzckmuSIsI8kCeyDN5oa/0jb7Tzx9phU53dsgM6Nc33B+mHA==</latexit><latexit sha1_base64="qzzv7XXqBfcfzOvxxyGXsNSCOF4=">AAACKXicZVBNSwMxEE3qd/2qevQSrEIFKbsi6FHw4lHB2oJdSjY7taHJZklmxbL0n3jVi7/Gm3r1j5itPVh9EOZl5g2PeXGmpMMg+KCVufmFxaXllerq2vrGZm1r+9aZ3ApoCaOM7cTcgZIptFCigk5mgetYQTseXpTz9gNYJ016g6MMIs3vU9mXgqNv9Wq1ro7NY9HYl/vMJMnhuFerB81gAvafhFNSJ1Nc9bYo7SZG5BpSFIo7dxcGGUYFtyiFgnG1mzvIuBjye7jLsX8WFTLNcoRU/Jk5SLkGFxWTs8bswHcS1jfWvxTZpPt7o+DalRN35AkOdFk0x0FZ3UjHR+UHjVFuxqiIYz3rXOqcsFEBuS8yw3G19O7niqFhZWwskRYEqpEn3Ev8aUwMuOUCfbhVH1r4N6L/5Pa4GQbN8Pqkft6YxrdMdskeaZCQnJJzckmuSIsI8kCeyDN5oa/0jb7Tzx9phU53dsgM6Nc33B+mHA==</latexit><latexit sha1_base64="qzzv7XXqBfcfzOvxxyGXsNSCOF4=">AAACKXicZVBNSwMxEE3qd/2qevQSrEIFKbsi6FHw4lHB2oJdSjY7taHJZklmxbL0n3jVi7/Gm3r1j5itPVh9EOZl5g2PeXGmpMMg+KCVufmFxaXllerq2vrGZm1r+9aZ3ApoCaOM7cTcgZIptFCigk5mgetYQTseXpTz9gNYJ016g6MMIs3vU9mXgqNv9Wq1ro7NY9HYl/vMJMnhuFerB81gAvafhFNSJ1Nc9bYo7SZG5BpSFIo7dxcGGUYFtyiFgnG1mzvIuBjye7jLsX8WFTLNcoRU/Jk5SLkGFxWTs8bswHcS1jfWvxTZpPt7o+DalRN35AkOdFk0x0FZ3UjHR+UHjVFuxqiIYz3rXOqcsFEBuS8yw3G19O7niqFhZWwskRYEqpEn3Ev8aUwMuOUCfbhVH1r4N6L/5Pa4GQbN8Pqkft6YxrdMdskeaZCQnJJzckmuSIsI8kCeyDN5oa/0jb7Tzx9phU53dsgM6Nc33B+mHA==</latexit><latexit sha1_base64="qzzv7XXqBfcfzOvxxyGXsNSCOF4=">AAACKXicZVBNSwMxEE3qd/2qevQSrEIFKbsi6FHw4lHB2oJdSjY7taHJZklmxbL0n3jVi7/Gm3r1j5itPVh9EOZl5g2PeXGmpMMg+KCVufmFxaXllerq2vrGZm1r+9aZ3ApoCaOM7cTcgZIptFCigk5mgetYQTseXpTz9gNYJ016g6MMIs3vU9mXgqNv9Wq1ro7NY9HYl/vMJMnhuFerB81gAvafhFNSJ1Nc9bYo7SZG5BpSFIo7dxcGGUYFtyiFgnG1mzvIuBjye7jLsX8WFTLNcoRU/Jk5SLkGFxWTs8bswHcS1jfWvxTZpPt7o+DalRN35AkOdFk0x0FZ3UjHR+UHjVFuxqiIYz3rXOqcsFEBuS8yw3G19O7niqFhZWwskRYEqpEn3Ev8aUwMuOUCfbhVH1r4N6L/5Pa4GQbN8Pqkft6YxrdMdskeaZCQnJJzckmuSIsI8kCeyDN5oa/0jb7Tzx9phU53dsgM6Nc33B+mHA==</latexit> ✏n

<latexit sha1_base64="bSLccJ1xyG+J+Hv+k0Kj4N/UrJA=">AAACKHicZVBNSwMxEE38tn606tFLsAgepOyKoEfBi0cFWwvtUrLp1AbzsSazQln6S7zqxV/jTXr1l5itPVg7EOblzRse89JMSY9RNKFLyyura+sbm5Wt7Z3dam1vv+Vt7gQ0hVXWtVPuQUkDTZSooJ054DpV8JA+XZfzhxdwXlpzj6MMEs0fjRxIwTFQvVq1q+CZdSHzUlnDAlOPGtG02CKIZ6BOZnXb26O027ci12BQKO59J44yTAruUAoF40o395Bx8cQfoZPj4DIppMlyBCP+zTwYrsEnxfSqMTsOTJ8NrAvPIJuyfzcKrn058acB4FCXTXMclt2PdHpaftBa5eeMijTV886lzguXFJCHJjMcV0rvQa4YWlamxvrSgUA1CoAHSTiNiSF3XGDIthJCi/9HtAhaZ404asR35/Wrk1l8G+SQHJETEpMLckVuyC1pEkFy8kreyDv9oJ/0i05+pUt0tnNA5op+/wAffKZR</latexit><latexit sha1_base64="bSLccJ1xyG+J+Hv+k0Kj4N/UrJA=">AAACKHicZVBNSwMxEE38tn606tFLsAgepOyKoEfBi0cFWwvtUrLp1AbzsSazQln6S7zqxV/jTXr1l5itPVg7EOblzRse89JMSY9RNKFLyyura+sbm5Wt7Z3dam1vv+Vt7gQ0hVXWtVPuQUkDTZSooJ054DpV8JA+XZfzhxdwXlpzj6MMEs0fjRxIwTFQvVq1q+CZdSHzUlnDAlOPGtG02CKIZ6BOZnXb26O027ci12BQKO59J44yTAruUAoF40o395Bx8cQfoZPj4DIppMlyBCP+zTwYrsEnxfSqMTsOTJ8NrAvPIJuyfzcKrn058acB4FCXTXMclt2PdHpaftBa5eeMijTV886lzguXFJCHJjMcV0rvQa4YWlamxvrSgUA1CoAHSTiNiSF3XGDIthJCi/9HtAhaZ404asR35/Wrk1l8G+SQHJETEpMLckVuyC1pEkFy8kreyDv9oJ/0i05+pUt0tnNA5op+/wAffKZR</latexit><latexit sha1_base64="bSLccJ1xyG+J+Hv+k0Kj4N/UrJA=">AAACKHicZVBNSwMxEE38tn606tFLsAgepOyKoEfBi0cFWwvtUrLp1AbzsSazQln6S7zqxV/jTXr1l5itPVg7EOblzRse89JMSY9RNKFLyyura+sbm5Wt7Z3dam1vv+Vt7gQ0hVXWtVPuQUkDTZSooJ054DpV8JA+XZfzhxdwXlpzj6MMEs0fjRxIwTFQvVq1q+CZdSHzUlnDAlOPGtG02CKIZ6BOZnXb26O027ci12BQKO59J44yTAruUAoF40o395Bx8cQfoZPj4DIppMlyBCP+zTwYrsEnxfSqMTsOTJ8NrAvPIJuyfzcKrn058acB4FCXTXMclt2PdHpaftBa5eeMijTV886lzguXFJCHJjMcV0rvQa4YWlamxvrSgUA1CoAHSTiNiSF3XGDIthJCi/9HtAhaZ404asR35/Wrk1l8G+SQHJETEpMLckVuyC1pEkFy8kreyDv9oJ/0i05+pUt0tnNA5op+/wAffKZR</latexit><latexit sha1_base64="bSLccJ1xyG+J+Hv+k0Kj4N/UrJA=">AAACKHicZVBNSwMxEE38tn606tFLsAgepOyKoEfBi0cFWwvtUrLp1AbzsSazQln6S7zqxV/jTXr1l5itPVg7EOblzRse89JMSY9RNKFLyyura+sbm5Wt7Z3dam1vv+Vt7gQ0hVXWtVPuQUkDTZSooJ054DpV8JA+XZfzhxdwXlpzj6MMEs0fjRxIwTFQvVq1q+CZdSHzUlnDAlOPGtG02CKIZ6BOZnXb26O027ci12BQKO59J44yTAruUAoF40o395Bx8cQfoZPj4DIppMlyBCP+zTwYrsEnxfSqMTsOTJ8NrAvPIJuyfzcKrn058acB4FCXTXMclt2PdHpaftBa5eeMijTV886lzguXFJCHJjMcV0rvQa4YWlamxvrSgUA1CoAHSTiNiSF3XGDIthJCi/9HtAhaZ404asR35/Wrk1l8G+SQHJETEpMLckVuyC1pEkFy8kreyDv9oJ/0i05+pUt0tnNA5op+/wAffKZR</latexit>

Wi�1
<latexit sha1_base64="l2gN4oQGOmseCqbzwQw6BxedRhg=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXJxFhaDaj1oBjP4yySckzqZoz2oUdofap4pSJBLZu1DGKQY5cyg4BIKr59ZSBmfsEd4yHB0FeUiSTOEhP+bWUiYAhvls1sK/8R1hv5IG/cS9Gfdvxs5U7ac2FNHcKzKohiOy2qnKj4tP6i1tAtGeRyrRedSZ7mJcshcESkWXuk9yqSP2i+z8ofCAEc5dYQ5iTvN52NmGEeXqOdCC/9HtEy6580waIa3F/VWYx5fhRyRY9IgIbkkLXJD2qRDOJmQZ/JCXukbfacf9PNXukLnO4dkAfTrB++zoqM=</latexit><latexit sha1_base64="l2gN4oQGOmseCqbzwQw6BxedRhg=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXJxFhaDaj1oBjP4yySckzqZoz2oUdofap4pSJBLZu1DGKQY5cyg4BIKr59ZSBmfsEd4yHB0FeUiSTOEhP+bWUiYAhvls1sK/8R1hv5IG/cS9Gfdvxs5U7ac2FNHcKzKohiOy2qnKj4tP6i1tAtGeRyrRedSZ7mJcshcESkWXuk9yqSP2i+z8ofCAEc5dYQ5iTvN52NmGEeXqOdCC/9HtEy6580waIa3F/VWYx5fhRyRY9IgIbkkLXJD2qRDOJmQZ/JCXukbfacf9PNXukLnO4dkAfTrB++zoqM=</latexit><latexit sha1_base64="l2gN4oQGOmseCqbzwQw6BxedRhg=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXJxFhaDaj1oBjP4yySckzqZoz2oUdofap4pSJBLZu1DGKQY5cyg4BIKr59ZSBmfsEd4yHB0FeUiSTOEhP+bWUiYAhvls1sK/8R1hv5IG/cS9Gfdvxs5U7ac2FNHcKzKohiOy2qnKj4tP6i1tAtGeRyrRedSZ7mJcshcESkWXuk9yqSP2i+z8ofCAEc5dYQ5iTvN52NmGEeXqOdCC/9HtEy6580waIa3F/VWYx5fhRyRY9IgIbkkLXJD2qRDOJmQZ/JCXukbfacf9PNXukLnO4dkAfTrB++zoqM=</latexit><latexit sha1_base64="l2gN4oQGOmseCqbzwQw6BxedRhg=">AAACHnicZVBNSwMxEE38rOtXq0cvi0XoQcuuCHosePFYwbaCXUo2ndrQZLMks0JZ9kd41Yu/xpt41X9jtvZg7YMwLzNveMyLUyksBsE3XVldW9/YrGx52zu7e/vV2kHX6sxw6HAttbmPmQUpEuigQAn3qQGmYgm9eHJdzntPYKzQyR1OU4gUe0zESHCGrtXrDXJxFhaDaj1oBjP4yySckzqZoz2oUdofap4pSJBLZu1DGKQY5cyg4BIKr59ZSBmfsEd4yHB0FeUiSTOEhP+bWUiYAhvls1sK/8R1hv5IG/cS9Gfdvxs5U7ac2FNHcKzKohiOy2qnKj4tP6i1tAtGeRyrRedSZ7mJcshcESkWXuk9yqSP2i+z8ofCAEc5dYQ5iTvN52NmGEeXqOdCC/9HtEy6580waIa3F/VWYx5fhRyRY9IgIbkkLXJD2qRDOJmQZ/JCXukbfacf9PNXukLnO4dkAfTrB++zoqM=</latexit>

Wi+1
<latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit><latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit><latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit><latexit sha1_base64="95IXK2C7IsYMv20q/+zT6LCwFh8=">AAACHnicZVBNSwMxEE3qV61fVY9eFosgWMquCHoUvHisYLuCLiWbTm1oslmSWaEs+yO86sVf40286r8xW/dg7YMwLzNveMyLUyks+v43rS0tr6yu1dcbG5tb2zvN3b2+1Znh0ONaanMXMwtSJNBDgRLuUgNMxRLCeHJVzsMnMFbo5BanKUSKPSZiJDhD1wrDQS5OgmLQbPkdfwZvkQQVaZEK3cEupQ9DzTMFCXLJrL0P/BSjnBkUXELReMgspIxP2CPcZzi6iHKRpBlCwv/NLCRMgY3y2S2Fd+Q6Q2+kjXsJerPu342cKVtObNsRHKuyKIbjstqpitvlB7WWds4oj2M171zqLDdRDpkrIsWiUXqPMumh9sqsvKEwwFFOHWFO4k7z+JgZxtEl2nChBf8jWiT9007gd4Kbs9blcRVfnRyQQ3JMAnJOLsk16ZIe4WRCnskLeaVv9J1+0M9faY1WO/tkDvTrB+xHoqE=</latexit>

Wi+2
<latexit sha1_base64="3WYWaohXUGX5/q2sFOGjDaCX2rM=">AAACHnicZVBNSwMxEE38rPWr1aOXxSIULGW3CHosePGoYG1Bl5JNp21oslmSWaEs/RFe9eKv8SZe9d+YrXuw7YMwLzNveMyLEiks+v4PXVvf2NzaLu2Ud/f2Dw4r1aMHq1PDocO11KYXMQtSxNBBgRJ6iQGmIgndaHKdz7vPYKzQ8T1OEwgVG8ViKDhD1+p2+5k4b836lZrf9OfwVklQkBopcNuvUvo00DxVECOXzNrHwE8wzJhBwSXMyk+phYTxCRvBY4rDqzATcZIixHxpZiFmCmyYzW+ZeWeuM/CG2rgXozfv/t/ImLL5xDYcwbHKi2I4zqudqqiRf1BraReMsihSi865znITZpC6IhKclXPvYSo91F6elTcQBjjKqSPMSdxpHh8zwzi6RMsutGA5olXy0GoGfjO4u6i160V8JXJCTkmdBOSStMkNuSUdwsmEvJBX8kbf6Qf9pF9/0jVa7ByTBdDvX+38oqI=</latexit><latexit sha1_base64="3WYWaohXUGX5/q2sFOGjDaCX2rM=">AAACHnicZVBNSwMxEE38rPWr1aOXxSIULGW3CHosePGoYG1Bl5JNp21oslmSWaEs/RFe9eKv8SZe9d+YrXuw7YMwLzNveMyLEiks+v4PXVvf2NzaLu2Ud/f2Dw4r1aMHq1PDocO11KYXMQtSxNBBgRJ6iQGmIgndaHKdz7vPYKzQ8T1OEwgVG8ViKDhD1+p2+5k4b836lZrf9OfwVklQkBopcNuvUvo00DxVECOXzNrHwE8wzJhBwSXMyk+phYTxCRvBY4rDqzATcZIixHxpZiFmCmyYzW+ZeWeuM/CG2rgXozfv/t/ImLL5xDYcwbHKi2I4zqudqqiRf1BraReMsihSi865znITZpC6IhKclXPvYSo91F6elTcQBjjKqSPMSdxpHh8zwzi6RMsutGA5olXy0GoGfjO4u6i160V8JXJCTkmdBOSStMkNuSUdwsmEvJBX8kbf6Qf9pF9/0jVa7ByTBdDvX+38oqI=</latexit><latexit sha1_base64="3WYWaohXUGX5/q2sFOGjDaCX2rM=">AAACHnicZVBNSwMxEE38rPWr1aOXxSIULGW3CHosePGoYG1Bl5JNp21oslmSWaEs/RFe9eKv8SZe9d+YrXuw7YMwLzNveMyLEiks+v4PXVvf2NzaLu2Ud/f2Dw4r1aMHq1PDocO11KYXMQtSxNBBgRJ6iQGmIgndaHKdz7vPYKzQ8T1OEwgVG8ViKDhD1+p2+5k4b836lZrf9OfwVklQkBopcNuvUvo00DxVECOXzNrHwE8wzJhBwSXMyk+phYTxCRvBY4rDqzATcZIixHxpZiFmCmyYzW+ZeWeuM/CG2rgXozfv/t/ImLL5xDYcwbHKi2I4zqudqqiRf1BraReMsihSi865znITZpC6IhKclXPvYSo91F6elTcQBjjKqSPMSdxpHh8zwzi6RMsutGA5olXy0GoGfjO4u6i160V8JXJCTkmdBOSStMkNuSUdwsmEvJBX8kbf6Qf9pF9/0jVa7ByTBdDvX+38oqI=</latexit><latexit sha1_base64="3WYWaohXUGX5/q2sFOGjDaCX2rM=">AAACHnicZVBNSwMxEE38rPWr1aOXxSIULGW3CHosePGoYG1Bl5JNp21oslmSWaEs/RFe9eKv8SZe9d+YrXuw7YMwLzNveMyLEiks+v4PXVvf2NzaLu2Ud/f2Dw4r1aMHq1PDocO11KYXMQtSxNBBgRJ6iQGmIgndaHKdz7vPYKzQ8T1OEwgVG8ViKDhD1+p2+5k4b836lZrf9OfwVklQkBopcNuvUvo00DxVECOXzNrHwE8wzJhBwSXMyk+phYTxCRvBY4rDqzATcZIixHxpZiFmCmyYzW+ZeWeuM/CG2rgXozfv/t/ImLL5xDYcwbHKi2I4zqudqqiRf1BraReMsihSi865znITZpC6IhKclXPvYSo91F6elTcQBjjKqSPMSdxpHh8zwzi6RMsutGA5olXy0GoGfjO4u6i160V8JXJCTkmdBOSStMkNuSUdwsmEvJBX8kbf6Qf9pF9/0jVa7ByTBdDvX+38oqI=</latexit>

Wi�2
<latexit sha1_base64="NDP5dNYH1HRJxbX+Bq/nXggBcog=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hoU4b86GlWrQCObw/5NwQapkgfbwkNLBSPNcQYpcMmv7YZBhVDCDgkuYeYPcQsb4hD1AP8fkKipEmuUIKf8zs5AyBTYq5rfM/DPXGfmJNu6l6M+7vzcKpmw5sXVHcKzKohiOy2qnKq6XH9Ra2iWjIo7VsnOps9xEBeSuiAxnXumd5NJH7ZdZ+SNhgKOcOsKcxJ3m8zEzjKNL1HOhhX8j+k+6zUYYNMLbi2qrtohvi5yQU1IjIbkkLXJD2qRDOJmQJ/JMXugrfaPv9ONHukIXO8dkCfTzG/FooqQ=</latexit><latexit sha1_base64="NDP5dNYH1HRJxbX+Bq/nXggBcog=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hoU4b86GlWrQCObw/5NwQapkgfbwkNLBSPNcQYpcMmv7YZBhVDCDgkuYeYPcQsb4hD1AP8fkKipEmuUIKf8zs5AyBTYq5rfM/DPXGfmJNu6l6M+7vzcKpmw5sXVHcKzKohiOy2qnKq6XH9Ra2iWjIo7VsnOps9xEBeSuiAxnXumd5NJH7ZdZ+SNhgKOcOsKcxJ3m8zEzjKNL1HOhhX8j+k+6zUYYNMLbi2qrtohvi5yQU1IjIbkkLXJD2qRDOJmQJ/JMXugrfaPv9ONHukIXO8dkCfTzG/FooqQ=</latexit><latexit sha1_base64="NDP5dNYH1HRJxbX+Bq/nXggBcog=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hoU4b86GlWrQCObw/5NwQapkgfbwkNLBSPNcQYpcMmv7YZBhVDCDgkuYeYPcQsb4hD1AP8fkKipEmuUIKf8zs5AyBTYq5rfM/DPXGfmJNu6l6M+7vzcKpmw5sXVHcKzKohiOy2qnKq6XH9Ra2iWjIo7VsnOps9xEBeSuiAxnXumd5NJH7ZdZ+SNhgKOcOsKcxJ3m8zEzjKNL1HOhhX8j+k+6zUYYNMLbi2qrtohvi5yQU1IjIbkkLXJD2qRDOJmQJ/JMXugrfaPv9ONHukIXO8dkCfTzG/FooqQ=</latexit><latexit sha1_base64="NDP5dNYH1HRJxbX+Bq/nXggBcog=">AAACHnicZVBNSwMxEE38dv2qevSyWIQeatktgh4LXjxWsK3QLiWbztrQZLMks0JZ+iO86sVf40286r8xW3uw+iDMy8wbHvPiTAqLQfBFV1bX1jc2t7a9nd29/YPK4VHX6txw6HAttbmPmQUpUuigQAn3mQGmYgm9eHJdznuPYKzQ6R1OM4gUe0hFIjhD1+r1hoU4b86GlWrQCObw/5NwQapkgfbwkNLBSPNcQYpcMmv7YZBhVDCDgkuYeYPcQsb4hD1AP8fkKipEmuUIKf8zs5AyBTYq5rfM/DPXGfmJNu6l6M+7vzcKpmw5sXVHcKzKohiOy2qnKq6XH9Ra2iWjIo7VsnOps9xEBeSuiAxnXumd5NJH7ZdZ+SNhgKOcOsKcxJ3m8zEzjKNL1HOhhX8j+k+6zUYYNMLbi2qrtohvi5yQU1IjIbkkLXJD2qRDOJmQJ/JMXugrfaPv9ONHukIXO8dkCfTzG/FooqQ=</latexit>

C1
<latexit sha1_base64="8cRrDKXgo43dsMXB6JCayM8HGLg=">AAACGnicZVBNSwMxEE38rOu3Hr0sFqGHUnZF0KPgxWNFq0K7lGw624YmmyWZFcrSn+BVL/4ab+LVi//GbN2DrQ/CvMy84TEvzqSwGATfdGl5ZXVtvbbhbW5t7+zu7R/cW50bDh2upTaPMbMgRQodFCjhMTPAVCzhIR5flfOHJzBW6PQOJxlEig1TkQjO0LVur/phf68etIIZ/P8krEidVGj39yntDTTPFaTIJbO2GwYZRgUzKLiEqdfLLWSMj9kQujkmF1Eh0ixHSPnCzELKFNiomN0x9U9cZ+An2riXoj/r/t0omLLlxDYdwZEqi2I4KqudqLhZflBraeeMijhW886lznITFZC7IjKceqV3kksftV/m5A+EAY5y4ghzEneaz0fMMI4uTc+FFi5G9J/cn7bCoBXenNUvG1V8NXJEjkmDhOScXJJr0iYdwsmQPJMX8krf6Dv9oJ+/0iVa7RySOdCvH4yAoNk=</latexit><latexit sha1_base64="8cRrDKXgo43dsMXB6JCayM8HGLg=">AAACGnicZVBNSwMxEE38rOu3Hr0sFqGHUnZF0KPgxWNFq0K7lGw624YmmyWZFcrSn+BVL/4ab+LVi//GbN2DrQ/CvMy84TEvzqSwGATfdGl5ZXVtvbbhbW5t7+zu7R/cW50bDh2upTaPMbMgRQodFCjhMTPAVCzhIR5flfOHJzBW6PQOJxlEig1TkQjO0LVur/phf68etIIZ/P8krEidVGj39yntDTTPFaTIJbO2GwYZRgUzKLiEqdfLLWSMj9kQujkmF1Eh0ixHSPnCzELKFNiomN0x9U9cZ+An2riXoj/r/t0omLLlxDYdwZEqi2I4KqudqLhZflBraeeMijhW886lznITFZC7IjKceqV3kksftV/m5A+EAY5y4ghzEneaz0fMMI4uTc+FFi5G9J/cn7bCoBXenNUvG1V8NXJEjkmDhOScXJJr0iYdwsmQPJMX8krf6Dv9oJ+/0iVa7RySOdCvH4yAoNk=</latexit><latexit sha1_base64="8cRrDKXgo43dsMXB6JCayM8HGLg=">AAACGnicZVBNSwMxEE38rOu3Hr0sFqGHUnZF0KPgxWNFq0K7lGw624YmmyWZFcrSn+BVL/4ab+LVi//GbN2DrQ/CvMy84TEvzqSwGATfdGl5ZXVtvbbhbW5t7+zu7R/cW50bDh2upTaPMbMgRQodFCjhMTPAVCzhIR5flfOHJzBW6PQOJxlEig1TkQjO0LVur/phf68etIIZ/P8krEidVGj39yntDTTPFaTIJbO2GwYZRgUzKLiEqdfLLWSMj9kQujkmF1Eh0ixHSPnCzELKFNiomN0x9U9cZ+An2riXoj/r/t0omLLlxDYdwZEqi2I4KqudqLhZflBraeeMijhW886lznITFZC7IjKceqV3kksftV/m5A+EAY5y4ghzEneaz0fMMI4uTc+FFi5G9J/cn7bCoBXenNUvG1V8NXJEjkmDhOScXJJr0iYdwsmQPJMX8krf6Dv9oJ+/0iVa7RySOdCvH4yAoNk=</latexit><latexit sha1_base64="8cRrDKXgo43dsMXB6JCayM8HGLg=">AAACGnicZVBNSwMxEE38rOu3Hr0sFqGHUnZF0KPgxWNFq0K7lGw624YmmyWZFcrSn+BVL/4ab+LVi//GbN2DrQ/CvMy84TEvzqSwGATfdGl5ZXVtvbbhbW5t7+zu7R/cW50bDh2upTaPMbMgRQodFCjhMTPAVCzhIR5flfOHJzBW6PQOJxlEig1TkQjO0LVur/phf68etIIZ/P8krEidVGj39yntDTTPFaTIJbO2GwYZRgUzKLiEqdfLLWSMj9kQujkmF1Eh0ixHSPnCzELKFNiomN0x9U9cZ+An2riXoj/r/t0omLLlxDYdwZEqi2I4KqudqLhZflBraeeMijhW886lznITFZC7IjKceqV3kksftV/m5A+EAY5y4ghzEneaz0fMMI4uTc+FFi5G9J/cn7bCoBXenNUvG1V8NXJEjkmDhOScXJJr0iYdwsmQPJMX8krf6Dv9oJ+/0iVa7RySOdCvH4yAoNk=</latexit>

C2
<latexit sha1_base64="kVwCiSSOBLMCFG6i35GVaoFZ7nA=">AAACGnicZVBNSwMxEE38rPWzevSyWIQeStkVQY9CLx4r2g9ol5JNp21oslmSWaEs/Qle9eKv8SZevfhvzNYebPsgzMvMGx7zokQKi77/Qzc2t7Z3dgt7xf2Dw6Pjk9Jpy+rUcGhyLbXpRMyCFDE0UaCETmKAqUhCO5rU83n7GYwVOn7CaQKhYqNYDAVn6FqP9f5V/6Ts1/w5vHUSLEiZLNDolyjtDTRPFcTIJbO2G/gJhhkzKLiEWbGXWkgYn7ARdFMc3oaZiJMUIeYrMwsxU2DDbH7HzLt0nYE31Ma9GL159/9GxpTNJ7bqCI5VXhTDcV7tVEXV/INaS7tklEWRWnbOdZabMIPUFZHgrJh7D1PpofbynLyBMMBRTh1hTuJO8/iYGcbRpVl0oQWrEa2T1lUt8GvBw3X5rrKIr0DOyQWpkIDckDtyTxqkSTgZkRfySt7oO/2gn/TrT7pBFztnZAn0+xeONKDa</latexit><latexit sha1_base64="kVwCiSSOBLMCFG6i35GVaoFZ7nA=">AAACGnicZVBNSwMxEE38rPWzevSyWIQeStkVQY9CLx4r2g9ol5JNp21oslmSWaEs/Qle9eKv8SZevfhvzNYebPsgzMvMGx7zokQKi77/Qzc2t7Z3dgt7xf2Dw6Pjk9Jpy+rUcGhyLbXpRMyCFDE0UaCETmKAqUhCO5rU83n7GYwVOn7CaQKhYqNYDAVn6FqP9f5V/6Ts1/w5vHUSLEiZLNDolyjtDTRPFcTIJbO2G/gJhhkzKLiEWbGXWkgYn7ARdFMc3oaZiJMUIeYrMwsxU2DDbH7HzLt0nYE31Ma9GL159/9GxpTNJ7bqCI5VXhTDcV7tVEXV/INaS7tklEWRWnbOdZabMIPUFZHgrJh7D1PpofbynLyBMMBRTh1hTuJO8/iYGcbRpVl0oQWrEa2T1lUt8GvBw3X5rrKIr0DOyQWpkIDckDtyTxqkSTgZkRfySt7oO/2gn/TrT7pBFztnZAn0+xeONKDa</latexit><latexit sha1_base64="kVwCiSSOBLMCFG6i35GVaoFZ7nA=">AAACGnicZVBNSwMxEE38rPWzevSyWIQeStkVQY9CLx4r2g9ol5JNp21oslmSWaEs/Qle9eKv8SZevfhvzNYebPsgzMvMGx7zokQKi77/Qzc2t7Z3dgt7xf2Dw6Pjk9Jpy+rUcGhyLbXpRMyCFDE0UaCETmKAqUhCO5rU83n7GYwVOn7CaQKhYqNYDAVn6FqP9f5V/6Ts1/w5vHUSLEiZLNDolyjtDTRPFcTIJbO2G/gJhhkzKLiEWbGXWkgYn7ARdFMc3oaZiJMUIeYrMwsxU2DDbH7HzLt0nYE31Ma9GL159/9GxpTNJ7bqCI5VXhTDcV7tVEXV/INaS7tklEWRWnbOdZabMIPUFZHgrJh7D1PpofbynLyBMMBRTh1hTuJO8/iYGcbRpVl0oQWrEa2T1lUt8GvBw3X5rrKIr0DOyQWpkIDckDtyTxqkSTgZkRfySt7oO/2gn/TrT7pBFztnZAn0+xeONKDa</latexit><latexit sha1_base64="kVwCiSSOBLMCFG6i35GVaoFZ7nA=">AAACGnicZVBNSwMxEE38rPWzevSyWIQeStkVQY9CLx4r2g9ol5JNp21oslmSWaEs/Qle9eKv8SZevfhvzNYebPsgzMvMGx7zokQKi77/Qzc2t7Z3dgt7xf2Dw6Pjk9Jpy+rUcGhyLbXpRMyCFDE0UaCETmKAqUhCO5rU83n7GYwVOn7CaQKhYqNYDAVn6FqP9f5V/6Ts1/w5vHUSLEiZLNDolyjtDTRPFcTIJbO2G/gJhhkzKLiEWbGXWkgYn7ARdFMc3oaZiJMUIeYrMwsxU2DDbH7HzLt0nYE31Ma9GL159/9GxpTNJ7bqCI5VXhTDcV7tVEXV/INaS7tklEWRWnbOdZabMIPUFZHgrJh7D1PpofbynLyBMMBRTh1hTuJO8/iYGcbRpVl0oQWrEa2T1lUt8GvBw3X5rrKIr0DOyQWpkIDckDtyTxqkSTgZkRfySt7oO/2gn/TrT7pBFztnZAn0+xeONKDa</latexit>

C
<latexit sha1_base64="+952MZ2qAofywDNPsoXRRcYtLA8=">AAACGHicZVBNSwMxEE38rPWr6tFLsAgepOyKoMdCLx4tWBXapWTTqQ0mmyWZFcrSX+BVL/4ab+LVm//GpPZg7YMwLzNveMxLcyUdRtE3XVpeWV1br2xUN7e2d3Zre/u3zhRWQEcYZex9yh0omUEHJSq4zy1wnSq4Sx9bYX73BNZJk93gOIdE84dMDqXg6FvtVr9WjxrRFGyRxDNSJzNc9/co7Q2MKDRkKBR3rhtHOSYltyiFgkm1VzjIuXjkD9AtcHiZlDLLC4RM/Js5yLgGl5TTKybs2HcGbGisfxmyaffvRsm1CxN36gmOdCia4yhUN9bpafigMcrNGZVpquedg84Jm5RQ+CJznFSD97BQDA0LKbGBtCBQjT3hXuJPY2LELRfos6z60OL/ES2S27NGHDXi9nm9eTKLr0IOyRE5ITG5IE1yRa5JhwgC5Jm8kFf6Rt/pB/38lS7R2c4BmQP9+gFMIqA1</latexit><latexit sha1_base64="+952MZ2qAofywDNPsoXRRcYtLA8=">AAACGHicZVBNSwMxEE38rPWr6tFLsAgepOyKoMdCLx4tWBXapWTTqQ0mmyWZFcrSX+BVL/4ab+LVm//GpPZg7YMwLzNveMxLcyUdRtE3XVpeWV1br2xUN7e2d3Zre/u3zhRWQEcYZex9yh0omUEHJSq4zy1wnSq4Sx9bYX73BNZJk93gOIdE84dMDqXg6FvtVr9WjxrRFGyRxDNSJzNc9/co7Q2MKDRkKBR3rhtHOSYltyiFgkm1VzjIuXjkD9AtcHiZlDLLC4RM/Js5yLgGl5TTKybs2HcGbGisfxmyaffvRsm1CxN36gmOdCia4yhUN9bpafigMcrNGZVpquedg84Jm5RQ+CJznFSD97BQDA0LKbGBtCBQjT3hXuJPY2LELRfos6z60OL/ES2S27NGHDXi9nm9eTKLr0IOyRE5ITG5IE1yRa5JhwgC5Jm8kFf6Rt/pB/38lS7R2c4BmQP9+gFMIqA1</latexit><latexit sha1_base64="+952MZ2qAofywDNPsoXRRcYtLA8=">AAACGHicZVBNSwMxEE38rPWr6tFLsAgepOyKoMdCLx4tWBXapWTTqQ0mmyWZFcrSX+BVL/4ab+LVm//GpPZg7YMwLzNveMxLcyUdRtE3XVpeWV1br2xUN7e2d3Zre/u3zhRWQEcYZex9yh0omUEHJSq4zy1wnSq4Sx9bYX73BNZJk93gOIdE84dMDqXg6FvtVr9WjxrRFGyRxDNSJzNc9/co7Q2MKDRkKBR3rhtHOSYltyiFgkm1VzjIuXjkD9AtcHiZlDLLC4RM/Js5yLgGl5TTKybs2HcGbGisfxmyaffvRsm1CxN36gmOdCia4yhUN9bpafigMcrNGZVpquedg84Jm5RQ+CJznFSD97BQDA0LKbGBtCBQjT3hXuJPY2LELRfos6z60OL/ES2S27NGHDXi9nm9eTKLr0IOyRE5ITG5IE1yRa5JhwgC5Jm8kFf6Rt/pB/38lS7R2c4BmQP9+gFMIqA1</latexit><latexit sha1_base64="+952MZ2qAofywDNPsoXRRcYtLA8=">AAACGHicZVBNSwMxEE38rPWr6tFLsAgepOyKoMdCLx4tWBXapWTTqQ0mmyWZFcrSX+BVL/4ab+LVm//GpPZg7YMwLzNveMxLcyUdRtE3XVpeWV1br2xUN7e2d3Zre/u3zhRWQEcYZex9yh0omUEHJSq4zy1wnSq4Sx9bYX73BNZJk93gOIdE84dMDqXg6FvtVr9WjxrRFGyRxDNSJzNc9/co7Q2MKDRkKBR3rhtHOSYltyiFgkm1VzjIuXjkD9AtcHiZlDLLC4RM/Js5yLgGl5TTKybs2HcGbGisfxmyaffvRsm1CxN36gmOdCia4yhUN9bpafigMcrNGZVpquedg84Jm5RQ+CJznFSD97BQDA0LKbGBtCBQjT3hXuJPY2LELRfos6z60OL/ES2S27NGHDXi9nm9eTKLr0IOyRE5ITG5IE1yRa5JhwgC5Jm8kFf6Rt/pB/38lS7R2c4BmQP9+gFMIqA1</latexit>

Z1
<latexit sha1_base64="tExAVnM2+vWDTNPn3ATipRMzTG4=">AAACGnicZVBNSwMxEE38dv1q9ehlsQg9lLIrgh4LXjwqWi3qUrLpbBtMNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1Tq+/eWJ0bDl2upTa9mFmQIoUuCpTQywwwFUu4jR/PyvntExgrdHqN4wwixYapSARn6FpXd/2wX2sE7WAKf56EFWmQChf9OqUPA81zBSlyyay9D4MMo4IZFFzCxHvILWSMP7Ih3OeYnEaFSLMcIeX/ZhZSpsBGxfSOiX/oOgM/0ca9FP1p9+9GwZQtJ7blCI5UWRTDUVntWMWt8oNaSztjVMSxmnUudZabqIDcFZHhxCu9k1z6qP0yJ38gDHCUY0eYk7jTfD5ihnF0aXoutPB/RPPk5qgdBu3w8rjRaVbxrZF9ckCaJCQnpEPOyQXpEk6G5Jm8kFf6Rt/pB/38lS7QamePzIB+/QCz2qDw</latexit><latexit sha1_base64="tExAVnM2+vWDTNPn3ATipRMzTG4=">AAACGnicZVBNSwMxEE38dv1q9ehlsQg9lLIrgh4LXjwqWi3qUrLpbBtMNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1Tq+/eWJ0bDl2upTa9mFmQIoUuCpTQywwwFUu4jR/PyvntExgrdHqN4wwixYapSARn6FpXd/2wX2sE7WAKf56EFWmQChf9OqUPA81zBSlyyay9D4MMo4IZFFzCxHvILWSMP7Ih3OeYnEaFSLMcIeX/ZhZSpsBGxfSOiX/oOgM/0ca9FP1p9+9GwZQtJ7blCI5UWRTDUVntWMWt8oNaSztjVMSxmnUudZabqIDcFZHhxCu9k1z6qP0yJ38gDHCUY0eYk7jTfD5ihnF0aXoutPB/RPPk5qgdBu3w8rjRaVbxrZF9ckCaJCQnpEPOyQXpEk6G5Jm8kFf6Rt/pB/38lS7QamePzIB+/QCz2qDw</latexit><latexit sha1_base64="tExAVnM2+vWDTNPn3ATipRMzTG4=">AAACGnicZVBNSwMxEE38dv1q9ehlsQg9lLIrgh4LXjwqWi3qUrLpbBtMNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1Tq+/eWJ0bDl2upTa9mFmQIoUuCpTQywwwFUu4jR/PyvntExgrdHqN4wwixYapSARn6FpXd/2wX2sE7WAKf56EFWmQChf9OqUPA81zBSlyyay9D4MMo4IZFFzCxHvILWSMP7Ih3OeYnEaFSLMcIeX/ZhZSpsBGxfSOiX/oOgM/0ca9FP1p9+9GwZQtJ7blCI5UWRTDUVntWMWt8oNaSztjVMSxmnUudZabqIDcFZHhxCu9k1z6qP0yJ38gDHCUY0eYk7jTfD5ihnF0aXoutPB/RPPk5qgdBu3w8rjRaVbxrZF9ckCaJCQnpEPOyQXpEk6G5Jm8kFf6Rt/pB/38lS7QamePzIB+/QCz2qDw</latexit><latexit sha1_base64="tExAVnM2+vWDTNPn3ATipRMzTG4=">AAACGnicZVBNSwMxEE38dv1q9ehlsQg9lLIrgh4LXjwqWi3qUrLpbBtMNksyK5SlP8GrXvw13sSrF/+N2boHax+EeZl5w2NenElhMQi+6cLi0vLK6tq6t7G5tb1Tq+/eWJ0bDl2upTa9mFmQIoUuCpTQywwwFUu4jR/PyvntExgrdHqN4wwixYapSARn6FpXd/2wX2sE7WAKf56EFWmQChf9OqUPA81zBSlyyay9D4MMo4IZFFzCxHvILWSMP7Ih3OeYnEaFSLMcIeX/ZhZSpsBGxfSOiX/oOgM/0ca9FP1p9+9GwZQtJ7blCI5UWRTDUVntWMWt8oNaSztjVMSxmnUudZabqIDcFZHhxCu9k1z6qP0yJ38gDHCUY0eYk7jTfD5ihnF0aXoutPB/RPPk5qgdBu3w8rjRaVbxrZF9ckCaJCQnpEPOyQXpEk6G5Jm8kFf6Rt/pB/38lS7QamePzIB+/QCz2qDw</latexit>

Z2
<latexit sha1_base64="Yj/PN/9dCh31KyU/A9hzwhFRLvo=">AAACGnicZVBNSwMxEE3qd/3Wo5fFIvQgZbcIeix48ahotdguJZvOtsFksySzQln6E7zqxV/jTbx68d+YrXuw7YMwLzNveMyLUiks+v4PrSwtr6yurW9UN7e2d3b39g/urc4MhzbXUptOxCxIkUAbBUropAaYiiQ8RE+XxfzhGYwVOrnDcQqhYsNExIIzdK3bx36zv1fzG/4U3iIJSlIjJa77+5T2BppnChLkklnbDfwUw5wZFFzCpNrLLKSMP7EhdDOML8JcJGmGkPC5mYWEKbBhPr1j4p24zsCLtXEvQW/a/b+RM2WLiT11BEeqKIrhqKh2rKLT4oNaSztjlEeRmnUudJabMIfMFZHipFp4x5n0UHtFTt5AGOAox44wJ3GneXzEDOPo0qy60IL5iBbJfbMR+I3g5qzWqpfxrZMjckzqJCDnpEWuyDVpE06G5IW8kjf6Tj/oJ/36k1ZouXNIZkC/fwG1jqDx</latexit><latexit sha1_base64="Yj/PN/9dCh31KyU/A9hzwhFRLvo=">AAACGnicZVBNSwMxEE3qd/3Wo5fFIvQgZbcIeix48ahotdguJZvOtsFksySzQln6E7zqxV/jTbx68d+YrXuw7YMwLzNveMyLUiks+v4PrSwtr6yurW9UN7e2d3b39g/urc4MhzbXUptOxCxIkUAbBUropAaYiiQ8RE+XxfzhGYwVOrnDcQqhYsNExIIzdK3bx36zv1fzG/4U3iIJSlIjJa77+5T2BppnChLkklnbDfwUw5wZFFzCpNrLLKSMP7EhdDOML8JcJGmGkPC5mYWEKbBhPr1j4p24zsCLtXEvQW/a/b+RM2WLiT11BEeqKIrhqKh2rKLT4oNaSztjlEeRmnUudJabMIfMFZHipFp4x5n0UHtFTt5AGOAox44wJ3GneXzEDOPo0qy60IL5iBbJfbMR+I3g5qzWqpfxrZMjckzqJCDnpEWuyDVpE06G5IW8kjf6Tj/oJ/36k1ZouXNIZkC/fwG1jqDx</latexit><latexit sha1_base64="Yj/PN/9dCh31KyU/A9hzwhFRLvo=">AAACGnicZVBNSwMxEE3qd/3Wo5fFIvQgZbcIeix48ahotdguJZvOtsFksySzQln6E7zqxV/jTbx68d+YrXuw7YMwLzNveMyLUiks+v4PrSwtr6yurW9UN7e2d3b39g/urc4MhzbXUptOxCxIkUAbBUropAaYiiQ8RE+XxfzhGYwVOrnDcQqhYsNExIIzdK3bx36zv1fzG/4U3iIJSlIjJa77+5T2BppnChLkklnbDfwUw5wZFFzCpNrLLKSMP7EhdDOML8JcJGmGkPC5mYWEKbBhPr1j4p24zsCLtXEvQW/a/b+RM2WLiT11BEeqKIrhqKh2rKLT4oNaSztjlEeRmnUudJabMIfMFZHipFp4x5n0UHtFTt5AGOAox44wJ3GneXzEDOPo0qy60IL5iBbJfbMR+I3g5qzWqpfxrZMjckzqJCDnpEWuyDVpE06G5IW8kjf6Tj/oJ/36k1ZouXNIZkC/fwG1jqDx</latexit><latexit sha1_base64="Yj/PN/9dCh31KyU/A9hzwhFRLvo=">AAACGnicZVBNSwMxEE3qd/3Wo5fFIvQgZbcIeix48ahotdguJZvOtsFksySzQln6E7zqxV/jTbx68d+YrXuw7YMwLzNveMyLUiks+v4PrSwtr6yurW9UN7e2d3b39g/urc4MhzbXUptOxCxIkUAbBUropAaYiiQ8RE+XxfzhGYwVOrnDcQqhYsNExIIzdK3bx36zv1fzG/4U3iIJSlIjJa77+5T2BppnChLkklnbDfwUw5wZFFzCpNrLLKSMP7EhdDOML8JcJGmGkPC5mYWEKbBhPr1j4p24zsCLtXEvQW/a/b+RM2WLiT11BEeqKIrhqKh2rKLT4oNaSztjlEeRmnUudJabMIfMFZHipFp4x5n0UHtFTt5AGOAox44wJ3GneXzEDOPo0qy60IL5iBbJfbMR+I3g5qzWqpfxrZMjckzqJCDnpEWuyDVpE06G5IW8kjf6Tj/oJ/36k1ZouXNIZkC/fwG1jqDx</latexit>

Figure 4 An intuitive illustration of the algorithm for Near Small Odd/Even PC.

We now move to formal description of the algorithm. We start by enumerating the set
of all subsets of V (G) of size at most βn/2. That is, S = {S ⊆ V (G) | |S| ≤ βn/2}. Note
that S can be computed in time O?(g(β/2)n), using Observation 2.2. For each S ∈ S the
algorithm does the following. Let CS and CS be the set of connected components of G[S] and
G− S, respectively. Let GS be the graph obtained from G by contracting each C ∈ CS ∪ CS
to a single vertex. Set lenS = |V (GS)|, if GS is a path, and lenS = 0, otherwise. Finally, the
algorithm returns maxS∈S lenS .

In the following lemma we prove the correctness and runtime analysis of the algorithm.

I Lemma 11. The algorithm presented for Small Odd/Even PC is correct and runs in
time O?(g(β/2)n).

4.5 Algorithm for Near Small Odd/Even PC
We formally define the problem Near Small Odd/Even PC in the following (also see
Figure 1).

Near Small Odd/Even PC
Input: A graph G on n vertices and a fraction 0 < ε ≤ 1.
Output: Largest integer t ≥ 3 for which there is a Pt-witness structure W =
(W1,W2, · · · ,Wt) of G, for which there is i ∈ {2, 3, · · · , t − 1}, such that if i is odd,
then |OSW \Wi| ≤ εn and otherwise, |ESW \Wi| ≤ εn. Here, OSW = ∪i∈[dt/2e]W2i−1 and
ESW = ∪i∈[bt/2c]W2i. If no such t ≥ 3 exists, then output 2.

We design an algorithm for Near Small Odd/Even PC running in time O?(cn) where
c = max0≤δ≤ε{1.88(1−δ) · g(δ)}. The second term in multiplicative factor will be due
enumeration of sets, and the first term will be due to calls made to the algorithm for
3-Disjoint Connected Subgraphs, from Section 3.

Let (G, ε) be an instance of Near Small Odd/Even PC. We start by explaining
the intuitive idea behind our algorithm (see Figure 4). Consider a Pt-witness structure
W = (W1,W2, · · · ,Wt) of G, for which there is i ∈ {2, 3, · · · , t−2}, such that if i is odd, then
|OSW \Wi| ≤ εn and otherwise, |ESW \Wi| ≤ εn. In the above, OSW = ∪i∈[dt/2e]W2i−1 and
ESW = ∪i∈[bt/2c]W2i. Let us consider the case when i is odd (the other case is symmetric).
Let S = OSW \Wi. (The union of vertices from yellow sets in Figure 4 is the set S.) As
|S| ≤ εn, the algorithm starts by enumerating all “potential candidates” for the set S. All the
components of G− S, except for the component C, containing Wi, must each be contracted
to a single vertex. Similarly, the components of G[S] must each be contracted to a single
vertex. Moreover, the component containing Wi must be “split” into three sets. The first and
the last sets in the “split” must contain the neighbors of Wi−2 and Wi+2 in C, respectively.
To obtain such a “split”, we use the algorithm for 3-Disjoint Connected Subgraphs that
we designed in Section 3.
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11:12 Path Contraction Faster Than 2n

We now formally describe our algorithm. The algorithm will output an integer t, which
is initially set to 2. Let S = {S ⊂ V (G) | |S| ≤ εn}. For each S ∈ S, the algorithm does
the following. Let CS and CS be the sets of connected components in G[S] and G − S,
respectively. Let HS be obtained from G by contracting component in CS ∪ CS to single
vertices. That is, HS has a vertex vC for each C ∈ CS ∪CS , and two vertices vC , vC′ ∈ V (HS)
are adjacent in HS if and only if C and C ′ are adjacent in G. If HS is not a path, then the
algorithm moves to the next set in S. Otherwise, for each C∗ ∈ CS it does the following.
Intuitively speaking, C∗ is the current guess for the component containing vertices from Wi

for the witness structure that we are looking for. Note that C∗ can be adjacent to at most
two components from CS , as HS is a path. Moreover, C∗ must be adjacent to at least one
component from CS , as G is connected and S is a strict subset of V (G), i.e., S 6= V (G). Let
C1 be a component from CS that is adjacent to C∗ in G, and Z1 = N(C1) ∩ V (C∗). Let
C2 ∈ CS \ {C1} be a component of G[S] that is adjacent to C∗, and Z2 = N(C2)∩ V (C∗). If
such a C2 does not exist, then we set Z2 = ∅. If (G[C∗], Z1, Z2) is a yes-instance of 3-DCS,
then the algorithm updates t = max{t, |V (HS)|+ 2}. After finishing the processing for each
S ∈ S, the algorithm outputs t. This finishes the description of our algorithm.

In the following two lemmas we present the correctness and runtime analysis of the
algorithm, respectively.

I Lemma 12. The algorithm presented for Near Small Odd/Even PC is correct.

I Lemma 13. The algorithm presented for Near Small Odd/Even PC runs in time
O?(cn), where c = max0≤δ≤ε{1.88(1−δ) · g(δ)}.

4.6 Algorithm for Path Contraction
We are now ready to present our algorithm for Path Contraction. The algorithm calls
four of the subroutines Small Odd/Even PC, Balanced PC, 2-Union Heavy PC, and
Near Small Odd/Even PC for appropriate instances, and returns the maximum of their
outputs. In the following theorem, we present the algorithm, which is the main result of this
paper.

I Theorem 14. Path Contraction admits an algorithm running in time O?(1.99987n),
where n is the number of vertices in the input graph.

5 Conclusion

We generalized the 2-Disjoint Connected Subgraphs problem, to a problem called
3-Disjoint Connected Subgraphs, where instead of partitioning the vertex set into two
connected sets, we are required to partition it into three connected sets. We gave an algorithm
for 3-Disjoint Connected Subgraphs running in time O?(1.88n). We believe that this
algorithm can be of independent interest and may find other algorithmic applications. We
designed an algorithm for Path Contraction which breaks the O?(2n) barrier. It was
surprising that even for a simple problem like Path Contraction, there was no known
algorithm that solves it faster than O?(2n). Our algorithm for Path Contraction relied
the fact that the number of (Q, a, b)-connected sets can be bounded by O?(2a+b−|Q|). This
gives us savings in the number of states that we consider, in our dynamic programming
routine (for enumerating partial solutions). We designed four different algorithms for Path
Contraction and used them for appropriate instances, to obtain the main algorithm for
Path Contraction.



A. Agrawal, F. Fomin, D. Lokshtanov, S. Saurabh, and P. Tale 11:13

References
1 Takao Asano and Tomio Hirata. Edge-Contraction Problems. Journal of Computer and

System Sciences, 26(2):197–208, 1983.
2 Andreas Björklund. Determinant Sums for Undirected Hamiltonicity. SIAM J. Comput.,

43(1):280–299, 2014.
3 Andries Evert Brouwer and Hendrik Jan Veldman. Contractibility and NP-completeness.

Journal of Graph Theory, 11(1):71–79, 1987.
4 Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto,

Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On Problems as Hard as
CNF-SAT. ACM Trans. Algorithms, 12(3):41:1–41:24, 2016.

5 Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry Wojtaszczyk. Solving
the 2-disjoint connected subgraphs problem faster than 2n. Algorithmica, 70(2):195–207, 2014.

6 Konrad K Dabrowski and Daniël Paulusma. Contracting bipartite graphs to paths and cycles.
Information Processing Letters, 127:37–42, 2017.

7 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

8 Jiří Fiala, Marcin Kamiński, and Daniël Paulusma. A note on contracting claw-free graphs.
Discrete Mathematics and Theoretical Computer Science, 15(2):223–232, 2013.

9 Fedor V. Fomin and Yngve Villanger. Treewidth computation and extremal combinatorics.
Combinatorica, 32(3):289–308, 2012.

10 Pinar Heggernes, Pim van ’t Hof, Benjamin Lévêque, and Christophe Paul. Contracting chordal
graphs and bipartite graphs to paths and trees. Discrete Applied Mathematics, 164:444–449,
2014.

11 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001.

12 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

13 Walter Kern and Daniel Paulusma. Contracting to a Longest Path in H-Free Graphs. arXiv
preprint, 2018. arXiv:1810.01542.

14 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known Algorithms on Graphs of
Bounded Treewidth Are Probably Optimal. ACM Trans. Algorithms, 14(2):13:1–13:30, 2018.

15 Robert Endre Tarjan and Anthony E. Trojanowski. Finding a Maximum Independent Set.
SIAM J. Comput., 6(3):537–546, 1977.

16 Jan Arne Telle and Yngve Villanger. Connecting terminals and 2-disjoint connected subgraphs.
In International Workshop on Graph-Theoretic Concepts in Computer Science, pages 418–428.
Springer, 2013.

17 Pim van’t Hof, Daniël Paulusma, and Gerhard J Woeginger. Partitioning graphs into connected
parts. Theoretical Computer Science, 410(47-49):4834–4843, 2009.

18 Toshimasa Watanabe, Tadashi Ae, and Akira Nakamura. On the removal of forbidden graphs
by edge-deletion or by edge-contraction. Discrete Applied Mathematics, 3(2):151–153, 1981.

19 Toshimasa Watanabe, Tadashi Ae, and Akira Nakamura. On the NP-hardness of Edge-Deletion
and Contraction Problems. Discrete Applied Mathematics, 6(1):63–78, 1983.

ICALP 2019

http://arxiv.org/abs/1810.01542




Deterministic Combinatorial Replacement Paths
and Distance Sensitivity Oracles
Noga Alon
Department of Mathematics, Princeton University, Princeton, NJ 08544, USA
Schools of Mathematics and Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
nogaa@tau.ac.il

Shiri Chechik
Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
shiri.chechik@gmail.com

Sarel Cohen
Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
sarelcoh@post.tau.ac.il

Abstract
In this work we derandomize two central results in graph algorithms, replacement paths and distance
sensitivity oracles (DSOs) matching in both cases the running time of the randomized algorithms.

For the replacement paths problem, let G = (V,E) be a directed unweighted graph with n

vertices and m edges and let P be a shortest path from s to t in G. The replacement paths problem
is to find for every edge e ∈ P the shortest path from s to t avoiding e. Roditty and Zwick [ICALP
2005] obtained a randomized algorithm with running time of Õ(m

√
n). Here we provide the first

deterministic algorithm for this problem, with the same Õ(m
√
n) time. Due to matching conditional

lower bounds of Williams et al. [FOCS 2010], our deterministic combinatorial algorithm for the
replacement paths problem is optimal up to polylogarithmic factors (unless the long standing bound
of Õ(mn) for the combinatorial boolean matrix multiplication can be improved). This also implies
a deterministic algorithm for the second simple shortest path problem in Õ(m

√
n) time, and a

deterministic algorithm for the k-simple shortest paths problem in Õ(km
√
n) time (for any integer

constant k > 0).
For the problem of distance sensitivity oracles, let G = (V,E) be a directed graph with real-edge

weights. An f -Sensitivity Distance Oracle (f -DSO) gets as input the graph G = (V,E) and a
parameter f , preprocesses it into a data-structure, such that given a query (s, t, F ) with s, t ∈ V
and F ⊆ E ∪ V, |F | ≤ f being a set of at most f edges or vertices (failures), the query algorithm
efficiently computes the distance from s to t in the graph G \ F (i.e., the distance from s to t in the
graph G after removing from it the failing edges and vertices F ).

For weighted graphs with real edge weights, Weimann and Yuster [FOCS 2010] presented several
randomized f -DSOs. In particular, they presented a combinatorial f -DSO with Õ(mn4−α) prepro-
cessing time and subquadratic Õ(n2−2(1−α)/f ) query time, giving a tradeoff between preprocessing
and query time for every value of 0 < α < 1. We derandomize this result and present a combinatorial
deterministic f -DSO with the same asymptotic preprocessing and query time.
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12:2 Deterministic Combinatorial Replacement Paths and Distance Sensitivity Oracles

1 Introduction

In many algorithms used in computing environments such as massive storage devices, large
scale parallel computation, and communication networks, recovering from failures must be
an integral part. Therefore, designing algorithms and data structures whose running time is
efficient even in the presence of failures is an important task. In this paper we study variants
of shortest path queries in setting with failures.

The computation of shortest paths and distances in the presence of failures was extensively
studied. Two central problems researched in this field are the Replacement Paths problem
and Distance Sensitivity Oracles, we define these problems hereinafter.

The Replacement Paths problem. (See, e.g., [26, 28, 16, 14, 21, 27, 6, 30, 22, 23, 24, 25,
29, 15].) Let G = (V,E) be a graph (directed or undirected, weighted or unweighted) with
n vertices and m edges and let PG(s, t) be a shortest path from s to t. For every edge
e ∈ PG(s, t) a replacement path PG(s, t, e) is a shortest path from s to t in the graph G \ {e}
(which is the graph G after removing the edge e). Let dG(s, t, e) be the length of the path
PG(s, t, e). The replacement paths problem is as follows: given a shortest path PG(s, t) from
s to t in G, compute dG(s, t, e) (or an approximation of it) for every e ∈ PG(s, t).

Distance Sensitivity Oracles. (See, e.g., [9, 17, 7, 8, 10, 11, 12, 13, 19].) An f -Sensitivity
Distance Oracle (f -DSO) gets as input a graph G = (V,E) and a parameter f , preprocesses
it into a data-structure, such that given a query (s, t, F ) with s, t ∈ V and F ⊆ E∪V, |F | ≤ f
being a set of at most f edges or vertices (failures), the query algorithm efficiently computes
(exactly or approximately) dG(s, t, F ) which is the distance from s to t in the graph G \ F
(i.e., in the graph G after removing from it the failing edges and vertices F ). Here we would
like to optimize several parameters of the data-structure: minimize the size of the oracle,
support many failures f , have efficient preprocessing and query algorithms, and if the output
is an approximation of the distance then optimize the approximation-ratio.

An important line of research in the theory of computer science is derandomization. In
many algorithms and data-structures there exists a gap between the best known randomized
algorithms and the best known deterministic algorithms. There has been extensive research
on closing the gaps between the best known randomized and deterministic algorithms in
many problems or proving that no deterministic algorithm can perform as good as its
randomized counterpart. There also has been a long line of work on developing derandomiz-
ation techniques, in order to obtain deterministic versions of randomized algorithms (e.g.,
Chapter 16 in [2]).

In this paper we derandomize algorithms and data-structures for computing distances
and shortest paths in the presence of failures. Many randomized algorithms for computing
shortest paths and distances use variants of the following sampling lemma (see Lemma 1 in
Roditty and Zwick [26]).

I Lemma 1 (Lemma 1 in [26]). Let D1, D2, . . . , Dq ⊆ V satisfy |Di| > L for 1 ≤ i ≤ q and
|V | = n. If R ⊆ V is a random subset obtained by selecting each vertex, independently, with
probability (c lnn)/L, for some c > 0, then with probability of at least 1 − q · n−c we have
Di ∩R 6= ∅ for every 1 ≤ i ≤ q.

Our derandomization step of Lemma 1 is very simple, as described in Section 1.3, we use
the folklore greedy approach to prove the following lemma, which is a deterministic version
of Lemma 1.
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I Lemma 2 (See also Section 1.3). Let D1, D2, . . . , Dq ⊆ V satisfy |Di| > L for 1 ≤ i ≤ q and
|V | = n. One can deterministically find in Õ(qL) time a set R ⊂ V such that |R| = Õ(n/L)
and Di ∩R 6= ∅ for every 1 ≤ i ≤ q.

We emphasize that the use of Lemma 2 is very standard and is not our main contribution.
The main technical challenge is how to efficiently and deterministically compute a small
number of sets D1, D2, . . . , Dq ⊆ V so that the invocation of Lemma 2 is fast.

1.1 Derandomizing the Replacment Paths Algorithm of Roditty and
Zwick [26]

We derandomize the algorithm of Roditty and Zwick [26] and obtain a near optimal determ-
inistic algorithm for the replacement paths problem in directed unweighed graphs (a problem
which was open for more than a decade since the randomized algorithm was published) as
stated in the following theorem.

I Theorem 3. There exists a deterministic algorithm for the replacement paths problem
in unweighted directed graphs whose runtime is Õ(m

√
n). This algorithm is near optimal

assuming the conditional lower bound of combinatorial boolean matrix multiplication of [29].

The term “combinatorial algorithms” is not well-defined, and it is often interpreted as
non-Strassen-like algorithms [4], or more intuitively, algorithms that do not use any matrix
multiplication tricks. Arguably, in practice, combinatorial algorithms are to some extent
considered more efficient since the constants hidden in the matrix multiplication bounds are
high. On the other hand, there has been research done to make fast matrix multiplication
practical, e.g., [18, 5].

Vassilevska Williams and Williams [29] proved a subcubic equivalence between
√
n

occurrences of the combinatorial replacement paths problem in unweighted directed graphs
and the combinatorial boolean multiplication (BMM) problem. More precisely, they proved
that there exists some fixed ε > 0 such that the combinatorial replacement paths problem
can be solved in O(mn1/2−ε) time if and only if there exists some fixed δ > 0 such that the
combinatorial boolean matrix multiplication (BMM) can be solved in subcubic O(n3−δ) time.
Giving a subcubic combinatorial algorithm to the BMM problem, or proving that no such
algorithm exists, is a long standing open problem. This implies that either both problems can
be polynomially improved, or neither of them does. Hence, assuming the conditional lower
bound of combinatorial BMM, our combinatorial Õ(m

√
n) algorithm for the replacement

paths problem in unweighted directed graphs is essentially optimal (up to no(1) factors).
The replacement paths problem is related to the k simple shortest paths problem, where

the goal is to find the k simple shortest paths between two vertices. Using known reductions
from the replacement paths problem to the k simple shortest paths problem, we close this
gap as the following Corollary states.

I Corollary 4. There exists a deterministic algorithm for computing k simple shortest paths
in unweighted directed graphs whose runtime is Õ(km

√
n).

The trivial Õ(mn) time algorithm for solving the replacement paths problem in directed
weighted graphs (simply, for every edge e ∈ PG(s, t) run Dijkstra in the graph G \ {e}) is
deterministic and near optimal (according to a conditional lower bound by [29]). To the
best of our knowledge the only deterministic combinatorial algorithms known for directed
unweighted graphs are the algorithms for general directed weighted graphs whose runtime
is Õ(mn) leaving a significant gap between the randomized and deterministic algorithms.
As mentioned above, in this paper we derandomize the Õ(m

√
n) algorithm of Roditty and

Zwick [26] and close this gap. More related work can be found in the full version.
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1.2 Derandomizing the Combinatorial Distance Sensitivity Oracle of
Weimann and Yuster [27]

Our second result is derandomizing the combinatorial distance sensitivity oracle of Weimann
and Yuster [27] and obtaining the following theorem.

I Theorem 5. Let G = (V,E) be a directed graph with real edge weights, let |V | = n and
|E| = m. There exists a deterministic algorithm that given G and parameters f = O( logn

log logn )
and 0 < α < 1 constructs an f -sensitivity distance oracle in Õ(mn4−α) time. Given a query
(s, t, F ) with s, t ∈ V and F ⊆ E ∪ V, |F | ≤ f being a set of at most f edges or vertices
(failures), the deterministic query algorithm computes in Õ(n2−2(1−α)/f ) time the distance
from s to t in the graph G \ F .

We remark that while our focus in this paper is in computing distances, one may obtain
the actual shortest path in time proportional to the number of edges of the shortest paths,
using the same algorithm for obtaining the shortest paths in the replacement paths problem
[26], and in the distance sensitivity oracles case [27].

1.3 Technical Contribution and Our Derandomization Framework
Let A be a random algorithm that uses Lemma 1 for sampling a subset of vertices R ⊆ V .
We say that P = {D1, . . . , Dq} is a set of critical paths for the randomized algorithm A if A
uses the sampling Lemma 1 and it is sufficient for the correctness of algorithm A that R is
a hitting set for P (i.e., every path in P contains at least one vertex of R). According to
Lemma 2 one can derandomize the random selection of the hitting set R in time that depends
on the number of paths in P. Therefore, in order to obtain an efficient derandomization
procedure, we want to find a small set P of critical paths for the randomized algorithms.

Our main technical contribution is to show how to compute a small set of critical paths
that is sufficient to be used as input for the greedy algorithm stated in Lemma 2.

Our framework for derandomizing algorithms and data-structures that use the sampling
Lemma 1 is given in Figure 1.

1 Step 1: Prove the existence of a small set of critical paths {D1, . . . , Dq} such that
|Di| > L and show that it is sufficient for the correctness of the randomized
algorithm that the set R obtained by Lemma 1 hits all the paths D1, . . . , Dq.

2 Step 2: Find an efficient algorithm to compute the paths D1, . . . , Dq.
3 Step 3: Use a deterministic algorithm to compute a small subset R ⊆ V of vertices

such that Di ∩R 6= ∅ for every 1 ≤ i ≤ q. For example, one can use the greedy
algorithm of Lemma 2 or the blocker set algorithm of [20] to find a subset R ⊂ V of
Õ(n/L) vertices.

Figure 1 Our derandomization framework to derandomize algorithms that use the sampling
Lemma 1.

Our first main technical contribution, denoted as Step 1 in Figure 1, is proving the
existence of small sets of critical paths for the randomized replacement path algorithm of
Roditty and Zwick [26] and for the distance sensitivity oracles of Weimann and Yuster
[27]. Our second main technical contribution, denoted as Step 2 in Figure 1, is developing
algorithms to efficiently compute these small sets of critical paths.
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For the replacement paths problem, Roditty and Zwick [26] proved the existence of a
critical set of O(n2) paths, each path containing at least d

√
ne edges. Simply applying

Lemma 2 on this set of paths requires Õ(n2.5) time which is too much, and it is also not
clear from their algorithm how to efficiently compute this set of critical paths. As for Step 1,
we prove the existence of a small set of O(n) critical paths, each path contains d

√
ne edges,

and for Step 2, we develop an efficient algorithm that computes this set of critical paths in
Õ(m

√
n) time.

For the problem of distance sensitivity oracles, Weimann and Yuster [27] proved the
existence of a critical set of O(n2f+3) paths, each path containing n(1−α)/f edges (where
0 < α < 1). Simply applying Lemma 2 on this set of paths requires Õ(n2f+3+(1−α)/f ) time
which is too much, and here too, it is also not clear from their algorithm how to efficiently
and deterministically compute this set of critical paths. As for Step 1, we prove the existence
of a small set of O(n2+ε) critical paths, each path contains n(1−α)/f edges, and for Step 2,
we develop an efficient deterministic algorithm that computes this set of critical paths in
Õ(mn1+ε) time.

For Step 3, we use the folklore greedy deterministic algorithm denoted here by
GreedyPivotsSelection({D1, . . . , Dq}). Given as input the paths D1, . . . , Dq, each path
contains at least L vertices, the algorithm chooses a set of pivots R ⊆ V such that for every
1 ≤ i ≤ q it holds that Di ∩R 6= ∅. In addition, it holds that |R| = Õ(nL ) and the runtime of
the algorithm is Õ(qL).

The GreedyPivotsSelection algorithm works as follows. Let P = {D1, . . . , Dq}. Starting
with R← ∅, find a vertex v ∈ V which is contained in the maximum number of sets of P,
add it to R and remove all the sets that contain v from P. Repeat this process until P = ∅.

The following greedy selection lemma is folklore and we prove it in the full version.

I Lemma 6. Let 1 ≤ L ≤ n and 1 ≤ q < poly(n) be two integers. Let D1, . . . , Dq ⊆ V be
paths satisfying |Di| ≥ L for every 1 ≤ i ≤ q. The algorithm GreedyPivotsSelection({D1, . . . ,

Dq}) finds in Õ(qL) time a set R ⊂ V such that for every 1 ≤ i ≤ q it holds that R∩Di 6= ∅
and |R| = O(n log q

L ) = Õ(n/L).

Related Work - the Blocker Set Algorithm of King. We remark that the GreedyPivotsSe-
lection algorithm is similar to the blocker set algorithm described in [20] for finding a hitting
set for a set of paths. The blocker set algorithm was used in [20] to develop sequential
dynamic algorithms for the APSP problem. Additional related work is that of Agarwal
et al. [1]. They presented a deterministic distributed algorithm to compute APSP in an
edge-weighted directed or undirected graph in Õ(n3/2) rounds in the Congest model by
incorporating a deterministic distributed version of the blocker set algorithm.

While our derandomization framework uses the greedy algorithm (or the blocker set
algorithm) to find a hitting set of vertices for a critical set of paths D1, . . . , Dq, we stress
that our main contribution are the techniques to reduce the number of sets q the greedy
algorithm must hit (Step 1), and the algorithms to efficiently compute the sets D1, . . . , Dq

(Step 2). These techniques are our main contribution, which enable us to use the greedy
algorithm (or the blocker set algorithm) for a wider range of problems. Specifically, these
techniques allow us to derandomize the best known random algorithms for the replacement
paths problem and distance sensitivity oracles. We believe that our techniques can also be
leveraged for additional related problems which use a sampling lemma similar to Lemma 1.
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12:6 Deterministic Combinatorial Replacement Paths and Distance Sensitivity Oracles

Outline. The structure of the paper is as follows. In Section 1.4 we describe some prelimin-
aries and notations. In Section 2 we apply our framework to the replacement paths algorithm
of Roditty and Zwick [26]. In Section 3 we apply our framework to the DSO of Weimann
and Yuster for graphs with real-edge weights [27].

1.4 Preliminaries
Let G = (V,E) be a directed weighted graph with n vertices and m edges with real edge
weights ω(·). Given a path P in G we define its weight ω(P ) = Σe∈E(P )ω(e).

Given s, t ∈ V , let PG(s, t) be a shortest path from s to t in G and let dG(s, t) = ω(PG(s, t))
be its length, which is the sum of its edge weights. Let |PG(s, t)| denote the number of
edges along PG(s, t). Note that for unweighted graphs we have |PG(s, t)| = dG(s, t). When
G is known from the context we sometimes abbreviate PG(s, t), dG(s, t) with P (s, t), d(s, t)
respectively.

We define the path concatenation operator ◦ as follows. Let P1 = (x1, x2, . . . , xr)
and P2 = (y1, y2, . . . , yt) be two paths. Then P = P1 ◦ P2 is defined as the path P =
(x1, x2, . . . , xr, y1, y2, . . . , yt), and it is well defined if either xr = y1 or (xr, y1) ∈ E.

For a graph H we denote by V (H) the set of its vertices, and by E(H) the set of its
edges. When it is clear from the context, we abbreviate e ∈ E(H) by e ∈ H and v ∈ V (H)
by v ∈ H.

Let P be a path which contains the vertices u, v ∈ V (P ) such that u appears before v
along P . We denote by P [u..v] the subpath of P from u to v.

For every edge e ∈ PG(s, t) a replacement path PG(s, t, e) for the triple (s, t, e) is a
shortest path from s to t avoiding e. Let dG(s, t, e) = ω(PG(s, t, e)) be the length of the
replacement path PG(s, t, e).

We will assume, without loss of generality, that every replacement path PG(s, t, e) can
be decomposed into a common prefix CommonPrefs,t,e with the shortest path PG(s, t), a
detour Detours,t,e which is disjoint from the shortest path PG(s, t) (except for its first vertex
and last vertex), and finally a common suffix CommonSuffs,t,e which is common with the
shortest path PG(s, t). Therefore, for every edge e ∈ PG(s, t) it holds that PG(s, t, e) =
CommonPrefs,t,e ◦Detours,t,e ◦ CommonSuffs,t,e (the prefix and/or suffix may be empty).

Let F ⊆ V ∪E be a set of vertices and edges. We define the graph G \F = (V \F,E \F )
as the graph obtained from G by removing the vertices and edges F . We define a replacement
path PG(s, t, F ) as a shortest path from s to t in the graph G \ F , and let dG(s, t, F ) =
w(PG(s, t, e)) be its length.

2 Deterministic Replacement Paths in Õ(m
√

n) Time

In this section we apply our framework from Section 1.3 to the replacement paths algorithm
of Roditty and Zwick [26].

The randomized algorithm by Roddity and Zwick as described in [26] takes Õ(m
√
n)

expected time. They handle separately the case that a replacement path has a short detour
containing at most d

√
ne edges, and the case that a replacement path has a long detour

containing more than d
√
ne edges. The first case is solved deterministically. The second case

is solved by first sampling a subset of vertices R according to Lemma 1, where each vertex
is sampled uniformly independently at random with probability c lnn/

√
n for large enough

constant c > 0. Using this uniform sampling, it holds with high probability (of at least
1− n−c+2) that for every long triple (s, t, e) (as defined hereinafter), the detour Detours,t,e
of the replacement path PG(s, t, e) contains at least one vertex of R.
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I Definition 7. Let s, t ∈ V, e ∈ PG(s, t). The triple (s, t, e) is a long triple if every
replacement path from s to t avoiding e has its detour part containing more than d

√
ne edges.

Note that in Definition 7 we defined (s, t, e) to be a long triple if every replacement
path from s to t avoiding e has a long detour (containing more than d

√
ne edges). We could

have defined (s, t, e) to be a long triple even if at least one replacement path from s to t
avoiding e has a long detour (perhaps more similar to the definitions in [26]), however we
find Definition 7 more convenient for the following reason. If (s, t, e) has a replacement path
whose detour part contains at most d

√
ne edges, then the algorithm of [26] for handling

short detours finds deterministically a replacement path for (s, t, e). Hence, we only need to
find the replacement paths for triples (s, t, e) for which every replacement path from s to t
avoiding e has a long detour, and this is the case for which we define (s, t, e) as a long triple.

It is sufficient for the correctness of the replacement paths algorithm that the following
condition holds; For every long triple (s, t, e) the detour Detours,t,e of the replacement path
PG(s, t, e) contains at least one vertex of R. As the authors of [26] write, the choice of the
random set R is the only randomization used in their algorithm. To obtain a deterministic
algorithm for the replacement paths problem and to prove Theorem 3, we prove the following
deterministic alternative of Lemma 2.

I Lemma 8 (Our derandomized version of Lemma 2 for the replacement paths algorithm).
There exists an Õ(m

√
n) time deterministic algorithm that computes a set R ⊆ V of Õ(

√
n)

vertices, such that for every long triple (s, t, e) there exists a replacement path PG(s, t, e)
whose detour part contains at least one of the vertices of R.

Following the above description, in order to prove Theorem 3, that there exists an Õ(m
√
n)

deterministic replacement paths algorithm, it is sufficient to prove the derandomization
Lemma 8, we do so in the following sections.

2.1 Step 1: the Method of Reusing Common Subpaths - Defining the
Set Dn

In this section we prove the following lemma.

I Lemma 9. There exists a set Dn of at most n paths, each path of length exactly d
√
ne

with the following property; for every long triple (s, t, e) there exists a path D ∈ Dn and a
replacement path PG(s, t, e) such that D is contained in the detour part of PG(s, t, e).

In order to define the set of paths Dn and prove Lemma 9 we need the following definitions.
Let G′ = G \E(PG(s, t)) be the graph obtained by removing the edges of the path PG(s, t)
from G. For two vertices u and v, let dG′(u, v) be the distance from u to v in G′.

We use the following definitions of the index ρ(x), the set of vertices V√n and the set of
paths Dn.

I Definition 10 (The index ρ(x)). Let PG(s, t) =< v0, . . . , vk > and let X = {x ∈
V | ∃0≤i≤k dG′(vi, x) = d

√
ne} be the subset of all the vertices x ∈ V such that there

exists at least one index 0 ≤ i ≤ k with dG′(vi, x) = d
√
ne.

For every vertex x ∈ X we define the index 0 ≤ ρ(x) ≤ k to be the minimum index such
that dG′(vρ(x), x) = d

√
ne.

I Definition 11 (The set of vertices V√n). We define the set of vertices V√n = {x ∈
X|∀i<ρ(x)dG′(vi, x) > d

√
ne}. In other words, V√n is the set of all vertices x ∈ X such that

for all the vertices vi before vρ(x) along PG(s, t) it holds that dG′(vi, x) > d
√
ne.
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I Definition 12 (A set of paths Dn). For every vertex x ∈ V√n, let D(x) be an arbitrary
shortest path from vρ(x) to x in G′ (whose length is d

√
ne as dG′(vρ(x), x) = d

√
ne). We

define Dn = {D(x)|x ∈ V√n}.

Note that while V√n is uniquely defined (as it is defined according to distances between
vertices) the set of paths Dn is not unique, as there may be many shortest paths from vρ(x)
to x in G′, and we take D(x) = PG′(vρ(x), x) to be an arbitrary such shortest path.

The basic intuition for the method of reusing common subpaths is as follows. Let
PG(s, t, e1), . . . , PG(s, t, er) be arbitrary replacement paths such that x is the (d

√
ne+ 1)th

vertex along the detours of all the replacement path PG(s, t, e1), . . . , PG(s, t, er). Then one can
construct replacement paths P ′G(s, t, e1), . . . , P ′G(s, t, er) such that the subpath D(x) ∈ Dn is
contained in all these replacement paths. Therefore, the subpath D(x) is reused as a common
subpath in many replacement paths. We utilize this observation in the following proof of
Lemma 9.

Proof of Lemma 9. Obviously, the set Dn described in Definition 12 contains at most n
paths, each path is of length exactly d

√
ne.

We prove that for every long triple (s, t, e) there exists a path D ∈ Dn and a replacement
path P ′(s, t, e) s.t. D is contained in the detour part of P ′(s, t, e).

Let PG(s, t, e) be a replacement path for (s, t, e). Since (s, t, e) is a long triple then the
detour part Detours,t,e of PG(s, t, e) contains more than d

√
ne edges. Let x ∈ Detours,t,e be

the (d
√
ne+ 1)th vertex along Detours,t,e, and let vj be the first vertex of Detours,t,e. Let P1

be the subpath of Detours,t,e from vj to x and let P2 be the subpath of PG(s, t, e) from x to
t. In other words, PG(s, t, e) =< v0, . . . , vj > ◦P1 ◦ P2. Since Detours,t,e contains more than
d
√
ne edges and is disjoint from PG(s, t) except for the first and last vertices of Detours,t,e

and P1 ⊂ Detours,t,e it follows that P1 is disjoint from PG(s, t) (except for the vertex vj). In
particular, since P1 is a shortest path in G \ {e} that is edge-disjoint from PG(s, t), then P1
is also a shortest path in G′ = G \ E(PG(s, t)). We get that dG′(vj , x) = |P1| = d

√
ne.

We prove that j = ρ(x) and x ∈ V√n. As we have already proved that dG′(vj , x) = d
√
ne,

we need to prove that for every 0 ≤ i < j it holds that dG′(vi, x) > d
√
ne. Assume by

contradiction that there exists an index 0 ≤ i < j such that dG′(vi, x) ≤ d
√
ne. Then the

path P̂ =< v0, . . . , vi > ◦PG′(vi, x) ◦ P2 is a path from s to t that avoids e and its length is:

|P̂ | = | < v0, . . . , vi > ◦PG′(vi, x) ◦ P2|
≤ i+ d

√
ne+ |P2|

< j + d
√
ne+ |P2|

= |PG(s, vj) ◦ P1 ◦ P2|
= |PG(s, t, e)|

This means that the path P̂ is a path from s to t in G \ {e} and its length is shorter than
the length of the shortest path PG(s, t, e) from s to t in G \ {e}, which is a contradiction.
We get that dG′(vj , x) = d

√
ne and for every 0 ≤ i < j it holds that dG′(vi, x) > d

√
ne.

Therefore, according to Definitions 10 and 11 it holds that j = ρ(x) and x ∈ V√n.
Let D(x) ∈ Dn, then according to Definition 12, D(x) is a shortest path from vρ(x) to x

in G′. We define the path P ′(s, t, e) =< v0, . . . , vρ(x) > ◦D(x) ◦ P2. It follows that P ′(s, t, e)
is a path from s to t that avoids e and |P ′(s, t, e)| = | < v0, . . . , vρ(x) > ◦D(x) ◦ P2| =
ρ(x) + d

√
ne+ |P2| = |PG(s, t, e)| = dG(s, t, e). Hence, P ′(s, t, e) is a replacement path for

(s, t, e) such that D(x) ⊂ P ′(s, t, e) so the lemma follows. J
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2.2 Step 2: the Method of Decremental Distances from a Path -
Computing the Set Dn

In this section we describe a decremental algorithm that enables us to compute the set of
paths Dn in Õ(m

√
n) time, proving the following lemma.

I Lemma 13. There exists a deterministic algorithm for computing the set of paths Dn in
Õ(m

√
n) time.

Our algorithm for computing the set of path Dn is a variant of the decremental SSSP
(single source shortest paths) algorithm of King [20]. Our variant of the algorithm is used
to find distances of vertices from a path rather than from a single source vertex as we
define below.

Overview of the Deterministic Algorithm for Computing Dn in Õ(m
√

n) Time. In the
following description let P = PG(s, t). Consider the following assignment of weights ω
to edges of G. We assign weight ε for every edge e on the path P , and weight 1 for all
the other edges where ε is a small number such that 0 < ε < 1/n. We define a graph
Gw = (G,w) as the weighted graph G with edge weights ω. We define for every 0 ≤ i ≤ k
the graph Gi = G \ {vi+1, . . . , vk} and the path Pi = P \ {vi+1, . . . , vk}. We define the graph
Gwi = (Gi, w) as the weighted graph Gi with edge weights ω.

The algorithm computes the graph Gw by simply taking G and setting all edge weights of
PG(s, t) to be ε (for some small ε such that ε < 1/n) and all other edge weights to be 1. The
algorithm then removes the vertices of PG(s, t) from Gw one after the other (starting from
the vertex that is closest to t). Loosely speaking after each vertex is removed, the algorithm
computes the distances from s in the current graph. In each such iteration, the algorithm
adds to V w√

n
all vertices such that their distance from s in the current graph is between d

√
ne

and d
√
ne + 1. We will later show that at the end of the algorithm we have V w√

n
= V√n.

Unfortunately, we cannot afford running Dijkstra after the removal of every vertex of PG(s, t)
as there might be n vertices on PG(s, t). To overcome this issue, the algorithm only maintains
nodes at distance at most d

√
ne+ 1 from s. In addition, we observe that to compute the

SSSP from s in the graph after the removal of a vertex vi we only need to spend time on
nodes such that their shortest path from s uses the removed vertex. Roughly speaking, for
these nodes we show that their distance from s rounded down to the closest integer must
increase by at least 1 as a result of the removal of the vertex. Hence, for every node we spend
time on it in at most d

√
ne+ 1 iterations until its distance from s is bigger than d

√
ne+ 1.

As we will show later this will yield our desired running time.
In the full version we analyse the algorithm and prove Lemma 13.

Proof of Theorem 3. We summarize the Õ(m
√
n) deterministic replacement paths al-

gorithm and outline the proof of Theorem 3. First, compute in Õ(m
√
n) time the set

of paths Dn as in Lemma 13. Given Dn, the deterministic greedy selection algorithm
GreedyPivotsSelection(Dn) (as described in Lemma 2) computes a set R ⊂ V of Õ(

√
n)

vertices in Õ(n
√
n) time with the following property; every path D ∈ Dn contains at least

one of the vertices of R. Theorem 3 follows from Lemmas 8, 9 and 13.

3 Deterministic Distance Sensitivity Oracles

Let 0 < ε < 1 and 1 ≤ f = O( logn
log logn ) be two parameters. In [27], Weimann and Yuster

considered the following notion of intervals (note that in [27] they use a parameter 0 < α < 1
and we use a parameter 0 < ε < 1 such that ε = 1− α). They define an interval of a long
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simple path P as a subpath of P consisting of nε/f consecutive vertices, so every simple
path induces less than n (overlapping) intervals. For every subset F ⊂ E of at most f edges,
and for every pair of vertices u, v ∈ V , let PG(u, v, F ) be a shortest path from u to v in
G \ F . The path PG(u, v, F ) induces less than n (overlapping) intervals. The total number
of possible intervals is less than O(n2f+3) as each one of the (at most) O(n2f+2) possible
queries (u, v, F ) corresponds to a shortest path PG(u, v, F ) that induces less than n intervals.

I Definition 14. Let Df be defined as all the intervals (subpaths containing nε/f edges) of
all the replacement paths PG(s, t, F ) for every s, t ∈ V, F ⊆ E ∪ V with |F | ≤ f .

Weimann and Yuster apply Lemma 1 to find a set R ⊆ V of Õ(n1−ε/f ) vertices that
hit w.h.p. all the intervals Df . According to these bounds (that Df contains O(n2f+3)
paths, each containing exactly nε/f edges) applying the greedy algorithm to obtain the set R
deterministically according to Lemma 2 takes Õ(n2f+3+ε/f ) time, which is very inefficient.

In this section we assume that all weights are non-negative (so we can run Dijkstra’s
algorithm) and that shortest paths are unique, we justify these assumptions in the full version.

3.1 Step 1: the Method of Using Fault-Tolerant Trees to Significantly
Reduce the Number of Intervals

In Lemma 15 we prove that the set of intervals Df actually contains at most O(n2+ε) unique
intervals, rather than the O(n2f+3) naive upper bound mentioned above. From Lemmas 15
and 2 it follows that the GreedyPivotsSelection(Df ) finds in Õ(n2+ε+ε/f ) time the subset
R ⊆ V of Õ(n1−ε/f ) vertices that hit all the intervals Df . In the full version we further
reduce the time it takes for the greedy algorithm to compute the set of pivots R to Õ(n2+ε).

I Lemma 15. |Df | = O(n2+ε).

In order to prove Lemma 15 we describe the fault-tolerant trees data-structure, which is
a variant of the trees which appear in Appendix A of [9].

I Definition 16. Let PLG(s, t, F ) be the shortest among the s-to-t paths in G \ F that
contain at most L edges and let dLG(s, t, F ) = ω(PLG(s, t, F )). In other words, dLG(s, t, F ) =
min{ω(P ) | P is an s− to− t path on at most L edges}. If there is no path from s to t in
G \ F containing at most L edges then we define PLG(s, t, F ) = ∅ and dLG(s, t, F ) =∞. For
F = ∅ we abbreviate PLG(s, t, ∅) = PLG(s, t) as the shortest path from s to t that contains at
most L edges, and dLG(s, t) = dLG(s, t, ∅) as its length.

Let s, t ∈ V be vertices and let L, f ≥ 1 be fixed integer parameters, we define the trees
FTL,f (s, t) as follows.

In the root of FTL,f (s, t) we store the path PLG(s, t) (and its length dLG(s, t)), and also
store the vertices and edges of PLG (s, t) in a binary search tree BSTL(s, t); If PLG (s, t) = ∅
then we terminate the construction of FTL,f (s, t).
For every edge or vertex a1 of PLG(s, t) we recursively build a subtree FTL,f (s, t, a1) as
follows. Let PLG (s, t, {a1}) be the shortest path from s to t that contains at most L edges
in the graph G\{a1}. Then in the subtree FTL,f (s, t, a1) we store the path PLG (s, t, {a1})
(and its length dLG(s, t, {a1})) and we also store the vertices and edges of PLG (s, t, {a1}) in
a binary search tree BSTL(s, t, a1); If PLG (s, t, {a1}) = ∅ we terminate the construction of
FTL,f (s, t, a1). If f > 1 then for every vertex or edge a2 in PLG(s, t, {a1}) we recursively
build the subtree FTL,f (s, t, a1, a2) as follows.
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For the recursive step, assume we want to construct the subtree FTL,f (s, t, a1, . . . , ai). In
the root of FTL,f (s, t, a1, . . . , ai) we store the path PLG(s, t, {a1, . . . , ai}) (and its length
dLG(s, t, {a1, . . . , ai})) and we also store the vertices and edges of PLG (s, t, {a1, . . . , ai}) in a
binary search tree BSTL(s, t, a1, . . . , ai). If PLG(s, t, {a1, . . . , ai}) = ∅ then we terminate
the construction of FTL,f (s, t, a1, . . . , ai). If i < f then for every vertex or edge ai+1 in
PLG(s, t, {a1, . . . , ai})) we recursively build the subtree FTL,f (s, t, a1, . . . , ai, ai+1).

Observe that there are two conditions in which we terminate the recursive construction
of FTL,f (s, t, a1, . . . , ai):

Either i = f in which case FTL,f (s, t, a1, . . . , af ) is a leaf node of FTL,f (s, t) and we
store in the leaf node FTL,f (s, t, a1, . . . , af ) the path PLG(s, t, {a1, . . . , af}).
Or there is no path from s to t in G \ {a1, . . . , ai} that contains at most L edges and then
FTL,f (s, t, a1, . . . , ai) is a leaf vertex of FTL,f (s, v) and we store in it PLG(s, t, {a1, . . . ,

ai}) = ∅.

Querying the tree F T L,f (s, t). Given a query (s, t, F ) such that F ⊂ V ∪E with |F | = f

we would like to compute dLG(s, t, F ) using the tree FTL,f (s, t).
The query procedure is as follows. Let PLG(s, t) be the path stored in the root of

FTL,f (s, t) (if the root of FTL,f (s, t) contains ∅ then we output that dLG(s, t, F ) = ∞).
First we check if PLG(s, t) ∩ F = ∅ by checking if any of the elements a1 ∈ F appear in
BSTL(s, t) (which takes O(logL) time for each element a1 ∈ F ). If PLG(s, t) ∩ F = ∅ we
output dLG(s, t, F ) = dLG(s, t) (as PLG (s, t) does not contain any of the vertices or edges in F ).
Otherwise, let a1 ∈ PLG(s, t) ∩ F .

We continue the search similarly in the subtree FTL,f (s, t, a1) as follows. Let PLG (s, t, {a1})
be the path stored in the root of FTL,f (s, t, a1) (if the root of FTL,f (s, t, a1) contains ∅ then
we output that dLG(s, t, F ) =∞). First we check if PLG(s, t, {a1}) ∩ F = ∅ by checking if any
of the elements a2 ∈ F appear in BSTL(s, t, a1) (which takes O(logL) time for each element
a2 ∈ F ). If PLG(s, t, {a1}) ∩ F = ∅ we output dLG(s, t, F ) = dLG(s, t, {a1}) (as PLG(s, t, {a1})
does not contain any of the vertices or edges in F ). Otherwise, let a2 ∈ PLG (s, t, {a1})∩F . We
continue the search similarly in the subtrees FTL,f (s, t, a1, a2), FTL,f (s, t, a1, a2, . . . , ai) until
we either reach a leaf node which contains ∅ (and in this case we output that dLG(s, t, F ) =∞)
or we find a path PLG(s, t, {a1, . . . , ai}) such that PLG(s, t, {a1, . . . , ai}) ∩ F = ∅ and then we
output dLG(s, t, F ) = dLG(s, t, {a1, . . . , ai}).

In the full version we prove the following lemma.

I Lemma 17. Given the tree FTL,f (s, t) and a set of failures F ⊂ V ∪ E with |F | ≤ f , the
query procedure computes the distance dLG(s, t, F ) in O(f2 logL) time.

We are now ready to prove lemma 15 asserting that |Df | = O(n2+ε).

Proof of Lemma 15. Let L = nε/f and let D be the set of all the unique shortest paths
PLG(s, t, {a1, . . . , ai}) stored in all the nodes of all the trees {FTL,f (s, t)}s,t∈V . Since the
number of nodes in every tree FTL,f (s, t) is at most Lf = (nε/f )f = nε, and there are O(n2)
trees (one tree for every pair of vertices s, t ∈ V ) we get that the number of nodes in all the
trees {FTL,f (s, t)}s,t∈V is O(n2+ε) and hence |D| = O(n2+ε).

We prove that Df ⊆ D. By definition, Df contains all the intervals (subpaths containing
nε/f edges) of all the replacement paths PG(s, t, F ) for every s, t ∈ V, F ⊆ E ∪ V with
|F | ≤ f . Let P ∈ Df be the unique shortest path, then P is a subpath containing nε/f
edges of the replacement paths PG(s, t, F ). Let u be the first vertex of P , and let v be the
last vertex of P . Then P is a shortest path from u to v in G \ F , and since we assume

ICALP 2019



12:12 Deterministic Combinatorial Replacement Paths and Distance Sensitivity Oracles

that the shortest paths our algorithms compute are unique then P = PG(u, v, F ) is the
unique shortest path from u to v in G \ F . Since P is assumed to be a path on exactly
L = nε/f edges, then P = PG(u, v, F ) = PLG(u, v, F ). According to the query procedure in
the tree FTL,f (u, v) and Lemma 17, if we query the tree FTL,f (u, v) with (u, v, F ) then
we reach a node FTL,f (u, v, a1, . . . , ai) which contains the path PLG(u, v, {a1, . . . , ai}) with
{a1, . . . , ai} ⊆ F such that PLG(u, v, {a1, . . . , ai}) = PLG(u, v, F ) = P is the shortest u-to-v
path in G \ F . Hence, P ∈ D and thus Df ⊆ D and |Df | ≤ |D| = O(n2+ε) J

3.2 Step 2: Efficient Construction of the Fault-Tolerant Trees –
Computing the Paths Df

Recall that we defined the trees FTL,f (u, v) with respect the parameters f (the maximum
number of failures) and L (where we search for shortest paths among paths of at most L
edges). The idea is to build the trees FTL,f (u, v) using dynamic programming having the
trees FTL−1,f (u, v) with parameters f, L− 1 as subproblems.

Assume we have already built the trees FT i,f (u, v), where u, v ∈ V, 1 ≤ i < L, we describe
how to build the trees FT i+1,f (u, v). Let (u, v, F ) be a query for which we want to compute
the distance di+1(u, v, F ) (as part of the construction of the tree FT i+1,f (u, v)). Scan all the
edges (u, z) ∈ E and query the tree FT i,f (z, v) with the set F to find the distance di(z, v, F ).
Querying the tree FT i,f (z, v) takes O(f2 log i) = O(f2 logL) time as described in Lemma
17 (note that f2 logL = Õ(1) for f ≤ logn as L ≤ n), and we run O(out-degree(u)) such
queries and take the minimum of the following equation.

di+1(u, v, F ) = min
z
{ω(u, z) + di(z, v, F ) | (u, z) ∈ E AND u, z, (u, z) 6∈ F} (1)

parenti+1(u, v, F ) = arg min
z
{ω(u, z) + di(z, v, F ) | (u, z) ∈ E AND u, z, (u, z) 6∈ F} (2)

Note that in Equation 1 we assume that for every vertex u ∈ V it holds that G contains
the self loops (u, u) ∈ E such that ω(u, u) = 0.

So the time to compute di+1(u, v, F ) is Õ(out-degree(u)). Next, we describe how to
reconstruct the path P i+1(u, v, F ) in O(L) additional time. We reconstruct the shortest
path P i+1(u, v, F ) by simply following the (at most L) parent pointers. In more details, let
z = parenti+1(u, v, F ) be the vertex defined according to Equation 2. We reconstruct the
shortest path P i+1(u, v, F ) by concatenating (u, z) with the shortest path P i(z, v, F ) (which
we reconstruct in the same way), thus we can reconstruct P i+1(u, v, F ) edge by edge in
constant time per edge, and hence it takes O(L) time to reconstruct the path P i+1(u, v, F )
that contains at most L edges.

The tree FT i,f (u, v) contains if ≤ Lf nodes, and thus all the trees {FT i,f (u, v)} for all
i ≤ L, u, v ∈ V contain O(n2Lf+1) nodes together.

In each such node we compute the distance di(u, v, {a1, . . . , aj}) in Õ(out-degree(u)) time
and reconstruct the path P i(u, v, {a1, . . . , aj}) in additional O(L) time. Theretofore, com-
puting all the distances di(u, v, {a1, . . . , aj}) and all the paths P i(u, v, {a1, . . . , aj}) in all the
nodes of all the trees {FT i,f (u, v)}u,v∈V,1≤i≤L takes Õ(

∑
i≤L,u,v∈V L

f (out-degree(u) + L)) =
Õ(mnLf+1 + n2Lf+2) time. substituting L = Õ(nε/f ) we get an algorithm to compute the
trees {FTL,f (u, v)}u,v∈V in Õ(mn1+ε+ε/f + n2+ε+2ε/f ) time.

This proves the following Lemma.

I Lemma 18. One can deterministically construct the trees FTL,f (s, t) for every s, t ∈ V
in Õ(mn1+ε+ε/f + n2+ε+2ε/f ) time.
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In the full version we further reduce the runtime to Õ(mn1+ε) by using dynamic pro-
gramming only for computing the first f − 1 levels of the trees FTL,f (s, t) and then applying
Dijkstra in a sophisticated manner to compute the last layer of the trees FTL,f (s, t). In addi-
tion, we also boost-up the runtime of the greedy pivots selection algorithm from Õ(n2+ε+ε/f )
to Õ(n2+ε) time.
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Abstract
The diameter, radius and eccentricities are natural graph parameters. While these problems have
been studied extensively, there are no known dynamic algorithms for them beyond the ones that
follow from trivial recomputation after each update or from solving dynamic All-Pairs Shortest Paths
(APSP), which is very computationally intensive. This is the situation for dynamic approximation
algorithms as well, and even if only edge insertions or edge deletions need to be supported.

This paper provides a comprehensive study of the dynamic approximation of Diameter, Radius
and Eccentricities, providing both conditional lower bounds, and new algorithms whose bounds are
optimal under popular hypotheses in fine-grained complexity. Some of the highlights include:

Under popular hardness hypotheses, there can be no significantly better fully dynamic ap-
proximation algorithms than recomputing the answer after each update, or maintaining full
APSP.
Nearly optimal partially dynamic (incremental/decremental) algorithms can be achieved via
efficient reductions to (incremental/decremental) maintenance of Single-Source Shortest Paths.
For instance, a nearly (3/2 + ε)-approximation to Diameter in directed or undirected n-vertex, m-
edge graphs can be maintained decrementally in total time m1+o(1)√n/ε2. This nearly matches
the static 3/2-approximation algorithm for the problem that is known to be conditionally optimal.
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13:2 Dynamic Diameter

1 Introduction

Computing the shortest paths distances between all pairs of vertices in a graph, the All-Pairs
Shortest Paths (APSP) problem, has been studied since the beginning of computer science as
a field. Nevertheless, the fastest known algorithms [26, 20, 19] for APSP in n-vertex m-edge
graphs are only slightly faster (by no(1) factors) than the simple Õ(mn) time1 algorithm
running Dijkstra’s algorithm from every vertex2. For dense graphs with small integer weights
there are improved algorithms [22, 28] using fast matrix multiplication [23, 17], but these
algorithms are not faster than mn for sparser graphs or when the weights can be large.

There are many important graph parameters that can be easily computed when all the
distances are known. These include the eccentricity of each vertex (the maximum length of a
shortest path from the vertex to another vertex), the graph diameter (the maximum over
all eccentricities), the radius (the minimum over all eccentricities) and many more. These
parameters are of particular importance in the analysis of social networks (e.g. [3]), but also
in graphs generated for entities such as images and search queries (and web pages).

Unfortunately, there are no significantly faster algorithms to compute these parameters
than just solving APSP, and this is far from practical. In many cases the analyzed networks
are so large that even enumerating all pairs of vertices is prohibitively expensive. Thus,
obtaining all pairwise distances is essentially impossible. For graph parameters, on the other
hand, the output is a single number; in principle looking at all vertex pairs might not be
necessary, and subquadratic time algorithms (in the number of vertices) might exist for
sparse graphs (whereas quadratic time is necessary for APSP as this is the size of the output).
The existence of such fast algorithms is an important, practically motivated question.

In recent years, much progress has been made in understanding the complexity of graph
parameter computation. Results from fine-grained complexity give that even obtaining a
(3/2− ε)-approximation for graph diameter [21] or radius [2], or a (5/3− ε)-approximation
of all eccentricities [8] (for ε > 0) requires n2−o(1) time even in very sparse graphs, assuming
the Strong Exponential Time Hypothesis (SETH) and related conjectures. Even stronger
hardness results were obtained by Backurs et al. [6], altogether showing that most of the
known algorithms for diameter, radius and eccentricities are conditionally optimal.

In addition to computing graph parameters in a static graph, a very natural goal is to
maintain estimates of these parameters in a dynamic graph, where edges are inserted and
deleted. In this setting, we would like to have a fast algorithm which preprocesses the given
graph, and builds a data structure which can support edge updates efficiently and can answer
queries about the parameter of interest in the current state of the data structure. This
dynamic version of the problems is even more practically motivated, as real networks are
naturally dynamic.

Unfortunately, the state of the art of dynamic algorithms for graph parameters such as
Diameter is somewhat disappointing. The best known dynamic algorithms either just use
the best known dynamic algorithms for APSP, or recompute the parameter estimate from
scratch after each update. This leads to the following bounds:

(1) Demetrescu and Italiano [10] obtained a fully dynamic exact APSP algorithm with
an amortized update time of Õ(n2) and O(1) query time; this is the best exact dynamic
algorithm for the graph parameters as well. Abboud and Vassilevska W. [1] showed that under
SETH, any (4/3− ε)-approximation fully dynamic algorithm for diameter (for ε > 0) requires

1 Õ notation supresses polylogarithmic factors.
2 after Johnson’s trick to make the weights nonnegative
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n2−o(1) amortized update or query time even in sparse graphs. Thus the APSP approach
is conditionally optimal for fully dynamic (4/3 − ε)-approximate diameter algorithms. It
is unclear however whether a 4/3-approximation with better update time is possible, and
whether the APSP bounds are best for Radius.

(2) By recomputing the parameter estimates after each query, one can maintain a 2-
approximation for Diameter in directed graphs and Radius in undirected graphs in worst
case O(m+ n) time per update, and a (2 + ε)-approximation for all Eccentricities in directed
graphs for all ε in Õ(m/ε) time per update using the algorithm of Backurs et al. [6]. One
can also maintain a 3/2-approximation for Diameter and Radius, and a 5/3-approximation
of all Eccentricities in worst case time Õ(m3/2) per update using the algorithms of [21, 8] .
More algorithms follow from the static results of Cairo, Grossi and Rizzi [7]. Can any of
these algorithms be improved or are they conditionally optimal? The only related lower
bounds here are (a) by Henzinger et al. [14] which showed that under the Online Matrix
Vector hypothesis (OMv), any fully dynamic Diameter algorithm that achieves a (2 − ε)-
approximation for undirected weighted graphs, or any finite approximation in directed graphs
needs n0.5−o(1) amortized update time and (b) by Henzinger et al. [15] which proved under
the combinatorial Boolean Matrix Multiplication conjecture any fully dynamic Diameter or
Eccentricity algorithm that achieves a (4/3 − ε)-approximation in undirected unweighted
graphs with n3−o(1) preprocessing time requires n2−o(1) update or query time (and the same
result for undirected weighted graph using the APSP conjecture). While these results give
some limitation, they are far from tight.

The first contributions of our paper are strong conditional lower bounds for fully dynamic
graph parameter estimation. Our first result is a strengthening of the conditional lower
bound for Diameter of [1]: we increase the approximation ratio from (4/3− ε) to (3/2− ε).

I Theorem 1. Under SETH, every fully dynamic (3/2 − ε)-approximation algorithm for
Diameter with polynomial preprocessing time requires n2−o(1) amortized update or query time
in the word-RAM model of computation with O(logn) bit words, even for dynamic undirected
unweighted graphs that are always sparse.

The same limitation applies for fully dynamic (5/3− ε)-approximation algorithms for Eccent-
ricities with polynomial preprocessing time, and for fully dynamic (3/2− ε)-approximation
algorithms for Radius with polynomial preprocessing time, under the related Hitting Set
hypothesis.

These conditional lower bounds imply that the Õ(m3/2) time estimation algorithms that
recompute the answer from scratch are optimal in the sense that any improvement of the
approximation factor causes the update time to grow to n2, and Demetrescu and Italiano’s
algorithm achieves Õ(n2) update time even for the exact maintenance of APSP.

We also show that recomputing a 2-approximation from scratch in linear time is close to
optimal under SETH.

I Theorem 2. Under SETH, any fully dynamic algorithm with polynomial preprocessing time
that can maintain for ε > 0 any of the following in an n node, m-edge undirected unweighted
graph requires either m1−o(1) amortized update or query time, even when m = Õ(n):

a (2− ε)-approximation of the eccentricity of a fixed vertex, or
a (2− ε)-approximation of the Radius, or
a (2− ε)-approximation of the Diameter.

ICALP 2019
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This result significantly strengthens the OMv based lower bound of [14]: the update time
lower bound is now linear as opposed to

√
n, the result holds for unweighted graphs as well,

it also holds for Radius and single-node eccentricity, and it has implications for partially
dynamic algorithms with worst case time bounds, unlike the one of [14]. Furthermore, the
lower bound for the eccentricity of a fixed vertex is tight in the sense that one can simply
recompute the answer exactly from scratch in time O(m).

Much stronger lower bounds are possible for directed graphs. Our first hardness result
for directed graphs is that under SETH and the Hitting Set hypothesis, respectively, nearly
quadratic time is needed for Eccentricities and Radius, even for (2−ε)-approximation. (Recall
that for undirected graphs we could only show this for (3/2− ε)-approximate Radius and
(5/3− ε)-approximate Eccentricities.) This means that for directed graphs, recomputing a
2-approximation from scratch (in linear time) after each update is very much optimal – for
any better approximation one might as well use the exact dynamic APSP algorithms.

I Theorem 3. Every fully dynamic algorithm with polynomial preprocessing time for (2− ε)-
approximate (for ε > 0) Eccentricities (under SETH) or Radius (under a version of the
Hitting Set Hypothesis) in directed, unweighted graphs with n vertices and m = Õ(n) edges
requires amortized update or query time m2−o(1).

Surprisingly, we also show conditionally that no finite approximation can be maintained in
sublinear time. Henzinger et al. [14], building upon [1], showed that any finite approximation
for Diameter in directed graphs requires m0.5−o(1) time under the OMv Hypothesis. We
strengthen the lower bound to linear, using a very natural hypothesis on the complexity of
k-Cycle.

All known algorithms for detecting k-cycles in sparse directed graphs with m edges run
at best in time m2−c/k for various small constants c [27, 4, 9], even if you use powerful tools
such as fast matrix multiplication. A natural hypothesis completely consistent with the state
of the art of cycle detection is that one needs m2−f(k)−o(1) time to find a k-cycle, for some
continuous (over the reals) f(k) that goes to 0 as k goes to infinity. Let us call this the
k-Cycle Hypothesis. We obtain:

I Theorem 4. Under the k-Cycle Hypothesis, any fully dynamic algorithm with polynomial
preprocessing time that can maintain a finite approximation for any of the following in an n
node, m = Õ(n)-edge directed unweighted graph requires either m1−o(1) amortized update or
query time:

the eccentricity of a fixed vertex, or
the Radius, or
the Diameter.

All known approaches to estimating graph proximity parameters such as the Diameter,
at the very least require maintaining approximate distances from a single node, up to some
distance. The conditional lower bounds above say that even if we only want to maintain an
estimate of the largest distance from a fixed node, and even if that distance is never more
than a constant, we still need linear update time. Thus, to have better than 2 approximations
of our undirected distance parameters or any finite approximation in the directed case that
can be maintained in sublinear time we probably need to abandon our need for fully dynamic
algorithms. We thus turn to partially dynamic algorithms that handle either only edge
insertions (incremental) or only edge deletions (decremental).

Our conditional lower bounds for the fully dynamic setting also apply to incremental and
decremental algorithms that have worst case update and query time guarantees. This is due
to the nature of our reductions: they all produce an initial graph on which we perform update
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stages that only insert or only delete (we can choose which) a small batch of edges, ask a query
and undo the changes just made, returning to the initial graph. An incremental/decremental
algorithm can be used to implement such reductions by performing the deletions/insertions
by rolling back the data structure. Because of this, we have very strong worst case lower
bounds, and it makes sense to focus on amortized guarantees instead.

The strong conditional lower bounds in the static case, imply strong limitations for
partially dynamic algorithms as well. For undirected graphs, these limitations are as follows:
Due to [21, 6, 8], under SETH, every incremental and decremental algorithm for Diameter in
n node undirected unweighted graphs requires total time at least m3/2−o(1) to maintain a
(8/5−ε)-approximation, and at leastm2−o(1) total time to maintain a (3/2−ε)-approximation
for ε > 0 under m = Õ(n) insertions or deletions. For Eccentricities, the static conditional
lower bounds are slightly stronger. For partially dynamic algorithms they imply that under
SETH, for every k ≥ 1, maintaining a ((3k+ 2)/(k+ 2)− ε)-approximation for ε > 0 requires
total time m1+1/k for m = Õ(n) insertions or deletions. For Radius, they just imply that
under the Hitting Set hypothesis [24, 2] maintaining a (3/2− ε)-approximation requires total
time m2−o(1) even in a sparse graph.

For directed graphs, there are stronger lower bounds: maintaining a (2− ε)-approximation
for Radius and Eccentricities requires total time m2−o(1) under Hitting Set and SETH,
respectively [2, 6].

The incremental lower bounds directly follow from the static ones by starting from an
empty graph and inserting edges until we reach the graph from the static construction. The
decremental lower bounds hold since the static lower bound instances are all subgraphs of
the same global graph, independent of the SAT/Hitting Set instance that the reduction is
trying to solve; thus we start with the global graph and delete edges until reaching the graph
from the static construction.

A natural question is, are these conditional lower bounds tight? Can one create partially
dynamic algorithms that can achieve the same total runtime as the known static approximation
algorithms? We give positive answers to these questions by developing new partially dynamic
algorithms that are essentially optimal. Our algorithms are actually very efficient reductions
to incremental and decremental single source shortest paths (SSSP), so that any improvement
over dynamic SSSP would improve our parameter estimation algorithms.

Let D0 and Df be the initial and final values of the diameter, respectively. Let
Tinc(n,m, k, ε) (resp., Tdec(n,m, k, ε)) be the total time of an incremental (decremental)
approximate SSSP algorithm from source u that maintains an estimate d′(u, v) for all v such
that if d(u, v) ≤ k then (1 − ε)d(u, v) ≤ d′(u, v) ≤ d(u, v). For directed graphs we assume
that the approximate SSSP algorithm works in directed graphs, and for undirected graphs,
the SSSP algorithm only needs to work in undirected graphs. Our black-box reductions can
be summarized in the theorem below.

I Theorem 5. There is a Las Vegas randomized algorithm for incremental (resp., decre-
mental) diameter in unweighted, directed graphs against an oblivious (resp., adaptive) ad-
versary that given ε > 0, runs in total time Õ(maxDf≤D′≤D0{Tinc(n,m,D′, ε)

√
n/D′

ε2 })

(resp., Õ(maxD0≤D′≤Df {Tdec(n,m,D′, ε)
√
n/D′

ε2 })) with high probability, and maintains an
estimate D̂ such that 2(1−ε)

3 D − 2
3 ≤ D̂ ≤ D where D is the diameter of the current graph.

We obtain similar black-box reductions for nearly (5/3 + ε)-approximate Eccentricities
and (3/2 + ε)-approximate Radius in undirected graphs.

Henzinger et al. [13] obtained a randomized (1 + ε)-approximate decremental algorithm
for SSSP in undirected unweighted graphs against an oblivious adversary with total expected
update time m1+o(1/ε). As an immediate corollary we obtain:
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I Corollary 6. There is a Las Vegas randomized algorithm for decremental diameter in
unweighted, undirected graphs against an oblivious adversary that given ε > 0, runs in total
time m1+o(1/ε)√n/ε2 in expectation, and maintains an estimate 2(1−ε)

3 D − 2
3 ≤ D̂ ≤ D,

where D is the diameter of the current graph.

Due to lower bounds in the static setting described above, this result is conditionally
optimal in terms of both running time and approximation factor except for a small loss in
the approximation factor. A similar result hold for decremental undirected Radius with
a conditionally essentially optimal approximation factor. A similar result also holds for
Eccentricities, which is conditionally essentially optimal in terms of both running time and
approximation factor.

For decremental algorithms in directed graphs and for incremental algorithms in undirected
or directed graphs, the best known algorithms for SSSP up to distance k are achieved by the
Even and Shiloach Trees data structure [11], giving amortized update time O(k). Henzinger
and King recognized that this data structure can be extended to directed graphs [12]. As a
corollary we obtain:

I Corollary 7. There is a Las Vegas randomized algorithm for incremental/decremental
diameter in unweighted, directed graphs that given ε > 0, runs in total time Õ(m

√
nDmax/ε

2)
with high probability where Dmax is the maximum diameter throughout the algorithm, and
maintains an estimate D̂ such that 2(1−ε)

3 D − 1 ≤ D̂ ≤ D, where D is the diameter of the
current graph. The incremental algorithm works against an oblivious adversary and the
decremental algorithm works against an adaptive adversary.

Similar results hold for Radius and Eccentricities but only for undirected graphs. Recall
that static conditional lower bounds rule out such algorithms in directed graphs.

The algorithms so far are all randomized. We present some deterministic incremental
algorithms as well, again via a reduction to incremental SSSP. Let D0, Df and Tinc(n,m, k, ε)
be as before.

I Theorem 8. There is a deterministic algorithm for incremental diameter in unweighted,
directed graphs that, for any ε with 0 < ε < 2, runs in total time
Õ(maxDf≤D′≤D0{(Tinc(n,m,D′, ε) +m)n/(ε2D′)}), and maintains an estimate D̂ such that
(1− ε)D ≤ D̂ ≤ D, where D is the diameter of the current graph.

Using Even and Shiloach trees we obtain as a corollary a deterministic incremental
(1 + ε)-approximation algorithm for diameter with total update time Õ(mn/ε2). The running
time is essentially tight for ε < 1/2 by the SETH based quadratic lower bound for (3/2− δ)-
approximate static diameter [21]. Similar algorithms with essentially tight running times
hold for radius in directed graphs and eccentricities in directed, strongly connected graphs.

1.1 Our techniques for partially dynamic algorithms
Our partially dynamic nearly 3/2-approximation algorithms for diameter and radius and
our nearly 5/3-approximation algorithm for eccentricities are based on known algorithms
in the static setting [21, 8]. These static algorithms work by carefully choosing a set U of
vertices, performing SSSP from every vertex in U , and showing that at least one of these
SSSP instantiations yields a good estimate for the parameter of interest. The set U is chosen
as follows. We pick a random sample S of Θ̃(

√
n) vertices and let w∗ be the vertex that

is farthest from S; that is, w∗ is the vertex that maximizes mins∈S d(w∗, s). Then, letting
N(w,

√
n) be the closest

√
n vertices to w, we set U = S ∪ {w∗} ∪N(w∗,

√
n).
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Adapting these static algorithms to the dynamic setting presents two main challenges:
(1) Firstly, given a set S of vertices, the farthest vertex w∗ from S can change over time.

We wish to minimize the total number of vertices that we ever run dynamic SSSP from,
as reinitializing dynamic SSSP from a new vertex is expensive. Suppose we run dynamic
SSSP from every vertex in N(w∗,

√
n) at all times. Then, every time w∗ changes, we must

reinitialize the dynamic SSSP data structure from
√
n new vertices. If w∗ changes frequently,

this is prohibitively slow. To overcome this issue, we show that it suffices to choose a vertex
w that approximates w∗ (for a careful notion of approximation); and furthermore, by doing
so we can limit the number of times we choose a new w.

Due to inherent differences between the incremental and decremental settings, we choose
w in different ways in the different settings. In the decremental setting, distances can only
increase, so our current choice of w can only become a poor approximation for w∗ if d(w∗, S)
increases. Then, we use the fact that d(w∗, S) is monotonically increasing to bound the
number of times we need to choose a new w.

The incremental setting is more involved. Since distances can only decrease, our current
choice of w becomes a poor approximation of w∗ if d(w, S) decreases. A challenge arises
because unlike d(w∗, S), the distance d(w, S) does not change monotonically. One can
imagine a scenario in which whenever we choose a new w, an edge is added causing d(w, S)
to immediately decrease to 1, which mandates that we choose a new w. We address this
challenge by carefully employing randomness against an oblivious adversary. We argue that
by randomly sampling w from a specifically chosen set of vertices, in expectation it will take
a long time for w to become a poor approximation for w∗.

(2) Secondly, we wish to apply a partially dynamic SSSP algorithm as a subroutine,
however the state of such algorithms is much better for undirected graphs than directed graphs.
For instance, for undirected decremental graphs, there is a randomized (1 + ε)-approximate
SSSP algorithm that runs amortized mo(1) time [13] (and it is believed, but not published,
than a similar result is possible for incremental graphs), while for incremental/decremental
directed graphs the best known algorithms for SSSP up to distance k run in amortized
time O(k) [11]. To address this discrepancy, we carefully exploit the fact that longer paths
are easier to hit by randomly sampling: we augment the algorithm with an additional
subsampling routine that quadratically decreases the time dependence on the diameter D.

2 Preliminaries

Let G = (V,E) be a graph, where |V | = n and |E| = m. For every u, v ∈ V let dG(u, v) be
the length of the shortest path from u to v. We omit the subscript when G is clear from
context. Let Nout(v, s) (resp., Nin(v, s)) be the set of the s closest outgoing (incoming)
vertices of v, where ties are broken by taking the vertex with the smaller ID. The eccentricity
ε(v) of a vertex v is defined as maxu∈V d(v, u). The diameter D of a graph is maxv∈V ε(v).
The radius R of a graph is minv∈V ε(v).

2.1 Algorithms

For all of our algorithms for diameter, radius, and eccentricities in undirected graphs as well
as diameter in directed graphs, we assume that the diameter is finite. One can easily check if
this is the case by running a dynamic reachability algorithm from a single vertex. For our
partially dynamic algorithms, we let D0 and Df be the initial and final values of the diameter,
respectively. Similarly, R0 and Rf are the initial and final values of the radius, respectively.
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The running times of our randomized algorithms are with high probability, which we
take to mean with probability at least 1− 1/nc for all constants c. The running times of our
algorithms is written in terms of n and m, which refer to an upper bound on the number of
vertices and edges, respectively, over the entire sequence of updates. That is, for incremental
algorithms, the running time is written in terms of the final values of n and m and for
decremental algorithms the running time written is in terms of the initial values of n and m.

Each of our algorithms is written as a reduction to a black-box incremental or decremental
approximation algorithm for truncated SSSP; that is, SSSP which provides a distance
estimate for all nodes whose distance from the source is at most a given value k. For
generality, our algorithms are written for directed graphs and use directed SSSP algorithms,
however if the graph is undirected one can simply run an undirected SSSP algorithm
instead. Let out-Ainc(u, k, δ) (resp., out-Adec(u, k, δ)) be an incremental (resp., decremental)
algorithm that maintains for all v an estimate d′(u, v) such that if d(u, v) ≤ k then (1 −
δ)d(u, v) ≤ d′(u, v) ≤ d(u, v). Analogously, let in-Ainc(u, k, δ) (resp., in-Adec(u, k, δ)) be an
incremental (decremental) algorithm that maintains an estimate d′(v, u) for all v such that
if d(u, v) ≤ k then (1 − δ)d(v, u) ≤ d′(v, u) ≤ d(v, u). We assume that after every update,
these algorithms output all nodes whose distance estimate has changed. Let Tinc(n,m, k, δ)
(resp., Tdec(n,m, k, δ)) be the total time of out-Ainc(u, k, δ) and in-Ainc(u, k, δ) (resp., out-
Ainc(u, k, δ) and in-Ainc(u, k, δ)) (or the corresponding undirected algorithms).

The running times of our algorithms are written as the maximum of an expression over all
values of the diameter D (or radius R) throughout the entire sequence of updates. Although
the maximum value of D and R in a partially dynamic graph either occurs at the beginning
or end of the update sequence, the maximum value of the running time expression could
occur for any value of D or R.

Suppose we run in-Ainc, in-Adec, out-Ainc, or out-Adec from a vertex v. Then, let
Bout(v, r) be the set of vertices u with d′(v, u) ≤ r.

For a subset S ⊆ V of vertices and a vertex v ∈ V we define d(S, v) := mins∈S d(s, v).
Similarly, d(v, S) := mins∈S d(v, s). When the algorithms call for an approximation d′(S, v)
of d(S, v), we add a dummy vertex x with an edge to every vertex in S and run out-Ainc (or
out-Adec) from x; let d′(S, v) = d′(x, v)− 1. We define and maintain d′(v, S) analogously by
adding a dummy vertex with an edge from every vertex in S.

B Claim 9. For all u /∈ S, (1− 2δ)d(u, S) ≤ d′(u, S) ≤ d(u, S).

Proof. (1 − 2δ)d(u, S) = (1 − 2δ)(d(u, x) − 1) = d(u, x) − δd(u, x) − 1 + δ(2 − d(u, x)) ≤
d(u, x)−δd(u, x)−1 = (1−δ)d(u, x)−1 ≤ d′(u, x)−1 = d′(u, S) and d′(u, S) = d′(u, x)−1 ≤
d(u, x)− 1 = d(u, S). C

For all of our algorithms for diameter and eccentricities, the bulk of the argument is to
prove a lemma of the following form: if one is given values P ′ and ε such that P ′ is at most
the true value P of the parameter of interest, then there is an algorithm that outputs an
estimate P̂ such that α(1− ε)P ′ − β ≤ P̂ ≤ P for appropriate α and β. Lemma 10, whose
proof we defer to the full version [5], states that a lemma of the above form suffices to prove
our theorems. (In Lemma 10, the number k of parameters is 1 for the case of diameter and n
for the case of eccentricities.) Lemma 10 also requires a fast constant-factor approximation
for the parameter of interest in the static setting. Such algorithms exist for directed diameter
and eccentricities in near-linear time.

Lemma 10 does not apply to radius since radius is a minimization problem, however an
analogous lemma holds for radius; we defer it to the full version [5].
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I Lemma 10. Let π1, π2, . . . , πk be a set of graph parameters (e.g. eccentricities). Suppose
there is a static Õ(T ′(n,m)) time algorithm that gives a constant-factor approximation for
all πi. Let P1, P2, . . . , Pk be the dynamically changing values of π1, π2, . . . , πk, respectively.
Suppose there is an algorithm P that given a partially dynamic graph and values P ′ and
ε > 0, runs in total time T (n,m,P ′, ε) where T is a polynomial, and maintains a set of
estimates P̂1 ≤ P1, . . . , P̂k ≤ Pk such that for all i, if P ′ ≤ Pi, then P̂i ≥ α(1− ε)P ′ − β for
constants α and β.

Let Pmin and Pmax be the minimum and maximum respectively over all Pi over the entire
sequence of updates. Then there is an algorithm P ′ that given a partially dynamic graph and
ε > 0, runs in total time Õ(T ′(n,m) + maxPmin≤P ′≤Pmax T (n,m,P ′, ε)/ε) and maintains
estimates P̂1, . . . , P̂k such that for all i, α(1− ε)Pi − β ≤ P̂i ≤ Pi.

2.2 Lower bounds

Let k ≥ 2. The k-Orthogonal Vectors Problem (k-OV) is as follows: given k sets S1, . . . , Sk,
where each Si contains n vectors in {0, 1}d, determine whether there exist v1 ∈ S1, . . . , vk ∈ Sk
so that their generalized inner product is 0, i.e.

∑d
i=1
∏k
j=1 vj [i] = 0. The k-OV Hypothesis

is that k-OV requires nk−o(1) time in the word-RAM model of computation with O(logn)
bit words, even for randomized algorithms.

The unbalanced version of k-OV has the sets Si potentially have different sizes, |Si| = ni.
The unbalanced k-OV Hypothesis is that unbalanced k-OV requires (

∏
i ni)1−o(1) time. When

each ni is polynomial in n, the unbalanced k-OV Hypothesis is known to be equivalent to
the k-OV Hypothesis.

R. Williams [25] (see also [24]) showed that if for some ε > 0 there is an nk−εpoly (d)
time algorithm for k-OV, then CNF-SAT on formulas with N variables and m clauses can
be solved in 2N(1−ε/k)poly (m) time. In particular, such an algorithm would contradict the
Strong Exponential Time Hypothesis (SETH) of Impagliazzo, Paturi and Zane [16] which
states that for every ε > 0 there is a K such that K-SAT on N variables cannot be solved
in 2(1−ε)Npoly N time (on a word-RAM with O(logN) bit words) even by randomized
algorithms. Thus SETH implies the k-OV Hypothesis for all constants k. Each of our lower
bounds conditional upon SETH is a reduction from either unbalanced 2 or 3-OV

The Hitting Set (HS) problem [2] is: given two sets U and V of n vectors each in {0, 1}d, is
there u ∈ U so that for all v ∈ V , u·v 6= 0? The HS Hypothesis states that HS requires n2−o(1)

time in the word-RAM model with O(logn) bit words, even for randomized algorithms.
We introduce the unbalanced version of HS, for three unbalanced sets. Unbalanced 3-HS

is the problem, given U, V,W ⊆ {0, 1}d with |U | = n, |V | = na, |W | = nb for constants
a, b > 0, are there u ∈ U,w ∈W so that for all v ∈ V , u · v · w 6= 0? This is in similar spirit
to unbalanced 3-OV. The unbalanced 3-HS Hypothesis is that unbalanced 3-HS requires
(|U | · |V | · |W |)1−o(1) = n1+a+b−o(1) time in the word-RAM model with O(logn) bit words,
even for randomized algorithms. Due to its similarity to 3-OV and the lack of good algorithms,
the 3-HS Hypothesis is believable. Refuting it would imply some very interesting improved
algorithms for a balanced variant of Quantified Boolean Formulas with 2 quantifiers [18].

As mentioned in the introduction, the k-Cycle Hypothesis is that in the word-RAM model
with O(logn) bit words, any possibly randomized algorithm needs m2−f(k)−o(1) time to find
a k-cycle in an m-edge graph, for some continuous (over the reals) f(k) that goes to 0 as k
goes to infinity. The Hypothesis is completely consistent with the state of the art k-Cycle
algorithms (e.g. [27, 4, 9]).
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3 Nearly 3/2-approximation of Diameter

In this section we present a nearly 3/2-approximation for incremental/decremental diameter,
given access to a black-box incremental/decremental approximate SSSP algorithm as specified
in the preliminaries. We defer the remaining algorithms to the full version [5].

I Theorem 11. There is a Las Vegas randomized algorithm for incremental (resp., decre-
mental) diameter in unweighted, directed graphs against an oblivious (resp., adaptive) ad-
versary that given ε > 0, runs in Õ(maxDf≤D′≤D0{Tinc(n,m,D′, ε)

√
n/D′

ε2 })

(resp., Õ(maxD0≤D′≤Df {Tdec(n,m,D′, ε)
√
n/D′

ε2 })) total time with high probability, and main-
tains an estimate D̂ such that 2(1−ε)

3 D − 2
3 ≤ D̂ ≤ D where D is the diameter of the current

graph.

By Lemma 10, the following lemma implies Theorem 11.

I Lemma 12. There is a Las Vegas algorithm for incremental (resp., decremental) diameter
in unweighted, directed graphs against an oblivious (resp., adaptive) adversary that given

D′, ε > 0, runs in Õ

(
Tinc(n,m,D′, ε)

√
n/D′

ε

)
(resp., Õ

(
Tdec(n,m,D′, ε)

√
n/D′

ε

)
) total

time with high probability, and maintains an estimate D̂ ≤ D such that if D′ ≤ D then
D̂ ≥ 2(1−ε)

3 D′ − 2
3 where D is the diameter of the current graph.

Algorithm

Here we give the algorithm for Lemma 12. We defer the proof to the full version [5]. Let
δ = 2ε/11. Throughout the incremental (resp., decremental) algorithm we will run in-Ainc
(in-Adec) and out-Ainc (out-Adec) from certain sets of vertices. For ease of notation, we let
in-A denote either in-Ainc or in-Adec, depending on the setting, and similarly we let out-A
denote either out-Ainc or out-Adec.

Initialization. Let α be such that D′ = Θ(n1−2α). We randomly sample a set S of size
Θ(nα log2 n) so that with high probability, for every vertex v, after every update, S hits
Nout(v, n1−α). Throughout the entire execution of the algorithm, for all s ∈ S we run
in-A(s,D′, δ). Additionally, we maintain the approximate distance d′(v, S) from every vertex
v to S as described in the preliminaries. Let W be the dynamically changing set of vertices
v that satisfy d′(v, S) > D′/3.

Phases. In the incremental setting on the other hand, distances can decrease so vertices can
leave W . The incremental algorithm may have many phases, and at the beginning of each
phase, we choose w ∈W uniformly at random. The beginning of a new phase is triggered
when w leaves the set W .

Throughout the phase, we run out-A(w,D′, δ). Also, we will define a subset S′ ⊆
Bout(w, D

′

3 ) and for all s′ ∈ S′, we run in-A(s′, D′, δ). S′ is initially empty and we independ-
ently add each vertex in Bout(w, D

′

3 ) to S′ with probability min{1, log2 n
δD′ }. In the incremental

setting (but not the decremental setting), Bout(w, D
′

3 ) can grow, and whenever a vertex u
joins Bout(w, D

′

3 ) we add u to S′ with probability min{1, log2 n
δD′ }.
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Reinitialization. We reinitialize the entire algorithm if at any point during the execution of
the algorithm, any of the following occur: (1) |Bout(w, D

′

3 )| > n1−α, (2) |S′| > n1−α log4 n
δD′ , or

(3) there is a vertex v ∈ Bout(w, D
′

3 ) such that d′(v, S′) > δD′. We will show in the analysis
that with high probability we never reinitialize the algorithm.

Query. Following each update, the return value D̂ is the maximum distance estimate found
over all instantiations of out-A and in-A. That is,
D̂ = max{maxv∈V d′(w, v),maxv∈V,s∈S∪S′ d′(v, s)}.

To maintain this value, we maintain the following heaps. For every vertex v that we run
out-A (resp., out-A) from, we keep a max-heap H(v) that stores for each other vertex u the
estimate d′(v, u) (resp., d′(u, v)). Let d̂out(v) be the value that H(v) outputs. Additionally
we keep a max-heap H which stores each d̂out(v).

4 (2 − ε)-approximation requires linear update time

In this section we give a linear lower bound per update for (2− ε)-approximation for diameter,
radius, and fixed-vertex eccentricity of undirected graphs. We defer the remaining proofs to
the full version [5].

I Theorem 13. Let t, ε, and ε′ be positive constants. SETH implies that there exists no fully
dynamic algorithm for (2− ε)-approximate Diameter, Radius, or fixed-vertex Eccentricity
on undirected, unweighted graphs with n vertices and Õ(n) edges, which has preprocessing
time p(n) = O(nt), amortized update time u(n) = O(n1−ε′), and amortized query time
q(n) = O(n1−ε′). The same holds for the incremental/ decremental settings, for worst-case
update and query times.

Proof of Theorem 13.

Initialization

Let a = d 2−ε
2ε e+ 1 and δ = 1−ε′

t . We begin with an instance of 2-OV with vector sets U and
V of vectors, with |U | = Nδ and |V | = N1−δ. We create a graph G as follows. Add a node
s and for each coordinate c, create two paths of length 2a beginning at s, and denote the
endpoints of the paths by cleft and cright.

Next, create two paths of length a for each vector u ∈ U . Denote the endpoints of one
path by u0

left and ualeft, and the endpoints of the other by u0
right and uaright. Finally, we

encode each vector u ∈ U in the graph by connecting ualeft to cleft with a path of length a if
u[c] = 1, and doing the same on the right side of G. If u has no coordinates equal to 1, then
we may report that there is an orthogonal pair and halt; thus there will be no disconnected
nodes in G.

Dynamic stages

We proceed in N1−δ stages, one for each element v ∈ V . For the current v, for each coordinate
c where v[c] = 1, we add edges (s, cleft) and (s, cright). We then query the diameter or radius
of G or the eccentricity of s. We will show that the eccentricity of s is always equal to the
radius, and that if the diameter is least 8a or the radius is at least 4a, then there is an
orthogonal pair u, v; otherwise, the diameter is at most 4a+ 2 or the radius is at most 2a+ 1.
We have set a so that a (2− ε)-approximation algorithm for diameter, radius or eccentricity
of s distinguishes between these two cases and thus detects an orthogonal pair. If the query
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does not detect an orthogonal pair, we undo the edge additions for the stage and continue to
the next v. We can modify the stage to be decremental by beginning with edges from s to
all nodes cleft and cright, and removing the excess edges each stage.

Figure 1 Sketch of Theorem 13 Construction. Bold edges represent paths, whose labels denote
their length.

Correctness

We claim that the node s is always the center of G, so the eccentricity of s is always the
radius of G. Let xright be the node farthest from s on the right side of G. Since the graph is
symmetrical, the counterpart xleft of xright is such that d(s, xright) = d(s, xleft). Any node
y to the left of s must pass through s to reach xright, so y has a higher eccentricity than s
because it is farther from the node farthest from s. Symmetrically, any node y to the right
of s must pass through s to reach xleft, so y has a higher eccentricity than s because it is
farther from the node farthest from s.

If for the current stage, for all u, u · v 6= 0, then for each u there must be some coordinate
c such that u[c] = v[c] = 1. Then there is a path of length 1 from s to cleft, and a path of
length a from cleft to ualeft, for all u. The same is true on the right side. Then since all nodes
except s are of distance at most a from a node u′aleft or u

′a
right for some u′ ∈ U , all nodes are

accessible in at most 2a+ 1 steps from s. This means that the radius and eccentricity of s is
2a+ 1, and the diameter is at most 4a+ 2.

If for the current stage there is some u such that u · v = 0, then there is no direct path
from s to u0 on either side via a vector coordinate c and ua. A path via a different u′a would
be of length at least 4a+ 1, because returning to a c′ where u[c′] = 1 would cost an additional
2a from the direct path. The shortest path would thus be along the length-2a path from s

to c′, giving d(s, u0) = 4a. The radius and eccentricity of s must be at least 4a and diameter
must be at least 8a, because d(u0

left, u
0
right) = d(s, u0

left) + d(s, u0
right) = 4a+ 4a = 8a.

Running time

We assume for the sake of contradiction that the algorithm of Theorem 13 exists. Let
n = Nδ be the size of G. We have that u(n) = q(n) = O((Nδ)1−ε′). After initialization
and |V | = N1−δ stages, the total update and query time is then at most Õ(N1−δε′). The
preprocessing time p(n) for the algorithm on G is O((Nδ)t) = O(N1−ε′). Thus the total
time of the algorithm is Õ(N1−ε′ +N1−δε′). This contradicts SETH, because SETH implies
that no algorithm exists for 2-OV in O((|U | · |V |)1−ε′′) = O(N1−ε′′) time for any ε′′ > 0. J
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Abstract

Many modern parallel systems, such as MapReduce, Hadoop and Spark, can be modeled well by the
MPC model. The MPC model captures well coarse-grained computation on large data – data is
distributed to processors, each of which has a sublinear (in the input data) amount of memory and
we alternate between rounds of computation and rounds of communication, where each machine can
communicate an amount of data as large as the size of its memory. This model is stronger than the
classical PRAM model, and it is an intriguing question to design algorithms whose running time is
smaller than in the PRAM model.

In this paper, we study two fundamental problems, 2-edge connectivity and 2-vertex connectivity
(biconnectivity). PRAM algorithms which run in O(logn) time have been known for many years.
We give algorithms using roughly log diameter rounds in the MPC model. Our main results are, for
an n-vertex, m-edge graph of diameter D and bi-diameter D′, 1) a O(logD log logm/n n) parallel
time 2-edge connectivity algorithm, 2) a O(logD log2 logm/n n+ logD′ log logm/n n) parallel time
biconnectivity algorithm, where the bi-diameter D′ is the largest cycle length over all the vertex
pairs in the same biconnected component. Our results are fully scalable, meaning that the memory
per processor can be O(nδ) for arbitrary constant δ > 0, and the total memory used is linear in the
problem size. Our 2-edge connectivity algorithm achieves the same parallel time as the connectivity
algorithm of [4]. We also show an Ω(logD′) conditional lower bound for the biconnectivity problem.
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1 Introduction

The success of modern parallel and distributed systems such as MapReduce [16, 17], Spark [41],
Hadoop [39], Dryad [23], together with the need to solve problems on massive data, is
driving the development of new algorithms which are more efficient and scalable in these
large-scale systems. An important theoretical problem is to develop models which are good
abstractions of these computational frameworks. The Massively Parallel Computation (MPC)
model [25, 21, 11, 3, 9, 15, 4] captures the capabilities of these computational systems while
keeping the description of the model itself simple. In the MPC model, there are machines
(processors), each with Θ(Nδ) local memory, where N denotes the size of the input and
δ ∈ (0, 1). The computation proceeds in rounds, where each machine can perform unlimited
local computation in a round and exchange O(Nδ) data at the end of the round. The parallel
time of an algorithm is measured by the total number of computation-communication rounds.
The MPC model is a variant of the Bulk Synchronous Parallel (BSP) model [38]. It is also a
more powerful model than the PRAM since any PRAM algorithm can be simulated in the
MPC model [25, 21] while some problem can be solved in a faster parallel time in the MPC
model. For example, computing the XOR of N bits takes O(1/δ) parallel time in the MPC
model but needs near-logarithmic parallel time on the most powerful CRCW PRAM [10].

A natural question to ask is: which problems can be solved in faster parallel time in
the MPC model than on a PRAM? This question has been studied by a line of recent
papers [25, 19, 29, 3, 1, 6, 22, 15, 7, 14, 13, 32, 20]. Most of these results studied the graph
problems, which are the usual benchmarks of parallel/distributed models. Many graph
problems such as graph connectivity [35, 33, 30], graph biconnectivity [37, 36], maximal
matching [26], minimum spanning tree [27] and maximal independent set [31, 2] can be
solved in the standard logarithmic time in the PRAM model, but these problems have been
shown to have a better parallel time in the MPC model.

In addition, we hope to develop fully scalable algorithms for the graph problems, i.e.,
the algorithm should work for any constant δ > 0. The previous literatures show that a
graph problem in the MPC model with large local memory size may be much easier than
the same problem in the MPC model but with a smaller local memory size. In particular,
when the local memory size per machine is close to the number of vertices n, many graph
problems have efficient algorithms. For example, if the local memory size per machine is
n/ logO(1) n, the connectivity problem [7] and the approximate matching problem [5] can
be solved in O(log logn) parallel time. If the local memory size per machine is Ω(n), then
the MPC model meets the congested clique model [12]. In this setting, the connectivity
problem and the minimum spanning tree problem can be solved in O(1) parallel time [24].
If the local memory size per machine is n1+Ω(1), many graph problems such as maximal
matching, approximate weighted matchings, approximate vertex and edge covers, minimum
cuts, and the biconnectivity problem can be solved in O(1) parallel time [29, 8]. The
landscape of graph algorithms in the MPC model with small local memory is more nuanced
and challenging for algorithm designers. If the local memory size per machine is n1−Ω(1),
then the best connectivity algorithm takes parallel time O(logD log logn) where D is the
diameter of the graph [4], and the best approximate maximum matching algorithm takes
parallel time Õ(

√
logn) [32].

Therefore, the main open question is: which kind of the graph problems can have faster
fully scalable MPC algorithms than the standard logarithmic PRAM algorithms?

Two fundamental graph problems in graph theory are 2-edge connectivity and 2-vertex
connectivity (biconnectivity). In this work, we studied these two problems in the MPC model.
Consider an n-vertex, m-edge undirected graph G. A bridge of G is an edge whose removal
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increases the number of connected components of G. In the 2-edge connectivity problem, the
goal is to find all the bridges of G. For any two different edges e, e′ of G, e, e′ are in the same
biconnected component (block) of G if and only if there is a simple cycle which contains
both e, e′. If we define a relation R such that eRe′ if and only if e = e′ or e, e′ are contained
by a simple cycle, then R is an equivalence relation [18]. Thus, a biconnected component is
an induced graph of an equivalence class of R. In the biconnectivity problem, the goal is to
output all the biconnected components of G. We proposed faster, fully scalable algorithms
for the both 2-edge connectivity problem and the biconnectivity problem by parameterizing
the running time as a function of the diameter and the bi-diameter of the graph. The
diameter D of G is the largest diameter of its connected components. The definition of
bi-diameter is a natural generalization of the definition of diameter. If vertices u, v are in
the same biconnected component, then the cycle length of (u, v) is defined as the minimum
length of a simple cycle which contains both u and v. The bi-diameter D′ of G is the largest
cycle length over all the vertex pairs (u, v) where both u and v are in the same biconnected
component. Our main results are 1) a fully scalable O(logD log logm/n n) parallel time
2-edge connectivity algorithm, 2) a fully scalable O(logD log2 logm/n n+ logD′ log logm/n n)
parallel time biconnectivity algorithm. Our 2-edge connectivity algorithm achieves the same
parallel time as the connectivity algorithm of [4]. We also show an Ω(logD′) conditional
lower bound for the biconnectivity problem.

1.1 The Model
Our model of computation is the Massively Parallel Computation (MPC) model [25, 21, 11].

Consider two non-negative parameters γ ≥ 0, δ > 0. In the (γ, δ)-MPC model [4], there
are p machines (processors) each with local memory size s, where p ·s = Θ(N1+γ), s = Θ(Nδ)
and N denotes the size of the input data. Thus, the space per machine is sublinear in N , and
the total space is only an O(Nγ) factor more than the input size. In particular, if γ = 0, the
total space available in the system is linear in the input size N . The space size is measured
by words each containing Θ(log(s · p)) bits. Before the computation starts, the input data is
distributed on Θ(N/s) input machines. The computation proceeds in rounds. In each round,
each machine can perform local computation on its local data, and send messages to other
machines at the end of the round. In a round, the total size of messages sent/received by a
machine should be bounded by its local memory size s = Θ(Nδ). For example, a machine can
send s size 1 messages to s machines or send a size s message to 1 machine in a single round.
However, it cannot broadcast a size s message to every machine. In the next round, each
machine only holds the received messages in its local memory. At the end of the computation,
the output data is distributed on the output machines. An algorithm in this model is called
a (γ, δ)-MPC algorithm. The parallel time of an algorithm is the total number of rounds
needed to finish its computation. In this paper, we consider δ an arbitrary constant in (0, 1).

1.2 Our Results
Our main results are efficient MPC algorithms for 2-edge connectivity and biconnectivity
problems. In our algorithms, one important subroutine is computing the Depth-First-Search
(DFS) sequence [4] which is a variant of the Euler tour representation proposed by [37, 36] in
1984. We show how to efficiently compute the DFS sequence in the MPC model with linear
total space. Conditioned on the hardness of the connectivity problem in the MPC model, we
prove a hardness result on the biconnectivity problem.
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For 2-edge connectivity and biconnectivity, the input is an undirected graph G = (V,E)
with n = |V | vertices and m = |E| edges. N = n+m denotes the size of the representation
of G, D denotes the diameter of G, and D′ denotes the bi-diameter of G. We state our
results in the following.

Biconnectivity. In the biconnectivity problem, we want to find all the biconnected compon-
ents (blocks) of the input graph G. Since the biconnected components of G define a partition
on E, we just need to color each edge, i.e., at the end of the computation, ∀e ∈ E, there is a
unique tuple (x, c) with x = e stored on an output machine, where c is called the color of e,
such that the edges e1, e2 are in the same biconnected components if and only if they have
the same color.

I Theorem 1 (Biconnectivity in MPC). For any γ ∈ [0, 2] and any constant δ ∈ (0, 1), there
is a randomized (γ, δ)-MPC algorithm which outputs all the biconnected components of the
graph G in O

(
logD · log2 logn

log(N1+γ/n) + logD′ · log logn
log(N1+γ/n)

)
parallel time. The success

probability is at least 0.95. If the algorithm fails, then it returns FAIL.

The worst case is when the input graph is sparse and the total space available is linear in the
input size, i.e., N = n+m = O(n) and γ = 0. In this case, the parallel running time of our
algorithm is O(logD · log2 logn+ logD′ · log logn). If the graph is slightly denser (m = n1+c

for some constant c > 0), or the total space is slightly larger (γ > 0 is a constant), then we
obtain O(logD + logD′) time.

A cut vertex (articulation point) in the graph G is a vertex whose removal increases the
number of connected components of G. Since a vertex v is a cut vertex if and only if there
are two edges e1, e2 which share the endpoint v and e1, e2 are not in the same biconnected
component, our algorithm can also find all the cut vertices of G.

2-Edge connectivity. In the 2-edge connectivity problem, we want to output all the bridges
of the input graph G. Since an edge is a bridge if and only if each of its endpoints is either a
cut vertex or a vertex with degree 1, the 2-edge connectivity problem should be easier than
the biconnectivity problem. We show how to solve 2-edge connectivity in the same parallel
time as the algorithm proposed by [4] for solving connectivity.

I Theorem 2 (2-Edge connectivity in MPC). For any γ ∈ [0, 2] and any constant δ ∈ (0, 1),
there is a randomized (γ, δ)-MPC algorithm which outputs all the bridges of the graph G
in O

(
logD · log logn

log(N1+γ/n)

)
parallel time. The success probability is at least 0.97. If the

algorithm fails, then it returns FAIL.

DFS sequence. A rooted tree with a vertex set V can be represented by n = |V | pairs
(v1,par(v1)), (v2,par(v2)), · · · , (vn,par(vn)) where par : V → V is a set of parent pointers,
i.e., for a non-root vertex v, par(v) denotes the parent of v, and for the root vertex v,
par(v) = v. We show an algorithm which can compute the DFS sequence (Definition 6) of
the rooted tree in the MPC model with linear total space.

I Theorem 3 (DFS sequence of a tree in MPC). Given a rooted tree represented by a set
of parent pointers par : V → V , there is a randomized (0, δ)-MPC algorithm which outputs
the DFS sequence in O(logD) parallel time, where δ ∈ (0, 1) is an arbitrary constant, D is
the depth of the tree. The success probability is at least 0.99. If the algorithm fails, then it
returns FAIL.
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Conditional hardness for biconnectivity. A conjectured hardness for the connectivity prob-
lem is the one cycle vs. two cycles conjecture: for any γ ≥ 0 and any constant δ ∈ (0, 1), any
(γ, δ)-MPC algorithm requires Ω(logn) parallel time to determine whether the input n-vertex
graph is a single cycle or contains two disjoint length n/2 cycles. This conjectured hardness
result is widely used in the MPC literature [25, 11, 28, 34, 40]. Under this conjecture, we
show that Ω(logD′) parallel time is necessary for the biconnectivity problem, and this is
true even when D = O(1), i.e., the diameter of the graph is a constant.

I Theorem 4 (Hardness of biconnectivity in MPC). For any γ ≥ 0 and any constant δ ∈ (0, 1),
unless there is a (γ, δ)-MPC algorithm which can distinguish the following two instances: 1)
a single cycle with n vertices, 2) two disjoint cycles each contains n/2 vertices, in o(logn)
parallel time, any (γ, δ)-MPC algorithm requires Ω(logD′) parallel time for testing whether
a graph G with a constant diameter is biconnected.

1.3 Our Techniques
Biconnectivity. At a high level our biconnectivity algorithm is based on a framework
proposed by [36]. The main idea is to construct a new graph and reduce the problem of
finding biconnected components of G to the problem of finding connected components of the
new graph G′. At first glance, it should be efficiently solved by the connectivity algorithm [4].
However, there are two main issues: 1) since the parallel time of the MPC connectivity
algorithm of [4] depends on the diameter of the input graph, we need to make the diameter
of G′ small, 2) we need to construct G′ efficiently. Let us first consider the first issue, and
we will discuss the second issue later.

We give an analysis of the diameter of G′ = (V ′, E′) constructed by [36]. Without loss of
generality, we can suppose the input G = (V,E) is connected. Each vertex in G′ corresponds
to an edge of G. Let T be an arbitrary spanning tree of G with depth d. Each non-tree
edge e can define a simple cycle Ce which contains the edge e and the unique path between
the endpoints of e in the tree T . Thus, the length of Ce is at most 2d + 1. If there is a
such cycle containing any two tree edges (u, v), (v, w), vertices (u, v), (v, w) are connected in
G′. For each non-tree edge e, we connect the vertex e to the vertex e′ in graph G′ where
e′ is an arbitrary tree edge in the cycle Ce. By the construction of G′, any e, e′ from the
same connected components of G′ should be in the same biconnected components of G. Now
consider arbitrary two edges e, e′ in the same biconnected component of G. There must be
a simple cycle C which contains both edges e, e′ in G. Since all the simple cycles defined
by the non-tree edges are a cycle basis of G [18], the edge set of C can be represented by
the xor sum of all the edge sets of k basis cycles C1, C2, · · · , Ck where Ci is a simple cycle
defined by a non-tree edge ei on the cycle C. k is upper bounded by the bi-diameter of G.
Furthermore, we can assume Ci intersects Ci+1. There should be a path between e, e′ in G′,
and the length of the path is at most

∑k
i=1 |Ci| ≤ O(k · d). So, the diameter of G′ is upper

bounded by O(k · d). Thus, according to [4], we can find the connected components of G′ in
∼ (log k + log d) parallel time, where d and k are upper bounded by the diameter and the
bi-diameter of G respectively.

Now let us consider how to construct G′ efficiently. The bottleneck is to determine
whether the tree edges (u, v), (v, w) should be connected in G′ or not. Suppose w is the
parent of v and v is the parent of u. The vertex (u, v) should connect to the vertex (v, w) in
G′ if and only if there is a non-tree edge that connects a vertex x in the subtree of u and
a vertex y which is on the outside of the subtree of v. For each vertex x, let lev(x) be the
minimum depth of the least common ancestor (LCA) of (x, y) over all the non-tree edges
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(x, y). Then (u, v) should be connected to (v, w) in G′ if and only if there is a vertex x in
the subtree of u in G such that lev(x) is smaller than the depth of v. Since the vertices in a
subtree should appear consecutively in the DFS sequence, this question can be solved by
some range queries over the DFS sequence. Next, we will discuss how to compute the DFS
sequence of a tree.

DFS sequence. The DFS sequence of a tree is a variant of the Euler tour representation of
the tree. For an n-vertex tree T , [36] gives an O(logn) parallel time PRAM algorithm for the
Euler tour representation of T . However, since their construction method will destroy the
tree structure, it is hard to get a faster MPC algorithm based on this framework. Instead, we
follow the leaf sampling framework proposed by [4]. Although the DFS sequence algorithm
proposed by [4] takes O(log d) time where d is the depth of T , it needs Ω(n log d) total
space. The bottleneck is the subroutine which needs to solve the least common ancestors
problem and generate multiple path sequences. The previous algorithm uses the doubling
algorithm for the subroutine, i,e., for each vertex v, they store the 2i-th ancestor of v for
every i ∈ [dlog de]. This is the reason why [4] cannot achieve the linear total space. We show
how to compress the tree T into a new tree T ′ which only contains at most n/dlog de vertices.
We argue that applying the doubling algorithm on T ′ is sufficient for us to find the DFS
sequence of T .

2-Edge connectivity. Without loss of generality, we can assume the input graph G is
connected. Consider a rooted spanning tree T and an edge e = (u, v) in G. Suppose the
depth of u is at least the depth of v in T , i.e., v cannot be a child of u. The edge e is not a
bridge if and only if either e is a non-tree edge or there is a non-tree edge (x, y) connecting
the subtree of u and a vertex on the outside of the subtree of u. Similarly, the second case
can be solved by some range queries over the DFS sequence of T .

Conditional hardness for biconnectivity. We want to reduce the connectivity problem to
the biconnectivity problem. For an undirected graph G, if we add an additional vertex
v∗ and connects v∗ to every vertex of G, then the diameter of the resulting graph G′ is
at most 2 and each biconnected components of G′ corresponds to a connected component
of G. Furthermore, the bi-diameter of G′ is upper bounded by the diameter of G plus 2.
Therefore, if the parallel time of an algorithm A′ for finding the biconnected components
of G′ depends on the bi-diameter of G′, there exists an algorithm A which can find all the
connected components of G in the parallel time which has the same dependence on the
diameter of G.

1.4 A Roadmap

Section 2 introduces the notation and some useful definitions. Section 3 describes the offline
algorithms for 2-edge connectivity and biconnectivity. It also includes some crucial properties
of the algorithms. In Section 4, we show an linear space offline algorithm to find the DFS
sequence of a tree. All of these offline algorithms can be implemented in the MPC model
efficiently. Section 5 contains the conditional hardness result for the biconnectivity problem
in the MPC model. For the MPC implementations and all the missing technical proofs, we
refer readers to the full version of the paper.
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2 Preliminaries

2.1 Notation
We follow the notation of [4]. [n] denotes the set of integers {1, 2, · · · , n}.

Diameter and bi-diameter. Consider an undirected graph G with a vertex set V and an
edge set E. For any two vertices u, v, we use distG(u, v) to denote the distance between u and
v in graph G. If u, v are not in the same (connected) component of G, then distG(u, v) =∞.
The diameter diam(G) of G is the largest diameter of its connected components, i.e.,
diam(G) = maxu,v∈V :distG(u,v)6=∞ distG(u, v). (v1, v2, · · · , vk) ∈ V k is a cycle of length k − 1
if v1 = vk and ∀i ∈ [k − 1], (vi, vi+1) ∈ E. We say a cycle (v1, v2, · · · , vk) is simple if k ≥ 4
and each vertex only appears once in the cycle except v1 (vk). Consider two different vertices
u, v ∈ V . We use cyclenG(u, v) to denote the minimum length of a simple cycle which
contains both vertices u and v. If there is no simple cycle which contains both u and v,
cyclenG(u, v) = ∞. cyclenG(u, u) is defined as 0. The bi-diameter of G, bi-diam(G), is
defined as maxu,v∈V :cyclenG(u,v) 6=∞ cyclenG(u, v).

Representation of a rooted forest. Let V denote a set of vertices. We represent a rooted
forest in the same manner as [4]. Consider a mapping par : V → V . For i ∈ N>0 and v ∈ V ,
we define par(i)(v) as par(par(i−1)(v)), and par(0)(v) is defined as v itself. If ∀v ∈ V,∃i > 0
such that par(i)(v) = par(i+1)(v), then we call par a set of parent pointers on V . For v ∈ V ,
if par(v) = v, then we say v is a root of par. Notice that par actually can represent a rooted
forest, thus par can have more than one root. The depth of v ∈ V , deppar(v) is the smallest
i ∈ N such that par(i)(v) is the same as par(i+1)(v). The root of v ∈ V , par(∞)(v) is defined
as par(deppar(v))(v). The depth of par, dep(par) is defined as maxv∈V deppar(v).

Ancestor and path. For two vertices u, v ∈ V , if ∃i ∈ N such that u = par(i)(v), then u is
an ancestor of v (in par). If u is an ancestor of v, then the path P (v, u) (in par) from v to u
is a sequence (v,par(v),par(2)(v), · · · , u) and the path P (u, v) is the reverse of P (v, u), i.e.,
P (u, v) = (u, · · · ,par(2)(v),par(v), v). If an ancestor u of v is also an ancestor of w, then
u is a common ancestor of (v, w). Furthermore, if a common ancestor u of (v, w) satisfies
deppar(u) ≥ deppar(x) for any common ancestor x of (v, w), then u is the lowest common
ancestor (LCA) of (v, w).

Children and leaves. For any non-root vertex u of par, u is a child of par(u). For any
vertex v ∈ V , childpar(v) denotes the set of all the children of v, i.e., childpar(v) = {u ∈
V | u 6= v,par(u) = v}. If u is the kth smallest vertex in the set childpar(v), then we define
rankpar(u) = k, or in other words, u is the kth child of v. If v is a root vertex of par, then
rankpar(v) is defined as 1. childpar(v, k) denotes the kth child of v. For simplicity, if par
is clear in the context, we just use child(v), rank(v) and child(v, k) to denote childpar(v),
rankpar(v) and childpar(v, k) for short. If child(v) = ∅, then v is a leaf of par. We denote
leaves(par) as the set of all the leaves of par, i.e., leaves(par) = {v | child(v) = ∅}.

2.2 Depth-First-Search Sequence
The Euler tour representation of a tree is proposed by [37, 36]. It is a crucial building block
in many graph algorithms including biconnectivity algorithms. The Depth-First-Search
(DFS) sequence [4] of a rooted tree is a variant of the Euler tour representation. Let us first
introduce some relevant concepts of the DFS sequence.
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I Definition 5 (Subtree [4]). Consider a set of parent pointers par : V → V on a vertex set
V . Let v be a vertex in V , and let V ′ = {u ∈ V | v is an ancestor of u}. par′ : V ′ → V ′ is a
set of parent pointers on V ′. If ∀u ∈ V ′ \ {v}, par′(u) = par(u) and par′(v) = v, then par′
is a subtree of v in par. For u ∈ V ′, we say u is in the subtree of v.

The definition of the DFS sequence is the following:

I Definition 6 (DFS sequence [4]). Consider a set of parent pointers par : V → V on a
vertex set V . Let v be a vertex in V . If v is a leaf in par, then the DFS sequence of the
subtree of v is (v). Otherwise, the DFS sequence of the subtree of v is defined recursively as

(v, a1,1, a1,2, · · · , a1,n1 , v, a2,1, a2,2, · · · , a2,n2 , v, · · · , ak,1, ak,2, · · · , ak,nk , v),

where k = | child(v)| and ∀i ∈ [k], (ai,1, ai,2, · · · , ai,ni) is the DFS sequence of the subtree of
child(v, i), i.e., the ith child of v.

If par : V → V has a unique root v, then we define the DFS sequence of par as the DFS
sequence of the subtree of v. By the definition of the DFS sequence, for any two consecutive
elements ai and ai+1 in the sequence, ai is either a parent of ai+1 or ai is a child of ai+1.
Furthermore, for any vertex v, if both elements ai and aj (i < j) in the DFS sequence A are
v, any element ak between ai and aj (i.e., i ≤ k ≤ j) should be a vertex in the subtree of v.

3 2-Edge Connectivity and Biconnectivity

Consider a connected undirected graph G with a vertex set V and an edge set E. In the
2-edge connectivity problem, the goal is to find all the bridges of G, where an edge e ∈ E is
called a bridge if its removal disconnects G. In the biconnectivity problem, the goal is to
partition the edges into several groups E1, E2, · · · , Ek, i.e., E =

⋃k
i=1Ei,∀i 6= j, Ei ∩Ej = ∅,

such that ∀e 6= e′ ∈ E, e and e′ are in the same group if and only if there is a simple cycle
in G which contains both e and e′. A subgraph induced by an edge group Ei is called a
biconnected component (block). In other words, the goal of the biconnectivity problem is to
find all the blocks of G.

In this section, we describe the algorithms for both the 2-edge connectivity problem and
the biconnectivity problem in the offline setting.

3.1 2-Edge Connectivity
The 2-edge connectivity problem is much simpler than the biconnectivity problem. We first
compute a spanning tree of the graph. Only a tree edge can be a bridge. Then for any
non-root vertex v, if there is no non-tree edge which crosses between the subtree of v and the
outside of the subtree of v, then the tree edge which connects v to its parent is a bridge.

I Lemma 7 (2-Edge connectivity). Consider an undirected graph G = (V,E). Let B be the
output of Bridges(G). Then B is the set of all the bridges of G.

3.2 Biconnectivity
In this section, we will show a biconnectivity algorithm. It is a modification of the algorithm
proposed by [36]. The high level idea is to construct a new graph G′ based on the input
graph G, and reduce the biconnectivity problem of G to the connectivity problem of G′.
Since the running time of the connectivity algorithm [4] depends on the diameter of the
graph, we also give an analysis of the diameter of the graph G′.
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Algorithm 1 2-Edge Connectivity Algorithm.

Input:
A connected undirected graph G = (V,E).

Output:
A subset of edges B ⊆ E.

Finding bridges (Bridges(G = (V,E)) ):
1. Compute a rooted spanning tree of G. The spanning tree is represented by a set of

parent pointers par : V → V .
2. Compute lev : V → Z≥0: for each v ∈ V,

lev(v)← min
(

deppar(v), min
w∈V \{par(v)}:(v,w)∈E

deppar(the LCA of (v, w))
)
.

3. Compute the DFS sequence A of par.
4. Initialize B ← ∅. For each non-root vertex v, let ai, aj be the first and the last

appearance of v in A respectively. If mink:i≤k≤j lev(ak) ≥ deppar(v), B ← B ∪
{(v,par(v))}. Output B.

Algorithm 2 Biconnectivity Algorithm.

Input:
A connected undirected graph G = (V,E).

Output:
A coloring col : E → V of the edges.

Finding blocks (Biconn(G = (V,E)) ):
1. Compute a rooted spanning tree of G. The spanning tree is represented by a set of

parent pointers par : V → V .
2. Compute lev : V → Z≥0: for each v ∈ V,

lev(v)← min
(

deppar(v), min
w∈V \{par(v)}:(v,w)∈E

deppar(the LCA of (v, w))
)
.

3. Compute the DFS sequence A of par.
4. Let r be the root of par. Initialize V ′ ← V \ {r}, E′ ← ∅.
5. For each v ∈ V ′, let ai, aj be the first and the last appearance of v in A respectively.

If mink∈{i,i+1,··· ,j} lev(ak) < deppar(par(v)), E′ ← E′ ∪ {(v,par(v))}.
6. For each (u, v) ∈ E, if neither u nor v is the LCA of (u, v) in par, E′ ← E′ ∪ {(u, v)}.
7. Compute the connected components of G′ = (V ′, E′). Let col′ : V ′ → V ′ be the

coloring of the vertices in V ′ such that ∀u′, v′ ∈ V ′, u′, v′ are in the same connected
component in G′ ⇔ col′(u′) = col′(v′).

8. Initialize col : E → V . For each e = (u, v) ∈ E, if deppar(u) ≥ deppar(v), set
col(e)← col′(u); otherwise, set col(e)← col′(v). Output col : E → V .
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I Lemma 8 (Biconnectivity). Consider an undirected graph G = (V,E). Let col : E → V be
the output of Biconn(G). Then ∀e, e′ ∈ E, e 6= e′, col satisfies col(e) = col(e′) ⇔ there is a
simple cycle in G which contains both e and e′. Furthermore, the diameter of the graph G′
constructed by Biconn(G) is at most O(dep(par) · bi-diam(G)), the number of vertices of G′
is at most |V |, and the number of edges of G′ is at most |E|.

Algorithm 3 Leaf Sampling Algorithm for DFS Sequence.

Pre-determined:
A threshold value s. //s will be the local memory size in the MPC model.

Input:
A rooted tree represented by a set of parent pointers par : V → V on a set V of n
vertices (i.e., par has a unique root r).

Output:
The DFS sequence of the rooted tree represented by par.

Leaf sampling algorithm (LeafSampling(s,par : V → V ) ):
1. If n ≤ s, return the DFS sequence of par directly.
2. Set t← Θ(s1/3 logn), L← leaves(par).
3. Each v ∈ L is independently chosen with probability p = min(1, t/|L|), and let

S = {l1, l2, · · · , lk} be the set of samples. If |S|2 > s, output FAIL.
4. For every pair of sampled leaves x, y ∈ S with x 6= y, find the least common ancestor

px,y of (x, y), and set pxy,x, pxy,y to be two children of px,y such that pxy,x is an
ancestor of x and pxy,y is an ancestor of y.

5. Sort l1, l2, · · · , lk ∈ S such that ∀i < j ∈ [k], rank(plilj ,li) < rank(plilj ,lj ).
6. Find the paths A′1 = P (r, l1), A′2 = P (par(l1), pl1,l2), A′3 = P (pl1l2,l2 , l2), · · · , A′2k−2 =

P (par(lk−1), plk−1,lk), A′2k−1 = P (plk−1lk,lk , lk), A′2k = P (l2k, r), i.e., the paths: r →
l1 → the LCA of (l1, l2)→ l2 → · · · → lk−1 → the LCA of (lk−1, lk)→ lk → r.

7. Set A′ ← A′1A
′
2 · · ·A′2k, i.e., A′ is the concatenation of A′1, A′2, · · · , A′2k.

8. For each element a′i in the ith (i > 1) position of the sequence A′,
if the vertex a′i is a leaf, keep a′i as a single copy;
Otherwise,
∗ if a′i−1 = par(a′i), i.e., i is the first position that the vertex a′i appears in A′, split
a′i into rank(a′i+1) copies; //a′i+1 is a child of a′i.

∗ if a′i−1, a
′
i+1 ∈ child(a′i), split a′i into rank(a′i+1)− rank(a′i−1) copies;

∗ if a′i+1 = par(a′i), i.e., i is the last position that the vertex a′i appears in A′, split
a′i into | child(a′i)| − rank(a′i−1) copies. //a′i−1 is a child of a′i.

Let A′′ be the result sequence.
9. For each v ∈ V , if par(v) appears in A′′ but v does not appear in A′′, recursively find

the DFS sequence of the subtree of v, and insert the such sequence into the position
after the rank(v)th appearance of par(v) in A′′. Output the final result sequence A.

4 An Offline DFS Sequence Algorithm in Linear Space

In Section 4.1, we will review an algorithmic framework proposed by [4] for the DFS sequence.
In Section 4.2, 4.3, 4.4, we will discuss the subroutines needed for our DFS sequence algorithm
in the offline setting.
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4.1 DFS Sequence via Leaf Sampling
In the following, we review the leaf sampling algorithmic framework proposed by [4] for
finding the DFS sequence of a rooted tree.

I Theorem 9 (Leaf sampling algorithm [4]). Consider a set of parent pointers par : V → V

on a set V of n vertices. Suppose par has a unique root. For any γ ≥ 0 and any constant
δ ∈ (0, 1), if both of step 4 and step 6 in LeafSampling(nδ,par) can be implemented in
the (γ, δ)-MPC model with O(log(dep(par))) parallel time, then the leaf sampling algorithm
with parameter s = nδ on input par : V → V can be implemented in the (γ, δ)-MPC model.
Furthermore, with probability at least 0.99, LeafSampling(nδ,par) can output the DFS
sequence of par in O(log(dep(par))) parallel time. If the algorithm fails, then it returns FAIL.

By Theorem 9, we only need to give a linear total space MPC algorithm for the LCA
problem and the path generation problem to design an efficient DFS sequence algorithm in
the (0, δ)-MPC model.

In [4], they proposed to use doubling algorithms to compute the LCA and generate the
paths. Since they need to store the every 2i-th ancestor for each vertex, the total space
needed is Θ(n · log(the depth of the tree)). We show that we only need to apply the doubling
algorithm for a compressed tree, instead of applying it for the original tree.

Algorithm 4 Construction of a Compressed Rooted Tree.

Input:
A rooted tree represented by a set of parent pointers par : V → V on a set V of n
vertices (par has a unique root r).

Output:
A vertex set V ′ ⊆ V , a set of parent pointers par′ : V ′ → V ′ on V ′.

Tree compression (Compress(par : V → V ) ):
1. Compute the depth of par, the depth of each vertex and set d← dep(par), t← dlog de.
2. V ′ ← {v ∈ V | deppar(v) mod t = 0,deppar(v) + t ≤ d}.
3. Initialize par′ : V ′ → V ′. For each v ∈ V ′, par′(v)← par(t)(v).
4. Output V ′, par′.

4.2 Compressed Rooted Tree
Given a set of parent pointers par : V → V , we will show how to compress the rooted tree
represented by par.

I Lemma 10 (Properties of a compressed rooted tree). Let par : V → V be a set of parent
pointers on a vertex set V with |V | > 1, and par has a unique root. Let t = dlog(dep(par))e
and let (V ′,par′) =Compress(par). Then it has the following properties:
1. |V ′| ≤ |V |/ log(dep(par)).
2. ∀v ∈ V ′, i ∈ N, par′(i)(v) = par(i·t)(v) ∈ V ′.
3. ∀v ∈ V, ∃i ∈ {0, 1, · · · , 2t}, such that par(i)(v) ∈ V ′.

4.3 Least Common Ancestor
Given a rooted tree represented by a set of parent pointers par : V → V on a vertex set
V , and a set of q queries Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} where ∀i ∈ [q], ui 6= vi, ui, vi ∈
leaves(par), we show a space efficient algorithm which can output the LCA of each queried
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Algorithm 5 Lowest Common Ancestor.

Input:
A rooted tree represented by a set of parent pointers par : V → V on a set V of n vertices
(par has a unique root r), and a set of q queries Q = {(u1, v1), (u2, v2), · · · , (uq, vq)}
where ∀i ∈ [q], ui 6= vi, ui, vi ∈ leaves(par).

Output:
lca : Q→ V × V × V .

Finding LCA (LCA(par : V → V,Q) ):
1. (V ′,par′)←Compress(par). //(see Lemma 10).
2. Set d← dep(par), t← dlog de and compute mappings g0, g1, · · · gt : V ′ → V ′ such that
∀v ∈ V ′, j ∈ {0, 1, · · · , t}, gj(v) = par′(2j)(v).

3. For each query (ui, vi) ∈ Q: //Suppose deppar(ui) ≥ deppar(vi).
a. If deppar(ui) > deppar(vi)+2t, find an ancestor ûi of ui in par such that deppar(ûi) ≤

deppar(vi) + 2t and deppar(ûi) ≥ deppar(vi). Otherwise, ûi ← ui.
b. If ∃j ∈ [4t] par(j)(ûi) is the LCA of (ûi, vi) in par, set lca(ui, vi) = (par(j)(ûi), x, y)

where x, y are children of par(j)(ûi) and x, y are ancestors of ûi, vi respectively. The
query of (ui, vi) is finished.

c. Find an ancestor u′i of ûi in par such that u′i is the closest vertex to ûi in V ′, i.e.,
deppar(ûi)− deppar(u′i) is minimized. Similarly, find an ancestor v′i of vi in par such
that v′i is the closest vertex to vi in V ′, i.e., deppar(vi)− deppar(v′i) is minimized.

d. Find u′′i 6= v′′i ∈ V ′ such that they are ancestors of u′i and v′i respectively, and
par′(u′′i ) = par′(v′′i ) is the LCA of (u′i, v′i) in par′.

e. Find the smallest j ∈ [2t] such that par(j)(u′′i ) = par(j)(v′′i ). Set lca(ui, vi) =
(par(j)(u′′i ),par(j−1)(u′′i ),par(j−1)(v′′i )).

pair of vertices. Notice that the assumption that queries only contain leaves is without loss
of generality: we can attach an additional child vertex v to each non-leaf vertex u. Thus, v
is a leaf vertex. When a query contains u, we can use v to replace u in the query, and the
result will not change.

Before we analyze the algorithm LCA(par, Q), let us discuss some details of the algorithm.

1. We pre-compute deppar(v) and deppar′(u) for every v ∈ V and u ∈ V ′.

2. To implement step 3a, we firstly check whether deppar(ui) > deppar(vi) + 2t. If it is
not true, we can set ûi to be ui directly. Otherwise, according to Lemma 10, there
is a j ∈ {0, 1, · · · , 2t} such that par(j)(ui) ∈ V ′. Since deppar(ui) > deppar(vi) + 2t,
deppar(par(j)(ui)) > deppar(vi). We initialize ûi to be par(j)(ui) ∈ V ′. For k = t→ 0, if
deppar(gk(ûi)) > deppar(vi) (i.e., deppar(par′(2k)(ûi)) > deppar(vi)), we set ûi ← gk(ûi) =
par′(2k)(ûi). Due to Lemma 10 again, the final ûi must satisfy deppar(ûi) ≥ deppar(vi)
and deppar(ûi) ≤ deppar(vi) + 2t. This step takes time O(t).

I Lemma 11 (LCA algorithm). Let par : V → V be a set of parent pointers on a vertex set
V . par has a unique root. Let Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} be a set of q pairs of
vertices where ∀i ∈ [q], ui 6= vi, ui, vi ∈ leaves(par). Let lca : Q→ V × V × V be the output
of LCA(par, Q). For (ui, vi) ∈ Q, (pi, pi,ui , pi,vi) = lca(ui, vi) satisfies that pi is the LCA
of (ui, vi), pi,ui , pi,vi are ancestors of ui, vi respectively, and pi,ui , pi,vi are children of pi.
Furthermore, the space used by the algorithm is at most O(|Q|+ |V |).
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4.4 Multi-Paths Generation
Consider a rooted tree represented by a set of parent pointers par : V → V on a vertex set
V and a set of q vertex-ancestor pairs Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} where ∀i ∈ [q], vi
is an ancestor of ui. We show a space efficient algorithm MultiPaths(par, Q) which can
generate all the paths P (u1, v1), P (u2, v2), · · · , P (uq, vq).

Algorithm 6 Multi-Paths Generation.

Input:
A rooted tree represented by a set of parent pointers par : V → V on a set V
of n vertices (par has a unique root r), and a set of q vertex-ancestor pairs Q =
{(u1, v1), (u2, v2), · · · , (uq, vq)} where ∀i ∈ [q], vi is an ancestor of ui.

Output:
P1, P2, · · · , Pq.

Generating multiple path sequences (MultiPaths(par : V → V,Q) ):
1. (V ′,par′)←Compress(par). //(see Lemma 10).
2. Set d← dep(par), t← dlog de and compute mappings g0, g1, · · · gt : V ′ → V ′ such that
∀v ∈ V ′, j ∈ {0, 1, · · · , t}, gj(v) = par′(2j)(v).

3. For each vertex-ancestor pair (ui, vi) ∈ Q:
a. If deppar(ui)− deppar(vi) ≤ 2t, generate the path sequence

Pi = (ui,par(1)(ui),par(2)(ui), · · · , vi) directly.
b. Otherwise, find the minimum j ∈ [2t] such that par(j)(ui) ∈ V ′. Set u′i ← par(j)(ui).

Find an ancestor v′i of u′i in par′ such that deppar(v′i) ≥ deppar(vi) and deppar(v′i)−
2t ≤ deppar(vi).

c. Generate the path P ′(u′i, v′i) in par′.
d. Initialize a sequence A as the concatenation of (ui), P ′(u′i, v′i) and (vi).
e. Repeat: for each element ai in A, if ai is not the last element and ai+1 6= par(ai),

insert par(ai) between ai and ai+1; until A does not change. Output the final
sequence A as the path sequence Pi.

Before we analyze the correctness of the algorithm, let us discuss some details.
1. In step 3a, if the length of the path is at most 2t, then we can generate the path in O(t)

rounds. In the j-th round, we can find the vertex par(j)(ui) = par(par(j−1)(ui)).
2. In step 3b, we want to find v′i. We initialize v′i as u′i. For k = t→ 0, if deppar(gk(v′i)) >

deppar(vi) (i.e., deppar(par′(2k)(v′i)) > deppar(vi)), we set v′i ← gk(v′i) = par′(2k)(v′i).

I Lemma 12 (Generation of multiple paths). Let par : V → V be a set of parent pointers on
a vertex set V . par has a unique root. Let Q = {(u1, v1), (u2, v2), · · · , (uq, vq)} ⊆ V × V be
a set of pairs of vertices where ∀j ∈ [q], vj is an ancestor of uj in par. Let P1, P2, · · · , Pq
be the output of MultiPaths(par, Q). Then ∀j ∈ [q], Pj = P (uj , vj), i.e., Pj is a sequence
which denotes a path from uj to vj in par. Furthermore, the space used by the algorithm is
at most O(|V |+

∑
j∈[q] |Pj |).

5 Hardness of Biconnectivity in MPC

There is a conjectured hardness which is widely used in the MPC literature [25, 11, 28, 34, 40].

B Conjecture 1 (1-cycle vs. 2-cycles). For any γ ≥ 0 and any constant δ ∈ (0, 1), distinguishing
the following two instances in the (γ, δ)-MPC model requires Ω(logn) parallel time:
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1. a single cycle contains n vertices,
2. two disjoint cycles, each contains n/2 vertices.

Under the above conjecture, we show that Ω(log bi-diam(G)) parallel time is necessary to
compute the biconnected components of G. This claim is true even for the constant diameter
graph G, i.e., diam(G) = O(1).

I Theorem 13 (Hardness of biconnectivity in MPC). For any γ ≥ 0 and any constant
δ ∈ (0, 1), unless the one cycle vs. two cycles conjecture (Conjecture 1) is false, any (γ, δ)-
MPC algorithm requires Ω(log bi-diam(G)) parallel time for testing whether a graph G with
a constant diameter is biconnected.

Proof. For γ ≥ 0 and an arbitrary constant δ ∈ (0, 1), suppose there is a (γ, δ)-MPC
algorithm A which can determine whether an arbitrary constant diameter graph G is
biconnected in o(log bi-diam(G)) parallel time. Then we give a (γ, δ)-MPC algorithm for
solving one cycle vs. two cycles problem as the following:
1. For a one cycle vs. two cycles instance n-vertex graph G′ = (V ′, E′), construct a new

graph G = (V,E): V = V ′ ∪ {v∗}, E = E′ ∪ {(v, v∗) | v ∈ V ′}.
2. Run A on G. If G is not biconnected, G′ has two cycles. Otherwise G′ is a single cycle.
It is easy to see that the diameter of G is 2. If G′ is a single cycle, then G is biconnected and
bi-diam(G) = Θ(n). If G′ contains two cycles, then G contains two biconnected components
and bi-diam(G) = Θ(n).

The first step of the above algorithm takes O(1) parallel time and only requires linear
total space. The graph G has n+ 1 vertices and 2n edges. Thus, the above algorithm is also
a (γ, δ)-MPC algorithm. The parallel time of the above algorithm is the same as the time
needed for running A on G which is o(log bi-diam(G)) = o(logn). Thus the existence of the
algorithm A implies that the one cycle vs. two cycles conjecture (Conjecture 1) is false. J
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Abstract
We study the problem of discrete distribution testing in the two-party setting. For example, in
the standard closeness testing problem, Alice and Bob each have t samples from, respectively,
distributions a and b over [n], and they need to test whether a = b or a, b are ε-far (in the `1

distance). This is in contrast to the well-studied one-party case, where the tester has unrestricted
access to samples of both distributions. Despite being a natural constraint in applications, the
two-party setting has previously evaded attention.

We address two fundamental aspects of the two-party setting: 1) what is the communication
complexity, and 2) can it be accomplished securely, without Alice and Bob learning extra information
about each other’s input. Besides closeness testing, we also study the independence testing problem,
where Alice and Bob have t samples from distributions a and b respectively, which may be correlated;
the question is whether a, b are independent or ε-far from being independent. Our contribution is
three-fold: 1) We show how to gain communication efficiency given more samples, beyond the
information-theoretic bound on t. The gain is polynomially better than what one would obtain via
adapting one-party algorithms. 2) We prove tightness of our trade-off for the closeness testing, as
well as that the independence testing requires tight Ω(

√
m) communication for unbounded number

of samples. These lower bounds are of independent interest as, to the best of our knowledge, these
are the first 2-party communication lower bounds for testing problems, where the inputs are a set
of i.i.d. samples. 3) We define the concept of secure distribution testing, and provide secure
versions of the above protocols with an overhead that is only polynomial in the security parameter.
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1 Introduction

Distribution property testing is a sub-area of statistical hypothesis testing, which has enjoyed
continuously growing interest in the theoretical computer science community, especially
since the 2000 papers [36, 12]. One of the most basic problems is closeness testing, also
known as the homogeneity testing ; see [37, 55, 58]. Here, given two distributions a, b and t
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samples from each of them, distinguish between the cases where a = b versus a and b are
ε-far, which usually means ‖a− b‖1 > ε.1 For this specific problem, the extensive research
led to algorithms with optimal sample complexity [12, 59, 13, 24, 31, 29], including when
the number of samples from the two distributions is unequal [5, 16, 31]. Further research
directions of interest include obtaining instance-optimal algorithms, which depend on further
properties of the distributions a, b [3, 4, 31], quantum algorithms [20], as well as algorithms
whose output is differentially-private [30, 21, 6, 8]. An even larger body of work studied
numerous other related problems; see, e.g., surveys [35, 22, 53, 52].

Focusing on testing two distributions, such as in the closeness problem, a very natural
aspect has, surprisingly, evaded attention so far: such a task would often be run by two players,
each with access to their own distribution. Specifically, Alice has samples from distribution
a, Bob has samples from distribution b, and they need to jointly solve a distribution testing
problem on (a, b). This setting models many of the envisioned usage scenarios of distribution
testing, where different parties wish to jointly perform a statistical hypothesis testing task
on their distributions. For example, [55] describes the scenario where two distinct sensors
need to test whether they sample from the same distribution (“noise”) or not.

This 2-party setting raises the following standard theoretical challenges, neither of which
has been previously studied in the context of distribution testing:

What is the communication complexity of the testing problem? In particular, can we do
better than the straightforward approach, where Alice sends her samples to Bob who
then runs an offline algorithm? Can we prove matching lower bounds?
This aspect parallels the quest for low memory or communication usage for hypothesis
testing on a single distribution, initiated in the statistics community [25, 41] and [7, 40, 10].
In fact, very recent, independent work has considered this aspect for binary sources [54, 38].
Is it possible to design a distribution testing protocol that is secure, i.e., where Alice and
Bob learn nothing about each other’s samples, besides testing result? This question is
highly relevant in today’s push for doing statistics in a privacy-respecting manner.

1.1 Our Contributions
In this paper, we initiate the study of testing problems in the two-party model, and design
protocols which are both communication-efficient and secure. We do so for two basic problems
on pairs of distributions (i.e., where the two-party setting is natural): 1) closeness testing,
and 2) independence testing.

Our main finding is that, once the number of samples exceeds the information-theoretic
minimum, we can obtain protocols with polynomially smaller communication than the naïve
adaptation of existing algorithms. We complement our protocols with lower bounds on the
communication complexity of such problems that are near-optimal for closeness testing, as
well as for independence for an unbounded number of samples. Our upper and lower bounds
on communication are novel even without any security considerations.

To argue security, we also put forth a definition for secure distribution testing in the
multi-party model. Our definition differs from the standard secure computation setting
due to two unique features of the considered setting. First, this is “testing” (a promise
problem) and not “computing”; second, the function of interest is defined with respect to
distributions, while the parties’ inputs are samples. These features do not come into play if
the distributions satisfy the promise (e.g., they are either identical or ε-far), in which case

1 This is equivalent to saying that the total variation distance is more than ε/2.
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the security guarantee matches the standard cryptographic one (no information is leaked
beyond the output). However, when the promise is not satisfied, we need to allow for some
information on the parties’ samples to be leaked by the protocol. Our definition permits
leakage of at most one bit in this case, and leaks nothing when the promise is satisfied.

I Definition 1 (Security Definition). Let D be the set of input distributions over×d

i=1[ni],
and let g : D → {0, 1} be a partial boolean function, defined on P ⊆ D.

Let π be a d-party protocol, and let k be a security parameter. We say that π is a t-sample
secure distribution testing protocol (for the testing task defined by g), if there exists a boolean
function f : {×d

i=1[ni]}t → {0, 1} such that the following holds:
Correctness: for any p ∈ P , Prζ1...ζt∼i.i.d p[f(ζ) = g(p)] = 1− neg(k)
Security: For any ζ ∈ {×d

i=1[ni]}t, if we give each player i ∈ [d] the input(
1k, ζ1(i), . . . , ζt(i)

)
, then protocol π is a secure computation of the function f(ζ).

We provide a detailed discussion of the above definition in the full version of this paper.

Closeness Testing. In the 2-party closeness testing problem 2pCTn,t,ε, Alice and Bob each
have access to t samples from some distributions respectively a, b over alphabet [n]. Their
goal is to distinguish between a = b and ‖a− b‖1 ≥ ε with probability ≥ 2/3.

We first give a non-secure near-optimal communication protocol, and then show how
to make it secure with only a small overhead (polynomial in the security parameter). Our
secure version is based on the existence of a PRG that stretches from polylog(m) bits to m
bits, and of an OT protocol with polylog communication. Overall, we prove the following.

I Theorem (Closeness, Secure). Fix a security parameter k > 1. Fix n > 1 and ε ∈ (0, 2),
and let t be such that t ≥ C · k ·max

(
n2/3 · ε−4/3,

√
n · ε−2) for some (universal) constant

C > 0. Then, assuming PRG and OT as above, there exists a secure distribution testing
protocol for 2pCTn,t,ε which uses Õk

(
n2

t2ε4 + 1
)
communication.

To contrast the communication bounds of our protocol to the classic 1-party setting,
consider what happens in the extreme settings of the parameters s, t, for a fixed ε. When
t ≈ Θ(n2/3), the communication is Õ(n2/3) as well, i.e., Alice may as well just send all the
samples over to Bob. However the communication decreases as the players have more samples.
This may not be surprising given the testing results with unequal number of samples [16, 31]:
indeed, Alice can send ≈ max{n/

√
t,
√
n} samples to Bob, and Bob can run the tester. In

contrast, our protocol obtains a polynomially smaller complexity, ≈ n2/t2, whenever t� n2/3.
Intuitively, considering the extreme of t� n, we can obtain near-constant communication:
with so many samples, we can learn the distribution, and then use sketching tools [9, 42].

We prove a near-tight lower bound on the above trade-off (even without security consider-
ations) in Section 4. We note that our lower bound differs from the common communication
complexity lower bounds as the players’ inputs are i.i.d. samples and not worst-case.

I Theorem (Closeness lower bound). Any two-way communication protocol for 2pCTn,t,1/2
requires Ω̃

(
n2/t2

)
communication.

Independence Testing. Our second problem is the independence testing problem in the
2-party model, denoted 2pITn,m,t,ε. Let p = (a, b) be some joint distribution over [n]× [m],
where n ≥ m, and for i ∈ [t], let ζi be a sample drawn from p. Now we provide Alice with
the first coordinates of ζi’s and Bob with the second coordinates. Alice and Bob’s goal is to
test whether distributions a and b are independent (p is a product distribution) or p is ε-far
from any product distribution. We prove the following:
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I Theorem (Independence, Secure). Fix a security parameter k > 1. Fix ε ∈ (0, 2), 1 ≤
m ≤ n, and let t be such that t ≥ C · k ·

(
n2/3m1/3ε−4/3 +

√
nm/ε2

)
, for some (universal)

constant C, and assuming OT, there is a secure distribution testing protocol for 2pITn,m,t,ε

using Õk
(
n2·m
t2ε4 + n·m

tε4 +
√
m
ε3

)
bits of communication.

We note that the lower bound on t from the above theorem is necessary as it is the
information-theoretic bound, as proven in [31]. An important qualitative aspect of the
communication complexity for 2pIT is that, when the number of samples t → ∞, the
protocol uses Θ̃ε(

√
m) bits of communication. This is in contrast to 2pCT, where the

communication becomes Õ(1) for t→∞. Indeed, we show that Ω(
√
m) is necessary for one-

way protocols for 2pIT. Since our protocol can easily be converted to a one-way (non-secure)
protocol, this lower bound is tight for one-way protocols. We conjecture that the bound
from the above theorem is near-tight in n,m, t for two-way communication protocols, even
without security.

I Theorem (Independence lower bound). For n, t ∈ N, any one-way protocol for 2pITn,n,t,1
requires Ω(

√
n) bits of communication.

1.2 Related work
Our work bridges three separate areas and models: distribution testing, streaming/sketching,
and secure computation. There’s a large body of work in each of these areas. We mention
work most relevant to us.

Testing and learning with memory or space constraints. Two-party communication model
is tightly connected to the streaming and distributed models, which have received lots of focus
in the context of testing and learning questions. As early as in 1960s, [25, 41] considered
the hypothesis testing (of one distribution) in the streaming model, where samples are
streamed over while keeping small extra space. More recently, much attention has been
drawn to streaming (memory) lower bounds for learning problems, such as parity learning
[50, 51, 46, 48, 33]. Another direction was to consider stochastic streaming problems [26],
where the input is generated from a distribution. All these results apply to samples from one
distribution, and show a (tight) trade-off between number of samples and space complexity.

Another recent avenue is to study such problems in the distributed model, where there
are many symmetric players, each with a number of i.i.d. samples from the same distribution.
For learning problems (e.g., parameter or density estimation), see, e.g., [19, 28, 27]. We
note that since learning is a much harder problem, typically proving lower bounds is easier
(e.g., as shown in [28], merely communicating the output requires Ω(n) communication).
In contrast, for testing problems, the output is just one bit. For testing problems (of one
distribution), see also the recent (independent) manuscript [2].

None of the lower bounds from the above papers are relevant here as they become vacuous
for a 2-party setting. Indeed, when two players have two sets of samples from the same
distribution, then purely doubling the sample set of a player trivializes the question (she can
solve it without communication).

Finally, a very recent, independent works of [54, 38] consider a problem very similar to
2pIT: estimating the correlation of two binary sources (n = m = 2) in the two-party model.

Secure approximations. Our results on secure distribution testing can also be seen in the
context of the area of secure computation of approximations. This is a framework introduced
by [32], allowing to combine the benefits of approximation algorithms and secure computation.
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This was considered in different settings [32, 39, 14, 43, 15, 44, 45], but the most relevant to us
is private approximation of distance between two input vectors. In particular, for `2 distance,
Alice and Bob each have a vector a, b ∈ Rn and want to estimate ‖a− b‖2, without revealing
any information that does not follow from the `2 distance itself. For this problem, [43] show
that secure protocols are possible with only poly-logarithmic communication complexity.We
use some of their techniques in our secure protocols.

Approximation and testing have a similar flavor in that they both trade accuracy for
efficiency, in different ways. The security goals are also similar (prevent leakage beyond the
intended output). One important difference is that the intended output in secure testing is
just the single bit of whether or not the test passed. Thus, for example, when approximating
a distance function, even a secure protocol can leak any information that follows from the
distance. In contrast, when testing for closeness, if the inputs are either identical or far, the
protocol may only reveal this fact, but no other information about what the distance is.

Security and privacy of testing. While we are not aware of any work on secure testing,
several recent papers address differentially-private distribution testing [30, 21, 6, 8]. Here
the privacy guarantee relates to the value of the output after the computation is concluded,
requiring it to be differentially-private with respect to the inputs. Our notion of security for
distribution testing is different, in the same way that secure computation is different from
differentially private computation. While differential privacy (DP) is concerned with what
the intended output may leak about the inputs (even if the input came from a single party
or the computation is done by a trusted curator), secure 2-party computation is concerned
with how to compute an intended output without leaking any information beyond the output
itself. The difference in goals is also reflected in the privacy guarantees, which are typically
statistical in nature (for DP testing) and provide a non-negligible adversarial advantage.
Secure testing protocols rely on cryptographic assumptions and provide negligible advantage.

Even more recently, a stringent model of Locally Differentially Private Testing was
proposed [56, 1]. This model provides a stronger notion of differential privacy, where users
send noisy samples to an untrusted curator, and the goal is to allow the curator to test
the distribution of user inputs (for some property) without learning “too much” about the
individual samples. For LDP, the main goal is to optimize the sample complexity as a
function of the privacy guarantees. While this notion of privacy also incorporates some
privacy of the individual inputs, it is much closer to DP than to our security notion. In
addition, both DP and LDP do not provide sub-linear communication (in the sample size,
as we achieve here). In fact, their goal is to allow O(1) communication per sample, with
minimal sample overhead. In contrast, our protocols provide security “nearly for free” while
allowing for faster communication with more samples. Finally, in the case of independence
testing, our work assumes samples are distributed between the parties who need to test the
joint distribution, while in the above work, each data point contains full sample information.

1.3 Our Techniques
We now outline the techniques used to establish our main results. Since our overall contri-
bution is painting a big picture of the 2-party complexity of distribution testing problems,
we appeal to a number of diverse tools. First, we design communication-efficient protocols.
Second, we argue optimality of our protocols by proving communication complexity lower
bounds on the considered problems, which are near-tight in some of the parameter regimes.
Third, we show how to transform our protocols into secure protocols, under standard crypto-
graphic assumptions, without further loss in efficiency. All three of these contributions are
independently first-of-a-kind, to the best of our knowledge.
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Communication-efficient protocols. We start by reducing the testing problem under the `1
distance to the same problem under the `2 distance, using now-standard methods of [31, 24].
Here, our main challenge is actually testing under the `2 distance.

Closeness testing (2pCT) is technically the simpler problem, but it already illustrates
some phenomena, how to leverage a larger number of samples to improve communication. To
estimate the `2 distance between the 2 unknown distributions, we compute the `2 distance
approximation between the given samples of these distributions. In order to approximate
the latter in the 2-party setting, we use the `2 sketching tools [9]. The crux is to show that
we can tolerate a cruder `2 approximation if we are given a larger sample size. Since the
complexity of (1 + α)-approximating the `2 distance is Θ(1/α2), we obtain an improvement
in communication that is quadratic in the number of samples.

Independence Testing (2pIT) is more challenging since any distance approximation would
need to be established based on the distribution(s) implicitly defined via the joint samples,
split between Alice and Bob, and hence our approximation techniques above are not sufficient.
Instead, we develop a reduction from a large, [n] × [m], alphabet problem, to a smaller
alphabet problem, which can be efficiently solved by communicating fewer samples. This
is accomplished by sampling a rectangle of the joint alphabet, and showing that such a
process, when combined with the split-set technique from [31], generates sub-distributions
(defined later) which satisfy some nice properties. We then show one can test the original
distribution p = (a, b) over a “large” domain of size [n]×[m] for independence by distinguishing
closeness of 2 simulated distributions p̂, q̂, defined on a smaller domain of size [l]× [m], where
l = Θ̃ε(n3m/t3 + n2m/t2 + 1). We show it is possible for Alice and Bob to simulate joint
samples from p̂ and q̂ using O(1) communication per sample, after they have down-sampled
letters from one of the marginals.

The trade-off on communication–vs–samples emerges from two compounding effects: 1)
balancing the size of the target rectangle with the expected number of available samples over
such rectangle; and 2) the additional advantage from a tighter bound on the `2 norm of q̂.
Each of the above independently generates linear improvement in communication with more
samples. The latter advantage, however, is helpful only while t = O(n), and therefore we
benefit from quadratic improvement in that regime, and linear improvement thereafter.

Lower bounds on communication. We note that the lower bounds on communication of
testing problems present a particular technical challenge: for testing problems, the inputs
are i.i.d. samples from some distributions. This is more akin to the average-case complexity
setup, as opposed to “worst case” complexity as is standard for communication lower bounds.

We manage to prove such testing lower bounds for the Closeness Testing problem (2pCT).
While our lower bound is, at its core, a reduction from some “hard 2-party communication
problem”, our main contribution is dealing with the above challenge. One may observe that
a “hard 2-party communication problem” is hard under a certain input distribution (by Yao’s
minimax theorem), and hence a reduction algorithm would also produce a hard distribution
on the inputs to our problem. However, a priori, it is hard to ensure that the resulting input
distribution resembles anything like a set of samples from distributions a, b. For example,
the inputs may have statistical quirks that actually depend on whether it is a “close” or
“ε-far” instance, which a reduction is not able to generate without knowing the output.

At a high level, the role of the “hard problem” is played by a variant of the well-known
two-way Gap Hamming Distance (GHD) problem [23, 57]. The known GHD lower-bound
variants are insufficient for us precisely because of the above challenge – we need a better
control over the actual hard distribution.Therefore, we study the following Exact GHD
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variant: given x, y ∈ {0, 1}n, with ‖x‖1 = ‖y‖1 = n/2, distinguish between ‖x− y‖1 = n/2
versus ‖x− y‖1 ∈ [n/2 + β, n/2 + 2β]. We show there exists some β ∈ [Ω(

√
n), O(

√
n logn)]

for which communication complexity must be Ω̃(n), by adapting the proof of [57].
Using one instance of Exact GHD, our reduction performs a careful embedding of this

hard instance into the samples from distributions a, b, while patching the set of samples to
look like i.i.d. samples from the two distributions. While we don’t manage to get the output
of the reduction to look precisely like i.i.d. samples from a, b, our reduction produces two sets
of size Poi(t) whose distribution is within a small statistical distance from the distribution
of two set of samples that would be drawn from two distributions a and b which are either
“equal” (when ‖x− y‖1 = n/2) or “far” (when ‖x− y‖1 ∈ [n/2 + β, n/2 + 2β]).

Note that our proof recovers the standard lower bound of Ω̃(n2/3) on samples necessary
to solve closeness testing (in the vanilla setting), albeit not a tight bound [24, 31].

For Independence testing (2pIT), we focus on the lower bound for unbounded number of
samples. We argue such a hardness result under one-way communication only. Our Ω(

√
m)

lower bound uses the Boolean Hidden Hypermatching (BHH) problem [60]. We conjecture
our entire trade-off for the Independence problem is tight. The proof of this conjecture would
have to overcome the challenge of lower bounds for statistical inputs.

Securing the communication protocols. Once low-communication insecure protocols have
been designed, one may try to convert the protocols to secure ones using generic cryptographic
techniques. The latter includes various techniques for secure computation ([61] and followup
work), fully homomorphic encryption ([34] and followup work), or homomorphic secret sharing
([17, 18]). However, a naïve application of such techniques will blow up the communication to
be at least linear in the input size, possibly requiring strong assumptions, a high computation
complexity, or not being applicable to arbitrary computations. The constraint of low-overhead,
among other considerations, requires design of custom protocols.

Our starting point is a technique that falls into the latter category: secure circuits with
ROM [49], a technique that can transform an insecure 2-party protocol to a secure one with
a minimal blow-up in communication, and uses a weak assumption only (OT). In order to
obtain an efficient protocol, however, it only applies to computations expressible via a very
small circuit, whose size is proportional to the target communication, with access to a larger
read-only-memory (ROM) table. Thus, the main challenge becomes to design two-party
testing protocols that fit this required format.

For Closeness Testing (2pCT), we begin with our low-communication non-secure protocol,
and adapt it to be secure by designing a small circuit. One of the main difficulties in designing
such a circuit is that, in the `1- to `2-testing reduction, Alice and Bob need to agree on
an alphabet, which depends on their inputs, without compromising the inputs themselves.
To bypass this, and other issues, we allow Alice and Bob to perform some off-line work
and prepare some polynomial-size inputs (in ROM). First, we devise a method for Alice
and Bob to generate a combined split set S (discussed later) by having each of Alice and
Bob contribute sampled letters to S. Second, we securely estimate the `2 distance of Alice
and Bob’s original, un-splitted samples using techniques from [43]. Finally, we adjust our
approximation by accounting for a few letters which differ from the original alphabet or
which cannot be estimated efficiently. The main focus of our analysis goes into proving our
construction adds only poly-logarithmic communication over the insecure protocol.

We describe the details of our secure protocols, as well as our results on independence
testing, in the full version of this paper.
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2 Preliminaries

Notation. Throughout this paper we denote distributions in small letters, and distribution
samples in capital letters. Unless stated otherwise, any distribution is on alphabet [n], and
domain elements of [n] are addressed as letters.

We also denote any multiplicative error arising from approximation as 1 + α, and any
error or distance of/between distributions as ε. Unless stated otherwise, distance and norms
are referring to the Euclidean distance and `2 norms.

We denote Poisson Random variables with parameter λ > 0 as Poi(λ).

Split Distributions. We use the concept of split distributions from [31] to essentially reduce
testing under `1 distance to testing under `2 distance.

I Definition 2. Given a probability distribution p on [n] and a multiset S of items from [n],
define the split distribution pS on [n+ |S|] as follows. For i ∈ [n], let ai be equal to 1 plus
the number of occurrences of i in S; note that

∑n
i=1 ai = n+ |S|. We associate the elements

of [n+ |S|] to elements of the set E = {(i, j) : i ∈ [n], 1 ≤ j ≤ ai}. Now the distribution pS
has support E and a random draw (i, j) from pS is sampled by picking i randomly from p

and j uniformly at random from [ai].

Recall from [31] that split distributions are used to upper bound the `2 norm of an underlying
distribution while maintaining its `1 distance to other distributions:

I Fact 3 ([31]). Let p and q be probability distributions on [n], and S a given multiset of [n].
Then, (1) We can simulate a sample from pS or qS by taking a single sample from p or q,
respectively; and (2) ‖pS − qS‖1 = ‖p− q‖1.

I Lemma 4 ([31]). Let p be a distribution on [n]. Then: (i) For any multisets S ⊆ S′

of [n], ‖pS′‖2 ≤ ‖pS‖2, and (ii) If S is obtained by taking Poi(m) samples from p, then
E[‖pS‖22] ≤ 1/m.

3 Closeness Testing: Communication-Efficient Protocol

In this section we consider the closeness testing problem 2pCT, focusing on the 2-party
communication complexity only. In the full version of this paper, we show how to modify
the protocol to make it secure.

As mentioned in the introduction, one way to obtain a protocol is to use unequal-size
closeness testing, where Alice has s samples and Bob has t samples: Alice just sends her
s samples to Bob, and Bob invokes a standard algorithm for closeness testing. Using the
optimal bounds from, say, [31], we get the following trade-off for fixed ε: s = Õ(n/

√
t),

with the condition that s, t ≥
√
n. Here we obtain a polynomially smaller communication

complexity, s = Õε(n2/t2), whenever t is above the information-theoretic minimum on the
number of samples. In Section 4, we show a nearly-matching lower bound.

3.1 Tool: approximation via occurrence vectors
Our protocol uses the framework introduced in [31], allowing us to focus on the `2 testing
problem. For `2 testing, we show that we can approximate the `2 distance of two discrete
distributions p, q by approximating the `2 distance of their respective sample occurrence
vectors, defined as follows.
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I Definition 5. Given t samples of distribution p over [n], we define the occurrence vector
X ∈ [t]n such that Xi represent the count of occurrences of element i ∈ [n] in the sample set.

The following lemma bounds how well we need to estimate the `2 distance between
occurrence vectors to distinguish between p = q vs. ‖p − q‖1 ≥ ε. It shows that the more
samples we have, the less accurate the `2 estimation needs to be. Using the framework from
[31], for now it is enough to assume that the `2 norm of both p and q is bounded by U < 1.

I Lemma 6. Let p, q be distributions over [n] with ‖p‖2 , ‖q‖2 ≤ U for some U < 1.
There exists t = O(U · n · ε−2), and α = Ω(U), such that given ∆ which is (1 ± α)-factor
approximation of ‖X − Y ‖22 where X,Y represent the occurrence vectors of t samples drawn
from p, q respectively, then, using ∆, it is possible to distinguish whether p = q versus
‖p− q‖1 > ε with 0.8 probability.

The actual distinguishing algorithm is simple: for fixed α = Ω(U), we merely compare ∆
to some fixed threshold τ (fixed in the proof below). The intuition is that for a given number
of samples, we have some gap between the range of possible distances ‖X − Y ‖22 for each of
the cases. If the number of samples is close to the information-theoretic minimum [24], then
the gap is minimal and we need to calculate almost exactly the distance, hence estimating
the distance between occurrence vectors doesn’t help. However, as the number of samples t
increases, so does the gap between the ranges, allowing for a looser distance approximation.

Proof of Lemma 6. Given t = O(U/ε′2) samples from each p, q, according to [24, Proposi-
tion 3.1], the estimator Z =

√∑
i(Xi − Yi)2 −Xi − Yi/t is a max{ε′, ‖p− q‖2 /8} additive

approximation of ‖p− q‖2 with 0.9 probability. Setting ε′ = ε/(8
√
n), we obtain: (1)

‖p− q‖2 = 0⇒ ‖X − Y ‖22 ≤
ε2t2

4n + 2t; and (2) ‖p− q‖2 > ε/
√
n⇒ ‖X − Y ‖22 ≥

3ε2t2

4n + 2t
Now, suppose ∆ is such that ∆

‖X−Y ‖2
2
∈ (1− α, 1 + α). If ‖p− q‖1 = 0, then ‖p− q‖2 = 0

and hence ∆ ≤ (1 +α)( ε
2t2

4n + 2t) ≤ t( ε
2t

4n + 2 + 2α+ αε2t
4n ). On the other hand, if ‖p− q‖1 > ε,

then ‖p− q‖2 > ε/
√
n and hence ∆ ≥ (1− α)( 3ε2t2

4n + 2t) ≥ t( 3ε2t
4n + 2− 2α− 3αε2t

4n ).
We distinguish the two cases, by comparing ∆ to τ = ε2t2

2n + 2t: namely p = q iff ∆ ≤ τ .
Indeed we argue that t( 3ε2t

4n + 2− 2α− 3αε2t
4n )− τ ≥ τ − t( ε

2t
4n + 2 + 2α+ αε2t

4n ). We have that
ε2t
4n − 2α− 3αε2t

4n ≥ 0, or α ≤ ε2t
4n·(2+3ε2t/4n) . Since t = O(Unε−2), the conclusion follows. J

3.2 Communication vs number of samples
We now provide a (non-secure) protocol for 2pCT with a trade-off between communication
and number of samples.

I Theorem 7 (Closeness, insecure). Fix n > 1 and ε ≤ 2. There exists some constant C > 0
such that for all t ≥ C · max

(
n2/3 · ε−4/3,

√
n · ε−2), the problem 2pCTn,t,ε can be solved

using Õ
(
n2

t2ε4 + 1
)
bits of communication.

The protocol uses Lemma 6 as the main algorithmic tool and proceeds as follows. Bob
generates multi-set S using samples from b and sends S to Alice. Then, Alice and Bob each
simulate samples from aS and bS respectively, and together approximate the `2 difference of
the resulting occurrence vectors using sketching methods [9].

Proof of Theorem 7. We note that, according to Lemma 4, E[‖bS‖22] ≤ t2ε4/n2 and hence
‖bS‖22 = O(t2ε4/n2) with at least 90% probability. Furthermore, since t = Ω(

√
n/ε2), we

have that |S| = O(n) with high probability. From now on, we condition on these two events.
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Non-Secure 2pCT(a, b, t)
Alice’s input: t samples from a

Bob’s input: t samples from b

1. Fix α = Ω(t · ε2/n).
2. Bob generates multi-set S using Poi( n2

t2ε4 ) samples from b.
3. Bob sends S to Alice.
4. Alice and Bob recast their samples as being from distributions aS , bS (see Def. 2), and

set AS , BS to be the respective occurrence vectors.
5. Alice and Bob each estimate ‖aS‖2 and ‖bS‖2 up to factor 2; if the two estimates are

not within factor 4, output “ε-FAR”;
6. Alice and Bob approximate ∆ = ‖AS −BS‖22 up to (1 + α) factor, using, say, [9].
7. If ∆ is less than τ = ε2t2

2n + 2t output “SAME”, and, otherwise, output “ε-FAR”.

If ‖aS‖2 6= Θ(‖bS‖2) then distributions are different and we output “ε-far” is step 5.
Otherwise, we have that ‖aS‖22 = O(‖bS‖22) = O(t2ε4/n2). Hence we can use Lemma 6,
where U = O(tε2/n) and α = Ω(U), to claim the correctness of the protocol.

In terms of communication complexity, first, communicating S takes |S| logn = Õ(n2/t2ε4)
bits with high probability. Second, estimating ∆ up to approximation 1 +α takes Õ(1/α2) =
Õ(n2/t2ε4) bits, using standard `2 estimation algorithms [9, 47]. J

I Remark 8. Another application of this protocol is that it can be simulated by a single
party to obtain a space bounded streaming algorithm with the same space/sample trade-offs.
While we are not formalizing this argument in this paper, this can essentially be done by
storing S and sketching ‖AS −BS‖22.

4 Closeness Testing: Communication Lower Bounds

We now prove that the protocol for 2pCT from Section 3 is near-tight, showing the following:

I Theorem 9. Let a, b be some distributions over alphabet [n], where Alice and Bob each
receive Poi(t) samples from a, b respectively, for t ≤ n/ logc n for some large enough c >
1. Then any (two-way) communication protocol Π that distinguishes between a = b and
‖a− b‖1 ≥ 1/2 requires s = Ω̃(n2/t2) communication.

Intuitively, our proof formalizes the concept that in testing distributions for closeness,
“collisions is all that matters”, even in the communication model. This is similar to the
intuition from the “canonical tester” from [59], which shows a similar principle when all the
samples are accessible. Our result can be seen to extending it to saying that the canonical
tester is still the best even if we have more-than-strictly-necessary number of samples that
we could potentially compress in a communication protocol.

To prove the theorem, we rely on the following communication complexity lower bound,
which is a variant of the Gap-Hamming-Distance (GHD) lower bound [23, 57]. Somewhat
surprisingly, there does not seem to be a proof in the one-way communication model, which
would be simpler than the two-way proof from the lemma below.

I Lemma 10. Let n ≥ 1 be even. There exists some β = β(n) ∈ [Θ(
√
n),Θ(

√
n logn)],

satisfying the following. Consider a two-way communication protocol A that, with probability
at least 0.9, for x, y ∈ {0, 1}n with ‖x‖1 = ‖y‖1 = n/2, can distinguish between the case
when ‖x − y‖1 = n/2 versus ‖x − y‖1 − n/2 ∈ [β, 2β]. Then A must exchange at least
Ω( n

logn·log logn·log log logn ) bits of communication.
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The proof of this lemma is presented in the full version of this paper.

Proof of Theorem 9. The idea is to reduce an instance of the GHD problem from Lemma 10
to an instance of closeness testing by carefully molding the input (x, y) into a couple of
related occurrence vectors (A,B) ∈ Nn ×Nn (recall that an occurrence vector precisely
describes a set of samples).

Fix input vectors x, y, of lengthm = n2

t2 log3 n
, to the above GHD problem. Let ∆ = β(m) =

Ω(
√
m), and δ = 1

2 (‖x− y‖1 −m/2) ∈ {0} ∪ [∆/2,∆]. The case of δ = 0 will correspond to
“same” case (i.e. a = b), and δ ∈ [∆/2,∆] – to “far” case (i.e. ‖a− b‖1 ∈ [1/2, 1]).

Fix d = n/10 and l = C · t · logn (where C is some constant that we shall fix later), which
have the following meaning: each distribution a, b has half mass over [d] items uniformly
(called dense items), and the other half on [l] items uniformly (called large items). When
a = b, these are the same items, and when a 6= b, the large items are the same while the dense
items have supports with a large difference. In particular, the dense items are supported on
sets SA, SB respectively, with |SA| = |SB | = d, and SA ∩ SB = d · ∆−δ

∆ ; we hence also have
that |SA \ SB | = d · δ∆ .

Now for i ≥ 0, let D(i) = Pr[Poi(t/2d) = i], i.e., probability a dense number is sampled i
times (when sampling Poi(t) items from one of the distributions). For simplicity, we write
D(i, j) = D(i) ·D(j). Similarly we define L(i) = Pr[Poi(t/2l) = i] and L(i, j) = L(i) · L(j).
We also set k = Θ(logn), which should be thought of as an upper bound on the count of
any fixed item (whp). The algorithm constructs the occurrence vectors A,B iteratively
coordinate by coordinate. Let mc = m/4−∆.

2pCT Lower Bound Reduction
Input: (x, y) size m input bits for the Exact GHD problem
Output: (A,B) occurrence vectors for Poi(t) samples for the 2pCT Problem.
1. For each i, j ∈ {1, . . . k}, and for each c ∈ [m] (corresponding to a coordinate of x,

y), we take zc = Poi( d∆ ·D(i, j)), and generate zc pairs (i · xc, j · yc) (i.e., we set the
corresponding coordinate of A or B to i or j iff xc = 1 or yc = 1 respectively);

2. For each i ∈ {1, . . . k}, generate Poi(d ·D(i, 0)) pairs (i, 0), and similarly-distributed
number of pairs (0, i);

3. For each i, j ∈ {1, . . . k}, generate Poi(l · L(i, j)−mc · d∆D(i, j)) pairs (i, j);
4. For each i ∈ {1, . . . k}, generate Poi(l · L(i, 0) − m

4 ·
d
∆
∑k
j=1D(i, j)) pairs (i, 0), and

similarly-distributed number of pairs (0, i).
5. Generate the required number of (0, 0) pairs so that A,B have length precisely n;
6. Permute the coordinates of A,B using a common randomly picked permutation over [n].

In each of steps (1)-(5) above, we say we “generate a pair (i, j)” which corresponds to
setting the next coordinate of A and B to i and j respectively. We only use the input vectors
(x, y) in step (1). We note that all random variables are chosen using shared randomness.

We first claim that the above reduction is well-defined, and in particular all arguments of
the Poisson variables are positive.

B Claim 11. All the Poisson random variables from above have positive argument.

Proof. We only need to prove this for steps 3 and 4 as the other ones are obvious. Indeed,
for i, j ≥ 1, we get that l · L(i, j) = t logn · (Ω(1/ logn))i+j = t/ logn · (Ω(1/ logn))i+j−2,
whereas, mc · d∆D(i, j) = O(

√
m · n · (t/2d)i+j) ≤ n2

t log1.5 n
· O(t2/n2) · (O(t/n))i+j−2 ≤

t
log1.5 n

(O(t/n))i+j−2. Thus l · L(i, j)−mc · d∆D(i, j) ≥ 0 for all i, j ≥ 1.
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Similarly, for step 5, for i ≥ 1, we have, l · L(i, 0) = Ω(t · (O(1/ logn))i−1), whereas,
m/4· d∆

∑
j≥1D(i, j) ≤ O(

√
m·n·

∑
j≥1(O(t/n))i+j) ≤ O( n2

t log1.5 n
·(O(t/n))i+1) ≤ O( t

log1.5 n
·

(O(t/n))i−1). We again have l · L(i, 0)−m/4 · d∆
∑
j≥1D(i, j) ≥ 0 as required. C

We now prove the core of the reduction: that the distribution of (A,B) (denoted D̂) is
close to the distribution D of occurrence vectors of Poi(t) i.i.d. samples from (a, b), such
that a = b if ‖x− y‖1 = m/2, and similarly, ‖a− b‖1 ≥ 1/2 when ‖x− y‖1 ≥ m/2 + β. We
will prove that, for distribution of (co-)occurrences of large items is nearly same in the two
instances; and similarly for the dense items. We partition the coordinates of (x, y) in the
following four groups, each corresponding to either occurrences of dense or large items:

large: mc = m/4 − ∆ coordinates for each of (1, 1) and (0, 0) coordinate pairs (i.e.,
coordinates i ∈ [m] where (xi, yi) = (1, 1) or (xi, yi) = (0, 0));
large: m/4 coordinates for each of (1, 0) and (0, 1) pairs;
dense: ∆− δ coordinates for each of (1, 1) and (0, 0) pairs;
dense: δ coordinates for each of (1, 0) and (0, 1) pairs.

Note that this accounts for all coordinates for a pair x, y such that ‖x− y‖1 = m/2 + 2δ.
Next, we compare the distributions of occurrences for large and dense items in the

generated vectors (A,B) as opposed to occurrences of items coming from distributions a, b
defined above. In particular, we consider the distribution of counts ci,j , where i + j > 0,
where ci,j is the number of large items which where sampled i times on Alice’s side and j
times on the Bob’s side; we will refer to them as (i, j) occurrence pairs.

We denote by D̂L, D̂D the distribution of, respectively, large and dense {ci,j}i+j>0
occurrence pairs in (A,B). Similarly, we denote DL,DD the distribution of, respectively,
large and dense {ci,j}i+j>0 occurrence pairs randomly drawn from (a, b). Note that DL,DD
are multinomial distributions, formally defined as follows:

I Definition 12. Fix n, k ≥ 1, vector ~p ∈ Rk+, where
∑k
i=1 pi ≤ 1. The k-dimensional

random variable (M1, . . .Mk) = Mult-0(n; ~p) is obtained by drawing a Multinomial r.v. with
parameters n and probability vector (1−

∑k
i=1 pi, ~p), and dropping the first coordinate.

In particular, DL = Mult-0(l; ~pL) where ~pL = (L(i, j))i,j≥0;i+j>0; DD will be clarified
later. We now deduce D̂L and D̂D. Below we use the fact that the sum of Poisson random
variables is also Poisson.

B Claim 13. D̂L is distributed as Poi(l·~pL). Also D̂D is distributed as Poi(∆−δ
∆ ·d·~pD)+Poi( δ∆ ·

d·~pD0) where ~pD = (D(i, j))i,j≥0;i+j>0 and ~pD0 = (D(i)·1[j = 0]+D(j)·1[i = 0])i,j≥0;i+j>0.

Proof. For i, j ∈ {1, . . . k}, D̂Li,j is distributed as Poi(l · L(i, j)), which is composed of
Poi(mc · d∆D(i, j)) (from the first step: there are mc coordinate pairs (1, 1)), plus Poi(l ·
L(i, j)−mc · d∆ ·D(i, j)) (from the third step).

Similarly, D̂Li,0 (and by symmetric argument also D̂L0,i) is distributed as Poi(l · L(i, 0)),
composed of Poi(m/4 · d∆

∑k
j=1D(i, j)) (from the first step: there are m/4 coordinate pairs

(1, 0)), plus Poi(l · L(i, 0)−m/4 · d∆
∑k
j=1D(i, j)) (from step 4).

For i, j ≥ 1, D̂Di,j are distributed as Poi((∆−δ) · d∆D(i, j)) since there are ∆−δ coordinate
pairs (1, 1). For D̂Di,0 (and similarly D̂L0,i), the distribution is Poi(δ · d∆

∑k
j=1D(i, j)) (from

the first step: there are δ coordinate pairs (1, 0)), plus Poi(d ·D(i, 0)) (from the second step).
This amounts to Poi(d · δ∆

∑k
j=1D(i, j) + d ·D(i, 0)) = Poi(d∆−δ

∆ ·D(i, 0) + d δ∆ · (D(i, 0) +∑k
j=1D(i, j))) = Poi(d · ∆−δ

∆ ·D(i, 0) + d · δ∆ ·D(i)). C
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We prove
∥∥∥D̂ − D∥∥∥

TV
≤ 0.01 + o(1) by showing (i)

∥∥∥D̂L −DL∥∥∥
TV
≤ 0.01 + o(1) and (ii)∥∥∥D̂D −DD∥∥∥

TV
= o(1). We compare D̂L and D̂D versus DL and DD using the following

estimate on the TV distance between Multinomial and Poisson random variables. Note that
the identity of items is not important, as the items are randomly permuted inside the domain,
for both A,B as well as in distributions a, b.

I Theorem 14 ([11]). Let n, k ≥ 1, as well as a vector ~p ∈ Rk+, where p =
∑k
i=1 pi ≤ 1.

Consider the random variable (M1, . . .Mk) drawn from the Multinomial Mult-0(n; ~p). Also
consider the Poisson random variable P = (P1, . . . , Pk) where Pi ∼ Poi(npi). Then the
variables M = (M1, . . .Mk) and (P1, . . . Pk) are at a statistical distance of O(p logn).

By Theorem 14, the TV-distance between DL = Mult-0(l; ~pL) and D̂L = Poi(l · ~pL) is
bounded by: O(logn) ·

∑
i,j≥0;i+j>0 L(i, j) ≤ O(logn) ·

∑
i,j≥0;i+j>0(t/2l)i+j ≤ O(1)/C ≤

0.01 (for sufficiently large constant C).
For (ii), we note DD can be thought of as two distributions, corresponding to: (1) items in

SA∩SB , (2) items in SA4SB . The occurrence counts for (1) are distributed as a Multinomial
MD with parameters |SA ∩ SB | = d · ∆−δ

∆ and probability vector ~pD = (D(i, j))i,j≥0;i+j>0.
By Theorem 14, the TV-distance between MD and the distribution Poi(d · ∆−δ

∆ · ~pD) is
bounded by: O(logn) ·

∑
i,j≥0;i+j>0D(i, j) ≤ O(logn) ·

∑
i,j≥0;i+j>0(t/2d)i+j ≤ O(1/ logn).

For (2), we can only have (i, 0) and (0, j) pairs, and the occurrence counts are distributed
as a MultinomialMD0 = Mult-0(|SA4SB |/2; ~pD0). By Theorem 14, the TV-distance between
MD0 and Poi( δ∆ · d · ~pD0) is at most O(logn) ·

∑
i≥1D(i) ≤ O(1/ logn).

Thus we conclude that the distributions D̂ and D are at a small TV distance. J
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Abstract
We present two new results about exact learning by quantum computers. First, we show how to exactly
learn a k-Fourier-sparse n-bit Boolean function from O(k1.5(log k)2) uniform quantum examples
for that function. This improves over the bound of Θ̃(kn) uniformly random classical examples
(Haviv and Regev, CCC’15). Our main tool is an improvement of Chang’s lemma for sparse Boolean
functions. Second, we show that if a concept class C can be exactly learned using Q quantum
membership queries, then it can also be learned using O

(
Q2

log Q
log |C|

)
classical membership queries.

This improves the previous-best simulation result (Servedio-Gortler, SICOMP’04) by a logQ-factor.
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16:2 Two New Results About Quantum Exact Learning

1 Introduction

1.1 Quantum learning theory
Both quantum computing and machine learning are hot topics at the moment, and their
intersection has been receiving growing attention in recent years as well. On the one hand
there are particular approaches that use quantum algorithms like Grover search [18] and the
Harrow-Hassidim-Lloyd linear-systems solver [19] to speed up learning algorithms for specific
machine learning tasks (see [34, 29, 1, 9, 16] for recent surveys of this line of work). On
the other hand there have been a number of more general results about the sample and/or
time complexity of learning various concept classes using a quantum computer (see [4] for a
survey). This paper presents two new results in the latter line of work. In both cases the
goal is to exactly learn an unknown target function with high probability; for the first result
our access to the target function is through quantum examples for the function, and for the
second result our access is through membership queries to the function.

1.2 Exact learning of sparse functions from uniform quantum examples
Let us first explain the setting of distribution-dependent learning from examples. Let C be a
class of functions, a.k.a. concept class. For concreteness assume they are ±1-valued functions
on a domain of size N ; if N = 2n, then the domain may be identified with {0, 1}n. Suppose
c ∈ C is an unknown function (the target function or concept) that we want to learn. A
learning algorithm is given examples of the form (x, c(x)), where x is distributed according
to some probability distribution D on [N ]. An (ε, δ)-learner for C w.r.t. D is an algorithm
that, for every possible target concept c ∈ C, produces a hypothesis h : [N ]→ {−1, 1} such
that with probability at least 1− δ (over the randomness of the learner and the examples for
the target concept c), h’s generalization error is at most ε:

Pr
x∼D

[c(x) 6= h(x)] ≤ ε.

In other words, from D-distributed examples the learner has to construct a hypothesis that
mostly agrees with the target concept under the same D.

In the early days of quantum computing, Bshouty and Jackson [11] generalized this
learning setting by allowing coherent quantum examples. A quantum example for concept c
w.r.t. distribution D, is the following (dlogNe+ 1)-qubit state:∑

x∈[N ]

√
D(x)|x, c(x)〉.

Clearly such a quantum example is at least as useful as a classical example, because measuring
this state yields a pair (x, c(x)) where x ∼ D. Bshouty and Jackson gave examples of concept
classes that can be learned more efficiently from quantum examples than from classical
random examples under specific D. In particular, they showed that the concept class of
DNF-formulas can be learned in polynomial time from quantum examples under the uniform
distribution, something we do not know how to do classically (the best classical upper bound
is quasi-polynomial time [33]). The key to this improvement is the ability to obtain, from a
uniform quantum example, a sample S ∼ ĉ(S)2 distributed according to the squared Fourier
coefficients of c.1 This Fourier sampling, originally due to Bernstein and Vazirani [8], is very

1 Parseval’s identity implies
∑

S∈{0,1}n f̂(S)2 = 1, so this is indeed a probability distribution.
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powerful. For example, if C is the class of F2-linear functions on {0, 1}n, then the unknown
target concept c is a character function χS(x) = (−1)x·S ; its only non-zero Fourier coefficient
is ĉ(S) hence one Fourier sample gives us the unknown S with certainty. In contrast, learning
linear functions from classical uniform examples requires Θ(n) examples. Another example
where Fourier sampling is proven powerful is in learning the class of `-juntas on n bits.2
Atıcı and Servedio [6] showed that (logn)-juntas can be exactly learned under the uniform
distribution in time polynomial in n. Classically it is a long-standing open question if a
similar result holds when the learner is given uniform classical examples (the best known
algorithm runs in quasi-polynomial time [24]). These cases (and others surveyed in [4]) show
that uniform quantum examples (and in particular Fourier sampling) can be more useful
than classical examples.3

In this paper we consider the concept class of n-bit Boolean functions that are k-sparse
in the Fourier domain: ĉ(S) 6= 0 for at most k different S’s. This is a natural generalization
of the above-mentioned case of learning linear functions, which corresponds to k = 1. It also
generalizes the case of learning `-juntas on n bits, which are functions of sparsity k = 2`.
Variants of the class of k-Fourier-sparse functions have been well-studied in the area of sparse
recovery, where the goal is to recover a k-sparse vector x ∈ RN given a low-dimensional
linear sketch Ax for a so-called “measurement matrix” matrix A ∈ Rm×N . See [20, 23] for
some upper bounds on the size of the measurement matrix that suffice for sparse recovery.
Closer to the setting of this paper, there has also been extensive work on learning the concept
class of n-bit real-valued functions that are k-sparse in the Fourier domain. In this direction
Cheraghchi et al. [14] showed that O(nk(log k)3) uniform examples suffice to learn this
concept class, improving upon the works of Bourgain [10], Rudelson and Vershynin [27] and
Candés and Tao [12].

In this paper we focus on exactly learning the target concept from uniform examples,
with high success probability. So D(x) = 1/2n for all x, ε = 0, and δ = 1/3. Haviv and
Regev [21] showed that for classical learners O(nk log k) uniform examples suffice to learn
k-Fourier-sparse functions, and Ω(nk) uniform examples are necessary. In Section 3 we study
the number of uniform quantum examples needed to learn k-Fourier-sparse Boolean functions,
and show that it is upper bounded by O(k1.5(log k)2). For k � n2 this quantum bound is
much better than the number of uniform examples used in the classical case. Proving the
upper bound combines the fact that a uniform quantum example allows us to Fourier-sample
the target concept, with some Fourier analysis of k-Fourier-sparse functions. In particular,
we significantly strengthen “Chang’s lemma” for the special case of k-Fourier-sparse Boolean
functions. This lemma upper bounds the dimension of the span of the large-weight part of
the Fourier support of a Boolean function, and our Theorem 13 improves this bound almost
quadratically for the special case of k-Fourier-sparse functions. Our learner has two phases.
In the first phase, using Chang’s lemma, we show that the span of the Fourier support of
the target function can be learned from O(k(log k)2) Fourier samples. In the second phase,
we reduce the number of variables to the dimension r of the Fourier support, and then
invoke the classical learner of Haviv and Regev to learn the target function from O(rk log k)
classical examples. Since it is known that r = O(

√
k log k) [28], the two phases together

imply that O(k1.5(log k)2) uniform quantum examples suffice to exactly learn the target with
high probability.

2 We say f : {0, 1}n → {−1, 1} is an `-junta if there exists a set S ⊆ [n] of size |S| ≤ ` such that f
depends only on the variables whose indices are in S.

3 This is not the case in Valiant’s PAC-learning model [32] of distribution-independent learning. There
we require the same learner to be an (ε, δ)-learner for C w.r.t. every possible distribution D. One can
show in this model (and also in the broader model of agnostic learning) that the quantum and classical
sample complexities are equal up to a constant factor [5].
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Since r ≥ log k, the second phase of our learner is always at least as expensive as the
first phase. It might be possible to improve the upper bound to O(k · polylog(k)) quantum
examples, but that would require additional ideas to improve phase 2. We also prove a
(non-matching) lower bound of Ω(k log k) uniform quantum examples, using techniques from
quantum information theory. We omitted some proofs due to space limitations; these may
be found in [3].

1.3 Exact learning from quantum membership queries
Our second result is in a model of active learning. The learner still wants to exactly learn
an unknown target concept c : [N ]→ {−1, 1} from a known concept class C, but now the
learner can choose which points of the truth-table of the target it sees, rather than those
points being chosen randomly. More precisely, the learner can query c(x) for any x of its
choice. This is called a membership query.4 Quantum algorithms have the following query
operation available:

Oc : |x, b〉 7→ |x, b · c(x)〉,

where b ∈ {−1, 1}. For some concept classes, quantum membership queries can be much
more useful than classical. Consider again the class C of F2-linear functions on {0, 1}n.
Using one query to a uniform superposition over all x and doing a Hadamard transform, we
can Fourier-sample and hence learn the target concept exactly. In contrast, Θ(n) classical
membership queries are necessary and sufficient for classical learners. As another example,
consider the concept class C = {δi | i ∈ [N ]} of the N point functions, where δi(x) = 1 iff
i = x. Elements from this class can be learned using O(

√
N) quantum membership queries by

Grover’s algorithm, while every classical algorithm needs to make Ω(N) membership queries.
For a given concept class C of ±1-valued function on [N ], let D(C) denote the minimal

number of classical membership queries needed for learners that can exactly identify every
c ∈ C with success probability 1 (such learners are deterministic without loss of generality).
Let R(C) and Q(C) denote the minimal number of classical and quantum membership queries,
respectively, needed for learners that can exactly identify every c ∈ C with error probability
≤ 1/3.5 Servedio and Gortler [30] showed that these quantum and classical measures cannot
be too far apart. First, using an information-theoretic argument they showed

Q(C) ≥ Ω
(

log |C|
logN

)
.

Intuitively, this holds because a learner recovers roughly log |C| bits of information, while
every quantum membership query can give at most O(logN) bits of information. Note that
this is tight for the class of linear functions, where the left- and right-hand sides are both
constant. Second, using the so-called hybrid method they showed

Q(C) ≥ Ω(1/
√
γ(C)),

4 Think of the set {x | c(x) = 1} corresponding to the target concept: a membership query asks whether
x is a member of this set or not.

5 We can identify each concept with a string c ∈ {−1, 1}N , and hence C ⊆ {−1, 1}N . The goal is to learn
the unknown c ∈ C with high probability using few queries to the corresponding N -bit string. This
setting is also sometimes called “oracle identification” in the literature; see [4, Section 4.1] for more.
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for some combinatorial parameter γ(C) that we will not define here (but which is 1/N for
the class C of point functions, hence this inequality is tight for that C). They also noted the
following upper bound:

D(C) = O

(
log |C|
γ(C)

)
.

Combining these three inequalities yields the following relation between D(C) and Q(C)

D(C) ≤ O(Q(C)2 log |C|) ≤ O(Q(C)3 logN). (1)

This shows that, up to a logN -factor, quantum and classical membership query complexities
of exact learning are polynomially close. While each of the three inequalities that together
imply (1) can be individually tight (for different C), this does not imply (1) itself is tight.

Note that Eq. (1) upper bounds the membership query complexity of deterministic
classical learners. We are not aware of a stronger upper bound on bounded-error classical
learners. However, in Section 4 we tighten that bound further by a logQ(C)-factor:

R(C) ≤ O
(

Q(C)2

logQ(C) log |C|
)
≤ O

(
Q(C)3

logQ(C) logN
)
.

Note that this inequality is tight both for the class of linear functions and for the class of
point functions.

Our proof combines the quantum adversary method [2, 7, 31] with an entropic argument
to show that we can always find a query whose outcome (no matter whether it’s 0 or 1) will
shrink the concept class by a factor ≤ 1− log Q(C)

Q(C)2 . While our improvement over the earlier
bounds is not very large, we feel our usage of entropy to save a log-factor is new and may
have applications elsewhere.

2 Preliminaries

Notation. Let [n] = {1, . . . , n}. For an n-dimensional vector space, the standard basis
vectors are {ei ∈ {0, 1}n | i ∈ [n]}, where ei is the vector with a 1 in the ith coordinate and
0s elsewhere. For x ∈ {0, 1}n, i ∈ [n], let xi be the input obtained by flipping the ith bit
in x.

For f : {0, 1}n → {−1, 1} and B ∈ Fn×n
2 , define f ◦B : {0, 1}n → {−1, 1} as (f ◦B)(x) :=

f(Bx), where the matrix-vector product Bx is over F2. Throughout this paper, the rank of
a matrix B ∈ Fn×n

2 will be taken over F2. Let B1, . . . , Bn be the columns of B.

Fourier analysis on the Boolean cube. We introduce the basics of Fourier analysis here,
referring to [26, 35] for more. Define the inner product between functions f, g : {0, 1}n → R as

〈f, g〉 = Ex∈{0,1}n [f(x) · g(x)],

where the expectation is uniform over all x ∈ {0, 1}n. For S ∈ {0, 1}n, the character function
corresponding to S is given by χS(x) := (−1)S·x, where the dot product S · x is

∑n
i=1 Sixi.

Observe that the set of functions {χS}S∈{0,1}n forms an orthonormal basis for the space of
real-valued functions over the Boolean cube. Hence every f : {0, 1}n → R can be written
uniquely as

f(x) =
∑

S∈{0,1}n

f̂(S)(−1)S·x for all x ∈ {0, 1}n,
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where f̂(S) = 〈f, χS〉 = Ex[f(x)χS(x)] is called a Fourier coefficient of f . For i ∈ [n], we write
f̂(ei) as f̂(i) for notational convenience. Parseval’s identity states that

∑
S∈{0,1}n f̂(S)2 =

Ex[f(x)2]. If f has domain {−1, 1}, then Parseval gives
∑

S∈{0,1}n f̂(S)2 = 1, so
{f̂(S)2}S∈{0,1}n forms a probability distribution. The Fourier weight of function f on
S ⊆ {0, 1}n is defined as

∑
S∈S f̂(S)2.

For f : {0, 1}n → R, the Fourier support of f is supp(f̂) = {S : f̂(S) 6= 0}. The Fourier
sparsity of f is |supp(f̂)|. The Fourier span of f , denoted Fspan(f), is the span of supp(f̂).
The Fourier dimension of f , denoted Fdim(f), is the dimension of the Fourier span. We say
f is k-Fourier-sparse if |supp(f̂)| ≤ k.

We now state a few structural results about Fourier coefficients and dimension.

I Theorem 1 ([28]). The Fourier dimension of a k-Fourier-sparse f : {0, 1}n → {−1, 1} is
O(
√
k log k).

I Lemma 2 ([17, Theorem 12]). Let k ≥ 2. The Fourier coefficients of a k-Fourier-sparse
Boolean function f : {0, 1}n → {−1, 1} are integer multiples of 21−blog kc.

I Definition 3. Let f : {0, 1}n → {−1, 1} and suppose B ∈ Fn×n
2 is invertible. Define fB as

fB(x) = f((B−1)Tx).

I Lemma 4. Let f : {0, 1}n → R and suppose B ∈ Fn×n
2 is invertible. Then the Fourier

coefficients of fB are f̂B(Q) = f̂(BQ) for all Q ∈ {0, 1}n.

Proof. Write out the Fourier expansion of fB :

fB(x) = f((B−1)Tx) =
∑

S∈{0,1}n

f̂(S)(−1)S·((B−1)Tx)

=
∑

S∈{0,1}n

f̂(S)(−1)(B−1S)·x =
∑

Q∈{0,1}n

f̂(BQ)(−1)Q·x,

where the third equality used 〈S, (B−1)Tx〉 = 〈B−1S, x〉 and the last used the substitution
S = BQ. J

An easy consequence is the next lemma:

I Lemma 5. Let f : {0, 1}n → {−1, 1}, and B ∈ Fn×n
2 be an invertible matrix such that

the first r columns of B are a basis of Fspan(f), and f̂(B1), . . . , f̂(Br) are non-zero. Then
the Fourier span of fB is spanned by {e1, . . . , er}, i.e., fB has only r influential variables.
Additionally, for every i ∈ [r], f̂B(i) 6= 0.

Here is the well-known fact, already mentioned in the introduction, that one can Fourier-
sample from uniform quantum examples:

I Lemma 6. Let f : {0, 1}n → {−1, 1}. There exists a procedure that uses one uniform
quantum example and satisfies the following: with probability 1/2 it outputs an S drawn from
the distribution {f̂(S)2}S∈{0,1}n , otherwise it rejects.

Information theory. We refer to [15] for a comprehensive introduction to classical inform-
ation theory, and here just remind the reader of the basic definitions. A random variable
A with probabilities Pr[A = a] = pa has entropy H(A) := −

∑
a pa log(pa). For a pair

of (possibly correlated) random variables A,B, the conditional entropy of A given B, is
H(A | B) := H(A,B)−H(B). This equals Eb∼B[H(A | B = b)]. The mutual information
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between A and B is I(A : B) := H(A) +H(B)−H(A,B) = H(A)−H(A | B). The binary
entropy H(p) is the entropy of a bit with distribution (p, 1 − p). If ρ is a density matrix
(i.e., a trace-1 positive semi-definite matrix), then its singular values form a probability
distribution P , and the von Neumann entropy of ρ is S(ρ) := H(P ). We refer to [25, Part III]
for a more extensive introduction to quantum information theory.

3 Exact learning of k-Fourier-sparse functions

In this section we consider exactly learning the concept class C of k-Fourier-sparse Boolean
functions:

C = {f : {0, 1}n → {−1, 1} : |supp(f̂)| ≤ k}.

The goal is to exactly learn c ∈ C given uniform examples from c of the form (x, c(x)) where x
is drawn from the uniform distribution on {0, 1}n. Haviv and Regev [21] considered learning
this concept class and showed the following results.

I Theorem 7 (Corollary 3.6 of [21]). For every n > 0 and k ≤ 2n, the number of uniform
examples that suffice to learn C with probability 1− 2−Ω(n log k) is O(nk log k).

I Theorem 8 (Theorem 3.7 of [21]). For every n > 0 and k ≤ 2n, the number of uniform
examples necessary to learn C with constant success probability is Ω(k(n− log k)).

Our main results in this section are about the number of uniform quantum examples
that are necessary and sufficient to exactly learn the class C of k-Fourier-sparse functions. A
uniform quantum example for a concept c ∈ C is the quantum state

1√
2n

∑
x∈{0,1}n

|x, c(x)〉.

We prove the following two theorems here.

I Theorem 9. For every n > 0 and k ≤ 2n, the number of uniform quantum examples that
suffice to learn C with probability ≥ 2/3 is O(k1.5(log k)2).

In the theorem below we prove the following (non-matching) lower bound on the number
of uniform quantum examples necessary to learn C.

I Theorem 10. For every n > 0, constant c ∈ (0, 1) and k ≤ 2cn, the number of uniform
quantum examples necessary to learn C with constant success probability is Ω(k log k).

3.1 Upper bound on learning k-Fourier-sparse Boolean functions
We split our quantum learning algorithm into two phases. Suppose c ∈ C is the unknown
concept, with Fourier dimension r. In the first phase the learner uses samples from the
distribution {ĉ(S)2}S∈{0,1}n to learn the Fourier span of c. In the second phase the learner
uses uniform classical examples to learn c exactly, knowing its Fourier span. Phase 1 uses
O(k(log k)2) uniform quantum examples (for Fourier-sampling) and phase 2 uses O(rk log k)
uniform classical examples. Note that since r ≥ log k, phase 2 of our learner is always at
least as expensive as phase 1.

I Theorem 11. Let k, r > 0. There exists a quantum learner that exactly learns (with high
probability) an unknown k-Fourier-sparse c : {0, 1}n → {−1, 1} with Fourier dimension upper
bounded by some known r, from O(rk log k) uniform quantum examples.

The learner may not know the exact Fourier dimension r in advance, but Theorem 1 gives
an upper bound r = O(

√
k log k), so our Theorem 9 follows immediately from Theorem 11.
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3.1.1 Phase 1: Learning the Fourier span
A crucial ingredient that we use in phase 1 of our quantum learning algorithm is an
improvement of Chang’s lemma [13, 22] for k-Fourier-sparse Boolean functions. The original
lemma upper bounds the dimension of the span of the “large” Fourier coefficients as follows.

I Lemma 12 (Chang’s lemma). Let α ∈ (0, 1) and ρ > 0. For every f : {0, 1}n → {−1, 1}
that satisfies f̂(0n) = 1− 2α, we have

dim(span{S : |f̂(S)| ≥ ρα}) ≤ 2 log(1/α)
ρ2 . (2)

Let us consider Chang’s lemma for k-Fourier-sparse Boolean functions. In particular,
consider the case ρα = 1/k. In that case, since all elements of the Fourier support satisfy
|f̂(S)| ≥ 1/k by Lemma 2, the left-hand side of Eq. (2) equals the Fourier dimension r of f .
Chang’s lemma gives

r ≤ 2α2k2 log k.

We now improve this upper bound on r nearly quadratically:

I Theorem 13. Let α ∈ (0, 1) and k ≥ 2. For every k-Fourier-sparse f : {0, 1}n → {−1, 1}
that satisfies f̂(0n) = 1− 2α and Fdim(f) = r, we have

r ≤ 2αk log k.

For a proof of this theorem, see the full version of the paper. We now illustrate how
this theorem improves over Lemma 12. First, observe that α ≥ 1/k (by Lemma 2), so
αk ≤ α2k2. Second, consider a Boolean function f which satisfies α = 1/k3/4. Then, Chang’s
lemma (with ρ = 1/k1/4) upper bounds the Fourier dimension of f as r ≤ O(

√
k log k),

which already follows from Theorem 1. Our Theorem 13 gives the much better upper bound
r ≤ O(k1/4 log k) in this case.

Now that we have a better understanding of the Fourier dimension of k-Fourier-sparse
Boolean functions, we would like to understand how many Fourier samples suffice to obtain
the Fourier span of f (in fact this will be our quantum learning algorithm for phase 1). Since
the ≤ k squared non-zero Fourier coefficients of a k-Fourier-sparse function are each at least
1/k2, it is easy to see that after O(k2 log k) Fourier samples we are likely to have seen every
element in the Fourier support, and hence know the full Fourier support as well. We will
improve on this easy bound below. The main idea is to show that if the span of the Fourier
samples seen at a certain point has some dimension r′ < r, then there is significant Fourier
weight on elements outside of this span, so after a few more Fourier samples we will have
grown the span. We now state this formally and prove the lemma.

I Lemma 14. Let n > 0 and 1 ≤ k ≤ 2n. For every k-Fourier-sparse f : {0, 1}n → {−1, 1}
with Fourier span V and Fourier dimension r, the following holds: for every r′ > 0 and
S ⊂ V satisfying dim(span(S)) = r′, we have∑

S∈span(S)

f̂(S)2 ≤ 1− r − r′

k log k .

Proof. Let B ∈ Fr×r
2 be an invertible matrix such that the first r′ < r columns of B form a

basis for span(S). By Lemma 5, fB depends only on r bits, so we write fB : {0, 1}r → {−1, 1}.
Let W = span{e1, . . . , er′} ⊆ {0, 1}r. Then∑

S∈span(S)

f̂(S)2 =
∑

S∈W
f̂B(S)2. (3)
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Let us decompose fB as follows: fB(x1, . . . , xr) = g(x1, . . . , xr′) + g′(x1, . . . , xr), where

g(y) =
∑

T∈{0,1}r′

f̂B(T, 0r−r′)χT (y, 0r−r′) for every y ∈ {0, 1}r′ , (4)

and

g′(x) =
∑

S /∈W

f̂B(S)χS(x) for every x ∈ {0, 1}r.

Now by Parseval’s identity we have

Ey∈{0,1}r′ [g(y)2] =
∑

T∈{0,1}r′

ĝ(T )2 =
∑

S∈W
f̂B(S)2, (5)

where the second equality used Eq. (4). Combining Eq. (5) with an averaging argument,
there exists an assignment of a = (a1, . . . , ar′) ∈ {0, 1}r′ to (y1, . . . , yr′) such that

g(a1, . . . , ar′)2 ≥
∑

S∈W
f̂B(S)2, (6)

Consider the function h defined as

h(z1, . . . , zr−r′) = fB(a1, . . . , ar′ , z1, . . . , zr−r′) for every z1, . . . , zr−r′ ∈ {0, 1}. (7)

Note that h has Fourier sparsity at most the Fourier sparsity of fB , hence at most k. Also,
the Fourier dimension of h is at most r − r′. Finally note that

ĥ(0r−r′) = Ez∈{0,1}r−r′ [h(z)]

= Ez∈{0,1}r−r′ [fB(a, z)] (by Eq. (7))

= Ez∈{0,1}r−r′

[ ∑
S1∈{0,1}r′

∑
S2∈{0,1}r−r′

f̂B(S1, S2)χS1(a)χS2(z)
]

(Fourier expansion of fB)

=
∑

S1∈{0,1}r′

f̂B(S1, 0r−r′)χS1(a, 0r−r′) (using Ez∈{0,1}r−r′χS(z) = δS,0r−r′ )

= g(a1, . . . , ar′) (by definition of g in Eq. (4))

≥
( ∑

S∈W
f̂B(S)2

)1/2
. (by Eq. (6))

Using Theorem 13 for the function h, it follows that ĥ(0r−r′) ≤ 1 − (r − r′)/(k log k),
which in particular implies∑

S∈span(S)

f̂(S)2 =
∑

S∈W
f̂B(S)2 ≤ ĥ(0r−r′)2 ≤ 1− r − r′

k log k ,

where the first equality used Eq. (3). J

I Theorem 15. For every k-Fourier-sparse Boolean function f : {−1, 1}n → {−1, 1}
with Fourier dimension r, its Fourier span can be learned using an expected number of
O(k log k log r) quantum examples.
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Proof. We only use the quantum examples for Fourier sampling; an expected number of two
quantum examples suffices to get one Fourier sample. At any point of time let S be the set
of samples we have received. Let the dimension of the span of S be r′. Now if we receive
a new sample S such that S 6∈ span(S), then the dimension of the samples we have seen
increases by 1. By Lemma 14∑

S 6∈span(S)

f̂(S)2 ≥ r − r′

k log k .

So the expected number of samples to increase the dimension by 1 is ≤ k log k
r−r′ . Hence, the

expected number of Fourier samples needed to learn the whole Fourier span of f is at most
r∑

i=1

k log k
i
≤ O(k log k log r),

where the final inequality used
∑r

i=1
1
i = O(log r). J

3.1.2 Phase 2: Learning the function completely
In the above phase 1, the quantum learner obtains the Fourier span of c, which we will
denote by T . Using this, the learner can restrict to the following concept class

C′ = {c : {0, 1}n → {−1, 1} | c is k-Fourier-sparse with Fourier span T }

Let dim(T ) = r. Let B ∈ Fn×n
2 be an invertible matrix whose first r columns of B form a

basis for T . Consider cB = c ◦ (B−1)T for c ∈ C′. By Lemma 5 it follows that cB depends on
only its first r bits, and we can write cB : {0, 1}r → {−1, 1}. Hence the learner can apply
the transformation c 7→ c ◦ (B−1)T for every c ∈ C′ and restrict to the concept class

C′r = {c′ : {0, 1}r → {−1, 1} | c′ = c ◦ (B−1)T for some c ∈ C′ and invertible B}.

We now conclude phase 2 of the algorithm by invoking the classical upper bound of Haviv-
Regev (Theorem 7) which says that O(rk log k) uniform classical examples of the form
(z, c′(z)) ∈ {0, 1}r+1 suffice to learn C′r. Although we assume our learning algorithm has
access to uniform examples of the form (x, c(x)) for x ∈ {0, 1}n, the quantum learner knows
B and hence can obtain a uniform example (z, c′(z)) for c′ by letting z be the first r bits of
BTx and c′(z) = c(x).

3.2 Lower bound on learning k-Fourier-sparse Boolean functions
We show that Ω(k log k) uniform quantum examples are necessary to learn the concept class
of k-Fourier-sparse Boolean functions. See the full version of the paper for the proof.

I Theorem 16. For every n, constant c ∈ (0, 1) and k ≤ 2cn, the number of uniform
quantum examples necessary to learn the class of k-Fourier-sparse Boolean functions, with
success probability ≥ 2/3, is Ω(k log k).

4 Quantum vs classical membership queries

In this section we assume we can access the target function using membership queries rather
than examples. Our goal is to simulate quantum exact learners for a concept class C by
classical exact learners, without using many more membership queries. A key tool here
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will be the (“nonnegative” or “positive-weights”) adversary method. This was introduced
by Ambainis [2]; here we will use the formulation of Barnum et al. [7], which is called the
“spectral adversary” in the survey [31].

Let C ⊆ {0, 1}N be a set of strings. If N = 2n then we may view such a string c ∈ C as (the
truth-table of) an n-bit Boolean function, but in this section we do not need the additional
structure of functions on the Boolean cube and may consider any positive integer N . Suppose
we want to identify an unknown c ∈ C with success probability at least 2/3 (i.e., we want
to compute the identity function on C). The required number of quantum queries to c can
be lower bounded as follows. Let Γ be a |C| × |C| matrix with real, nonnegative entries and
0s on the diagonal (called an “adversary matrix”). Let Di denote the |C| × |C| 0/1-matrix
whose (c, c′)-entry is [ci 6= c′i].6 Then it is known that at least (a constant factor times)
‖ Γ ‖/maxi∈[N ] ‖ Γ ◦Di ‖ quantum queries are needed, where ‖ · ‖ denotes operator norm
(largest singular value) and ‘◦’ denotes entrywise product of matrices. Let

ADV(C) = max
Γ≥0

‖ Γ ‖
maxi∈[N ] ‖ Γ ◦Di ‖

denote the best-possible lower bound on Q(C) that can be achieved this way.
The key to our classical simulation is the next lemma. It shows that if Q(C) (and

hence ADV(C)) is small, then there is a query that splits the concept class in a “mildly
balanced” way.

I Lemma 17. For N ≥ 1, let C ⊆ {0, 1}N be a concept class and suppose ADV(C) =
maxΓ≥0 ‖ Γ ‖/maxi∈[N ] ‖ Γ ◦Di ‖ is the nonnegative adversary bound for the exact learning
problem corresponding to C. Let µ be a distribution on C such that maxc∈C µ(c) ≤ 5/6, and
let C be a random variable distributed according to µ. Then there exists an i ∈ [N ] such that

min(µ(Ci = 0), µ(Ci = 1)) ≥ 1
36ADV(C)2 .

Proof. Define unit vector v ∈ R|C|+ by vc =
√
µ(c), and adversary matrix

Γ = vv∗ − diag(µ),

where diag(µ) is the diagonal matrix that has the entries of µ on its diagonal. This Γ is a
nonnegative matrix with 0 diagonal (and hence a valid adversary matrix for the exact learning
problem), and ‖ Γ ‖ ≥ ‖ vv∗ ‖ − ‖ diag(µ) ‖ ≥ 1− 5/6 = 1/6. Abbreviate A = ADV(C). By
definition of A, we have for this particular Γ

A ≥ ‖ Γ ‖
maxi ‖ Γ ◦Di ‖

≥ 1
6 maxi ‖ Γ ◦Di ‖

,

hence there exists an i ∈ [N ] such that ‖ Γ ◦Di ‖ ≥ 1
6A . We can write v =

(
v0
v1

)
where

the entries of v0 are the ones corresponding to cs where ci = 0, and the entries of v1 are the
ones where ci = 1. Then

Γ =
(
v0v
∗
0 v0v

∗
1

v1v
∗
0 v1v

∗
1

)
− diag(µ) and Γ ◦Di =

(
0 v0v

∗
1

v1v
∗
0 0

)
.

6 The bracket-notation [P ] denotes the truth-value of proposition P .
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It is easy to see that ‖ Γ ◦Di ‖ = ‖ v0 ‖ · ‖ v1 ‖. Hence

1
36A2 ≤ ‖ Γ ◦Di ‖2 = ‖ v0 ‖2‖ v1 ‖2 = µ(Ci = 0)µ(Ci = 1) ≤ min(µ(Ci = 0), µ(Ci = 1)),

where the last inequality used max(µ(Ci = 0), µ(Ci = 1)) ≤ 1. J

Note that if we query the index i given by this lemma and remove from C the strings
that are inconsistent with the query outcome, then we reduce the size of C by a factor
≤ 1− Ω(1/ADV(C)2). Repeating this O(ADV(C)2 log |C|) times would reduce the size of C
to 1, completing the learning task. However, we will see below that analyzing the same
approach in terms of entropy gives a somewhat better upper bound on the number of queries.

I Theorem 18. For N ≥ 1, let C ⊆ {0, 1}N be a concept class and suppose ADV(C) =
maxΓ≥0 ‖ Γ ‖/maxi∈[N ] ‖ Γ ◦Di ‖ is the nonnegative adversary bound for the exact learning
problem corresponding to C. Then there exists a classical learner for the concept class C

using O
(

ADV(C)2

logADV(C) log |C|
)

membership queries that identifies the target concept with

probability ≥ 2/3.

Proof. Fix an arbitrary distribution µ on C. We will construct a deterministic classical
learner for C with success probability ≥ 2/3 under µ. Since we can do this for every µ,
the “Yao principle” [36] then implies the existence of a randomized learner that has success
probability ≥ 2/3 for every c ∈ C.

Consider the following algorithm, whose input is an N -bit random variable C ∼ µ:
1. Choose an i that maximizes H(Ci) and query that i.7

2. Update C and µ by restricting to the concepts that are consistent with the query outcome.
3. Goto 1.
The queried indices are themselves random variables, and we denote them by I1, I2, . . .. We
can think of t steps of this algorithm as generating a binary tree of depth t, where the different
paths correspond to the different queries made by the algorithm and their binary outcomes.

Let Pt be the probability that, after t queries, our algorithm has reduced µ to a distribution
that has weight ≥ 5/6 on one particular c:

Pt =
∑

i1,...,it∈[N ], b∈{0,1}t

Pr[I1 = i1, . . . , It = it,Ci1 . . .Cit = b]

· [∃c ∈ C s.t. µ(c | Ci1 . . .Cit = b) ≥ 5/6].

Because restricting µ to a subset C′ ⊆ C cannot decrease probabilities of individual c ∈ C′, this
probability Pt is non-decreasing in t. Because N queries give us the target concept completely,
we have PN = 1. Let T be the smallest integer t for which Pt ≥ 5/6. We will run our
algorithm for T queries, and then output the c with highest probability under the restricted
version of µ we now have. With µ-probability at least 5/6, that c will have probability at
least 5/6 (under µ conditioned on the query-results). The overall error probability under µ
is therefore ≤ 1/6 + 1/6 = 1/3.

7 Querying this i will give a fairly “balanced” reduction of the size of C irrespective of the outcome of the
query. If there are several maximizing is, then choose the smallest i to make the algorithm deterministic.
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It remains to upper bound T . To this end, define the following “energy function” in terms
of conditional entropy:

Et = H(C | CI1 , . . . ,CIt
)

=
∑

i1,...,it∈[N ], b∈{0,1}t

Pr[I1 = i1, . . . , It = it,Ci1 . . .Cit = b] ·H(C | Ci1 . . .Cit = b).

Because conditioning on a random variable cannot increase entropy, Et is non-increasing in t.
We now show that as long as Pt < 5/6, the energy shrinks significantly with each new query.

Let i1, ..., it and b be such that there is no c in C s.t. µ(c | Ci1 . . .Cit = b) ≥ 5/6 (note
that the µ-probability of getting such an i1, ..., it and b, is 1 − Pt). Let µ′ be µ restricted
to the class C′ of concepts c where ci1 . . . cit = b. The nonnegative adversary bound for this
restricted concept class is A′ = ADV(C′) ≤ ADV(C) = A. Applying Lemma 17 to µ′, there
is an it+1 ∈ [N ] with p := min(µ′(Cit+1 = 0), µ′(Cit+1 = 1)) ≥ 1

36A′2 ≥
1

36A2 . Note that
H(p) ≥ Ω(log(A)/A2). Hence

H(C | Ci1 . . .Cit
= b)−H(C | Ci1 . . .Cit

= b,Cit+1) = H(Cit+1 | Ci1 . . .Cit
= b)

≥ Ω(log(A)/A2).

This implies Et−Et+1 ≥ (1−Pt)·Ω(log(A)/A2). In particular, as long as Pt < 5/6, the (t+1)st
query shrinks Et by at least 1

6Ω(log(A)/A2) = Ω(log(A)/A2). Since E0 = H(C) ≤ log |C|

and Et cannot shrink below 0, there can be at most O
(

A2

logA log |C|
)

queries before Pt grows

to ≥ 5/6. J

Since ADV(C) lower boundsQ(C), Theorem 18 implies the bound R(C) ≤ O
(

Q(C)2

log Q(C) log |C|
)

claimed in our introduction. Note that this bound is tight up to a constant factor for the
class of N -bit point functions, where A = Θ(

√
N), |C| = N , and R(C) = Θ(N) classical

queries are necessary and sufficient.

5 Future work

Neither of our two results is tight. As directions for future work, let us state two conjectures,
one for each model:

k-Fourier-sparse functions can be learned from O(k · polylog(k)) uniform quantum ex-
amples.
For all concept classes C of Boolean-valued functions on a domain of size N we have:
R(C) = O(Q(C)2 +Q(C) logN).
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Abstract
Maximal independent set (MIS), maximal matching (MM), and (∆ + 1)-(vertex) coloring in graphs
of maximum degree ∆ are among the most prominent algorithmic graph theory problems. They
are all solvable by a simple linear-time greedy algorithm and up until very recently this constituted
the state-of-the-art. In SODA 2019, Assadi, Chen, and Khanna gave a randomized algorithm for
(∆ + 1)-coloring that runs in Õ(n

√
n) time1, which even for moderately dense graphs is sublinear

in the input size. The work of Assadi et al. however contained a spoiler for MIS and MM: neither
problems provably admits a sublinear-time algorithm in general graphs. In this work, we dig deeper
into the possibility of achieving sublinear-time algorithms for MIS and MM.

The neighborhood independence number of a graph G, denoted by β(G), is the size of the largest
independent set in the neighborhood of any vertex. We identify β(G) as the “right” parameter
to measure the runtime of MIS and MM algorithms: Although graphs of bounded neighborhood
independence may be very dense (clique is one example), we prove that carefully chosen variants
of greedy algorithms for MIS and MM run in O(nβ(G)) and O(n logn · β(G)) time respectively on
any n-vertex graph G. We complement this positive result by observing that a simple extension of
the lower bound of Assadi et al. implies that Ω(nβ(G)) time is also necessary for any algorithm
to either problem for all values of β(G) from 1 to Θ(n). We note that our algorithm for MIS is
deterministic while for MM we use randomization which we prove is unavoidable: any deterministic
algorithm for MM requires Ω(n2) time even for β(G) = 2.

Graphs with bounded neighborhood independence, already for constant β = β(G), constitute a
rich family of possibly dense graphs, including line graphs, proper interval graphs, unit-disk graphs,
claw-free graphs, and graphs of bounded growth. Our results suggest that even though MIS and
MM do not admit sublinear-time algorithms in general graphs, one can still solve both problems in
sublinear time for a wide range of β(G)� n.

Finally, by observing that the lower bound of Ω(n
√
n) time for (∆ + 1)-coloring due to Assadi

et al. applies to graphs of (small) constant neighborhood independence, we unveil an intriguing
separation between the time complexity of MIS and MM, and that of (∆ + 1)-coloring: while the
time complexity of MIS and MM is strictly higher than that of (∆ + 1) coloring in general graphs,
the exact opposite relation holds for graphs with small neighborhood independence.
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1 Introduction

Maximal independent set (MIS) and maximal matching (MM) are two of the most prominent
graph problems with a wide range of applications in particular to symmetry breaking.
Algorithmic study of these problems can be traced back to at least four decades ago in the
pioneering work of [33, 41, 1, 32] on PRAM algorithms. These problems have since been
studied extensively in various models including distributed algorithms [40, 46, 31, 34, 38,
10, 9, 21, 19], dynamic algorithms [43, 11, 50, 45, 5, 6], streaming algorithms [18, 27, 15, 4],
massively parallel computation (MPC) algorithms [37, 22, 12], local computation algorithms
(LCA) [48, 2, 21, 20, 39, 23], and numerous others.

In this paper, we consider the time complexity of MIS and MM (in the centralized
setting) and focus on one of the most basic questions regarding these two problems:

How fast can we solve maximal independent set and maximal matching problems?

At first glance, the answer to this question may sound obvious: there are text-book greedy
algorithms for both problems that run in linear time and “of course” one cannot solve these
problems faster as just reading the input takes linear time. This answer however is not quite
warranted: for the closely related problem of (∆ + 1)-(vertex) coloring, very recently Assadi,
Chen, and Khanna [4] gave a randomized algorithm that runs in only Õ(n

√
n) time on any

n-vertex graph with high probability2. This means that even for moderately dense graphs,
one can indeed color the graph faster than reading the entire input, i.e., in sublinear time.

The Assadi-Chen-Khanna algorithm hints that one could perhaps hope for sublinear-time
algorithms for MIS and MM as well. Unfortunately however, the work of [4] already contained
a spoiler: neither MIS nor MM admits a sublinear-time algorithm in general graphs.

In this work, we show that despite the negative result of [4] for MIS and MM, the hope for
obtaining sublinear-time algorithms for these problems need not be short lived. In particular,
we identify a key parameter of the graph, namely the neighborhood independence number,
that provides a more nuanced measure of runtime for these problems and show that both
problems can be solved much faster when neighborhood independence is small. This in turn
gives rise to sublinear-time algorithms for MIS and MM on a rich family of graphs with
bounded neighborhood independence. In the following, we elaborate more on our results.

1.1 Our Contributions
For a graph G(V,E), the neighborhood independence number of G, denoted by β(G), is
defined as the size of the largest independent set in the graph in which all vertices of the
independent set are incident on some shared vertex v ∈ V . Our main result is as follows:

B Result 1. There exist algorithms that given a graph G(V,E) find (i) a maximal
independent set of G deterministically in O(n ·β(G)) time, and (ii) a maximal matching
of G randomly in O(n logn · β(G)) time in expectation and with high probability.

When considering sublinear-time algorithms, specifying the exact data model is important
as the algorithm cannot even read the entire input once. We assume that the input graph
is presented in the adjacency array representation, i.e., for each vertex v ∈ V , we are given
degree deg(v) of v followed by an array of length deg(v) containing all neighbors of v in

2 We say an event happens with high probability if it happens with probability at least 1− 1/poly(n).
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arbitrary order. This way, we can access the degree of any vertex v or its i-th neighbor for
i ∈ [deg(v)] in O(1) time. We also make the common assumption that a random number
from 1 to n can be generated in O(1) time. This is a standard input representation for graph
problems and is commonly used in the area of sublinear-time algorithms (see, e.g. [25, 26, 44]).
We elaborate on several aspects of Result 1 in the following.

Optimality of Our Bounds. Assadi et al. [4] proved that any algorithm for MIS or MM
requires Ω(n2) time in general3. These lower bounds can be extended in an easy way to
prove that Ω(n · β) time is also necessary for both problems on graphs with neighborhood
independence β(G) = β. Indeed, independently sample t := n/β graphs G1, . . . , Gt each on
β vertices from the hard distribution of graphs in [4] and let G be the union of these graphs.
Clearly, β(G) ≤ β and it follows that since solving MIS or MM on each graph Gi requires
Ω(β2) time by the lower bound of [4], solving t independent copies requires Ω(t · β2) = Ω(nβ)
time. As such, our Result 1 is optimal for every β ranging from a constant to Θ(n) (up to a
constant factor for MIS and O(logn) for MM).

Our Algorithms. Both our algorithms for MIS and MM in Result 1 are similar to the
standard greedy algorithms, though they require careful adjustments and implementation.
Specifically, the algorithm for MIS is the standard deterministic greedy algorithm (with
minimal modification) and for MM we use a careful implementation of the (modified)
randomized greedy algorithm (see, e.g. [16, 3, 42, 47]). The novelty of our work mainly
lies in the analysis of these algorithms. We show, perhaps surprisingly, that already-known
algorithms can in fact achieve an improved performance and run in sublinear-time for graphs
with bounded neighborhood independence even when the value of β(G) is unknown to the
algorithms. Combined with the optimality of our bounds mentioned earlier, we believe that
this makes neighborhood independence number an ideal parameter for measuring the runtime
of MIS and MM algorithms.

Determinism and Randomization. Our MIS algorithm in Result 1 is deterministic which
is a rare occurrence in the realm of sublinear-time algorithms. But for MM, we again fall
back on randomization to achieve sublinear-time performance. This is not a coincidence
however: we prove in Theorem 11 that any deterministic algorithm for MM requires Ω(n2)
time even on graphs with constant neighborhood independence number. This also suggests a
separation in the time complexity of MIS and MM for deterministic algorithms.

Bounded Neighborhood Independence. Our Result 1 is particularly interesting for graphs
with constant neighborhood independence as we obtain quite fast algorithms with running
time O(n) and O(n logn) for MIS and MM, respectively. Graphs with constant neighborhood
independence capture a rich family of graphs; several illustrative examples are as follows:

Line graphs: For any arbitrary graph G, the neighborhood independence number of its
line graph L(G) is at most 2. More generally, for any r-hyper graph H in which each
hyper-edge connects at most r vertices, β(L(H)) ≤ r.

3 We note that the lower bound for MIS only appears in the full version of [4].
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Bounded-growth graphs: A graph G(V,E) is said to be of bounded growth iff there exists
a function such that for every vertex v ∈ V and integer r ≥ 1, the size of the largest
independent set in the r-neighborhood of v is bounded by f(r). Bounded-growth graphs
in turn capture several intersection graphs of geometrical objects such as proper interval
graphs [30], unit-disk graphs [28], quasi-unit-disk graphs [36], and general disc graphs [29].
Claw-free graphs: Graphs with neighborhood independence β can be alternatively defined
as β-claw-free graphs, i.e., graphs that do not contain K1,β as an induced subgraph.
Claw-free graphs have been subject of extensive study in structural graph theory; see
the series of papers by Chudnovsky and Seymour, starting with [14], and the survey by
Faudree et al. [17].

Above graphs appear naturally in the context of symmetry breaking problems (for
instance in the study of wireless networks), and there have been numerous works on MIS
and MM in graphs with bounded neighborhood independence and their special cases (see,
e.g. [36, 49, 28, 7, 8, 29, 19] and references therein).

1.2 Other Implications
Despite the simplicity of our algorithms in Result 1, they lead to several interesting implica-
tions, when combined with some known results and/or techniques:

(a) Approximate vertex cover and matching: Our MM algorithm in Result 1 combined
with well-known properties of maximal matchings implies an O(n logn · β(G)) time
2-approximation algorithm to both maximum matching and minimum vertex cover.
For graphs with constant neighborhood independence, our results improve upon the
sublinear-time algorithms of [44] that achieve (2 + ε)-approximation to the size of the
optimal solution to both problems but did not find the actual edges or vertices in Õε(n)
time on general graphs.

(b) Caro-Wei bound and approximation of maximum independent set: The Caro-Wei bound
[13, 51] states that any graph G(V,E) contains an independent set of size at least∑
v∈V

1
deg(v)+1 , and there is a substantial interest in obtaining independent sets of this

size (see, e.g. [27, 29, 15] and references therein). One standard way of obtaining such
independent set is to run the greedy MIS algorithm on the vertices of the graph in the
increasing order of their degrees. As our Result 1 implies that one can implement the
greedy MIS algorithm for any ordering of vertices, we can sort the vertices in O(n) time
and then run our deterministic algorithm with this order to obtain an independent set
with Caro-Wei bound size in O(nβ(G)) time. Additionally, it is easy to see that on
graphs with β(G) = β, any MIS is a β-approximation to the maximum independent set
(see, e.g. [35, 49]). We hence also obtain a constant factor approximation in O(n) time
for maximum independent set on graphs with bounded neighborhood independence.

(c) Separation of (∆ + 1)-coloring with MIS and MM: Assadi et al. [4] gave an Õ(n
√
n) time

algorithm for (∆+1) coloring and an Ω(n2) time lower bound for MIS and MM on general
graphs. It is also shown in [4] that (∆ + 1) coloring requires Ω(n

√
n) time and in fact

the lower bound holds for graphs with constant neighborhood independence. Together
with our Result 1, this implies an interesting separation between the time-complexity
of MIS and MM, and that of (∆ + 1)-coloring: while the time complexity of MIS and
MM is strictly higher than that of (∆ + 1) coloring in general graphs, the exact opposite
relation holds for graphs with small neighborhood independence number.
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(d) Efficient MM computation via MIS on line graphs: The line graph L(G) of a graph G
contains m vertices corresponding to edges of G and up to O(mn) edges. Moreover, for
any graph G, β(L(G)) ≤ 2. As an MIS in L(G) corresponds to an MM in G, our results
suggest that despite the larger size of L(G), perhaps surprisingly, computing an MM of
G through computing an MIS for L(G) is just as efficient as directly computing an MM
of G (assuming direct access to L(G)). This observation may come into play in real-life
situations where there is no direct access to the graph but rather only to its line graph.

Preliminaries and Notation
For a graph G(V,E) and vertex v ∈ V , N(v) and deg(v) denote the neighbor-set and degree
of a vertex v, respectively. For a subset U ⊆ V , degU (v) denotes the degree of v to vertices
in U . Denote by β(G) the neighborhood independence number of graph G.

2 Technical and Conceptual Highlights

Our first (non-technical) contribution is in identifying the neighborhood independence
number as the “right” measure of time-complexity for both MIS and MM. We then show
that surprisingly simple algorithms for these problems run in sublinear-time on graphs with
bounded β(G).

The textbook greedy algorithm for MIS works as follows: scan the vertices in an arbitrary
order and add each scanned vertex to a set M iff it does not already have a neighbor in
M. Clearly the runtime of this algorithm is Θ(

∑
v∈V deg(v)) = Θ(m) and this bound does

not improve for graphs with small β. We can slightly tweak this algorithm by making every
vertex that joinsM to mark all its neighbors and simply ignore scanning the already marked
vertices. This tweak however is not useful in general graphs as the algorithm may waste time
by repeatedly marking the same vertices over and over again without making much further
progress (the complete bipartite graph is an extreme example). The same problem manifests
itself in other algorithms, including those for MM, and is at the root of the lower bounds
in [4] for sublinear-time computation of MIS and MM.

We prove that this issue cannot arise in graphs with bounded neighborhood independence.
Noting that the runtime of the greedy MIS algorithm that uses “marks” is Θ(mM), where
we define mM :=

∑
v∈M deg(v), a key observation is that mM is much smaller than m when

β is small. Indeed, as the vertices ofM form an independent set, all the edges incident on
M lead to V \M, and so if mM is large, then the average degree of V \M toM cannot be
“too small”; however, the latter average degree cannot be larger than β as otherwise there is
some vertex in V \M that is incident to more than β independent vertices, a contradiction.
This is all we need to conclude that the runtime of the greedy MIS algorithm that uses marks
is bounded by O(n · β).

Both the MIS algorithm and its analysis are remarkably simple, and in hindsight, this is
not surprising since this parameter β is in a sense “tailored” to the MIS problem. Although
MM and MIS problems are intimately connected to each other, the MM problem appears
to be much more intricate for graphs with bounded neighborhood independence. Indeed,
while the set U of unmatched vertices in any MM forms an independent set and hence total
number mU of edges incident on U cannot be too large by the above argument, the runtime
of greedy or any other algorithm cannot be bounded in terms of mU (as mU can simply be
zero). In fact, it is provably impossible to adjust our argument for MIS to the MM problem
due to our lower bound for deterministic MM algorithms (Theorem 11) that shows that any
such algorithm must incur a runtime of Ω(n2) even for β = 2.
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The main technical contribution of this paper is thus in obtaining a fast randomized MM
algorithm for graphs with bounded β. Our starting point is the modified randomized greedy
(MRG) algorithm of [16, 3] that finds an MM by iteratively picking an unmatched vertex u
uniformly at random and matching it to a uniformly at random chosen unmatched neighbor
v ∈ N(u). On its own, this standard algorithm does not benefit from small values of β:
while picking an unmatched vertex u is easy, finding an unmatched neighbor v for u is too
time consuming in general. We instead make the following simple but crucial modification:
instead of picking v from unmatched neighbors of u, we simply sample v from the set of all
neighbors of u and only match it to u if it is also unmatched; otherwise we sample another
vertex u and continue like this (additional care is needed to ensure that this process even
terminates but we postpone the details to Section 4).

To analyze the runtime of this modified algorithm, we leverage the above argument for
MIS and take it to the next step to prove a basic structural property of graphs with bounded
neighborhood independence: for any set P of vertices, a constant fraction of vertices are such
that their inner degree inside P is “not much smaller” than their total degree (depending
both on β and size of P ). Letting P to be the set of unmatched vertices in the above
algorithm allows us to bound the number of iterations made by the algorithm before finding
the next matching edge, and ultimately bounding the overall runtime of the algorithm by
O(n logn · β) both in expectation and with high probability.

Technical Comparison with Prior Work
Our work is most closely related to the Õ(n

√
n)-time (∆ + 1)-coloring algorithm of Assadi,

Chen, and Khanna [4] (and their Ω(n2) time lower bounds for MIS and MM on general
graphs), as well as the series of work by Goel, Kapralov, and Khanna [25, 24, 26] on finding
perfect matchings in regular bipartite graphs that culminated in an O(n logn) time algorithm.

The coloring algorithm of [4] works by non-adaptively sparsifying the graph into
O(n log2(n)) edges in Õ(n

√
n) time in such a way that a (∆ + 1) coloring of the origi-

nal graph can be found quickly from this sparsifier. The algorithms in [25, 24] were also
based on the high-level idea of sparsification but the final work in this series [26] instead used
a (truncated) random walk approach to speedup augmenting path computations in regular
graphs. The sparsification methods used in [4, 25, 24] as well as the random walk approach
of [26] are all quite different from our techniques in this paper that are tailored to graphs
with bounded neighborhood independence. Moreover, even though every perfect matching is
clearly maximal, our results and [25, 24, 26] are incomparable as d-regular bipartite graphs
and graphs with bounded neighborhood independence are in a sense the exact opposite of
each other: for a d-regular bipartite graph, β(G) = d which is the largest possible for graphs
with maximum degree d.

3 Maximal Independent Set

The standard greedy algorithm for MIS works as follows: Iterate over vertices of the graph
in an arbitrary order and insert each one to an initially empty setM if none of its neighbors
have already been inserted toM. By the time all vertices have been processed,M clearly
provides an MIS of the input graph. See Algorithm 1 for a pseudo-code.

We prove that this algorithm is fast on graphs with bounded neighborhood independence.

I Theorem 1. The greedy MIS algorithm (as specified by Algorithm 1) computes a maximal
independent set of a graph G given in adjacency array representation in O(n · β(G)) time.
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Algorithm 1: The (Deterministic) Greedy Algorithm for Maximal Independent
Set.

1 Input: An n-vertex graph G(V,E) given in adjacency array representation.
2 Output: An MISM of G.
3 InitializeM = ∅ and mark[vi] = FALSE for all vertices vi ∈ V where

V := {v1, . . . , vn}.
4 for i = 1 to n do
5 if mark[vi] = FALSE then
6 add vi toM and set mark[u] = TRUE for all u ∈ N(vi).
7 end
8 end
9 Return M.

Proof. Let G(V,E) be an arbitrary graph. Suppose we run Algorithm 1 on G and obtain
M as the resulting MIS. To prove Theorem 1, we use the following two simple claims.

B Claim 2. The time spent by Algorithm 1 on a graph G(V,E) is O(n+
∑
v∈M deg(v)).

Proof. Iterating over vertices in the for loop takes O(n) time. Beyond that, for each vertex
joining the MISM, we spend time that is linear in its degree to mark all its neighbors. C

B Claim 3. For any independent set I ⊆ V in G,
∑
v∈I deg(v) ≤ n · β(G).

Proof. Let E(I) denote the edges incident on vertices in the independent set I. Since I is an
independent set, these edges connect vertices of I with vertices of V \ I. Suppose towards a
contradiction that |E(I)| =

∑
v∈I deg(v) > n · β(G). By a double counting argument, there

must exist a vertex v in V \ I with at least |E(I)| / |V \ I| > β(G) neighbors in I. But since
I is an independent set, this means that there exists an independent set of size > β(G) in the
neighborhood of v, which contradicts the fact that β(G) is the neighborhood independence
number of G. C

Theorem 1 now follows from Claims 2 and 3 asM is an independent set of G. J

4 Maximal Matching

We now consider the maximal matching (MM) problem. Similar to MIS, a standard greedy
algorithm for MM is to iterate over the vertices in arbitrary order and match each vertex to
one of their unmatched neighbors (if any). However, as we show in Section 5 this and any
other deterministic algorithm for MM, cannot run in sublinear-time even when β(G) = 2.

We instead consider the following variant of the greedy algorithm, referred to as the
(modified) randomized greedy algorithm, put forward by [16, 3] and extensively studied in
the literature primarily with respect to its approximation ratio for the maximum matching
problem (see, e.g. [42, 47] and the references therein). Pick an unmatched vertex u uniformly
at random; pick an unmatched vertex v incident on u uniformly at random and add (u, v) to
the matching M ; repeat as long as there is an unmatched edge left in the graph. It is easy
to see that at the end of the algorithm M will be an MM of G.
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As it is, this algorithm is not suitable for our purpose as finding an unmatched vertex v
incident on u is too costly. We thus instead consider the following variant which samples
the set v from all neighbors of u and only match it to u if v is also unmatched (we also
change the final check of the algorithm for maximality of M with a faster computation). See
Algorithm 2 for a pseudo-code after proper modifications.

Algorithm 2: The (Modified) Randomized Greedy Algorithm for Maximal Match-
ing.

1 Input: An n-vertex graph G(V,E) given in adjacency array representation.
2 Output: A maximal matching M of G.
3 Initialize M = ∅ and U = V .
4 while U 6= ∅ do
5 Define the threshold τ := τ(U) = 4n·β(G)

|U | .

6 Sample a vertex u uniformly at random from U .
7 if deg(u) < τ then
8 Choose a random vertex v from N(u)∩U (if non-empty), add (u, v) to M and

set U ← U \ {u, v}. If N(u) ∩ U = ∅, set U ← U \ {u}.
9 else

10 Sample a vertex v uniformly at random from N(v).
11 if v ∈ U then
12 add (u, v) to M and set U ← U \ {u, v}.
13 end
14 end
15 Return M .

We remark that the first if condition in Algorithm 2 is used to remove the costly operation
of checking if any unmatched edge is left in the graph. It is easy to see that this algorithm
always output an MM.

We prove that Algorithm 2 is fast both in expectation and with high probability on
graphs with bounded neighborhood independence. We also note that as stated, Algorithm 2
actually assumes knowledge of β(G) (needed for the definition of the threshold parameter τ).
However, we show at the end of this section that this assumption can be lifted easily and
obtain a slight modification of Algorithm 2 with the same asymptotic runtime that does not
require any knowledge of β(G).

I Theorem 4. The modified randomized greedy MM algorithm (as specified by Algorithm 2)
computes a maximal matching of a graph G given in adjacency array representation in
O(n logn · β(G)) time in expectation and with high probability.

Let t denote the number of iterations of the while loop in Algorithm 2. We can bound
the runtime of this algorithm based on t as follows.

B Claim 5. Algorithm 2 can be implemented in O(n logn · β(G) + t) time.

Proof. First, we would like to store the set U in a data structure that supports random
sampling and deletion of a vertex from U , as well as determining whether a vertex is currently
in U or not, in constant time. This data structure can be easily implemented using two
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arrays A1 and A2; we provide the rather tedious details for completeness. The arrays are
initialized as A1[i] = A2[i] = i for all i = 1, . . . , n, where A2[i] holds the index of the cell in
A1 where vi is stored, or -1 if vi is not in U , while A1 stores the vertices of U in its first |U |
cells, identifying each vi with index i. When any unmatched vertex vi is removed from U , we
first use A2[i] to determine the cell where vi is stored in A1, then we move the unmatched
vertex stored at the last cell in A1, A1[|U |], to the cell currently occupied by vi by setting
A1[A2[i]] = A1[|U |], and finally set A2[A1[|U |] = A2[i], A2[i] = −1. Randomly sampling a
vertex from U and determining whether a vertex belongs to U can now be done in O(1) time.

Using these arrays each iteration of the while loop in which deg(u) ≥ τ can be carried
out within O(1) time. Iterations for which deg(u) < τ are more costly, due to the need
to determine N(u) ∩ U . Nonetheless, in each such iteration we spend at most O(τ) time
while at least one vertex is removed from U , hence the time required by all such iterations
is bounded by

∑n
k=1 O(n·β(G)

k ) = O(n logn · β(G)). It follows that the total runtime of the
algorithm is O(n logn · β(G) + t). C

The main ingredient of the analysis is thus to bound the number t of iterations. Before
proceeding we introduce some definition. We say that an iteration of the while loop succeeds
iff we remove at least one vertex from U in this iteration. Clearly, there can be at most
n successful iterations. We prove that each iteration of the algorithm is successful with a
sufficiently large probability, using which we bound the total number of iterations.

To bound the success probability, we shall argue that for sufficiently many vertices u in
U , the number of its neighbors in U , referred to as its internal degree, is proportionate to
the number of its neighbors outside U , referred to as its external degree; for any such vertex
u, a random neighbor v of u has a good chance of belonging to U . This is captured by the
following definition.

I Definition 6 (Good vertices). For a parameter δ ∈ (0, 1), we say a vertex u ∈ U is δ-good
iff degU (u) ≥ δ · degV \U (u) or deg(u) < 1/δ.

Clearly, if we sample a δ-good vertex u ∈ U in some iteration, then with probability ≥ δ
that iteration succeeds. It thus remains to show that many vertices in U are good for an
appropriate choice of δ. We use the bounded neighborhood independence property (in a
more sophisticated way than it was used in the proof of Theorem 1) to prove the following
lemma, which lies at the core of the analysis.

I Lemma 7. Fix any choice of U in some iteration and let δ := δ(U) = 1/τ(U) (for the
parameter τ(U) defined in Algorithm 2). Then at least half the vertices in U are δ-good in
this iteration.

Proof. Let us say that a vertex u ∈ U is bad iff it is not δ-good (for the parameter δ in the
lemma statement). Let B denote the set of bad vertices and let b := |B|.

B Claim 8. There exists an independent set I ⊆ B with at least b
2δ edges leading to V \ U .

Proof. We prove this claim using a probabilistic argument. Pick a random permutation σ
of vertices in B and add each vertex v ∈ B to an initially empty independent set I = Iσ
iff v appears before all its neighbors in B according to σ. Clearly, the resulting set I is an
independent set inside B.

Let E(I) denote the set of edges that connect vertices of I with vertices of V \ U . For
any vertex v ∈ B, define a random variable Dv ∈

{
0, degV \U (v)

}
which takes value equal to
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the external degree of v iff v is added to I. Clearly, |E(I)| =
∑
v∈V Dv. We have,

E |E(I)| =
∑
v∈B

E [Dv] =
∑
v∈B

Pr (v ∈ I) · degV \U (v)

=
∑
v∈B

1
degB(v) + 1 · degV \U (v)

(v is only chosen in I iff it is ranked first by σ among itself and its degB(v) neighbors)

≥
∑
v∈B

1
δ · degV \U (v) + 1 · degV \U (v) (as B ⊆ U and vertices in B are all bad)

≥
∑
v∈B

1
2δ · degV \U (v) · degV \U (v) = b

2δ .

(as deg(v) ≥ 1
δ and hence δ · degV \U (v) ≥ 1)

It follows that there exists a permutation σ for which the corresponding independent set
I = Iσ ⊆ B has at least b

2δ edges leading to V \ U , finalizing the proof. C

We next prove Lemma 7 using an argument akin to Claim 3 in the proof of Theorem 1.
Let I be the independent set guaranteed by Claim 8. As at least b

2δ edges are going from
I to V \ U , a double counting argument implies that there exists a vertex v ∈ V \ U with
degree to I satisfying:

degI(v) ≥ b

2δ · |V \ U | ≥
b · τ(U)

2n = 2b · β(G)
|U |

, (1)

where the equality is by the choice of τ(U). Suppose towards a contradiction that b > |U | /2.
This combined with Eq (1) implies that degI(v) > β(G). Since I is an independent set,
it follows that N(v) contains an independent set of size larger than β(G), a contradiction.
Hence b ≤ |U | /2, and so at least half the vertices in U are δ-good, as required. J

We now use Lemma 7 to bound the expected number of iterations t in Algorithm 2. Let
us define the random variables X1, . . . , Xn, where Xk denotes the number of iterations spent
by the algorithm when |U | = k. Clearly, the total number of iterations t =

∑n
k=1 Xk. We

use these random variables to bound the expected value of t in the following claim. The next
claim then proves a concentration bound for t to obtain the high probability result.

B Claim 9. The number of iterations in Algorithm 2 is in expectation E [t] ≤ 8β(G) · n logn.

Proof. As stated above, E [t] =
∑n
k=1 E [Xk] and hence it suffices to bound each E [Xk]. Fix

some k ∈ [n] and consider the case when |U | = k. Recall the function δ(U) in Lemma 7. As
δ(U) is only a function of size of k, we slightly abuse the notation and write δ(k) instead of
δ(U) where k is the size of U .

By Lemma 7, at least half the vertices in U are δ(k)-good. Hence, in each iteration,
with probability at least half, we sample a δ(k)-good vertex u from U . Conditioned on this
event, either deg(u) < 1/δ(k) which means this iteration succeeds with probability 1 or
degU (u) ≥ δ(k) · degV \U (u), and hence with probability at least δ(k) the sampled vertex v
belongs to U and again this iteration succeeds. As a result, as long as U has not changed,
each iteration has probability at least δ(k)/2 to succeed.
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By the above argument, Xk statistically dominates a Poisson distribution with parameter
δ(k)/2 and hence E [Xk] ≤ 2/δ(k). To conclude,

E [t] =
n∑
k=1

E [Xk] ≤
n∑
k=1

2/δ(k) = 8β(G) · n ·
n∑
k=1

1
k
≤ 8β(G) · n logn.

which finalizes the proof. C

Claim 9 combined with Claim 5 is already enough to prove the expected runtime bound in
Theorem 4. We now prove a concentration bound for t to obtain the high probability bound.
We note that it seems possible to prove the following claim by using standard concentration
inequalities; however doing so requires taking care of several boundary cases for the case
when |U | become o(logn), and hence we instead prefer to use the following direct and more
transparent proof.

B Claim 10. The number of iterations in Algorithm 2 is t = O(β(G) · n logn) with high
probability.

Proof. Recall from the proof of Claim 9 that t =
∑n
k=1 Xk and that each Xk statistically

dominates a Poisson distribution with parameter δ(k)/2 (as defined in Claim 9). Define
Y1, . . . , Yn as independent random variables where Yk is distributed according to exponential
distribution with mean µk := 2

δ(k) . For any x ∈ R+,

Pr (Xk ≥ x) ≤
(
δ(k)

2

)x
= Pr (Yk ≥ x) .

As such, the random variable Y :=
∑n
k=1 Yk statistically dominates the random variable

t for number of iterations. Moreover by Claim 9, µ := E [Y ] = 8β(G) · n logn (the equality
for Y follows directly from the proof).

In the following, we prove that with high probability Y does not deviate from its
expectation by much. The proof follows the standard moment generating function idea (used
for instance in the proof of Chernoff-Hoeffding bound). Let y ∈ R+. For any s > 0,

Pr (Y ≥ y) = Pr
(
esY ≥ esy

)
≤

E
[
esY
]

esy
, (2)

where the inequality is simply by Markov bound. Additionally, since Y =
∑n
k=1 Yk and and

Yk’s are independent, we have for any s > 0,

E
[
esY
]

esy
=

E
[
es·
∑n

k=1
Yk

]
esy

=
∏n
k=1 E

[
es·Yk

]
esy

. (3)

Recall that for every i ∈ [n], E [Yk] = µk and Yk is distributed according to exponential
distribution. Thus, for any s < 1/µk,

E
[
esYk

]
=
∫ ∞
y=0

esy ·Pr (Yk = y) dy = 1
µk

∫ ∞
y=0

esy · e−y/µkdy = 1
1− sµk

. (4)

Recall that µk = 2/δ(k) for every k ∈ [n] and δ(1) < δ(2) < . . . < δ(n) by definition. Pick
s∗ = 1/2µ1 and so s∗ < 1/µk for all k ∈ [n]. By plugging in the bounds in Eq (4) for s = s∗
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into Eq (3), we have,

E
[
es

∗Y
]

es∗y
=
∏n
k=1 E

[
es

∗·Yk
]

es∗y
=

n∏
k=1

e−s
∗y

1− s∗µk
≤ e−s

∗y · exp
(

2
n∑
k=1

s∗µk

)
(as 1− x ≥ e−2x for x ∈ (0, 1/2])

= exp
(
− s∗y + 2s∗µ

)
= exp (−y/2µ1 + µ/µ1) .

We now plug in this bound into Eq (2) with the choice of y = 4µ to obtain that,

Pr (Y ≥ 4µ) ≤ exp (−4µ/2µ1 + µ/µ1) = exp (−µ/µ1) = exp (− logn) = 1/n,

where we used the fact that µ/µ1 ≥ logn. This means that with high probability, Y is only
4 times larger than its expectation, finalizing the proof. C

The high probability bound in Theorem 4 now follows from Claim 5 and Claim 10,
concluding the whole proof of this theorem.

Unknown β(G)
We next show that our algorithm can be easily adjusted to the case when β(G) is unknown.
The idea is simply to “guess” β(G) in powers of two, starting from β = 2 and ending at β = n,
and each time to (sequentially) run Algorithm 2 under the assumption that β(G) = β. For
each choice of β, we shall only run the algorithm for at most t = O(n logn · β(G)) iterations
(where the constant hiding in the O-notation should be sufficiently large, in accordance with
that in the proof of Claim 10) and if at the end of a run the set U in the algorithm has not
become empty, we start a new run from scratch with the next (doubled) value of β. (For
β = n, we do not terminate the algorithm prematurely and instead run it until U is empty.)

By Theorem 4, for the first choice of β for which β ≥ β(G), the algorithm must terminate
with high probability within O(n logn · β(G)) time (as β ≤ 2β(G) also). Moreover, the
runtime of every previous run is bounded deterministically by O(n logn ·β(G)). Consequently,
the total runtime is

O(n logn) ·
∑

{2i|2i≤2β(G)}

2i = O(n logn · β(G)),

where this bound holds with high probability. In this way we get an algorithm that uses no
prior knowledge of β(G) and achieves the same asymptotic performance as Algorithm 2.

5 A Lower Bound for Deterministic Maximal Matching

We prove that randomization is necessary to obtain a sublinear time algorithm for MM even
on graphs with bounded neighborhood independence.

I Theorem 11. Any deterministic algorithm that finds a maximal matching in every given
graph G with neighborhood independence β(G) = 2 (known to the algorithm) presented in the
adjacency array representation requires Ω(n2) time.

For every integer n = 8k for k ∈ N, we define Gn as the family of all graphs obtained by
removing a perfect matching from a clique Kn on n vertices. For a graph G in Gn we refer
to the removed perfect matching of size 5k as the non-edge matching of G and denote it by
M(G). Clearly, every graph in Gn has neighborhood independence β(G) = 2. Moreover, any
MM in G can have at most 2 unmatched vertices.
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Let A be a deterministic algorithm for computing an MM on every graph in Gn. We
prove Theorem 11 by analyzing a game between A and an adaptive adversary that answers
the probes of A to the adjacency array of the graph. In particular, whenever A probes a new
entry of the adjacency array for some vertex v ∈ V , we can think of A making a query Q(v)
to the adversary, and the adversary outputs a vertex v that had not been so far revealed in
the neighborhood of u (as degree of all vertices in G is exactly n− 1, A knows the degree of
all vertices and we assume it never queries a vertex u more than n− 1 times).

We now show that there is a strategy for the adversary to answer the queries of A in a
way that ensures A needs to make Ω(n2) queries before it can output an MM of the graph.

Adversary’s Strategy. The adversary picks an arbitrary set of 2k vertices D referred to
as dummy vertices. We refer to remaining vertices as core vertices and denote them by
C := V \D. The adversary also fixes a non-edge matching of size k between vertices in D,
denoted by MD. The non-edge matching of G consists of MD and a non-edge matching of
size 4k between vertices in C, denoted by MC , which unlike MD is constructed adaptively
by the adversary. We assume A knows the partitioning of V into D and C, as well as the
non-edge matching MD. Hence, the only missing information to A is identity of MC .

To answer a query Q(u) for a dummy vertex u ∈ D, the adversary simply returns any
arbitrary vertex in V (not returned so far as an answer to Q(u)) except for the pair of u in
MD which cannot be neighbor to u. To answer the queries Q(w) for core vertices w ∈ C, the
adversary maintains a partitioning of C into Cused and Cfree. Initially all core vertices belong
to Cfree and hence Cused is empty. Throughout we only move vertices from Cfree to Cused.
The adversary also maintains a counter for every vertex in Cfree on how many times they
have been queried so far. Whenever a vertex w ∈ Cfree is queried, as long as this vertex has
been queried at most k times, the adversary returns an arbitrary dummy vertex u from D as
the answer to Q(w) (which is possible because of size of D is k). Once a vertex w ∈ Cfree is
queried for its (k+ 1)-th time, we pick another vertex w′ from Cfree also, add the pair (w,w′)
to the non-edge matching MC and move both w and w′ to Cused, and then answer Q(w) for
the case w ∈ Cused as described below.

Recall that for any vertex w ∈ Cused, by construction, there is another fixed vertex w′ in
Cused (joined at the same time with w) where (w,w′) ∈ MC . For any query for w ∈ Cused,
the adversary answers Q(w) by returning an arbitrary vertex from C \ {w′}. This concludes
the description of the strategy of the adversary.

We have the following basic claim regarding the correctness of the adversary’s strategy.

B Claim 12. The answers returned by the adversary for any sequence of queries are always
consistent with at least one graph G in Gn.

Proof. We can append the current sequence of queries by the sequence that ensures all
vertices are queried n− 1 times. Thus, the adversary would eventually construct the whole
non-edge matching MC also. There exists a unique graph G in Gn where M(G) = MD ∪MC ,
hence proving the claim (note that before appending the sequence, there can be more than
one graph consistent with the original sequence). C

We now prove the following lemma which is the key step in the proof of Theorem 11.

I Lemma 13. Suppose A makes at most k2 queries to the adversary and outputs a matching
M using only these queries. Then, there exists some graph G in Gn where G is consistent
with the answers returned by the adversary to A and M(G) ∩M 6= ∅.
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Proof. Since A makes at most k2 queries, there can only be 2k vertices in Cused by the
time the algorithm finishes its queries (as each pair of vertices in Cused consumed k queries).
Consider the maximal matching M . There are at most 2k edges of M that are incident on
Cused and k more edges incident on D. This implies that at most 3k vertices in Cfree are
matched to vertices outside Cfree. As |Cfree| ≥ 5k, it means that there are at least 2k vertices
in Cfree that are not matched by M to vertices outside Cfree. However, as M is maximal,
and since G is in Gn, there should be at least k − 1 edges in M between these vertices in
Cfree. As the adversary has not committed to the non-edge matching MC entirely at this
point and this non-edge matching pairs vertices in Cfree to each other, the adversary can
simply let MC contains M and still obtain a graph G in Gn. For this graph, M(G) ∩M 6= ∅,
finalizing the proof. J

Theorem 11 now follows immediately from Lemma 13, as it state that unless the algorithm
makes Ω(n2) queries, there always exists at least one graph in Gn for which the output
matching of the algorithm is not feasible. As graphs in Gn all have β(G) = 2, we obtain
the final result.

References
1 Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm for

the maximal independent set problem. Journal of algorithms, 7(4):567–583, 1986.
2 Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computation

algorithms. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 1132–1139, 2012.

3 Jonathan Aronson, Martin E. Dyer, Alan M. Frieze, and Stephen Suen. Randomized Greedy
Matching II. Random Struct. Algorithms, 6(1):55–74, 1995.

4 Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear Algorithms for (∆ + 1) Vertex
Coloring. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2019, San Diego, California, USA, January 6-9, 2019., pages 767–786, 2019.
arXiv:1807.08886.

5 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic maximal
independent set with sublinear update time. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 815–826, 2018.

6 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully Dynamic Maximal
Independent Set with Sublinear in n Update Time. In Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 1919–1936, 2019.

7 Leonid Barenboim and Michael Elkin. Distributed deterministic edge coloring using bounded
neighborhood independence. In Proceedings of the 30th Annual ACM Symposium on Principles
of Distributed Computing, PODC 2011, San Jose, CA, USA, June 6-8, 2011, pages 129–138,
2011.

8 Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Fundamentals and Recent
Developments. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2013.

9 Leonid Barenboim, Michael Elkin, and Fabian Kuhn. Distributed (Delta+1)-Coloring in Linear
(in Delta) Time. SIAM J. Comput., 43(1):72–95, 2014.

10 Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The Locality of
Distributed Symmetry Breaking. In 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 321–330, 2012.

11 Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully Dynamic Maximal Matching in
O(log n) Update Time. SIAM J. Comput., 44(1):88–113, 2015.

http://arxiv.org/abs/1807.08886


S. Assadi and S. Solomon 17:15

12 Soheil Behnezhad, MohammadTaghi Hajiaghayi, and David G. Harris. Exponentially Faster
Massively Parallel Maximal Matching. CoRR, abs/1901.03744, 2019.

13 Yair Caro. New results on the independence number. Technical report, Technical Report,
Tel-Aviv University, 1979.

14 Maria Chudnovsky and Paul D. Seymour. The structure of claw-free graphs. In Surveys in
Combinatorics, 2005 [invited lectures from the Twentieth British Combinatorial Conference,
Durham, UK, July 2005], pages 153–171, 2005.

15 Graham Cormode, Jacques Dark, and Christian Konrad. Independent Sets in Vertex-Arrival
Streams. CoRR, abs/1807.08331, 2018.

16 Martin E. Dyer and Alan M. Frieze. Randomized Greedy Matching. Random Struct. Algorithms,
2(1):29–46, 1991.

17 Ralph Faudree, Evelyne Flandrin, and Zdeněk Ryjáček. Claw-free graphs?a survey. Discrete
Mathematics, 164(1-3):87–147, 1997.

18 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.
doi:10.1016/j.tcs.2005.09.013.

19 Manuela Fischer, Mohsen Ghaffari, and Fabian Kuhn. Deterministic Distributed Edge-Coloring
via Hypergraph Maximal Matching. In 58th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 180–191,
2017.

20 Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local Conflict Coloring. In IEEE
57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA, pages 625–634, 2016.

21 Mohsen Ghaffari. An Improved Distributed Algorithm for Maximal Independent Set. In
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 270–277, 2016.

22 Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovic, and Ronitt Rubin-
feld. Improved Massively Parallel Computation Algorithms for MIS, Matching, and Vertex
Cover. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing,
PODC 2018, Egham, United Kingdom, July 23-27, 2018, pages 129–138, 2018.

23 Mohsen Ghaffari and Jara Uitto. Sparsifying Distributed Algorithms with Ramifications in
Massively Parallel Computation and Centralized Local Computation. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019, pages 1636–1653, 2019.

24 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. Perfect Matchings in\˜ O (nˆ{1.5})
Time in Regular Bipartite Graphs. arXiv preprint, 2009. arXiv:0902.1617.

25 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. Perfect matchings via uniform sampling
in regular bipartite graphs. In Proceedings of the Twentieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 11–17,
2009.

26 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. Perfect matchings in o(n log n) time in
regular bipartite graphs. In Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 39–46, 2010.

27 Bjarni V. Halldórsson, Magnús M. Halldórsson, Elena Losievskaja, and Mario Szegedy. Stream-
ing Algorithms for Independent Sets in Sparse Hypergraphs. Algorithmica, 76(2):490–501,
2016.

28 Magnús M. Halldórsson. Wireless Scheduling with Power Control. In Algorithms - ESA 2009,
17th Annual European Symposium, Copenhagen, Denmark, September 7-9, 2009. Proceedings,
pages 361–372, 2009.

29 Magnús M. Halldórsson and Christian Konrad. Distributed Large Independent Sets in One
Round on Bounded-Independence Graphs. In Distributed Computing - 29th International
Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings, pages 559–572, 2015.

ICALP 2019

http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://arxiv.org/abs/0902.1617


17:16 When Algorithms for MIS and MM Run in Sublinear Time

30 Magnús M. Halldórsson, Guy Kortsarz, and Hadas Shachnai. Sum Coloring Interval and k-Claw
Free Graphs with Application to Scheduling Dependent Jobs. Algorithmica, 37(3):187–209,
2003.

31 Michal Hanckowiak, Michal Karonski, and Alessandro Panconesi. On the Distributed Com-
plexity of Computing Maximal Matchings. In Proceedings of the Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, 25-27 January 1998, San Francisco, California, USA.,
pages 219–225, 1998.

32 Amos Israeli and Alon Itai. A Fast and Simple Randomized Parallel Algorithm for Maximal
Matching. Inf. Process. Lett., 22(2):77–80, 1986.

33 Richard M. Karp and Avi Wigderson. A Fast Parallel Algorithm for the Maximal Independent
Set Problem. In Proceedings of the 16th Annual ACM Symposium on Theory of Computing,
April 30 - May 2, 1984, Washington, DC, USA, pages 266–272, 1984.

34 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. What cannot be computed locally!
In Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Distributed
Computing, PODC 2004, St. John’s, Newfoundland, Canada, July 25-28, 2004, pages 300–309,
2004.

35 Fabian Kuhn, Tim Nieberg, Thomas Moscibroda, and Roger Wattenhofer. Local approximation
schemes for ad hoc and sensor networks. In Proceedings of the DIALM-POMC Joint Workshop
on Foundations of Mobile Computing, Cologne, Germany, September 2, 2005, pages 97–103,
2005.

36 Fabian Kuhn, Roger Wattenhofer, and Aaron Zollinger. Ad hoc networks beyond unit disk
graphs. Wireless Networks, 14(5):715–729, 2008.

37 Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering: a method
for solving graph problems in MapReduce. In SPAA 2011: Proceedings of the 23rd Annual
ACM Symposium on Parallelism in Algorithms and Architectures, San Jose, CA, USA, June
4-6, 2011 (Co-located with FCRC 2011), pages 85–94, 2011. doi:10.1145/1989493.1989505.

38 Christoph Lenzen and Roger Wattenhofer. MIS on trees. In Proceedings of the 30th Annual
ACM Symposium on Principles of Distributed Computing, PODC 2011, San Jose, CA, USA,
June 6-8, 2011, pages 41–48, 2011.

39 Reut Levi, Ronitt Rubinfeld, and Anak Yodpinyanee. Local Computation Algorithms for
Graphs of Non-constant Degrees. Algorithmica, 77(4):971–994, 2017.

40 Nathan Linial. Locality in Distributed Graph Algorithms. SIAM J. Comput., 21(1):193–201,
1992.

41 Michael Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. In
Proceedings of the 17th Annual ACM Symposium on Theory of Computing, May 6-8, 1985,
Providence, Rhode Island, USA, pages 1–10, 1985.

42 Zevi Miller and Dan Pritikin. On randomized greedy matchings. Random Struct. Algorithms,
10(3):353–383, 1997.

43 Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA,
USA, June 1-4, 2013, pages 745–754, 2013.

44 Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld. A near-optimal sublinear-
time algorithm for approximating the minimum vertex cover size. In Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto,
Japan, January 17-19, 2012, pages 1123–1131, 2012.

45 Krzysztof Onak, Baruch Schieber, Shay Solomon, and Nicole Wein. Fully Dynamic MIS in
Uniformly Sparse Graphs. In 45th International Colloquium on Automata, Languages, and
Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, pages 92:1–92:14, 2018.

46 Alessandro Panconesi and Aravind Srinivasan. On the Complexity of Distributed Network
Decomposition. J. Algorithms, 20(2):356–374, 1996.

47 Matthias Poloczek and Mario Szegedy. Randomized Greedy Algorithms for the Maximum
Matching Problem with New Analysis. In 53rd Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages
708–717, 2012.

http://dx.doi.org/10.1145/1989493.1989505


S. Assadi and S. Solomon 17:17

48 Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast Local Computation Algorithms.
In Innovations in Computer Science - ICS 2010, Tsinghua University, Beijing, China, January
7-9, 2011. Proceedings, pages 223–238, 2011.

49 Johannes Schneider and Roger Wattenhofer. A log-star distributed maximal independent set
algorithm for growth-bounded graphs. In Proceedings of the Twenty-Seventh Annual ACM
Symposium on Principles of Distributed Computing, PODC 2008, Toronto, Canada, August
18-21, 2008, pages 35–44, 2008.

50 Shay Solomon. Fully Dynamic Maximal Matching in Constant Update Time. In IEEE 57th
Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA, pages 325–334, 2016.

51 VK Wei. A lower bound on the stability number of a simple graph. Technical report, Bell
Laboratories Technical Memorandum 81-11217-9, Murray Hill, NJ, 1981.

ICALP 2019





Robust Communication-Optimal Distributed
Clustering Algorithms
Pranjal Awasthi
Rutgers University, Piscataway, NJ, USA
pranjal.awasthi@rutgers.edu

Ainesh Bakshi
Carnegie Mellon University, Pittsburgh, PA, USA
abakshi@cs.cmu.edu

Maria-Florina Balcan
Carnegie Mellon University, Pittsburgh, PA, USA
ninamf@cs.cmu.edu

Colin White
Carnegie Mellon University, Pittsburgh, PA, USA
crwhite@cs.cmu.edu

David P. Woodruff
Carnegie Mellon University, Pittsburgh, PA, USA
dwoodruf@cs.cmu.edu

Abstract
In this work, we study the k-median and k-means clustering problems when the data is distributed
across many servers and can contain outliers. While there has been a lot of work on these problems for
worst-case instances, we focus on gaining a finer understanding through the lens of beyond worst-case
analysis. Our main motivation is the following: for many applications such as clustering proteins by
function or clustering communities in a social network, there is some unknown target clustering, and
the hope is that running a k-median or k-means algorithm will produce clusterings which are close
to matching the target clustering. Worst-case results can guarantee constant factor approximations
to the optimal k-median or k-means objective value, but not closeness to the target clustering.

Our first result is a distributed algorithm which returns a near-optimal clustering assuming a
natural notion of stability, namely, approximation stability [12], even when a constant fraction of the
data are outliers. The communication complexity is Õ(sk+z) where s is the number of machines, k is
the number of clusters, and z is the number of outliers. Next, we show this amount of communication
cannot be improved even in the setting when the input satisfies various non-worst-case assumptions.
We give a matching Ω(sk + z) lower bound on the communication required both for approximating
the optimal k-means or k-median cost up to any constant, and for returning a clustering that is close
to the target clustering in Hamming distance. These lower bounds hold even when the data satisfies
approximation stability or other common notions of stability, and the cluster sizes are balanced.
Therefore, Ω(sk + z) is a communication bottleneck, even for real-world instances.

2012 ACM Subject Classification Theory of computation → Unsupervised learning and clustering

Keywords and phrases robust distributed clustering, communication complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.18

Category Track A: Algorithms, Complexity and Games

Related Version A full version of the paper is available at https://arxiv.org/abs/1703.00830.

Acknowledgements This work was supported in part by NSF grants CCF-1422910, CCF-1535967,
IIS-1618714, an Office of Naval Research (ONR) grant N00014-18-1-2562, an Amazon Research
Award, a Microsoft Research Faculty Fellowship, and a National Defense Science & Engineering
Graduate (NDSEG) fellowship. Part of this work was done while Ainesh Bakshi and David Woodruff
were visiting the Simons Institute for the Theory of Computing.

EA
T

C
S

© Pranjal Awasthi, Ainesh Bakshi, Maria-Florina Balcan, Colin White, and
David Woodruff;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 18; pp. 18:1–18:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pranjal.awasthi@rutgers.edu
mailto:abakshi@cs.cmu.edu
mailto:ninamf@cs.cmu.edu
mailto:crwhite@cs.cmu.edu
mailto:dwoodruf@cs.cmu.edu
https://doi.org/10.4230/LIPIcs.ICALP.2019.18
https://arxiv.org/abs/1703.00830
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


18:2 Robust Communication-Optimal Distributed Clustering

1 Introduction

Clustering is a fundamental problem in machine learning with applications in many areas
including computer vision, text analysis, bioinformatics, and so on. The underlying goal
is to group a given set of points to maximize similarity inside a group and dissimilarity
among groups. A common approach to clustering is to set up an objective function and
then approximately find the optimal solution according to the objective. Common examples
of these objective functions include k-median and k-means, in which the goal is to find k
centers to minimize the sum of the distances (or sum of the squared distances) from each
point to its closest center. Motivated by real-world constraints, further variants of clustering
have been studied. For instance, in k-clustering with outliers, the goal is to find the best
clustering (according to one of the above objectives) after removing a specified number of
data points, which is useful for noisy data. Finding approximation algorithms to different
clustering objectives and variants has attracted significant attention in the computer science
community [7, 23, 24, 25, 28, 31, 41].

As datasets become larger, sequential algorithms designed to run on a single machine are
no longer feasible for real-world applications. Additionally, in many cases data is naturally
spread out among multiple locations. For example, hospitals may keep records of their
patients locally, but may want to cluster the entire spread of patients across all hospitals in
order to do better data analysis and inference. Therefore, distributed clustering algorithms
have gained popularity in recent years [18, 20, 42, 32, 40, 29, 27]. In the distributed setting, it
is assumed that the data is partitioned arbitrarily across s machines, and the goal is to find a
clustering which approximates the optimal solution over the entire dataset while minimizing
communication among machines. Recent work in the theoretical machine learning community
establishes guarantees on the clusterings produced in distributed settings for certain problems
[18, 20, 42]. For example, [42] provides distributed algorithms for k-center and k-center with
outliers, and [20] introduces distributed algorithms for capacitated k-clustering under any `p
objective. Along similar lines, the recent work of [32] provides constant-factor approximation
algorithms for k-median and k-means with z outliers in the distributed setting. The work
of Guha et al. also provides the best known communication complexity bound of O(sk + z)
where s is the number of machines, and z is the number of outliers.

Although the above results provide a constant-factor approximation to k-median or
k-means objectives, many real-world applications desire a clustering that is close to a ‘ground
truth’ clustering in terms of the structure, i.e., the way the points are clustered rather
than in terms of cost. For example, for applications such as clustering proteins by function
or clustering communities in a social network, there is some unknown target clustering,
and the hope is that running a k-median or k-means algorithm will produce clusterings
which are close to matching the target clustering. While in general having a constant
factor approximation provides no guarantees on the closeness to the optimal clustering, a
series of recent works has established that this is possible if the data has certain structural
properties [10, 11, 12, 16, 21, 30, 39, 46]. For example, the (1 + α, ε)-approximation stability
condition defined by [12] states that any (1 + α)-approximation to the clustering objective is
ε-close to the target clustering. For such instances, it is indeed possible to output a clustering
close to the ground truth in polynomial time, even for values of α such that computing a
(1+α)-approximation is NP-hard. We follow this line of research and ask whether distributed
clustering is possible for non worst-case instances, in the presence of outliers.
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1.1 Our contributions
A distributed clustering instance consists of a set of n points in a metric space partitioned
arbitrarily across s machines. The problem is to optimize the k-median/k-means objective
while minimizing the amount of communication across the machines. We consider algorithms
that approximate the optimal cost as well as computing a clustering close to the target
clustering in Hamming distance. Our contributions are as follows:
1. In Section 3, we give a centralized clustering algorithm whose output is ε-close to the

target clustering, in the presence of z outliers, assuming the data satisfies (1 + α, ε)-
approximation stability and assuming a lower bound on the size of the optimal clusters.
To the best of our knowledge, this is the first polynomial time algorithm for clustering
approximation stable instances in the presence of outliers. Our results hold for arbitrary
values of z, including when a constant fraction of the points are outliers, as long as there
is a lower bound on the minimum cluster size.

2. We then give a distributed algorithm whose output is close to the target clustering, assum-
ing the data satisfies (1 +α, ε)-approximation stability. The communication complexity is
Õ (sk), where s is the number of servers and k is the number of clusters. We also extend
this to handle z outliers, with a communication complexity Õ (sk + z). This matches the
worst-case communication of [32], while outputting a near-optimal clustering by taking
advantage of new structural guarantees specific to approximation stability with outliers.

3. While the above algorithms improve over worst-case distributed clustering algorithms
in terms of quality of the returned clustering, our algorithms use the same amount of
communication as the worst case protocols. In Section 4, we show that the Ω(sk) and
Ω(sk + z) communication costs for clustering without and with outliers are unavoidable
even if data satisfies many types of stability assumptions that have been studied in the
literature. Our lower bound of Ω(sk + z) for obtaining a c-approximation (for any c ≥ 1)
holds even when the data is arbitrarily stable, e.g., (1 + α, ε)-approximation stable for all
α ≥ 0 and 0 ≤ ε < 1.

4. We also give an Ω(sk + z) lower bound for the problem of computing a clustering whose
Hamming distance is close to the optimal clustering, even when the data is approximation-
stable. Finally, we prove that our above Ω(sk + z) lower bounds hold for finding a
clustering close to the optimal in Hamming distance even when it is guaranteed that the
optimal clusters are completely balanced, i.e., each cluster is of size n−z

k (in addition to the
guarantee that the clustering satisfies approximation stability), implying our algorithms
from Section 3 are optimal. Therefore, Ω(sk + z) is a fundamental communication
bottleneck, even for real-world clustering instances.

1.2 Related Work
There is a long line of work on approximation algorithms for k-median and k-means clustering
[24, 36, 41], and the current best approximation ratios are 2.675 [23] and 6.357 [4], respectively.
The first constant-factor approximation algorithm for k-median with z outliers was given
by Chen [28], and the current best approximation ratios for k-median and k-means with
outliers are 7.081 + ε and 53.002 + ε, respectively, given by Krishnaswamy et al. [38]. There
is also a line of work on clustering with balance constraints on the clusters [5, 3, 30]. For
k-median and k-means clustering in distributed settings, the work of Balcan et al. showed
a coreset construction for k-median and k-means, which leads to a clustering algorithm
with Õ(skd) communication, where d is the dimension, and also studied more general graph
topologies for distributed computing [18]. Huang et al. [34] showed a coreset construction for
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doubling metrics. Malkomes et al. showed a distributed 13- and 4- approximation algorithm
for k-center with and without outliers, respectively [42]. Chen et al. studied clustering under
the broadcast model of distributed computing, and also proved a communication complexity
lower bound of Ω(sk) for distributed clustering [27], building on a recent lower bound for
set-disjointness in the message-passing model [22]. Recently, [32] showed a distributed
algorithm with Õ(sk + z) communication for computing a constant-factor approximation
to k-median clustering with z outliers. They also provide bicriteria approximations that
remove (1 + ε)z outliers to get a clustering of cost O

(
1 + 1

ε

)
times the cost of the optimal

k-median clustering with z outliers, for any ε > 0. Even more recently, [40] showed that
there exists a bi-criteria algorithm with communication independent of z that achieves a
constant approximation to the cost. In particular, their algorithm outputs (1 + ε)z outliers
and achieves a (24 + ε)-approximation with O

(
sk
ε + s log ∆

ε

)
communication, where ∆ is the

aspect ratio of the metric.
In recent years, there has also been a focused effort towards understanding clustering

for non worst-case models [43, 1, 21, 39]. The work of Balcan et al. defined the notion of
approximation stability and showed an algorithm which utilizes the structure to output a
nearly optimal clustering [12]. Approximation stability has been studied in a wide range of
contexts, including clustering [15, 17, 14], the k-means++ heuristic [2], social networks [33],
and computing Nash-equilibria [9]. A recent paper by Chekuri and Gupta introduces the
model of clustering with outliers under perturbation resilience, a notion of stability which is
related to approximation stability [26].

2 Preliminaries

Given a set V of points of size n, a distance metric d, and an integer k, let C denote a
clustering of V , which we define as a partition of V into k subsets C1, . . . , Ck. Each cluster
Ci contains a center ci. When d is an arbitrary distance metric, we must choose the centers
from the point set. If V ⊆ Rd and the distance metric is the Euclidean distance, then the
centers can be any k points in Rd. In fact, this distinction only changes the cost of the
optimal clustering by at most a factor of 2 by the triangle inequality for any p (see, e.g., [8]).

The k-median and the k-means costs are
∑
i

∑
v∈Ci d(ci, v), and

∑
i

∑
v∈Ci d(ci, v)2

respectively. For k clustering with z outliers, the problem is to compute the minimum cost
clustering over n − z points, e.g., we must decide which z points to remove, and how to
cluster the remaining points, to minimize the cost. We will denote the optimal k-clustering
with z outliers by OPT , and we denote the set of outliers for OPT by Z. We often overload
notation and let OPT denote the objective value of the optimal clustering as well. We denote
the optimal clusters as C∗1 , . . . , C∗k , with centers c1, . . . , ck. We say that two clusterings C
and C′ are δ-close if they differ by only δ(n− z) points, i.e., minσ

∑k
i=1 |Ci \C ′σ(i)| < δ(n− z).

Let C∗min = minj∈[k] |C∗j |, i.e., the minimum cluster size. Given a point c ∈ V , we define
Vc ⊂ V to be the closest set of C∗min points to c.

We study a notion of stability called approximation stability. Intuitively, a clustering
instance satisfies this assumption if all clusterings close in value to OPT are also close in
terms of the clusters themselves. This is a desirable property when running an approximation
algorithm, since in many applications, the k-means or k-median costs are proxies for the final
goal of recovering a clustering that is close to the desired “target” clustering. Approximation
stability makes this assumption explicit. This was first defined for clustering with z = 0 [12],
however, we generalize the definition to the setting with outliers.
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IDefinition 1 (approximation stability). A clustering instance satisfies (1+α, ε)-approximation
stability for k-median or k-means with z outliers if for all k-clusterings with z outliers, denoted
by C, if cost(C) ≤ (1 + α) · OPT , then C is ε-close to OPT .

This definition implies that all clusterings close in cost to OPT must have nearly the
same set of outliers, because if C contains more than ε(n−z) points from Z, then C and OPT
cannot be ε-close. This is similar to related models of stability for clustering with outliers,
e.g. [26]. Note it is standard in this line of work to assume the value of α is known [12].

We will study distributed algorithms under the standard framework of the coordinator
model. There are s servers, and a designated coordinator. Each server can send messages
back and forth with the coordinator. This model is very similar to the message-passing
model, also known as the point-to-point model, in which any pair of machines can send
messages back and forth. In fact, the two models are equivalent up to constant factors in the
communication complexity [22]. Most of our algorithms can be applied to the mapreduce
framework with a constant number of rounds. For more details, see [20, 42].

For our communication lower bounds, we work in the multi-party message passing model,
where there are s players, P1, P2, . . . , Ps, who receive inputs X1, X2, . . .Xs respectively.
They have access to private randomness as well as a common publicly shared random string
R, and the objective is to communicate with a central coordinator who computes a function
f : X1 ×X2 . . .×Xs → {0, 1} on the joint inputs of the players. The communication has
multiple rounds and each player is allowed to send messages to the coordinator. Note, we
can simulate communication between the players by blowing up the rounds by a factor of 2.
Given Xi as an input to player i, let Π be the random variable that denotes the transcript
between the players and the referee when they execute a protocol Π. For i ∈ [s], let Πi

denote the messages sent by Pi to the referee.
A protocol Π is called a δ-error protocol for function f if there exists a function Πout such

that for every input, Pr
[
Πout = f(X1, X2, . . . Xs)

]
≥ 1− δ. The communication cost of a

protocol, denoted by |Π|, is the maximum length of Π over all possible inputs and random
coin flips of all the s players and the referee. The randomized communication complexity of
a function f , Rδ(f), is the communication cost of the best δ-error protocol for computing f .
For our lower bounds, we also consider that the data satisfies a very strong, general notion
of stability which we call c-separation.

I Definition 2 (separation). Given c ≥ 1 and a clustering objective, a clustering instance
satisfies c-separation if c ·maxi maxu,v∈C∗

i
d(u, v) < mini minu′∈C∗

i
,v′ /∈C∗

i
d(u′, v′).

Intuitively, this definition implies the maximum distance between any two points in one
cluster is a factor c smaller than the minimum distance across clusters. This assumption
has been used in several papers (for clustering with no outliers) to show guarantees for
various algorithms [13, 44, 37]. We note that this notion of stability captures a wide class of
previously studied notions including perturbation resilience [21, 10, 16, 6] and approximation
stability.

I Definition 3 (perturbation resilience). For β > 0 , a clustering instance (V, d) satisfies
1 +α-perturbation resilience for the k-means objective, if for any function d′ : V × V → R≥0,
such that for all p, q ∈ V , d(p, q) ≤ d′(p, q) ≤ (1 + β)d(p, q), and the optimal clustering under
d′ is unique and equal to the optimal clustering under d, for the k-means objective.

We note we can replace the objective with any center based objective such as k-median
or k-center. Next, we show that separation implies approximation stability and perturbation
resilience. We defer the proof to the Appendix.
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I Lemma 4. Given α, ε > 0, and a clustering objective such as k-median, let (V, d) be a
clustering instance which satisfies c-separation, for c > (1 + α)n, where n = |V |. Then (V, d)
satisfies (1 + α, ε)-approximation stability and (1 + α)-perturbation resilience.

3 Approximation Stability with Outliers

In this section, we give a centralized algorithm for clustering with z outliers under approxim-
ation stability, and then extend it to a distributed algorithm for the same problem. To the
best of our knowledge, this is the first result for clustering with outliers under approximation
stability, as well as the first distributed algorithm for clustering under approximation stability
even without outliers. We defer the details to the Appendix. Our algorithm can handle any
fraction of outliers, even when the set of outliers makes up a constant fraction of the input
points. For simplicity, we focus on k-median.

I Theorem 5 (Centralized Clustering). Algorithm 1 runs in poly
(
n,
(
α
ε

(
k + 1

α

)) 1
α

)
time and

outputs a clustering that is ε-close to OPT for k-median with z outliers under (1 + α, ε)-
approximation stability, assuming for all i, |C∗i | ≥ 2

(
1 + 5

α

)
ε(n− z).

Note that the runtime is at most poly
(
n

1
α

)
, and if αε ∈ Θ(k), the runtime is poly

(
n, k

1
α

)
.

The algorithm has two high-level steps. First, we use standard techniques from approximation
stability without outliers to find a list of clusters X , which contains clusters from the optimal
solution (with ≤

(
1 + 1

α

)
ε(n− z) mistakes), and clusters made up mostly of outlier points.

We show how all but 1/α of the outlier clusters must have high cost if their size were to
be extended to the minimum optimal cluster size, and can thus be removed from our list
X . Finally, we use brute force enumeration to remove the final 1

α outlier clusters, and after
another cluster purifying step, we are left with a k clustering which (1 + α)-approximates
the cost and thus is guaranteed to be ε-close to optimal.

We begin by outlining the key properties of (1 + α, ε)-approximation stability. Let wavg
denote the average distance from each point to its optimal center, so wavg · (n− z) = OPT .
The following lemma is the first of its kind for clustering with outliers and establishes two
key properties for approximation stable instances. Intuitively, the first property bounds the
number of points that are far away from their optimal center, and follows from Markov’s
inequality. The second property bounds the number of points that are either closer on
average to the center of a non-optimal cluster that the optimal one or are outliers that are
close to some optimal center as compared to a point belonging to that cluster.

I Lemma 6. Given a (1 + α, ε)-approximation stable clustering instance (V, d) for k-median
such that for all i, |C∗i | > 2ε(n − z), then Property 1: For all y > 0, there exist at most
yε
α (n− z) points, v, such that d(v, cv) ≥ αwavg

yε . Property 2: There are fewer than ε(n− z)
total points with one of the following two properties: the point v is in an optimal cluster C∗i ,
and there exists j 6= i such that d(v, cj)− d(v, ci) ≤ αwavg

ε , or, the point v is in Z, and there
exists i and v′ ∈ C∗i such that d(v, ci) ≤ d(v′, ci) + αwavg

ε (recall that Z denotes the set of
outliers from the optimal clustering).

We define a point as bad if it falls into the bad case of either Property 1 (with y = 5) or
Property 2, and we denote the set of bad points by B. Otherwise, a point is good. From
Properties 1 and 2, |B| ≤

(
1 + 5

α

)
ε(n − z). For each i, let Gi denote the good points

from the optimal cluster C∗i . We consider the graph G′ = (V,E′) called the neighborhood
graph, constructed by adding an edge (u, v) iff there are at least |B|+ 2 points w such that
d(u,w), d(v, w) ≤ τ = 2wavg

5 . Under approximation stability, the graph G′ has the following
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structure: there is an edge between all pairs of good points from C∗i and there is no edge
between any pair of good points belonging to distinct clusters, C∗i , C∗j . Further, these points
do not have any common neighbors. Since the set of good points in each cluster, denoted by
Gi, form cliques of size > |B| and are far away from one another, and there are ≤ |B| bad
points, it follows that each Gi is in a unique connected component C ′i of G′.

In the setting without outliers, the list of connected components of size greater than(
1 + 5

α

)
εn is exactly {C ′1, . . . , C ′k}. However, in the setting with outliers, we can only return

a set X which includes {C ′1, . . . , C ′k} but also may include many other outlier clusters which
are hard to distinguish from the optimal clusters. Although approximation stability tells us
that any set Z ′ of outliers must have a much higher cost than any optimal cluster C∗i (since
we can arrive at a contradiction by replacing the cluster C∗i with the cluster Z ′), this is not
true when the size of Z ′ is even slightly smaller than C∗i . Since the good clusters returned
are only O

(
ε
α

)
-close to optimal, many good clusters may be smaller than outlier clusters,

and so a key challenge is to distinguish outlier clusters Z ′ from good clusters C ′i.
To accomplish this task, we compute the minimum cost of each cluster, pretending that

its size is at least C∗min (the size of the minimum optimal cluster, which we can guess in
polynomial time). In our key structural lemma (Lemma 7), we show that nearly all outlier
components will have large cost. Given a set of points Q, we define costmin(Q) to be the
minimum cost of Q if it were extended to C∗min points. Note, costmin(Q) can be computed in
polynomial time by iterating over all points c ∈ Q, for each such point constructing Vc by
adding the the C∗min − |Q| points closest to c, computing the resulting cost, and taking the
minimum over all such costs.

Algorithm 1 k-median with z-outliers under Approximation Stability.
Input: Clustering instance (V, d), cost wavg, value C∗min, integer x > 0.
1. Create the neighborhood graph on V with parameters τ = 2wavg

5ε and b = C∗min − (1 +
5
α )ε(n−z) as follows: for each u, v ∈ V , add an edge (u, v) iff there exist ≥ b points w ∈ V
such that d(u,w), d(w, v) ≤ τ . Denote the connected components by X = {Q1, . . . , Qd}.

2. For each Qi, compute costmin(Qi) = minc∈Qi minVc
∑
v∈Vc d(c, v), where Vc must satisfy

|Vc| ≥ C∗min and Qi ⊆ Vc. Create a new set X ′ = {Qi | costmin(Qi) <
(
3 + 2α

5
) 1
x ·OPT }.

.
3. For all 0 ≤ t ≤ x, for each size t subset X ′t ⊆ X ′ and size (k − |X ′| − t) subset Xt ⊆

(X \ X ′),
a. Create a new clustering C = X ′ ∪ Xt \ X ′t .
b. For each point v ∈ V , define I(v) as the index of the cluster in C with minimum median

distance to v, e.g., I(v) = argmini (dmed(v,Qi)) where dmed(v,Qi) denotes the median
distance from v to Qi.

c. Let V ′ ⊆ V denote the n− z points with the smallest values of d(v, cI(v)). For all i,
set Q′i = {v ∈ V ′ | I(v) = i}.

d. If
∑
i cost(Q′i) ≤ (1 + α)OPT , return {Q1, . . . , Qk}.

I Lemma 7. Given an instance of k-median clustering with z outliers such that each
optimal cluster |C∗i | > 2

(
1 + 5

α

)
ε(n − z), for any x ∈ N, the instance satisfies (1 + α, ε)-

approximation stability for α > 35
5x−4 , and there are at most x disjoint sets of outliers Z ′

such that |Z ′| > mini |C∗i | −
(
1 + 5

α

)
ε(n− z) and costmin(Z ′) ≤

(
3 + 2α

5
) 1
xOPT .

The key ideas behind the proof are as follows. If there are two sets of outliers Z1 and Z2
both with fewer than C∗min points, then we can obtain a contradiction by taking into account
both sets of outliers. Set 1 ≤ z1, z2 ≤

(
1 + 5

α

)
ε(n − z) such that |Z1| = C∗min − z1 and
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|Z2| = C∗min − z2, and assume without loss of generality that z1 < z2. We design a different
clustering C′ by first replacing the minimum-sized cluster in the optimal clustering with
Z1. The cost of the points in Z2 is low by assumption. However, we have now potentially
assigned more than z points to be outliers by an additive z1 amount. Hence, in order to
create a valid clustering that is far from OPT we need to add back at least z1 more outlier
points. We do this by choosing z1 outlier points from Z2 that are closest to an optimal center
in OPT . To bound the additional cost incurred, we use the fact that Z2 must be close to at
least z2 points from V \ Z, by the assumption that costmin(Z2) is low, and use these points
to bound the distance from centers in OPT to the z1 points that were added back. In the
full proof, we extend this idea to x sets Z1, . . . , Zx to achieve a tradeoff between x and α.

From Lemma 7, we show a threshold of costmin for the components of X , such that
all but x optimal clusters are below the cost threshold, and all but x outlier clusters are
above the cost threshold. Then we can brute force over all ways of excluding x low-cost sets
and including x high-cost sets, and we will be guaranteed that one combination contains
a clustering which is O

(
ε
α

)
-close to the optimal. However, we still need to recognize the

right clustering when we see it. To do this, we show that after performing one more cluster
purifying step which is inspired by arguments in [12] - reassigning all points to the component
with the minimum median distance - we will reduce our error to ε(n−z) in Hamming distance
and we show how to bound the total cost of these mistakes by 4α

5 OPT . Therefore, during
brute force enumeration, we return immediately when we find a clustering with cost at most
(1 + α)OPT (and thus must be ε-close to OPT ). Then we can try all possible values of
C∗min while only incurring a polynomial increase in the runtime of the algorithm. For wavg,
we first run an approximation algorithm for k-median with z outliers to obtain a constant
approximation to wavg (e.g., [38]). The constant in the minimum allowed optimal cluster
size then increases by a factor of 7. This is because we need to use a smaller value of τ when
constructing the neighborhood graph G′, and so the number of “bad” points increases. In
order to show all the good connected components from G′ contain a majority of good points,
we merely increase the bound on the minimum cluster size.

Distributed Setting. Next, we give a distributed algorithm for approximation stability with
outliers using Õ (sk + z) communication. However, as opposed to worst case, we can get
close to the ground truth (target) clustering. In Section 4, we show a matching lower bound.

I Theorem 8 (Distributed Clustering). Given a (1 + α, ε)-approximation stable clustering
instance, there exists an algorithm that runs in poly

(
n

1
α

)
time and with high probability

outputs a clustering that is O(ε)-close to OPT for k-median with Õ (sk + z) communication
if each optimal cluster C∗i has cardinality at least max

{
2
(
1 + 22

α

)
ε(n− z),Ω

(
(n−z)
sk

)}
.

We start by giving intuition for our algorithm where there are no outliers. The high-level
structure of the algorithm can be thought of as a two-round version of the centralized
algorithm from approximation stability with no outliers [12]. Each machine effectively creates
a coreset of its input, consisting of a weighted set of points, and sends these weighted points
to the coordinator. The coordinator runs the same algorithm on these sets of weighted
centers, to output the final solution.

In the analysis, we define good and bad points using Property (1) above with y = 20 as
opposed to y = 5, so that there are more bad points than in the non-distributed setting,
|B| =

(
1 + 1

20
)
ε(n− z), but for each optimal cluster C∗i , the good points Gi are even more

tightly concentrated. In the first round, each machine computes the neighborhood graph
described above with parameter τ = wavg

10 . This more stringent definition of τ ensures that
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Claims (1) and (2) above are not only true for the input point set, but also true for a
summarized version of the point set, where each point represents a ball of data points within
a radius of τ . Therefore, there is still enough structure present such that the coordinator can
compute a near-optimal clustering, and finally the coordinator sends the k resulting (near
optimal) centers to each machine.

Now we expand this approach to the case with outliers. The starting point of the algorithm
is the same: we perform two rounds of the sequential approximation stability algorithm with
no outliers, so that each machine computes a summary of its point set, and the coordinator
clusters the points it receives. Recall that in the centralized setting, running the non-outlier
algorithm produces a list of clusters X , some of which are near-optimal and some of which
are outlier clusters, and then we crucially computed the costmin of each potential cluster to
distinguish the near-optimal clusters from the outlier clusters. In the distributed setting, we
can construct the set X using the two-round approach.

However, the costmin computation is sensitive to small sets of input points, and, as a
result, the coresets will not give the coordinator enough information to perform this step
correctly. In particular, this involves finding the closest points to a component that increase
the cardinality to C∗min, and these points may be arbitrarily partitioned across the machines.
Furthermore, the centralized algorithm can easily try all possible centers to compute the
minimum cost of a given component Q, but it is much harder in the distributed setting to even
find an approximately optimal center. Even with a center c chosen, the coordinator needs a
near-exact estimate of the minimum cost of Q, however, it does not know the C∗min closest
points to c. Therefore our distributed algorithm must balance accuracy with communication.

For each component Q, the coordinator simulates logn random draws from Q by querying
its own weighted points, and then querying the machine of the corresponding point. This
allows the coordinator to find a center c whose cost is only a constant factor away from the
best center. To compute costmin(c), the coordinator runs a binary-search procedure with all
machines to find the minimum distance t such that Bt(c) contains more than C∗min points.

Given a random point v from Q, by a Markov inequality, there is a 1/2 chance that the
cost of center v on Vc is at most twice the cost with center c. From a Chernoff bound, by
sampling 10 logn points for each component, each component will find a good center with
high probability. Therefore, the coordinator can evaluate the cost of each component up to a
factor of 2, which is sufficient to (nearly) distinguish the outlier clusters from the near-optimal
clusters. The rest of the algorithm is similar to the centralized setting. We brute-force all
combinations of removing x low-cost clusters from X and adding back x high-cost clusters
from x. We perform one more cluster purifying step, and then check the cost of the resulting
clustering. If the cost is smaller than (1 + α)wavg(n− z), then we return this clustering.

Similar to the centralized setting, we can use existing algorithms (e.g. [32]) to approximate
wavg, and we can use binary search to find C∗min. The algorithm communicates Õ(sk + z)
bits to approximate wavg. The communication in the first step is O (sk logn), since there are
at most min

{
s
ε , O(sk)

}
sets of size at least max

{
εn
s ,

n
sk

}
, each of which are communicated

to the coordinator. The total communication to compute costmin for every component is
Õ(sk). The binary search wrapper to find C∗min adds a logn multiplicative factor. Therefore,
the total communication is Õ (sk + z).
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4 Communication Complexity Lower Bounds

In this section, we show lower bounds for the communication complexity of distributed
clustering with and without outliers. We prove Ω(sk + z) lower bounds for two types of
clustering problems: computing a clustering whose cost is at most a c-approximation to the
optimal (or even just to determine the cost up to a factor of c) for any c ≥ 1, and computing
a clustering which is δ-close to OPT , for any δ < 1

4 . This shows prior work of [32] is tight.
Our lower bounds hold even under c-separation (Definition 2). Furthermore, our lower

bounds for δ-close clustering hold even under a weaker version of clustering, which we
call locally-consistent clustering. In this problem, instead of assigning a globally consistent
index in {1, . . . , k} for each point, each player only needs to assign indices to its points
that is consistent in a local manner, e.g., the assignment of index set {1, . . . , k} to clusters
{C1, . . . , Ck} chosen by player 1 might be a permutation of the assignment chosen by player
2. We work in the communication model described in Section 2.

I Definition 9 (Multi-party set disjointness (DISJs,`)). Given s players, denoted by P1, P2,
. . .Ps, player Pj receives as input a bit vector Xj of length `. Let X denote the a binary
matrix such that each Xj is a column of X. Let Xi denote the i-th row of X and Xj [i]
denote the (i, j)-th entry of X. Then, DISJs,` =

∨
i∈[`]

∧
j∈[s]X

j [i], i.e., DISJs,` = 0 if at
least one row of X corresponds to the all ones vector and 1 otherwise.

We note that set disjointness is a fundamental problem in communication complexity
and we use the following lower bound for DISJs,` in the message-passing model by [22]:

I Theorem 10 (Communication complexity of DISJs,` [22]). For any δ > 0, s = Ω(log(n)) and
` ≥ 1, the randomized communication complexity of multi-party set disjointness, Rδ(DISJs,`),
is Ω(s`).

We use the above theorem to show a lower bound of Ω(sk + z) for distributed clustering
algorithms that attain an approximation to the cost of the optimal clustering under center-
based clustering objectives such as k- median and k-means even if the instance satisfies
strong beyond-worse case stability assumptions. We note that our first reduction is a slight
modification of the reduction that appears in [27] and we show how to extend the reduction
to stable instances and to account for outliers. Intuitively, the parameters of the reduction
are carefully chosen so that the clustering instance created either has k or k + 1 distinct
locations, toggled by the disjointness instance being yes or no. The lower bound for outliers
requires starting with a two player, balanced instance of set disjointness, introduced by [45].

I Theorem 11. Given c1 ≥ 1, c2 ≥ 0, the communication complexity for computing a c1-
approximation for k-median, k-means, or k-center clustering is Ω(sk), even when promised
that the instance satisfies c2-separation. Further, for the case of clustering with z outliers,
computing a c1-approximation to k-median, k-means, or k-center cost, given the promise
that the instance satisfies c2-separation requires Ω(sk + z) bits of communication.

We note that thus far we have ruled out a distributed clustering algorithm that has
communication complexity less than Ω(sk + z) to output the exact clustering under strong
stability assumptions. Next, we show an Ω(sk + z) lower bound when the goal is to return a
clustering that is δ < 1

4 -close to optimal in Hamming distance, i.e., outputting a clustering
that differs from the optimal clustering in a δ-fraction of the points, given that the instance
is (1 + α, ε)-stable for any setting of these parameters.

We show that our lower bounds hold even when the algorithm outputs a c-approximate
solution to the clustering cost of a 1

4 -close clustering. Intuitively, the proof is again a
reduction from DISJs,`, similar to the proof of Theorem 11. The main difference is that the
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coordinator now adds roughly n
2 copies of a subset of points in our construction, to make

the optimal clustering stand out from the rest. The main technical challenge is to figure
out how to add these points such that the optimal clustering stands out in both yes and no
instances. Therefore, recovering an approximation to the optimal clustering in Hamming
distance provides enough information to solve set disjointness.

I Theorem 12. Given c1 ≥ 1, c2 ≥ 0, and 0 < δ < 1
4 , the communication complexity for

computing a c1-approximation to the k-median, k-means, or k-center objective with z outliers
and outputting a clustering that is δ-close to the optimal, Ω(sk + z), even when promised
that the instance satisfies c2-separation.

Though the above lower bounds are quite general, it is possible that the hard instances
may have the optimal clusters to be very different in cardinality if sk is large. The smallest
cluster may be size O

(
n
sk

)
, while the largest cluster may be size Ω(n). Often, real-world

instances have roughly balanced clusters. There is a line of work on clustering with balance
constraints on the clusters [5, 3, 30], and some of our algorithmic results assume a lower
bound on the minimum cluster size.

We note that our previous reduction for proving a lower bound against δ-close clustering
algorithms fundamentally relies on testing the cardinality of the clusters. Therefore, we
extend our previous lower bounds to the setting where we are promised that the input clusters
are well balanced, i.e., have roughly the same cardinality. We still consider algorithms that
only get δ-close to the optimal clustering. We begin by defining the following basic notions
from information theory:

I Definition 13 (Entropy and conditional entropy). The entropy of a random variable X drawn
from distribution µ, denoted as X ∼ µ, with support χ, is given by H(X) =

∑
x∈χ Prµ[X =

x] log 1
Prµ[X=x] . Given two random variable X and Y with joint distribution µ, the entropy

of X conditioned on Y is given by H(X | Y ) =
Ey∼µ(Y )

[∑
x∈χ Prµ(X|Y=y)[X = x] log 1

Prµ(X|Y=y)[X=x]

]
.

Note, the binary entropy function H2(X) is the entropy function for the distribution
µ(X) supported on {0, 1} such that µ(X) = 1 with probability p and µ(X) = 0 otherwise.

I Definition 14 (Mutual information and conditional mutual information). Given random
variables X and Y , the mutual information between X and Y is given by I(X;Y ) = H(X)−
H(X | Y ) = H(Y ) − H(Y | X). The conditional mutual information between X and Y ,
conditioned on a random variable Z is given by I(X;Y | Z) = H(X | Z)−H(X | Y,Z) =
H(Y | Z)−H(Y | X,Z).

Recall, the δ-error randomized communication complexity of A, Rδ(A), in the message
passing model is communication complexity of any randomized protocol Π that solves A
with error at most δ. Let µ be a distribution over X1, X2, . . . Xs. We call a deterministic
protocol (δ, µ)-error if it gives the correct answer for A on at least a 1−δ fraction of the input,
weighted by the distribution µ. Let Dµ,δ(A) denote the cost of the minimum communication
(δ, µ)-error protocol. By Yao’s minimax lemma, Rδ(A) ≥ maxµDµ,δ(A). Therefore, in order
to lower bound the randomized communication complexity of A, it suffices to construct a
distribution µ over the input such that any deterministic protocol that is correct on 1− δ
fraction of any input can be analyzed easily. The communication complexity of a protocol Π
is also lower bounded by its information complexity.

I Definition 15 (Information complexity of A). For i ∈ [s], let Πi be a random variable that
denotes the transcript of the messages sent by player Pi to the coordinator. We overload
notation by letting Π denote the concatenation of Π1 to Πs. Then, the information complexity
of A is given by ICµ,δ(A) = min(δ,µ)-error Π I(X1, X2, . . . Xs; Π).
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Since information lower bounds communication (see, e.g., [35]), Rδ(A) ≥ ICµ,δ(A) in
the message passing model. So our proof strategy is to construct a distributed protocol for
solving the above problem using an algorithm that obtains a δ-close clustering for balanced
clusters. We then design a distribution µ over the input and lower bound the information
complexity of the resulting problem by Ω(k). We then amplify the bound by introducing s/2
copies of Alice and Bob (as before). Next, we describe this proof strategy in detail.

We begin with a two-player communication problem, where Alice and Bob receive length
` bit vectors, and the objective is to compute the AND function on each index in [`]. We
then construct a gadget that reduces computing AND on any particular index to solving a
2-clustering problem, where each cluster has 2 points (and thus the instance is balanced). The
gadget is such that Alice and Bob insert 2 points each, at a fixed set of locations determined
by their input, and the optimal 2-clustering places Alice’s points in different clusters iff the
AND evaluates to true. The same holds for Bob. Therefore, Alice and Bob learn each other’s
bit simply looking at the output of the clustering algorithm. The players then create this
gadget for each index in their input, and place the gadgets sufficiently far from each other.

Observe, a δ-close clustering algorithm must output a (1− 2δ)-fraction of the clusters
correctly. Using such an algorithm as a distributed protocol enables the players to learn the
AND function on a (1− 2δ)-fraction of the coordinates. Note the underlying communication
problem here does not correspond to well-studied problems such as set disjointness. However,
some proofs of the lower bound for multi-party set disjointness do reduce to computing the
AND function on every index [19]. Therefore, we relate the communication complexity of the
above problem to the amount of information revealed by any protocol that is correct on a
large fraction of the input.

We define a distribution µ over the input such that each bit for Alice and Bob is set to
be 1 with probability 1/2 independently and 0 otherwise. Here, we observe that the δ-close
clustering algorithm implies a (2δ, µ)-protocol for computing AND on each index. Therefore,
we prove that the information complexity of a (2δ, µ)-protocol is Ω(`). Intuitively, this says
any correct deterministic protocol that is correct on a 1− 2δ fraction of the input, for the
given input distribution µ, must reveal Ω(1) information on every index that has at least one
1, which amounts to communicating the bit. Since our gadget has 2 clusters for each index,
setting ` = Θ(k) obtains an Ω(k) communication lower bound. Using our previous strategy
of duplicating the Alice and Bob players s/2 times, we obtain the following theorem:

I Theorem 16. Given δ < 1
4 and the promise that the optimal clusters are balanced, i.e.,

the cardinality of each cluster is n
k , the communication complexity for computing a clustering

that is δ-close to the optimal k-means or k-median clustering is Ω(sk).

Finally, we extend the above lower bound to clustering instances that are balanced and
also satisfy (1 + α, ε)-approximation stability, again obtaining an Ω(sk + z) lower bound.
Perhaps surprisingly, we show that there is no trade-off between the stability parameters
and the communication lower bound even if the clusters are balanced and the algorithm
outputs a clustering that is δ < ε/4 close to the optimal clustering. In contrast, our previous
result can handle all δ < 1/4. Intuitively, to obtain a clustering instance that is (1 + α, ε)-
approximation stable, we restrict the number of indices on which AND evaluates to 1 to be
O(εn). Therefore we start with a promise version of the multi-party set disjointness problem,
where the promise states if the sets intersect, they intersect on exactly one element. Formally,

I Definition 17 (Promise multi-party set disjointness (PDISJs,`)). Given s players denoted
by P1,. . . , Ps, each player receives a bit vector Xj of length `. Let X denote a binary
matrix such that each Xj is a column of X. Let Xi denote the i-th row of X and Xj

i denote
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the (i, j)-th entry of X. We are promised that at most one row of X has all ones. Then,
PDISJs,` =

∨
i∈[`]

∧
j∈[s]X

j
i , i.e., PDISJs,` = 0 if any row of X corresponds to the all ones

vector and 1 otherwise.

We use a result of [19] to lower bound the communication complexity of set-disjointness
in the multi-party communication model.

I Theorem 18 (Communication complexity of PDISJs,` [19]). For any δ > 0, s, ` ∈ N, the
randomized communication complexity of promise multi-party set disjointness, Rδ(PDISJs,`),
is Ω(`/s2).

We show any algorithm obtaining a δ-close clustering, given the clusters are balanced and
the clustering instance is (1 +α, ε)-stable can be converted into a randomized communication
protocol that solves PDISJs,`. At a high level, Alice and Bob receive length ` bit vectors
and create a gadget for each index in [`]. If the number of indices on which the bit vectors
intersect is at most εk, the instance is (1 + α, ε)-stable. We ensure this by constructing
gadgets that incur an arbitrarily high cost in all other cases (see the Appendix for details).

We note that if our clustering instance has exactly one index on which AND evaluates
to 1, it is easy for a randomized protocol to be incorrect with good probability. In order to
circumvent this issue and maintain (1 + α, ε)-stability, Alice and Bob create εn− 1 = 2εk− 1
dummy indices that are set to 1 for both players. Further, Alice and Bob use public
randomness to agree on a uniform permutation of the padded input and apply this permutation
before constructing the gadgets and running the clustering algorithm. Intuitively, permuting
the indices ensures that the δ-close clustering gets a typical cluster right with reasonable
probability, by being oblivious to the dummy clusters that were used as padding.

Since we uniformly permute the indices of the input before running the protocol, for any
given index, the corresponding cluster has Hamming distance 0 from the optimal clustering
with probability at least 1− ε. This implies at most an ε-fraction of the clusters are incorrect.
The protocol outputs a clustering that is known to both Alice and Bob. For each index
of their input, they know whether their pair of points lie in the same cluster or different
clusters. Let I be the set of indices for which Alice and Bob’s points lie in different clusters.
If I > 4εk, the protocol outputs fail. Otherwise, Alice communicates her input on the set I
to Bob. Bob applies an inverse random permutation to indices in set I, and verifies if the
indices correspond to the dummy indices that were added or indeed the sets are not disjoint.
Note the verification step requires additional communication. Since I ≤ 4εk, and ε is at most
a small constant, the total additional communication is O(k/c) for some large constant c.

Consider the case where the sets are not disjoint. Then there is an index i∗ such that
AND on this index evaluates to 1, and with probability at least 1− ε, the clustering algorithm
correctly clusters the corresponding 2-means gadget. This implies that Alice and Bob know
that their pair of points lie in different clusters, thus i∗ is in the set I and Alice communicates
her input on index i∗ to Bob. Bob can then verify that i∗ is not a dummy index and indeed
the sets are not disjoint.

The case where the sets are disjoint is more subtle. Now the clustering algorithm may
return 4εk indices such that Alice’s points belong to separate clusters, i.e., they correspond to
a (1, 1) input, therefore leading to false positives. However, we observe that we can verify if
the sets are disjoint by Alice sending over her input bits on the set I to Bob. Bob can verify
if they correspond to the dummy indices and the sets are indeed disjoint. This increases the
over all communication by O(k/c). We recall that the promise problem requires Ω(`) = Ω(k)
communication and thus the communication of the above protocol is Ω(k − εk) = Ω(k). We
use the technique of cloning Alice and Bob s/2 times, so communicating the solution to each
player requires Ω(sk) bits of communication. Finally, we show how to extend this lower
bound to the case of outliers to get an overall Ω(sk + z) lower bound:

ICALP 2019
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I Theorem 19. Given a (1 + α, ε)-approximation stable instance with z outliers such that
ε = o(1) and δ < ε

4 , and the promise that the optimal clusters are balanced, i.e., the cardinality
of each cluster is n−z

k , the communication complexity for computing a clustering that is
δ-close to the optimal k-means or k-median clustering is Ω(sk + z).
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Abstract
One of the most fundamental problems in Computer Science is the Knapsack problem. Given a set of
n items with different weights and values, it asks to pick the most valuable subset whose total weight
is below a capacity threshold T . Despite its wide applicability in various areas in Computer Science,
Operations Research, and Finance, the best known running time for the problem is O(T n). The
main result of our work is an improved algorithm running in time O(T D), where D is the number
of distinct weights. Previously, faster runtimes for Knapsack were only possible when both weights
and values are bounded by M and V respectively, running in time O(nMV ) [17]. In comparison,
our algorithm implies a bound of O(nM2) without any dependence on V , or O(nV 2) without any
dependence on M . Additionally, for the unbounded Knapsack problem, we provide an algorithm
running in time O(M2) or O(V 2). Both our algorithms match recent conditional lower bounds
shown for the Knapsack problem [10, 15].

We also initiate a systematic study of general capacitated dynamic programming, of which
Knapsack is a core problem. This problem asks to compute the maximum weight path of length
k in an edge- or node-weighted directed acyclic graph. In a graph with m edges, these problems
are solvable by dynamic programming in time O(km), and we explore under which conditions the
dependence on k can be eliminated. We identify large classes of graphs where this is possible and
apply our results to obtain linear time algorithms for the problem of k-sparse ∆-separated sequences.
The main technical innovation behind our results is identifying and exploiting concavity that appears
in relaxations and subproblems of the tasks we consider.
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1 Introduction

A large number of problems in Computer Science can be formulated as finding the optimal
subset of items to pick in order to maximize a given objective subject to capacity constraints.

A core problem in this class is the Knapsack problem: In this problem, each of the n items
has a value and a weight and the objective is to maximize the total value of the selected
items while having total weight at most T .

A standard approach for solving such capacitated problems is to use dynamic programming.
Specifically, the dynamic programming algorithm keeps a state that tracks how much of the
available capacity has already been exhausted. The runtime of these algorithms typically
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incurs a multiplicative factor equal to the total capacity. In particular, in the case of the
Knapsack problem the classical dynamic programming algorithm due to Bellman [6] has a
runtime of O(Tn).

In contrast, uncapacitated problems do not restrict the number of elements to be selected,
but charge an extra cost for each one of them (i.e. they have a soft as opposed to a hard
capacity constraint). The best known algorithms for these problems are usually much faster
than the ones for their capacitated counterparts, i.e. for the uncapacitated version of knapsack
one would need to pick all items whose value is larger than their cost. Therefore a natural
question that arises is whether or when the additional dependence of the runtime on the
capacity is really necessary.

In this work, we make progress towards answering this question by exploring when this
dependence can be improved or completely eliminated.

Knapsack. We first revisit the Knapsack problem and explore under which conditions we
can obtain faster algorithms than the standard dynamic programming algorithm.

Despite being a fundamental problem in Computer Science, no better algorithms are
known in the general case for over 60 years and it is known to be notoriously hard to improve
upon. The best known algorithm for the special case where both the weights and the values
of the items are small and bounded by M and V respectively, is a result by Pisinger [17]
who presents an algorithm with runtime O(nMV ).

Even for the subset sum problem, which is a more restricted special case of knapsack
where the value of every item is equal to its weight, the best known algorithm beyond the
textbook algorithm by Bellman [6] was also an algorithm by Pisinger [17] which runs in time
O(nM) until significant recent progress by Bringmann [7] and Koiliaris and Xu [14] was able
to bring its the complexity down to Õ(n+ T ).

However, recent evidence shows that devising a more efficient algorithm for the general
Knapsack problem is much harder. Specifically, [10, 15] reduce the (max,+)-convolution
problem to Knapsack, proving that any truly subquadratic algorithm for Knapsack (i.e. O((n+
T )2−ε)) would imply a truly subquadratic algorithm for the (max,+)-convolution problem.
The problem of (max,+)-convolution is a fundamental primitive inherently embedded into a
lot of problems and has been used as evidence for hardness for various problems in the last
few years (e.g. [10, 15, 3]). However, an important open question remains here: Can we get
faster algorithms that circumvent this conditional lower bound?

We answer this question affirmatively by providing an algorithm running in time O(TD),
where D is the number of distinct weights. Our algorithm is deterministic and computes
the optimal Knapsack value for all capacities t from 1 to T . Since D ≤ n, its runtime either
matches (for D = Θ(n)) or yields an improvement (for D = o(n)) over Bellman’s algorithm
[6], for all parameter regimes. It also directly implies runtimes of O(TM)1, O(nM2)2,
and O(nV 2), and therefore also yields an improvement over the O(nMV ) algorithm of
Pisinger [17].

1 Concurrent and independent work by Bateni, Hajiaghayi, Seddighin, and Stein [4] also obtains an
algorithm running in time Õ(T M), as well as an algorithm running in time Õ(T V ). In comparison to
ours, their Õ(T M) algorithm is randomized and computes the answer only for a single capacity T .

2 Eisenbrand and Weismantel [11] develop fast algorithms for Integer Programming. Concurrently and
independently, they also obtain an algorithm for Knapsack that runs in time O(nM2). They provide a
structural property of Knapsack using the Steinitz Lemma that enables us to remove logarithmic factors
in T from our results for Unbounded Knapsack (Theorem 13), as they reduce to the case T = Θ(M2).
Combined with Theorem 8, this also implies an O(M3) algorithm for Knapsack.
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Table 1 Summary of our deterministic pseudopolynomial time results on the Knapsack problem
with the corresponding known conditional lower bounds based on (min, +)-convolution.

Setting Our Results Conditional Lower bounds

Knapsack
No bounds on weights or values O(T D) [Theorem 8] Ω((T D)1−o(1)) [10, 15]

Weights bounded by M O(T M) [Corollary 11] Ω((T M)1−o(1)) [10, 15]

Values bounded by V O(nV 2) [Corollary 12] –

Unbounded Knapsack
Weights bounded by M O(M2) [Corollary 14] Ω(M2−o(1)) [10, 15]

Values bounded by V O(V 2) [Corollary 15] –

Our algorithm can be summarized as follows: First, it partitions the items into D sets
according to their weights and solves the knapsack problem in each set of the partition for
every possible capacity up to T . This can be done efficiently in O(T ) time as all items in
each set have the same weight and thus knapsack can be greedily solved in those instances.
Having a sequence of solutions for every capacity level for each set of items allows us to
obtain the overall solution by performing (max,+)-convolutions among them. Even though it
is not known whether computing general (max,+)-convolutions in truly sub-quadratic time
is possible, we exploit the inherent concavity of the specific family of sequences produced by
our algorithm to perform this in linear time. We present our results in Section 3.1.

In addition to the general Knapsack problem studied above, we also consider the Unboun-
ded Knapsack problem where there are infinite copies of every item. In Section 3.2, we present
novel algorithms for Unbounded Knapsack with running times O(M2)3 and O(V 2), where
M is the maximum weight and V is the maximum value of any item. Our algorithm again
utilizes (max,+)-convolutions of short sequences to compute the answer and interestingly is
only pseudo-polynomial with respect to the maximum weight M or the maximum value V
and not the capacity T .

Our results are summarized in Table 1.
It follows from the results of [10, 15] that, under the (min,+)-convolution hardness

assumption, it is not possible to obtain faster runtimes for Knapsack under most of the
parameterizations that we consider. This is because, even though the lower bound claimed in
these results is Ω((n+ T )2−o(1)), the hardness construction uses a Knapsack instance where
T , M , and D are Θ(n).

Capacitated Dynamic Programming. In addition to our results on the knapsack problem,
we move on to study capacitated problems in a more general setting. Specifically, we consider
the problem of computing a path of maximum reward between a pair of nodes in a weighted
Directed Acyclic Graph, where the capacity constraint corresponds to an upper bound on
the length of the path.

This model has successfully been used for uncapacitated problems [19, 15], as well as
capacitated problems with weighted adjacency matrices that satisfy a specific condition,
namely the Monge property [2, 18, 5]. In [5], it is shown that under this condition, the

3 Jansen and Rohwedder [13] extend the results of [11] for Integer Programming and also concurrently
and independently obtain an algorithm for Unbounded Knapsack running in time O(M2).
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maximum weight of a path of length k is concave in k. Whenever such a concavity property
is true, one can always solve the capacitated problem by replacing the capacity constraint
with an “equivalent” cost per edge. This cost can be identified through a binary search
procedure that checks whether the solution for the uncapacitated problem with this cost
corresponds to a path of length k.

Our second main result, Theorem 18, gives a complete characterization of such a concavity
property for transitive node-weighted graphs. We show that this holds if and only if the
following graph theoretic condition is satisfied:
For every path a→ b→ c of length 2, and every node v, at least one of the edges (a, v) and
(v, c) exists.

To illustrate the power of our characterization, we show that a linear algorithm can be
easily obtained for the problem of k-sparse ∆-separated subsequences [12] recovering recent
results of [8, 16].

To complement our positive result which allows us to obtain fast algorithms for finding
maximum weight paths of length k, we provide strong evidence of hardness for transitive
node-weighted graphs which do not satisfy the conditions of our characterization. We base
our hardness results on computational assumptions for the (max,+)-convolution problem we
described above.

Beyond node-weighted graphs, when there are weights on the edges, no non-trivial
algorithms are known other than for Monge graphs. Even in that case, we show that linear
time solutions exist only if one is interested in finding the max-weight path of length k

between only one pair of nodes. If one is interested in computing the solution in Monge
graphs for a single source but all possible destinations, we provide an algorithm that computes
this in near-linear time in the number of edges in the graph.

2 Preliminaries

We first describe the problems of Knapsack and Unbounded Knapsack:

I Definition 1 (Knapsack). Given N items with weights w1, . . . , wN ∈ [M ] and values
v1, . . . , vN ∈ [V ], and a parameter T , our goal is to find a set of items S ⊆ [N ] of total
weight at most T (i.e.

∑
i∈S

wi ≤ T ) that maximizes the total value
∑
i∈S

vi. We will denote the

number of distinct weights by D.

I Definition 2 (Unbounded Knapsack). Given N items with weights w1, . . . , wN ∈ [M ] and
values v1, . . . , vN ∈ [V ], and a parameter T , our goal is to find a multiset of items S ⊆ [N ]
of total weight at most T (i.e.

∑
i∈S

wi ≤ T ) that maximizes the total value
∑
i∈S

vi. We will

denote the number of distinct weights by D.

Throughout the paper we make use of the following operation between two sequences
called (max,+)-convolution.

I Definition 3 ((max,+)-convolution). Given two sequences a0, . . . , an and b0, . . . , bm, the
(max,+)-convolution a⊕ b between a and b is a sequence c0, . . . , cn+m such that for any i

ci = max
0≤j≤i

{aj + bi−j}

This operation is commutative, so it is also true that

ci = max
0≤j≤i

{ai−j + bj}
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Our algorithms rely on uncovering and exploiting discrete concavity that is inherent in
the problems we consider.

I Definition 4 (Concave, k-step concave). A sequence b0, . . . , bn is concave if for all i ∈ [n−1]
we have bi − bi−1 ≥ bi+1 − bi. A sequence is called k-step concave if its subsequence
b0, bk, b2k, . . . is concave and for all i such that i mod k 6= 0, we have that bi = bi−1.

For the problems defined on graphs with edge weights, we typically assume that their
weighted adjacency matrix is given by a Monge matrix.

I Definition 5 (Monge matrices). A matrix A ∈ Rn×m is called Monge if for any i ∈ [n− 1]
and j ∈ [m− 1]

Ai,j +Ai+1,j+1 ≥ Ai+1,j +Ai,j+1

I Definition 6 (Monge weights). We will say that a Directed Acyclic Graph has Monge
weights if its weighted adjacency matrix is a Monge matrix.

In addition to our positive results, we present evidence of computational hardness assuming
for (max,+)-convolution problem.

I Definition 7 ((max,+)-convolution hardness). The (max,+)-convolution hardness hypo-
thesis states that any algorithm that computes the (max,+)-convolution of two sequences of
size n requires time Ω(n2−o(1)).

A result of [3] shows that the (max,+)-convolution problem is equivalent to the following
problem: Given an integer n and three sequences a0, . . . , an, b0, . . . , bn, and c0, . . . , cn,
compute max

i+j+k=n
{ai + bj + ck}. In our conditional lower bounds, we will be using this

equivalent form of the conjecture.

3 Knapsack

In this section we present two novel pseudo-polynomial deterministic algorithms, one for
Knapsack and one for Unbounded Knapsack. The running times of these algorithms signific-
antly improve upon the best known running times in the small-weight regime. In essence,
the main improvements stem from a more principled understanding and systematic use of
(max,+)-convolutions. Thus, we show that devising faster algorithms for special cases of
(max,+)-convolution lies in the core of improving algorithms for the Knapsack problem. In
Theorem 8, we present an algorithm for Knapsack that runs in time O(TD), where T is the
size of the knapsack and D is the number of distinct item weights. Then, in Theorem 13, we
present algorithms for Unbounded Knapsack with runtimes O(M2) and O(V 2), where M is
the maximum weight and V the maximum value of some item.

3.1 Knapsack
Given N items with weights w1, . . . , wN ∈ [M ] and values v1, . . . , vN ∈ [V ], and a parameter
T , our goal is to find a set of items S ⊆ [N ] of total weight at most T (i.e.

∑
i∈S

wi ≤ T ) that

maximizes the total value
∑
i∈S

vi. We will denote the number of distinct weights by D.

The following is the main theorem of this section.

I Theorem 8. Algorithm 1 solves Knapsack in time O(TD).
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Algorithm 1 Knapsack.

1: Given items with weights in {w#
1 , . . . , w

#
D}

2: Partition items into sets S1, . . . , SD, so that Si = {j | wj = w#
i }

3: for i ∈ [D] and t ∈ [T ] do
4: b

(i)
t ← solution for Si with knapsack size t

5: s← empty sequence
6: for i ∈ [D] do
7: s← s⊕ b(i) using Lemma 10
8: Truncate s after the T -th entry
9: Output sT

Overview. The main ingredient of this result is an algorithm for fast (max,+)-convolution
in the case that one of the two sequences is k-step concave. Using the SMAWK algorithm [1]
it is not hard to see how to do this in linear time for k = 1. For the general case, we show
that computing the (max,+)-convolution of the two sequences can be decomposed into n

k

subproblems of computing the (max,+)-convolution between two size-k subsequences of the
two sequences. Furthermore, the subsequence that came from the k-step concave sequence is
concave and so each subproblem can be solved in time O(k) and the total time spent in the
subproblems will be O(nk k) = O(n).

I Lemma 9. Given an arbitrary sequence a0, . . . , am and a concave sequence b0, . . . , bn we
can compute the (max,+) convolution between a and b in time O(m+ n).

Proof. Consider a (zero-indexed) (n + 1) × (m + 1) matrix A with Aij = aj + bi−j for
(i, j) ∈ {0, . . . , n}× {0, . . . ,m}, where we suppose that elements of the sequences with out-of-
bounds indices have value −∞. Note now that (a⊕ b)i is by definition equal to the maximum
value of row i of A. Therefore computing a⊕ b corresponds to finding the row maxima of A.
Now note that for any (i, j) ∈ {0, 1, . . . , n− 1} × {0, 1, . . . ,m− 1}, we have

Ai,j −Ai,j+1 =aj + bi−j − aj+1 − bi−j−1
concavity

≥ aj + bi+1−j − aj+1 − bi−j
=Ai+1,j −Ai+1,j+1

therefore A is Monge. The main result of [1] is that given an (n+ 1)× (m+ 1) Monge matrix
A, one can compute all its row maxima in time O(m+ n), which implies the Lemma. J

I Lemma 10. Given an arbitrary sequence a0, . . . , am and a k-step concave sequence
b0, . . . , bn we can compute the (max,+) convolution of a and b in time O(m+ n).

Proof. We use the fact that we can compute the (max,+) convolutions of an arbitrary
sequence with a concave sequence in linear time (Lemma 9). Since b is a k-step concave
sequence, taking every k-th term of it one gets a concave sequence of size O(n/k). Then,
we do the same for a, taking k subsequences of size m/k each. Therefore we can compute
the convolution between the concave sequence and all of these subsequences of a in linear
time. The results of these convolutions can be used to compute the final sequence. We now
describe this in detail.

For ease of notation, we will again assume that our sequences take value −∞ in out-of-
bounds indices. Let x(i) := (ai, ak+i, a2k+i, . . . ) denote the subsequence of a with indices
whose remainder is i when divided by k, and y := (b0, bk, b2k, . . . ). Furthermore, define

fi = ∞max
q=0
{bqk + ai−qk}
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Now, for any j we have
jmax

i=j−k+1
fi = jmax

i=j−k+1

∞max
q=0
{bqk + ai−qk}

= jmax
i=j−k+1

∞max
q=0
{bqk+j−i + ai−qk}

= ∞max
z=0
{bz + aj−z}

where the second equality follows from the fact that bqk+t = bqk for any t ∈ [k − 1] and
the third from the fact that z = qk + j − i can take any value in [0,∞).

This is the j-th element of the (max,+)-convolution between a and b, so the elements of
this convolution are exactly the maxima of size-k segments of f .

In order to compute f , note that for some p, the convolution between x(p) and y gives us
all values of f of the form fqk+p, for any q. This is because from the definition of f ,

fqk+p = ∞max
z=0
{bzk + aqk+p−zk}

= ∞max
z=0
{yz + x

(p)
q−z}

= (x(p) ⊕ y)q

Furthermore, y is a concave sequence and by Lemma 9 we can compute such a convolution
in time O((m+ n)/k). Doing this for all p ∈ {0, . . . , k − 1}, we can compute all values of f
in time O(m+ n).

Now, in order to compute the target sequence, we have to compute the maxima of all
size-k segments of f . We can do that using a simple sliding window technique. Specifically,
suppose that for some segment [i, i+ k− 1] we have an increasing subsequence of f[i,...,i+k−1],
containing all the potentially useful elements. The first element of this subsequence is the
maximum value of f in the segment [i, i+k−1]. Now, to move to [i+1, i+k], we remove fi if
it is in the subsequence, and then we compare fi+k with the last element in the subsequence.
Note that if that last element has value ≤ fi+k, it will never be the maximum element in
any segment. Therefore we can remove it and repeat until the last element has value greater
than fi+k, at which point we just insert fi+k in the end of the subsequence. Note that by
construction, this subsequence will always be decreasing, and the first element will be the
maximum of the respective segment. The total runtime is linear if implemented with a
standard queue. J

Now that we have these tools we can use them to prove the main result of this section:

Proof of Theorem 8. Consider any knapsack instance where D is the number of distinct
item weights w#

1 , . . . , w
#
D. Now for each i ∈ [D] let ci be the number of items with weight

w#
i and v(i)

1 ≥ v
(i)
2 · · · ≥ v

(i)
ci their respective values.

If we only consider items with weights w#
i , the knapsack problem is easy to solve,

since we will just greedily pick the most valuable items until the knapsack fills up. More
specifically, if bs is the maximum value obtainable with a knapsack of size s, we have that
b0 = 0, bwi = v

(i)
1 , b2wi = v

(i)
1 + v

(i)
2 , . . . , and also bj = bj−1 for any j not divisible by w#

i .
Therefore b is a w#

i -step concave sequence.
In order to compute the full solution, we have to compute the (max,+) convolution of D

such sequences. Since by Lemma 10 each convolution takes linear time and we only care
about the first T values of the resulting sequence (i.e. we will only ever keep the first T
values of the result of a convolution), the total runtime is O(TD), where T is the size of
the knapsack. J
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I Corollary 11. Knapsack can be solved in O(TM) time.

I Corollary 12. Knapsack can be solved in time O(nM2) or O(nV 2).

Proof. The first bound directly follows by Corollary 11 and the fact that T ≤ nM . For the
second bound, note that by swapping the role of the weights and the values in Algorithm 1,
replacing all (max,+)-convolutions by (min,+)-convolutions, and setting the knapsack
capacity to nV as opposed to T , this algorithm runs in time O(nV 2) and outputs for every
possible value, the minimum weight of items that can achieve this value. The answer
can then be recovered by finding the minimum value that gives a corresponding weight of
at most T . J

3.2 Unbounded Knapsack
Given N items with weights w1, . . . , wN and values v1, . . . , vN , and a parameter T , our goal
is to find a multiset of items S ⊆ [N ] of total weight at most T (i.e.

∑
i∈S

wi ≤ T ) that

maximizes the total value
∑
i∈S

vi. We will denote the largest item weight by M .

Note that this problem is identical to Knapsack except for the fact that there is no limit
on the number of times each item can be picked. This means that we can assume that there
are no two items with the same weight, since we would only ever pick the most valuable
of the two.

Algorithm 2 Unbounded Knapsack.

1: Let v(0) be a sequence where v(0)
x is the value of the element with weight x or −∞ if no

such element exists
2: for z = 1, . . . , dlogMe do
3: v(z) ← v(z−1) ⊕ v(z−1)

4: a[0,M ] ← v(dlogMe)

5: for i = dlog T
M e, . . . , 1 do

6: a[ T

2i−M, T

2i +M] ← a[ T

2i−M, T

2i ] ⊕ a[0,M ]
7: a[ T

2i−1−M, T

2i−1 ] ← a[ T

2i−M, T

2i +M] ⊕ a[ T

2i−M, T

2i +M]
8: Output aT

The following is the main theorem of this section:

I Theorem 13. Algorithm 2 solves Unbounded knapsack in time O(M2 log T ).

Overview. As in the algorithm for Knapsack our algorithm utilizes (max,+)-convolutions,
but with a different strategy. We aren’t using any concavity arguments here, but in fact we
will use the straightforward quadratic-time algorithm for computing (max,+)-convolutions.
The main argument here is that if all the weights are relatively small, one can always partition
any solution in two, so that the weights of the two parts are relatively close to each other.
Therefore, for any knapsack size we only have to compute the optimal values for a few
knapsack sizes around its half, and not for all possible knapsack sizes.

We can now proceed to the proof of this result.

Proof of Theorem 13. Consider any valid solution to the unbounded knapsack instance.
Since every item has weight at most M , we can partition the items of that solution into
two multisets with respective weights W1 and W2, so that |W1 −W2| < M (one can obtain
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this by repeatedly moving any item from the larger part to the smaller one). This implies
the following, which is the main fact used in our algorithm: If as is the maximum value
obtainable with a knapsack of size s, then we have that

as =
[
(as/2−M/2, . . . , as/2+M/2)⊕2]

s

where ⊕2 denotes (max,+)-convolution squaring, i.e. applying (max,+)-convolution between
a sequence and itself.

First, we compute the values a1, . . . , aM in O(M2 logM) time as follows: We start with
the sequence v(0), where v(0)

x is the value of the element with weight x, or −∞ if such an
item does not exist. Now define v(i+1) = (v(i) ⊕ v(i))[0,M ]. This convolution can be applied
in time O(M2) for any i, since we are always only keeping the first M entries. By induction,
it is immediate that v(i) contains the optimal values achievable for all knapsack sizes in [M ]
using at most 2i items. Therefore a0,...,M ≡ v(dlogMe)

0,...,M , which as we argued can be computed
in time O(M2 logM).

Now, suppose that we have computed the values a T

2i−M
, . . . , a T

2i
for some i. By convolving

this sequence with a0, . . . , aM we can compute in time O(M2) the values a T

2i +1, . . . , a T

2i +M .
Now, convolving the sequence a T

2i−M
, . . . , a T

2i +M with itself gives us a T

2i−1−M
, . . . , a T

2i−1

(here we used the fact that to compute a2j we only need the values aj−M/2, . . . , aj+M/2).
Doing this for i = dlog T e, . . . , 2, 1, we are able to compute the values aT−M , . . . , aT in
total time O(M2 log T ). The answer to the problem, i.e. the maximum value achievable, is
max{aT−M , . . . , aT }. J

Recent work of [11] shows, using the Steinitz lemma, that an optimal Knapsack solution
for a capacity in [T −M,T ] can be turned into an optimal solution for capacity T by inserting
or removing at most M elements, where M is a bound on weight of the items. In the case
of Unbounded Knapsack, a solution that only uses the best item until it exceeds capacity
T −M2 can always be extended into an optimal solution with capacity T . Therefore the
capacity can be assumed to be O(M2). Combining this with the M2

2Ω(√log M) -time randomized

algorithm of [20] (or the deterministic algorithm of [9]) for (max,+)-convolution implies an
algorithm that runs in time M2

2Ω(√log M)O (logM) = M2

2Ω(√log M) .

I Corollary 14. Unbounded Knapsack can be solved in time O(M2).

A similar argument can be used to get a more efficient algorithm when we have a bound
on the values of the items. In particular, using the item j with the highest value-to-weight
ratio vj/wj , k = b Twj

c+ 1 times, until we exceed the capacity we get both a lower bound of
(k − 1)vj and a upper bound of kvj on the value of the optimal solution. In addition, again
by the Steinitz Lemma, there exists an optimal solution that uses item j at least k−V times.
This allows us to start from value (k − V )vj and compute the minimum weight required to
achieve values in [(k − 1)vj , kvj ]. This gives an algorithm that runs in O(V 2 log V ) using
the naive algorithm for (min,+)-convolutions, and O V 2

2Ω(√log V ) , again using the improved

algorithms in [20] or [9].

I Corollary 15. Unbounded Knapsack can be solved in time O(V 2).
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4 k-link path in Node-weighted graphs

We now move on to study more general capacitated dynamic programming settings, described
by computing the maximum reward k-link path in a directed acyclic graph. This setting
can capture a lot of natural capacitated problems, either directly or indirectly, such as the
Knapsack problem, k-sparse ∆-separated sequences, max-weight increasing subsequence of
length k, and so on. Therefore a better understanding of these special cases might lead to
improved algorithms for other capacitated problems.

More specifically, we study the problem of finding maximum-reward paths in node-
weighted transitive DAGs. In Lemma 16, we show that in general this problem is hard, by
reducing (max,+)-convolution to it. We then proceed to show our second main result, which
provides a family of graphs for which the problem can be efficiently solved.

I Lemma 16 ((max,+)-hardness of Node-weighted graphs). Given a transitive DAG, a pair
of vertices s and t, and an integer k, the problem of computing a maximum reward path from
s to t with at most k edges is (max,+)-convolution hard, i.e. requires Ω((mk)1−o(1)) time
assuming (max,+)-convolution hardness.

As we saw in the introduction, one can solve the problem if the optimal value as a function
of the capacity is concave. This is made formal in the following lemma:

I Lemma 17 (Concave functions). Let G be a node-weighted transitive DAG with n vertices
and m edges, whose weights’ absolute values are bounded by M , and let f(x) be the maximum
reward obtainable in a path of length x. If f is a concave function, then one can reduce the
capacitated problem (i.e. computing f(k) for some k) to solving O(log(nM)) uncapacitated
problems with some fixed extra cost per item. Since each one of these problems can be solved
in O(m) time, the total runtime is O(m log(nM)).

In Lemma 18 we give a complete graph-theoretic characterization of the graphs that have
this concavity property and therefore can be solved efficiently.

I Lemma 18 (Concavity characterization). The problem of finding a maximum reward path
with at most k edges in a transitive DAG is concave for all choices of node weights if and
only if for any path u1 → u2 → u3 and any node v either u1 → v or v → u3 (Property P).

Proof. Let f(k) be the maximum reward obtainable with a path of exactly k edges.
⇒: Let G be a DAG for which property P doesn’t hold. Let u1 → u2 → u3 be the path of
length 2 and v be the vertex that has no edge to or from any of u1, u2, u3. We set the node
values as val(u1) = val(u2) = val(u3) = 1, val(v) = 1 + ε, and −∞ for all other vertices.
Then, f(1) = 1 + ε, f(3) = 3, but f(2) = 2 < f(1)+f(3)

2 , therefore f is not concave.
⇐: Suppose that property P is true. Now, let P = (s, p1, p2, . . . , pk−1, t) be a path of length
k such that val(P ) = f(k) and Q = (s, q1, q2, . . . , qk+1, t) be a path of length k+ 2 such that
val(Q) = f(k + 2), where P and Q can potentially have common vertices other than s and
t. Since property P is true, we know that for any i ∈ [k − 1], there is either an edge from
one of qi, qi+1, qi+2 to pi, or from pi to one of qi, qi+1, qi+2. By transitivity, this implies that
either qi → pi, or pi → qi+2. We distinguish three cases. In all three cases we will be able to
find paths P ′ and Q′ with k + 1 edges each, that contain all vertices of the form pi and qi.

Case 1: q1 → p1
We pick P ′ = (s, q1, p1, . . . , pk−1, t) and Q′ = (s, q2, . . . , qk+1, t).

Case 2: ∀i : pi → qi+2
We pick P ′ = (s, p1, . . . , pk−1, qk+1, t) and Q′ = (s, q1, . . . , qk, t)

Case 3: ∃i : pi → qi+2, qi+1 → pi+1
We pick P ′ = (s, p1, . . . , pi, qi+2, . . . , qk+1, t) and Q′ = (s, q1, . . . , qi+1, pi+1, . . . , pk−1, t).
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Therefore we established that in any case there exist such paths P ′ and Q′. Now note that

max {val(P ′), val(Q′)} ≥ 1
2 (val(P ′) + val(Q′)) = 1

2 (val(P ) + val(Q))

and therefore f is a concave function. J

As mentioned before, even very simple special cases of the model capture a lot of important
problems. In the following lemma, we show that we can solve the k-sparse ∆-separated
subsequence problem [12] in near-linear time using the main result of this section, thus
recovering recent results of [8, 16].

I Lemma 19 (Max-weight k-sparse ∆-separated subsequence). Given a sequence a1, . . . , an,
find indices i1, i2, . . . , ik such that for all j ∈ [k − 1], ij+1 ≥ ij + ∆ and the sum

∑
j∈[k]

aij is

maximized. This problem can be solved in O(n log (nmaxi |ai|)) time.

Proof. Let’s define a simple node-weighted DAG for this problem. We define a sequence of
vertices u1, . . . , un each one of which corresponds to picking an element from the sequence.
Then, we add an edge ui → uj iff j−i ≥ ∆. Furthermore, for all i, val(ui) = ai. It remains to
prove that it satisfies the property of Lemma 18. Consider any length-2 path ui → uj → uk.
We know that both k − j and j − i are at least ∆. Now, for any up we have that

max{|up − uk| , |up − ui|} ≥
1
2 (|up − uk|+ |up − ui|) ≥

1
2 (|uk − ui|) ≥

1
22∆ = ∆

so there is an edge between up and either ui or uk. Therefore by Lemma 17 the problem can
be solved in time O(m log(nmaxi |ai|)) = O(n2 log(nmaxi |ai|)).

The quadratic runtime stems from the fact that the DAG we constructed is dense. In
fact, we can do better by defining some auxiliary vertices v1, . . . , vn. The values of these
extra vertices will be set to −∞ to ensure that they aren’t used in any solution and thus
don’t break the concavity. Instead of edges between vertices ui, we only add the following
edges

ui → vi for all i
vi → ui+∆ for all i+ ∆ ≤ n
vi → vi+1 for all i+ 1 ≤ n

Now, the number of edges is O(n) and so the runtime becomes O(n log(nmaxi |ai|)). J

As another example of a problem that can be modeled as a capacitated maximum-reward
path problem in a DAG, we consider the Max-Weight Increasing Subsequence of length k
problem. In contrast to its uncapacitated counterpart, which is solvable in linear time, the
capacitated version requires quadratic time, assuming (max,+)-convolution hardness, as
witnessed in the following lemma.

I Lemma 20 (Max-Weight Increasing Subsequence of length k). Given a sequence a1, . . . , an
with respective weights w1, . . . , wn, find indices i1 < i2 < · · · < ik such that for all j ∈ [k− 1],
aij ≤ aij+1 and the sum

∑
j∈[k]

wij is maximized. This problem is (max,+)-convolution hard,

i.e. requires Ω((nk)1−o(1)) time assuming (max,+)-convolution hardness.

Proof. Consider the construction used in Lemma 16. We define an instance of the Max-
Weight Increasing Subsequence of length k problem which contains an element for each node
of the DAG. Specifically, let’s define our sequence to be

x0, x
′
0, x1, x

′
1, . . . , xk, x

′
k, y0, y

′
0, . . . , yk, y

′
k, z0, z

′
0, . . . , zk, z

′
k
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with xi = i x′i = 2k + 1− i
yi = 2k + 2 + i y′i = 4k + 3− i
zi = 4k + 4 + i z′i = 6k + 5− i

where the weight of each element is equal to the weight of the corresponding node in the
DAG (i.e. x? ↔ a?, x′? ↔ a′?, y? ↔ b?, y′? ↔ b′?, z? ↔ c?, z′? ↔ c′?)

By definition of the sequence, the fact that we are looking for increasing subsequences
implies that there is a 1− 1 correspondence between length-k increasing subsequences and
(k − 1)-hop paths of the original DAG. Therefore any O((nk)1−ε) algorithm for the Max-
Weight Increasing Subsequence of length k problem implies a truly subquadratic algorithm
for the (max,+)-convolution problem. J

5 k-link path in graphs with Monge Weights

In this section we study the problem of computing maximum-reward paths with at most k
edges in a DAG with edge weights satisfying the Monge property. Using the elegant algorithm
of [5], one can compute a single such path in Õ(n) time.

I Lemma 21 (From [5]). Given a DAG with Monge weights, with n vertices, a pair of
vertices s and t, and a positive integer k, we can compute a maximum reward path from s to
t that uses at most k edges, in time Õ(n).

Given the adjacency matrix A of the DAG, one can see this equivalently as computing
one element of the matrix power Ak in the tropical semiring (i.e. we replace (+, ·) with
(max,+)). Therefore, an important question is whether a whole row or column of Ak can
be computed efficiently rather. This corresponds to finding maximum reward paths with
k edges from some vertex s to all other vertices, or finding maximum reward paths with k
edges from some vertex s to some vertex t for all k. In Lemma 22 we show that one needs
Ω(n3/2) time to compute a column of Ak in general.

I Lemma 22. Given a DAG with Monge weights, with n vertices, computing the maximum
weight path of length k from a given s to all other nodes t requires Ω(n1.5) time.

On the positive side, by further exploiting the Monge property, in Lemma 23 we present
an algorithm that can compute any row or column of Ak in Õ(nnz(A)) = Õ(m) time.

I Lemma 23. Let G be a DAG of n vertices and m edges equipped with Monge weights that
are integers of absolute value at most M . Given a vertex s, and a positive integer k, we
can compute a maximum reward path from s to t that uses at most k edges, for all t, in
time O(m logn log(nM)). Furthermore, if we are given a pair of vertices s and t, we can
compute as maximum reward path from s to t that uses at most k edges, for all k ∈ [n], in
time O(m logn log(nM)).
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Abstract
A tree cover of a metric space (X, d) is a collection of trees, so that every pair x, y ∈ X has a low
distortion path in one of the trees. If it has the stronger property that every point x ∈ X has a
single tree with low distortion paths to all other points, we call this a Ramsey tree cover. Tree covers
and Ramsey tree covers have been studied by [15, 31, 19, 30, 38], and have found several important
algorithmic applications, e.g. routing and distance oracles. The union of trees in a tree cover also
serves as a special type of spanner, that can be decomposed into a few trees with low distortion
paths contained in a single tree; Such spanners for Euclidean pointsets were presented by [8].

In this paper we devise efficient algorithms to construct tree covers and Ramsey tree covers for
general, planar and doubling metrics. We pay particular attention to the desirable case of distortion
close to 1, and study what can be achieved when the number of trees is small. In particular, our
work shows a large separation between what can be achieved by tree covers vs. Ramsey tree covers.
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1 Introduction

The problem of approximating metric spaces by tree metrics has been a successful research
thread in the past decades, and has found numerous algorithmic applications. This is mainly
due to the fact that a tree has a very simple structure that can be exploited by the algorithm
designer. While a single tree cannot provide a meaningful approximation, due to a lower
bound of [44] (the metric of the n point cycle requires Ω(n) distortion for embedding into a
tree), several other variants have been considered in the literature. The purpose of this paper
is to study the natural question whether there exists a small collection of trees (tree cover)
such that each pair is well preserved in at least one of them. A natural stronger demand
may be that for each point all of its interpoint distances to the rest of the metric are well
preserved in one of the trees (Ramsey tree covers).
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20:2 Covering Metric Spaces by Few Trees

Tree covers and Ramsey tree covers have been studied by [31, 15, 19, 30, 38], and are
useful ingredients in important algorithmic applications such as routing and distance oracles.

Given a metric space (X, dX) and an edge-weighted tree T with X ⊆ V (T ), for x, y ∈ X
let dT (x, y) denote the length of the path in T from x to y. We say T is dominating if
dT (x, y) ≥ dX(x, y) for all x, y ∈ X. A dominating tree T has distortion α for a pair x, y ∈ X,
if dT (x, y) ≤ α · dX(x, y). In what follows, all trees we consider are always dominating (this
can be assumed w.l.o.g.).

I Definition 1 (Tree cover). Given a metric space (X, dX), for α ≥ 1 and an integer k, a tree
cover with distortion α and size k, (α, k)-tree cover in short, is a collection of k dominating
trees T1, . . . , Tk, such that for any u 6= v in X there is a tree Ti with distortion at most α for
the pair u, v.

If for each u ∈ X there is a tree Ti with distortion at most α for each pair u, v with
v ∈ X, we call this a Ramsey (α, k)-tree cover.

If the metric is a shortest path metric of some graph G, and the trees are subgraphs, we
call this a spanning tree cover.

The notion of tree covers is closely related to the well studied notion of spanners. In
the context of metric spaces, a spanner with distortion α for the metric (X, dX), is a graph
H with X ⊆ V (H), so that for all x, y ∈ X, dX(x, y) ≤ dH(x, y) ≤ α · dX(x, y). It is often
desired that the spanner would be a sparse graph. Note that taking H as the union of the
trees in a (Ramsey) tree cover forms a sparse spanner with a special structure; that can be
decomposed into a few trees, and every pair (or every point) has the distortion guarantee
in one of these trees. In the context of graphs H is usually required to be a subgraph of
the original graph, and then the same holds for spanning tree covers. Spanners are basic
graph constructions, have been intensively studied [42, 7, 22, 20, 8, 24, 16, 47, 41] and have
numerous applications in various settings, see e.g. [9, 43, 10, 22, 46, 25].

A related well-studied concept is probabilistic embedding of a metric space into tree
metrics. This notion was introduced by Bartal [11], and a sequence of works by Bartal, and
Fakcharoenphol et al. [12, 27, 13] culminated in obtaining a tight O(logn) bound. The result
of [11] already implies a probabilistic construction of tree covers of size k with distortion
O(n2/k logn), for general metrics spaces. In Theorem 2 we improve this by constructing
deterministic Ramsey tree covers with almost optimal distortion (nearly matching the lower
bound in Theorem 27).

In the rest of the section we review known results on tree covers and Ramsey tree covers,
and present the new results of this paper.

1.1 Tree Covers
In the context of Euclidean spanners, Arya et al. [8] used the so called dumbbell trees to build
low distortion spanners. Rephrased in our context, they obtained a tree cover for Euclidean
pointsets. More specifically, for any finite set of points in d-dimensional Euclidean space,
and any parameter ε > 0, they devised a (1 + ε)-distortion tree cover with O((d/ε)d log(d/ε))
trees. We note that their trees are using Steiner points (i.e., points in Euclidean space that
are not part of the input set), and it is not clear that such points can be removed from the
spanner while maintaining (1 + ε) distortion.

Chan et al. [19] presented tree covers for doubling metrics. The doubling constant of
a metric (X, dX) is the minimal λ, so that every ball of radius 2r can be covered by λ

balls of radius r. The doubling dimension of (X, dX) is defined as log λ, and a family of
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metrics is called doubling if every metric in it has doubling dimension O(1). The result of
[19] used hierarchical partitioning to construct a tree cover with distortion O(log2 λ) and
O(log λ · log log λ) trees.

The notion of spanning tree covers was introduced by Gupta et al. in [31], who used
these for MPLS routing. They devised spanning tree covers for planar graphs: an exact
(i.e. distortion 1) tree cover with O(

√
n) trees (more generally O(r(n) logn) trees for graphs

admitting a hierarchical r(n) size separators), and a spanning tree cover with distortion 3
and only O(logn) trees. They also showed the former result for planar graphs is tight, i.e.,
at least Ω(

√
n) trees are needed for an exact tree cover.

1.1.1 Our results
As a starting point for this study, we observe, that for general metrics, the number of trees
of any tree covers with distortion α must be as large as n1/α. (This bound stems from the
standard example of high girth graphs and extends a previous lower bound for spanning
trees of [31]). Nearly optimal upper bounds are known even for Ramsey tree covers (see next
subsection). The above lower bound also implies a lower bound of λ1/α in any space with
doubling constant λ.

One of our main results is a tree cover for doubling metrics. We develop a novel hierarchical
clustering for such metrics, built in a bottom-up manner. We then use this new clustering to
show that for any 0 < ε < 1, every metric with doubling constant λ admits a tree cover with
distortion 1+ε and only (1/ε)O(logλ) trees. Since d-dimensional Euclidean space has doubling
dimension Θ(d), the number of trees in the cover is therefore (1/ε)O(d). Hence, this can be
viewed as both a generalization and improvement of the result of [8]. Moreover, we improve
their result in another aspect, since unlike [8] we do not require the use of Steiner points. In
particular, for any ε > 0 our result provides a (1 + ε)-spanner with n/εO(logλ) edges, that can
be decomposed to a small number of trees, and where each pair has a 1 + ε stretch path in
one of the trees. We note that the number of edges in this spanner is asymptotically optimal
[45], and thus so is our result.

We then turn to obtaining a distortion-size tradeoff for tree covers of doubling spaces
with arbitrary distortion α. We improve and extend the result of [19]; for any parameter
α, we use a more sophisticated construction of hierarchical partitions, to build a tree cover
with distortion O(α) and O(λ1/α · log λ · logα) trees (note that setting α = log λ yields
distortion O(log λ) with O(log λ · log log λ) trees). We note that the trees obtained here are
in fact ultrametrics1. This result provides a special type of spanner with distortion O(α) and
O(n · λ1/α · log λ · logα) edges, which improves the recent spanner construction of [28], whose
number of edges was larger by a factor of O(logλ n) (though their spanner has additionally
bounded lightness). The lower bound mentioned above for doubling spaces implies that our
tree cover bounds cannot be substantially improved.

For planar graphs with n vertices, and more generally graphs excluding a fixed minor, we
apply the path-separators framework of [48, 4], and show that for any ε > 0, there exists a
tree cover with distortion 1+ε and O((logn)/ε)2 trees. (Recall that for distortion 1, [31] used
the planar separators of [37], but this requires Ω(

√
n) trees.) We also observe that certain

hierarchical partitions of [35] for planar (and fixed minor-free) graphs, can be used to obtain
a tree cover with O(1) distortion and only O(1) trees (the obtained trees are ultrametrics).

1 An ultrametric (U, dU ) is a metric satisfying a strong form of the triangle inequality, ∀x, y, z, dU (x, z) ≤
max{dU (x, y), dU (y, z)}. An ultrametric is both a tree metric and a Euclidean metric.
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20:4 Covering Metric Spaces by Few Trees

See Table 1 for a succinct comparison between our and previous results on tree covers.

Table 1 Results on tree covers for general, planar (our new results also hold for fixed minor-free
graphs) and doubling metrics. (The upper bound for general metrics appears in Table 2.)

Family Reference Number of trees Distortion
General metrics New Ω(n1/α) α

Doubling metrics

[19] O(log λ · log log λ) O(log2 λ)
New (1/ε)Θ(logλ) 1 + ε

New O(λ1/α · log λ · logα) O(α)
New Ω(λ1/α) α

Planar metrics

[31] Θ(
√
n) 1

[31] O(logn) 3
New O((logn)/ε)2 1 + ε

[35]+New O(1) O(1)

1.2 Ramsey Tree Covers
Given a metric (X, d), the metric Ramsey problem asks for a large subset S ⊆ X that
embeds with a given distortion into a simple metric, such as a tree metric or Euclidean space.
Following [15], [38] gave a probabilistic construction that finds in any n point metric (X, d)
a set S ⊆ X of size at least n1−1/α that embeds into an ultrametric with distortion O(α). In
fact, the embedding has such distortion on all pairs in S ×X. Applying this iteratively, [38]
obtained a collection of O(α ·n1/α) trees, so that each point x ∈ X has a “home tree” Tx with
distortion O(α) for every pair containing x. We call such a collection a Ramsey tree cover.
Some further works aim at improving the leading constant in the distortion ([14, 40, 17])
and finding a deterministic construction ([14]). Recently, in the graph setting, [3] devised
a spanning Ramsey tree cover, where the trees are subgraphs of the input graph. They
obtained the same number of trees, but with slightly larger distortion O(α · log logn).

We note that the number of trees in all previous works is α · n1/α ≥ logn for any value of
α. It seems like a natural question to understand what can be achieved in the inverse tradeoff,
where the number of trees, k, is small. We remark that the lower bound via high girth graphs
is rather weak, it implies that using k trees the distortion must be only Ω(logk n), as that is
the bound on the girth of a graph with kn edges [18].

1.2.1 Our results
We focus on the regime where the number of trees is small. We first observe that a similar
method as used in [38] of iteratively extracting large Ramsey subspaces can be applied in this
setting as well. Given any metric space (X, d) on n points, and a parameter k ≥ 1, there exists
a Ramsey tree cover of size k (in particular, ultrametrics) and distortion O(n1/k · log1−1/k n).
We also note that the result of [3] can be translated to this setting: given a graph G = (V,E)
with n vertices, we find a Ramsey spanning tree cover with k spanning trees and distortion
O(n1/k · log1−1/k n · log logn). The proof of this observation is given in the full version
of the paper.

Next, we investigate the tightness of this bound. We find a graph on n vertices, such that
any Ramsey tree cover with k trees requires distortion Ω(n1/k), significantly improving the
Ω(logk n) bound obtained from high girth graphs. This also implies that our upper bound is
tight, up to lower order terms.



Y. Bartal, N. Fandina, and O. Neiman 20:5

Moreover, the graph we construct is series-parallel (in particular a planar graph) and also
has O(1) doubling dimension. Thus, our lower bound indicates a large separation between
what can be achieved by a tree cover vs. a Ramsey tree cover; Our upper bounds give a tree
cover with O(1) trees and constant distortion for planar and doubling metrics (even 1 + ε

distortion for the latter), as opposed to the nΩ(1) distortion required with a constant number
of Ramsey trees, for both planar and doubling metrics.

We also use a result of [15] to show a lower bound for planar and doubling metrics in
the low distortion regime: there are n-point planar (in fact, series-parallel) doubling metrics,
such that any Ramsey tree cover with distortion α must contain at least nΩ(1/(α logα)) trees.

Overall, for general, planar and doubling metrics, our results solve the question of covering
metrics by Ramsey trees, up to logarithmic terms, in every regime of parameters. See Table 2
for a concise description of previous and our results.

Table 2 Previous and our results on Ramsey trees for general, planar and doubling metrics.

Family Reference Number of trees Distortion

General metrics [38] O(α · n1/α) O(α)
New k O(n1/k · log1−1/k n)

Planar & doubling metrics New k Ω(n1/k)
New nΩ(1/(α logα)) α

1.3 Overview of Techniques
Tree cover for doubling metrics. The standard way to construct a (1 + ε)-spanner for
doubling metrics is along the following lines [29, 32]: Choose a hierarchical collection of
2i-nets (see Section 3 for definitions), and assign every vertex to its nearest net-point at the
level i when it first leaves the net hierarchy; this creates a net tree. Then additional edges are
added to other net-points within distance ≈ 2i/ε. This spanner cannot be decomposed into a
few trees as low distortion paths for the pairs use both the net tree and the additional edges.

We use a different approach for constructing a spanner, so that it can be decomposed to
trees; We first partition the hierarchical net into a small number of well-separated sub-nets
(so that in level i, distances between points in the sub-net are at least 2i/ε). Then construct
a tree for each hierarchical sub-net, by iterative clustering around the sub-net points in a
bottom-up manner. In order to control the radius increase caused by the clustering of lower
level sub-nets, we also take sufficiently large gaps between consecutive levels used in the
same tree.

Tree cover for minor-free graphs. We apply the path separators of [4], asserting that
graphs excluding a fixed minor have a separator consisting of O(1) shortest paths (see
Section 4 for the precise definitions). Adding for each point O(1/ε) edges to each shortest
path guarantees small distortion for all separated pairs [48, 34]. However, since we desire
trees, we can allow each point to add only 1 edge (per tree) to the path separator. Using a
simple randomized algorithm to choose these edge connections, we show that w.h.p. all pairs
will have a low distortion tree.

Hierarchical partitions. We construct a collection of HST spaces (a special type of ultra-
metric spaces, see Section 5) via a hierarchical probabilistic partitions similarly to [19]. Yet
instead of using the basic probabilistic partitions (e.g. [11]) we use the probabilistic partitions
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of [1], which have two main strong properties: The padding of the partition can be set as
a parameter, which may also be a constant depending on distortion α; The partitions are
local, i.e. the probability of being padded is not affected by the structure of the clusters
that are far enough. This allows showing that intersecting a bundle of such independent
partitions achieves a good tradeoff when the number of scale levels is small. Combining
these with the idea of bottom-up union of clusters similar to that of [19], we are able to
construct hierarchies with diameters of clusters decreasing by a constant factor while letting
the padding parameter depend on α, obtaining more general and improved bounds.

1.4 Related Work
We note that Charikar et al. [21] studied a related question of bounding the number of
trees sufficient for probabilistic embedding. The result they obtain implies an exponentially
weaker cover size than those that follow from [11] and from our construction.

In [30], Gupta et al. considered a stronger version of tree covers (stronger than Ramsey
tree covers), which they used to devise an oblivious algorithm for network design problems.
We note that the lower bounds given in this paper show that the bound they get using this
method is almost tight, even for doubling or planar metrics.

In the context of spanning trees, the problem of computing a spanning tree with low
average stretch was first studied by Alon et al. [6]. Following Elkin et al. [23], Abraham et
al. [2, 5] obtained a nearly tight O(logn · log logn) bound.

2 Ramsey Tree Covers for General Metrics with Few Trees

In this section we show a deterministic Ramsey tree cover construction for general metrics.
Unlike previous works, we build a cover with a small (possible constant) number of trees.

I Theorem 2. For any n-point metric (X, d) and any k ≥ 1, there is a deterministic algorithm
that constructs a Ramsey tree cover for X of size k with distortion O(n1/k · (logn)1−1/k).

Our deterministic construction follows directly from the following theorem on deterministic
Ramsey embedding into a tree metric that was presented by Bartal [14] and later by Abraham
et al. [3] (alternatively, a randomized construction can be based on [38]).

I Theorem 3 ([14, 3]). Let (X, d) be a metric space, fix any subset S ⊆ X, and let α ≥ 1
be a parameter. There is a deterministic algorithm that finds a subset Z ⊆ S, of size
|Z| ≥ |S|1− 1

α , and an embedding f of X into an ultrametric T with distortion O(α) for any
pair (u, v) ∈ Z ×X.

Proof of Theorem 2. Let S1 = X. For i = 1, . . . , k − 1 iteratively apply the algorithm of
Theorem 3 on the subset Si with parameter α (to be determined later), and obtain trees
T1, . . . , Tk−1. The last tree Tk will be constructed separately. Let Zi ⊆ Si be the set of size
at least |Si|1−1/α guaranteed by Theorem 2, and define Si+1 = Si \ Zi. Note that every
point x ∈ X \ Sk has a tree with distortion O(α) for all pairs in {x} ×X. For each i ≥ 1,
we have |Si+1| = |Si| − |Zi| ≤ |Si|

(
1− n−1/α). Therefore, after k − 1 iterations we have

|Sk| ≤ n
(
1− n−1/α)k−1. We can embed the metric Sk into an ultrametric with distortion

|Sk| − 1 by the embedding of [15, 32]. This embedding can be extended to all of X, with
distortion O(|Sk|) for pairs in Sk ×X by [38, Lemma 4.1]. Therefore, α should be chosen
so that n ·

(
1− n−1/α)k−1 ≤ α. Using the inequality ex ≥ 1 + x for all x ∈ R we have:

n ·
(
1− n−1/α)k−1 = n ·

(
1− e− lnn

α

)k−1
≤ n ·

( lnn
α

)k−1
. Taking α = n1/k · (lnn)(1− 1

k ) gives
a Ramsey tree cover with distortion O(α). J
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3 (1 + ε)-Distortion Tree Covers for Doubling Metrics

In this section we devise a tree cover for doubling metrics with distortion arbitrarily close to
1. Let (X, d) be a metric with doubling constant λ, and fix 0 < ε < 1/8.

I Definition 4. An r-net N ⊆ X is a set satisfying: 1) For every x, y ∈ N , d(x, y) > r, and
2) For every u ∈ X there exists x ∈ N with d(x, u) ≤ r. We say that a collection {Ni} of
2i-nets is hierarchical if Ni+1 ⊆ Ni.

It is well-known that a simple greedy algorithm can construct (hierarchical) nets. Also, it is
known that the size of an r-net of a ball of radius R is bounded by λO(log(R/r)).

Let {Ni} be a hierarchical collection of 2i-nets of X. (It suffices to take the indices i
from the range [log(εδ), log ∆] where δ = minx 6=y∈X{d(x, y)} and ∆ = maxx,y∈X{d(x, y)}.)

B Claim 5. There is a partition of Ni to t = λO(log(1/ε)) sets Ni1, . . . , Nit, so that for every
x, y ∈ Nij , d(x, y) ≥ 6/ε · 2i. It is also hierarchical: if x ∈ Nij then x ∈ Ni′j for every i′ < i.

Proof. First place in Nij all the points of N(i+1)j for each j, and denoteN ′i = Ni\(
⋃
j N(i+1)j).

Next, for j = 1, 2, ..., t complete Nij by choosing greedily from the points remaining in
N ′i \ (Ni1 ∪ · · · ∪Ni(j−1)). Since for any x ∈ Ni the ball of radius 6/ε · 2i contains less than t
net points of Ni, we will surely pick x to some Nij in some iteration j ≤ t. C

Construction of trees. Assume w.l.o.g that log(1/ε) is an integer, we will construct t·log(1/ε)
trees (in fact, forests). The tree Tj,p is indexed by the pair (j, p) with 1 ≤ j ≤ t and 0 ≤ p <
log(1/ε). Fix j and p, we now describe how to build Tj,p. Let Ip = {i : i ≡ p (mod log(1/ε))}.
Initially all points in X are unclustered. We go over all i ∈ Ip (from small to large in order),
and for every x ∈ Nij we add an edge from x to every unclustered point y ∈ X satisfying
d(x, y) < 3/ε · 2i, of weight d(x, y). These points connected to x are now clustered. (The
center x is not considered clustered.)

The following observation is proved in the full version of the paper:

I Observation 6.
a. No point x ∈ Nij is clustered when iteration i is complete.
b. Every u ∈ X can be clustered by at most 1 point.
c. If Cx is the connected component created by the clustering of x ∈ Nij at level i ∈ Ip, then

diam(Cx) ≤ 8/ε · 2i.

B Claim 7. When the process completes we have a forest.

Proof. By Observation 6(b) every point u adds at most a single edge to Tj,p, at the time
it becomes clustered. As u adds this edge to an unclustered point, it cannot close a cycle.
(More formally, if we give each vertex a time stamp which is the time it becomes clustered,
then the single edge every vertex adds is to a vertex with a higher time stamp.) C

B Claim 8. Let Cx be the connected component created when we clustered points to x at
some level i ∈ Ip. Then for every point y ∈ B(x, 2/ε · 2i) we have dCx(x, y) ≤ d(x, y) + 2i+4.

Proof. If y was unclustered when creating Cx then dCx(x, y) = d(x, y) by definition. Other-
wise, let z be the (unique) unclustered point in Cz, the connected component containing y
before executing the clustering of level i. Let i′ < i be the level in which z created Cz, and by
Observation 6(c) we have diam(Cz) ≤ 8/ε · 2i′ ≤ 8 · 2i (recall i′ ≤ i− log(1/ε) since i′ ∈ Ip).
As 8 ≤ 1/ε it follows that d(x, z) ≤ d(x, y)+d(y, z) ≤ 2/ε ·2i+8 ·2i ≤ 3/ε ·2i, so x will cluster
z (recall that by Observation 6(b) no other center can cluster z). Furthermore, dCx(x, y) =
dCx(x, z) + dCz (z, y) = d(x, z) + dCz (z, y) ≤ d(x, y) + 2dCz (z, y) ≤ d(x, y) + 2i+4. C
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I Lemma 9. For every u, v ∈ X, there is a tree T = Tj,p so that dT (u, v) ≤ (1+O(ε))·d(u, v).

Proof. Choose i such that 2i−1/ε ≤ d(u, v) < 2i/ε, and let p = i mod log(1/ε). Let x ∈ Ni
be the nearest net point to u, so that d(x, u) ≤ 2i, and let 1 ≤ j ≤ t be such that x ∈ Nij .

Observe that d(x, v) ≤ d(x, u) + d(u, v) ≤ 2i + 2i/ε < 2/ε · 2i, so by Claim 8

dCx(x, v) ≤ d(x, v) + 2i+4 ≤ d(x, u) + d(u, v) + 2i+4 = (1 +O(ε)) · d(u, v).

We also have by the same claim that dCx(x, u) ≤ d(x, u) + 2i+4 = O(ε) · d(u, v). The fact
that Cx is a subtree of the forest T = Tj,p completes the proof. J

Since we use edge weights that are the actual distances in (X, d), clearly dT ≥ d. Rescaling ε
by a constant yields the following.

I Theorem 10. For every metric (X, d) with doubling constant λ, and any 0 < ε < 1, there
is an efficient algorithm to construct a tree cover of size λO(log(1/ε)), with distortion 1 + ε.

4 (1 + ε)-Distortion Tree Covers for Planar and Minor-Free Graphs

In this section we use path-separators for planar [48] and more generally minor-free graphs
[4], to devise tree covers with 1 + ε distortion and O((logn)/ε)2 trees. We start with some
preliminary definitions.

A graph G has H as a minor if one can obtain H from G by a sequence of edge deletions,
vertex deletions and edge contractions. The graph G is H-minor-free if it does not contain
H as a minor.

I Definition 11. A graph G = (V,E) on n vertices is s-path separable if there exists an
integer t and a separator S ⊆ V such that:
1. S = V (P0) ∪ V (P1) ∪ · · · ∪ V (Pt), where for each 0 ≤ i ≤ t, Pi is a collection of shortest

paths in the graph G \ (
⋃

0≤j<i Pj) (and V (Pi) is the vertex set used by the paths in Pi).
2.
∑t
i=0 |Pi| ≤ s, that is, the total number of paths is at most s.

3. Each connected component of G \ S is s-path separable and has at most n/2 vertices.

I Theorem 12 ([4]). Every H-minor-free graph is s-path separable for some s = s(H), and
an s-path separator can be computed in polynomial time.

The following Lemma is implicit in the works of [34, 48] (for completeness a proof is
included in the full version of the paper):

I Lemma 13. Let G = (V,E) be an edge-weighted graph, fix any 0 < ε < 1, and let P be a
shortest path in G. Then one can find for each x ∈ V a set of landmarks Lx on P of size
|Lx| = O(1/ε), such that for any x, y ∈ V whose shortest path between them intersects P ,
there exists u ∈ Lx and v ∈ Ly satisfying dG(x, u) + dP (u, v) + dG(v, y) ≤ (1 + ε) · dG(x, y).

Construction. Using these tools, we are ready to describe our tree cover for minor-free
graphs. Apply the path separator of Theorem 12 on the input graph G = (V,E), |V | = n,
to obtain a collection P of s paths, and denote S = V (P). For each path P ∈ P, apply
Lemma 13 to get a set of landmarks for each vertex, and let ` = maxx∈V {|Lx|} = O(1/ε)
be the maximal size of a landmark set. Let T be a tree formed by taking P , and for each
x ∈ V \ V (P ) add a single edge to u ∈ Lx chosen uniformly and independently at random.
Let dG(x, u) be the weight of a chosen edge. We pick (C logn)/ε2 such trees independently
for each path P , for sufficiently large constant C.
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Next, we continue recursively on each connected component of G \ S. Since the number
of vertices halves at every iteration, there will be O(logn) iterations. Furthermore, the trees
of different connected components can be viewed as a forest of G (which can be arbitrarily
completed to a tree), thus the total number of trees is O((logn)/ε)2.

Analysis. Fix some x, y ∈ V , and let P be the first path in P that intersects the shortest
path between x, y in G. (It may be the case that P is a path separator in a deep level of the
recursion, when we decompose some subgraph G′. Note that dG′(x, y) = dG(x, y), since no
path intersected the shortest path from x to y so far. So w.l.o.g. we call the current graph
G.) Let u ∈ Lx and v ∈ Ly be such that dG(x, u) + dP (u, v) + dG(v, y) ≤ (1 + ε) · dG(x, y),
which are guaranteed to exist by Lemma 13. If we choose a tree T that contains P and both
edges (x, u), (y, v), then T will have distortion at most 1 + ε for the pair x, y. The probability
that both x, y add these edges to T is at least 1/`2 = Ω(ε2). Thus, the probability that none
of the trees created for the path P has distortion at most 1 + ε for the pair x, y is at most
(1−Ω(ε2))(C logn)/ε2 ≤ e−3 lnn = 1/n3, whenever C is sufficiently large. By the union bound
over the

(
n
2
)
pairs, with high probability all pairs have a tree with distortion 1 + ε in that

tree. We have proven the following.

I Theorem 14. Let G be a graph on n vertices that is H-minor-free. For any 0 < ε < 1,
there is a randomized efficient algorithm that w.h.p. constructs a tree cover for G containing
O((logn)/ε)2 trees with distortion 1 + ε. (The constant in the O-notation depends on |H|.)

5 Tree Covers for Doubling Metrics with Distortion-Size Tradeoff

In this section we prove that any metric space with doubling constant λ has a tree cover
with distortion O(α) of size O(λ1/α log λ logα).

Recall that ultrametric is a metric space obeying a strong form of the triangle inequality.
It is well known that any finite ultrametric (U, ρ) can be represented by a finite labeled tree
T , with the points of U being the leaves of T . Each node u ∈ T has a label ∆(u) ≥ 0 and the
label of each leaf is 0. For any two nodes u and v, such that v is a child of u, ∆(u) ≥ ∆(v).
For u, v ∈ U , the distance ρ(u, v) is defined to be the label of their least common ancestor.
We refer to ultrametrics by their tree representation. If the labels in an ultrametric tree T
are decreasing by a factor at most µ > 1, then T is called a µ-Hierarchically Separated Tree
metric (µ-HST) [11]. We note that an ultrametric space can also be represented as a shortest
path metric on a Steiner tree.

For a finite metric (X, d), let dmax = maxx 6=y∈X{d(x, y)}, and dmin = minx 6=y∈X{d(x, y)}.
Let Φ(X) := dmax/dmin denote the aspect ratio of X.

5.1 Probabilistic Hierarchical Partition Family
With start with the neceassary definitions. For any ∆ > 0, a ∆-bounded partition P of
a finite metric space (X, d) is a collection of pairwise disjoint clusters Pi ⊆ X, such that
∪Pi = X, and for each cluster Pi ∈ P , diam(Pi) ≤ ∆. We assume that each cluster has
some point designated as its center. For a point x ∈ X, let P (x) ∈ P denote the cluster
that contains x. A ∆-bounded probabilistic partition of X is a distribution P over a set of
∆-bounded partitions of X.

The notion of a padding parameter of a random partition is studied in various papers
[36, 33, 11, 27]. We use a stronger definition given by Abraham et al. in [1], where the
padding parameter depends on the desired probability of success. The following is a rephrased
version of their original definition ([1], Definition 17):
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I Definition 15 (Padded Probabilistic Partition). Let η(δ) : (0, 1]→ (0, 1] be some function,
and (a, b] ⊆ (0, 1] be some range. A ∆-bounded probabilistic partition P is η(δ)-padded on
the range (a, b], if for all x ∈ X and for all δ ∈ (a, b], Pr

P∼P
[B(x, η(δ) ·∆) ⊆ P (x)] ≥ δ.

In addition, the authors defined a notion of a locally padded probabilistic partition (on
the range (a, b]): P is η(δ)-locally padded if for all a < δ ≤ b the event B(x, η(δ) ·∆) ⊆ P (x)
occurs with probability at least δ regardless of the structure of the partition outside the ball
B(x, 2∆). Formally stated, for all x ∈ X, for all subsets C ⊆ X \B(x, 2∆) and all partitions
P ′ of C, Pr

P∼P
[B(x, η(δ) ·∆) ⊆ P (x) | P [C] = P ′] ≥ δ, where P [C] denotes the restriction of

the partition P to C. Our construction uses their random partitions as a building block:

I Lemma 16 ([1], Lemma 8). Given a finite metric space X with doubling constant λ, and
given any 0 < ∆ < diam(X), there is a ∆-bounded,

(
log(1/δ)
26 logλ

)
-locally padded probabilistic

partition P of X, for δ ∈
[
λ−212

, 1
]
.

A set of nested partitions of X forms a hierarchy:

I Definition 17 (Hierarchical Partition). For all µ > 1, ∆ ≤ dmax(X) and integer 1 ≤ B ≤
logµ Φ(X), let ∆i = ∆/µi, for all 0 ≤ i ≤ B. A µ-Hierarchical Partition of X for range
[∆,∆B], is a collection H = {P0, . . . , PB} of partitions of X such that: For all 0 ≤ i ≤ B,
Pi is a ∆i-bounded partition of X; Each Pi+1 is a refinement of Pi, i.e. each cluster in Pi is
a union of some clusters in Pi+1. Let µ-HPB(∆) denote such a collection.

A full range Hierarchical Partition, denoted by µ-HP, is the µ-HPB(∆), for ∆ = dmax(X)
and B = logµ Φ(X) (we assume this is an integer).

There is a natural way to associate a dominating µ-HST tree to a µ-HP. For each cluster
of the partition Pi there is a node in the tree. The nodes associated with clusters of the
partition Pi+1 are the children of nodes associated with clusters of Pi. The label of all level i
nodes in the tree is ∆/µi. The points of X are at the leaves.

I Definition 18 (η-Padded µ-Hierarchical Partition Family). Let η < 1 and µ > 1. For a
finite metric space (X, d), an η-padded µ-Hierarchical Partition Family of X, (η, µ)-HPF,
is a set H of µ-Hierarchical Partitions {Hj}j≥1 of X such that: For all x ∈ X and for all
scales 0 ≤ i ≤ logµ Φ(X), there is an Hj ∈ H such that B(x, η∆i) ⊆ P (j)

i (x), where P (j)
i is

a ∆i-bounded partition of Hj. The size of H is the number of hierarchical partitions it has.

The following lemma shows the connection between hierarchical family and a tree cover:

I Lemma 19. If there is an (η, µ)-HPF of size k of X, then there is an (µ/η, k)-tree cover
of X.

Proof. Let H1, . . . ,Hk be an (η, µ)-HPF of X. Consider an associated collection of domin-
ating µ-HST trees T1, . . . , Tk. Given any x 6= y ∈ X, let i be the minimal index such that
d(x, y) ≥ η∆i. If i = 0, then by the construction, for any tree Tj , dTj (x, y) ≤ ∆0, implying
dTj (x, y)/d(x, y) ≤ 1/η. If i ≥ 1, then η∆i ≤ d(x, y) ≤ η∆i−1. The padding property
implies that there is Hj such that B(x, η∆i−1) ⊆ P (j)

i−1(x). As y ∈ B(x, η∆i−1), it holds that
dT j (x, y) ≤ ∆i−1. Therefore, dT j (x, y)/d(x, y) ≤ ∆i−1/η∆i = µ/η. J

In what follows, we construct (Ω(1/α), 2)-HPF of X, of size O(λ1/α log λ logα). We note
that the notion of hierarchical family also appeared in [35], where the authors construc-
ted an (Ω(s−2)), O(s2))-HPF of size 3s for any metric of a Ks,s-minor free graph. As a
corollary, we conclude
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I Corollary 20. For any metric induced on a Ks,s-minor free graph, there is a tree cover
with distortion O(s4), of size 3s.

In our proofs we will use the following version of the Lovasz Local Lemma:

I Lemma 21 ([26]). Let E1, . . . , En be a family of events. Let G(V,E) be a directed graph
on n vertices with out-degree at most d, where each vertex corresponds to an event. Assume
that for all 1 ≤ i ≤ n, for all Q ⊆ {j | (Ei, Ej) /∈ E}, Pr[Ei |

⋂
j∈Q ¬Ej ] ≤ p. If ep(d+ 1) ≤ 1,

then Pr
[⋂

i∈[1,n] ¬Ei
]
> 0.

5.2 Constructing Hierarchical Padded Family of Bounded Size
Our main hierarchical partitions result is:

I Theorem 22. For any finite metric space X with doubling constant λ and for any α ≥ 2,
there is an Ω(1/α)-padded 2-Hierarchical Partition Family of X, of size O

(
λ1/α logα log λ

)
.

Note that taking α = O(log λ), we obtain a hierarchical family with padding Ω(1/ log λ),
of size O(log λ log log λ), which is an improvement over the result of [19]: O(log λ)-hierarchical
partitions with padding Ω(1/ log λ), of the same size. They construct a family of hierarchies,
where each hierarchy is constructed in a bottom-up manner: the clusters of larger diameters
are the union of the clusters of lower diameters. Preserving the padding parameter requires
the diameters of the clusters to increase by a factor of O(log λ), thus covering only log log λ
of all the distance scales in the metric space. This results in O(log2 λ) distortion. Using the
Lovasz Local Lemma they were able to bound the size of this family.

In our construction, we combine the bottom-up union of clusters technique with an
intersection of clusters procedure. Essentially, there are two steps. First, we use the locally
padded partitions of Lemma 16 to create a padded hierarchy with diameters decreasing by
a constant factor, by intersecting the clusters of levels of the hierarchy of larger diameter.
Using the locality property and the fact that the padding parameter depends on the success
probability, we show that using log log λ such levels of partitions with diameters increasing
by factor 2, results in a 2-hierarchy with Ω(1/α) padding, thus covering the log log λ scales
uncovered by the construction of [19]. We apply the Lovasz Local Lemma to bound the size
of the family of such hierarchies by O

(
λ1/α logα log λ

)
. Second, we combine the hierarchies

obtained by cutting clusters, in a bottom-up manner, by defining higher scales clusters as
the union of lower level clusters, thus obtaining a hierarchy with diameters decreasing by a
factor of 2 in all its levels, while padding is Ω(1/α).

To prove Theorem 22, we consider hierarchical partitions that cover a range of scales: for
any ∆ and an integer B we build a family {Hj}j≥1, where each Hj is a µ-HPB(∆). The
padding property is then required to hold for all points x ∈ X and for all scales ∆i ∈ [∆,∆B ].
We call such family as (η, µ)-HPF for range [∆,∆B ].

The following lemma is used as a subroutine in the construction of the hierarchical family:

I Lemma 23. Let X be a finite metric space with doubling constant λ . For a given α ≥ 2,
∆ ≤ diam(X) and an integer 1 ≤ B ≤ logµ Φ(x), there exists an (Ω(1/α), 2)-HPF for range
[∆,∆B ], of size O

(
λ1/α log λ(logα+B)

)
.

Proof. For a given distortion α ≥ 2, let δ = λ−1/(2α). Therefore, for such δ we have
η(δ) := log(1/δ)

26 logλ = 2−7/α. Also note that for any α ≥ 1, it holds that δ ∈ [λ−212
, 1].

Thus, we will show that there exists a hierarchical family with padding Ω(η(δ)), of size
k := O(

(
λ1/α log λ(logα+B)

)
).
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Let N ⊆ X be an (η(δ)∆B/4)-net of X. We show the claim is true for N and the
extension of it to X is immediate, with a constant factor loss in distortion. In the sequel, all
the balls are balls of metric space N .

Let ∆i = ∆/2i, for all 0 ≤ i ≤ B. Consider the following random process: For each
scale ∆i in the range [∆,∆B], independently generate ∆i-bounded partitions P0, . . . PB of
N by invoking the locally padded probabilistic decomposition of Lemma 16. To obtain
a 2-Hierarchical Partition H for the scales [∆0,∆B] we cut all the clusters of all the
partitions, to get ∆i-bounded nested partitions P̂0, . . . , P̂B . Let P̂0 = P0, for all i ≥ 1, define
P̂i = ∪Ĉ∈P̂i−1

∪C∈Pi C ∩ Ĉ.
Now, independently repeat the above random process k times to obtain a randomly

generated family H(1), . . . ,H(k) of 2-Hierarchical Partitions of the net N , for range [∆,∆B ].
Each hierarchical partition H(t) consists of ∆i-bounded partitions, denoted by P̂ (t)

i .
For each x ∈ N and for each scale ∆i ∈ [∆,∆B], let Ex,i be an event that the ball

B(x, η(δ)∆i) is not padded at the i-th level partition P̂ (t)
i in any of the hierarchical partitions

H(1), . . . ,H(k). We use the Lovasz Local Lemma (Lemma 21) to prove that for the chosen

value of k, Pr
[⋂

x∈X,
0≤i≤B

¬Ex,i
]
> 0. Let G = (V,E) be a directed graph with V = {Ex,i},

for all x ∈ N and 0 ≤ j ≤ B. The vertex Ex,i is connected with an out-edge with all the
verticies Ey,j , such that y ∈ B(x, 2∆) and 0 ≤ j ≤ B. In the full version we prove the
following lemma:

I Lemma 24. For all Q ⊆ N\B(x, 2∆), for all J ⊆ [0, B], Pr[Ex,i |
⋂
y∈Q,
j∈J
¬Ey,j ] ≤ (1−δ2)k.

Then, for δ = λ−1/(2α), and k = O
(
λ1/α log λ(logα+B)

)
, (1− δ2)k ≤ e−δ2k ≤ λ−Θ(logα+B).

In addition, the out degree d of G is bounded by

d = B ·|N∩B(x, 2∆)| = B ·O

((
∆

η(δ)∆B

)logλ
)

= B ·λO(log(1/η(δ))+B) = λO(log(1/η(δ))+B).

Thus, the LLL can be applied to conclude the proof. J

Proof of Theorem 22. Let Φ = Φ(X), ∆0 = dmax(X), and for all 1 ≤ i ≤ log Φ, ∆i =
∆0/2i. Let I = {∆i |0 ≤ i ≤ log Φ}. We build a small family of 2-HP’s, such that the
padding property is satisfied for all points in X and for all scales ∆i ∈ I, with padding
parameter Ω(1/α). Let B = dlog(2α/c′)e, where c′ < 1 will be defined later, and let
k = O

(
λ1/α logα log λ

)
. We will build a family H ∪R such that:

1. H is a collection of size k of 2-HP’s. For2 IH :=
{

∆j | ∆j ∈
⋃

0≤l≤L
[
∆2lB ,∆(2l+1)B

]}
⊆

I, where L = log(Φ1/(2B)) − 1/2, the following padding property holds: For all x ∈ X
and for all scale ∆j ∈ IH, there is a 2-HP H ∈ H such that B(x,Ω(1/α)∆j) ⊆ Pj(x), for
the j-th level partition Pj ∈ H.

2. R is a collection of size k of 2-HP’s. The padding property as for H holds for all x ∈ X
and for all scales ∆j ∈ IR := I \ IH.

Namely, the hierarchical partitions of R are padded for the scales that are not padded in
the partitions of H. Thus, together these two collections constitute an Ω(1/α)-padded 2-HP
Family for X, of size 2k. We describe the construction of H, while R is constructed similarly.

2 For the simplicity of representation, we assume that B is integer and that log Φ is a multiple of B.
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LetH = H(1), . . . ,H(k) denote the set of 2-HP’s. We construct it iteratively in a bottom up
fashion. Assume by induction that we have already constructed a family Ĥ = Ĥ(1), . . . , Ĥ(k)

such that: Each Ĥ(t) is a 2-HP for range [∆2B ,∆(2L+1)B ]; The padding property holds with
parameter Ω(1/α) for all scales ∆j ∈ IH \ {∆i ∈ [∆0,∆B ]}.

Let c = 1 + 1
2B−1−1 , by Lemma 23 there is (Ω(1/α), 2)-HPF F (1), . . . , F (k) for range

[∆̃0, ∆̃B], where ∆̃j = ∆j/c, for 0 ≤ j ≤ B. For each 1 ≤ t ≤ k, H(t) is obtained by
adding the partitions of F (t) to Ĥ(t) in the following way. Let P̂ (t)

2B denote the ∆2B-bounded
partition of Ĥ(t). First, for all scale ∆j ∈ [∆B+1,∆2B] add to H(t), ∆j-bounded partition
P

(t)
j := P̂

(t)
2B (these artificial partitions are added to have a well defined 2-HP family). Next,

let {P̃ (t)
j }0≤j≤B denote the set of ∆̃j-bounded partitions of F (t). For all j starting from

j = B down to j = 0, the partition P (t)
j is constructed a s follows: for each C̃ ∈ P̃ (t)

j , add a
cluster C to P (t)

j , defined by C = ∪{C ′ ∈ P (t)
2B | center of C ′ ∈ C̃}. Finally, the partitions of

Ĥ(t) are unchanged.
For all B ≤ j ≤ 2B, Pj(t) is ∆j-bounded, since ∆2B ≤ ∆j . For 0 ≤ j ≤ B the

diameter of each cluster in partition P (t)
j is bounded by ∆̃j + 2∆2B = ∆j/c+ ∆B/2B−1 ≤

∆j

(
1/c+ 1/2B−1) = ∆j , for a chosen value of c. In addition, by the construction, the

partitions P (t)
j form a hierarchy. It is left to show that the padding property holds in H

for the scales [∆0,∆B]. By Lemma 23, for any x ∈ X, for any ∆̃j ∈ [∆̃0, ∆̃B], there is F (t)

such that B(x, (c′/α)∆̃j) ⊆ P̃
(t)
j (x), for P̃ (t)

j ∈ F (t), for some constant c′. Consider some
cluster P (t)

j (x), for some x ∈ X. In the process of constructing P (t)
j (x) some points from

P̃
(t)
j (x) may be removed, due to removal of some cluster C ′ ∈ P (t)

2B whose center falls outside
the cluster P̃ (t)

j (x). For B as defined above, for r = c′

α ∆̃j −∆2B ≥
(
c′

2α

)
∆j , we have that

B(x, r) ⊆ P (t)
j (x). This completes the proof. J

I Theorem 25. For any finite metric space (X, d) with doubling constant λ, for any α ≥ 2,
there is a tree cover of X with distortion O(α) and of size O

(
λ1/α logα log λ

)
.

Proof. Apply Lemma19 on the Hierarchical Family of Theorem 22. J

Note that the tree cover of Theorem 25 can be deterministically constructed in polynomial
time via the constructive local lemma due to [39].

6 Lower Bounds

In full version of the paper we show that there is an n-point metric (X, d) (the metric of a
high girth graph) with doubling constant λ, such that any tree cover for X with distortion α
requires at least Ω(λ1/α) trees. Additionally, we show below a nearly tight lower bound for
Ramsey tree covers of a doubling planar metric space.

6.1 Lower Bound on Ramsey Tree Cover
In this section we show an asymptotically tight lower bound on Ramsey tree covers, in the
regime where the number of trees is small. The lower bound on high girth graphs mentioned
above can only give distortion Ω(logk n) for tree covers with k trees. Here we use a different
example (which is a planar metric with O(1) doubling dimension) that strengthen the lower
bound on the distortion to Ω(n1/k).

We will need the following notion of a composition of metric spaces that was introduced
in [15] (we present here a simplification of the original definition).
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I Definition 26. Let (S, dS), (T, dT ) be finite metric spaces. For β ≥ 1/2, the β-composition
of S with T , denoted by Z = Sβ [T ], is a metric space of size |Z| = |S| · |T | constructed by
replacing each point u ∈ S with a copy of T , denoted by T (u). Let γ = maxt 6=t′∈T {dT (t,t′)}

mins 6=s′∈S{dS(s,s′)} .
For zi 6= zj ∈ Z such that zi ∈ T (u) and zj ∈ T (v) the distance is defined as follows: if u = v,
then dZ(zi, zj) = 1

βγ · dT (zi, zj), otherwise (if u 6= v), dZ(zi, zj) = dS(u, v).

It is easily checked that the choice of the factor 1/(βγ) guarantees that dZ is indeed a
metric. For a finite metric space S and an integer t ≥ 1, let [S]tβ denote the metric space
obtained by β-composition of S with itself t times. The following theorem asserts that when
the number of trees is small our upper bound on the distortion of Ramsey tree covers is
tight up to a logarithmic factor. Although the example is not described as a planar and
doubling metric space, in the full version of the paper we show that it can be approximated
with constant distortion by a shortest path metric on a series-parallel graph with constant
doubling dimension.

I Theorem 27. For any k ≥ 1 and large enough n, there is an n-point doubling metric space
X, such that any Ramsey tree cover of X of size k, has distortion Ω

(
n

1
k

)
.

Proof. Let CN denote the shortest path metric on the unweighted N -point cycle graph. For
any integers k,N ≥ 1 and for any β ≥ 1/2, consider the metric space Zk(N) = [CN ]kβ . We
prove by induction on k, that any Ramsey tree cover of Zk(N) with k trees has distortion at
least 1

3 |Zk(N)|1/k − 1. The details are differed to the full version of the paper. J
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Abstract
An elastic-degenerate (ED) string is a sequence of n sets of strings of total length N , which was
recently proposed to model a set of similar sequences. The ED string matching (EDSM) problem is to
find all occurrences of a pattern of length m in an ED text. The EDSM problem has recently received
some attention in the combinatorial pattern matching community, and an O(nm1.5√logm+N)-time
algorithm is known [Aoyama et al., CPM 2018]. The standard assumption in the prior work on
this question is that N is substantially larger than both n and m, and thus we would like to have a
linear dependency on the former. Under this assumption, the natural open problem is whether we
can decrease the 1.5 exponent in the time complexity, similarly as in the related (but, to the best of
our knowledge, not equivalent) word break problem [Backurs and Indyk, FOCS 2016].

Our starting point is a conditional lower bound for the EDSM problem. We use the popular
combinatorial Boolean matrix multiplication (BMM) conjecture stating that there is no truly
subcubic combinatorial algorithm for BMM [Abboud and Williams, FOCS 2014]. By designing
an appropriate reduction we show that a combinatorial algorithm solving the EDSM problem in
O(nm1.5−ε +N) time, for any ε > 0, refutes this conjecture. Of course, the notion of combinatorial
algorithms is not clearly defined, so our reduction should be understood as an indication that
decreasing the exponent requires fast matrix multiplication.

Two standard tools used in algorithms on strings are string periodicity and fast Fourier transform.
Our main technical contribution is that we successfully combine these tools with fast matrix
multiplication to design a non-combinatorial O(nm1.381 +N)-time algorithm for EDSM. To the best
of our knowledge, we are the first to do so.
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1 Introduction

Boolean matrix multiplication (BMM) is one of the most fundamental computational problems.
Apart from its theoretical interest, it has a wide range of applications [37, 52, 29, 27, 46]. BMM
is also the core combinatorial part of integer matrix multiplication. In both problems, we are
given two N ×N matrices and we are to compute N 2 values. Integer matrix multiplication
can be performed in truly subcubic time, i.e., in O(N 3−ε) operations over the field, for some
ε > 0. The fastest known algorithms for this problem run in O(N 2.373) time [30, 54]. These
algorithms are known as algebraic: they rely on the underlying ring structure.

There also exists a different family of algorithms for the BMM problem known as
combinatorial. Their focus is on unveiling the combinatorial structure in the Boolean
matrices to reduce redundant computations. A series of results [7, 9, 15] culminating in an
Ô(N 3/ log4N )-time algorithm [58] (the Ô(·) notation suppresses poly(log log) factors) has led
to the popular combinatorial BMM conjecture stating that there is no combinatorial algorithm
for BMM working in time O(N 3−ε), for any ε > 0 [2]. There has been ample work on applying
this conjecture to obtain BMM hardness results: see, e.g., [44, 2, 49, 33, 43, 42, 17].

String matching is another fundamental problem. The problem is to find all fragments of
a string text of length n that match a string pattern of length m. This problem has several
linear-time solutions [22]. In many real-world applications, it is often the case that letters at
some positions are either unknown or uncertain. A way of representing these positions is
with a subset of the alphabet Σ. Such a representation is called degenerate string. The first
efficient algorithm for a degenerate text and a standard pattern was published by Fischer
and Paterson in 1974 [28]. It has undergone several improvements since then [36, 39, 20, 19].
The first efficient algorithm for a degenerate pattern and a standard text was published by
Abrahamson in 1987 [3], followed by several practically efficient algorithms [57, 47, 34].

Degenerate letters are used in the IUPAC notation [38] to represent a position in a DNA
sequence that can have multiple possible alternatives. These are used to encode the consensus
of a population of sequences [21, 4] in a multiple sequence alignment (MSA). In the presence
of insertions or deletions in the MSA, we may need to consider alternative representations.
Consider the following MSA of three closely-related sequences (on the left):

GCAACGGGTA--TT
GCAACGGGTATATT
GCACCTGG----TT

T̃ =
{

GCA
}
·
{

A
C

}
·
{

C
}
·
{

G
T

}
·
{

GG
}
·


TA

TATA
ε

 ·{ TT
}

These sequences can be compacted into a single sequence T̃ of sets of strings (on the right)
containing some deterministic and some non-deterministic segments. A non-deterministic
segment is a finite set of deterministic strings and may contain the empty string ε corres-
ponding to a deletion. The total number of segments is the length of T̃ and the total number
of letters is the size of T̃ . We denote the length by n = |T̃ | and the size by N = ||T̃ ||.

This representation has been defined in [35] by Iliopoulos et al. as an elastic-degenerate
(ED) string. Being a sequence of subsets of Σ∗, it can be seen as a generalization of a
degenerate string. The natural problem that arises is finding all matches of a deterministic
pattern P in an ED text T̃ . This is the elastic-degenerate string matching (EDSM) problem.
Since its introduction in 2017 [35], it has attracted some attention in the combinatorial
pattern matching community, and a series of results have been published. The simple
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algorithm by Iliopoulos et al. [35] for EDSM was first improved by Grossi et al. in the
same year, who showed that, for a pattern of length m, the EDSM problem can be solved
on-line in O(nm2 +N) time [32]; on-line means that the text is read segment-by-segment
and an occurrence is detected as soon as possible. This result was improved by Aoyama et
al. [6] who presented an O(nm1.5√logm+N)-time algorithm. An important feature of these
bounds is their linear dependency on N . A different branch of on-line algorithms waiving
the linear-dependency restriction exists [32, 48, 18]. Moreover, the EDSM problem has been
considered under Hamming and edit distance [12].

A question with a somewhat similar flavor is the word break problem. We are given a
dictionary D, m = ||D||, and a string S, n = |S|, and the question is whether we can split
S into fragments that appear in D (the same element of D can be used multiple times).
Backurs and Indyk [8] designed an Õ(nm1/2−1/18 +m)-time algorithm for this problem (the Õ
notation suppresses poly(log) factors). Bringmann et al. [14] improved this to Õ(nm1/3 +m)
and showed that this is optimal for combinatorial algorithms by a reduction from k-Clique.
Their algorithm uses fast Fourier transform (FFT), and so it is not clear whether it should
be considered combinatorial. While this problem seems similar to EDSM, there does not
seem to be a direct reduction and so their lower bound does not immediately apply.

Our Results. It is known that BMM and triangle detection in graphs either both have
truly subcubic combinatorial algorithms or none of them do [56]. Recall also that the
currently fastest algorithm with linear dependency on N for the EDSM problem runs in
O(nm1.5√logm+N) time [6]. In this paper we prove the following two theorems.

I Theorem 1. If the EDSM problem can be solved in O(nm1.5−ε +N) time, for any ε > 0,
with a combinatorial algorithm, then there exists a truly subcubic combinatorial algorithm for
triangle detection.

Arguably, the notion of combinatorial algorithms is not clearly defined, and Theorem 1
should be understood as an indication that in order to achieve a better complexity one should
use fast matrix multiplication. Indeed, there are examples where a lower bound conditioned on
BMM was helpful in constructing efficient algorithms using fast matrix multiplication [1, 16,
13, 45, 24, 55, 59]. We successfully design such a non-combinatorial algorithm by combining
three ingredients: a string periodicity argument, FFT, and fast matrix multiplication. While
periodicity is the usual tool in combinatorial pattern matching [40, 23, 41] and using FFT is
also not unusual (for example, it often shows up in approximate string matching [3, 5, 19, 31]),
to the best of our knowledge, we are the first to combine these with fast matrix multiplication.
Specifically, we show the following result for the EDSM problem.

I Theorem 2. The EDSM problem can be solved on-line in expected O(nm1.381 +N) time.

An important building block in our solution that might find applications in other problems
is a method of selecting a small set of length-` substrings of the pattern, called anchors, so
that any relevant occurrence of a string from an ED text set contains at least one but not too
many such anchors inside. This is obtained by rephrasing the question in a graph-theoretical
language and then generalizing the well-known fact that an instance of the hitting set problem
with m sets over [n], each of size at least k, has a solution of size O(n/k · logm). While
the idea of carefully selecting some substrings of the same length is not new, for example
Kociumaka et al. [41] used it to design a data structure for pattern matching queries on a
string, our setting is different and hence so is the method of selecting these substrings.
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Roadmap. Section 2 provides the necessary definitions and notation as well the algorithmic
toolbox used throughout the paper. In Section 3 we prove our hardness result for the
EDSM problem (Theorem 1). In Section 4 we present our algorithm for the same problem
(Theorem 2); this is the most technically involved part of the paper.

2 Preliminaries

Let T = T [1]T [2] . . . T [n] be a string of length |T | = n over a finite ordered alphabet Σ
of size |Σ| = σ. For two positions i and j on T , we denote by T [i . . j] = T [i] . . . T [j] the
substring of T that starts at position i and ends at position j (it is of length 0 if j < i). By
ε we denote the empty string of length 0. A prefix of T is a substring of the form T [1 . . j],
and a suffix of T is a substring of the form T [i . . n]. T r denotes the reverse of T , that is,
T [n]T [n − 1] . . . T [1]. We say that a string X is a power of a string Y if there exists an
integer k > 1, such that X is expressed as k consecutive concatenations of Y , denoted by
X = Y k. A period of a string X is any integer p ∈ [1, |X|] such that X[i] = X[i + p] for
every i = 1, 2, . . . , |X| − p, and the period, denoted by per(X), is the smallest such p. We
call a string X strongly periodic if per(X) ≤ |X|/4.

I Lemma 3 ([26]). If p and q are both periods of the same string X, and additionally
p+ q ≤ |X|+ 1, then gcd(p, q) is also a period of X.

A trie is a rooted tree in which every edge is labeled with a single letter, and every two
edges outgoing from the same node have different labels. The label of a node u in such a tree
T , denoted by L(u), is defined as the concatenation of the labels of all the edges on the path
from the root of T to u. Thus, the label of the root of T is ε, and a trie is a representation of
a set of strings consisting of the labels of all its leaves. By replacing each path p consisting
of nodes with exactly one child by an edge labeled by the concatenation of the labels of
the edges of p we obtain a compact trie. The nodes of the trie that are removed after this
transformation are called implicit, while the remaining ones are referred to as explicit. The
suffix tree of a string S is the compact trie representing all suffixes of S$, $ /∈ Σ, where
instead of explicitly storing the label S[i . . j] of an edge we represent it by a pair (i, j).

A heavy path decomposition of a tree T is obtained by selecting, for every non-leaf node
u ∈ T , its child v such that the subtree rooted at v is the largest. This decomposes the
nodes of T into node-disjoint paths, with each such path p (called a heavy path) starting
at some node, called the head of p, and ending at a leaf. An important property of such a
decomposition is that the number of distinct heavy paths above any leaf (that is, intersecting
the path from a leaf to the root) is only logarithmic in the size of T [51].

Let Σ̃ denote the set of all finite non-empty subsets of Σ∗. Previous works (cf. [35, 32, 12,
6, 48]) define Σ̃ as the set of all finite non-empty subsets of Σ∗ excluding {ε} but we waive
here the latter restriction as it has no algorithmic implications. An elastic-degenerate string,
or ED string, over alphabet Σ, is a string over Σ̃, i.e., an ED string is an element of Σ̃∗.

Let T̃ denote an ED string of length n, i.e. |T̃ | = n. We assume that for any 1 ≤
i ≤ n, the set T̃ [i] is implemented as an array and can be accessed by an index, i.e.,
T̃ [i] = {T̃ [i][k] | k = 1, . . . , |T̃ [i]|}. For any c̃ ∈ Σ̃, ||c̃|| denotes the total length of all
strings in c̃, and for any ED string T̃ , ||T̃ || denotes the total length of all strings in all
T̃ [i]s or the size of T̃ , i.e., ||c̃|| =

∑
s∈c̃ |s| and ||T̃ || =

∑n
i=1 ||T̃ [i]||. An ED string T̃ can

be thought of as a representation of the set of strings A(T̃ ) = T̃ [1] × . . . × T̃ [n], where
A×B = {xy | x ∈ A, y ∈ B} for any sets of strings A and B. For any ED string X̃ and a
pattern P , we say that P matches X̃ if
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1. |X̃| = 1 and P is a substring of some string in X̃[1], or,
2. |X̃| > 1 and P = P1 . . . P|X̃|, where P1 is a suffix of some string in X̃[1], P|X̃| is a prefix

of some string in X̃[|X̃|], and Pi ∈ X̃[i], for all 1 < i < |X̃|.

We say that an occurrence of a string P ends at position j of an ED string T̃ if there
exists i ≤ j such that P matches T̃ [i] . . . T̃ [j]. We will refer to string P as the pattern and to
ED string T̃ as the text. We define the main problem considered in this paper.

Elastic-Degenerate String Matching (EDSM)
INPUT: A string P of length m and an ED string T̃ of length n and size N ≥ m.
OUTPUT: All positions in T̃ where at least one occurrence of P ends.

I Example 4. Pattern P = GTAT ends at positions 2, 6, and 7 of the following text T̃ .

T̃ =
{

ATGTA
}
·
{

A
T

}
·
{

C
}
·
{

G
T

}
·
{

CG
}
·


TA

TATA
ε

 ·
{

TATGC
TTTTA

}

Aoyama et al. [6] obtained an on-line O(nm1.5√logm+N)-time algorithm by designing
an efficient solution for the following problem.

Active Prefixes (AP)
INPUT: A string P of length m, a bit vector U of size m, a set S of strings of total
length N .
OUTPUT: A bit vector V of size m with V [j] = 1 if and only if there exists S ∈ S and
i ∈ [1,m], U [i] = 1, such that P [1 . . i] · S = P [1 . . i+ |S|] and j = i+ |S|.
In more detail, given an ED text one should consider an instance of the AP problem

per segment. Hence, an O(f(m) +Ni) solution for AP (with Ni being the size of the i-th
segment of the ED text) implies an O(n · f(m) +N) solution for EDSM, as N =

∑n
i=1 Ni.

We provide an example of the AP problem.

I Example 5. Let P = ababbababab of length m = 11, U = 01000100000, and S =
{ε, ab, abb, ba, baba}. We have that V = 01011101010.

For our hardness results we rely on BMM and the following closely related problem.
Boolean Matrix Multiplication (BMM)
INPUT: Two N ×N Boolean matrices A and B.
OUTPUT: N ×N Boolean matrix C, where C[i, j] =

∨
k

(A[i, k] ∧B[k, j]).

Triangle Detection (TD)
INPUT: Three N ×N Boolean matrices A,B and C.
OUTPUT: Are there i, j, k such that A[i, j] = B[j, k] = C[k, i] = 1?

An algorithm is called truly subcubic if it runs in O(N 3−ε) time, for some ε > 0. TD and
BMM either both have truly subcubic combinatorial algorithms, or none of them do [56].

3 EDSM Conditional Lower Bound

We show a conditional lower bound for the EDSM problem. Specifically, we show that TD
can be reduced to the EDSM problem. We work with the decision version: the goal is to
detect whether there exists at least one occurrence of P in T̃ .
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I Theorem 1. If the EDSM problem can be solved in O(nm1.5−ε +N) time, for any ε > 0,
with a combinatorial algorithm, then there exists a truly subcubic combinatorial algorithm for
triangle detection.

Proof. Consider an instance of TD, where we are given threeN×N Boolean matrices A,B,C,
and the question is to check if there exist i, j, k such that A[i, j] = B[j, k] = C[k, i] = 1. Let
s be a parameter to be determined later that corresponds to decomposing B into blocks of
size (N/s)× (N/s). We reduce to an instance of EDSM over an alphabet Σ of size O(N ).

Pattern P . We construct P by concatenating, in some fixed order, the following strings:

P (i, x, y) = v(i)xaN/sx$$yaN/syv(i)

for every i = 1, 2, . . . ,N and x, y = 1, 2, . . . , s, where a ∈ Σ1, $ ∈ Σ2, x ∈ Σ3, y ∈ Σ4,
v(i) ∈ Σ5, and Σ1,Σ2, . . . ,Σ5 are disjoint subsets of Σ.

ED text T̃ . The text T̃ consists of three parts. Its middle part encodes all the entries equal
to 1 in matrices A, B and C, and consists of three string sets X =X1 · X2 · X3, where:
1. X1 contains all strings of the form v(i)xaj , for some i = 1, 2, . . . ,N , x = 1, 2, . . . , s and

j = 1, 2, . . . ,N/s such that A[i, (x− 1) · (N/s) + j] = 1;
2. X2 contains all strings of the form aN/s−j x$$yaN/s−k, for some x, y = 1, 2, . . . , s and

j, k = 1, 2, . . . ,N/s such that B[(x− 1) · (N/s) + j, (y − 1) · (N/s) + k] = 1, i.e., if the
corresponding entry of B is 1;

3. X3 contains all strings of the form akyv(i), for some i = 1, 2, . . . ,N , y = 1, 2, . . . , s and
k = 1, 2, . . . ,N/s such that C[(y − 1) · (N/s) + k, i] = 1.

It is easy to see that |P (i, x, y)| = O(N/s). This implies the following:
1. The length of the pattern is m = O(N · s2 · N/s) = O(N 2 · s);
2. The size of X is ||X || = O(N ·s·N/s·N/s+s2 ·(N/s)2 ·N/s+N ·s·N/s·N/s) = O(N 3/s).
By the above construction, we obtain the following fact.

I Fact 6. P (i, x, y) matches X if and only if the following holds for some j, k = 1, 2, . . . ,N/s:

A[i, (x−1)·(N/s)+j] = B[(x−1)·(N/s)+j, (y−1)·(N/s)+k] = C[(y−1)·(N/s)+k, i] = 1.

Solving the TD problem thus reduces to taking the disjunction of all such conditions. Let
us write down all strings P (i, x, y) in some arbitrary but fixed order to obtain P = P1P2 . . . Pz
with z = N s2, where every Pt = P (i, x, y), for some i, x, y. We aim to construct a small
number of sets of strings that, when considered as an ED text, match any prefix P1P2 . . . Pt
of the pattern, 1 ≤ t ≤ z−1; a similar construction can be carried on to obtain sets of strings
that match any suffix Pk . . . Pz−1Pz, 2 ≤ k ≤ z. These sets will then be added to the left
and to the right of X , respectively, to obtain the ED text T̃ .

ED Prefix. We construct log z sets of strings as follows. The first one contains the empty
string ε and P1P2 . . . Pz/2. The second one contains ε, P1P2 . . . Pz/4 and Pz/2+1 . . . Pz/2+z/4.
The third one contains ε, P1P2 . . . Pz/8, Pz/4+1 . . . Pz/4+z/8, Pz/2+1 . . . Pz/2+z/8 and
Pz/2+z/4+1 . . . Pz/2+z/4+z/8. Formally, for every i = 1, 2, . . . , log z, the i-th of such sets is:

T̃ pi = ε ∪ {Pj z

2i−1 +1 . . . Pj z

2i−1 + z

2i
| j = 0, 1, . . . , 2i−1 − 1}.
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ED Suffix. We similarly construct log z sets to be appended to X :

T̃ si = ε ∪ {Pz−j z

2i−1−
z

2i
+1 . . . Pz−j z

2i−1
| j = 0, 1, . . . , 2i−1 − 1}.

The total length of all the ED prefix and ED suffix strings is O(log z ·N 2 ·s) = O(N 2 ·s·logN ).
The whole ED text T̃ is: T̃ = T̃ p1 · · · · · T̃

p
log z · X · T̃ slog z · · · · · T̃ s1 .

I Lemma 7. The pattern P occurs in the ED text T̃ if and only if there exist i, j, k such
that A[i, j] = B[j, k] = C[k, i] = 1.

Proof. By Fact 6, if such i, j, k exist then Pt matches X , for some t ∈ {1, . . . , z}. Then, by
construction of the sets T̃ pi and T̃ si , the prefix P1 . . . Pt−1 matches the ED prefix (this can be
proved by induction), and similarly the suffix Pt+1 . . . Pz matches the ED suffix, so the whole
P matches T̃ , and so P occurs in T̃ . Because of the letters $ appearing only in the center
of Pis and strings from X2, every Pi and a concatenation of X1 ∈ X1, X2 ∈ X2, X3 ∈ X3
having the same length, and the Pis being distinct, there is an occurrence of the pattern P
in T̃ if and only if X1X2X3 = Pt for some t and X1 ∈ X1, X2 ∈ X2, X3 ∈ X3. But then, by
Fact 6 there exists a triangle. J

Note that for the EDSM problem we have m = N 2 · s, n = 1 + 2 log z and N = ||X || +
O(N 2 · · ··logN ). Thus if we had a solution running in O(log z ·m1.5−ε+||X ||+N 2 ·s·logN ) =
O(logN · (N 2 · s)1.5−ε +N 3/s) time, for some ε > 0, by choosing a sufficiently small α > 0
and setting s = Nα we would obtain an O(N 3−δ)-time algorithm for TD, for some δ > 0. J

4 An O(nm1.381 + N)-time Algorithm for EDSM

Our goal is to design a non-combinatorial O(nm1.381 + N)-time algorithm for EDSM. It
suffices to solve an instance of the AP problem in O(m1.381 +N) time. We further reduce
the AP problem to a logarithmic number of restricted instances of the problem, in which the
length of every string S ∈ S is in [(10/9)k, (10/9)k+1), for k = 0, . . . , logm/ log(10/9). If we
solve every such instance in O(f(m) +N) time, then we can solve the original instance in
O(f(m) logm + N) time by taking the disjunction of results. We partition the strings in
S into three types, compute the corresponding bit vector V for each type separately and
in different ways, and, finally, take the disjunction to obtain the answer for the restricted
instance.

Partitioning S. Let ` = 8/9 · (10/9)k (to avoid clutter we assume that ` is an integer, but
this can be avoided by appropriately adjusting the constants), so that the length of every
string in S belongs to [9/8 · `, 5/4 · `). The three types of strings are as follows:
Type 1: Strings S ∈ S such that every length-` substring of S is not strongly periodic.
Type 2: Strings S ∈ S containing at least one length-` substring that is not strongly periodic

and at least one length-` substring that is strongly periodic.
Type 3: Strings S ∈ S such that every length-` substring of S is strongly periodic (in

Lemma 8 we show that in this case per(S) ≤ `/4).
These three types are evidently a partition of S and, before we proceed with the algorithm,
we need to show that we can determine the type of a string S ∈ S in O(|S|) time. We start
with showing that, in fact, strings of type 3 are exactly strings with period at most `/4.

I Lemma 8. Let S be a string. If per(S[j . . j + `− 1]) ≤ `/4 for every j then per(S) ≤ `/4.

I Lemma 9. Given a string S we can determine its type in O(|S|) time.
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4.1 Type 1 Strings
In this section we show how to solve a restricted instance of the AP problem where every
string S ∈ S is of type 1, that is, each of its length-` substrings is not strongly periodic, and
furthermore |S| ∈ [9/8 · `, 5/4 · `) for some ` ≤ m. Observe that all (hence at most 1/4 · `)
length-` substrings of any S ∈ S must be distinct, as otherwise we would be able to find two
occurrences of a length-` substring at distance at most 1/4 · ` in S, making the period of the
substring at most 1/4 · ` and contradicting the assumption that S is of type 1.

We start with constructing the suffix tree ST of P (our pattern in the EDSM problem)
in O(m logm) time [53] (note that we are spending O(m logm) time and not just O(m) as
to avoid any assumptions on the alphabet). For every explicit node u ∈ ST , we construct
a perfect hash function mapping the first letter on every edge outgoing from u to the
corresponding edge. This takes O(m logm) time [50] and allows us to navigate in ST in
constant time per letter. Then, for every S ∈ S we check if it occurs in P using the suffix
tree in O(|S|) time, and if not disregard it from further consideration. We want to further
partition S into S0,S1, . . . ,Slogm that are processed separately. For every Sk, we want to
select a set of length-` substrings of P , called the anchors, each represented by one of its
occurrences in P , such that:
1. The total number of occurrences of all anchors in P is O(m/` · log2 m).
2. For every S ∈ Sk, at least one of its length-` substrings is an anchor.
3. For every S ∈ Sk, at most O(log2 m) of its length-` substrings are anchors.
We formalize this using the following auxiliary problem, which is a strengthening of the
hitting set problem: for any collection of m sets over [n], each of size at least k, we can choose
a subset of [n] of size O(n/k · logm) that nontrivially intersects every set.

Node Selection (NS)
INPUT: A bipartite graph G = (U, V,E) with deg(u) ∈ [d, α · d] for every u ∈ U .
OUTPUT: A set of O(|V |/d · log |U |) nodes from V such that every node in U has at
least one selected neighbor but O(α · log |U |) such selected neighbors.

To reduce finding anchors to an instance of the NS problem, we first build a bipartite
graph G in which the nodes on the left correspond to strings S ∈ S, the nodes on the
right correspond to distinct length-` substrings of P , and there is an edge connecting a
node corresponding to a length-` string H with a node corresponding to a string S when
H occurs in S. Using suffix links, we can find the node of the suffix tree corresponding
to every length-` substring of S in O(|S|) total time, so the whole construction takes
O(m logm+

∑
S∈S |S|) = O(m logm+N) time. The size of G is O(m+N), and the degree

of every node on its left belongs to [1/8 · `, 1/4 · `). We further partition G into a logarithmic
number of graphs G0, G1, . . . , Glogm where Gk contains all nodes v on the right of G such
that the number of occurrences in P of the corresponding length-` string belongs to [2k, 2k+1).
For every node u on the left of G we find k such that at least 1/8 · `/ logm of its neighbors
exist in Gk, add u as a node on the left of Gk, and declare Sk to consist of all strings S ∈ S
corresponding to nodes on the left of Gk. By construction, every S ∈ S corresponds to a
node on the left of exactly one Gk, so we indeed obtain a partition of S. For every Sk we
solve the corresponding instance of the NS problem to obtain its corresponding set of anchors.
We can assume that all strings in Sk are distinct, so there are at most m2 nodes on the
left of Gk, the degree of each such node belongs to [1/8 · `/ logm, 1/4 · `] and, denoting by
mk the total number of occurrences in P of strings corresponding to nodes on the right of
Gk, we have

∑
kmk ≤ m and there are at most mk/2k nodes on the right of Gk. At most
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O((mk/2k)/(`/ logm) · logm) nodes on the right of Gk are designated as anchors, making
the total number of occurrences of all anchors O(m/` · log2 m). Also, every S ∈ Sk contains
an occurrence of at least one anchor, and no more than O(log2 m) such occurrences.

It is not immediately clear that an instance of the NS problem always has a solution. We
show that indeed it does, and that it can be efficiently found with a Las Vegas algorithm.

I Lemma 10. A solution to an instance of the NS problem always exists and can be found
in expected linear time.

Proof. We independently choose each node of V with probability p to obtain the set X
of selected nodes. Then, we check if the size of X is small enough, every node in U has
at least one selected neighbor, and O(α · log |U |) such selected neighbors. All these checks
can be made in linear time in the size of the graph, so to show that a solution exists and
can be found in expected linear time, it remains to show that we can adjust p to make the
probability of failure equal to a constant less than 1. The expected size of X is obviously p|V |,
so by Markov’s inequality the probability that |X| > 4p|V | is at most 1/4. The probability
that a node in U has no neighbors in X is at most (1 − p)d. Thus, by union bound the
probability that there exists at least one such node is at most |U | · (1 − p)d ≤ |U | · e−pd.
Consider a node in U of degree d′ ∈ [d, α · d]. Its expected number of selected neighbors is
pd′. Thus, by Chernoff’s inequality the probability that its number of selected neighbors
exceeds (1 + δ)pd′ is at most e−

δ2
2+δ pd

′
. By setting δ = 1, we obtain that the probability of

the number of selected neighbors exceeding 2pαd is at most e− 1
3αpd. By union bound, the

probability that this happens for at least one node is at most |U | · e− 1
3αpd.

We choose p = 3 ln(4|U |)/d. Then, the probability that the size of X exceeds 4p|V | =
12 ln(4|U |)/d · |V | = O( |V |d · log |U |) is at most 1/4, the probability that there exists a node
in U with no selected neighbor is at most |U | · e−pd ≤ 1/4, and the probability that there
exists a node in U with more than 2pαd = O(α · log |U |) selected neighbors is at most
|U | · e− 1

3αpd ≤ 1/4, thus the overall probability of failure is at most 3/4 as required. J

In the rest of this section we explain how to compute the bit vector V from the bit
vector U after having obtained a set A of anchors for a set of strings Sk of total length
Nk. For any S ∈ Sk, since S contains an occurrence of at least one anchor H ∈ A, for
concreteness S[j . . (j + |H| − 1)] = H, any occurrence of S in P can be generated by
choosing some occurrence of H in P , say P [i . . (i+ |H| − 1)] = H, and then checking that
S[1 . . (j− 1)] = P [(i− j+ 1) . . (i− 1)] and S[(j+ |H|) . . |S|] = P [(i+ |H|) . . (i+ |S| − j)]. In
other words, S[1 . . (j− 1)] should be a suffix of P [1 . . (i− 1)] and S[(j+ |H|) . . |S|] should be
a prefix of P [(i+ |H|) . . |P |]. In such case, we say that the occurrence of S in P is generated
by H. By the properties of A, any occurrence of S ∈ Sk is generated by at least one but
no more than O(log2 m) anchors. For every H ∈ A we create a separate data structure
D(H) responsible for setting V [i+ |S| − 1] = 1 if U [i− 1] = 1 and P [i . . (i+ |S| − 1)] = S is
generated by H. We separately describe what information is used to initialize each D(H)
and how it is later processed to update V .

Initialization. D(H) consists of two compact tries T (H) and T r(H). For every occurrence
of H in P , denoted by P [i . . (i+ |H| − 1)] = H, T (H) should contain a leaf corresponding to
P [(i+ |H|) . . |P |]$ and T r(H) should contain a leaf corresponding to (P [1 . . (i− 1)])r$, both
decorated with position i. Additionally, D(H) stores a list L(H) of pairs of nodes (u, v),
where u ∈ T r(H) and v ∈ T (H). Each such pair corresponds to an occurrence of H in a
string S ∈ Sk, S[j . . (j + |H| − 1)] = H, where u is the node of T r(H) corresponding to
(S[1 . . (j − 1)])r$ and v is the node of T (H) corresponding to S[(j + |H| + 1) . . |S|]$. We
claim that D(H), for all H, can be constructed in O(m logm+Nk) total time.
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H

T r(H) T (H)

i

i

v
u

Figure 1 An occurrence of S starting at position i in P is generated by H: (u, v) corresponds to
S[j . . (j + |H| − 1)] = H and i appears in the subtree rooted at u as well as the subtree rooted at v.

We first construct the suffix tree ST of P and the suffix tree ST r of P r in O(m logm)
time. We augment both trees with a structure for answering weighted ancestor (WA) and
lowest common ancestor (LCA) queries that are defined as follows. For a rooted tree T
on n nodes with an integer weight D(v) assigned to every node u, such that the weight
of the root is zero and D(u) < D(v) if u is the parent of v, we say that a node v is a
weighted ancestor of a node v at depth `, denoted by WAT (u, `), if v is the highest ancestor
of u with weight of at least `. Such queries can be answered in O(logn) time after an
O(n)-time preprocessing [25]. For a rooted tree T , LCAT (u, v) is the lowest node that is an
ancestor of both u and v. Such queries can be answered in O(1) time after an O(n)-time
preprocessing [10]. Recall that every anchor H is represented by one of its occurrences in P .
Using WA queries, we can access in O(logm) time the nodes corresponding to H and Hr,
respectively, and extract a lexicographically sorted list of suffixes following an occurrence of
H in P$ and a lexicographically sorted list of reversed prefixes preceding an occurrence of H
in P r$ in time proportional to the number of such occurrences. Then, by iterating over the
lexicographically sorted list of suffixes and using LCA queries on ST we can build T (H) in
time proportional to the length of the list, and similarly for T r(H). To construct L(H) we
start by computing, for every S ∈ Sk and j = 1, . . . , |S|, the node of ST r corresponding to
(S[1 . . j])r and the node of ST corresponding to S([(j + 1) . . |S|] (the nodes might possibly
be implicit). Using suffix links this takes only O(|S|) time. We also find, for every length-`
substring S[j . . (j + `− 1)] of S, an anchor H ∈ A such that S[j . . (j + `− 1)] = H, if any
exists. This can be done by finding the nodes (implicit or explicit) of ST that correspond
to the anchors, and then scanning over all length-` substrings while maintaining the node
of ST corresponding to the current substring using suffix links in O(|S|) total time. After
having determined that S[j . . (j + `− 1)] = H we add (u, v) to L(H), where u and v are the
previously found nodes of ST r and ST corresponding to (S[1 . . (j− 1)])r and S[(j + `) . . |S|],
respectively. By construction, we have the following property, also illustrated in Figure 1.

I Fact 11. A string S ∈ Sk starts at position i− j + 1 in P if and only if, for some anchor
H ∈ A, L(H) contains a pair (u, v) corresponding to S[j . . (j + |H| − 1)] = H, such that the
subtree of T r(H) rooted at u and that of T (H) rooted at v contain a leaf decorated with i.

Note that the overall size of all lists L(H), when summed up over all H ∈ A, is
O(Nk/` · log2 m), because any S ∈ Sk contains O(log2 m) occurrences of anchors, and since
each S is of length at least `, there are only O(Nk/`) strings in Sk.

Processing. The goal of processing D(H) is to efficiently process all occurrences generated
by H. As a preliminary step, we decompose T r(H) and T (H) into heavy paths. Then,
for every pair of leaves u ∈ T r(H) and v ∈ T (H) decorated by the same i, we consider all
heavy paths above u and v. Let p = u1 − u2 − . . . be a heavy path above u in T r(H) and
q = v1 − v2 − . . . be a heavy path above v in T (H), where u1 is the head of p and v1 is the
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H

T r(H) T (H)

i i
vu

ux vy

Figure 2 An occurrence of S starting at position i in P corresponds to a triple (i,L(ux),L(vy))
on some auxiliary list.

head of q, respectively. Further, choose the largest x such that u is in the subtree rooted at
ux, and the largest y such that v is in the subtree rooted at vy (by the choice of p and q, u is
in the subtree rooted at u1 and v is in the subtree rooted at v1, so this is well-defined). We
add (i, | L(ux)|, | L(vy)|) to an auxiliary list associated with the pair of heavy paths (p, q). In
the rest of the processing we work with each such list separately. Notice that the overall size
of all auxiliary lists, when summed up over all H ∈ A, is O(m/` · log4 m), because there are
at most log2 m pairs of heavy paths above u and v decorated by the same i, and the total
number of leaves in all trees T r(H) and T (H) is bounded by the total number of occurrences
of all anchors in P , which is O(m/` · log2 m). By Fact 11, there is an occurrence of a string
S ∈ Sk generated by H and starting at position i− j + 1 in P if and only if L(H) contains
a pair (u, v) corresponding to S[j . . (j + |H| − 1)] = H such that, denoting by p the heavy
path containing u in T r(H) and by q the heavy path containing v in T (H), the auxiliary list
associated with (p, q) contains a triple (i, x, y) such that x ≥ |L(u)| and y ≥ |L(v)|. This is
illustrated in Figure 2. From now on we focus on processing a single auxiliary list associated
with (p, q) together with a list of pairs (u, v) such that u belongs to p and v belongs to q.

An auxiliary list can be interpreted geometrically: for every (i, x, y) we create a red point
(x, y), and for every (u, v) we create a blue point (| L(u)|, | L(v)|). Then, each occurrence of
S ∈ Sk generated by H corresponds to a pair of points (p1, p2) such that p1 is red, p2 is blue,
and p1 dominates p2. We further reduce this to a collection of simpler instances in which all
red points already dominate all blue points. This can be done with a divide-and-conquer
procedure which is essentially equivalent to constructing a 2D range tree [11]. The total
number of points in all obtained instances increases by a factor of O(log2 m), making the
total number of red points in all instances O(m/` · log6 m), while the total number of blue
points is O(Nk/` · log4 m). There is an occurrence of a string S ∈ Sk generated by H

and starting at position i− j + 1 in P if and only if some simpler instance contains a red
point created for some (i, x, y) and a blue point created for some (u, v) corresponding to
S[j . . (j + |H| − 1)] = H. In the following we focus on processing a single simpler instance.

To process a simpler instance we need to check if U [i− j] = 1, for a red point created for
some (i, x, y) and a blue point created for some (u, v) corresponding to S[j . . (j+|H|−1)] = H,
and if so set V [i− j + |S|] = 1. This has a natural interpretation as an instance of BMM: we
create an (5/4·`)×(5/4·`) matrixM such thatM [|S|−j, 5/4·`+1−j] = 1 if and only if there
is a blue point created for some (u, v) corresponding to S[j . . (j+ |H|−1)] = H; then for every
red point created for some (i, x, y) we construct a bit vector Ui = U [(i− 5/4 · `) . . (i− 1)] (if
i < 5/4 ·`, we pad Ui with 0s to make its length always equal to 5/4 ·`); calculate Vi = M×Ui;
and finally set V [i+ j] = 1 whenever Vi[j] = 1 (and i+ j ≤ m).

I Lemma 12. Vi[k] = 1 if and only if there is a blue point created for some (u, v) corres-
ponding to S[j . . (j + |H| − 1)] = H such that U [i− j] = 1 and k = |S| − j.
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The total length of all vectors Ui and Vi is O(m log6 m), so we can afford to extract the
appropriate fragment of U and then update the appropriate fragment of V . The bottleneck is
computing the matrix-vector product Vi = M ×Ui. Naïvely, this might take O(Nk/` · log4 m)
time, because the total number of 1s in all matrices M is bounded by the total number of
blue points. We overcome this by processing together all multiplications concerning the same
matrix M . Let Ui1 , Ui2 , . . . , Uis be all bit vectors that need to be multiplied with M , and
z a parameter to be determined later. We distinguish between two cases: (i) If s < z we
compute the products naïvely by iterating over all 1s in M , and the total computation time,
when summed up over all such matrices M , is O(Nk/` · log4 m · z); (ii) If s ≥ z we partition
the bit vectors into ds/ze ≤ s/z + 1 groups of z (padding the last group with bit vectors
containing all 0s). For every group, we create a single matrix whose columns contain all the
bit vectors belonging to the group. Thus, we reduce computing all matrix-vector products
M × Ui to computing O(s/z) matrix-matrix products of the form M ×M ′, where M ′ is an
(5/4 · `)× z matrix. M ′ is not necessarily a square matrix, but we can still apply the fast
matrix multiplication algorithm to compute M ×M ′ using the standard trick of decomposing
the matrices into square blocks.

I Lemma 13. If two N × N matrices can be multiplied in O(Nω) time, then, for any
N ≥ N ′, an N ×N and an N ×N ′ matrix can be multiplied in O((N/N ′)2N ′ω) time.

By applying Lemma 13, we can compute M ×M ′ in O(`2zω−2) time (as long as we later
verify that 5/4 · ` ≥ z), so all products M × Ui can be computed in O(`2zω−2 · (s/z + 1))
time. Note that this case can occur only O(m/(` · z) · log6 m) times, because all values of s
sum up to O(m/` · log6 m). This makes the total computation time, when summed up over
all such matrices M , O(`2zω−2 ·m/(` · z) · log6 m) = O(`zω−3 ·m log6 m).

I Theorem 14. An instance of the AP problem where all strings are of type 1 can be solved
in expected O(m1.373 +N) time.

Proof. The total time complexity is first O(m + N) to construct the graph G and then
all graphs Gk, then expected linear time to solve their corresponding instances of the
NodeSelection problem, partition S into S0,S1, . . . ,Slogm and obtain their corresponding
sets of anchors H. The time to initialize all structures D(H) is O(m logm+Nk). For every
D(H), we obtain inO(m/`·log6 m+Nk/`·log4 m) time a number of simpler instances, and then
construct the corresponding Boolean matricesM and bit vectors Ui in additional O(m log6 m)
time. Note that some M might be sparse, so we need to represent them as a list of 1s. Then,
summing up over all matricesM and both cases, we spendO(Nk/`·log4 m·z+`zω−3·m log6 m)
time. We would like to assume that ` ≥ log4 m so that we can set z = `/ log4 m. This is
indeed possible, because for any t we can switch to a more naïve approach to process all
strings of length at most t in O(mt2 +Nk) time: for every possible length t′ ≤ t scan P with
a window of length t′, in every step check if the current window P [i . . (i+ t′− 1)] corresponds
to a string S ∈ S, if so and U [i− 1] = 1 then set V [i+ t′ − 1] = 1. After applying this with
t = log4 m in O(m log8 m+Nk) time, we can set z = `/ log4 m (so that indeed 5/4 · ` ≥ z as
required in case s ≥ z) and the overall time complexity for all matrices M and both cases
becomes O(Nk+`ω−2 ·m log6+4(3−ω) m). Summing up over all values of k and ` and taking the
initialization into account we obtain O(m log8 m+mω−1 log7+4(3−ω) m+N) = O(m1.373 +N)
total time. (We hide logO(1) m factors using the fact that ω < 2.373 [30, 54]). J
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4.2 Wrapping Up
In the full version of the paper we design O(m1.373 +N) and O(m1.381 +N)-time algorithms
for an instance of the AP problem where all strings are of type 2 and 3, respectively.
For type 2 strings, we follow the same ideas as for type 1 strings, except that instead
of the NodeSelection problem we select the anchors by applying a periodicity-based
argument. For type 3 strings, we need both fast matrix multiplication and FFT. Together
with Theorem 14, this gives us Theorem 2.
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Abstract
We study the problem of approximating the value of the matching polynomial on graphs with edge
parameter γ, where γ takes arbitrary values in the complex plane.

When γ is a positive real, Jerrum and Sinclair showed that the problem admits an FPRAS on
general graphs. For general complex values of γ, Patel and Regts, building on methods developed by
Barvinok, showed that the problem admits an FPTAS on graphs of maximum degree ∆ as long as γ
is not a negative real number less than or equal to −1/(4(∆− 1)). Our first main result completes
the picture for the approximability of the matching polynomial on bounded degree graphs. We show
that for all ∆ ≥ 3 and all real γ less than −1/(4(∆− 1)), the problem of approximating the value of
the matching polynomial on graphs of maximum degree ∆ with edge parameter γ is #P-hard.

We then explore whether the maximum degree parameter can be replaced by the connective
constant. Sinclair et al. showed that for positive real γ it is possible to approximate the value of
the matching polynomial using a correlation decay algorithm on graphs with bounded connective
constant (and potentially unbounded maximum degree). We first show that this result does not
extend in general in the complex plane; in particular, the problem is #P-hard on graphs with
bounded connective constant for a dense set of γ values on the negative real axis. Nevertheless, we
show that the result does extend for any complex value γ that does not lie on the negative real axis.
Our analysis accounts for complex values of γ using geodesic distances in the complex plane in the
metric defined by an appropriate density function.
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1 Introduction

We study the problem of approximating the matching polynomial of a graph. This polynomial
has a parameter γ, called the edge activity. A matching of a graph G is a set M ⊆ E(G)
such that each vertex v ∈ V (G) is contained in at most one edge in M . We denote byMG

the set of all matchings of G. The matching polynomial ZG(γ) is given by

ZG(γ) =
∑

M∈MG

γ|M |.

This polynomial is also referred to as the partition function of the monomer-dimer model in
statistical physics.

Here is what is known about approximating this polynomial. We first describe the
case where γ is positive and real. This is a natural case, and is the case where the first
complexity-theoretic results were obtained. We next describe the more general case, where γ
is a complex number. There are many reasons for considering the more general case. The
parameter γ is defined to be complex, rather than real, in the classic paper of Heilmann
and Lieb [8]. Furthermore, it has recently been shown [15] that the quantum evolution of a
system originally in thermodynamic equilibrium is equivalent to the partition function of the
system with a complex parameter. As [15] explains, recent discoveries in physics make it
possible to study thermodynamics in the complex plane of physical parameters – so complex
parameters are increasingly relevant. As we will see in this paper, it is beneficial to study
partition functions with complex parameters even when one is most interested in the real
case – the reason is that the generalisation sheds light on “what is really going on” with
complexity bottlenecks, and on appropriate potential functions. Here is the summary of
known results in both cases.

When the edge activity γ is a positive real number: For any positive real
number γ, Jerrum and Sinclair [9, Corollary 4.4] gave an FPRAS for approximating
ZG(γ). Using the correlation decay technique, Bayati et al. [3] gave a (deterministic)
FPTAS for the same problem for the case in which the degree of the input graph G is at
most a constant ∆.
When the edge activity γ is a complex number: Known results are restricted
to the case where γ is not a real number less than or equal to −1/(4(∆− 1)). In this case,
there is a positive result, due to Patel and Regts [11]. Using a method of Barvinok [1, 2]
for approximating a partition function by truncating its Taylor series (in a region where
the partition function has no zeroes), Patel and Regts [11, Theorem 1.2] extended the
positive result of Bayati et al. to the case in which γ is a complex number that is not
a negative real that is less than −1/(4(∆ − 1)), see also [2, Section 5.1.7]). Patel and
Regts obtained a polynomial time algorithm (rather than a quasi-polynomial time one)
by developing clever methods for exactly computing coefficients of the Taylor series.
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Our first contribution completes this picture by showing that for all ∆ ≥ 3 and all real
γ < −1/(4(∆− 1)) it is actually #P-hard to approximate ZG(γ) on graphs with degree at
most ∆. We use the following notation to state our result more precisely. We consider the
problems of multiplicatively approximating the norm of ZG(γ), and of computing its sign.
Our first theorem shows that, for all ∆ ≥ 3 and all rational numbers γ < −1/(4(∆ − 1)),
it is #P-hard to approximate |ZG(γ)| on bipartite graphs of maximum degree ∆ within a
constant factor.

I Theorem 1. Let ∆ ≥ 3 and γ < − 1
4(∆−1) be a rational number. Then, it is #P-hard to

approximate |ZG(γ)| within a factor of 1.01 on graphs G of maximum degree ∆, even when
restricted to bipartite graphs G with ZG(γ) 6= 0.

The number 1.01 in Theorem 1 is not important. It can be replaced with any constant
greater than 1. In fact, for any fixed ε > 0, the theorem, together with a standard powering
argument, shows that it is #P-hard to approximate ZG(γ) within a factor of 2|V (G)|1−ε .

Our second theorem shows that it is #P-hard to compute the sign of ZG(γ) on bipartite
graphs of maximum degree ∆.

I Theorem 2. Let ∆ ≥ 3 and γ < − 1
4(∆−1) be a rational number. Then, it is #P-hard

to decide whether ZG(γ) > 0 on graphs G of maximum degree ∆, even when restricted to
bipartite graphs G with ZG(γ) 6= 0.

We next explore whether the bound on the maximum degree of G can be relaxed to a
restriction on average degree. The notion of average degree that we use is the connective
constant. Given a graph G, and a vertex v, let NG(v, k) be the number of k-edge paths in G
that start from v. The following definition is taken almost verbatim from [13, 14].1

I Definition 3 ([13, 14]). Let F be a family of finite graphs and let ∆, a and c be positive
real numbers. The connective constant of F is at most ∆ with profile (a, c) if, for any
graph G = (V,E) in F and any vertex v in G, it holds that

∑`
k=1NG(v, k) ≤ c∆` for all

` ≥ a log |V |.

Sinclair, Srivastava, Štefankovič and Yin [13, Theorem 1.3] showed that, for fixed ∆, when
γ is a positive real, the correlation decay method gives an FPTAS for approximating ZG(γ)
on graphs G with connective constant at most ∆ (without any bound on the maximum
degree of G). The run-time of their algorithm is (n/ε)O(

√
γ∆ log ∆), where n is the number of

vertices of G and ε is the relative error.
Our next result shows that, in striking contrast to the bounded-degree case, the algorithmic

result of Sinclair et al. cannot be extended to negative reals, even if γ ≥ −1/(4(∆ − 1)).
Given positive real numbers a and c and a real number ∆ > 1, let F∆,a,c be the set of graphs
with connective constant at most ∆ and profile (a, c).

I Theorem 4. There exist a dense set of values γ on the negative real axis such that the
following holds for any real numbers ∆ > 1 and all a, c > 0.
1. It is #P-hard to approximate |ZG(γ)| within a factor 1.01 on graphs G ∈ F∆,a,c,
2. it is #P-hard to decide whether ZG(γ) > 0 on graphs G ∈ F∆,a,c.
Both of these results hold even when restricted to bipartite graphs G with ZG(γ) 6= 0.

1 The only difference between Definition 3 and the corresponding definitions in [13, 14] is the addition of
the terminology “profile (a, c)” which will be used to state our hardness results in a strong form (the
results in [13, 14] were algorithmic which is why this handle on the constants a and c was not required).
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The algorithmic contribution of our paper is to show that, despite the hardness result
of Theorem 4, correlation decay gives a good approximation algorithm for any complex
value γ that does not lie on the negative real axis when the input graph has bounded
connective constant. It is interesting that we are able to use correlation decay to get a good
approximation for all non-real complex values γ. Our result is the only known approximation
in this setting. In particular, it is not known how to obtain such a result using the method of
Patel and Regts [11]. In order to describe our result, we use the following notation. Given a
complex number x, let arg(x) denote the principal value of its argument in the range [0, 2π)
and |x| denote its norm. Our result is the following.

I Theorem 5. Let ∆, a and c be positive real numbers and let γ ∈ C \R<0 be any fixed edge
activity. Then there is an algorithm which takes as input an n-vertex graph G ∈ F∆,a,c and
a rational ε ∈ (0, 1) and produces an output Ẑ = ZG(γ)ez for some complex number z with
|z| ≤ ε. The running time of the algorithm is (ĉn/ε)O

(
(1+a+

√
|γ̂|∆) log ∆

)
where γ̂ = 2|γ|

1+cos(argγ)
and ĉ = max{1, c}.

Theorem 5 gives an algorithmic result which contrasts with the hardness results of
Theorems 1 and 2. It has the following corollary.

I Corollary 6. Let ∆, a and c be positive real numbers and let γ ∈ C \R<0 be any fixed edge
activity. Then, for any rational K > 1 and any positive rational ρ, there are polynomial-
time algorithms to take as input a graph G ∈ F∆,a,c and approximate |ZG(γ)| within a
multiplicative factor of K and arg(ZG(γ)) within an additive error ρ.

In order to prove Theorem 5, showing correlation decay for complex γ, we use geodesic
distances in the complex plane in the metric defined by an appropriate density function.
Correlation decay for complex activities has been analysed in the context of the hard-core
model (see Harvey, Srivastava and Vondrák [7])2. The region in the complex plane in which
the authors of [7] worked allowed them to measure distances using the norm instead of
requiring geodesic distances. An alternative approach was given by Peters and Regts [12],
again in the context of the hard-core model, where they showed contraction within the basin
of an attracting fixpoint using the theory of complex dynamical systems.

2 Preliminaries

Let γ be a complex number and G = (V,E) be an arbitrary graph. Recall thatMG is the
set of matchings of G. For a matching M ∈MG, we denote by ver(M) the set of matched
vertices in the matching M . For a vertex u in G, we also define

ZG,u(γ) :=
∑

M∈MG;u∈ver(M)

γ|M | and ZG,¬u(γ) :=
∑

M∈MG;u/∈ver(M)

γ|M |.

Thus, ZG,u(γ) is the contribution to the partition function ZG(γ) from those matchings
M ∈MG such that u is matched in M , while ZG,¬u(γ) is the contribution to the partition
function ZG(γ) from those matchings M ∈MG such that u is not matched in M .

We will use the following result about the location of the zeroes of the matching polynomial.

2 Note that Harvey et al were actually working with the mutivariate hard-core polynomial – this causes
interesting complications which will not be relevant for this paper. They also extend their method
(for the hard-core polynomial, in their region) to graphs of unbounded degree that have bounded
connective constant.
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I Theorem 7 ([8], see, e.g., [2, Theorem 5.1.2]). Let ∆ ≥ 3 be an integer and G be a graph of
maximum degree ∆. Then, for all complex γ that do not lie on the interval (−∞,− 1

4(∆−1) )
of the negative real axis, it holds that ZG(γ) 6= 0.

I Corollary 8. Let ∆ ≥ 3 be an integer and γ > − 1
4(∆−1) be a real number. Then, for all

graphs G of maximum degree ∆ it holds that ZG(γ) > 0.

For our approximation algorithm of Theorem 5, given a graph G = (V,E) with ZG(γ) 6= 0
and a vertex v ∈ V , we will be interested in the quantity

pv(G, γ) := ZG,¬v(γ)/ZG(γ).

The algorithm will be based on the following result by Godsil.

I Theorem 9 ([6]). Let γ ∈ C\R<0. Let G = (V,E) be a graph and let v ∈ V be one of its
vertices. Let TSAW (v,G) be the self-avoiding walk tree of G rooted at v. Then,

pv(G, γ) = pv(TSAW (v,G), γ).

3 FPTAS for graphs with bounded connective constant

In this section, we prove Theorem 5. Consider γ ∈ C\R<0.
We will use the correlation decay technique of Weitz [16], which we adapt for use with

complex activities. We review the basic idea behind the technique (see, e.g., [3, 14, 13]). For
a graph G (of bounded connective constant), we first express ZG(γ) as a telescoping product

ZG(γ) = 1/
n∏
i=1

pvj (Gj , γ) (1)

where v1, . . . , vn is an arbitrary enumeration of the vertices of the graph G and Gj is the graph
obtained from G by deleting the vertices v1, . . . , vj . In light of (1), we can therefore focus
on approximating the value pv(G, γ) for a graph G and vertex v. Using Godsil’s Theorem
(cf. Theorem 9), it in turn suffices to approximate pv(TSAW (v,G), γ). This might seem as a
somewhat simpler task given that TSAW (v,G) is a tree; the caveat however is that the tree
TSAW (v,G) is prohibitively large, so in order to be able to perform computations efficiently
we need to truncate the tree. The correlation decay technique analyses the approximation
error introduced by this truncation process by recursively tracking the error using tree
recurrences.

In the case of matchings, for a tree T and a vertex v in T , we can write a recursion for
pv(T, γ) as follows. If v is the only vertex in T , then pv(T, γ) = 1 (since the only possible
matching is the empty set and thus ZT,¬v(γ) = ZT (γ) = 1). Otherwise, let T1, . . . , Td be the
trees of T\{v} and let v1, . . . , vd be the neighbours of v in T1, . . . , Td, respectively. Then, we
have that

ZT,¬v(γ) =
d∏
i=1

ZTi(γ), ZT (γ) =
d∏
i=1

ZTi(γ) +
d∑
i=1

γ ZTi,¬vi(γ)
∏

j∈{1,...,d},j 6=i

ZTj (γ)

and therefore

pv(T, γ) = ZT,¬v(γ)
ZT (γ) = 1

1 + γ
∑d
i=1

ZTi,¬vi (γ)
ZTi (γ)

= 1
1 + γ

∑d
i=1 pvi(Ti, γ)

.
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22:6 The Complexity of Approximating the Matching Polynomial in the Complex Plane

Hence, we need to evaluate the recurrence

x = F (x1, . . . , xd) where F (x1, . . . , xd) = 1
1 + γ

∑d
i=1 xi

, (2)

with base case x = 1.
To show the decay of correlations, one wants to show that after applying the recurrence

starting from two different sets of values at v1, . . . , vd, the two computed values at v will be
“closer” than were the initial values at the vi’s. This leads us to define a notion of distance.
Often straightforward distances do not suffice to show decay of correlations, and distances
defined via a “potential” function are used. We adapt this notion to the complex plane.

3.1 Metrics for measuring the error in the complex plane
We use a distance metric based on conformal density functions (see [10] for details).

I Definition 10 (Length, Distance, Metric). Let U be a simply connected open subset of C
and let Φ : U → R>0 be a function (called conformal density). The length with respect to Φ
of a path3 η : [0, 1]→ U is defined as∫ 1

0
Φ(η(t))

∣∣∣ ∂
∂t
η(t)

∣∣∣ dt.
The distance with respect to Φ between two points x, y ∈ U , denoted distΦ(x, y), is the
infimum of the lengths of the paths η connecting x to y (that is, η(0) = x and η(1) = y). We
will refer to the metric induced by the distance function distΦ(·, ·) as the (conformal) metric
given by Φ.

We first quantify one-level correlation decay.

I Lemma 12. Let U be a simply connected open subset of C, Φ : U → R>0 be a conformal
density function, and distΦ(·, ·) be the metric given by Φ. Let p and q be conjugate exponents,
that is, 1/p+ 1/q = 1, where p, q ∈ R>0 ∪ {∞}.

Suppose that d ≥ 1 is an integer and F : Ud → U is a holomorphic map. Let x1, . . . , xd ∈
U and y1, . . . , yd ∈ U and let x = F (x1, . . . , xd) and y = F (y1, . . . , yd). Assume that there
exists a real α ∈ (0, 1) such that for any z1, . . . , zd ∈ U

d∑
i=1

∣∣∣Φ(F (z1, . . . , zd))
∂F

∂zi
(z1, . . . , zd)

1
Φ(zi)

∣∣∣p ≤ αp. (3)

Then

distΦ(x, y) ≤ α
(

d∑
i=1

distΦ(xi, yi)q
)1/q

. (4)

Proof. Let ε > 0. For i ∈ [d], let ηi be a path connecting xi to yi of length `i ≤ distΦ(xi, yi)+ε.
We assume w.l.o.g. that ηi is re-parameterized to uniform speed (using arc length), that is,
for a.e. t ∈ [0, 1] we have∣∣∣∣ ∂∂tηi(t)

∣∣∣∣Φ(ηi(t)) = `i. (5)

3 Following [10], paths are assumed to be continuous and piecewise continuously differentiable.
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We now define a path η connecting x to y:

η(t) := F (η1(t), . . . , ηd(t)).

Let L denote the length of η and Fi(x1, . . . , xd) denote the function ∂F
∂xi

(x1, ..., xd) Then,
using the triangle inequality and (5), we have

L =
∫ 1

0
Φ(η(t))

∣∣∣ ∂
∂t
η(t)

∣∣∣ dt =
∫ 1

0
Φ(η(t))

∣∣∣ d∑
i=1

Fi(η1(t), . . . , ηd(t))
∂ηi
∂t

(t)
∣∣∣ dt

≤
∫ 1

0
Φ(η(t))

d∑
i=1

∣∣∣Fi(η1(t), . . . , ηd(t))
∂ηi
∂t

(t)
∣∣∣ dt

=
∫ 1

0

d∑
i=1

∣∣∣Φ(η(t))Fi(η1(t), . . . , ηd(t))
1

Φ(ηi(t))
`i

∣∣∣ dt.
(6)

By Hölder’s inequality and condition (3), for any t ∈ [0, 1], we have

d∑
i=1

∣∣∣Φ(η(t))Fi(η1(t), . . . , ηd(t))
1

Φ(ηi(t))
`i

∣∣∣ ≤
(

d∑
i=1

∣∣∣Φ(η(t))Fi(η1(t), . . . , ηd(t))
1

Φ(ηi(t))

∣∣∣p)1/p( d∑
i=1

`qi

)1/q

≤ α
( d∑
i=1

`qi

)1/q
.

Integrating this for t between 0 and 1 and combining with (6), we obtain

distΦ(x, y) ≤ L ≤ α
( d∑
i=1

`qi

)1/q
.

Taking ε→ 0 we obtain

distΦ(x, y) ≤ α
(

d∑
i=1

distΦ(xi, yi)q
)1/q

. J

Now, given a rooted tree, our goal will be to bound the correlation decay at the root
when we truncate the tree at depth Θ(logn). Let T be a finite tree rooted at a vertex ρ and
let C be a subset of the leaves of T . Let U ⊆ C. We will have a family of maps {Fd}d≥1
where Fd : Ud 7→ U will be a symmetric map of arity d (which will be the recurrence applied
to a vertex of the tree with d children). Let σ : C → U be an arbitrary assignment of values
in U to the vertices of C. Let also u0 ∈ U be the “initial” value (u0 corresponds to the
starting point of the recurrences). For a vertex v in T and an initial value u0 ∈ U , we define
the quantity rv(C, σ, u0) recursively as follows.

rv(C, σ, u0) =


u0 if v is a leaf of T and v /∈ C,
σ(v) if v ∈ C,
Fd(x1, . . . , xd) otherwise, where xi = rvi(C, σ, u0)

and v1, . . . , vd are v’s children in T .

(7)

We can now study the sensitivity of rv(C, σ, u0) to the assignment σ. The following lemma
is the analogue of [14, Lemma 3] for the complex plane and will be used to apply the
correlation decay technique for graphs of bounded connective constant, the proof can be
found in the full version.
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22:8 The Complexity of Approximating the Matching Polynomial in the Complex Plane

I Lemma 13. Let U be a simply connected open subset of C and Φ : U → R>0 be a conformal
density function. For d = 1, 2, . . . , let Fd : Ud 7→ U be symmetric holomorphic maps. Suppose
that there exists a real α ∈ (0, 1) and conjugate exponents p and q such that for every integer
d ≥ 1 and all z1, . . . , zd ∈ U it holds that

d∑
i=1

∣∣∣Φ(Fd(z1, . . . , zd))
∂Fd
∂zi

(z1, . . . , zd)
1

Φ(zi)

∣∣∣p ≤ αp. (8)

Then, the following holds for any initial value u0 ∈ U and any finite tree T rooted at ρ.
Let C be a subset of the leaves of T and consider two arbitrary assignments σ1 : C → U

and σ2 : C → U . Then

|rρ(C, σ1, u0)− rρ(C, σ2, u0)| ≤
(
M

L

)(∑
v∈C

αq·depth(v)
)1/q

,

where L := infx∈U Φ(x), M := maxv∈C distΦ(σ1(v), σ2(v)) and depth(v) is the distance of v
from the root ρ.

3.2 Applying the method for matchings
Suppose that γ ∈ C \ R≤0. We will parameterise γ as

γ = (1/Q)2, where we choose Q such that Re(Q) > 0. (9)

Note that, in the choice of Q, we used the assumption that γ is not a negative real number.
Let H be the right complex half-plane, that is, the set of complex x such that Re(x) > 0,
and note that Q ∈ H. We will also transform the space in which the quantities pv(G, γ) live
using the map x 7→ x/Q. In the transformed space, the recurrence (2) becomes

y = F (y1, . . . , yd) where F (y1, . . . , yd) = 1
Q+

∑d
i=1 yi

, (10)

where if y corresponds to a leaf then y = 1/Q (we refer to this y as the initial y). Let

U =
{
y ∈ C | Re(y) > 0, |y| < 1/Re(Q)

}
. (11)

The following lemma shows that the set U is closed under application of the recurrence (10).

I Lemma 14. Suppose that y1, . . . , yd ∈ U and Re(Q) > 0. Then, for y given by (10), we
have that y ∈ U as well. In fact, we have that Re(y) ≥ Re(Q)(

|Q|+ d
Re(Q)

)2 .

We next go on to show the required contraction properties for an appropriate function Φ.
This is largely based on arguments from [13] from the real case, which we can adapt to the
complex plane to obtain the following.

I Lemma 16. Let ∆ be a positive real number, γ ∈ C \R<0, and Q,U be given from (9) and
(11), respectively. Consider the function Φ : U 7→ R>0 given by Φ(y) = 1

Re(y)(2/Re(Q)−Re(y))

and let γ̂ = 2|γ|
1+cos(argγ) ,

D = max{∆, 3
4γ̂ }, p = 1/(1− 1√

1 + 4γ̂D
), q = p

p− 1 , α = 1
D1/q

(
1− 2

1 +
√

1 + 4γ̂D

)
.

(12)
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Then, the following holds for all integer d ≥ 1.
Consider the map F : Ud 7→ U given by F (y1, . . . , yd) = 1

Q+
∑d

i=1
yi
. Then, for arbitrary

y1, . . . , yd ∈ U we have

d∑
i=1

∣∣∣Φ(F (y1, . . . , yd))
∂F

∂yi
(y1, . . . , yd)

1
Φ(yi)

∣∣∣p ≤ αp. (13)

Based on the above lemmas, we can now give a proof sketch of Theorem 5.

Proof Sketch of Theorem 5. If γ is a non-negative real number, then the result follows
from [13, Theorem 1.3]. So we focus on the case where γ is not real. Using the telescoping
expansion of ZG(γ) described in (1), it suffices to give an algorithm that on an input graph
G ∈ F∆,a,c, a vertex v in G and rational δ > 0 outputs in time (ĉn/δ)O

(
(1+a+

√
|γ̂|∆) log ∆

)
a

quantity p̃ which satisfies p̃ = pv(G, γ)ez for some complex number z with |z| ≤ δ.
Let T = TSAW (v,G) be the self-avoiding walk tree rooted at v, then by Theorem 9 we

have that pv(G, γ) = pv(T, γ), so it suffices to approximate pv(T, γ). For this, we apply the
general framework of Lemma 13 to the recurrence in (10) using the contraction properties
proved in Lemma 16. More precisely, we first truncate the tree T at logarithmic depth `
to obtain a tree T ′ and we output p̂ = pv(T ′, γ) as our approximation to pv(T, γ). Note
that T ′ has size at most c∆` since G has connective constant at most ∆. We then invoke
Lemmas 13 and 16 to show that the absolute error between pv(T, γ) and pv(T ′, γ) decays as
(∆1/qα)` where α < 1/∆1/q is the constant in Lemma 16. By taking ` = Θ(logn), we can
therefore make the absolute error as small as an inverse polynomial in n. The absolute error
can then be translated to the desired relative error between p̂ and pv(G, γ) using the bound
in Lemma 14. J

4 Proof of hardness results

Let γ0 = −1/10 and G be the set of graphs of maximum degree 3. It is well-known [5,
Theorem 3] that the problem of exactly computing ZG(γ0) given an input graph G ∈ G is
#P-hard. Moreover, by Corollary 8 we have that ZG(γ0) > 0 for all graphs G ∈ G.

Using an oracle on graphs H of maximum degree ∆ for either approximating ZH(γ)
multiplicatively or deciding the sign of ZH(γ), we will design a polynomial time algorithm to
exactly compute the ratio ZG(γ0)

ZG−e∗ (γ0) for an arbitrary graph G ∈ G and an arbitrary edge e∗

of G; note that this ratio is well-defined since ZG−e∗(γ0) > 0. With such a subroutine at
hand, we can compute ZG(γ0) using self-reducibility techniques; namely, let e1, e2, . . . , em
be an enumeration of the edges of G and let Gi be the graph where the edges ei, . . . , em
are deleted (note that Gm+1 = G and G1 is the empty graph). Then, we have that
ZG(γ0) =

∏m
i=1

ZGi+1 (γ0)
ZGi (γ0) . This yields the #P-hardness results of Theorems 1 and 2.

The most difficult part of designing the subroutine is constructing graph gadgets that
have the effect of “changing” the edge activity γ to any desired activity, perhaps with
some small error. It is actually important to make the error exponentially small relative
to the size of the graph. To formalise these gadget constructions, we will need some
definitions. Let G = (V,E) be a graph and u, v ∈ V . Analogously to the notation ZG,u(γ)
and ZG,¬u(γ) of Section 2, we let ZG,u,v(γ) be the contribution to the partition function
ZG(γ) from those matchings M ∈MG such that both u, v are matched in M , and we define
ZG,u,¬v(γ), ZG,¬u,v(γ), ZG,¬u,¬v(γ) similarly.
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I Definition 17. Fix a real number γ. Given γ, the graph G = (V,E) is said to implement
the edge activity γ′ ∈ R with accuracy ε > 0 if there are vertices u, v in G such that
ZG,¬u,¬v(γ) 6= 0 and
1. u, v have degree one in G and (u, v) /∈ E,

2.
∣∣∣ ZG,u,¬v(γ)
ZG,¬u,¬v(γ)

∣∣∣ ≤ ε, ∣∣∣ ZG,¬u,v(γ)
ZG,¬u,¬v(γ)

∣∣∣ ≤ ε,
3.
∣∣∣ ZG,u,v(γ)
ZG,¬u,¬v(γ) − γ

′
∣∣∣ ≤ ε.

We call u, v the terminals of G. If both of Items 2 and 3 hold with ε = 0, we say that G
implements the edge activity γ′ (perfectly).

I Definition 18. Let α be a rational number and write α = p/q, where p, q are integers such
that gcd(p, q) = 1. Then, the size of α, denoted by size(α), is given by 1 + log(|p|+ |q|). For
α1, . . . , αt ∈ Q, we denote by size(α1, . . . , αt) the total of the sizes of α1, . . . , αt.

Our key lemma for designing the subroutine is the following.

I Lemma 19. Let ∆ ≥ 3 be an integer and γ < − 1
4(∆−1) be a rational number.

There is an algorithm which, on input rational γ′ ≤ 0 and ε > 0, outputs in poly(size(γ′, ε))
time a bipartite graph G of maximum degree at most ∆ with terminals u, v in the same part
of the vertex partition of G so that G implements γ′ with accuracy ε.

In turn, to prove Lemma 19 it will be simpler to first construct graph gadgets that
implement “vertex” activities.

I Definition 22. Fix a real number γ. Given γ, the graph G = (V,E) is said to implement
the vertex activity λ ∈ R with accuracy ε > 0 if there is vertex u in G such that
1. u has degree one in G,
2. ZG(γ) 6= 0 and

∣∣∣ZG,¬u(γ)
ZG(γ) − λ

∣∣∣ ≤ ε.
We call u the terminal of G. If Item 2 holds with ε = 0, we say that G implements λ
(perfectly).

Our main lemma about implementing vertex activities is as follows.

I Lemma 23. Let ∆ ≥ 3 be an integer and γ < − 1
4(∆−1) be a rational number.

There is an algorithm which, on input a rational number λ and ε > 0, outputs in
poly(size(λ, ε)) time a bipartite graph G of maximum degree at most ∆ that implements the
vertex activity λ with accuracy ε.

In order to obtain the exponential precision of Lemma 23, we will first show how to
implement vertex activities with arbitrarily small constant precision, as formalised in the
following lemma.

I Lemma 24. Let ∆ ≥ 3 be an integer and γ < − 1
4(∆−1) be a real number.

For every λ ∈ R and ε > 0, there is a bipartite graph G of maximum degree at most ∆
that implements the vertex activity λ with accuracy ε.

To prove Lemma 24, we will need to consider two cases for the value of γ. Namely, for an
integer ∆ ≥ 3, the following subset of the negative reals will be relevant:

B∆ =
{
γ ∈ R | γ = − 1

4(∆−1)(cos θ)2 for some θ ∈ (0, π/2) that is a rational multiple of π
}
.

(14)
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If γ /∈ B∆ then we show that we can use (∆− 1)-ary trees of appropriate height to obtain
the constant accuracy of Lemma 24. The situation is more complicated for γ ∈ B∆ since
the (∆− 1)-ary tree is not as effective; neverthless, it can still be used to show that we can
implement perfectly the edge activity γ′ = −1 (though in some cases we have to work a bit
harder, cf. Lemmas 25 and 27 of the full version). To make use of γ′ = −1, we show in
Lemma 26 of the full version that for every rational number λ, there exists a tree of maximum
degree ∆ = 3 that implements the vertex activity λ and this can then be propagated to get
the constant accuracy of Lemma 24 for γ ∈ B∆.

We then bootstrap Lemma 24 to obtain the exponential precision required in Lemma 23,
based on the “contracting maps that cover” technique of [4]. The key is to build a finite
collection of maps Φi : x 7→ 1

1+γ(λi+x) for different values of λi (obtained from Lemma 24)
and to apply these iteratively to amplify precision on an appropriately chosen interval of
the real axis; the details of the construction as well as the choice of the λi’s (see Lemma 30
below) depend heavily on the fact that we are working with the matching polynomial. Using
the maps Φi, Lemma 23 can then be proved using a careful analysis depending on the value
of λ (relative to the interval) and, once this is in place, we have everything we need to prove
Lemma 19, see the full version for details.

The proof of the hardness results for graphs with bounded connective constant (Theorem 4)
can be obtained by adapting our arguments above. Namely, we let S =

⋃
d≥3 Bd. Then, for

γ ∈ S, as we discussed earlier, there exists a tree that implements the edge activity γ′ = −1.
We can then modify the tree so that the terminals of the final tree are at distance `, for
arbitrarily large `. The key now is that we can attach the new tree to the edges of a target
graph to modify the edge activity and at the same time reduce its connective constant (since
there is just one path connecting the terminals of the tree gadget). Since S is dense on
the negative real axis, we therefore obtain Theorem 4 by applying the hardness results of
Theorems 1 and 2.

We conclude by giving the deferred construction of the maps Φi which are used to
obtain the exponential precision of Lemma 23. The proof of the following lemma establishes
important properties of the maps that enable them to bootstrap precision. The lemma also
gives an algorithm that can be used to implement any “target” y with exponential precision.4

I Lemma 30. Let γ < 0 be a rational number. Then, there exist rationals x0 and r, δ > 0
and reals λ∗1, . . . , λ∗t (for some positive integer t) such that the following holds for all rational
λ1, . . . , λt satisfying |λi − λ∗i | ≤ δ for i ∈ [t].

Let I := [x0 − r, x0 + r] and, for i ∈ [t], consider the map Φi : x 7→ 1
1+γ(λi+x) for

x 6= −(1 + γλi)/γ. There is an algorithm which, on input (i) a starting point y0 ∈ I ∩Q, (ii)
a target y ∈ I ∩Q, and (iii) a rational ε > 0, outputs in poly(size(y0, y, ε)) time a number
ŷ ∈ I ∩Q and a sequence i1, i2, . . . , ik ∈ [t] such that

ŷ = Φik(Φik−1(· · ·Φi1(y0) · · · )) and |ŷ − y| ≤ ε.

Proof. Let x1, x2 be rationals such that γx1x2 = −1 and x1 6= ±x2. Let λ be such that
1 + γλ = −γ(x1 + x2). Then, the fixpoints of the map Φ : x 7→ 1

1+γ(λ+x) are x1 and x2, and
at least one of the two points is attracting.5 Denote by x0 the attracting fixpoint of Φ, so

4 The “target” y corresponds to a vertex activity λ – the only difference is that a transformation between
them has been applied for technical reasons, see proof of Lemma 23 in the full version for details.

5 To see this, note that Φ(x) = x is equivalent to x(1 + γλ) + γx2 = 1 and therefore x1 and x2 are
(the only) fixpoints of Φ. Moreover, we have that Φ′(x) = − γ

(1+γ(λ+x))2 and hence Φ′(x1) = −γx2
1,
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that x0 satisfies Φ(x0) = x0 and 0 < |Φ′(x0)| < 1. By Lemma 21 of the full version, we can
compute η > 0 such that for all x ∈ [x0 − η, x0 + η] and all λ′ ∈ [λ− η, λ+ η] it holds that

1 + γ(λ′ + x) 6= 0 and
∣∣∣ γ(

1+γ(λ′+x)
)2 − γ(

1+γ(λ+x0)
)2

∣∣∣ ≤ 1
2 min

{
|Φ′(x0)|, 1−|Φ′(x0)|

}
. (15)

Let r := |Φ′(x0)|
4 η, δ := (r/4) and let λ∗1, . . . , λ∗t form a δ-covering of the interval [λ− η/2, λ+

η/2]. Let λ1, . . . , λt be arbitrary rationals satisfying |λi − λ∗i | ≤ δ. For i ∈ [t] consider the
maps Φi : x 7→ 1

1+γ(λi+x) . Finally, let I be the interval [x0 − r, x0 + r]. We will show
Property 1: The maps {Φi}i∈[t] are contracting on the interval I, and
Property 2: I ⊆ Φ1(I) ∪ · · · ∪ Φt(I).
Once these two properties of the maps {Φi}i∈[t] are proved, the algorithm in the statement
of the lemma and its analysis are almost identical to those in [4, Proof of Lemmas 12 & 26].
The only difference here is that the maps {Φi}i∈[t] have different expressions. The fact that
we need about the expression of the maps is that, for i ∈ [t] and for every rational x, Φ−1

i (x)
can be computed in time poly(size(x, λi, γ)). This is clear since Φ−1

i (x) = 1
γ ( 1

x − 1)− λi.

Proof of Property 1. Fix i ∈ [t]. We will show that Φi is contracting on the interval I.
Observe that r < η/4 since |Φ′(x0)| < 1 and therefore δ < η/4 as well. Then, we have by the
triangle inequality that

|λi − λ| ≤ |λi − λ∗i |+ |λ∗i − λ| ≤ δ + η/2 < η.

Therefore, we can apply (15) to λ′ = λi and x ∈ I. Observe that Φ′(x) = −γ/
(
1+γ(λi+x)

)2
and Φ′(x0) = −γ/

(
1 + γ(λi + x0)

)2 and hence we obtain that for all x ∈ I it holds that

|Φ′i(x)| ≤ 1
2(1 + |Φ′(x0)|) < 1.

It follows that the maps Φi are contracting on the interval I for all i ∈ [t]. J

Proof of Property 2. It suffices to consider an arbitrary y ∈ I and show that there exists
j ∈ [t] such that Φ−1

j (y) ∈ I. To do this, we set J to be the interval [x0 − η/2, x0 + η/2] and
consider the map Φ on the interval J . Then, (15) for λ′ = λ and x ∈ J gives that

0 < 1
2 |Φ

′(x0)| ≤ |Φ′(x)|,

and therefore, by the Mean Value Theorem, for z, w ∈ J we have that
1
2 |Φ

′(x0)| · |z − w| ≤ |Φ(z)− Φ(w)|. (16)

We thus have that

|Φ(x0 + η/2)− x0| = |Φ(x0 + η/2)− Φ(x0)| ≥ η|Φ′(x0)|/4 = r,

|Φ(x0 − η/2)− x0| = |Φ(x0 − η/2)− Φ(x0)| ≥ η|Φ′(x0)|/4 = r.

Since Φ is monotonically increasing and continuous on the interval J , we therefore obtain
that I ⊆ Φ(J). Therefore, for arbitrary y ∈ I it holds that Φ−1(y) ∈ J and hence from (16)
applied to z = Φ−1(y) and w = Φ−1(x0), we obtain that

|Φ−1(y)− x0| = |Φ−1(y)− Φ−1(x0)| ≤ (2/|Φ′(x0)|)(y − x0) ≤ η/2.

Φ′(x2) = −γx2
2. Therefore |Φ′(x1)| 6= |Φ′(x2)| and 1 = |γx1x2| =

√
|Φ′(x1)||Φ′(x2)|. Therefore either

|Φ′(x1)| < 1 or |Φ′(x2)| < 1.
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Since λ∗1, . . . , λ∗t is a δ-covering of the interval [λ− η/2, λ+ η/2], it follows that there exists
j ∈ [t] such that∣∣λ+ Φ−1(y)− x0 − λ∗j

∣∣ ≤ δ = r/4.

Now, observe that Φ−1
j (y) = 1

γ

( 1
y − 1

)
− λj and Φ−1(y) = 1

γ

( 1
y − 1

)
− λ, so we have that∣∣Φ−1

j (y)− x0
∣∣ =

∣∣∣∣ 1γ(1
y
− 1
)
− λj − x0

∣∣∣∣ = |λ+ Φ−1(y)− x0 − λj |

≤ |λ+ Φ−1(y)− x0 − λ∗j |+ |λj − λ∗j | ≤ r/4 + r/4 = r/2.

It follows that y ∈ Φj(I) and therefore, since y was arbitrary, we have that I ⊆ Φ1(I)∪ · · · ∪
Φt(I). J

This completes the proof of Properties 1 and 2, and hence the proof of Lemma 30. J
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Abstract
It is well-known that every planar graph has a Tutte path, i.e., a path P such that any component of
G−P has at most three attachment points on P . However, it was only recently shown that such Tutte
paths can be found in polynomial time. In this paper, we give a new proof that 3-connected planar
graphs have Tutte paths, which leads to a linear-time algorithm to find Tutte paths. Furthermore,
our Tutte path has special properties: it visits all exterior vertices, all components of G− P have
exactly three attachment points, and we can assign distinct representatives to them that are interior
vertices. Finally, our running time bound is slightly stronger; we can bound it in terms of the degrees
of the faces that are incident to P . This allows us to find some applications of Tutte paths (such as
binary spanning trees and 2-walks) in linear time as well.
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1 Introduction

A Tutte path is a well-known generalization of Hamiltonian paths that allows to visit only a
subset of the vertices of the graph, as long as all remaining vertices are in components with
at most three attachment points. (Detailed definitions are below.) They have been studied
extensively, especially for planar graphs, starting from Tutte’s original result:

I Theorem 1 (Tutte [19]). Let G be a 2-connected planar graph with distinct vertices X,Y
on the outer face. Let α be an edge on the outer face. Then G has a Tutte path from X to Y
that uses edge α.

We refer to the recent work by Schmid and Schmidt [15] for a detailed review of the
history and applications of Tutte paths. It was long not known how to compute a Tutte
path in less than exponential time. A breakthrough was achieved by Schmid and Schmidt
in 2015 [13, 14], when they showed that one can find a Tutte path for 3-connected planar
graphs in polynomial time. In 2018, the same authors then argued that Tutte paths can be
found in polynomial time even for 2-connected planar graphs [15]. For both papers, the main
insight is to prove the existence of a Tutte path by splitting the graph into non-overlapping
subgraphs to recurse on; the split can be found in linear time and therefore the running time
becomes quadratic.
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In this paper, we show that Tutte paths can be computed in linear time. To do so, we
give an entirely different proof of the existence of a Tutte path for 3-connected planar graph.
This proof is very simple if the graph is triangulated, but requires more care when faces have
larger degrees. Our path (and also the one by Schmid and Schmidt [13, 14]) comes with
a system of distinct representatives, i.e., an injective assignment from the components of
G \P to vertices of P that are attachment points. Such representatives are useful for various
applications of Tutte paths.

Our proof for 3-connected planar graphs is based on a Hamiltonian-path proof by Asano,
Kikuchi and Saito [1] that was designed to give a linear-time algorithm; with arguments
much as in their paper we can therefore find the Tutte path and its representatives in linear
time. Since 3-connected planar graphs are (as we argue) the bottleneck in finding Tutte
paths, this shows that the path of Theorem 1 can be found in linear time.

1.1 Preliminaries
We assume familiarity with graphs, see, e.g., Diestel [7]. Throughout this paper, G = (V,E)
denotes a graph with n vertices and m edges. We assume that G is planar, i.e., can be drawn
in 2D without edge crossings. A planar drawing of G splits R2 into connected regions called
faces; the unbounded region is the outer face while all others are called interior faces. A
vertex/edge is called exterior if it is incident to the outer face and interior otherwise. We
assume throughout that G is plane, i.e., one particular abstract drawing of G has been fixed
(by giving the clockwise order of edges around each vertex and the edges that are on the
outer face). Any subgraph of G inherits this planar embedding, i.e., uses the induced order of
edges and as outer face the face that contained the outer face of G. The following notion will
be convenient: Two vertices v and w are interior-face-adjacent (in a plane graph G) if there
exists an interior face that is incident to both v and w. We will simply write face-adjacent
since we never consider adjacency via the outer face.

Nooses and connectivity. For a fixed planar drawing of G, let a noose be a simple closed
curve N that goes through vertices and faces and crosses no edge except at endpoints.
A noose can be described as a cyclic sequence 〈x0, f1, x1, . . . , fs, xs=x0〉 of vertices and
faces such that fi contains xi−1 and xi, and hence is independent of the chosen drawing.
Frequently, the choice of faces will be clear from context or irrelevant; we then say that
N = 〈x0, . . . , xs=x0〉 goes through {x1, . . . , xs}. The subgraph inside/outside N is the graph
induced by the vertices that are on or inside/outside N . The subgraph strictly inside/outside
is obtained from this by deleting the vertices on N .

A graph G is connected if for any two vertices v, w there is a path from v to w in G. A
cutting k-set in G is a set S = {x1, . . . , xk} of vertices such that G \ S has more connected
components than G. We call it a cutting pair for k = 2 and a cutting triplet for k = 3. A
graph G is called k-connected if it has no cutting (k − 1)-set. Since we are only studying
planar graphs, it will be convenient to use a characterization of connectivity via nooses.
Consider a noose N that goes through {x1, . . . , xk} (and no other vertices), and there are
vertices both strictly inside and strictly outside N . Then clearly S = {x1, . . . , xk} is a
cutting k-set. Vice versa, in a planar graph, any cutting k-set S for k = 1, 2, 3 gives rise to a
noose N through S that has vertices both strictly inside and strictly outside. A strict cut
component C of S is a subgraph strictly inside a noose N through some of the vertices of S
such that C contains at least one vertex not in S and is inclusion-minimal among all such
nooses. In particular, a strict cut component C contains no vertices or edges of S. A cut
component C+ is obtained from a strict cut component C by re-inserting those vertices of S
that have neighbours of C, as well as the edges from them to C.
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Hamiltonian paths and Tutte paths. A Hamiltonian path is a path that visits every vertex
exactly once. To generalize it to Tutte paths, we need more definitions. Fix a path P in the
graph. A P -bridge C is a cut component of P ; its attachment points are its vertices on P .1
A Tutte path is a path P such that any P -bridge C has at most three attachment points, and
if C contains exterior edges, then it has at most two attachment points. Our Tutte paths
for 3-connected graphs will be such that no P -bridges contain exterior edges, so the second
restriction holds automatically.

A Tutte path with a system of distinct representatives (SDR), also called a TSDR-path
for short, is a Tutte path P together with an injective assignment σ from the P -bridges to
vertices in P such that for every P -bridge C vertex σ(C) is an attachment point of C.

Given a path P in a plane graph, we denote by F (P ) the set of all interior faces that
contain at least one vertex of P .

1.2 From 3-connected to 2-connected
In this section, we show that, to find the path of Theorem 1 efficiently, it suffices to consider
3-connected planar graphs.

We re-prove Theorem 1, presuming it holds for 3-connected planar graphs, by induction
on the number of vertices with an inner induction on the number of exterior vertices. Say we
want to find a Tutte path from X to Y that uses exterior edge α = (U,W ), where X,Y are
exterior vertices. In the base case, G is 3-connected and we are done. So assume that G has
cutting pairs. If edge (X,Y ) does not exist, then add it in such a way that α stays exterior,
and find a Tutte path P in the resulting graph recursively (it has fewer exterior vertices).
Since {X,Y } 6= {U,W} (because (U,W ) ∈ G while (X,Y ) 6∈ G), path P visits at least one
vertex other than X,Y , and so cannot use edge (X,Y ). So it is also a Tutte path of G.

Now, assume that (X,Y ) exists. Repeatedly split the graph at any cutting pair {u, v} into
cut components C1, . . . , Ck, and store the 3-connected components C+

1 , . . . , C
+
k (induced by

the cut components with an additional virtual edge between the cutting pairs) in a so-called
SPQR-tree [6, 9], which additionally creates one leaf node for every edge of G. This can be
done in linear time [10].

Root the SPQR-tree at the node of edge (X,Y ). For each 3-connected component C+

other than the root, set {XC , YC} to be the cutting pair that C+ has in common with its
parent component, and observe that these two vertices are necessarily exterior in C since
X,Y are exterior in G; see Figure 1.

If C+ has only these two vertices, then let PC be the path (XC , YC). Otherwise, define
an edge αC 6= (XC , YC) of C+ as follows: If the node of α is a descendant of C+, then let αC

be the virtual edge of C+ that it shares with the child that leads to this descendant. Note
that αC is a virtual edge, and it is necessarily on the outer face of C since α is on the outer
face of G. Otherwise (α is not in a descendant of C+) choose αC to be an arbitrary exterior
edge of C other than (XC , YC). Let PC be a Tutte path that begins at XC , ends at YC , and
uses edge αC ; we know that this exists since C+ is either a triangle or a 3-connected graph.

Now obtain the Tutte path P of G by repeatedly substituting paths of 3-connected
components. Specifically, initiate P as the virtual copy of edge (X,Y ) that was added when
we created the node for (X,Y ). For as long as P contains a virtual edge (u, v), let C+ be
the child component at this virtual edge and observe that {XC , YC} = {u, v}. Substitute PC

in place of edge (u, v) of P , i.e., set P to be X P u/v
PC v/u P Y . Note that, if C+ is not

1 Our definition of P -bridge considers only the proper P -bridges [19] that contain at least one vertex.
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Figure 1 A 2-connected graph, its SPQR-tree (leaf nodes are omitted), and its Tutte path.

the singleton-edge (u, v), then PC contains αC , which is a virtual edge. This means that the
process repeats until we have substituted the real edges from the leaves of the SPQR-trees.
In particular (due to our choice of αC), we will substitute the paths from all components
between (X,Y ) and α, which means that α is an edge of the final path P as required.

Observe that for some 3-connected components we do not substitute their paths; these
become P -bridges with two attachment points. There may also be some P -bridges within
each 3-connected components, but these have at most three attachment points since we used
a Tutte path for each component. So the result is the desired Tutte path. Since we compute
one Tutte path per 3-connected component, and this can be done in time proportional to
the size of the component, the overall running time is linear.

2 Tutte paths in 3-connected planar graphs

For triangulated planar graphs, one can quite easily find a TSDR-path by removing the
interiors of all separating triangles, and finding for the resulting 4-connected planar graph a
Hamiltonian path using the approach of Asano, Kikuchi, and Saito [1]. It is not hard to see
that we can assign representatives to all separating triangles, possibly after expanding the
path using the substitution trick described below. (We omit the details for space reasons.)

For 3-connected planar graphs that are not triangulated, we use the same approach, but
must generalize many definitions from Asano, Kikuchi, and Saito [1] and add quite a few
cases because now face-adjacent vertices are not necessarily adjacent. To keep the proof
self-contained, we re-phrase everything from scratch.2

We need a few definitions. The outer stellation of a planar graph G is the graph obtained
by adding a vertex in the outer face and connecting it to all exterior vertices. A planar
graph G is called internally 3-connected if its outer stellation is 3-connected. Note that this
implies that G is 2-connected, any cutting pair is exterior (i.e., has both vertices on the outer
face) and has only two cut components. In the following, we endow G with k corners, which
are k vertices X1, . . . , Xk that appear in this order on the outer face. Usually, k = 3 or 4,
but occasionally we allow larger k. A side of such a graph is the outer face path between
two consecutive corners that does not contain any other corners. The corner stellation Gs

is obtained by adding a vertex in the outer face and connecting it to the corners. We say

2 Indeed, due to attempts to simplify the notations similar as done in [4], the reader familiar with [1] may
barely see the correspondence between the proof and [1]. Roughly, their Condition (W) corresponds to
c3c(X, W, Y ), their Case 1 is our Case 3a, and their Case 3 combines our Case 2 with our Case 4a (but
resolves it in a symmetric fashion).



T. Biedl and P. Kindermann 23:5

that G is corner-3-connected with respect to corners X1, . . . , Xk (abbreviated to “G satisfies
c3c(X1, . . . , Xk)”) if Gs is 3-connected. Figure 2a illustrates this condition. It is easy to
show that G satisfies c3c(X1, . . . , Xk) if and only if k ≥ 3, G is internally 3-connected, and
no cutting pair {v, w} of G has both v and w on one side of G.

For ease of proof, we make the induction hypothesis stronger than just having a TSDR-path,
by restricting which vertices must be visited and which vertices must not be representatives.
A Tint-path is a TSDR-path P that visits all exterior vertices, and where representative σ(C)
is interior, for all P -bridges C. The goal of the remainder of this section is to prove the
following result (which immediately implies Theorem 1 for 3-connected graphs3):

I Lemma 2. Let G be a plane graph with distinct vertices X,Y on the outer face. Let
(U,W ) 6= (X,Y ) be an edge on the outer face. If G satisfies c3c(X,U,W, Y ), then it has a
Tint-path that begins at X, ends at Y , and contains (U,W ).

We need a second result for the induction. Let a Tend-path be a TSDR-path P that visits
all exterior vertices, and where representative σ(C) is interior or the last vertex of P , for all
P -bridges C.

I Lemma 3. Let G be a plane graph with distinct vertices X,Y on the outer face. Let
(U,W ) 6= (X,Y ) be an edge on the outer face. If G satisfies c3c(X,U,W, Y ) and

(A) (W,Y ) and (Y,X) are edges,

then G has a Tend-path P that begins at X, ends at Y , and uses (U,W ) and (W,Y ).4 Further,
if Y is the representative of a P -bridge C, then C has W and Y as attachment points.

See Figure 5c for a graph that satisfies (A).
We assume throughout that X,U,W, Y are enumerated in ccw order along the outer face,

the other case can be resolved by reversing the planar embedding.
The following trick will help shorten the proof: If graph G satisfies (A), then Lemma 3

implies Lemma 2. Namely, if Lemma 3 holds, then we have a Tend-path P fromX to Y through
(U,W ) and (W,Y ). If this is not a Tint-path, then some P -bridge C has Y as representative,
and by assumption also has W as attachment point. It must have a third attachment
point u, otherwise {W,Y } would be a cutting pair within one side of G, contradicting
corner-3-connectivity. It has no more attachment points since P is a Tutte path, so {W,Y, u}
is a cutting triplet. We apply the substitution trick described below (and useful in other
situations as well), which replaces (W,Y ) with a path through C that does not use u. Thus, C
no longer needs a representative and we obtain a Tint-path.

The substitution trick. This trick can be applied whenever we have an edge e = (w, y)
used by some TSDR-path P , and a P -bridge C that resides inside a noose through some
cutting triplet {u,w, y} for some vertex u. Define C+ = G[C] ∪ {(u,w), (w, y)} \ {(u, y)},
where edges are added only if they did not exist in G[C].5

3 Theorem 1 allows (U, W ) = (X, Y ), but then holds trivially since using edge (X, Y ) as path satisfies all
conditions. We require (U, W ) 6= (X, Y ) since we want not just a Tutte path but a Tint-path, and the
single-edge path (X, Y ) would allow only exterior vertices as representatives.

4 This lemma is a special case of the “Three Edge Lemma” [17], which states that for any three edges on
the outer face there exists a Tutte cycle containing them all. However, it cannot simply be obtained
from it since we require restrictions on the location of representatives.

5 We apply the substitution trick even when V (C+) = V (G) and G has a triangular outer face; not
adding edge (w, y) will ensure that C+ has fewer interior vertices and induction can be applied.
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Figure 2 (a) Corner-3-connectivity c3c(X, U, W, Y ), (b) the substitution trick, and (c) Case 1.

C+ satisfies c3c(u, v, w), else there would have been a cutting pair in G that was interior
or within one side. Hence, by induction, C+ has a Tint-path PC+ from u to y that uses edge
(u,w). It does not use the edge (u, y) since PC+ begins at u with edge (u,w). So PC+ \ (u,w)
is a path in C from w to y that does not visit u. Substitute this in place of edge (w, y) of P ;
see Figure 2b. We claim that the resulting path P ′ is a Tint-path. We prove a more general
statement in the full version [5], but roughly speaking, combining paths preserves Tint-paths
because every P ′-bridge can inherit its representative from P or PC+ , and no vertex is used
twice as representative since PC+ does not use {u, v, w} as representatives.

2.1 Proof of Lemma 2 and Lemma 3
We prove the two lemmas simultaneous by induction on the number of vertices of G, with
an inner induction on the number of interior vertices. The base case is n = 3 where G
is a triangle, but the same construction works whenever the outer face is a triangle (see
below). For the induction step, we need the notation Sxy, which is the outer face path
from x to y in ccw direction. In particular, the four sides are SXU , SUW , SW Y , and SY X .
We sometimes name sides as suggested by Figure 2a, so SXU , SUW , SW Y , and SY X are the
left/bottom/right/top side, respectively.

2.1.1 Case 1: The outer face is a triangle
Figure 2c illustrates this case. We know that X 6= Y and U 6= W , so we must have X = U

or W = Y . For Lemma 3, we know that (A) holds, which forces W 6= Y , hence X = U .
For Lemma 2, we may assume X = U by symmetry, for otherwise we reverse the planar
embedding, find a path from Y to X that uses (W,U) (with this, we have X ′ = U ′) and
then reverse the result.

So X = U . Define P to be 〈X=U,W, Y 〉 and observe that this is a Tend-path, because
the unique P -bridge C (if any) has attachment points {U,W, Y }, and we can assign Y to be
its representative. So Lemma 3 holds. Since condition (A) is satisfied, this implies Lemma 2.

2.1.2 Case 2: G has a cutting pair {u,w} with u and w on the left
and right side

Figure 3 illustrates this case. Let N be a noose through u and w along a common interior
face f∗ and then going through the outer face. Let Gt and Gb be the subgraphs inside
and outside N , named such that Gb contains the bottom side. Let G+

t /G
+
b be the graphs

obtained from Gt/Gb by adding (u,w) if not in the graph yet. We add (u, v) even if it did
not exist in G (we will ensure that the final path does not use it).
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Figure 3 (a) Case 2, (b)–(d) proof of Lemma 2 for Case 2.

We first show Lemma 2. One can easily verify that Gt satisfies c3c(X,u,w, Y ) since its
outer face is a simple cycle; see the full version [5]. Apply induction and find a Tint-path Pt

of G+
t from X to Y that uses edge (u,w). Now apply a modified substitution trick to (u,w).

Namely, by induction, there is a Tint-path Pb of G+
b from u to w that uses edge (U,W ).

Substitute Pb into Pt in place of (u,w) to get P . Path P uses (U,W ) since Pb does. It does
not use (u,w) since we removed this from Pt, and Pb starts at u, ends at w, and visits (U,W )
in between. So after inheriting representatives from Pb and Pt we obtain a Tint-path P in G.

To prove Lemma 3, note that exactly one of G+
t and G+

b contains (W,Y ); use a Tend-
path for this subgraph and create P as above. Only one graph uses Y as representative, and
one easily shows that P is a Tend-path.

2.1.3 Case 3: G has a cutting pair {y,w} with y and w on the top
and right side, respectively. Furthermore, there is an interior face
f∗ containing y and w that does not contain Y .

For later applications, we first want to point out that if G has a cutting pair {y, w} on the
top and right side for which (y, w) is an edge, then such a face f∗ always exists, because
there are two interior faces containing y and w, and not both can contain Y .

Figure 4 illustrates this case. We know that w 6= Y 6= y, else {y, w} would be a cutting
pair within one side. We may assume y 6= X; else we can use Case 2. Hence, the top side
contains at least three vertices X, y, Y , so (A) does not hold and we have to prove only
Lemma 2.

We choose {y, w} such that w is as close to W as possible (along the right side). The
face f∗ containing y, w may have multiple edges on the top side; let y be the one that is as
close to Y as possible. Define Gb, G+

b , Gt, G+
t to be as in Case 2. Since the outer face of G+

b

is a simple cycle, it satisfies c3c(X,U,W,w, y). But since we chose w to be as close to W
as possible, it also satisfies c3c(X,U,W, y). Namely, assume for contradiction that some
cutting pair {y′, w′} exists along the side SW w ∪ (w, y) of G+

b ; see Figure 4a. Since there is
no cutting pair within SW w, it must have the form {y, w′} for some w′ 6= w on SW w. As f∗
does not contain Y , neither can any face containing {y, w′}, so {y, w′} could have been used
for Case 3, contradicting our choice of w.

By induction, we can find a Tint-path Pb of G+
b from X to y that includes the edge (U,W ).

The plan is to combine Pb with a path through Gt, but we must distinguish some cases.

Case 3a: Pb does not contain (y,w) or (y,w) ∈ G. Observe that G+
t satisfies

c3c(y, w, Y ). By induction, find a Tint-path Pt in G+
t from Y to w that uses edge (y, w).

Append the reverse of Pt \ (y, w) to Pb to obtain a Tint-path; see Figure 4b.
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Figure 4 Case 3: (a) G+
b satisfies c3c(X, U, W, y), (b) Case 3a, (c) Case 3b-1, (d) Case 3b-2.

Case 3b: Pb contains (y,w) and (y,w) 6∈ G. In this case, we must remove (y, w) from
the path and hence use a subpath in Gt to reach vertex y. This requires further subcases.
Let πf be the path along f∗ from y to w that becomes part of the the outer face of Gt. Let
(y, z) be the edge incident to y on πf .

Case 3b-1: πf contains no vertex on the outer face of G other than y and w. See Fig-
ure 4c. The outer face of Gt is then a simple cycle and Gt satisfies c3c(w, y, Y ). By
induction, we can find a Tint-path Pt in Gt that begins at Y , ends at w, and uses (y, z).

Case 3b-2: πf contains a vertex x 6= y,w on the outer face of G. See Figure 4d. Since x
is on f∗, it cannot be on the top side by choice of y. So x ∈ SwY \ Y . In fact, x must
be the neighbor of w on both SwY and πf , else there would be a cutting pair within the
right side. Set G′t to be the graph inside a noose through y and x that has Y inside.
Since πf has no vertices other than y, x, w on the outer face of G, graph G′t has a simple
cycle as outer face, so it satisfies c3c(Y, y, z, x). By induction, we can find a Tint-path P ′t
of Gt that begins at Y , ends at x, and uses (y, z). We append (w, x) to obtain Pt.

In both cases, we obtain a path Pt that begins at Y , ends at w, and visits all of Gt.
Appending the reverse of this to Pb \ (y, w) gives the Tint-path.

2.1.4 Case 3′: G has a cutting pair {y,w} with y and w on the top
and left side, respectively. Furthermore, there is an interior face
f∗ containing y and w that does not contain X.

This is handled symmetrically to Case 3.

2.1.5 Case 4: None of the above
In this case, we split G into one big graph G0 and (possibly many) smaller graphs G1, . . . , Gs,
recurse in G0, and then substitute Tint-paths of G1, . . . , Gs or use them as P -bridges.

We need two subcases, but first give some steps that are common to both. Let YX be
the neighbor of Y on the top side. Define a B-necklace (for B ∈ {U,W}) to be a noose
N0 : 〈YX=x0, f1, x1, . . . , xs−1, fs, xs=B, fo〉, (where fo is the outer face) for which xi is
face-adjacent to at least one vertex on SW Y \ {B} for 1 ≤ i ≤ s− 1. See also Figure 5. We
say that the necklace is simple if it contains no vertex twice, and interior if every xi (for
0 < i < s) is an interior vertex. One can argue that if none of the previous cases applies,
then there always exists a simple interior B-necklace (see the full version [5]).
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Figure 5 Case 4. (a) A simple interior U -necklace that is not leftmost due to face f (which yields a
cutting pair {xh, xi}), and since it could include vertex z. (b) The graphs G1, . . . , Gs. (c–d) Case 4a.
The path P + after using the substitution trick and (d) assignment of the representatives.

Route N0 through the outer face such that the left side is in its interior, and let G0 (the
“left graph”) be the graph inside N0. We say that N0 is leftmost if (among all simple interior
B-necklaces) its left graph G0 is smallest, and (among all simple interior B-necklaces whose
left graph is G0) it contains the most vertices of G0. Fix a leftmost B-necklace 〈x0, . . . , xs〉.

B Claim 4. If (xi, xi+1) is not an edge for some 0 ≤ i < s, then the face fi of N0 contains
no vertex of SW Y \ {B}.

Proof. If (xi, xi+1) is not an edge of G, then both paths from xi to xi+1 on fi contain at
least one other vertex. One of them, say z, is inside N0. If fi contains a vertex of SW Y \ {B},
then xi and z are face-adjacent, z and xi+1 are face-adjacent, and z has a neighbor on
SW Y \ {B}, so x0, . . . , xi, z, xi+1, . . . , xs is a simple interior B-necklace with the same left
graph but containing more vertices of G0. Hence N0 is not leftmost, a contradiction. C

For i = 0, . . . , s− 1, let ti be the vertex on SW Y \ {B} that is face-adjacent to xi and
closest to Y (along the right side) among all such vertices. Set ts = W if xs = U , and ts = Y

otherwise. For 0 < i ≤ s, define Ni to be the noose through 〈xi−1, xi, ti, ti−1〉 such that the
left side is outside Ni. For 0 < i ≤ s let Gi be the graph inside Ni (i.e., a cut component of
{xi−1, xi, ti−1, ti}); see Figure 5b.

Let G+ be the graph obtained from G by adding virtual edges (xi, xi−1) and (ti, ti−1) (for
i = 1, . . . , s) whenever these two vertices are distinct and the edge did not exist in G. Let G+

0
be the graph obtained from G0 by likewise adding virtual edges (x0, x1), . . . , (xs−1, xs). This
makes the outer face of G0 a simple cycle, so G+

0 satisfies c3c(X,U,B=xs, . . . , x0=YX). We
distinguish two cases.

Case 4a: (A) holds, i.e., (X,Y ) and (W,Y ) are edges. We only have to prove Lemma 3
since this implies Lemma 2. Consider Figs. 5c and d. Let 〈x0=YX=X,x1, . . . , xs=W 〉 be
a leftmost W -necklace. By SW Y = (W,Y ), we have ti = Y for all i. Since x0 = YX = X,
we have that G+

0 satisfies c3c(X=x0, x1, . . . , xs=W,U). But observe that G+
0 has no cutting

pair {xh, xi} with 0 ≤ h < i ≤ s, for otherwise the face f containing xh and xi could be used
as a shortcut and N0 was not leftmost (see Figure 5a). So G+

0 actually satisfies c3c(X,W,U).
Use induction to obtain a Tint-path P0 from X to W in G+

0 that uses edge (U,W ). Then
P+ = P0 ∪ (W,Y ) is a path in G+ that contains (U,W ), and (W,Y ).

Fix some i = 1, . . . , s. If P+ used edge (xi−1, xi) and it was virtual, then by Claim 4 fi

contains no vertex of SW Y , which means that the interior of Gi is non-empty. Apply
the substitution trick to remove (xi−1, xi) from P+, replacing it with a path through Gi.
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Figure 6 Case 4b. (a) Construction of P + with representatives; (b) G�
i (Case 4b-2) and G@

i

(Case 4b-3) used to substitute virtual edges; (c) P + with representatives after all substitutions.

Otherwise, we keep Gi as a P+-bridge. We let its representative be xi if 1 ≤ i < s, and Y if
i = s. Observe that this representative is interior or Y , and was not used by P0 since P0 was
a Tint-path. So we obtain a Tend-path with the desired properties.

Case 4b: (A) does not hold. We must prove only Lemma 2 and may therefore by symmetry
assume that X 6= U . We claim that this implies that deg(YX) ≥ 3. For if deg(YX) = 2, then
its neighbors form a cutting pair, which by corner-3-connectivity means that YX is a corner,
hence YX = X. Since X 6= U , the two neighbors of YX are then Y and a vertex on the left
side, and we could have applied Case 2. So deg(YX) ≥ 3. Let (YX , x1) be the edge at YX

that comes after (YX , Y ) in clockwise order (see Figure 6a). Note that x1 is face-adjacent to
Y . It must be an interior vertex, for otherwise by deg(YX) ≥ 3 edge (YX , x1) is a cutting
pair that we could have used for Case 3 or 3′.

Let N0 = 〈x0=YX , x1, . . . , xs=U〉 be a simple interior U -necklace; see Figure 6a. We use
a U -necklace that is leftmost among all U -necklaces that contain x1. Note that Claim 4
holds for N0 even with this restriction, since (x0, x1) is an edge. We know that G+

0 satisfies
c3c(X,YX , x1, . . . , xs=U). But observe thatG+

0 has no cutting pair {xh, xi} for 1 ≤ h < i ≤ s,
for otherwise (as in Figure 5a) N0 would not be the leftmost necklace that uses x1. So G+

0
actually satisfies c3c(X,YX , x1, U).

Use induction to obtain a Tint-path P0 in G0 from U to X through edge (x1, x0). Append
the path 〈U,W, ts, . . . , t0=Y 〉 to the reverse of P0 to obtain path P+. This path begins
at X, ends at Y , and contains (U,W ). Any P+-bridge is either a P0-bridge (and receives a
representative there) or is Gi for some 1 ≤ i ≤ s. For i > 1, assign xi−1 as representative to
Gi. Graph G1 has an empty interior by choice of x1 and needs no representative.

There are two reasons why we cannot always use P+ for the result. First, it may use
virtual edges and hence not be a path in G. Second, some P+-bridge Gi may have four
attachment points. Both are resolved by expanding P+ via paths through the Gi’s. Fix
one i with 1 ≤ i ≤ s and consider the following cases:
Case 4b-1: (xi−1, xi) is virtual and used by P+, and ti−1 = ti. By Claim 4, the interior

of graph Gi is non-empty and inside the separating triplet {xi−1, xi, ti}. Replace (xi−1, xi)
by a path through Gi with the substitution trick; see graph G3 in Figure 6.

Case 4b-2: (xi−1, xi) is virtual and used by P+, and ti−1 6= ti. See Figure 6b(top). We
want to replace both (xi−1, xi) and (ti−1, ti) (which is always used by P+) with a path
through Gi. Let G�i be the graph Gi with (ti, xi) and (ti−1, xi−1) added. The outer
face of G�i is a simple cycle since fi contains no vertex of the right side by Claim 4, so
G�i satisfies c3c(ti, ti−1, xi−1, xi). By induction, find a Tint-path Pi in G�i from ti to xi
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that uses the edge (ti−1, xi−1). So removing (ti−1, xi−1) from Pi splits it into two paths:
path PR

i connects ti to ti−1, and path PL
i connects xi−1 to xi. (No other split is possible

by planarity.) Neither path uses the added edge (ti, xi) since it connects the ends of Pi.
Use PR

i to replace (ti−1, ti) and PL
i to replace (xi−1, xi) in P+.

Case 4b-3: Subgraph Gi has a non-empty interior and ti 6= ti−1. See Figure 6b(bottom).
In this case, Gi is a P+-bridge with four attachment points, a violation of Tutte path
properties. If Case 4b-2 applied to Gi, then Gi is no longer a bridge of the resulting path
and we are done. Otherwise, we do a substitution that uses a different supergraph of Gi.
Let G@

i be Gi with edges from path 〈ti−1, xi−1, xi, ti〉 added if not already in Gi.
This graph satisfies c3c(ti, ti−1, xi−1, xi) and satisfies condition (A) if we set X ′ = ti,
U ′ = ti−1,W

′ = xi−1, and Y ′ = xi. So we can find a Tend-path P ′i of G@
i from

ti to xi that uses (ti−1, xi−1) and (xi−1, xi). Thus, P ′i ends with 〈ti−1, xi−1, xi〉 and
P ′i \ {(ti−1, xi−1), (xi−1, xi)} is a path from ti−1 to ti in Gi that does not visit xi−1 or
xi. Substitute this path in place of edge (ti−1, ti) in P+. Note that one P ′i -bridge C
may use xi as its representative, but if so, then it also has xi−1 as attachment point.
We set xi−1 (which was Gi’s representative and is no longer needed as such) to be the
representative of C.

Case 4b-4: ti−1 6= ti and (ti−1, ti) is virtual. Since P+ always uses edge (ti−1, ti), we
must replace this edge with a path through Gi. This is done automatically because
Case 4b-3 applies. Namely, if (ti−1, ti) is virtual, then there is at least one vertex
between ti−1 and ti on the right side. This vertex is exterior in G and hence neither xi

nor xi−1. So it is strictly inside Ni, hence Gi has a non-empty interior and (by ti−1 6= ti)
Case 4b-3 applies.

After doing these substitutions, there are no virtual edges in the path, no bridges have
four attachment points, every bridge has an interior vertex as representative, and no vertex
was used twice as representative; see Figure 6c. This ends the proof of Lemma 2 and 3.

2.2 Linear time complexity
It should be clear that our proof is algorithmic. The main bottlenecks for its running time
are to determine which case to apply (i.e., whether there is a cutting pair) and to find the
B-necklace. Both can be done in linear time, by computing all cutting pairs [6, 9] and by
finding a leftmost path in the subgraph induced by vertices that are face-adjacent to SW Y \B.
This would yield quadratic running time overall. For triangulated planar graphs, this is easily
reduced to linear: cutting pairs correspond to interior edges where both ends are exterior,
and the necklace can be found, as in [1], with a left-first search that only advances neighbors
of SW Y \B. But for graphs that are not triangulated we need a few extra data structures.
We sketch only some ideas for this here; details are in the full version [5].

Globally, we keep track of the corners X,U,W , and Y . For each interior vertex w and
every side Sab, we keep a list V(w, Sab) of faces that contain w as well as a vertex on Sab.
In these lists, we can look up quickly whether an interior vertex is face-adjacent to a side.
Also, each face knows for each side which vertices it has on it. Finally, for each pair of
sides Sab and Scd, we store a list P(Sab;Scd) of faces that are incident to a vertex on Sab

and a (different) vertex on Scd, i.e., faces that connect cutting pairs.
This allows to test for Case 2 and Case 3 easily (“is P(SXU , SW Y ) resp. P(SW Y , SY X)

non-empty?”), and Case 1 and Case 4 are easily determined from the planar embedding.
We keep P(SW Y , SY X) in an order such that its first entry is the appropriate cutting pair
in Case 3. To find a necklace, we scan the faces incident to x1, . . . , xs. More precisely, we
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consider (for vertex xi, presuming we know face fi already) each face f in ccw order after fi,
and along face f each vertex w in ccw order after xi, until we find vertex B (then we are
done) or a vertex that is face-adjacent to a vertex in SW Y \B (then this is xi+1 and fi+1 = f

and we repeat). The running time for this is proportional to the degrees of vertices and
faces that were scanned. We also need to update the data structures when recursing into
a subgraph; here, we scan along all vertices (and their incident faces) that were in some
necklace along which we cut the graph, or that became newly exterior.

A few crucial insights are needed to bound the running time. First, by corner-3-
connectivity every face has at most two vertices on each side. In particular, the above
data structures have linear size. Second, we need to scan vertices and faces only if they
become incident to a side that they were not previously incident to. Finally, once a vertex or
face is incident to a side, it remains incident to it forever (though the side may change role,
e.g. from “left” to “top”). This means that every vertex and face is scanned only a constant
number of times, because there are only four sides to have incidences with. In fact, we only
scan vertices and faces that are incident to the outer face in some subgraph, which means
that they will be incident to the path P that we compute, and we have the following:

I Theorem 5. The Tutte path P for Theorem 1, Lemma 2 or Lemma 3 can be found in
linear time. More specifically, the running time is O(

∑
f∈F (P ) deg(f)).

3 Applications

A number of interesting properties of planar 3-connected graphs can be derived easily from
the existence of TSDR-paths. In particular, every planar 3-connected graph has a spanning
tree of maximum degree 3 [2] (a concept known in the literature as a 3-tree, but we prefer to
use the term binary spanning tree to avoid confusion with maximal graphs of treewidth 3).
Secondly, every planar 3-connected graph has a 2-walk, i.e., a walk that visits every vertex at
least once and at most twice [8]. In the full version [5], we show that, using Lemma 2, these
can be found in linear time; this was known for binary spanning trees [16, 3], but for 2-walks
the previous best running time was O(n3) [15].

I Theorem 6. Let G be a 3-connected plane graph with exterior vertex X. Then G has a
binary spanning tree T that can be found in linear time. Moreover, when rooting T at X, a
vertex v has two children only if it is an interior vertex and part of a cutting triplet {v, w, x}
of G; one of the subtrees of v contains exactly the vertices interior to {v, w, x}.

I Theorem 7. Let G be a 3-connected plane graph with exterior vertex X. Then G has a
2-walk P that can be found in linear time. Moreover, P visits X exactly once, and it visits a
vertex v twice only if v is part of a separating triplet.

4 Outlook

In this paper, we improved on a very recent result that shows that Tutte paths in planar
graphs can be found in quadratic time. We gave a different existence proof which leads to a
linear-time algorithm. For 3-connected planar graphs, we obtain not only a Tutte path, but
furthermore endow it with a system of distinct representatives, none of which is on the outer
face. With this, we can also find 2-walks and binary spanning trees in 3-connected planar
graphs in linear time.
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The main remaining questions concern how to find Tutte path in other situations or with
further restriction. For example, Thomassen [18] and later Sanders [12] improved Tutte’s
result and showed that we need not restrict the ends of the Tutte path to lie on the outer
face. These paths can be found in quadratic time [15]. But our proof does not seem to carry
over to the result by Sanders, because the ends of the path crucially must coincide with
corners of the graph. Can we find such a path in linear time?

Furthermore, the existence of Tutte paths has been studied for other types of surfaces
(see, e.g., Kawarabayashi and Ozeki [11] and the references therein). Can these Tutte paths
be found in polynomial time, and preferably, linear time?
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Abstract

A few years ago, Alon et al. [ISMB 2008] gave a simple randomized O((2e)kmε−2)-time exponential-
space algorithm to approximately compute the number of paths on k vertices in a graph G up to
a multiplicative error of 1± ε. Shortly afterwards, Alon and Gutner [IWPEC 2009, TALG 2010]
gave a deterministic exponential-space algorithm with running time (2e)k+O(log3 k)m logn whenever
ε−1 = kO(1). Recently, Brand et al. [STOC 2018] provided a speed-up at the cost of reintroducing
randomization. Specifically, they gave a randomized O(4kmε−2)-time exponential-space algorithm.
In this article, we revisit the algorithm by Alon and Gutner. We modify the foundation of their
work, and with a novel twist, obtain the following results.

We present a deterministic 4k+O(
√
k(log2 k+log2 ε−1))m logn-time polynomial-space algorithm. This

matches the running time of the best known deterministic polynomial-space algorithm for deciding
whether a given graph G has a path on k vertices.

Additionally, we present a randomized 4k+O(log k(log k+log ε−1))m logn-time polynomial-space al-
gorithm. While Brand et al. make non-trivial use of exterior algebra, our algorithm is very
simple; we only make elementary use of the probabilistic method.

Thus, the algorithm by Brand et al. runs in time 4k+o(k)m whenever ε−1 = 2o(k), while our
deterministic and randomized algorithms run in time 4k+o(k)m logn whenever ε−1 = 2o(k

1
4 ) and

ε−1 = 2o( k
log k ), respectively. Prior to our work, no 2O(k)nO(1)-time polynomial-space algorithm was

known. Additionally, our approach is embeddable in the classic framework of divide-and-color, hence
it immediately extends to approximate counting of graphs of bounded treewidth; in comparison,
Brand et al. note that their approach is limited to graphs of bounded pathwidth.
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1 Introduction

The objective of the #k-Path problem is to compute the number of k-paths – that is, (simple)
paths on k vertices – in a given graph G. Unfortunately, this problem is #W[1]-hard [19],
which means that it is unlikely to be solvable in time f(k)nO(1) for any computable function
f of k. Nevertheless, this problem is long known to admit an FPT-approximation scheme
(FPT-AS), that is, an f(k, ε−1)nO(1)-time algorithm that approximately computes the number
of k-paths in a given graph G up to a multiplicative error of 1± ε. More than 15 years ago,
Arvind and Raman [6] utilized the classic method of color coding [5] to design a randomized
exponential-space FPT-AS for #k-Path with running time kO(k)nO(1) whenever ε−1 ≤ kO(k).
A few years afterwards, the development and use of applications in computational biology to
detect and analyze network motifs have already become common practice [34, 37, 36, 18, 24].
Roughly speaking, a network motif is a small pattern whose number of occurrences in a
given network is substantially larger than its number of occurrences in a random network.
Due to their tight relation to network motifs, #k-Path and other cases of the #Subgraph
Isomorphism problem became highly relevant to the study of gene transcription networks,
protein-protein interaction (PPI) networks, neural networks and social networks [31]. In light
of these developments, Alon et al. [2] revisited the method of color coding to attain a running
time whose dependency on k is single-exponential rather than slightly super-exponential.
Specifically, they designed a simple randomized O((2e)kmε−2)-time exponential-space FPT-
AS for #k-Path, which they employed to analyze PPI networks of unicellular organisms. In
particular, their algorithm has running time 2O(k)m whenever ε−1 ≤ 2O(k).

The first deterministic FPT-AS for #k-Path was found in 2007 by Alon and Gutner [4];
this algorithm has an exponential space complexity and running time 2O(k log log k)m logn
whenever ε−1 = 2o(log k). Shortly afterwards, Alon and Gutner [3] improved upon their previ-
ous work, and designed a deterministic exponential-space FPT-AS for #k-Path with running
time (2e)k+O(log3 k)m logn whenever ε−1 = kO(1). For close to a decade, this algorithm has
remained the state-of-the-art. In contrast, during this decade, the k-Path problem (the
decision version of #k-Path) has seen several improvements that were considered to be
breakthroughs at their time [14, 26, 8, 10, 21]. In 2016, Koutis and Williams [27] conjectured
that #k-Path admits an FPT-AS with running time 2knO(1). Recently, at the cost of
reintroducing randomization, Brand et al. [13] provided a speed-up towards the resolution of
this conjecture. Specifically, they gave an algebraic randomized O(4kmε−2)-time exponential-
space algorithm. In the context of Parameterized Complexity in general, and the k-Path
problem in particular, the power of randomization is an issue of wide interest [1]. Specifically
for the k-Path problem, an algebraic randomized 2knO(1)-time algorithm has been found
already a decade ago [38], and since then, the existence of a deterministic algorithm that
exhibits the same time complexity has been repeatedly posed as a major open problem in
the field. Both Koutis and Williams conjectured this question to have an affirmative answer
in several venues [38, 28, 27]. Clearly, this question is simpler than the one of the design of a
deterministic FPT-AS for #k-Path with running time 2knO(1).

In this article, we modify the foundation of the work of Alon and Gutner [4, 3], and with
a novel twist, obtain the following results (see Theorem 21 and Corollary 10).

First, we present a randomized 4k+O(log k(log k+log ε−1))m logn-time polynomial-space al-
gorithm. While Brand et al. [13] make non-trivial use of exterior algebra, our randomized
algorithm is very simple: we only make elementary use of the probabilistic method.1

1 Of course, simplicity is a subjective matter, which may depend on the background of the reader.
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Additionally, we present a deterministic 4k+O(
√
k(log2 k+log2 ε−1))m logn-time polynomial-

space algorithm. In particular, without compromising time complexity, we attain both the
properties of having a polynomial space complexity and being deterministic simultaneously.
In fact, even though we deal with #k-Path, the running time of our algorithm matches
the best known running time of a deterministic polynomial-space algorithm for k-Path
(the decision version of #k-Path) [14].

Thus, the algorithm by Brand et al. [13] runs in time 4k+o(k)m whenever ε−1 = 2o(k),
while our deterministic and randomized algorithms run in time 4k+o(k)m logn whenever
ε−1 = 2o(k

1
4 ) and ε−1 = 2o( k

log k ), respectively.
Prior to our work, no cknO(1)-time polynomial-space (even randomized) algorithm for

#k-Path was known for any constant c. The design of polynomial-space parameterized
algorithms is an active research area in Parameterized Complexity. Even (sometimes) at a
notable compromise of time complexity, the property of having polynomial space complexity
is sought (see, e.g., [20, 30, 29, 7, 23]). Indeed, algorithms with high space complexity are
in practice more constrained because the amount of memory is not easily scaled beyond
hardware constraints whereas time complexity can be alleviated by allowing for more time
for the algorithm to finish. Furthermore, algorithms with low space complexity are typically
easier to parallelize and more cache-friendly.

Additionally, our approach is embeddable in the classic framework of divide-and-color,
hence it immediately extends to approximate counting of graphs of bounded treewidth;in
comparison, Brand et al. [13] note that their approach is limited to graphs of bounded
pathwidth. Similarly, we can approximately count various other objects such as q-dimensional
p-matchings, q-set p-packings, graph motifs, and more:

I Theorem 1. The following problems admit deterministic 4k+O(
√
k(log2 k+log2 1

ε ))nO(1)-time
(resp. randomized 4k+O(log2 k)( 1

ε )
O(log k)nO(1)-time) FPT-ASs with polynomial space com-

plexity: (i) #Subgraph Isomorphism for k-vertex subgraphs of treewidth O(1); (ii) #q-
Dimensional p-Matching with k = (q − 1)p; (iii) #q-Set p-Packing with k = qp; (iv)
#Graph Motif and #Module Motif with k = 2p where p is the motif size; (v) #p-
Internal Out-Branching with k = 2p; (vi) #Partial Cover for k-element solutions.2

Towards the design of our algorithms, our first conceptual contribution is the introduction
of the notion of an approximate parsimonious splitter. While a randomized construction of
such an object is simple, we do not know how (or whether it is even possible) to compute it
deterministically within the size and time bounds that we require. We believe that this gap
in knowledge of derandomization is the main reason why, for close to a decade, no progress
has been made upon the result by Alon and Gutner [4, 3]. Here, our second conceptual
contribution comes into play. We show that for recursive procedures, a weaker object that
can only split so called nice sets suffices, since the recursion itself can keep track on the
“niceness” of sets. We believe that both the concept of approximate parsimonious splitters
as well as our approach of how to weaken a randomized object (to efficiently compute it
deterministically) at the cost of simple bookkeeping might find further applications in the
future. Our ideas and methods are discussed in more detail in Section 3.

2 For problems (i) and (iv), the basis 4 is replaced by the basis 4.001 (or, more precisely, 4 + δ for any
fixed constant δ > 0).

ICALP 2019



24:4 Approximate Counting of k-Paths

Table 1 State-of-the-art of #k-Path and k-Path.

Ref. Time Counting Deterministic Poly. Space Extension

[14] 4k+o(k)nO(1) No Yes Yes Treewidth O(1)
[40] 2.597knO(1) No Yes No Treewidth O(1)
[38] 2knO(1) No No Yes Treewidth O(1)
[10] 1.657knO(1) No No Yes No Extension
[3] (2e)k+o(k)nO(1) Yes Yes No Treewidth O(1)
[13] 4knO(1) Yes No No Pathwidth O(1)

This Paper 4k+o(k)nO(1) Yes Yes Yes Treewidth O(1)

Related Work. The algorithms by Alon et al. [2] and Alon and Gutner [4, 3], just like our
algorithms, extend to approximate counting of graphs of bounded treewidth. (This remark
is also made by Alon and Gutner [4, 3].) In what follows, we briefly review works related to
exact counting and decision from the viewpoint of Parameterized Complexity. Since these
topics are not the focus of our work, the survey is illustrative rather than comprehensive.

The problem of counting the number of subgraphs of a graph G that are isomorphic to a
graph H – that is, #Subgraph Isomorphism with Pattern H – admits a dichotomy: If
the vertex cover number of H is bounded, then it is FPT [39], and otherwise it is #W[1]-
hard [16]. The #W[1]-hardness of #k-Path, originally shown by Flum and Grohe [19],
follows from this dichotomy. By using the “meet in the middle” approach, the #k-Path
problem and, more generally, #Subgraph Isomorphism with Pattern H where H has
bounded pathwidth and k vertices, was shown to admit an n k2 +O(1)-time algorithm [9]. Later,
Björklund et al. [12] showed that k

2 is not a barrier (which was considered to be the case
at that time) by designing an n0.455k+O(1)-time algorithm. Recently, a breakthrough that
resulted in substantially faster running times took place: Curticapean et al. [15] showed that
#Subgraph Isomorphism with Pattern H is solvable in time `O(`)n0.174` where ` is the
number of edges in H; in particular, this algorithm solves #k-Path in time kO(k)n0.174k.

The k-Path problem (on both directed and undirected graphs) is among the most
extensively studied parameterized problems [17, 22]. After a long sequence of works in
the past three decades, the current best known parameterized algorithms for k-Path have
running times 1.657knO(1) (randomized, polynomial space, undirected only) [10, 8] (extended
in [11]), 2knO(1) (randomized, polynomial space) [38], 2.597knO(1) (deterministic, exponential
space) [40, 21, 35], and 4k+o(k)nO(1) (deterministic, polynomial space) [14]. The 1.657knO(1)-
time algorithm of Björklund et al. [10, 8] crucially relies on the symmetric structure of
undirected k-paths. However, all other algorithms above directly extend to the detection
of subgraphs of bounded treewidth. In particular, if the running time of the algorithm is
cknO(1), then the running time of the extension is cknt+O(1) where t is the treewidth of the
sought graph. To ensure that the constant c remains the same when dealing with the two
deterministic algorithms (of [40, 21, 35] and [14]), the “division into small trees” trick by
Fomin et al. [21] can be used; for the randomized algorithm (of [38]), no trick is required.

2 Preliminaries

For the sake of readability, we ignore ceiling and floor signs. Given a graph G, we let V (G)
and E(G) denote the vertex set and edge set of G, respectively. For a positive integer k, a
k-path in G is a (simple) path on k vertices in G; in case G is directed, the path is directed
as well. We let n = |V (G)| and m = |E(G)|. For a subset U ⊆ V (G), G[U ] denotes the
subgraph of U induced by G, and G− U = G[V (G) \ U ].
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For a function f : A→ B and subsets A′ ⊆ A and B′ ⊆ B, define f(A′) = {f(a) : a ∈ A′}
and f−1(B′) = {a ∈ A : f(a) ∈ B′}. For two functions f : A → B and g : B → C, the
notation g ◦ f : A→ C refers to function composition. For two tuples X = (x1, x2, . . . , xp)
and Y = (y1, y2, . . . , yq), denote their concatenation by X �Y = (x1, x2, . . . , xp, y1, y2, . . . , yq).
By standard Chernoff bounds, we have the following bounds.

I Proposition 2 ([32]). Let X1, . . . , Xn be independent random variables, each assigned a
value in {0, 1}. Let X =

∑n
i=1 Xi, and let µ = E[X] denote the expected value of X. Then, for

any 0 ≤ δ ≤ 1, it holds that (i) Pr(X≤(1− δ)µ) ≤ e−
δ2µ

2 and (ii) Pr(X≥(1 + δ)µ) ≤ e−
δ2µ

3 .

Universal Families. For any k ∈ N, a k-set is a set of size k. Given a universe U , denote(
U
k

)
= {S ⊆ U : |S| = k}. Given a family F over U and two subsets A,B ⊆ U , denote

F [A,B] = {F ∈ F : A ⊆ F,B ∩F = ∅}. Next, we present the definition of a universal family.

I Definition 3 (Universal Family [33, 21]). Let n, p, q ∈ N. A family F of sets over a universe
U of size n is an (n, p, q)-universal family if for each pair of disjoint sets A ∈

(
U
p

)
and

B ∈
(
U
q

)
, there is a set F ∈ F that contains A and is disjoint from B, that is, F [A,B] 6= ∅.

In the classic setting by Naor et al. [33], p = q. However, as shown by Fomin et al. [21],
cases where p 6= q are also of interest. Specifically, the following well-known proposition
asserts that small representative families can be computed efficiently.

I Proposition 4 ([33, 21]). Let n, p, q ∈ N, and k = p + q. Let U be a universe of size n.
Then, an (n, p, q)-universal family F of sets over U of size O(

(
k
p

)
logn) can be computed

with success probability 1 − 1/n in time O(
(
k
p

)
n logn). Additionally, an (n, p, q)-universal

family F of sets over U of size
(
k
p

)
2o(k) logn can be computed (deterministically) in time(

k
p

)
2o(k)n logn. Both computations can enumerate the sets in F with polynomial delay.

Observe that the constructions above are essentially optimal since any (n, p, q)-universal
family must be of size at least

(
k
p

)
. We later extend Definition 3 to be approximately

parsimonious, and show how to compute approximate parsimonious universal families.

3 Overview of Our Ideas and Methods

In this section, we discuss our main ideas and methods. Additionally, we present a simplified
version of one of our applications in detail.

3.1 Approx. Parsimonious Universal Family: Randomized Construction
For any pair of disjoint sets A ∈

(
U
p

)
and B ∈

(
U
q

)
, Definition 3 guarantees that F [A,B] 6= ∅.

However, the number of sets in F [A,B] can be arbitrary. In our applications, the number of
sets in F [A,B] will be tightly linked to the number of solutions whose “first half” is in A
and whose “second half” is in B; thus, to avoid over-counting some solutions, we need all
families F [·, ·] to be roughly of the same size. For this purpose, let us first extend Definition
3 to be approximately parsimonious.

I Definition 5 (δ-Parsimonious Universal Family). Let n, p, q ∈ N and 0 < δ < 1. Denote
k = p + q. A family F of sets over a universe U of size n is a δ-parsimonious (n, p, q)-
universal family if there exists T = T (n, p, q, δ) > 0 such that for each pair of disjoint sets
A ∈

(
U
p

)
and B ∈

(
U
q

)
, it holds that (1− δ) · T ≤ |F [A,B]| ≤ (1 + δ) · T .

ICALP 2019
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We call the value T above a correction factor, and suppose it to be given along with
the family F . Our randomized computation of a δ-parsimonious (n, p, q)-universal family is
based on the probabilistic method, inspired by [33, 21]. Specifically, we prove the following.

I Theorem 6. Let n, p, q ∈ N and 0 < δ < 1, and denote k = p + q. Let U be a
universe of size n. A δ-parsimonious (n, p, q)-universal family F of sets over U of size

t = O
(
kk

ppqq
· k logn · 1

δ2

)
,3 can be computed with success probability at least 1− 1/n100k in

time O(t · n). In particular, the sets in F can be enumerated with delay O(n).

We note that the choice of 100 is arbitrary; it can be replaced by the choice of any fixed
constant c. Crucially, we gain the extra property of being δ-parsimonious while essentially
having the same time complexity and upper bound on the size of the output as in the
non-parsimonious construction.

3.2 Warm Up Application: Simple Randomized FPT-AS for #k-Path

Before we delve into more technical and less intuitive definitions related to our deterministic
construction, we find it important to understand the relation between Definition 5 and
#k-Path. For this purpose, we present a simple randomized polynomial-space FPT-AS for
#k-Path. The dependency of the time complexity on n is made almost linear in Section
3.3). While the improved algorithm is still short and simple, it is somewhat less intuitive and
hence presented separately later. For the sake of illustration, suppose that G is undirected.

Algorithm. Let ε̂ = ln(1 + ε) and ε′ = ε̂/(k − 1). Our algorithm is a recursive algorithm,
denoted by A. Each call to A is of the form A(G′, k′) where G′ is an induced subgraph of G
and k′ ∈ {1, . . . , k}. For all u, v ∈ V (G′), the call A(G′, k′) should output an integer au,v
that approximates the number of k′-paths with endpoints u and v in G′. The initial call to
the algorithm is with G′ = G and k′ = k, and the final output is (

∑
u,v∈V (G) au,v)/2.

We turn to describe a call A(G′, k′). In the basis, where k′ = 1, we return av,v = 1 for
all v ∈ V (G′), and au,v = 0 for all u, v ∈ V (G′) (with u 6= v).

Now, suppose that k′ ≥ 2. By Theorem 6, for an ε′-parsimonious (n, k′/2, k′/2)-universal
family F of sets over V (G), we can enumerate the sets F ∈ F with delay O(n). For each
set F ∈ F , we proceed as follows. We first perform two recursive calls: (i) we call A with
(G′[F ], k′/2); (ii) we call A with (G′ − F, k′/2). For any u, v ∈ F ∩ V (G′), let bFu,v denote
the number returned by the first call. Similarly, for any u, v ∈ V (G′) \ F , let cFu,v denote
the number returned by the second call. Then, for all u ∈ F and v ∈ V (G′) \ F , define
aFu,v =

∑
{p,q}∈E(G′)
s.t. p∈F,q/∈F

bFu,p · cFq,v.

Let T be the correction factor of F . After all sets F ∈ F were enumerated, for all
u, v ∈ V (G′), we output au,v calculated as follows: au,v = 1

T
·

∑
F∈F

s.t. u∈F,v/∈F

aFu,v. Note that we

do not store all the values aFu,v simultaneously, but we merely store one such value at a time
and delete it immediately after aFu,v/T is added. This completes the description of A.

3 Note that as p+ q = k, the value kk

ppqq is upper bounded by 2k rather than being of the magnitude of kk.
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Analysis. The main part of the analysis is done in the proof of the following lemma.

I Lemma 7. For some fixed constant η > 0, any call A(G′, k′) has polynomial space
complexity and running time ηlog k′4k′k′log k′(logn)log k′mn2( 1

ε′2
)log k′ . Additionally, if all

constructions of approximate universal families were successful, then for all u, v ∈ V (G′), the
number au,v returned by A(G′, k′) satisfies (1− ε′)k′−1xu,v ≤ au,v ≤ (1 + ε′)k′−1xu,v where
xu,v is the number of k′-paths with endpoints u and v in G′.

Proof. Let k′ = k/2d. We choose η = 10 max{λ, τ}, where λ and τ are fixed constants
defined later. The proof is by backwards induction of d. In the basis (k′ = 1), the claim
is trivial. Now, let d ≤ log2 k − 1, and suppose that the claim holds for d + 1. Clearly,
A(G′, k′) has a polynomial space complexity. By Theorem 6, for a fixed constant λ > 0 (that
is independent of η),

|F| ≤ λ · k′
k′

(k′/2)k
′/2(k′/2)k

′/2 · k
′ logn · 1

ε′2
= λ · 2k

′
· k′ logn · 1

ε′2
.

Moreover, by the inductive hypothesis, for a fixed constant τ > 0, the running time ofA(G′, k′)

is upper bounded by |F| ·
(

2 · ηlog k′
2 4 k

′
2 (k

′

2 )log k′
2 (logn)log k′

2 mn2( 1
ε′2

)log k′
2 + τmn2

)
. Note

that τ is independent of η. By choosing η = 10 max{λ, τ}, this means that the running time
of A(G′, k′) is upper bounded by

|F| ·
(

2 · ηlog k′
2 4 k

′
2 (k

′

2 )log k′
2 (logn)log k′

2 mn2( 1
ε′2

)log k′
2 + τmn2

)
≤ η

102k
′
k′ logn 1

ε′2
·
(

2 · ηlog k′−12k
′
k′

log k′−1(logn)log k′−1mn2( 1
ε′2

)log k′−1 + η

10mn
2
)

≤ ηlog k′4k
′
k′

log k′(logn)log k′mn2( 1
ε′2

)log k′ .

This completes the proof of the first item of the claim.
Towards the proof of the second item of the claim, suppose that all constructions of

approximate universal families were successful, and consider some u, v ∈ V (G′). Let xĜp,q
denote the number of k′/2-paths with endpoints p and q in Ĝ. By the inductive hypothesis,
we have that

au,v = 1
T
·

∑
F∈F

s.t. u∈F,v/∈F

aFu,v = 1
T
·

∑
F∈F

s.t. u∈F,v/∈F

 ∑
{p,q}∈E(G′)
s.t. p∈F,q/∈F

bFu,p · cFq,v


≤ 1
T
·

∑
F∈F

s.t. u∈F,v/∈F

 ∑
{p,q}∈E(G′)
s.t. p∈F,q/∈F

(1 + ε′) k
′

2 −1xG
′[F ]

u,p · (1 + ε′) k
′

2 −1xG
′−F

q,v


= 1
T
· (1 + ε′)k

′−2 ·
∑
F∈F

s.t. u∈F,v/∈F

 ∑
{p,q}∈E(G′)
s.t. p∈F,q/∈F

xG
′[F ]

u,p · xG
′−F

q,v


Let Pu,v denote the set of k′-paths in G′ with endpoints u and v. In addition, for any subset
F ⊆ V (G′), let Pu,v[F ] denote the set of paths P ∈ Pu,v where the k′/2 vertices on P closest
to u (including u) belong to F and the other k′/2 vertices on P do not belong to F . Thus,

au,v ≤ (1 + ε′)k
′−2 ·

∑
F∈F |Pu,v[F ]|

T
.
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Since F is an ε′-parsimonious (n, k′/2, k′/2)-universal family, for any path P ∈ Pu,v it holds
that the number of sets F ∈ F such that P ∈ Pu,v[F ] is upper bounded by (1 + ε′)T . Thus,

au,v ≤ (1 + ε′)k
′−2 · (1 + ε′)T |Pu,v|

T
= (1 + ε′)k

′−1xu,v.

Symmetrically, we derive that (1− ε′)k′−1xu,v ≤ au,v. This completes the proof. J

We now conclude the following theorem.

I Theorem 8. There is a randomized (4k+o(k)mn2 +mn2+o(1))( 1
ε )O(log k)-time polynomial-

space algorithm that, given a graph G, a positive integer k and an accuracy value 0 < ε < 1,
outputs a number y that (with high probability, say, at least 9/10) satisfies (1− ε)x ≤ y ≤
(1 + ε)x where x is the number of k-paths in G. In particular, if 1

ε = 2o(k/ log k), then the
running time is 4k+o(k)mn2 +mn2+o(1).

Proof. By Lemma 7 with G′ = G and k′ = k, we know that the total running time of A(G, k)
is bounded by 4k+O(log2 k)(logn)log kmn2( 1

ε′ )
log k and uses polynomial space. Additionally, if

all constructions of approximate universal families were successful, then for all u, v ∈ V (G),
the number au,v computed by A(G, k) satisfies (1− ε′)k−1xu,v ≤ au,v ≤ (1+ ε′)k−1xu,v where
xu,v is the number of k-paths with endpoints u and v in G.

If logn ≤ 2
√
k, then (logn)log k ≤ 2o(k). Otherwise, when logn > 2

√
k, it holds that k <

log2 logn. It follows that 4k+O(log2 k)(logn)log k ≤ 4log2 logn+O(log log logn)(logn)2 log log logn ≤
nO( log2 logn

logn ) ≤ no(1). In addition, by Taylor series ln(1 + x) =
∑∞
n=1(−1)n+1 xn

n , it follows
that ε/2 ≤ ε − ε2/2 ≤ ln(1 + ε) = ε̂ ≤ ε, which means that ( 1

ε′ )
log k = 2O(log2 k)( 1

ε )
O(log k).

Thus, 4k+O(log2 k)(logn)log kmn2( 1
ε′ )

log k = (4k+o(k)mn2 +mn2+o(1))( 1
ε )O(log k).

We now claim that with high probability, all constructions of approximate universal
families were successful. By Theorem 6, the probability that a single construction is successful
is at least 1− 1/n100k. Thus, the probability that all constructions are successful is at least
(1− 1/n100k)µ where µ is the number of constructions. Clearly, the number of constructions
is upper bounded by the running time of A. In turn, we can assume w.l.o.g. that the upper
bound proven on this running time is, in itself, upper bounded by nk, since otherwise the
problem can be solved exactly by brute force within it. Thus, µ ≤ nk. From this, we know
that the probability that all constructions are successful is at least (1− 1/n100k)nk . As n
grows larger, this value approaches 1. In particular, the success probability can be assumed
to be at least 9/10 (otherwise n is a fixed constant), which proves our claim.

Thus, we know that for all u, v ∈ V (G), it holds that (1 − ε′)k−1xu,v ≤ au,v ≤ (1 +
ε′)k−1xu,v. Substituting ε′ by ε̂, we have that for all u, v ∈ V (G), it holds that (1− ε̂)xuv ≤
(1− ε̂

k−1 )k−1xu,v ≤ au,v ≤ (1+ ε̂
k−1 )k−1xu,v ≤ eε̂xu,v. Since (1− ε) ≤ (1− ε̂) and eε̂ = (1+ ε),

we have that for all u, v ∈ V (G), it holds that (1− ε)xu,v ≤ au,v ≤ (1 + ε)xu,v. Thus,

y =

 ∑
u,v∈V (G)

au,v

/2 ≤
 ∑
u,v∈V (G)

(1 + ε)xu,v

 /2

= (1 + ε)

 ∑
u,v∈V (G)

xu,v

 /2 = (1 + ε)x.

Symmetrically, we obtain that (1− ε)x ≤ y. This completes the proof. J
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3.3 Improved Randomized FPT-AS for #k-Path

As our improved randomized FPT-AS is less intuitive, we first discuss the intuition behind it.
Here, in addition to G′ and k′, every call to the recursive algorithm A is given an assignment
α′ : V (G) \ V (G′) → N0 of a non-negative integer to each vertex outside G′. Roughly
speaking, for each vertex v ∈ V (G) \ V (G′), the value α′(v) is an approximation of the
number of k̂-paths that end at v and are completely contained in G−U for a certain integer
k̂ ∈ {1, 2, . . . , k − k′} and a subset U ⊆ V (G) that contains V (G′). In particular, given that
now the goal of each call is to output such an assignment for G − (U \ V (G′) (a precise
definition of the goal of a call is given in the formal description of the algorithm), we do not
need to consider every pair of vertices u, v ∈ V (G′) and compute a value au,v; instead, we
only compute one value per vertex. Additionally, recall that in the previous algorithm in
order to compute au,v, we considered every edge {p, q} ∈ E(G′) while computing aFu,v and
hence divided our task into the computation of k′/2-paths between u and p in one recursive
call and k′/2-paths between q and u in the other. Here, we do not store the two endpoints of
paths, but their “middle”. More precisely, the flow of information differs: to compute the
assignment we need to output in the current call, we perform one recursive call to which the
assignment α′ is given as input; this call will return an assignment that “handles” the first
k̂ + k′/2 vertices on the paths being counted, and be sent as input to the second recursive
call to handle the next k′/2 vertices.

Algorithm. Let ε̂ = ln(1 + ε) and ε′ = ε̂/(k − 1). We add a new vertex s to G and connect
it to all vertices in G. Thus, rather than counting the number of k-paths in the former graph
G, we can count the number of (k + 1)-paths with s as an endpoint in the new graph G. In
what follows, we focus on this goal.

Our algorithm is a recursive algorithm, denoted by A. Each call to A is of the form
A(G′, k′, α′) where G′ is an induced subgraph of G, k′ ∈ {1, . . . , k}, and α′ : V (G)\V (G′)→
N0 . The call A(G′, k′, α′) should output an assignment α : V (G′)→ N0 with the following
property: For each vertex v ∈ V (G′), it holds that α(v) approximates the following number:∑

{p,q}∈E(G)
s.t. p/∈V (G′),q∈V (G′)

α′(p) · xq,v,

where xq,v is the number of k′-paths in G′ between q and v.
The initial call to the algorithm is with G′ = G− {s}, k′ = k, and α′(s) = 1. The final

output is
∑
v∈V (G)\{s} α(v).

We turn to describe a call A(G′, k′, α′). In the basis, where k′ = 1, we return an
assignment α : V (G′)→ N0 defined as follows: For each vertex v ∈ V (G′), define

α(v) =
∑

u/∈V (G′)
s.t. {u,v}∈E(G)

α′(u).

Now, suppose that k′ ≥ 2. By Theorem 6, for an ε′-parsimonious (n, k′/2, k′/2)-universal
family F of sets over V (G), we can enumerate the sets F ∈ F with delay O(n). For each
set F ∈ F , we proceed as follows. We first recursively call A with (G′[F ], k′/2, α′) where
α′ is extended to assign 0 to every vertex in V (G′) \ F . Let α̂F be the output of this call,
and extend it to assign 0 to every vertex in V (G) \ V (G′). Then, we recursively call A with
(G′ − F, k′/2, α̂F ). Let αF be the output of this recursive call.
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Let T be the correction factor of F . After all sets F ∈ F were enumerated, the output
α : V (G′)→ N0 is computed as follows. For all v ∈ V (G′), we calculate

α(v) =

 ∑
F∈F

s.t. v/∈F

αF (v)

 /T .

Note that we do not store all the assignments αF simultaneously, but we merely store one
such assignment at a time and delete it immediately after αF (v)/T , for every v ∈ V (G′), is
added. This completes the description of A.

Correctness. The proof of correctness of our algorithm roughly follows the same lines as
the proof of correctness of Theorem 8. Due to space constraints, we omit the details, and
conclude this section with the statement of our result.

I Theorem 9. There is a randomized (4k+o(k)m+mno(1))( 1
ε )O(log k)-time polynomial-space

algorithm that, given a graph G, a positive integer k and an accuracy value 0<ε<1, outputs a
number y that (with high probability) satisfies (1− ε)x ≤ y/2 ≤ (1+ ε)x where x is the number
of k-paths in G. In particular, if 1

ε = 2o(k/ log k), then the running time is 4k+o(k)mno(1).

Additionally, we can obtain the following corollary. (This corollary does not follow directly
from Theorem 9, but requires a simple preliminary step to shrink the universe; due to space
constraints, the details are omitted.)

I Corollary 10. There is a randomized 4k+O(log2 k)m logn( 1
ε )O(log k)-time polynomial-space

algorithm that, given a graph G, a positive integer k and an accuracy value 0<ε<1,‘outputs a
number y that (with high probability) satisfies (1− ε)x ≤ y/2 ≤ (1+ ε)x where x is the number
of k-paths in G. In particular, if 1

ε = 2o(k/ log k), then the running time is 4k+o(k)m logn.

3.4 Approx. Parsimonious Universal Family: Deterministic Construction
We do not know how to deterministically construct small δ-parsimonious universal families.
Indeed, the best construction that we are aware of is the one based on bipartite Paley graphs
(see Theorem 11.9 in the book by Jukna [25] and the historical notes behind the result).
This construction leads to families of size 4k+o(k) for p = q = k

2 , whereas we would like size
2k+o(k). Instead, we provide an efficient deterministic computation of a small δ-parsimonious
universal family that is suitable for handling so called “nice pairs”. The crucial point is
that with respect to our applications, this relaxed construction suffices. In this section, we
present the definition of this relaxation, its construction and main property. Due to space
constraints, the proofs of the two lemmas and the theorem stated in this section are omitted.

To simplify the following definitions, we introduce the following notation. To see the
intuition behind this notation in the context of applications, throughout this section h can be
thought of as a function that reduces the size of the universe from n to z, f can be thought
of as a function that splits the reduced universe into t parts, and p can be thought of as a
function that tells us that each part has k/t “useful” elements (e.g., vertices of paths to be
counted in a certain recursive call) among which either pi or (k/t)− pi were “exhausted”.

I Definition 11. Let n, p, q, t, z ∈ N, and k = p+q. Let U be a universe of size n. A function
p : {1, 2, . . . , t} → {0, 1, . . . , k/t} such that

∑t
i=1 pi = p, is called (p, q, t)-compatible. When

p is clear from context, for each i ∈ {1, 2, . . . , t}, denote pi = p(i) and qi = (k/t)− pi.
A triple (h, f,p) is called (n, p, q, t, z)-compatible if h : U → {1, 2, . . . , z}, f : {1, 2, . . . ,

z} → {1, 2, . . . , t}, and p is (p, q, t)-compatible. (The universe U will be clear from context.)
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We begin by defining what is a nice pair.

I Definition 12 (Nice Pair). Let n, p, q, t, z ∈ N. Let U be a universe of size n. Let (h, f,p)
be (n, p, q, t, z)-compatible. A pair (A,B) is nice (with respect to (h, f,p)) if A ∈

(
U
p

)
and

B ∈
(
U
q

)
are disjoint sets, and the following conditions hold.

1. The function h is injective when restricted to A ∪B.
2. For each i ∈ {1, 2, . . . , t}, it holds that |{u ∈ A : f(h(u)) = i}| = pi and |{u ∈ B :

f(h(u)) = i}| = (k/t)− pi.

Towards the definition of a δ-parsimonious universal family for nice pairs, we first present
a weaker definition of this notion where we have a triple (h, f,p) at hand.

I Definition 13 (Specific δ-Parsimonious Universal Family for Nice Pairs). Let n, p, q, t, z ∈ N.
Let U be a universe of size n. Let (h, f,p) be (n, p, q, t, z)-compatible. Let 0 < δ < 1.
A family F of sets over {1, . . . , z} is a δ-parsimonious (h, f,p)-universal family (for nice
pairs) if there exists T = T (h, f,p, δ) > 0 such that for every nice pair (A,B), it holds that
(1− δ) · T ≤ |F [h(A), h(B)]| ≤ (1 + δ) · T .

Before we show how to extend Definition 13 to the notion useful for applications, we
argue that small δ-parsimonious (h, f,p)-universal families can be computed “efficiently”.

I Lemma 14. Let p, q, t, z ∈ N, and denote k = p + q and s = k/t. Let (h, f,p) be
(n, p, q, t, z)-compatible. Let 0 < δ < 1. A δ-parsimonious (h, f,p)-universal family F of sets
over {1, . . . , z} of size ` = O

((
k
p

)
· (k · log z · O(1)

δ )2t
)
can be computed in time ` · zs+1sO(1)t.

In particular, the sets in F can be enumerated with delay zs+1sO(1)t.

Towards the definition of our general construction, we need to present the definitions of a
balanced splitter and a balanced hash family. Constructions of such a splitter and a family
were given by Alon and Gutner [4, 3].

I Definition 15 (Definition 2.2 [4]). Suppose that 1 ≤ ` ≤ k ≤ n and 0 < ε < 1, and let H be
a family of functions from {1, . . . , n} to {1, . . . , `}. For a set S ∈

({1,...,n}
k

)
, let splitH(S)

denote the number of functions h ∈ H that split H into equal size parts, that is, |h−1(i)∩S| =
k/`. Then, H is an ε-balanced (n, k, `)-splitter if there exists T = T (n, k, `, ε) > 0 such that
for every set S ∈

({1,...,n}
k

)
, we have (1− ε)T ≤ splitH(S) ≤ (1− ε)T .

I Definition 16 (Definition 2.1 [4]). Suppose that 1 ≤ k ≤ ` ≤ n and 0 < ε < 1. A family
H of functions from {1, . . . , n} to {1, . . . , `} is an (ε, k)-balanced family of hash functions
if there exists T = T (n, k, `, ε) > 0 such that for every set S ∈

({1,...,n}
k

)
, the number of

functions in H that are injective when restricted to S is between (1− ε)T and (1 + ε)T .

We are now ready to define our general derandomization tool.

I Definition 17 ((General) δ-Parsimonious Universal Family for Nice Pairs). Let n, p, q ∈ N
and 0 < δ < 1, and denote k = p+ q, z = 2k2

ε , t =
√
k, s = k/t =

√
k, and ε = δ/3. Let U

be a universe of size n. A δ-parsimonious (n, p, q)-universal tuple (for nice pairs) is a tuple
(H,S, {Fh,f,p}|h∈H,f∈S,p)4 that satisfies the following conditions.

H is an (ε, k)-balanced family of hash functions from {1, . . . , n} to {1, . . . , z} (with
correction factor TH).
S is an ε-balanced (z, k, t)-splitter (with correction factor TS).
For every hash function h ∈ H, splitter f ∈ S and (p, q, t)-compatible function p, it holds
that Fh,f,p is a δ-parsimonious (h, f,p)-universal family (with correction factor Tp).

4 The enumeration is over every (p, q, t)-compatible p.
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By enumerating the quadruples of (H,S, {Fh,f,p}|h∈H,f∈S,p), we refer to the enumeration
of every quadruple (h, f,p, F ) such that h ∈ H, f ∈ S and F ∈ Fh,f,p. We remark that
below, for the sake of brevity, when we write k, z, t, s, ε, TH , TS and Tp, we refer to the
notations given in Definition 17. Let us now state our construction.

I Theorem 18. Let n, p, q ∈ N and 0 < δ < 1. Denote k = p+ q. Let U be a universe of size
n. A δ-parsimonious (n, p, q)-universal tuple (H,S, {Fh,f,p}|h∈H,f∈S,p) with ` quadruples
can be computed in time kO(1)n logn

δO(1) + ` ·∆. In particular, after preprocessing time kO(1)n logn
δO(1) ,

the quadruples of (H,S, {Fh,f,p}|h∈H,f∈S,p) can be enumerated with delay ∆. Here,

` =
(
k

p

)
· 2O(

√
k(log2 k+log2 1

δ )) · logn, and

∆ = 2O(
√
k(log k+log 1

δ )).

In order to state the property of a δ-parsimonious (n, p, q)-universal tuple that makes it
useful for applications, we need one last definition.

I Definition 19. Let n, p, q ∈ N and 0 < δ < 1. Let U be a universe of size n. Furthermore,
let (H,S, {Fh,f,p}|h∈H,f∈S,p) be a δ-parsimonious (n, p, q)-universal tuple. Finally, let A ∈(
U
p

)
and B ∈

(
U
q

)
be disjoint sets. We say that the pair (A,B) fits a quadruple (h, f,p, F )

of (H,S, {Fh,f,p}|h∈H,f∈S,p) if (A,B) is nice with respect to (h, f,p), and h(A) ⊆ F and
f ∩ h(B) = ∅.

Finally, we state the promised property.

I Lemma 20. Let n, p, q ∈ N and 0 < δ < 1. Let U be a universe of size n. Furthermore,
let (H,S, {Fh,f,p}|h∈H,f∈S,p) be a δ-parsimonious (n, p, q)-universal tuple. Then, there exist
T = T (n, p, q, δ) > 0 and for every p that is (p, q, t)-compatible, Tp = Tp(n, p, q, δ) > 0, such
that for any A ∈

(
U
p

)
and B ∈

(
U
q

)
that are disjoint, the following conditions hold.

1. The number of triples (h, f,p) with respect to whom (A,B) is nice, where h ∈ H, f ∈ S
and p is (p, q, t)-compatible, is between (1− δ)T and (1 + δ)T .

2. For any triple (h, f,p) with respect to whom (A,B) is nice, where h ∈ H, f ∈ S and p
is (p, q, t)-compatible, the number of quadruples (h, f,p, F ) of (H,S, {Fh,f,p}|h∈H,f∈S,p)
that fit (A,B) is between (1− δ)Tp and (1 + δ)Tp.

3.5 Deterministic FPT-AS for #k-Path
Our deterministic FPT-AS builds upon the scheme of our second randomized FPT-AS, but it
is more technical. Due to space constraints, the full details of the description of the algorithm
and its proof of correctness is omitted. Here, we only discuss the main idea that underlies
the design of this algorithm. Like our previous algorithm, this algorithm (denoted by A) is
recursive. However, in addition to G′, k′ and α′, every call to A is also given two tuples R
and W. The number of elements in R and W equals the depth d of the current recursive
call in the recursion tree.

Roughly speaking, every element in R is a quadruple (hi, fi,pi, σi) where (i) the
triple (hi, fi,pi) corresponds to the interpretation preceding Definition 11, and (ii) σi ∈
{left, right} indicates whether we should count paths that consist of pi(j) (in case
σi = left) or si − pi(j) (in case σi = right) vertices of the j-th part of the reduced
universe split by fi. Thus, we “keep track” of all triples considered along the current re-
cursion branch. The reason why we have to store this information is to ensure that, in the
current recursive call, we only count paths P whose vertex set has the following property:
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when we will return to the i-th recursive call, the partition (A,B) of V (P ) where A consists
of the first k̂ vertices of P (for a certain k̂ ∈ {1, 2, . . . , k} that depends on the location of
this i-th call in the recursion tree) is nice with respect to (hi, fi,pi), see Definition 12. This
simple (though perhaps slightly tedious) bookkeeping sidesteps the fact that Lemma 20 only
suits nice pairs.

The tuple W is meant to keep track of how many vertices the paths that we currently
count have used “so far” from the j-th part of the universe split by fi for every choice of
i and j. For this purpose, W is defined to have the form (w1,w2, . . . ,wd) such that for
each i ∈ {1, 2, . . . , d}, the following condition holds: For each j ∈ {1, 2, . . . , ti}, if σi = left
then wi(j) ≤ pi(j), and otherwise wi(j) ≤ si − pi(j). Here, si =

√
(k/2i) is the number of

vertices the paths that we currently count should use (in total) from each part split by fi.
Accordingly, the objective of a call A(G′, k′, α′,R,W) is to output an assignment

α : V (G′) → N0 with the following property: For each vertex v ∈ V (G′), it holds that
α(v) approximates

∑
{p,q}∈E(G)

s.t. p/∈V (G′),q∈V (G′)

α′(p) · |PG
′,k′,R,W

q,v |. Roughly speaking, PG′,k′,R,Wq,v is the

collection of all k′-paths in G′ with endpoints q and v that “comply” with the constraints
imposed by R and W. (Due to space constraints, the formal definition is omitted.)

We conclude this section with the formal statement of our main result.

I Theorem 21. There is a deterministic 4k+O(
√
k(log2 k+log2 1

ε ))m logn-time polynomial-space
algorithm that, given a graph G, a positive integer k and an accuracy value 0 < ε < 1, outputs
a number y that satisfies (1− ε)x ≤ y/2 ≤ (1 + ε)x where x is the number of k-paths in G.
In particular, if 1

ε = 2o(k
1
4 ), then the running time is 4k+o(k)m logn.

Due to space constraints, the discussion on extensions and other applications is omitted.
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Hamiltonian Cycles by Listing Dissimilar Vectors
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Abstract
We show that the permanent of an n × n matrix over any finite ring of r ≤ n elements can be
computed with a deterministic 2n−Ω(n

r
) time algorithm. This improves on a Las Vegas algorithm

running in expected 2n−Ω(n/(r log r)) time, implicit in [Björklund, Husfeldt, and Lyckberg, IPL 2017].
For the permanent over the integers of a 0/1-matrix with exactly d ones per row and column, we
provide a deterministic 2n−Ω( n

d3/4 ) time algorithm. This improves on a 2n−Ω(n
d

) time algorithm
in [Cygan and Pilipczuk ICALP 2013]. We also show that the number of Hamiltonian cycles in
an n-vertex directed graph of average degree δ can be computed by a deterministic 2n−Ω(n

δ
) time

algorithm. This improves on a Las Vegas algorithm running in expected 2n−Ω( n
poly(δ) ) time in

[Björklund, Kaski, and Koutis, ICALP 2017].
A key tool in our approach is a reduction from computing the permanent to listing pairs of

dissimilar vectors from two sets of vectors, i.e., vectors over a finite set that differ in each coordinate,
building on an observation of [Bax and Franklin, Algorithmica 2002]. We propose algorithms that
can be used both to derandomise the construction of Bax and Franklin, and efficiently list dissimilar
pairs using several algorithmic tools. We also give a simple randomised algorithm resulting in Monte
Carlo algorithms within the same time bounds.

Our new fast algorithms for listing dissimilar vector pairs from two sets of vectors are inspired
by recent algorithms for detecting and counting orthogonal vectors by [Abboud, Williams, and Yu,
SODA 2015] and [Chan and Williams, SODA 2016].
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1 Introduction

In recent years, the apparent impossibility of finding a pair of orthogonal vectors among
two sets of N Boolean vectors in N2−ε time (the OV problem) has been used to derive
conditional hardness results for many problems (e.g., [2] to name just one). However, when
the dimensionality of the vectors is at most d log(N) for a constant d, N c-time algorithms do
exist for some c < 2, and these algorithms for OV have been used to derive faster algorithms
for other problems; a prominent example is counting satisfying assignments to sparse CNF
formulas [11]. In this paper we consider a natural generalisation of the OV problem, design
algorithms for it, and apply those algorithms to derive faster deterministic algorithms for
two other notoriously hard, well-known problems:
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1. Computing matrix permanents over finite rings and regular 0/1 matrices over the integers.
2. Counting Hamiltonian cycles in sparse directed graphs.

The natural generalisation of OV is a problem we call listing dissimilar vector pairs:
Given N vectors over a finite set of size r, list all pairs of vectors that differ in every coordinate.
This problem can easily be reduced to listing orthogonal vector pairs (see Proposition 9). We
also propose some tailored algorithms for listing dissimilar pairs for ease of understanding.
(and in the hopes that our new algorithmic ideas will lead to interesting future work). As
in the literature on orthogonal vector detection and counting [1, 11], we show how fast
rectangular matrix multiplication can be used to list dissimilar vector pairs; we apply a fast
algorithm for counting (not listing) orthogonal vectors ([11]) as a black box to derandomise
our application algorithms.

A key difference in our work is that our applications to counting problems require us to list
all dissimilar vector pairs, rather than merely finding one. The task of listing OV pairs also
arises in the fastest known online algorithm for Boolean matrix-vector multiplication [15].

1.1 Faster Algorithm for Ring Permanents
The permanent of a square matrix M = {mi,j} ∈ Kn×n over a ring K is defined as

per(M) =
∑
σ∈Sn

n∏
i=1

mi,σ(i), (1)

where Sn is the symmetric group on n elements. The problem of computing permanents is
known to be #P-complete, even for sparse binary (i.e., 0/1) matrices over the integers [22],
and hence we only expect exponential-time algorithms for the problem in general.

An inclusion–exclusion formula by Herbert Ryser from 1963 [18] states that

per(M) =
∑
X⊆[n]

(−1)n−|X|
n∏
i=1

∑
j∈X

mi,j

 . (2)

By enumerating the subsets X in a Gray code order (i.e., an enumeration that lists each
subset exactly once by only adding or removing one element at a time) one can compute
each term

∏n
i=1

(∑
j∈X mi,j

)
in only O(n) operations per subset, leading to an algorithm

using O(n2n) additions and multiplications. To date, this is still the fastest method known
for computing the permanent over general rings, and it is a major open question whether
there is a O((2− ε)n) time algorithm for some constant ε > 0, even for the special case of
binary matrices over the integers. For other special cases, like sparse matrices or finite rings,
such algorithms do exist, and even for the computation of binary matrices over the integers,
somewhat faster algorithms than Ryser’s are known; see the Related Work section.

In this paper, we provide a faster algorithm for permanents over finite rings.

I Theorem 1. There is a deterministic algorithm that computes the permanent of a matrix
M ∈ Kn×n over any finite ring K on r ≤ n elements in 2n−Ω(n/r) time.

The previous best bound is a 2n−Ω(n/(r log r)) expected time algorithm implicit in [6].1 Note
that our result is much more than a “log-shaving” of the running time in the classical sense,
as we are improving the exponent of the running time; moreover, our new algorithm is
deterministic as opposed to the previous one.

1 The randomised algorithms in that paper are stated for computations modulo a fixed prime and their
first powers, but the algorithms can be adapted for finite rings on r elements.
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We also provide a faster algorithm for d-regular 0/1 matrices with exactly d ones in each
row and column.

I Theorem 2. There is a deterministic algorithm that computes the permanent of a d-regular
matrix M ∈ {0, 1}n×n over the integers in 2n−Ω(n/d3/4) time.

This improves on the 2n−Ω(n/d) time bound of an algorithm for average d ones per row
by Cygan and Pilipczuk [13].

1.2 Hamiltonian cycles
A Hamiltonian cycle in a directed graph is a simple cycle through all vertices. Counting
Hamiltonian cycles is #P-complete, even in planar graphs of degree at most three [21, 16].
We provide a faster algorithm for sparse graphs.

I Theorem 3. There is a deterministic algorithm that counts the number of Hamiltonian
cycles in an n-vertex directed graph of average degree δ in 2n−Ω(n/δ) time.

The previously fastest counting algorithm (sensitive to the average degree) is a Las Vegas
algorithm running in expected 2n−Ω(n/ poly(δ)) time outlined in [8]. The polynomial in the
exponent is at least δ4 log δ.2

1.3 Related Work
The fastest known algorithms for the n×n matrix permanent over the integers, and counting
Hamiltonian cycles in an n-vertex directed graph, are those of Björklund, Kaski, and
Williams [9] which run in 2n−Ω

(√
n/ log logn

)
time.

For permanents over the integers of binary matrices with d ones per row on average,
Servedio and Wan [19] showed how to compute the permanent in 2n−Ω(n/ exp(d)) time
and polynomial space. Using exponential space, Izumi and Wadayama [14] derived a
2n−Ω(n/(d log d)) time algorithm. Cygan and Pilipczuk [13] gave a 2n−Ω(n/d) time algorithm
that works over any ring, where d denotes the average number of non-zero entries per row.
Björklund, Husfeldt, and Lyckberg [6] showed that the integer permanent can be computed
modulo p(1−λ)n/p in cnp,λ time, for cp,λ < 2 depending only on the fixed prime p and λ > 0.

The fastest known algorithm for detecting the Hamiltonian cycles in an undirected graph
is the O(1.657n) time Monte Carlo algorithm of Björklund [4]. For directed graphs, no
detection algorithm running in O((2−ε)n) time for any ε > 0 is known, although for bipartite
directed graphs, Hamiltonicity can be decided in O(1.733n) time [8]. Intriguingly, computing
the parity of the number of Hamiltonian cycles can be done in O(1.619n) time [5], and they
can be counted modulo certain integers with all prime factors at most p, in 2n−Ω(n/p) time [8].

There are also 6pw(G) poly(n) time and 15tw(G) poly(n) time algorithms parameterised by
the pathwidth and treewidth of the underlying graph [10].

1.4 Our techniques and contributions
For binary 0/1 matrices over the integers, Bax and Franklin [3] gave a 2n−Ω(n1/3/ logn)

expected time Las Vegas algorithm for the n × n matrix permanent. Their algorithm is
slower than the state-of-the-art algorithm of [9] (based on entirely different techniques), but
still uses very interesting ingredients whose potential has probably not yet been fully utilised.

2 See Theorem 8 in Appendix B of [7] for details.
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Our algorithms in this paper stem from two ideas in Bax and Franklin’s paper:
1. Perturb the input in a way that does not affect the answer, but “zeroes out” all but a tiny

fraction of terms in an 2n-sized formula for computing the answer (e.g., for permanents,
we will zero-out most terms in Ryser’s formula (2)). Hence to evaluate the sum, it is
sufficient to list only the non-zero terms, offering an approach to a faster algorithm.

2. Divide the columns of the matrix in two halves of about n/2 columns each, construct
vectors representing the terms restricted to the halves, and find ways to “combine” pairs
of vectors corresponding to non-zero terms in the exponential sum.

By design, the vector pairs corresponding to non-zero terms will be those differing in
each coordinate, which we call dissimilar pairs. Recently, Björklund, Kaski, and Koutis,
translated this idea to the problem of counting Hamiltonian cycles [8]. In this paper, we
present two new methods of listing dissimilar pairs that are more efficient than the simple
tabulation-based schemes used in [3] and [8]. Our first listing algorithm is deterministic:

I Theorem 4. Given two lists X and Y of N vectors in [r]d with d < log3(N)/20, and an
integer s > N , the first s dissimilar pairs (x, y) ∈ X × Y can be listed in Õ(N

√
s) time.3

The algorithm applies fast rectangular matrix multiplication. In particular, we use:

I Theorem 5 (Coppersmith, 1984 [12]). Over any finite field F, the number of arithmetic
operations needed to multiply an N × Nα sized matrix with an Nα × N sized matrix, for
α < 0.17, is N2 · poly log(N).

Our second listing algorithm is randomised, and based on hashing. It is arguably much
more implementable, as it does not rely on fast matrix multiplication.

I Theorem 6. Given two lists X and Y of N vectors in [r]d, the set of dissimilar pairs
S ⊆ X × Y can be listed in Õ(|S|+ 2d ·N) time with probability of success 1− o(1).

We also prove a stronger upper bound on the number of non-zero terms needed to
analyse in the special case of d-regular 0/1 matrices. The result can be seen as a sparsity
parameterisation of Bax and Franklin’s algorithm [3].

Outline. We describe our two dissimilarity listing algorithms in Sections 2 and 3. In
Section 4 we review the (randomised) reductions from the permanent and Hamiltonian cycle
counting to listing dissimilar vector pairs. Finally, in Section 5 we show how the randomised
reductions can be derandomised by applying an algorithm for counting OV pairs, and using
the method of conditional expectation.

2 Listing dissimilar vectors with fast matrix multiplication

We first describe a deterministic algorithm for listing dissimilar pairs based on fast rectangular
matrix multiplication. Given two sets X ,Y ⊆ [r]d with |X | = |Y| = N and a positive integer
s, we want to output a set of the (lexicographically) first s pairs (x, y) ∈ X × Y that are
dissimilar, i.e., for all i = 1, . . . , d, xi 6= yi.

I Reminder of Theorem 4. Given lists X and Y of N vectors in [r]d with d < log3(N)/20,
and N < s ≤ N2, the first s dissimilar pairs (x, y) ∈ X × Y can be listed in Õ(N

√
s) time.

3 Note that s ≤ N2 implies s ≤ N
√
s, so the running time is at least s. Also note that for s = 2n−δn and

N = 2n/2 (our applications of interest), N · s1/2 ≤ 2n−δn/2.
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Proof. The idea of the algorithm is to partition both X and Y in m = s1/4
√
N pieces, each

of size at most N/m, as X = X1 ∪ X2 ∪ · · · ∪ Xm and Y = Y1 ∪ Y2 ∪ · · · ∪ Ym. First, the
algorithm locates all pairs (i, j) ∈ [m]× [m] such that Xi×Yj contains a dissimilar vector pair.
This is achieved for all pairs simultaneously through several rectangular matrix products.
Then the algorithm “brute-forces” all pairs in those Xi × Yj containing dissimilar pairs.

Given a pair (x, y) ∈ X × Y, consider the following polynomial defined over Z:

p(x, y) =
d∏
i=1

(xi − yi)2. (3)

Note that p(x, y) > 0 if (x, y) is a dissimilar vector pair, otherwise p(x, y) = 0.
We can write p(x, y) as a sum of 3d products:

p(x, y) =
∑

z∈{0,1,2}d
(−2)ones(z)

 d∏
j=1

x
zj
j

( d∏
k=1

y2−zk
k

)
, (4)

where ones(z) counts the number of coordinates i in z such that zi = 1.
Let c(i, j) be the sum of p(x, y) over all pairs (x, y) ∈ Xi ×Yj , and note c(i, j) > 0 if and

only if some pair in Xi × Yj is dissimilar. We wish to compute whether c(i, j) > 0 for all
i, j. To this end, we construct an m × 3d integer matrix MX representing X , with row i

representing Xi, and columns representing different terms in (4), labeled by the corresponding
z-vector. Formally, the entry at row i and column z ∈ {0, 1, 2}d is

MX ,i,z =
∑
x∈Xi

(−2)ones(z)
d∏
j=1

x
zj
j . (5)

Similarly, we construct an m× 3d integer matrix MY representing Y:

MY,i,z =
∑
y∈Yi

d∏
k=1

y2−zk
k . (6)

We consider P = MX ·MYT, and observe that Pi,j = c(i, j) for all i, j = 1, . . . ,m. All
entries in the result are poly(logN, log r)-bit non-negative integers. To see if c(i, j) > 0, we
compute P modulo the first poly(logN, log r) primes using Theorem 5. If any of the products
has Pi,j 6= 0, we know that c(i, j) > 0 and mark (i, j) as containing dissimilar pairs.

Next, we loop over all marked entries (i, j) of the matrix, and test every (x, y) ∈ Xi × Yj
for dissimilarity by brute force in lexicographical order. As soon as s dissimilar pairs have
been listed, the algorithm terminates.

Noting that the dimensions of the matrices obey the condition for Coppersmith’s algorithm
(Theorem 5), i.e., 3d < m0.17, the running time is

(3dN +m2 + s(N/m)2) poly(logN, log r) = N
√
spoly(logN, log r).

Here, the first two summands come from building the matrices and computing the product P ,
and the last summand arises from the worst case of the brute-force listing part, when every
Xi × Yj with c(i, j) > 0 contains only one dissimilar pair. This concludes the proof. J

3 Listing dissimilar vectors by hashing

In this section, we give an alternative listing method that avoids fast rectangular matrix
multiplication. However, it is randomised, and only provides Monte Carlo algorithms running
in the same time as the deterministic algorithms of Theorem 1, 2, and 3.
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25:6 Computing permanents by listing dissimilar vectors

I Reminder of Theorem 6. Given two lists X and Y of N vectors in [r]d, the set of
dissimilar pairs S ⊆ X × Y can be listed in Õ(|S|+ 2d ·N) time with probability of success
1− o(1).

Proof. Let H be the family of hash functions h : [r]→ {0, 1}. Pick t := 3 · 2d log(N) vectors
of d hash functions hj = (hj,1, hj,2, . . . , hj,d) ∈ Hd for j = 1, 2, . . . , t.

Consider a pair (x, y) ∈ X × Y. We say (x, y) passes the hash j if

∀i ∈ 1, . . . , d, hj,i(xi) 6= hj,i(yi). (7)

Note that a similar vector pair never passes any j. Let ϕj,(x,y) be the indicator for the event
that a dissimilar pair (x, y) passes j, then

E[ϕj,(x,y)] = Pr[(x, y) pass j] = 1
2d . (8)

Form the sum

X =
t∑

j=1

∑
x,y∈S

ϕj,(x,y). (9)

The quantity X is the number of the vector pairs in S that survive some j, counted with
multiplicity when they pass several hashes. Applying linearity of expectation to (8) and (9),

E[X] = t|S|
2d = 3|S| log(N). (10)

Applying Markov’s inequality to (10),

Pr [X > 10E[X]] ≤ 1
10 . (11)

Also, the probability that a particular (x, y) ∈ S does not pass any j, is

2d3 logN∏
j=1

Pr[(x, y) does not pass j] =
(

1− 1
2d

)3·2d log(N)
< exp(−3 logN). (12)

By a union bound, the probability that some dissimilar pair does not pass any j is at most

N2 exp(−3 logN) < 1
N
. (13)

Suppose we list all pairs (x, y) that pass some j. From (11) and (13), we see that with
probability at least 9

10 −
1
N , we will list all dissimilar pairs (possibly with repetition), and we

do not list more than 30 logN times the number of dissimilar pairs.
Now we describe how to list these pairs. Iterate over j ∈ [t]. For each j, iterate over

y = (y1, . . . , yd) ∈ Y , compute its hash vector hj(y) := (hj,1(y1), . . . , hj,d(yd)) ∈ {0, 1}d, and
build lists `j(v) for all relevant vectors v ∈ {0, 1}d, where `j(v) := {y ∈ Y | hj(y) = v}. Note
that

∑
v∈{0,1}d |`j(v)| = N . Next, iterate over x = (x1, . . . , xd) ∈ X , and output the pair

(x, y′) for each y′ ∈ `j(hj(x)), where hj(x) := (1− hj,1(x1), . . . , 1− hj,d(xd)).
Observe the running time is Õ(tN +X) ≤ Õ(N · 2d + |S|). J
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4 Reductions to listing dissimilar vectors

Here we outline reductions from our two application problems to the problem of listing
dissimilar vectors, roughly following Bax and Franklin [3] for the permanent, and Björklund
et al. [8] for Hamiltonian cycles. We also provide bounds on the number of dissimilar pairs
that are needed for the analysis of the resulting algorithms. In particular, in Section 4.2 we
provide a novel stronger bound on the number of dissimilar pairs than was previously known,
for the reduction from 0/1 matrix permanents with d ones in each row and column.

4.1 Reduction for the permanent
In the following, let K be a ring on r elements denoted by e1, . . . , er.

Bax and Franklin [3] observed the following simple but intriguing fact. For anyM ∈ Kn×n,
let 0n be the 1× n row vector of all zeros, and let q ∈ Kn×1 be any column vector. Form
the (n+ 1)× (n+ 1) matrix

Mq =
[
M q

0n 1

]
. (14)

Then we have

per(Mq) = per(M). (15)

The equation (15) follows because every summand in the permanent (1) must include the 1
on the last row of Mq, and hence cannot include any elements of the vector q. The usefulness
of this simple fact can be seen from inspecting Ryser’s formula (2), partitioned in the form

per(Mq) =
∑
X⊆[n]

(−1)n−|X|f(Mq, X), f(Mq, X) =
n∏
i=1

gi(Mq, X), gi(Mq, X) = qi+
∑
j∈X

Mi,j .

(16)

Note that f(Mq, X) = 0 if and only if gi(Mq, X) = 0 for some i. So in order to compute
per(M), it is enough to list those subsets X ⊆ [n] such that gi(Mq, X) 6= 0 for all i, and
accumulate their contributions. We call such X’s contributing terms. Furthermore, we say a
subset X ⊆ [n] is k-weakly contributing if gi(Mq, X) is non-zero for all i ≤ k.

In particular, by choosing q uniformly at random, we can easily compute the expected
number of k-weakly contributing terms, as the events gi(Mq, X) 6= 0 for i = 1, . . . , k are
mutually independent (they depend on different qi). Let Y be the random variable equal
to the number of k-weakly contributing terms under a random q ∈ Kn×1, i.e., Y =

∑
X YX

where YX is the indicator of whether X is k-weakly contributing. By linearity of expectation,

E(Y ) =
∑
X⊆[n]

E(YX) = 2n
(

1− 1
r

)k
< 2n exp(−k/r). (17)

Thus, if we could efficiently list the k-weakly contributing terms for some k ≥ Ω(n), we would
have a Las Vegas algorithm running in expected 2n−Ω(n/r) time. In Theorem 1, we claim
a deterministic algorithm, in which case we cannot choose q at random. We will address
this issue later in Section 5. For now, we concentrate on finding the contributing terms for
a fixed q. We describe next how k-weakly contributing terms can be viewed as dissimilar
vector pairs from two sets of short vectors.
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25:8 Computing permanents by listing dissimilar vectors

4.1.1 Contributing terms as dissimilar vectors
Here we show how to reduce the problem of listing contributing terms to the problem of
listing dissimilar vectors, implying a randomised version of Theorem 1. Assume WLOG
that our matrix M is n × n and n is even; recall its entries are elements from the ring
K = {e1, . . . , er}. We begin by partitioning the columns in two halves L = {1, . . . , n/2} and
R = {n/2 + 1, . . . , n}. Let L be the power set of L, and R the power set of R. Define a map
φ : K → [r] by φ(ei) := i.

For every A ∈ L, construct a vector vA ∈ [r]k for i ∈ {1, . . . , k} as

vAi = φ

(∑
k∈A

Mi,k

)
, for all i = 1, . . . , k. (18)

Similarly, but asymmetrically, for every B ∈ R we construct the vector vB ∈ [r]k as

vBi = φ

(
−qi −

∑
k∈B

Mi,k

)
, for all i = 1, . . . , k. (19)

Recall two vectors u and v are dissimilar if they differ in each coordinate. One can easily
verify for all A ∈ L and B ∈ R, the two vectors vA and vB are dissimilar if and only if the
subset X = A ∪B is k-weakly contributing. Note that L and R describe N = 2n/2 vectors
each of dimension k. For k ≥ Ω(n), the number of k-weakly contributing terms in (17) is
(expected to be) at most 2n−cn/r for a constant c > 0. In that case, the number of dissimilar
vector pairs s in our instance of O(2n/2) vectors is at most 2n−cn/r.

Given an algorithm that efficiently lists dissimilar vector pairs, we can then efficiently
list all 2n−cn/r of the k-weakly contributing terms in the modified Ryser’s formula (16).
Given the list of contributing terms, we can then compute the permanent via (16), in time
2n−cn/r · poly(n). Using the listing algorithm of Theorem 4 with s = 2n−cn/r, we obtain an
algorithm with running time 2n−Ω(nr ) as claimed.

4.2 The permanent algorithm for regular matrices
We now turn to giving a Las Vegas version of Theorem 2, showing that for d-regular matrices
the permanent can be computed in 2n−Ω(n/d3/4) time. Later in Section 5, we will outline
how to derandomise the algorithm.

Let M ∈ {0, 1}n×n have exactly d ones in every row and column. As in the case of
permanents over finite rings, we reduce to dissimilar pair listing and apply the algorithm of
Theorem 4 to locate k-weakly contributing terms for the permanent of the perturbed matrix
Mq of (14). However, here we will pick the vector q from a different distribution, and we
may also permute the rows of M to select a suitable subset of rows to use in the reduction
to dissimilar pair listing. Our choices drastically reduce the number of contributing terms.

Index the rows and columns of M by [n]. For i = 1, . . . , n, the ith row of M naturally
corresponds to a d-size subset Ri of [n] indicating which columns have a 1 in the row.

We first consider the case d ≥ n4/5. Here our algorithm will work as in Bax and Franklin [3]
(whose analysis works for d ∈ Ω(n), for which the slightly better bound 2n−Ω(n1/3) can be
argued). The probability for a fixed row i ∈ [n], that the sieved row sum |X ∩Ri| is deviating
significantly from its expectation, is small:

Pr
X

[∣∣∣∣|X ∩Ri| − d

2

∣∣∣∣ > d3/4
]
≤ exp(−Ω(

√
d)), (20)
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as seen by a standard Chernoff bound. Note that n
d3/4 ≤ n2/5 ≤

√
d for d ≥ n4/5. By a union

bound, the probability that some row has intersection with X outside of the 2d3/4-length
interval in (20) is at most n · exp(−Ω(

√
d)) ≤ exp(−Ω(n/d3/4)). Hence there are at most

2n−Ω(n/d3/4) such deviating subsets X ⊆ [n].
Therefore, if we run our previous permanent algorithm but with the vector q taking

random values in the range [ d2 −d
3/4, d2 +d3/4], we see that the probability that any X within

the 2d3/4-span for every row, is k-weakly contributing, is at most

Pr
q

[X passes] ≤
(

1− 1
2d3/4

)k
. (21)

Hence for k ≥ Ω(n), the expected number of non-zero terms is only 2n−Ω(n/d3/4), so we only
need to list that many dissimilar vector pairs in our reduction.

Now consider the more interesting case of d < n4/5. First, we preprocess the matrix via a
process we call P , which puts the row sets representing M into a number of ordered lists.

Process P : Start with an empty list L1, and put the first row set R1 in L1. While
there is another row set Ri, not yet assigned to a list, that has at most d3/4 elements
in common with the union of the row sets in L1, insert Ri into L1. This operation
is repeated until there either are no more row sets that meet this criterion, or L1
contains n/(2d5/4) row sets. In the latter case we say that the list is full. We consider
L1 finished, put it aside, and start building a new, initially empty, list L2. We insert
row sets into L2 in the same way, continue with a third list L3 once L2 is finished, and
so on. The process P terminates when every row set has been assigned to some list.

After we have constructed the lists L1, L2, . . ., we reorder the rows and columns of M
according to the insertion order of the row sets during process P . This permutation does not
change the value of the permanent. The following lemma ensures that the first n/2 rows of
M , after the reordering step, can be partitioned into full lists.

I Lemma 7. The first d5/4 lists produced by process P are full, i.e., each list contains
n/(2d5/4) row sets.

Proof. Assume there are at least n/2 + n/(2d5/4) row sets left to place when we start
populating the list Lj . After we have put t sets into a list Lj , their union covers no more
than td elements. Each element of [n] is covered d times in total, since M is d-regular. Thus
there are at most td2−3/4 row sets left that has an overlap of more than d3/4 with the union.

Therefore, as long as n
2 + n/(2d5/4)− t > td2−3/4, i.e., t < n

2(d2−3/4) , there is still a row
set that can be put into Lj . Hence we can put at least n

2d5/4 row sets into Lj , making it full.
We can repeat this for j = 1, 2, . . . , d5/4, as there are still n/2 + n/(2d5/4) row sets left when
we start to populate Ld5/4 . J

Next we need a Chernoff-like concentration bound on the sum of variables with bounded
dependence resulting from a list Lj .

I Lemma 8. Let L be an ordered list of d-subsets S1, ..., Sm of [n] such that for all i,
|Si ∩ (∪i−1

j=1Sj)| < d3/4. Pick X ⊆ [n] uniformly at random. Let Zi be the indicator variable
for the event d

2 − 3d3/4 ≤ |Si ∩X| ≤ d
2 + 3d3/4. Then

Pr
X

[
m∑
i=1

Zi <
m

2

]
≤ exp(−Ω(d1/2m)). (22)
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Proof. Let U = [`] = ∪mi=1Si and X1, . . . , X` be indicator variables such that Xi = 1 ⇔
i ∈ X. Hence the Xi’s are mutually independent with E[Xi] = 1/2. Construct the sets
Ti = Si \ (∪i−1

l=1Sl) for i = 1, . . . ,m. Note that |Ti| ≥ d− d3/4 for all i, and that Ti and Tj
are disjoint for i 6= j. Letting Yi =

∑
j∈Ti Xj , we have

Pr
X

[∣∣∣∣Yi − d

2

∣∣∣∣ > 2d3/4
]
≤ exp(−Ω(d1/2)), (23)

as seen by a standard Chernoff bound. Note that if |Yi − d/2| ≤ 2d3/4, then also Zi = 1,
as there are only at most d3/4 other elements of X that are in Si \ Ti. Further note that
the events |Yi − d/2| > 2d3/4 for different i are mutually independent as they depend on
different mutually independent Xj ’s. Hence the probability that

∑
i Zi < m/2 is at most

m/2 · exp(−Ω(d1/2))m/2
(
m
m/2
)
≤ exp(−Ω(d1/2m)). J

We can now argue as in the dense case (where d is large). We first bound the number of
X’s such that for some list Li, more than half of the row sets in the list have a deviating
sieve row sum

∣∣|Rj ∩X| − d
2
∣∣ > 3d3/4. From Lemma 8, replacing m = n/(2d5/4), and a

union bound over all lists, we know that this happens for at most 2n−Ω(n/d3/4) X’s. Thus
we may restrict our analysis to the X’s that are within the 6d3/4-length interval for at least
half of the rows in the first d5/4 lists (amounting to the first n/2 rows of the matrix, after
the pre-processing reordering). Running our algorithm from before, but with the vector q
taking random values in the range [ d2 − 3d3/4, d2 + 3d3/4], we see that each of these remaining
well-behaved X’s are k-weakly contributing with probability at most

Pr
q

[X passes] ≤
(

1− 1
6d3/4

)k/2
. (24)

Hence, for k = n
c for some c > 2, we have in expectation 2n−Ω(n/d3/4) non-zero terms.

4.3 Reduction for counting Hamiltonian cycles

In the following let G′ = (V ′, A′) be the directed input graph on n = |V ′| vertices in which
we want to count Hamiltonian cycles. Let dv for v ∈ V ′ be the out-degree of the vertex
v, and let δ = |A′|/n be the average out-degree of G′. It will be convenient to work on
a slightly modified graph G = (V,E) constructed from G′ as follows: pick an arbitrary
vertex s′ ∈ V ′, and obtain G from G′ by replacing s′ with two new vertices s and t (i.e.,
V = V ′ \{s′}∪{s, t}), where s retains all outgoing arcs from s′, i.e. (s′, u) ∈ A′ ⇔ (s, u) ∈ A,
and t retains all incoming arcs to s′, i.e. (u, s′) ∈ A′ ⇔ (u, t) ∈ A. Note that the Hamiltonian
paths from s to t in G are in one-to-one correspondence with the Hamiltonian cycles in G′,
and that the average degree of G is not larger than that of G′. In the following, we consider
the problem of counting the s-t Hamiltonian paths on the modified n+ 1 vertex graph G.

4.3.1 Random columns and contributing terms

Björklund, Kaski, and Koutis [8] observed that the number of Hamiltonian cycles in a
directed graph can be evaluated as an inclusion–exclusion summation over a determinant of
a polynomial matrix representing the graph. We will use their construction, and restate the
main ideas here. The Laplacian of the graph G, is a (n+ 1)× (n+ 1) polynomial matrix
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with rows and columns indexed by the vertices V , in the variables xv for v ∈ V :

L(G)i,j =


∑

(u,v)∈A xu if i = j = v

−xu if i = u, j = v, (u, v) ∈ A
0 otherwise.

(25)

The Laplacian punctured at the vertex s ∈ V , is the matrix L(G)s obtained by omitting
row and column s from L(G). By Tutte’s directed version of the Matrix-Tree theorem of
Kirchhoff [20], we know that det(L(G)s) is a polynomial where each term corresponds to a
directed spanning out-branching rooted at s. Denote by hp(G)s,t the number of Hamiltonian
paths starting in s and ending in t. By the principle of inclusion–exclusion, we have4

hp(G)s,t =
∑

x:(V \{t})→{0,1}
xt=1

(−1)n−1−|x| det (L(G)s(x)) . (26)

The summation is over all 2n−1 assignments x with the restriction that xt = 1. Next, we
mimic the Bax and Franklin idea for computing permanents by perturbing the matrix (of
(15)): we shall parametrise the Laplacian matrices so that in expectation, many summands
in the above formula are zeroed-out. To this end we introduce fresh random variables
qv ∈ {0, 1, . . . , dv} for v ∈ V , and define the q-perturbed Laplacian of G as

Lq(G)i,j =


∑

(u,v)∈A xu − qv if i = j = v

−xu if i = u, j = v, (u, v) ∈ A
0 otherwise.

(27)

The extra qv variables may be thought of as weighted arcs originating from t: these arcs
cannot be used by any of the Hamiltonian paths from s to t. The point of our perturbation
is that irrespective of q, we can still compute the number of Hamiltonian paths:

hp(G′)s′,t′ =
∑

x:(V \{t})→{0,1}
xt=1

(−1)n−1−|x| det (Lq(G)s(x)) . (28)

However, in expectation, many assignments x may yield det (Lq(G)s(x)) = 0, particularly
when a row in Lq(G)s(x) is all-zeroes. Observe that a row in Lq(G)s(x) is all-zero if and
only if for some v ∈ V \ {s} we have xv = 0 and

∑
(u,v)∈A xu = qv. Let εv be a Boolean

variable that is true if and only if xv = 0 and
∑

(u,v)∈A xu = qv; i.e., Lq(G)s(x) is all-zero in
the row indexed by v. In analogy with the case of the permanent, we say that an assignment
x is contributing if εv is false for all vertices v ∈ V \ {s}, and x is k-weakly contributing if
εv is false for the first k vertices. As in the case of the permanent, it is sufficient to list the
k-weakly contributing terms for some k to compute the number of Hamiltonian paths in G
(and hence the Hamiltonian cycles in G′) through the formula of (28).

We can easily compute the expected number of contributing terms for a q ∈ {0, 1, . . . , dv}n
picked uniformly at random, since the events εv are mutually independent (they depend on
different q-values). The probability that Lq(G)s(x) is all-zero in the row v, with xv = 0, is

Pr
q

[εv] = 1
(dv + 1) . (29)

We will assign k := cn for some c < 1/2, and assume WLOG that the vertices are sorted by
increasing out-degree. This means by an averaging argument that for all i ≤ k, di < 2δ.

4 See [8] for a proof of (26).
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Let Zx be the indicator variable that the assignment x is k-weakly contributing, under
a randomly chosen q. Let Z be the random variable equal to the number of k-weakly
contributing terms under a random q, i.e., Z =

∑
x Zx. By linearity of expectation, and

Jensen’s inequality for concave functions,

E(Z) =
∑

X⊆V \{s}

∏
v∈X∩[k]

(
1− 1

dv + 1

)
≤ 2n

(
1− 1

2δ + 1

)k
≤ 2n · exp(−Ω(k/δ)). (30)

Thus, the expected number of k-weak contributors behaves similarly as in previous cases.

4.3.2 Contributing terms as dissimilar vectors
We now turn to describing how the contributing terms can be encoded as dissimilar vectors.
Assume WLOG that n is even, and identify V \ {s} with the set [n]. Partition the vertices
into L = {1, . . . , n/2} and R = {n/2 + 1, . . . , n}, letting L and R be the power sets of L and
R, respectively. For every C ∈ L, we construct the vector vC ∈ [2δ + 1]k for i = 1, . . . , k as

vCi =
{ ∑

(i,w)∈(A∩C) 1 if i 6∈ C,
? otherwise.

(31)

where ? is an extra symbol encoded as 2δ. Similarly, but asymmetrically, noting in particular
that i 6∈ R because k < n/2, for every D ∈ R we construct the k-length vector vD as

vDi = qi −
∑

(i,w)∈(A∩D)

1, for all i = 1, . . . , k. (32)

It is readily verified that for C ∈ L and D ∈ R, the two vectors vC and vD are dissimilar
if and only if the first k columns of Lq(G)(x′) are non-zero, where the Boolean vector x′ is
defined as x′v := 1 ⇐⇒ v ∈ C ∪D. Hence, the k-weakly contributing assignments x are
precisely those corresponding to dissimilar pairs (vC , vD).

Note that L and R each contain N = 2n/2 vectors of dimension k. Using a sufficiently fast
algorithm for listing dissimilar vector pairs, we can enumerate all k-weakly contributing terms
in (28) in N2−Ω(1/δ) time. Once we have a list of all the 2n ·exp(−Ω(k/δ)) contributing terms,
the number of Hamiltonian cycles can be computed with (28) in time 2n · exp(−Ω(k/δ)) as
well. From (30), we know that the upper bound s on the number of dissimilar pairs can
be set to 2n−cn/δ, for some positive c > 0. Applying the dissimilar pair listing algorithm of
Theorem 4, we arrive at the running time 2n−Ω(nδ ). This concludes the algorithm.

5 Derandomisation

Our deterministic algorithm for dissimilar pair listing from Section 2 can be used to list
k-weakly contributing terms efficiently in all our desired applications (Theorems 1, 2, and 3),
provided that the number of contributing terms is not much more than their expected number
would be on a random vector q.

To make all of our application algorithms fully deterministic, we must provide a determ-
inistic procedure for setting the vector q so that the number of resulting terms is bounded
by the expectation. This can be done by using other known algorithmic tools, along with
the well-known method of conditional expectation (see e.g., [17]).

It turns out that a fast deterministic algorithm for counting dissimilar pairs will suffice.
This can be obtained by reducing our problem to counting orthogonal pairs:
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I Proposition 9. Counting the dissimilar pairs on two sets of N vectors in [r]d can be
reduced in O(Nrd) time to counting orthogonal pairs on two sets of N vectors in {0, 1}rd.

Proof. Let e1, . . . , er ∈ {0, 1}r be the standard basis vectors, where ei is 1 in the ith
component and is 0 everywhere else. Map every vector x ∈ [r]d to the Boolean vector

ρ(x) = [ex1 ex2 · · · exd ].

That is, x′ ∈ {0, 1}rd is obtained by concatenating the d standard basis vectors corresponding
to the entries of x. Note x, y ∈ [r]d are dissimilar ⇐⇒ ρ(x) and ρ(y) are orthogonal. J

Applying the proposition, we can count dissimilar pairs by counting OV pairs:

I Theorem 10 (Chan and Williams [11]). For every c ≤ 2o(
√

logN), there is a deterministic
algorithm that for two sets of N vectors from {0, 1}c logN , counts the orthogonal vector pairs
in N2−1/O(log c) time.

An immediate corollary is that, for d ≤ log(N), we can deterministically count all
dissimilar pairs over N vectors in [r]d in only N2−1/O(log r) time. We can use this counting
algorithm to deterministically search for a vector q that has at most as many k-weakly
contributing terms as the expected number for a random q. We describe the procedure
generically, as it is essentially the same for all three applications in the paper:

Iterate over j = 1, . . . , k. Suppose we have determined the first j − 1 components of
our vector q, and we wish to determine the jth component, qj . Let us inductively
suppose that there are at most 2n ·

∏j−1
i=1 (1 − 1/Ci) contributing terms remaining

(where the Ci depend on the application), and let there be Cj possible values for
qj . Construct and compute Cj distinct instances of dissimilar pair counting with
j-dimensional vectors, corresponding to the Cj different values for qj . Finally, set qj
to be the value which minimises the number of dissimilar pairs obtained.

Since we always choose qj to minimise the number of dissimilar pairs, and we know a
random setting of qj reduces the number by a (1 − 1/Cj) fraction in expectation (by our
analyses in previous sections), our k-dimensional vector q produces a number of k-weakly
contributing terms which is at most the expectation. Finally, note that this initial procedure
for selecting the vector q is much faster than the overall running time in our applications.

This concludes our derandomisation, and the proofs of Theorems 1, 2, and 3.
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Abstract
We consider the problem of finding solutions to systems of polynomial equations over a finite field.
Lokshtanov et al. [SODA’17] recently obtained the first worst-case algorithms that beat exhaustive
search for this problem. In particular for degree-d equations modulo two in n variables, they gave
an O∗(2(1−1/(5d))n

)
time algorithm, and for the special case d = 2 they gave an O∗(20.876n

)
time

algorithm.
We modify their approach in a way that improves these running times to O∗(2(1−1/(2.7d))n

)
and

O∗(20.804n
)
, respectively. In particular, our latter bound – that holds for all systems of quadratic

equations modulo 2 – comes close to the O∗(20.792n
)
expected time bound of an algorithm empirically

found to hold for random equation systems in Bardet et al. [J. Complexity, 2013]. Our improvement
involves three observations:
1. The Valiant-Vazirani lemma can be used to reduce the solution-finding problem to that of

counting solutions modulo 2.
2. The monomials in the probabilistic polynomials used in this solution-counting modulo 2 have a

special form that we exploit to obtain better bounds on their number than in Lokshtanov et
al. [SODA’17].

3. The problem of solution-counting modulo 2 can be “embedded” in a smaller instance of the
original problem, which enables us to apply the algorithm as a subroutine to itself.
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1 Introduction

We study the problem of finding a simultaneous root to a system of m polynomials

P1(x) = 0 , P2(x) = 0 , . . . , Pm(x) = 0 (1)

over n variables x = (x1, x2, . . . , xn). The computational tractability of this problem is
known to dramatically depend on the domain of the variables and polynomial coefficients.
Over the integers, the problem is undecidable, by Matiyasevich’s celebrated solution of
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26:2 Solving Systems of Polynomial Equations Modulo Two

Hilbert’s tenth problem on the algorithmic decidability of Diophantine equations [10]. Over
an algebraically closed field, the problem reduces via Hilbert’s Nullstellensatz to deciding
whether 1 belongs to the ideal generated by the polynomials, which for polynomials with
rational coefficients can be decided in exponential space by computing a reduced Gröbner
basis for the ideal [3, 4, 11]. Over the integers modulo two – our object of study in this
paper – the problem is NP-complete even when the polynomials are severely constrained.
Indeed, systems of polynomial equations modulo two enable the compact modeling of a
versatile range of tasks. For example, one can easily represent k-CNFSAT formulas on n
Boolean variables by expressing each clause in the formula as a degree-k polynomial [5]. A
similar reduction from NAE3SAT proves that the problem remains NP-hard even in the
case of quadratic equations modulo two. As the fastest known worst-case algorithms for
k-CNF satisfiability (for example, see Moser and Scheder [13]) run in time 2n−Ω(n/k), it is
a difficult challenge to design faster-than-2n−Ω(n/k)-time algorithms for solving systems of
degree-k polynomial equations. Still it is interesting to ask precisely how much savings over
the brute-force O∗

(
2n
)
-time solution one can obtain, particularly in the case of quadratic

equations, since the postulated hardness of solving quadratic systems modulo two forms the
basis of several proposed cryptographic primitives, such as HFE proposed by Patarin [15]
and UOV proposed by Kipnis, Patarin, and Goubin [8].

An O∗
(
20.792n) expected-time algorithm for a system of m = n quadratic polynomials

over n variables modulo two was proposed by Bardet, Faugère, Salvy, and Spaenlehauer [1].
However, their algorithm only works for systems satisfying certain algebraic assumptions,
and these assumptions were only experimentally verified to hold for the vast majority of
such systems. Still, further refinements of the method makes it practical even for small
systems [6], and the algorithmic ideas underlies the to date fastest known implementation
we are aware of [14].

Such a result highlights the potential vulnerability of cryptographic primitives whose
security is based on the postulated hardness of solving random systems. However, from
a theoretical viewpoint it is preferable to have rigorous proofs and algorithms that work
efficiently on all inputs. The algorithm of Bardet et al. [1] is based on finding proofs of
non-solvability, a so-called effective Nullstellensatz of finding low-degree polynomials Hi

such that∑
i

Hi(x′)Pi(x′, r) = 1,

for each specialisation r of the polynomials, i.e. after replacing a fixed subset of the variables to
a restriction r. The algorithm then continues to look for solutions only in those specialisations
r for which no proof was found. The search for proofs is formulated as a linear equation
system whose dimensions depend on the bound of the degree in the proofs. The argument
made in their paper is that for most equation systems with sufficiently more equations than
variables, “small-degree” polynomials can be used in the proofs. Getting rigorous bounds on
the degree appears to be a difficult problem, and in the worst case some systems will likely
require large-degree proofs.

Lokshtanov, Paturi, Tamaki, Williams, and Yu [9] took a radically different approach and
presented an O∗

(
20.876n)-time algorithm for quadratic equation systems modulo two that

uses no algebraic assumptions at all and works for all quadratic systems. They also gave a
general O∗

(
2n−n/(5d)) time algorithm for systems of equations of degree bounded by d.
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Their approach uses the so-called “polynomial method”: the entire system of equations
is randomly replaced by a single “probabilistic” polynomial that has a “small” exponential
number of terms, and is consistent with the system on exponentially many assignments. This
polynomial is then evaluated quickly on many assignments using an FFT or fast matrix
multiplication, gaining an advantage over exhaustive search.

We present a new algorithm that largely follows the approach of Lokshtanov et al. [9] but
offers a few simplifications to their scheme. Most prominently, we will consider the problem
of computing the parity of the number of solutions, rather than the decision problem directly.
Whereas Lokshtanov et al. [9] apply a random parity sieve on monomials of a subset of
the variables to implement a decision-to-parity reduction within the algorithm, our main
observation is that this can be done on the system itself. That is, rather than explicitly
being tailored into the algorithm, we can reduce decision to the parity problem by adding
random affine equations to the system. This is based on the well-known theorem of Valiant
and Vazirani [18] in complexity theory to isolate solutions to Boolean satisfiability by adding
random equations. Our analysis in Section 2.5 is borrowed from theirs and is included here
solely for the sake of completeness.

One immediate effect of our alternative parity-counting approach is that it reduces the
need for random bits from exponential in n to merely polynomial in n. A more interesting
gain is that our approach leads to faster algorithms, via two further observations. Our
algorithm for quadratic systems runs in O∗

(
20.804n) time, and for degree-d systems we

provide a O∗
(
2n−n/(2.7d)) time algorithm. Our running time for quadratic equation systems

in particular comes much closer to the O∗
(
20.792n) running time of Bardet et al. [1]. To get

a quantitive feeling of our incremental result, note:
1. We can solve quadratic systems modulo two with 9% more variables in about the same

time as the algorithm of [9].
2. Our algorithm for degree-3 systems is faster than the one for degree-2 systems in [9].

Our first observation is that the seemingly more difficult problem of computing the
parity of solutions apparently makes it easier to identify the structure of monomials in the
probabilistic polynomials used in the polynomial method. Making use of this structure leads
to better bounds on their number and (indirectly) on the total running time, and is the
source of most of our improvement. Our second observation is that the parity-summation
part in the method is identical to the original problem, leading to a self-reduction: we can
use our algorithm as a subroutine to itself, again leading to a faster algorithm.

We present our algorithm for computing the parity of the number of solutions to a
polynomial equation system in Section 3. We shall highlight the differences to the original
decision algorithm by Lokshtanov et al. [9] as we go along. We begin by some preliminaries
in the subsequent section.

2 Preliminaries

Here we review some notation and well-known facts. Let F2 denote the field of two elements;
that is, integer arithmetic modulo two. For a non-negative integer n, we write [n] for the
set {1, 2, . . . , n}. For a finite set D, we write 2D for the power set of D,

(
D
k

)
for the set of

all k-element subsets of D, and
(
D
↓k
)

=
⋃k
j=0

(
D
j

)
for the set of all at-most-k-element subsets

of D. Accordingly, we write
(
n
↓k
)

=
∑k
j=0

(
n
j

)
. For a function f(n), the notation O∗

(
f(n)

)
suppresses factors polynomial in n.
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2.1 Yates’s algorithm
Let us write I` for an `× ` identity matrix. For an s× t matrix A and a non-negative integer
n, the nth Kronecker power of A factors into the sequence of matrices

A⊗n =
n∏
j=1

(
I⊗j−1
s ⊗A⊗ I⊗n−jt

)
. (2)

Each matrix I⊗j−1
s ⊗A⊗ I⊗n−jt is sparse with at most sj−1 · st · tn−j = sjtn−j+1 nonzero

entries. Thus, using sparse matrix–vector multiplication along the sequence (2), we may
multiply the matrix A⊗n with a given vector in at most

2
n∑
j=1

sjtn−j+1 =
{

2nsn+1 if s = t,
2st(sn−tn)

s−t if s 6= t
(3)

operations on scalars. This algorithm is known as Yates’s algorithm [19].

2.2 The fast zeta transform for the subset lattice
The matrix ζ = [ 1 0

1 1 ] is invertible over any ring, with inverse ζ−1 =
[ 1 0
−1 1

]
. In particular, in

the field F2 of two elements, we have ζ = ζ−1. Let x and y be vectors whose components are
indexed by the subsets in 2[n]. Then, the matrix–vector multiplication y = ζ⊗nx implements
the linear map x 7→ y defined for all B ⊆ [n] by yB =

∑
A⊆B xA. This map is the zeta

transform for the lattice (2[n],⊆). By (3) in Section 2.1, Yates’s algorithm can be used to
implement the zeta transform in O(2nn) operations. This algorithm is known as the fast zeta
transform. The inverse transform is called the Möbius transform. In characteristic 2, these
transforms coincide. The zeta transform remains invertible when the relevant vectors and
matrices are restricted from 2[n] to

([n]
↓d
)
. The corresponding restriction of Yates’s algorithm

runs in O
((

n
↓d
)
n
)
operations. See [2, 7] and the references therein for more on fast zeta

transforms.

2.3 Polynomials modulo two: the monomial basis and the evaluation
basis

Observe x2 = x holds for all x ∈ F2. Thus, WLOG, an n-variate polynomial f =
f(x1, x2, . . . , xn) in the polynomial ring F2[x1, x2, . . . , xn] consists of only multilinear monomi-
als indicated by a function Mf : 2[n] → F2 with

f =
∑
Y⊆[n]

Mf (Y )
∏
j∈Y

xj .

Intuitively, Mf (S) gives the coefficient of
∏
i∈S xi in the (unique) multilinear polynomial

representing f . In particular, F2[x1, x2, . . . , xn] is a 2n-dimensional vector space over F2,
and the function Mf , viewed as a vector with entries indexed by 2[n], represents f in the
monomial basis. We say that f has degree at most d if Mf vanishes outside

([n]
↓d
)
. The

monomial basis is the algebraic normal form of the Boolean function.
Associate each vector x ∈ Fn2 with the subset X = {i ∈ [n] : xi = 1} ⊆ [n]. Define the

evaluation map Ef : 2[n] → F2 for all X ⊆ [n] by the rule Ef (X) = f(x), where x is the
vector corresponding to X. In what follows we often find it convenient to abuse notation
slightly and write simply f(X) in place of Ef (X). Viewing the function Ef as a vector with
entries indexed by 2[n], we say that Ef represents f in the evaluation basis.
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The monomial basis and the evaluation basis are related by the zeta transform. That is,
for all f ∈ F2[x], we have

Ef = ζ⊗nMf . (4)

Indeed, for all Z ⊆ [n] we have

Ef (Z) = f(Z) =
∑
Y⊆Z

Mf (Y ) .

By properties of the zeta transform, the basis-change identity (4) holds also when restricted
from 2[n] to

([n]
↓d
)
; that is, when restricted from arbitrary polynomials to polynomials of

degree at most d. Fast zeta transforms enable fast basis changes between the monomial basis
and the evaluation basis as needed.

2.4 From finding to decision, from decision to parity-counting
The task of finding a solution to a given system of polynomial equations reduces to the task
of deciding whether a given system has at least one solution. Indeed, assuming the system
has a solution, we may try both values 0 and 1 to a selected variable, and focus on one
assignment that indicates that the system after the substitution of the value has a solution.
Thus, finding a solution takes at most 2n queries to a decision algorithm.

The task of deciding whether a given system of polynomial equations has a solution
reduces to computing the parity of the number of such solutions by randomized isolation
techniques. One elegant isolation technique is Valiant–Vazirani [18] affine hashing, which
inserts O(n) random linear equations into the system, without increasing the number of
variables. For completeness, we recall affine hashing in Section 2.5. Thus, from here on, we
consider the problem of counting the parity of solutions to a system of polynomial equations.

2.5 Valiant–Vazirani affine hashing
For completeness, this section recalls Valiant–Vazirani [18] affine hashing for isolating a
unique solution (if any) by introducing a collection of random linear equations into to the
system of polynomial equations. In particular, affine hashing does not increase the number
of variables or the degree of the system, only the number of equations increases.

Let S ⊆ {0, 1}n be the set of solutions the system of polynomial equations. If S is
empty there is nothing to isolate, so let us assume that S is nonempty in what follows. Let
k = 0, 1, . . . , n be the unique integer such that 2k ≤ |S| < 2k+1.

Draw independent uniform random values αij ∈ {0, 1} for i = 1, 2, . . . , k + 2 and
j = 1, 2, . . . , n. For each i = 1, 2 . . . , k + 2, draw an independent uniform random value
βi ∈ {0, 1} and introduce the linear equation

n∑
j=1

αijxj = βi (5)

into the system of polynomial equations.
Let us say that a solution x ∈ S survives if it satisfies every introduced equation (5). Let

us write Sx for the event that x survives, and Ux for the event that x is the unique solution
in S that survives. We want to control the probability

Pr(Ux) = Pr
(
Sx ∩

⋂
y∈S\{x} S̄y

)
.
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By the union bound, we have

Pr
(
Sx ∩

⋂
y∈S\{x} S̄y

)
≥ Pr(Sx)−

∑
y∈S\{x}

Pr
(
Sx ∩ Sy

)
.

By independence of the events Sx and Sy for all x, y ∈ S with x 6= y, we have

Pr(Sx)−
∑

y∈S\{x}

Pr
(
Sx ∩ Sy

)
= Pr(Sx)

(
1−

∑
y∈S\{x}

Pr(Sy)
)
.

By mutual independence of the k + 2 equations, we have

Pr(Sx) = 1
2k+2 .

Hence,

Pr(Ux) ≥ 1
2k+2

(
1− 2k+1

2k+2

)
= 1

2k+3 .

By mutual exclusiveness of the events Ux, we have

Pr
(⋃

x∈S Ux
)

=
∑
x∈S

Pr(Ux) ≥ 2k 1
2k+3 = 1

8 .

From (1− 1
8 )r ≤ exp(− r8 ) ≤ ε we observe that r = dln ε−1e independent repetitions will

isolate a unique solution in S with probability at least 1− ε. Furthermore, we do not know
the value of k, but we can exhaustively try out all the values k = 0, 1, . . . , n with ε = 1

n

so that a solution, if one exists, will be isolated and hence witnessed as odd parity in the
solution space with high probability in total O(n logn) repetitions of the parity-counting
algorithm.

3 A randomized reduction from parity-counting to itself

This section presents our technical contribution. All arithmetic in this section is over F2.
Our task is to determine the parity of the number of solutions x ∈ {0, 1}n to a given system
of degree-d polynomial equations

P1(x) = 0, P2(x) = 0, . . . , Pm(x) = 0 . (6)

We present a randomized self-reduction that reduces (6) to multiple similar systems of degree
at most d but over ` = λn variables for a constant 0 < λ < 1. Optimizing λ and applying
the reduction recursively yields our main result.

3.1 Parity-counting as summation over the domain
We start with the elementary observation that determining the parity of the number of
solutions to (6) amounts to computing the sum

IF =
∑

x∈{0,1}n
F (x) (7)

of the polynomial function

F (x) = (1 + P1(x))(1 + P2(x)) · · · (1 + Pm(x)) . (8)
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Indeed, for x ∈ {0, 1}n we have F (x) = 1 if and only if x is a solution to (6), and otherwise
F (x) = 0. For comparison, Lokshtanov et al. [9] used

JF =
∨

x∈{0,1}n−n′

 ∑
y∈{0,1}n′

sy · F (x, y)

 (9)

with sy independently and uniformly sampled scalars from {0, 1}, with the observation that
JF is one with probability at least 1/2 if the original system has a solution, and is always
zero if the original system has no solutions. In the following, we show how to obtain a faster
algorithm by dealing with IF instead.

We do not know how to quickly evaluate IF directly, but we will take an indirect and
randomized approach to perform the summation.

3.2 Approximate the summand F by a low-degree probabilistic
polynomial

The main difficulty in directly working with the polynomial F of (8) is its degree, which
could be dm in general. As in Lokshtanov et al. [9], we construct a probabilistic polynomial
F̃ with the property that for 0 < ε ≤ 1 and for all x ∈ {0, 1}n we have

Pr
f∈F̃

(F (x) = f(x)) ≥ 1− ε . (10)

We use the following construction generally credited to Razborov [16] and Smolensky [17].
For i = 1, 2, . . . , dlog2 ε

−1e and j = 1, 2, . . . ,m, draw an independent uniform random value
ρij ∈ {0, 1}, and construct the polynomials

Ri(x) =
m∑
j=1

ρij · Pj(x) . (11)

Let us now study the polynomial

f(x) = (1 +R1(x))(1 +R2(x)) · · · (1 +Rdlog2 ε
−1e(x)) . (12)

We easily observe that (10) holds. Furthermore, since each of the polynomials Ri has degree
at most d, the degree of f is at most ddlog2 ε

−1e, rather than the degree Ω(dm) of F .

3.3 Sum the parts of multiple independent approximations
Suppose we replace the summands F (x) in the computation of IF =

∑
x F (x) with f(x)’s

from (12). By doing so we have reduced the degrees of the summands, but we also introduced
a difficulty in the process: the summands f(x) may introduce errors in the computation of
IF . We resolve this issue by drawing a sample of s = O(n) independent Razborov–Smolensky
approximations f1, f2, . . . , fs ∈ F̃ , and then sum each of these, in parts.

Let us define precisely what we mean. Suppose our summand is g. Let us view g as
the set function g : 2[n] → {0, 1} defined over the set of subsets of [n]. Let A,B ⊆ [n] be
disjoint with A ∪B = [n]. Think of A and B as a partition of n variables (indexed by [n])
into two parts; a subset X ⊆ A will be construed as a 0-1 assignment to the variables in A,
and a subset Z ⊆ B will be construed as a 0-1 assignment to the variables in B. We will
compute (7) as

IF =
∑
Z∈2B

∑
X∈2A

F (X ∪ Z).
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This is similar to Lokshtanov et al. [9] with A = [n′] in (9), except we take the actual sum
modulo 2 over 2B assignments, instead of a disjunction over the assignments.

For every Z ⊆ B (construed as a 0-1 assignment to the variables in B), define the function

g|Z→BA : 2A → {0, 1}

for all X ⊆ A by

g|Z→BA (X) = g(X ∪ Z) .

That is, g|Z→BA is the part of g obtained from fixing the variables in B to the 0-1 assignment
g by Z. Each part of g is a polynomial over the variables in A.

Summing g in parts now amounts to computing the sums of all parts

Ig|Z→B
A

=
∑
X⊆A

g(X ∪ Z) for each Z ⊆ B .

Once we have the sums of all parts, we can easily compute the overall sum:

Ig =
∑
X⊆[n]

g(X) =
∑
Z⊆B

Ig|Z→B
A

.

However, we will not sum up the parts’ sums directly. Indeed, we are summing potentially
erroneous approximations of the true summands, and obtaining the (full) sum of a potentially
erroneous approximation is not what we want. What we want, with high probability, is the
sum of the true summands.

3.4 Correct the sum of each part by “scoreboarding”
Recall that we proposed to work with a sample of s ≤ O(n) independent polynomials
f1, f2, . . . , fs ∈ F̃ that approximate the true summand F . Suppose we have summed each
approximation, in parts, to obtain the summand of each part of each approximation. That
is, for each Z ⊆ B we have the scoreboard of s sums

If1|Z→BA
=
∑
X⊆A

f1(X ∪Z), If2|Z→BA
=
∑
X⊆A

f2(X ∪Z), . . . , Ifs|Z→BA
=
∑
X⊆A

fs(X ∪Z).

Each of these s sums is {0, 1}-valued. Assuming s is odd, we take the unique majority value
across the scoreboard and set, for every Z ⊆ B,

ĨZ = Majority
(
If1|Z→BA

, If2|Z→BA
, . . . , Ifs|Z→BA

)
=
{

1 if
∑s
j=1 Ifj |Z→BA

> s
2 ,

0 if
∑s
j=1 Ifj |Z→BA

< s
2 .

(13)

Consider now the true summand F and a sum of its part IF |Z→B
A

. We can control the
probability of error Pr[ĨZ 6= IF |Z→B

A
] as follows. First, set ε = 2−(|A|+2) and use the union

bound with (10) to conclude that, for all Z ⊆ B and j = 1, 2, . . . , s, we have

Pr
[
IF |Z→B

A
= Ifj |Z→BA

]
≥ 1− 2|A| · ε ≥ 3

4 . (14)

Consequently, the approximate summands fj are bounded in degree by at most

∆ = dlog2 ε
−1ed = (|A|+ 2)d . (15)
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Second, recalling that f1, f2, . . . , fs are independent, we can use a standard Chernoff bound to
control the error from scoreboarding. When T is a sum of independent identically distributed
random variables, for all 0 ≤ δ ≤ 1 it holds that [12]

Pr
[
T ≤ (1− δ)E[T ]

]
≤ exp

(
− δ

2E[T ]
2
)
. (16)

Take TZ =
∑s
j=1 Ifj |Z→BA

. From (14) we have

E[TZ | IF |Z→B
A

= 1] ≥ 3
4s ,

E[s− TZ | IF |Z→B
A

= 0] ≥ 3
4s ,

(17)

Recalling that we assume s to be odd, from (16) and (17) with δ = 1/3 we thus have

Pr
[
TZ >

s
2
∣∣ IF |Z→B

A
= 1
]
≥ 1− exp

(
− s

24
)
,

Pr
[
s− TZ > s

2
∣∣ IF |Z→B

A
= 0
]
≥ 1− exp

(
− s

24
)
.

(18)

Set s = 48n+ 1 and use (18) in (13) to conclude that

Pr
[
ĨZ = IF |Z→B

A

]
≥ 1− 2−2n .

Taking a union bound over all Z ⊆ B, we have

Pr
[
IF =

∑
Z⊆B ĨZ

]
≥ 1− 2−n .

That is, error-correction by scoreboarding enables us to recover the sum IF =
∑
x F (x) with

only exponentially small error probability. All that now remains is to sum in parts.

3.5 Summing the parts of a low-degree polynomial
As before, we view the summand as a set function f : 2[n] → {0, 1} and assume that the
underlying polynomial representing f has degree at most ∆. For each Z ⊆ B, we want to
produce the sum If |Z→B

A
=
∑
X⊆A f(X ∪ Z).

Our strategy for summation will rely on the fact that these sums are linearly dependent,
and fast basis changes via fast zeta transforms will enable fast summation of parts.

To witness the linear dependence, let us put to use the fact that f is low-degree. Let
Mf : 2[n] → {0, 1} be the representation of f in the monomial basis (Mf maps monomials to
coefficients). For all W ⊆ [n], we thus have

f(W ) =
∑
U⊆W

Mf (U) .

Now recall that f has degree at most ∆ if and only if Mf vanishes on subsets of size greater
than ∆. That is, the representation in the monomial basis is sparse; we seek to express our
sums in this basis.

Toward this end, let us study summing a part from the perspective of the coefficients Mf

rather than f . For each Z ⊆ B, we have

If |Z→B
A

=
∑
X⊆A

f(X ∪ Z) =
∑
X⊆A

∑
U⊆X∪Z

Mf (U) =
∑
Y⊆Z

Mf (A ∪ Y ) . (19)

The last equality in (19) follows because every monomial (viewed as a subset) not containing A
will cancel modulo two, because it contributes to the sum an even number of times. This

ICALP 2019



26:10 Solving Systems of Polynomial Equations Modulo Two

property of contributing monomials being known to contain A is the key difference from the
approach of Lokshtanov et al. [9]; the property is lost if we take a disjunction (as in (9))
instead of a sum modulo 2 (as in (7)). It will yield a smaller upper bound on the number of
monomials.

Let us now get some corollaries of (19). First, since only monomials that contain A

contribute to the sums If |Z→B
A

, knowledge of only these monomials is sufficient information to
compute the sum If |Z→B

A
for each Z ⊆ B. Second, we know that Mf vanishes on all subsets

of size greater than ∆. Since each monomial must contain A, we only have to consider
subsets from B of size at most δ = ∆− |A|, compared to δ = ∆ used in Lokshtanov et al. [9].

These two corollaries yield the following three-step strategy for summing the parts:
(i) Compute If |B→Z

A
=
∑
X⊆A f(X ∪ Z) for each set Z ∈

(
B
↓δ
)
.

By (19), we thus have
(|B|
↓δ
)
equations for the

(|B|
↓δ
)
unknowns Mf (A ∪ Y ), for Y ∈

(
B
↓δ
)
.

(ii) Solve the equations for the values Mf (A ∪ Y ) for Y ∈
(
B
↓δ
)
(the coefficients of f as a

polynomial).
(iii) Use the solved values to produce the sum If |B→Z

A
for each Z ⊆ B.

Observe that the only actual summations are made in (i). The step (iii) produces the
sums in batch from the values obtained in (ii). To solve the equations in (ii), we use the fast
zeta transform over the sets in

(
B
↓δ
)
. For the step (iii), use the fast zeta transform over 2B

with the knowledge that Mf (A ∪ Y ) vanishes in 2B outside Y ∈
(
B
↓δ
)
.

3.6 Summing a part reduces back to parity-counting
Let us now define in detail what it means to sum a part in step (i). First, let us parameterise
the partition A,B of [n]. For 1 ≤ ` ≤ n, set

|A| = ` and |B| = n− |A| = n− ` .

By (15), we have

dlog2 ε
−1e = |A|+ 2 = `+ 2.

Thus our polynomials have degree ∆ ≤ (`+ 2)d, and

δ = ∆− |A| = (|A|+ 2)d− |A| = (d− 1)`+ 2d .

Recall that the given input consists of the polynomials P1, P2, . . . , Pm in (6). Using
the polynomials P1, P2, . . . , Pm, the algorithm draws s samples, where each sample is an
independent collection of Razborov–Smolensky polynomials R1, R2, . . . , R`+2 constructed
using (11). (Recall the Ri’s are simply random linear combinations of the Pj ’s.) Each
collection forms one of the approximate summands fj =

∏
i(1 + Ri) of (12). However, in

our algorithm these approximate summands fj are never constructed in explicit form: in
Lokshtanov et al. [9] they are constructed explicitly, which leads to a worse running time.

Rather, we observe that we can access a part fj |Z→BA for Z ∈
(
B
↓δ
)
by making the

substitution Z → B directly into the Razborov–Smolensky polynomials R1, R2, . . . , R`+2
that define fj , without constructing fj itself. In particular, after the substitution, the
polynomials have variables xA = (xj : j ∈ A). In notation, we construct by the substitution
Z → B the polynomials

Q1(xA) = R1|Z→BA (xA) , Q2(xA) = R2|Z→BA (xA) , . . . , Q`+2(xA) = R`+2|Z→BA (xA) .
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Since the Ri’s are just linear combinations of polynomials of degree at most d, these
polynomials also have degree at most d, and are over ` = |A| variables. Thus, computing
the sum If |Z→B

A
of the part f |Z→BA is exactly the task of summing over xA ∈ {0, 1}|A|

the polynomial

f |Z→BA (xA) = (1 +Q1(xA))(1 +Q2(xA)) · · · (1 +Q`+2(xA)) .

Recalling (8), this is exactly the task of determining the parity of the number of solutions
xA ∈ {0, 1}|A| to the system of polynomial equations

Q1(xA) = 0 , Q2(xA) = 0 , . . . , Q`+2(xA) = 0 .

This completes our randomized reduction from parity-counting to itself: we have reduced
parity counting for a system of degree-d polynomials in n variables to

(|B|
↓δ
)

=
(

n−`
↓(d−1)`+2d

)
calls to parity counting a system of degree-d polynomials in ` variables.

To compare, in Lokshtanov et al. [9], such a self-reduction seems not to be possible when
one uses (9) instead of (7). A full O∗

(
2|A|

)
time summation was used in their paper.

3.7 Running time analysis
Let us now analyze the running time as a function of the number of variables n and the
reduction parameter ` with 1 ≤ ` ≤ n. Let us write T (n,m) for an upper bound for the
worst-case running time when the input consists of at most m polynomials of degree at most
d in at most n variables. Similarly, let us write S(n,m) for an upper bound for the worst-case
space complexity.

Let us now recall the structure of the self-reduction, then analyze its recursive application.
The reduction first builds the s = 48n + 1 approximate summands (via the constituent
polynomials R1, R2, . . . , R`+2) and then works to complete 2|B| = 2n−` scoreboards, each
recording the sum (over the integers to enable majority-voting) of summation of s parts.
The summation of parts proceeds across the scoreboards, one entire approximate summand
at a time using steps (i), (ii), and (iii). In step (i), we recursively perform summations for(|B|
↓δ
)

=
(

n−`
↓(d−1)`+2d

)
parts, each via the constituent polynomials Q1, Q2, . . . , Q`+2 of degree

at most d over ` variables. In step (ii), we run the fast zeta transform over
(
B
↓δ
)
to recover

the monomials of the summand for all A ∪ Y with Y ∈
(
B
↓δ
)
. In step (iii), we run the fast

zeta transform over 2B to recover all sums of parts for one approximate summand. This
procedure is repeated for each of the approximate summands, updating the scoreboard as
we go. Once the scoreboards are complete, the algorithm takes the majority vote in each
scoreboard, and returns the parity of the majority votes.

The space complexity of the reduction can be upper-bounded via the recursive scoreboards
and the representation of the polynomials in the monomial basis, with

S(n,m) ≤ S(`, `+ 2) +O
(
2n−` log s+m

(
n
↓d
))
. (20)

Indeed, the zeta transforms at each level of recursion require only space O(2n−`).
The time complexity of the reduction can be upper-bounded via the brute-force base case

T (n,m) ≤ O(2nnm
(
n
↓d
)
) and the recurrence

T (n,m) ≤ s
(

n−`
↓(d−1)`+2d

)
T (`, `+2) +O

(
s
((

n−`
↓(d−1)`+2d

)(
n+(`+2)m

(
n
↓d
))

+2n−`(n−`)
))
. (21)

The first term accounts for the parity self-reduction; the second term accounts for the fast
zeta transforms.
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Let us now assume that d = 2, 3, . . . is a fixed constant. We will run the reduction (21)
recursively for D = D(d) levels, and then switch to the brute-force base case. The parameter
` at each level is set by means of a constant λ = λ(d) with 0 < λ < 1

2d−1 so that ` = bλnc
where n is the number of variables in the input to the level. Let

H(ρ) = −ρ log2 ρ− (1− ρ) log2(1− ρ)

be the binary entropy function and recall that we have
(
k
buc
)
≤ 2kH(u/k) for all 1 ≤ u ≤ k

2 .
Since ` ≤ n

2d−1 , the sums of binomial coefficients in (21) can be upper-bounded as follows:

(
n−`

↓(d−1)`+2d
)
≤ n2d+1( n−`

(d−1)`
)
≤ n2d+22n(1−λ)H

(
(d−1)λ

1−λ

)
.

Assuming that we run the recursion for D = D(d) levels and then use brute force, we
observe that there exists a constant C = C(d) > 0 such that we have

T (n,m) = O(mnC(1 + 2τ(1)n)) ,

where τ(λk) is a parameter defined for k = 0, 1, . . . , D − 1 by

τ(λk) = λk max
(
(1− λ)H

( (d−1)λ
1−λ

)
+ τ(λk+1), 1− λ

)
(22)

and

τ(λD) = λD . (23)

Recalling that 1 + λ+ λ2 + . . . = 1
1−λ , and choosing a large enough D, we have that

τ(1) ≤ 1− λ whenever H
( (d−1)λ

1−λ
)
< 1− λ .

Thus, for any d ≥ 2 we can select λ = 1/(2.7d) to obtain the running time O∗
(
2(1−1/(2.7d))n).

For d = 2, we can select λ = 0.196774680497 to obtain the running time O∗
(
20.803225n).
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Abstract
We give two new quantum algorithms for solving semidefinite programs (SDPs) providing quantum
speed-ups. We consider SDP instances with m constraint matrices, each of dimension n, rank at most
r, and sparsity s. The first algorithm assumes an input model where one is given access to an oracle
to the entries of the matrices at unit cost. We show that it has run time Õ(s2(

√
mε−10 +

√
nε−12)),

with ε the error of the solution. This gives an optimal dependence in terms of m,n and quadratic
improvement over previous quantum algorithms (when m ≈ n). The second algorithm assumes
a fully quantum input model in which the input matrices are given as quantum states. We show
that its run time is Õ(

√
m + poly(r)) · poly(logm, logn,B, ε−1), with B an upper bound on the

trace-norm of all input matrices. In particular the complexity depends only polylogarithmically in n
and polynomially in r.

We apply the second SDP solver to learn a good description of a quantum state with respect
to a set of measurements: Given m measurements and a supply of copies of an unknown state ρ
with rank at most r, we show we can find in time

√
m · poly(logm, logn, r, ε−1) a description of the

state as a quantum circuit preparing a density matrix which has the same expectation values as ρ
on the m measurements, up to error ε. The density matrix obtained is an approximation to the
maximum entropy state consistent with the measurement data considered in Jaynes’ principle from
statistical mechanics.

As in previous work, we obtain our algorithm by “quantizing” classical SDP solvers based on the
matrix multiplicative weight update method. One of our main technical contributions is a quantum
Gibbs state sampler for low-rank Hamiltonians, given quantum states encoding these Hamiltonians,
with a poly-logarithmic dependence on its dimension, which is based on ideas developed in quantum
principal component analysis. We also develop a “fast” quantum OR lemma with a quadratic
improvement in gate complexity over the construction of Harrow et al. [14]. We believe both
techniques might be of independent interest.
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1 Introduction

Motivation. Semidefinite programming has been a central topic in the study of mathematical
optimization, theoretical computer science, and operations research in the last decades. It has
become an important tool for designing efficient optimization and approximation algorithms.
The power of semidefinite programs (SDPs) lies in their generality (that extends the better-
known linear programs (LPs)) and the fact that they admit polynomial-time solvers.

It is natural to ask whether quantum computers can have advantage in solving this
important optimization problem. In Ref. [9], Brandão and Svore provided an affirmative
answer, giving a quantum algorithm with worst-case running time Õ(

√
mns2(RR̃/ε)32) 1,

where n and s are the dimension and row sparsity of the input matrices, respectively,
m the number of constraints, ε the accuracy of the solution, and R, R̃ upper bounds on
the norm of the optimal primal and dual solutions. This is a polynomial speed-up in m

and n comparing to the two state-of-the-art classical SDP-solvers [20, 7] (with complexity
Õ(m(m2 + nω +mns) poly log(R/ε)) [20], where ω is the exponent of matrix multiplication,
and Õ(mns(RR̃/ε)4 + ns

(
RR̃/ε

)7) [7]), and beating the classical lower bound of Ω(m+ n)
[9]. The follow-up work by van Apeldoorn et al. [5] improved the running time giving a
quantum SDP solver with complexity Õ(

√
mns2(RR̃/ε)8). In terms of limitations, Ref. [9]

proved a quantum lower bound Ω(
√
m+

√
n) when R, R̃, s, ε are constants; stronger lower

bounds can be proven if R and/or R̃ scale with m and n [5]. We note all these results are
shown in an input model in which there is an oracle for the entry of each of the input matrices
(see Oracle 1.1 below for a formal definition).

In this paper, we investigate quantum algorithms for SDPs (i.e., quantum SDP solvers)
further in the following two perspectives: (1) the best dependence of parameters, especially
the dimension n and the number of constraints m; (2) whether there is any reasonable
alternative input model for quantum SDP solvers and what is its associated complexity. To
that end, let us first formulate the precise SDP instance in our discussion.

The SDP approximate feasibility problem. We will work with the SDP approximate
feasibility problem formulated as follows: Given an ε > 0, m real numbers a1, . . . , am ∈ R,
and Hermitian n× n matrices A1, . . . , Am where −I � Ai � I, ∀ j ∈ [m], define the convex

1 Õ hides factors that are polynomial in logm and logn.

https://doi.org/10.4230/LIPIcs.ICALP.2019.27
https://arxiv.org/abs/1710.02581


F. G. S. L. Brandão, A. Kalev, T. Li, C. Y.-Y. Lin, K.M. Svore, and X. Wu 27:3

region Sε as all X such that

Tr(AiX) ≤ ai + ε ∀ i ∈ [m]; (1.1)
X � 0; Tr[X] = 1.

For approximate feasibility testing, it is required that either (1) If S0 = ∅, output fail; or (2)
If Sε 6= ∅, output an X ∈ Sε. Throughout the paper, we denote by n the the dimension of
the matrices, m the number of constraints, and ε the (additive) error of the solution. For
Hermitian matrices A and B, we denote A � B if B −A is positive semidefinite, and A � B
if A−B is positive semidefinite. We denote In to be the n× n identity matrix.

There are a few reasons that guarantee our choice of approximate SDP feasibility problem
do not lose generality: (1) first, it is a routine2 to reduce general optimization SDP problems
to the feasibility problem; (2) second, for general feasible solution X � 0 with width bound
Tr(X) ≤ R, there is a procedure3 to derive an equivalent SDP feasibility instance with
variable X̂ s.t. Tr(X̂) = 1. Note, however, the change of ε to ε/R in this conversion. Also
note one can use an approximate feasibility solver to find a strictly feasible solution, by
changing ε to ε/RR̃ (see Lemma 18 of Ref. [9]). The benefit of our choice of (1.1) is its
simplicity in presentation, which provides a better intuition behind our techniques and an
easy adoption of our SDP solver in learning quantum states. In contrast to Ref. [5], we do
not need to formulate the dual program of Eq. (1.1) since our techniques do not rely on it.
We will elaborate more on these points in Section 1.4.

1.1 Quantum SDP solvers with optimal dependence on m and n

Existing quantum SDP solvers [9, 5] have close-to-optimal dependence on some key parameters
but poor dependence on others. Seeking optimal parameter dependence has been an important
problem in the development of classical SDP solvers and has inspired many new techniques.
It is thus well motivated to investigate the optimal parameter dependence in the quantum
setting. Our first contribution is the construction of a quantum SDP solver with the optimal
dependence on m and n in the (plain) input model as used by [9, 5], given as follows:

I Oracle 1.1 (Plain model for Aj). A quantum oracle, denoted PA, such that given the
indices j ∈ [m], k ∈ [n] and l ∈ [s], computes a bit string representation of the l-th non-zero
element of the k-th row of Aj, i.e. the oracle performs the following map:

|j, k, l, z〉 → |j, k, l, z ⊕ (Aj)kfjk(l)〉, (1.2)

with fjk : [r] → [N ] a function (parametrized by the matrix index j and the row index k)
which given l ∈ [s] computes the column index of the l-th nonzero entry.

Before we move on to our main result, we will define two primitives which will appear
in our quantum SDP solvers. Our main result will also be written in terms of the cost for
each primitive.

2 To see why this is the case, for any general SDP problem, one can guess a candidate value (e.g., c0) for
the objective function (e.g., Tr(CX) and assume one wants to maximize Tr(CX)) and convert it into a
constraint (e.g., Tr(CX) ≥ c0). Hence one ends up with a feasibility problem and the candidate value
c0 can then be found via binary search with O(log(1/ε)) overhead when Tr(CX) ∈ [−1, 1].

3 The procedure goes as follows: (a) scale down every constraint by a factor R and let X ′ = X/R (thus
Tr(X ′) ≤ 1) (b) let X̂ = diag{X,w} be a block-diagonal matrix with X in the upper-left corner and a
scaler w in the bottom-right corner. It is easy to see that Tr(X̂) = 1 ⇐⇒ Tr(X) ≤ 1.
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I Definition 1 (trace estimation). Assume that we have an s-sparse n× n Hermitian matrix
H with ‖H‖ ≤ Γ and a density matrix ρ. Then we define STr(s,Γ, ε) and TTr(s,Γ, ε) as the
number of copies of ρ and the time complexity (in terms of oracle call and number of gates)
of using the plain model (Oracle 1.1) for H, respectively, such that one can compute Tr[Hρ]
with additive error ε with success probability at least 2/3.

I Definition 2 (Gibbs sampling). Assume that we have an s-sparse n× n Hermitian matrix
H with ‖H‖ ≤ Γ. Then we define TGibbs(s,Γ, ε) as the complexity of preparing the Gibbs
state e−H

Tr[e−H ] with additive error ε using the plain model (Oracle 1.1) for H.

Our main result is as follows.

I Theorem 3. In the plain input model (Oracle 1.1), for any 0 < ε < 1, there is a
quantum SDP solver for the feasibility problem (1.1) using s

ε4 Õ
(
STr
(
s
ε2 ,

1
ε , ε
)
TGibbs

(
s
ε2 ,

1
ε , ε
)

+√
mTTr

(
s
ε2 ,

1
ε , ε
))

quantum gates and queries to Oracle 1.1, where s is the sparsity of Aj , j ∈
[m].

When combined with specific instantiation of these primitives (i.e., in our case, we directly
make use of results on STr(s,Γ, ε) and TTr(s,Γ, ε) from Ref. [9], and results on TGibbs(s,Γ, ε)
from Ref. [24]), we end up with the following concrete parameters:

I Corollary 4. In the plain input model (Oracle 1.1), for any 0 < ε < 1, there is a quantum
SDP solver for the feasibility problem (1.1) using Õ(s2(

√
m
ε10 +

√
n

ε12 )) quantum gates and queries
to Oracle 1.1, where s is the sparsity of Aj , j ∈ [m].

Comparing to prior art, our main contribution is to decouple the dependence on m and
n, which used to be O(

√
mn) and now becomes O(

√
m+

√
n). Note that the (

√
m+

√
n)

dependence is optimal due to the quantum lower bound proven in Ref. [9].
I Remark 1.5. Even though our result achieves the optimal dependence on m and n, it
is nontrivial to obtain quantum speed-ups by directly applying our quantum SDP solvers
to SDP instances from classical combinatorial problems. The major obstacle is the poly-
dependence on 1/ε, whereas, for interesting SDP instances such as Max-Cut, 1/ε is linear in
n. In fact, the general framework of the classical Arora-Kale SDP solver also suffers from
the poly-dependence on 1/ε and cannot be applied directly either. Instead, one needs to
specialize the design of SDP solvers for each instance to achieve better time complexity.

Extending this idea to quantum seems challenging. One difficulty is that known classical
approaches require explicit information of intermediate states, which requires Ω(n) time
and space even to store. It is not clear how one can directly adapt classical approaches
on intermediate states when stored as amplitudes in quantum states, which is the case for
our current SDP solvers. It seems to us that a resolution of the problem might require an
independent tool beyond the scope of this paper. We view this as an important direction for
future work.

However, our quantum SDP solvers are sufficient for instances with mild 1/ε, which are
natural in the context of quantum information, such as learnability of the quantum state
problem (elaborated in Section 1.5) as well as examples in [4]. For those cases, we do establish
a quantum speed-up as any classical algorithm needs at least linear time in n and/or m.

1.2 Quantum SDP solvers with quantum inputs
Given the optimality of the algorithm presented before (in terms of m and n), a natural
question is to ask about the existence of alternative input models, which can be justified for
specific applications, and at the same time allows more efficient quantum SDP solvers. This
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is certainly a challenging question, but we can get inspiration from the application of SDPs in
quantum complexity theory (e.g., Refs. [16, 12]) and quantum information (e.g., Refs. [1, 2]).
In these settings, input matrices of SDP instances, with dimension 2`, are typically quantum
states and/or measurements generated by poly(`)-size circuits on ` qubits. For the sake of
these applications, it might be reasonable to equip quantum SDP solvers with the ability to
leverage these circuit information, rather than merely allowing access to the entries of the
input matrices.

In this paper, we propose a truly quantum input model in which we can construct quantum
SDP solvers with running time only poly-logarithmic in the dimension. We note that such
proposal was mentioned in an earlier version of Ref. [9], whose precise mathematical form
and construction of quantum SDP solvers were unfortunately incorrect, and later removed.
Note that since we consider a non-standard input model in this section, our results are
incomparable to those in the plain input model. We argue for the relevance of our quantum
input model, by considering an applications of the framework to the problem of learning
quantum states in Section 1.5.

Quantum input model. Consider a specific setting in which we are given decompositions
of each Aj : Aj = A+

j −A
−
j , where A

+
j , A

−
j � 0. (For instance, a natural choice is to let A+

j

(resp. A−j ) be the positive (resp. negative) part of A.)

I Oracle 1.2 (Oracle for traces of Aj). A quantum oracle (unitary), denoted OTr (and its
inverse O†Tr), such that for any j ∈ [m],

OTr|j〉|0〉|0〉 = |j〉|Tr[A+
j ]〉|Tr[A−j ]〉, (1.3)

where the real values Tr[A+
j ] and Tr[A−j ] are encoded into their binary representations.

I Oracle 1.3 (Oracle for preparing Aj). A quantum oracle (unitary), denoted O (and its
inverse O†), which acts on Cm ⊗ (Cn ⊗ Cn)⊗ (Cn ⊗ Cn) such that for any j ∈ [m],

O|j〉|0〉|0〉 = |j〉|ψ+
j 〉|ψ

−
j 〉, (1.4)

where |ψ+
j 〉, |ψ

−
j 〉 ∈ Cn ⊗ Cn are any purifications of A+

j

Tr[A+
j

] ,
A−

j

Tr[A−
j

] , respectively.

I Oracle 1.4 (Oracle for aj). A quantum oracle (unitary), denoted Oa (and its inverse O†a),
such that for any j ∈ [m],

Oa|j〉|0〉 = |j〉|aj〉, (1.5)

where the real value aj is encoded into its binary representation.

Throughout the paper, let us assume that Aj has rank at most r for all j ∈ [m] and
Tr[A+

j ] + Tr[A−j ] ≤ B. The parameter B is therefore an upper bound to the trace-norm
of all input matrices which we assume is given as an input of the problem. Similar to the
plain input model, we will define the same two primitives and their associated costs in the
quantum input model.

I Definition 6 (trace estimation). We define STr(B, ε) and TTr(B, ε) as the sample complexity
of a state ρ ∈ Cn×n and the gate complexity of using the quantum input oracles (Oracle 1.2,
Oracle 1.3, Oracle 1.4), respectively, for the fastest quantum algorithm that distinguishes
with success probability at least 1−O(1/m) whether for a fixed j ∈ [m], Tr(Ajρ) > aj + ε or
Tr(Ajρ) ≤ aj.
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I Definition 7 (Gibbs sampling). Assume that K = K+ −K−, where K± =
∑
j∈S cjA

±
j ,

cj > 0, S ⊆ [m] and |S| ≤ Φ, and that K+, K− have rank at most rK . Moreover, assume
that Tr(K+) + Tr(K−) ≤ BK for some BK . Then we define TGibbs(rK ,Φ, BK , ε) as the gate
complexity of preparing the Gibbs state ρG = exp(−K)/Tr(exp(−K)) to ε precision in trace
distance using Oracle 1.2, Oracle 1.3, and Oracle 1.4.

Our main result in the quantum input model is as follows.

I Theorem 8. For any ε > 0, there is a quantum algorithm for the approximate feasibility
of the SDP using at most 1

ε2 Õ
(
STr(B, ε)TGibbs

(
r
ε2 ,

1
ε2 ,

B
ε , ε
)

+
√
mTTr(B, ε)

)
quantum gates

and queries to Oracle 1.2, Oracle 1.3, and Oracle 1.4.

In contrast to the plain model setting, the quantum input model is a completely new
setting so that we have to construct these two primitive by ourselves. In particular, we
give a construction of trace estimation with STr(B, ε) = TTr(B, ε) = O(B2 logm/ε2) and a
construction of Gibbs sampling TGibbs(rK ,Φ, BK , ε) = O(Φ · poly(logn, rK , BK , ε−1))4. As
a result,

I Corollary 9. For any ε > 0, there is a quantum algorithm for the feasibility of the SDP using
at most (

√
m+ poly(r)) · poly(logm, logn,B, ε−1) quantum gates and queries to Oracle 1.2,

Oracle 1.3, and Oracle 1.4.

We also show the square-root dependence on m is also optimal by establishing the
following result:

I Theorem 10 (lower bound on Corollary 9). There exists an SDP feasibility testing problem
such that B, r, ε = Θ(1), and solving the problem requires Ω(

√
m) calls to Oracle 1.2,

Oracle 1.3, and Oracle 1.4.

Comparison between the plain model and the quantum input model. In the quantum
input model (Oracle 1.2, Oracle 1.3, and Oracle 1.4), our quantum SDP solver has a poly-
logarithmic dependence on n (but polynomial in r) and a square-root dependence on m,
while in the plain input model (Oracle 1.1), the dependence on n needs to be Ω(

√
n) [9].

It is also worth mentioning that our quantum SDP solver in Corollary 9 does not assume
the sparsity of Ai’s, which are crucial for the quantum SDP solvers with the plain model
(such as Corollary 4 and Refs. [9, 5]). This is because the quantum input models provide an
alternative way to address the technical difficulty that was resolved by the sparsity condition
(namely efficient algorithms for Hamiltonian evolution associated with the input matrices of
the SDP).

Comparison between quantum and classical input models. The poly-logarithmic depend-
ence on n in Corollary 9 is intriguing and suggests that quantum computers might offer
exponential speed-ups for some SDP instances. However one has to be cautious as the input
model we consider is inherently quantum, so it is incomparable to classical SDP solvers. As
suggested to us by Aram Harrow (personal communication), we could consider a classical
setting in which we get as input all inner products between all eigenvectors of the input
matrices. Then in that case one could solve the problem classically in time poly(r,m, 1/ε)
(essentially using Jaynes’ principle which will be discussed in Section 1.5 to reduce the problem

4 The construction details are given in Lemma 10 and 12 in the full version of our paper [8].
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to a SDP of dimension poly(r)). We have not formalized this approach, and there seems
to be some technical problems doing so when the input matrices have close-by eigenvalues.
However Harrow’s observation shows the importance of justifying the input model in terms
of natural applications to argue for the relevance of the run time obtained. We present one
application of it in Section 1.5; more applications are given in Ref. [4].

Furthermore, several quantum-inspired classical algorithms were recently proposed origin-
ated from Tang [25]. Such classical algorithms assume the following sampling access:

I Definition 11 (Sampling access). Let A ∈ Cn×n be a matrix. We say that we have the
sampling access to A if we can
1. sample a row index i ∈ [n] of A where the probability of row i being chosen is ‖Ai·‖2

‖A‖2
F

, and5

2. for all i ∈ [n], sample an index j ∈ [n] where the probability of j being chosen is |Aij |2
‖Ai·‖2

with time and query complexity O(poly(logn)) for each sampling.

In particular, we notice that Ref. [10] recently gave a classical SDP solver for (1.1) with
complexity O(m·poly(logn, r, ε−1)), given the above sampling access to A1, . . . , Am. We point
out that this result is incomparable to Corollary 9 because the sampling access (Definition 11)
and our quantum state model (Oracle 1.2, Oracle 1.3, and Oracle 1.4) are incomparable.
Nevertheless, it reminds us that under various input models, the speedup of quantum SDP
solvers (compared to their classical counterparts) can also vary.

1.3 Related works on quantum SDP solvers

Previous quantum SDP solvers [9, 5] focus on the plain input model. A major contribution
of ours is to improve the dependence O(

√
mn) to O(

√
m +

√
n) (ignoring dependence on

other parameters) which is optimal given the lower bound Ω(
√
m+

√
n) in [9]. To that end,

we have also made a few technical contributions, including bringing in a new SDP solving
framework and a fast version of quantum OR lemma, which will be elaborated in Section 1.4.

The quantum input model was briefly mentioned in an earlier version of [9]. The con-
struction of quantum SDP solvers under the quantum input model therein was unfortunately
incorrect. We provide the first rigorous mathematical formulation of the quantum input
model and its justification in the context of learning quantum states (see Section 1.5). We
also provide a construction of quantum SDP solvers in this model with a rigorous analysis.
Moreover, we construct the first Gibbs state sampler with quantum inputs.

Subsequent to a previous version of this paper, an independent interesting result by
van Apeldoorn and Gilyén [4] has improved the complexity of trace-estimation and Gibbs
sampling. After a personal communication [26] introducing our fast version of the quantum
OR lemma, the authors of Ref. [4] observed independently that the application of the quantum
OR lemma [14] can be applied to decouple the dependence of m and n. As a result, Ref. [4]
improved the complexity of Corollary 4 to Õ(s(

√
m
ε4 +

√
n
ε5 )) in the quantum operator model,

a stronger input model than the plain one proposed by Ref. [4]. Using novel techniques, it
also has improved the complexity of Corollary 9 to Õ(B

√
m

ε4 + B3.5

ε7.5 ) in the quantum input
model. Note there is no explicit dependence on the rank r, which is an important advance
(though it can be argued that rank r is implicitly included in the parameter B).

5 Here ‖A‖F is the Frobenius norm of A and ‖Ai·‖ is the `2 norm of the ith row of A.
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1.4 Techniques
At a high level, and in similarity to Refs. [9, 5], our quantum SDP solver can be seen as
a “quantized” version of classical SDP solvers based on the matrix multiplicative weight
update (MMWU) method [6]. In particular, we will leverage quantum Gibbs samplers as the
main source of quantum speed-ups. In Refs. [9, 5], quantum Gibbs samplers with quadratic
speed-ups (e.g., [24, 11]) have been exploited to replace the classical Gibbs state calculation
step in [6]. Because the number of iterations in MMWU is poly-logarithmic in terms of the
input size, the use of quantum Gibbs samplers, together with a few other tricks, leads to the
overall quadratic quantum speed-up.

However, there are a few key differences (our major technical contributions) which are
essential for our improvements.

Zero-sum game approach for MMW. Our quantum SDP solvers do not follow the primal-
dual approach in Arora-Kale’s SDP solver [7] which is the classical counterpart of previous
quantum SDP solvers [9, 5]. Instead, we follow a zero-sum game framework to solve SDP
feasibility problems, which is also based on the MMWU method. This framework has
appeared in the classical literature (e.g., [15]) and has already been used to in semidefinite
programs of relevance in quantum complexity theory (e.g., [27, 12, 19]). Let us briefly describe
how the zero-sum game framework works when solving the SDP feasibility problem (1.1).

Assume there are two players. Player 1 wants to provide a feasible X ∈ Sε. Player 2,
on the other side, wants to find any violation of any proposed X, which can be formulated
as follows.

I Oracle 1.5 (Search for violation). Inputs a density matrix X, outputs an i ∈ [m] such that
Tr(AiX) > ai + ε. If no such i exists, output “FEASIBLE”.

If the original problem is feasible, there exists a feasible point X0 (provided by Player 1)
such that there is no violation of X0 that can be found by Player 2 (i.e., Oracle 1.5). This
actually refers to an equilibrium point of the zero-sum game, which can also be approximated
by the matrix multiplicative weight update method [6].

We argue that there are a few advantages of adopting this framework. One prominent
example is its simplicity, which perhaps provides more intuition than the primal-dual approach.
Together with our choice of the approximate feasibility problem, our presentation is simple
both conceptually and technically (indeed, the simplicity of this framework has led to the
development of the fast quantum OR lemma, another main technical contribution of ours.)
Another example is that the zero-sum game approach does not make use of the dual program
of SDPs and thus there is no dependence on the size of any dual solution. The game approach
also admits an intuitive application of our SDP solvers to learning quantum states Section 1.5,
which coincides with the approach adopted by [19] in a similar context.

One might wonder whether the simplicity of this framework will restrict the efficiency of
SDP solvers. As indicated by the independent work of van Apeldoorn and Gilyén [4] which
has achieved the same complexity of quantum SDP solvers following both the primal-dual
approach and the zero-sum approach, we conclude that it is not the case at least up to our
current knowledge.

Fast quantum OR lemma. We now outlines what is the main idea to find a solution to
Oracle 1.5 efficiently. Roughly speaking, the idea behind previous quantum SDP solvers [9, 5]
when applied to this context was to generate a new copy of a quantum state X for each
time one would query the expectation value of one of the input matrices on it. The cost of
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generating X (i.e., Gibbs sampling) is O(
√
n) (ignoring the dependence on other parameters)

and one can use a Grover-search-like approach to test form constraints with O(
√
m) iterations.

The resultant cost is then O(
√
mn). Our key observation is to leverage the quantum OR

lemma [14] to detect a single violation with only a single copy of X.
At a high level, given a single copy of any state ρ and m projections Λ1, . . . ,Λm, the

quantum OR lemma describes a procedure to distinguish between the case that ∃ i ∈ [m] s.t.
Tr[ρΛi] is very large, or 1

m

∑m
i=1 Tr[ρΛi] is very small. It is not hard to see that with some

gap-amplification step and a search-to-decision reduction, the above procedure will output
a violation i∗ if any. By using quantum OR lemma, one can already decouple the cost of
generating X and the number of iterations in violation-detection.

Unfortunately, Ref. [14] has only been focusing on the use of a single copy of ρ, while
its gate complexity is O(m) for m projections. To optimize the gate complexity, we develop
the following fast implementation of the quantum OR lemma with gate complexity O(

√
m),

using ideas from the fast amplification technique in [22]. Overall, this leads to a complexity
of O(

√
m+

√
n).

I Lemma 12. Let Λ1, . . . ,Λm be projections, and fix parameters 0 < ε ≤ 1/2 and ϕ, ξ > 0.
Let ρ be a state such that either ∃ j ∈ [m] Tr[ρΛj ] ≥ 1− ε, or 1

m

∑m
j=1 Tr[ρΛj ] ≤ ϕ. There

is a test using one copy of ρ and O(ξ−1√m(p+ poly(logm))) operations such that: in the
former case, accepts with probability at least (1− ε)2/4− ξ; in the latter case, accepts with
probability at most 3ϕm+ ξ.

The dependence onm is also tight, as one can easily embed Grover search into this problem.

Gibbs sampler with quantum inputs. To work with the quantum input model, as our
main technical contribution, we construct the first quantum Gibbs sampler of low-rank
Hamiltonians when given Oracles 1.2 and 1.3:

I Theorem 13. Assume the n× n matrix K = K+ −K− and K+,K− are PSD matrices
with rank at most rK and Tr[K+] + Tr[K−] ≤ B. Given quantum oracles that prepare
copies of ρ+ = K+/Tr(K+), ρ− = K−/Tr(K−) and estimates of Tr(K+), Tr(K−), there
is a quantum Gibbs sampler that prepares the Gibbs state ρG = exp(−K)/Tr(exp(−K)) to
precision ε in trace distance, using poly(logn, rK , B, ε−1) quantum gates.

Our quantum Gibbs sampler has a poly-logarithmic dependence on n and polynomial
dependence on the maximum rank of the input matrices, while in the plain input model the
dependence of n is Θ(

√
n) [24, 11]. Our construction deviates significantly from [24, 11].

Because of the existence of copies of ρ+ and ρ−, we rely on efficient Hamiltonian simulation
techniques developed in quantum principle component analysis (PCA) [21] and its follow-up
work in [18]. As a result, we can also get rid of the sparsity assumption which is crucial
for evoking results about efficient Hamiltonian simulation into the Gibbs sampling used
in [24, 11].

1.5 Application: Efficient learnability of quantum states
Problem description. Given many realizations of an experiment producing a quantum state
with density matrix ρ, learning an approximate description of ρ is a fundamental task in
quantum information and experimental physics. It refers to quantum state tomography, which
has been widely used to identify quantum systems. However, to tomograph an `-qubit state
ρ (with dimension n = 2`) , the optimal procedure [23, 13] requires n2 number of copies of ρ,
which is impractical already for relatively small `.

ICALP 2019
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An interesting alternative is to find a description of the unknown quantum state ρ which
approximates Tr[ρEi] up to error ε for a specific collection of POVM elements E1, . . . , Em,
where I � Ei � 0 and Ei ∈ Cn×n,∀i ∈ [m]. This is an old problem, dating back at least to
the work of Jaynes on statistical mechanics in the 50ies. Jaynes’ principle [17] (also known
as the principle of maximum entropy) gives a general form for the solution of the problem
above. It shows that there is always a state of the form

exp (
∑
i λiEi)

Tr (exp (
∑
i λiEi))

, (1.6)

which has the same expectation values on the Ei’s as the original state ρ, where the λi’s are
real numbers. In words, there is always a Gibbs state with Hamiltonian given by a linear
combination of the Ei’s which gives the same expectation values as the state described by ρ.
Therefore one can solve the learning problem by finding the right λi’s (or finding a quantum
circuit creating the state in Eq. (1.6)).

Applying quantum SDP solvers. By formulating the learning problem in terms of the SDP
feasibility problem (with each Ai replaced by Ei) where one looks for a trace unit PSD σ

matching the measurement statistics, i.e., Tr(σEi) ≈ Tr(ρEi),∀i ∈ [m], we observe that our
quantum SDP solvers actually provides a solution to the learning problem with associated
speed-ups on m and n.

In fact, our algorithm also outputs each of the λi’s (one can show that poly(log(mn))/ε2

non-zero of them suffices for a solution with error ε), as well as a circuit description of the
Gibbs state in Eq. (1.6) achieving the same expectation values as ρ up to error ε. (This is
mainly because the similarity between the matrix multiplicative update method and Jaynes’
principle.) In this sense our result can be seen as an algorithmically version of Jaynes’
principle. We note that a similar idea was adopted by [19] in learning quantum states,
although for a totally different purpose (namely proving lower bounds on the size of SDP
approximations to constraint satisfaction problems).

It is worthwhile noting that our quantum SDP solvers when applied in this context will
output a description of the state ρ in the form of Eq. (1.6) which has the same expectation
values as ρ on measurements E1, . . . , Em up to error ε. This is slightly different from directly
outputting estimates of Tr(Eiρ) for each i ∈ [m], which by itself will take Ω(m) time.

Relevance of quantum input model. More importantly, we argue that our quantum input
model is relevant in this setting for low-rank measurements Ei’s. Since all Ei � 0 by
definition, we can consider the following (slightly simplified version of) oracles:

Oracle 1.2 for traces of Ei: A unitary OTr such that for any i ∈ [m], OTr|i〉|0〉 = |i〉|Tr[Ei]〉.

Oracle 1.3 for preparing Ei: A unitary O such that for any i ∈ [m], O|i〉〈i| ⊗ |0〉〈0|O† =
|i〉〈i| ⊗ |ψi〉〈ψi|, where |ψi〉〈ψi| is any purification of Ei/Tr[Ei].

We now show how one can implement this oracle in the case where each Ei is a low
rank projector and we have an efficient (with poly log(n) many gates) implementation of the
measurement. Let the rank of Ei’s bounded by r and suppose the measurement operators
Ei’s are of the form

Ei = ViPiV
†
i (1.7)
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for polynomial (in log(n)) time circuits Vi, and projectors Pi of the form

Pi :=
ri∑
i=1
|i〉〈i| (1.8)

with |i〉 the computational basis and ri ≤ r. Then for Oracle 1.2 we just need to output
the ri’s. Oracle 1.3 can be implemented efficiently (in time r poly log(n)) by first creating
a maximally entangled state between the subspace spanned by Pi and a purification and
applying Vi to one half of it. In more detail, consider the following purification of Ei/Tr(Ei):

|ψi〉 := 1
√
ri

ri∑
i=1

(Vi ⊗ I)|i, i〉 (1.9)

This can be constructed first by preparing the state 1√
ri

∑ri

i=1 |i, i〉 in time ri and then
applying Vi ⊗ I to it (which can be done in time poly log(n)).

Efficient learning for low rank measurements. By applying our SDP solver in the quantum
input model, we obtain that

I Theorem 14. For any ε > 0, there is a quantum procedure that outputs a descrip-
tion of the state ρ in the form of Eq. (1.6) (namely the λi’s parameters) using at most
poly(logm, logn, r, ε−1) copies of ρ and at most

√
m ·poly(logm, logn, r, ε−1) quantum gates

and queries to Oracle 1.2 and Oracle 1.3.

Let us briefly sketch how our SDP solver applies to this setting. Note first that we do not
aim to estimate Tr(Eiρ) for each i ∈ [m], which helps us circumvent the Ω(m) lower bound.
What we really want is to generate a state ρ̃ such that Tr(Eiρ̃) ≈ Tr(Eiρ) for each i. Our
SDP solver will maintain and update a description of ρ̃ per iteration. In each iteration, given
copies of ρ̃ and the actual unknown state ρ, we want to know whether Tr(Eiρ̃) ≈ Tr(Eiρ)
∀i ∈ [m] or there is at least a violation i∗. To that end, we design for each i a projection for
the following procedure: (1) perform multiple independent SWAP tests between Ei/Tr[Ei]
(from Oracle 1.3) and ρ, ρ̃ respectively; (2) accept when the statistics of both SWAP tests
(one with ρ, the other with ρ̃) are close. Hence, one can apply our fast quantum OR lemma
on these projections to find such i∗ if it exists.

Note that both the sample complexity and the gate complexity of the above procedure
have a poly-log dependence on n (i.e., the dimension of the quantum state to learn).

Shadow tomography problem. In a sequence of works [1, 2], Aaronson asked whether one
can predict information about a dimension-n quantum state with poly-log(n) many copies.
In Ref. [1], he showed that a linear number of copies is sufficient to predict the outcomes of
“most” measurements according to some (arbitrary) distribution over a class of measurements.
Very recently, in Ref. [2], he referred the following problem as the “shadow tomography”
problem: for any n-dimensional state ρ and two-outcome measurements E1, . . . , Em, estimate
Tr[ρEi] up to error ε, ∀i ∈ [m]. He has further designed a quantum procedure for the shadow
tomography problem with Õ(` · log4 m/ε5) 6 copies of ρ.

6 Here Õ hides factors that are polynomial in log logm, log logn, and log 1/ε.
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Noting that the shadow tomography problem is essentially the same problem considered
by Jaynes [17], one can apply Jaynes’ principle and its algorithmic version we discussed before.
Although this can be used to give a version of the result of Ref. [2], Aaronson obtained his
result [2] through a different route, based on a post-selection argument. A drawback of this
approach is that its gate complexity is high, scaling linearly in m and as nO(log logn) (for
fixed error).

Our Theorem 14 can be applied here to improve the time complexity. It gives a quantum
procedure with a square-root dependence on m and nO(1) dependence on n for arbitrary Ei’s.

When we assume r is small, say r = O(poly logn), the gate complexity of the entire
procedure becomes Õ(

√
m poly log(n)). This gives a class of measurement (namely any set of

low-rank measurements which can be efficiently implemented) for which the learning problem
is efficient both in the number of samples and the computational complexity. This solves an
open problem proposed in Ref. [1]

Although we have not worked out an explicit bound of the sample complexity of our
procedure, the authors of [4] followed our approach with more sophisticated techniques and
obtained a sample complexity of Õ(` · log4 m/ε4), improving on the bound from [2]. We
also note that very recently, Aaronson et al. claimed the same sample complexity (i.e.,
Õ(` · log4 m/ε4)) in [3].

1.6 Overview of detailed results and proofs

In the full version of our paper [8], we formulate the SDP feasibility problem and prove
the correctness of the basic framework in Appendix A. Our implementation of the fast
quantum OR lemma is given in Appendix B. We describe our main results the constructions
of quantum SDP solvers in the plain input model and the quantum input model in Appendix
C and Appendix D, respectively. The application to learning quantum states is illustrated
in Appendix E. In Appendix F (with full details in Appendix G) we demonstrate how to
sample from the Gibbs state of low-rank Hamiltonians.

1.7 Open questions

This work leaves several natural open questions for future work. For example:
Are there more examples of interesting SDPs where our form of input is meaningful? We
have shown the example of learning quantum states. Intuitively, we are looking for SDP
instances where the constraints are much “simpler” than the solution space. Is there any
such example in the context of big data and/or machine learning?
Our work has identified one setting where Gibbs sampling has a poly-log dependence on
the dimension? Is there any other setting for the same purpose?
For any reasonable quantum input setting, what is the effect of potential noises on
quantum inputs in practice?
Can we improve further on other parameters (e.g., the dependence on m and 1/ε)? In
particular, is it possible to improve the error dependence to poly log(1/ε)? This probably
implies that we have to consider a quantum version of the interior point method.
Are there other classes of measurements for which the quantum learning problem can
solved in a computationally efficient way beyond the low-rank measurements we consider
in this work? We note that most measurements of interest are not low rank (e.g. local
measurements) and therefore the practical applicability of the present result is limited.
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Abstract
The importance of being able to verify quantum computation delegated to remote servers increases
with recent development of quantum technologies. In some of the proposed protocols for this task,
a client delegates her quantum computation to non-communicating servers in multiple rounds of
communication. In this work, we propose the first protocol where the client delegates her quantum
computation to two servers in one-round of communication. Another advantage of our protocol is
that it is conceptually simpler than previous protocols. The parameters of our protocol also make
it possible to prove security even if the servers are allowed to communicate, but respecting the
plausible assumption that information cannot be propagated faster than speed of light, making it
the first relativistic protocol for quantum computation.
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1 Introduction

With the recent progress in the development of quantum technologies, large-scale quantum
computers may be available in a not-so-distant future. Their costs and infrastructure
requirements make it impractical for them to be ubiquitous, however clients could send
their quantum computation to be performed remotely by a quantum server in the cloud [9],
broadening the use of quantum advantage to solve computational problems (see Ref. [24]
for such examples). For the clients, it is a major concern whether the quantum servers are
performing the correct computation and quantum speedup is really being experienced.

In order to solve this problem, we aim a protocol for verifiable delegation of quantum
computation where the client exchanges messages with the server, and, at the end of the
protocol, either the client holds the output of her computation, or she detects that the
server is defective. Ideally, the client is a classical computer and an honest server only
needs polynomial-time quantum computation to answer correctly. Also, one would aim for
blind protocols, in which the server does not learn the circuit delegated by the client. We
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notice that verification protocols could also be used for validating devices that claim to have
quantum computational power, but in this work we focus on the point of view of delegation
of computation.

There are efficient protocols that can perform this task if the model is relaxed, for instance
giving limited quantum power and quantum communication to the client [14, 3, 8, 25, 26].
There are also protocols where the security of the protocol only holds against bounded
malicious servers [20].In this work, we focus on a third line of protocols, where a classical
client delegates her computation to non-communicating quantum servers. Although the
servers are supposed to share and maintain entangled states, which is feasible in principle
but technologically challenging, these protocols are “plug-and-play” in the sense that the
client only needs classical communication with the quantum servers.

Following standard notation in these protocols, we start calling the client and servers
by verifier and provers, respectively. The security of such protocols relies on the so called
self-testing of non-local games. We consider games where a verifier interacts with non-
communicating provers by exchanging one round of classical communication and, based on
the correlation of the provers’ answers, the verifier decides to accept or reject. The goal of
the provers is to maximize the acceptance probability in the game and they can share a
common strategy before the game starts. A game is non-local [6] whenever there exists a
quantum strategy for the provers that achieves acceptance probability strictly higher than any
classical strategy, allowing the verifier to certify that the provers share some entanglement, if
the classical bound is surpassed. Self-testing [21] goes one step further, proving that if the
correlation of the provers’ answers is close to the optimal quantum value, their strategy is
close to the honest one.

Reichardt, Unger and Vazirani [32] used the ideas of self-testing to propose a verifiable
delegation scheme where the verifier interleaves questions of non-local games and instructions
for the computation, and from the point of view of the provers, these two types of questions
are indistinguishable. In this case, the correctness of the quantum computation is inherited
by the guarantees achieved in self-testing. Follow-up works [22, 15, 17, 13, 27, 10] have used
the same approach in order to propose more efficient protocols (see Table 1 for summary of
the properties of the different protocols).

In this work, we present the first one-round protocol for verifiable delegation of quantum
computation. We notice that our protocol is conceptually simple, in contrast with previous
protocols that have a rather complicated structure. We expect that its main ideas can be
generalized to other contexts as MIP∗ protocols for iterated non-deterministic exponential
time and even in new protocols for delegation of quantum computation. We also remark
that the parameters of the protocol allow us to replace the unjustified assumption that the
provers do not communicate to a more plausible assumption that the communication cannot
be faster than speed of light.

Technically, we achieve our protocol by showing a non-local game for Local Hamiltonian
problem, where the verifier plays against two provers in one round of classical communication.
In this game, honest provers perform polynomial time quantum computation on copies of
the groundstate of the Hamiltonian. This non-local game is of independent interest since it
was an open question if a one-round game for Local Hamiltonian problem could be achieved
with only two efficient provers. This non-local game can be used as a delegation protocol
through the circuit-to-Hamiltonian construction.
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Table 1 Comparison between different protocols for verifiable delegation of quantum computation.

Client Provers Rounds Blind Security

ABOEM [3] Quantum 1 poly(g) yes information theoretical
FK [14] Quantum 1 poly(g) yes information theoretical
RUV [32] Classical 2 ≥ g8192 yes information theoretical

McKague [22] Classical poly(n) ≥ 2153g22 yes information theoretical

GKW [15] Classical 2 ≥ g2048 yes information theoretical

HPDF [17] Classical poly(n) Θ(g4 log g) yes information theoretical

FH [13] Classical 5 2 no information theoretical

NV [27, 28] Classical 7 2 no information theoretical

CGJV [10] Classical 2 O(depth) yes information theoretical

CFJV [10] Classical 2 2 no information theoretical
Mahadev [20] Classical 1 2 no computational
This work Classical 2 1 no information theoretical

1.1 Our contributions

New Non-local game for Local Hamiltonians. The main technical result of this work is
presenting one-round two-prover game for the Local Hamiltonian problem, where honest
provers only need quantum polynomial time computation, copies of the groundstate of the
Hamiltonian and shared EPR pairs. More concretely, we show how to construct a game G(H)
based on a XZ Local Hamiltonian1 H acting on n qubits and the upper and lower bounds on
the maximum acceptance probability in G(H) are tightly related to the groundstate energy
of H. Then, based on G(H), we devise a game G̃(H) such that if the groundstate energy of
H is low, then the maximum acceptance probability in G̃(H) is at least 1

2 + ∆, while if the
groundstate energy is high, the acceptance probability in the game is at most 1

2 −∆. We
describe now the main ideas of G(H).

The game is composed by two tests: the Pauli Braiding Test (PBT) [27], where the verifier
checks if the provers share the expected state and perform the indicated Pauli measurements,
and the Energy Test (ET), where the verifier estimates the groundstate energy of H.

The same structure was used in a different way in the non-local game for LH proposed by
Natarajan and Vidick [27] (and implicitly in Ji [18]). In their game, 7 provers are expected
to share the encoding of the groundstate of H under a quantum error correcting code. In
ET, the provers estimate the groundstate energy by jointly performing the measurements on
the state, while PBT checks if the provers share a correct encoding of some state and if they
perform the indicated measurements. The provers receive questions consisting in a Pauli
tensor product observable and they answer with the one-bit outcome of the measurement on
their share of the state. The need of 7 provers comes from the fact that the verifier must test
if the provers are committed to an encoded state and use it in all of their measurements. It
is an open problem if the number of provers can be decreased in this setup.

In this work, we are able to reduce the number of provers to 2 by making them asymmetric.
In ET, one of the provers holds the groundstate of H and teleports it to the second prover,
who is responsible for measuring it. In our case, PBT checks if the provers share EPR pairs

1 An XZ Local Hamiltonian is a Hamiltonian that can be decomposed in sum of polynomially many
terms that are tensor products of Paulis σX , σZ and σI
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and if the second prover’s measurements are correct. We remark that no test is needed
for the state, since the chosen measurement is not known by the first prover. We notice
that the size of the answers in our protocol is polynomial in n, since the verifier needs the
teleportation results for every qubit (in order to hide the measurement). We leave as an
open problem if the size of the answers can be reduced, hopefully achieving constant-size
answers as in [27].

We state now the key ideas to upper bound the maximum acceptance probability of G(H).
The behavior of the second prover in ET can be verified thanks to PBT, since the two tests
are indistinguishable to him. On the other hand, the first prover can perfectly distinguish
PBT and ET, but he has no information about the measurement being performed. We show
that his optimal strategy is to teleport the groundstate of H, but in this case the acceptance
probability is high iff the groundstate energy is low.

Protocol for verifiable delegation of quantum computation. The task of verifiable deleg-
ation of quantum computation can be easily reduced to estimating the groundenergy of local
Hamiltonians through the circuit-to-Hamiltonian construction [13, 27], which has been called
post-hoc verification of quantum computation. In this construction, a quantum circuit Q is
reduced to an instance HQ of LH, such that HQ has low groundstate energy iff Q accepts
with high probability. Our non-local game for HQ can be seen as a delegation protocol,
where the verifier interacts with two non-communicating entangled provers in one-round of
classical communication.

When compared to previous protocols, our result has some very nice properties. First,
differently to previous results, our protocol is very simple to state, which could make it easier to
be extended to other settings. Secondly, using standard techniques in relativistic cryptography,
we can replace the unjustified assumption that the two servers do not communicate by the
No Superluminal Signaling (NSS) principle: the security of the protocol would only rely that
the two servers cannot communicate faster than the speed of light.

The circuit-to-Hamiltonian construction also causes an overhead on the resources needed
by honest provers. Namely, in our protocol the provers need Õ(ng2) EPR pairs for delegating
the computation of a quantum circuit acting on n qubits and composed by g gates, while
other protocols need only Õ(g) EPR pairs [10]. We leave as an open problem finding more
efficient two-provers one-round protocol for delegating quantum computation.

We also leave as an open question if it is possible to create a one-round and blind
verifiable delegation scheme for quantum computation, or proving that this is improbable, in
the lines of Ref. [1].

Non-local games for QMA. In Complexity Theory, the connection between the PCP
theorem [5, 4, 12] and multi-prover games [7] has had a lot of fruitful consequences, such as
tighter inapproximability results [31]. Our protocol directly implies a one-round two-prover
game for QMA but with polynomial-size questions and answers. We wonder if it could be
used to prove the game version of the quantum PCP theorem with two prover [28].

Organization

In Section 2, we give the necessary preliminaries, including the definition of the Pauli Braiding
Test. Then, in Section 3 we present our non-local game for local Hamiltonian problem.
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2 Preliminaries

We assume basic knowledge on Quantum Computation topics and we refer the readers that
are not familiar with them to Ref. [29].

2.1 Notation
We denote [n] as the set {1, ..., n}. For a finite set S, we denote x ∈R S as x being an
uniformly random element from S. We assume that all Hilbert spaces are finite-dimensional.
For a Hilbert space H and a linear operator M on H, we denote λ0(M) as its smallest
eigenvalue and ‖M‖ as its maximum singular value. An n-qubit binary observable O is a
Hermitian matrix with eigenvalues ±1. We denote Obs(H) as the set of binary observables
on the Hilbert space H.

We will use the letters X, Z and I to denote questions in multi-prover games, the letters
in the sans-serif font X, Z and I to denote unitaries and σX , σZ and σI to denote observables
such that

I = σI =
(

1 0
0 1

)
, X = σX =

(
0 1
1 0

)
and Z = σZ =

(
1 0
0 −1

)
.

2.2 Non-local games, Self-testing and the Pauli Braiding Test
We consider games where a verifier plays against two provers in the following way. The
verifier sends questions to the provers according to a publicly known distribution and the
provers answer back to the verifier. Based on the correlation of the answers, the verifier
decides to accept or reject according to an acceptance rule that is also publicly known. The
provers share a common strategy before the game starts in order to maximize the acceptance
probability in the game, but they do not communicate afterwards.

For a game G, its classical value ω(G) is the maximum acceptance probability in the game
if the provers share classical randomness, while the quantum value ω∗(G) is the maximum
acceptance probability if they are allowed to follow a quantum strategy, i.e. share a quantum
state and apply measurements on it. Non-local games (or Bell tests) [6] are such games
where ω∗(G) > ω(G) and they have played a major role in Quantum Information Theory,
since they allow the verifier to certify that there exists some quantumness in the strategy of
the provers, if the classical bound is surpassed.

Self-testing (also known as device-independent certification or rigidity theorems) of a
non-local game G allows us to achieve stronger conclusions by showing that if the acceptance
probability on G is close to ω∗(G), then the strategy of the provers is close to the ideal one,
up to local isometries.

2.2.1 Magic Square game
The Magic Square or Mermin-Peres game [23, 30], is a two-prover non-local game where
one of the provers is asked a row r ∈ {1, 2, 3} and the second prover is asked with a column
c ∈ {1, 2, 3}. The first and second prover answer with a1, a2 ∈ {±1} and b1, b2 ∈ {±1},
respectively. By setting a3 = a1 ⊕ a2 and b3 = b1 ⊕ b2, the provers win the game if ac = br.

If the provers follow a classical strategy, their maximum winning probability in this game
is 8

9 , while we describe now a quantum strategy that makes them win with probability 1.
The provers share two EPR pairs and, on question r (resp. c), the prover performs the
measurements indicated in the first two columns (resp. rows) of row r (resp. column c) of
the following table
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IZ ZI ZZ

XI IX XX

XZ ZX Y Y

and answer with the outcomes of the measurements. The values a3 and b3 should correspond
to the measurement of the EPR pairs according to the third column and row, respectively.

The self-testing theorem proved by Wu, Bancal and Scarani [33] states that if the provers
win the Magic Square game with probability close to 1, they share two EPR pairs and the
measurements performed are close to the honest Pauli measurements, up to local isometries.

I Lemma 1. Suppose a strategy for the provers, using state |ψ〉 and observables W , succeeds
with probability at least 1 − ε in the Magic Square game. Then there exist isometries
VD : HD → (C2 ⊗ C2)D’ ⊗HD̂, for D ∈ {A,B} and a state |aux〉ÂB̂ ∈ HÂ ⊗HB̂ such that∥∥(VA ⊗ VB)|ψ〉AB − |Φ00〉⊗2

A′B′ |aux〉ÂB̂
∥∥2 = O(

√
ε),

and for W ∈ {I,X,Z}2,∥∥(W − V †AσWVA)⊗ IB |ψ〉
∥∥2 = O(

√
ε).

2.2.2 Pauli Braiding Test
The starting point of our work is the Pauli Braiding Test(PBT) [27], a non-local game that
allows the verifier to certify that two provers share t EPR pairs and perform the indicated
measurements, which consist of tensors of Pauli observables.

We define PBT in details later in this section and here we state the main properties
that will be used in our Hamiltonian game. In PBT, each prover receives questions in the
form W ∈ {X,Z, I}t, and each one is answered with some b ∈ {−1,+1}t. For W ∈ {X,Z}t
and a ∈ {0, 1}t, we have W (a) ∈ {X,Z, I}t where W (a)i = Wi if ai = 1 and W (a)i = I

otherwise.
In the honest strategy, the provers share t EPR pairs and measure them with respect to

the observable σW
def=
⊗

i∈[t] σWi
on question W . However, the provers could deviate and

perform an arbitrary strategy, sharing an entangled state |ψ〉AB ∈ HA ⊗HB and performing
projective measurements τAW and τBW for each possible question W . It was shown that if the
provers pass PBT with probability 1−ε, their strategy is, up to local isometries, O(

√
ε)-close

to sharing t EPR pairs and measuring σW on question W [27].

We describe now PBT. The test is divided in three different tests, which are performed with
equal probability. The first one, the Consistency Test, checks if the measurement performed
by both provers on questionW are equivalent, i.e. τAW ⊗IB |ψ〉AB is close to IA⊗τBW |ψ〉AB . In
the Linearity Test, the verifier checks if the measurement performed by the provers are linear,
i.e. τAW (a)τ

A
W (a′)⊗ IB |ψ〉AB is close to τAW (a+a′)⊗ IB |ψ〉AB . Finally, in the Anti-commutation

Test, the verifier checks if the provers’ measurements follow commutation/anti-commutation
rules consistent with the honest measurements, namely τAW (a)τ

A
W ′(a′) ⊗ IB |ψ〉AB is close to

(−1)|{Wi 6=W ′
i and ai=a′

i=1}|τAW ′(a′)τ
A
W (a) ⊗ IB |ψ〉AB .

The Consistency Test and Linearity Test are very simple and are described in Figure 1.
For the Anti-commutation Test, we can use non-local games that allow the verifier to check
that the provers share a constant number of EPR pairs and perform Pauli measurements
on them. In this work we use the Magic Square game since there is a perfect quantum
strategy for it.
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The verifier performs the following steps, with probability 1
3 each:

(A) Consistency test
a. The verifier picks W ∈R {X,Z}n and a ∈ {0, 1}n.
b. The verifier sends W (a) to both provers.
c. The verifier accepts iff the provers’ answers are equal.

(B) Linearity test
a. The verifier picks W ∈R {X,Z}t and a, a′ ∈R {0, 1}t.
b. The verifier sends (W (a),W (a′)) to P1 and W ′ ∈R {W (a),W (a′)} to P2.
c. The verifier receives b, b′ ∈ {±1}t from P1 and c ∈ {±1}t from P2.
d. The verifier accepts iff b = c when W ′ = W (a) or b′ = c when W ′ = W (a′).

(C) Anti-commutation test
a. The verifier makes the provers play Magic Square games in parallel with the t EPR

pairs (see Section 2.2.1).

Figure 1 Pauli Braiding Test.

I Theorem 2 (Theorem 14 of [27]). Suppose |ψ〉 ∈ HA ⊗ HB and W (a) ∈ Obs(HA), for
W ∈ {X,Z}t and a ∈ {0, 1}t, specify a strategy for the players that has success probability at
least 1−ε in the Pauli Braiding Test. Then there exist isometries VD : HD → ((C2)⊗t)D’⊗ĤD̂,
for D ∈ {A,B}, such that∥∥(VA ⊗ VB)|ψ〉AB − |Φ00〉⊗tA′B′ |aux〉ÂB̂

∥∥2 = O(
√
ε),

and on expectation over W ∈ {X,Z}t,

E
a∈{0,1}t

∥∥(W (a)− V †A(σW (a)⊗ I)VA
)
⊗ IB |ψ〉

∥∥2 = O(
√
ε).

Moreover, if the provers share |Φ00〉⊗tA′B′ and measure with the observables
⊗
σWi on

question W , they pass the test with probability 1.

2.3 Local Hamiltonian problem
The Local Hamiltonian problem can be seen as the quantum analog of MAX-SAT problem.
An instance for this problem consists in m Hermitian matrices H1, . . . ,Hm, where each Hi

acts non-trivially on at most most k qubits. For some parameters α, β ∈ R, α < β, the
Local Hamiltonian problem asks if there is a global state such that its energy in respect
of H = 1

m

∑
i∈[m] Hi is at most α or all states have energy at least β. This problem was

first proved to be QMA-complete for k = 5 and β − α ≥ 1
poly(n) [19]. In this work, we are

particularly interested in the version of LH where all the terms are tensor products of σX ,
σZ and σI .

I Definition 3 (XZ Local Hamiltonian). The XZ k-Local Hamiltonian problem, for k ∈ Z+

and parameters α, β ∈ [0, 1] with α < β, is the following promise problem. Let n be the number
of qubits of a quantum system. The input is a sequence of m(n) values γ1, ..., γm(n) ∈ [−1, 1]
and m(n) Hamiltonians H1, . . . ,Hm(n) where m is a polynomial in n, and for each i ∈ [m(n)],
Hi is of the form

⊗
j∈n σWj ∈ {σX , σZ , σI}⊗n with |{j|j ∈ [n] and σWj 6= σI}| ≤ k. For

H
def= 1

m(n)
∑m(n)
j=1 γjHj, one of the following two conditions hold.

Yes. There exists a state |ψ〉 ∈ C2n such that 〈ψ|H|ψ〉 ≤ α(n)
No. For all states |ψ〉 ∈ C2n it holds that 〈ψ|H|ψ〉 ≥ β(n).
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Whenever the value of n is clear from the context, we call α(n), β(n) and m(n) by α, β and
m. The XZ k-LH problem has been also proved QMA-complete [11, 18].

I Lemma 4 (Lemma 22 of [18], Lemma 22 of [11]). There exist α, β ∈ [0, 1] satisfying
β − α ≥ 1

poly(n) such that XZ k-Local Hamiltonian is QMA-complete, for some constant k.

It is an open question if k-LH is QMA-complete for β − α = O(1) while maintaining k
constant [2]. However, it is possible to achieve this gap at the cost of increasing the locality
of the Hamiltonian [27].

I Lemma 5 (Lemma 26 of [27]). Let H be an n-qubit Hamiltonian with minimum energy
λ0(H) ≥ 0 and such that ‖H‖ ≤ 1. Let α, β ≥ 1

poly(n) and α < β for all n. Let H ′ be the
following Hamiltonian on (β − α)−1n qubits

H ′ = σ⊗naI − (σ⊗nI − (H − a−1σ⊗nI ))⊗a, where a = (β − α)−1
.

It follows that if λ0(H) ≤ α then λ0(H ′) ≤ 1
2 , while if λ0(H) ≥ β then λ0(H ′) ≥ 1.

Moreover if H is a XZ Hamiltonian, so is H ′.

Finally, we define now non-local games for Local Hamiltonian problems.

IDefinition 6 (Non-local games for Hamiltonians). A non-local game for the Local Hamiltonian
problem consists in a reduction from a Hamiltonian H acting on n qubits to a non-local game
G(H) where a verifier plays against r provers, and for some parameters α, β, c, s ∈ [0, 1], for
α < β and c > s, the following holds.
Completeness. If λ0(H) ≤ α, then ω∗(G(H)) ≥ c
Soundness. If λ0(H) ≥ β, then ω∗(G(H)) ≤ s.

3 One-round two-prover game for Local Hamiltonian

In this section, we define our non-local game for Local Hamiltonian problem, proving
Theorem 9. We start with a XZ Hamiltonian H = 1

m

∑
l∈m γlHl acting on n qubits and

α, β ∈ [0, 1] with α < β. We propose then the Hamiltonian Test G(H), a non-local game
based on H, whose maximum acceptance probability upper and lower bounds are tightly
related to λ0(H). Based on G(H), we show how to construct another non-local game
G̃(H) for which there exists some universal constant ∆ > 0 such that if λ0(H) ≤ α, then
ω∗(G̃(H)) ≥ 1

2 + ∆, whereas if λ0(H) ≥ β, then ω∗(G̃(H)) ≤ 1
2 −∆. The techniques used to

devise G(H) and G̃(H) are based on Ref. [18, 27].

We describe now the Hamiltonian Test G(H), which is composed by the Pauli Braiding
Test (PBT) (see Section 2.2) and the Energy Test (ET), which allows the verifier to estimate
λ0(H). The provers are expected to share t EPR pairs and the first prover holds a copy of the
groundstate of H. In ET, the verifier picks l ∈R [m], W ∈R {X,Z}t and e ∈R {0, 1}t, and
chooses T1, ..., Tn ∈ [t] such that W (e)Ti matches the i-th Pauli observable of Hl. By setting
t = O(n logn), it is possible to choose such positions for a random W (e) with overwhelming
probability. The verifier sends T1, ..., Tn to the first prover, who is supposed to teleport
the groundstate of H through the EPR pairs in these positions. As in PBT, the verifier
sends W (e) to the second prover, who is supposed to measure his EPR halves with the
corresponding observables. The values of T1, ..., Tn were chosen in a way that the first prover
teleports the groundstate of H in the exact positions of the measurement according to Hl.
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The verifier performs each of the following steps with probability 1− p and p, respectively:
(A) Pauli Braiding Test
(B) Energy Test

a. The verifier picks W ∈R {X,Z}t, e ∈R {0, 1}t and l ∈R [m]
b. The verifier picks positions T1, ...Tn such that Hl =

⊗
σW (e)Ti

.
c. The verifier sends T1, ..., Tn to the first prover and W (e) to the second prover.
d. The first prover answers with a, b ∈ {0, 1}n and the second prover with c ∈ {+1,−1}t.
e. Let d ∈ {−1,+1}n such that di = (−1)aicTi

if WTi
= X and di = (−1)bicTi

if
WTi = Z.

f. If
∏
i∈[n] di 6= sign(γl), the verifier accepts.

g. Otherwise, the verifier rejects with probability |γl|.

Figure 2 Hamiltonian Test G(H) for a XZ Hamiltonian H.

With the outcomes of the teleportation measurements, the verifier can correct the output of
the measurement of the second prover and estimate λ0(H). The full description of the game
is presented in Figure 2.

We state now two auxiliary lemmas with lower and upper bounds on the maximum
acceptance probability on G(H).

I Lemma 7. Let H =
∑
l∈[m] γlHl be a XZ Hamiltonian, let G(H) be the Hamiltonian-self

test for H, described in Figure 2, and

ωh(H) def= 1− p

 1
2m

∑
l∈[m]

|γl| −
1
2λ0(H)

 .

If the provers use the honest strategy in PBT, the maximum acceptance probability in G(H)
is ωh(H). Moreover, this probability is achieved if the first prover behaves honestly in ET.

I Lemma 8. Let H, G(H) and ωh(H) be defined as Lemma 7. For every η > 0, there is
some value of p = O(√η) such that ω∗(G(H)) ≤ ωh(H) + η.

We defer the proof of these lemmas to Section 3.1 and we concentrate now in proving our
main theorem.

I Theorem 9. There exists a universal constant ∆ such that the following holds. Let
H =

∑
l∈m γlHl be XZ k-Local Hamiltonian acting on n qubits with parameters α, β ∈ (0, 1),

for β > α. There exists one-round two-prover non-local game such that
if λ0(H) ≤ α, then the verifier accepts with probability at least 1

2 + ∆; and
if λ0(H) ≥ β, then the verifier accepts with probability at most 1

2 −∆.
Moreover, each message is Õ(n(β − α)−1)-bit long.

Proof. Lemma 5 states that from H we can construct a Hamiltonian H ′ such that

λ0(H) ≤ α⇒ λ0(H ′) ≤ 1
2 and λ0(H) ≥ β ⇒ λ0(H ′) ≥ 1,

and H ′ =
∑
l∈m′ γ′lH

′
l is an instance of XZ Local Hamiltonian problem.

We now bound the maximum acceptance probability of the Hamiltonian Test on H ′,
relating it to the groundstate energy of H. From Lemma 7 it follows that

λ0(H) ≤ α⇒ ω∗(G(H ′)) ≥ 1− p

 1
2m

∑
l∈[m]

|γ′l| −
1
4

 def= c,
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while from Lemma 8, for any η > 0 and some p ≤ C√η, we have that

λ0(H) ≥ β ⇒ ω∗(G(H ′)) ≤ 1− p

 1
2m

∑
l∈[m]

|γ′l| −
1
2

+ η = c−
C
√
η

4 + η.

By choosing η to be a constant such that η′ def= C
√
η

4 − η > 0, it follows that

λ0(H) ≤ α⇒ ω∗(G(H ′)) ≥ c and λ0(H) ≥ β ⇒ ω∗(G(H ′)) ≤ c− η′.

We describe now the game G̃(H) that achieves the completeness and soundness properties
stated in the theorem. In this game, the verifier accepts with probability 1

2 −
2c−η′

4 , rejects
with probability 2c−η′

4 or play G(H ′) with probability 1
2 . Within this new game, if λ0(H) ≤ α

then ω∗(G̃(H ′)) ≥ 1
2 + η′

4 , whereas when λ0(H) ≥ β, we have that ω∗(G̃(H ′)) ≤ 1
2 −

η′

4 . J

I Corollary 10. There exists a protocol for verifiable delegation of quantum computation
where a classical client communicates with two entangled servers in one round of classical
communication.

Proof. The corollary holds from composing the circuit-to-Hamiltonian construction (see the
full version [16] of the paper for more details) with our non-local game. J

I Remark 11. The parameters of our delegation protocol allow us to use standard arguments
in relativistic cryptography to replace the assumption that the provers do not communicate
by the assumption that they can only communicate at most as fast as the speed of light. See
the full version [16] of this paper for more details on this matter.

3.1 Proof of Lemmas 7 and 8
We start by proving Lemma 7, showing an upper bound on the acceptance probability if the
provers are honest in PBT.

Proof of Lemma 7. Since PBT and ET are indistinguishable to the second prover, he also
follows the honest strategy in ET and the acceptance probability in G(H) depends uniquely
in the strategy of the first prover in ET.

Let a, b ∈ {0, 1}n be the answers of the first prover in ET and τ be the reduced state held
by the second prover on the positions T1, ..., Tn of his EPR halves, after the teleportation.

For a fixed Hl, the verifier rejects with probability

|γl|+ γlE
[∏

i∈n di
]

2 . (1)

We notice that measuring a qubit |φ〉 in the Z-basis with outcome f ∈ {±1} is equivalent
of considering the outcome (−1)gf when measuring XgZh|φ〉 in the same basis. An analog
argument follows also for the X-basis. Therefore, by fixing the answers of the first prover,
instead of considering that the second prover measured τ in respect of Hl with outcome c,
we consider that he measured ρ = ZbXaτXaZb with respect to Hl with outcome d. In this
case, by taking

∏
i∈n di as the outcome of the measurement of Hl on ρ, and averaging over

all l ∈ [m], it follows from Equation (1) that the verifier rejects in ET with probability

1
m

∑
l∈[m]

|γl|+ γlTr(ρHl)
2 = 1

2m
∑
l∈[m]

|γl|+
1
2Tr(ρH) ,
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and this value is minimized when ρ is the groundstate of H. In this case the overall acceptance
probability in G(H) is at most

1− p

 1
2m

∑
l∈[m]

|γl| −
1
2λ0(H)

 = ωh(H).

Finally, this acceptance probability is achieved if the first prover teleports the groundstate
|ψ〉 of H and report the honest outcomes from the teleportation, since τ = XaZb|ψ〉〈ψ|ZbXa

and ρ = |ψ〉〈ψ|. J

We use now the self-testing of PBT to certify the measurements of the second prover in
ET. In this way, we can bound the acceptance probability in G(H) with Lemma 7 and prove
Lemma 8.

Proof of Lemma 8. Let S be the strategy of the provers, which results in acceptance
probabilities 1− ε in PBT and 1− 1

2m
∑
l∈[m] |γl| −

1
2λ0(H) + δ in ET, for some ε and δ.

By Lemma 2, their strategy in PBT is O(
√
ε)-close to the honest strategy, up to the local

isometries VA and VB . Let Sh be the strategy where the provers follow the honest strategy
in PBT and, for ET, the first prover performs the same operations of S, but considering
the isometry VA from Theorem 2. Since the measurements performed by the provers in S
and Sh are O(

√
ε)-close to each other, considering the isometries, the distributions of the

corresponding transcripts have statistical distance at most O(
√
ε). Therefore, the provers

following strategy Sh are accepted in ET with probability at least

1− 1
2m

∑
l∈[m]

|γl| −
1
2λ0(H) + δ −O(

√
ε).

Since in Sh the provers perform the honest strategy in PBT, it follows from Lemma 7
that

1− 1
2m

∑
l∈[m]

|γl| −
1
2λ0(H) + δ −O(

√
ε) ≤ 1− 1

2m
∑
l∈[m]

|γl| −
1
2λ0(H),

which implies that δ ≤ C
√
ε, for some constant C.

The original strategy S leads to acceptance probability at most

(1− p)(1− ε) + p

1− 1
2m

∑
l∈[m]

|γl| −
λ0(H)

2 + C
√
ε

 = ωh(H)− (1− p)ε+ pC
√
ε.

For any η, we can pick p = min
{√

η

D , 1
}
, for D ≥ 2C, and it follows that

pC
√
ε− (1− p)ε ≤

2C√η
√
ε

D
− ε ≤ √η

√
ε− ε ≤ η

and therefore the maximum acceptance probability is at most ωh(H) + η. J
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Abstract
The Constraint Satisfaction Problem (CSP) and its counting counterpart appears under different
guises in many areas of mathematics, computer science, statistical physics, and elsewhere. Its
structural and algorithmic properties have demonstrated to play a crucial role in many of those
applications. For instance, topological properties of the solution set such as connectedness is related
to the hardness of CSPs over random structures. In approximate counting and statistical physics,
where CSPs emerge in the form of spin systems, mixing properties and the uniqueness of Gibbs
measures have been heavily exploited for approximating partition functions or the free energy of spin
systems. Additionally, in the decision CSPs, structural properties of the relational structures involved
– like, for example, dismantlability – and their logical characterizations have been instrumental for
determining the complexity and other properties of the problem.

In spite of the great diversity of those features, there are some eerie similarities between them.
These were observed and made more precise in the case of graph homomorphisms by Brightwell
and Winkler, who showed that the structural property of dismantlability of the target graph, the
connectedness of the set of homomorphisms, good mixing properties of the corresponding spin
system, and the uniqueness of Gibbs measure are all equivalent. In this paper we go a step further
and demonstrate similar connections for arbitrary CSPs. This requires much deeper understanding
of dismantling and the structure of the solution space in the case of relational structures, and new
refined concepts of mixing introduced by Briceño. In addition, we develop properties related to the
study of valid extensions of a given partially defined homomorphism, an approach that turns out to
be novel even in the graph case. We also add to the mix the combinatorial property of finite duality
and its logic counterpart, FO-definability, studied by Larose, Loten, and Tardif.
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1 Introduction

The Constraint Satisfaction Problem (CSP) provides a powerful framework in a wide range
of areas of mathematics, computer science, statistical physics, and elsewhere. The goal in a
CSP is to find an assignment to variables from a given set that satisfies a number of given
constraints. The counting version of the problem asks about the number of such assignments.
The CSP however appears in different forms: as the standard one outlined above in AI and
computer science [19], as the homomorphism problem in graph and model theory [22, 27], as
conjunctive query evaluation in logic and database theory [30], as computing the partition
function of a spin system in statistical physics [39] and related areas, like symbolic dynamics
and coding [35, 37].

The CSP allows for many approaches of diverse nature, and every application field
exploits some of its many facets: structural properties of constraints for complexity and
algorithms, probabilistic properties and the topology of the solution space in Random CSP
and random structures, mixing properties in statistical physics and dynamical systems, decay
of correlations and the uniqueness of probabilistic measures in approximate counting, and
homomorphic duality and logical characterizations in model theory. In [12], Brightwell and
Winkler observed that some of these properties are actually closely related, at least in the
simple case of graph homomorphisms. In this paper we take this research direction a step
further by extending Brightwell and Winkler’s results to the general CSP, and by refining
and widening the range of the properties involved.

We start off with a brief introduction of the features of the CSP considered in this paper.
Afterwards, we provide a detailed account of the necessary background and a description of
our results.

Every CSP involves a set of variables and a domain, a set of possible values for the
variables. Assumptions about these two sets differ in different areas. The most studied case in
combinatorics and complexity theory is when both sets are finite. However, many interesting
problems such as scheduling and temporal and spatial reasoning involve infinite domains; see
also extensive literature on infinite CSPs (see, for example, [4] and the references therein).
In other cases such as in statistical physics, it is natural to choose the set of variables to be
infinite (a lattice, for example). Then, it is also natural to study probability distributions
over such assignments – where Gibbs measures and the problem of their (non-)uniqueness
appear naturally [25] – and also study quantities such as entropy and free energy [3, 7].

Following [22], CSPs can be formulated as the problem of deciding the existence of a
homomorphism from a finite relational structure G to a target relational structure H, where
G and H encode the variables and the values of the CSP. The complexity of this problem,
especially the case when H is a fixed finite relational structure, has received a lot of attention,
culminating with the proof of the Feder-Vardi conjecture [14, 44]. In the present paper
we focus as well on the case when H is finite, although our main focus is not algorithmic
but rather structural. In particular, we are interested in studying the space Hom(G,H)
of homomorphism from G to H. Furthermore, following [12] we consider homomorphisms
from both finite and infinite relational structures G (although [12] only considers graphs),
a flexibility that turns out to be useful to see different aspects of homomorphism spaces
Hom(G,H) that otherwise would be meaningless.
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There is a vast literature concerning graph homomorphisms and their properties through
the lenses of statistical physics [5, 20, 11, 39]. In this context, it is very common to encode a
spin system as a pair of relational structures G and H, where G contains a set of variables/
particles and H contains the set of values/spins that each particle could take, imposing hard
constraints on them, i.e., disregarding configurations of values that do not satisfy all the
given constraints. In practical terms, all this reduces to study – individually and as a set –
the maps from G to H that are homomorphisms. In particular, many important parameters
of a spin system such as free energy and entropy can be learned from studying such a set
of homomorphisms.

In [12], Brightwell and Winkler observed that many of the properties of graph homorphisms
used in the above areas are equivalent to a single structural property of graphs, namely,
dismantlability. In this paper we follow a similar approach and study properties of CSPs over
general relational structures that we put into basically three categories: (1) dismantlability, (2)
connectedness, and (3) mixing. Furthermore, as a consequence of our results, we established
a connection with a fourth notion not initially contemplated in [12]: (4) finite duality.

Dismantlability
A graph is said to be dismantlable if it can be reduced to a single vertex removing vertices
whose neighborhood is contained in the neighborhood of some other vertex. Such trans-
formations are called folds, and they can be viewed as retractions of a very particular kind.
Dismantlable graphs were introduced in [41], based on ideas already present in [29] in the
context of lattices, and have been intensively studied in combinatorics. Distamantlability can
be generalized in a natural way to relational structures. Indeed, some variants of this notion
have been used in the study of CSPs. In particular, dismantlability has been applied in [15]
to the problem of enumerating all solutions of Hom(G,H) with polynomial delay. Also, it
has played a major role in the study of CSPs definable in first-order logic [18, 34].

Connectedness
When G is finite, it is often useful to convert Hom(G,H) into a graph and explore the
connectivity properties of this graph. The set of edges of Hom(G,H) can be defined in a
variety of ways, usually the most suitable to the problem at hand. For example, it is common
to say that two elements from Hom(G,H) are close (and therefore adjacent in the graph)
if the Hamming distance between them is smaller than a certain threshold. The particular
case when this threshold is 1 has been intensively studied, motivated initially by the fact
that the connectedness of the solution space for SAT problems over random instances is
linked to the performance of standard satisfiability algorithms, such as WalkSAT or DPLL
[1, 32]. This has given rise to a general framework called reconfiguration [28] (see also [40] for
a recent survey) that goes way beyond homomorphisms. Work in this area encompasses both
structural questions (under which conditions is Hom(G,H) connected?) and algorithmic
ones (what is the complexity of, deciding, given G and H as input, whether Hom(G,H) is
connected? Its diameter? The shortest path between two given members of Hom(G,H)?
Etc.). In the context of spin systems, the connectedness of Hom(G,H) is related to processes
that consists on periodically updating the spin of a single or a small set of particles (e.g.,
irreducibility of Glauber dynamics).

We also consider an alternative way to define adjacency in Hom(G,H) via links as in [34].
This notion of adjacency is linked to the so-called finite duality property, which is another of
the main themes of our work.
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Mixing
Mixing properties have been intensively studied in statistical physics and related areas
(see [2, 6, 8, 10, 17, 42]), and are usually applied when the set of particles in G is very
large or infinite. In this case, it can be very useful to be able to “glue” together partial
homomorphisms, provided their domains are far from each other. There are several properties
that formalize this phenomenon and it is common to establish hierarchies among them. More
concretely, given a metric in G, it is natural to ask whether there exists some uniform gap
such that for any two subsets A and B of particles sufficiently far apart (in terms of the
gap), and for any pair of homomorphisms φ, ψ ∈ Hom(G,H), we can find a third one, γ,
such that restriction of γ to A and B coincides with the restrictions of φ and ψ on A and
B, respectively. On the contrary, whenever the information content of a given set (at least
partially) determines the information content of another set (i.e., the possible values that
the variables on it can take), no matter how far it is, such a phenomenon has been called
long range action in previous work (e.g., see [13]).

Similar phenomena are used in the related area of approximate computing of partition
functions, where many algorithms are based on decay of correlations between values of remote
elements of G, which allows for approximation of partition functions based only on local
neighborhoods of variables.

Finite duality and logic characterizations
Homomorphism duality often helps to design a solution algorithm for a CSP or establish its
useful properties. A graph (or relational structure) H is said to have homomorphism duality
if there is a set O of graphs, called obstructions, such that a graph G has a homomorphism
to H if and only if no graph from O is homomorphic to G. Sometimes the set of obstructions
is very simple, say, any bipartite graph has homomorphic duality, where O is the set of all
odd cycles. If O can be chosen finite, we say that H has finite duality.

Homomorphism duality is closely related to another property of CSPs. Let L be a logic
language such as first order, second order, etc. The problem of deciding homomorphisms to a
relational structure H is said to be expressible in L if there is a formula Φ in the language L
such that G has a homomorphism to H if and only if Φ is true on G. It is known, for instance,
that H has a set of obstructions consisting of relational structures of bounded treewidth if
and only if the corresponding homomorphism problem is expressible in Datalog [22], or that
H has finite duality if and only if the corresponding problem is expressible in first order logic
[34] (see, for example, [16] for a survey on dualities for CSP).

Our results
The main result of this paper is Theorem 10, that shows, for a relational structure H, the
equivalence of the following three conditions: (A) H2 dismantles to a substructure of its
diagonal, that is, the substructure of H2 induced by the set {(a, a) | a ∈ H}; (B) for any
G, the homomorphism graph Hom(G,H) is connected; and (C) for any relational structure
G, the graph Hom(G,H) satisfies certain mixing properties. These results generalize the
results from [12] to the case of general relational structures. Observe that the case of graphs
considered in [12] does not fully reflect the richness of the theory behind our result.

As a byproduct of our results, we obtain two applications. On the one hand, we
establish a link with strong spatial mixing (e.g., see [21]) and topological strong spatial
mixing (introduced in [7]). These two last properties have played an important role in the
development of deterministic approximate counting algorithms. In this paper we address the
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following question: What fixed targets H are suitable for both of these properties to hold for
any G? On the other hand, we establish a connection with finite duality, which allows us to
reprove the main theorem in [34]. We hope that our work opens the possibility of developing
new counting techniques based on this approach in a very general setting. We stress that
many of these results are new even in the graph case.

Due to space restrictions proofs are ommitted. They can be found at the full version [9].

2 Preliminaries

Let H be a countable (finite or denumerable) set and k a positive integer. The set of k-tuples
over H is denoted by Hk. A (k-ary) relation R over H is a subset R ⊆ Hk. The elements
of a relation R will be denoted in boldface, e.g., a, b, etc., and a[i] will denote the ith entry
of a for 1 ≤ i ≤ k.

Given another countable set G and a map φ : G→ H, for a k-tuple a over G we shall
use φ(a) to denote the k-tuple over H obtained after applying φ to a componentwise. If
V ⊆ G, we will denote by φ|V the restriction of φ to V . Furthermore, if ψ is another map
with domain H, we shall use ψ ◦ φ to denote the composition of ψ with φ, i.e., the map
x 7→ ψ(φ(x)).

A signature τ is a finite collection of relation symbols R, each of them with an associated
arity. For a given signature τ , a relational structure (with signature τ) – or simply, a
τ-structure – H consists of a countable set H called the universe of H and a relation R(H)
for each R ∈ τ , such that the arity of R(H) equals that of R. We shall use the same capital
letter to denote the universe of a τ -structure, e.g., H is the universe of H. We will usually
consider τ to be a fixed signature, and G and H to be τ -structures with universes G and H,
respectively.

A relational structure is said to be finite if its universe is finite and locally finite if
every element in its universe occurs only in a finite number of its tuples.
I Remark 1. A digraph G (with self-loops allowed) is a very particular case of a relational
structure, where the signature τ consists of a unique relation symbol E of arity 2. Moreover,
graphs correspond to the digraph case where E(G) is a symmetric relation.

A map φ : G → H is said to be a homomorphism from G to H if, for every relation
symbol R ∈ τ ,

a ∈ R(G) ⇒ φ(a) ∈ R(H).

We will denote by Hom(G,H) the set of all homomorphisms from G to H.

I Example 2. A particular example of CSPs that cannot be represented in the setting of
Brightwell and Winkler (that is, as homomorphisms of graphs) is the case of d-dimensional
nearest-neighbor (n.n.) shifts of finite type (SFTs), a fundamental object in dynamical
systems and probability (see [35, 36, 37]). Given a positive integer d, consider the signature
τ = {R1, . . . , Rd}, where Ri is a 2-ary relation for all 1 ≤ i ≤ d. We consider two τ -structures
G and H. Here, G will be an infinite relational structure with universe G = Zd and relations
Ri(G), 1 ≤ i ≤ d, representing the usual d-dimensional hypercubic lattice and the adjacency
of pairs of elements in it. On the other hand, H will be a finite relational structure with
universe H and Ri(H) representing pairs of “colors” from H that are allowed to be adjacent
in the canonical ith direction of the lattice, 1 ≤ i ≤ d. Then, X = Hom(G,H) is known as
a d-dimensional n.n. SFT, a set of colorings of Zd with not necessarily isotropic adjacency
rules (i.e., we do not need to have the same restrictions in every direction), and any such
object can be represented in this way.
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A relational structure J is a substructure of H if J ⊆ H and, for every relation symbol
R ∈ τ , we have that R(J) ⊆ R(H). Furthermore, if for every k-ary R ∈ τ , we have that
R(J) = R(H)∩Jk, then we say that J is the substructure of H induced by J . If J ⊆ H and
φ : H → J is a homomorphism acting as the identity on J , then φ is said to be a retraction.

The product of H1 and H2, denoted H1 ×H2, is the τ -structure with universe H1 ×H2
where, for every k-ary relation symbol R ∈ τ , we have that R(H1 ×H2) consists of all tuples
((a1, b1), . . . , (ak, bk)) with (a1, . . . , ak) ∈ R(H1) and (b1, . . . , bk) ∈ R(H2). We shall denote
by H2 the product H × H. The projections π1, π2 : H2 → H are the maps (a, b) 7→ a

and (a, b) 7→ b, respectively, for (a, b) ∈ H2. An element (a, b) of H2 is diagonal if a = b.
The diagonal set of H2, denoted ∆(H2), is the set of its diagonal elements. Similarly, the
diagonal structure of H2, denoted ∆(H2), is the substructure of H2 induced by ∆(H2). A
substructure K of H2 is symmetric whenever (a, b) ∈ K if and only if (b, a) ∈ K. Notice
that H2 is always symmetric.

In this paper, we will study properties of H and how they relate to other properties
of Hom(G,H) for arbitrary G. We mainly consider three families of properties, namely,
dismantling of H, connectedness of some particular graphs with vertex set Hom(G,H), and
mixing properties of Hom(G,H).

2.1 Dismantling
Let H be a τ -structure and let a, b be elements in its universe H. We say that b dominates
a (in H) if for every k-ary R ∈ τ , any i ∈ {1, . . . , k}, and any (a1, . . . , ak) ∈ R(H) with
ai = a, we also have that (a1, . . . , ai−1, b, ai+1, . . . , ak) ∈ R(H). Additionally, if a 6= b, then
we say that a is dominated (in H).

A sequence of τ -structures J0, . . . , J` is a dismantling sequence if for every 0 ≤ j < `

there exist aj , bj ∈ Jj such that bj dominates aj in Jj , and Jj+1 is the substructure of Jj
induced by Jj \ {aj}. In this case, we say that J0 dismantles to J`. We can alternatively
denote a dismantling sequence by giving the initial relational structure J0 and the sequence
of elements a0, . . . , a`−1. We say that H is dismantlable if it dismantles to a τ -structure
such that its universe is a singleton.

Note that for every 0 ≤ j < ` there is a natural retraction rj from Jj to Jj+1, where
rj maps aj to bj and acts as the identity elsewhere. We call such retractions a fold. By
successive composition, one can define a retraction (namely, rj′−1 ◦ · · · ◦ rj) from Jj to Jj′

for every j ≤ j′.
It is well known that if H dismantles to some substructure K, then this dismantling can

be found in a greedy manner. Formally,

I Lemma 3 ([34, Lemma 5.1]). If H dismantles to K and a ∈ H \K is dominated in H, then
the substructure of H induced by H \ {a} dismantles to K.

Let J ⊆ H. We say that H is J-non-foldable if every dominated element in H be-
longs to J .

2.2 Walks in relational structures
We define a walk w in a τ -structure H to be a sequence

a0, i1, (R1,a1), j1, a1, . . . , an−1, in, (Rn,an), jn, an

for some n ≥ 0, such that, for all 1 ≤ ` ≤ n,
R` ∈ τ , a` ∈ R`(H), i` 6= j`, and
a`−1 = a`[i`] and a` = a`[j`].
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In this case, we will say that w joins a0 (the starting point) and an (the ending
point), and that the length of the walk w is n. Notice that if a walk w joins a0 and an, then
there is another walk w′ that joins an and a0 obtained by just reversing the order of indices.
The distance dist(a, b) between two elements a, b ∈ H is defined to be the smallest length
among all the walks w that join a and b. The distance dist(V,W ) between sets V,W ⊆ H is
defined to be the minimum distance between an element from V and an element from W .

Note that the definition of walk above coincides with the standard definition of walk
when H is a graph. However, in the case of graphs it will be convenient to describe the walk
merely as the list a0, . . . , an of its nodes, as usual.

A τ -structure H is connected if there is a walk joining any pair of elements of its universe
H and a connected component is any induced substructure that is connected and maximal
in the sense of inclusion. A walk w is a circuit if n > 0, the starting and ending points of w
coincide, and for all 1 ≤ ` < `′ ≤ n, we have that (R`,a`) 6= (R`′ ,a`′). A τ -structure T is a
τ-forest if it has no circuits. If, additionally, it is connected then it is a τ-tree. Usually,
τ -trees are defined using the notion of incidence multigraph (see for example [34]). It is easy
to verify that the definition given here is equivalent.

2.3 Forest of walks
Given a τ -structure H, we proceed to define a new τ -structure TH. The universe TH of TH
consists of all the walks w in H. For a k-ary R ∈ τ , we define R(TH) as follows: for all
a = (a1, . . . , ak) ∈ R(H), for all 1 ≤ i ≤ k, and for all walks w ending in ai, we include in
R(TH) the tuple (w1, . . . , wi−1, w, wi+1, . . . , wk), where wj , j 6= i, is the walk obtained from
w by extending it with i, (R,a), j, aj .

We note that TH does not have circuits and has exactly |H| connected components, i.e.,
|H| τ -trees. It is easy to check that for every substructure I of H, the τ -structure TI is a
substructure of TH.

I Remark 4. If H is connected and we consider a slight modification of this previous definition,
where the walks are asked to be non-backtracking (i.e., for every 1 ≤ ` < n, we have that
either i` 6= j`+1, or j` 6= i`+1, or (R`,x`) 6= (R`+1,x`+1)), then we obtain that each connected
component of the resulting τ -structure corresponds to the universal covering tree of H [31, 33]
(in particular, they are all the same up to isomorphism).

Note that, by construction, the map ρH : TH → H that sends every walk w in TH to its
ending point, that from now on we refer as the label map, defines a homomorphism from
TH to H. Furthermore,

I Lemma 5. Assume that H is J-non-foldable for some J ⊆ H and let U be a cofinite subset
of TH containing ρ−1

H (J). Then, every homomorphism in Hom(TH,H) that agrees with ρH in
U is identical to ρH.

Proof. Given n ≥ 0, let Wn be the set of walks of length at least n in H (notice that
Wn ⊆Wn−1 and W0 = TH). We shall show that any ρ′ ∈ Hom(TH,H) that agrees with ρH
in Wn ∪ ρ−1

H (J) for arbitrary n also agrees with ρH in Wn−1 . Let w be any walk of length
n − 1 and let a be its ending point. We first show that ρ′(w) dominates a in H. Indeed,
let R ∈ τ and let a = (a1, . . . , ak) ∈ R(H), where a appears, say, in the ith coordinate. By
construction, R(TH) contains the tuple w = (w1, . . . , wi−1, w, wi+1, . . . , wk), where for every
j 6= i, wj is obtained by concatenating i, (R,x), j, aj at the end of w. Since wj has length n
for every j 6= i, it follows by assumption that ρ′(wj) = aj . That is, ρ′(w) (which must be a
tuple in R(H)) is obtained by replacing, in a, ai by ρ′(w).
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Hence, we have shown that ρ′(w) dominates a in H. Since H is J-non-foldable it follows
that either ρ′(w) = a (and, hence, ρ′(w) = ρH(w)) or a ∈ J (and, hence, ρ′(w) = ρH(w) since
w ∈ ρ−1

H (J)). To conclude the proof it is only necessary to observe that, since U is a cofinite
set containing ρ−1

H (J), it follows that any homomorphism that agrees with ρH in U , agrees
as well in Wn ∪ ρ−1

H (J) for sufficiently large n. J

2.4 Graphs of homomorphisms
Let G and H be τ -structures and suppose that H is finite. We define two different kinds
of graphs with vertex set Hom(G,H). The first notion has been heavily studied, from an
algorithmic perspective, in the context of the so-called CSP reconfiguration problem (see
[26] and the references therein) and, in the special cases when G and H are graphs also from
an structural point of view [12]. We define C(G,H) as the (reflexive) graph with vertex set
Hom(G,H) such that for every φ, ψ ∈ Hom(G,H), φ and ψ are adjacent if and only if φ and
ψ differ in at most one value, i.e., there exists at most one x ∈ G such that φ(x) 6= ψ(x).
More generally, for any n ≥ 1 we can define Cn(G,H) on Hom(G,H) by declaring φ and ψ
adjacent if they differ in at most n values (in particular, C(G,H) = C1(G,H)).

A second notion of graph of homomorphisms appears in [34] and uses the notion of links.
The 1-link L (with signature τ) is the τ -structure with universe {0, 1}, where R(L) = {0, 1}k
for every k-ary R ∈ τ . Define a (di)graph L(G,H) with vertex set Hom(G,H) as follows: set
φ→ ψ – i.e., a directed edge starting from φ and ending in ψ – if for any k-ary R ∈ τ and any
(x1, . . . , xk) ∈ R(G), we have that (γ1(x1), . . . , γk(xk)) ∈ R(H) whenever γ1, . . . , γk ∈ {φ, ψ}.
Alternatively, one can say that there φ and ψ are joined by a directed edge if there exists a
homomorphism from L to HG, the Hth power of G (see [34, Section 5.2]), mapping 0 to φ
and 1 to ψ. Notice that the symmetry in the definition of 1-link implies that L(G,H) is, in
fact, an undirected graph.

Clearly, Cn(G,H) is a subgraph of Cn+1(G,H). In contrast, Cn(G,H) and L(G,H) are
not included in one another in general.

Note that there is a one-to-one correspondence between the elements in Hom(L×G,H)
and the edges of L(G,H). More generally, for ` ≥ 1 we define the `-link L` (with signature
τ) as the τ -structure with universe {0, 1, . . . , `}, where R(L`) = ∪`−1

i=0{i, i + 1}k, for every
k-ary R ∈ τ . In other words, the `-link is a sequence of 1-links with their endpoints identified.
Then the following result is immediate:

I Lemma 6. For every map φ : {0, 1, . . . , `}×G→ H and every 1 ≤ i ≤ `, let φ(i) : G→ H

be the map defined by φ(i)(x) 7→ φ(i, x) for x ∈ G. Then, φ ∈ Hom(L` ×G,H) if and only if
φ(0), . . . , φ(`) is a walk in L(G,H).

2.5 Mixing properties
Given τ -structure G and H, it is useful to study properties in Hom(G,H) that allow us to
glue together partially defined homomorphisms. This kind of properties are usually referred
in the literature as mixing properties (e.g., see [8, 10]).

A natural mixing property is irreducibility. We say that Hom(G,H) is (V,W )-irreducible
for V,W ⊆ G, if for every φ, ψ ∈ Hom(G,H), there exists a map γ ∈ Hom(G,H) that agrees
with φ on V and agrees with ψ on W .

Given g ≥ 0, we say that Hom(G,H) is strongly irreducible with gap g if for every
V,W such that dist(V,W ) ≥ g and for all φ, ψ ∈ Hom(G,H), there exists γ ∈ Hom(G,H)
that agrees with φ on V and agrees with ψ on W . We say that Hom(G,H) is strongly
irreducible if it is strongly irreducible with gap g for some g.
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A strengthening of strong irreducibility is the following property, introduced in [7]. Given
g ≥ 0, we say that Hom(G,H) is topologically strong spatial mixing (TSSM) with
gap g if for every V,W, S ⊆ G such that dist(V,W ) ≥ g and for all φ, ψ ∈ Hom(G,H) that
agree on S, there exists γ ∈ Hom(G,H) that agrees with φ on V ∪ S and agrees with ψ on
S ∪W . We say that Hom(G,H) is topologically strong spatial mixing if it is TSSM
with gap g for some g.

Clearly, Hom(G,H) is TSSM only if Hom(G,H) is strongly irreducible but not viceversa
(see [7, 8] for some counterexamples).

An antithesis of having good mixing properties is the existence of configurations which
are frozen. We say that φ ∈ Hom(G,H) is a frozen configuration if for any cofinite set
U ⊆ G, the only homomorphism ψ ∈ Hom(G,H) such that ψ|U = φ|U is ψ = φ itself.

3 Dismantlability, Connectivity, and Irreducibility

In this section we present our main theorem, which characterizes in several ways a special
class of relational structures. This theorem generalizes some of the equivalences characterizing
dismantlable graphs that appear in [12, Theorem 4.1] – which were developed only for the
case of graphs – to arbitrary relational structures.

3.1 The case of graphs
The following theorem is a rephrasing of the equivalences that appear in [12, Theorem 4.1]
which are relevant to us. We will use this as a prototypical example of the kind of results
that we are aiming for, where we split the properties in 3 main categories (A) dismantlability,
(B) connectedness, and (C) mixing.

I Theorem 7 ([12, Theorem 4.1]). Let H be a graph. The following are equivalent:
(A) H is dismantlable;
(B) C(G,H) is connected for every locally finite graph G;
(C) there exists g ≥ 0 such that Hom(G,H) is strongly irreducible with gap g for every graph

G.

I Lemma 8. A graph H is dismantlable if and only if H2 dismantles to a substructure of its
diagonal.

Proof. This follows from our own results. In Theorem 10, we prove that, for a finite τ -
structure H, we have that H2 dismantles to a substructure of its diagonal if and only if
there exists g ≥ 0 such that Hom(G,H) is strongly irreducible with gap g for all τ -structures
G. In particular, this applies if τ = {E}, the usual binary relation of adjacency in graphs.
Therefore, by Theorem 7, these two properties are also equivalent to H being dismantlable,
and we conclude. J

In other words, thanks to Lemma 8, at least in the realm of graphs, we can freely replace
“dismantlable” by “the square dismantles to a substructure of its diagonal”, which will be the
relevant class of general relational structures in this work.
I Remark 9. It is important to notice that the equivalence between “dismantlable” and
“the square dismantles to a substructure of its diagonal” is not true for general relational
structures. For example, given τ = {R} for R a binary relation symbol, we can take H such
that H = {0, 1} and R(H) = {(0, 1)}. Then, H is not dismantlable, but H2 dismantles to its
diagonal.
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3.2 Main Theorem
The following theorem shows that different dismantling, connectedness, and mixing notions
are equivalent. It can be seen as a generalization of Theorem 7 to relational structures.

I Theorem 10. Let H be a finite τ -structure with universe H. Then the following are
equivalent:
(A1s) H dismantles to a structure I such that I2 dismantles to its diagonal;
(A2s) H2 dismantles to a substructure of its diagonal;
(B1s) C(G,H) is connected for every locally finite τ -structure G;
(B2s) there exists some n ≥ 1 such that Cn(G,H) is connected for every finite τ -structure

G;
(B3s) C(L×H2,H) is connected;
(B4s) L(G,H) is connected for every finite τ -structure G;
(B5s) the projections π1 and π2 are connected in L(H2,H);
(C1s) there exists g ≥ 0, such that Hom(G,H) is strongly irreducible with parameter g for

every τ -structure G; and
(C2s) there exists g ≥ 0, such that Hom(TH2 ,H) is ({x},W )-mixing with parameter g, for

all x ∈ TH2 and W ⊆ TH2 .

The proof of Theorem 10 can be found in the full version. Indeed, we prove a more general
version of it which will allow us to derive the applications contained in the rest of the paper.
Although due to space restrictions we cannot state the theorem in its more general form we
believe is interesting in its own. In particular, it is motivated by the fact that, sometimes, it
is natural – particularly in the context of statistical physics – to work by forcing a certain
subset of particles to take each of them a particular spin and work with the remaining ones.
For example, this is a common scenario when the particles in the boundary of a given set in
a lattice are fixed to take particular spins and we want to study the distribution of spins in
the interior of the set, conditioned on such boundary configuration. These ideas inspired the
most general version, which can be regarded as the study of boundary long range actions,
i.e., long range action phenomena where some boundary configuration is fixed, very similar
to the concept of boundary phase transition in relation to phase transitions (e.g., see [38]).

4 First application: Gibbs measures and mixing conditions

4.1 Basic definitions
Given a finite τ -structure H with universe H, a weight function for H is a map λ : H → R+.

Let G be a locally finite τ -structure. If V ⊆ G is a finite set and φ ∈ Hom(G,H), we
define PV,φ to be the probability measure on Hom(G,H) given by

PV,φ({ψ}) :=
{
ZV,φ(λ)−1 ∏

x∈V λ(ψ(x)) if ψ|V φ|G\V ∈ Hom(G,H),
0 otherwise,

for ψ ∈ Hom(G,H), where ψ|V φ|G\V is the map that coincides with ψ in V and with φ in
G \ V , and ZV,φ(λ) is a normalization constant – the partition function – defined as

ZV,φ(λ) :=
∑

ψ∈Hom(G,H)
ψ|V φ|G\V ∈Hom(G,H)

∏
x∈V

λ(ψ(x)).
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We will call the collection of probability measures {PV,φ}, the Gibbs (G,H, λ)-specifi-
cation. The boundary of a set V ⊆ G, denoted by ∂V , is defined as the set of elements
in G at distance exactly 1 from V . Notice that PV,φ depends exclusively on φ|∂V . Now,
consider events of the form

A(φ, V ) = {ψ ∈ Hom(G,H) : ψ|V = φ|V } .

Next, consider the σ-algebra F generated by all events of the form A(φ, V ) for V finite,
and defineM(G,H) to be the set of probability measures on (Hom(G,H),F).

A measure µ ∈M(G,H) is a Gibbs measure for the Gibbs (G,H, λ)-specification if for
any finite V ⊆ G and for all φ1 ∈ Hom(G,H),

µ (A(φ1, V )|A(φ2, G \ V )) = PV,φ2 ({φ1}) for µ-a.e. φ2 ∈ Hom(G,H).

In other words, the probability distribution of a random φ1 inside a finite V conditioned
on its values outside V to coincide with those of φ2, depends only on the values of φ1|V and
on the boundary, φ2|∂V . Furthermore, the conditional distribution is the same as for PV,φ2

(see also [12, Definition 2.1]).
If Hom(G,H) 6= ∅, then there always exists at least one Gibbs measure [25, Chapter 4].

A fundamental question in statistical physics is whether there exists a unique Gibbs measure
or multiple for a given Gibbs (G,H, λ)-specification.

4.2 Non-uniqueness and spatial mixing properties
In [12], it is shown that if H is a graph and it is dismantlable (or equivalently, by Lemma
8, its square dismantles to a subgraph of its diagonal), then, for any locally finite graph G,
there exists some λ such that there is a unique Gibbs measure [12, Theorem 7.2]. Conversely,
in [12] it is also proven that if H is a non-dismantlable graph, then there exists G such that
for any λ there exists multiple Gibbs measures [12, Theorem 8.2].

Here, following a similar path, we show that when extending this question to arbitrary
relational structures, the first implication does not remain true in general, but the second
still holds. More exactly,

I Proposition 11. There exists a finite τ -structure H such that H2 dismantles to a substruc-
ture of its diagonal and a locally finite τ -structure G such that for any λ there exists multiple
Gibbs measures for the Gibbs (G,H, λ)-specification. Moreover, H can be chosen so that H2

dismantles to its full diagonal ∆(H2).

I Proposition 12. Let H be a finite τ -structure. If H2 does not dismantle to a substructure
of ∆(H2), then there exists a locally finite τ -structure G such that for any λ there exists
multiple Gibbs measures for the Gibbs (G,H, λ)-specification.

In what follows we introduce some spatial mixing properties related to our results.

I Definition 13. Given J ⊆ H, we say that a Gibbs (G,H, λ)-specification satisfies spatial
J-mixing (J-SM) if there exists constants C,α > 0 such that for all φ1, φ2 ∈ Hom(G,H),
for all finite V ⊆ G, and for all x ∈ V and a ∈ H,

|PV,φ1({ψ(x) = a})− PV,φ2({ψ(x) = a})| ≤ C · exp(−α · dist(x,DJ
V (φ1, φ2))), (1)

where

DJ
V (φ1, φ2) = {x ∈ ∂V : (φ1(x), φ2(x)) ∈ H2 \∆(J2)}

and {ψ(x) = a} refers to the event that a random ψ takes the value a at x.
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The definition of J-SM unifies and interpolates two well-known properties. If J = ∅,
then D∅V (φ1, φ2) = ∂V and Eq. (1) corresponds to the definition of weak spatial mixing
(WSM), i.e., ∅-SM. On the other hand, if J = H, then DH

V (φ1, φ2) = {x ∈ ∂V : φ1(x) 6=
φ2(x)} and Eq. (1) corresponds to the definition of strong spatial mixing (SSM), i.e.,
H-SM.

In general, spatial mixing properties are forms of correlation decay that have been of
interest because of their many applications. On the one hand, WSM is related with uniqueness
of Gibbs measures and the absence of phase transitions [21]. On the other hand, SSM is a
strengthening of WSM and it is related to the absence of boundary phase transitions [38], and
has connections with the existence of FPTAS for #P-hard counting problems [3, 43], mixing
time of Glauber dynamics [21], and efficient approximation algorithms for thermodynamic
quantities [24, 7].

In [8], there were explored sufficient and necessary conditions for a graph H to have, for
any locally finite graph G, the existence of a weight function λ such that the Gibbs (G,H, λ)-
specification satisfies WSM and SSM. In particular, it was proven that dismantlability
was equivalent to the existence of Gibbs (G,H, λ)-specifications satisfying WSM for all
locally finite graph G, and therefore uniqueness, since WSM implies it. In addition, it was
observed that a direct consequence is that a necessary condition for SSM to hold is that
H is dismantlable, because SSM implies WSM. However, it was also shown that it is not a
sufficient condition. Here, we strengthen this necessary condition and extend it to the realm
of relational structures.

I Proposition 14. If H2 does not dismantle to a substructure of ∆(H2) whose universe
contains ∆(J2), then there exists a locally finite τ -structure G such that the Gibbs (G,H, λ)-
specification does not satisfy J-SM for any λ.

Two direct corollaries of this fact are the following.

I Corollary 15. If H2 does not dismantle to some substructure of the diagonal ∆(H2), then
there exists a locally finite τ -structure G such that the Gibbs (G,H, λ)-specification does not
satisfy WSM for any λ.

I Corollary 16. If H2 does not dismantle to the full diagonal ∆(H2), then there exists a
locally finite τ -structure G such that the Gibbs (G,H, λ)-specification does not satisfy SSM
for any λ.

5 Second application: finite duality revisited

Throughout this section all relational structures are assumed to be finite. We say a τ -structure
H is a core if every homomorphism from H to H is one-to-one. An obstruction to H is a
τ -structure G that admits no homomorphism to H; the obstruction G is critical if every
proper substructure (i.e., any substructure different from G itself) admits a homomorphism
to H. A relational structure H is said to have finite duality if it has only finitely many
critical obstructions.

We say that a τ -structure H contains all constants if for every a ∈ H there exists
Ra ∈ τ such that Ra(H) = {a}. Note that every such τ -structure is a core. It is well know
that relational structures with constants allow us to specify the desired image of a given
element. More formally, let G be any τ -structure, x ∈ G, and a ∈ H. It is immediate that
the τ -structure Ga obtained from G by adding a to Ra(G), satisfies the following property:
For every φ : G→ H,

φ ∈ Hom(Ga,H)⇔ φ ∈ Hom(G,H) and φ(x) = a.
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We shall say that Ga is obtained by coloring x to a in G.
The main result in [34] states that a core relational structure H has finite duality if and

only if H2 dismantles to its diagonal. It is not difficult ot see that this result follows from our
work. In addition, in can be shown that, when H contains all constants, having finite duality
is equivalent to having finitely many critical τ -tree obstructions, which was not previously
known.

I Theorem 17. Let H be a finite τ -structure which is a core. Then, the following are
equivalent:
(A1c) H2 dismantles to its diagonal;
(D1c) H has finitely many critical obstructions.

Furthermore, if H contains all the constants then the following condition is also equivalent:
(D2c) H has finitely many critical τ -tree obstructions.

It has been shown in [23] that if a τ -structure H has finite duality then there exists some
finite set F of τ -trees such that for every τ -structure I not homomorphic to H, there exists
a τ -tree in F that is homomorphic to I but not homomorphic to H. We want to note that
the equivalence between conditions (D2c) and (D1c) does not follow from this fact. Indeed,
direction (D2c)⇒ (D1c) does not even hold when we do not require that the τ -structure H
is equipped with constants as witnessed by the case when H is the oriented 3-cycle. Note
that, in this case, H satisfies (D2c) since every τ -tree is homomorphic to H and, hence, H
has no critical τ -tree obstructions at all. However, since any oriented cycle whose length is
not a multiple of 3 is a critical obstruction of H, it follows that H does not satisfy (D1c).
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Abstract
The communication class UPPcc is a communication analog of the Turing Machine complexity
class PP. It is characterized by a matrix-analytic complexity measure called sign-rank (also called
dimension complexity), and is essentially the most powerful communication class against which we
know how to prove lower bounds.

For a communication problem f , let f ∧ f denote the function that evaluates f on two disjoint
inputs and outputs the AND of the results. We exhibit a communication problem f with UPPcc(f) =
O(log n), and UPPcc(f ∧ f) = Θ(log2 n). This is the first result showing that UPP communication
complexity can increase by more than a constant factor under intersection. We view this as a first step
toward showing that UPPcc, the class of problems with polylogarithmic-cost UPP communication
protocols, is not closed under intersection.

Our result shows that the function class consisting of intersections of two majorities on n bits has
dimension complexity nΩ(log n). This matches an upper bound of (Klivans, O’Donnell, and Servedio,
FOCS 2002), who used it to give a quasipolynomial time algorithm for PAC learning intersections of
polylogarithmically many majorities. Hence, fundamentally new techniques will be needed to learn
this class of functions in polynomial time.
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1 Introduction

The unbounded-error communication complexity model UPPcc was introduced by Paturi
and Simon [21] as a natural communication analog of the Turing Machine complexity class
PP. In a UPPcc communication protocol for a Boolean function f(x, y), there are two
parties, one with input x and one with input y. The two parties engage in a private-coin
randomized communication protocol, at the end of which they are required to output f(x, y)
with probability strictly greater than 1/2. The cost of the protocol is the number of bits
exchanged by the two parties. As is standard, we use the notation UPPcc not only to denote
the communication model, but also the class of functions solvable in the model by protocols
of cost polylogarithmic in the size of the input.

Observe that success probability 1/2 can be achieved with no communication by random
guessing, so the UPPcc model merely requires a strict improvement over this trivial solution.
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Owing to this liberal acceptance criterion, UPPcc is a very powerful communication model,
essentially the most powerful one against which we know how to prove lower bounds. In
particular, UPPcc is powerful enough to simulate many other models of computing, and this
makes UPPcc lower bounds highly useful. As one example, any function f(x, y) computable
by a Threshold-of-Majority circuit of size s has UPPcc complexity at most O(log s), and
this connection has been used to translate UPPcc lower bounds into state of the art lower
bounds against threshold circuits (see, for example, [10, 22, 8, 28, 6]).

UPPcc also happens to be characterized by a natural matrix-analytic complexity measure
called sign-rank [21]. Here, the sign-rank of a matrix M ∈ {−1, 1}N×N is the minimum rank
of a real matrix whose entries agree in sign with M . Equivalently, sr(M) := minA rk(A),
where the minimum is over all matrices A such that Ai,j ·Mi,j > 0 for all i, j ∈ [N ]. Paturi
and Simon [21] showed the following tight connection between UPPcc and sign-rank: if we
associate a function f(x, y) with the matrixM = [f(x, y)]x,y, then the UPPcc communication
complexity of f equals log(sr(M))±Θ(1).

While lower bounds on UPPcc complexity (equivalently, sign-rank) are useful in com-
plexity theory, upper bounds on these quantities imply state of the art learning algorithms,
including the fastest known algorithms for PAC learning DNFs and read-once formulas [17, 1].
More specifically, suppose we want to learn a concept class C of functions mapping {−1, 1}n
to {−1, 1}. C is naturally associated with a |C| × 2n matrix M , whose ith row equals the
truth table of the ith function in C. Then C can be distribution-independently PAC learned
in time polynomial in the sign-rank of M . (The sign-rank of M is often referred to in the
learning theory literature as the dimension complexity of C.) Moreover, the resulting learning
algorithm is robust to random classification noise, a property not satisfied by the handful of
known PAC learning algorithms that are not based on dimension complexity.

For the purpose of our work, one particularly important application of the dimension-
complexity approach to PAC learning was derived by Klivans et al. [16], who showed that
the concept class consisting of intersections of 2 majority functions has dimension complexity
at most

(
n

O(logn)
)
≤ nO(logn). They thereby obtained a quasipolynomial time algorithm for

PAC learning intersections of two majority functions.1 Prior to our work, it was consistent
with current knowledge that the dimension complexity of this concept class is in fact poly(n),
which would yield a polynomial time PAC learning algorithm for intersections of constantly
many majority functions.

1.1 Our Results
Despite considerable effort, progress on understanding sign-rank (equivalently, UPPcc) has
been slow. Our lack of knowledge is highlighted via the following well-known open question
(cf. Göös et al. [13]). Throughout, for any function f : {−1, 1}n → {−1, 1}, f ∧ f denotes
the function on twice as many inputs obtained by evaluating f on two disjoint inputs and
outputting −1 only if both copies of f evaluate to −1, i.e., (f ∧ f) (x1, x2) := f(x1) ∧ f(x2).

I Question 1. Is the class UPPcc closed under intersection? In other words, suppose
the function f(x, y) : {−1, 1}n × {−1, 1}n → {−1, 1} satisfies UPPcc(f) = O((logn)c) for
some constant c. Is there always some constant c1 (which may depend on c) such that
UPP(f ∧ f) ≤ O ((logn)c1)? More generally and informally, if UPPcc(f) is “small”, does
this imply any non-trivial upper bound on UPPcc(f ∧ f)?

1 In fact, their algorithm runs in quasipolynomial time for intersections of polylogarithmic many majorities.
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Prior to our work, essentially nothing was known about Question 1. In particular, we are
not aware of prior work ruling out the possibility that UPPcc(f ∧ f) ≤ O(UPPcc(f)). On
the other hand, for reasons that will become apparent in Section 1.2, there is good reason to
suspect that there exists a function f with UPPcc(f) = O(logn), yet UPPcc(f ∧ f) ≥ Ω(n).
While we do not obtain a full resolution of Question 1, we do show for the first time that
UPPcc complexity can increase significantly under intersection.

Babai, Frankl and Simon [2] observed that there are two natural communication complexity
analogs of the Turing machine class PP, namely PPcc and UPPcc. It is well known [3] that
PPcc is closed under intersection. Our work can be viewed as a first step towards showing
that, in contrast, UPPcc is not closed under intersection.

I Theorem 1. There is a function f(x, y) : {−1, 1}n × {−1, 1}n → {−1, 1} such that
UPPcc(f) = O(logn), yet UPPcc(f ∧ f) = Θ(log2 n).

In fact, for each fixed x ∈ {−1, 1}n, the function f(x, y) from Theorem 1 simply outputs
the majority of some subset of the bits of y. This yields the following corollary.

I Corollary 2. Let C be the concept class in which each concept is the intersection of two
majorities on n bits. Then C has dimension complexity nΘ(logn).

Corollary 2 shows that the dimension complexity upper bound of Klivans et al. [16] is
tight for intersections of two majorities, and new approaches will be needed to PAC learn
this concept class in polynomial time. For context, we remark that learning intersections
of majorities is a special case of the more general problem of learning intersections of
many halfspaces.2 The latter is a central and well-studied challenge in learning theory, as
intersections of halfspaces are powerful enough to represent any convex set, and they contain
many basic problems (like learning DNFs) as special cases. In contrast to the well-understood
problem of learning a single halfspace, for which many efficient algorithms are known, no
2o(n)-time algorithm is known for PAC learning even the intersection of two halfspaces. There
have been considerable efforts devoted to showing that learning intersections of halfspaces is
a hard problem [18, 9, 15, 4], but these results apply only to intersections of many halfspaces,
or make assumptions about the form of the output hypothesis of the learner. Our work can
be seen as a new form of evidence that learning intersections of even two majorities is hard.

1.2 Our Techniques
UPPcc has a query complexity analog, denoted UPPdt and defined as follows. A UPPdt

algorithm is a randomized algorithm which on input x, queries bits of x, and must output f(x)
with probability strictly greater than 1/2; the cost of the protocol is the number of bits of x
queried. How UPPdt behaves under intersection is now well understood. More specifically,
it is known [25] that there is a function f : {−1, 1}n → {−1, 1} (in fact, a halfspace) such
that UPPdt(f) = O(1), yet UPPdt(f ∧ f) = Θ(n). Define the Majority function, which we
denote by MAJ, to be −1 if at least half of its input bits are −1. It is also known [26, 20] that
MAJ satisfies UPPdt(MAJ) = O(1), yet UPPdt (MAJ ∧MAJ) = Θ(logn). Our goal in this
paper is, to the extent possible, to show that the UPPcc communication model behaves
similarly to its query complexity analog.

2 A halfspace is any function of the form sgn
(∑n

i=1 wi · xi + w0
)
for some real numbers w0, . . . , wn.
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Over the course of the last decade, there has been considerable progress in proving lifting
theorems [23, 12, 11]. These theorems seek to show that if a function f has large complexity
in some query model C, then for some “sufficiently complicated” function g on a “small”
number of inputs, the composition f ◦g has large complexity in the associated communication
model (ideally, Ccc(f ◦ g) & Cdt(f)).

Unfortunately, a “generic” lifting theorem for UPP complexity is not known. That is,
it is not know how to take an arbitrary function f with high UPPdt complexity, and by
composing it with a function g on a small number of inputs, yield a function with high
UPPcc complexity.

However, as we now explain, some significant partial results have been shown in this
direction. It is well-known that UPPdt(f) is equivalent to an approximation-theoretic notion
called threshold degree, denoted deg±(f) (which we do not define here). The threshold degree
of f can in turn be expressed as the value of a certain (exponentially large) linear program.
Linear programming duality then implies that one can prove lower bounds on deg±(f) by
exhibiting good solutions to the dual linear program. We refer to such dual solutions as
dual witnesses for threshold degree. Sherstov [24] and Razborov and Sherstov [22] showed
that if deg±(f) is large, and moreover this can be exhibited by a dual witness satisfying a
certain smoothness condition, then there is a function g defined on a constant number of
inputs such that f ◦ g does have large UPPcc complexity. Several recent works [6, 5, 7, 28]
have managed to prove new UPPcc lower bounds by constructing, for various functions f ,
smooth dual witnesses exhibiting the fact that deg±(f) is large.

Our key technical contribution is to bring this approach to bear on the function F (x, y) =
MAJ(x) ∧MAJ(y). Specifically, we show that the (known) threshold degree lower bound
deg±(F ) ≥ Ω(logn) can be exhibited by a smooth dual witness.

We do this as follows. Sherstov [26] showed that for any function f : {−1, 1}n → {−1, 1},
the threshold degree of the function F = f ∧ f is characterized by the rational approximate
degree of f , i.e., the least total degree of real polynomials p and q such that |f(x)−p(x)/q(x)| ≤
1/3 for all x ∈ {−1, 1}n. He then showed that the rational approximate degree of MAJ is
Ω(logn), thereby concluding that F (x, y) has threshold degree Ω(logn).

From Sherstov’s arguments, one can derive a dual witness ψ for the fact that the rational
approximate degree of MAJ is Ω(logn), and then transform ψ into a dual witness φ for
the fact that F (x, y) has threshold degree Ω(logn). Unfortunately, neither ψ nor φ satisfies
the type of smoothness condition required by Razborov and Sherstov’s machinery to yield
UPPcc lower bounds.

The smoothness condition required for the Razborov-Sherstov machinery to work essen-
tially states that the the mass of the dual witness ψ has to be “relatively large” (a reasonably
large fraction of what mass the uniform distribution would have placed) on a “large” set of
inputs (the fraction of inputs which do not have large mass has to be small).

To construct a smooth dual witness ψ′ for F , our primary technical contribution is to
construct a smooth dual witness φ′ for the fact that the rational approximate degree of MAJ
is Ω(logn). We then apply a different transformation, due to Sherstov [27], of φ′ into a
dual witness for the fact that the threshold degree of F is Ω(logn), and we show that this
transformation preserves the smoothness of ψ′.

In a nutshell, our smooth dual witness for MAJ is obtained in two steps: first we
define for all inputs x whose Hamming weight lies in [n/2 − bn2/3c, n/2 + bn2/3c], a dual
witness φ′x that places a large mass on x and not too much mass on other points. Next,
we define the final dual witness φ′(x) to be a certain weighted average over x of all the
dual witnesses thus obtained. The resulting mass on φ′(x) for each x of Hamming weight
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in [n/2− bn2/3c, n/2 + bn2/3c] is large enough, and the fraction of inputs whose Hamming
weight is not in [n/2−bn2/3c, n/2 + bn2/3c] is small enough, to allow us to use the Razborov-
Sherstov framework (Theorem 5) to prove the desired sign-rank lower bound on the pattern
matrix of F .

2 Preliminaries

All logarithms in this paper are taken base 2. We use the notation exp(x) to denote ex,
where e is Euler’s number. Given any finite set X and any functions f, g : X → R, define
‖f‖1 :=

∑
x∈X |f(x)| and 〈f, g〉 :=

∑
x∈X f(x)g(x). We refer to ‖f‖1 as the `1-norm of f .

For any x ∈ {−1, 1}n, we use the notation |x| to denote the Hamming weight of x, which is
the number of −1’s in the string x.

Paturi and Simon [21] showed the following equivalence between the sign-rank of a matrix
and the UPPcc cost of its corresponding communication game.

I Theorem 3. For any F : {−1, 1}2n×{−1, 1}n→{−1, 1}, let MF denote its communication
matrix, defined by MF (x, y) = F (x, y). Then, UPPcc(F ) = log sr(MF )±O(1).

Let n,N be positive integers such that n divides N . Partition the set [N ] := {1, . . . , N}
into n disjoint blocks {1, 2, . . . , N/n} , {N/n+ 1, . . . , 2N/n} , . . . , {(n− 1)N/n+ 1, . . . , N}.
Define the set P(N,n) to be the collection of subsets of [N ] which contain exactly one
element from each block. For x ∈ {−1, 1}n and S ∈ P(N,n), let x|S = (xs1 , . . . , xsn), where
s1 < s2 < · · · < sn are the elements of S.

I Definition 4 (Pattern matrix). For any function φ : {−1, 1}n → R, the (N,n, φ)-pattern
matrix M is defined as follows.

M = [φ(x|S)⊕ w]x∈{−1,1}N ,(S,w)∈P(N,n)×{−1,1}n .

Note that M is a 2N × (N/n)n2n matrix.

In a breakthrough result, Forster [10] proved that an upper bound on the spectral norm of
a sign matrix implies a lower bound on its sign-rank. Razborov and Sherstov [22] established
a generalization of Forster’s theorem [10] that can be used to prove sign-rank lower bounds
for pattern matrices. Specifically, we require the following result, implicit in their work [22,
Theorem 1.1].

I Theorem 5 (Implicit in [22]). Let f : {−1, 1}n → {−1, 1} be any Boolean function and
α > 1 be a real number. Suppose there exists a function φ : {−1, 1}n → R satisfying the
following conditions.∑

x∈{−1,1}n |φ(x)| = 1.
For all polynomials p of degree at most d,

∑
x∈{−1,1}n φ(x)p(x) = 0.

f(x) · φ(x) ≥ 0 ∀x ∈ {−1, 1}n .
|φ(x)| ≥ γ for all but a ∆ fraction of inputs x ∈ {−1, 1}n.

Then, the sign-rank of the (N,n, f)-pattern matrix M can be bounded below as

sr(M) ≥ γ

1
2n

(
n
N

)d/2 + γ∆
.

We require the following well-known combinatorial identity.

B Claim 6. For every polynomial p of degree less than 2n, we have
∑n
t=−n(−1)t

( 2n
n+t
)
p(t) = 0.
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Recall from Section 1.2 that the rational ε-approximate degree of f is the least degree
of two polynomials p and q such that |f(x) − p(x)/q(x)| ≤ ε for all x in the domain of f .
Sherstov [27, Theorem 6.9] showed that a dual witness to the rational approximate degree of
any function f can be converted to a threshold degree dual witness for ORn ◦ f . Implicit
in his theorem is the fact that a smooth dual witness to the rational approximate degree
of f can be converted to a smooth dual witness for the threshold degree of ORn ◦ f . More
precisely, the following result is established by the proof of [27, Theorem 6.9].

I Theorem 7 (Sherstov [27]). Let f : {−1, 1}n → {−1, 1} be any function. Let F denote
ORt ◦ f : {−1, 1}nt → {−1, 1}, and δ > ε > 0 be any real numbers.

Suppose there exist functions ψ0, ψ1 : {−1, 1}n → R that are not identically 0 and satisfy
the following properties:

f(x) = 1 =⇒ ψ0(x) ≥ δ|ψ1(x)|, (1)
f(x) = −1 =⇒ ψ1(x) ≥ δ|ψ0(x)|, (2)
deg(p) < d =⇒ 〈ψ0, p〉 = 0 and 〈ψ1, p〉 = 0. (3)

Then there exist functions A,B : {−1, 1}nt → R such that Ψ = 1
δA−

1
εB satisfies the following

properties.

deg(p) ≤ min
{
bε2tcd, d

}
=⇒ 〈Ψ, p〉 = 0. (4)

F (x) ·Ψ(x1, . . . , xt) ≥ (δ − ε)2t
t∏
i=1
|ψ0(xi)| for all x ∈ {−1, 1}nt . (5)

|A(x1, . . . , xt)| ≤
t∏
i=1
|ψ0(xi)| for all x = (x1, . . . , xt) ∈ {−1, 1}nt . (6)

|B(x1, . . . , xt)| ≤
∏

i:f(xi)=0

|ψ0(xi)| ·
∏

i:f(xi)=1

δψ1(xi) +
t∏
i=1

(|ψ0(xi)| − δψ1(xi))

for all x = (x1, . . . , xt) ∈ {−1, 1}nt . (7)

3 A Smooth Dual Witness for Majority

Our main technical contribution in this paper is captured in Theorem 8 below. This theorem
constructs a smooth dual witness R for the hardness of rationally approximating the sign
function on {0,±1, . . . ,±n}. We defer the proof until Section 4.

I Theorem 8. Let 1 ≤ d ≤ 1
3 logn and let n be odd. There exists a function R :

{0,±1, . . . ,±n} → R such that
n∑

t=−n
|R(t)| = 1. (8)

For δ = exp(−18/(n1/(6d))) and every t = 1, 2, . . . , n,

R(t) ≥ δ|R(−t)|. (9)

If p : {0,±1, . . . ,±n} → R is any polynomial of degree less than d− 2, then

〈R, p〉 = 0. (10)
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For every t ∈ {0,±1,±2, . . . ,±bn2/3c} we have

|R(t)| ≥ Ω
(

1
n20

)
. (11)

The following theorem shows how to convert the (univariate) function R from Theorem 8
into a dual witness for the (multivariate) MAJ function.

I Theorem 9. Let 1 ≤ d ≤ 1
3 logn and let n be odd. Let R : {0,±1, . . . ,±n} → R be any

function obtained in Theorem 8. Then, the multivariate polynomial R′ : {−1, 1}2n → R
defined by R′(x) = R(n− |x|)/

(2n
|x|
)
satisfies the following properties.

‖R′‖1 = 1. (12)
For δ = exp(−18/(n1/(6d))) and every t = 1, 2, . . . , n,

R′(x) ≥ δ|R′(y)| (13)

for any x, y ∈ {−1, 1}2n such that |x| = n− t, |y| = n+ t.
For any polynomial p of degree at most d− 2,

〈R′, p〉 = 0. (14)

For all x ∈ {−1, 1}2n such that n− bn2/3c ≤ |x| ≤ n+ bn2/3c,

|R′(x)| ≥ Ω
(

1
n20 · 22n

)
. (15)

Proof. To establish Equation (12), observe:

‖R′‖1 =
∑

x∈{−1,1}2n

|R′(x)| =
2n∑
t=0

 ∑
x∈{−1,1}2n:|x|=t

|R′(x)|


=

2n∑
t=0

(
2n
t

)
|R(n− t)|/

(
2n
t

)
=

n∑
t=−n

|R(t)| = 1,

where the last equality follows from Equation (8). Equation (13) follows directly from
Equation (9) and the definition of R′.

To establish Equation (14), consider any polynomial p : {−1, 1}2n → R of degree at
most d − 2. For any permutation σ ∈ S2n, define the polynomial pσ by pσ(x1, . . . , x2n) =
p(xσ(1), . . . , xσ(2n)). Note that, since R′ is symmetric, 〈R′, pσ〉 = 〈R′, p〉 for all σ ∈ S2n.
Define q = Eσ∈S2n

[pσ]. Note that q is symmetric and 〈R′, p〉 = 〈R′, q〉. It is a well-known
fact (cf. [19]) that q can be written as a polynomial q′ of degree at most d− 2 in the variable∑2n
i=1 xi, and so can R′. Hence, 〈R′, p〉 = 〈R′, q〉 =

∑2n
t=0
(2n
t

)R(n−t)
(2n

t ) · q
′(t) = 0, where the

final equality holds by Equation (10).
To establish Equation (15), observe that by Equation (11) and the definition of R′, we have

that for all x ∈ {−1, 1}2n such that |x| ∈
[
n− bn2/3c, n+ bn2/3c

]
, |R′(x)| ≥ Ω

(
1

n20·(2n
|x|)

)
≥

Ω
( 1
n20·22n

)
. J

We are ready to derive a lower bound on the sign-rank of the (4n2, 4n,OR2 ◦MAJ2n)-
pattern matrix.

I Theorem 10. The (4n2, 4n,OR2 ◦MAJ2n)-pattern matrix M satisfies sr(M) ≥ nΩ(logn).
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Proof. Let F denote the function OR2 ◦ MAJ2n in this proof. Set d = logn/100 and
consider the function R : {0,±1, . . . ,±n} → R obtained via Theorem 8. Define the function
R′ : {0,±1, . . . ,±n} → R by R′(t) = R(−t). Define the functions ψ0, ψ1 : {−1, 1}2n → R
by ψ1(x) = R(n − |x|)/

(2n
|x|
)
, and ψ0(x) = R′(n − |x|)/

(2n
|x|
)
. We now verify that ψ0, ψ1

satisfy the conditions in Theorem 7 for δ = exp(−18/(n1/(6d))) = exp(−18/n100/6 logn) =
exp(−18/2100/6) > 0.99. Set ε = δ · c, where c > 0 is a constant such that 0.98 > δ · c > 1/

√
2.

By the definitions of ψ0, ψ1 and Equation (13), Properties (1) and (2) in the statement
of Theorem 7 are satisfied.
Equation (14) implies that 〈ψ0, p〉 = 〈ψ1, p〉 = 0 for any polynomial p of degree at most
d− 2, and hence Property (3) is satisfied.

Moreover, Equation (15) implies that |ψ0(x)|, |ψ1(x)| ≥ Ω
( 1
n20·22n

)
for all x ∈ {−1, 1}2n

such that n − bn2/3c ≤ |x| ≤ n + bn2/3c, and Equation (12) implies ‖ψ0‖1 = ‖ψ1‖1 = 1.
Theorem 7 now implies the existence of a function Ψ satisfying the following properties.

By Equation (4), deg(p) < min
{
b2ε2c · ((logn)/100− 2), (logn)/100− 2

}
=⇒ 〈Ψ, p〉 =

0. Since ε > 1/
√

2, this implies that

deg(p) < (logn)/100− 2 =⇒ 〈Ψ, p〉 = 0.

By Equation (5), Ψ(x) · F (x) ≥ 0 for all x ∈ {−1, 1}2n × {−1, 1}2n.
We now note that the functions A and B obtained in Theorem 7 have `1-norm at most a
constant. Since ‖ψ0‖1 = ‖ψ‖1 = 1, we use Equation (6) to conclude that∑

x1,x2∈{−1,1}2n×{−1,1}2n

|A(x1, x2)| ≤
∑

x1∈{−1,1}2n

|ψ0(x1)| ·
∑

x2∈{−1,1}2n

|ψ0(x2)| = 1.

By Equation (7), we have∑
x1,x2∈{−1,1}2n

|B(x1, x2)| ≤ max {‖ψ0‖1, δ‖ψ1‖1}2 + ‖ψ0‖21 + δ‖ψ0‖1‖ψ1‖1+

δ2‖ψ1‖21,

which is at most a constant, since δ = O(1).
Combined with the fact that ε is a constant, we conclude ‖Ψ‖1 ≤ 1

δ ‖A‖1 + 1
ε‖B‖1 ≤ O(1).

By Equation (5), F (x) · Ψ(x1, x2) ≥ (δ − ε)4|ψ0(x1)| · |ψ0(x2)| ∀x ∈ {−1, 1}4n. This
implies that for |x1|, |x2| ∈ [n− bn2/3c, n+ bn2/3c],

|Ψ(x1, x2)| ≥ Ω
(

1
n40 · 24n

)
,

since δ − ε = Ω(1).
By a standard Chernoff bound, the number of inputs in {−1, 1}2n × {−1, 1}2n such that
|x1|, |x2| ∈ [n− bn2/3c, n+ bn2/3c] is at least (1− 2 exp(−n1/3/3)) · 24n.

Plugging f = OR2 ◦MAJ2n and φ = Ψ
‖Ψ‖1 into Theorem 5, we conclude that the sign-rank

of the (4n2, 4n,OR2 ◦MAJ2n) pattern matrix M is bounded below as

sr(M) ≥ Ω
(

1
n40 · 1

24n( 1
n(log n/200)−1 · 1

24n

)
+
( 1
n40 · 1

24n · 2 exp(−n1/3/3)
)) ≥ nΩ(logn). J

We are now ready to prove Theorem 1.
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Proof of Theorem 1. Note that the function AND◦MAJ(x) = OR ◦MAJ(x). Consider the
dual witness φ = Ψ

‖Ψ‖1 obtained for the threshold degree of OR2 ◦MAJ2n in the previous
proof. Note that the function φ′ defined by φ′(x) = −φ(x) acts as a dual witness for the
threshold degree of AND2 ◦MAJ2n, and satisfies all the conditions in Theorem 5 with the
same parameters as in the proof of Theorem 10. Proceeding in exactly the same way as
in the previous proof, we conclude that sign-rank of the (4n2, 4n,AND2 ◦MAJ2n) pattern
matrix M ′ is bounded below as

sr(M ′) ≥ nΩ(logn). (16)

Denote by f the communication game corresponding to the (2n2, 2n,MAJ2n) pattern
matrix. For completeness, we now sketch a standard UPPcc protocol of cost O(logn) for f .
Note that Alice holds 2n2 input bits, and Bob holds a (2n · logn)-bit string indicating the
“relevant bits” in each block of Alice’s input and a 2n-bit string w. Bob sends Alice the index
of a uniformly random relevant bit using log(2n2) bits of communication. Alice responds
with her value b of that input bit, and Bob outputs b⊕ wi. It is easy to check that this is a
valid UPPcc protocol, and it has cost O(logn).

One can verify by the definition of pattern matrices (Definition 4) that the communication
game corresponding to the (4n2, 4n,AND2 ◦MAJ2n) pattern matrix M ′ equals f ∧ f . By
Theorem 3 and Equation (16), we obtain that

UPP(f ∧ f) = Θ(log sr(M ′)) = Ω(log2 n).

As mentioned in Section 1, the result of Klivans et al. [16] implies that sr(M ′) = nO(logn).
Thus, the function f satisfies UPPcc(f) = O(logn), but UPPcc(f ∧ f) = Θ(log2 n). J

Corollary 2 follows immediately from the previous proof and the definition of pattern
matrices.

4 Proof of Theorem 8

The rest of this paper is dedicated towards proving Theorem 8. Before proving the theorem,
we describe the main auxiliary construction and prove some preliminary facts about it.

Let ∆ = bn1/(3d)c ≥ 2. Fix any u ∈ {1, . . . , bn2/3c − 1, bn2/3c}. Define the set

Su = {±u,±u∆,±u∆2, . . . ,±u∆d−1}.

Define the polynomial ru : {0,±1, . . . ,±n} → R by

ru(t) = 1
(2n)!

d−1∏
i=0

(
t−
(
u∆i
√

∆
)) ∏

s/∈Su

(t− s).

Since n is odd, notice that sgn(ru(t)) = (−1)t, for t ∈ {u, u∆, u∆2, . . . , u∆d−1}, and
ru(t) = 0 for t /∈ Su.

Define

pu(t) =
(

2n
n+ t

)
ru(t) =



(−1)n−t ·

d−1∏
i=0

(
t−
(
u∆i
√

∆
))

∏
s∈Su
s6=t

(t− s) if t ∈ Su

0 otherwise.
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30:10 Sign-Rank Can Increase Under Intersection

The following claim tells us that for any u ∈
{

1, . . . , bn2/3c
}
, the function pu places a

reasonably large mass on input −u.

B Claim 11.

|pu(−u)| ≥
√

∆ + 1
2 · u−(d−1) ·∆−(d−1)2/2.

Proof. We calculate

|pu(−u)| = u(
√

∆ + 1)
2u ·

d−1∏
i=1

u(∆i
√

∆ + 1)
u2(∆i + 1)(∆i − 1)

(pairing terms corresponding to u∆i and −u∆i)

=
√

∆ + 1
2 · u−(d−1) ·

d−1∏
i=1

∆i+ 1
2 + 1

∆2i − 1 ≥
√

∆ + 1
2 · u−(d−1) ·∆(d−1)/2 ·

d−1∏
i=1

∆i

∆2i

=
√

∆ + 1
2 · u−(d−1) ·∆−(d−1)2/2. C

The next claim tells us that the mass placed by pu on other points in its support is small.

B Claim 12. For every j = 1, 2, . . . , d− 1,

|pu(−u∆j)| ≤ e4 ·∆−(j2−3j−2)/2 ·

(√
∆ + 1

2 · u−(d−1) ·∆−(d−1)2/2

)
.

Proof. We calculate

|pu(−u∆j)| = u(∆j
√

∆ + ∆j)
2u∆j

·
j−1∏
i=0

u(∆i
√

∆ + ∆j)
u2(∆i + ∆j)(∆j −∆i) ·

d−1∏
i=j+1

u(∆i
√

∆ + ∆j)
u2(∆i + ∆j)(∆i −∆j)

(pairing terms corresponding to u∆i and −u∆i)

≤
√

∆ + 1
2 · u−(d−1) ·

j−1∏
i=0

√
∆

∆j −∆i
·

d−1∏
i=j+1

√
∆

∆i −∆j

≤
√

∆ + 1
2 · (

√
∆ · u−1)d−1 ·

j−1∏
i=0

∆j−i ·∆−j

∆j−i − 1 ·
d−1∏

i=j+1

∆−i ·∆i−j

∆i−j − 1

≤
√

∆ + 1
2 · (

√
∆ · u−1)d−1 ·

j−1∏
i=0

∆−j ·
d−1∏

i=j+1

∆−i ·

(
∞∏

k=1

∆k

∆k − 1

)2

≤
√

∆ + 1
2 · (

√
∆ · u−1)d−1 ·∆−j2−(d(d−1)−(j+2)(j+1))/2 · exp

(
2
∞∑

k=1

1
∆k − 1

)
(since 1 + x ≤ ex for all x ∈ R)

≤
√

∆ + 1
2 · u−(d−1) ·∆−(j2−3j−2)/2 ·∆−(d−1)2/2 · exp

(
4
∞∑

k=1

1
∆k

)
(since ∆ ≥ 2)

≤ e4 ·
√

∆ + 1
2 · u−(d−1) ·∆−(j2−3j−2)/2 ·∆−(d−1)2/2. (again using ∆ ≥ 2)

C

The following claim tells us that for each u and j, the masses placed by ru (and hence
pu) on u∆j and −u∆j are comparable.
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B Claim 13. For every j = 0, 1, . . . , d− 1, we have

|ru(−u∆j)| ≥ |ru(u∆j)| ≥ exp(−18/
√

∆)|ru(−u∆j)|

and |pu(−u∆j)| ≥ |pu(u∆j)| ≥ exp(−18/
√

∆)|pu(−u∆j)|.

Proof. We may write the ratio

|pu(u∆j)|
|pu(−u∆j)| = |ru(u∆j)|

|ru(−u∆j)| =
j−1∏
i=0

u(∆j −∆i
√

∆)
u(∆j + ∆i

√
∆)
·
d−1∏
i=j

u(∆i
√

∆−∆j)
u(∆j + ∆i

√
∆)

.

This is a product of terms smaller than 1, yielding the first inequality. For the second, we
follow Sherstov’s argument [26, Theorem 5.3] and note that this product is at least( ∞∏

i=1

∆i/2 − 1
∆i/2 + 1

)2

≥ exp
(
−5

∞∑
i=1

1
∆i/2

)
since (a− 1)/(a+ 1) > exp(−2.5/a) for a ≥

√
2

= exp
(
−5√

∆

∞∑
i=0

1
∆i/2

)
≥ exp

(
−5√

∆
· 1

1− 1/
√

2

)
since ∆ ≥ 2

≥ exp
(
− 18√

∆

)
. C

Putting the three claims together, we obtain the following conclusion, which states that
the mass placed by pu on −u and u is a relatively large fraction of its `1-norm.

I Lemma 14. |pu(−u)| ≥ ‖pu‖1/(8∆2e4) and |pu(−u)| ≥ |pu(u)| ≥ exp(−18/
√

∆−4)
8∆2 · ‖pu‖1.

Proof. We bound the ratio

‖pu‖1
|pu(−u)| ≤ 2

d−1∑
j=0

|pu(−u∆j)|
|pu(−u)| by the first inequality in Claim 13

≤ 2

1 +
d−1∑
j=0

e4∆−(j2−3j−2)/2

 by Claims 11 and 12

≤ 2 + 2e4

 3∑
j=0

∆−(j2−3j−2)/2 +
∞∑
j=4

∆−(j2−3j−2)/2


≤ 8∆2 · e4 ·

∞∑
k=1

∆−k ≤ 8 ·∆2 · e4. since ∆ ≥ 2

By the above and the second inequality in Claim 13,

|pu(u)| ≥ exp(−18/
√

∆)|pu(−u)| ≥ exp(−18/
√

∆− 4)
8∆2 · ‖pu‖1. J

We are now ready to prove Theorem 8.

Proof of Theorem 8. Define the function P (t) =
∑bn2/3c
u=1 u20 · pu(t)

‖pu‖1 . We claim that the
function R : {0,±1, . . . ,±n} → {−1, 1} defined by R(t) = (−1)tP (t)

‖P‖1 satisfies the conditions
in Theorem 8.

Clearly,
∑n
t=−n |R(t)| = 1, i.e., R satisfies Equation (8).
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By Claim 13, for every u = 1, . . . , bn2/3c and every t = 1, . . . , n, (−1)tpu(t) ≥ δ|pu(−t)|
for δ = exp(−18/

√
∆) = exp(−18/n(1/6d)). Therefore, for all such t we also have

(−1)tP (t) ≥ δ|P (t)|, which implies R(t) ≥ δ|R(−t)| for every t = 1, 2, . . . , n.
We have

R(t) = (−1)tP (t)
‖P‖1

= (−1)t

‖P‖

bn2/3c∑
u=1

u20 · pu(t)
‖pu‖1

= (−1)t

‖P‖1

(
2n
n+ t

) bn2/3c∑
u=1

u20 · ru(t)
‖pu‖1

.

Since each ru is a polynomial of degree at most (2n+ 1)− d, Claim 6 implies that for
any polynomial p of degree at most d− 2, 〈R, p〉 = 0.
It now remains to verify the smoothness condition. Fix a point v ∈ {1, . . . , bn2/3c}. Since
sgn(pu(v)) = (−1)v for all u and for all v > 0, we have that

|P (v)|
‖P‖1

≥ v20 · |pv(v)| · ‖pv‖−1
1∑bn2/3c

u=1 u20
≥ exp(−18/

√
∆− 4)/8∆2

bn2/3c · (bn2/3c)20 by Lemma 14

≥ exp(−18/
√

2− 4)
8n15 ≥ e−15

8n15 . since n1/3 ≥ ∆ = bn1/3dc ≥ 2

If v < 0, the argument needs some more care because we do not have the guarantee that
sgn(pu(v)) = (−1)v. The large mass placed by p−v on the point v plays a crucial role.

|P (v)| ≥ (−v)20 · |p−v(v)|
‖p−v‖1

−
bn2/3c∑

u=1
u6=v

u20 · pu(−v)
‖pu‖1

≥ (−v)20

8∆2e4 −
blog∆(−v)c∑

j=1

(−v∆−j)20 ·
p−v∆−j (v)
‖p−v∆−j‖1

by Lemma 14, the definition of pu and its support

≥ (−v)20

[
1

8∆2e4 − e4
∞∑

j=1

∆−20j ·∆(−j2+3j+2)/2

]
by Claims 11 and 12

= (−v)20

[
1

8∆2e4 − e4
∞∑

j=1

∆(−j2−37j+2)/2

]
≥ (−v)20

[
1

8∆2e4 − e4
∞∑

j=1

∆−18j

]

≥ (−v)20
[

1
8∆2e4 −

e4

∆17

]
= (−v)20

[
∆15 − 8e8

8∆17e4

]
≥ 20

∆17 ≥
20
n6

since n1/3 ≥ ∆ ≥ 2 and (−v) ≥ 1

Thus, we have that for v < 0,

|P (v)|
‖P‖1

≥ 20
n6∑bn2/3c

u=1 u20
≥ 20
n6bn2/3c · (bn2/3c)20 ≥

20
n20 . J

5 Conclusion

We have exhibited a communication problem f with UPPcc(f) = O(logn), and UPPcc(f ∧
f) = Θ(log2 n). This is the first result showing that UPP communication complexity can
increase by more than a constant factor under intersection. As a consequence, we have
concluded that the dimension-complexity-based quasipolynomial time PAC learning algorithm
of [16] for learning intersections of polylogarithmically many majorities is optimal. That is,
new learning algorithms not based on dimension complexity will be required to learn this
class in polynomial time.
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A glaring open question left by our work is whether the class of problems with polylogar-
ithmic UPPcc complexity is closed under intersection. Our results represent an important
first step in this direction. It would also be very interesting to extend our result that
dimension-complexity-based algorithms cannot PAC learn intersections of two majorities
in polynomial time, to rule out an even larger class of learning algorithms. Specifically, it
would be very interesting to show that no algorithm working in the important statistical
query model [14] can learn this concept class in polynomial time.
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Abstract
Traditionally, computation within self-assembly models is hard to conceal because the self-assembly
process generates a crystalline assembly whose computational history is inherently part of the
structure itself. With no way to remove information from the computation, this computational
model offers a unique problem: how can computational input and computation be hidden while
still computing and reporting the final output? Designing such systems is inherently motivated by
privacy concerns in biomedical computing and applications in cryptography.

In this paper we propose the problem of performing “covert computation” within tile self-assembly
that seeks to design self-assembly systems that “conceal” both the input and computational history
of performed computations. We achieve these results within the growth-only restricted abstract tile
assembly model (aTAM) with positive and negative interactions. We show that general-case covert
computation is possible by implementing a set of basic covert logic gates capable of simulating any
circuit (functionally complete). To further motivate the study of covert computation, we apply
our new framework to resolve an outstanding complexity question; we use our covert circuitry to
show that the unique assembly verification problem within the growth-only aTAM with negative
interactions is coNP-complete.
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1 Introduction

Since the discovery of DNA over half a century ago, humans have been continually working
to understand and harness the vast amount of information it contains. The Human Genome
Project [16], which began in 1990 and took a decade, was the first major attempt to fully
sequence the human genome. In the years since, sequencing has become extremely cheap and
easy, and our ability to manipulate DNA has emerged as a central tool for many applications
related to nanotechnology and biomedical engineering.
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Although this progress has many benefits, as we learn more about the information, we
also must be careful with the shared data. There are databases of anonymous DNA sequences,
which can sometimes be deanonymized with only small amounts of information such as a
surname [13], or by reconstructing physical features from the DNA [6]. In order to address
these issues, there has been work on cryptographic schemes aimed at obscuring results related
to DNA or the input/output [7, 11, 14, 26].

In this work we take the first steps in addressing some of these issues within self-
assembling systems by proposing a new style of computation termed covert computation
with important motivations for private biomedical computing and cryptography. Self-
assembly is the process by which systems of simple objects autonomously organize themselves
through local interactions into larger, more complex objects. Understanding how to design
and efficiently program molecular self-assembly systems is fundamental for the future of
nanotechnology. The Abstract Tile Self-Assembly Model (aTAM) [8, 18], motivated by a
DNA implementaiton [12], has become the premiere model for the study of the computational
power of self-assembling systems. In the aTAM, system monomers are modeled by four-sided
Wang tiles which randomly combine and attach if the respective bonding domains on tile
edges are sufficiently strong. The aTAM is known to be computationally universal [25] and
intrinsically universal [10].

Covert Computation. As a computational model, tile self-assembly differs from traditional
models of computation in that computational steps are defined by permanently placing
particular tile types at specific locations in geometric space. A history of each computational
step is thereby recorded in the final assembled structure. This presents a unique problem to
this type of computation: is it possible to conceal the input and history of a computation
within the final assembly while still computing and reporting the output of the computation?
Concealing the computational histories of the self-assembly process in this way requires
designing a computational system which encodes computational steps in the order of tile
placement, rather than the type and location of tile placements. We use the term covert1 to
describe this concealment of inputs and computational histories. This method of computing
is different than previous tile self-assembly computing methods and requires novel techniques.

Also, while the reader may notice many parallels between our work and traditional secure
multiparty computation [5], it should be made clear that our main result is the secure
computation of a function with only a single party. The challenges presented above make
this an interesting problem for tile self-assembly.

Motivation. The concept of covert computation within self-assembly has many potential
applications. We briefly outline a few biomedical computing applications. Consider a set
of diagnostic tiles sent to a patient as a droplet of DNA to which the patient adds some
biological input such as a blood sample. From this the diagnostic system could compute some
desired function that outputs specific diagnostic statistics. The patient sends the combined
product to a medical facility for interpretation. With covert computation, only the results
can be read by the lab and the user’s biological input is obscured ensuring privacy.

Another potential use involves implementing a cryptography system within a molecular
computing framework. The ability to covertly compute allows users to provide a personal key
input that may be combined with a publicly available covert system where the combination

1 It is important to note that the term covert has specific meaning in cryptography which does not apply
here.
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Table 1 The complexity of Unique Assembly Verification in the aTAM in relation to negative
glues. |A| refers to the size of an assembly and |T | is the number of tile types.

Model Negative Glues Detachment Complexity Theorem
aTAM No No O(|A|2 + |A||T |) Thm. 3.2 in [1]
aTAM Yes No coNP-complete Thm. 3
aTAM Yes Yes Undecidable [9]

verifies some computable property of the input key without revealing any additional details
of the key. This style of cryptographic scheme fits well when the input keys are biological
based inputs.

A final potential biological application might be engineering a system for unlocking key
biological properties within bio-engineered crops. For example, by releasing a hidden “key”
input, covert computation might allow a field of crops to become fertile. A company owning
the patent on this type of activation might desire the security of ensuring that the release
key cannot be deciphered from the activated crop based on a covert molecular computation.

The final motivation of covert computation is within algorithmic self-assembly. We
believe the concept of covert computation is fundamental and hope that our novel design
techniques will be applicable to a number of future problems in the area. As evidence towards
this, we apply our techniques to resolve the complexity of the fundamental question of
verifying whether a tile system uniquely assembles a given assembly within the growth-only
negative-glue aTAM.

Contributions. After formally defining the concept of covert computation in tile self-
assembly, we implement several covert logic gates within the negative-glue growth-only
abstract Tile Assembly Model (this growth-only restriction to negative glues has been seen
in the 2HAM [4], and negative glues in tile assembly have received extensive study [3, 9, 17,
20, 19, 21, 22]), and show these gates may be combined to create general circuits, thereby
showing that general covert computation is possible. Finally, we apply our techniques and
framework to address the fundamental problem of deciding if a negative-glue aTAM system
uniquely produces a given assembly. We show this problem is coNP-complete. Table 1
outlines how our result compares to what was previously known.

2 Definitions

We begin with an overview of the Abstract Tile-Assembly Model (aTAM) and then give the
new definitions introducing covert computation. Due to space constraints, we only give a
high-level overview of the aTAM.

2.1 Abstract Tile Assembly Model
Figure 1 gives a high-level overview of the models with a couple of example systems.
Essentially, we have non-rotating square tiles that have a glue label on each edge. The tile
with its labels is a tile type. The tile set is all the tile types. A glue function determines the
strength of matching glue labels. An assembly is a single tile or a finite set of tiles that have
combined via the glues. If the combined strength of the glue labels of a single attaching
tile to an assembly is greater than or equal to the temperature τ , the tile may attach. A
producible assembly is any assembly that might be achieved by beginning with the seed (the
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Seed
G(g) = 2
G(p) = 2
G(o) = 1 
G(r ) = -1
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(a) Negative aTAM.
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(b) Growth aTAM.

Figure 1 High-level overview of the aTAM with repulsive forces. Both systems have tiles that
can attach to the seed tile given they can attach with τ strength. The arrows show the possible
assembly paths from the seed tile with the terminal assembly being outlined. (a) A negative aTAM
system that has a possible assembly path causing disassembly. One path is growth-only, but the
other path can attach the tile with the purple/red glues, which causes the orange/red tile to become
unstable and detach. (b) A growth only aTAM system where negative glues are used to block,
but never cause disassembly. The only difference is that the purple glue attaches with strength 1,
G(p) = 1. This yields two possible terminal assemblies, neither of which include disassembly.

specified starting assembly) and attaching tiles. A producible assembly is further said to be
terminal if no further tile attachment is possible. A tile system is said to uniquely produce
a (terminal) assembly A if all producible assemblies will eventually grow into A. A tile
system is formally represented as an ordered triplet γ = (T, s, τ) representing the tile set,
seed assembly, and temperature parameter of the system respectively.

In a standard aTAM system, all glues are positive integral values, but here we look at the
negative aTAM where the glues may be negative/repulsive. Such repulsive forces may be used
to block the attachment of tiles despite the presence of strong attractive glues. Moreover, the
inclusion of repulsive forces may yield unstable producible assemblies where a subassembly
could detach because it no longer has enough binding strength. While this type of detachment
has been studied in the literature [9, 22], we avoid this feature in this work as it’s inclusion
drastically changes the complexity of the model by making most types of verification problem
undecidable, and may require more sophisticated techniques for experimental implementation.
Thus, we consider a system to be a valid growth-only system if all producible assemblies are
τ -stable. In this paper we restrict our consideration to valid growth-only systems.

2.2 Covert Computation

Here, we provide formal definitions for computing a function with a tile system, and the
further requirement for covert computation of a function. Our formulation of computing
functions is based on that of [15] but modified to allow for each bit to be represented by a
sub-assembly potentially larger than a single tile.

Informally, a Tile Assembly Computer (TAC) for a function f consists of a set of tiles,
along with a format for both input and output. The input format is a specification for how
to build an input seed to the system that encodes the desired input bit-string for function f .
We require that each bit of the input be mapped to one of two assemblies for the respective
bit position: a sub-assembly representing “0”, or a sub-assembly representing “1”. The input
seed for the entire string is the union of all these sub-assemblies. This seed, along with
the tile set of the TAC, forms a tile system. The output of the computation is the final
terminal assembly this system builds. To interpret what bit-string is represented by the
output, a second output format specifies a pair of sub-assemblies for each bit. The bitstring
represented by the union of these subassemblies within the constructed assembly is the output
of the system.
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For a TAC to covertly compute f , the TAC must compute f and produce a unique
assembly for each possible output of f . We note that our formulation for providing input
and interpreting output is quite rigid and may prohibit more exotic forms of computation.
We acknowledge this, but caution that any formulation must take care to prevent “cheating”
that could allow the output of a function to be partially or completely encoded within the
input, for example. To prevent this, some type of uniformity constraint, similar to what
is considered in circuit complexity [24], should be enforced. We now provide the formal
definitions of function computing and covert computation.

Input/Output Templates. An n-bit input/output template over tile set T is a sequence
of ordered pairs of assemblies over T : A = (A0,0, A0,1), . . . , (An−1,0, An−1,1). For a given
n-bit string b = b0, . . . , bn−1 and n-bit input/output template A, the representation of b with
respect to A is the assembly A(b) =

⋃
i Ai,bi

. A template is valid for a temperature τ if
this union never contains overlaps for any choice of b, and is always τ -stable. An assembly
B ⊇ A(b), which contains A(b) as a subassembly, is said to represent b as long as A(d) * B

for any d 6= b.

Function Computing Problem. A tile assembly computer (TAC) is an ordered quadruple
= = (T, I,O, τ) where T is a tile set, I is an n-bit input template, and O is a k-bit output
template. A TAC is said to compute function f : Zn

2 → Zk
2 if for any b ∈ Zn

2 and c ∈ Zk
2 such

that f(b) = c, then the tile system Γ=,b = (T, I(b), τ) uniquely assembles a set of assemblies
which all represent c with respect to template O.

Covert Computation. A TAC covertly computes a function f(b) = c if 1) it computes f ,
and 2) for each c, there exists a unique assembly Ac such that for all b, where f(b) = c, the
system Γ=,b = (T, I(b), τ) uniquely produces Ac. In other words, Ac is determined by c, and
every b where f(b) = c has the exact same final assemby.

3 Covert Circuits

Here we cover the machinery for making covert gadgets and the covert gadgets needed for
functional completeness in circuits based on a dual-rail logic implementation: variables, wires,
fanouts, and NANDs. We cover a NOT gate as a primitive used in the NAND construction.
Traditionally, a crossover is also given, and we discuss why this is unnecessary in Section 4.
For simplicity, we give some other common gates in Section 5.

Some Conventions. All solid lines through two neighboring tiles indicate strength-2 glues
between them. The arrows indicate the build order (which may branch). Blue single glues are
strength 1, and red are strength -1. Following the variable gadget (Figure 3b), all variables
have a true and false path adjacent to each other (dual-rail logic), but only one may be
traversed at a time until the next gadget. The true value is always to the left or on top of
the false value, and for most gadgets, the true input is colored grey while the false input
is colored green. Once a variable wire, true or false, reaches the next gadget, the unused
variable wire is backfilled so that both wires are present. This is a key concept used in all
constructions and is further explained in Figure 2.
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A B

(a)

A B

(b)

A B

(c)

Figure 2 Backfilling in covert computation. Given two gadgets A and B. (a) If true is output
from Gadget A, that wire assembles to the next gadget. (b) Gadget B builds, and based on its
function, outputs the true or false wire (false in this case). Once it received the input, it backfills
the false wire towards A. (c) The false wire finishes assembling and both Gadget A and B have true
and false paths filled. The true output wire of Gadget B will be backfilled from the next gadget. In
this way, the input to B/output from A is “hidden”.

(a) Possible Input Seeds. (b) Variable. (c) Logic Diode.

Figure 3 (a) Example of the 4 possible input seeds for a half-adder from Section 5.1. (a) Variables
are represented by a true and a false line where only one may exist. The variables build off the
seed, but only the ti or the fi tile may attach due to the negative glue between the two tiles. (b)
A gadget referred to as a logic diode. This ensures input from one direction and stops tiles from
assembling in the wrong direction.

3.1 Variables and Wires

A variable in our system is represented by two lines of connected tiles where only one exists
at a time when the wire is in use (dual rail). Figure 3a shows an example of the possible
input seeds on 2-bits used in a half-adder. Figure 3b demonstrates how the variables might
be set nondeterministically, although generally the specific bits desired would already be
attached as part of the input seed (as in Figure 3a). Each variable vi has a sequence of tiles
ti representing a true setting and fi a false setting. The first tiles have a negative glue of
strength −1 meaning only the ti or the fi tile can attach. The other shown glues are strength
2. Once the variable is set, the setting travels to the gadget as a wire.

The variable setup in Figure 3b is used in one of two ways: In the case of providing
an input to a covert computation, this variable setup defines the input template for the
computation, with the seed for a given binary input being the seed assembly with either a
true or false tile (but not both) placed at each bit position. An example system (a half-adder)
with a big seed input is shown in Section 5. Alternatively, the seed begins as a single seed tile
that nondeterministically creates a valid input over all possible n-bit inputs. This approach
is used in Section 4 to show coNP-completeness for unique assembly verification.

Figure 3c shows what we refer to as a logic diode, and prevents timing issues. These
appear in every gadget and serves two purposes: if backfilling, this stops the filling at the
gadget level so it does not backfill a wire that has not been set, and second it ensures that
a gadget must have input from the wire. All shown glues are strength 1 and the lines are
strength 2. This gadget is important for later constructions.
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(a) Basic NOT. (b) NOT. (c) H-NOT.

Figure 4 (a) Basic NOT gate (b) NOT gate with the logic diode on the input (c) A covert NOT
gate with an additional negative horizontal glue on the output to prevent incorrect backfilling. This
modification is needed when using this gate for the construction of the NAND gate.

(a) True Input 1. (b) True Input 2. (c) False Input 1. (d) False Input 2.

Figure 5 (a) A NOT gadget with true input tin
i and output fout

i . The true output can not place
from tile x due to the negative glues n1 and n3 of strength −1. (b) Once the NOT gadget passes
the false output, glues h3, h4 cooperatively allow the false portion and wire to backfill. Glue h2 is
needed to fill in the tile with n2. (c) A NOT gadget with false input f in

i and output tout
i . The

false output can not attach due to the negative glue n2. The tile to the west of x may attach, but
due to glue n3, no other tile can attach. (d) Once the NOT gadget passes the true output, glues
h5, h6 allow the true portion and wire to backfill. Glue h1 is needed to counteract the n1 glue when
backfilling that tile.

3.2 Covert NOT Gadget
The first covert gadget we introduce is a NOT gadget. This gadget displays some of the key
insights needed for covert computation, such as how blocking with negative glue adds power
to the system. The NOT gadget is also used as a submodule within our NAND gadget. The
NOT gadget in Figure 4a is the basic gadget with 4b only adding the logic diode on the
input to ensure no backfill happens past the gadget and that the gadget had input.

Given the variables and wires work as shown, the difficulty in a dual-rail NOT is that
there must be at least one crossing tile that both the true and false paths place. This tile can
be thought of as where the signals cross or switch. Figure 4a shows the basic NOT gadgets,
and the tile shared by both paths is labelled x. The negative glues allow blocking around
this tile so that only one path is possible once x is placed.

The properies of the not gadget guarantee that it works correctly and that the gadget is
covert (the gadget looks indistinguishable before the output regardless of the input), and
that the backfill works correctly. Figure 5 discusses these elements and walks through how
the true/false inputs block and crossover correctly. The Figure does not show the logic
diode though.

3.3 Covert NAND Gadget
The basic idea for the NAND gadget is to flip one of the inputs using a covert NOT, and
then we can compare the two true input lines to see if both inputs were true. Since a NAND
is false only when both inputs are true, this is the only path that should result in a false
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(a) NAND Block Diagram. (b) NAND.

Figure 6 (a) Diagram of the covert NAND gate with NOTs shown as blocks. The boxes for the
NOT blocks are shown outlined in Figures 4b and 4c. The left box is the standard NOT gadget and
the right box is the H-NOT gadget. (b) The full NAND gate with the two NOT gadgets filled in
and compacted.

output. The basic idea for the gadget is shown in Figure 6a with a representative block for
the NOT gadget already discussed. The second NOT block is the modified NOT gadget
(H-NOT) from Figure 4c. Both false inputs are routed to the true output. One must go
through another NOT in order to flip to the top output position, while the other false line
skips this NOT and ties directly to the true output.

Once we flip the top input, we can use cooperative binding to compare the two true
inputs, and only if both are true do we send it as true into the second NOT block (so the
gadget outputs false). All other input combinations output true.

We will show why NOT and H-NOT are both necessary. Looking at Figure 6b, the
negative glue nH is necessary in H-NOT to ensure that tout

i , which skips the second NOT
gadget, does not set the output tout

ij , and then also set fout
ij based on the assembly order.

Essentially, this protects from incorrect backfilling and setting both outputs. However, the
nH glue should not exist in the standard NOT gadget, or it may backfill and could cause a
tile to break off depending on build order. Given we want a purely growth model, this would
not be allowed. It is possible to create a single NOT that incorporates these properties, but
we prefer to avoid the added complexity.

Finally, the logic diodes on the inputs (Figure 3c) ensure that if we only have one input,
the gadget does not backfill down the other input wire. Even if the gadget has already been
set, that input will wait until either the true or false wire comes before backfilling the wire.

3.4 Covert FANOUT Gadget
The FANOUT gadget needs to duplicate the geometric wire, and also needs to only backfill
once both outgoing wires have backfilled. Figure 7a shows the FANOUT gadget. Similar to
the NOT, there is a shared set of tiles placed by both the true and the false path. Figures
7b and 7c show the true and false paths without any backfilling, respectively.

4 Covert Computation and Unique Assembly Verification

In this section we establish our main results related to covert computation in self-assembly
systems. We first utilize our covert circuitry to show that any function is covertly computable
(Thm. 1). We then apply covert circuitry to show that the open problem of Unique Assembly
Verification within the growth-only negative glue aTAM is coNP-complete (Thm. 3).

I Theorem 1. For any function f computed by a boolean circuit, there exists a tile assembly
computer (TAC) that covertly computes f .
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(a) FANOUT.

(b) True Input.

(c) False Input.

Figure 7 (a) FANOUT gadget. (b) True input wire for the FANOUT gadget tin
i results in output

wires tout1
i and tout2

i . (c) False input wire for the FANOUT gadget f in
i results in output wires fout1

i

and fout2
i .

A
B

Q

(a) XOR.
A
B

Q

(b) NAND. (c) Crossover. (d) XOR Crossover.

A

B

Q

(e) XOR with NANDs.

Figure 8 Constructing planar crossover gadgets with NAND gates. (a) XOR symbol. (b) NAND
symbol. (c) Two wires in a circuit that cross making it non-planar. (d) A planar circuit using
XOR gates that act as a crossover. (e) A planar circuit using only NAND gates that implement an
XOR gate.

Proof. The proof of this theorem consists of a direct simulation of boolean circuits by way
of a series of covert gadget implementations for various logic gates and how to connect them.
The proof follows from the gadgets and machinery given in Section 3. J

We now prove that Unique Assembly Verification (UAV) in a growth-only negative
glue aTAM system is coNP-complete by utilizing our covert gadgets. Without the growth-
only constraint, UAV in the atam with negative glues is undecidable as a Turing machine
simulation could use negative interactions to break down produced assemblies into a final
unique terminal assembly exactly when the Turing machine halts [9]. With no negative glues
however, the problem is in P [1]. We prove that with the ability to temporarily block, the
problem becomes coNP-complete. This result is achieved with a reduction from Circuit SAT.
Unique Assembly Verification in our model is formally defined as follows:

I Problem (Unique Assembly Verification (growth only)). Given a tile-system Γ = (T, S, τ)
with the promise that it is a growth-only system, and an assembly A. Does Γ uniquely
assemble A?

A reduction from Circuit SAT generally requires a functionally universal set of gates
and variable, wire, fanout, and crossover gadgets. Both NAND and NOR are functionally
complete gates, so given either, all gates can be made. A crossover gadget is redundant since
it can be made with XOR gates and XOR gates can be made with NAND gates [23]. Figure
8 shows this derivation. Finally, Circuit SAT requires a DAG, and thus there are no cycles,
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and so the gadgets can be topologically sorted so that there are no crossovers that cause
a loop (the output of a gadget can not crossover one of its input lines). Thus, a reduction
from Planar Circuit SAT is equivalent to a reduction from Circuit SAT.

I Definition 2 (Planar Circuit SAT). Instance: A planar directed acyclic graph (DAG)
G = (V,E) with n boolean inputs, one output, and all gates are NAND gates (or NOR gates).
Every v ∈ V is either a NAND gate (deg−(v) = 2, deg+(v) = 1) or a fanout (deg−(v) = 1,
deg+(v) = 2). The source vertices, vi ∈ V s.t. deg−(vi) = 0 and 1 ≤ i ≤ n, are the variables.
The sink vertex, s ∈ V s.t. deg+(vi) = 0 is the “output” of the boolean circuit.
Question: Does there exist a setting of the inputs such that the output to the circuit is 1?

I Theorem 3. Unique Assembly Verification in the aTAM with repulsive forces in a growth
only system is coNP-complete.

Proof. We first observe that Unique Assembly Verification with repulsive forces is in coNP
as any failure to uniquely assemble a target assembly A comes in the form of a polynomially
sized assembly that is inconsistent with A. The producibility of this assembly can be verified
in polynomial time, and thus serves as a certificate for “no” instances to the UAV problem.

We now show coNP-hardness by a reduction from Planar Circuit SAT. Given an instance
of planar Circuit SAT C with inputs i1, . . . , in where i ∈ {0, 1}, i.e., a boolean circuit. By
our definition we assume there are only NAND gates, fanouts, input variables and an ouput
variable in the planar DAG.

For our reduction, we build a tileset T by adding tiles corresponding to the covert gadgets
and connections described in Section 3. Replace each NAND gate with a unique set of
tiles implementing a NAND gadget, and each FANOUT gate with a unique set of tiles
implementing a FANOUT gadget. For each edge, a unique sequence of tiles is added to T
that connects the two gadgets representing the two gates the edge connected.

This yields a tile assembly computer (TAC), = = (T, I,O, τ), for covertly computing
the circuit C. The key modification to show coNP-hardness is the utilization of a seed that
non-deterministically grows any one of the possible n-bit input seeds for this TAC, and then
evaluates the circuit. If the circuit is not-satisfiable, then the final computation will be false
regardless of the guessed input, and therefore will yield the unique “no” assembly of the
TAC based on the fact that the circuit is computed covertly. On the other hand, if there
exists some satisfying n-bit input, there will be at least one final assembly that differs from
the “no” assembly. Thus, the “no” assembly is uniquely produced if and only if the circuit C
is not satisfiable, thereby showing coNP-hardness.

Non-deterministic input selection. To non-deterministically form the possible input bits,
we include the tile types and seed tile described in Figure 3b. The seed grows a length O(n)
line with each bit being encoded by a pair of adjacent locations which expose a glue on the
north edge. For each pair of positions, the presence of the left tile denotes a “1” for the
respective bit, and the placement of the right tile denotes a “0”. The “1” and “0” tiles share a
negative strength 1 glue, making their mutual placement impossible until the covert gadgets
have passed on the computed signal and backfilled. J

Given that UAV is coNP-complete with negative glues by way of covert circuitry, yet
UAV is in P without negative glues [1], it is reasonable to conjecture that the use of negative
interactions is needed to perform covert computation.

I Conjecture. For some function f computed by a boolean circuit, there does not exist a tile
assembly computer (TAC) that covertly computes f in the aTAM without negative glues.
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(a) AND Block Diagram. (b) AND.

Figure 9 (a) Diagram of the covert AND gate with NOTs shown as blocks. The left box is the
standard NOT gadget and the right box is the V-NOT gadget (has an additional vertical glue). (b)
The full AND gate with the two NOT gadgets filled in and some simplification for space.

5 Further Motivation

Here, we give a few more motivating examples and some simplified gadgets. There is a lot of
future work in this vein of research that is extremely relevant to modern society. We first
cover the covert AND and OR gadgets.

Simplified Gadgets. Even though NAND gates alone are functionally complete, for some
gates the circuit is larger than desired. Here, we give compact direct versions of some other
useful gadgets and gates. This does not affect the complexity, but does help build a more
efficient covert computation toolkit.

Covert AND Gadget. The covert AND gadget is nearly identical to the NAND gadget.
The only real difference is which two inputs the second NOT takes in. Also, similar to the
H-NOT needed for the NAND, we create a V-NOT, which is a NOT with one additional
vertically aligned negative glue. Figure 9a shows the AND gadget with the blocks in place of
NOTs for clarity, and Figure 9b shows the full gadget.

Covert OR Gadget. The covert OR gadget still uses a NOT to flip one of the inputs, but
does several checks on the second flip to the point of drastically differing from a NOT. Figure
10a shows the AND gadget with the blocks in place of NOTs for clarity, and Figure 10b
shows the full gadget.

(a) Block OR. (b) OR.

Figure 10 (a) Block diagram for the OR gadget. (b) The covert OR gadget with the NOT gadget
filled in.

5.1 Encryption and Cryptography
Several encryption methods are based off problems that we believe to be “hard” computa-
tionally. One of the most common is factoring the product of large prime numbers, which is
the basis for several encryption schemes. Although factoring may be difficult, the function
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A
B

Q

(a) XOR.
A
B

Q

(b) AND. (c) Half-Adder. (d) 2-Bit Multiplier.

Figure 11 Constructing covert circuits for arithmetic building up to cryptography examples. (a)
XOR symbol. (b) AND symbol. (c) A half-adder, which has two 1-bit numbers as input and a 2-bit
number as output. (d) A 2-bit multiplier which has two 2-bit numbers as input and outputs a 4-bit
number that is their product. This can be expanded to use two large primes resulting in a large
number that would be hard to factor.

(a) Seed. (b) Covert Half-Adder.

Figure 12 Covert Half-Adder made with 4 NANDs, 3 FANOUTs, 2 NOTs, and 1 AND. The
seed input is highlighted and all 4 possible seeds are shown in (a). Regardless of the seed, the final
assembly will look identical except the final T/F representing the bits of the numbers added. This
implements the schematic shown in Figure 11c and the XOR is implemented with NANDs as shown
in Figure 8e.

to generate the number is simple multiplication, which can be accomplished with simple
circuits. Figure 11d shows a simple 6-gate circuit implementing a 2-bit number multiplier
resulting in a 4-bit output number. An n-bit multiplier scales linearly (in the number of bits)
with additional AND gates and full and half adders.

Implementing the multiplier with covert gates is not difficult, but the resulting assembly
is large due to the inefficient crossover gadget used. Instead, we demonstrate a simple
half-adder. The schematic for a half-adder is in Figure 11c. A covert half-adder as a TAC is
shown in Figure 12b. The XOR has been replaced by the 4 NAND gates as shown in Figure
8e. Further, 3 FANOUTs were needed, an AND gadget as shown above in Section 5, and 2
NOT gadgets were used to flip the input for the gadgets. Figure 12a shows the four possible
input seeds to build the assembly. A half-adder is simple enough to know which seed was
used if 00 or 10 are output, but if 01 is output there is no way to know.

6 Conclusions and Future Work

We have introduced the concept of covert computation in self-assembly and provided a
general scheme to implement any boolean circuit under this restriction. Beyond potential
applications to biomedical privacy, cryptography, and intellectual property, our techniques
and framework promise to impact self-assembly theory itself. As a first example we have
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applied our techniques to the fundamental problem of Unique Assembly Verification in the
negative glue aTAM, and shown it to be coNP-complete with growth-only systems, essentially
as a corollary of our covert computation theory.

A number of future directions stem from our work. Having established the general
computation power of covert computation, a natural next step is the consideration of efficiency
for computing classes of functions. The time complexity of self-assembly computation has
been studied [2, 15] and shown to allow for a substantial amount of parallelism. Can similar
results be achieved under the covert constraint? What general connections exists between the
time complexity for unrestricted self-assembly computation versus that of covert computation?
Other natural metrics include minimizing the number of distinct tile types, along with the
space taken up by the final assembly of the computation.
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Abstract
We introduce randomized time-bounded Kolmogorov complexity (rKt), a natural extension of Levin’s
notion [24] of Kolmogorov complexity. A string w of low rKt complexity can be decompressed from
a short representation via a time-bounded algorithm that outputs w with high probability.

This complexity measure gives rise to a decision problem over strings: MrKtP (The Minimum rKt
Problem). We explore ideas from pseudorandomness to prove that MrKtP and its variants cannot
be solved in randomized quasi-polynomial time. This exhibits a natural string compression problem
that is provably intractable, even for randomized computations. Our techniques also imply that
there is no n1−ε-approximate algorithm for MrKtP running in randomized quasi-polynomial time.

Complementing this lower bound, we observe connections between rKt, the power of randomness
in computing, and circuit complexity. In particular, we present the first hardness magnification
theorem for a natural problem that is unconditionally hard against a strong model of computation.
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1 Introduction

The Kolmogorov complexity of a string w is the length of the shortest program that prints
w. This concept has found connections to a variety of topics in mathematics and computer
science. Notably, Kolmogorov complexity can be used to derive Gödel’s incompleteness
theorems (see e.g. [12, 20, 22] and references therein), and the associated incompressibility
method has numerous applications in areas such as graph theory, combinatorics, probability,
and number theory (see [25] for a comprehensive treatment of the subject).

It is well known that computing the Kolmogorov complexity of a string is undecidable.
Indeed, it is easy to see that if it were computable, then it would be possible to inspect all
strings of length n and print the first string z that has complexity at least n. The resulting
program provides a shorter description of z, which is contradictory.

Despite its many applications, the uncomputability of Kolmogorov complexity can render
it useless in situations where an upper bound on the running time of algorithms is desirable.
A time-bounded variant of Kolmogorov complexity introduced by Levin [24] has been very
influential in algorithms and complexity theory (see e.g. [1, 2, 13]). In Levin’s definition, the
complexity of a string w takes into account not only the description length of a program
generating w, but also its running time. A bit more formally, we use Kt(w) to denote the
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minimum over |M | + log t, where M is a machine that prints w when it computes for t
steps. The choice of log t in this definition can be justified by its applications in theory of
computation, such as Levin’s optimal universal search (see [1]).

Kolmogorov complexity and Levin complexity are important measures of the “random-
ness”, or “information”, of a string. But while the computability aspects of Kolmogorov
complexity are well understood, the complexity-theoretic aspects of time-bounded Kolmogorov
complexity remain mysterious. It is easy to see that Kt(w) can be computed in exponential
time 2O(|w|). Note however that the argument presented above for the uncomputability of
Kolmogorov complexity simply does not work when one takes into account running time.

Let MKtP (The Minimum Kt Problem) denote the problem of deciding the Kt complexity
of an input string. The question of whether MKtP ∈ P was explicitly posed in [4]. There is
evidence that the problem is hard, since under standard cryptographic assumptions it follows
that MKtP /∈ P. The best known upper bound on the complexity of MKtP is its inclusion in
E = DTIME[2O(n)]. Since it is known that E * P by the deterministic time hierarchy theorem,
unconditionally proving that MKtP /∈ P might be within reach of existing techniques.

In this work, we investigate time-bounded Kolmogorov complexity in the presence of
randomness. More precisely, we consider a natural extension of Kt complexity obtained when
one allows the algorithm generating the string to be randomized. The only requirement is
that it generates the desired string (in some fixed time bound t) with high probability. Thus
we let rKt(w) denote the minimum over |M |+ log t, where M is a probabilistic machine that
prints w with probability at least 2/3 when it computes for t steps.

This extension of Kt complexity is motivated from several perspectives. First, it is in line
with the ubiquitous role of probabilistic algorithms in modern theoretical computer science.
Second, it allows many results on time-bounded Kolmogorov complexity to be extended to
the randomized setting. (For instance, it is not hard to see that if SAT ∈ BPTIME[t], then
every satisfiable formula φ admits a satisfying assignment of (conditional) rKt complexity at
most O(log t+ log |φ|).1 This allows one to define an optimal randomized universal search,
in the spirit of Levin’s result [23].) Moreover, rKt complexity can be interpreted as an
extension of Kt complexity to the pseudodeterministic setting (see [15] and papers citing this
reference), an active research direction in algorithms and complexity. Finally, by interpreting
time-bounded Kolmogorov complexity as a measure of data compression, it becomes rather
natural to admit representations that can be decoded via randomized algorithms. This might
allow better compression rates and faster decompression procedures.2

Several basic questions pose themselves: What is the computational complexity of deciding
rKt(w)? Does randomization provide better compression, in the sense that rKt(w) might
be substantially smaller than Kt(w) for some strings w? How does rKt and its associated
decision problem relate to the complexity of deciding MKtP?

In addition to putting forward the concept of randomized time-bounded Kolmogorov
complexity, our work contains the following contributions.

1 It is possible to use the assumption to find the lexicographic first satisfying assignment of φ given the
description of φ in probabilistic time poly(t, |φ|).

2 While the definition of rKt appears to be rather natural in hindsight, to our knowledge it has not been
previously considered in the literature, despite the many variants of time-bounded Kolmogorov complexity
investigated in other works (see e.g. [4, 5]). Intuitively, allowing randomness in the computation is
somewhat counter-intuitive, given that Kolmogorov complexity tries to capture how far from random
the output string is. This may explain in part why this concept had not been identified before this
work. It is worth noting that our definition is influenced by the emerging area of pseudodeterministic
algorithms. Indeed, rKt is a candidate definition for the “pseudodeterministic complexity” of a string.
This might explain why defining rKt is more evident at this point compared to previous works.
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Our Results. In order to state our results in a general form, we let rKtλ denote the minimum
over |M |+ log t, where M is a probabilistic machine that prints w with probability at least
λ when it computes for t steps.3 We let MrKtP[β, α, s] denote the promise problem of
distinguishing whether rKtβ(w) ≤ s(|w|) or rKtα(w) > s(|w|), where 1/2 < α ≤ β < 1 and
s : N→ N. The problem is easier the larger the gap between α and β, but our lower bound
applies to all settings of the two parameters.

It is not hard to prove that MrKtP can be solved in randomized exponential time if α < β.
Our main technical result is the following unconditional lower bound.

I Theorem 1. Let 1/2 < α ≤ β < 1 and s(n) = nγ , where 0 < γ < 1. Then MrKtP[β, α, s] /∈
Promise-BPTIME[npoly(logn)].

Note that MrKtP is a total function if α = β, and that the lower bound also holds in
this regime. Theorem 1 presents a natural string compression problem that is provably
intractable, even with randomness. While it is known that BPEXP * BPQP, existing proofs
of this separation and its extensions only produce artificial computational problems (see
e.g. [19, 7, 14, 9] for more background). The proof of Theorem 1 employs different techniques,
and the argument is robust enough to establish the hardness of several variants of the problem.
We will discuss one of these extensions later in this section.

The main technique used in the proof of Theorem 1 is indirect diagonalization. The
argument makes use of results from the theory of pseudorandomnenss, and relies on recent
insights from the investigation of pseudodeterministic algorithms [30] and connections between
learning algorithms and lower bounds [29]. While pseudorandomness has been explored in
the context of Kolmogorov complexity at least since the work of [4], these new perspectives
were crucial in the discovery of this unconditional lower bound.

Theorem 1 can be extended to running times that are larger than quasi-polynomial, but it is
unclear how to adapt the proof to show a lower bound against randomized algorithms running
in time 2nε for a small ε > 0. (Similarly, it is not known if BPTIME[2n] ⊆ BPTIME[2nε ].)
A sub-exponential lower bound is open even with respect to deterministic algorithms.
Nevertheless, we can prove a weaker lower bound in this direction that relates the deterministic
complexities of MKtP and MrKtP[β, α, s]. For convenience, we let MrKtP denote the problem
with parameters β = 3/4, α = 2/3, and s(n) = n/2.

I Theorem 2. Either MKtP /∈ P or MrKtP /∈ Promise-EXP.

Since MrKtP can be computed in Promise-BPE, this result shows a weakness of determin-
istic algorithms solving these problems. The proof of Theorem 2 combines previous results
on MKtP that also rely on pseudorandomness with some observations about rKt and MrKtP.

Theorems 1 and 2 indicate that these problems are good candidates for non-uniform
circuit lower bounds. In order to discuss our next result, it is convenient to introduce
a variant of MrKtP. For a string w ∈ {0, 1}n, let rKt(w) def= rKtλ(w) for λ = 2/3. For
functions s1, s2 : N→ N, we let Gap-MrKtP[s1, s2] be the (promise) problem of distinguishing
between rKt(w) ≤ s1(n) versus rKt(w) > s2(n). Again, it is not hard to solve this problem
in randomized exponential time if there is a certain (small) gap between s1(n) and s2(n).

We obtain the following complexity results for Gap-MrKtP.

3 We assume for definiteness thatM is a “clocked” machine that runs in time at most t on all computation
paths. This is not essential, and does not significantly affect the asymptotics of rKt.
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I Theorem 3. Let C ≥ 1 be a sufficiently large constant. The following results hold.
(i) For every constructive s : N → N, Gap-MrKtP[s(n), s(n) + C logn] ∈ Promise-

BPTIME[2O(n)].
(ii) For every 0 < γ < 1, Gap-MrKtP[nγ , n/2] /∈ Promise-BPTIME[npoly(logn)].
(iii) If there is ε > 0 such that for every 0 < γ < 1, Gap-MrKtP[nγ , nγ + C logn] /∈

SIZE[n1+ε], then Promise-BPEXP * SIZE[poly].

Theorem 3 (ii) implies a strong inapproximability result for computing rKt (see [16]
for a recent work where inapproximability of “complexity” plays a role). On the other
hand, Theorem 3 (iii) proves that weak non-uniform lower bounds for Gap-MrKtP can be
“magnified” (cf. [31]) to super-polynomial lower bounds for a problem in Promise-BPEXP.
(Such lower bounds are only known for languages in MAEXP [10], which combines randomness
and nondeterminism in the exponential-time regime.)

In contrast to previous work (cf. [28] and references therein), Theorem 3 provides the first
hardness magnification theorem for a natural problem that is provably hard against a strong
model of computation (randomized polynomial-time algorithms).4 The proof of Theorem 3
(ii) is similar to the proof of Theorem 1, while part (iii) follows by an adaptation of a version
of the result established for Gap-MKtP in [28]. Note that Theorem 3 exhibits an interesting
contrast between proving uniform and non-uniform lower bounds.

Finally, we consider the relation between Kt and rKt. In other words, can we have shorter
descriptions if we allow randomized decoding?5 As a concrete example, the results in [30]
imply that infinitely many prime numbers (represented as binary strings) have sub-polynomial
rKt complexity. This is not known to hold with respect to Kt complexity.

We employ standard techniques to establish two results that relate rKt and Kt. The first
result links the deterministic complexity of MKtP to the gap between Kt and rKt.

I Theorem 4. If MKtP ∈ P then there is a sequence {wn}n≥1 with wn ∈ {0, 1}n such that
rKt(wn) = O(logn) and Kt(wn) = Ω(n).

On the other hand, the next theorem (roughly) shows that Kt and rKt are linearly
related for every string if and only if randomized exponential time computations can be
derandomized. (We refer to [2] for similar results involving other notions of time-bounded
Kolmogorov complexity.)

I Theorem 5. The following implications hold.
(i) If Promise-BPE ⊆ Promise-E, then Kt(w) = O(rKt(w)) for every string w.
(ii) If Kt(w) = O(rKt(w)) for every string w, then BPE ⊆ E/O(n).

In particular, rKt and Kt are linearly related if E requires exponential size boolean circuits.

This result implies that, under the standard derandomization assumption that Promise-
BPE is contained in Promise-E, the problems MrKtP and MKtP essentially coincide. Therefore,
our unconditional results for MrKtP and its variants provide strong evidence that MKtP
is intractable.

4 Discussions on the feasibility of previous magnification results as an approach toward new non-uniform
lower bounds relied either on conjectured separations between complexity classes or on cryptographic
assumptions.

5 Note that it is possible to recover with high probability a string w from its description in time at most
2O(rKt(w)). Additionally, one can exactly recover w (i.e. with probability 1) by cycling through all choices
of the randomness and taking a majority vote.
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Related Work. Pseudodeterministic algorithms and hardness magnification are active
research areas. We refer to the references in [15, 28] and to papers citing these works for more
details. Quantum versions of Kolmogorov complexity have been proposed in [32, 26, 35, 8].
Before this work, unconditional lower bounds were shown for a non-deterministic formulation
of Kt, where it was proved that the corresponding decision problem is in PNE but not in
NP ∩ coNP. We refer to [5] for more information. Finally, there is a huge literature on
time-bounded Kolmogorov complexity and its applications in theory of computation. A
recent reference such as [3] contains pointers to many other works in the area.

Concluding Remarks. We view the unconditional lower bounds in Theorem 1 and Theorem
3 (ii) as a step toward understanding the hardness of computing the “complexity” of strings.
Such problems are important in computer science. In particular, the conjectured security of
modern cryptography implies that distinguishing “structured” strings from “random” strings
(according to different measures) is hard. In this work, the complexity of a string is explored
from the perspective of rKt, which is likely to be essentially equivalent to Kt complexity
(as suggested by Theorem 5). Previous unconditional lower bounds on the associated
decision problems applied only to strong measures, such as the non-deterministic version
of Kolmogorov complexity studied in [5]. Our work is the first to show an unconditional
lower bound for a notion of complexity that appears to be equivalent to Levin’s seminal Kt
complexity. Our techniques are also robust, and lead to a hardness of approximation result.
We mention that an average-case lower bound in the sense of [17] can be proved as well.

We leave open the problem of showing an exponential lower bound on the complexity of
deciding rKt complexity. Theorem 3 (iii) and its extensions to different circuit classes also
suggest that investigating non-uniform lower bounds for this problem might be a fruitful
direction.

Organization. The next section formalizes some definitions and observations mentioned
above, and discusses a couple of basic facts and examples related to randomized time-bounded
Kolmogorov complexity. The proofs of Theorems 1 and 2 appear in Section 3. This is followed
by a sketch of the proof of Theorem 3 in Section 4. Section 5 discusses Theorems 4 and 5.

2 Preliminaries

For background in (time-bounded) Kolmogorov complexity and related topics, we refer to
[25]. We fix a reasonable representation of Turing machines, and let |M | denote the length
of the binary encoding of a machine M . Our results are not sensitive to particular encoding
choices. We assume that machines have an extra tape with random bits. We let M≤t denote
the random variable that represents the content of the output tape of M when it computes
for (at most) t steps over the empty string.

I Definition 6 (Ktλ Complexity). For λ ∈ [0, 1] and w ∈ {0, 1}∗, we let

Ktλ(w) = min
M,t
{|M |+ dlog te | Pr[M≤t = w] ≥ λ}.

The randomized time-bounded Kolmogorov complexity of w is given by rKt(w) def= Kt2/3(w).

As a concrete example, the main result of [30] implies that for every ε > 0, there is
a sequence {pm}m≥1 of increasing prime numbers such that rKt(pm) ≤ |pm|ε for every m,
where |pm| denotes the length of the binary representation of pm. For the reader familiar
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with the ideas from [15] and subsequent work, the randomized time-bounded Kolmogorov
complexity of a string can be seen as a measure of its “pseudodeterministic” complexity.

It is easy to see that the definition of rKt(w) does not change substantially if we use
another threshold parameter 1/2 < λ < 1.6 The (deterministic) time-bounded Kolmogorov
complexity of a string w corresponds to Ktλ(w) for λ = 1. Note that if α ≤ β then
Ktα(w) ≤ Ktβ(w).

I Definition 7 (MrKtP[β, α, s]). For 0 < α ≤ β ≤ 1 and s : N→ N, we let MrKtP[β, α, s] be
the promise problem (YESn,NOn)n∈N, where

YESn = {w ∈ {0, 1}n | Ktβ(w) ≤ s(n)},
NOn = {w ∈ {0, 1}n | Ktα(w) > s(n)}.

For concreteness, we let MrKtP denote MrKtP[β, α, s] for β = 3/4, α = 2/3, and s = n/2.

We will tacitly assume that s is constructive in all results.

I Lemma 8. For rationals 0 < α < β ≤ 1 and a function s : N → N, MrKtP[β, α, s] ∈
Promise-BPE.

Proof Sketch. Let α < η < β, for a fixed rational η. For all appropriate machines M
and running times t, estimate with confidence at least 1 − 2−ω(n) the probability that M
generates w when it computes for t steps. Consider M and its time bound t to be “good”
if this probability estimate is at least η. Accept w if and only if a good pair has combined
complexity at most s.

The correctness of the algorithm follows by a concentration bound and a standard union
bound. The upper bound on its running time uses that Ktλ(w) is at most O(|w|) for every
string w and λ ∈ [0, 1]. J

Note that if β = α then MrKtP[β, α, s] is a total problem. However, it is unclear if the
problem is in BPE for this choice of parameters.

It is also convenient to consider a close variant of MrKtP. Recall that rKt(w) = Kt2/3(w).

I Definition 9 (Gap-MrKtP[s1, s2]). Let s1, s2 : N→ N, where s1(n) ≤ s2(n) for every n ∈ N.
We let Gap-MrKtP[s1, s2] be the promise problem (YESn,NOn)n∈N, where

YESn = {w ∈ {0, 1}n | rKt(w) ≤ s1(n)},
NOn = {w ∈ {0, 1}n | rKt(w) > s2(n)}.

I Lemma 10. Suppose that s1(n) + c logn ≤ s2(n), where c ≥ 1 is a large enough constant.
Then Gap-MrKtP[s1, s2] ∈ Promise-BPE.

Proof. Given Lemma 8, it is enough to reduce Gap-MrKtP[s1, s2] to MrKtP[2/3, 3/5, s1].
Clearly, the set of positive instances of both problems coincide. On the other hand, it is easy
to see that Kt2/3(w) ≤ Kt3/5(w) + c logn if c is a sufficiently large universal constant, by
amplification of the underlying randomized algorithm. As a consequence,

{w ∈ {0, 1}n | rKt(w) > s2(n)} ⊆ {w ∈ {0, 1}n | Kt3/5(w) > s1(n)},

since if rKt(w) > s2(n) then Kt3/5(w) > s2(n)− c logn, and by assumption s2(n)− c logn ≥
s1(n). In other words, the set of negative instances of Gap-MrKtP[s1, s2] is contained in the
set of negative instances of MrKtP[2/3, 3/5, s1]. J

6 It is not hard either to prove this claim for a constant 0 < λ ≤ 1/2, and we leave it as an exercise. (Hint:
Use a short advice string to distinguish w from any other string that is output with probability ≥ λ/2.)
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I Remark. For simplicity of the exposition, we might abuse notation in some statements and
compare a promise problem with a standard complexity class. However, in all proofs the
distinction between the two cases is carefully considered.

3 The computational hardness of MrKtP

3.1 MrKtP is not in BPP
The main result established in this section is the following lower bound.

I Theorem 11. Let 1/2 < α ≤ β < 1 and nγ ≤ s(n) ≤ n/2 for every large enough n ∈ N,
where γ > 0 is fixed but arbitrary. Then MrKtP[β, α, s] /∈ BPTIME[npoly(logn)]. In other
words, no randomized algorithm running in quasi-polynomial time accepts with probability
≥ 2/3 the positive instances of MrKtP[β, α, s] and rejects with probability ≥ 2/3 the negative
instances of MrKtP[β, α, s].

The proof given here requires the following results, which assume parameters α, β, and s
as in Theorem 11. (We refer to [4] for applications of similar techniques.)

I Lemma 12. BPE ≤P/poly
tt MrKtP[β, α, s]. In particular, given any sequence {gn}n≥1 of

total boolean functions gn : {0, 1}n → {0, 1} that compute MrKtP[β, α, s], every language
in BPE can be computed by (deterministic) polynomial size oracle circuits with access to
{gn}n≥1.

I Lemma 13. PSPACE ⊆ BPPMrKtP[β,α,s]. More precisely, given any fixed oracle O ⊆
{0, 1}∗ that agrees with MrKtP[β, α, s] over the relevant input strings, PSPACE ⊆ BPPO.
Furthermore, if O is randomized and satisfies the promise of bounded acceptance probabilities
over the inputs of MrKtP[β, α, s], then the corresponding algorithm in BPPO satisfies this
promise over all input strings.

We postpone the proof of these lemmas. The next lemma is well known, and can be
proved by a diagonalization argument (see e.g. [29, Corollary 2]).

I Lemma 14. Let s1, s2 : N→ N be space-constructible functions such that s2(n)2 = o(s1(n)),
s2(n) = Ω(n), and s1(n) = 2o(n). Then there is a language in DSPACE[s1(n)] that cannot be
computable by circuits of size s2(n).

We are ready to prove Theorem 11, assuming these results.

Proof of Theorem 11. Suppose toward a contradiction that MrKtP[β, α, s] can be computed
in BPTIME[n(logn)a ], for some a > 0. Then, by standard non-uniform derandomization,
MrKtP[β, α, s] can be computed by circuits of size O(n(logn)b), for some b > 0. It follows from
Lemma 12 that every language L ∈ BPE can be computed by circuits of size O(n(logn)cL ),
for some cL > 0.

Let L∗ be a language given by Lemma 14 for appropriate parameters s1(n) = 2no(1) and
s2(n) = n(logn)ω(1) . In other words, L∗ ∈ DSPACE[s1] \ SIZE[s2]. Lemma 13 and our initial
assumption imply that PSPACE ⊆ BPTIME[npoly(logn)]. By a standard padding argument,
we get that L∗ ∈ BPE. But then the upper and lower bounds on the circuit complexity of
L∗ are in contradiction. This completes the proof of Theorem 11. J

We proceed with the proofs of Lemmas 12 and 13. Given a function f : {0, 1}∗ → {0, 1},
we consider an associated “pseudorandom” generator Gf . (Formally, the argument employs
a uniform sequence of generators, one for each n ≥ 1.) More precisely, the generator
GBFNW
f : {0, 1}nε → {0, 1}n can be computed in deterministic time exp(O(nε)) given oracle

access to f on inputs of length at most nε, and satisfies the following crucial property.
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I Theorem 15 (see [6, 21]). Let f : {0, 1}∗ → {0, 1} be a function, ε > 0 be arbitrary, and
GBFNW
f be the associated sequence of functions mentioned above. Moreover, let T ⊆ {0, 1}∗

be an arbitrary test. If∣∣∣∣ Pr
r∈Un

[r ∈ T ]− Pr
x∈Unε

[GBFNW
f (x) ∈ T ]

∣∣∣∣ ≥ 1/n

for every large enough n, then there is a sequence {Cn}n≥1 of polynomial size oracle circuits
with access to T that compute f on each input length n and query T nonadaptively.

Proof of Lemma 12. Let L ∈ BPE, and {fn}n≥1 be the corresponding sequence of boolean
functions that compute L. Recall the constants 1/2 < α ≤ β < 1 and γ > 0 from the
statements of Theorem 11 and Lemma 12. Take ε def= γ/2, and consider the generator
GBFNW
f obtained from f and ε. Moreover, let {gn}n≥1 be a sequence of boolean functions

gn : {0, 1}n → {0, 1} that agree with MrKtP[β, α, s] over input strings in YESn ∪ NOn.
Finally, set T def=

⋃
n≥1 g

−1
n (0).

We claim that T distinguishes the output of GBFNW
f from a random n-bit string. First, for

each seed w ∈ {0, 1}nε , GBFNW
f (w) can be computed in time at most exp(O(nε)) given w and

oracle access to f1, . . . , fnε . Since each function fi for i ≤ nε can be computed in randomized
time exp(O(nε)) and with error probability at most exp(−n) by a uniform algorithm, it
follows that Ktβ(GBFNW

f (w)) ≤ Kt1−o(1)(GBFNW
f (w)) ≤ O(nε) < nγ ≤ s(n), for n sufficiently

large. Therefore, GBFNW
f (w) /∈ T for every w ∈ {0, 1}nε . On the other hand, a typical random

n-bit string r ∈ Un has (standard) Kolmogorov complexity K(r) ≥ (1− o(1))n. It is easy
to see that if λ > 1/2, then K(x) ≤ Ktλ(x) for a string x. As a consequence, with high
probability Ktα(r) > n/2 ≥ s(n), in which case we have r ∈ T .

Since T distinguishes the generator from random, it follows from Theorem 15 that L can
be computed by polynomial size oracle circuits that make non-adaptive queries to T , i.e., to
the functions {gn}n≥1. J

In order to prove Lemma 13, we need a uniform version of Theorem 15. A result of
this form was established in [18], and we discuss it in more detail now. For ε > 0 and
a function f : {0, 1}∗ → {0, 1}, the generator GIW

f : {0, 1}nε → {0, 1}n is also computable
in deterministic time exp(O(nε)) with oracle access to f on inputs of size at most nε. In
addition, it satisfies the following property.

I Theorem 16 (see [18]). Let f : {0, 1}∗ → {0, 1} be a function that is both random self-
reducible and downward self-reducible, ε > 0 be arbitrary, and GIW

f be the associated sequence
of functions mentioned above. Moreover, let T ⊆ {0, 1}∗ be an arbitrary test. If∣∣∣∣ Pr

r∈Un

[r ∈ T ]− Pr
x∈Unε

[GIW
f (x) ∈ T ]

∣∣∣∣ ≥ 1/n

for every large enough n, then there is a randomized polynomial-time Turing machine with
oracle access to T that on every input x outputs f(x) with high probability.

I Theorem 17 (see [33]). There is a language LTV ∈ DSPACE[O(n)] that is PSPACE-hard,
random self-reducible, and downward self-reducible.

We are ready to prove Lemma 13, which completes the proof of Theorem 11.

Proof of Lemma 13 (Sketch). Let LTV be the language from Theorem 17. Since this
language is PSPACE-hard under polynomial-time reductions, it suffices to show that LTV ∈
BPPMrKtP[β,α,s].
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We argue as in the proof of Lemma 12. More precisely, we let ε def= γ/2, and we instantiate
the generator GIW

f using the function f that computes the characteristic function of LTV.
If O is a deterministic test that agrees with MrKtP[β, α, s], then a similar argument shows
that every output string of the generator has randomized Kt complexity at most s(n), while
a random string has almost maximum complexity. The only modification here is that
f1, . . . , fnε can all be computed in deterministic time exp(O(nε)), which follows from the fact
that LTV is computable in linear space. Theorem 16 immediately implies that LTV ∈ BPPO,
as desired.

Suppose that O is a randomized procedure that accepts the positive instances of
MrKtP[β, α, s] with high probability, and rejects the negative instances of MrKtP[β, α, s]
with high probability. We make no assumptions on the acceptance probabilities of O over
the remaining input strings. In order to establish the furthermore part in Lemma 13, it is
necessary to inspect the proof of Theorem 16. The crucial observation is that the oracle O is
only used as a distinguisher during the computation of LTV, and that any procedure that
distinguishes with noticeable advantage the output of the generator from a random string
can be used in place of O. (The argument sketched in the paragraph above can be used to
show that the output of O on strings that violate the promise condition affects in a negligible
way its advantage as a distinguisher.)

We also note that it is possible to reduce the analysis of the case of a randomized algorithm
A as oracle to the deterministic case. By running polynomially many independent copies
of A and taking a majority vote, one gets a randomized algorithm A′ that is correct with
probability at least 1− 2−m2 on every fixed string of length at most m satisfying the promise
condition (think of m as n` for a large enough constant `, where n is the input length of
LTV). By a union bound, randomly fixing the string in the random tape of A′ provides w.h.p
a deterministic oracle O that is correct on all strings of length at most m satisfying the
promise condition. The analysis now reduces to the deterministic case.

This completes the proof of Lemma 13. J

Sketch of an alternate presentation via learning algorithms. Suppose that MrKtP ∈ BPP,
i.e., there is a polynomial time randomized algorithm that is correct with high probability over
inputs satisfying the promise condition. Then, by adapting ideas from [11], it is possible to
prove that for every reasonable function t : N→ N, SIZE[t] can be learned in BPTIME[poly(t)]
in the model of learning with membership queries under the uniform distribution. The
connection between learning algorithms and lower bounds (see [29]) now implies that, for
any choice of s(n) ≤ npoly(logn), BPEXP * SIZE[s(n)]. But this is in contradiction to Lemma
12 and the assumption that MrKtP ∈ BPP, which imply BPEXP ⊆ SIZE[poly(n)].

We remark that common to both approaches are elements from the theory of pseudor-
andomness, such as the use of pseudorandom generators based on [27], and ideas that go
back to the work of [18] on connections between algorithms and lower bounds via random
self-reducibility and downward self-reducibility. The use of [6] in the proof of Lemma 12
appears to be crucial in the arguments presented above.

3.2 Weakness of deterministic algorithms for MKtP and MrKtP
It is natural to conjecture that BPEXP * BPTIME[2o(n)] (a strong hierarchy theorem for
randomized time) and MrKtP /∈ BPTIME[2o(n)] (a nearly-optimal lower bound for MrKtP).
However, it is unclear even how to show that MrKtP /∈ DTIME[2no(1) ]. It is also open whether
MKtP ∈ P. In this section, we place limits on the efficiency of deterministic algorithms
solving these problems. We start with the following observation.
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I Proposition 18. Either EXP * BPTIME[2o(n)] or MrKtP /∈ EXP.

Proof. Suppose MrKtP = MrKtP[β, α, s] is in DTIME[2nd ] for some constant d, where β = 3/4,
α = 2/3, and s = n/2. LetMMrKtP be a Turing machine that witnesses this inclusion. Consider
the following language:

L
def= {〈M, 1n, w〉 |M is a TM that accepts in time ≤ 2n

d

some n-bit string y whose prefix is w}.

Note that L ∈ EXP, i.e., L can be computed in deterministic time 2mO(1) on inputs of length
m. Assume that EXP ⊆ BPTIME[2o(n)], and let ML be a randomized Turing machine for L
that witnesses this inclusion. It is easy to see that ML can be used to find w.h.p. and in time
2o(n) the lexicographic first string z ∈ {0, 1}n accepted byMMrKtP, the complement of machine
MMrKtP (observe that such string must exist). It follows that the triple (ML,MMrKtP, 1n)
can be used to give a shorter description of z. More precisely, rKt1−o(1)(z) = o(n). On the
other hand, since MMrKtP(z) = 1 and MMrKtP computes MrKtP, we must have rKtβ(z) > s.
These inequalities imply that n/2 = s < rKtβ(z) ≤ rKt1−o(1)(z) ≤ o(n), a contradiction.
This completes the proof of Proposition 18. J

Additionally, we will use the following reductions.

I Lemma 19 (see [4]). EXP ⊆ NPMKtP.

I Lemma 20 (see [4]). If MKtP ∈ P then PSPACE ⊆ ZPP.

As alluded to above, the next result shows hardness of deciding deterministic/random-
ized time-bounded Kolmogorov complexity using deterministic algorithms. (It should be
contrasted with the inclusion MrKtP ∈ Promise-BPE from Lemma 8.)

I Theorem 21. Either MKtP /∈ P or MrKtP /∈ EXP.

Proof. Suppose MKtP ∈ P. Then PSPACE ⊆ ZPP follows by Lemma 20. Moreover, Lemma
19 gives EXP ⊆ NP. Combining these two class inclusions, we get that EXP ⊆ BPP. But this
implies that MrKtP /∈ EXP via Proposition 18, which is the desired result. J

4 Non-uniform versus randomized lower bounds for MrKtP

It is not hard to see that the proof of Theorem 11 carries over with Gap-MrKtP[s1, s2] in
place of MrKtP[β, α, s]. We state the result here for completeness.

I Theorem 22. Let γ > 0 be an arbitrarily small constant, and consider functions s1, s2 : N→
N. Suppose that nγ ≤ s1(n) ≤ s2(n) ≤ n/2. Then Gap-MrKtP[s1, s2] /∈ BPTIME[npoly(logn)].

Proof Sketch. The algorithm for MrKtP[β, α, s] is only used as a distinguisher in the proof
of Theorem 11. It is possible to check that an algorithm for Gap-MrKtP[s1, s2] works equally
well as a distinguisher in the proofs of Lemmas 12 and 13. J

By a straightforward extension of results from [31, 28], one can show that weak non-
uniform lower bounds for Gap-MrKtP[s1, s2] can be “magnified” to super-polynomial circuit
lower bounds for some explicit problem. We state a version of the result for general boolean
circuits, but the proof can be adapted to other boolean devices (similarly to [28]).
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I Theorem 23. There is a universal constant d ≥ 1 for which the following holds. If there
exists ε > 0 such that for every small enough β > 0 we have Gap-MrKtP[nβ , nβ + d logn] /∈
SIZE[n1+ε], then Promise-BPEXP * SIZE[poly].

Proof Sketch. We verify that the relevant steps in the proof of [28, Theorem 1 Part 1,
Section 3] carry over to Gap-MrKtP[nβ , nβ + d logn], under minor modifications. (Note that
N denotes the input length in [28], while here input length is denoted by n.) First, we
observe that Claims 11 and 12 also work for rKt, since the error-correcting code routines are
deterministic. Using a similar notation (i.e., z = ECC(w) ∈ {0, 1}m, where m = m(n) = O(n)
and n = |w|), it follows that if rKt(w) ≤ nβ then rKt(z) ≤ nβ + c0 logn, and that if
rKt(w) > nβ + d logn then rKt(z′) > nβ + c1 logn for any z′ ∈ {0, 1}m that disagrees with z
on at most a δ-fraction of coordinates, where 1 ≤ c0 < c1 < d are constants, and we assume
that d is large enough so that c0 and c1 are sufficiently far apart.

The crucial part of the argument is to replace the language L ∈ EXP from their Claim
13 by an appropriate problem Π ∈ Promise-BPEXP. The input to Π is a string y encoding
a tuple of the form (m, 1t, (i1, b1), . . . , (ir, br)), where m is a positive integer represented
in binary, t is a positive integer, i1, . . . , ir ∈ {0, 1}logm, b1, . . . , br ∈ {0, 1}, and r ∈ N. For
t = nβ and r = n2β , we let

Πyes
n

def= {y | ∃z ∈ {0, 1}m such that rKt(z) ≤ t+ c0 logn and zi1 = b1, . . . , zir = br}, and

Πno
n

def= {y | @z ∈ {0, 1}m such that rKt(z) ≤ t+ c1 logn and zi1 = b1, . . . , zir = br}.

Note that these sets are disjoint, and that Π ∈ Promise-BPEXP by an argument analogous to
the proof of Lemma 10, using that the gap between constants c0 and c1 is sufficiently large.

It remains to check that their Claim 14 still holds in our context. For part (a), note
that if rKt(w) ≤ nβ then by the discussion above rKt(z) ≤ nβ + c0 logn. Consequently, the
corresponding input y generated by the randomized reduction is in Πyes

n with probability
1. Similarly, for part (b) we rely on the claim that if rKt(w) > nβ + d logn then rKt(z′) >
nβ + c1 logn for any z′ ∈ {0, 1}m that disagrees with z on at most a δ-fraction of coordinates.
The same union bound over exponentially small probabilities shows that y ∈ Πno

n with
probability at least ≥ 1/2.

The rest of the construction remains unaffected. J

5 On the relation between rKt and Kt

First, we observe that the worst-case gap between rKt and Kt over strings of length n is
closely related to the derandomization of exponential time computations.7

I Theorem 24. The following implications hold.
(i) If Promise-BPE ⊆ Promise-E, then Kt(w) = O(rKt(w)) for every string w.
(ii) If Kt(w) = O(rKt(w)) for every string w, then BPE ⊆ E/O(n).

In particular, rKt and Kt are linearly related if E requires exponential size boolean circuits.

7 Recall that if BPP ⊆ P then BPEXP ⊆ EXP by translation. Consequently, derandomizing exponential
time computations is not harder than derandomizing polynomial time computations. Indeed, it is not
hard to prove that the derandomization of exponential time is equivalent to the derandomization of
sparse languages in BPP.
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Proof. We start with a proof of (i). Let w ∈ {0, 1}n, and suppose M and t are such that
Pr[M≤t = w] ≥ 2/3 and |M |+ log t = rKt(w). We would like to use M and the assumption
that Promise-BPE ⊆ Promise-E to upper bound the Kt complexity of w. A potential difficulty
here is that the latter inclusion offers an asymptotic upper bound, while M and w are fixed
objects of finite size. In order to handle this issue, we adopt a more general perspective.

Let U be a randomized universal Turing machine that simulates computations with a
polynomial overhead. In other words, given the description of a randomized machine M ′, a
time bound t′ specified as a binary string, and an input string x′, U(M ′, t′, x′) uses its internal
randomness to simulate M ′(x′) for at most t′ steps, and outputs whatever M ′ outputs on
x′. We assume that the computation of U(M ′, t′, x′) takes time at most c(|M ′|+ t′ + |x′|)c,
where c = c(U) ≥ 1 is a universal constant.

We consider a promise problem Π, defined as follows. The YES instances consist of
tuples (M ′, t′, 1c·log t′ , i), where M ′ is the description of a randomized Turing machine, t′
and i are positive integers represented in binary, and Pr[The i-th bit of M ′

≤t′ is 1] ≥ 2/3.
On the other hand, the set NO of negative instances of Π is defined by the condition
Pr[The i-th bit of M ′

≤t′ is 0] ≥ 2/3. Clearly, YES ∩ NO = ∅. We claim that Π ∈ Promise-
BPE. In order to see this, given a valid input (M ′, t′, 1c·log t′ , i) of Π, run the randomized
universal machine U on (M ′, t′, ε) for t′ steps, where ε is the empty string, and output 1 if
and only if the i-th bit in the output of M ′ is 1. This defines a randomized machine that runs
in time O((|M ′|+ t′)c + i), which is at most exponential in its total input length. Since the
randomness of U is used to simulate the randomness of M ′, every string in YES is accepted
with probability at least 2/3, while every string in NO is rejected with probability at least
2/3. This shows that Π ∈ Promise-BPE.

Under the hypothesis of (i), we obtain that Π is computed by a deterministic machine
AΠ that runs in time at most 2Cm on inputs of length m, where C is fixed. Now given the
pair (M, t) witnessing the rKt complexity of w (a string of length n), we can use AΠ, M , t,
and n to upper bound its Kt complexity. Indeed, w can be generated by the deterministic
machine that runs AΠ on (M, t, 1c·log t, i) for each i ∈ [n]. Note that each input to AΠ
satisfies the promise condition of Π, and that AΠ runs in time at most 2C(|M |+log t+c log t+log i).
Therefore, rKt(w) ≤ O(|M | + |AΠ| + log t + logn) + log(O(n · 2C(|M |+log t+c log t+logn))) =
O(|M |+ log t+ logn) = O(rKt(w) + log |w|) = O(rKt(w)), where the last inequality uses that
rKt(w) ≥ log |w| since any machine that prints w runs in time at least |w|.

To prove (ii), let L ∈ BPE, and let M be a machine for L that runs in randomized
exponential time. Define a sequence {wn}n≥1 of strings wn ∈ {0, 1}2

n+1 , where wn encodes
the output of L on all strings of length at most n. Given n as an input, by amplifying the
success probability of M , we can print wn with high probability in time 2O(n). Consequently,
rKt(wn) = O(n), which is logarithmic in |wn|. Under the assumption that Kt(w) = O(rKt(w))
for every string w, it follows that for every n, Kt(wn) = O(n). In particular, some deterministic
machine Mn with |Mn| = O(n) decides L on inputs of length at most n in time 2O(n). Now
using the sequence {Mn}n≥1 as advice and computing in the obvious way, it follows that
L ∈ E/O(n). This completes the proof of (ii).

Finally, under the assumption that there is a language in E that requires circuits of size
2Ω(n) on every large input length, there are quick pseudorandom generators of logarithmic
seed length (cf. [34]). Such generators can be used to derandomize not only BPTIME[t] but
also Promise-BPTIME[t], hence it follows from (i) that rKt and Kt are linearly related. J

We now relate the deterministic complexity of MKtP to the gap between rKt and Kt.
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I Theorem 25. If MKtP ∈ P then there is a sequence {wn}n≥1 with wn ∈ {0, 1}n such that
rKt(wn) = O(logn) and Kt(wn) = Ω(n).

Proof. The proof is inspired by a related idea of Schuichi Hirahara (private communication).
Let {Dn}n≥1 be a P-uniform sequence of polynomial size circuits computing MKtPt, for a
Kt complexity threshold parameter t(n) = n/2. The existence of such circuits follows from
the hypothesis of the theorem. Now Lemma 20 implies that there is a randomized algorithm
running in time polynomial in n that solves the circuit satisfiability problem for circuits of
size poly(n) over n input variables. We can use this algorithm and self-reduction to find with
high probability the lexicographic first string wn accepted by the complement of Dn. Then,
by construction, we get that rKt(wn) = O(logn) and Kt(wn) = Ω(n). J
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Abstract

We apply the framework of block-encodings, introduced by Low and Chuang (under the name
standard-form), to the study of quantum machine learning algorithms and derive general results
that are applicable to a variety of input models, including sparse matrix oracles and matrices
stored in a data structure. We develop several tools within the block-encoding framework, such
as singular value estimation of a block-encoded matrix, and quantum linear system solvers using
block-encodings. The presented results give new techniques for Hamiltonian simulation of non-sparse
matrices, which could be relevant for certain quantum chemistry applications, and which in turn
imply an exponential improvement in the dependence on precision in quantum linear systems solvers
for non-sparse matrices.

In addition, we develop a technique of variable-time amplitude estimation, based on Ambainis’
variable-time amplitude amplification technique, which we are also able to apply within the framework.

As applications, we design the following algorithms: (1) a quantum algorithm for the quantum
weighted least squares problem, exhibiting a 6-th power improvement in the dependence on the
condition number and an exponential improvement in the dependence on the precision over the
previous best algorithm of Kerenidis and Prakash; (2) the first quantum algorithm for the quantum
generalized least squares problem; and (3) quantum algorithms for estimating electrical-network
quantities, including effective resistance and dissipated power, improving upon previous work.
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1 Introduction

A rapidly growing and important class of quantum algorithms are those that use Hamiltonian
simulation subroutines to solve linear algebraic problems, many with potential applications
to machine learning. This subfield began with the HHL algorithm, due to Harrow, Hassidim
and Lloyd [18], which solves the quantum linear system problem (QLS problem). In this
problem, the input consists of a matrix A ∈ RN×N and a vector ~b ∈ RN , in some specified
format, and the algorithm should output a quantum state proportional to

∑N
i=1 xi|i〉, where

~x = A−1~b.
The format in which the input is presented is of crucial importance. For a sparse A,

given an efficient algorithm to query the i-th non-zero entry of the j-th row of A, the HHL
algorithm and its subsequent improvements [2, 14] can solve the QLS problem in complexity
that depends poly-logarithmically on N . Here, if A were given naively as a list of all its
entries, it would generally take time proportionally to N2 just to read the input. We will
refer to the model of accessing A, in which we can query the i-th non-zero entry of the j-th
row, as the sparse-access input model.1

In [19] and [20], Kerenidis and Prakash consider several linear algebraic problems in a
different input model. They assume that data has been collected and stored in some carefully
chosen data structure in advance. If the data is described by an arbitrary N ×N matrix,
then of course, this collection will take time at least N2 (or, if the matrix is sparse, at least
the number of non-zero entries). However, processing the data, given such a data structure,
is significantly cheaper, depending only poly-logarithmically on N . Kerenidis and Prakash
describe a data structure that, when stored in quantum-random-access read-only memory
(QROM)2, allows for the preparation of a superposition over N data points in complexity
poly-logarithmic in N . We call this the quantum data structure input model and discuss
it more in Section 2.2. Although in some applications it might be too much to ask for the
data to be presented in such a structure, one advantage of this input model is that it is not
restricted to sparse matrices. This result can potentially also be useful for some quantum
chemistry applications, since a recent proposal of Babbush et al. [4] uses a database of all
Hamiltonian terms in order to simulate the electronic structure.

The HHL algorithm and its variants and several other applications are based on techniques
from Hamiltonian simulation. Given a Hermitian matrix H and an input state |ψ〉, the
Hamiltonian simulation problem is to simulate the unitary eiH on |ψ〉 for some time t. Most
work in this area has considered the sparse-access input model [22, 1, 6, 7, 5, 8, 12, 13, 15,
26, 31, 9, 25, 10], but recent work of Low and Chuang [24] has considered a different model,
which we call the block-encoding framework3.

The block-encoding framework. A block-encoding of a matrix A ∈ CN×N is a unitary U
such that the top left block of U is equal to A/α for some normalizing constant α ≥ ‖A‖:

U =
(
A/α .

. .

)
,

i.e. (〈0|⊗a ⊗ I)U(|0〉⊗a⊗ = A/α. In other words, for some a, for any state |ψ〉 of appropriate
dimension, α(〈0|⊗a ⊗ I)U(|0〉⊗a ⊗ |ψ〉) = A|ψ〉.

1 If the matrix is not symmetric (or Hermitian) we also assume access to its transpose in a similar fashion.
2 This refers to memory that is only required to store classical (non-superposition) data, but can be

addressed in superposition.
3 Low and Chuang call this input model standard form.
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Such an encoding is useful if U can be implemented efficiently. In that case, U , combined
with amplitude amplification, can be used to generate the state A|ψ〉/ ‖A|ψ〉‖ given a
circuit for generating |ψ〉. The main motivation for using block-encodings is that Low and
Chuang showed [24] how to perform optimal Hamiltonian simulation given a block-encoded
Hamiltonian A.

In Ref. [19], Kerenidis and Prakash implicitly prove that if an N ×N matrix A is given
as a quantum data structure, then there is an ε-approximate block-encoding of A that can be
implemented in complexity polylog(N/ε). This implies that all results about block-encodings
– including Low and Chuang’s Hamiltonian simulation when the input is given as a block-
encoding [24], and other techniques we develop in this paper – also apply to input presented
in the quantum data structure model. This observation is the essential idea behind our
applications. Implicit in work by Childs [13] is the fact that, given A in the sparse-access
input model, there is an ε-approximate block-encoding of A that can be implemented in
complexity polylog(N/ε), so our results also apply to the sparse-access input model. In fact,
the block-encoding framework unifies a number of possible input models, and also enables
one to work with hybrid input models, where some matrices may come from purifications of
density operators, whereas other input matrices may be accessed through sparse oracles or a
quantum data structure. For a very recent overview of these general techniques see e.g. [16].

We demonstrate the elegance of the block-encoding framework by showing how to
combine and modify block-encodings to build up new block-encodings, similar to building
new algorithms from existing subroutines. For example, given block-encodings of A and
B, their product yields a block-encoding of AB. Given a block-encoding of a Hermitian
A, it is possible to construct a block-encoding of eiA, using which one can implement a
block-encoding of A−1. We present these techniques in Section 3.

To illustrate the elegance of the block-encoding framework, consider one of our applications:
generalized least squares. This problem, defined in Section 4, requires that given inputs
X ∈ RM×N , Ω ∈ RM×M and ~y ∈ RM , we output a quantum state proportional to

~β = (XTΩ−1X)−1XTΩ−1~y.

Given block-encodings of X and Ω, it is simple to combine them to get a block-encoding of
(XTΩ−1X)−1XTΩ−1, which can then be applied to a quantum state proportional to ~y.

Variable-time amplitude estimation. A variable-stopping-time quantum algorithm is a
quantum algorithm A consisting of m stages A = Am . . .A1, where AjAj−1 . . .A1 has
complexity tj , for tm > · · · > t1 > 0. At each stage, a certain flag register, which we can
think of as being initialized to a neutral symbol, may be marked as “good” in some branches
of the superposition, or “bad” in some branches of the superposition, or left neutral. Each
subsequent stage only acts non-trivially on those branches of the superposition in which the
flag is not yet set to “good” or “bad”.

At the end of the algorithm, we would like to project onto that part of the final state in
which the flag register is set to “good”. This is straightforward using amplitude amplification,
however this approach may be vastly sub-optimal. If the algorithm terminates with amplitude√
psucc on the “good” part of the state, then standard amplitude amplification requires that

we run 1/√psucc rounds, each of which requires us to run the full algorithm A to generate
its final state, costing tm/

√
psucc.

To see why this might be sub-optimal, suppose that after A1, the amplitude on the
part of the state in which the flag register is set to “bad” is already very high. Using
amplitude amplification at this stage is very cheap, because we only have to incur the cost

ICALP 2019
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t1 of A1 at each round, rather than running all of A. In [2], Ambainis showed that given a
variable-stopping-time quantum algorithm, there exists an algorithm that approximates the
“good” part of the algorithm’s final state in cost Õ

(
tm +

√∑m
j=1

pj

psucc
t2j

)
4, where pj is the

amplitude on the part of the state that is moved from neutral to “good” or “bad” during
application of Aj (intuitively, the probability that the algorithm stops at stage j).

While amplitude amplification can easily be modified to not only project a state onto its
“good” part, but also return an estimate of psucc (i.e. the probability of measuring “good”
given the output of A), this is not immediate in variable-time amplitude amplification. The
main difficulty is that a variable-time amplification algorithm applies a lot of subsequent
amplification phases, where in each amplification phase the precise amount of amplification
is a priori unknown. We overcome this difficulty by separately estimating the amount of
amplification in each phase with some additional precision and finally combining the separate
estimates in order to get a multiplicative estimate of psucc.

We prove rigorously in the full version of this paper [11], how to estimate the success
probability of a variable-stopping-time quantum algorithm to within a multiplicative error of
ε in complexity

Õ

1
ε

tm +

√√√√ m∑
j=1

pj
psucc

t2j

 .

Meanwhile we also derive some logarithmic improvements to the complexity of variable-time
amplitude amplification.

Applications. We give several applications of the block-encoding framework and variable-
time amplitude estimation.

We first present a quantum weighted least squares solver (WLS solver), which outputs
a quantum state proportional to the optimal solution to a weighted least squares problem,
when the input is given either in the quantum data structure model of Kerenidis and
Prakash, or the sparse-access input model. We remark that the sparse-access input model is
perhaps less appropriate to the setting of data analysis, where we cannot usually assume
any special structure on the input data, however, since our algorithm is designed in the
block-encoding framework, it works for either input model. Our quantum WLS solver
improves the dependence on the condition number from κ6 in [20]5 to κ, and the dependence
on ε from 1/ε to polylog(1/ε).

We next present the first quantum generalized least squares solver (GLS solver), which
outputs a quantum state proportional to the optimal solution to a generalized least squares
problem. We again assume that the input is given in either the quantum data structure
model or the sparse-access model. The complexity is again polynomial in log(1/ε) and in the
condition numbers of the input matrices. We describe our WLS and GLS solvers in Section 4.

We build on the algorithms of Wang [29] to estimate effective resistance between two
nodes of an electrical network and the power dissipated across a network when the input is
given as a quantum data structure or in the sparse-access model. We estimate the norm of the
output state of a certain linear system by applying the variable-time amplitude estimation
algorithm. In the sparse-access model, we find that our algorithm outperforms Wang’s
linear-system-based algorithm. In the quantum data structure model, our algorithms offer

4 We use the notation Õ (f(x)) to indicate O (f(x)polylog(f(x))).
5 In the paper of Kerenidis and Prakash their κ corresponds to our κ2.



S. Chakraborty, A. Gilyén, and S. Jeffery 33:5

a speedup whenever the maximum degree of an electrical network of n nodes is Ω(n1/3).
Our algorithms also have a speedup over the quantum walk based algorithm by Wang in
certain regimes.

Throughout the article, the theorems, lemmas, and corollaries that are provided without
a reference, are all rigorously proven in the full version of this paper [11].

Related Work. Independently of this work, recently, Wang and Wossnig [28] have also
considered Hamiltonian simulation of a Hamiltonian given in the quantum data structure
model, using quantum-walk based techniques from earlier work on Hamiltonian simulation
[9]. Their algorithm’s complexity scales as ‖A‖1 (which they upper bound by

√
N); whereas

our Hamiltonian simulation results (Theorem 8), which follow from Low and Chuang’s
block-Hamiltonian simulation result, have a complexity that depends poly-logarithmically on
the dimension, N . Instead, our complexity depends on the parameter µ, described below,
which is also at most

√
N .

2 Preliminaries

For A ∈ CM×N , define A ∈ C(M+N)×(M+N) by

A =
[

0 A

A† 0

]
. (1)

For many applications where we want to simulate A, or a function of A, it suffices to
simulate A.

For A ∈ CN×N , we will let ‖A‖ denote the spectral norm and ‖A‖F the Frobenius norm.
For A ∈ CM×N , let Ai,· denote the i-th row of A, and define the following:

For q ∈ [0, 1], sq(A) = maxi∈M ‖Ai,·‖qq
For p ∈ [0, 1], µp(A) =

√
s2p(A)s2(1−p)(AT )

σmin(A) = min{‖A|u〉‖ : |u〉 ∈ row(A), ‖|u〉‖ = 1} (the smallest non-zero singular value)
σmax(A) = max{‖A|u〉‖ : ‖|u〉‖ = 1} (the largest singular value)
‖A‖ =

∥∥A∥∥ = σmax(A)

For A ∈ CM×N with singular value decomposition A =
∑
i σi|ui〉〈vi|, we define the

Moore-Penrose pseudoinverse of A by A+ =
∑
i σ
−1
i |vi〉〈ui|. For a matrix A, we let A(p) be

defined A(p)
i,j = (Ai,j)p.

2.1 Block-encodings
Following [16] we use the following definition:

I Definition 1 (Block-encoding). Suppose that A is an s-qubit operator, α, ε ∈ R+ and a ∈ N.
Then we say that the (s+ a)-qubit unitary U is an (α, a, ε)-block-encoding6 of A, if∥∥A− α(〈0|⊗a ⊗ I)U(|0〉⊗a ⊗ I)

∥∥ ≤ ε.
Block-encodings are really intuitive to work with. For example, one can easily take

the product of two block-encoded matrices by keeping their ancilla qubits separately. The
following lemma shows that the errors during such a multiplication simply add up as one
would expect, and the block-encoding does not introduce any additional errors.

6 Note that since ‖U‖ = 1 we necessarily have ‖A‖ ≤ α+ ε.
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I Lemma 2. If U is an (α, a, δ)-block-encoding of an s-qubit operator A, and V is a (β, b, ε)-
block-encoding of an s-qubit operator B then7 (Ib ⊗ U)(Ia ⊗ V ) is an (αβ, a + b, αε + βδ)-
block-encoding of AB.

Proof.∥∥AB − αβ(〈0|⊗a+b ⊗ I)(Ib ⊗ U)(Ia ⊗ V )(|0〉⊗a+b ⊗ I)
∥∥

=
∥∥∥AB − α(〈0|⊗a ⊗ I)U(|0〉⊗a ⊗ I)︸ ︷︷ ︸

Ã

β(〈0|⊗b ⊗ I)V (|0〉⊗b ⊗ I)︸ ︷︷ ︸
B̃

∥∥∥
=
∥∥AB − ÃB + ÃB − ÃB̃

∥∥ =
∥∥(A− Ã)B + Ã(B − B̃)

∥∥ =
∥∥A− Ã∥∥β + α

∥∥B − B̃∥∥
≤αε+ βδ. J

The above lemma can be made more efficient in some cases when both A and B are
significantly subnormalized.

The following theorem about block-Hamiltonian simulation is a corollary of the results of
[24, Theorem 1], which also includes bounds on the propagation of errors.

I Theorem 3. Suppose that U is an (α, a, ε/|2t|)-block-encoding of the Hamiltonian H. Then
we can implement an ε-precise Hamiltonian simulation unitary V which is an (1, a+ 2, ε)-
block-encoding of eitH , with O (|αt|+ log(1/ε)) uses of controlled-U or its inverse and with
O (a|αt|+ a log(1/ε)) two-qubit gates.

2.2 Data structures and sparse access
We will consider the following data structure, studied in [19]. We will refer to this data
structure as a quantum-accessible data structure, because it is a classical data structure,
which, if stored in QROM, is addressable in superposition, but needn’t be able to store a
quantum state, facilitates the implementation of certain useful quantum operations. In our
complexity analysis, we consider the cost of accessing a QROM of size N to be polylog(N).
Although this operation requires order N gates [17, 3], but the gates can be arranged in
parallel such that the depth of the circuit indeed remains polylog(N).

The following is proven in [19].

I Theorem 4 (Implementing quantum operators using an efficient data structure [19]). Let
A ∈ RM×N be a matrix with Aij ∈ R being the entry of the i-th row and the j-th column.
If w is the number of non-zero entries of A, then there exists a data structure of size8
O
(
w log2(MN)

)
that, given the entries (i, j, Aij) in an arbitrary order, stores them such

that time8 taken to store each entry of A is O (log(MN)). Once this data structure has been
initiated with all non-zero entries of A, there exists a quantum algorithm that can perform
the following maps with ε-precision in O (polylog(MN/ε)) time:

Ũ : |i〉|0〉 7→ |i〉 1
‖Ai,·‖

N∑
j=1

Ai,j |j〉 = |i, Ai〉,

7 In the expression (Ib ⊗ U)(Ia ⊗ V ), the identity operator Ib should be seen as acting on the ancilla
qubits of V , and Ia on those of U .

8 Here, for simplicity we assume that we can store a real number in 1 data register, however more
realistically we should actually count the number of bits, incurring logarithmic overheads. Also in this
theorem we assign unit cost for classical arithmetic operations.
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Ṽ : |0〉|j〉 7→ 1
‖A‖F

M∑
i=1
‖Ai,·‖ |i〉|j〉 = |Ã, j〉,

where |Ai,·〉 is the normalized quantum state corresponding to the i-th row of A and |Ã〉 is a
normalized quantum state such that 〈i|Ã〉 = ‖Ai,·‖, i.e. the norm of the i-th row of A.

In particular, given a vector ~v ∈ RM×1 stored in this data structure, we can generate an
ε-approximation of the superposition

∑M
i=1 vi|i〉/ ‖~v‖ in complexity polylog(M/ε).

As a corollary, we have the following, which allows us to generate alternative quantum
state representations of the rows of A, as long as we have stored A appropriately beforehand:

I Corollary 5. If A(p) is stored in a quantum data structure, then there exists a quantum
algorithm that can perform the following map with ε-precision in polylog(MN/ε) time:

|i〉|0〉 7→ |i〉 1
s2p(A)

N∑
j=1

Api,j |j〉.

The following was proven in [20], although not in the language of block-encodings.

I Lemma 6 (Implementing block-encodings from quantum data structures). Let A ∈ CM×N .
1. Fix p ∈ [0, 1]. If A ∈ CM×N , and A(p) and (A(1−p))† are both stored in quantum-accessible

data structures9, then there exist unitaries UR and UL that can be implemented in time
O (polylog(MN/ε)) such that U†RUL is a (µp(A), dlog(N +M + 1)e, ε)-block-encoding of
A.

2. On the other hand, if A is stored in a quantum-accessible data structure9, then there
exist unitaries UR and UL that can be implemented in time O (polylog(MN)/ε) such that
U†RUL is a (‖A‖F , dlog(M +N)e, ε)-block-encoding of A.

This allows us to apply our block-encoding results in the quantum data structure setting,
including Hamiltonian simulation (Section 3.1), quantum linear system solvers (Section 3.3)
and implementing negative powers of a Hamiltonian (Section 3.3).

In contrast, in the sparse-access model we assume that the input matrix A ∈ CM×N has
sr-sparse rows and sc-sparse columns, such that the matrix elements can be queried via an
oracle

OA : |i〉|j〉|0〉⊗b 7→ |i〉|j〉|aij〉 ∀i ∈ [M ], j ∈ [N ].

Moreover, the indices of non-zero elements of each row can be queried via an oracle

Or : |i〉|k〉 7→ |i〉|rik〉 ∀i ∈ [N ], k ∈ [sr], where

rij is the index for the j-th non-zero entry of the i-th row of A, or if there are less than i
non-zero entries, then it is j +N . If A is not symmetric (or Hermitian) then we also assume
the analogous oracle for columns. It is not difficult to prove [13] that a block-encoding of A
can be efficiently implemented in the sparse-access input model, see [16, Lemma 48] for a
direct proof.

I Lemma 7 (Constructing block-encodings for sparse-access matrices [16, Lemma 48]). Let
A ∈ CM×N be an sr, sc row and column-sparse matrix given in the sparse-access input model.
Then for any ε ∈ (0, 1), we can implement a (

√
srsc,polylog(MN/ε), ε)-block-encoding of A

with O (1) queries and polylog(MN/ε) elementary gates.

Thus, our block-encoding results also apply to the sparse access model.

9 Here we assume that the data structure stores the matrices with sufficient precision.
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33:8 The Power of Block-Encoded Matrix Powers

3 Techniques for block-encodings

We develop several tools within the block-encoding framework that are crucial to our
applications, but also likely of independent interest. Since an input given either in the
sparse-access model or as a quantum data structure can be made into a block-encoding, our
block-encoding results imply analogous results in each of the sparse-access and quantum
data structure models.

Throughout this section, let µ(A), and “µ-encoding of A” be one of:
(1) µ(A) = ‖A‖F , the Frobenius norm of A, in which case µ-encoding refers to a quantum

data structure encoding A;
(2) for some p ∈ [0, 1], µ(A) =

√
s2p(A)s2(1−p)(A), where sp(A) = maxj ‖Aj,·‖pp, in which

case µ-encoding refers to quantum data structures encoding both A(p) and (A(1−p))T ,
defined by A(q)

i,j := (Ai,j)q; or
(3) µ(A) =

√
srsc, where sr and sc are the row and column sparsities of A, in which case,

µ-encoding refers to having sparse access to A.

3.1 Hamiltonian simulation from quantum data structure

We first have the following important building block for our other results:

I Theorem 8. For any t ∈ R and ε ∈ (0, 1/2), let H ∈ CN×N be a Hermitian matrix that is
µ-encoded, with ‖H‖ ≤ 1. Then we can implement a unitary Ũ that is a (1, n+ 3, ε)-block-
encoding of eitH in time Õ (tµ(A)polylog(N/ε)).

This follows from the quantum Hamiltonian simulation algorithm of Low and Chuang
that expects the input as a block-encoding, and Lemmas 6 and 7. Independently, Wang and
Wossnig have proven a similar result, with ‖A‖1 ≤

√
N in place of µ(A) [28].

3.2 Quantum singular value estimation

Given access to a matrix A ∈ RM×N with singular value decomposition A =
∑
j σj |uj〉〈vj |,

and given some input state, the quantum singular value estimation (QSVE) problem requires
estimating the singular values of A up to some precision with a high probability. We present
a quantum algorithm for singular value estimation of a matrix A given as a block-encoding.
In particular, using our algorithm it is possible to obtain an estimate of σj , σ̃j such that
with probability 1 − ε, |σj − σ̃j | ≤ ∆. We give a precise description of quantum singular
value estimation, and prove the following theorem:

I Theorem 9. Let ε,∆ ∈ (0, 1), and ε′ = ε∆
4 log2(1/∆) . Let U be an (α, a, ε′)-block-encoding of

a matrix A that can be implemented in cost TU . Then we can implement a quantum algorithm
that solves QSVE of A in complexity

O
( α

∆(a+ TU )polylog(1/ε)
)
.

In the special case when the block-encoding is implemented by a quantum data structure, we
recover the complexity of the quantum algorithm for singular value estimation by Kerenidis
and Prakash [19].
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3.3 Quantum linear system solver
The quantum linear system problem (QLS problem) is the following. Given access to an N×N
matrix A, and a procedure for computing a quantum state |b〉 in the image of A, prepare a
state that is within ε of A+|b〉/ ‖A+|b〉‖. Given a block-encoding of A, we can use Theorem 3
to get a block-encoding of eitA, from which we can implement a (2κ, a, ε)-block-encoding of
A−1 (for some a and ε), where κ is an upper bound on10

∥∥A−1
∥∥. Such a block-encoding

can be applied to a state |b〉 to get 1
2κ |0〉

⊗a(A−1|b〉) + |0⊥〉 for some unnormalized state |0⊥〉
orthogonal to every state with |0〉 in the first a registers. Performing amplitude amplification
on this procedure, we can approximate the state A−1|b〉/

∥∥A−1|b〉
∥∥. However, this gives

quadratic dependence on κ, whereas only linear dependence is needed for quantum linear
systems solvers in the sparse-access input model, thanks to the technique of variable-time
amplitude amplification. Using this technique, we are able to show the following:

I Theorem 10. Let κ ≥ 2, and A be an N ×N Hermitian matrix11 such that the non-zero
eigenvalues of H lie in the range [−1,−1/κ]

⋃
[1/κ, 1]. Suppose that for δ = o

(
ε/(κ2 log3 κ

ε )
)

we have a unitary U that is a (α, a, δ)-block-encoding of A that can be implemented using
TU elementary gates. Also suppose that we can prepare an input state |ψ〉 which spans the
eigenvectors of A in time Tψ. Then there exists a variable time amplitude amplification based
quantum algorithm that outputs a state that is ε-close to A−1|ψ〉/

∥∥A−1|ψ〉
∥∥ at a cost

O
(
κ
(
α
(
TU + a

)
log2

(κ
ε

)
+ Tψ

)
log(κ)

)
.

From this we get the following theorem:

I Theorem 11. Let ε ∈ (0, 1/2), suppose that A ∈ CM×N such that ‖A‖ ≤ 1,
∥∥A−1

∥∥ ≤ κ,
and A is µ-encoded. Also assume that there is a unitary U which acts on polylog(MN/ε)
qubits and prepares the state |b〉 with complexity Tb. Then
(i) The QLS problem can be solved in time Õ (κ (µ(A) + Tb) polylog(MN/ε)).
(ii) If ε ∈ (0, 1), then an ε-multiplicative approximation of ‖A+|b〉‖ can be obtained in time
Õ
(κ
ε

(µ(A) + Tb) polylog(MN)
)

For (ii), we use our new technique of variable time amplitude estimation.
Finally, we generalize our QLS solver to apply A−c for any c ∈ (0,∞). Using variable-time

amplification techniques we show the following:

I Theorem 12. Let κ ≥ 2, c ∈ (0,∞), q = max(1, c), and A be an N × N Hermitian
matrix such that the eigenvalues of A lie in the range [−1,−1/κ]

⋃
[1/κ, 1]. Suppose that for

δ = o
(
ε/
(
κqq log3 κq

ε

))
we have a unitary U that is a (α, a, δ)-block-encoding of A which

can be implemented using TU elementary gates. Also suppose that we can prepare an input
state |ψ〉 that is spanned by the eigenvectors of A in time Tψ. Then there exists a variable
time amplitude amplification based quantum algorithm that outputs a state that is ε-close to
A−c|ψ〉/ ‖A−c|ψ〉‖ with a cost of

O
((

ακq
(
TU + a

)
q log2

(
κq

ε

)
+ κcTψ

)
log (κ)

)
.

10 In the special case when ‖A‖ = 1, κ is an upper bound on the condition number of A, justifying the
notation.

11 Since for any matrix C ∈ CM ′×N ′
we have that C ∈ C(M ′+N ′)×(M ′+N ′) is Hermitian, and the eigenvalues

of C are ±1 times the singular values of C, this statement and its corollaries also apply to non-symmetric
matrices.
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Also, there exists a variable time amplitude amplification based quantum algorithm that
outputs a number Γ such that

1− ε ≤ Γ
‖A−c|ψ〉‖

≤ 1 + ε,

with success probability at least 1− δ, at a cost

O
(

1
ε

(
ακq

(
TU + a

)
q log2

(
κq

ε

)
+ κcTψ

)
log3 (κ) log

(
log (κ)
δ

))
.

4 Application to least squares

The problem of ordinary least squares (OLS) is the following. Given data points
{(~x(i), y(i))}Mi=1 for ~x(1), . . . , ~x(M) ∈ RN and y(1), . . . , y(M) ∈ R, find ~β ∈ RN that min-
imizes:

M∑
i=1

(y(i) − ~βT~x(i))2. (2)

The motivation for this task is the assumption that the samples are obtained from some
process such that at every sample i, y(i) depends linearly on ~x(i), up to some random noise,
so y(i) is drawn from a random variable ~βT~x(i) + Ei, where Ei is a random variable with
mean 0, for example, a Gaussian. The vector ~β that minimizes (2) represents a good estimate
of the underlying linear function. We assume M ≥ N so that it is feasible to recover this
linear function.

We can generalize this task to settings in which certain samples are thought to be of
higher quality than others, for example, because the random variables Ei are not identical.
We express this belief by assigning a positive weight wi to each sample, and minimizing

M∑
i=1

wi(y(i) − ~βT~x(i))2. (3)

Let X ∈ RM×N be the matrix such that its ith row is ~x(i)T . Finding ~β given X, ~w and ~y is
the problem of weighted least squares (WLS).

We can further generalize to settings in which the random variables Ei for sample i are
correlated. In the problem of generalized least squares (GLS), the presumed correlations in
error between pairs of samples are given in a symmetric non-singular covariance matrix Ω.
We then want to find the vector ~β that minimizes

M∑
i,j=1

Ω−1
i,j (y(i) − ~βT~x(i))(y(j) − ~βT~x(j)). (4)

We will consider solving quantum versions of these problems. Specifically, a quantum
WLS solver (resp. quantum GLS solver) is given access to ~y ∈ RM , X ∈ RM×N , and positive
weights w1, . . . , wM (resp. Ω), in some specified manner, and outputs an ε-approximation of
a quantum state

∑
i βi|i〉/

∥∥∥~β∥∥∥, where ~β minimizes the expression in (3) (resp. (4)).
Quantum algorithms for least squares fitting were first considered in [32]. They considered

query access to X, and a procedure for outputting |y〉 =
∑
i yi|i〉/ ‖~y‖, which we refer to

as the sparse-access input model. They present a quantum OLS solver, outputting a state
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proportional to a solution ~β, that runs in time Õ
(
min{log(M)s3κ6/ε, log(M)sκ6/ε2}

)
, where

s is the sparsity of X, and κ the condition number. To compute a state proportional to ~β,
they first apply XT to |y〉 to get a state proportional to XT~y, using techniques similar to
[18]. They then apply (XTX)−1 using the quantum linear system solving algorithm of [18],
giving a final state proportional to (XTX)−1XT~y = X+~y.

The approach of [32] was later improved upon by [21], who also give a quantum OLS solver
in the sparse-access input model. Unlike [32], they apply X+ directly, by using Hamiltonian
simulation of X and phase estimation to estimate the singular values of X, and then apply a
rotation depending on the inverse singular value if it’s larger than 0, and using amplitude
amplification to de-amplify the singular-value-zero parts of the state. This results in an
algorithm with complexity Õ

(
sκ3 log(M +N)/ε2).

Several works have also considered quantum algorithms for least squares problems with
a classical output. The first, due to Wang [30], outputs the vector ~β in a classical form.
The input model should be compared with the sparse-access model – although ~y is given in
classical random access memory, an assumption about the regularity of ~y means the quantum
state |y〉 can be efficiently prepared. The algorithm also requires a regularity condition on the
matrix X. The algorithm’s complexity is poly(logM,N, κ, 1

ε ). Like [21], Wang’s algorithm
uses techniques from quantum linear system solving to apply X+ directly to |y〉. To do this,
Hamiltonian simulation of X is accomplished via what we would call a block-encoding of X.
This outputs a state proportional to X+~y, whose amplitudes can be estimated one-by-one
to recover ~β.

A second algorithm to consider least squares with a classical output is [27], which does
not output ~β, but rather, given an input ~x, outputs ~xT ~β, thus predicting a new data point.
This algorithm requires that ~x, ~y, and even X be given as quantum states, and assumes
that X has low approximate rank. The algorithm uses techniques from quantum principal
component analysis [23], and runs in time O

(
log(N)κ2/ε3).

Recently, Kerenidis and Prakash introduced the quantum data structure input model
[19]. This input model fits data analysis tasks, because unlike in more abstract problems
such as Hamiltonian simulation, where the input matrix may be assumed to be sparse
and well-structured so that we can hope to have implemented efficient subroutines to find
the non-zero entries of the rows and columns, the input to least squares is generally noisy
data for which we may not assume any such structure. In Ref. [20], utilizing this data
structure, they solve the quantum version of the weighted least squares problem. Their
algorithm assumes access to quantum data structures storing X, or some closely related
matrix (see Section 2.2), W = diag(~w), and ~y, and have running time Õ

(
κ6µ
ε polylog(MN)

)
,

where κ is the condition number of XT
√
W , and µ is some prior choice of

∥∥∥XT
√
W
∥∥∥
F
or√

s2p(XT
√
W )s2(1−p)(XT

√
W ) for some p ∈ [0, 1]12. Note that the choice of µ impacts

the way X must be encoded, leading to a family of algorithms requiring slightly different
encodings of the input.

12We stress that our algorithms do not achieve the minimum possible µ, but rather, we need to store the
input in QROM with a particular µ in mind. We might more accurately describe the quantum data
structure input model as a family of input models, parametrized by µ.

ICALP 2019



33:12 The Power of Block-Encoded Matrix Powers

4.1 Our results
We give quantum WLS and GLS solvers in the model where the input is given as a block-
encoding. As a special case, we get quantum WLS and GLS solvers in the quantum data
structure input model of Kerenidis and Prakash. First, we give the following WLS solver:

I Theorem 13. Let A =
√
WX such that ‖A+‖ ≤ κA. Suppose

√
W~y is stored in a

quantum-accessible data structure, and A is µ-encoded. Suppose the data points have residual
error SSWres satisfying SSWres ≤ η. Then we can implement a quantum WLS solver with error
ε in complexity:

Õ
(
κAµ(A)√

1− η
polylog (MN/ε)

)
.

The residual error is a measure of how well the data can be linearly approximated. It
is reasonable to assume that it’s close to 0, as otherwise, linear regression is inappropriate.
Indeed, previous work seems to implicitly assume it’s bounded by a constant below 1.

Theorem 13 is a 6-th power improvement in the dependence on κ, and an exponential
improvement in the dependent on 1/ε as compared with the quantum WLS solver of [20]. As
a special case we get a quantum OLS solver, which compares favourably to previous quantum
OLS solvers in the sparse-access model [32, 21] in having a linear dependence on κ, and a
polylog(1/ε) dependence on the precision. However, these previous results rely on QLS solver
subroutines which have since been improved, so their complexity can also likely be improved.

In addition, we give the first quantum GLS solver. We first show how to implement a
GLS solver when the inputs are given as block-encodings. We prove the following general
Theorem:

I Theorem 14. Suppose that we have a unitary Uy preparing a quantum state proportional
to ~y in complexity Ty. Suppose X ∈ RM×N , Ω ∈ RM×M are such that ‖X‖ ≤ 1, ‖Ω‖ ≤ 1
and Ω � 0 is positive definite. Suppose that we have access to UX that is an (αX , aX , 0)-
block-encoding of X which has complexity TX ≥ aX , and similarly we have access UΩ that
is an (αΩ, aΩ, 0)-block-encoding of Ω− 1

2 which has complexity TΩ ≥ aΩ. Let A := Ω− 1
2X,

and suppose we have the following upper bounds: ‖A+‖ ≤ κA,
∥∥Ω−1

∥∥ ≤ κΩ, and SS
Ω
res ≤ η.

Then we can implement a quantum GLS-solver with error ε in complexity

O
(
κA log (κA)√

1− η

(
(
√
κΩαXTX + αΩTΩ) log3

(κA
ε

)
+
√
κΩTy

))
.

As a special case, we get the following:

I Corollary 15. Suppose ~y is stored in a quantum-accessible data structure, and X, Ω are
such that ‖X‖ ≤ 1, ‖Ω‖ ≤ 1 and Ω is positive definite. Further assume they are µ-encoded
and ‖X+‖ ≤ κX , ‖Ω+‖ ≤ κΩ. Then we can implement a quantum GLS-solver with error ε
in complexity

Õ
(
κX
√
κΩ√

1− η
(µ(X) + µ(Ω)κΩ) polylog (MN/ε)

)
.

Note that for Theorem 14 and Corollary 15, the parameter κX is not exactly the condition
number of X. In fact, what we require is that the product of the upper bounds on ‖X‖ and
‖X+‖ respectively, be upper bounded by κX . Thus without loss of generality it suffices to
consider that ‖X‖ ≤ 1 and ‖X+‖ ≤ κX (same holds for Ω).
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1 Introduction

The Sauer-Shelah-Perles Lemma [28, 30, 32] is arguably the most basic fact in VC theory; it
asserts that any class C ⊆ {0, 1}n satisfies |C| ≤

(
n
≤d
)
, where d = VC-dim(C). A beautiful

generalization of Sauer-Shelah-Perles’s inequality asserts that |C| ≤ |X(C)|, where X(C) is
the family of subsets that are shattered by C.1 The latter inequality is a part of the Sandwich
Lemma [1, 4, 7, 23], which also provides a lower bound for |C| (and thus “sandwiches” |C|)
in terms of the number of its strongly shattered subsets (see Section 2). A class C is called
maximum/ample if the Sauer-Shelah-Perles/Sandwich upper bounds are tight (respectively).
Every maximum class is ample, but not vice versa.

Maximum classes were studied mostly in discrete geometry and machine learning, e.g. [34,
11, 9, 10, 14]. The history of ample classes is more interesting as they were discovered
independently by several works in disparate contexts [1, 15, 4, 19, 3, 7, 35]. Consequently,
they received different names such as lopsided classes [15], extremal classes [4, 19], and ample
classes [3, 7]. Lawrence [15] was the first to define them for the investigation of the possible
sign patterns realized by points of a convex set of Rd. Interestingly, Lawrence’s definition of
these classes does not use the notion of shattering nor the Sandwich Lemma. In this context,
these classes were discovered by Bollobás and Radcliffe [4] and Bandelt et al. [3], and the
equivalence between the two definitions appears in [3]. Ample classes admit a multitude of
combinatorial and geometric characterizations [3, 4, 15] and comprise many natural examples
arising from discrete geometry, combinatorics, graph theory, and geometry of groups [3, 15].

Main Results

Corner Peelings. A corner in an ample class C is any concept c ∈ C that belongs to a unique
maximal cube of C (equivalently, c is a corner if C\{c} is also ample, see Claim 6). A sequence
of corner removals leading to a single concept is called a corner peeling. Wiedemann [35] and
independently Chepoi (unpublished, 1996) asked whether every ample class has a corner. The
machine learning community studied this question independently in the context of sample
compression schemes for maximum classes: Rubinstein and Rubinstein [25] showed that
corner peelings lead to optimal unlabeled sample compression schemes (USCS).

In Theorem 9 we refute this conjecture. The crux of the proof is an equivalence between
corner peelings and partial shellings of the cross-polytope. This equivalence translates the
question whether corners always exist to the question whether partial shellings can always
be extended. The latter was an open question in Ziegler’s book on polytopes [38], and was
resolved in H. Tracy Hall’s PhD thesis where she presented an interesting counterexample [13].
The ample class resulting from Hall’s construction yields a maximum class without corners.

Sample Compression. Sample compression is a powerful technique to derive generalization
bounds in statistical learning. Littlestone and Warmuth [16] introduced it and asked if every
class of VC-dimension d <∞ has a sample compression scheme of a finite size. This question
was later precised by Floyd and Warmuth [10, 33] to whether a sample compression scheme
of size O(d) exists. The first question was recently resolved by [21] who exhibited an exp(d)
sample compression. The second question however remains one of the oldest open problems
in machine learning (for more background we refer the reader to [20] and the books [29, 36]).

1 Note that this inequality indeed implies the Sauer-Shelah-Perles Lemma, since |X(C)| ≤
(

n
≤d

)
.
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Rubinstein and Rubinstein [25, Theorem 16] showed that the existence of a corner
peeling for a maximum class C implies a representation map for C (see Section 3 for a
definition), which is known to yield an optimal unlabeled sample compression scheme of
size VC-dim(C) [14].2 They claim, using an interesting topological approach, that maximum
classes admit corner peelings. Unfortunately, our Theorem 9 shows that this does not hold.

While our Theorem 9 rules out the program of deriving representation maps from corner
peelings, in Theorem 10 we provide an alternative derivation of representation maps for
maximum classes and therefore also of an unlabeled sample compression scheme for them.

Sample Compression and Unique Sink Orientations. We next turn to construction of
representation maps for ample classes. In Theorem 15 we present geometric characterizations
of such maps via unique sink orientations: an orientation of the edges of a cube B is a unique
sink orientation (USO) if any subcube B′ ⊆ B has a unique sink. Szabó and Welzl [31]
showed that any USO of B leads to a representation map for B. We extend this bijection
to ample classes C by proving that representation maps are equivalent to orientations o
of C such that (i) o is a USO on each subcube B ⊆ C, and (ii) for each c ∈ C the edges
outgoing from c belong to a subcube B ⊆ C. We further show that any ample class admits
orientations satisfying each one of those conditions. However, the question whether all ample
classes admit representation maps remains open.

Implications on Previous Works. Our Theorem 9 establishes the existence of maximum
classes without any corners, thus countering several previous results in machine learning:

Rubinstein and Rubinstein [25, Theorem 32] showed that any maximum class can be repre-
sented by a simple arrangement of piecewise-linear hyperplanes. In [25, Theorem 39], they
claim that sweeping such an arrangement leads to a corner peeling of the corresponding
maximum class. This is unfortunately false, as witnessed by Theorem 9.
Kuzmin and Warmuth [14] constructed unlabeled sample compression schemes for maxi-
mum classes based on the presumed uniqueness of a certain matching (their Theorem 10).
This theorem is wrong as it implies the existence of corners. However their conclusion is
correct: in our Theorem 10 we show that such unlabeled compression schemes exist.
Theorem 3 by Samei, Yang, and Zilles [27] is built on a generalization of Theorem 10
from [14] to the multiclass case which is also incorrect.
Theorem 26 by Doliwa et al. [6] uses the result by [25] to show that the Recursive Teaching
Dimension (RTD) of maximum classes equals to their VC dimension. However the VC
dimension 3 maximum class from Theorem 9 has RTD at least 4. It remains open whether
the RTD of every maximum class C is bounded by O(VC-dim(C)).

Organization. Section 2 presents the main definitions and notations. Section 3 reviews
characterizations of ample/maximum classes and presents characteristic examples. Section 4
demonstrates the existence of the maximum class CH without corners. Section 5 establishes
the existence of representation maps for maximum classes. Section 6 establishes a bijection
between representation maps and unique sink orientations for ample classes. Due to space
limitations, some proofs are omitted and can be found in the full version of this paper [5].

2 Pálvölgyi and Tardos [24] recently exhibited a (non-ample) class C with no USCS of size VC-dim(C).
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2 Preliminaries

A concept class C is a set of subsets (concepts) of a finite ground set U which is called
the domain of C and denoted dom(C). We sometimes treat the concepts as characteristic
functions rather than subsets. The support (or dimension set) supp(C) of C is the set
{x ∈ U : x ∈ c′ \ c′′ for some c′, c′′ ∈ C}. C∗ := 2U \ C is the complement of C. The
restriction of C on Y ⊆ U is the class C|Y = {c ∩ Y : c ∈ C} whose domain is Y . We use
CY as shorthand for C|(U \ Y ); in particular, we write Cx for C{x}, and cx for c|(U \ {x})
for c ∈ C (note that cx ∈ Cx). A class B ⊆ 2U is a cube if there exists Y ⊆ U such that
B|Y = 2Y and BY contains a single concept (denoted by tag(B)). Note that supp(B) = Y

and therefore we say that B is a Y -cube; |Y | is called the dimension dim(B) of B. Two
cubes B,B′ with the same support are called parallel cubes. A cube B is maximal if there is
no cube B′ such that B ( B′.

Let Qn denote the n-dimensional cube where n = |U |; c, c′ ∈ Qn are called adjacent if the
symmetric difference c∆c′ is of size 1. The 1-inclusion graph of C is the subgraph G(C) of
Qn induced by the vertex-set C when the concepts of C are identified with the corresponding
vertices ofQn. Any cube B ⊆ C is called a cube of C. The cube complex of C is the setQ(C) =
{B : B is a cube of C}. The dimension of Q(C) is dim(Q(C)) := maxB∈Q(C) dim(B). A
concept c ∈ C is called a corner of C if c belongs to a unique maximal cube of C. The
reduction CY of C to Y ⊆ U is the class CY := {tag(B) : B ∈ Q(C) and supp(B) = Y }
whose domain is U \ Y . When x ∈ U we denote C{x} by Cx and call it the x-hyperplane of
C. Note that a concept c belongs to Cx if and only if c and c ∪ {x} both belong to C. The
union of all cubes of C having x in their support is called the carrier of Cx and is denoted
by Nx(C). If c ∈ Nx(C), we also denote c|U \ {x} by cx (note that cx ∈ Cx).

A class C is connected if the graph G(C) is connected. Let dG(C)(c, c′) denote the
distance between c and c′ in G(C). Note that dQn

(c, c′) =: d(c, c′) coincides with the
Hamming distance |c∆c′|. Let B(c, c′) = {t ⊆ U : d(c, t) + d(t, c′) = d(c, c′)} be the interval
between c and c′ in Qn. A class C is called isometric if d(c, c′) = dG(C)(c, c′) for any c, c′ ∈ C
and weakly isometric if d(c, c′) = dG(C)(c, c′) if d(c, c′) ≤ 2. Any path connecting two
concepts tag(B) and tag(B′) of CY inside CY can be lifted to a path of Y -cubes connecting
B and B′ in C; such a path of cubes is called a gallery.

A class C shatters Y ⊆ U if C|Y = 2Y . C strongly shatters Y if C contains a Y -
cube. Let X(C), X(C) denote the simplicial complexes X(C) = {Y : C shatters Y },
X(C) = {Y : C strongly shatters Y }. Note that X(C) ⊆ X(C). The VC-dimension
VC-dim(C) of C is the size of a largest set C shatters. The Sandwich Lemma asserts that
|X(C)| ≤ |C| ≤ |X(C)|.

A labeled sample is a set s = {(x1, y1), . . . , (xm, ym)}, where xi ∈ U and yi ∈ {0, 1}.
An unlabeled sample is a set {x1, . . . , xm}, where xi ∈ U . Given a labeled sample s =
{(x1, y1), . . . , (xm, ym)}, the unlabeled sample {x1, . . . , xm} is the domain of s and is denoted
by dom(s). A sample s is realizable by a concept c : U → {0, 1} if c(xi) = yi for every i, and
s is realizable by a concept class C if it is realizable by some c ∈ C.

A sample compression scheme for a concept class C is best viewed as a protocol between
a compressor and a reconstructor. The compressor gets a realizable sample s from which it
picks a small subsample s′. The compressor sends s′ to the reconstructor. Based on s′, the
reconstructor outputs a concept c that needs to be consistent with the entire input sample s.
A sample compression scheme has size k if for every realizable input sample s the size of the
compressed subsample s′ is at most k. An unlabeled (sample) compression scheme (USCS) is
a sample compression scheme in which the compressed subsample s′ is unlabeled. So, the
compressor removes the labels before sending the subsample to the reconstructor.
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3 Ample and Maximum Classes

We briefly review the main characterizations and basic geometric examples of ample and
maximum classes. The next theorem summarizes the main characterizations of ample classes:

I Theorem 1 ([3, 4, 15]). The following are equivalent for a class C: (1) C is ample; (2)
C∗ is ample; (3) X(C) = X(C); (4) |X(C)| = |C|; (5) |X(C)| = |C|; (6) C ∩ B is ample
for any cube B; (7) (CY )Z = (CZ)Y for all partitions U = Y ·∪ Z; (8) for all partitions
U = Y ·∪ Z, either Y ∈ X(C) or Z ∈ X(C∗).

Condition (3) leads to a simple definition of ampleness: C is ample if whenever Y ⊆ U
is shattered by C, then there is a Y -subcube of C. Thus, if C is ample we will write
X(C) instead of X(C) = X(C). A representation map for an ample class C is a bijection
r : C → X(C) satisfying the non-clashing condition: c|(r(c)∪ r(c′)) 6= c′|(r(c)∪ r(c′)), for all
c, c′ ∈ C, c 6= c′. We continue with metric and recursive characterizations of ample classes:

I Theorem 2 ([3]). The following are equivalent for a class C: (1) C is ample; (2) CY is
connected for all Y ⊆ U ; (3) CY is isometric for all Y ⊆ U ; (4) C is isometric, and both Cx
and Cx are ample for all x ∈ U ; (5) C is connected and all hyperplanes Cx are ample.

I Corollary 3. Two maximal cubes of an ample class C have different supports.

Indeed, if B and B′ are two d-cubes with the same support, by Theorem 2(2) B and B′
can be connected in C by a gallery, and thus B is contained in a d+ 1-cube. Therefore, B
and B′ cannot be maximal.

The Sandwich Lemma and Theorem 1(5) imply that maximum classes are ample. Basic
examples of maximum classes are concept classes derived from hyperplane arrangements
in Rn, ball arrangements in Rn, and unions of n intervals in R. The following theorem
summarizes some characterizations of maximum classes provided in [11, 9, 10, 34]:

I Theorem 4. The following are equivalent for a class C: (1) C is maximum; (2) CY is
maximum for all Y ⊆ U ; (3) Cx and Cx are maximum for all x ∈ U ; (4) C∗ is maximum.

We continue with some important geometric examples of ample classes.

1. Simplicial Complexes. Every simplicial complex S (viewed as a set system closed under
taking subsets) is ample since X(S) = X(S).

2. Realizable Ample Classes. Let K ⊆ Rn be a convex set. Let C(K) := {sign(v) : v ∈
K, vi 6= 0 ∀i ≤ n}, where sign(v) ∈ {±1}n is the sign pattern of v. Lawrence [15] showed
that C(K) is ample, and called ample classes representable in this manner realizable.

3. Median Classes. A class C is called median if for every three concepts c1, c2, c3 of C
their median m(c1, c2, c3) := (c1 ∩ c2)∪ (c1 ∩ c3)∪ (c2 ∩ c3) also belongs to C. Median classes
are ample by [3, Proposition 2]. Due to their relationships with other discrete structures,
median classes are one of the most important examples of ample classes. Median classes
are equivalent to finite median graphs (a well-studied class in metric graph theory, see [2]),
to CAT(0) cube complexes, i.e., cube complexes of global nonpositive curvature (central
objects in geometric group theory, see [12, 26]), and to the domains of event structures (a
basic model in concurrency theory [22, 37]).
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4. Convex Geometries and Conditional Antimatroids. Let C be a class such that (i)
∅ ∈ C and (ii) c, c′ ∈ C implies that c ∩ c′ ∈ C. Call x ∈ c ∈ C extremal if c \ {x} ∈ C. We
say that c ∈ C is generated by s ⊆ c if c is the smallest member of C containing s. A class
C satisfying (i) and (ii) with the additional property that every member c of C is generated
by its extremal points is called a conditional antimatroid [3, Section 3]. If U ∈ C, then we
obtain the well-known structure of a convex geometry (called also an antimatroid) [8]. By [3,
Proposition 1], conditional antimatroids C are ample since X(C) coincides with the sets of
extremal points and X(C) coincides with the set of all minimal generating sets of sets from
C. Convex geometries comprise many examples from geometry, ordered sets, and graphs; see
the foundational paper [8]. For example, a realizable convex geometry is a convex geometry
C ⊆ U such that U can be realized as a set of Rn and c ∈ C if and only if c is the intersection
of a convex set of Rn with U .

4 Corner Peelings and Partial Shellings

In this section, we prove that corner peelings of ample classes are equivalent to isometric
orderings of C as well as to partial shellings of the cross-polytope. This equivalence, combined
with a result by Hall [13] yields a maximum class with VC dimension 3 without corners
(Theorem 9 below). Let C< := (c1, . . . , cm) be an ordering of the concepts in C. For any
1 ≤ i ≤ m, let Ci := {c1, . . . , ci} denote the i’th level set. The ordering C< is called:

an ample ordering if every level set Ci is ample;
a corner peeling if every ci is a corner of Ci;
an isometric ordering if every level set Ci is isometric;
a weakly isometric ordering if every level set Ci is weakly isometric.

I Proposition 5. The following are equivalent for an ordering C< of an isometric class C:
(1) C< is ample; (2) C< is a corner peeling; (3) C< is isometric; (4) C< is weakly isometric.

Proof. Clearly, (3)⇒(4). Conversely, suppose C< is weakly isometric but one of its levels is
not isometric. Hence, there exists i < j such that any shortest (ci, cj)-path in C contains
some ck with k > j. Additionally, assume that ci, cj minimizes the distance d(ci, cj) among
all such pairs. Since Cj is weakly isometric, necessarily d(ci, cj) ≥ 3. Let cr be the first
concept among {cj+1, . . . , cm} lying in B(ci, cj) ∩ C. If d(ci, cr) ≥ 3 or d(cr, cj) ≥ 3 (say
the first), then one can replace ci, cj by ci, cr, which contradicts the choice of ci, cj . Thus,
d(ci, cr), d(cr, cj) ≤ 2, and at least one of them equals 2 (say d(ci, cr) = 2). Now, weak
isometricity implies that ci and cr have a common neighbor c` with ` < max{i, r} = r.
If ` < j then c`, cj contradicts the minimality of ci, cj , and if j < ` < r then c` contradicts
the minimality of cr. This shows (4)⇒(3).

If ci is a corner of Ci, then any two neighbors of ci in Ci have a second common neighbor
in Ci, and therefore dG(Ci−1) is the restriction of dG(Ci) on Ci−1. Since Cm = C is isometric,
this proves (2)⇒(3). We now prove (3)⇒(1)⇒(2) using the next lemma. For t /∈ C, let
F [t] be the smallest cube of Qn containing t and all neighbors of t in G(C). Note that the
dimension of F [t] is the number of neighbors of t in G(C).

B Claim 6. Let C be ample. Then: (i) If t /∈ C then F [t] ⊆ C ∪ {t}. (ii) If c is a corner
of C then C \ {c} is ample. (iii) If t /∈ C and C ′ := C ∪ {t} is isometric then C ′ is ample
and t is a corner of C ′.
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Proof. Item (i): Suppose F [t] \ C 6= {t}. Pick s 6= t that is closest to t in F [t] \ C (with
respect to the Hamming distance of Qn). Then t and s are not adjacent (by the definition
of F [t]). By the choice of s, B(s, t) \ {s, t} ⊆ C, i.e., B(s, t) ∩ C∗ = {t, s}, contrary to the
ampleness of C∗.

Item (ii): If c ∈ C is a corner then there is a unique maximal cube F ⊆ C containing it.
Combined with Corollary 3, this implies that X(C \ {c}) = X(C) \ {supp(F )}. Next, since
|C| = |X(C)|, we get that |C \ {c}| = |X(C \ {c})|, and by Theorem 1 C \ {c} is ample.

Item (iii): To prove that C ′ is ample, we use Theorem 2(2). First note that by
item (i), F [t] ⊆ C ′. Let F ′ 6= F ′′ be parallel cubes of C ′. If t /∈ F ′ ∪ F ′′, then a gallery
connecting F ′ and F ′′ in C is a gallery in C ′. So, assume t ∈ F ′. If F ′ is a proper face of
F [t], then F ′ is parallel to a face F of F [t] not containing t. Since F ′ and F are connected in
F [t] by a gallery and F and F ′′ are connected in C by a gallery, we obtain a gallery between
F ′ and F ′′ in C ′. Finally, let F ′ = F [t]. In this case, we assert that F ′′ does not exist.
Otherwise, let π be the parallelism map between F ′ and F ′′ (π maps each concept in F ′ to its
unique closest concept in F ′′). Note that for any r ∈ F ′: d(t, π(t)) = d(r, π(r)) = d(F ′, F ′′).
Since C ′ is isometric, t and π(t) can be connected in C ′ by a path P of length d(t, π(t)).
Let s be the neighbor of t in P . Since s ∈ C it follows that s ∈ F [t] = F ′. So, s is a concept
in F ′ that is closer to π(t) than t; this contradicts that d(t, t′′) = d(F ′, F ′′). C

To show (1)⇒(2), let C< be an ample order of C. We assert that each ci is a corner of Ci.
Indeed, since Ci−1 is ample and ci /∈ Ci−1, by Item (i) in Claim 6 the cube F [ci], defined
with respect to Ci−1, is included in Ci. Thus, ci belongs to a unique maximal cube F [ci] of
Ci, i.e., ci is a corner of Ci. To prove (3)⇒(1), let C< be isometric. The ampleness of each
Ci follows by induction from Item (iii) of Claim 6. J

A concept class C is dismantlable if it admits an ordering satisfying any of the equivalent
conditions (1)-(4) in Proposition 5. Isometric orderings of Qn are closely related to shellings
of its dual, the cross-polytope On (which we define next). Define ±U := {±x1, . . . ,±xn}; so,
|±U | = 2n, and we call −xi,+xi antipodal. The n-dimensional cross-polytope is the pure
simplicial complex of dimension n whose facets are all σ ⊆ ±U that contain exactly one
element in each antipodal pair. Thus, On has 2n facets and each facet σ of On corresponds
to a vertex c of Qn (+xi ∈ σ if and only if xi ∈ c). Observe that xi ∈ c′∆c′′ if and only if
{+xi,−xi} ⊆ σ′∆σ′′ where σ′ correspond to c′ and σ′′ corresponds to c′′.

Let X be a pure simplicial complex (PSC) of dimension d, i.e., a simplicial complex in
which all facets have size d. Two facets σ, σ′ are adjacent if |σ∆σ′| = 2. A shelling of X is an
ordering σ1, . . . , σp of all of its facets such that 2σj

⋂
(
⋃
i<j 2σi) is a PSC of dimension d− 1

for every j ≤ p [38, Lecture 8]. A partial shelling is an ordering of some facets that satisfies
the above condition. Note that σ1, . . . , σm is a partial shelling if and only if for every i < j

there exists k < j such that σi ∩ σj ⊆ σk ∩ σj , and σk ∩ σj is a facet of both σj and σk. X is
extendably shellable if every partial shelling can be extended to a shelling. We next establish
a relationship between partial shellings and isometric orderings.

I Proposition 7. Every partial shelling of the cross-polytope On defines an isometric ordering
of the corresponding vertices of the cube Qn. Conversely, if C is an isometric class of Qn,
then any isometric ordering of C defines a partial shelling of On.

Proof. Let σ1, . . . , σm be a partial shelling of On and c1, . . . , cm be the ordering of the
corresponding vertices of Qn. We need to prove that each level set Cj = {c1, . . . , cj} is
isometric. It suffices to show that for every i < j there is k < j such that d(ck, cj) = 1
and ck ∈ B(ci, cj). Equivalently, that |σk∆σj | = 2 and σi ∩ σj ⊆ σk ⊆ σi ∪ σj : since
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σ1, . . . , σm is a partial shelling, there is a facet σk with k < j such that |σk ∩ σj | = n − 1
and σi ∩ σj ⊆ σk ∩ σj . We claim that σk is the desired facet. It remains to show that (i)
|σj∆σk| = 2 and (ii) σk ⊆ σi∪σj . Item (i) follows since |σj | = |σk| = n, and |σk∩σj | = n−1.
For Item (ii), let σj \ σk = {+x} and σk \ σj = {−x}. We need to show that −x ∈ σi, or
equivalently that +x /∈ σi. The latter follows since +x ∈ σj \ σk and σj ∩ σi ⊆ σk.

Conversely, let c1, . . . , cm be an isometric ordering and σ1, . . . , σm be the ordering of the
corresponding facets of On. We assert that this is a partial shelling. Let i < j. It suffices to
exhibit k < j such that |σk ∩ σj | = n− 1 and σi ∩ σj ⊆ σk ∩ σj . Since Cj is isometric, cj has
a neighbor ck ∈ B(ci, cj) ∩ Cj . Since d(cj , ck) = 1 it follows that |σk ∩ σj | = n − 1. Since
ck ∈ B(ci, cj) it follows that σi ∩ σj ⊂ σk ⊂ σi ∪ σj and hence that σi ∩ σj ⊆ σk ∩ σj . J

I Corollary 8. If all ample classes are dismantlable, then On is extendably shellable.

Proof. Let σ1, . . . , σm be a partial shelling of On and let C = {c1, . . . , cm} be the corre-
sponding vertices of Qn. By Proposition 7, the level sets are isometric, thus C is ample
by Proposition 5. The complement C∗ is also ample, thus dismantlable. Thus C∗ contains
a concept t such that C∗ \ {t} is ample. Consequently, C ′ := C ∪ {t} is ample. Let τ be
the facet of On corresponding to t. Since c1, . . . , cm, t is an isometric ordering of C ′, by
Proposition 7, σ1, . . . , σm, τ is a partial shelling of On. J

It was asked in [38] if any cross-polytope On is extendably shellable. In the PhD thesis
of H. Tracy Hall from 2004, a nice counterexample to this question is given [13]. Hall’s
counterexample arises from the 299 regions of an arrangement of 12 pseudo-hyperplanes.
These regions are encoded as facets of the cross-polytope O12 and it is shown in [13] that the
subcomplex of O12 consisting of all other facets admits a shelling which cannot be extended.
By the proof of Corollary 8, the ample concept class CH defined by those 299 simplices does
not have any corner.3 A counting shows that CH is a maximum class of VC-dimension 3.
This completes the proof of our first main result:

I Theorem 9. There exists a maximum class CH of VC-dimension 3 without any corner.

However, conditional antimatroids and 2-dimensional ample classes are dismantlable. The
2-dimensional case was proved in [25, Theorem 34] for maximum classes and in [18] for ample
classes. The proof for conditional antimatroids appears in the full version of this paper [5], as
well as a different proof for the 2-dimensional case that is based on a local characterization
of convex sets of ample classes.

5 Representation Maps for Maximum Classes

In this section, we prove that maximum classes admit representation maps and therefore
by [14, Lemma 1], they admit optimal unlabeled compression schemes.

I Theorem 10. Any maximum class C ⊆ 2U of VC-dimension d admits a representation
map, and consequently, an unlabeled compression scheme of size d.

The crux of the proof of Theorem 10 is the following proposition. Let C be a d-dimensional
maximum class and let D ⊆ C be a (d−1)-dimensional maximum subclass. A missed simplex
for the pair (C,D) is a simplex σ ∈ X(C) \X(D). Note that any missed simplex has size d.

3 For the interested reader, a file containing the 299 concepts of CH represented as elements of {0, 1}12 is
available at https://arxiv.org/src/1812.02099/anc/CH.txt.

https://arxiv.org/src/1812.02099/anc/CH.txt
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An incomplete cube Q for (C,D) is a cube of C such that supp(Q) is a missed simplex. For
any incomplete cube Q with σ = supp(Q), C|σ and D|σ are maximum classes of dimensions
d and d − 1, respectively. Since |σ| = d, we have |C|σ| =

(
d
≤d
)

=
(

d
≤d−1

)
+ 1 = |D|σ| + 1.

Since Q|σ = C|σ, there exists a unique concept c ∈ Q such that c|σ /∈ D|σ. We denote c
by s(Q), and call c the source of Q. In fact, the source map is a bijection between missed
simplices for (C,D) and concepts of C \D:

I Proposition 11. Each c ∈ C \ D is the source of a unique incomplete cube. Moreover,
if r′ : D → X(D) is a representation map for D and r : C → X(C) extends r′ by setting
r(c) = supp(s−1(c)) for each c ∈ C \D, then r is a representation map for C.
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10010
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11011

01011

11101

10011

00011

1101

1110

1001

0001

1100

00111

11111

01111

C

Cx

CCx

Figure 1 Illustrating the proof of Theorem 10 (when x = 5): to construct a representation map
for C, we inductively construct a representation map rx for Cx, extend it to a representation map
rx for Cx using Proposition 11 with D = Cx, and finally extend it to a representation map r for C.
The representation maps rx, rx, and r are defined by the orientation as in Theorem 15 and by the
coordinates of the underlined bits.

Proof of Theorem 10. Following the general idea of [14], we derive a representation map
for C by induction on |U |. For the induction step (see Fig. 1), pick x ∈ U and consider
the maximum classes Cx and Cx ⊂ Cx with domain U \ {x}. By induction, Cx has a
representation map rx. Use Proposition 11 to extend rx to a representation map rx of Cx.
Define a map r on C as follows:
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r(c) = rx(cx) if cx /∈ Cx or x /∈ c,
r(c) = rx(cx) ∪ {x} if cx ∈ Cx and x ∈ c.

It is easy to verify that r is non-clashing: indeed, if c′ 6= c′′ ∈ C satisfy c′x 6= c′′x then
c′x|rx(c′x) ∪ rx(c′′x) 6= c′′x|rx(c′x) ∪ rx(c′′x). Since rx(c′x) ⊆ r(c′), rx(c′′x) ⊆ r(c′′), it follows that
also c′, c′′ disagree on r(c′) ∪ r(c′′). Else, c′x = c′′x ∈ Cx and c′(x) 6= c′′(x). In this case,
x ∈ r(c′) ∪ r(c′′) and therefore c′, c′′ disagree on r(c′) ∪ r(c′′).

It remains to show that r is a bijection between C and X(C) =
(
U
≤d
)
. It is easy to verify

that r is injective. So, it remains to show that |r(c)| ≤ d, for every c ∈ C. This is clear when
cx /∈ Cx or x /∈ c. If cx ∈ Cx and x ∈ c, then r(c) = rx(cx) ∪ {x} and |rx(cx)| ≤ d− 1 (since
Cx is (d− 1)-dimensional). Hence, |r(c)| ≤ d as required, concluding the proof. J

Proof of Proposition 11. Call a maximal cube of C a chamber and a facet of a chamber a
panel (a σ′-panel if its support is σ′). Any σ′-panel in C satisfies |σ′| = d− 1 and σ′ ∈ X(D).
Recall that a gallery between two parallel cubes Q′, Q′′ (say, two σ′-cubes) is any simple path
of σ′-cubes (Q0 := Q′, Q1, . . . , Qk := Q′′), where Qi ∪Qi+1 is a d-cube. By Theorem 2(3),
any two parallel cubes of C are connected by a gallery in C. Since D is a maximum class,
any panel of C is parallel to a panel that is a maximal cube of D. Also for any maximal
simplex σ′ ∈ X(D), the class Cσ′ is a maximum class of dimension 1 and Dσ′ is a maximum
class of dimension 0 (single concept). Thus Cσ′ is a tree (e.g. [11, Lemma 7]) which contains
the unique concept c ∈ Dσ′ . We call c the root of Cσ′ and denote the σ′-panel P such that
Pσ
′ = c by P (σ′).

B Claim 12. Let Q be an incomplete cube for (C,D) with source s and support σ, and let
x, y ∈ U such that x /∈ σ and y ∈ σ. Then, the following holds:
(i) Qx is an incomplete cube for (Cx, Dx) whose source is sx.
(ii) Qy is an incomplete cube for (Cy, Dy) whose source is sy.

Proof. Item (i): Cx and Dx are maximum classes on U \ {x} of VC-dimensions d and d− 1,
and supp(Qx) = σ. Therefore, Qx is an incomplete cube for (Cx, Dx). By definition, s is the
unique concept c ∈ Q such that c|σ /∈ D|σ. Since x /∈ σ, D|σ = Dx|σ and sx is the unique
concept c of Qx so that c|σ /∈ Dx|σ, i.e., sx is the source of Qx.

Item (ii): Cy and Dy are maximum classes on U \ {y} of VC-dimensions d − 1 and
d− 2. Since y ∈ supp(Q), dim(Qy) = d− 1 and Qy is an incomplete cube for (Cy, Dy). Let
σ′ = σ \ {y}. It remains to show that sy|σ′ /∈ Dy|σ′. Indeed, otherwise both extensions of sy
in σ, namely s, s∆{y}, are in D|σ which contradicts that s = s(Q). C

Next we prove that each concept of C\D is the source of a unique incomplete cube. Assume
the contrary and let (C,D) be a counterexample minimizing the size of U . First, if a concept
c ∈ C \D is the source of two incomplete cubes Q1, Q2, then dom(C) = supp(Q1) ·∪supp(Q2).
Indeed, let σ1 = supp(Q1) and σ2 = supp(Q2). By Claim 12(i) and minimality of (C,D),
dom(C) = σ1 ∪ σ2. By Claim 12(ii) and minimality of (C,D), σ1 ∩ σ2 = ∅. Indeed, if there
exists x in σ1∩σ2, cx is the source of the incomplete cubes Qx1 and Qx2 for (Cx, Dx), contrary
to minimality of (C,D).

Next we assert that any c ∈ C \D is the source of at most 2 incomplete cubes. Indeed,
let c be the source of incomplete cubes Q1, Q2, Q3. Then dom(C) = supp(Q1) ·∪ supp(Q2),
i.e., supp(Q2) = dom(C) \ supp(Q1). For similar reasons, supp(Q3) = dom(C) \ supp(Q1) =
supp(Q2). Thus, by Corollary 3, Q2 = Q3.

B Claim 13. Let c′, c′′ ∈ C \D be neighbors and let c′∆c′′ = {x}. Then, c′ is the source of
2 incomplete cubes if and only if c′′ is the source of 0 incomplete cubes. Consequently, every
connected component in G(C \D) either contains only concepts c with |s−1(c)| ∈ {0, 2}, or
only concepts c with |s−1(c)| = 1.
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Proof. By minimality of (C,D), (c′)x = (c′′)x is the source of a unique incomplete cube
for (Cx, Dx) and c′x = c′′x is the source of a unique incomplete cube for (Cx, Dx). Let
Q1 be the incomplete cube for (C,D) such that (c′)x is the source of Qx1 . Let Q2 be the
incomplete cube for (C,D) such that c′x is the source of (Q2)x. By Claim 12, items (i) and
(ii), both s(Q1), s(Q2) are in {c′, c′′}. Consequently, c′ is the source of 2 incomplete cubes
(Q1 and Q2) if and only if c′′ is the source of 0 incomplete cubes. C

Pick c ∈ C \D that is the source of two incomplete cubes for (C,D) and an incomplete
cube Q such that c = s(Q). Let σ = supp(Q), x ∈ σ, and σ′ = σ \ {x}. The concept c
belongs to a unique σ′-panel P . Let L = (P0 = P (σ′), P1, . . . , Pm−1, Pm = P ) be the unique
gallery between the root P (σ′) of the tree Cσ and P . For i = 1, . . . ,m, denote the chamber
Pi−1 ∪ Pi by Qi. Since Pi ∩D and Qi ∩D are ample for i ≥ 0, and Pi is not contained in D
for i > 0, it follows that the complements Pi \D and Qi \D are nonempty ample classes.
Hence Pi \D and Qi \D induce nonempty connected subgraphs of G(C \D). Therefore, it
follows that c and each concept c′ ∈ Qi \D are connected in G(C \D) by a path for i > 0,
and by Claim 13 it follows that

For every i > 0, each c′ ∈ Qi \D is the source of either 0 or 2 incomplete cubes. (5.1)

Consider the chamber Q1 = P0 ∪ P1 and its source s = s(Q1). By the definition of the
source, necessarily s ∈ P1 and s /∈ D. Therefore, Equation (5.1) implies that there must exist
another cube Q′ such that s = s(Q′). Let s′ be the neighbor of s in P0 = P (σ′); note that s′ ∈
D. Since supp(Q1)∩ supp(Q′) = ∅, it follows that s| supp(Q′) = s′| supp(Q′) ∈ D| supp(Q′),
contradicting that s = s(Q′). This establishes the first assertion of Proposition 11.

We prove now that the map r defined in Proposition 11 is a representation map for C.
It is easy to verify that it is a bijection between C and X(C), so it remain to establish the
non-clashing property: c|(r(c) ∪ r(c′)) 6= c′|(r(c) ∪ r(c′)) for all distinct pairs c, c′ ∈ C. This
holds when c, c′ ∈ D because r′ is a representation map. Next, if c ∈ C \ D and c′ ∈ D,
this holds because c|r(c) /∈ D|r(c) by the properties of s. Thus, it remains to show that
every distinct c, c′ ∈ C \D satisfy c|(supp(Q) ∪ supp(Q′)) 6= c′|(supp(Q) ∪ supp(Q′)), where
Q = s−1(c), Q′ = s−1(c′). Assume towards contradiction that this does not hold and consider
a counterexample with minimal domain size |U |. By minimality, supp(Q′) ∪ supp(Q) = U

(or else (Cx, Dx), for some x /∈ supp(Q′) ∪ supp(Q) would be a smaller counterexample).
Therefore, since c, c′ are distinct, there must be x ∈ U = supp(Q′)∪supp(Q) such that c(x) 6=
c′(x), which is a contradiction. This ends the proof of Proposition 11. J

6 Representation Maps for Ample Classes

In this section, we provide combinatorial and geometric characterizations of representation
maps of ample classes (which lead to optimal unlabeled compression schemes).

I Theorem 14. For an ample class C and a map r : C → X(C), (i)-(iii) are equivalent:
(i) r is a representation map;
(ii) c′|r(c′)∆r(c′′) 6= c′′|r(c′)∆r(c′′) for all c′, c′′ ∈ C, c′ 6= c′′;
(iii) r is a bijection and for every realizable sample s of C, there is a unique c ∈ C that is

consistent with s and r(c) ⊆ dom(s).

This theorem implies that for any representation map r : C → X(C) and any x-edge cc′,
r(c)∆r(c′) = {x}. Hence, r defines an orientation or of G(C): an x-edge cc′ is oriented from
c to c′ iff x ∈ r(c) \ r(c′). Moreover, as a corollary of Theorem 14, we can show that:
(C1) for any c ∈ C, all outgoing neighbors of c belong to a cube of C;
(C2) or is a USO on each cube of C.
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An orientation o of the edges of G(C) is a unique sink orientation (USO) if o satisfies
(C1) and (C2). The out-map ro of an orientation o associates to each c ∈ C the coordinate
set of the edges outgoing from c. We continue with a characterization of representation maps
of ample classes as out-maps of USOs, extending a similar result of Szabó and Welzl [31] for
cubes. This characterization is “local-to-global”, since (C1) and (C2) are conditions on the
stars St(c) of all concepts c ∈ C (St(c) is the set of all faces of the cubes containing c).

I Theorem 15. For an ample class C and a map r : C → 2U , (i)-(iii) are equivalent:
(i) r is a representation map;
(ii) r is the out-map of a USO;
(iii) r(c) ∈ X(C) for any c ∈ C and or satisfies (C2).

Proof. The implication (i)⇒(ii) is a consequence of Theorem 14. Now, we prove (ii)⇒(i).
Clearly, property (C1) implies that r(c) ∈ X(C) for any c ∈ C, whence r is a map from
C to X(C). Let C be an ample class of smallest size admitting a non-representation
map r : C → X(C) satisfying (C1) and (C2). Hence there exist u0, v0 ∈ C such that
u0|(r(u0)∆r(v0)) = v0|(r(u0)∆r(v0)), i.e., (u0∆v0) ∩ (r(u0)∆r(v0)) = ∅; (u0, v0) is called a
clashing pair.

B Claim 16. If (u0, v0) is a clashing pair, then C = C ∩B(u0, v0) and r(u0) = r(v0) = ∅.

Proof. Since C ∩B(u0, v0) is ample and (u0∆v0) ∩ (r(u0)∆r(v0)) = ∅, (u0, v0) is a clashing
pair for C∩B(u0, v0) and the restriction rB of r to supp(B(u0, v0)). Since rB and C∩B(u0, v0)
satisfy (C1) and (C2), by minimality of C, C = C ∩B(u0, v0). Moreover, if r(u0) 6= r(v0),
then there is x ∈ r(u0)∆r(v0) and x ∈ u0∆v0, contradicting that (u0, v0) is a clashing pair.

Suppose r(u0) 6= ∅ and pick x ∈ r(u0) = r(v0). Consider the carrier Nx(C) of Cx. Note
that r(u0) ⊆ supp(Nx(C)). Indeed, let y ∈ r(u0). By (C1), u0 belongs to an {x, y}-square of
C, whence y ∈ supp(Nx(C)). Analogously, r(v0) ⊆ supp(Nx(C)), thus (u0, v0) is a clashing
pair for Nx(C) and the restriction of r to Nx(C). Nx(C) is ample as the product of Cx by
an x-edge. By minimality of C, C = Nx(C). Define rx : Cx 7→ X(Cx) by

rx(c) = r(c) \ {x} if x ∈ r(c),
rx(c) = r(cx) \ {x} otherwise.

Consequently, for an x-edge of C between c and cx, rx(c) is the label of the origin of this edge
minus x; we call rx the x-out-map of r. We assert that rx satisfies (C1) and (C2). Condition
(C1) is trivial because it holds for cubes of C. To establish condition (C2), suppose that
there exists a cube B′ of Cx and u′, v′ ∈ B′ such that rx(u′)∩ supp(B′) = rx(v′)∩ supp(B′).
The cube B := B′ × {x} is included in C since B′ is a cube of Cx. Then among the
four pairs (u′, v′), (u′, v′x), (u′x, v′), (u′x, v′x) of B one can select a pair (u, v) such that
r(u) = rx(u′) ∪ {x} = rx(v′) ∪ {x} = r(v), a contradiction with condition (C2) for C and r.
This shows that rx satisfies (C1) and (C2). Recall that x ∈ r(u0) = r(v0), suppose wlog that
x ∈ v0\u0, and let u′0 = u0 and v′0 = v0\{x}. Then rx(u′0) = r(u0)\{x} = r(v0)\{x} = rx(v′0),
and consequently (u′0, v′0) is a clashing pair for the restriction of r on Cx ∩B(u′0, v′0). Since
Cx ∩B(u′0, v′0) is ample and smaller than C, this contradicts the minimality of C. C

B Claim 17. C is a cube minus a vertex.

Proof. By (C2), C is not a cube. If C is not a cube minus a vertex, since the complement
C∗ = 2U \ C is also ample (thus G(C∗) is connected), G(C∗) contains an x-edge ww′ with
x /∈ w and x ∈ w′. Consider Cx and define the map rx : Cx 7→ X(Cx) by

rx(c) = r(c) if c ∈ C and x /∈ r(c),
rx(c) = r(cx) otherwise.
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Hence rx(c \ {x}) = r(c) for each c ∈ C with x /∈ r(c). We call rx the x-in-map of r; rx
satisfies (C1), because r satisfies (C1). Suppose that rx violates (C2). Then there exists a
cube B′ of Cx and u′, v′ ∈ B′ such that (u′∆v′)∩(rx(u′)∆rx(v′)) = ∅. Let u ∈ {u′, u′x} such
that r(u) = r(u′) and let v ∈ {v′, v′x} such that r(v) = r(v′). The restriction C ′x of the ample
class C ′ := C ∩B(u, v) is the cube B′. Since w,w′ /∈ C and ww′ is an x-edge, w /∈ C ′x. Thus
there exists y ∈ supp(C) such that C ′ and the edge ww′ of C∗ belong to different y-half-spaces
C− = {c ∈ C : y /∈ c} and C+ = {c ∈ C : y ∈ c} of the cube 2U . Since y ∈ supp(C), the
half-space containing ww′ also contains a concept of C. Hence, C ′ is a proper ample subset
of C. Since u ⊆ u′ ∪ {x}, v ⊆ v′ ∪ {x}, x /∈ r(u) = rx(u′), x /∈ r(v) = rx(v′), we deduce that
u ∩ (r(u)∆r(v)) = u′ ∩ (rx(u′)∆rx(v′)) and v′ ∩ (rx(u′)∆rx(v′)) = v ∩ (r(u)∆r(v)). Since
(u′∆v′)∩ (rx(u′)∆rx(v′)) = ∅, (u, v) is a clashing pair for the restriction of r on C ′, contrary
to the minimality of C. Hence by minimality of C, rx is a representation map for Cx.

Consider a clashing pair (u0, v0) for C and r, and let u′0 = u0 \ {x} and v′0 = v0 \ {x}.
Observe that rx(u′0) = r(u0) = r(v0) = rx(v′0) = ∅. Since rx is a representation map for Cx,
necessarily u′0 = v′0. Consequently, u0∆v0 = {x}, i.e., u0v0 is an x-edge of G(C). This is
impossible since C satisfies (C2). Therefore, C is necessarily a cube minus a vertex. C

Now, we complete the proof of the implication (ii)⇒(i). By Claim 16, r(u0) = r(v0) = ∅.
By condition (C1), r(c) 6= U for any c ∈ C. Thus there exists a set s ∈ X(C) = 2U \ {U,∅}
such that s 6= r(c) for any c ∈ C. Every s-cube B of C contains a source p(B) for orB

(i.e.,
s ⊆ r(p(B))). For each s-cube B of C, let t(B) = r(p(B)) \ s. Notice that ∅ ( t(B) ( U \ s
since s ( r(p(B)) ( U . Consequently, there are 2|U |−|s| − 2 choices for t(B) and since C
is a cube minus one vertex by Claim 17, there are 2|U |−|s| − 1 s-cubes in C. Consequently,
there exist two s-cubes B,B′ such that t(B) = t(B′). Thus ∅ ( s ( r(p(B)) = r(p(B′)) and
(p(B), p(B′)) is a clashing pair for C and r, contradicting Claim 16.

The implication (ii)⇒(iii) is trivial. To prove (iii)⇒(ii), we show by induction on |U |
that a map r : C → X(C) satisfying (C2) also satisfies (C1). For any x ∈ U , let rx denote
the x-out-map defined in Claim 16. Recall that if cc′ is an x-edge directed from c to c′,
then x ∈ r(c) and rx maps cx = (c′)x ∈ Cx to r(c) \ {x} ∈ X(Cx). Thus rx maps Cx to
X(Cx). Moreover, each cube Bx of Cx is contained in a unique cube B of C such that
supp(B) = supp(Bx) ∪ {x}. If there exist cx1 , cx2 ∈ Bx such that rx(cx1) = r(cx2), then there
exist c1, c2 ∈ B such that r(c1) = rx(cx1) ∪ {x} = rx(cx2) ∪ {x} = r(c2), contradicting (C2).
Consequently, orx

satisfies (C2). By induction hypothesis, orx
satisfies (C1) for any x ∈ U .

For any concept c ∈ C, pick x ∈ r(c). Since rx satisfies (C1), cx belongs to a σ′-cube
in Cx with σ′ = rx(cx) = r(c) \ {x}. This implies that c belongs to a σ-cube in C with
σ = σ′ ∪ {x} = r(c). Thus or satisfies (C1), concluding the proof of Theorem 15. J

We conclude with some remarks regarding Theorems 14 and 15. First, corner peelings
correspond exactly to acyclic USOs. Second, given a representation map for C one can derive
representations maps for intersections of C with cubes, reductions CY , and restrictions CY .
Third, there exist a bijection r′ : C → X(C) satisfying (C1) and an injection r′′ : C → 2U
satisfying (C2). Nevertheless, we were not able to find a map satisfying (C1) and (C2). It is
surprising that, while each d-cube has at least dΩ(2d) USOs [17], it is so difficult to find a
single USO for ample classes. One can try to find such maps by extending the approach for
maximum classes: given ample classes C and D with D ⊂ C, a representation map r for C
is called D-entering if all edges cd with c ∈ C \D and d ∈ D are directed by or from c to d.
The representation map defined in Proposition 11 is D-entering. Given x ∈ dom(C), suppose
that rx is a Cx-entering representation map for Cx. We can extend the orientation orx to an
orientation o of G(C) as follows. Each x-edge cc′ of G(C) is directed arbitrarily, while each
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other edge cc′ is directed as the edge cxc′x is directed by orx . Since orx satisfies (C1), (C2)
and rx is Cx-entering, o also satisfies (C1), (C2), thus the map ro is a representation map
for C. So, ample classes would admit representation maps, if for any ample classes D ⊆ C,
any representation map r′ of D extends to a D-entering representation map r of C.
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1 Introduction

In this work, we prove new lifting theorems that use the inner-product function as a gadget.
Let f : {0, 1}n → {0, 1}m and g : {0, 1}b × {0, 1}b → {0, 1} be functions (where g is referred
to as a gadget). The block-composed function f ◦ gn is the function that takes n instances
(x1, y1), . . . , (xn, yn) of inputs for g and computes f ◦ gn as,

f ◦ gn((x1, y1), . . . , (xn, yn)) = f(g(x1, y1), g(x2, y2), . . . , g(xn, yn)).

Lifting theorems are theorems that relate the communication complexity of f ◦ gn to the
query complexity of f and the communication complexity of g.

More specifically, consider the following communication problem: Alice gets x1, . . . , xn,
Bob gets y1, . . . , yn, and they wish to compute the output of f ◦ gn on their inputs. The
natural protocol for doing so is the following: Alice and Bob jointly simulate a decision tree
of optimal height for solving f . Any time the tree queries the i-th bit, they compute g on the
i-th instance by invoking the best possible communication protocol for g. A lifting theorem
is a theorem that says that this natural protocol is optimal.

Lifting theorems are interesting because they create a connection between query complexity
and communication complexity. This connection, besides being interesting in its own right,
allows us to transfer lower bounds and separations from the from query complexity (which is a
relatively simple model) to a communication complexity (which is a significantly richer model).

In particular, the first result of this form, due to Raz and McKenzie [19], proved a lifting
theorem from deterministic query complexity to deterministic communication complexity
when g is the index function. They then used it to prove new lower bounds on communication
complexity by lifting query-complexity lower-bounds. More recently, Göös, Pitassi and
Watson [12] applied that theorem to separate the logarithm of the partition number and
the deterministic communication complexity of a function, resolving a long-standing open
problem. This too was done by proving such a separation in the setting of query complexity
and lifting it to the setting of communication complexity. This result stimulated a flurry of
work on lifting theorems of various kinds, such as: round-preserving lifting theorems with
applications to time-space trade-offs for proof complexity [6], deterministic lifting theorems
with other gadgets [4, 22], lifting theorems from randomized query complexity to randomized
communication complexity [13], lifting theorems for DAG-like protocols [8] with applications
to monotone circuit lower bounds, lifting theorems for asymmetric communication problems
[5] with applications to data-structures, and a lifting theorem [18] for the EQUALITY gadget.
There are also lifting theorems which lifts more analytic properties of the function like
approximate degree due to Sherstov [20] and independently due to Shi and Zhu [21], that
enabled several important later developments. Although such lifting theorems lift analytical
properties of functions, several later works [11] showed how analytical arguments can be
made to work for lifting relations.

Viewed from another angle, lifting theorems are natural generalizations of classic theorems
such as direct-sum theorems and XOR lemmas [23, 15, 7, 16, 1, 2]: in particular, if we set f
to be the identity function or the parity function, we get a direct sum theorem or an XOR
lemma for g, respectively. This point of view motivates the work of Hatami et al. [14] that
made progress towards proving a lifting theorem with a constant-size gadget.

In almost all known lifting theorems, the function f can be arbitrary (and may also be a
general search problem) while g is usually a specific function (e.g., the index function). This
raises the following natural question: for which choices of g can we prove lifting theorems?
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This question is interesting both because many applications depend on the choice of g, and
because if we view lifting theorems as generalizations of direct-sum theorems, we would like
them to work for as many choices of g as possible.

In particular, applications of lifting theorems often depend on the size of the gadget,
which is the length of the input to g. Both the deterministic lifting theorem of Raz and
McKenzie [19] and the randomized lifting theorem of Göös et al. [13] use the indexing function
INDEX, which has very large size (polynomial in n). Reducing the gadget size to a constant
would have many interesting applications like reproducing tight randomized lower bounds
for important functions such as set-disjointness etc. We would like point out that, although
we reduce the gadget size to logarithmic in n in this work, it is not enough to obtain the
interesting applications a constant sized gadget would have yielded.

In the deterministic setting, the gadget size was recently improved to logarithmic by
the independent works of [4] and [22], who chose the gadget g to be the inner product
function. Moreover, [4, 17] showed the lifting to work for a large class of gadgets. However,
the randomized lifting theorem of Göös et al. [13], until our work, seemed to work only with
INDEX as gadget.

In this work, we prove a randomized lifting theorem using an inner product gadget of
logarithmic size. This has the immediate application that any lower bound on the outer
function f can now be lifted to a much stronger lower bound on the composed function f ◦gn,
since hardness is measured as a function of the input length. This allows us, for example, to
simplify the lower bounds of Göös, and Jayram [9] on AND-OR trees and MAJORITY trees,
since we can now obtain them directly from the randomized query complexity lower bounds
rather than going through conical juntas.

We now turn to state our main result more formally. Let n ∈ N be such that n ≥ 2 and
let b def= 40, 000 · logn. Let Λ def= {0, 1}b, and let g : Λ× Λ→ {0, 1} denote the inner product
(mod 2) gadget. We prove lifting theorems for various lifted versions of G def= gn. That is,
G : Λn × Λn → {0, 1}n is the function that takes n independent instances of g and computes
g on all of them. Here is our main result:

I Theorem 1 (Randomized lifting). Let S : {0, 1}n → Σ be any search problem and let Π be
a bounded-error randomized communication protocol that solves S ◦ G with complexity c
and error probability ε. Then, there exists a randomized decision tree T that solves S with
complexity O( cb ) and bounded error probability.

Using essentially the same proof method, we also prove a similar result in the determin-
istic setting:

I Theorem 2 (Deterministic lifting). Let S be any search problem that takes inputs from
{0, 1}n, and let Π be a deterministic communication protocol that solves S◦G with complexity c.
Then, there exists a deterministic decision tree T that solves S with complexity O( cb ).

Most existing proofs of deterministic lifting theorems employ an information measure
known as thickness, borrowed from earlier work on the KRW conjecture. The one deviation
from this is the recent beautiful work of Garg et al. [8] who prove a deterministic lifting
theorem in the dag-like setting. Curiously, their result does not use the thickness measure
of information, but rather uses the blockwise min-entropy measure of information that was
used by Göös, Pitassi and Watson [13] in order to prove a randomized lifting theorem. A
natural direction of further research is to investigate if these disparate techniques can be
unified. Indeed, a related question was asked in the first work to employ the measures of
min-entropy for lifting by Göös et al. [10]: they asked if min-entropy and density based
techniques could be used to prove (or simplify the existing proof of) Raz–McKenzie style
deterministic lifting theorems.
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Our unified proof answers this question by showing that the same information measure
(blockwise min entropy) can in fact be used in both the deterministic and randomized settings.
The main difference between the two proofs is the way in which we decide the next bit of the
communication protocol: in the deterministic setting, we make a greedy choice, and in the
randomized setting, we make a (non-uniform) random choice. Whereas in the randomized
setting, our information measure guarantees that we are able to estimate the distribution of
the next bit of the protocol, in the deterministic setting it guarantees richness, that is, when
the protocol ends, there is some input consistent with answers of all queries made by the
decision tree.

Organization of the paper. In Section 2 we set up the machinery that is used in both
the deterministic and the randomized lifting theorems. We prove the deterministic lifting
theorem in Section 3, and the randomized lifting theorem in Section 4. Both proofs use a
Fourier-theoretic lemma, proved in Section 5.

2 Common Machinery

In this paper we consider lifting theorems for the most general case of search problems. A
search problem S is defined by a relation I × O where I is a finite set of inputs and O is a
finite set of outputs. The goal of the search problem, given an input x ∈ I is to find at least
one output o ∈ O such that (x, o) ∈ S. Like in the statement of the main theorem, let S be
any search problem that takes inputs from {0, 1}n, and let Π be a bounded-error randomized
communication protocol that solves S ◦ G with complexity c and error probability ε. We
prove the randomized and deterministic lifting theorems, by building deterministic and
randomized decision trees of cost O(c/b) based on respective protocols of cost c. Intuitively,
in both theorems, on input z ∈ {0, 1}n, the tree T will simulate the action of the protocol Π
on inputs (x, y) ∈ G−1(z). More specifically, the tree will simulate the protocol bit by bit,
and maintain a rectangle X × Y that is consistent with the protocol so far such that all the
strings in G(X × Y) are consistent with the queries made so far. To this end, we consider
random variables X and Y that are distributed uniformly over X and Y respectively. We
now state a few useful definitions and results about such random variables

The first such definition ensures that the random variables we consider have enough
blockwise min-entropy.

I Definition 3. Let X be a random variable taking values in Λn. We say that X is δ-dense
if for every I ⊆ [n] it holds that H∞(XI) ≥ δ · b · |I|.

We would like these random variables to be consistent with the query answers obtained
by the decision tree thus far in the simulation. To this end, we also define the following
notion of restrictions.

I Definition 4. Given a restriction ρ ∈ {0, 1, ∗}n, we denote by fix(ρ) and free(ρ) the set of
fixed and free coordinates of ρ respectively.

Intuitively, fix(ρ) represents the query answers obtained thus far, and free(ρ) represents the
yet unqueried coordinates. With these definitions, we define the property that we would like
to maintain for X and Y during the simulation.

I Definition 5 (following [13]). Let X,Y be random variables taking values in Λn, and let
ρ ∈ {0, 1, ∗}n be a restriction. We say that X and Y are ρ-structured if Xfree(ρ) and Yfree(ρ)
are 0.9-dense, and gfix(ρ) (Xfix(ρ), Yfix(ρ)

)
= ρfix(ρ).
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In both lifting theorems, the decision tree T starts by setting X and Y to be uniform
over Λn, and maintains throughout the simulation the invariant that, if ρ is the restriction
that represents the current “state of knowledge” regarding the input z, then X and Y are
ρ-structured. In order to maintain this invariant, we use the following Fourier-analytic result,
which is proved in Section 5.

I Definition 6. Let α ∈ Λn and let Y be a random variable taking values in Λn. We say that
α is η-bad for Y if there exists a set I ⊂ [n] and a string σ ∈ {0, 1}I such that the random
variable

Y[n]−I
∣∣gI(αI , YI) = σI

is not η-dense or

Pr
[
gI(αI , YI) = σI

]
< 2−|I|−1.

I Theorem 7 (Main Technical Tool). Let n ∈ N and let b ∈ N such that b ≥ 40000 · log(n).
Let X and Y be random variables taking values in Λn that are δX-dense and δY -dense
respectively. Suppose that δX + δY ≥ 1.3 and δY ≥ 0.1. Then, the probability that X takes a
value that is δY

2.01 -bad for Y is at most 2−0.01·b.

We also use the following analogue of the “uniform marginals lemma” of [13] for the inner
product gadget.

I Lemma 8 (Uniform marginals lemma). Let X,Y be random variables uniformly distributed
over sets X ,Y ⊆ Λn, and suppose they are ρ-structured. Then, for any z ∈ {0, 1}n that is
consistent with ρ, the uniform distribution over G−1(z)∩(X×Y) has its marginal distributions
1
n3 -close to X and Y respectively.

In order to prove Lemma 8, we use the following definition and lemma from Göös et al. [10].

I Definition 9. Let ε > 0 and let V be a random variable taking values from a set V. We say
that V is ε-pointwise close to uniform if for every v ∈ V it holds that Pr [V = v] ∈ (1± ε) · 1

|V| .

I Lemma 10. Let A,B be 0.6-dense random variables taking values from Λm. Then gm(A,B)
is 2− b

20 -uniform.

The proof of this lemma, which is similar to the proof of the uniform marginals lemma in [13],
appears in the full version [3] of the paper.

We use the following simple folklore fact about density.

I Proposition 11. Let X be a random variable over ΛJ , and let I ⊆ J be maximal subset of
coordinates such that H∞(XI) < δ · b · |I|. Let α ∈ ΛI be a value such that

Pr [XI = α] > 2−δ·b·|I|.

Then, the random variable XJ−I |XI = α is δ-dense.

We also use the following decomposition result from Göös et al. [13], which extends the
last proposition.

I Lemma 12 (Density-restoring partition). Let X be a random variable over X ⊆ ΛJ . Then,
there exists a partition

X def= X 1 ∪ · · · ∪ X r

such that every X i is associated with a set Ii ⊆ J , a value αi ∈ ΛIi , and a probability
p≥i

def= Pr
[
X ∈ X i ∪ . . . ∪ X r

]
that satisfy the following properties: Denote by Xi the random

variable X conditioned on X ∈ X i.
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Xi
Ii

is fixed to αi.
Xi
J−Ii

is 0.9-dense.
H∞(Xi) ≥ H∞(X)− 0.9 · b · |Ii| − log 1

p≥i
.

3 The deterministic lifting theorem

In this section, we prove the deterministic lifting theorem, restated from the Introduction.

I Theorem 13 (Restatement of Theorem 2). Let S be any search problem that takes inputs
from {0, 1}n, and let Π be a deterministic communication protocol that solves S ◦ G with
complexity c. Then, there exists a decision tree T that solves S with complexity O( cb ).

As noted earlier, the decision tree T we construct would simulate the protocol Π. Throughout
the simulation, the tree keeps track of random variables X,Y , which represent the inputs to
the protocol, and maintains the invariant that they are ρ-structured. When the protocol Π
ends, the decision tree T ends as well and outputs the output of Π. In order to complete the
proof of Theorem 2, we need to show three things:

How to simulate a single bit of the protocol while maintaining the above invariant.
After the decision tree ends, its output is a correct output of S on z.
The total number of queries made by the decision tree T during the lifting is O( cb ).

Due to space constraints, we will only briefly describe the simulation, relegating its
analysis to the full version [3] of the paper.

Consider a given step in the simulation where the tree is at a particular node of the
protocol Π. Let X ,Y be the current set of inputs that are being maintained which are
consistent with this node, and let X,Y be random variables uniformly distributed over X ,Y .
Let ρ ∈ {0, 1, ∗}n denote the restriction that represents the queries that have been made so
far and their answers, i.e., coordinates that were queried are fixed to the answers that were
received, and coordinates that were not queried are free. By the invariant we maintain, the
variables X,Y are ρ-structured.

We would like to simulate the next bit of the protocol. Suppose without loss of generality
that it is Alice’s turn to speak. The tree T chooses the next bit to be the bit that has the
highest probability of being sent by Alice, if the inputs are chosen according to X. The tree
then updates the set X to be consistent with the new bit, and updates the random variable X
accordingly. Now, if the ρ-structure property of X,Y has been violated, then it must be
because Xfree(ρ) is no longer 0.9-dense, since the new bit did not affect Y . The tree now
modifies the sets X ,Y and the restriction ρ to restore the structuredness of X,Y . In order
to do so, the tree T repeats the following steps iteratively until X and Y are ρ-structured:

1. Condition Xfree(ρ) on not taking a value that is 0.4-bad for Yfree(ρ), and update X accord-
ingly.

2. If Xfree(ρ) is now 0.9-dense, then we are done – the structuredness has been restored.
Otherwise continue.

3. Let I ⊆ free(ρ) be a maximal set that violates the density of Xfree(ρ) (i.e., H∞(XI) <
0.9 · b · |I|), and let αI ∈ ΛI be a “heavy” value that satisfies Pr [XI = αI ] > 2−0.9·b·|I|.

4. Condition X on XI = αI , and update X accordingly. Proposition 11 implies that
Xfree(ρ)−I is now 0.9-dense.

5. Query the coordinates in I, and update ρ accordingly.
6. Condition Y on gI(αI , YI) = ρI , and update Y accordingly.
7. If Yfree(ρ) is now 0.9-dense then we are done – the structuredness has been restored.

Otherwise go back to Step 1 but replace the roles of X and Y .
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In order for the steps of the above process to always be well-defined, we need to show
that we never condition on events with probability 0. If this is always satisfied, it follows that
the algorithm terminates and at termination the random variables X,Y are ρ-structured.
To see this, note that the process only stops if Xfree(ρ) and Yfree(ρ) are 0.9-dense, and the
process clearly maintains the invariant that

gfix(ρ) (Xfix(ρ), Yfix(ρ)
)

= ρfix(ρ).

Moreover, the process always stops, since in every iteration the size of the set free(ρ) decreases,
and it cannot decrease below 0.

We turn to show that we never condition on a zero probability event. To this end, we will
show that the process preserves the following property: At the beginning of every iteration,
one of the variables Xfree(ρ) and Yfree(ρ) is 0.9-dense, and the other is at least 0.4-dense.
Observe that this property indeed holds at the beginning of the first iteration: at this point,
Y is 0.9-dense, and X must be at least 0.4-dense – since we chose the next bit of Alice to be
the one with the highest probability, and therefore the min-entropy of any set of coordinates
could have dropped by at most 1.

Suppose that the property holds at the beginning of a given iteration. The first condi-
tioning takes place at Step 1. When Step 1 is performed, we know by Theorem 7 that the
event that Xfree(ρ) does not take values that are 0.4-bad for Yfree(ρ) has non-zero probability:
to see it, note that by assumption δX ≥ 0.4 and δY ≥ 0.9, so it holds that δX + δY ≥ 1.3
and δY

2.01 ≥ 0.4, so the requirements of the theorem are satisfied.
The next conditioning takes place at Step 4, but here the event has non-zero probability

by definition. The last conditioning takes place at Step 6, and here the event has non-zero
probability due to the assumption that Xfree(ρ) does not take values that are bad for Yfree(ρ)
– and in particular

Pr
[
gI(αI , YI) = ρI

]
≥ 2−|I|−1.

Finally, we need to show that the above property is maintained for the next iteration. As
stated in Step 4, at this point X is 0.9-dense. Moreover, since we know that Xfree(ρ) does
not take values that are 0.4-bad for Yfree(ρ), it follows in particular that

Yfree(ρ)
∣∣gI(αI , YI) = ρI

is 0.4-dense. This concludes the proof. The rest of the analysis can be found in the full
version [3] of the paper.

3.1 Concluding the simulation
In this section, we prove that when the simulation ends, the protocol Π outputs an answer
in S(z). To this end, all we need to prove is that when the simulation ends, we can find
x ∈ X and y ∈ Y such that G(x, y) = z: To see why, observe that the output of the protocol
at this point must be its output on (x, y), since the rectangle X × Y is contained in the
rectangle of the leaf to which the protocol arrived. Now, since we assumed that Π computes
S ◦G, it follows that its output must be (S ◦G)(x, y) = S(z).

We thus turn to show that there exist x, y ∈ X × Y such that G(x, y) = z. Recall
that when the protocol ends, it holds that X,Y are ρ-structured (by the invariant that we
maintained). This means that gfix(ρ)(Xfix(ρ), Yfix(ρ)) = zfix(ρ), and that Xfree(ρ), Yfree(ρ) are
0.9-dense. By Theorem 7, it follows that Xfree(ρ) takes a value that is not 0.4-bad for Yfree(ρ)
with non-zero probability. This means that there exists some x ∈ X such that xfree(ρ) is not
0.4-bad for Yfree(ρ). By the definition of badness, it follows that

Pr
[
gfree(ρ)(xfree(ρ), Yfree(ρ)) = zfree(ρ)

]
≥ 2−|free(ρ)|−1 > 0
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and therefore there exists some y ∈ Y such that gfree(ρ)(xfree(ρ), yfree(ρ)) = zfree(ρ). It follows
that x and y satisfy

gfix(ρ)(xfix(ρ), yfix(ρ)) = zfix(ρ)

gfree(ρ)(xfree(ρ), yfree(ρ)) = zfree(ρ)

and therefore G(x, y) = z, as required.

3.2 The query complexity
We conclude by showing that the total number of queries the tree T makes is O( cb ). To this
end, we define the deficiency of X,Y to be

∆ def= 2 · b · |free(ρ)| −H∞(Xfree(ρ))−H∞(Yfree(ρ)).

We prove that whenever the protocol Π transmits a bit in the simulation, the deficiency
increases by O(1), and that whenever the tree T makes a query, the deficiency is decreased
by Ω(b). Since the deficiency is always non-negative, and the protocol transmits at most
c bits, it follows that the tree must make at most O( cb ) bits.

We start by showing that when the protocol Π transmits a bit in the simulation, the
deficiency increases by O(1). When a bit is transmitted, either X or Y is conditioned on
an event of probability at least 1

2 , depending on which player spoke, and the other variable
remains unchanged. This means that the sum H∞(Xfree(ρ)) +H∞(Yfree(ρ)) decreases by at
most 1, and therefore the deficiency increases by at most 1. Next, the simulation might
perform Step 1 in the process above, i.e., condition X or Y on taking a value that is not bad.
This event has probability 1− 2−0.01·b ≥ 1

2 , so conditioning on it increases the deficiency by
at most 1. All in all, we increased the deficiency by at most 2. All the other steps that might
be taken are only taken if a query is being made, so we account their deficiency increases to
the following “query part” of the analysis.

We turn to show that when a query is being made, the deficiency decreases by Ω(b).
Suppose that the decision tree queried a set I ⊆ free(ρ). This applies the following changes
to the deficiency:

The variable X is conditioned on the event XI = αI , which has probability greater
than 2−0.9·b·|I| by the definition of αI . Hence, this conditioning increases the deficiency
by at most 0.9 · b · |I|.
The variable Y is conditioned on the event gI(αI , YI) = ρI , which has probability at least
2−|I|−1 by the assumption that X does not take bad values. This increases the deficiency
by at most |I|+ 1.
The set I is removed from the set free(ρ). Looking at the definition of deficiency, this
decreases the first term, 2 · b · |free(ρ)|, by at most 2 · b · |I|, decreases H∞(Yfree(ρ)) by at
most b · |I|, and does not change H∞(Xfree(ρ)) (since at this point XI is fixed to αI). All
in all, the deficiency is decreased by b · |I|.
Finally, the queries may make the process repeat for another iteration, so Step 1 may be
performed again, increasing the deficiency by another 2 bits.

Summing all those effects together, we get that the deficiency was decreased by at least

b · |I| − 0.9 · b · |I| − (|I|+ 1)− 2 ≥ 0.05 · b · |I|

in each iteration, as required. This concludes the proof.
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4 The randomized lifting theorem

In this section, we prove the randomized lifting theorem, restated next.

I Theorem 14 (Restatement of Theorem 1). Let S be any search problem that takes inputs
from {0, 1}n, and let Π be a randomized communication protocol that solves S ◦ G with
complexity c and error probability ε. Then, there exists a decision tree T that solves S with
complexity O( cb ) and error probability ε+ 1

10 .

As noted earlier, the decision tree T we construct simulates the protocol Π. The simulation
is similar to the deterministic one, with two main differences:

Instead of choosing the next bit of the protocol to be the most likely bit, we choose
it randomly according to the distribution of the next bit (except that we abort the
simulation on bits of very small probability).
Instead of choosing I and αI arbitrarily, we choose them from the density-restoring
partition of Lemma 12, according to the distribution induced by this partition (except
that we truncate parts of the partition that have very small probability).

In the following sections, we describe the simulation, analyze its error probability, and analyze
its query complexity, respectively. For simplicity, we describe a simulation that has a better
error probability of ε+ o(1) but query complexity that is efficient only in expectation. This
simulation can be transformed into one with error probability ε + 1

10 , and efficient query
complexity in the worst case, using standard arguments.

4.1 The simulation
As before, the decision tree T simulates the protocol Π while maintaining a rectangle X × Y
that is contained in the rectangle of the current node of Π. When the simulation ends,
T outputs the output of Π. Throughout the simulation, the decision tree T considers random
variables X,Y that are uniformly distributed over X × Y and maintains the invariant that
they are ρ-structured (for a restriction ρ that records the queries made so far). For the
purpose of the simulation, we may assume without loss of generality that Π is deterministic
(since T can use its randomness to choose the randomness of Π, and then pretend that Π is
deterministic for the rest of the simulation).

We turn to explain how to simulate a single bit of the protocol. Suppose that at a given
point it is Alice’s turn to speak. The protocol partitions X into X0 ∪ X1. The tree now
chooses the next bit to be 0 with probability |X0|

|X | and to be 1 otherwise. If the bit that
was chosen had probability less than 1

n2 , the tree halts and declares error. Otherwise, the
tree updates X to the corresponding set among X0,X1 and updates the random variable X
accordingly.

Now, if the ρ-structure property of X,Y has been violated, then it must be because
Xfree(ρ) is no longer 0.9-dense, since the new bit did not affect Y . The tree now modifies the
sets X ,Y and the restriction ρ to restore the structuredness of X,Y . In order to do so, the
tree T repeats the following steps iteratively until X,Y are ρ-structured:
1. Condition Xfree(ρ) on not taking a value that is 0.4-bad for Yfree(ρ), and update X accord-

ingly.
2. If X is now 0.9-dense, then we are done – the structuredness has been restored. Otherwise

continue.
3. Let Xfree(ρ) = X 1 ∪ . . . ∪ X r be the density-restoring partition of Lemma 12 with respect

to Xfree(ρ). Choose a random class in the partition, where the class X i is chosen with
probability Pr

[
Xfree(ρ) ∈ X i

]
.
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4. Recall that we defined the probability

p≥i
def= Pr

[
Xfree(ρ) ∈ X i ∪ . . . ∪ X r

]
.

If p≥i < 1
n3 , the tree T halts and declares error.

5. Let Ii and αi be the set and the value associated with the class X i. The tree conditions
X on the event Xfree(ρ) ∈ X i and updates X accordingly. The variable Xfree(ρ)−Ii

is now
0.9-dense by the properties of the density-restoring partition.

6. Query the coordinates in Ii, and update ρ based on the query answers.
7. Condition Y on gI(αi, YIi) = ρIi , and update Y accordingly.
8. If Yfree(ρ) is now 0.9-dense then we are done – the structuredness has been restored.

Otherwise go back to Step 1 but replace the roles of X and Y .
The proof that the process is well-defined and always halts, and that the ρ-structuredness
invariant is maintained, is the same as in the deterministic simulation. The only difference
here is that choosing the next bit of the protocol decreases the min-entropy of the blocks by
at most 2 logn bits rather than by at most 1 bit. Nevertheless, since the random variable X
started as 0.9-dense and b > 20 logn, the variable X is still 0.4-dense after choosing the
next bit.

4.2 Correctness
We prove that the decision tree errs with probability at most ε+ o(1) (recall that ε is the
error probability of the protocol Π). Fix an input z ∈ {0, 1}n. Let π be the (random)
transcript generated by the simulation of T on z (if we the simulation declares error, we
set π = ⊥). Let π′ denote the (random) transcript of Π on random inputs (X ′, Y ′) that are
distributed uniformly over G−1(z) (again, we assume that Π′ is deterministic and that the
only randomness comes from the choice of (X ′, Y ′)). We will prove that the distributions of π
and π′ are o(1)-close. Since π′ outputs the correct answer on z with probability at least 1− ε,
it will follow that π outputs the correct answer on z with probability at least 1− ε− o(1).

To prove that π and π′ are o(1)-close, we describe a coupling of π with π′ that satisfies that
π = π′ with probability at least 1− o(1). To this end, we show that there exists a coupling of
the random choices of the simulation with X ′, Y ′ such that, up to some bad event E of small
probability, it holds that the pair (X ′, Y ′) is uniformly distributed in G−1(z)∩ (X ×Y). Since
X × Y determines the transcript π of the simulation (as X × Y is contained the rectangle of
the current node in the protocol), whenever (X ′, Y ′) ∈ (X ,Y) it holds that π = π′.

More specifically, we prove that there exists a coupling and an event E with probability
at most 6·b

n = o(1) such that, when the simulation ends, conditioned on ¬E it holds that
the pair (X ′, Y ′) is uniformly distributed in G−1(z) ∩ (X × Y). To this end, we define
a sequence of events E1, E2, . . . such that Pr [Et] ≤ 6

n2 · (t − 1) and at the begining of the
t-th iteration, conditioned on ¬Et it holds that the pair (X ′, Y ′) is uniformly distributed in
G−1(z) ∩ (X × Y). We then set E to be the event at the end of the last iteration. Since the
number of iterations is at most c ≤ n · b (as each iteration transmits 1-bit), it follows that
the probability of E is at most 6

n2 · c ≤ 6b
n . In order to construct the coupling and the events

E1, E2, . . ., we prove the following auxiliary result.

I Lemma 15. Suppose that we constructed the coupling until the beginning of the t-th
iteration, and there is an event Et such that conditioned on ¬Et it holds that the pair
(X ′, Y ′) is uniformly distributed in G−1(z) ∩ (X × Y). Then, there exists a way to extend
the coupling until the end of the t-th iteration, and there exists an event Et+1, such that
Pr [Et+1] ≤ Pr [Et] + 6

n2 and at the end of the t-th iteration, conditioned on ¬Et+1 it holds
that the pair (X ′, Y ′) is uniformly distributed in G−1(z) ∩ (X × Y).



A. Chattopadhyay, Y. Filmus, S. Koroth, O. Meir, and T. Pitassi 35:11

Given Lemma 15, we design the coupling and the events E1, E2, . . . by setting E1 to be the
empty event and then applying Lemma 15 repeatedly until we reach the last iteration.

Proof. Suppose that the simulation ran until the beginning of the t-th iteration according to
our coupling. If the event Et happened, then the coupling behaves arbitrarily until the end
of the simulation, and we assume that the simulation failed. Let us now condition on the
event Et not having happened, so we may assume that at the beginning of the t-th iteration,
the pair (X ′, Y ′) is uniformly distributed in G−1(z) ∩ (X × Y). We start by setting Et+1 to
be the event Et, and we will add more events to it as the simulation progresses.

The simulation starts by choosing the next bit of the protocol, and suppose that it is
Alice’s turn to speak. The simulation has probability |X0|

|X | to choose 0, and by the uniform
marginals lemma (Lemma 8), the random variable X ′ has probability |X0|

|X | ±
1
n3 to be in X0. In

other words, the distribution of the class that the simulation chooses among X0,X1, and the
distribution of the class that X ′ chooses, are 1

n3 -close, and therefore there exists a coupling
of those choices such that the same class is chosen in both with probability at least 1− 1

n3 , so
we use it to extend our coupling. We add to Et+1 the event in which the simulation and X ′
choose a different class among X0,X1, and for the rest of the proof we assume that it did
not happen. We also add to Et+1 the event in which the simulation declared failure since it
chose a bit with probability less than 1

n2 (clearly, this event has probability less than 1
n2 ),

and for the rest of the proof we assume that it did not happen. We may thus assume that
after this step, the pair (X ′, Y ′) is uniformly distributed in G−1(z) ∩ (X × Y).

Next, the simulation removes from X the values that are 0.4-bad for Y . The probability
that X takes such a value is at most 2−0.01·b ≤ 1

n3 , and therefore the probability that X ′
takes such a value is at most 2

n3 by the uniform marginals lemma. We add the event that
X ′ takes a bad value to Et+1 and assume for the rest of the proof that it did not happen.
Hence, we may again assume that after this step, X ′ belongs to X , and that the pair (X ′, Y ′)
is uniformly distributed in G−1(z) ∩ (X × Y).

In the following step, a class X i is chosen according to the distribution induced by Xfree(ρ).
Let us now choose the class X i′ to which X ′free(ρ) belongs. By the uniform marginals lemma,
the distributions of X i and X i′ are 1

n3 -close, and therefore there is a coupling of those classes
such that they are equal with probability at least 1− 1

n3 , so we use it to extend our coupling.
We add to Et+1 the event in X i 6= X i′ , and for the rest of the proof we assume that it did not
happen. We also add to Et+1 the event in which the simulation declared error since p≤i < 1

n3

(clearly, this event has probability less than 1
n3 ), and for the rest of the proof we assume that

it did not happen. We therefore assume again that after this step, X ′ belongs to X , and
that the pair (X ′, Y ′) is uniformly distributed in G−1(z) ∩ (X × Y).

Finally, the simulation conditions Y on gI(αi, YIi
) = ρIi

. This conditioning trivially holds
for Y ′ (since by assumption (X ′, Y ′) ∈ G−1(z) and by this point we chose X ′Ii

= αIi), and
no further coupling needs to be done.

We conclude the proof by upper bounding the probability of the event Et+1. At the
beginning, we set Et+1 to be Et, and therefore at this point its probability is Pr [Et]. The step
of choosing the next bit of the protocol contribute to Et+1 events whose total probability
is at most 1

n3 + 1
n2 . Steps 1 to 7 above add to Et+1 events of total probability at most 4

n3 .
Those latter steps are now repeated until (X,Y ) are ρ-structured. However, they may be
repeated at most n times, since each time they are repeated, the tree makes at least one
query, and it cannot make more than n queries. Hence, in all of those repetitions together,
those steps in the simulation contribute to Et+1 events whose total probability is at most 4

n2 .
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It follows that

Pr [Et+1] ≤ Pr [Et] + 1
n3 + 1

n2 + 4
n2 ≤ Pr [Et] + 6

n2 ,

as required. J

4.3 The query complexity
We show that the expected query complexity of this simulation is O( cb ). Again, we define the
deficiency of X,Y to be

∆ def= 2 · b · |free(ρ)| −H∞(Xfree(ρ))−H∞(Yfree(ρ)).

We will show that whenever the simulation sends one bit in the protocol, the deficiency is
increased by O(1) in expectation. On the other hand, we will show that whenever a query is
made, the deficiency is always decreased by at least Ω(b). Thus, the expected deficiency at
any point is at most

O(#bits communicated)− Ω(b ·#queries).

Since the deficiency is always at least 0 and the number of bits communicated is at most c,
it follows that the expected number of queries is upper bounded by O( cb ).

Whenever we choose the next bit for Alice, the deficiency increases by log |X ||X0| (if the
next bit is 0) or by log |X ||X1| (if the next bit is 1). Thus, the expected increase in deficiency is

|X0|
|X |
· log |X |

|X0|
+ |X1|
|X |
· log |X |

|X1|
.

This is the value of the binary entropy function on |X0|
|X | , and hence it is upper bounded by 1.

Conditioning on X not taking a value that is 0.4-bad for Y increases the deficiency by at
most 1 bit since its probability is at least 1

2 . All in all, the expected increase in the deficiency
is at most 2.

We turn to show that when a query is being made, the deficiency decreases by Ω(b).
Suppose that the decision tree queried a set Ii ⊆ free(ρ). This brings about the following
changes to the deficiency:

The variable X was conditioned on the event Xfree(ρ) ∈ X i. By Lemma 12, this decreases
the min-entropy of X by at most 0.9 · b · |Ii| + log 1

p≥i
. Now, Step 4 guarantees that

pi ≥ 1
n3 , and therefore log 1

pi
≤ 3 logn < 0.01 · b. All in all, this step increases the

deficiency by at most 0.91 · |Ii|
The variable Y is conditioned on the event gIi(αIi , YIi) = ρIi , which has probability at
least 2−|Ii|−1 by the assumption that X does not take bad values. This increases the
deficiency by at most |Ii|+ 1.
The set Ii is removed from the set free(ρ). By definition of deficiency, this dereases the
term of 2 · b · |free(ρ)| by 2 · b · |Ii|, decreases H∞(Yfree(ρ)) by at most b · |Ii|, and does not
change H∞(Xfree(ρ)) (since at this point XIi

is fixed to αIi
). All in all, the deficiency is

decreased by at least b · |Ii|.
Finally, the queries may make the process repeat for another iteration, so Step 1 may be
performed again, increasing the deficiency by another 2 bits.

Summing all those effects together, we get that the deficiency was decreased by at least

b · |Ii| − 0.91 · b · |Ii| − (|Ii|+ 1)− 2 ≥ 0.05 · b · |Ii| ,

as required. This concludes the proof.
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5 Fourier-theoretic result

We recall our notation, some definitions and the result. Let n ∈ N and let b ∈ N be such that
b ≥ 40, 000 · logn. We denote the domain of the inner product gadget by Λ = {0, 1}b (so the
inner product is over Λ× Λ), and denote q = |Λ| = 2b. Given a string γ ∈ Λ, we denote the
corresponding Fourier character by χγ(x) def= (−1)〈γ,x〉. When considering a set I ⊆ [n] and
the space of functions f : ΛI → R, we index the corresponding Fourier characters by tuples
from ΛI , such that for every γ ∈ ΛI it holds that χγ =

∏
i∈I χγi

.

I Definition 16. Let α ∈ Λn and let Y be a random variable taking values in Λn. We say
that α is η-bad for Y if there exists a set I ⊂ [n] and a string σ ∈ {0, 1}I such that the
random variable

Y[n]−I |∀i∈I 〈αi, Yi〉 = σi

is not η-dense or

Pr [∀i∈I 〈αi, Yi〉 = σi] < 2−|I|−1.

In this section we prove the following result.

I Theorem 17 (Restatement of Theorem 7). Let X and Y be random variables taking values
in Λn that are δX-dense and δY -dense respectively. Suppose that δX + δY ≥ 1.3 and δY ≥ 0.1.
Then, the probability that X takes a value that is δY

2.01 -bad for Y is at most q−0.01.

For the rest of this section, fix the random variables X and Y , and suppose that they are
δX -dense and δY -dense respectively where δX + δY ≥ 1.3 and δY ≥ 0.1. We use the following
definition, which essentially isolates “badness” to a particular set of coordinates.

I Definition 18. Let ε > 0. We say that α ∈ Λn is ε-bad for Y on J ⊆ [n] if there exist a
string βJ ∈ ΛJ , a non-empty set I ⊂ [n]− J and a string σ ∈ {0, 1}I such that

Pr [YJ = βJ and ∀i∈I 〈αi, Yi〉 = σi] /∈ 2−|I| · (Pr [YJ = βJ ]± ε) .

In particular, if J = ∅, we view YJ , βJ as the empty string and the event YJ = βJ as an
event that occurs with probability 1 vacuously.

Morally, a value is not bad if it is not bad on any J . Theorem 17 will follow as a corollary
from the following result (see that last part of the full version [3] of the paper).

I Lemma 19. For every J ⊆ [n], the probability that X takes a value that is ε-bad for Y on
J is at most q−δY ·|J|−0.05/ε2.

In order to analyze the probability of bad values, it is more convenient to consider “unbiased”
values, i.e., values α for which the event YJ = βJ is not correlated with inner products of the
form ∀i∈I 〈αi, Yi〉 = σi. This bias is naturally measured using Fourier coefficients. We denote
by D : Λn → [0, 1] the distribution of Y , i.e., the function that for every β ∈ Λn outputs
Pr [Y = β]. For a set of indices K ⊆ [n], we denote by DK the function corresponding to
the marginal distribution over K. Moreover, given disjoint sets J,K ⊆ [n] and a string
βJ ∈ ΛJ we denote by DK,βJ

: ΛK → [0, 1] the function that maps each βK ∈ ΛK to
Pr [YK = βK and YJ = βJ ] .

I Definition 20. We say that a value α ∈ Λn is ε-biased for Y with respect to J ⊆ [n] if for
every non-empty I ⊆ [n]− J and for every βJ ∈ ΛJ it holds that

∣∣∣D̂I,βJ
(αI)

∣∣∣ ≤ ε · q−1.1·|I|.
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Lemma 19 follows immediately from the next two propositions. The first proposition is
a “Vazirani lemma” type of result that shows that small bias implies small distortion of
probabilities.

I Proposition 21. If a value α ∈ Λn is ε-biased for Y with respect to J ⊆ [n], then it is not
ε-bad with respect to J .

The second proposition upper bounds the probability of X taking a value with large bias
using the fact that X and Y are δX -dense and δY -dense respectively.

I Proposition 22. For every J ⊆ [n], the probability that X takes a value that is not ε-biased
for Y with respect to J is at most q−δY ·|J|−0.05/ε2.

The rest of the proof can be found in the full version [3] of the paper.
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Abstract
We consider the problem of locating a signal whose frequencies are “off grid” and clustered in a
narrow band. Given noisy sample access to a function g(t) with Fourier spectrum in a narrow range
[f0−∆, f0 + ∆], how accurately is it possible to identify f0? We present generic conditions on g that
allow for efficient, accurate estimates of the frequency. We then show bounds on these conditions
for k-Fourier-sparse signals that imply recovery of f0 to within ∆ + Õ(k3) from samples on [−1, 1].
This improves upon the best previous bound of O

(
∆ + Õ(k5)

)1.5. We also show that no algorithm
can do better than ∆ + Õ(k2).

In the process we provide a new Õ(k3) bound on the ratio between the maximum and average
value of continuous k-Fourier-sparse signals, which has independent application.
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1 Introduction

A natural question, dating at least to the work of Prony in 1795, is to estimate a signal from
samples, assuming the signal has a k-sparse Fourier representation, i.e., that the signal is
a sum of k complex exponentials: g(t) =

∑k
j=1 vje

2πifjt for some set of frequencies fj and
coefficients vj .

If the frequencies are located on a discrete grid (giving a sparse discrete Fourier transform),
then a long line of work has studied efficient algorithms for recovering the signal (e.g.,
[11, 7, 1, 8, 9, 10]). If the frequencies are not on a grid, then Prony’s method from 1795 [14]
or matrix pencil [3] can still identify them in the absence of noise. With noise, however, one
cannot robustly recover frequencies that are too close together: if one listens to a signal
for the interval [−T, T ] then any two frequencies θ and θ + ε/T will be O(ε)-close to each
other, and so cannot be distinguished with noise. As shown in [12], this nonrobustness grows
exponentially in k. On the other hand, [12] also showed that recovery with polynomially
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small noise is possible if all the frequencies have separation 1/2T , and [13] showed that
a constant fraction of noise is tolerable with separation logO(1)(FT )/T , where F is the
bandlimit of the signal.

So what is possible for arbitrary Fourier-sparse signals, without any assumption of
frequency separation? One cannot hope to identify the frequencies exactly, but one can still
estimate the signal itself. If two frequencies are similar enough to be indistinguishable over
the sampled interval, we do not need to distinguish them. In [4], this led to an algorithm for
an arbitrary k-Fourier-sparse signal that used poly(k, log(FT )) samples to estimate it with
only a constant factor increase in the noise. However, this polynomial is fairly poor.

Since prior work could handle the case of well-separated frequencies, a key challenge in [4]
is the setting with all the frequencies in a narrow cluster. Formally, consider the following
subproblem: if all the frequencies fi of the signal lie in a narrow band [f0 −∆, f0 + ∆], how
accurately can we estimate f0? Note that while we would like an efficient algorithm that
takes a small number of samples, the key question is information theoretic. And we can ask
this question more generally: if the signal is not k-sparse, but still has all its frequencies in a
narrow band, can we locate that band?

I Question 1. Let g(t) be a signal with Fourier transform supported on [f0−∆, f0 + ∆], for
some f0 ∈ [−F, F ]. Suppose that we can sample from y(t) = g(t) + η(t) at points in [−T, T ],
where η(t) could be any `2 bounded noise on [−T, T ] with

E
t∈[−T,T ]

[
|η(t)|2

]
≤ ε E

t∈[−T,T ]

[
|g(t)|2

]
for a small constant ε. Under what conditions on g can we estimate f0, and how accurately?

One might expect to be able to estimate f0 to ±(∆ +O( 1
T )) for all functions g; after all,

g is just a combination of individual frequencies, each of which points to some frequency in
the right range, and each individual frequency in isolation can be estimated to within ±O( 1

T )
in the presence of noise. Unfortunately, this intuition is false.

To see this, consider the family of k-sparse Fourier functions with fj = εj, i.e.,

span(e2πi(jε)t | j ∈ [k]).

By sending ε→ 0 and taking a Taylor expansion, this family can get arbitrarily close to any
degree k − 1 polynomial, on any interval [−T ′, T ′]. Thus, to solve the question, one would
also need to solve it when g(t) is a polynomial even for arbitrarily small ∆.

There are two ways in which g(t) being a degree d polynomial can lead to trouble. The first
is that g(t) could itself be a Taylor expansion of eπift. If d & fT , this Taylor approximation
will be quite accurate on [−T, T ]; with the noise η, the observed signal can equal eπift. Thus
the algorithm has to output f , which can be Θ(d/T ) far from the “true” answer f0 = 0.

The second way in which g(t) can lead to trouble is by removing most of the signal
energy. If g(t) is the (slightly shifted) Chebyshev polynomial g(t) = Td

(
t/T + O( log2 d

d2 )
)
,

then |g(t)| ≤ 1 for t ≤
(
1−O( log2 d

d2 )
)
T , while g(t) ≥ d for t ≥

(
1−O( log2 d

d2 )
)
T . That is to

say, the majority of the `2 energy of g can lie in the final O( log2 d
d2 ) fraction of the interval.

In such a case, a small constant noise level η can make samples outside that T · Õ(1/d2) size
region equal to zero, and hence completely uninformative; and samples in that region still
have to tolerate noise. This leads to an “effective” interval size of T ′ = T · Õ( 1

d2 ), leading to
accuracy O(1/T ′) = Õ(d2)/T .
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Our main result is that, in a sense, these two types of difficulties are the only ones that
arise. We can measure the second type of difficulty by looking at how much larger the
maximum value of g is than its average:

R :=
supt∈[−T,T ] |g(t)|2

Et∈[−T,T ] |g(t)|2 .

We can measure the former by observing that while a polynomial may approximate a complex
exponential on a bounded region, as t→∞ the polynomial will blow up. In particular, we
take the S such that

|g(t)|2 ≤ poly(R) · E
t∈[−T,T ]

[
|g(t)|2

]
· | t
T
|S

for all |t| ≥ T . We show that if R and S are bounded, one can estimate f0 to within
∆ + Õ(R + S)/T , which is almost tight from the above discussion of polynomials. Moreover,
the time and number of samples required are fairly efficient:

I Theorem 2. Given any T > 0, F > 0,∆ > 0, R, and S > 0, let g(t) be a signal with the
following properties:
1. supp(ĝ) ⊆ [f0 −∆, f0 + ∆] where f0 ∈ [−F, F ].
2. sup

t∈[−T,T ]

[
|g(t)|2

]
≤ R · E

t∈[−T,T ]

[
|g(t)|2

]
.

3. |g(t)|2 grows as at most poly(R) · E
t∈[−T,T ]

[
|g(t)|2

]
· | tT |

S for t /∈ [−T, T ].

Let y(t) = g(t) + η(t) be the observable signal on [−T, T ], where E
t∈[−T,T ]

[
|η(t)|2

]
≤ ε ·

E
t∈[−T,T ]

[
|g(t)|2

]
for a sufficiently small constant ε. For ∆′ = ∆ + Õ(R+S)

T and any δ > 0,

there exists an efficient algorithm that takes O(R log F
∆′·δ ) samples from y(t) and outputs f̃

satisfying |f0 − f̃ | ≤ O(∆′) with probability at least 1− δ.

Application to sparse Fourier transforms. Specializing to k-Fourier-sparse signals, we give
bounds on R and S for this family. Since (as described above) this family can approximate
degree-(k−1) polynomials, we know that R & k2 and S & k; we show that R . k3 log2 k and
S . k2 log k. Thus, whenever R is between k2 and Õ(k3), we can identify k-Fourier-sparse
signals to within ∆ + Õ(R)/T . This is an improvement over the results in [4] in several ways.

Formally, for a given sparsity level k, we consider signals in

F :=

g(t) =
k∑
j=1

vje
2πifjt

∣∣∣∣fj ∈ [−F, F ]

 .

I Theorem 3. For any k and T ,

R := sup
g∈F

sup
x∈[−T,T ]

|g(x)|2

E
x∈[−T,T ]

[|g(x)|2] = O(k3 log2 k). (1)

It was previously known that R . k4 log3 k [4], and this fact was used in [2]. (Thus,
our improved bound on R immediately implies an improvement in Theorem 8 of [2], from
s5
µ,ε log3 sµ,ε to s4

µ,ε log2 sµ,ε.)
Next we bound the growth S = Õ(k2) for any |t| ≥ T .
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I Theorem 4. There exists S = O(k2 log k) such that for any |t| > T and g(t) =
∑k
j=1 vj ·

e2πifjt, |g(t)|2 ≤ poly(k) · E
x∈[−T,T ]

[|g(x)|2] · | tT |
S.

This is analogous to Theorem 5.5 of [4], which proves a bound of (kt)k rather than tÕ(k2).
These bounds are incomparable, but the tÕ(k2) bound is actually more useful for this problem:
what really matters is showing that g(t) is not too large just outside the interval. Theorem 4
gives the “correct” polynomial dependence at t = (1 + 1/k2)T .

We can now apply Theorem 2 to get an efficient algorithm to recover the center of a
cluster of k frequencies within accuracy Õ(R).

I Theorem 5. Given F, T, and k, let R be the ratio between the maximum and average value
of continuous k-Fourier-sparse signals defined in (1). Given ∆, let g(t) be a k-Fourier-sparse
signal centered around f0: g(t) =

∑
i∈[k] vi ·e2πifit where each fi ∈ [f0−∆, f0 +∆] and y(t) =

g(t) + η(t) be the observable signal on [−T, T ], where E
t∈[−T,T ]

[
|η(t)|2

]
≤ ε · E

t∈[−T,T ]

[
|g(t)|2

]
for a sufficiently small constant ε.

For any δ > 0, there exist ∆′ = ∆ + Õ(R)
T and an efficient algorithm that takes

O(k log2 k log F
∆′·δ ) samples from y(t) and outputs f̃ satisfying |f0 − f̃ | ≤ O(∆′) with proba-

bility at least 1− δ.

Note that the sample complexity here is Õ(k) not Õ(R). This is because, based on the
structure of the problem, we can use a nonuniform sampling procedure that performs better.
Otherwise this theorem is just Theorem 2 applied to the R and S from Theorems 3 and 4.

Theorem 5 is a direct improvement on Theorem 7.5 of [4], which for T = 1 could estimate
to within O

(
∆ + Õ(k5)

)1.5
accuracy and used poly(k) samples. In particular, in addition

to improving the additive poly(k) term, our result avoids a multiplicative increase in the
bandwidth ∆ of g.

The main technical lemma in proving Theorems 2 and 5 is a filter function H with a
compact supported Fourier transform Ĥ that simulates a box function on [−T, T ] for any g
satisfying the conditions in Theorem 2.

I Lemma 6. Given any T , S, and R, there exists a filter function H with
∣∣supp(Ĥ)

∣∣ ≤
Õ(R+S)

T such that for any g(t) satisfying the second and third conditions in Theorem 2,
1. H is close to a box function on [−T, T ]:

∫ T
−T |g(t) ·H(t)|2dt ≥ 0.9

∫ T
−T |g(t)|2dt.

2. The tail of H(t) · g(t) is small:
∫ T
−T |g(t) ·H(t)|2dt ≥ 0.95

∫∞
−∞ |g(t) ·H(t)|2dt.

Organization. We introduce some notation and tools in Section 2. Then we provide a
technical overview in Section 3. We show our filter function and prove Lemma 6 in Section 4.
Next we present the algorithm about frequency estimation of Theorem 2 in Section 5. Finally
we prove the results about sparse Fourier transform – Theorem 3 and Theorem 4 in Section 6.

2 Preliminaries

In the rest of this work, we fix the observation interval to be [−1, 1] and define

‖g‖2 =
(

E
x∼[−1,1]

|g(x)|2
)1/2

, (2)

because we could rescale [−T, T ] to [−1, 1] and [−F, F ] to [−FT, FT ].
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We first review several facts about the Fourier transform. The Fourier transform ĝ(f) of
an integrable function g : R→ C is

ĝ(f) =
∫ +∞

−∞
g(t)e−2πiftdt for any real f.

We use g · h to denote the pointwise dot product g(t) · h(t) and gk to denote g(t) · · · g(t)︸ ︷︷ ︸
k

.

Similarly, we use g∗h to denote the convolution of g and h:
∫ +∞
−∞ g(x)·h(t−x)dx. In this work,

we always set g∗k as the convolution g(t) ∗ · · · ∗ g(t)︸ ︷︷ ︸
k

. Notice that supp(g·h) = supp(g)∩supp(h)

and supp(g ∗ h) = supp(g) + supp(h).
We define the box function and its Fourier transform sinc function as follows. Given

a width s > 0, the box function rects(t) = 1/s iff |t| ≤ s/2; and its Fourier transform is
sinc(sf) = sin(πfs)

πfs for any f .
We state the Chernoff bound for random sampling [6].

I Lemma 7. Let X1, X2, · · · , Xn be independent random variables in [0, R] with expectation
1. For any ε < 1/2 and n & R

ε2 , X =
∑n

i=1
Xi

n with expectation 1 satisfies

Pr[|X − 1| ≥ ε] ≤ 2 exp(−ε
2

3 ·
n

R
).

3 Proof Overview

We first outline the proofs of Lemma 6 and Theorem 2. Then we show the proof sketch of
R = Õ(k3) and S = Õ(k2) of k-Fourier-sparse signals.

The filter functions (H, Ĥ) in Lemma 6. Ideally, to satisfy the two claims in Lemma 6,
we could set H(t) to be the box function 2 rect2(t) on [−1, 1]. However, by the uncertainty
principle, it is impossible to make its Fourier transform Ĥ compact using such an H(t).
Hence our construction of (H, Ĥ) is in the inverse direction: we build Ĥ(f) by box functions
and H(t) by the Fourier transform of box functions – the sinc function. In the rest of this
discussion, we focus on using the sinc function to prove Lemma 6 given the properties of g in
Theorem 2.

We first notice that any H with the following two properties is effective in Lemma 6 for
g satisfying |g(t)|2 ≤ R · ‖g‖22 for any |t| ≤ 1 and |g(t)|2 ≤ poly(R)‖g‖22 · |t|S for |t| > 1:
1. H(t) = 1± 0.01 for any t ∈ [−1 + 1

C·R , 1−
1

C·R ] of a large constant C. This shows∫ 1

−1
|H(t) · g(t)|2dt ≥ 0.992

∫ 1− 1
C·R

−1+ 1
C·R

|g(t)|2dt.

Because |g(t)|2 ≤ R · ‖g‖22 for any t ∈ [−1, 1] \ [−1 + 1
C·R , 1−

1
C·R ], the constant on the

R.H.S. is at least 0.992 · (1− 1
C ) ≥ 0.9, which implies the first claim of Lemma 6.

2. H(t) declines to 1
poly(R)·t2S for any |t| > 1. This shows∫ ∞

1
|H(t) · g(t)|2dt ≤ 0.01

∫ 1

−1
|g(t)|2dt,

which implies the second claim.
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36:6 Estimating the Frequency of a Clustered Signal

For ease of exposition, we start with S = 0. We plan to design a filter H0(t) with compact
Ĥ0 dropping from 0.99 at t = 1− 1

C·R to 1
poly(R) at t = 1 in a small range 1

CR using the sinc
function. To apply the sinc function, we notice that

sinc(CR · t)O(logR) =
(

sin(πCR · t)
πCR · t

)O(logR)

decays from 1 at t = 0 to 1/poly(R) at t = 1
C·R , which matches the dropping of H0(t) from

t = 1− 1
C·R to t = 1.

Then, to make H(t) ≈ 1 for any |t| ≤ 1− 1
C·R , let us consider a convolution of rect1(t) and

sinc(CR · t)O(logR). Because most of the mass of the latter is in [− 1
CR ,

1
CR ], this convolution

keeps almost the same value in [− 1
2 + 1

CR ,
1
2−

1
CR ] and drops down to 1/poly(R) at t = 1

2 + 1
CR .

At the same time, it will keep the compactness of Ĥ0 since it corresponds to the dot product
on the Fourier domain. By normalizing and scaling, this gives the desired (H0, Ĥ0) for S = 0.

Next we describe the construction of S > 0. The high level idea is to consider the decays
of H(t) in log2 S +O(1) segments rather than one segment of S = 0:

(1− 1
CR

, 1], (1, 1 + 1
S

], (1 + 1
S
, 1 + 2

S
], . . . , (1 + 2j

S
, 1 + 2j+1

S
], . . . , (1 + S/2

S
, 2], (2,+∞).

For each segment, we provide a power of sinc functions matching its decay in H(t) like
the construction of H0 on (1− 1

CR , 1]. The final construction is the convolution of the dot
product of all sinc powers and a box function, which appears in Section 4.

The Algorithm of Theorem 2. Now we show how to estimate f0 given the observable
signal y = g + η where supp(ĝ) ⊆ [f0 −∆, f0 + ∆] and ‖η‖22 ≤ ε‖g‖22 (with `2 norm taken
over [−T, T ] defined in (2)). We instead consider yH(t) = y(t) ·H(t) with the filter function
(H, Ĥ) from Lemma 6 and the corresponding dot products gH = g ·H and ηH = η ·H. The
starting point is that for a sufficiently small β, we expect

yH(t+ β) ≈ e2πif0β · yH(t)

because yH has Fourier spectrum concentrated around f0. This does not hold for all t, but
it does hold on average:∫ 1

−1
|yH(t+ β)− e2πif0β · yH(t)|2dt . ε ·

∫ 1

−1
|yH(t)|2dt. (3)

This is because we can use Parseval’s identity to replace these integrals by an integral over
Fourier domain – Parseval’s identity would apply if the integrals were from −∞ to ∞, but
because of the filter function H, relatively little mass in yH lies outside [−1, 1]. Then, the
Fourier transform of the term inside the left square is e2πifβ ·ŷH(f)−e2πif0β ·ŷH(f). Note that
ŷH = ĝH + η̂H has most of its `2 mass in supp(gH) ⊆ [f0−∆′, f0 +∆′] for ∆′ = ∆+ |supp(Ĥ)|,
and every such frequency shrinks in the left by a factor |e2πifβ − e2πif0β | = O(β∆′). Thus,
for β � 1/∆′, (3) holds.

To learn f0 through e2πif0β , we design a sampling procedure to output α satisfying

|yH(α+ β)− e2πif0βyH(α)| ≤ 0.3 · yH(α) with probability more than half .

Even though the above discussion shows the left hand side is smaller than the R.H.S.
on average, a uniformly random α ∼ [−1, 1] may not satisfy it with good probability:
|yH(α)| ≥ ‖yH‖2 may be only true for 1/R fraction of α ∈ [−1, 1], while the corruption by
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adversarial noise η has ‖η‖22 & ε‖yH‖22 for a constant ε� 1/R. At the same time, even for
many points α1, . . . , αm where some of them satisfy the above inequality, it is infeasible to
verify such an αi given f0 is unknown. We provide a solution by adopting the importance
sampling: for m = O(R) random samples α1, . . . , αm ∈ [−1, 1], we output α with probability
proportional to the weight |yH(αi)|2.

We prove the correctness of this sampling procedure in Lemma 11 in Section 5.
Finally, learning e2πif0β is not enough to learn f0: because of the noise, we only learn

e2πif0β to within a constant ε, which gives f0 to within ±O(ε/β); and because of the different
branches of the complex logarithm, this is only up to integer multiples of 1/β. Therefore to
fully learn f0, we repeat the sampling procedure at logarithmically many different scales of
β, from β = 1/2F to β = Θ(1)

∆′ .

k-Fourier-sparse signals. Finally, we show R = Õ(k3) and S = Õ(k2) such that for any
g(t) =

∑k
j=1 vj · e2πifjt – not necessarily one with the fj clustered together –

sup
t∈[−1,1]

|g(t)|2

‖g‖22
≤ R and |g(t)|2 ≤ poly(R) · ‖g‖22 · |t|S .

We first review the previous argument of R = Õ(k4) [4]. The key point is to show for
some d = Õ(k2) that g(1) is a linear combination of g(1− θ), . . . , g(1− d · θ) using bounded
integer coefficients c1, . . . , cd = O(1) for any θ ≤ 2

d . Then

g(1) =
∑
j∈[d]

cj · g(1− j · θ) implies |g(1)|2 ≤ (
∑
j∈[d]

|cj |2) · (
∑
j∈[d]

|g(1− j · θ)|2). (4)

If we think of g(1) as the supremum and g(1− j · θ) as the average ‖g‖2 – which we can
formally do up to logarithmic factors by averaging over θ – this shows |g(1)|2 ≤ Õ(d2)‖g‖22.
One natural idea to improve it is to use a smaller value d and a shorter linear combination
[5]. However, d = Ω̃(k2) for such a combination when g is approximately the degree k − 1
Chebyshev polynomial. In this work, we use a geometric sequence to control cj such that∑
j |cj |2 = O(d/k) instead of O(d), which provides an improvement of a factor Õ(k) on R.
Then we bound S = Õ(k2) for g(t) at |t| > 1. The intuition is that given (4) holds for any

g(t) in terms of g(t−θ), . . . , g(t−d·θ) with θ = 2
d , it implies |g(t)|2 ≤ poly(k)·‖g‖22 ·e(t−1)·O(d)

for t > 1. Combining this with an alternate bound |g(t)|2 ≤ poly(k) · ‖g‖22 · (k · t)O(k) for
t > 1 + 1/k, it completes the proof of Theorem 4 about S.

Finally we notice that we could improve the sample complexity in Theorem 5 to Õ(k) log F
∆′

using a biased distribution [5] to generate α. These results about k-Fourier-sparse signals
appear in Section 6.

4 Our Filter Function

The main result is an explicit filter function H with compact support Ĥ that is close to the
box function on [−1, 1] for any g satisfying the conditions in Theorem 2.

We show our filter function as follows.

I Definition 8. Given R, the growth rate S and an even constant C, we define the filter
function

H(t) = s0 ·
(

sinc(CR · t)C log R · sinc
(
C · S · t

)C · sinc
(C · S

2 · t
)2C · · · sinc

(
C · t

)C·S
)
∗ rect2(t)
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36:8 Estimating the Frequency of a Clustered Signal

where s0 ∈ R+ is a parameter to normalize H(0) = 1. On the other hand, its Fourier
transform is

Ĥ(f) = s0 ·
(

rectCR(f)∗C logR ∗ rectC·S(f)∗C ∗ rectC·S
2

(f)∗2C ∗ · · · ∗ rectC(f)∗CS
)
·sinc(2t),

whose support size is O(CR · C logR+ CS · C + · · ·+ C · C · S) = O(R logR+ S logS).

We prove Lemma 6 using H(αx) with a large constant C and a scale parameter α =
1
2 + 1.2

πCR . For convenience, we state the full version of Lemma 6 for T = 1 as follows.

I Theorem 9. Let R,S > 0, let C be a large even constant, and define α = ( 1
2 + 1.2

πCR ).
Consider any function g satisfying the following two conditions:
1. sup

t∈[−1,1]
|g(t)|2 ≤ R · ‖g‖22

2. And |g(t)|2 ≤ poly(R) · ‖g‖22 · |t|S for t /∈ [−1, 1],
Then the filter function H

(
αx
)
is such that H

(
αx
)
· g(x) satisfies

1.
∫ 1
−1 |g(x) ·H

(
αx
)
|2dx ≥ 0.9

∫ 1
−1 |g(x)|2dx.

2.
∫ 1
−1 |g(x) ·H

(
αx
)
|2dx ≥ 0.95

∫∞
−∞ |g(x) ·H

(
αx
)
|2dx.

3. |H(x)| ≤ 1.01 for any x.

Due to the space constraint, we defer the proof of Theorem 9 to the full version.

5 Frequency Estimation

We show the algorithm for frequency estimation and prove Theorem 2 in this section. We fix
T = 1 and use the definition ‖h‖22 = E

x∼[−1,1]
[|h(x)|2] to restate the theorem.

I Theorem 10. Given any F > 0,∆ > 0, R, and S > 0, let g(t) be a signal with the following
properties:
1. supp(ĝ) ⊆ [f0 −∆, f0 + ∆] where f0 ∈ [−F, F ].
2. sup

t∈[−1,1]

[
|g(t)|2

]
≤ R · ‖g‖22.

3. |g(t)|2 grows as at most poly(R) · ‖g‖22 · |t|S for t /∈ [−1, 1].
Let y(t) = g(t)+η(t) be the observable signal on [−1, 1], where ‖η‖22 ≤ ε·‖g‖22 for a sufficiently
small constant ε. For ∆′ = ∆ + Õ(R + S) and any δ, there exists an efficient algorithm
that takes O(R log F

∆′·δ ) samples from y(t) and outputs f̃ satisfying |f0 − f̃ | ≤ O(∆′) with
probability at least 1− δ.

For convenience, we set hH(t) = h(t) ·H(αt) for any signal h(t) with the filter function
H defined in Theorem 9 such that yH(t) = y(t) ·H(αt).

Given the observation y(t) with most Fourier mass concentrated around f0, the main
technical result in this section is an estimation of e2πiβf0 through yH(α)e2πif0β ≈ yH(α+ β).

I Lemma 11. Given parameters F,R, S, and ∆, let g be a signal satisfying the three
conditions in Theorem 2 for some f0 ∈ [−F, F ] and ∆′ = ∆ +O(R logR+ S logS).

Let y(t) = g(t) + η(t) be the observable signal on [−1, 1] where the noise ‖η‖22 ≤ ε‖g‖22 for
a sufficiently small constant ε. There exist a constant γ and an algorithm such that for any
β ≤ γ

∆′ , it takes O(R) samples to output α satisfying |yH(α)e2πif0β−yH(α+β)| ≤ 0.3|yH(α)|
with probability at least 0.6.

We show our algorithm in Algorithm 1. We finish the proof of Theorem 5 here and defer
the proof of Lemma 11 to Section 5.1.
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Algorithm 1 Obtain one good α.
1: procedure ObtainOneGoodSample(R, y(t))
2: Let m = C ·R for a large constant C.
3: Take m random samples x1, · · · , xm uniform in [−1, 1].
4: Query y(xi) and compute yH(xi) = y(xi) ·H(xi) for each i.
5: Set a distribution Dm proportional to |yH(xi)|2, i.e., Dm(xi) = |yH(xi)|2∑m

j=1
|yH(xj)|2

.

6: Output α ∼ Dm.
7: end procedure

Proof of Theorem 10. From Lemma 11, yH(α+β)
yH(α) gives a good estimation of e2πif0β with

probability 0.6 for any β ≤ γ
∆′ . We use the frequency search algorithm of Lemma 7.3 in [4]

with the sampling procedure in Lemma 11. Because the algorithm in [4] uses the sampling
procedure O(log F

∆′·δ ) times to return a frequency f̃ satisfying |f̃ − f0| ≤ ∆′ with prob. at
least 1− δ, the sample complexity is O(R · log F

∆′·δ ). J

5.1 Proof of Lemma 11
For yH(x) = gH(x)+ηH(x), we have the following concentration lemma for estimation gH(x).

B Claim 12. Given any g satisfying the three conditions in Theorem 2 and any ε and δ,
there exists m = O(R log 1

δ /ε
2) such that for m random samples x1, . . . , xm ∼ [−1, 1], with

probability 1− δ,∑m
i=1 |gH(xi)|2

m
∈ [1− ε, 1 + ε] · E

x∼[−1,1]
[|gH(x)|2].

Proof. Notice that
sup

x∼[−1,1]
[|gH(x)|2]

E
x∼[−1,1]

[|gH(x)|2] ≤ 2R. From the Chernoff bound in Lemma 7, m =

O(R log 1
δ /ε

2) suffices to estimate ‖gH‖22. C

Next we consider the effect of noise ηH(xi) and yH(xi).

B Claim 13. With probability 0.9 over m random samples in [−1, 1],
∑m
i=1 |yH(xi)|2/m ≥

0.8‖g‖22.

Proof. From Theorem 9, ‖gH‖22 ≥ 0.95‖g‖22. Thus Claim 12 implies
∑m
i=1 |gH(xi)|2/m ≥

0.98 · 0.95‖g‖22 for m = O(R) with probability 0.99.
At the same time, because E[

∑m
i=1 |ηH(xi)|2/m] = ‖ηH‖22,

∑m
i=1 |ηH(xi)|2/m ≤ 14‖ηH‖22

with probability at least 1 − 1
14 from the Markov inequality. This is also less than 14 ·

1.022‖η‖22 ≤ 15ε‖g‖22 from the upper bound on H(t).
We have

1
m

m∑
i=1
|yH(xi)|2 ≥

1
m

m∑
i=1

(
|gH(xi)|2 − 2|gH(xi)| · |ηH(xi)|+ |ηH(xi)|2

)
.

By the Cauchy-Schwartz inequality, the cross term
∑m
i=1 |gH(xi)| · |ηH(xi)| ≤

(
∑m
i=1 |gH(xi)|2)1/2 · (

∑m
i=1 |ηH(xi)|2)1/2. From all discussion above,

1
m

m∑
i=1
|yH(xi)|2 ≥

(
0.93− 2

√
0.93 · 15ε

)
‖g‖22.

When ε is a small constant, it is at least 0.8 · ‖g‖22. C
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36:10 Estimating the Frequency of a Clustered Signal

We set z(t) = yH(t) · e2πif0β − yH(t+ β) for convenience and bound it as follows.

B Claim 14. Given any small constant γ, ∆′ = ∆ + supp(H), and z(t) = yH(t) · e2πif0β −
yH(t+ β) for β ≤ γ

∆′ , ‖z‖
2
2 . (γ2 + ε)‖g‖22.

Proof. Notice that yH = gH + ηH where supp(ĝH) ∈ [f0 −∆, f0 + ∆] such that∫
f /∈[f0−∆′,f0+∆′]

|ŷ(f)|2df ≤
∫ ∞
−∞
|η̂H(f)|2df =

∫ ∞
−∞
|ηH(t)|2dt ≤ 1.022ε

∫ 1

−1
|g(t)|2dt.

We bound ‖z‖22 through∫ 1

−1
|z(t)|2dt ≤

∫ ∞
−∞
|z(t)|2dt =

∫ ∞
−∞
|ẑ(f)|2df

=
∫ f0+∆′

f0−∆′
|ẑ(f)|2df +

∫
f /∈[f0−∆′,f0+∆′]

|ẑ(f)|2df.

Therefore we write∫ f0+∆′

f0−∆′
|ẑ(f)|2df =

∫ f0+∆′

f0−∆′
|ŷH(f) · e2πif0β − ŷH(f) · e2πifβ |2df

≤
∫ f0+∆′

f0−∆′
|ŷH(f)|2 · |e2πif0β − e2πifβ |2df.

Because f ∈ [f0 −∆′, f0 + ∆′] and β ≤ γ
∆′ , |e

2πif0β − e2πifβ | ≤ 4πγ. So∫ f0+∆′

f0−∆′
|ẑ(f)|2df . γ2

∫ +∞

−∞
|ŷH(f)|2df = γ2

∫ +∞

−∞
|yH(t)|2dt . γ2(1 + 2ε)

∫ 1

−1
|g(t)|2dt.

On the other hand,∫
f /∈[f0−∆′,f0+∆′]

|ẑ(f)|2df =
∫
f /∈[f0−∆′,f0+∆′]

|ŷH(f) · e2πif0β − ŷH(f) · e2πifβ |2df

≤ 4
∫
f /∈[f0−∆′,f0+∆′]

|ŷH(f)|2df

≤ 4
∫ +∞

−∞
|η̂H(f)|2df = 4

∫ +∞

−∞
|η̂H(t)|2dt

which is less than 5ε
∫ 1
−1 |g(t)|2dt.

From all discussion above,
∫ 1
−1 |z(t)|

2dt . (γ2 + ε)
∫ 1
−1 |g(t)|2dt. C

For sufficiently small γ and ε, by Markov inequality, we have the following corollary.

I Corollary 15. For sufficiently small constants γ and ε, with probability 0.9 over m random
samples in [−1, 1],

∑m
i=1 |z(xi)|2 ≤ 0.01‖g‖22.

Finally we finish the proof of Lemma 11.

Proof of Lemma 11. We assume Claim 13 and Corollary 15 hold in this proof, i.e.,
m∑
i=1
|yH(xi)|2/m ≥ 0.8‖g‖22 and

m∑
i=1
|z(xi)|2/m ≤ 0.01‖g‖22.
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For a random sample α ∼ Dm, we bound

E
α∼Dm

[
|yH(α)e2πif0β − yH(α+ β)|2

|yH(α)|2

]
= E
α∼Dm

[
|z(α)|2

|yH(α)|2

]
=

m∑
i=1

|z(xi)|2

|yH(xi)|2
· |yH(xi)|2∑m

j=1 |yH(xj)|2
.

This is
∑m

i=1
|z(xi)|2∑m

j=1
|yH(xj)|2

≤ 0.01
0.8 . Thus with probability 0.8, |yH(α)e2πif0β−yH(α+β)|2

|yH(α)|2 is less than

0.05/0.8 ≤ 0.09. From all discussion above, |yH(α)e2πif0β−yH(α+β)|
|yH(α)| ≤ 0.3 with probability 0.6.

J

6 Bounds on Fourier-sparse Signals

We consider g(t) =
∑k
j=1 vje

2πifjt where each fj ∈ [f0−∆, f0 + ∆] in this section. The main
result is to prove R = Õ(k3) and S = Õ(k2) for k arbitrary real frequencies. We restate
Theorem 5 after fixing T = 1.

I Theorem 16. Given F,∆, and k, let g(t) be a k-Fourier-sparse signal centered around
f0 ∈ [−F, F ]: g(t) =

∑
i∈[k] vi · e2πifit where fi ∈ [f0 −∆, f0 + ∆] and y(t) = g(t) + η(t) be

the observable signal on [−1, 1], where ‖η‖22 ≤ ε · ‖g‖22 for a sufficiently small constant ε.
For any δ > 0, there exist ∆′ = ∆ + Õ(R) and an efficient algorithm that takes

O(k log2 k log F
∆′·δ ) samples from y(t) and outputs f̃ satisfying |f0 − f̃ | ≤ O(∆′) with proba-

bility at least 1− δ.

The main improvement is a biased distribution that saves the sample complexity from
O(R) · log F

∆′·δ to Õ(k) · log F
∆′·δ .

We provide the main technical lemma here and defer the proofs of Theorem 3, 4, and 16
to the full version.

I Theorem 17. Given z1, . . . , zk with |z1| = |z2| = · · · = |zk| = 1, there exists a degree
d = O(k2 log k) polynomial P (z) =

∑d
j=0 c(j) · zj satisfying

1. P (zi) = 0 for each i ∈ [k].
2. Coefficients c(0) = Ω(1), c(j) = O(1) and

∑d
j=1 |c(j)|2 = O(k) · |c(0)|2.

I Corollary 18. Given any g(t) =
∑k
j=1 vje

2πifjt and θ > 0, there exist d = O(k2 log k) and
a sequence of coefficients (α1, . . . , αd) such that
1. αj = O(1) for any j = 1, . . . , d.
2. For any x (not necessarily in [−1, 1]), g(x) =

∑d
j=1 αj · g(x− jθ).

Proof. Given θ, we set zi = e−2πifjθ and apply Theorem 17 to obtain coefficients
c(0), . . . , c(d). Then we set αj = −c(j)/c(0). It is straightforward to verify the second
property because of

e2πifjx −
∑
j

αj · e2πifj(x−jθ) = 0. J

The proof of Theorem 17 requires the following bound on the coefficients of residual
polynomials, which is stated as Lemma 5.3 in [4].

I Lemma 19. Given z1, . . . , zk, for any integer n, let rn,k(z) =
∑k−1
i=0 r

(i)
n,k · zi denote the

residual polynomial of rn,k ≡ zn mod
∏k
j=1(z−zj). Then each coefficient in rn,k is bounded:

|r(i)
n,k| ≤

(
k−1
i

)
·
(
n
k−1
)
for n ≥ k and |r(i)

n,k| ≤
(
k−1
i

)
·
(|n|+k−1

k−1
)
for n < 0.
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We finish the proof of Theorem 17 here.

Proof. Let C0 be a large constant and d = 5 · k2 log k. We use P to denote the following
subset of polynomials with bounded coefficients:

d∑
j=0

αj · 2−j/k · zj
∣∣∣∣α0, . . . , αd ∈ [−C0, C0] ∩ Z

 .

For each polynomial P (z) ∈ P, we rewrite P (z) mod
∏k
j=1(z − zj) as

d∑
j=0

αj · 2−j/k ·

zj mod
k∏
j=1

(z − zj)

 =
k−1∑
i=0

 d∑
j=0

αj · 2−j/k · r(i)
n,k

 zi.

The coefficient
∑d
j=0 αj · 2−j/k · r

(i)
n,k is bounded by

d∑
j=0

C0 · 2−j/k · 2kjk−1 ≤ d · C0 · 2k · dk ≤ d2k.

Then we apply the pigeonhole principle on the (2C0 + 1)d polynomials in P after module∏d
j=1(z−zj): there exist m > (2C0 +1)0.9d polynomials P1, . . . , Pm such that each coefficient

of (Pi − Pj) mod
∏k
j=1(z − zj) is d−2k small from the counting

(2C0 + 1)d

(d2k/4d−2k)k > (2C0 + 1)0.9d.

Because m > (2C0 + 1)0.9d, there exists j1 ∈ [m] and j2 ∈ [m] \ {j1} such that the lowest
monomial zl with different coefficients in Pj1 and Pj2 satisfies l ≤ 0.1d. Eventually we set

P (z) = z−l·
(
Pj1(z)−Pj2(z)

)
−
(
z−l mod

k∏
j=1

(z−zj)
)
·
(
Pj1(z)−Pj2(z) mod

k∏
j=1

(z−zj)
)

to satisfy the first property P (z1) = P (z2) = · · · = P (zk) = 0. We prove the second property
in the rest of this proof.

We bound every coefficient in
(
z−l mod

∏k
j=1(z−zj)

)
·
(
Pj1(z)−Pj2(z) mod

∏k
j=1(z−

zj)
)
by

k ·max-coefficient
(

z−l mod
k∏

j=1

(z−zj)
)
·max-coefficient

(
Pj1 (z)−Pj2 (z) mod

k∏
j=1

(z−zj)
)

,

which is less than k · 2k(l + k)k−1 · d−2k ≤ d · 2kdk−1 · d−2k ≤ d−0.5k from Lemma 19 and
the above discussion.

On the other hand, the constant coefficient in z−l ·
(
Pj1(z)− Pj2(z)

)
is at least 2−l/k ≥

2−0.1d/k = k−0.5k because zl is the smallest monomial with different coefficients in Pj1 and
Pj2 from P. Thus the constant coefficient |C(0)|2 of P (z) is at least 0.5 · 2−2l/k.

Next we upper bound the sum of the rest of the coefficients
∑d
j=1 |C(j)|2 by

d∑
j=1

(2C0 · 2−(l+j)/k + d−0.5k)2 ≤ 2 · 4C2
0

d∑
j=1

2−2(l+j)/k + 2 ·
d∑
j=1

d−0.5k·2 . k · 2−2l/k,

which demonstrates the second property after normalizing C(0) to 1. J
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Abstract
Document exchange and error correcting codes are two fundamental problems regarding communica-
tions. In the first problem, Alice and Bob each holds a string, and the goal is for Alice to send a
short sketch to Bob, so that Bob can recover Alice’s string. In the second problem, Alice sends a
message with some redundant information to Bob through a channel that can add adversarial errors,
and the goal is for Bob to correctly recover the message despite the errors. In both problems, an
upper bound is placed on the number of errors between the two strings or that the channel can add,
and a major goal is to minimize the size of the sketch or the redundant information. In this paper
we focus on deterministic document exchange protocols and binary error correcting codes.

Both problems have been studied extensively. In the case of Hamming errors (i.e., bit substitutions)
and bit erasures, we have explicit constructions with asymptotically optimal parameters. However,
other error types are still rather poorly understood. In a recent work [7], the authors constructed
explicit deterministic document exchange protocols and binary error correcting codes for edit errors
with almost optimal parameters. Unfortunately, the constructions in [7] do not work for other
common errors such as block transpositions.

In this paper, we generalize the constructions in [7] to handle a much larger class of errors.
These include bursts of insertions and deletions, as well as block transpositions. Specifically, we
consider document exchange and error correcting codes where the total number of block insertions,
block deletions, and block transpositions is at most k ≤ αn/ logn for some constant 0 < α < 1. In
addition, the total number of bits inserted and deleted by the first two kinds of operations is at most
t ≤ βn for some constant 0 < β < 1, where n is the length of Alice’s string or message. We construct
explicit, deterministic document exchange protocols with sketch size O((k logn+ t) log2 n

k log n+t
) and

explicit binary error correcting code with O(k logn log log logn+ t) redundant bits. As a comparison,
the information-theoretic optimum for both problems is Θ(k logn+ t). As far as we know, previously
there are no known explicit deterministic document exchange protocols in this case, and the best
known binary code needs Ω(n) redundant bits even to correct just one block transposition [23].1

2012 ACM Subject Classification Mathematics of computing → Coding theory

1 We note that by combining the techniques in [14] and [15], one can get an explicit binary code that
corrects k block transpositions with Õ(

√
kn) redundant bits. However to our knowledge this result has

not appeared anywhere in the literature, and moreover it requires at least Ω̃(
√
n) redundant bits even

to correct one block transposition.
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1 Introduction

In communications and more generally distributed computing environments, there often
arise questions regarding the synchronization of files or messages. For example, a message
sent from one party to another party through a channel may get modified by channel noise
or adversarial errors, and files stored on distributed servers may become out of sync due
to different edit operations by different users. In many situations, these questions can be
formalized in the framework of the following two fundamental problems.

Document exchange. In this problem, two parties Alice and Bob each holds a string x
and y, and the two strings are within distance k in some metric space. The goal is for
Alice to send a short sketch to Bob, so that Bob can recover x based on his string y and
the sketch.
Error correcting codes. In this problem, two parties Alice and Bob are linked by a channel,
which can change any string sent into another string within distance k in some metric
space. Alice’s goal is to send a message to Bob. She does this by sending an encoding of
the message through the channel, which contains some redundant information, so that
Bob can recover the correct message despite any changes to the codeword.

These two problems are closely related. For example, in many cases a solution to the
document exchange problem can also be used to construct an error correcting code, but the
reverse direction is not necessarily true. In both problems, a major goal is to is to minimize
the size of the sketch or the redundant information. For applications in computer science,
we also require the computations of both parties to be efficient, i.e., in polynomial time of
the input length. In this case we say that the solutions to these problems are explicit. Here
we focus on deterministic document exchange protocols and error correcting codes with a
binary alphabet, arguably the most important setting in computer science.

Both problems have been studied extensively, but the known solutions and our knowledge
vary significantly depending on the distance metric in these problems. In the case of
Hamming distance (or Hamming errors), we have a near complete understanding and
explicit constructions with asymptotically optimal parameters. However, for other distance
metrics/error types, our understanding is still rather limited.

An important generalization of Hamming errors is edit errors, which consist of bit
insertions and deletions. These are strictly more general than Hamming errors since a bit
substitution can be replaced by a deletion followed by an insertion. Edit errors can happen
in many practical situations, such as reading magnetic and optical media, mutations in gene
sequences, and routing packets in Internet protocols. However, these errors are considerably
harder to handle, due to the fact that a single edit error can change the positions of all the
bits in a string.

https://doi.org/10.4230/LIPIcs.ICALP.2019.37
https://arxiv.org/abs/1809.00725
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Non-explicitly, by using a greedy graph coloring algorithm or a sphere packing argument,
one can show that the optimal size of the sketch in document exchange, or the redundant
information in error correcting codes is roughly the same for both Hamming errors and edit
errors. Specifically, suppose that Alice’s string or message has length n and the distance
bound k is relatively small (e.g., k ≤ n/4), then for both Hamming errors and edit errors, the
optimal size in both problems is Θ(k log(nk )) [19]. For Hamming errors, this can be achieved
by using sophisticated linear Algebraic Geometric codes [16], but for edit errors the situation
is quite different. We now describe some of the previous works regarding both document
exchange and error correcting codes for edit errors.

Document exchange

Orlitsky [21] first studied the document exchange problem for generally correlated strings
x, y. Using the greedy graph coloring algorithm mentioned before, he obtained a determin-
istic protocol with sketch size O(k logn) for edit errors, but the running time is exponen-
tial in k. Subsequent improvements appeared in [9], [17], and [18], achieving sketch size
O(k log(nk ) logn) [17] and O(k log2 n log∗ n) [18] with running time Õ(n). A recent work by
Chakraborty et al. [5] further obtained sketch size O(k2 logn) and running time Õ(n), by
using a clever randomized embedding from the edit distance metric to the Hamming distance
metric. Based on this work, Belazzougui and Zhang [2] gave an improved protocol with
sketch size O(k(log2 k + logn)), which is asymptotically optimal for k = 2O(

√
logn). The

running time in [2] is Õ(n+ poly(k)).
Unfortunately, all of the above protocols, except the one in [21] which runs in exponential

time, are randomized. Although randomized protocols are still useful in practice, having
deterministic ones would certainly bring much more benefits. Furthermore, randomized
protocols are also not suitable for the applications in constructing error correcting codes.
However, designing an efficient deterministic protocol appears quite tricky, and it was not
until 2015 when Belazzougui [1] gave the first deterministic protocol even for k > 1. The
protocol in [1] has sketch size O(k2 + k log2 n) and running time Õ(n).

Error correcting codes

As fundamental objects in both theory and practice, error correcting codes have been studied
extensively from the pioneering work of Shannon and Hamming. While great success has
been achieved in constructing codes for Hamming errors, the progress on codes for edit errors
has been quite slow despite much research. A work by Levenshtein [19] in 1966 showed that
the Varshamov-Tenengolts code [22] corrects one deletion with an optimal redundancy of
roughly logn bits, but even correcting two deletions requires Ω(n) redundant bits. In 1999,
Schulman and Zuckerman [23] gave an explicit asymptotically good code, that can correct
up to Ω(n) edit errors with O(n) redundant bits. However the same amount of redundancy
is needed even for smaller number of errors. For more earlier works on this subject, we refer
the reader to the survey by Mercier et al. [20].

In recent years there have been several works trying to improve the situation. Specifically,
a line of work by Guruswami et. al [11], [10], [4] constructed explicit codes that can correct
1 − ε fraction of edit errors with rate Ω(ε5) and alphabet size poly(1/ε); and codes that
can correct 1 − 2

t+1 − ε fraction of errors with rate (ε/t)poly(1/ε) for a fixed alphabet size
t ≥ 2. Another line of work by Haeupler et al. [13], [14], [6] introduced and constructed a
combinatorial object called synchronization string, which can be used to transform standard
error correcting codes into codes for edit errors by increasing the alphabet size. Via this

ICALP 2019
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transformation, [13] achieved explicit codes that can correct δ fraction of edit errors with
rate 1− δ− ε and alphabet size exponential in 1

ε , which approaches the singleton bound. All
of these works however require a relatively large alphabet size.

In the case of binary alphabets, for any fixed constant k, a recent work by Brakensiek et. al
[3] constructed an explicit code that can correct k edit errors with O(k2 log k logn) redundant
bits. This is asymptotically optimal when k is a fixed constant, but the construction in
[3] only works for constant k, and breaks down for larger k (e.g., k = logn). Based on his
deterministic document exchange protocol, Belazzougui [1] also gave an explicit code that
can correct up to k edit errors with O(k2 + k log2 n) redundant bits. Finally, the work by
Haeupler et. al [15] constructed explicit codes that can correct δ fraction of edit errors with
rate 1−Θ(

√
δ log(1/δ)), whereas the (non-explicit) optimal rate is 1−Θ(δ log(1/δ)).

In a very recent work by the authors [7], we significantly improved the situation. Specific-
ally, we constructed an explicit document exchange protocol with sketch size O(k log2 n

k ),
which is optimal except for an additional log n

k factor. This also implies an explicit binary
code that can correct δ fraction of edit errors with rate 1−Θ(δ log2(1/δ)), which is optimal
up to an additional log(1/δ) factor. These two results are also independently obtained by
Haeupler [12]. We also constructed explicit codes for k edit errors with O(k logn) redundant
bits, which is optimal for k ≤ n1−α, any constant 0 < α < 1. These results bring our
understanding of document exchange and error correcting codes for edit errors much closer
to that of standard Hamming errors.

However, the constructions in [7] and [12] do not work for other common types of errors,
such as block transpositions. Given any string x, a block transposition takes an arbitrary
substring z of x, cuts it to make x become x̃, and then finds a different position in x̃ and
insert z as a block into x̃. These errors happen frequently in distributed file systems and
Internet protocols. For example, it is quite common that a user, when editing a file, moves a
whole paragraph in the file to somewhere else; and in Internet routing protocols, packets can
often get rearranged during the process. Block transpositions also arise naturally in biological
processes, where a subsequence of genes can be moved in one step during mutation. In the
setting of document exchange or error correcting codes, it is easy to see that even a single
transposition of a block with length t can result in 2t edit errors, thus a naive application of
document exchange protocols or codes for edit errors will result in very bad parameters.

Model of the adversary: block insertions, deletions, and transpositions

We consider edit errors that happen in bursts. This kind of errors is also pretty common,
as most errors that happen in practice, such as in wireless or mobile communications and
magnetic disk readings, tend to be concentrated. We model such errors as block insertions
and deletions, where in one operation the adversary can insert or delete a whole block of
bits. It is again easy to see that this is indeed a generalization of standard edit errors.

For some parameters k and t and an alphabet Σ, a (k, t) block edit adversary is allowed
to perform three kinds of operations: block insertion, block deletion and block transposition.
The adversary is allowed to perform at most k such operations, while the total number of
symbols inserted/deleted by the first two operations is at most t. We also use (k, t) block
edit errors to denote errors introduced by such an adversary. All our results focus on the
case of binary alphabet, but in our protocols and analysis we will be using larger alphabets.

We note that by the result of Schulman and Zuckerman [23], to correct Ω(n/ logn) block
transpositions one needs at least Ω(n) redundant bits. Thus we only consider k ≤ αn/ logn
for some constant 0 < α < 1. Similarly, we only consider t ≤ βn for some constant 0 < β < 1
since otherwise the adversary can simply delete the whole string. We also note the following
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subtle difference between the three block edit operations. While we need a bound t on
the total number of bits that the adversary can insert or delete, for block transposition an
adversary can choose to move an arbitrarily long substring. Therefore, we need to consider
the three operations separately, and cannot simply replace a block transposition by a block
deletion followed by a block insertion.

Edit errors with block transpositions have been studied before in several different contexts.
For example, Shapira and Storer [24] showed that finding the distance between two given
strings under this metric is NP-hard, and they gave an efficient algorithm that achieves
O(logn) approximation. Interestingly, a work by Cormode and Muthukrishnan [8] showed
that this metric can be embedded into the L1 metric with distortion O(logn log∗ n); and
they used it to give a near linear time algorithm that achieves O(logn log∗ n) approximation
for this distance, something currently unknown for the standard edit distance. Coming back
to document exchange and error correcting codes, in our model, we show in the appendix
that non-explicitly, the information optimum for both the sketch size of document exchange,
and the redundancy of error correcting codes, is Θ(k logn+ t).

Related previous work on block transpositions

When it comes to more general errors such as block transpositions, as far as we know, there are
no known explicit deterministic document exchange protocols. The only known randomized
protocols which can handle edit errors as well as block transpositions are the protocol of
[17], which has sketch size O(k log(nk ) logn); and the protocol of [18], which has sketch size
Õ(k log2 n). The protocol of [17] uses a recursive tree structure and random hash functions,
while the protocol of [18] is based on the embedding of Cormode and Muthukrishnan [8]. We
stress that both of these protocols are randomized, and there are very good reasons why it is
not easy to modify them into deterministic ones. Specifically, unlike in our previous work [7]
and the work of Haeupler [12], a direct derandomization of the hash functions used in [17]
(for example by using almost k-wise independent sample space) does not give a deterministic
protocol, because block transpositions will make the computation of a matching problematic.
We shall discuss this in more details when we give an overview of our techniques. On the
other hand, the embedding of Cormode and Muthukrishnan [8] results in an exponentially
large dimension, thus directly sending a sketch deterministically will result in a prohibitively
large size. This is why the protocol of [18] has to perform a dimension reduction first, which
is necessarily randomized.

Similarly, the only previous explicit codes that can handle edit errors as well as block
transpositions are the work of Schulman and Zuckerman [23], and the work of Haeupler et al.
[14]. Both can recover from Ω(n/ logn) block transpositions with Ω(n) redundant bits ([14]
can also recover from block replications), but [23] has a binary alphabet while [14] has a
constant size alphabet. However the work of Schulman and Zuckerman [23] also needs Ω(n)
redundant bits even to correct one block transposition. We further note that by combining
the techniques in [14] and [15], one can get an explicit binary code that corrects k block
transpositions with Õ(

√
kn) redundant bits. However to our knowledge this result has not

appeared anywhere in the literature, and moreover it requires at least Ω̃(
√
n) redundant bits

even to correct one block transposition. We note that however none of the previous works
mentioned studied edit errors that can allow block insertions/deletions.
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1.1 Our results

In this paper we construct explicit deterministic document exchange protocols, and error
correcting codes for adversaries discussed above. We have the following theorems.

I Theorem 1. There exist constants α, β ∈ (0, 1) such that for every n, k, t ∈ N with
k ≤ αn/ logn, t ≤ βn, there exists an explicit binary document exchange protocol with sketch
size O((k logn+ t) log2 n

k logn+t ), against a (k, t) block edit adversary.

This is the first explicit, deterministic document exchange protocol for block edit errors.
The sketch size matches the randomized protocols of [17] and [18] up to an additional
log n

k logn+t factor, and is optimal up to an additional log2 n
k logn+t factor. Using this protocol,

we can construct the following error correcting code.

I Theorem 2. There exist constants α, β ∈ (0, 1) such that for every n, k, t ∈ N with
k ≤ αn/ logn, t ≤ βn, there exists an explicit binary error correcting code with message
length n and codeword length n + O((k logn + t) log2 n

k logn+t ), against a (k, t) block edit
adversary.

For small k, t we can actually achieve the following result, which gives better parameters.

I Theorem 3. There exist constants α, β ∈ (0, 1) such that for every n, k, t ∈ N with
k ≤ αn/ logn, t ≤ βn, there exists an explicit binary code with message length n and
codeword length n+O(k logn log log logn+ t), against a (k, t) block edit adversary.

In the case of small k, t, these results significantly improve the result of Schulman and
Zuckerman [23], which needs Ω(n) redundant bits even to correct one block transposition,
and the result obtained by combining the techniques in [14] and [15], which needs Ω̃(

√
n)

redundant bits even to correct one block transposition. The redundancy here is also optimal
up to an extra log log logn factor or log2 n

k logn+t factor.
As a special case, we obtain the following corollaries for standard edit errors with block

transpositions.

I Corollary 4. There exist a constant α ∈ (0, 1) such that for every n, k ∈ N with
k ≤ αn/ logn, there exists an explicit binary document exchange protocol with sketch size
O(k logn log2 n

k logn ), against an adversary who can perform k edit operations or block trans-
positions.

I Corollary 5. There exist a constant α ∈ (0, 1) such that for every n, k ∈ N with
k ≤ αn/ logn, there exists an explicit binary error correcting code with message length
n and codeword length min{n+O(k logn log2 n

k logn ), n+O(k logn log log logn)}, against an
adversary who can perform k edit operations or block transpositions.

I Remark 6. As illustrated by our theorems and corollaries, the sketch size in our document
exchange protocol or the number of redundant bits in our error correcting codes do not
depend on the size of a block in block transpositions, they only depend on the number of
such operations performed. In contrast, the sketch size or the number of redundant bits do
depend on the size of a block in block insertions or deletions. This again shows that we
cannot simply treat a block transposition as a block deletion followed by a block insertion,
because that will lead to a sketch size dependent on the block size.
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2 Document Exchange

This section describes the construction of our document exchange protocol and its proof in
sketch. Details are deferred to the appendix.

IDefinition 7 (Collision free hash functions). Given n, p, q ∈ N, p ≤ n and a string x ∈ {0, 1}n,
we say a hash function h : {0, 1}p → {0, 1}q is collision free (for x), if for every i, j ∈ [n−p+1],
h(x[i, i+ p)) = h(x[j, j + p)) if and only if x[i, i+ p) = x[j, j + p).

I Theorem 8. There exists an algorithm which, on input n, p, q ∈ N, p ≤ n, q = c0 logn for
large enough constant c0, x ∈ {0, 1}n, outputs a description of a hash function h : {0, 1}p →
{0, 1}q that is collision free for x, in time poly(n), where the description length is O(logn).

Also there is an algorithm which, given the description of h and any u ∈ {0, 1}p, can
output h(u) in time poly(n).

Proof Sketch. The construction uses almost κ-wise independence generator to get the hash
functions, assuring no pair of blocks of x collides. The number of pairs is O(n2). The seed
length is O(logn). So we can do an exhaustive search to find such sequence of collision free
hash functions. For details, see the full version. J

I Definition 9 (Matching). Given n, n′, p, q ∈ N, p ≤ n, p ≤ n′, a function h : {0, 1}p →
{0, 1}q and two strings x ∈ {0, 1}n, y ∈ {0, 1}n′ , a matching (may not be monotone) between
x and y under h is a sequence of matches (pairs of indices) w = ((i1, j1), . . . (i|w|, j|w|)) s.t.

for every k ∈ [|w|],
ik = 1 + plk ∈ [n] for some lk,
jk ∈ [n′],
h(x[ik, ik + p)) = h(y[jk, jk + p)),

i1, . . . , i|w| are distinct.

A non-overlapping matching is a matching with one more restriction.
Intervals [jk, jk + p), k ∈ [|w|], are disjoint.

When considering overlaps, the matching has overlapping degree d, if each bit of y appears
in at most d matched pairs for some small number d.

For a match (i, j), it matches two intervals, one from x, the other from y. When we say the
y’s interval (of the match (i, j)), we mean [j, j + p), and similarly the x’s interval is [i, i+ p).
A match (i, j) in a matching is called a wrong match (or wrong pair) if x[i, i+p) 6= y[j, j+p).
Otherwise it is called a correct match (or correct pair). A pair of indices (i, j) is called a
potential match between x and y if h(x[i, i+ p)) = h(y[j, j + p)). It may be wrong because
x[i, i+ p) may not be y[j, j + p). When x, y are clear from the context we simply say (i, j) is
a potential match.

To compute a monotone non-overlapping matching we can use the dynamic programming
method in [7]. But our matching is not necessarily monotone. So this raises the question of
how hard this problem is.

It seems difficult to find a polynomial algorithm which can exactly compute it. So instead
we use constant approximation techniques. There’re two difficulties at the first thought. One
is that if we compute the non-overlapping matching over the entire strings, then a constant
approximation is too bad since there will be O(n) unmatched blocks. So for each level, we
restrict our attention to blocks that are uncovered and wrongly recovered (but discovered
by us). The other problem is that we need the approximation rate to be a large enough
constant. To achieve this goal, we actually computing matchings with constant degree.

We start from a 1/3-approximation algorithm, which is greedy.
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I Construction 10. Given n, n′, p, q ∈ N, p ≤ n, p ≤ n′, a polynomial time computable
function h : {0, 1}p → {0, 1}q and two strings x ∈ {0, 1}n, y ∈ {0, 1}n′ , we have the following
1/3-approximation algorithm for computing the non-overlapping matching.
1. Let the sequence of matches w be empty;
2. Find i = 1 + pl ∈ [n] and j ∈ [n′], where l ∈ N, s.t.

h(x[i, i+ p)) = h([j, j + p)),
i is not in any match (as the first entry) of the current w,
[j, j + p) does not overlap with any [j′, j′ + p) for any j′ as the second entry in any
matches of the current w;

3. If there is such a pair of indices i, j, then add the match (i, j) to w and go to step 2;
Otherwise, output w and stop.

I Lemma 11. Construction 10 gives a 1/3-approximation algorithm for computing the
non-overlapping matching.

Proof deferred to the full version.
Next we give an explicit algorithm which computes a even larger matching (better

approximation), but it allows overlaps.

I Construction 12. Given n, n′, p, q ∈ N, p ≤ n, p ≤ n′, a (polynomial time computable)
function h : {0, 1}p → {0, 1}q and two strings x ∈ {0, 1}n, y ∈ {0, 1}n′ , we have the following
algorithm.
1. Let the matching w be empty, set S = {i = 1 + pl | l ∈ N, i ∈ [n]}, integer c = 0;
2. Conduct Construction 10 to compute a matching w′ between xS and y under h. Here xS

is the projection of x on intervals in set S;
3. Let w = w ∪ w′;
4. Let S = S \ {u | ∃(u, v) ∈ w};
5. c = c+ 1;
6. If c ≥ 3, output w; Otherwise go to step 2.

Note that Construction 12 is in polynomial time since it simply conducts Construction
10 for 3 times and after each conduction it removes matched blocks of x and only considers
the remaining blocks in the next iteration. So we only need to show its correctness.

I Lemma 13. Construction 12 computes a degree 3 overlapping matching w between x and
y under h, such that |w| ≥ 2/3|w∗|, where w∗ is the maximum non-overlapping matching
between x and y under h.

Proof. Let wi, i = 1, 2, 3 be the matching the algorithm computes after round i. Also let
Si, i = 1, 2, 3 be the set S after the ith round.

By Lemma 11, |w1| ≥ 1/3|w∗|. The number of unmatched blocks is n̄−|w1| ≤ n̄−1/3|w∗|,
where n̄ = bn/pc is the total number of blocks of x.

The maximum matching between xS1 and y is at least |w∗| − |w1|. This is because that,
each of the matched blocks of x by w1, should be among the x’s blocks in the matches of w∗.
There are at most |w1| of them. So there are still |w∗| − |w1| remaining matches in w∗ which
corresponds to blocks in xS1 .

Again by Lemma 11, for i ≥ 2, at least 1/3(|w∗| − |wi−1|) blocks of xSi−1 will be matched
in the ith round.
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Thus

|wi| ≥ |wi−1|+ 1/3(|w∗| − |wi−1|) (1)
= 1/3|w∗|+ 2/3|wi−1| (2)
≥ (1− (2/3)i−1)|w∗|+ (2/3)i−1|w1| (3)
≥ (1− (2/3)i−1)|w∗|+ (1/3)(2/3)i−1|w∗| (4)
= (1− (2/3)i)|w∗|. (5)

Inequality 1 is due to Lemma 11 as explained above. Equality 2 is due to a direct computation.
3 is by recursively applying 1 and 2 from i− 1 to 2. 4 is because |w1| ≥ 1/3|w∗|.

As a result, |w3| ≥ 19/27|w∗| ≥ 2/3|w∗|.
Note that we apply Construction 10 for 3 times, where in each time, it gives a non-

overlapping matching. So each entry of y is in at most one of the matches in that round. So
finally we get a degree 3 overlapping matching. J

We now give the following document exchange protocol.

I Construction 14. The protocol works for every input length n ∈ N, every (k1, t) block-
insertions/deletions k2 block-transpositions, k1, k2 ≤ αn/ logn, t ≤ βn, for some constant
α, β. (If k1 or k2 > αn/ logn, or t > βn, we simply let Alice send her input string.) Let
k = k1 + k2.

Both Alice’s and Bob’s algorithms have L = O(log n
k logn+t ) levels.

For every i ∈ [L], in the i-th level,
Let the block size be bi = n

18·2i(k+ t
log n ) , i.e., in each level, divide every block of x in the

previous level evenly into two blocks. We choose L properly s.t. bL = O(logn);
The number of blocks li = n/bi;

Alice: On input x ∈ {0, 1}n,
1. For the i-th level,

a. Construct a hash function hi : {0, 1}bi → {0, 1}b∗=Θ(logn) for x by Theorem 8.
b. Compute the sequence of hash values i.e. v[i] = (hi(x[1, 1 + bi)), hi(x[1 + bi, 1 +

2bi)), . . . , hi(x[1 + (li − 1)bi, libi)));
c. Compute the redundancy z[i] ∈ ({0, 1}b∗)Θ((k+ t

log n )i) for v[i] by using an algebraic
geometry code2, where the code has distance at least 180(k + t

logn )i;
2. Compute the redundancy zfinal ∈ ({0, 1}bL)Θ((k+ t

log n ) logL) for the blocks of the L-th level
by using an algebraic geometry code2., where the code has distance at least 90(k + t

logn )L;
3. Send h = (h1, . . . , hL), z = (z[1], z[2], . . . , z[L]), v[1], zfinal to Bob.

Bob: On input y ∈ {0, 1}O(n) and received h, z, v[1], zfinal,
1. Create x̃ ∈ {0, 1, ∗}n (i.e. Bob’s current version of Alice’s x), initiating it to be

(∗, ∗, . . . , ∗);
2. For the i-th level where 1 ≤ i ≤ L− 1,

a. Apply the decoding of the algebraic geometry code on hi(x̃′[1, 1 + bi)), hi(x̃′[1 + bi, 1 +
2bi)), . . . , hi(x̃′[1 + (li − 1)bi, libi)), z[i] to get the sequence of hash values v[i]. Note
that v[1] is received directly, thus Bob does not need to compute it;

b. Let S = {j ∈ [n] | hi(x̃[1 + (j − 1)bi, 1 + jbi)) 6= v[i][j] or x[1 + (j − 1)bi, 1 + jbi) =
(∗, . . . , ∗)};

2 See the full version https://arxiv.org/abs/1809.00725.
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c. Compute the matching wi = ((p1, p
′
1), . . . , (p|w|, p′|w|)) ∈ ([li]× [|y|])|wi| between xS and

y under hi, using v[i], by Lemma 12;
d. Evaluate x̃ according to the matching, i.e. let x̃[pj , pj + bi) = y[p′j , p′j + bi), where

pj , p
′
j ∈ wi, j ∈ [|wi|];

3. In the L’th level, apply the decoding of the algebraic geometry code on the blocks of x̃ and
zfinal to get x;

4. Return x.

I Lemma 15. For every i, the maximum non-overlapping matching between xS and y under
hi has size at least |S| − (2k1 + 3k2 + t/ logn).

I Lemma 16. For every i, |wi| ≥ 2/3(|S| − (2k1 + 3k2 + t/ logn)).

I Lemma 17. For every i, if v[1], . . . , v[i] are correctly recovered, then in the i-th level the
number of wrongly recovered blocks of x is at most 3i(2k1 + 3k2 + t

logn ).

Proof. Consider the matching w∗ corresponding to the current recovering of x after i levels,
i.e., this matching is generated at level 1 and adjusted level by level. In level j, we first use
hash values to test every block to see if it is correctly recovered. For wrongly recovered blocks
we delete their corresponding matches. Then for remaining wrongly recovered blocks and
unrecovered blocks, we compute a matching wj for them, and add all matches in wj to w∗.

For wj , j ≤ i, after level i, the number of wrongly recovered blocks in level i caused by
(the remaining part of) wj is at most 3(2k1 + 3k2 + t

logn ).
This is because in wj is constructed by Construction 12, which is a union of 3 matchings.

Each matching of them is non-overlapping. We only need to show that wj , after eliminating
detected wrong pairs in these i levels, contains at most 2k1+3k2+ t

logn wrong matches between
x’s and y’s blocks in the i-th level. To see this, first note that these matches’ y intervals
are only from blocks which are modified from x’s blocks or newly inserted. For each block-
insertion of tj bits, it can contribute at most dtj/bie+ 1 wrong matches. Each block-deletion
can contribute at most 2 wrong matches. So totally block insertions/deletions can cause∑k1
j=1(dtj/bie+ 1) ≤ 2k1 + t/bi wrong matches. On the other hand, k2 block-transpositions

can contribute at most 3k2 wrong matches, because 1 block-transposition can only cause 1
wrong match when deleting the block and inserting the block to its destination may contribute
2 wrong matches. Hence the total number wrong matches is at most 2k1 + 3k2 + t/bi.

Since there are i matchings w1, . . . , wi, each containing 3 non-overlapping matchings, the
number of wrongly recovered blocks remaining in w∗ is at most 3i(2k1 + 3k2 + t

logn ). J

I Lemma 18. For every i, if v[1], . . . , v[i] are correctly recovered, then in level i, the number
of unrecovered blocks is at most 36i(k + t

logn ).

Proof is in the full version.

I Lemma 19. Bob can recover x correctly.

Proof. We use induction to show that for every i ∈ [L], v[i] can be computed correctly by Bob.
For the first level, v[1] is directly received from Alice.
Assume v[1], . . . , v[i − 1] can be computed correctly. By Lemma 18, the number of

unrecovered blocks after level i − 1 is at most 36(i − 1)(k + t/ logn). By Lemma 17, the
number of wrongly recovered blocks is at most 9(i− 1)(k + t/ logn). So the total number of
wrongly recovered and unrecovered blocks is at most

2×(36(i−1)(k+t/ logn)+9(i−1)(k+t/ logn)) ≤ 90(i−1)(k+t/ logn) < 90i(k+t/ logn).
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Note that with the redundancy z[i], its corresponding code has distance at least 180(k+t/bi)i.
So Bob can recover v[i] correctly by the property of the algebraic geometry code.

As a result, at level L. By Lemma 17, the number of wrongly recovered blocks is at
most 3L(2k1 + 3k2 + t

bL
). By Lemma 18 the number of unrecovered blocks, is at most

36L(k + t/ logn). So the total number of wrongly recovered and unrecovered blocks is at
most 45L(k+ t/ logn). Note that the code distance corresponding to the redundancy zfinal is
at least 90(k+ t/bL)L. So all blocks of x can be recovered correctly by using the decoding of
the algebraic geometry code. J

Communication Complexity and running time computation are in the full version.
To this end, we showed Theorem 1.

3 Error Correcting Codes

We now briefly describe how to construct an error correcting code from a document exchange
protocol for block edit errors. Similar to the construction in [7], our starting point is to
first encode the sketch of the document exchange protocol using the code by Schulman and
Zuckerman [23], which can resist edit errors and block transpositions. Then we concatenate
the message with the encoding of the sketch. When decoding, we first decode the sketch,
then apply the document exchange protocol on Bob’s side to recover the message.

However, here we have an additional issue with this approach: a block transposition may
move some parts of the encoding of the sketch to somewhere in the middle of the message,
or vice versa. In this case, we won’t be able to tell which part of the received string is the
encoding of the sketch, and which part is the original message.

To solve this issue, we use a fixed string buf = 0`buf ◦ 1 as a buffer to mark the encoding
of the sketch, for some `buf = O(logn). More specifically, we evenly divide the encoding of
the sketch into small blocks of length `buf , and insert buf before every block. Note that this
only increases the length of the encoding of the sketch by a constant factor. The reason we
use such a small block length is that, even if the adversary can forge or destroy some buffers,
the total number of bits inserted or deleted caused by this is still small. In fact, we can
bound this by O(k) block insertions/deletions with at most O(k logn) bits inserted/deleted,
for which both the sketch and the encoding of the sketch can handle. When decoding, we
first recognize all the buf’s. Then we take the `buf bits after each buf to form the decoding of
the sketch, and take the remaining bits as the message.

Unfortunately, this approach introduces two additional problems here. The first problem
is that the original message may contain buf as a substring. If this happens then in the
decoding procedure again we will be taking part of the message to be in the encoding of the
sketch. The second problem is that the small blocks of the encoding of the sketch may also
contain buf. In this case we will be deleting information from the encoding of the sketch,
which causes too many edit errors.

To address the first problem, we turn the original message into a pseudorandom string
by computing the XOR of the message with the output of an appropriate pseudorandom
generator that has seed length O(logn). We show that with high probability buf does not
appear as a substring in the XOR. We can then exhaustively search for a seed that satisfies
this requirement, and append the seed to the sketch of the document exchange protocol.

To address the second problem, we choose the length of the buffer to be longer than the
length of each block in the encoding of the sketch, so that buf doesn’t appear as a substring
in any block. This is exactly why we choose the length of the buffer to be `buf + 1 while we
choose the length of each block to be `buf .
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If we directly apply our document exchange protocol to the construction above, we obtain
an error correcting code with O((k logn+ t) log2 n

k logn+t ) redundant bits. Next we discuss
how to achieve better redundancy for small k and t.

We first briefly describe the construction of the explicit binary code for k edit errors with
redundancy O(k logn) in [7]. The construction in [7] starts by transforming the message
into a string with the B-distinct property: any two substrings of length some B = O(logn)
are distinct. This is obtained by computing the XOR of the message with the output of an
appropriately designed pseudorandom generator. The construction then designs a document
exchange protocol for such a string, and encodes the sketch of the document exchange
protocol to give an error correcting code.

The document exchange protocol for a B-distinct string in [7] actually consists of two
stages: in stage I, Alice uses a fixed pattern p to divide her string into blocks of size poly(logn).
Next, Alice sends a sketch of size O(k logn) to help Bob recover the partition of her string.
To achieve this, Bob also divides his string into blocks in the same way that Alice does.
Alice creates a vector V where each entry of V is indexed by a binary string of length B.
Specifically, Alice looks at each block in her partition, and stores the B-prefix (the prefix of
length B) of its next block and the length of the current block in the entry of V indexed by
the B-prefix of the current block. This ensures each entry of the vector V has only O(logn)
bits. Bob creates a vector V ′ in the same way. [7] shows that V and V ′ differ in at most O(k)
entries, thus Alice can send a sketch of size O(k logn) using the Reed-Solomon Code to help
Bob recover V from V ′. Once this is done, Bob can use V to obtain a guess of Alice’s string.

Stage II consists of several levels. In each level, both parties divide each of their blocks
evenly into O(log0.4 n) smaller blocks, and Alice generates a sequence of special hash functions
called ε-synchronization hash functions. The nice properties of these hash functions guarantee
that in each level Alice can send O(k logn) bits to Bob, so that Bob can recover all but O(k)
blocks of Alice’s string. This stage ends in O(loglog0.4 n(poly(logn))) = O(1) levels, where in
the last level Alice can simply send a sketch of size O(k logn) for Bob to recover her string x.

Checking these two stages, it turns out that stage I can be modified to work for block
edit errors as well. Intuitively, this is because it is still true that such errors won’t cause too
many different blocks between V and V ′. On the other hand, stage II becomes problematic,
since the use of ε-synchronization hash functions crucially relies on the monotone property
of standard edit errors. Allowing block transpositions ruins this property, and it is not clear
how to give suitable ε-synchronization hash functions to work in this case.

To solve the issue, in stage II, we can apply the deterministic document exchange protocol
we developed earlier. This implies an error correcting code of redundancy O(k logn log logn+
t). However, we show that we can further reduce the redundancy to O(k logn log log logn+ t)
by using the string parsing idea in [8] to improve the partition in Stage I.

Given an input string, string parsing builds a tree where each leaf corresponds to a symbol
of the input string, and each non-leaf node corresponds to a substring of the input string.
Each node of the tree is associated with a label, which is the hash value of its corresponding
substring under some hash function. The structure of the tree only depends locally on the
input string, e.g., an edit error on the input string only affects O(logn log∗ n) nodes.

More specifically, string parsing builds the tree bottom-up from one level to another.
The labels in the bottom level are obtained by directly applying the hash function to the
symbols. Then, the algorithm builds one level of the tree as follows. The labels of the nodes
in the previous level form a string of alphabet size poly(n). The algorithm first finds all
repetitive substrings in this string (we say a substring is repetitive, if it’s of the form al, for
some l ≥ 2). The remaining substrings satisfy the property that any two adjacent symbols
are different, and we say such substrings are non-repetitive. [8] then applies an alphabet
reduction algorithm to the non-repetitive substrings, and obtains a new non-repetitive string
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for each substring over the alphabet {0, 1, 2}. The alphabet reduction works in log∗ n steps,
where in each step the alphabet size is reduced from the current size a to log a. Thus in
log∗ n steps the alphabet size becomes a constant. Now for all the new strings obtained,
the algorithm finds local maximums and local minimums that are not adjacent to any local
maximum as landmarks, and partition the strings into small blocks of length 2 or 3 by using
the landmarks. Finally, for each block, the algorithm builds a new node in this level, whose
children are the nodes in the block and whose label is the hash value of the subtree.

Here, in our construction of error correcting codes, we use the idea of string parsing in
stage I to partition Alice’s string x into small blocks. Our goal is to partition the string into
blocks of length roughly Θ(logn · poly(log logn)), while an edit error on the string can only
affect a small number of contiguous blocks. In this way, stage II only takes O(log log logn)
levels and the sketch size in stage II is O(k logn log log logn+ t). Note that each node in the
parsing tree depends only locally on the input string. We use this property to bound the
number of errors among the small blocks obtained in stage I.

To achieve our goal, instead of building a full parsing tree, we only build a partial parsing
tree. That is, in each level of the parsing tree, we check the number of leaves under each
node. If a node has more than T leaves for some threshold T , we mark the node as “finish”.
We also mark a node as “frozen”, if all its adjacent nodes are marked as “finish”. For each
“finish” node, we build a new node in the next level, with the only child being this “finish”
node. We then use these “finish” nodes to divide the string into several substrings, and apply
alphabet reduction to the substrings, choose the landmarks, and partition each substring
into small blocks according to the landmarks. Then for each small block, we build a new
node in the next level, and set the children of the new node to be all nodes in the same
block. We keep doing this until each node is either marked as “finish” or “frozen”. Finally, we
merge each “frozen” node to the “finish” node on its left or right. At the end of this process,
we obtain several trees, and we partition the string x into small blocks, where each block
consists of all the leaves in a tree. To remove the O(log∗ n) factor, we only do two levels of
alphabet reduction in each level of the tree. However, this will result in an alphabet size of
O(log logn), which means the tree may have O(log logn) children. Hence, the block size may
be as large as O(T log logn). Note that each block depends on O(log T ) blocks on its left and
right, since in each level of the partial parsing tree, each node depends locally on a constant
number of adjacent nodes. We prove that, if y is obtained from x by (k, t) block edit errors,
then the partition of y can be obtained from the partition of x by (k,O(t/T + k log T )) block
edit errors over a larger alphabet. If we set T = logn, then in stage I Alice still needs to
send a sketch of O(k logn log logn+ t) bits. To further reduce the redundancy, we apply the
partial parsing tree method again with another threshold T ′ = Θ(log logn). Now the errors
are reduced to (k,O( t

TT ′ + k log T ′)) block edit errors over a larger alphabet, and the block
size increases by a O(T ′ log logn log log logn) factor, and becomes O(logn(log logn)2).

We show that now in stage I, Alice can send a sketch with O( t
TT ′ + k log T ′) ·O(logn) =

O(k logn log log logn + t) bits; and in stage II, Alice can send a sketch with
O(k logn log log logn + t) bits. So the total sketch size is still O(k logn log log logn + t).
By using the encoding of Schulman and Zuckerman [23] and the buffer buf, the final redund-
ancy of the error correcting code is also O(k logn log log logn+ t).
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Abstract
Asadpour, Feige, and Saberi proved that the integrality gap of the configuration LP for the restricted
max-min allocation problem is at most 4. However, their proof does not give a polynomial-time
approximation algorithm. A lot of efforts have been devoted to designing an efficient algorithm
whose approximation ratio can match this upper bound for the integrality gap. In ICALP 2018, we
present a (6 + δ)-approximation algorithm where δ can be any positive constant, and there is still a
gap of roughly 2. In this paper, we narrow the gap significantly by proposing a (4+δ)-approximation
algorithm where δ can be any positive constant. The approximation ratio is with respect to the
optimal value of the configuration LP, and the running time is poly(m,n) · npoly( 1

δ
) where n is the

number of players and m is the number of resources. We also improve the upper bound for the
integrality gap of the configuration LP to 3 + 21

26 ≈ 3.808.
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1 Introduction

Background

In the max-min fair allocation problem, we are given a set P of n players, a set R of m
indivisible resources, and a set of non-negative values {vpr}p∈P,r∈R. For each r ∈ R and each
p ∈ P , resource r is worth a value of vpr to player p. An allocation is a partition of R into
disjoint subsets {Dp}p∈P so that each player p is assigned the resources in Dp. The goal is
to find an allocation that maximizes the welfare of the least lucky player, that is, we want to
maximize minp∈P

∑
r∈Dp vpr. Unfortunately, unless P = NP, no polynomial-time algorithm

can achieve an approximation ratio smaller than 2 [6].
Bezáková and Dani [6] tried to solve the problem using the assignment LP – a technique

for the classic scheduling problem of makespan minimization [16]. However, they showed
that the integrality gap of the assignment LP is unbounded, so rounding the assignment LP
gives no guarantee on the approximation ratio. Later, Bansal and Sviridenko [4] proposed a
stronger LP relaxation, the configuration LP, for the max-min allocation problem. Asadpour
and Saberi [3] developed a polynomial-time rounding scheme for the configuration LP that
gives an approximation ratio of O(

√
n log3 n). Saha and Srinivasan [18] improved it to

O(
√
n logn). These approximation ratios almost match the lower bound of Ω(

√
n) for the

integrality gap of the configuration LP proved by Bansal and Svirodenko [4]. Bateni et al. [5]
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38:2 Restricted Max-Min Allocation

and Chakrabarty et al. [7] established a trade-off between the approximation ratio and the
running time. For any δ > 0, they can achieve an approximation ratio of O(nδ) with O(n1/δ)
running time.

In this paper, we study the restricted max-min allocation problem. In the restricted
case, we have vpr ∈ {vr, 0}. That is, each resource r has an intrinsic value vr, and it is
worth value vr to those players who desire it and value 0 to those who do not. Assuming
P 6= NP, the restricted case has a lower bound of 2 for the approximation ratio. The
integrality gap of configuration LP for the restricted case also has a lower bound of 2.
Bansal and Sviridenko [4] proposed an O

( log logn
log log logn

)
-approximation algorithm by rounding

the configuration LP. Feige [11] proved that the integrality gap of the configuration LP is
bounded by a constant, albeit large and unspecified. His proof was later made constructive
by Haeupler et al. [12], and hence a constant approximation can be found in polynomial
time. Asadpour et al. [2] viewed the restricted max-min allocation problem as a bipartite
hyper-graph matching problem. Let T ∗ be the optimal value of the configuration LP. By
adapting Haxell’s [13] alternating tree technique for bipartite hyper-graph matchings, they
proposed a local search algorithm that returns an allocation where every player receives at
least T ∗/4 worth of resources, and hence proved that the integrality gap of the configuration
LP is at most 4. However, their algorithm is not known to run in polynomial time. A lot of
efforts have been devoted to making their algorithm run in polynomial time. Polacek and
Svensson [17] showed that the local search can be done in quasi-polynomial time by building
the alternating tree in a more careful way. Annamalai, Kalaitzis and Svensson [1] carried out
the local search in a more structured way. Together with two new greedy and lazy update
strategies, they can find in polynomial time an allocation in which every player receives a
value of at least T ∗/(6 + 2

√
10 + δ). Recently, we proposed a more flexible, aggressive greedy

strategy that improves the approximation ratio to 6 + δ [9]. Davies et al. [10] claimed a
(6 + δ)-approximation algorithm for the restricted max-min allocation problem by reducing
it to the fractional matroid max-min allocation problem.

Our Contribution

We adapt the framework in [1] by introducing two new strategies: layer-level node-disjoint
paths and limited blocking. The performance of our framework is determined by three
parameters, and a trade-off between the running time and the quality of solution can be
achieved by tuning these parameters. On one extreme, our framework acts exactly the same
as the original local search in [2], which achieves a ratio of 4 but not necessarily run in
polynomial time. On the other extreme, it becomes something like the algorithm in [1],
which achieves a polynomial running time but a much worse ratio. We show that, in order
to achieve a polynomial running time, one doesn’t have to go from one extreme to the other –
a marginal movement is sufficient. As a result, a ratio slightly worse than 4 can be achieved
in polynomial time.

I Theorem 1. For any constant δ > 0, there is a (4 + δ)-approximation algorithm for the
restricted max-min allocation problem that runs in poly(m,n) · npoly( 1

δ ) time.

Although the algorithm we present takes the optimal value of the configuration LP as its
input, one can avoid solving the configuration LP by combining our algorithm with binary
search to zoom into the optimal value of configuration LP. The binary search technique is
similar to that in [1, 9].

We also show that the integrality gap of the configuration LP is at most 3 + 21
26 ≈ 3.808

by giving a better analysis of the AFS algorithm. This improves the bound of 3 + 5
6 ≈ 3.833

recently obtained in [8, 15].
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Primal∑
C∈Cp(T )

xp,C > 1∀p ∈ P

∑
p∈P

∑
C∈Cp(T ):r∈C

xp,C 6 1∀r ∈ R

xp,C > 0

Dual

max
∑
p∈P

yp −
∑
r∈R

zr

s.t. yp 6
∑
r∈C

zr ∀p ∈ P,∀C ∈ Cp(T )

yp > 0 ∀p ∈ P
zr > 0 ∀r ∈ R

Figure 1 The configuration LP and its dual.

I Theorem 2. The integrality gap of the configuration LP for the restricted max-min
allocation problem is at most 3 + 21

26 ≈ 3.808.

We focus on only the proof of Theorem 1 in the main text. The proof of Theorem 2 can
be found in the full version of the paper. Other omitted proofs can also be found in the full
version of the paper.

2 Preliminaries

2.1 The Configuration LP
Suppose that we hope to find an allocation where every player receives at least T worth of
resources. A configuration for a player p is a subset D of the resources desired by p such
that

∑
r∈D vr > T . Let Cp(T ) denote the set of all configurations for p.

The configuration LP is given on the left of Figure 1. Given a target T , the configuration
LP, denoted as CLP(T ), associates a variable xp,C with each player p and each configuration C
in Cp(T ). Its first constraint ensures that each player receives at least 1 unit of configurations,
and the second constraint guarantees that every resource r is used in at most 1 unit of
configurations. The optimal value of the configuration LP is the largest T for which CLP(T )
is feasible. We denote this optimal value by T ∗. Without loss of generality, we assume that
T ∗ = 1 for the rest of the paper. Although the configuration LP may have an exponential
number of variables, it can be solved within any constant relative error in polynomial time [4].
Viewing the objective function of the configuration LP as a minimization of a constant, one
can get the dual LP on the right of the Figure 1.

2.2 Fat and thin edges
Our goal is to find an allocation in which every player receives at least λ worth of resources
for some λ ∈ (0, 1). In particular, our approximation algorithm sets λ = 1

4+δ where δ is a
positive constant. For each resource r ∈ R, we call r fat if vr > λ, and thin otherwise. To
find the target allocation, it suffices to assign each player p either a fat resource desired by p
or a subset D of the thin resources desired by p with

∑
r∈D vr > λ.

For every p ∈ P and every fat resource r desired by p, we call {p, r} a fat edge. For every
p ∈ P and every subset D of the thin resources desired by p, we call (p,D) a thin edge if∑
r∈D vr > λ. Two edges are compatible if they share no common resource. We say that a

fat edge {p, r} covers p and r. Similarly, a thin edge (p,D) covers p and the resources in D.
A player or a resource is covered by a set of edges if it is covered by some edge in the set.
For any w > 0, a thin edge (p,D) is a w-minimal if

∑
r∈D vr > w and

∑
r∈D′ vr < w for any

D′ ( D. For a w-minimal thin edge (p,D), it is not hard to see that w 6
∑
r∈D vr < w + λ.
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Given the above definitions of fat and thin edges, finding the target allocation is equivalent
to finding a set of mutually compatible edges that covers all the players.

2.3 A local search idea
The following local search idea is initially proposed by Asadpour et al. [2], and is also used
in [1, 9].

Let G be the bipartite graph formed by the players, the fat resources, and the fat edges.
We maintain a set M of fat edges and a set E of thin edges such that: (i) M is a maximum
matching of G, (ii) edges in E are λ-minimal and are mutually compatible, and (iii) each
player is covered by at most one edge in M ∪ E . We call such M and E a partial allocation.
Initially, M is an arbitrary maximum matching of G, and E is empty. The set M ∪ E is
updated and grown iteratively so that one more player is covered in each iteration. The final
set M ∪ E covers all the players and induces our target allocation.

Let p0 be a player not yet covered by M ∪ E . We need to update M ∪ E to cover p0
without losing any player that are already covered. The simplest case is that we can find
a player q0 such that q0 is covered by a thin edge a compatible with E and there is an
alternating path [14] with respect to M from p0 to q0. Let π be this alternating path. We
first update M by taking the symmetric difference M ⊕ π, i.e., remove the edges in π ∩M
from the matching and add the edges in π \M to the matching. M ⊕ π is also a maximum
matching of G. After the update, p0 becomes matched while q0 becomes unmatched. Then
we add a to E to cover q0 again. Here we slight abuse the notion of alternating paths in
the sense that wen allow an alternating path with no edge. The ⊕ can easily extend to
alternating paths with no edge.

It is possible that no edge covering q0 is compatible with E . Let a be an edge covering
q0. Suppose that b is an edge in E that is not compatible with a. We say b blocks a. Let
p1 be the player covered by b. In order to add a to E , we have to release b from E . But we
cannot lose p1, so before we release b, we need to find another edge to cover p1. Now p1 has
a similar role as p0.

2.4 Node-disjoint alternating paths
In order to achieve a polynomial running time, our algorithm updates M using multiple
node-disjoint alternating paths from unmatched players to players . In this section, we define
a problem of finding a largest set of node-disjoint paths. We also extend the ⊕ operation to
a set of node-disjoint paths.

For any maximum matching M of G, we define GM to be the directed graph obtained
from G by orienting edges of G from r to p if {p, r} ∈M , and from p to r if {p, r} /∈M . Let
S be a subset of the players not matched by M . Let T be a subset of the players. Finding
the largest set of node-disjoint alternating paths from S to T is equivalent to finding the
largest set of node-disjoint paths in GM from S to T . Let GM (S, T ) denote the problem of
finding the largest set of node-disjoint paths from S to T in GM . Let fM (S, T ) denotes the
maximum number of such paths. Note that when S ∩ T 6= ∅, a path consisting of a single
node is allowed. Such path is called a trivial path. Paths with at least one edge is non-trivial.
Let Π be a feasible solution for GM (S, T ). The paths in Π originate from a subset of S,
which we call the sources and denote as srcΠ, and terminate in a subset of T , which we call
the sinks and denote as sinkΠ. We extend the ⊕ operation to Π. Viewing Π as a set of edges,
M ⊕Π stands for removing the edges in Π ∩M from the matching and adding the edges in
Π \M to the matching. One can see that M ⊕Π is a maximum matching of G.

The problem GM (S, T ) can be solved in polynomial time. Please refer to the full version
of the paper for more details.
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3 An Approximation Algorithm

We discuss below a few techniques used by our algorithm. Some of them are used in [1, 9, 10].
The limited blocking strategy is brand new, and is crucial to achieving an approximation
ratio of 4 + δ. In the following discussion, one can interpret addable edges as thin edges that
we hope to add to E , and blocking edges as edges in E that are not compatible with addable
edges. The precise definition will be given later.

Layers. As in [1, 9], we maintain a stack of layers, where each layer consists of addable
edges and their blocking edges. The key to achieving a polynomial running time is to
guarantee a geometric growth in the number of blocking edges from the bottom to the top
of the stack.

Layer-level node-disjoint paths. We require that the players covered by the addable edges
in a layer can be simultaneously reached via node-disjoint paths in GM from the players
covered by the blocking edges in the previous layers [10]. It has the same effect as the
globally node-disjoint path used in [1]: if lots of addable edges in a layer become unblocked,
then a significant update can be made. The advantage of our strategy is that it offers more
flexibility when building a new layer.

Lazy update. When having an unblocked addable edge, one may be tempted to update
M and E immediately. However, as in [1], in order to achieve a polynomial running time, we
should wait until there are lots of unblocked addable edges, and then a significant update
can be made in one step. The laziness is controlled by a small constant µ that will be
defined later.

Greedy and Limited Blocking. Recall that the key to achieving a polynomial running
time is to guarantee a geometric growth in the number of blocking edges from the bottom to
the top of the stack. In [2], every addable edge is λ-minimal, and each blocking edge blocks
exactly one addable edge. If using this strategy, in worst case, one may get a layer consisting
of one addable edge that is blocked by many blocking edges. After some of these blocking
edges are released from E , we may be left with a layer of a single addable edge that is blocked
by a single blocking edge, which breaks the geometric growth in the number of blocking
edges. To resolve this issue, Annamalai et al. [1] allow a blocking edge to block as many
addable edges as possible. However, it brings a new trouble: one may get a layer consisting
of many addable edges that are blocked by one blocking edge. As a consequence, they have
to introduce another strategy Greedy. They require every addable edge to be 1

2 -minimal. If
such an addable edge is blocked, at least 1

2 − λ worth of its resources must be occupied by
blocking edges. Provided that a blocking edge is λ-minimal and covers at most 2λ worth of
resources, the greedy strategy ensures that, in a layer, the number of blocking edges cannot
be too small comparing with the number of addable edges. Analysis shows that although
the greedy strategy makes the algorithm faster, it deteriorates the approximation ratio. Our
strategy is a generalization of those used in [2] and [1]. We allow a blocking edge to block
more than one addable edge, but once it shares strictly more than βλ worth of resources
with the addable edges blocked by it, we stop it from blocking more edges. We use greedy
too. In our algorithm, addable edges are (1 + γ)λ-minimal for some constant γ.

If we set β, γ, µ to be 0, then our algorithm acts exactly the same as the local search
in [2], which achieves a ratio of 4 but may not run in polynomial time. If β, γ are set to
be some large constant, then our algorithm acts like the algorithm in [1] which achieves a
polynomial running time but a much worse ratio. We show that carefully selected tiny β
and tiny γ guarantee a polynomial running time but barely hurt the approximation ratio.
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3.1 The algorithm
Let M ∪ E be the current partial allocation. Let p0 be a player that is not yet covered by
M ∪ E . The algorithm alternates between two phases to update and extend M ∪ E so that
the partial allocation covers p0 eventually without losing any covered player. In the building
phase, it pushes new layers onto a stack, where each layer stores some addable edges and
their blocking edges. In the collapse phase, it uses unblocked addable edges to release some
blocking edges in some layer from E .

Since we frequently talk about resources covered by thin edges and take sum of values
over a set of resources, we define the following notations. Given a thin edge e, Re denotes
the set of resources covered by e. Given a set S of thin edges, R(S) denotes the set of thin
resources covered by S. Given a set D of resources, define v[D] =

∑
r∈D vr.

3.1.1 Building phase
The algorithm maintains a stack of layers. The layer index starts with 1 from the bottommost
layer in the stack. The i-th layer Li is a tuple (Ai,Bi, di, zi), where Ai is a set of addable
edges that we want to add to E , Bi is a set of blocking edges that prevent us from doing
so, and di and zi are two values maintained for the sake of analysis. The algorithm also
maintains a set I of addable edges that are compatible with E . We will define addable edges
and blocking edges later. We use ` to denote the number of layers in the current stack. The
state of the algorithm is specified by (M, E , I, (L1, . . . , L`)).

For each Ai, we use Ai to denote the set of players covered by Ai. Similarly, Bi and I
denote the set of players covered by Bi and I, respectively. For i ∈ [1, `], define B6i =

⋃i
j=1 Bj ,

B6i =
⋃i
j=1Bj , and A6i =

⋃i
j=1Aj . We do not define A6i because although two addable

edges in different layers do not share any resource, they may cover the same player. This is a
consequence of the layer-level node-disjoint paths technique.

For simplicity, we define the first layer L1 to be (∅, {(p0, ∅)}, 0, 0). That is, A1 = ∅,
B1 = {(p0, ∅)}, and d1 = z1 = 0.

The layers are built inductively. Initially, there is only the layer L1 and I = ∅. Let ` be
the number of layers in the current stack. Consider the construction of the (`+ 1)-th layer.

I Definition 3. Let β > 0 be a constant to be specified later. A thin resource r is inactive
if (i) r ∈ R(A6` ∪ B6`), or (ii) r ∈ R(A`+1 ∪ I), or (iii) r ∈ Rb for some b ∈ B`+1 and
v[Rb ∩R(A`+1)] > βλ. If a thin resource is not inactive, then it is active.

We will define addable edges so that they use only active thin resources.

I Definition 4. A player p is addable if fM (B6`, A`+1 ∪ I ∪ {p}) = fM (B6`, A`+1 ∪ I) + 1.

The activeness of thin resources and the addability of the players depend on A`+1 and I
(A`+1 and I), so they may be affected as we add edges to A`+1 and I.

I Definition 5. A thin edge (p,D) is addable if p is addable and D is a set of active thin
resources desired by p with v[D] > λ. The blocking edges of an addable edge (p,D) are
{e ∈ E : Re ∩D 6= ∅ }. An addable edge (p,D) is unblocked if v[D \R(E)] > λ.

Recall that, for any w > 0, a thin edge (p,D) is a w-minimal if v[D] > w and v[D′] < w

for any D′ ( D. Our algorithm considers two kinds of addable edges. The first kind is
unblocked addable edges that are λ-minimal. It is easy to see that if an unblocked addable
edge is λ-minimal, then it must be compatible with E . We use I to keep such addable edges.
The second kind is blocked addable edges that are (1 + γ)λ-minimal, where γ is a constant
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Table 1 Some facts about I and the layers in the stack.

Fact 1 Edges in A6` ∪ I are mutually compatible.

Fact 2 Edges in I are compatible with edges in E .

Fact 3 For any i ∈ [1, `], no two edges in Ai ∪ I cover the same player.

Fact 4 {B2, . . . ,B`} are disjoint subsets of E . Note that B1 = {(p0, ∅)} does not
share any resource with Bi for i ∈ [2, `].

to be specified later. Such edges will be added to A`+1. Once a (1 + γ)λ-minimal addable
edge (p,D) becomes unblocked, we can easily extract a λ-minimal unblocked addable edge
(p,D′) with D′ ⊆ D.

Consider condition (iii) in Definition 3. Let b be a blocking edge in B`+1. When Rb and
R(A`+1) share strictly more than βλ worth of resources, all resources in Rb become inactive.
Any addable edge to be added to A`+1 in the future cannot use these inactive resources, and
hence, will not be blocked by b. This is how we achieve “limited blocking” mentioned before.

We call Build below to construct the (` + 1)-th layer. Note that after adding an
addable edge to A`+1, we immediately add its blocking edges to B`+1 in order to keep the
inactive/active status of thin resources up-to-date.

Build(M, E , I, (L1, · · · , L`))
1. Initialize A`+1 = ∅ and B`+1 = ∅.
2. While there is an unblocked addable edge that is λ-minimal, add it to I.
3. While there is an addable edge (p,D) that is (1 + γ)λ-minimal
3.1 add (p,D) to A`+1. (Note that (p,D) must be blocked; otherwise, we could

extract from it a λ-minimal unblocked addable edge, which should be added to
I in step 2.)

3.2 add to B`+1 the edges in E that block (p,D).
4. Set d`+1 := fM (B6`, A`+1∪I), z`+1 := |A`+1|, and L`+1 := (A`+1,B`+1, d`+1, z`+1).
5. Update ` := `+ 1

Table 1 lists a few facts about the layers.

3.1.2 Collapse phase
When some layer becomes collapsible, the algorithm enters the collapse phase. Let (M, E , I,
(L1, · · · , L`)) be the current state of the algorithm. In order to determine whether a layer is
collapsible or not, we need to compute the following decomposition of I. Let (I1, . . . , I`−1)
be some disjoint subsets of I. Let Ii denote the set of players covered by Ii. For i ∈ [1, `− 1],
we use I6i and I6i to denote

⋃i
j=1 Ij and

⋃i
j=1 Ij , respectively.

I Definition 6. A collection of disjoint subsets (I1, . . . , I`−1) of I is a canonical decom-
position of I if for all i ∈ [1, ` − 1], fM (B6i, I6i) = fM (B6i, I) = |I6i|. A solution Γ
for GM (B6`−1, I) is a canonical solution with respect to the canonical decomposition
(I1, . . . , I`−1) if Γ can be partitioned into disjoint subsets (Γ1, . . . ,Γ`−1) such that for every
i ∈ [1, `− 1], Γi is a set of |Ii| paths from Bi to Ii in GM .

Although it is not clear from the definition, invariant 1 in Table 2 implies that (I1, . . . , I`−1)
is indeed a partition of I. The following lemma is analogous to its counterpart in [1, 9]. Its
proof is omitted.
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I Lemma 7. Let ` be the number of layers in the stack. A canonical decomposition of I and
a corresponding canonical solution for GM (B6`−1, I) can be computed in poly(`,m, n) time.

All the edges in Ii are compatible with E , and all the players in Ii can be reached from
Bi by node-disjoint paths Γi in GM , so every edge in Ii can be used to release one blocking
edge in Bi from E . A layer is collapsible if a certain fraction of its blocking edges can be
released.

I Definition 8. Let µ be a constant to be specified later. A layer Li is collapsible if there
is a canonical decomposition (I1, . . . , I`−1) of I such that |Ii| > µ|Bi|.

Note that although there can be more than one canonical decomposition, the collapsibility
of a layer is independent of the choice of canonical decompositions, because by definition, we
always have |Ii| = fM (B6i, I)− fM (B6i−1, I).

When some layer is collapsible, we enter the collapse phase, call Collapse to shrink
collapsible layers until no layer is collapsible, and then return to the build phase.

Collapse(M, E , I, (L1, · · · , L`))
1. Compute a canonical decomposition (I1, . . . , I`−1) and a corresponding canonical

solution Γ1 ∪ · · · ∪Γ`−1 for GM (B6`−1, I). If no layer is collapsible, go to the build
phase; otherwise, let Lt be the collapsible layer with the smallest index.

2. Remove all the layers above Lt from the stack. Set I := I6t−1.
3. Recall that srcΓt ⊆ Bt by Definition 6. Let BΓ denote the set of edges in Bt that

are incident to players in srcΓt . We use It and Γt to release the edges in BΓ.
3.1 Update M by flipping the paths in Γt, i.e., set M := M ⊕ Γt.
3.2 Add to E the edges in It, i.e., set E := E ∪ It.
3.3 Each player in srcΓt is now covered by either a fat resource or a thin edge from
It. If t = 1, then p0 is already covered, and the algorithm terminates. Assume
that t > 2. Edges in BΓ can be safely released from E . Set E := E \ BΓ and
Bt := Bt \ BΓ.

4. If t > 2, we need to update At because some edges in At may become unblocked
due to the release of blocking edges. For every edge (p,D) in At that becomes
unblocked,

4.1 Remove (p,D) from At,
4.2 if fM (B6t−1, I ∪ {p}) = fM (B6t−1, I) + 1, then extract a λ-minimal unblocked

addable edge (p,D′) from (p,D), and add (p,D′) to I.
5. Update ` := t. Go to step 1.

4 Analysis of the approximation algorithm

4.1 Some invariants
Table 2 lists a few invariants, where ` is the number of layers in the stack. Lemmas 9 and 10
below have analogous versions in [1, 9] and can be proved similarly. We omit their proofs.

I Lemma 9. Build and Collapse maintain the invariants in Table 2.

I Lemma 10. Let (L1, . . . , L`) be the stack of layers. If no layer is collapsible, then
(i) |I| 6 µ|B6`−1|, and (ii) for all i ∈ [1, `], |Ai| > zi − µ|B6i−1|.
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Table 2 Invariants maintained by the algorithm.

Invariant 1 fM (B6`−1, I) = |I|.

Invariant 2 For all i ∈ [1, `− 1], fM (B6i, Ai+1 ∪ I) > di+1.

Invariant 3 For all i ∈ [1, `], |Ai| 6 zi.

Invariant 4 For all i ∈ [1, `], di > zi.

4.2 Bounding the number of blocking edges
Lemma 11 – 13 are consequences of our greedy and limited blocking strategies. Basically,
they bound the number of blocking edges in a layer in terms of the number of addable edges.

I Lemma 11. Let Li = (Ai,Bi, di, zi) be an arbitrary layer in the stack. For each edge
b ∈ Bi, there is an edge a ∈ Ai such that v[Rb ∩R(Ai \ {a})] 6 βλ.

Proof. Let b be an edge in Bi. Sort the edges in Ai in chronological order of their additions
into Ai. Let a be the last edge in Ai that is blocked by b. By our choice of a, the edges in
Ai that are added after a cannot be blocked by b, so they do not share any common resource
with b. Among the edges added before a, let S be the subset of their resources that are also
covered by b. We claim that v[S] 6 βλ. If not, all resources in Rb would be inactive before
the addition of a by definition of inactive resources. So no resource in Rb could be included
in a. But Ra ∩Rb must be non-empty as b blocks a, a contradiction. J

I Lemma 12. Let Li = (Ai,Bi, di, zi) be an arbitrary layer in the stack. We have |Ai| <
(1 + β

γ )|Bi|.

Proof. By Lemma 11, for each b ∈ Bi, we can identify an edge ab ∈ Ai so that v[Rb ∩R(Ai \
{ab})] 6 βλ. Let A0

i = {ab : b ∈ Bi} be the set of edges identified. |A0
i | 6 |Bi|.

Let A1
i = Ai \ A0

i . For every b ∈ Bi, v[Rb ∩R(A1
i )] 6 v[Rb ∩R(Ai \ {ab})] 6 βλ. Taking

sum over all edges in Bi, we get v[R(Bi) ∩R(A1
i )] 6 βλ|Bi|. On the other hand, each edge a

in A1
i is (1 +γ)λ-minimal and is blocked, so it must have more than γλ worth of its resources

occupied by edges in Bi, i.e., v[R(Bi) ∩Ra] > γλ. Taking sum over all the edges in A1
i gives

v[R(Bi) ∩R(A1
i )] > γλ|A1

i |. Hence, βλ|Bi| > v[R(Bi) ∩R(A1
i )] > γλ|A1

i |.
Finally we get |Bi| = |A0

i |+ |A1
i | 6 |Bi|+

β
γ |Bi| < (1 + β

γ )|Bi|. J

I Lemma 13. Let Li = (Ai,Bi, di, zi) be an arbitrary layer in the stack. Let B′i be the set
of edges in Bi that share strictly more than βλ resources with edges in Ai. More precisely,
B′i = {e ∈ Bi : v[Re ∩R(Ai)] > βλ}. We have |B′i| <

2+γ
β |Ai|.

Proof. Taking the sum of v[Re ∩R(Ai)] over all edges e in B′i, we obtain v[R(B′i)∩R(Ai)] >
βλ|B′i|. On the other hand, v[R(B′i)∩R(Ai)] 6 v[R(Ai)] < (2 + γ)λ|Ai|. The last inequality
is because that edges in Ai are (1 + γ)λ-minimal. Combining the above two inequality, we
obtain βλ|B′i| < (2 + γ)λ|Ai| ⇒ |B′i| <

2+γ
β |Ai|. J

4.3 Geometric growth in the number of blocking edges
Now we are ready to prove that the number of blocking edges grow geometrically from
bottom to top. Lemma 14 states that there are lots of addable edges in a layer immediately
after its construction. Previous Lemma 10(ii) ensures that as long as there is no collapsible
layer, every layer cannot lose too many addable edges. Therefore, Lemma 14 implies that
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when no layer is collapsible, then every layer must have lots of addable edges, even if they are
not newly constructed. Then since the number of blocking edges in a layer is lower bounded
in terms of the number of addable edges by Lemma 12, we can conclude that there must be
lots of blocking edges in a layer when no layer in the stack is collapsible (Lemma 17).

I Lemma 14. Let (M, E , I, (L1, . . . , L`+1)) be the state of the algorithm immediately after
the construction of L`+1. If no layer is collapsible, then z`+1 = |A`+1| > 2µ|B6`|.

Proof. We give a proof by contradiction. Suppose that z`+1 = |A`+1| < 2µ|B6`|. We
will show that the dual of CLP(1) is unbounded, which implies that CLP(1) is infeasible,
contradicting the assumption that the configuration LP has optimal value T ∗ = 1.

Consider the moment immediately after we finish adding edges to A`+1 during the
construction of L`+1. At this moment, there is no (1 + γ)λ-minimal addable edge left. The
rest of the proof is with respect to this moment.

Let Π be an optimal solution for GM (B6`, A`+1 ∪ I). Note that M ⊕Π is a maximum
matching of G. Consider the directed graph GM⊕Π obtained by orienting the edges of G
according to whether they are in M ⊕Π or not. Let P+ be the set of players that can be
reached in GM⊕Π from B6` \ srcΠ. Let R+

f be the set of fat resources that can be reached
in GM⊕Π from B6` \ srcΠ. Let R+

t be the set of inactive thin resources.

B Claim 15. (i) Players in P+ are still addable after we finish adding edges to A`+1
(ii) Players in P+ have in-degree at most 1 in GM⊕Π. (iii) Resources in R+

f have out-degree
exactly 1 in GM⊕Π.

We define a dual solution ({y∗p}p∈P , {z∗r}r∈R) as follows.

y∗p =

 1− (1 + γ)λ if p ∈ P+,

0 otherwise.
z∗r =


1− (1 + γ)λ if r ∈ R+

f ,

vr if r ∈ R+
t ,

0 otherwise.

B Claim 16. ({y∗p}p∈P , {z∗r}r∈R) is a feasible solution, and it has a positive objective function
value.

Suppose that Claim 16 holds. Then ({αy∗p}p∈P , {αz∗r}r∈R) is also a feasible solution for
any α > 0. As α goes to infinity, the objective function value goes to infinity, yielding the
contradiction that we look for. J

We omit the proof of Claim 15. We give the proof of Claim 16 below.

Feasibility. We need to show that ∀ p ∈ P, ∀C ∈ Cp(1), y∗p 6
∑
r∈C z

∗
r . If p /∈ P+, then

y∗p = 0, and the inequality holds since z∗r is non-negative. Assume that p ∈ P+. So
y∗p = 1− (1 + γ)λ. Let C be any configuration for p. We show that

∑
r∈C z

∗
r > 1− (1 + γ)λ.

Case 1: C contains a fat resource rf . Since p desires rf , GM⊕Π has either an edge (p, rf )
or an edge (rf , p). By the definition of P+, there is a path π in GM⊕Π from B6` \ srcΠ
to p. If GM⊕Π has an edge (p, rf ), we can reach rf from B6` \ srcΠ by following π and
then (p, rf ). So rf ∈ R+

f . If GM⊕Π has an edge (rf , p), then p is matched by M ⊕ Π.
Since players in B6` \ srcΠ are not matched by M ⊕Π, p /∈ (B6` \ srcΠ). By Claim 15,
in GM⊕Π, the in-degree of p is at most one, so (rf , p) is the only edge entering p. To
reach p, π must reach rf first. Hence, we can follow π to reach rf from B6` \ srcΠ, which
implies rf ∈ R+

f . In both cases, we have
∑
r∈C z

∗
r > z∗rf = 1− (1 + γ)λ.
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Case 2: C contains only thin resources. By Claim 15, p is still addable after we finish adding
edges to A`+1. However, when we finish adding edges to A`+1, there is no (1 + γ)λ-
minimal addable edge left. It must be that p does not have enough active resources to
form an addable edge. The active thin resources in C must have a total value less than
(1 + γ)λ. Recall that v[C] > 1. At least 1 − (1 + γ)λ worth of thin resources in C are
inactive. Since z∗r = vr for inactive thin resources,

∑
r∈C z

∗
r > 1− (1 + γ)λ. C

Positive Objective Function Value. We need to show that
∑
p∈P y

∗
p −

∑
r∈R z

∗
r > 0. By our

setting of y∗p and z∗r ,
∑
p∈P y

∗
p −

∑
r∈R z

∗
r =

∑
p∈P+ y∗p −

∑
r∈R+

f
z∗r −

∑
r∈R+

t
z∗r .

First consider
∑
p∈P+ y∗p −

∑
r∈R+

f
z∗r . Since y∗p and z∗r have the same value 1− (1 + γ)λ

for p ∈ P+ and r ∈ R+
f , it suffices to bound |P+| − |R+

f | from below. For each rf ∈ R+
f , by

Claim 15, rf has exactly one out-going edge to some player p in GM⊕Π. Since rf is reachable
from B6` \ srcΠ, so is p. That is, p ∈ P+. We charge rf to p. By Claim 15, each player in
P+ has in-degree at most 1 in GM⊕Π, so each of them is charged at most once. Note that
players in B6` \ srcΠ obviously belong to P+ because they can be reached by themselves.
Moreover, they have zero in-degree in GM⊕Π as they are not matched by M ⊕Π, so they
are not charged. Therefore, |P+| − |R+

f | > |B6` \ srcΠ| > |B6`| − |A`+1| − |I|. The last
inequality is because Π is an optimal solution for GM (B6`, A`+1 ∪ I). In summary,

∑
p∈P+

y∗p −
∑
r∈R+

f

z∗r > (1− (1 + γ)λ) (|B6`| − |A`+1| − |I|) . (1)

Now consider
∑
r∈R+

t
z∗r . By definition of inactive resources, R+

t can be divided into
three parts: those covered by A6` ∪ B6`, those covered by A`+1 ∪ I, and those covered by
B′`+1 = {e ∈ B`+1 : v[Re ∩R(A`+1)] > bλ}. We handle these three parts separately.

Every edge in A6` is blocked by some edges in B6`, so it has less than λ worth of thin
resources not used by B6`. Every edge in B6` is λ-minimal, so it covers less than 2λ worth
of thin resources. Thus, v[R(A6` ∪ B6`)] < λ|A6`|+ 2λ|B6`| 6

(
3 + β

γ

)
λ|B6`|. The last

inequality is by Lemma 12. Edges in A`+1 are (1 + γ)λ-minimal, so each of them covers less
than (2 + γ)λ worth of resources. Edges in I are λ-minimal, so each of them covers less than
2λ worth of thin resources. Therefore, v[R(A`+1 ∪ I)] < (2 + γ)λ|A`+1|+ 2λ|I|. Edges in
B′`+1 are λ-minimal, so v[R(B′`+1)] < 2λ|B′`+1| <

4+2γ
β λ|A`+1|. The second inequality is by

Lemma 13. Combining the above three parts gives

∑
r∈R+

t

z∗r =
∑
r∈R+

t

vr <

(
3 + β

γ

)
λ|B6`|+ 2λ|I|+

(
2 + γ + 4 + 2γ

β

)
λ|A`+1|. (2)

Combining (1) and (2) gives that∑
p∈P+

y∗p −
∑
r∈R+

f

z∗r −
∑
r∈R+

t

z∗r

>

(
1−

(
4 + γ + β

γ

)
λ

)
|B6`| −

(
1 +

(
1 + 4 + 2γ

β

)
λ

)
|A`+1| − (1 + (1− γ)λ) |I|.

By the contrapositive assumption at the beginning of the proof of Lemma 14, |A`+1| <
2µ|B6`|. Moreover, since no layer is collapsible, by Lemma 10(i), |I| 6 µ|B6`|. Substituting
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these two inequalities into the above gives∑
p∈P+

y∗p −
∑
r∈R+

f

z∗r −
∑
r∈R+

t

z∗r

>

(
(1− 3µ)−

(
4 + γ + β

γ
+ 3µ+ (8 + 4γ)µ

β
− γµ

)
λ

)
|B6`|.

Let β = γ2 and µ = γ3. We have∑
p∈P+

y∗p −
∑
r∈R+

f

z∗r −
∑
r∈R+

t

z∗r >
((

1− 3γ3)− (4 + 10γ + 4γ2 + 3γ3 − γ4)λ) |B6`|.

Recall that λ = 1
4+δ for some δ > 0. As γ → 0, 1−3γ3

4+10γ+4γ2+3γ3−γ4 → 1
4 . Hence, there is a

sufficiently small γ that makes 1−3γ3

4+10γ+4γ2+3γ3−γ4 >
1

4+δ = λ, thereby proving
∑
p∈P+ y∗p −∑

r∈R+
f
z∗r −

∑
r∈R+

t
z∗r > 0. Moreover, one can verify that 1

γ = O( 1
δ ). C

I Lemma 17. Let (M, E , I, (L1, . . . , L`)) be a state of the algorithm. If no layer is collapsible,
then for i ∈ [1, `− 1], |Bi+1| > γ3

1+γ |B6i|.

Proof. Fix an i ∈ [1, ` − 1]. Consider the period from the most recent construction of
layer Li+1 until now. During this period, none of the layers below Li+1 has ever been
collapsed; otherwise, Li+1 would be removed, contradiction. Hence, blocking edges in the
layers below Li+1 have never been touched during this period. In other words, at the
time Li+1 was constructed, the set of blocking edges in the layers below Li+1 was exactly
B6i. Also the constant zi+1 is unchanged. By Lemma 14, zi+1 > 2µ|B6i|. Although
addable edges may be removed from the Li+1 during this period, there are still lots of
addable edges left. By Lemma 10(ii), |Ai+1| > zi+1 − µ|B6i| > µ|B6i|. By Lemma 12,
|Bi+1| > 1

(1+β/γ) |Ai+1| > µ
(1+β/γ) |B6i|. Recall that we set β = γ2 and µ = γ3 in the proof

of Claim 16. Replacing β by γ2 and µ by γ3 proves the lemma. J

I Lemma 18. In poly(m,n) · npoly( 1
δ ) time, the algorithm extends M ∪ E to cover one more

player.

Given Lemma 17, Lemma 18 can be proved in a way similar to that of [1, 9]. We sketch
the proof here. Consider all non-collapsible states ever reached by the algorithm. By
non-collapsible, we mean that no layer is collapsible in this state. Let h = γ3

1+γ . For each
non-collapsible state (M, E , I, (L1, . . . , L`)), we define its signature vector (s1, . . . , s`,∞)
where si = log1/(1−µ)

|Bi|
hi+1 . One can verify that the coordinates of the signature vector are

non-decreasing, and that as the algorithm goes from one non-collapsible state to another,
the signature vector decreases lexicographically. Moreover, the sum of the coordinates is
bounded by U2 where U = logn ·O( 1

µh log 1
h ). Each signature can be regarded as a partition

of an integer less than or equal to U2. Summing up the number of partitions of an integer
i over all i ∈ [1, U2], we get the upper bound of nO( 1

uh log 1
h ) on the number of distinct

signatures. Recall that u = γ3, h = γ3

1+γ , and
1
γ = O( 1

δ ). As a consequence, the number of
non-collapsible states ever reached by the algorithm is bounded by npoly( 1

δ ). Between two
consecutive non-collapsible states, there is one Build and at most logh+1 n Collapse, which
take poly(m,n) · npoly( 1

δ ) time in total. The total running time is thus poly(m,n) · npoly( 1
δ ).
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1 Introduction

Given the truth table of some Boolean function f and a size parameter θ, the minimum
circuit size problem (MCSP) asks whether f can be computed by a circuit of size at most θ.
Understanding the exact complexity of MCSP is an important open problem in computational
complexity theory, dating back to the 1950s [20].

It is easy to see that MCSP is in NP. A popular conjecture is that MCSP is also NP-hard.
However, despite serious efforts over the years, such a proof is still unknown. Given that it is
difficult to show that MCSP is hard, perhaps the problem is easy? It turns out that this cannot
be the case under some plausible cryptographic assumptions. More specifically, it is known
that if one-way functions exist, then MCSP is not in P [11]. As proving an unconditional lower
bound for MCSP seems far beyond the reach of currently known techniques, can we at least
prove unconditional lower bounds for MCSP against some restricted computational models?1

Two of the most studied restricted computational models in complexity theory are
constant-depth circuits (AC0) and de Morgan formulas. For AC0 circuits, the best-known
lower bound is about PARITY: PARITY on N variables requires depth-d AC0 circuits of size
2Ω(N1/(d−1)) [6]. For de Morgan formulas, the state-of-the-art lower bound is almost cubic,
namely N3−o(1), for some polynomial-time computable function [7, 18, 19, 5].

Notably, there are also lower bounds against these models for MCSP. Allender et al. [2]
showed that MCSP, on functions represented as a truth table of length N , cannot be computed
by polynomial-size constant-depth AC0 circuits. In fact, by a more careful analysis of their
argument, one can get a lower bound of 2N1/(c·d+O(1)) , for a constant c ≥ 2. However, such a
lower bound still has a worse dependence on the depth compared to the PARITY lower bound.
For de Morgan formulas, Hirahara and Santhanam [9] showed that computing MCSP requires
de Morgan formulas of size N2−o(1).

Given these two MCSP lower bounds and the best-known lower bounds against these two
models, it is natural to ask whether we can get MCSP lower bounds against small-depth
circuits and de Morgan formulas that match the state-of-the-art lower bounds against these
models. More specifically, can we show that computing MCSP requires depth-d AC0 circuits of
size 2N1/(d+O(1)) and de Morgan formulas of size N3−o(1)? Furthermore, can we show lower
bounds for MCSP against some other restricted models that match their state-of-the-art lower
bounds? In this paper, we answer these questions in the affirmative.

1.1 Our results
Our first result is an almost-cubic de Morgan formula lower bound for MCSP.

I Theorem 1. Any de Morgan formula computing MCSP on truth tables of length N must
have size at least N3/2O(log2/3 N).

We also get almost-quadratic lower bounds against formulas over an arbitrary basis as
well as general branching programs; these almost match the best-known lower bounds against
these models [12].

I Theorem 2. Let C be either a formula over any basis or a branching program that computes
MCSP on truth tables of length N . Then C must have size at least N2/2O

(√
logN

)
.

1 A recent line of research on hardness magnification [16, 14] provides another motivation for proving
relatively weak lower bounds for restricted circuit models against certain “gap variants” of MCSP. Such
lower bounds are shown to imply much stronger (superpolynomial) lower bounds.
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For small-depth circuits, we have the following improved lower bound for MCSP, which
its dependence on the depth matches the one in the PARITY lower bound, up to a small
additive constant.

I Theorem 3. For every d > 2 and every constant γ > 0, any depth-d AC0 circuit computing
MCSP on truth tables of length N must have size 2Ω(N1/(d+2+γ)).

For the special case of depth-2 circuits, we can have an almost optimal lower bound.

I Theorem 4. Any CNF or DNF computing MCSP on truth tables of length N must have size
2N/Õ(log2 N).

Also, in this paper (in the full version), we give a fine-grained analysis of the approach of
obtaining MCSP lower bounds from average-case hardness via the Nisan-Wigderson framework.

1.2 Our techniques
For a class C of N -variate Boolean functions, a pseudorandom generator (PRG) against C is
a deterministic efficiently-computable function G mapping short binary strings (seeds) to
longer binary strings so that every function in C accepts G’s output on a uniformly random
seed with about the same probability as that for an actual uniformly random string. A key
notion in this work is that of a local PRG. We say that a PRG is local if its N -bit output
(viewed as the truth table of some function) has small circuit complexity. More precisely,
for any fixed seed to the PRG, there exists a small circuit such that, given j ∈ [N ] as an
input, the circuit computes the j-th bit of the PRG output, where the size of the circuit is
measured relative to its input length, namely logN .

Local PRGs in the context of MCSP (and related problems) have been studied in previous
works (see, e.g., [2, 15, 9, 8]). In this work, we refine the previous approaches, and obtain
stronger circuit lower bounds by establishing strong locality properties of certain PRGs.2

MCSP lower bounds from local PRGs. Suppose we have a local PRG against some class
of circuits C of size s, and we want to show that MCSP cannot be computed by any size-s
circuit in C. Suppose some size-s circuit C in C computes MCSP. Using the fact that a
random function has almost maximum circuit complexity, we have that C will output false
on most of its inputs (by setting the size parameter θ to be a non-trivial quantity that is
asymptotically smaller than 2n/n, where n is the input length of the function). If we replace
the uniformly random inputs with the outputs of the local PRG, then, by the definition of
PRGs, C will still output false with large probability. However, since the PRG is local, all
of its outputs have circuit complexity smaller than the size parameter θ, and hence must be
accepted by C. A contradiction.

To get a strong lower bound, we would like to make the above argument to work for large
s. Note that the local complexity of the PRG, λ(s), is a function on the size of the circuit
C, and we need this local complexity to be “non-trivial” in order to reach a contradiction.
Therefore, we want to choose s so that this local complexity remains asymptotically smaller
than 2n/n. As a result, the final lower bound (i.e., the largest s that we can choose) is
determined by the local complexity λ. So the main question we study in our paper is: What
is the smallest local complexity of a PRG against a given circuit class?

2 Note that, as one of our reviewers pointed out, the notion of a local PRG can be also found in the
context of cryptography [4], where a PRG G : {0, 1}n → {0, 1}m is called k-local, for some constant
k > 0, if every output PRG bit G(x)j , for any x ∈ {0, 1}n and j ∈ [m], depends only on k input bits
xi1 , . . . , xik , for i1, . . . , ik ∈ [n]. In our work, however, locality refers to the circuit complexity of the
PRG at hand and the output bits of our PRGs may depend on a superconstant number of input bits.
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MCSP lower bound against de Morgan formulas. Our formula lower bound for MCSP is
obtained by applying the framework described above to a local PRG against formulas. The
state-of-the-art PRG against formulas is given by Impagliazzo, Meka, and Zuckerman [10],
which we refer to as the IMZ PRG. Their PRG has a seed length of s1/3+o(1) for size s
formulas (note that such a PRG is useful against sub-cubic formulas only). If we want to
utilize the IMZ PRG to get an MCSP lower bound against formulas, we will need to argue
that the IMZ PRG is local.

In fact, in order to get an almost-cubic lower bound, we will need such a PRG to be
strongly local in the sense that any single output bit of the PRG (on any given fixed seed) can
be computed by a circuit of size comparable to its seed length, which is s1/3+o(1). However,
by inspecting the construction, the IMZ PRG does not seem to have such a property, and a
straightforward implementation seems to require a circuit of size at least s2/3 (see the full
version for more details), which yields a weaker lower bound for MCSP.

To overcome this issue, we present an alternative PRG useful against sub-cubic formulas
which is strongly local. The construction of this PRG can be viewed as a modification of
the IMZ PRG. At a high level, it is based on the Ajtai-Wigderson construction [1], which
is a framework for constructing PRGs against computations that can be simplified under
(pseudo)random restrictions. This framework is then combined with the ideas of reducing
(recycling) random bits using an extractor, by exploiting communication bottlenecks in
computations [13]. Our modification, particularly the utilization of the Ajtai-Wigderson
construction, allows us to compute any output bit of the PRG efficiently by reducing the
number of calls to the extractor. Using some crucial observations on the circuit complexity
of certain pseudorandom objects, we get a PRG that is locally computable by a s1/3+o(1)-size
circuit.3

MCSP lower bounds against formulas over an arbitrary basis or branching programs.
The MCSP lower bounds against formulas over an arbitrary basis or branching programs are
obtained similarly to those for de Morgan formulas. The idea is to construct strongly local
PRGs against these models by modifying the PRGs in [10]. Then, by applying our “MCSP
circuit lower bounds from local PRGs” framework, we get the desired lower bounds.

MCSP lower bounds against AC0. We use a local PRG against AC0 to get MCSP lower
bounds. To get a lower bound matching the one in Theorem 3, we can use the state-of-the-art
PRG against AC0 by Trevisan and Xue [21], which has a seed length of (log s)d+O(1) for size-s
depth-d AC0 circuits. By a careful analysis of the construction of this PRG, we can show that
the Trevisan-Xue PRG is strongly local and can be used to get an MCSP lower bound that is
close to the one stated in Theorem 3. However, in this paper, we will present a more direct
proof of such a lower bound by using the pseudorandom switching lemma for constant-depth
circuits, which is due to Trevisan and Xue [21], as well, and is a key ingredient in their PRG.

The idea is to show that for any small-depth circuit of size less than the claimed lower
bound, there is some locally computable restriction that turns the circuit into a constant
function, but leaves many variables unrestricted. However, MCSP cannot be constant under
such a restriction, because depending on the partial assignment to the unrestricted variables,
the resulting input function (which is composed of the restriction and the partial assignment)
can be either easy or hard. Such an approach based on pseudorandom restrictions can also
be applied to depth-2 circuits and yield almost optimal CNF (and DNF) MCSP lower bounds.

3 It is also possible to use the original IMZ PRG to obtain an almost-cubic formula lower bound for MCSP.
We can show that the IMZ PRG, although not fully strongly local, is “almost strongly local” in the
sense that most of its outputs have very small circuit complexity; see the full version.
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1.3 Remainder of the paper
We give the necessary background in Section 2. In Section 3, we describe our framework of
using local PRGs to obtain lower bounds for MCSP. We prove the almost-cubic de Morgan
formula lower bound for MCSP (Theorem 1) in Section 4, and the almost-quadratic lower
bound against formulas over an arbitrary basis and branching programs (Theorem 2) in
Section 5. The improved AC0 lower bounds for MCSP (Theorem 3 and Theorem 4) are proved
in Section 6. Finally, we give some open problems in Section 7. Due to space limitations we
relegated some material to the full version, like some omitted proofs and the framework of
proving MCSP lower bounds from average-case hardness.

2 Preliminaries

2.1 Notation
For any computational model, we use the term size to refer to its complexity measure. For
example, if the model is circuits of some fixed depth, then the size is the number of gates in
the circuit.

For a positive integer n, that is a power of two, we use the following notation: [n] denotes
the set {1, 2, . . . , n} ∼= {0, 1}logn, Fn denotes the field with n elements, where the elements
in Fn are represented by (logn)-bit strings, Un denotes the uniform distribution over {0, 1}n,
and, for a function f : {0, 1}n → {0, 1}, tt(f) ∈ {0, 1}N=2n denotes the truth table of f .

2.2 Pseudorandomness
I Definition 5 (Pseudorandom generators). Let G : {0, 1}r → {0, 1}n be a function, F be a
class of Boolean functions, and 0 < ε < 1. We say that G is a pseudorandom generator of
seed length r that ε-fools F if, for every function f ∈ F , it is the case that∣∣Ez∼{0,1}r [f(G(z))]− Ex∼{0,1}n [f(x)]

∣∣ ≤ ε.
IDefinition 6 (k-wise independence). A distribution X over [m]n is called k-wise independent
if for any 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n and every b1, b2, . . . , bk ∈ [m], we have

Pr[Xi1 = b1, Xi2 = b2, . . . , Xik = bk] = m−k.

The following simple fact (proved in the full version) will be convenient for us.

I Lemma 7. Let X and Y be two random variables that take values in {0, 1} and E be some
event. If |E[X | E ]− E[Y | E ]| ≤ ε1 and Pr[¬E ] ≤ ε2, then |E[X]− E[Y ]| ≤ ε1 + ε2.

2.3 Random restrictions
A restriction for a n-variate Boolean function f , usually denoted as ρ ∈ {0, 1, ∗}n, specifies a
way of fixing the values of some subset of variables for f . We denote by fρ the restricted
function after the variables are restricted according to ρ, and denote by ρ−1(∗) the set of
unrestricted variables. A random restriction is then a distribution over restrictions, which can
be specified by a pair (σ, β) ∈ {0, 1}n × {0, 1}n, where σ (as a characteristic string) specifies
the set of unrestricted variables, and β specifies the values for fixing the restricted variables.
We say that a random restriction (or random selection) is p-regular if each variable is left
unrestricted with probability p. One way to generate a p-regular random restriction is to leave
each variable, independently, unrestricted with probability p, and otherwise assign to it a 0 or
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a 1, uniformly at random. Such a random restriction is called a (truly) p-random restriction.
Note that to sample such a restriction, we can first pick a string in {0, 1}n·log(1/p) ∼= [1/p]n
to specify the selection of the unrestricted variables, where a coordinate is unrestricted if
and only if all of its corresponding log(1/p) bits are 0, and then a string in {0, 1}n to specify
the values assigned to each of the restricted variables. So sampling a restriction in this way
requires n · log(1/p) + n random bits.

We can also generate a restriction in a pseudorandom manner, which may use fewer
random bits. For example, one way to do this is to use a limited-independence distribution
over [1/p]n, so that each variable is left unrestricted with probability p and any k variables
are independent. Also, we can let each variable be assigned a 0 or a 1, uniformly at random,
in a way such that any k of the variables are independent; this again can be done using a
k-wise independent distribution on {0, 1}n.

2.4 Simple facts about Boolean circuits
I Proposition 8. A Boolean circuit of size s can be specified using O(s log s) bits. Hence
there are at most 2O(s log s) = sO(s) distinct circuits of size at most s.

I Theorem 9 ([17]). The fraction of functions on n variables that have a circuit of size less
than 2n/(3n) is o(1).

The following lemma is proved in the full version.

I Lemma 10. For any integer t > 0, there exists a circuit C of size Õ(t) such that, given
any string x ∈ {0, 1}t, the circuit does the following: If x = 0t, then C outputs (0, 0log t) and
if x 6= 0t, then C outputs (1, q), where q ∈ {0, 1}log t is the index of the first bit in x that is
not 0.

The following circuit upper bound for the addressing (storage access) function is well-
known (see, e.g., [22]); we include a proof, in the full version, for completeness.

I Lemma 11. For any integers t,m > 0, there exists a circuit of size O(tm) such that, given
any string y = (y1, y2, . . . , yt), where yi ∈ {0, 1}m for each i, and an index i ∈ {0, 1}log t, the
circuit outputs yi.

3 The “MCSP circuit lower bounds from local PRGs” framework

We first describe how to use local PRGs to obtain MCSP lower bounds.

I Definition 12 (Local PRGs). Let λ : N × N → N be a size function. For any Boolean
computational model and size s > 0, we say that a function G : {0, 1}r=r(N,s) → {0, 1}N is a
(N, s, λ(N, s))-local PRG against the model if G 1/3-fools every device f on N variables of
size s in the model; that is,∣∣∣Ez∼{0,1}r [f(G(z))]− Ex∼{0,1}N [f(x)]

∣∣∣ ≤ 1/3,

and for any seed z ∈ {0, 1}r, the function g : {0, 1}logN → {0, 1}, defined as gz(j) = G(z)j,
can be computed by a general circuit of size at most λ(N, s).

Note that λ(N, s) is at least r(N, s), by a counting argument (neglecting log λ(N, s)
factors). This is to ensure that, for any function g, on n variables, which may be output by
G, there is some λ(N, s)-size circuit that computes g.
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I Theorem 13. There exists a constant c > 0 such that the following holds. For any
computational model, let s be such that MCSP on truth tables of length N can be computed
by a device of size s in the model. If there exists some (N, s, λ(N, s))-local PRG against the
model, then λ(N, s) ≥ N

c logN .

Proof. Let C be a device in the computational model such that C computes MCSP on truth
tables of length N . Suppose C has size s, and let G be a (N, s, λ(N, s))-local PRG against
C with some seed length r.

For the sake of contradiction, suppose that λ(N, s) < N
c logN . On the one hand, since

most functions require circuits of size greater than N
c logN (Theorem 9) and C computes

MCSP, we have µ = Prtt(f)∼{0,1}N [C(tt(f) , λ(N, s)) = 0] ≥ 1/2. Also, since G fools C, we
have Prz∼{0,1}r [C(G(z), λ(N, s)) = 0] ≥ µ − 1/3 ≥ 1/6. On the other hand, because G is
(N, s, λ(N, s))-local, we must have C(G(z), λ(N, s)) = 1, for every z. A contradiction. J

4 Almost-cubic de Morgan formula lower bounds for MCSP

In this section, we present our almost-cubic de Morgan formula lower bound for MCSP. By
saying “formula” within this section, we refer to formulas over the de Morgan basis (AND,
OR, and NOT). By size of a formula, we mean its usual leaf complexity, i.e., the number of
leaves in the tree representation of the formula.

I Theorem 14 (Theorem 1 restated). Any de Morgan formula computing MCSP on truth
tables of length N must have size at least N3/2O(log2/3 N).

We will construct a strongly local PRG useful against sub-cubic formulas. That is, given
as input an index j, the j-th bit of the PRG can be computed by a circuit of size that is
comparable to its seed length, which in our case is around s1/3 for size s formulas.

I Lemma 15. For any s ≥ N , there exists a
(
N, s, s1/3 · 2O(log2/3 s)

)
-local PRG against de

Morgan formulas.

Given the local PRG in Lemma 15, we can combine it with our Theorem 13 to obtain a
formula lower bound for MCSP.

Proof of Theorem 14. Let s be such that MCSP on truth tables of length N can be computed
by some formula of size s. We can assume that s ≤ N3 since, otherwise, the result trivially
holds. By Theorem 13 and Lemma 15, we have s1/3 · 2O(log2/3 s) ≥ N/(c logN); then,
s ≥ N3/

(
2O(log2/3 N)c3 log3N

)
. J

The rest of this section is devoted to proving Lemma 15.

4.1 Almost-linear-size k-independent generators
The PRG in Lemma 15 will use k-wise independent distributions. Recall that a multidi-
mensional distribution is called k-wise independent if any k coordinates of the distribution
are uniformly distributed (see Definition 6). We say that a function G is a k-independent
generator if, for random inputs, the distribution of the outputs of G is k-wise independent.

We will need a k-independent generator that is strongly local.

I Lemma 16. For any integer k > 0, there exists a k-independent generator G : {0, 1}r →
[m]N , with r = k ·max{logN, logm}, such that the following holds. There exists a circuit of
size k ·max{Õ(logN), Õ(logm)} such that, given j ∈ {0, 1}logN and a seed z ∈ {0, 1}r, the
circuit computes the j-th coordinate of G(z) (as an element of {0, 1}logm).
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The above k-independent generator is constructed using finite fields (see the full version).
Its efficiency crucially depends on the fact that finite field arithmetic can be done using
almost linear-size Boolean circuits.

4.2 Almost-linear-size extractors
Our PRG will make use of randomness extractors. Here, we describe an extractor that is
computable by a circuit of size that is almost linear in the length of its input. We start by
reviewing the definitions of some basic notions regarding extractors.

I Definition 17 (ε-closeness and statistical distance). Let 0 ≤ ε ≤ 1. We say two distributions
X and Y (over some universe D) are ε-close if their statistical distance, defined as

max
T :D→{0,1}

|Pr[T (X) = 1]−Pr[T (Y ) = 1]| ,

is at most ε.

I Definition 18 (Min-entropy). Let X be a random variable. The min-entropy of X, denoted
by H∞(X), is the largest real number k such that Pr[X = x] ≤ 2−k for every x in the range
of X. If X is a distribution over {0, 1}ℵ with H∞(X) ≥ k, then X is called a (ℵ, k)-source.

I Definition 19 (Extractors). A function E : {0, 1}ℵ×{0, 1}d → {0, 1}m is an (k, ε)-extractor
if, for any (ℵ, k)-source X, the distribution E(X,Ud) is ε-close to Um.

We now state the extractor, which for a high min-entropy source extracts a constant
fraction of min-entropy, using seeds of polylogarithmic length. The construction and circuit
complexity of this extractor are presented in the full version.

I Lemma 20 (Almost-linear-size extractors, following [13]). There exists some randomness
extractor E : {0, 1}ℵ × {0, 1}d → {0, 1}m that is an (ℵ/2, ε)-extractor with m = Ω(ℵ) and
d = polylog(ℵ/ε). Moreover, E can be computed by a circuit of size ℵ · polylog(ℵ/ε).

4.3 Strongly local PRG useful against sub-cubic de Morgan formulas
For a formula F , let L(F ) denote the size (which is measured by the number of leaves) of
F . We need the following pseudorandom shrinkage lemma for de Morgan formulas, which
says that there exists a p-regular restriction, where the unrestricted variables are selected
pseudorandomly and the restricted variables are fixed truly-randomly, such that with high
probability the size of the restricted formula will “shrink” by a factor of p2.

I Lemma 21 (Pseudorandom shrinkage lemma, Lemma 4.8 of [10]4). There exists a constant
c0 > 0 such that the following holds. For any constant c > c0, any s ≥ N , p ≥ s−1/2, and
any de Morgan formula F on N variables of size s, there exists a p-regular pseudorandom
selection D over N variables, that is samplable using r = 2O(log2/3 s) random bits, such that

Prσ∼D,x∼{0,1}N
[
L
(
F(σ,x)

)
≥ 23·c·log2/3 s · p2 · s

]
≤ s−c.

Moreover, there exists a circuit of size 2O(log2/3 s) such that, given j ∈ {0, 1}logN and a seed
z ∈ {0, 1}r, the circuit computes the j-th bit of D(z).

4 The pseudorandom shrinkage lemma in [10] is not stated in this form, but rather selects the unrestricted
variables and fixes the restricted variables both pseudorandomly (based on limited independence).
However, our version here follows from the proof of the original version in Section 4.2 of [10] by noting
that limited-independence distributions can be computed locally.
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We are now ready to show our PRG in Lemma 15.

Proof of Lemma 15. The construction is as follows: We first sample a p-regular pseu-
dorandom selection from Lemma 21. Then, we fill the star coordinates, specified by the
pseudorandom selection, in the output string with the output of some extractor which takes
a min-entropy source sample and a short seed (in fact, it is the output of some limited-
independence generator that takes the output of the extractor as a seed). We then sample
another pseudorandom selection, and fill the star coordinates specified by this pseudorandom
selection but this time only for those that have not been filled in previous steps, again with
the output of the same extractor using the same min-entropy source sample but a different
short seed. We continue this way until all the coordinates are filled.

More formally, our PRG uses the following parameters:5
p = 1/s1/3, the expected fraction of unrestricted variables in each of the pseudorandom
selections;
ε = 1/poly(N) and ε0 = ε/(10t), which specify the error of the PRG;
t = ln(2N/ε)/p = s1/3 ·O (logN), the number of steps needed so that all the coordinates
will be filled with probability except ε/2;
s0 = p2 · s · 2O(log2/3 s) = s1/3 · 2O(log2/3 s), the size of the formula after being simplified
by a pseudorandom restriction;
k ≥ s0 = s1/3 · 2O(log2/3 s), the amount of independence needed to fool the simplified
formula, and rk = k · logN the seed length for the k-independent generator;
ℵ, the length of the min-entropy source for the extractor, which is such that ℵ ≥
2 · (log(1/ε0) + c · s0 · log s0), where c > 0 is some constant, and that ℵ = Ω(rk). We can
take ℵ = s1/3 · 2O(log2/3 s);
d = polylog(ℵ/ε0) = polylog(N), the seed length of the extractor;
` = 2O(log2/3 s), the number of random bits for sampling a pseudorandom selection.

Construction. The PRG takes a seed (X,Y1, Y2, . . . , Yt, γ1, γ2, . . . , γt) ∈ {0, 1}r, where
X ∈ {0, 1}ℵ is the min-entropy source sample of an extractor,
Yi ∈ {0, 1}polylog(N), for each i ∈ [t], is the seed of an extractor, and
γi ∈ {0, 1}`, for each i ∈ [t], is the seed for sampling a pseudorandom selection.

The construction of the PRG proceeds in the following two stages.
1. Compute a sequence of t p-regular pseudorandom selections σ1, . . . , σt, using Lemma 21,

with the seeds γ1, . . . , γt. Below, we denote the star coordinates in σi by σ−1
i (∗). Let

S1, . . . , St ⊆ [N ] be t disjoint sets defined by

Si = σ−1
i (∗) \ (S1 ∪ S2 ∪ · · · ∪ Si−1).

2. Define Z1, Z2, . . . , Zt ∈ {0, 1}N by

Zi = Gk(E(X,Yi)),

where E : {0, 1}ℵ × {0, 1}d → {0, 1}Ω(ℵ) is an (ℵ/2, ε0)-extractor and Gk : {0, 1}rk →
{0, 1}N is a k-independent generator. The final output of our PRG is the binary string
that has the values Zi|Si in the positions indexed by Si, for all i ∈ [t], where Zi|Si denotes
the bit values of Zi projected to the set Si. (We fix those positions that are not in any of
the Si’s to be 0.) Stage 2 of the PRG construction is depicted in Figure 1.

5 In fact, there are mainly two types of parameters here. Those that are close to s1/3, which are
1/p, t, s0, k,N , and those that are close to No(1), which are d and `.
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∨
S1

Z1

St

Zt

Zt ∧ 1StZ1 ∧ 1S1

· · ·X

Y1 Yt

E E

GkGk

G =

. . .

. . .

. . .

Figure 1 Construction of the PRG in Lemma 15, Stage 2. For each i ∈ [t], 1Si ∈ {0, 1}
N denotes

the characteristic Boolean vector of the set Si, where Si ⊆ [N ] is the set of star coordinates in the
i-th pseudorandom selection that did not appear in the preceding sets S1, . . . , Si−1. Also, ∧ denotes
a coordinate-wise AND operation (i.e., coordinate-wise multiplication of Boolean vectors) and

∨
is

a coordinate-wise OR operation.

Correctness. Next, we show that the above PRG ε-fools N -variate formulas f of size s.
First, note that, by our choice of t, with probability except ε/2, S1 ∪ S2 ∪ · · · ∪ St covers all
coordinates. For the rest of the argument, we will assume that this is the case. By Lemma 7,
conditioning on this assumption contributes at most ε/2 to the error of the constructed PRG.

We continue the correctness analysis using a hybrid argument. Let G denote the distribu-
tion given by the PRG described above. Let U be the uniform distribution. Note that if in
the above construction we replace Zi, for all i ∈ [t], with U , then we would get a uniform
distribution. Now we can start from there and gradually replace U with the Zi’s step-by-step
for a total of t steps. We will argue that after each replacement step, the expected value of
the function does not change by much. Let Ai be the distribution so that we have replaced
U with Zi in the first i steps. That is,

Ai =
(
Z1|S1

, . . . , Zi|Si , U |Si+1
, . . . , U |St

)
=
(
Z1|S1

, . . . , Zi|Si , U | Si+1∪···∪St

)
.

For the sake of contradiction, suppose there exists an N -variate size-s formula f such that

|E[f(U)]− E[f(G)]| = |E[f(A0)]− E[f(At)]| > ε/2.

By the triangle inequality, there exists an 0 ≤ i < t such that

|E[f(Ai)]− E[f(Ai+1)]| > ε/(2t). (1)

Let us say that the expectations in Equation (1) are over σ1, . . . , σi+1, Y1, . . . , Yi+1, X, U,

and we may remove the absolute value without loss of generality. Then, we have

Eσ1,...,σi,
Y1,...,Yi,

X

[
Eσi+1,Yi+1,U [f(Ai)]− Eσi+1,Yi+1,U [f(Ai+1)]

]
> ε/(2t). (2)
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LetWi = (σ1, . . . , σi, Y1, . . . , Yi, X), and let f ′ be the random function (where the randomness
is over Wi) defined as f ′ = f(Z1|S1 , . . . , Zi|Si , · ). That is, f ′ is the restricted function
after the first i steps. Then, the left hand side of Equation (2) becomes

EWi

[
Eσi+1,U

[
f ′(U |Si+1 , U | Si+2∪···∪St)

]
− Eσi+1,Yi+1,U

[
f ′(Zi+1|Si+1 , U | Si+2∪···∪St)

] ]
. (3)

Note that, at this point, we can view ρi+1 = (σi+1, U) as a pseudorandom restriction (in
the sense of Lemma 21) applied to f ′. Next, let f ′′ be the random function defined as the
restricted function of f ′ under ρi+1 (note that the randomness is over Wi, and also the
pseudorandom restriction ρi+1). Now Equation (3) becomes

EWi,ρi+1

[
EU [f ′′(U)]− EYi+1 [f ′′(Zi+1)]

]
. (4)

Note that in the above, we abuse notation and use U and Zi+1 to denote U |Si+1 and Zi+1|Si+1 ,
respectively.

Next we want to show that the difference between the two expectations in Equation (4)
is at most 3ε0 = 3ε/ (10t) ≤ ε/ (2t), which would give a contradiction, by Equation (2). The
intuition is the following. On the one hand, f ′′ is obtained by a pseudorandom restriction
ρi+1, and so, with high probability, it has size at most s0. On the other hand, Zi+1 is obtained
using an extractor that is supposed to extract enough random bits for an s0-independent
generator.

The issue, however, is that f ′′ depends onX, the source sample of the extractor. Therefore,
f ′′ may contain information about X, so that X is not truly random anymore. Nonetheless,
being a formula of size at most s0, f ′′ cannot contain too much information, and so cannot
take too much entropy away from X. We make this argument more formal next.

Let us define the set of good functions for f ′′, namely

F =
{
g | L(g) ≤ s0 and PrWi,ρi+1 [f ′′ = g] ≥ ε0/s

cs0
0
}
,

where c is some constant. Let E denote the event f ′′ ∈ F . We first show the following.

B Claim 22. It is the case that Pr[¬E ] ≤ 2ε0.

Proof of Claim 22. We have

Pr[¬E ] = Pr[(f ′′ /∈ F) ∧ (L(f ′′) > s0)] + Pr[(f ′′ /∈ F) ∧ (L(f ′′) ≤ s0)]
≤ Pr[(L(f ′′) > s0)] + Pr[(f ′′ /∈ F) ∧ (L(f ′′) ≤ s0)].

Note that, by the pseudorandom shrinkage lemma (Lemma 21), we have Pr[L(f ′′) > s0] ≤ ε0.

Also note that under the condition that L(f ′′) ≤ s0, there can be at most sO(s0)
0 choices

for f ′′, since a formula of size s0 can be specified using O(s0 log s0) bits (Proposition 8).
Therefore, Pr[(f ′′ /∈ F) ∧ (L(f ′′) ≤ s0)] ≤ sO(s0)

0 · ε0/s
cs0
0 ≤ ε0. C

Let us now analyze Equation (4) while conditioning on the event E . We show the following.

B Claim 23. It is the case that E [f ′′(U) | E ]− E [f ′′(Zi+1) | E ] ≤ ε0.

Proof of Claim 23. First note that conditioning on E , X still has large min-entropy. More
precisely, for every g ∈ F it is the case that H∞(X | f ′′ = g) ≥ ℵ/2. This is because, for
every x in the range of X, we have

Pr[X = x | f ′′ = g] ≤ Pr[X = x]
Pr[f ′′ = g] ≤

2−ℵ

ε0/s
c·s0
0

= 2−(ℵ−log(1/ε0)−c·s0·log s0) ≤ 2−ℵ/2.
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Then, by the definition of the extractor, we have E [f ′′(Gk(U)) | E ]− E [f ′′(Zi+1) | E ] ≤ ε0.

Finally, note that E [f ′′(Gk(U)) | E ] = E [f ′′(U) | E ] , since s0-wise independent distributions
fool size-s0 formulas. C

Combining Claim 22, Claim 23, and Lemma 7, we get that the quantity in Equation (4)
is at most 3ε0, which leads to a contradiction. This completes the proof of correctness.

Locality. To see that the j-th bit of the PRG can be computed using a circuit of size
s1/3 · 2O(log2/3 s), we observe the following equivalent construction:
1. Compute the j-th bits of the t pseudorandom selections (σ1)j , (σ2)j , . . . , (σt)j .
2. Retrieve Yq, where q is the smallest integer such that (σq)j is a star.
3. Compute (Zq)j = Gk(E(X,Yq))j , as the j-th bit of the PRG.
Note that Step 1 can be done using a circuit of size t · 2O(log2/3 s) = s1/3 · 2O(log2/3 s), by the
pseudorandom shrinkage lemma (Lemma 21). Also, Step 2 can be done by first computing q
from the sequence ((σi)j)i∈[t], using a circuit of size Õ(t) (Lemma 10), and then outputting Yq
from (Yi)i∈[t], using a circuit of size t ·polylog(N) (Lemma 11). Finally, Step 3 can be done by
a circuit of size Õ(ℵ), using the efficient extractor (Lemma 20) and the limited-independence
generator (Lemma 16). J

5 Almost-quadratic lower bounds against arbitrary basis formulas and
branching programs

The MCSP lower bounds against formulas, over an arbitrary basis, and branching programs
are obtained similarly to those for de Morgan formulas in the previous section. The idea is
to construct strongly local PRGs against these models by modifying the PRGs in [10].

I Lemma 24. For any s ≥ n, there exists a
(
N, s, s1/2 · 2O

(√
log s
))

-local PRG against

size-s formulas over an arbitrary basis (or branching programs).

The MCSP lower bound in Theorem 2 follows from Lemma 24 and Theorem 13.

6 Improved AC0 lower bounds for MCSP

In this section, we show improved lower bounds for MCSP against constant-depth circuits.

6.1 The case of depth d > 2
We first show the improved lower bound against circuits of depth d > 2 that almost matches
the lower bound for PARITY.

I Theorem 25 (Theorem 3 restated). For every d > 2 and every constant γ > 0, any depth-d
AC0 circuit computing MCSP on truth tables of length N must have size 2Ω(N1/(d+2+γ)).

The above result is proved using the following structural property of small-depth circuits,
which says that for any such circuit, there exists some locally computable restriction that
simplifies the circuits to be a constant while leaving many variables unrestricted.

I Lemma 26. For any size-s depth-d circuit C, there exists a restriction ρ ∈ {0, 1, ∗}N such
that Cρ is a constant function,

∣∣ρ−1(∗)
∣∣ ≥ N

O(log s)d−2 − log s, and there exists a circuit of size
d · log(N) · Õ

(
log3 s

)
such that, given j ∈ {0, 1}logN , the circuit computes the j-th coordinate

of ρ.
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The proof of Lemma 26, presented in the full version, uses the pseudorandom switching
lemma due to Trevisan and Xue [21], which says that a depth-2 circuit is likely to be simplified
after hit by a pseudorandom restriction. We now prove Theorem 25.

Proof of Theorem 25. Let C be a depth-d AC0 circuit on {0, 1}N × {0, 1}logN such that C
computes MCSP on truth tables of length N , and let s be the size of C.

For a size parameter λ = d · log(N) · Õ
(
log3 s

)
, let C ′ = C(·, λ). Let ρ be a restriction

from Lemma 26 for C ′. By Lemma 26, we have that C ′ρ is a constant function. First note
that C ′ρ(0|ρ

−1(∗)|) = 1. To see this, note that C ′ρ(0|ρ
−1(∗)|) = C(tt(f) , λ), where C computes

MCSP and f : {0, 1}logN → {0, 1} is the following:

f(j) =
{

0, if ρj = 0 or ρj = ∗,
1, else if ρj = 1.

By Item 3 of Lemma 26, such a function f can be computed by a λ-size circuit. On the
other hand, there can be 2|ρ−1(∗)| different functions corresponding to the different partial
assignments to the unrestricted variables. Since there are at most O(λ log λ) different circuits
of size at most λ, in order for C ′ρ to be the constant 1, we must have 2O(λ logλ) ≥ 2|ρ−1(∗)| =
2

N

O(log s)d−2−log s
, which, by a simple calculation, implies s = 2Ω(N1/(d+2+γ)), for any γ > 0. J

6.2 The case of depth 2
Here we show that computing MCSP requires depth-2 circuits of almost maximum size.

I Theorem 27 (Theorem 4 restated). Any CNF or DNF computing MCSP on truth tables of
length N must have size 2N/Õ(log2 N).

The proof uses a variant of Lemma 26 which says that a depth-2 circuit can be made
constant via a more efficient restriction. Given such a local restriction, it is straightforward
to prove Theorem 27 following the argument in the proof of Theorem 25.

7 Open problems

Our de Morgan formula lower bound for MCSP is still slightly weaker than the state-of-the-art
de Morgan formula lower bound due to Tal [19], which is Ω

(
N3/

(
logN · (log logN)2)). Can

the MCSP lower bound be improved? Are there better constructions of local PRGs against
formulas? Or, are there alternative proofs that do not rely on local PRGs?

A similar question can be asked for small-depth circuits. In particular, can we show that
MCSP requires depth-2 circuits (i.e., CNFs or DNFs) of size 2Ω(N), as in the case of PARITY?

What are other restricted models of computation against which we can show MCSP lower
bounds using local PRGs? The recent “random walk PRG” by Chattopadhyay, Hatami,
Hosseini, and Lovett [3] is also local and can be used to get MCSP lower bounds. However, as
a general PRG that can be used to fool a variety of restricted models, it has sub-optimal
usefulness (which is determined by its seed length) compared to the best-known lower bounds
for most of those models.
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Abstract
A t-spanner of a graph G is a subgraph H in which all distances are preserved up to a multiplicative
t factor. A classical result of Althöfer et al. is that for every integer k and every graph G, there is a
(2k − 1)-spanner of G with at most O(n1+1/k) edges. But for some settings the more interesting
notion is not the number of edges, but the degrees of the nodes. This spurred interest in and study
of spanners with small maximum degree. However, this is not necessarily a robust enough objective:
we would like spanners that not only have small maximum degree, but also have “few” nodes of
“large” degree. To interpolate between these two extremes, in this paper we initiate the study of
graph spanners with respect to the `p-norm of their degree vector, thus simultaneously modeling
the number of edges (the `1-norm) and the maximum degree (the `∞-norm). We give precise upper
bounds for all ranges of p and stretch t: we prove that the greedy (2k− 1)-spanner has `p norm of at
most max(O(n), O(n

k+p
kp )), and that this bound is tight (assuming the Erdős girth conjecture). We

also study universal lower bounds, allowing us to give “generic” guarantees on the approximation
ratio of the greedy algorithm which generalize and interpolate between the known approximations
for the `1 and `∞ norm. Finally, we show that at least in some situations, the `p norm behaves
fundamentally differently from `1 or `∞: there are regimes (p = 2 and stretch 3 in particular) where
the greedy spanner has a provably superior approximation to the generic guarantee.
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1 Introduction

Graph spanners are subgraphs which approximately preserve distances. Slightly more
formally, given a graph G = (V,E) (possibly with lengths on the edges), a subgraph H of G
is a t-spanner of G if dG(u, v) ≤ dH(u, v) ≤ t · dG(u, v) for all u, v ∈ V , where dG denotes
shortest-path distances in G (and dH in H). The value t is called the stretch of the spanner.

Graph spanners were originally introduced in the context of distributed computing [27, 26],
but have since proved to be a fundamental building block that is useful in a variety of
applications, from property testing [7] to network routing [28]. When building spanners
there are many objectives which we could try to optimize, but probably the most popular
is the number of edges (the size or the sparsity). Not only is sparsity important in many
applications, it also admits a beautiful tradeoff with the stretch, proved by Althöfer et al. [2]:
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40:2 The Norms of Graph Spanners

I Theorem 1 ([2]). For every integer k ≥ 1 and every weighted graph G = (V,E) with
|V | = n, there is a (2k − 1)-spanner H of G with at most O(n1+1/k) edges.

While understanding the tradeoff between the size and the stretch was a seminal achieve-
ment, for many applications (particularly in distributed computing) we care not just about
the size, but also about the maximum degree. Unfortunately, unlike the size, there is no
possible tradeoff between the stretch and the maximum degree. This is trivial to see: if
G is a star, then the only spanner of G with non-infinite stretch has maximum degree of
n− 1. In general, if G has maximum degree ∆, then all we can say is the trivial fact that
G has a spanner with maximum degree at most ∆. Nevertheless, given the importance of
the maximum degree objective, there has been significant work on building spanners that
minimize the maximum degree from the perspective of approximation algorithms [23, 10, 9].
From this perspective, we are given a graph G and stretch value t and are asked to find the
“best” t-spanner of G (where “best” means minimizing the maximum degree).

While this has been an interesting and productive line of research, clearly there are
problems with the maximum degree objective as well. For example, if it is unavoidable for
there to be some node of large degree d, the maximum degree objective allows us to make
every other vertex also of degree d, with no change in the objective function. But clearly we
would prefer to have fewer high-degree nodes if possible!

So we are left with a natural question: can we define a notion of “cost” of a spanner
which discourages very high degree nodes, but if there are high degree nodes, still encourages
the rest of the nodes to have small degree? There is of course an obvious candidate for such
a cost function: the `p norm of the degree vector. That is, given a spanner H, we can define
‖H‖p to be the `p-norm of the n-dimensional vector in which the coordinate corresponding to
a node v contains the degree of v in H. Then ‖H‖1 is just (twice) the total number of edges,
and ‖H‖∞ is precisely the maximum degree. Thus the `p-norm is an interpolation between
these two classical objectives. Moreover, for 1 < p <∞, this notion of cost has precisely the
properties that we want: it encourages low-degree nodes rather than high-degree nodes, but if
high-degree nodes are unavoidable it still encourages the rest of the nodes to be as low-degree
as possible. These properties, of interpolating between the average and the maximum, are
why the `p-norm has appeared as a popular objective for a variety of problems, ranging from
clustering (the famous k-means problem [22, 24]), to scheduling [4, 3, 1], to covering [21].

1.1 Our Results and Techniques
In this paper we initiate the study of graph spanners under the `p-norm objective. We prove
a variety of results, giving upper bounds, lower bounds, and approximation guarantees. Our
main result is the analog of Theorem 1 for the `p-norm objective, but we also characterize
universal lower bounds as part of an effort to understand the generic approximation ratio for
the related optimization problem. We also show that in some ways the `p-norm can behave
fundamentally differently than the traditional `1 or `∞ norms, by proving that the greedy
algorithm can have an approximation ratio that is strictly better than the generic guarantee,
unlike the `1 or `∞ settings.

1.1.1 Upper Bound
We begin by proving our main result: a universal upper bound (the analog of Theorem 1)
for `p-norm spanners. Recall the classical greedy algorithm for constructing a t-spanner H
of a graph G = (V,E). Consider the edges in nondecreasing order of edge length, and when
considering edge {u, v}, add it to H if currently dH(u, v) > t · dG(u, v). We call H the greedy
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t-spanner of G. It is trivial to show that the greedy t-spanner has girth at least t+ 2. This
is the algorithm that was used to prove Theorem 1, and it has since received extensive study
(see, e.g., [20, 8]) and will form the basis of our upper bound:

I Theorem 2. Let k ≥ 1 be an integer, let G = (V,E) be a graph (possibly with lengths
on the edges), and let H = (V,EH) be the greedy (2k − 1)-spanner of G. Then ‖H‖p ≤
max

(
O(n), O

(
n
k+p
kp

))
for all p ≥ 1.

In other words, if p ≥ k
k−1 then our upper bound is O(n), and otherwise it is O

(
n
k+p
kp

)
.

Clearly this interpolates between p = 1 and p =∞: when p = 1 this is the same bound as
Theorem 1, while if p =∞ this gives O(n) which is the only possible bound in terms of n. To
get some more intuition for this bound, note that n

k+p
kp would be the `p-norm of H if H had

the size guaranteed by Theorem 1 and was also regular. So one way to think of this bound is
that while the greedy spanner can be non-regular, its `p-norm still acts as if it were regular.

It is also straightforward to prove that this bound is tight if we again assume the Erdős
girth conjecture [19]; for completeness, we do this in the full version [12].

The proof of Theorem 1 from [2] is relatively simple: the greedy (2k − 1)-spanner has
girth at least 2k+ 1, and any graph with more than n1+1/k edges must have a cycle of length
at most 2k. Generalizing this to the `p-norm is significantly more complicated, since it is
not nearly as easy to show a relationship between the girth and the `p-norm. But this is
precisely what we do.

It turns out to be easiest to prove Theorem 2 for stretch 3: it just takes one more step
beyond [2] to split the vertices of the high-girth graph (the spanner) into “low” and “high”
degrees, and show that each vertex set does not contribute too much to the `p norm. However
for larger stretch values this approach does not work: the main lemma used for stretch 3
(Lemma 5) is simply false when generalized to larger stretch bounds. Instead, we need a
much more involved decomposition into “low”, “medium”, and “high”-degree nodes. This
decomposition is very subtle, since the categories are not purely about the degree, but rather
about how the degree relates to expansion at some particular distances from the node. We also
need to further decompose the “high”-degree nodes into sets determined by which distance
level we consider the expansion of. We then separately bound the contribution to the p-norm
of each class in the decomposition; for “low”-degree nodes this is quite straightforward, but
for medium and high-degree nodes this requires some subtle arguments which strongly use
the structure of large-girth graphs.

1.1.2 Universal Lower Bounds
To motivate our next set of results, consider the optimization problem of finding the “best”
t-spanner of a given input graph. When “best” is the smallest `1-norm this is known as the
Basic t-Spanner problem [16, 5, 15, 18], and when “best” is the smallest `∞-norm this is
the Lowest-Degree t-Spanner problem [23, 10, 9]. It is natural to consider this problem
for the `p-norm as well. It is also natural to consider how well the greedy algorithm (used to
prove the upper bound of Theorem 2) performs as an approximation algorithm.

To see an obvious way of analyzing the greedy algorithm as an approximation algorithm,
consider the `1-norm. Theorem 1 implies that the greedy algorithm always returns a spanner
of size at most O(n1+1/k), while clearly every spanner must have size at least Ω(n) (assuming
that the input graph is connected). Thus we immediately get that the greedy algorithm is
an O(n1/k)-approximation. By dividing a universal upper bound (an upper bound on the
size of the greedy spanner that holds for every graph) by a universal lower bound (a lower
bound on the size of every spanner in every graph), we can bound the approximation ratio
in a way that is generic, i.e., that is essentially independent of the actual graph.
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Now consider the `∞-norm. The generic approach seems to break down here: the universal
upper bound is only Θ(n) (as shown by the star graph), while the universal lower bound
is only Θ(1) (as shown by the path). So it seems like the generic guarantee is just the
trivial Θ(n). But this is just because n is the wrong parameter in this setting: the correct
parameterization is based on ∆, the maximum degree of G (i.e., ∆ = ‖G‖∞). With respect
to ∆, the greedy algorithm (or any algorithm) returns a spanner with maximum degree at
most ∆, while any t-spanner of a graph with maximum degree ∆ must have maximum degree
at least Ω(∆1/t) (assuming the graph is unweighted). So there is still a “generic” guarantee
which implies that the greedy algorithm is an O(∆1−1/t) ≤ O(n1−1/t)-approximation.

This suggests that for 1 < p <∞, we will need to parameterize by both the number of
nodes n and the `p-norm Λ of G. We can define both universal upper bounds and universal
lower bounds with respect to this dual parameterization:

UBpt (n,Λ) = max
G=(V,E):|V |=n,‖G‖p=Λ,

and G is connected

min
H: H is a t-spanner of G

‖H‖p

LBpt (n,Λ) = min
G=(V,E):|V |=n,‖G‖p=Λ,

and G is connected

min
H: H is a t-spanner of G

‖H‖p

With this notation, we can define the generic guarantee gpt (n,Λ) = UBpt (n,Λ)/LBpt (n,Λ),
and if we want a guarantee purely in terms of n we can define the generic guarantee
gpt (n) = maxΛ g

p
t (n,Λ). Our upper bound of Theorem 2 can then be restated as the

claim that UBp2k−1(n,Λ) ≤ min
{

Λ,max
{
O(n), O(n

k+p
kp )
}}

for all n, k, p,Λ. So in order
to understand the generic guarantees gp2k−1(n,Λ) or gp2k−1(n), we need to understand the
universal lower bound quantity LBp2k−1(n,Λ).

Surprisingly, unlike the `1 and `∞ cases, the universal lower bound for other values of p is
extremely complex. Understanding its value, and understanding the structure of the extremal
graphs which match the bound given by LBpt (n,Λ), are the most technically involved results
in this paper. However, while the analysis and even the exact formulation of the lower bound
is quite complex, it turns out to be easily computable from a simple linear program:

I Theorem 3. There is an explicit linear program of size O(t) which calculates LBpt (n,Λ)
for any t ∈ N, p ≥ 1. The bound given by the program is tight up to a factor of log(n)O(t).

Our linear program and the proof of Theorem 3 appear in the full version [12]. In fact,
our linear program not only calculates a lower bound on the `p-norm of any t-spanner, it also
gives the parameters which define an extremal graph of `p-norm Λ with a t-spanner whose
`p-norm matches this lower bound. While the structure of these extremal graphs is simple,
the dependence of the parameters of these graphs on t and p is quite complex. Nevertheless,
we give a complete explicit description of these graphs for every possible value of p, t.

Interestingly, despite the fact that LBpt (n,Λ) is fundamentally a question of extremal
graph theory (although as discussed our motivation is the generic guarantee on approximation
algorithms), our techniques are in some ways more related to approximation algorithms. We
give a linear program which computes the LB function, and we reason about it by explicitly
constructing dual solutions. This is, to the best of our knowledge, the first time that structural
bounds on spanners (as opposed to approximation bounds) have been derived using linear
programs. Moreover, the structure of the extremal graphs is fundamentally related to a
quantity which we call the p-log density of the input graph. This is a generalization of the
notion of “log-density”, which was introduced as the fundamental parameter when designing
approximation algorithms for the Densest k-Subgraph (DkS) problem [6], and has since
proved useful in many approximation settings (see, e.g., [10, 11, 14, 13]).



M.Dinitz, E. Chlamtáč, and T. Robinson 40:5

1.1.3 Greedy Can Do Better Than The Generic Bound
As discussed, when p = 1 or p = ∞, the approximation ratio of the greedy algorithm can
be bounded by the generic guarantee. But it turns out that the connection is actually even
closer: when p = 1 and p = ∞, for every n and Λ the approximation ratio of the greedy
algorithm is equal to the generic guarantee gp2k−1(n,Λ). In other words, greedy is no better
than generic in the traditional settings (we prove this for completeness, but it is essentially
folklore). In fact, for the `1 objective, giving any approximation algorithm which is better
than the generic guarantee g1

2k−1(n) is a long-standing open problem [18] which has only
been accomplished for stretch 3 [5] and stretch 4 [18], while for the `∞ objective such an
improvement was only shown recently [9] (and not with the greedy algorithm).

We show that, at least in some regimes of interest, `p-norm graph spanners exhibit
fundamentally different behavior from `1 and `∞: the greedy algorithm has approximation
ratio which is better than the generic guarantee, even though the universal upper bound
is proved via the greedy algorithm! In particular, we consider the regime of stretch 3,
p = 2, and Λ = Θ(n). This is a very natural regime, since p = 2 is the most obvious and
widely-studied norm other than `1 and `∞, and stretch 3 is the smallest value for which
nontrivial sparsification can occur.

Our theorems about UB and LB imply that g2
3(n) = g2

3(n, n) = Θ(
√
n). But we show

that in this setting (and in fact for any Λ as long as p = 2 and the stretch is 3) the greedy
algorithm is an O(n63/128)-approximation. Thus we show that, unlike `1 and `∞, for p = 2
the greedy algorithm provides an approximation guarantee that is strictly better than the
generic bound, both for specific values of Λ and when considering the worst case Λ.

1.2 Outline
We begin in Section 2 with some basic definitions and preliminaries. In order to illustrate
the basic concepts in a simpler and more understandable setting, we then focus in Section 3
on the special case of stretch 3: we prove the stretch-3 version of Theorem 1 in Section 3.1,
and then show that the greedy algorithm has approximation ratio better than the generic
guarantee in Section 3.2. We then prove our upper and lower bounds in full generality: the
upper bound (i.e., the proof of Theorem 2) in Section 4, and then our universal lower bound
in Section 5. Due to space constraints, all missing proofs can be found in the appendices.

2 Definitions and Preliminaries

Let G = (V,E) be a graph, possibly with lengths on the edges. For any vertex u ∈ V , we let
d(u) denote the degree of u and let N(u) denote the neighbors of u. We will also generalize
this notation slightly by letting Ni(u) denote the set of vertices that are exactly i hops away
from u (i.e., their distance from u if we ignore lengths is exactly i), and we let di(u) = |Ni(u)|.
Note that by definition, N0(u) = {u} and d0(u) = 1 for all u ∈ V . We will sometimes use
B(v, r) = ∪ri=0Ni(v) to denote the ball around v of radius r.

We let dG : V × V → R≥0 denote the shortest-path distances in G. A subgraph
H = (V,EH) of a graph G = (V,E) is a t-spanner of G if dH(u, v) ≤ t · dG(u, v) for all
u, v ∈ E. Recall that ‖~x‖p = (

∑n
i=1 x

p
i )

1/p for any p ≥ 1 and ~x ∈ Rn. To measure the “cost”
of a spanner, for any graph G = (V,E), let ~dG denote the vector of degrees in G and for
any p ≥ 1, let ‖G‖p = ‖ ~dG‖p. For any subset S ⊆ V , we let ‖S‖p denote the `p norm of the
vector obtained from ~dG by removing the coordinate of every node not in S (note that we do
not remove the nodes from the graph, i.e., ‖S‖p is the norm of the degrees in G of the nodes
in S, not in the subgraph induced by S).
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3 Warmup: Stretch 3

We begin by analyzing the special case of stretch 3, particularly for the `2-norm. More
specifically, we will focus on bounding UBp3(n,Λ). This is one of the simplest cases, but
demonstrates (at a very high level) the outlines of our upper bound. Moreover, in this
particular case we can prove that the greedy algorithm performs better than the generic
guarantee, showing a fundamental difference between the `2 norm and the more traditional
`1 and `∞ norms.

3.1 Upper Bound

Recall that greedy spanner is the spanner obtained from the obvious greedy algorithm: starting
with an empty graph as the spanner, consider the edges one at a time in nondecreasing
length order, and add an edge if the current spanner does not span it (within the given
stretch requirement). It is obvious that when run with stretch parameter t this algorithm
does indeed return a t-spanner, and moreover it will return a t-spanner that has girth at
least t+ 2 (if there is a (t+ 1)-cycle then the algorithm would not have added the final edge).

Our main goal in this section will be to prove the following theorem.

I Theorem 4. Let G = (V,E) be a graph and let H = (V,EH) be the greedy 3-spanner of G.
Then ‖H‖p ≤ max(O(n), O(n(2+p)/(2p))) for all p ≥ 1.

In other words, when 1 ≤ p ≤ 2 the greedy 3-spanner H has ‖H‖p ≤ O(n(2+p)/(2p)), and
when p ≥ 2 we get that that ‖H‖p ≤ O(n).

To prove this theorem, we will first show that nodes with “large” degree cannot be incident
with too many edges in any graph of girth at least 5 (like the greedy 3-spanner). This is the
most important step, since for p > 1 the p-norm of a graph gives greater “weight” to nodes
with larger degree.

I Lemma 5. Let G = (V,E) be a graph with girth at least 5. Then
∑
v∈V :d(v)≥2

√
n d(v) ≤ 2n.

Proof. Suppose for the sake of contradiction that these vertices have total degree greater
than 2n, and let {v1, . . . , v`+1} be a minimal set with this property. That is, all these vertices
have degree at least 2

√
n, and furthermore

∑`
i=1 d(vi) ≤ 2n <

∑`+1
i=1 d(v).

Because G has girth at least 5, any two vertices vi, vj in this set have at most one
common neighbor. That is, |N(vi) ∩N(vj)| ≤ 1. Thus, for every j ∈ [`+ 1], the number of
“new” neighbors contributed by N(vj) is

∣∣∣N(vj) \
(⋃j−1

i=1 N(Vi)
)∣∣∣ ≥ |N(vj)|−

∑j−1
i=1 |N(vi)∩

N(vj)| ≥ d(vj)− (j − 1) ≥ d(vj)− `.
On the other hand, we have 2n ≥

∑`
i=1 d(vi) ≥ ` · 2

√
n, and so we have ` ≤

√
n. Thus,

every vj contributes at least d(vj)− ` ≥ d(vj)−
√
n ≥ d(vj)/2 new neighbors, and so we get

n ≥
∣∣∣⋃`+1

j=1N(vj)
∣∣∣ =

∑`+1
j=1

∣∣∣N(vj) \
(⋃j−1

i=1 N(vi)
)∣∣∣ ≥ ∑`+1

j=1 d(vj)/2, which contradicts our

assumption that
∑`+1
j=1 d(vj) > 2n. J

We can now prove Theorem 4.

Proof of Theorem 4. Let Vlow = {v ∈ V : d(v) ≤ 2
√
n}, and let Vhigh = {v ∈ V : d(v) >

2
√
n}. Since H has girth at least 5, we can apply Lemma 5. So using this lemma and
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standard algebraic inequalities, we get that

‖H‖p =

 ∑
v∈Vlow

d(v)p +
∑

v∈Vhigh

d(v)p
 1

p

≤

( ∑
v∈Vlow

d(v)p
) 1
p

+

 ∑
v∈Vhigh

d(v)p
 1

p

≤

( ∑
v∈Vlow

(2
√
n)p
) 1
p

+
∑

v∈Vhigh

d(v) ≤
(
n · 2pnp/2

) 1
p +

∑
v∈Vhigh

d(v) ≤ 2n
2+p
2p + 2n,

which implies the theorem. J

It is easy to show that the above bound is tight: for every p ≥ 1 there are graphs in which
every 3-spanner has size at least max(Ω(n),Ω(n

2+p
2p )). In fact, we can generalize slightly

to also account for different values of Λ. Theorem 2 can be interpreted as claiming that
UBp3(n,Λ) ≤ O(min(max(n, n

2+p
2p ),Λ)). In the full version [12] we show that this is tight:

UBp3(n,Λ) ≥ Ω(min(max(n, n
2+p
2p ),Λ)) for all p ≥ 1 and Ω(n1/p) ≤ Λ ≤ O(n

1+p
p ).

3.2 Greedy vs Generic
It is not hard to show that in the traditional settings in which spanners have been studied,
the `1 and `∞ norms, the greedy algorithm does no better than the generic guarantee,
for all relevant parameter regimes. In slightly more detail, for `∞ it is relatively easy to
show that UB∞t (n,Λ) = Θ(Λ), while LB∞t (n,Λ) = Θ(Λ1/t). Thus the generic guarantee
g∞t (n,Λ) = Θ(Λ1− 1

t ), and moreover we can build graphs in which the approximation ratio
of the greedy algorithm is also Θ(Λ1− 1

t ). Similarly, for the `1-norm, classical results on
spanners imply that UB1

2k−1(n,Λ) = Θ(min(n1+ 1
k ,Λ)) and LB1

2k−1(n,Λ) = Θ(n), so the
generic guarantee is g1

2k−1(n,Λ) = Θ(min(n1+ 1
k ,Λ)/n) and there are graphs for all parameter

regimes where this is the approximation ratio achieved by greedy.
We show that the behavior of the greedy spanner in intermediate `p-norms is fundamentally

different: in some parameter regimes of interest, greedy outperforms the generic guarantee!
To demonstrate this, consider the regime of stretch 3 with the `2 norm and with Λ = n in

unweighted graphs. In this regime, the results of Section 3.1 imply that UB2
3(n, n) = Θ(n).

On the other hand, our results on the universal lower bound from Section 5 (Corollary 19
in particular) directly imply that LB2

3(n, n) = Θ̃(
√
n). Thus the generic guarantee is

g2
3(n, n) = Θ̃(

√
n), and this is the worst case over Λ and thus g2

3(n) = Θ̃(
√
n). However, we

show that the greedy algorithm is a strictly better approximation, even without parameterizing
by Λ.

I Theorem 6. The greedy algorithm is an O(n63/128)-approximation for the problem of
computing the 3-spanner with smallest `2-norm (where the input is an unweighted graph).

To prove this, let G = (V,E) be a graph with |V | = n, let H be the greedy 3-spanner of G,
and let H∗ be a 3-spanner of G with minimum `2-norm. Let α = logn ‖H∗‖2, so ‖H∗‖2 = nα;
note that α ≥ 1/2. We first prove a lemma which uses ‖H∗‖2 to bound neighborhoods.

I Lemma 7. |BH∗(v, r)| ≤ n2α(1−2−r) for all v ∈ V and r ∈ N.

Proof. We use induction on r. For the base case r = 1, since ‖H∗‖2 = nα we know that v
has degree less than nα, and thus |BH∗(v, 1)| ≤ nα = n2α(1−2−r).

Now suppose that the theorem is true for some integer r − 1. Let |BH∗(v, r − 1)| = nγ ≤
n2α(1−2−(r−1)) (by induction). Since ‖H∗‖2 = nα, the average degree (in H∗) of the nodes in
BH∗(v, r−1) is at most nα−(γ/2). Thus we get that |BH∗(v, r)| ≤ nγ ·nα−(γ/2) = nα+(γ/2) ≤
nα+α(1−2−(r−1)) = n2α(1−2−r), as claimed. J
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Using this lemma, we can now prove Theorem 6.

Proof of Theorem 6. Lemma 7 implies that |BH∗(v, 6)| ≤ n(63/32)α for all v ∈ V . Since H∗
is a 3-spanner of G, every vertex in BG(v, 2) must be in BH∗(v, 6), and thus |BG(v, 2)| ≤
n(63/32)α. Now we can use this to bound the number of 2-paths in H. Let P2(H) denote the
number of paths of length 2 in H. Since H is the greedy 3-spanner of G it must have girth at
least 5. This means that every path of length 2 in H which starts from v must have a different
other endpoint: there cannot be two different paths of the form v − w − u and v − x− u in
H, or else H would have girth at most 4. Thus the number of 2-paths in H which start from
v is bounded by |BH(v, 2)| ≤ |BG(v, 2)| ≤ n(63/32)α, and thus P2(H) ≤ n1+(63/32)α.

On the other hand, note that instead of counting 2-paths in H by their starting vertex, we
could instead count them by their middle vertex. The number of 2-paths where v is the middle
node is

(
dH(v)

2
)
≥ dH(v)2/4, and thus P2(H) ≥

∑
v∈V (dH(v)2/4) = ‖H‖22/4. Combining

these two inequalities implies that ‖H‖2 ≤ 4n 1
2 + 63

64α, and hence the greedy spanner has
approximation ratio of at most ‖H‖2

‖H∗‖2
≤ 4n

1
2 + 63

64α

nα = 4n 1
2−

1
64α ≤ 4n 1

2−
1

128 = 4n63/128. J

4 Upper Bound: General Stretch

We now want to generalize the bounds from Section 3 to hold for larger stretch (2k − 1 in
particular) in order to prove Theorem 2. A natural approach would be an extension of the
stretch 3 analysis: if in Lemma 5 we replaced the bound of 2

√
n with 2n1/k, then the proof

of Theorem 4 could easily be extended to prove Theorem 2. Unfortunately this is impossible:
there are graphs of girth at least 2k+ 1 where it is not true that the number of edges incident
with nodes of degree at least 2n1/k is at most O(n). This can be seen from, e.g., [25] for
k = 3.

So we cannot just break the vertices into “high-degree” and “low-degree” as we did for
stretch 3. Instead, our decomposition is more complicated. We will still have low-degree nodes,
which can be analyzed trivially. But our definition of “high” will actually be parameterized
by a distance j, and we will define a node to be “high-degree” at distance j if its degree is
large relative to the expansion of its neighborhood at approximately distance j. We will also
introduce a new type of “medium-degree” node. In Section 4.1 we define this decomposition
and prove that it is a full decomposition of V , and then in Sections 4.2 and 4.3 we show that
no part in this decomposition can contribute too much to the overall cost.

First, though, we make one simple observation that will allow us to simplify notation by
only considering one particular value of p. While we could analyze general values of p as we
did for stretch 3 in Section 3.1, it is actually sufficient to prove the bound for the special
case of k and p where the two terms in the maximum are equal, i.e., when k+p

kp = 1.

I Lemma 8. Let k ≥ 1 be an integer, let G = (V,E) be a graph, and let H = (V,EH)
be the greedy (2k − 1)-spanner of G. If ‖H‖p′ = O(n) for p′ = k/(k − 1) then ‖H‖p ≤
max

(
O(n), O

(
n
k+p
kp

))
for all p ≥ 1.

Proof. First note that p′ = k/(k−1) if and only if k+p′
kp′ = 1. So we break into two cases, one

for p > p′ and one for 1 ≤ p < p′. For the first case, where p > p′, the result follows simply
because of the monotonicity of p-norms: ‖H‖p ≤ ‖H‖p′ = O(n) = max(O(n), O(n

k+p
kp ).

For the second case, where 1 ≤ p < p′, let q be the value such that 1 ≤ p ≤ p′ and
1
p′ + 1

q = 1
p . Recall that ~dH is the degree vector of H. Then Hölder’s inequality implies that

‖ ~dH‖p ≤ ‖ ~dH‖p′‖1‖q = n
1
p−

1
p′ ‖ ~dH‖p′ . Since by assumption we have ‖ ~dH‖p′ ≤ O(n), this

implies that ‖H‖p ≤ O(n1+ 1
p−

1
p′ ) = O(n

1
p−

k−1
k +1) = O(n

k+p
kp ), as claimed. J
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4.1 Graph Decomposition
Recall that di(v) denotes the number of vertices at distance exactly i from v. This will let
us define the following vertex sets.

I Definition 9. Let G = (V,E) be a graph of girth at least 2k + 1, with k ≥ 3. Then define

Vlow = {v ∈ V : d1(v) ≤ n1/k}

Vmed = {v ∈ V : n(k−2)/(k−1)d1(v)1/(k−1) ≤ dk−1(v)}

Vhigh,j = {v ∈ V : dk−2j−1(v) ≤ n1/(k−1)dk−2j−3(v)d1(v)(k−2)/(k−1)},

where 0 ≤ j ≤ b(k − 3)/2c.

It is not hard to see that this notion of high still corresponds to a deviation from regularity,
as in the stretch 3 setting; the difference is that this deviation is relative to the size of the
neighborhood at distance k − 2j − 1 vs the neighborhood at distance k − 2j − 3.

As we will see in Sections 4.2 and 4.3, analyzing the contribution of Vhigh,j to the p-
norm of the greedy spanner is in some sense the “main” technical step: analyzing Vlow is
straightforward, and analyzing Vmed, while nontrivial, turns out to be easier than the case
for Vhigh,j . Before we do this, though, we will show that we have a full decomposition of V :

I Theorem 10. Let G = (V,E) be a graph of girth at least 2k + 1, with k ≥ 3. Then
V = Vlow ∪ Vmed ∪

(
∪0≤j≤b(k−3)/2cVhigh,j

)
.

Proof. We prove the case when k is odd. The even case is similar. Assume that v /∈
∪0≤j≤b(k−3)/2cVhigh,j . Then by the definition of Vhigh,j , we know that dk−2j−1(v) >

n1/(k−1)dk−2j−3(v)d1(v)(k−2)/(k−1) for all j. Then a straightforward induction on j im-
plies that

dk−1(v) > n1/2d1(v)(k−2)/2. (1)

If further we assume that v /∈ Vlow, then d1(v) > n1/k, and thus

(d1(v))k(k−3)/(2(k−1)) > n(k−3)/(2(k−1)). (2)

Finally, assuming that v /∈ Vmed implies that

n(k−2)/(k−1)(d1(v))1/(k−1) > dk−1(v). (3)

If we then multiply inequalities (1), (2) and (3), after some elementary algebra we find that
1 > 1, a contradiction. Thus v ∈ Vlow ∪ Vmed ∪

(
∪0≤j≤b(k−3)/2cVhigh,j

)
. J

4.2 Structural Lemmas for High-Girth Graphs
With Theorem 10 in hand, it remains to bound the contribution to the p-norm of the spanner
of these different vertex sets. In order to do this, we start with a few useful lemmas (proofs
can be found in the full version [12]). We first give a simple lemma: if the girth is large
enough, then the neighborhoods around a node can be bounded by the neighborhoods around
its neighbors.

I Lemma 11. Let G = (V,E) have girth at least 2k+1 with k ≥ 2. Then
∑
w∈N1(v) dk−1(w) ≤

dk(v) + d1(v)dk−2(v) for all v ∈ V .
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With this lemma in hand, we will now prove a more complicated technical lemma which
will likewise hold for all high-girth graphs. For a given v, w with v ∈ N(w), we can consider
the fraction of the k-neighborhood of w which is also contained in the (k − 1)-neighborhood
of v. Then if we sum this fraction over all neighbors v of w, we would of course get 1
since the girth constraint would imply that any two neighbors of v cannot both be first
hops on paths to the same node in Nk(w). But what if we consider the slightly different
ratio of dk−1(v)/dk(w)? This is notably different since it includes in the numerator not just
Nk−1(v) ∩Nk(w), but also Nk−1(v) ∩Nk−2(w). It will prove useful for us to reason about
these values, so we show that “on average” they behave approximately the same: if we sum
over the neighbors of any given node then these fractions can add up to something quite
large (not 1), but overall they only add up to O(n).

I Lemma 12. Let k ≥ 1 be an integer, and let G = (V,E) have girth at least 2k + 1 and
minimum degree at least 4. Then

∑
w∈V

∑
v∈N(w)

dk−1(v)
dk(w) ≤ 2n.

The proof of this lemma is quite technical, but is done with an induction on k and careful
use of the arithmetic-harmonic mean inequality. While Lemma 12 is the main structural
result that we will use to bound the “high” degree nodes, the following corollary makes it
slightly simpler to use.

I Corollary 13. Let k ≥ 2 be an integer, and let G = (V,E) have girth at least 2k + 1 and
minimum degree at least 4. Then

∑
v∈V

(d1(v))2dk−2(v)
dk(v)+d1(v)dk−2(v) ≤ 2n.

4.3 Proving Theorem 2

We can now finally prove Theorem 2 by analyzing the contribution of the different sets in the
decomposition to any graph of girth at least 2k+1 (in particular, the greedy (2k−1)-spanner).
All missing proofs can be found in the full version [12].

The analysis of the low nodes is straightforward, while the analysis of the medium nodes
is slightly more complex. But the main difficulty is in the high nodes.

I Lemma 14. Let k ≥ 2 be an integer, let p = k
k−1 , and let G = (V,E) have girth at least

2k + 1. Then ‖Vlow‖p ≤ n.

We next bound the medium nodes.

I Lemma 15. Let k ≥ 2 be an integer, let p = k
k−1 , and let G = (V,E) have girth at least

2k + 1. Then ‖Vmed‖p ≤ n.

We now bound the high nodes, with one degree assumption which we will later remove.

I Lemma 16. Let G = (V,E) be a graph of girth at least 2k + 1 with k ≥ 3. Further
assume that the graph has minimum degree at least 4. Then ‖Vhigh,j‖k/(k−1) = O(n) for all
0 ≤ j ≤ b(k − 3)/2c.

Proof. We will break the high nodes into the following two sets:

V ′high,j = {v ∈ Vhigh,j : dk−2j−1(v) ≥ dk−2j−3(v)d1(v)}
V ′′high,j = {v ∈ Vhigh,j : dk−2j−1(v) < dk−2j−3(v)d1(v)}.



M.Dinitz, E. Chlamtáč, and T. Robinson 40:11

Obviously Vhigh,j = V ′high,j ∪ V ′′high,j , so we can bound each of the two sets separately. For
the first set, we get that

‖V ′high,j‖ k
k−1

=

 ∑
v∈V ′

high,j

(d1(v))
k
k−1


k−1
k

≤

 ∑
v∈V ′

high,j

n
1
k−1 d1(v)2dk−2j−3(v)

dk−2j−1(v)


k−1
k

≤

2
∑

v∈V ′
high,j

n
1
k−1 d1(v)2dk−2j−3(v)

dk−2j−1(v) + d1(v)dk−2j−3(v)


k−1
k

≤ 4n.

The first inequality is from the definition of Vhigh, the second is from the definition of V ′high,
and the final inequality is from Corollary 13.

To analyze V ′′high, note that dk−2j−1(v) + d1(v)dk−2j−3(v) < 2d1(v)dk−2j−3(v) by defini-
tion for all v ∈ V ′′high,j . Combining this with Corollary 13 implies that

‖V ′′high,j‖k/(k−1) ≤ ‖V ′′high,j‖1 =
∑

v∈V ′′
high,j

d1(v) =
∑

v∈V ′′
high,j

d1(v)2dk−2j−3(v)
d1(v)dk−2j−3(v)

≤ 2
∑

v∈V ′′
high,j

d1(v)2dk−2j−3(v)
dk−2j−1(v) + d1(v)dk−2j−3(v) ≤ 4n.

Thus ‖Vhigh,j‖k/(k−1) ≤ ‖V ′high,j‖k/(k−1) + ‖V ′′high,j‖k/(k−1) ≤ 8n. J

Putting this all together gives the following theorem.

I Theorem 17. Let G = (V,E) have girth at least 2k + 1, k ≥ 2 and minimum degree at
least 4. Then ‖G‖p ≤ O(kn) for p = k

k−1 .

Proof. We know from Theorem 10 that V = Vlow ∪Vmed ∪
(
∪0≤j≤b(k−3)/2cVhigh,j

)
for k ≥ 3.

Thus ‖G‖p ≤ ‖Vlow‖p+‖Vmed‖p+
∑b(k−3)/2c
j=0 ‖Vhigh,j‖p ≤ O (kn), where we used Lemmas 14,

15, 16, to bound the contribution of each set. If k = 2 then Vmed = V and the proof is similar
(alternatively see Theorem 4). J

We can now remove the degree assumption and the restriction to p = k
k−1 , to finally

prove Theorem 2.

Proof of Theorem 2. The case of k = 1 is trivial since every graph H has ‖H‖p ≤ O(n
p+1
p ).

For k ≥ 2, by Lemma 8, we may assume that p = k
k−1 . We will use induction on the number

of vertices of degree less than 4. If H has no vertices with degree less than 4, then Theorem 17
implies Theorem 2. Otherwise, let v ∈ V be a vertex of degree at most 3, and let G′ = G− v
be the graph obtained by removing v. Then it is easy to see that ‖ ~dG − ~dG′‖1 ≤ 6, since one
entry in the degree vector of value at most 3 gets removed and at most three other entries
get decreased by 1. Thus we can use triangle inequality and monotonicity of norms to get
that ‖G‖p − ‖G′‖p ≤ ‖ ~dG − ~dG′‖p ≤ ‖ ~dG − ~dG′‖1 ≤ 6. Hence by the induction hypothesis
we get that ‖G‖p ≤ O (kn) as required. J

5 Universal Lower Bound

As stated in Theorem 3, our lower bound can be calculated by a simple linear program of
size O(t) (where t is the stretch). We give this linear program formally in the full version [12].
The linear program assumes that the graph has a fairly regular structure. In particular, it
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assumes that the extremal t-spanner H is a layered graph with t+ 1 layers V0, . . . , Vt, such
that the subgraph induced on every two subsequent layers Vi, Vi+1 is bipartite and biregular
(in each side, all vertices have the same degree), and that the original extremal graph G (the
graph whose spanner H achieves the lower bound) in addition has a biregular graph between
V0 and Vt which contributes most of the p-norm of G, and is spanned by the layered graph
H. Such a spanner H can be briefly described by the cardinalities of the layers Vi and the
degrees of the bipartite graphs connecting every two consecutive layers.

As we show, this assumption is without loss of generality, in the sense that pruning any
graph to obtain this structure can change the p-norm of the graph or its spanner by at most
a polylogarithmic factor. The linear program captures the constraints that the parameters
of a spanner with such a regular structure must satisfy. These constraints are also sufficient
in the sense that given any solution to the linear program, we can construct a graph G and
spanner H of this form with the parameters given by this LP solution.

In fact, the extremal spanners which match our lower bound have a fairly specific structure
with consistent properties:

The layers in the extremal can be partitioned into three sections: an initial section in
which we have layers of decreasing size |V0| ≥ |V1| . . . ≥ |VL|, a middle section consisting
of equal size layers |VL| = . . . = |VL+C |, and a final section with layers of increasing size
|VL+C | ≤ . . . ≤ |VL+C+R|. In some cases one of the first two sections may be missing.
The bipartite graphs between every two consecutive layers in the spanner have the same
contribution to the p-norm of the spanner.
In addition to the edges in the spanner, the original graph also contains a biclique between
the outer layers V0 and Vt, so that ‖G‖p = Θ(|V0|1/p|Vt|).

The structure of these spanners has the property that given the lengths of the three sections,
we can derive the exact structure of the spanner, and hence the exact value of the lower
bound. In our analysis, we focus on this specific family of graphs, and show that it suffices
to describe our lower bound.

While the lower bound for p = 1 or p =∞ is simple, it turns out that the lower bound for
intermediate values of p is quite complex, and depends on the stretch t, the norm parameter
p, and the p-norm of the input graph Λ in a highly non-trivial way. To identify the extremal
spanners and prove their optimality, we look at the dual of our linear program, and for every
graph in our family of candidate extremal spanners, examine whether there exists a dual
solution which satisfies complementary slackness w.r.t. the primal LP solution corresponding
to our spanner. With this approach, for every p, t,Λ, we are able to identify the exact
constraints that the parameters of an optimal spanner from our family must satisfy, and give
an explicit solution, which gives our lower bound.

As an example, our analysis identifies the lower bound for relatively low values of p.

I Theorem 18. If t is even, then for all p ∈ [1, ϕ] (where ϕ = 1+
√

5
2 is the golden ratio),

LBpt (n,Λ) = Θ̃
(
max

{
n1/p,Λα

})
for α = 1/

(
(p+ 1)

(
1− ((p− 1)/p)t/2

))
.

If t is odd, then for all p ∈ [1, 2],

LBpt (n,Λ) = Θ̃
(
max

{
n1/p,Λβ

})
for β = 1/

(
1 + p

(
1− ((p− 1)/p)(t−1)/2

))
.

I Corollary 19. For all p ∈ [1, ϕ], we have LBp2(n,Λ) = Θ̃
(
max

{
n1/p,Λp/(p+1)}) . For all

p ∈ [1, 2], we have LBp3(n,Λ) = Θ̃
(

max
{
n1/p,

√
Λ
})

.
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Note that the dependence on n for this range of parameters is minimal. In fact, the only
dependence on n is due to the fact that any connected n-vertex graph (such as the spanner of
a connected n-vertex graph) must have p-norm at least n1/p. If we remove the condition that
the graph must be connected, the lower bounds in Theorem 18 become Θ̃(Λα) and Θ̃(Λβ).

For higher values of p, the lower bound becomes more complex. In particular, the
parameters which determine the extremal spanner depend not only on p and t, but also on
the p-log density of the graph, which we define to be logn(Λ) = logn(‖G‖p). This parameter
generalizes the notion of log-density, which is at the heart of several recent breakthroughs in
approximation algorithms [6, 10, 11, 14, 13], in which log-density was used to mean p-log
density for p = 1 or p = ∞. As in that line of work, the structure and parameters of the
graphs of interest here (the extremal spanners) is a function of the p-log density of our graph
which does not depend on n. The complete technical details of our lower bound appear in
the full version of the paper [12].

6 Future Work

In this paper we have initiated the study of graph spanners with cost defined by the `p-norm
of the degree vector, since this provides an interesting interpolation between the `1-norm
(only caring about the number of edges) and the `∞-norm (only caring about the maximum
degree). But we have only scratched the surface: many of the hundreds of results on
graph spanners can be extended or reexamined with respect to the `p-norm. There are also
some very interesting direct extensions of this paper that would be interesting to study. In
particular, we showed that the approximation ratio achieved by the greedy algorithm is
strictly better than the generic guarantee for the `2-norm with stretch 3, unlike the `1 and
`∞ norms. This suggests further study of the greedy algorithm in general, but also suggests
extending the recent line of work on approximation algorithms for graph spanners (mostly
using convex relaxations and rounding) to general `p-norms. The approaches taken for the
`1-norm in the past [16, 17, 5, 18] have been quite different from the approaches used for
the `∞-norm [23, 10, 9]; is there a way of interpolating between them to get even better
approximations for intermediate `p-norms?
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Abstract
We study the complexity of the classic capacitated k-median and k-means problems parameterized by
the number of centers, k. These problems are notoriously difficult since the best known approximation
bound for high dimensional Euclidean space and general metric space is Θ(log k) and it remains a
major open problem whether a constant factor exists.

We show that there exists a (3 + ε)-approximation algorithm for the capacitated k-median and
a (9 + ε)-approximation algorithm for the capacitated k-means problem in general metric spaces
whose running times are f(ε, k)nO(1). For Euclidean inputs of arbitrary dimension, we give a
(1 + ε)-approximation algorithm for both problems with a similar running time. This is a significant
improvement over the (7 + ε)-approximation of Adamczyk et al. for k-median in general metric
spaces and the (69 + ε)-approximation of Xu et al. for Euclidean k-means.
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1 Introduction

Clustering under capacity constraints is a fundamental problem whose complexity is still
poorly understood. The capacitated k-median and k-means problems have attracted a lot
of attention over the recent years (e.g.: [4, 22, 23, 24, 13, 3, 8, 6]), but the best known
approximation algorithm for capacitated k-median remains a somewhat folklore O(log k)-
approximation using the classic technique of embeddings the metric space into trees that
follows from the work of Charikar et al [5] on the uncapacitated version, see also [1] for a
complete exposition.

Arguably, the hardness of the problem comes from having both a hard constraint on the
number of clusters, k, and on the number of clients that can be assigned to each cluster.
Indeed, constant factor approximation algorithms are known if the capacities [22, 23] or
the number of clusters can be violated by a (1 + ε) factor [4, 13], for constant ε. Moreover,
the capacitated facility location problem admits constant factor approximation algorithms
with no capacity violation. On the other hand and perhaps surprisingly, the best known
lower bound for capacitated k-median is not higher than the 1 + 2/e lower bound for the
uncapacitated version of the problem.
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41:2 On the Fixed-Parameter Tractability of Capacitated Clustering

Thus, to improve the understanding of the problem a natural direction consists in obtaining
better approximation algorithms in some specific metric spaces, or through the fixed-parameter
complexity of the problem. For example, a quasi-polynomial time approximation scheme
(QPTAS) for capacitated k-median in Euclidean space of fixed dimension with (1+ε) capacity
violation was known since the late 90’s [2]. This has been recently improved to a PTAS
for R2 and a QPTAS for doubling metrics without capacity violation [9]. It remains an
interesting open question to obtain constant factor approximation for other metrics such as
planar graphs or Euclidean space of arbitrary dimension.

For many optimization problems are at least W[1]-hard and so obtaining exact fixed-
parameter tractable (FPT) algorithms is unlikely. However, FPT algorithms have recently
shown that they can help break long-standing barriers in the world of approximation
algorithms. FPT approximation algorithms achieving better approximation guarantees than
the best known polynomial-time approximation algorithms for some classic W[1]- and W[2]-
hard problems have been designed. For example, for k-cut [15], for k-vertex separator [21] or
k-treewidth-deletion [16].

For the fixed-parameter tractability of the k-median and k-means problems, a natural
parameter is the number of clusters k. The FPT complexity of the classic uncapacitated
k-median problem, parameterized by k, has received a lot of attention over the last 15 years.
From a lower bound perspective, the problem is known to be W[2]-hard in general metric
spaces and assuming the exponential time hypothesis (ETH), even for points in R4, there is
no exact algorithm running in time no(k) [10]. For R2 there exists an exact nO(

√
k) which is

the best one can hope for assuming ETH [10], see also [26].
From an upper bound perspective, coreset constructions and PTAS with running time

f(k, ε)nO(1) have been known since the early 00’s [12, 19, 17, 18, 14]. In the language of
fixed-parameter tractability, a coreset is essentially an “approximate kernel” for the problem:
given a set P of n points in a metric space, a coreset is, loosely speaking, a mapping from
the points in P to a set of points Q of size (k lognε−1)O(1) such that any clustering of Q of
cost γ can be converted into a clustering of P of cost at most γ ± εcost(OPT), through the
inverse of the mapping (where OPT is the optimal solution for P ). See Definition 9 for a
more complete definition.

In Euclidean space, several coreset constructions for uncapacitated k-median are inde-
pendent of the input size and of the dimension and so are truly approximate kernels. Thus
approximation schemes can simply be obtained by enumerating all possible partitions of
the coreset points into k parts, evaluating the cost of each of them and outputing the one
of minimum cost. However, obtaining similar results in general metric spaces seems much
harder and is likely impossible. In fact, obtaining an FPT approximation algorithm with
approximation guarantee less than 1 + 2/e is impossible assuming Gap-ETH, see [11].

For the capacitated k-median and k-means problems much less is known. First, the
coreset constructions or the classic FPT-approximation schemes techniques of [20, 12] do not
immediately apply. Thus, very little was known until the recent result of Adamczyk et al. [1]
who proposed a (7 + ε)-approximation algorithm running in time kO(k)nO(1). More recently,
a (69+ ε)-approximation algorithm for the capacitated k-means problem with similar running
time has been proposed by Xu et al. [28].

1.1 Our Results
We present a coreset construction for the capacitated k-median and k-means problems, with
general capacities, and in general metric spaces (Theorem 11). For an n points set, the
coreset has size poly(kε−1 logn).
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From this we derive a (3 + ε)-approximation for the k-median problem and a (9 + ε)-
approximation for the k-means problem in general metric spaces.

I Theorem 1. For any ε > 0, there exists a (3 + ε)-approximation algorithm for the
capacitated k-median problem and a (9 + ε)-approximation algorithm for the capacitated
k-means problem running in time (kε−1 logn)O(k)nO(1). This running time can also be
bounded by (k/ε)O(k)nO(1).

This results in a significant improvement over the recent results of Adamczyk et al. [1] for
k-median and Xu et al. [28] for (Euclidean) k-means, in the same asymptotic running time.

Moreover, combining with the techniques of Kumar et al. [20], we obtain a (1 + ε)-
approximation algorithm for points in Rd, where d is arbitrary. We believe that this is an
interesting result: while it seems unlikely that one can obtain an FPT-approximation better
than 1 + 2/e in general metrics, it is possible to obtain an FPT-(1 + ε)-approximation in
Euclidean metrics of arbitrary dimension. This works for both the discrete and continuous
settings: in the former, the set of centers must be chosen from a discrete set of candidate
centers in Rd and the capacities may not be uniform, while in the latter the centers can be
placed anywhere in Rd and the capacities are uniform.

I Theorem 2. For any ε > 0, there exists a (1 + ε)-approximation algorithm for the discrete,
Euclidean, capacitated k-means and k-median problems which runs in time (kε−1 logn)kε−O(1)

nO(1). This running time can also be bounded by (kε−1)kε−O(1)
nO(1).

I Theorem 3. For any ε > 0, there exists a (1+ε)-approximation algorithm for the continuous,
Euclidean, capacitated k-means and k-median problems running in time (kε−1 logn)kε−O(1)

nO(1). This running time can also be bounded by (kε−1)kε−O(1)
nO(1).

These two results are a major improvement over the 69-approximation algorithm of
Xu et al. [28].

1.2 Preliminaries
We now provide a more formal definition of the problems.

I Definition 4. Given a set of points V in a metric space with distance function d, together
with a set of clients C ⊆ V , a set of centers F ⊆ V with a capacity ηf ∈ Z+ for each f ∈ F,
and an integer k, the capacitated k-median problem asks for a set F ⊆ F of k centers and
an assignment µ : C 7→ F such that ∀f ∈ F , |{c | µ(c) = f}| ≤ ηf and that minimizes∑

c∈C d(c, µ(c)). We abbreviate the capacitated k-median instance as ((V, d), C,F, k).

I Definition 5. The capacitated k-means problem is identical, except we seek to minimize∑
c∈C d(c, µ(c))2.

In the literature, centers are sometimes called facilities, but we will use centers throughout
for consistency.

In the case of the capacitated Euclidean k-median and k-means, our approach works for
the two main definitions. First, the definition of [28, 20]: P = Rd and capacities are uniform,
namely ηf = ηf ′ , ∀f, f ′ ∈ Rd. Second, P is some specific set of points in Rd, and for each
f ∈ P , the input specifies a specific capacity ηf

I Definition 6. Given a capacitated k-median instance ((V, d), C,F, k) and a set of chosen
centers F ⊆ F, define CapKMed(C,F ) as the cost of the optimal assignment of the clients to
the chosen centers. If it is impossible, i.e., the sum of the capacities of the centers is less
than |C|, then CapKMed(C,F ) =∞.
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In our analysis, we will also encounter formulations where the clients have positive real
weights. In this case, we define a fractional variant of capacitated k-median, where the
assignment µ is allowed to be fractional.

I Definition 7. Suppose the clients also have weights, so we are given clients C and a weight
function w : C → R+. Let W ⊆ C × R+ be the set of pairs {(c, w(c)) : c ∈ C}. Then,
FracCapKMed(W,F ) is the minimum value of

∑
c∈C,f∈F µ(c, f) d(c, f) over all “fractional

assignments” µ : C × F → R+ such that:
1. ∀c ∈ C,

∑
f∈F µ(c, f) = w(c), i.e., µ is a proper assignment of clients, and

2. ∀f ∈ F ,
∑
c∈C µ(c, f) ≤ ηf , i.e., µ satisfies capacity constraints at all centers.

I Definition 8. We define CapKMeans(C,F ) and FracCapKMeans(W,F ) similarly, except
our objective functions are

∑
c∈C d(c, µ(c))2 and

∑
c∈C,f∈F µ(c, f) d(c, f)2, respectively.

It is well-known that, given a set F ⊆ F of centers, the problem of finding the optimum
µ is an (integral) minimum-cost flow problem, which can be solved in polynomial time.
Therefore, we assume that every time we have a set F ⊆ F, we can evaluate CapKMed(C,F )
and CapKMeans(C,F ) in polynomial time. Similarly, FracCapKMed and FracCapKMeans can
be solved through fractional min-cost flow, or even an LP, in polynomial time. Furthermore,
if W is exactly the set C of clients with weight 1, i.e., W = {(c, 1) : c ∈ C}, then
CapKMed(C,F ) = FracCapKMed(W,F ), since the min-cost flow formulation of FracCapKMed
has integral capacities and therefore integral flows as well.

We now formally state our definition of coresets, sometimes called strong coresets in the
literature.

I Definition 9. A (strong) coreset for a capacitated k-median instance ((V, d), C,F, k) is a
set of weighted clients W ⊆ C × R+ such that for every set of centers F ⊆ F of size k,

FracCapKMed(W,F ) ∈ (1− ε, 1 + ε) · CapKMed(C,F ).

The definition is identical for capacitated k-means, except CapKMed and FracCapKMed are
replaced by CapKMeans and FracCapKMeans above.

I Fact 10. Let W be a coreset for a capacitated k-median instance ((V, d), C,F, k). We have

min
F⊆F
|F |=k

FracCapKMed(W,F ) ∈ (1− ε, 1 + ε) · min
F⊆F
|F |=k

CapKMed(C,F ),

In particular, an α-approximation of minF⊆F,|F |=k FracCapKMed(W,F ) implies a (1+O(ε))α-
approximation to the capacitated k-median instance. The same holds in the capacitated k-
means case, with FracCapKMed and CapKMed replaced by FracCapKMeans and CapKMeans,
respectively.

For a capacitated k-median or k-means instance ((V, d), C,F, k), the aspect ratio is the
ratio of the maximum and minimum distances between any two points in C ∪ F . It is
well-known that we may assume, with a multiplicative error of (1 + o(1)) in the optimal
solution, that the instance has poly(n) aspect ratio.1 Therefore, we will make this assumption
throughout the paper.

1 For example, the following modification to the distances d does the trick. First, compute an O(log k)-
approximation [5] to the problem, and let that value be M . For any two points u, v ∈ C ∪ F with
d(u, v) > Mn10, truncate their distance to exactly Mn10. Then, add Mn−10 distance to each pair of
points u, v ∈ C ∪ F . The aspect ratio is now bounded by O(n20).
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Lastly, we define R+ and Z+ as the set of positive reals and positive integers, respectively.
As usual, we define with high probability (w.h.p.) as with probability 1−n−Z for an arbitrarily
large positive constant Z, fixed beforehand.

2 Coreset for k-median

In this section, we prove our main technical result for the k-median case: constructing a
coreset for capacitated k-median of size poly(k logn ε−1).

I Theorem 11. For any small enough constant ε ≥ 0, there exists a Monte Carlo algorithm
that, given an instance ((V, d), C,F, k) of capacitated k-median, outputs a (strong) coreset
W ⊆ C with size O(k2 log2 n/ε3) in polynomial time, w.h.p.

I Theorem 12. For any small enough constant ε ≥ 0, there exists a Monte Carlo algorithm
that, given an instance ((V, d), C,F, k) of capacitated k-means, outputs a (strong) coreset
W ⊆ C with size O(k5 log5 n/ε3) in polynomial time, w.h.p.

Our inspiration for the coreset construction is Chen’s algorithm [7] based on random
sampling. Our algorithm is essentially the same, with slightly worse bounds in the sampling
step, although our analysis is a lot more involved. We describe the full algorithm in
pseudocode below (see Algorithm 1).

At a high level, the algorithm first partitions the client set C into poly(k, logn) many
subsets, called rings, with the help of a polynomial-time approximate solution (see line 1).
The sets are called rings because they are of the form Ci ∩ (ball(f ′i , R) \ ball(f ′i , R/2)) for
some subset of clients Ci ⊆ C, some facility f ′i ∈ F, and some positive number R (see
line 7). Then, for each ring Ci,R, if |Ci,R| is small enough, the algorithm adds the entire ring
into the coreset (each with weight 1); otherwise, the algorithm takes a random sample of
r = poly(k, logn) many clients in Ci,R, weights each sampled client by |Ci,R|/r, and adds the
weighted sample to the coreset. The weighting ensures that the total weight of the sampled
points is always equal to |Ci,R|. To prove that the algorithm produces a coreset w.h.p., Chen
union bounds over all

(|F|
k

)
choices of a set of k facilities, and shows that for each choice

F ⊆ F, with probability at least 1− n−Ω(k), the total cost to assign the coreset points to F
is approximately the total cost to assign the original clients C to F ; this statement is proved
through standard concentration bounds. More details and intuition for the algorithm can be
found in Section 3 of Chen’s paper [7].

2.1 Single ring case
We first restrict ourselves to sampling from a single ring Ci,R ⊆ C. That is, while we
still consider the cost of serving the clients outside of Ci,R, we only perform the sampling
(lines 12–13) on one ring Ci,R. The general case of O(k logn) many rings is more complicated
than simply treating each ring separately. Due to space constraints, we only consider the
single ring case in this extended abstract, and the rest is deferred to the full version.

Fix an arbitrary ring Ci,R throughout this section, and define C ′ := Ci,R for convenience.
Let N := |C ′| be the number of clients, and let f ′ := f ′i be the ring center of C ′ (line 4).
Let W ′ be the (weighted) centers in Ci,R sampled by the algorithm (lines 12–13), together
with the (unweighted) centers in C \ C ′, which have weight 1. Our goal is to show that
FracCapKMed(W ′, F ), the cost after sampling only from C ′, is close to the original cost
CapKMed(C,F ).
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41:6 On the Fixed-Parameter Tractability of Capacitated Clustering

Algorithm 1 CoreSet(I).
1: F ′ = {f ′1, . . . , f ′O(k)} ← an (O(1), O(1)) bicriteria solution to instance I, namely a

capacitated O(k)-median solution with total cost ALG′ ≤ O(OPT ) . using, e.g., [23]
2: W ← ∅ . W ⊆ C × R+ is the final coreset at the end of the algorithm
3: Define dmin and dmax as the minimum and maximum distances, respectively, between

any two points in C ∪ F . dmax/dmin is the aspect ratio
4: for each center f ′i do . O(k) centers
5: Ci ← the clients in C assigned to center f ′i
6: for each R, a power of 2 in the range [dmin, 2dmax] do . O(logn) iterations,

assuming poly(n) aspect ratio
7: Ci,R ← Ci ∩ (ball(f ′i , R) \ ball(f ′i , R/2)) . We call the sets Ci,R rings, with ring

center f ′i . The rings Ci,R over all i, R partition the client set C.
8: r ← γk logn/ε3 for sufficiently large (absolute) constant γ
9: if |Ci,R| ≤ r then
10: add (c, 1) to W for each c ∈ Ci,R . Ci,R small enough: add everything into

coreset
11: else
12: sample r random centers in Ci,R (without replacement)
13: add (c, |Ci,R|r ) to W for each sampled center c . weighted so that total weight

is still |Ci,R|

I Lemma 13. W.h.p., for any set of k centers F ⊆ F satisfying CapKMed(C,F ) <∞,

|FracCapKMed(W ′, F )− CapKMed(C,F )| ≤ εNR. (1)

It is clear that the output W has size O(k2 log2 n/ε3). The rest of this section focuses on
proving that W is indeed a coreset, w.h.p.

The intuition behind the εNR additive error is that we can “charge” this error to the
cost of the bicriteria solution (line 1) that C ′ is responsible for. In particular, the total cost
of assigning clients in C ′ to ring center f ′ in the bicriteria solution is at least N ·R/2, since
all clients in C ′ are distance at least R/2 to f ′. Therefore, we charge an additive error of
εNR to a NR/2 portion of ALG′, which is a “rate” of 2ε to 1. If we can do the same for
all rings, then since the portions of ALG′ sum to ALG′, our total additive error is at most
2ε · ALG′ = O(ε) · OPT . Finally, replacing ε with a small enough Θ(ε) gives the desired
additive error of ε · OPT ; note that this is where we use that the approximation ratio of
ALG′ is O(1), and that the specific approximation ratio is not important (as long as it is
constant). The formalization of this intuition is deferred to the full version; the argument is
identical to Chen’s [7], so we claim no novelty here.

We now prove Lemma 13. First of all, if N = |C ′| ≤ r (line 9), then sampling changes
nothing, and FracCapKMed(W ′, F ) = CapKMed(C,F ). Therefore, for the rest of the proof,
we assume that N > r = γk logn/ε3, with the γ taken to be a large enough constant.

Our high-level strategy is the same as Chen’s: we union bound over all sets of centers
F ⊆ F of size k, and prove that for a fixed set F , the probability of violating (1) is at
most n−(k+10).2 Union bounding over all ≤

(
n
k

)
choices of F gives probability ≤ n−10 of

2 For simplicity of presentation, we will focus on a success probability of 1− n−10. The constants can
be easily tweaked so that the algorithm succeeds w.h.p., i.e., with probaility 1− n−Z for any positive
constant Z.
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violating (1), proving the lemma. Therefore, from now on, we focus on a single, arbitrary
set F ⊆ F of size k satisfying CapKMed(C,F ) < ∞, and aim to show that (1) fails with
probability ≤ n−(k+10).

For our analysis, we define a function g : RC′+ → R+ as follows. For an input vector
d ∈ RC′+ (indexed by clients in C ′), consider a min-cost flow instance FlowInstance(d) on the
graph metric with the following demands: set demand dc at each client c ∈ C ′, demand 1
at each client c ∈ C \ C ′, and demand N −

∑
c∈C′ dc (this demand can be negative) at ring

center f ′ = f ′i (so we are effectively treating f ′ as a special client with possibly negative
demand, not a facility). Observe that FlowInstance(d) is a feasible min-cost flow instance,
because the sum of demands is exactly

∑
c∈C′

dc + |C \ C ′|+
(
N −

∑
c∈C′

dc

)
= |C \ C ′|+N = |C|,

which is the same as the sum of demands in the instance CapKMed(C,F ), which is feasible
by assumption.

Given this setup for an input vector d ∈ RC′+ , we define the function g(d) as the min-cost
flow of FlowInstance(d). Observe that g(1) is exactly CapKMed(C,F ).

Now define a random vector X ∈ RC′+ as follows. Each coordinate of X is independently
N/r with probability r/N and 0 otherwise, so that E[X] = 1. Note thatX does not accurately
represent our sampling of r clients, since this process is not guaranteed to sample exactly
r clients. Nevertheless, it is intuitively clear that with probability Ω(1/n), X will indeed
have exactly r nonzero entries, since r is the expected number; we prove this formally in the
following simple claim (with p = r/N), whose routine proof is deferred to the full version. And
if we condition on this event, then g(X) and CapKMed(C,F ) are now identically distributed.

B Claim 14. Let N be a positive integer, and let p ∈ (0, 1) such that pN is an integer. The
probability that Binomial(N, p) = pN is at least Ω(1/

√
N).

In light of all this, our main argument has two steps. First, we show that g(X) is
concentrated around E[g(X)] using martingales. However, what we really need is con-
centration around g(E[X]) = g(1) = CapKMed(C,F ), so our second step is to show that
E[g(X)] ≈ g(E[X]) (with probability 1). We formally state the lemmas below which, as
discussed, together imply Lemma 13.

I Lemma 15. Assume that |C ′| > Θ(k logn/ε3). With probability ≥ 1− n−(k+20), we have
|g(X)− E[g(X)]| ≤ εNR/2.

I Lemma 16. Assume that |C ′| > Θ(k logn/ε3). Then, |E[g(X)]− g(E[X])| ≤ εNR/2.

2.1.1 Proof of Lemma 15: concentration around E[g(X)] via
martingales.

To show that g(X) is concentrated around its mean, we show that g is sufficiently Lipschitz
(w.r.t. the `1 distance in RC′+ ), and then apply standard martingale tools.

B Claim 17. The function g is R-Lipschitz w.r.t. the `1 distance in RC′+ .

Proof. Fix a client c ∈ C ′, and consider two vectors d,d′ ∈ RC′+ with d′ = d + δ · 1c. By
definition of FlowInstance, the only difference between FlowInstance(d) and FlowInstance(d′)
is that in FlowInstance(d′), client c has δ more demand and “special client” f ′ has δ less
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demand. Therefore, if we begin with the min-cost flow of FlowInstance(d), and then add
δ units of flow from c to f ′, then we now have a feasible flow for FlowInstance(d′).3 This
means that

g(d′) ≤ g(d) + δR.

Similarly, starting from a min-cost flow of FlowInstance(d′) and then adding δ units of flow
from f ′ to c, we obtain a feasible flow for FlowInstance(d), so

g(d) ≤ g(d′) + δR.

Together, these two inequalities show that g is R-Lipschitz. C

We state the following Chernoff bound for Lipschitz functions, which can be proven by
adapting the standard (multiplicative) Chernoff bound proof to a martingale.

I Theorem 18. Let x1, . . . , xn be independent random variables taking value b with probability
p and value 0 with probability 1− p, and let g : [0, 1]n → R be a L-Lipschitz function in `1
norm. Define X := (x1, . . . , xn) and µ := E[g(X)]. Then, for 0 ≤ ε ≤ 1:

Pr
[∣∣g(X)− E[g(X)]

∣∣ ≥ εpnbL] ≤ 2e−ε
2pn/3

We apply Theorem 18 on the L-Lipschitz function g with the randomly sampled demands.
Set p := r/N as the sampling probability, so that X ∈ {0, 1/p}N is the random demand
vector. Setting n := N , b := 1/p, and L := R, we obtain

Pr
[∣∣g(X)− E[g(X)]

∣∣ ≥ (ε/2)NR
]

= Pr
[∣∣g(X)− E[g(X)]

∣∣ ≥ (ε/2)pnbL]

≤ 2 exp
(
−(ε/2)2pn

3

)
= 2 exp

(
−(ε/2)2(r/N)N

3

)
= exp

(
−Θ(ε2r)

)
= exp

(
−Ω(ε2 · k logn

ε2
)
)

≤ n−(k+20)

for sufficiently large γ in the definition of r = γk logn/ε2. This concludes Lemma 15.

2.1.2 Proof of Lemma 16: relating E[g(X)] with g(E[X]).
We have obtained concentration about E[g(X)], but we really need concentration around
g(E[X]) = CapKMed(C ′, F ). We establish this by proving Lemma 16.

We first show the easy direction, that g(E[X]) ≤ E[g(X)], which essentially follows from
the convexity of min-cost flow: Suppose the outcomes of random variable X are d1,d2, . . .

with respective probabilities µ1, µ2, . . ., so that E[g(X)] =
∑
i µig(di). Now consider the

flow obtained by adding up, for each i, the min-cost flow of FlowInstance(di) scaled by µi.
This flow is a feasible flow to FlowInstance(E[X]) and has cost at most E[g(X)]. Since the
min-cost flow of FlowInstance(E[X]) can only be lower, we have g(E[X]) ≤ E[g(X)].

We now prove the other direction: E[g(X)] ≤ g(E[X]) + εNR/2.

3 We define demand so that if a vertex v has d > 0 demand, then d flow must exit v in a feasible flow,
and if it has d < 0 demand, then |d| flow must enter v.
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B Claim 19. With probability 1, g(X) ≤ g(E[X]) + nNR.

Proof. Since X ∈ [0, N/r]N , and since g is R-Lipschitz, the entire range of g(X) is contained
in some interval of length N ·N/r ·R ≤ N · n ·R. Since E[X] ∈ [0, N/r]N as well, the value
g(E[X]) is also contained in that interval. The statement follows. C

I Lemma 20. With probability ≥ 1− n−10, g(X) ≤ g(E[X]) + 0.49εNR.

Due to space constraints, the proof of Lemma 20, which is long and technical, is deferred to
the full version. Assuming Lemma 20, we now show how Claim 19 and Lemma 20 together
imply Lemma 16: we have

E[g(X)] ≤ n−10 ·
(
g(E[X]) + nNR

)
+ (1− n−10)

(
g(E[X]) + 0.49εNR

)
= g(E[X]) +

(
n−10 · n+ (1− n−10) · 0.49ε

)
NR

≤ g(E[X]) + (ε/2)NR,

finishing the proof of Lemma 16.

2.2 (3 + ε)- and (9 + ε)-approximation – Proof of Theorem 1
In this section, we finish the algorithm for Theorem 1. We will focus mainly on the k-median
case, since the k-means case is nearly identical.

Suppose we run the coreset for the capacitated k-median instance with parameter ε0 (to
be set later), obtaining a coreset W ⊆ C × R+ of size poly(k logn ε−1

0 ). We now want to
compute some F ⊆ F of size k and an assignment µ of the clients in W to F minimizing∑

(c,w)∈W w · d(c, µ(c)). By definition of coreset, if we compute an α-approximation to this
problem, then we compute a (1 + ε0)α-approximation to the original capacitated k-median
problem.

The strategy is similar to that in [11]: we guess a set of leaders and distances that match
the optimal solution. More formally, let F ∗ = {f∗1 , . . . , f∗k} ⊆ F be the optimal solution with
assignment µ∗. For each f∗i ∈ F ∗, let (µ∗)−1(f∗i ) be the clients in the coreset assigned by µ∗
to f∗i , and let `i be the client in (µ∗)−1(f∗i ) closest to f∗i . We call `i the leader of the client
set (µ∗)−1(f∗i ). Also, let Ri be the distance d(f∗i , `i), rounded down to the closest integer
power of (1 + ε1) for some ε1 we set later.

The algorithm begins with an enumeration phase. There are |W |k choices for the
set {`1, . . . , `k}, and O(ε−1

1 logn)k choices for the values R1, . . . , Rk, since we assumed
that the instance has aspect ratio poly(n). So by enumerating over |W |kO(ε−1

1 logn)k =
(k logn ε−1

0 ε−1
1 )O(k) choices, we can assume that we have guessed the right values `i and Ri.

For each leader `i, define Fi as the centers f ∈ F satisfying d(`i, f) ∈ [1, 1 + ε1) ·Ri. Note
that f∗i ∈ Fi for each i. Next, the algorithm wants to pick the center in each Fi with the
largest capacity. This way, even if it doesn’t pick f∗i for Fi, it picks a center not much farther
away that has at least as much capacity.

The most natural solution is to greedily choose the center with largest capacity in each
Fi. One immediate issue with this approach is that we might choose the same center twice,
since the sets Fi are not necessarily disjoint. Note that this issue is not as pronounced in the
uncapacitated k-median problem, since in that case, we can always imagine choosing the same
center twice and then throwing out one copy, which changes nothing. In the capacitated case,
choosing the same center twice effectively doubles the capacity at that center, so throwing
out a copy affects the capacity at that center.

ICALP 2019
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One simple fix to this issue is the simple idea of color-coding, common in the FPT literature:
for each center f ∈ F, independently assign a uniformly random label in {1, 2, 3, . . . , k}.
With probability 1/kk, each f∗i ∈ F ∗ is assigned label i. Moreover, repeating this routine
O(kk logn) times ensures that w.h.p., this will happen in some iteration. So with a O(kk logn)
multiplicative overhead in the running time, we may assume that each f∗i is assigned label i.

The algorithm now chooses, from each Fi, the center with the largest capacity among all
centers with label i. Since f∗i is an option for each Fi, the center chosen can only have larger
capacity. Let the center chosen from Fi be fi. Let F := {f1, . . . , fk} be our chosen centers.

We now claim that F is a (3 + ε1)-approximation. Recall µ∗, the optimal assignment to
the centers F ∗; we construct an assignment µ to F as follows: for each client c in the coreset,
if µ∗ assigns c to center f∗i , then we set µ(c) = fi. Observe that if µ∗(c) = f∗i , then

d(c, fi) ≤ d(c, f∗i )+d(f∗i , `i)+d(`i, fi) ≤ d(c, f∗i )+2(1+ε1)Ri ≤ d(c, f∗i )+2(1+ε1)·d(c, f∗i ),

where the first inequality follows from triangle inequality, the second follows since both f∗i
and fi are approximately Ri away from `i, and the third follows from d(c, f∗i ) ≥ d(`i, f∗i ) ≥ R
by our choice of `i. Therefore, we have d(c, µ(c)) = d(c, fi) ≤ (3 + 2ε1)d(c, f∗i ) = (3 +
2ε1)d(c, µ∗(c)). Altogether, the total cost of the assignment µ is∑

(c,w)∈W

w · d(c, µ(c)) ≤
∑

(c,w)∈W

w · (3 + 2ε1)d(c, µ∗(c)) = (3 + 2ε1)OPT.

The optimal assignment can only be better, hence the (3+2ε1)-approximation. This implies a
(1+ε0)(3+2ε1)-approximation in time poly(k logn ε−1

0 ε−1
1 )O(k). Finally, setting ε0, ε1 := Θ(ε),

for Θ(·) small enough, guarantees a (3 + ε)-approximation in time (k logn ε−1)O(k)nO(1).
Lastly, we show that the (logn)O(k) factor in the running time can be upper bounded by

kO(k)nO(1), proving the second running time in Theorem 1. If k < logn
log logn , then (logn)O(k) =

(logn)
logn

log logn = nO(1); otherwise, k > logn
log logn ≥

√
logn, so (logn)O(k) ≤ (k2)O(k). Therefore,

the running time in Theorem 1 is at most O(k/ε)O(k)nO(1).
For k-means, the algorithm and analysis are identical, except that the total cost is now

(c,w)∈Ww · d(c, µ(c))2 ≤
∑

(c,w)∈W

w ·
(
(3 + 2ε1)d(c, µ∗(c))

)2 = (9 +O(ε1))OPT,

implying a (9 + ε)-approximation. This concludes the proof of Theorem 1.

3 A (1 + ε)-Approximation for Euclidean Inputs

3.1 The Continuous (Uniform-Capacity) Case – Proof of Theorem 3
In this section we consider the continuous case: namely the case where centers can be located
at arbitary position in Rd and the capacities are uniform and η ≥ n/k.

Let ε > 0. Given a set of points P , denote by OPT1(P ) the location of the optimal center
of P (namely, the centroid of P in the case of the k-means problem or the median of P in
the case of the k-median problem). We will make us of the following lemma of [20].

I Lemma 21 (Lemma 5.3 in [20]). Let P be a set of points in Rd and X be a random sample
of size O(ε−3 log(1/ε)) from P and a and b such that a ≤ cost(P,OPT1(P )) ≤ b. Then, we
can construct a set Y of O(21/εO(1) log(b/εa)) points such that with constant probability there
is at least one point z ∈ X ∪ Y satisfying cost(P, {z}) ≤ (1 + 2ε)cost(P,OPT1(P )). Further,
the time taken to construct Y from X is O(21/εO(1) log(b/εa)d).
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Our algorithm for obtaining a (1 + ε)-approximation is as follows:
1. Compute a coreset C for capacitated k-median as described by Lemma 21, and an estimate

γ of the value of OPT using the classic O(logn)-approximation.
In the remaining, we assume that the minimum pairwise distance between pairs of points
of C is at least εγ/(n logn) since otherwise one can simply take a net of the input and
the additive error is at most εOPT (see e.g.: [11]). Moreover, we assume that there is no
cluster containing only one point of the coreset since these clusters can be “guessed” and
dealt with separately.

2. Start with C = ∅, then for each subset S of C of size O(ε−3 log(k/ε)), for each s = (1 + ε)i
in the interval [εγ/(n logn), γ] apply the procedure of Lemma 21 with a = s and b =
(1 + ε)a and add the output of the procedure to C. We refer to C as a set of approximate
candidate centers.

3. Consider all subsets of size k of C. For each subset, compute the cost of using this set
of centers for the capacitated k-median instance by using a min cost flow computation.
Output the set of centers of minimum cost.

We first discuss the running time of the algorithm. The time for computing the coreset
is polynomial by Theorem 11. Generating C takes |C|O(ε−3 log(1/ε)) · 21/εO(1) log((1 + ε)/ε)d
time. For the last part, namely enumerating all subsets of C of size k, the running time is
|C|O(kε−3 log(1/ε)) ·2k/εO(1) logk((1+ε)/ε). Theorem 11 implies that |C| = poly(k logn ε−1) and
so, the algorithm has running time (k logn ε−1)kε−O(1)

nO(1). Again, the (logn)kε−O(1) factor
can be upper bounded by (k/ε)kε−O(1) or nO(1) based on whether or not kε−O(1) < logn

log logn ,
hence the improved running time in Theorem 3.

We show that this algorithm provides a (1+O(ε))-approximation. Theorem 11 immediately
implies that the solution found for the coreset C can be lifted to a solution for the original
input at a cost of an additive O(εOPT). For any (possibly weighted) set of client A and set
of centers B, we define cost(A,B) to be the cost of the best assignment of the clients in A to
the centers of B.

I Lemma 22. The C computed by the algorithm contains a set of centers S̃ that is such that
cost(C, S̃) ≤ (1 + ε)cost(C,OPT).

Proof. This follows almost immediately from Lemma 21. By Lemma 21, for each cluster C∗i
of OPT, there exists a set S∗i ⊆ C∗i of size at most O(ε−3 log(k/ε)) such that applying the
procedure of Lemma 21 with the correct value of a to S∗i yields a set of points containing a
point zi such that cost(C∗i , zi) ≤ (1 + 2ε)cost(C∗i ,OPT). Since the algorithm iterates over all
subsets of size O(ε−3 log(k/ε)), and that the pairwise distance is at least εOPT/n, it follows
that S∗i is one of the subset considered by the algorithm, and so zi is part of C. J

Finally, since the algorithm iterates over all subsets of C of size at most k, Lemma 22
implies that there exists a set {z1, . . . , zk} that is considered by the algorithm and on which
solving a min cost flow instance yields a solution of cost at most (1 +O(ε))cost(P,OPT).

3.2 The Non-Uniform Case – Proof of Theorem 2
We now consider the non-uniform case. In this setting, the input consists of a set of points in
Rd together with a set of candidate centers in Rd and a capacity ηf for each such candidate
center. We make use of the following lemma. As slightly worse bound for the lemma can
also be found in [25].
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I Lemma 23 ([27]). Let ε ∈ (0, 1) and X ⊆ Rd be arbitrary with X having size n > 1.
There exists f : Rd 7→ Rm with m = O(ε−2 logn) such that ∀x ∈ X, ∀y ∈ Rd, ||x − y||2 ≤
||f(x)− f(y)||2 ≤ (1 + ε)||x− y||2.

We describe a polynomial-time approximation scheme. Let ε > 0. The algorithm is as
follows. The first step of the algorithm is identical to the continous case.

1. Compute a coreset C for capacitated k-median as described by Theorem 21, and an
estimate γ of the value of OPT using the classic O(logn)-approximation.
In the remaining, we assume that the minimum pairwise distance between pairs of points
of C is at least εγ/(n logn) since otherwise one can simply take a net of the input and
the additive error is at most εOPT (see e.g.: [11]). Moreover, we assume that there is no
cluster containing only one point of the coreset since these clusters can be “guessed” and
dealt with separately.

2. Apply Lemma 23 to the points of the coreset to obtain a set of points in a Euclidean
space of dimension log k+log logn

εO(1) . Let C∗ and A∗ be respectively the image of the coreset
points and of the candidate centers through the projection.

3. Start with V = ∅ For each point p of the coreset do the following: For each i ∈
{1, 2, . . . , n2}, consider the ith-ring defined by ball(p, (1 + ε)iεγ/(n logn)) \ ball(p, (1 +
ε)i−1εγ/(n logn)) and choose an ε · (1+ ε)iεγ/(n logn)-net. Consider the Voronoi diagram
induced by the points of the net. Then, for each Voronoi cell, add to V the k candidate
centers of A∗ in the cell that are of maximum capacity.

4. Enumerate all possible subset of V of size k and output the one that leads to the solution
of minimum cost.

3.2.1 Correctness

Theorem 11 implies that finding a near-optimal solution for the coreset points yields a
near-optimal solution for the input point set.

Lemma 23 immediately implies that, given the coreset construction C, and the projection of
the coreset points onto a log k+log logn

εO(1) -dimensional Euclidean space, finding a near-optimal set
of centers in A∗ yields a near-optimal set of centers in A through the inverse of the projection.

Therefore, it remains to show that the set V contains a set of candidate centers that
yields a near-optimal solution. To see this, consider each center of the optimal solution in A∗.
For each such optimal center f , consider the closest coreset point c(f) together with the ring
of c(f) containing f . Let j be the index of this ring, namely f ∈ ball(p, (1 + ε)jεγ/(n logn)) \
ball(p, (1 + ε)j−1εγ/(n logn)).

By definition of the net, there exists a point p of the net at distance at most ε · ball(p, (1 +
ε)jεγ/(n logn)) ≤ 2ε||c− c(f)||2 from c(f). Therefore, consider the Voronoi cell of p and the
top-k candidate centers in terms of capacity. If f is part of this top-k, then f is part of V
and we are done. Otherwise, it is possible to associate to f a center f∗ that has capacity at
least the capacity of f , and so for all the optimal centers simultaneously since we consider
the top-k. Therefore, consider replacing f by f∗ in the optimal solution. The change in cost
is at most, by the triangle inequality, 4ε||c − c(f)||2 since both centers are in the Voronoi
cell of p. Finally, since c is the closest client to c(f), the cost increases by a factor at most
(1 + 4ε) for each client and the correctness follows.
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3.2.2 Running time
We now bound the running time. The first two steps are clearly polynomial time. An
ε · (1 + ε)iεγ/(n logn)-net of a ball of radius (1 + ε)iεγ/(n logn) has size ε−O(d) and so in this
context, after Step 2, a size ε−( log k+log logn

εO(1) ). Since for each element of the net, k centers are
chosen and since the number of rings is, by Step 1, at most O(ε−2 logn), the total size of V is at
most |C|kε−2 lognε−( log k+log logn

εO(1) ) which is at most |C|ε−2(k logn)ε−O(1) = (kε−1 logn)ε−O(1) .
Enumerating all subsets of size k takes time (kε−1 logn)kε−O(1) and the theorem follows.
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conjectures.
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1 Introduction

How well can we approximate the k-Median and k-Means clustering problems? This
question has been intensively studied over the past two decades, and many interesting
algorithmic techniques have been developed and refined in an attempt to understand these
problems. Let us elaborate for the k-Median problem; the story for k-Means is much the
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42:2 Tight FPT Approximations for k-Median and k-Means

same. Recall that in the k-Median problem, given a metric space (V, d) with n points and
clients at some of the points, the goal is to open k facilities such that the sum of distances
from the clients to their closest facilities is minimized.

The first constant-factor approximation algorithm for k-Median was given by Charikar
et al. [6]. After many interesting developments (e.g., primal-dual schemes, sophisticated LP
rounding schemes, and pseudo-approximations), today the best approximation guarantee is
2.611 [3]. The best lower bound, however, is still the (1 + 2/e)-hardness from 1998, due to
Guha and Khuller [16]. In this paper, we ask: can we do better if we give ourselves more
resources? The problem can be solved exactly by brute-force enumeration in time nk+O(1),
but what can we do, say, in FPT time f(k)nO(1)?

We cannot hope to solve the problem exactly in FPT time: the reduction of Guha and
Khuller also shows a W [2]-hardness for finding the optimal solution for k-Median/k-Means
exactly. Naturally, we then ask what we can achieve by combining the two approaches
together, and whether good approximation algorithms can be given in FPT time.

Our Results. Our main algorithmic result is a positive result in this direction:

I Theorem 1 (Algorithm for k-Median/k-Means). For every ε > 0, there is a (1+2/e+ε)-
approximation algorithm for the k-Median problem, that runs in time FPT time, i.e., in
f(k, ε)nO(1) time. For the k-Means problem, we can achieve a (1 + 8/e+ ε)-approximation
in the same runtime.

The approximation guarantees in Theorem 1 match the NP-hardness results for the
two problems implied by [16]. However, since we are allowing ourselves FPT time and not
just poly(n, k) time, can we do even better and go past this NP-hardness barrier? Our
second main result shows that this is not possible, at least under recent complexity-theoretic
conjectures. We prove that the results in Theorem 1 are essentially tight, assuming the
Gap-Exponential Time Hypothesis [12, 24, 5]:

I Theorem 2 (Hardness). There exists a function g : R+ → R+ such that assuming the
Gap-ETH, for any ε > 0, any (1 + 2/e − ε)-approximation algorithm for k-Median, and
any (1 + 8/e− ε)-approximation for k-Means, must run in time at least nkg(ε) .

The basic component of the above hardness result is an FPT-hardness of a factor of
(1 − 1/e) for the Max k-Coverage problem, again using the Gap-ETH (Theorem 15).
Composing that hardness result with the reduction of Guha and Khuller [16] gives us
Theorem 2 above.

Matroid Median. Finally, using our algorithmic techniques, we are able to also give an
improved approximation for the matroid-median problem, which is a generalization of the
k-Median problem.

I Theorem 3 (Algorithm for Matroid Median). There is a (2+ε)-approximation algorithm
for the Matroid Median problem, that runs in time FPT time, i.e., in f(k, ε)nO(1) time.

Since the Matroid Median problem is a generalization of the k-Median problem,
the (1 + 2/e− ε)-hardness from Theorem 2 translates immediately to Matroid Median.
It remains an open problem to close the gap between this lower bound and the (2 + ε)-
approximation in Theorem 3. We can also use our ideas to get an (3 − 2

p+1 + ε) for the
p-Matroid Median problem.
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Facility Location. Facility Location is a problem closely related to k-Median, where
each facility has an opening cost and the goal is to open facilities to minimize the sum
of distances from clients to their closest facilities plus the sum of the total opening costs.
For this problem, the best known hardness ratio is αFL ≈ 1.463 [16], which is defined
to be maxx≥0

(
1 + x

1+x ln 2
x

)
. On the other hand, the best algorithm achieves an 1.488-

approximation [21]. When the parameter k denotes the number of facilities open in the
optimal solution, we prove that our techniques also give an FPT algorithm for Facility
Location whose approximation ratio matches the hardness ratio of [16].

I Theorem 4 (Algorithm for Facility Location). There is a (αFL + ε)-approximation
algorithm for the Facility Location problem, that runs in time FPT time, i.e., in
f(k, ε)nO(1) time.

Roadmap. In Section 2, we describe the approximation algorithms for these problems. We
assume throughout that the aspect ratio is polynomially bounded. ( In the full version of
the paper, we show that this assumption is without loss of generality, in the case we consider
where the clients have unit weights.) In Section 3, we then give the hardness results for FPT
Max k-Coverage, k-Median, and k-Means.

1.1 Our Techniques
The algorithm is inspired by the hardness result from [16]: it relies on the result of Feige [13]
that Max k-Coverage is hard to approximate better than (1− 1/e). Hence, if we build a
“factor graph” with sets on one side and elements on another, with edges indicating inclusion,
picking k sets covers (1− 1/e) elements at distance 1, and the remaining at distance at least
3 – hence 1 + 2/e. Now what if we have a general instance, with different distances? We show
how to do limited enumeration (in FPT) time to restrict our choices to picking one facility
each from k disjoint sets. Moreover, via a surprisingly clean idea we can model the objective
as submodular maximization (subject to a partition matroid constraint). And this problem
can be approximated well: the factor again is (1− 1/e), hence giving the same factor upto
additive ε terms!

The matching hardness result is via showing an FPT hardness for Max k-Coverage
assuming the Gap-ETH. Firstly, we show that assuming the Gap-ETH, there is no FPT
approximation algorithm for Label Cover problem parameterized by the number of vertices
k on one side of the bipartition. (Trying all labelings on one side takes time O(nk+O(1)),
and doing much better is hard.) To do this, we construct a variable-clause game from a
3-SAT instance, merge clause vertices into ` super-vertices, and then use r rounds of parallel
repetition. (The number of clause vertices becomes k := `r.) Then we compose this with the
classical reduction from Label Cover to Max k-Coverage [13]. Due to some technical
details (e.g., our Label Cover instance is not guaranteed to be regular) and for the sake of
completeness, we provide a formal proof in Lemma 19. While our techniques are similar to
recent FPT hardnesses for the related k-Dominating Set problem [5, 10], some technical
details (e.g., the projection property of Label Cover instances) prevent us from directly
using prior results to get (1− 1/e+ ε)-hardness for Max k-Coverage.

1.2 Related Work
We briefly survey the state-of-the-art for k-Median and k-Means; please see references
below for more historical context. For general metric spaces, the best approximation ratio for
k-Median is 2.611 [3] by Byrka et al., building on work of Li and Svensson [22]. Kanungo et
al. [17] gave a (9 + ε)-approximation algorithm for k-Means in general metric spaces, which
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42:4 Tight FPT Approximations for k-Median and k-Means

was later improved to 6.357 by Ahmadian et al. [1]. The first constant factor approximation
algorithm for Matroid Median was given by Krishnaswamy et al. [18], which was improved
by Swamy [26] to 8.

For Euclidean spaces, the problems are better approximable, at least when either k or
the dimension d are fixed; we restrict this discussion to parameterizing by k. Specifically,
PTASs for both k-Median and k-Means with running time f(k, ε) poly(n, d) were given by
Kumar et al. [19]. The running times were improved by Chen [7] to O(nkd+ d2nσ2(k/ε)O(1))
for any σ > 0 for k-Median, and by Feldman et al. [15] to O(nkd+ dpoly(k/ε) + 2Õ(k/ε))
for k-Means. Both these latter results were based on the notion of coresets. The k-
Means problem is APX hard even in Euclidean space, if both k and d are allowed to be
arbitrary [2, 20].

A result of direct interest to this work is that of Czumaj and Sohler [11], for the min-sum
clustering problem. They give a (4 + ε)-approximation on general metrics in FPT time.
They construct a small (strong) core-set for the related Balanced k-Median problem, and
enumerate over all choices of centers inside this core-set. In the full version, we show that
their approach extends to give a 2-approximation for the non-bipartite case of k-Median–
in this special case of k-Median a facility may be opened at any client location, and hence
C ⊆ F. Theorem 1 above shows how to get a better guarantee for a more general case. (As
an aside, the hardness for this special non-bipartite case is only (1 + 1/e); closing this gap is
another interesting open question.)

Hardness-of-approximation results for parameterized problems have been actively studied
recently. Lin [23] proved W [1]-hardness of approximation for k-Biclique. Chen and Lin [9]
provedW [1]-hardness of approximation for k-Dominating Set in any constant factor, which
was later improved to any function f(k) in [5, 10]. Chalermsook et al. [5] also proved that
there is no FPT o(k)-approximation algorithm for k-Clique assuming the Gap-ETH.

1.3 Preliminaries
An instance I of the k-Median problem is defined by a tuple ((V, d), C,F, k), where (V, d) is
a metric space over a set of points V with d(i, j) denoting the distance between two points i, j
in V . Further, C and F are subsets of V and are referred as “clients” and “facility locations”,
and k is a positive parameter. The goal is to find a subset F of k facilities in F to minimize

cost(C,F ) :=
∑
j∈C

d(j, F ).

In the weighted version of k-Median, every client j ∈ C has an associated weight wj , and the
goal is to find a subset F of F of size k such that cost(C,F ) :=

∑
j∈C wjd(j, F ) is minimized.

The k-Means problem is defined similarly except that the objective function gets modified
to cost(C,F ) :=

∑
j∈C d(j, F )2 (and analogously for the weighted version). The names of

the two problems come from the fact that if the metric space is the real line and k = 1,
the optimal solution is the median and the mean respectively. In the Matroid Median
problem, we are given a matroid on the set F, and the set of open facilities must be an
independent set in the matroid. Again, the goal is to minimize the assignment cost of clients
to the nearest open facility.

In the Facility Location problem, an instance is not given k, but additionally has
open : F → R+ that indicates the opening cost of each facility. The goal is to find a
subset F ⊆ F (without any restriction on |F |) that minimizes open(F ) + cost(C,F ) where
open(F ) :=

∑
f∈F open(f).

Finally, the aspect ratio of a metric space (V, d) is ∆ := maxx,y∈V d(x,y)
minx,y∈V d(x,y) .
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2 The Approximation Algorithm

We now give the (1 + 2/e+ ε)-approximation algorithm for k-Median, where ε > 0 is a fixed
parameter throughout this section. The running time of the algorithm is f(k, ε) · poly(n),
where f(k, ε) = O(ε−2k log k)k. We then indicate the alterations to get algorithms for
k-Means and Matroid Median.

2.1 The Intuition

We focus on k-Median for now; the ideas for the other problems are analogous. The first
idea is to reduce the size of the client set C to O(ε−2k logn)– this can be done by results
on core-sets for k-Median, which consolidate the clients into a small number of distinct
locations [8, 14]. The consolidated clients now have weights, but this extension to weighted
k-Median does not pose a problem.

The next idea is to carefully enumerate over the structure of an optimal solution. Consider
an optimal solution F ? = {f?1 , . . . , f?k}. For a facility f?i ∈ F ?, let “cluster” C?i be the clients
assigned to f?i , i.e., the subset of clients C for which f?i is closest open facility. Let `i be
the client in C?i closest to f?i – we call it the leader of cluster C?i . Let Ri be the distance
d(f?, `i), suitably discretized. Our algorithm guesses the leaders `i and the distances Ri
for each i ∈ [k]. Since the size of C is O(ε−2k logn), there are (O(ε−2k logn))k choices for
leaders,1 and a similar number of choices for the distances; moreover, this quantity can be
shown to be f(k, ε) · nO(1).

Assume now that we have correctly guessed the leaders `i and distances Ri. For each
leader `i, let Fi be the facilities at distance about Ri from `i – this set Fi contains f?i . By
making copies, assume the sets Fi are disjoint. Now our task is to select one facility from each
set Fi such that the total (weighted) assignment cost of the clients in C is minimized. As such,
this seems like a decreasing supermodular minimization problem with a (partition) matroid
constraint. (Observe that choosing an arbitrary center in each Fi gives us a 3-approximation
in FPT time, but we want to do much better.)

The last idea is to convert this into a monotone submodular maximization problem,
again with a partition matroid constraint. For each set Fi, we add a fictitious facility f ′i
such that (i) the assignment cost of clients to the fictitious facilities is at most 3OPT , and
(ii) for a subset S of facilities, the “improvement” cost(C,F ′) − cost(C,F ′ ∪ S), where F ′
is the set of fictitious facilities, is a monotone submodular function. We finally show that
a (1 − 1/e)-approximation for this submodular maximization problem gives the desired
approximation guarantee. The next two sections describe the algorithm for k-Median
in detail. The extension to k-Means, Matroid Median and Facility Location then
appears in the full version of the paper.

2.2 Client Reduction via Coresets

Consider an instance I = ((V, d), C,F, k) of the k-Median problem. Let ε > 0 be a fixed
constant. We now define the notion of core-sets and use known results to reduce the size of
C to (a weighted) a set of size O(ε−2k logn).

1 Our analysis will tighten this bound to O(ε−2 log n)k, but this improvement can be ignored for this
intuition section.

ICALP 2019



42:6 Tight FPT Approximations for k-Median and k-Means

I Definition 5 (Core-set). A (strong) core-set for I is a set of clients C ′ ⊆ V along with
weights wj for all j ∈ C ′, such that∑

j∈C′
wj d(j, F ) ∈ (1− ε, 1 + ε) ·

∑
j∈C

d(j, F ),

for every F ⊆ F with |F | = k.

A similar definition holds for a strong core-set for the k-Means problem. Since we deal only
with strong core-sets in this paper, we drop the modifier and refer to them only as core-sets.
The first core-sets for metric k-Median were given by Chen [8]; the following result is the
best current construction:

I Theorem 6 ([14], Theorem 15.4). For 0 ≤ ε, δ ≤ 1/2, there exists a Monte Carlo algorithm
that for each instance I of k-Median on a general metric, outputs a core-set C ′ ⊆ C with
size

|C ′| = O
(k logn+ log 1/δ

ε2

)
with probability 1− δ, where n = |V |. Moreover, the algorithm runs in time O(k(n+ k) +
log2(1/δ) log2 n). For k-Means, the core-set is of size |C ′| = O

(k logn+log 1/δ
ε4

)
, and the

runtime remains the same.

The power of core-sets lies in the following fact.

B Fact 7. Consider a k-Median/k-Means instance I = ((V, d), C,F, k), and let C ′ be a
(strong) core-set with weights w. Consider the weighted instance I ′ = ((V, d), C ′,F, k, w),
which is the instance I with its clients replaced by the weighted clients in the core-set. Then,
for any β ≥ 1, a β-approximate solution F ⊆ F to I ′ is a β(1 +O(ε))-approximate solution
to I.

Therefore, in order to find a (1 + 2/e+O(ε))-approximation to a k-Median I, it suffices
to find a (1 + 2/e+O(ε))-approximation to I ′, and analogously for k-Means. Henceforth,
we restrict our attention to the core-set instance I ′. In other words, we assume that our
instances have only a small number of clients, but now the clients have associated weights.
In the following sections, we show how to approximate such weighted k-Median/k-Means
instances in FPT time.

2.3 Reduction to Submodular Maximization
Given Fact 7, we only consider instances I = ((V, d), C,F, k, w) of weighted k-Median,
where clients in C have weights in the range [1, n] and |C| is bounded by O(ε−2k logn). In
this section we prove the following approximation guarantee for k-Median; this, combined
with Fact 7, proves the k-Median statement in Theorem 1.

I Theorem 8. Let ε be a fixed parameter. Given a k-Median instance I = ((V, d), C ′,F, k, w)
with |C ′| = O(ε−2k logn), there is a (1 + 2/e+O(ε))-approximation algorithm that runs in
f(k, ε)nO(1) time.

By scaling, assume the minimum distance between points in V is 1, so the aspect ratio
∆ is the maximum distance between two points in V . For a positive integer a, define
ddaee := (1 + ε)dlog(1+ε) ae as the smallest power of (1 + ε) larger than or equal to a. Here, ε is
the same fixed parameter as the one used in the core-set.
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The formal algorithm follows the intuition in §2.1 and is described in Algorithm 2.1; let
us step through it now. We iterate over all possible values `1, . . . , `k for the leaders, and
R1, . . . , Rk for the corresponding distances. The same vertex could appear several times in
the subset {`1, . . . , `k}, and so the latter should be thought of as a multi-set. In Step 7, we
add k new fictitious facilities: for each i, the new facility f ′i is at distance 2Ri from all the
facilities in Fi. The distance to all other points is determined by triangle inequality in Step 8.
Claim 9 shows that this forms a valid metric. In Step 9, we define the “improvement” function
improv(S) as the reduction in cost due to adding in the facilities in S. Claim 10 shows this
function is monotone submodular. This means we can use the (1 − 1/e)-approximation
algorithm [4] for monotone submodular function maximization subject to a matroid constraint
to find a set S which contains exactly one facility from each of the sets Fi, since this is a
partition matroid constraint. Observe that the function improv(·) can be computed efficiently.
This completes the description of the algorithm.

Algorithm 2.1 FindCenters.
1: for every multi-set {`1, `2, . . . , `k} ⊆ C do
2: for every R1, . . . , Rk such that Ri ∈ [1, . . . , dd∆ee] and Ri is a power of (1 + ε) do
3: Fi ← {f ∈ F | ddd(f, `i)ee = Ri}
4: make copies of facilities to ensure that F1, . . . , Fk are disjoint
5: Initialize F ′ ← ∅; F ′ will be the set of fictitious facilities
6: for i = 1, . . . , k do
7: add a new fictitious facility f ′i to F ′ and set d(f ′i , f) := 2Ri for all f ∈ Fi
8: define d(f ′i , v) := minf∈Fi(d(f ′i , f) + d(f, v)) for all other points v
9: define improv(S) := cost(C,F ′)− cost(C, S ∪ F ′) for every set S ⊆ F
10: find S ⊆ F approximately maximizing improv(S), such that |S ∩ Fi| = 1
11: among all sets S computed in line 10, output S for which cost(C, S) is minimized.

To prove correctness of the algorithm, we need to show two things: the distance function
defined on F ′∪V in Step 8 is a metric, and the function improv defined in Step 9 is monotone
and submodular. We defer the simple proofs to the full version of the paper.

B Claim 9. Consider the set F ′ defined during an iteration of the algorithm. The distance
function defined on F ′ ∪ V is a metric.

B Claim 10. The function improv(S) defined in Step 9 is monotone and submodular with
improv(∅) = 0.

Now to bound the runtime. Since |C| = O(ε−2k logn), there are at most(
O(ε−2k logn)+k−1

k

)
= (O(ε−2 logn))k different multi-sets of size k with elements in C. In

addition, there are log1+ε ∆ many choices for Ri for each i ∈ [k]. Therefore, the number of
iterations in Step 1 of the algorithm can be bounded by

(O(ε−2 logn))k · (log1+ε ∆)k ≤
(
O
( (log ∆)(logn)

ε2

))k
. (2.1)

Since we started with the unweighted k-Median problem, the aspect ratio ∆ can be
assumed to polynomially bounded in n, and so the number of iterations can be bounded
by (O(logn/ε2))k, which is at most n · (O(ε−2k log k))k. Indeed, in case k < logn

log logn ,
(O(logn/ε2))k ≤ (O(1/ε2))k · (logn)

logn
log logn = (O(1/ε2))k · n. Else logn ≤ O(k log k), and

hence (O(logn/ε2))k = (O(k log k/ε2))k.
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The algorithm for submodular maximization subject to a matroid constraint takes
polynomial time, given a value oracle for the function [4, Theorem 1.1]: in fact it can be
sped up for the case of partition matroid constraints [4, §3.3]. The value oracle for improv(S)
can itself be implemented in polynomial time. Hence each iteration of the algorithm can be
run in time polynomial in n.

The submodular maximization algorithm is a randomized Monte-Carlo algorithm that
succeeds with only probability 1− 1/n2, but we can easily boost the success probability by
repetition: by running it τ := poly(ε−1k logn) times for each input S and returning the
maximum value obtained, we can ensure that with high probability it succeeds in all the
calls we make.

2.3.1 Approximation Ratio
We now argue about the approximation ratio of the algorithm. We fix an optimal solution to
the instance. Let F ? = {f?1 , . . . , f?k} be the centers opened by this solution. Define C?i as
the clients for which the closest open center is f?i , i.e., C?i := {j ∈ C : d(j, f?i ) = d(j, F ?)}.
We define the notion of leaders with respect to this solution.

I Definition 11 (Leader). For each i ∈ [k], call a client j ∈ C?i that minimizes d(j, f?i ) over
all j ∈ C?i the leader `?i of center f?i . If there are multiple clients j ∈ C?i achieving the
minimum, declare an arbitrary one to be the leader. Note that a client can be the leader of
multiple centers f?i . The leaders w.r.t. the solution F ? is the multi-set {`?1, . . . , `?k}. For each
leader `?i , the radius R?i is defined as ddd(`?i , f?i )ee.

Consider the iteration of Algorithm 2.1 where `1, . . . , `k are equal to `?1, . . . , `?k respectively,
and R1, . . . , Rk are equal to R?1, . . . , R?k respectively. Let S? be the set output in Step 10 of
the algorithm. It suffices to show that cost(C, S?) ≤ (1 + 2/e+ ε)cost(C,F ?). We proceed
to show this in the rest of the section.

As in the algorithm, define

Fi := {f ∈ F | ddd(f, `?i )ee = R?i },

so that f?i ∈ Fi for each i ∈ [k]. (Recall that the sets Fi are disjoint by duplicating facilities.)
Let F ′ = {f ′1, . . . , f ′k} be the set of fictitious facilities defined in the algorithm.

We are interested in the solutions S that consist of one center from each Fi, since one
such solution is the desired F ?. More formally, define a solution S to be valid if the set S
can be listed as (f1, . . . , fk) so that fi ∈ Fi for each i ∈ [k].

B Claim 12. For every valid S, cost(C,F ′ ∪ S) = cost(C, S).

Proof. List the set S as (f1, . . . , fk), where fi ∈ Fi for each i ∈ [k]. Informally, this claim
amounts to showing that the fictitious facilities F ′ do not improve the solution S. To
formalize this idea, fix a client j ∈ C and a fictitious facility f ′i , and let f ∈ Fi be a closest
center to j in Fi. Below, we show that in fact, client j is closer to fi ∈ S than to f ′i ∈ F ′:

d(j, fi)
(4 ineq.)
≤ d(j, f)+d(f, `?i )+d(`?i , fi) ≤ d(j, f)+R?i +R?i = d(j, f)+d(f, f ′i) = d(j, f ′i).

Therefore, we have d(j, F ′) ≥ d(j, S) for all clients j, so

cost(C,F ′ ∪ S) =
∑
j∈C′

wj d(j, F ′ ∪ S) =
∑
j∈C′

wj d(j, S) = cost(C, S),

as desired. C
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We now bound the cost of the solution which opens facilities at F ′.

B Claim 13. cost(C,F ′) ≤ (3 + 2ε) cost(C,F ?).

Proof. It suffices to show that d(j, F ′) ≤ (3 + 2ε) d(j, F ?) for each client j ∈ C. Fix a client
j ∈ C, and let f?i ∈ F ? be a center achieving d(j, f?i ) = d(j, F ?). Since `?i is the leader of
center f?i , we have

d(j, f?i ) ≥ d(`i, f?i ) ≥ R?i
1 + ε

. (2.2)

Recall that f?i ∈ Fi. Therefore,

d(j, F ′) ≤ d(j, f ′i)
(4)
≤ d(j, f?i ) + d(f?i , f ′i) = d(j, f?i ) + 2R?i

(2.2)
≤ d(j, f?i ) + 2(1 + ε) d(j, f?i ) ≤ (3 + 2ε) d(j, F ?),

as desired. C

Let S? be the set output in Step 11. Since the algorithm of [4] is (1− 1/e)-approximation,

improv(S?) ≥ (1− 1/e)improv(F ?) (2.3)

I Lemma 14. The solution S? in (2.3) satisfies cost(C, S?) ≤ (1 + 2/e+O(ε)) cost(C,F ?).

Proof. We bound the cost associated with this solution as follows.

cost(C, S?) (Lem 12)= cost(F ′ ∪ S?) = cost(C,F ′)− improv(S?)
(2.3)
≤ cost(C,F ′)− (1− 1/e) improv(F ?)
= cost(C,F ′)− (1− 1/e) (cost(C,F ′)− cost(C,F ?))
= (1/e) cost(C,F ′) + (1− 1/e) cost(C,F ?)

(Lem 13)
≤ (3 + 2ε)(1/e) cost(C,F ?) + (1− 1/e) cost(C,F ?) (2.4)
= (1 + 2/e+O(ε)) cost(C,F ?).

Hence the proof. J

2.3.2 Putting it all together
Our algorithm is a Monte Carlo randomized algorithm: both our subroutines use randomness.
The first is the core-set construction in §2.2, and the second is the submodular maximization
procedure in Step 10 of the algorithm. For each, we can make the error probability 1/ poly(n).
Since each iteration of the algorithm can be implemented in poly(n) time, the runtime
is dominated by the number of iterations, which is (O(ε−2k log k)k poly(n)). Moreover,
combining the two steps of finding the core-set and the submodular maximization, the
approximation ratio is (1 + ε)(1 + 2/e+O(ε)) = 1 + 2/e+O(ε). This proves Theorem 1 for
the k-Median problem.

3 Gap-ETH Hardness of Max k-Coverage

In this section, we show that assuming the Gap Exponential Time Hypothesis (Gap-ETH) [12,
24], for any ε > 0, there is no FPT-approximation algorithm that approximates Max k-
Coverage better than a factor (1− 1/e+ ε).
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I Theorem 15 (Hardness for Max-Coverage). There exists a function g : R+ → R+ such that
assuming the Gap-ETH, for any ε > 0, any (1− 1/e+ ε)-approximation algorithm for Max
k-Coverage with n elements and m sets must run in time at least (n+m)kg(ε) .

Using the reduction of Guha and Khuller [16], this immediately implies Theorem 2. The
rest of the section is devoted to the proof of Theorem 15. The proof has two main components:
the first part shows under the Gap-ETH, it takes at least nh(k) time to approximate the
Label Cover problem even when one side of the bipartition has only k vertices; here h(·)
is some increasing function depending on the quality of approximation. This reduction is
inspired by the recent progress on the hardness of parameterized problems [5, 10] and was
communicated to us by Pasin Manurangsi. The second part is the classical reduction from
Label Cover to Max k-Coverage given by Feige [13].

3.1 Hardness of Label Cover from Gap-ETH
We begin with the standard definition of Label Cover.

I Definition 16 (Label Cover). An instance of Label Cover L consists of a bipartite
graph G = (U ∪ V,E) with possibly parallel edges, two label sets ΣU ,ΣV , and a projection
πe : ΣU → ΣV for each e ∈ E. Given a labeling σ : (U ∪ V ) → (ΣU ∪ ΣV ), an edge
e = (u, v) ∈ E is satisfied when πe(σ(u)) = σ(v). The goal of Label Cover is to find a
labeling σ that maximizes the number of satisfied edges. Let OPT(L) be the maximum fraction
of edges simultaneously satisfied by any labeling.

Note that we include the projection property in the definition; all Label Cover instances
in the paper will have this property. For a vertex u ∈ U ∪ V , let du be the degree of u, and
let dU (resp. dV ) be the maximum degree of U (resp. V ). We also call an instance U -regular
(resp. V -regular) if all vertices in U (resp. V ) have the same degree. All subsequent Label
Cover instances will be U -regular, though the lack of V -regularity will require us to do a
little more work in §3.2.

Given a 3-SAT formula φ, let OPT(φ) be the maximum fraction of clauses that can be
satisfied by any assignment. The Gap-ETH [12, 24] states that there exist some constants
δ > 0, s < 1 for which no algorithm, given a 3-SAT formula φ on n variables and m = O(n)
clauses, can distinguish whether OPT(φ) = 1 or OPT(φ) < s in time O(2δn). The main
result of this subsection is the following lemma.

I Lemma 17. For every `, r ∈ N, there is a reduction that, given 3-SAT formula φ with n
variables and m clauses, outputs a U -regular Label Cover instance L such that

(Completeness) OPT(φ) = 1 =⇒ OPT(L) = 1, and
(Soundness) OPT(φ) < s =⇒ OPT(L) < sΩ(r),

where |U | = `r, |V | = nr, |ΣU | = 2O(mr/`), |ΣV | = 2O(r), dV ≤ mr. The running time of this
reduction is mO(r) · |ΣU |.

In particular, assuming Gap-ETH, for any η > 0, if we let r = Θ(log(1/η)) so that

|ΣU ||U |
O(1/ log(1/η))

= |ΣU ||U |
1/2r

= |ΣU |`
1/2

= 2O(mr/
√
`),

no algorithm can take a Label Cover instance L and can decide whether OPT(L) = 1 or
OPT(L) < η in time |ΣU ||U |

O(1/ log(1/η)) .

Note that a brute-force algorithm that tries every assignment to U and chooses the
best assignment for V for it runs in O(|ΣU ||U |) times a polynomial. Lemma 17 shows that
assuming the Gap-ETH, even approximately solving Label Cover requires significant time.
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Lemma 17 is proved by a series of well-known transformations between Label Cover
instances. We start with the following basic hardness result for Label Cover assuming the
Gap-ETH, which follows from essentially restating Gap-ETH as a clause-variable game:

I Theorem 18 (Theorem 4.1 of [5]). There is a reduction that, given 3-SAT formula φ with
n variables and m clauses, outputs a U -regular Label Cover instance L such that

(Completeness) OPT(φ) = 1 =⇒ OPT(L) = 1, and
(Soundness) OPT(φ) < s′ =⇒ OPT(L) < s = 1− (1− s′)/3,

where |U | = m, |V | = n, |ΣU | = 7, |ΣV | = 2, dV ≤ m, and G is U-regular with dU = 3. In
particular, assuming the Gap-ETH, there exist constants δ > 0, s < 1 such that no algorithm
can take a Label Cover instance L and can decide whether OPT(L) = 1 or OPT(L) < s

in O(2δ|U |) time.

Let ` be a parameter that will be related to k in Max k-Coverage later. We can ensure
` divides |U | by taking an arbitrary vertex in U and making `d|U |/`e − |U | copies of it. This
does not change any of the properties in Theorem 18 except to increase the soundness s by
on(1); however, the soundness still remains bounded away from 1.

Since we want few vertices on the left, we construct a new Label Cover instance L1 by
partitioning U into ` groups and creating super-vertices for each one. Formally, index the
vertices of u as U = {ui,j}i∈[`],j∈[m/`], and let the ith part be Si := {ui,j}j∈[m/`]. The new
instance L1 = ((U1 ∪ V1, E1),ΣU1 ,ΣV1 , {π1

e}e∈E1) is constructed as follows.

V1 = V and ΣV1 = ΣV (the RHS remains unchanged),
U1 = {S1, . . . , S`}. ΣU1 = (ΣU )m/` (the LHS has one super-vertex for each group), and
for each e = (u, v) ∈ E such that u = ui,j , add an edge e′ = (Si, v) to E1 with the
projection π1

e′(σ1, . . . , σm/`) := πe(σj) where the latter πe denotes the projection in L.
(Recall we allow parallel edges with different projections.)

Since the set of possible labelings and the set of edges remain the same except for syntactic
changes, the completeness c and the soundness s do not change. The parameters become
|U1| = `, |V1| = |V |, |ΣU1 | = 2O(m/`), |ΣV1 | = O(1). It still maintains U -regularity and
dV1 = dV ≤ m.

The final transformation is the powerful parallel repetition step, which shows that the
soundness decreases exponentially as we take the natural graph power. Fix r ∈ N. The
instance L2 = ((U2 ∪ V2, E2),ΣU2 ,ΣV2 , {π2

e}e∈E2) is constructed as follows.
U2 = (U1)r and ΣU2 = (ΣU1)r.
V2 = (V1)r and ΣV2 = (ΣV1)r.
E2 = (E1)r. For each e = (ei)i∈[r] ∈ E2 with ei = (ui, vi) ∈ E1 and (σ1, . . . , σr) ∈ Σr

U1
,

π2
e(σ1, . . . , σr) = (π1

e1
(σ1), . . . , π1

er (σr)).
The parameters become |U2| = `r, |V2| = |V |r = nr, |ΣU2 | = 2O(mr/`), |ΣV2 | = 2O(r), dV2 ≤
drV1
≤ mr, and L2 maintains U -regularity. The completeness c still remains 1, and by the

parallel repetition theorem [25], the soundness drops s = 2−Θ(r), where the constant hiding
in the Θ depends on the original soundness. This proves Lemma 17.

3.2 Hardness of Max k-Coverage from Label Cover
Given the “nice” Label Cover instance from Lemma 17 we now show how to reduce this
to Max k-Coverage. This reduction is standard and closely follows the classical one given
by Feige [13], modulo some minor issues arising from it not being V -regular.

Recall that an instance of I of Max k-Coverage consists of an underlying universe U ,
a family S of subsets, and an integer k. The goal is to find a subfamily S ′ ⊆ S with |S ′| = k

that covers the largest number of elements. For notational simplicity, we prove the hardness
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of the weighted version of Max k-Coverage where each element e ∈ U has weight w(e) and
we want to maximize the total weight of the covered elements. Note that weighted instances
can be easily converted to unweighted instances by duplicating elements according to their
weights. In our reduction, the ratio between the maximum and the minimum weight will be
bounded by the number of elements. The proof appears in the full version of the paper.

I Lemma 19 (Reduction #2). There exist functions a : R+ → N and f : R+ → R+ such that
for any ε > 0, there exists a polynomial-time reduction that takes a Label Cover instance
L = ((U ∪V,E),ΣU ,ΣV , {πe}e∈E) that is U -regular and has the maximum V -degree dV , and
produces a Max k-Coverage instance I = (U ,S, k) such that

(Completeness) OPT(L) = 1 =⇒ OPT(I) = w(U).
(Soundness) OPT(L) < f(ε) =⇒ OPT(I) ≤ (1− 1/e+ ε) · w(U).

The reduction satisfies |U| ≤ |V | · |dV |a(ε) · a(ε)ΣV , |S| = a(ε) · |U | · |ΣU |, and k = a|U |.

We can now finish the proof of Theorem 15 based on Lemma 17 and Lemma 19.

Proof of Theorem 15. Fix ε > 0 that determines a(ε) and f(ε) in Lemma 19. Let r ∈ N in
Lemma 17 so that the soundness 2−Ω(r) ≤ f(ε).

With ` still being a free parameter, Lemma 17 shows a reduction from an initial 3-
SAT instance φ with n variables and m = O(n) clauses to a Label Cover instance with
|U | = `r, |V | = nr, |ΣU | = 2O(mr/`), |ΣV | = 2O(r), and dV ≤ mr. Lemma 19 with this Label
Cover instance produces a Max k-Coverage instance with

|U| ≤ |V | · |dV |a · aΣV = nO(ar) · a2O(r)

|S| = a · |U | · |ΣU | = a`r · 2O(nr/`)

k = a|U | = a`r.

An (1 − 1/e + ε)-approximation algorithm for Max k-Coverage that runs in time
|S|k1/2r will distinguish whether OPT(φ) = 1 or OPT(φ) < s′ for some s′ in time

2O((nr/`)·k1/2r) = 2O((nr/`)·
√
`) = 2O(nr/

√
`),

which will contradict the Gap-ETH for large enough `. Observe that |S| � |U|; if we set
g(ε) := 1/2r, we get the same implication from an algorithm that runs in time |U|kg(ε) , which
proves the theorem. J
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Abstract
In the group testing problem we aim to identify a small number of infected individuals within a
large population. We avail ourselves to a procedure that can test a group of multiple individuals,
with the test result coming out positive iff at least one individual in the group is infected. With all
tests conducted in parallel, what is the least number of tests required to identify the status of all
individuals? In a recent test design [Aldridge et al. 2016] the individuals are assigned to test groups
randomly, with every individual joining an equal number of groups. We pinpoint the sharp threshold
for the number of tests required in this randomised design so that it is information-theoretically
possible to infer the infection status of every individual. Moreover, we analyse two efficient inference
algorithms. These results settle conjectures from [Aldridge et al. 2014, Johnson et al. 2019].
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1 Introduction

1.1 Background and motivation
The group testing problem goes back to the work of Dorfman from the 1940s [19]. Among a
large population a few individuals are infected with a rare disease. The objective is to identify
the infected individuals effectively. At our disposal we have a testing procedure capable of

EA
T

C
S

© Amin Coja-Oghlan, Oliver Gebhard, Max Hahn-Klimroth, and Philipp Loick;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 43; pp. 43:1–43:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:acoghlan@math.uni-frankfurt.de
mailto:gebhard@math.uni-frankfurt.de
mailto:hahnklim@math.uni-frankfurt.de
mailto:loick@math.uni-frankfurt.de
https://doi.org/10.4230/LIPIcs.ICALP.2019.43
https://arxiv.org/pdf/1902.02202.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


43:2 Information-Theoretic and Algorithmic Thresholds for Group Testing

not merely testing one individual, but several. The test result will be positive if any one
individual in the test group is infected, and negative otherwise; all tests are conducted in
parallel. We are at liberty to assign a single individual to several test groups. The aim is
to devise a test design that identifies the status of every single individual correctly while
requiring as small a number of tests as possible.

A recently proposed test design allocates the individuals to tests randomly [7, 10, 11,
28, 32]. To be precise, given integers n,m,∆ > 0 we create a random bipartite multi-graph
by choosing independently for each of the n vertices x1, . . . , xn “on the left” ∆ neighbours
among the m vertices a1, . . . , am “on the right” uniformly at random with replacement. The
vertices x1, . . . , xn represent the individuals, the a1, . . . , am represent the test groups and an
individual joins a test group iff the corresponding vertices are adjacent. The wisdom behind
this construction is that the expansion properties of the random bipartite graph precipitate
virtuous correlations, facilitating inference.

Given n and (an estimate of) the number k of infected individuals, what is the least m
for which, with a suitable choice of ∆, the status of every individual can be inferred correctly
from the test results with high probability? Like in many other inference problems the answer
comes in two instalments. First, we might ask for what m it is information-theoretically
possible to detect the infected individuals. In other words, regardless of computational
resources, do the test results contain enough information in principle to identify the infection
status of every individual? Second, for what m does this problem admit efficient algorithms?

The first main result of this paper resolves the information-theoretic question completely.
Specifically, Aldridge, Johnson and Scarlett [11] obtained a function minf = minf(n, k)
such that for any fixed ε > 0 the inference problem is information-theoretically infeasible if
m < (1−ε)minf . They conjectured that this bound is tight, i.e., that for m > (1+ε)minf(n, k)
there is an (exponential) algorithm that correctly identifies the infected individuals with high
probability. We prove this conjecture.

Furthermore, concerning the algorithmic question, Johnson, Aldridge and Scarlett [28]
obtained a functionmalg = malg(n, k) that exceedsminf by a modest constant factor such that
for m > (1 + ε)malg certain efficient algorithms successfully identify the infected individuals
with high probability. They conjectured that SCOMP, their most sophisticated algorithm,
actually succeeds for smaller values of m. We refute this conjecture and show that SCOMP
fails to outperform a much simpler algorithm called DD.

A technical novelty of the present work is that we investigate the group testing problem
from a new perspective. While most prior contributions rely either on elementary calculations
and/or information-theoretic arguments [10, 11, 28, 38, 39], here we bring to bear techniques
from the theory of random constraint satisfaction problems [5, 31]. Indeed, group testing can
be viewed naturally as a constraint satisfaction problem: the tests provide the constraints and
the task is to find all possible ways of assigning a status (“infected” or “not infected”) to the n
individuals in a way consistent with the given test results. Since the allocation of individuals
to tests is random, this question is similar in nature to, e.g., the random k-SAT problem that
asks for a Boolean assignment that satisfies a random collection of clauses [4, 6, 16, 18]. Apart
from obtaining the aforementioned new results, this novel perspective allows for short proofs
of results that were established more laboriously in prior work. It also puts the group testing
problem in the same framework as the considerable body of recent work on other inference
problems on random graphs such as the stochastic block model (e.g., [1, 15, 17, 34, 35, 41]).

We proceed to state the main results of the paper precisely, followed by a detailed
discussion of the prior literature on group testing. An outline of the proof strategy follows
in Section 2.
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1.2 The information-theoretic threshold
Throughout the paper we labour under the assumptions commonly made in the context
of group testing; we will revisit their merit in Section 1.4. Specifically, we assume that
the number k of infected individuals satisfies k ∼ nθ for a fixed 0 < θ < 1. Moreover,
let σ ∈ {0, 1}{x1,...,xn} be a vector of Hamming weight k chosen uniformly at random.
The (one-)entries of σ indicate which of the n individuals are infected. Moreover, let
G = G(n,m,∆) signify the aforementioned random bipartite graph. Then σ induces a vector
σ̂ ∈ {0, 1}{a1,...,am} that indicates which of the m tests come out positive. To be precise,
σ̂i = 1 iff test ai is adjacent to an individual xj with σxj

= 1. For what m is it possible to
recover σ from G, σ̂? Here, we settle an important open question [28] on the sharpness of
the information-theoretic threshold. (Throughout the paper all logarithms are base e.)

I Theorem 1. Suppose that 0 < θ < 1, and ε > 0 and let

minf = minf(n, θ) = nθ(1− θ) log(n)
min

{
1, 1−θ

θ log 2
}

log 2
.

(i) If m < (1 − ε)minf(n, θ), then there does not exist any algorithm that given G, σ̂, k
outputs σ with a non-vanishing probability.

(ii) If m > (1 + ε)minf(n, θ), then there exists an algorithm that given G, σ̂ outputs σ with
high probability.

Since for θ ≤ log(2)/(1 + log(2)) the first part of Theorem 1 readily follows from a folklore
argument [20], the interesting regime is θ > log(2)/(1 + log(2)) ≈ 0.41. In this regime
Theorem 1 strengthens a result from [11], who showed that for m < (1− ε)minf any inference
algorithm has a strictly positive error probability. By comparison, Theorem 1 shows that
any algorithm fails with high probability.

But the main contribution of Theorem 1 is the second, positive statement. While the case
θ > 1/2 is easy because a plain greedy algorithms succeeds [28], the case θ < 1/2 proved more
challenging and was so far only heuristically justified using techniques from statistical physics
[32] and for θ < 1/3 for a different test design [38, 39]. Indeed, Aldridge et al. [10] conjectured
that in this case inferring σ from G, σ̂ is equivalent to solving a hypergraph minimum vertex
cover problem. The proof of Theorem 1 vindicates this conjecture. Specifically, the vertex
set of the hypergraph comprises all “potentially infected” individuals, i.e., those that do not
appear in any negative test. The hyperedges are the neighbourhoods ∂ai of the positive tests
ai in G. Exhaustive search solves this vertex cover problem in time exp(O(nθ logn)). But
how about efficient algorithms for general θ?

1.3 Efficient algorithms for group testing
Several polynomial time group testing algorithms have been proposed. A very simple greedy
strategy called DD (for “definitive defectives”) first labels all individuals that are members
of negative test groups as healthy. Subsequently it checks for positive tests in which all
individuals but one have been identified as healthy in the first step. Clearly, the single
as yet unlabelled individual in such a test group must be infected. Up to this point all
decisions made by DD are correct. But in the final step DD marks all as yet unclassified
individuals as healthy, possibly causing false negatives. In fact, the output of DD may be
inconsistent with the test results as possibly some positive tests may fail to spot an individual
classified as “infected”.
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Figure 1 The left diagram displays minf , malg. The red line shows the information theoretic
threshold minf , the dashed black line signifies the bound malg which is achieved by the both the
SCOMP and the DD algorithm. The graph on the right illustrates a small example of a group testing
instance, with the individuals x1, . . . , x7 on the left and the tests a1, . . . , a5 on the right. Infected
individuals and positive tests are coloured in grey.

The more sophisticated SCOMP algorithm is roughly equivalent to the well-known greedy
algorithm for the hypergraph vertex cover problem applied to the hypergraph from the
previous paragraph. Specifically, in its first step SCOMP proceeds just like DD, classifying all
individuals that occur in negative tests as healthy. Then SCOMP identifies as infected all
unmarked individuals that appear in at least one test whose other participants are already
known to be healthy. Subsequently the algorithm keeps picking an individual that appears
in the largest number of as yet “unexplained” (viz. uncovered) positive tests and marks
that individual as infected, with ties broken randomly, until every positive test contains an
individual classified as infected. Clearly, SCOMP may produce false positives as well as false
negatives. But at least the output is consistent with the test results.

Analysing SCOMP has been prominently posed as an open problem in the group testing
literature [8, 10, 28]. Indeed, Aldridge et al. [10] opined that “the complicated sequential
nature of SCOMP makes it difficult to analyse mathematically”. On the positive side, [10]
proved that SCOMP succeeds in recovering σ correctly given (G, σ̂) if m > (1 + ε)malg(n, θ)
w.h.p., where

malg = malg(n, θ) = nθ(1− θ) log(n)
min

{
1, 1−θ

θ

}
log2 2

. (1.1)

However, the algorithm succeeds for a trivial reason; namely, for m > (1 + ε)malg even DD
suffices to recover σ w.h.p. Yet based on experimental evidence [10, 28] conjectured that
SCOMP strictly outperforms DD. The following theorem refutes this conjecture.

I Theorem 2. Suppose that 0 < θ < 1 and ε > 0. If m < (1− ε)malg(n, θ), then given G, σ̂
w.h.p. both SCOMP and DD fail to output σ.

For θ < 1/2 the information-theoretic bound provided by Theorem 1 and the algorithmic
bound malg supplied by Theorem 2 remain a modest constant factor apart; see Figure 1. In
some other inference problems on random graphs such as the stochastic block model similar
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gaps appear between the information-theoretic and the algorithmic bounds [1, 17, 34, 41].
There have been attempts at investigating to what extent these gaps are due to genuine
computational barriers, i.e., [23, 24, 25, 26]. Whether there actually exists a computationally
hard regime for group testing, or whether the gap can be closed by smarter algorithms,
remains an exciting question for future research.

1.4 Discussion and related work

Dorfman’s original group testing scheme, intended to test the American army for syphilis,
was adaptive. In a first round of tests each soldier would be allocated to precisely one test
group. If the test result came out negative, none of the soldiers in the group were infected.
In a second round the soldiers whose group was tested positively would then be tested
individually. Of course, Dorfman’s scheme was not information-theoretically optimal. An
optimal adaptive scheme that involves several test stages, with the tests conducted in the
present stage governed by the results from the previous stages, is known [20, 12]. In the
adaptive scenario the information-theoretic threshold works out to be

madapt
inf (n, k) = nθ(1− θ) log(n)

log 2 .

The lower bound, i.e., that no adaptive design gets by with (1− ε)madapt
inf (n, k) tests, follows

from a very simple information-theoretic consideration. Namely, with a total of m tests at
our disposal there are merely 2m possible test outcomes, and we need this number to exceed
the count

(
n
k

)
of possible vectors σ.

More recently there has been a great deal of interest in non-adaptive group testing, where
the infection status of each individual is to be determined after just one round of tests
[7, 9, 10, 11, 14, 22, 28, 32, 38, 39]. This is the version of the problem that we deal with in
the present paper. An important advantage of the non-adaptive scenario is that tests, which
may be time-consuming, can be conducted in parallel. Indeed, some of today’s most popular
applications of group testing are non-adaptive such as DNA screening [14, 30, 37] or protein
interaction experiments [36, 40] in computational molecular biology. The randomised test
design that we deal with here is the best currently known non-adaptive design (in terms of
the number of tests required).

The most interesting regime for the group testing problem is when the number k of
infected individuals scales as a power nθ of the entire population. Mathematically this
is because in the linear regime k = Ω(n) the optimal strategy is to perform n individual
tests [9]. Thus, for k linear in n there is nothing interesting to do. But the sublinear case
is also of practical relevance, as witnessed by Heap’s law in epidemiology [13] or biological
applications [22].

Apart from the randomised test design G where each individual chooses precisely ∆ tests
(with replacement), the so-called Bernoulli design assigns each individual to every test with
a certain probability independently. A considerable amount of attention has been devoted
to this model, and its information-theoretic threshold as well as the thresholds for various
algorithms have been determined [8, 7, 10, 38, 39]. However, the Bernoulli test design, while
easier to analyse, is provably inferior to the test design G that we study here. This is because
in the Bernoulli design there are likely quite a few individuals that participate in far fewer
tests than expected due to random degree fluctuations.
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1.5 Notation
Throughout the paper G = G(n,m,∆) denotes the random bipartite graph that describes
which individuals take part in which test groups, the vector σ ∈ {0, 1}{x1,...,xn} encodes which
individuals are infected, and σ̂ ∈ {0, 1}{a1,...,am} indicates the test results. Moreover, k ∼ nθ
signifies the number of infected individuals. Additionally, we write V = Vn = {x1, . . . , xn}
for the set of all individuals and V0 = {xi ∈ V : σxi = 0}, V1 = V \ V0 for the set of healthy
and infected individuals, respectively. For an individual x ∈ V we write ∂x for the set of
tests ai adjacent to x. Analogously, for a test ai we denote by ∂ai the set of individuals
that take part in the test. Finally, all asymptotic notation refers to the limit n→∞. Thus,
o(1) denotes a term that vanishes in the limit of large n, while ω(1) stands for function that
diverges to ∞ as n→∞.

2 Outline

We give an overview of the main arguments upon which the proofs of Theorems 1 and 2 rest.

2.1 The Nishimori identity
The very first item on the agenda is to get a handle on the posterior distribution of σ given
G and σ̂. To this end, let Sk(G, σ̂) be the set of all vectors σ ∈ {0, 1}V of Hamming weight
k such that

σ̂ai
= 1 {∃x ∈ ∂ai : σx = 1} for all i ∈ [m].

In words, Sk(G, σ̂) contains the set of all vectors σ with k ones that label the individuals
infected/healthy in a way consistent with the test results. Let Zk(G, σ̂) = |Sk(G, σ̂)|. The
following proposition shows that the posterior of σ given G, σ̂ is uniform on Sk(G, σ̂).

I Proposition 3 ([7]).

For all τ ∈ {0, 1}{x1,...,xn} we have P [σ = τ | G, σ̂] = 1 {τ ∈ Sk(G, σ̂)}
Zk(G, σ̂) .

Adopting the jargon of the recent literature on inference problems on random graphs, we
refer to Proposition 3 as the Nishimori identity [15, 41]. The proposition shows that apart
from the actual test results, there is no further “hidden information” about σ encoded in
G, σ̂. In particular, the information-theoretically optimal inference algorithm just outputs a
uniform sample from Sk(G, σ̂). In effect, we obtain the following.

I Corollary 4.
1. If Zk(G, σ̂) = ω(1) w.h.p., then for any algorithm A we have

P [A(G, σ̂, k) = σ] = o(1).

2. If Zk(G, σ̂) = 1 w.h.p., then there is an algorithm A such that

P [A(G, σ̂, k) = σ] = 1− o(1).

Both the positive and the negative part of Corollary 4 assume that the precise number k of
infected individuals is known to the algorithm. This assumption makes the negative part
stronger, but weakens the positive part. Yet we will see in due course how in the positive
scenario the assumption that k be known can be removed. The upshot is that we need to
get a handle on Zk(G, σ̂).
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2.2 The information-theoretic threshold
We proceed to discuss the proof of Theorem 1. The proofs of the first, negative statement
and of the second, positive statement hinge on two separate arguments. We begin with the
negative statement that w.h.p. σ cannot be inferred if m < (1− ε)minf .

2.2.1 The information-theoretic lower bound
In light of Corollary 4 in order to prove the first part of Theorem 1 we need to show that
the number Zk(G, σ̂) of assignments consistent with the test results σ̂ is unbounded w.h.p.
The proof of this fact is based on a very simple idea: we just identify a biggish number of
individuals whose infection status could be flipped without affecting the test results. To be
precise, let V +

0 = V +
0 (G, σ̂) be the set of all healthy individuals xi such that every test in

which xi occurs is positive; in symbols,

V +
0 = {xi ∈ V0 : ∀a ∈ ∂xi∃y ∈ ∂a : σy = 1} . (2.1)

Similarly, let V +
1 be the set of all infected individuals xi such that every test in which xi

occurs features another infected individual; in symbols,

V +
1 = {xi ∈ V1 : ∀a ∈ ∂xi∃y ∈ ∂a \ {xi} : σy = 1} .

We think of the individuals in V +
0 as the “potential false positives”. Indeed, if for any xi ∈ V +

0
we obtain σ′ from σ by setting xi to one, then σ′ will render the same test results as σ.
Similarly, the individuals in V +

1 are potential false negatives.
The following lemma yields a bound on m below which potential false positives and

negatives abound. A simple (omitted) calculation also yields the value of ∆ that is optimal
to facilitate inference, namely ∆ = dmk log 2e.

I Lemma 5. Let ε > 0 and 0 < θ < 1 and assume that

m <
(1− ε)θ

(1− θ) log2 2
nθ(1− θ) logn

Then even with the optimal choice ∆ = dmk log 2e we have |V +
0 |, |V

+
1 | = nΩ(1) w.h.p.

The proof of Lemma 5 relies on a basic random graphs argument. As an immediate application
we obtain the following information-theoretic lower bound.

I Corollary 6. Let ε > 0 and 0 < θ < 1 and assume that

m <
(1− ε)θ

(1− θ) log2 2
nθ(1− θ) logn (2.2)

Then Zk(G, σ̂) = ω (1) w.h.p.

Proof. We need to exhibit alternative vectors σ′ ∈ {0, 1}V with Hamming weight k that
render the same test results as σ. Thus, pick any xi ∈ V +

0 and any xj ∈ V +
1 and obtain σ′ from

σ by setting σ′xi
= 1 and σ′xj

= 0. By construction, σ′ has Hamming weight k and renders
the same test results. Hence, Lemma 5 shows that Zk(G, σ̂) ≥ |V +

0 × V
+
1 | = Ω(n2θ) � 1

w.h.p. J

The bound (2.2) matches minf for θ ' 0.41. A simpler, purely information-theoretic argument
covers the remaining θ.

I Lemma 7. Let ε > 0, 0 < θ < 1. If m < 1−ε
log 2n

θ(1− θ) logn, then Zk(G, σ̂) = ω (1) w.h.p.

We thus conclude that for all 0 < θ < 1, w.h.p. Zk(G, σ̂) = ω(1) if m < (1 − ε)minf .
Therefore, the desired information-theoretic lower bound follows from Corollary 4.
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2.2.2 The information-theoretic upper bound
The proof of the information-theoretic upper bound is the principal achievement of the
present work. The proof rests upon techniques that have come to play an important role in
the theory of random constraint satisfaction problems. Specifically, we need to show that
Zk(G, σ̂) = 1 w.h.p., i.e., that σ is the only assignment compatible with the test results
w.h.p. We establish this result by combining two separate arguments. First, we use a moment
calculation to show that w.h.p. there are no other solutions that have a small “overlap” with
σ. Then we use an expansion argument to show that w.h.p. there are no alternative solutions
with a big overlap. Both these arguments are variants of the arguments that have been used
to study the solution space geometry of random constraint satisfaction problems such as
random k-SAT or random k-XORSAT [3, 4, 21], as well as the freezing thresholds of random
constraint satisfaction problems [2, 33]. Yet to our knowledge these methods have thus far
not been applied to the group testing problem.

Formally, we define

Zk,`(G, σ̂) = |{σ ∈ Sk(G, σ̂) : 〈σ, σ〉 = `}|

as the number of assignments σ ∈ Sk(G, σ̂) whose overlap 〈σ, σ〉 =
∑n
i=1 1{σxi

= σxi
= 1}

with σ is equal to `. The following two propositions rule out assignments with a small and a
big overlap, respectively. In either case we choose ∆ = dmk log 2e to take its optimal value.

I Proposition 8. Let ε > 0 and 0 < θ < 1 and assume that m > (1 + ε)minf(k, θ). W.h.p.
we have Zk,`(G, σ̂) = 0 for all ` < (1− 1/ logn)k.

I Proposition 9. Let ε > 0 and 0 < θ < 1 and assume that m > (1 + ε)minf(k, θ). W.h.p.
we have Zk,`(G, σ̂) = 0 for all (1− 1/ logn)k ≤ ` < k.

We defer the proofs of Propositions 8 and 9 to Sections 3 and 4, respectively.
Propositions 8 and 9 readily imply that Zk(G, σ̂) = 1 w.h.p. if m > (1 + ε)minf(k, θ).

Hence, Corollary 4 shows that there exists an inference algorithm that given G, σ̂ and k
outputs σ w.h.p. However, up to now this algorithm relies on exactly knowing the number of
infected individuals k, which in practice could be rather difficult to learn.

Fortunately this assumption can be removed. Namely, the following proposition shows
that w.h.p. there is no assignment σ that is compatible with the test results and that has
Hamming weight less than k.

I Proposition 10. Let ε > 0 and 0 < θ < 1 and assume that m > (1 + ε)minf(k, θ). W.h.p.
we have

∑
k′<k Zk′(G, σ̂) = 0.

As an immediate consequence of Proposition 10 we conclude that for m > (1+ε)minf(k, θ)
the problem of inferring σ boils down to a minimum vertex cover problem, as previously
conjectured by Aldridge, Baldassini and Johnson [10]. Namely, let P be the set of all positive
tests, i.e., all tests ai, i ∈ [m], with σ̂ai

= 1. Moreover, let V + be the set of all variables
xi ∈ V such that ∂xi ⊆ P; in words, xi takes part in positive tests only. We set up a
hypergraph H with vertex set V + and hyperedges ∂ai ∩ V +, ai ∈ P. Clearly, the set of all
individuals xi with σxi

= 1 provides a valid vertex cover of H (as any positive test must
feature an infected individual). Conversely, Propositions 8 and 9 show that w.h.p. this is
the unique vertex cover of size k, and Proposition 10 shows that there is no strictly smaller
vertex cover w.h.p. Therefore, w.h.p. we can infer σ even without prior knowledge of k by
way of solving this minimum vertex cover instance.
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2.3 The SCOMP algorithm
For θ ≥ 1/2 we have malg = minf and thus Theorem 1 implies that SCOMP fails to infer σ
w.h.p. for m < (1 − ε)malg. Therefore, we are left to establish Theorem 2 for θ < 1/2, in
which case

malg = nθ(1− θ) log(n)
log2 2

. (2.3)

The proof of Theorem 2 for θ < 1/2 hinges on two lemmas. First we show that below
malg, the set V −−1 of infected individuals that the second step of SCOMP identifies correctly is
empty. Formally, with V +

0 from (2.1),

V −−1 =
{
x ∈ V1 : ∃a ∈ ∂x : ∂a \ {x} ⊆ V0 \ V +

0
}
.

I Lemma 11. Suppose that 0 < θ < 1/2 and ε > 0. If m < (1− ε)malg, then for all ∆ > 0
we have V −−1 (G, σ̂∗) = ∅ w.h.p.

With the second step of SCOMP failing to ’explain’ (viz. cover) any positive tests, the
greedy vertex cover algorithm takes over. This algorithm is applied to the hypergraph whose
vertices are the as yet unclassified individuals and whose edges are the neighbourhoods of
the positive tests. Our second lemma shows that the set V +,∆ of potententially false positive
individuals x ∈ V +

0 that participate in the maximum number ∆ of different test is far greater
than the actual number k of infected individuals. Formally, let

V +,∆
0 =

{
x ∈ V +

0 : |∂x| = ∆
}
.

I Lemma 12. Suppose that 0 < θ < 1/2 and ε > 0. If m < (1− ε)malg, then for all ∆ > 0
we have V +,∆

0 ≥ k logn w.h.p.

The proofs of Lemmas 11 and 12 are based on moment calculations that turn out to
be mildly subtle due to the potentially very large degrees of the underlying graph G. We
complete the proof of Theorem 2 as follows.

Proof of Theorem 2. The first step of SCOMP (correctly) marks all individuals that appear
in negative tests as healthy. Moreover, Lemma 11 implies that the second step of SCOMP is
void w.h.p., because there is no single infected individual that appears in a test whose other
individuals have already been identified as healthy by the first step. Consequently, SCOMP
simply applies the greedy vertex cover algorithm. Now, thanks to Lemma 12 it suffices to
prove that SCOMP will fail w.h.p. if V +

0 = ω (k). Because they belong to positive tests only,
all the individuals of V +

0 are present in the vertex cover instance that SCOMP attempts to
solve. Moreover, in the hypergraph no vertex has degree greater than ∆, because the degrees
of x1, . . . , xn in G are equal to ∆. (Some of the hypergraph degrees may be strictly smaller
than ∆ because G is a multi-graph.) Therefore, since |V +

0 | ≥ k logn while the actual set of
infected individuals only has size k, w.h.p. the individual classified as infected by the very
first step of the greedy set cover algorithm belongs to V +

0 . Hence, this individual is not
actually infected, i.e., SCOMP errs w.h.p. J

Since the success probability of the SCOMP algorithm is at least as high as of the DD
algorithm, we can prove the conjecture of [28] regarding the upper bound of the DD algorithm.

I Corollary 13. If m < (1− ε)malg, the DD algorithm will fail to retrieve the correct set of
infected individuals w.h.p..
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3 Proof of Proposition 8

For i ∈ [m] let Γi be the degree of ai in G, i.e., the number of edges incident with ai; this
number may exceed the number of different individuals that participate in test ai as G may
feature multi-edges. Let G be the σ-algebra generated by the random variables (Γi)i∈[m].

Given G we can generate G from the well-known pairing model [27]. Specifically, we
create a set {xi} × [∆] of ∆ clones of each individual as well as sets {ai} × [Γi] of clones
of the tests. Then we draw a perfect matching of the complete bipartite graph on the
vertex sets

⋃n
i=1 {xi} × [∆],

⋃m
i=1 {ai} × [Γi] uniformly at random. For each matching edge

linking a clone of xi with a clone of aj we insert an i-j-edge. The resulting bipartite random
multi-graph has the same distribution as G given G. As an immediate application of this
observation we obtain the following estimate.

I Lemma 14. For every integer 0 ≤ ` < k we have

E[Zk,`(G, σ̂) | G] ≤ O(1) ·
(
k

`

)(
n− k
k − `

) m∏
i=1

1− 2(1− k/n)Γi + 2 (1− 2k/n+ `/n)Γi

(3.1)

Proof. We use the linearity of expectation. The product of the two binomial coefficients
simply accounts for the number of assignments σ that have overlap ` with σ. Hence, with S
the event that one specific σ ∈ {0, 1}V that has overlap ` with σ belongs to Sk,`(G, σ̂), we
need to show that

P [S | G] ≤
m∏
i=1

1− 2(1− k/n)Γi + 2 (1− 2k/n+ `/n)Γi . (3.2)

By symmetry we may assume that σxi
= 1{i ≤ k} and that σxi

= 1{i ≤ `} + 1{k < i ≤
2k − `}.

To establish (3.2) we harness the pairing model. Namely, given G we can think of each
test ai as a bin of capacity Γi. Moreover, we think of each clone (xi, h), h ∈ [∆], of an
individual as a ball. The ball is labelled (σxi

, σxi
) ∈ {0, 1}2. The random matching that

creates G effectively tosses the ∆n balls randomly into the bins. Hence, for i ∈ [m] and for
j ∈ [Γi] let us write Ai,j = (Ai,j,1,Ai,j,2) ∈ {0, 1}2 for the label of the jth ball that ends up
in bin number i. Then we are left to calculate

P [S | G] = P
[
∀i ∈ [m] : max

j∈[Γi]
Ai,j,1 = max

j∈[Γi]
Ai,j,2

∣∣G] , (3.3)

i.e., the probability that a test ai is positive with respect to first assignment (Ai,j,1)j∈[Γi] iff
it is positive with respect to the second assignment (Ai,j,2)j∈[Γi].

To calculate this probability we borrow a trick from the analysis of the random k-
SAT model [16]. Namely, we consider a new set {0, 1}2-valued random variables A′i,j =
(A′i,j,1,A′′i,j,2) such that (A′i,j)i∈[m],j∈[Γi] are mutually independent and such that

P
[
A′i,j = (1, 1)

]
= `/n, P

[
A′i,j = (0, 1)

]
= P

[
A′i,j = (1, 0)

]
= (k − `)/n,

P
[
A′i,j = (0, 0)

]
= (n− 2k + `)/n
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for all i, j. Now, let R be the event that
m∑
i=1

Γi∑
j=1

1
{
A′i,j = (1, 1)

}
= `∆,

m∑
i=1

Γi∑
j=1

1
{
A′i,j = (0, 0)

}
= (n− 2k + `)∆,

m∑
i=1

Γi∑
j=1

1
{
A′i,j = (1, 0)

}
=

m∑
i=1

Γi∑
j=1

1
{
A′i,j = (0, 1)

}
= (k − `)∆,

i..e, that all of the sums on the l.h.s. are precisely equal to their expected values. Then
A′ = (A′i,j)i,j given R is distributed precisely as A = (Ai,j)i,j . Hence, (3.3) yields

P [S | G] = P
[
∀i ∈ [m] : max

j∈[Γi]
A′i,j,1 = max

j∈[Γi]
A′i,j,2 | G,R

]
. (3.4)

Thus, let A =
{
∀i ∈ [m] : maxj∈[Γi]A

′
i,j,1 = maxj∈[Γi]A

′
i,j,2
}
. Because the (A′i,j)i,j

are mutually independent, we can easily compute the unconditional probability A: by
inclusion/exclusion,

P [A | G] =
m∏
i=1

1− 2(1− k/n)Γi + 2(1− 2k/n+ `/n)Γi (3.5)

(the probability that maxA′i,j,1 = maxA′i,j,2 = 1, i.e., both tests positive, equals one minus
the probability that maxA′i,j,1 = 0 minus the probability that maxA′i,j,2 = 0 plus the
probability that maxA′i,j,1 = maxA′i,j,2 = 0; then add the probability that maxA′i,j,1 =
maxA′i,j,2 = 0, i.e., both tests negative).

Finally, to deal with the conditioning we use Bayes’ rule:

P [A | R,G] = P [A | G]P [R | A,G]
P [R | G] . (3.6)

Since the (A′i,j)i,j are independent, the Local Limit Theorem for sums of independent
variables [29] yields P [R | G] = Θ(∆n)−3/2, P [R | A,G] = Θ(∆n)−3/2. Hence, (3.2) follows
from (3.4)–(3.6). J

Proof of Proposition 8. The Chernoff bound implies that Γi ≥ Γmin =
∆n/m −

√
∆n/m logn for all i ∈ [m] w.h.p. Further, assuming that the Γi satisfy this

bound, we perform an elementary calculation to check that∑
0≤`≤(1−1/ logn)k

(
k

`

)(
n− k
k − `

) m∏
i=1

1− 2(1− k/n)Γi + 2 (1− 2k/n+ `/n)Γi = o(1). (3.7)

Therefore, the proposition follows from Lemma 14 and Markov’s inequality. J

4 Proof of Proposition 9

The argument from Section 3 does not extend large overlaps (close to k) because the
expression on the r.h.s. of (3.1) gets too large. In other words, merely just computing the
expected number of solutions with a given overlap does not do the trick. This “lottery
phenomenon” is ubiquitous in random constraint satisfaction problems: for big overlap values
rare solution-rich instances drive up the expected number of solutions [4, 5]. In order to cope
with this issue we take another leaf out of the random CSP literature [2, 33]. Namely, we
show that the solution σ is locally rigid. That is, the expansion properties of the random
bipartite graph G preclude the existence of other solutions that have a big overlap with σ.
The following lemma holds the key to this effect.
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I Lemma 15. For any ε > 0 there exists δ = δ(ε) > 0 such that for all m > (1 + ε)minf the
following is true. Let R be the event that for every xi with σxi

= 1 there are at least δ∆
tests a ∈ ∂xi such that ∂a \ {xi} ⊆ V0. Then P [R] = 1− o(1).

Hence, w.h.p. any infected individual appears in plenty of tests where all the other
individuals are healthy. This property causes σ to be locally rigid. To see why, consider the
repercussions of just changing the status of a single individual xi from infected to healthy.
Because given R the individual xi appears as the only infected individual in at least δ∆ tests,
in order to maintain the same tests results we will also need to flip at least one individual
in each of these tests from healthy to infected. Since tests typically have relatively few
individuals in common, the necessary number of flips from 0 to 1 will be Ω(∆) = Ω(logn).
But then in order to keep the total number of infected individuals constant k, we will need
to perform another Ω(∆) flips from 1 to 0. Yet given R each of these “second generation”
individuals that we flip from infected to healthy is itself the only infected individual in many
tests. Thus, the single flip that we started from triggers a veritable avalanche of flips, which
will stop only after the overlap has dropped significantly. The next lemma formalises this
intuition. The lemma shows that while the unconditional expectation of Zk,`(G, σ̂) is “too
big”, the conditional expectation of Zk,`(G, σ̂) given R is much smaller. Letm0 = m0(G, σ̂)
be the total number of negative tests.

I Lemma 16. Suppose that (1 − 1/ logn)k ≤ ` < k and let Γmin = mini∈[m] Γi, Γmax =
maxi∈[m] Γi. Then

E[Zk,`(G, σ̂) | G,R,m0] ≤

O(1)
(
k

`

)(
n− k
k − `

)(
1−

(
1− k − `

n

)Γmax
)δ∆(k−`)(

n− 2k + `

n− k

)Γminm0

= o(1) (4.1)

The proof of Lemma 16 requires some mildly delicate manoeuvres to cope with the stochastic
dependences that are inherent in the random bipartite graph model.

Proof of Proposition 9. Standard tail bound arguments show that Γmax,Γmin = mini∈[m] Γi
= ∆n/m + O(

√
∆n/m logn) w.h.p. Plugging these estimates into (4.1) and summing on

` > (1− 1/ logn)k completes the proof. J
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Abstract
We consider the Membership and the Half-Space Reachability problems for matrices in dimensions
two and three. Our first main result is that the Membership Problem is decidable for finitely
generated sub-semigroups of the Heisenberg group over rational numbers. Furthermore, we prove
two decidability results for the Half-Space Reachability Problem. Namely, we show that this problem
is decidable for sub-semigroups of GL(2,Z) and of the Heisenberg group over rational numbers.
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Two central decision problems on matrix semigroups are the Membership and Half-Space
Reachability (see, e.g., [6]). For the Membership Problem the input is a finite set of generators
A1, . . . , Ak and a target matrix A, with all matrices being square and of the same dimension.
The question is whether A lies in the semigroup generated by A1, . . . , Ak. We emphasize that
we consider membership in finitely generated sub-semigroups, i.e., we seek to recover A as a
non-empty product of generators. In a related subgroup membership problem one additionally
allows to take inverses of generators. The subgroup membership can clearly be reduced to the
sub-semigroup membership and tends to be more tractable (e.g., the subgroup membership
for polycyclic groups is well-known to be decidable [38], and the subgroup membership for
the modular group PSL(2,Z) is in PTIME [15]). For the Half-Space Reachability Problem
the target matrix is replaced by vectors u, v and a scalar λ, and the question is now whether
there exists a matrix A in the semigroup generated by A1, . . . , Ak such that u>Av ≥ λ.
Geometrically the question is whether the orbit of v under the action of the semigroup
reaches a certain half-space with normal u. Closely related to these problems are the Vector
Reachability and the Hyperplane Reachability1 problems, which ask whether there exists
a matrix A in the semigroup generated by A1, . . . , Ak such that Av = u or such that
u>Av = λ, respectively.

Undecidability of the Membership Problem has long been known (indeed, this was one of
the earliest undecidability results – see A. Markov [28]). Subsequently a number of positive
decidability results were obtained in the case of semigroups generated by commuting matrices
over infinite fields [2, 20]. More recently, attention has focussed on integer matrices in
dimension two. A classical result of [10] shows decidability of the Membership Problem
for sub-semigroups of GL(2,Z) – the group of 2× 2 integer matrices with integer inverses
(equivalently, with determinants equal to ±1). Moreover, the semigroup membership for the
identity matrix was shown to be NP-complete for SL(2,Z) [4]. Furthermore, the Membership
Problem is decidable for 2× 2 integer matrices with nonzero determinant [32] and for 2× 2
integer matrices with determinants equal to 0 and ±1 [33]. However it is still unknown
whether the Membership Problem is decidable for all 2× 2 integer matrices.

Going beyond dimension two, it has long been known that the Membership Problem is
undecidable for general 3× 3 integer matrices [31]. However the status of the Membership
Problem for GL(3,Z) is currently an outstanding open problem. Related to this, it was
shown in [23] that for a two-element alphabet Σ, the monoid Σ∗ × Σ∗ cannot be embedded
in GL(3,Z). This fact suggests that undecidability proofs of the Membership Problem in
other settings (such as [31]), which are based on encodings of the Post Correspondence
Problem, are unlikely to carry over to GL(3,Z). It is classical that the Membership Problem
for GL(4,Z) is undecidable [29, 5, 23]; thus it can reasonably be said that dimension three
lies on the borderline between decidability and undecidability.

Our first main result (Theorem 7) concerns the Membership Problem for a simple subgroup
of GL(3,Z): the so-called Heisenberg group H(3,Z), which comprises upper triangular integer
matrices with ones along the diagonal. Since the Heisenberg group is polycyclic, the subgroup
membership problem is decidable [38]. It was moreover recently shown in [23] how to decide
membership of the identity matrix in finitely generated sub-semigroups of H(3,Z). Our main
theorem strengthens this last result to show decidability of the Membership Problem for
H(3,Z). In fact, like in [23], our argument works for Heisenberg groups of any dimension
and even over the field of rational numbers, that is, for H(n,Q).

1 In the literature the Hyperplane Reachability Problem is also called the Scalar Reachability Problem.
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Our proof relies on arguments developed in [23] but contains several significant new
elements, including the use of linear programming, integer register automata, and matrix
logarithms. The following algebraic property of H(3,Z) is important for our construction:
the subgroup generated by commutators of matrices from a given subset G ⊆ H(3,Z) is
isomorphic to a subgroup of Z. Such property does not hold for the direct product of two
Heisenberg groups H(3,Z)2 or for the group of 4× 4 upper unitriangular matrices UT(4,Z).
This makes it challenging to generalize our argument to show decidability of the Membership
Problem for H(3,Z)2, UT(4,Z) or other similar matrix groups.

In [24] a related problem was studied, called the Knapsack Problem. Namely, it was
proved that the Knapsack Problem is decidable for H(3,Z), that is, given matrices A1, . . . , Ak
and A from H(3,Z) one can decide whether there are non-negative integers n1, . . . , nk such
that An1

1 · · ·A
nk

k = A. Decidability of the Knapsack Problem is shown by reduction to the
problem of solving a single quadratic equation in integer numbers (proved to be decidable
in [13, 14]). By contrast, our decision procedure for the Membership Problem relies only
on linear programming and integer linear arithmetic. As far as we can tell, there is no
straightforward reduction in either direction between the Membership and Knapsack Problems
for H(3,Z).

The Vector Reachability, Hyperlane Reachability, and Half-Space Reachabilty Problems
are all known to be undecidable in general (see [9, 16, 17]). The Vector and Hyperplane
Reachability problems are known to be decidable for GL(2,Z), as shown in [34]. For matrix
semigroups with a single generator, the Half-Space Reachability Problem is equivalent to the
Positivity Problem for linear recurrence sequences: a longstanding and apparently difficult
open problem [30, 36]. Our second main result is that the Half-Space Reachability Problem
is decidable for both GL(2,Z) (Theorem 17) and H(n,Q) (Theorem 20). For GL(2,Z) we
build on automata-theoretic techniques developed in [10], with the key insight being that
the set of matrices in GL(2,Z) with a positive value in a given entry can be represented as a
regular language over the generators of GL(2,Z). For H(n,Q) we rely on a nontrivial result
about the nonnegativity of quadratic forms over the integers from [13, 14] (related to the
result used in [24] to solve the Knapsack Problem).

2 Preliminaries

The Heisenberg Group

We use notations In and 0n for the identity matrix and for the zero matrix of size n × n,
respectively. For n ≥ 3, the Heisenberg group of dimension n is the group H(n,R) of n× n
real matrices of the form

A =

1 a> c

0 In−2 b

0 0 1

 , (1)

where a, b ∈ Rn−2, c ∈ R. For brevity, we will often denote a matrix A as in (1) by the triple
(a, b, c) ∈ Rn−2 × Rn−2 × R. It is easy to check that the product operation is given by

(a, b, c) · (a′, b′, c′) = (a + a′, b + b′, c+ c′ + a>b′) .

We use ψ to denote the group homomorphism ψ : H(n,R) → R2n−4 given by ψ(a, b, c) =
(a, b).
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The Heisenberg group H(n,R) is a Lie group whose corresponding Lie algebra h(n,R)
comprises the vector space of n× n real matrices of the form

B =

0 a> c

0 0n−2 b

0 0 0

 , (2)

where a, b ∈ Rn−2 and c ∈ R, together with the binary Lie bracket operation [A,B] :=
AB−BA for A,B ∈ h(n,R). Note that [A,B] has only zero entries except for the (1, n)-entry.
From this it is easy to check that [[A,B], C] = 0n for all A,B,C ∈ h(n,R).

Given A ∈ H(n,R), as shown in (1), we define its logarithm log(A) ∈ h(n,R) to be

log(A) := (A− I)− (A− I)2

2 =

0 a> c− 1
2a>b

0 0n−2 b

0 0 0

 .

Conversely, given B ∈ h(n,R), as shown in (2), we define its exponential exp(B) ∈ H(n,R)
to be exp(B) := I + B + B2

2 = (a, b, c + 1
2a>b). It is easy to verify that log and exp are

mutually inverse and together induce a bijection between H(n,R) and h(n,R).
The following is a specialisation to H(n,R) of the Baker-Campbell-Hausdorff product

formula (see [18, Chapter 5] for a details). Given a sequence of matrices B1, . . . , Bm ∈ H(n,R),
we have

log(B1 · · ·Bm) =
m∑
i=1

log(Bi) + 1
2

∑
1≤i<j≤m

[log(Bi), log(Bj)] . (3)

Regular subsets of GL(2,Z)

We will use the notation GL(2,Z) for the general linear group of 2× 2 integer matrices, that
is, GL(2,Z) = {M ∈ Z2×2 : det(M) = ±1}. A matrix is called singular if its determinant is
zero and nonsingular otherwise.

We will use the following encoding of the matrices from GL(2,Z) by words in alphabet
Σ = {X,N, S,R}. First, we define a mapping ϕ : Σ→ GL(2,Z) as follows:

ϕ(X) = −I2 =
(
−1 0
0 −1

)
, ϕ(N) =

(
1 0
0 −1

)
, ϕ(S) =

(
0 −1
1 0

)
, ϕ(R) =

(
0 −1
1 1

)
.

We can extend ϕ to a morphism ϕ : Σ∗ → GL(2,Z) in a natural way. It is a well-
known fact that morphism ϕ is surjective, that is, for every M ∈ GL(2,Z) there is a word
w ∈ Σ∗ such that ϕ(w) = M . This presentation is not unique because of identities such
as ϕ(SS) = ϕ(RRR) = ϕ(X). However, as explained below, every matrix M ∈ GL(2,Z) is
represented by a unique word in the canonical form.

In the following definition, for n a positive integer and V ∈ Σ, V n is the word consisting
of n copies of V , while V 0 denotes the empty word.

I Definition 1. A word w ∈ Σ∗ is called canonical if it has the form

w = NδXγSβRα1SRα2 · · ·SRαnSε,

where β, γ, δ, ε ∈ {0, 1} and αi ∈ {1, 2} for i = 1, . . . , n. In other words, w is canonical if
it does not contain subwords SS or RRR. Moreover, letter N may appear only once in the
first position, and letter X may appear only once either in the first position or after N .
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The next proposition is a well-known fact.

I Proposition 2 ([25, 26, 32, 35]). For every matrix M ∈ GL(2,Z), there is a unique
canonical word w such that M = ϕ(w).

I Definition 3. A subset S ⊆ GL(2,Z) is called regular if there is a regular language L ⊆ Σ∗
such that S = ϕ(L).

I Definition 4. Two words w1 and w2 from Σ∗ are equivalent, denoted w1 ∼ w2, if
ϕ(w1) = ϕ(w2). Two languages L1 and L2 in the alphabet Σ are equivalent, denoted
L1 ∼ L2, if
(i) for each w1 ∈ L1, there exists w2 ∈ L2 such that w1 ∼ w2, and
(ii) for each w2 ∈ L2, there exists w1 ∈ L1 such that w2 ∼ w1.

In other words, L1 ∼ L2 if and only if ϕ(L1) = ϕ(L2). Two finite automata A1 and A2 with
alphabet Σ are equivalent, denoted A1 ∼ A2, if L(A1) ∼ L(A2).

The following theorem is a crucial ingredient of our decidability results.

I Theorem 5 ([32]). For any automaton A over the alphabet Σ = {X,N, S,R}, there exists
an automaton Can(A) such that Can(A) is equivalent to A and Can(A) accepts only canonical
words. Furthermore, Can(A) can be constructed from A in polynomial time.

The proof of the following corollary is given in the full version [11].

I Corollary 6. Regular subsets of GL(2,Z) are effectively closed under Boolean opera-
tions. Namely, given two regular languages L,L′ ⊆ Σ∗, we can algorithmically construct
in polynomial time regular languages L∪, L∩ and Lc such that ϕ(L∪) = ϕ(L) ∪ ϕ(L′),
ϕ(L∩) = ϕ(L) ∩ ϕ(L′), and ϕ(Lc) = GL(2,Z) \ ϕ(L).

Decision problems for matrix semigroups

If G is a finite collection of matrices, then 〈G〉 denotes the semigroup generated by G, that is,
A ∈ 〈G〉 if and only if there are matrices A1, . . . , At ∈ G such that A = A1 · · ·At.

In this paper we will consider the following decision problems for matrix semigroups:
The Membership Problem: Given a finite collection of matrices G and a “target”
matrix A, decide whether A belongs to 〈G〉.
The Half-Space Reachability Problem: Given a finite collection of matrices G,
two vectors u,v and a scalar λ, decide whether there exists a matrix A ∈ 〈G〉 such
that u>Av ≥ λ. In other words, decide whether it is possible to reach the half-space
H = {x : u>x ≥ λ} using matrices from G starting from an initial vector v.

When we talk about the Membership Problem for GL(2,Z) or for the Heisenberg group
H(n,Q), we mean that A and the matrices from G belong to GL(2,Z) or H(n,Q), respectively.
Similarly, in the Half-Space Reachability Problem for GL(2,Z) or H(n,Q) we assume that G
is a finite subset of GL(2,Z) or H(n,Q), respectively, and furthermore we assume that the
vectors u,v have rational coefficients and λ is a rational number.

3 The Membership Problem for the Heisenberg Group

Let H(n,Z) and H(n,Q) be subgroups of H(n,R) comprising all matrices with integer and
rational entries, respectively. In this section we will prove our first main result.

I Theorem 7. The Membership Problem for H(n,Z) is decidable.
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We first give an overview of our decision procedure. Let G = {A1, . . . , Ak} be a finite
set of generators from H(n,Z) and A ∈ H(n,Z) be a target matrix. The idea is to partition
the set of generators G into two sets G+ and G0. The definition of G+ is such that there
is a computable upper bound on the number of occurrences of a matrix from G+ in any
string of generators whose product equals the target matrix A. The definition of G0 is such
that the image of the semigroup generated by G0 under the homomorphism ψ is a subgroup
of R2n−4 (i.e., the image is closed under inverses). We then proceed by a case analysis
according to whether or not G0 is a commutative set of matrices. If G0 is commutative
then the Membership Problem can be reduced to solving a system of linear equations over
non-negative integer variables. If G0 is not commutative then we reduce the Membership
Problem to a reachability query in an integer register automaton.

Partitioning the Set of Generators

In the rest of this section we work with an instance of the Membership Problem in which
the generators are Ai = (ai, bi, ci), for i = 1, . . . , k, and the target matrix is A = (a, b, c).
Recalling the homomorphism ψ : H(n,Z)→ Z2n−4, let us define vi := ψ(Ai) = (ai, bi), for
i = 1, . . . , k, and v := ψ(A) = (a, b).

A set C ⊆ Rn is called a cone if
∑k
i=1 riui ∈ C for all r1, . . . , rk ∈ R≥0 and u1, . . . ,uk ∈ C.

The dual of a cone C ⊆ Rn is the cone defined as

C∗ := {x ∈ Rn : x>y ≥ 0 for all y ∈ C}.

We will use the fact that C = C∗∗, i.e., a cone is equal to its double dual [8, Chapter 2.6.1].
We write Cone(v1, . . . ,vk) for the cone generated by the vectors v1, . . . ,vk. We now

partition the set of generators G into two disjoint sets G0,G+, where

G0 :=
{
Ai : ∀u ∈ Cone(v1, . . . ,vk)∗ v>i u = 0

}
G+ :=

{
Ai : ∃u ∈ Cone(v1, . . . ,vk)∗ v>i u > 0

}
.

We can determine the sets G0 and G+ using linear programming [37]. Without loss of
generality we can assume that G0 = {A1, . . . , A`} for some ` ≥ 0.

We show how to compute a bound β > 0 such that for every sequence S = B1, . . . , Bm
of elements of G whose product is equal to the target matrix A, the number of indices i
such that Bi ∈ G+ is at most β. By definition of G+, for each i ∈ {1, . . . , `}, there exists
ui ∈ Cone(v1, . . . ,vk)∗ such that v>i ui > 0. Since v>j ui ≥ 0 for all j 6= i, S contains at
most v>ui

v>
i

ui
occurrences of matrix Ai (or no occurrences if v>ui ≤ 0). Thus we may define

β :=
∑
i

v>ui

v>
i

ui
where the sum is take over the indices i = 1, . . . , ` such that v>ui > 0

We now consider two cases according to whether G0 is a commutative set of matrices.

Case I: G0 is commutative

Consider a sequence S = B1, . . . , Bm of elements of G. Let Bi1 , . . . , Bis be the subsequence
of S containing all occurrences of elements of G+ in S, where 0 = i0 < i1 < . . . < is < is+1 =
m + 1. For i ∈ {1, . . . , `} and j ∈ {1, . . . , s + 1}, write ni,j for the number of occurrences
of Ai ∈ G0 in the subsequence of S lying strictly between Bij−1 and Bij (where B0 is
interpreted as the beginning of S and Bm+1 as the end of S). The idea is to write a formula
for log(B1 · · ·Bm) that is a linear form in the variables ni,j .
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Indeed by Equation (3), writing Cij := log(Bij ) for j = 1, . . . , s and Di := log(Ai) for
i = 1, . . . , `, we have

log(B1 · · ·Bm) =
s∑
j=1

Cij +
∑̀
i=1

s+1∑
j=1

ni,jDi +
∑

1≤j<j′≤s
[Cij , Cij′ ]

+
∑̀
i=1

∑
1≤j≤j′≤s

ni,j [Di, Cij′ ] +
∑̀
i=1

∑
1≤j<j′≤s+1

ni,j′ [Cij , Di] (4)

An important observation is that the above formula has no quadratic terms due to
commutativity of G0. Now B1 · · ·Bm = A if and only if log(B1 · · ·Bm) = log(A). Setting the
right-hand-side of (4) equal to log(A) yields a linear Diophantine equation in variables ni,j .
The form of this equation is determined by the subsequence of matrices Bi1 , . . . , Bis lying in
G+. Recall that we can without loss of generality restrict attention to the case that s ≤ β
and thus we reduce the question of whether A lies in the semigroup generated by G to the
solubility of finitely many linear equations in nonnegative integers.

Case II: G0 is not commutative

Let G0 = {A1, . . . , A`} for some ` ≥ 2 such that A1 and A2 do not commute. Recall that
by definition of G0 it holds that v>i u = 0 for all u ∈ Cone(v1, . . . ,vk)∗ and i = 1, . . . , `.
Therefore,

Span(v1, . . . ,v`) ⊆ Cone(v1, . . . ,vk)∗∗ = Cone(v1, . . . ,vk) . (5)

Following ideas from [23], we will show that there exist integers p > 0 and q < 0 such that
M+ = (0,0, p) and M− = (0,0, q) and both lie in the semigroup generated by G.

Indeed, from Equation (5) it follows that −(v1 + v2) lies in Cone(v1, . . . ,vk). Thus
there exist r1, . . . , rk ∈ R≥0 with r1, r2 strictly positive such that

∑k
i=1 rivi = 0. But since

the vectors vi have integer coefficients we can solve the above equation in natural numbers
r1, . . . , rk with r1, r2 > 0. Taking a sequence of matrices B1, . . . , Bm, drawn from G, such
that B1 = A1, B2 = A2 and such that matrix Ai appears ri times in the sequence for
i ∈ {1, . . . , k}, we obtain ψ(B1 · · ·Bm) = 0. Since ψ is a homomorphism to a commutative
group we have that ψ(Btσ(1) · · ·B

t
σ(m)) = 0 for all t ≥ 1 and permutations σ ∈ Sm.

Write Ci = log(Bi) for i = 1, . . . ,m. Applying the Baker-Campbell-Hausdorff Formula (3),
we have that for any positive integer t and permutation σ ∈ Sm

log(Btσ(1) · · ·B
t
σ(m)) = t

m∑
i=1

Cσ(i) + t2

2
∑
i<j

[Cσ(i), Cσ(j)]. (6)

We show that we can obtain the desired matrices M+ and M− as M+ := Btσ(1) · · ·B
t
σ(m)

and M− := Btσ(m) · · ·B
t
σ(1) for some permutation σ ∈ Sm and large enough t.

Let σ0 ∈ Sm be the permutation that transposes 1 and 2. Write also id ∈ Sm for the
identity permutation. Defining δσ :=

∑
i<j [Cσ(i), Cσ(j)]1,n, we have δid−δσ0 = 2[C1, C2]1,n 6=

0 since B1, B2 do not commute. Hence there exists σ ∈ {id, σ0} with δσ 6= 0. Defining
the reverse permutation σ′ ∈ Sm by σ′(i) = σ(m + 1 − i) for i = 1, . . . ,m, we moreover
have δσ′ = −δσ, and thus we may suppose that δσ > 0 and δσ′ < 0. It remains to note,
by inspection of (6), that for t sufficiently large, if δσ 6= 0 then the sign of the (1, n)-entry
of log(Btσ(1) · · ·B

t
σ(m)) is equal to the sign of δσ. But since log(Btσ(1) · · ·B

t
σ(m)) has zeros

in all entries, except for the (1, n)-entry, this entry is in fact equal to the (1, n)-entry
of Btσ(1) · · ·B

t
σ(m).
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So, under the assumption that G0 is not commutative we have shown that one can
compute integers p > 0 and q < 0 such that M+ = (0,0, p) and M− = (0,0, q) are in G.
It follows that 〈G〉 contains the group N = {(0,0, c) ∈ H(n,Z) : c ≡ 0 (mod m)}, where
m = gcd(p, q). Since

(a, b, c) · (0,0, c′) = (0,0, c′) · (a, b, c) = (a, b, c+ c′),

we have the following equivalence for the target matrix A = (a, b, c):

A = (a, b, c) ∈ 〈G〉 iff ∃B ∈ 〈G〉 such that AB−1 ∈ N
iff ∃B ∈ 〈G〉 such that B = (a, b, c′) and c′ ≡ c (mod m) .

To decide whether 〈G〉 contains a matrix B = (a, b, c′) with c′ ≡ c (mod m), we will use
register automata. Let d = n−2 and consider the following finite automaton with 2d registers:

Q = ({A1, . . . , Ak}, S,R1, . . . , Rd, T1, . . . , Td, s0, δ, F ),

where the alphabet of Q is equal to the set of generator matrices G = {A1, . . . , Ak}, and the
set of states S is equal to

S = {(s1, . . . , sd, t1, . . . , td, u) : si, ti, u ∈ {0, . . . ,m− 1} for i = 1, . . . , d }.

Intuitively, (2d+ 1)-tuples from S store the values of a vector (a, b, c) modulo m, and the
registers R1, . . . , Rd and T1, . . . , Td store the values of a and b, respectively.

The initial state of Q is s0 = (0, . . . , 0), and the initial values of all the registers are zeros.
The transition function δ is defined as follows. Suppose Q is in a state (s1, . . . , sd, t1, . . . , td, u),
and the current values of Ri and Ti are ri and ti, respectively, for i = 1, . . . , d. If Q reads
a letter A` = (a`1, . . . , a`d, b`1, . . . , b`d, c`), then it moves to the state (s′1, . . . , s′d, t′1, . . . , t′d, u′),
where for each i = 1, . . . , d:

s′i ≡ si + a`i (mod m) and t′i ≡ ti + b`i (mod m),
u′ ≡ u+ c` + s1b

`
1 + · · ·+ sdb

`
d (mod m).

Also, the new value of Ri is ri + a`i and the new value of Ti is ti + b`i .

The set F of final states consists of one state that corresponds to the values of the target
matrix A = (a, b, c) = (a1, . . . , ad, b1, . . . , bd, c) modulo m, that is

F = {(s1, . . . , sd, t1, . . . , td, u) : si ≡ ai, ti ≡ bi, u ≡ c (mod m) for i = 1, . . . , d}.

The automaton Q accepts a word w ∈ {A1, · · · , Ak}∗ if after reading w it reaches the final
state from F and the values of the registers R1, . . . , Rd and T1, . . . , Td are equal to a1, . . . , ad
and b1, . . . , bd, respectively. By construction, the language of Q in non-empty if and only if
〈G〉 contains a matrix B = (a, b, c′) with c′ ≡ c (mod m).

Note that after reading any letter the registers of Q are changed by constant values, and
the transitions have no guards or zero checks. Let S be the set of values that the registers of
Q can have when it reaches the final state. It is well-known that for a register automaton
of this type the set S is effectively semilinear (see [22, 21] for details). In particular, we
can decide whether S contains the vector (a, b), and so the emptiness problem for Q is
decidable. Hence, in the case when G0 is not commutative the Membership Problem for
H(n,Z) is decidable.

I Corollary 8. The Membership Problem for H(n,Q) is decidable.
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Proof. Let Ai = (ai, bi, ci), for i = 1, . . . , k, and A = (a, b, c) be the given generators and
the target matrix from H(n,Q). Let N be a natural number such that Ai = ( 1

N a′i,
1
N b′i,

1
N2 c

′
i),

for i = 1, . . . , k, and A = ( 1
N a′, 1

N b′, 1
N2 c

′), where a′i, b
′
i, c
′
i, for i = 1, . . . , k, and a′, b′, c′ are

integer vectors and numbers. It is easy to check that

( 1
Nx, 1

N y, 1
N2 c) · ( 1

Nx′, 1
N y′, 1

N2 c
′) = ( 1

N (x + x′), 1
N (y + y′), 1

N2 (c+ c′ + x>y′)) .

Hence A ∈ 〈A1, . . . , Ak〉 iff A′ ∈ 〈A′1, . . . , A′k〉, where A′ = (a′, b′, c′) and A′i = (a′i, b
′
i, c
′
i), for

i = 1, . . . , k, are matrices with integer entries, that is, from H(n,Z). By Theorem 7 we can
decide whether A′ ∈ 〈A′1, . . . , A′k〉. J

4 The Half-Space Reachability Problem for GL(2,Z)

In this section we will show that the Half-Space Reachability Problem for GL(2,Z) is decidable
(Theorem 17).

I Definition 9. For an integer n, the sign of n as follows: sg(n) = 1 if n > 0, sg(n) = −1
if n < 0, and sg(n) = ∗ if n = 0.

For a matrix A =
(
a b

c d

)
∈ Z2×2, define sg(A) :=

(
sg(a) sg(b)
sg(c) sg(d)

)
.

If A and B are two expressions whose values are in the set {1,−1, ∗}, then the notation
A ' B means that A = B or A = ∗ or B = ∗.

I Proposition 10. Suppose w is a canonical word of the form w = SRα1SRα2 · · ·SRαn ,

where αi ∈ {1, 2} for i = 1, . . . , n. Then sg(ϕ(w)) '
(

(−1)n (−1)n

(−1)n (−1)n
)
.

Proof. The proof is by induction on n. For n = 1, we have

sg(ϕ(SR)) = sg
(
−1 −1
0 −1

)
=
(

sg(−1) sg(−1)
sg(0) sg(−1)

)
'
(
−1 −1
−1 −1

)
and

sg(ϕ(SR2)) = sg
(
−1 0
−1 −1

)
=
(

sg(−1) sg(0)
sg(−1) sg(−1)

)
'
(
−1 −1
−1 −1

)
Suppose the statement of the proposition is true for w = SRα1SRα2 · · ·SRαn and consider

the words wSR and wSR2. Assume that ϕ(w) =
(
a b

c d

)
and sg(ϕ(w)) =

(
sg(a) sg(b)
sg(c) sg(d)

)
'(

(−1)n (−1)n

(−1)n (−1)n
)
. Then we have

ϕ(wSR) = ϕ(w)ϕ(SR) =
(
a b

c d

)(
−1 −1
0 −1

)
=
(
−a −a− b
−c −c− d

)
and

ϕ(wSR2) = ϕ(w)ϕ(SR2) =
(
a b

c d

)(
−1 0
−1 −1

)
=
(
−a− b −b
−c− d −d

)
.

From these formulas it not hard to see that sg(ϕ(wSR)) '
(

(−1)n+1 (−1)n+1

(−1)n+1 (−1)n+1

)
and

sg(ϕ(wSR2)) '
(

(−1)n+1 (−1)n+1

(−1)n+1 (−1)n+1

)
. J
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I Proposition 11. Let w be a canonical word of the form w = SβRα1SRα2 · · ·SRαnSε, where

β, ε ∈ {0, 1} and αi ∈ {1, 2}, i = 1, . . . , n. Then sg(ϕ(w)) '
(

(−1)n (−1)n+ε

(−1)n−1+β (−1)n−1+β+ε

)
.

Proof. First, consider the case when ε = 0. Suppose ϕ(SRα1SRα2 · · ·SRαn) =
(
a b

c d

)
.

Then by Proposition 10 we have

sg(ϕ(SRα1SRα2 · · ·SRαn)) =
(

sg(a) sg(b)
sg(c) sg(d)

)
'
(

(−1)n (−1)n

(−1)n (−1)n
)
.

On the other hand, ϕ(Rα1SRα2 · · ·SRαn) =

= −ϕ(S)ϕ(SRα1SRα2 · · ·SRαn) =
(

0 1
−1 0

)(
a b

c d

)
=
(
c d

−a −b

)
.

Hence sg(ϕ(Rα1SRα2 · · ·SRαn)) =
(

sg(c) sg(d)
sg(−a) sg(−b)

)
'
(

(−1)n (−1)n

(−1)n−1 (−1)n−1

)
. Thus, for

β ∈ {0, 1}, we showed that

sg(ϕ(SβRα1SRα2 · · ·SRαn)) '
(

(−1)n (−1)n

(−1)n−1+β (−1)n−1+β

)
. (7)

Now assume ε = 1 and let ϕ(SβRα1SRα2 · · ·SRαn) =
(
a b

c d

)
. Then

ϕ(SβRα1SRα2 · · ·SRαnS) = ϕ(SβRα1SRα2 · · ·SRαn)ϕ(S)

=
(
a b

c d

)(
0 −1
1 0

)
=
(
b −a
d −c

)
.

(8)

From equations (7) and (8) we obtain

sg(ϕ(SβRα1SRα2 · · ·SRαnS)) =
(

sg(b) sg(−a)
sg(d) sg(−c)

)
'

(
(−1)n (−1)n+1

(−1)n−1+β (−1)n−1+β+1

)
. (9)

Equations (7) and (9) imply that for any β, ε ∈ {0, 1} sg(ϕ(SβRα1SRα2 · · ·SRαnSε)) '(
(−1)n (−1)n+ε

(−1)n−1+β (−1)n−1+β+ε

)
. J

From Proposition 11 and the equalities

ϕ(X)
(
a b

c d

)
=
(
−a −b
−c −d

)
and ϕ(N)

(
a b

c d

)
=
(

1 0
0 −1

)(
a b

c d

)
=
(
a b

−c −d

)
we obtain the following proposition.

I Proposition 12. Let w be a canonical word of the form w = NδXγSβRα1SRα2 · · ·SRαnSε,
where β, γ, δ, ε ∈ {0, 1} and αi ∈ {1, 2} for i = 1, . . . , n. Then

sg(ϕ(w)) '
(

(−1)n+γ (−1)n+γ+ε

(−1)n−1+β+γ+δ (−1)n−1+β+γ+δ+ε

)
.
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I Theorem 13. The set of matrices in GL(2,Z) whose particular entry is nonnegative
forms a regular subset. In other words, for all i, j ∈ {1, 2}, the following subset of GL(2,Z)
is regular:

Posij =
{(

a11 a12
a21 a22

)
∈ GL(2,Z) : aij ≥ 0

}
.

Proof. Suppose i = j = 2 as other cases are similar. Let A be a matrix from GL(2,Z) and let
w = NδXγSβRα1SRα2 · · ·SRαnSε, where β, γ, δ, ε ∈ {0, 1} and αi ∈ {1, 2} for i = 1, . . . , n,
be a canonical word that represents A, that is, A = ϕ(w). From Proposition 12 we see that
sg(a22) ' (−1)n−1+β+γ+δ+ε. Hence

a22 ≥ 0 if and only if n− 1 + β + γ + δ + ε ≡ 0 (mod 2). (10)

To finish the proof, we note that the set of all canonical words is regular. Furthermore,
given a canonical word of the form w = NδXγSβRα1SRα2 · · ·SRαnSε, a finite automaton
can read off the values of β, γ, δ, ε and determine the parity of number n. From this data an
automaton can decide whether a22 ≥ 0 by the above mentioned equivalence (10). Hence the
set of canonical words w such that ϕ(w) ∈ Pos22 can be recognised by a finite automaton. J

Next theorem was proved in [33].

I Theorem 14. For every k ∈ Z, the following subset of GL(2,Z) is regular:

Sij(k) =
{(

a11 a12
a21 a22

)
∈ GL(2,Z) : aij = k

}
.

As a corollary from Theorems 13 and 14 we obtain:

I Theorem 15. For every k ∈ Z, the following subsets of GL(2,Z) are regular:

Sij(≥k) =
{(

a11 a12
a21 a22

)
∈ GL(2,Z) : aij ≥ k

}
and

Sij(≤k) =
{(

a11 a12
a21 a22

)
∈ GL(2,Z) : aij ≤ k

}
.

Proof. Since Sij(≤k) is the complement of Sij(≥k + 1), it suffices to prove that the sets
Sij(≥k) are regular.

If k = 0, then it follows from Theorem 13 that Sij(≥0) = Posij is regular. Furthermore,

Sij(≥k) = Posij \
k−1⋃
n=0

Mij(n) if k > 0 and Sij(≥k) = Posij ∪
−1⋃
n=k

Mij(n) if k < 0.

Since by Corollary 6 regular subsets of GL(2,Z) are closed under Boolean operations, we
conclude that Sij(≥k) is a regular set for any k ∈ Z. J

I Theorem 16. Let λ ∈ Q and u,v ∈ Q×Q. Then the set S(u,v, λ) = {M ∈ GL(2,Z) :
u>Mv ≥ λ } is a regular subset of GL(2,Z).

Proof. Note that if u = 0 or v = 0, then u>Mv = 0. In this case S(u,v, λ) equals either
the empty set or GL(2,Z), both of which are regular subsets. Hence we will assume that both

u =
(
u1
u2

)
and v =

(
v1
v2

)
are nonzero vectors. By multiplying the inequality u>Mv ≥ λ
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by the least common multiple of the denominators of u1, u2, v1, v2, we can assume that u

and v have integer coefficients. Furthermore, we can divide u>Mv ≥ λ by gcd(u1, u2) and
gcd(v1, v2) and so assume from now on that gcd(u1, u2) = gcd(v1, v2) = 1.

Finally, note that the inequality u>Mv ≥ λ is equivalent to u>Mv ≥ dλe, where
dλe = min{n ∈ Z : n ≥ λ}. So, we can assume that λ is also an integer number.

Since gcd(u1, u2) = gcd(v1, v2) = 1, there are integers s1, s2, t1, t2 such that s1u1+s2u2 =

1 and t1v1 + t2v2 = 1. Hence the matrices A =
(
u1 −s2
u2 s1

)
and B =

(
v1 −t2
v2 t1

)
belong to

GL(2,Z), and we have that u = Ae1 and v = Be1. Therefore, the inequality u>Mv ≥ λ is
equivalent to e>1 A

>MBe1 ≥ λ. In other words,

M ∈ S(u,v, λ) ⇐⇒ A>MB ∈ S11(≥λ) ⇐⇒ M ∈ (A>)−1 · S11(≥λ) ·B−1.

By Theorem 15, S11(≥ λ) is a regular subset of GL(2,Z). Let L be a regular language
and let w1, w2 be canonical words such that ϕ(L) = S11(≥ λ) and ϕ(w1) = (A>)−1 and
ϕ(w2) = B−1. Then {w1} · L · {w2} is a regular language such that ϕ({w1} · L · {w2}) =
(A>)−1 · S11(≥λ) ·B−1 = S(u,v, λ). J

I Theorem 17. The Half-Space Reachability Problem for GL(2,Z) is decidable.

Proof. Let G = {A1, . . . , Ak} be a finite collection of matrices from GL(2,Z), λ be a rational
number and u,v be vectors from Q2. Define S(u,v, λ) := {M ∈ GL(2,Z) : u>Mv ≥ λ }.
By Theorem 16, S(u,v, λ) is a regular subset of GL(2,Z). Let LS be a regular language such
that S(u,v, λ) = ϕ(LS). It is not hard to see that the semigroup 〈G〉 is also a regular subset.
Indeed, consider a regular language LG = (w1 ∪ · · · ∪ wk)+, where w1, . . . , wk are canonical
words that correspond to the matrices A1, . . . , Ak, respectively. Then 〈G〉 = ϕ(LG).

By Corollary 6, we can algorithmically construct a regular language L∩ such that
ϕ(L∩) = ϕ(LS) ∩ ϕ(LG) = S(u,v, λ) ∩ 〈G〉. Now we have the following equivalence:

there is M ∈ 〈G〉 such that u>Mv ≥ λ iff S(u,v, λ) ∩ 〈G〉 = ϕ(L∩) 6= ∅.

The last condition is equivalent to L∩ 6= ∅. Therefore, we reduced the Half-Space Reachability
Problem for GL(2,Z) to the emptiness problem for regular languages. J

5 The Half-Space Reachability Problem for the Heisenberg Group

I Definition 18. Let S := B1, . . . , Bm be a sequence in H(n,Q) and A a particular matrix
in H(n,Q). A pair i, j ∈ {1 . . . ,m} with i ≤ j is called an A-block of S if
1. Bk = A for all k ∈ {i, . . . , j},
2. either i = 1 or Bi−1 6= A,
3. either j = m or Bj+1 6= A.
We say that S is pure if it has at most one A-block for every matrix A.

Given a sequence S = B1, . . . , Bm ∈ H(n,Q), define Ci := log(Bi) for i = 1, . . . ,m,
∆(S) :=

∑
1≤i<j≤m[Ci, Cj ], and δ(S) := ∆(S)1,n. Recall that using the Baker-Campbell-

Hausdorff formula (3) we can express the product of the sequence S as follows

B1 · · ·Bm = exp
( m∑
i=1

Ci + 1
2

∑
1≤i<j≤m

[Ci, Cj ]︸ ︷︷ ︸
∆(S)

)
(11)
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I Proposition 19. For any sequence of matrices S = B1, . . . , Bm ∈ H(n,Q), there is a
permutation π ∈ Sm such that sequence S ′ := Bπ(1), . . . , Bπ(m) is pure and δ(S) ≤ δ(S ′).

The proof of Proposition 19 can be found in the full version [11].

I Theorem 20. The Half-Space Reachability Problem for H(n,Q) is decidable.

Proof. Consider an instance of the Half-Space Reachability Problem, given by a finite set
G = {A1, . . . , Ak} ⊆ H(n,Q) of generators, vectors u,v ∈ Qn and a scalar λ ∈ Q.

Given a sequence S = B1, . . . , Bm of elements of G and a permutation σ ∈ Symm,
define Sσ = Bσ(1), . . . , Bσ(m). It follows from Equation (11) that the entries of the product
Bσ(1) · · ·Bσ(m) do not depend on the choice of σ ∈ Symm, except for the (1, n)-entry which
is equal to 1

2∆(Sσ)1,n plus a constant that also does not depend on σ. So, the permutation
σ that maximises u>Bσ(1) · · ·Bσ(m)v is the same which maximises or minimises ∆(Sσ)1,n
depending on the sign of the coefficient at ∆(Sσ)1,n in the expression u>∆(Sσ)v, namely,
on the sign of u1vn. By Proposition 19 we may assume without loss of generality that the
optimal permutation σ is such that Sσ is pure.

By the reasoning above, to decide the given instance of the Half-Space Reachability
Problem it suffices to restrict attention to pure sequences of generators. Equivalently we must
decide whether there exist nonnegative integers n1, . . . , nk and a permutation σ ∈ Symk such
that u>An1

σ(1) · · ·A
nk

σ(k)v ≥ λ. Write Ci = logAi for i = 1, . . . , k. Then

u>An1
σ(1) · · ·A

nk

σ(k)v = u> exp

 k∑
i=1

niCσ(i) + 1
2
∑
i<j

ninj [Cσ(i), Cσ(j)]

v

= Q(n1, . . . , nk)

for some quadratic polynomial Q(x1, . . . , xk) with rational coefficients.
In the work of Grunewald and Segal [14] an algorithm is given for solving the follow-

ing problem: does there exist integers n1, . . . , nk that satisfy a given quadratic equation
Q(n1, . . . , nk) = 0 (with rational coefficients) and a finite number of linear inequalities on
n1, . . . , nk (also with rational coefficients).

By introducing a “dummy” variable we can use the Grunewald and Segal algorithm
to decide whether Q(n1, . . . , nk) ≥ λ for some nonnegative integers n1, . . . , nk. Hence the
Half-Space Reachability Problem for H(n,Q) is decidable. J
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Abstract
We consider the maximal and maximum independent set problems in three models of graph streams:

In the edge model we see a stream of edges which collectively define a graph; this model is
well-studied for a variety of problems. We show that the space complexity for a one-pass
streaming algorithm to find a maximal independent set is quadratic (i.e. we must store all edges).
We further show that it is not much easier if we only require approximate maximality. This
contrasts strongly with the other two vertex-based models, where one can greedily find an exact
solution in only the space needed to store the independent set.
In the “explicit” vertex model, the input stream is a sequence of vertices making up the graph.
Every vertex arrives along with its incident edges that connect to previously arrived vertices.
Various graph problems require substantially less space to solve in this setting than in edge-
arrival streams. We show that every one-pass c-approximation streaming algorithm for maximum
independent set (MIS) on explicit vertex streams requires Ω(n

2

c6 ) bits of space, where n is the
number of vertices of the input graph. It is already known that Θ̃(n

2

c2 ) bits of space are necessary
and sufficient in the edge arrival model (Halldórsson et al. 2012), thus the MIS problem is not
significantly easier to solve under the explicit vertex arrival order assumption. Our result is
proved via a reduction from a new multi-party communication problem closely related to pointer
jumping.
In the “implicit” vertex model, the input stream consists of a sequence of objects, one per vertex.
The algorithm is equipped with a function that maps pairs of objects to the presence or absence
of edges, thus defining the graph. This model captures, for example, geometric intersection
graphs such as unit disc graphs. Our final set of results consists of several improved upper and
lower bounds for interval and square intersection graphs, in both explicit and implicit streams.
In particular, we show a gap between the hardness of the explicit and implicit vertex models for
interval graphs.
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1 Introduction

The streaming model supposes that, rather than being loaded into memory all at once, the
input is received piece-by-piece over a period of time. Only a sublinear amount of memory
(in the input size) is made available, preventing any algorithm from “seeing” even a constant
fraction of the whole input at once.

In graph streams (see [19] for an excellent survey), we distinguish between the “edge-
arrival” model, where the stream consists of individual edges arriving in any order, and the
“vertex-arrival” model, where the stream consists of batches of edges incident to a particular
vertex – as each vertex “arrives” we are given all the edges from the new vertex to previously
arrived vertices. We will shorten the names to edge streams and vertex streams, respectively.
Problems are always at least as hard on edge streams as on vertex streams (as any vertex
stream is also a valid edge stream).

There is a further variant which we will call “implicit” vertex streams (as opposed to
the normal explicit representation). In this model, the stream consists of a series of small
(polylog(n)-sized) identifiers – one per vertex. We are additionally provided with some
symmetric function or oracle which maps a pair of identifiers to a Boolean output indicating
whether the two vertices are connected or not. This implicitly defines a graph over the list
of identifiers received. Geometric intersection graphs, received as a stream of geometric
objects, are the most natural members of this class. For example, a unit interval intersection
graph can be given by a set of points in R. Then a pair of vertices x, y are adjacent if and
only if |x− y| ≤ 1.

Explicit and implicit vertex streams are closely related but distinct, with neither being
strictly “harder” than the other. For example: it is easy to count exactly the number of
edges in Õ(1) space1 for an explicit vertex stream, however, doing so for an implicit stream
requires linear space – otherwise we cannot hope to know how many edges are incident to
the final vertex. On the other hand: implicit vertex streams can be stored entirely in Õ(n)
space, whereas explicit vertex streams require Ω(n2) space to store the full structure.

Maximum Independent Set (MIS) is an important problem on graphs. The task
is to find a largest subset of vertices which have no edges between them. The size of a
MIS in a graph G is denoted α(G), the independence number of G. Unfortunately, it is
NP-hard to find a maximum independent set in a general graph [16], and even hard to
approximate within a factor of n1−ε, for any ε > 0 [20]. It is also known to be hard in the
edge-arrival streaming model: Halldórsson et al. [15] showed that space Θ̃(n

2

c2 ) is necessary
(and sufficient) for computing a c-approximation on an n-vertex graph, despite being allowed
unlimited computation.

Our Results. In this paper, we study the hardness of approximate MIS in the explicit
and implicit vertex streaming models. Since many problems are significantly easier to solve
in vertex streams than in edge streams, we ask whether this is also the case for the MIS
problem. As our main result, we answer this question in the negative:

I Theorem 1. Any constant error one-pass c-approximation streaming algorithm for MIS
(or the size of a MIS) in the explicit vertex stream model requires Ω

(
n2

c6

)
bits of space.

1 All space bounds in this paper are given as number of bits. We use Õ, Θ̃, and Ω̃ to mean O, Θ, and Ω
(respectively) with log factors suppressed.
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Approx. MIS Approx. α(G)
Space Bound Õ(α(G)) poly(logn) Ω(n)

Unit Interval 2 (Greedy alg.) O
(

log2 n
log logn

)
[9] < 5/3

Figure 1 Approximation factors for explicit vertex streams.

Approx. MIS Approx. α(G)
Space Bound Õ(α(G)) poly(logn, ε−1) Ω(n)
Unit Interval 3/2 [11] 3/2 + ε [7] < 3/2 [11]

Interval 2 [11] 2 + ε [7] < 2 [11]
Unit Square 3 3 + ε < 5/2

Figure 2 Approximation factors for implicit vertex streams. The first column concerns algorithms
that output independent sets themselves, while the second columns concerns algorithms that output
estimations of the maximum independent set size. Results from this paper are highlighted.

Our lower bound also holds for the Minimum Vertex Coloring (MVC) problem,
where the objective is to color the vertices of the input graph such that adjacent vertices
have different colors, using the fewest colors possible. This quantity is the chromatic number
and denoted by χ(G). Our result is the first lower bound known for this problem, even for
edge streams (in particular, the work by Halldórsson et al. [15] does not imply such a result).

Next, we show that the situation is very different for the related maximal independent
set problem, where we need to find a subset of non-adjacent vertices that cannot be enlarged.
While it is easy to maintain a maximal independent set in vertex arrival streams (both
explicit and implicit) using space Õ(α(G)) = Õ(n), we prove that Ω(n2) space is required in
the edge-arrival model. We further show that even if we relax the maximality constraint to
approximate maximality and allow for a slightly sublinear number of vertices that are not
adjacent to vertices of the independent set then space Ω(n2−o(1)) is still required.

Finally, we show various improved upper and lower bounds for certain geometric intersec-
tion graph classes in both vertex streaming models: unit interval intersection graphs given
as explicit vertex streams require Ω(n) space to get a better than 5

3 -approximation to α(G),
making them harder than their implicit vertex stream equivalents; and we can 3-approximate
MIS for a stream of unit squares in the plane using Õ(α(G)) space, but achieving better
than a 5

2 -approximation to α(G) requires Ω(n) space. Figures 2 and 1 shows these results in
the context of previously known bounds.

Techniques. Halldórsson et al. [15] proved their space lower bound for MIS in edge streams
via the one-way two-party communication framework. Two parties, denoted Alice and Bob,
each hold a subset of the edges of the input graph. Alice sends a single message to Bob,
who, upon receipt, outputs a large independent set. Via a reduction from a well-known
communication problem, they showed that if Bob outputs a c-approximate MIS then Alice
must send a message of size Ω̃(n

2

c2 ) to Bob. A common reduction then implies that the same
lower bound holds for the space complexity of one-pass streaming algorithms.

Proving a similar result in vertex streams is significantly harder since the two-party
communication abstraction cannot yield the desired result. When partitioning the vertices
of a vertex stream between Alice and Bob both parties hold vertex-induced subgraphs, as
opposed to the spanning subgraphs obtained when partitioning the edges of an edge stream.
Since an independent set in an induced subgraph is also an independent set in the whole
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graph, and since either Alice or Bob holds at least half the vertices of any MIS, one of
them must already know a 2-approximation to the MIS. Using the same reasoning, it is
trivial to compute a p-approximation in the one-way p-party communication setting. To
obtain our lower bound result, we therefore need to consider multi-party communication
with Ω(c) parties.

To this end, we define a new k-party communication problem denoted Chaink – which
can be seen as chaining together multiple two-party instances of the well-known Index
problem (see Definition 2) that are guaranteed to have the same answer. We first give a
Ω( nk2 ) lower bound for Chaink by showing a reduction from a multi-party pointer jumping
problem [8]. We then improve this lower bound to Ω(nk ) for k up to Õ ( 4

√
n) using the same

party elimination techniques described in [8]. The actual reduction from Chaink to MIS
relies on an involved graph construction using erasure codes based on affine planes.

Our lower bound for the computation of a maximal independent set in edge streams
is obtained via a reduction from the Index problem in the two-party communication
framework. This construction is then extended to yield results for approximate maximality
via a construction involving Ruzsa-Szemerédi graphs.

Our upper bound results on 2D geometric intersection graphs are obtained by generalizing
1D bounds, with more work to cover the increased number of cases that occur in 2D. The
lower bounds involve intricate packing arguments to show that knowledge of α(G) can be used
to recover encoded information, which is used in conjunction with our multiparty Chaink
problem to demonstrate approximation hardness.

Further Related Work. Grouping the three streaming models:
Edge Streams. As previously mentioned, Halldórsson et al. [15] showed that for general
graphs in the edge-arrival model Ω̃

(
n2

c2

)
space is required to obtain a c-approximation to

the maximum independent set size (or maximum clique size). A corresponding Õ
(
n2

c2

)
space random sampling algorithm shows that this is tight up to logarithmic factors.
Braverman et al. [6] showed that space Ω(mc2 ) is needed, even if c = o(logn), where m is
the number of edges of the input graph, though this bound only holds for small m.
Explicit Vertex Streams. The work of Halldórsson et al. [13] gives an O(n logn) space
streaming algorithm which can find an independent set of expected size at least β(G) =∑
v∈V

1
deg(v)+1 . On general graphs, this only gives a Θ(n)-approximation, but for poly-

nomially bounded independence graphs, this gives a polylog(n)-approximation [14]. In
our prior work, we showed how to return an estimate γ ∈ Ω

(
β(G)
logn

)
with γ ≤ α(G) from

an explicit vertex arrival stream using only O(log3 n) space [9]. This result, for example,
gives a O( log2 n

log logn )-approximation on unit interval graphs (see Figure 1). However, the
technique samples vertices based on their degree and does not extend to implicit vertex
streams.
Braverman et al. [6] showed that in a variant of the vertex arrival model, where every
vertex arrives together with all its incident edges (as opposed to only the edges incident
to previously arrived vertices), space Ω(mc3 ) is required for computing a c-approximate
MIS. In their construction the input graph has Θ(nc) edges, which thus yields a lower
bound of Ω( nc2 ). Observe that our lower bound for explicit vertex streams is Ω(n

2

c6 ), a
quadratic improvement for constant c.
Implicit Vertex Streams. In [11], it was shown that it is possible to 3

2 -approximate MIS
for the intersection graph of a unit interval stream using Õ(α(G)) space. In the same
space, a 2-approximation is possible for arbitrary interval streams. Both are shown to
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be tight: any ( 3
2 − ε)-approximation for unit intervals, or (2 − ε) for general intervals,

requires Ω(n) space. By clever use of sampling, the result can be adapted to provide an
approximation of α(G) of 3

2 + ε for unit intervals and 2 + ε for general intervals with only
polylog(n, ε−1) space [7].

Concurrent Work. Independently of, and concurrently with, an earlier version of this
paper [10, v1], Assadi et al. [3] also gave an Ω(n2) lower bound for maximal independent set
in edge streams using a similar construction.

Outline. We present our main result, the lower bound for MIS in vertex streams, in
Section 2. Our lower bounds for maximal and approximately maximal independent sets in
edge streams are given in Section 3. Section 4 covers our results on interval and square
graphs, and we give a brief conclusion in Section 5.

2 Maximum Independent Set in Explicit Vertex Streams

We first introduce and show the hardness of a “chained index” problem, which we then
use to show the hardness of approximating the size α(G) – and hence also for finding an
approximate MIS.

2.1 Chained Index Communication Problem
We define a multi-party communication problem Chaink, which allows us to prove new lower
bounds on several streaming problems. The problem is closely related to pointer jumping and
generalizes the classic two-party Index communication problem to more parties by “chaining”
together multiple instances which have the same answer but are otherwise independent.
Index is defined as follows:

I Definition 2. In the two-party communication problem Index, Alice holds an n-bit string
X ∈ {0, 1}n and Bob holds an index σ ∈ [n]. Alice sends a single message to Bob who, upon
receipt, outputs Xσ.

It is well known that Alice essentially needs to send all n bits to Bob (see [18]):

I Theorem 3. The randomized constant error communication complexity of Index is Ω(n).

In Chaink, each party (except the last) holds a binary vector that contains a special bit
which is the answer to the instance. Each party (except the first) knows where the answer
bit is located in the previous party’s vector. Communication is one-way and private, with
each player receiving a message from the previous player and then sending a message to the
next player. Formally:

I Definition 4. The k-party chained index problem Chaink consists of (k − 1) n-bit binary
vectors {X(i)}k−1

i=1 , along with corresponding indices {σi}k−1
i=1 from the range [n]. We have

the promise that the entries {X(i)
σi }k−1

i=1 are all equal to the desired answer bit z ∈ {0, 1}. The
input is initially allocated as follows:

The first party P1 knows X(1)

Each intermediate party Pp for 1 < p < k knows X(p) and σp−1

The final party Pk knows just σk−1
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Communication proceeds as follows: P1 sends a single message to P2, then P2 communicates
to P3, and so on, with each party sending exactly one message to its immediate successor.
After all messages are sent, Pk must correctly output z, succeeding with probability at least
2/3. If the promise condition is violated, any output is considered correct.

There is a trivial communication upper bound of O(n) bits: for instance, simply have the
penultimate party send X(k−1) to the final party who can then return X(k−1)

σk−1 .
We claim two bounds on the communication complexity of this problem.

I Theorem 5. Any communication scheme B which solves Chaink must communicate at
least Ω( nk2 ) bits in total.

This first bound is shown by reducing instances of another problem (conservative pointer
jumping [8]) to instances of our problem.

I Theorem 6. There is a constant C > 0 such that any communication scheme B which

solves Chaink for k ≤ C
(

n
logn

) 1
4 must communicate at least Ω(nk ) bits in total.

This second bound is shown by a lengthy and technical proof based on the structure of
the pointer jumping bound given in [8]. Due to space restrictions we omit both proofs here –
they can be found in the full paper.

In particular, for constant k, we have a tight bound on the communication complexity of
the k-party chained index problem of Θ(n). We conjecture that a dependence on k is not
necessary.

I Conjecture 1. Any communication scheme for Chaink requires Ω(n) communication.

2.2 MIS Hardness in Explicit Vertex Streams
We show a new lower bound for the vertex streaming space complexity of approximate MIS.

I Theorem 1 (restated). Any algorithm for the explicit vertex stream model which finds a
c-approximation to α(G) with probability at least 2/3 requires Ω

(
n2

c6

)
space.

For ease of argument, we will actually prove an equivalent result for the problem of clique
number approximation, and then note that the complement of the constructed graph can be
used with the same arguments to prove Theorem 1. To see this equivalence, note that an
MIS of a graph is a maximum clique in its complement.

I Theorem 7. Any algorithm for the explicit vertex stream model which finds a c-approxi-
mation to the size of the largest clique ω(G) with probability at least 2/3 requires Ω

(
n2

c6

)
space.

The heart of our construction is to use an erasure code to encode a length Θ(n
2

c4 ) binary
vector on Θ(nc ) vertices, with each bit corresponding to the presence or absence of a clique
of size 2c. The use of the erasure code is to ensure that no pair of these cliques can share an
edge. We can then chain together 2c such gadgets to encode an instance of Chain2c such
that if the correct answer is 1, the resulting graph has an independent set of size 4c2, while if
the correct answer is 0 the graph has no independent set larger than 4c− 1. Any (one-sided)
c-approximation algorithm could distinguish these two cases, which proves the result.

First we define our clique gadget.

I Lemma 8. For any positive integers n and c2 < n
8 , there exists a graph on n vertices

containing n2

16c2 edge-disjoint cliques of size 2c and no cliques of size larger than 2c.
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V1

V2

V3

V2c

... ... ...

p

(a) Select an edge.

V1

V2

V3

V2c

... ... ...

p

(b) Extend linearly to size 2c.

V1

V2

V3

V2c

... ... ...

p

(c) Can make p2 such cliques.

Figure 3 Clique gadget construction in Lemma 8.

V1

V2

V3

V4

p

(a) No edge belongs to two dif-
ferent lines (cliques).

V1

V2

V3

V4

p

×

(b) No edges within layers, so
no cliques larger than 2c.

Figure 4 Clique gadget proof sketch for Theorem 7.

Proof. We construct the sets from an erasure code with block size 2c and message size 2.
Choose a prime p such that n

4c ≤ p ≤ n
2c (which is guaranteed to exist). Now take 2c < p

groups of vertices, each of size p. Label the groups Vi (for i ∈ [2c]) and label the items in each
group Vi as vij (for j ∈ [p]). Leftover vertices are added to the final graph as isolated vertices.

For each polynomial P ∈ GF(p2) we define KP to be the clique over vertices {viP(i)|i ∈
[2c]}. This can be viewed as taking each of the p2 possible edges between V1 and V2 and
extending them “linearly” to the other layers (see Figure 3). In other words, the cliques
correspond to non-horizontal lines in the affine plane of order p. Clearly K = {KP |P ∈
GF(p2)} consists of p2 > n2

16c2 cliques, each of size 2c. We next show that they are pairwise
edge-disjoint and that their union contains no larger cliques.

Each clique contains exactly one vertex from each group Vi, so for two cliques to share
an edge there must be distinct polynomials P,Q ∈ GF (p2) that have the same value at two
different points: P(i) = Q(i) and P(j) = Q(j) for i 6= j – a contradiction. Finally, because
no clique contains a pair of vertices from a single Vi, their union can contain no internal
edges on any Vi. So any clique can contain at most 1 vertex from each Vi, giving a maximum
size of 2c. Hence,

⋃
P∈GF(p2)KP is a graph with the required properties. J

Proof of Theorem 7. Suppose we have an algorithm C for explicit vertex streams which can,
with probability at least 2

3 , produce a c-approximation to ω(G), the size of the largest clique.
We will show that such an algorithm can be used to solve Chain2c, by communicating its
state 2c− 1 times.

Fix an instance of Chain2c with vectors of length b = n2

64c4 . Our lower bound in
Theorem 6 implies that any algorithm that can solve this must send at least one message of
size Ω

(
b
c2

)
= Ω

(
n2

c6

)
bits. Take n vertices and partition the nodes into 2c groups of size n

2c .
Each group will be added to the stream by one of the parties.
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P1 P2 P3 P4

Figure 5 Example lower bound instance with 4 players for Theorem 7. Cliques corresponding to
σ1, σ2, and σ3 are shown in bold red – other cliques are omitted.

Intra-party edges. First, consider the group of nodes associated with party Pi. We will
encode the bits of X(i) onto the internal edges of this group using the construction from
Lemma 8. The size n

2c sub-graph can fit b cliques of size 2c. We include the edges of
clique j if and only if X(i)

j = 1. This is well defined as the cliques are edge-disjoint. Label
the clique in party Pi corresponding to bit j of X(i) as Kij . The final party P2c has no
associated vector. Instead, it constructs a single clique of size 2c and leaves the other
vertices isolated.

Inter-party edges. We also need edges between the sub-graphs associated with different
parties. Each party Pi will connect all its vertices to some of the vertices belonging to
previous parties (Pj for j < i). These edges are considered to belong to party Pi, as they
will be added by this party in the vertex streaming model. For each j < i the party Pi
connects every one of its vertices to all of Kjσj (the clique corresponding to index σj). For
this to happen, Pi must know all σj for j < i. This information is not known initially,
but can be appended to the communications between players with only O(c) overhead.

Now that we have our construction, we need to show bounds on ω(G) for the two cases.
First, consider when every X(i)

σi = 1. In this case we have each of the cliques Kiσi present and
connected together, forming a clique of size 4c2. Now consider the case when every X(i)

σi = 0.
Consider a clique K in the graph. If K contains multiple vertices belonging to one party Pi,
then it can contain none from any subsequent party Pj (j > i), and at most one from each
preceding party Pl (l < i). Hence the size of any clique is bounded by 4c− 1. To see why
this holds, observe that for any i < 2c, our clique can contain only one vertex from Kiσi , as
none of its edges are included in the graph. So to contain multiple vertices from party Pi,
the clique K must contain a vertex v from some Kij with j 6= σi. But then all subsequent
parties Pj (j > i) will have no vertices adjacent to v, so cannot contribute anything to K.
So the best we can do is include one vertex from each Kiσi and then 2c from party P2c giving
a clique of size 4c− 1.

To complete the proof, observe that this gap in clique sizes can be distinguished by a
c-approximation algorithm, and any streaming algorithm gives a communication protocol by
having each party update the algorithm state with their information and then pass it to the
next party. J

Interestingly, the same construction gives us hardness for approximating the chromatic
number of a graph. This is notably not possible in the 2-party edge stream construction in
[15], as the random graphs used as gadgets have large chromatic number w.h.p. (see [5]).
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I Corollary 9. Any explicit vertex streaming algorithm to find a c-approximation to χ(G)
(the chromatic number), succeeding with probability at least 2/3 requires Ω

(
n2

c6

)
space.

Proof. Consider the construction in the proof of Theorem 1. In the case of all X(i)
σi = 1, the

graph contains a clique of size 4c2, so it requires at least as many colours.
Conversely, in the case of every X(i)

σi = 0, we can construct a 4c-coloring of the graph.
First color each of the nodes in each Kiσi with the ith color (this is allowed, as they have no
internal edges). The remaining vertices in each party are then not adjacent to any uncolored
vertices from other parties, so we simply need to be able to complete the coloring of each
party in isolation with 2c new colors and we are finished. This is easily done, as each party’s
sub-graph is 2c-partite by construction. J

3 Maximal Independent Set in Edge Streams

In this section, we consider streaming algorithms for the maximal independent set problem.
Vertex streams (both explicit and implicit) are well-suited to the maximal independent set
problem, since they allow the implementation of the Greedy algorithm for independent sets,
which greedily adds every incoming vertex v to an initially empty independent set I if this
is possible, i.e., if I ∪ {v} is an independent set. The algorithm only stores the computed
independent set. This yields the following result:

I Fact 1. The Greedy algorithm for independent sets is a one-pass Õ(α(G)) = Õ(n) space
maximal independent set algorithm in vertex streams (both implicit and explicit).

This raises the question of how well we can solve the maximal independent set problem
in edge streams. We show that computing a maximal independent set in one pass in the
edge-arrival model is not possible using sublinear space, i.e., space Ω(n2) is required. This
result is obtained through a reduction from the Index problem in two-party communication
complexity. This proof is available in the full version of the paper.

I Theorem 10. Every randomized constant error one-pass streaming algorithm in the edge-
arrival model that computes a maximal independent set requires Ω(n2) space.

Since computing a maximal independent set with sublinear space is impossible in edge
streams, we ask whether we can compute an approximately maximal independent set instead:

I Definition 11 (Approximate Maximality). Let G = (V,E) be an n-vertex graph, and let
I ⊆ V be an independent set. Then I is δ-maximal, if |I ∪ ΓG[I]| ≥ δn.

A δ-maximal independent set I covers a δ-fraction of the vertices, or, in other words,
when removing I and its neighbors ΓG[I] from the graph, then at most (1− δ)n vertices are
remaining. We will next show that establishing approximate maximality in edge streams
requires strictly more space than computing a maximal independent set in vertex streams
(i.e., ω(n) space), even if δ = 24

25 . Regarding stronger approximate maximality, our lower
bound yields that computing a (1− 1

nε )-maximal independent set requires space Ω(n2−o(1)),
for every ε > 0.

Central to our construction are Ruzsa-Szemerédi graphs, which have previously been used
for the construction of streaming space lower bounds for maximum matching [12, 17, 4]:

I Definition 12 (Ruzsa-Szemerédi graph). A bipartite graph G is an (r, s)-Ruzsa-Szemerédi
graph if its edge set can be partitioned into r induced matchings each of size s.

ICALP 2019



45:10 Independent Sets in Vertex-Arrival Streams

Recall that a matching M ⊆ E in a graph G = (V,E) is induced, if the edge set of the
vertex-induced subgraph G[V (M)] equals M , i.e., there are no other edges interconnecting
V (M) different from M .

Our lower bound for approximate maximality is obtained by a reduction from the two-party
communication problem RS-Index, defined as follows:

I Definition 13 (RS-Index). Let H be an (r, s)-Ruzsa-Szemerédi graph with induced match-
ings M1,M2, . . . ,Mr. For each induced matching Mi, let M ′i ⊆ Mi be a uniform random
subset of size s/2 (we assume that s is even). The RS-Index problem is a one-way two-party
communication problem, where H, and, in particular, M1,M2, . . . ,Mr are known by both
parties. In addition, Alice holds the graph G = H[∪iM ′i ], and Bob holds a uniform random
index i ∈ {1, 2, . . . , r}. Alice sends a single message to Bob, who, upon receipt, outputs at
least C · s edges of M ′i , for an arbitrary small constant C.

Observe that this problem is similar in spirit to Index: In Index, Bob needs to learn
one uniform random bit, while in RS-Index, Bob needs to learn the presence of many edges
of M ′i . A lower bound on the communication complexity of RS-Index is implicit in [12] 2:

I Theorem 14 ([12]). The randomized constant error communication complexity of RS-
Index is Ω(r · s).

Equipped with the RS-Index problem, we now give a reduction to approximate maxim-
ality from RS-Index, which yields our lower bound for streaming algorithms:

I Lemma 15. Let r, s, n be integers such that there is an n-vertex (r, s)-Ruzsa-Szemerédi
graph. Then, every randomized constant error one-pass streaming algorithm in the edge-arrival
model that computes a (1− s

6n )-maximal independent set requires Ω(r · s) space.

Proof. Let H be an n-vertex (r, s)-Ruzsa-Szemerédi graph, and let G be Alice’s input
graph for the RS-Index problem derived from H. Let M1,M2, . . . ,Mr denote the induced
matchings in H, let Vi = V (Mi), and let M ′i ⊆Mi denote the subset of edges of matching
Mi that is included in G. Let i be Bob’s input. Furthermore, let A be a constant error
randomized one-pass streaming algorithm for the edge-arrival model that computes a (1− s

6N )-
maximal independent set on a graph on N vertices. We now show how A can be used to
solve RS-Index:

Given G, let G̃ be the graph obtained from G, where every induced matching M ′i in G is
replaced by edges M̃ ′i := Mi \M ′i (observe that E(G)∪E(G̃) = E(H)). Alice now constructs
two disjoint copies G1 and G2 of G̃, runs algorithm A on G1

.
∪ G2 (on an arbitrary ordering

of their edges), and sends the memory state to Bob. Bob constructs the edge set F that
connects every vertex v1 ∈ V (G1) \ Vi1 with every vertex v2 ∈ V (G2) \ Vi2, where Vi1 and
Vi2 are the copies of the vertices Vi in graphs G1 and G2, respectively, and continues the
execution of A on F . Let I be the independent set produced by algorithm A.

Observe that the graph processed by algorithm A contains N = 2n vertices. Since I is
(1 − s

6N )-maximal, we have |V \ Γ[I]| ≤ N − (1 − s
6N )N = s/6. This allows us to identify

Ω(s) edges of M ′i as follows:
Let a, b be the incident vertices to an arbitrary edge of M ′i , let a1, b1 be the copies of a, b

in G1, and let a2, b2 be the copies of a, b in G2. Observe that a1 and b1 are not connected in
G1, and a2 and b2 are not connected in G2. We now claim that if all vertices a1, b1, a2, b2

2 In [12] a lower bound is given for the task of computing a maximum matching. Their hardness stems
from the fact that it is hard to learn many edges of M ′

i under the distribution described in the definition
of RS-Index.
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are covered by I, i.e., {a1, b1, a2, b2} ⊆ Γ[I], then either {a1, b1} ⊆ I or {a2, b2} ⊆ I (or
both). Indeed, suppose that this is not the case. Then there are vertices x1 ∈ {a1, b1}
and x2 ∈ {a2, b2} with x1, x2 /∈ I. Let y1 ∈ I be a vertex incident to x1, and let y2 ∈ I
be a vertex incident to x2. By the construction of the input graph, y1 ∈ V (G1) \ Vi1, and
y2 ∈ V (G2) \ Vi2. Observe, however, that the edge y1y2 was included by Bob, which implies
that y1, y2 are not independent: a contradiction. Hence, either {a1, b1} ⊆ I or {a2, b2} ⊆ I
(or both) hold. This implies that the algorithm identified that there is no edge between a1, b1,
which in turn implies that we learned one edge of M ′i . Hence, for every pair of vertices a, b of
M ′i , either at least one vertex among {a1, b1, a2, b2} is not covered by I, or we learn one edge
of M ′i . Since there are s/2 edges in M ′i , and at most s/6 vertices of the input graph are not
covered by I, we learn at least s/2− s/6 = Ω(s) edges of M ′i , which thus solves RS-Index.
By Theorem 14, algorithm A therefore requires space Ω(r · s). J

In [12] it is shown that there are n-vertex (nΘ( 1
log logn ), ( 1

4 − ε)n) Ruzsa-Szemerédi graphs,
for every ε > 0, and in [2], it is shown that there are such graphs with Θ(n2−o(1)) edges such
that each matching is of size n1−o(1). Combined with Lemma 15, we obtain:

I Theorem 16. Every randomized constant error one-pass streaming algorithm that com-
putes a 24

25 -maximal independent set requires space n1+Ω( 1
log logn ), and every such algorithm

computing a (1− 1
nε )-maximal independent set requires space Ω(n2−o(1)), for every ε > 0.

Last, interestingly, if we allow an algorithm to perform multiple passes, then sublinear
space algorithms can be obtained. Such algorithms are in fact immediately implied by the
correlation clustering algorithms given in [1]. Their result yields the following theorem:

I Theorem 17. There is a O(log logn)-pass streaming algorithm for maximal independent
set that uses space Õ(n).

4 Maximum Independent Set in Geometric Intersection Graphs

We now present a collection of results around geometric intersection graphs, in one and two
dimensions, given as explicit or implicit vertex streams. We consider intervals and squares.

A geometric intersection graph is a graph where nodes correspond to geometric objects,
and edges indicate whether or not a particular pair of objects intersect. These graphs can
be described implicitly as the collection of geometric objects, or explicitly as a collection of
vertices and edges under the promise that some geometric representation exists.

For implicit representations, we assume that intervals and squares are presented by their
centers and their lengths. We assume that the center is a value in [M ]d (d = 1 for intervals,
and d = 2 for squares), and the length is in [M ], for some M ∈ poly n.

4.1 Unit Interval Graphs: d = 1
As discussed in Section 1, given a stream of unit intervals we can compute a 3

2 -approximation
to MIS in Õ(α(G)) space, and any better approximation requires Ω(n) space. A natural
question is how this compares with the space complexity for an interval intersection graph
given as an explicit vertex stream:

I Theorem 18. Any algorithm with constant error probability that returns a ( 5
3 − ε)-

approximation of α(G) for a unit interval intersection graph given as an explicit vertex
stream requires Ω(n) space.
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A1 B1
A0

B0

x

(a) First party makes 3 cliques.

A1 B1

A0

B0

xy z

aσ
bσ

(b) After second party adds y and z, if Xσ = 0
then α(G) = 3.

A1 B1

A0

B0

xy zaσ bσ

(c) Conversely, if Xσ = 1 then α(G) = 5.

Figure 6 Interval representations for the construction in theorem 18. Horizontal positioning
represents the location of the intervals in R, vertical positioning is for clarity only.

Proof. We will show this bound by a reduction from the 2-party Index communication
problem. Consider an instance of Index with bit vector X ∈ {0, 1}n and index to be queried
σ ∈ [n]. We will construct a 2n+ 3 vertex graph as an explicit vertex stream.

Label the vertices x, y, z and ai, bi for i ∈ [n]. Split the ai’s into two sets based on
the bit vector X: A1 = {ai}Xi=1 and A0 = {ai}Xi=0. Similarly let B1 = {bi}Xi=1 and
B0 = {bi}Xi=0. Now the first party creates the following subgraph in the stream: a clique
consisting of all the vertices in A1, a second clique made from B1, and a third clique containing
A0 ∪B0 ∪ {x}.

So far this represents a valid interval graph, which can be interpreted as three adjacent
“stacks” of intervals. Now, the second player adds y with edges to every ai except aσ and
then adds z with edges to every bi except bσ. This can still be viewed as a valid interval
graph, but we now require some intervals from each stack to be “shifted” to overlap with the
two new intervals.

In the case of Xσ = 0, the resulting graph has α(G) = 3. Otherwise, α(G) = 5. Hence,
any algorithm giving a better than 5

3 -approximation factor could distinguish them and
solve Index. J

This shows that MIS for interval graphs is strictly more difficult in explicit vertex streams
than implicit ones.

4.2 Square Graphs: d = 2
We obtain several improved bounds for the 2D case. Full details can be found in the extended
paper, but we briefly summarise here.

Our first result for 2D is a 3-approximation algorithm for MIS on a unit square stream.
This is a generalization of the algorithm of [7] for unit interval streams – we perform a
decomposition of the plane into 2-by-3 strips, similar to their decomposition of the line into
length 3 segments.

I Theorem 19. There is a 3-approximation streaming algorithm for MIS on a stream of
unit squares (implicit vertex stream) using Õ(α(G)) space.

As in [7] for unit intervals, this immediately leads to a sublinear space algorithm for
estimating α(G) with only a (1+ε) factor loss in approximation factor, through a combination
of counting distinct elements and clever sampling.
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I Corollary 20. We can (3 + ε)-approximate α(G) with constant probability in a stream of
unit squares using O(ε−2 log ε−1 + logn) space.

One might speculate whether this decomposition approach could afford a better approx-
imation factor based on some different partitioning of the plane. We give evidence for the
negative, since any larger strip size results in the fixed-size sub-problems not being solvable
exactly, as the following result shows.

I Theorem 21. Given a stream of w-by-w squares contained in a (2 + δ)w-by-(2 + δ)w
region, achieving a ( 3

2 − ε)-approximation to α(G), with constant probability of success for
any ε, δ > 0 requires Ω(n) space.

Our next result for two dimensions is a stronger lower bound for approximating α(G) of
a stream of unit squares in an unrestricted region, based on a reduction from the chained
index communication problem used in our main result in Section 2.

I Theorem 22. Achieving a ( 5
2 − ε)-approximation of α(G), with constant probability of

success, on a unit square stream requires Ω(n) space for any ε > 0.

If we are allowed a combination of large and small balls, we can slightly improve the
lower bound up to the maximum possible for a 3-party construction.

I Theorem 23. Achieving a (3 − ε)-approximation of α(G), with constant probability of
success, on a stream of squares or arbitrary side lengths requires Ω(n) space for any ε > 0.

5 Conclusion

We have looked at the complexity of Maximal and Maximum Independent Set (and various
relaxations and related problems) under three natural models of graph streams: edge-arrival,
explicit vertex-arrival, and implicit vertex-arrival.

By making use of a new communication problem Chaink, we showed that MIS is not
significantly easier on explicit vertex streams than edge streams. However, the question of
whether they have exactly the same complexity is left open. Improving the communication
bound on Chaink to Ω(n), as we conjectured, would improve our MIS lower bound to
Ω
(
n2

c5

)
, but we do not know of any vertex stream upper bounds better than the Õ

(
n2

c2

)
algorithm for general edge streams.

There are a number of other open questions that naturally follow from our study:
Is there a multi-pass lower bound for maximal independent set in edge streams?
Are there o(α(G)) space algorithms for achieving constant factor approximations to α(G)
for classes of geometric intersection graphs given as explicit vertex streams?
Can we close the gap between the 3 and 5/2 factors of the upper and lower bounds for
approximating MIS in a unit square stream?
Is there an O(α(G)) space constant factor approximation algorithm for MIS on streams
of arbitrary sized squares?
Can Chaink be used to form novel lower bounds for other kinds of problems?
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Abstract
We study fundamental graph parameters such as the Diameter and Radius in directed graphs, when
distances are measured using a somewhat unorthodox but natural measure: the distance between
u and v is the minimum of the shortest path distances from u to v and from v to u. The center
node in a graph under this measure can for instance represent the optimal location for a hospital to
ensure the fastest medical care for everyone, as one can either go to the hospital, or a doctor can be
sent to help.

By computing All-Pairs Shortest Paths, all pairwise distances and thus the parameters we study
can be computed exactly in Õ(mn) time for directed graphs on n vertices, m edges and nonnegative
edge weights. Furthermore, this time bound is tight under the Strong Exponential Time Hypothesis
[Roditty-Vassilevska W. STOC 2013] so it is natural to study how well these parameters can be
approximated in O(mn1−ε) time for constant ε > 0. Abboud, Vassilevska Williams, and Wang
[SODA 2016] gave a polynomial factor approximation for Diameter and Radius, as well as a constant
factor approximation for both problems in the special case where the graph is a DAG. We greatly
improve upon these bounds by providing the first constant factor approximations for Diameter,
Radius and the related Eccentricities problem in general graphs. Additionally, we provide a hierarchy
of algorithms for Diameter that gives a time/accuracy trade-off.
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46:2 Min-Distance Problems

1 Introduction

The diameter, radius and eccentricities of a graph are fundamental parameters that have
been extensively studied [13, 20, 12, 18, 3, 14, 11, 17, 5, 6, 26, 27, 9, 19, 24, 23, 10, 1, 7] (and
many others). The eccentricity of a vertex v is the largest distance between v and any other
vertex. The diameter is the maximum eccentricity of a vertex in the graph, thus measuring
how far apart two nodes can be, and the radius is the minimum eccentricity, measuring the
maximum distance to the most central node.

The distance between two vertices in an undirected graph is just the shortest path
distance d(·, ·) between them. For directed graphs, however, this notion of distance d is
no longer necessarily symmetric, and rather than being a distance between two nodes, it
measures the distance in a given direction. Several related notions of pairwise distance that
are symmetric have been studied. These include the roundtrip distance [15] which for two
vertices u and v is just d(u, v) + d(v, u), the max-distance [2] which is max{d(u, v), d(v, u)},
and the min-distance [2] which is min{d(u, v), d(v, u)}.

Each of these notions of distance has a particular application. For instance, one would
have to pay the roundtrip distance when going to the store and back. On the other hand,
if one needs medical assistance, one could either go to the hospital, or have a physician
come to the home – the time to receive care is then measured by the min-distance. Another
example of min-distance is in symmetric-key encryption: any pair of parties can create a
shared private key by using only one-way communication.

For each notion of distance, the diameter, radius and eccentricity parameters are well-
defined. Given the shortest path distances d(·, ·) for all vertices, the parameters for each
distance measure can be computed in O(n2) time in n vertex graphs. The fastest known al-
gorithms for All-Pairs Shortest Paths (APSP) [25, 21, 22] give the fastest known algorithms to
compute these parameters exactly, running in n3/ exp(

√
logn) time and O(mn+n2 log logn),

respectively on m-edge, n-vertex graphs. Furthermore, under the Strong Exponential Hypo-
thesis, there is no O(m2−ε) time algorithm for Diameter in unweighted graphs (and thus also
for any of these notions of Diameter and Eccentricities in directed graphs) [23]. For Radius,
the same lower bound holds but under the “Hitting Set” conjecture [2].

As exact computation is expensive, it makes sense to resort to approximation algorithms.
For the shortest path distance versions of Diameter, Eccentricities and Radius, there are
several fast algorithms that achieve various small constant approximation ratios [23, 10, 8, 4].
For instance, for Diameter, a folklore linear time algorithm can achieve a 2-approximation,
and an Õ(m3/2) time1 algorithm can achieve a 3/2-approximation [23, 10].

Many of these algorithms [23, 10, 4] work for any distance measure that satisfies the
triangle inequality. Thus they work for the shortest paths distance, max-distance and
roundtrip distance. The min-distance however does not satisfy the triangle inequality: e.g.
you might have edges (x, y) and (z, y), and thus the min-distance between x and y and
between y and z are both 1, yet there may be no directed path between x and z in any
direction, so that the min-distance between them may be ∞.

This issue makes it much more difficult to design fast approximation algorithms for
Min-Diameter, Min-Radius and Min-Eccentricities (the parameters of interest under the
min-distance). The only known nontrivial algorithms are by Abboud et al. [2]. For Min-
Diameter [2] gives a near-linear time 2-approximation algorithm if the input is a directed
acyclic graph. For general graphs, the only nontrivial fast approximation algorithm is an

1 We use Õ notation to hide polylogarithmic factors.
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Õ(mn1−ε) time nε-approximation algorithm for any constant ε > 0. (No constant factor
approximation algorithm is known that runs significantly faster than just computing APSP.)
For Min-Radius, [2] gives an Õ(m

√
n) time 3-approximation algorithm for directed acyclic

graphs. For general graphs, they only achieve a very weak n-approximation in near-linear
time that checks if the Min-Radius is finite. There are no known approximation algorithms
for Min-Eccentricities faster than just computing APSP.

1.1 Our Results
The main goal of our paper is to obtain new fast, O(mn1−ε) time for some constant ε > 0,
algorithms for Min-Diameter, Min-Radius and Min-Eccentricities (thus beating the Õ(mn)
time of exact computation). We achieve this by developing powerful new techniques that can
handle the complications that arise due to the fact that the min-distance does not satisfy
the triangle inequality.

Our results are as follows. For Min-Diameter we achieve a hierarchy of algorithms trading
off running time with approximation accuracy.
I Theorem 1. For any integer 0 < ` ≤ O(logn), there is an Õ(mn1/(`+1)) time randomized
algorithm that, given a directed weighted graph G with edge weights non-negative and polyno-
mial in n, can output an estimate D̃ such that D/(4`− 1) ≤ D̃ ≤ D with high probability,
where D is the min-diameter of G.

When we set ` = 1, we obtain an Õ(m
√
n) time 3-approximation algorithm, and when

we set ` = dlogne, we get an Õ(m) time O(logn)-approximation.
Our tradeoff achieves the first constant factor approximation algorithms for Min-Diameter

in general graphs that run in O(mn1−ε) time for constant ε > 0. Such a result was only
known for directed acyclic graphs, whereas for general graphs the only known efficient
algorithm could achieve an nε-approximation.

For Min-Radius, we also achieve the first constant factor approximation algorithm for
general graphs running in O(mn1−ε) time for some constant ε > 0. Such a result was
only known for directed acyclic graphs, whereas for general graphs the only known efficient
algorithm could only check if the Min-Radius is finite.
I Theorem 2. For any constant δ with 1 > δ > 0, there is an Õ(m

√
n/δ) time randomized

algorithm, that given a directed weighted graph G with edge weights positive and polynomial
in n, can output an estimate R′ such that R ≤ R′ ≤ (3 + δ)R with high probability, where R
is the min-radius of G.

Finally, we obtain the first O(mn1−ε) time (for constant ε > 0) constant factor approxim-
ation algorithms for the Min-Eccentricities of all vertices in a graph. For unweighted graphs
we are able to obtain a close to 3 approximation in Õ(m

√
n) time. For weighted graphs,

our approximation factor grows to 5, while the running time is the same. Previously, the
only algorithm to approximate the Min-Eccentricities computed them exactly via an APSP
computation.
I Theorem 3. For any constant δ with 1 > δ > 0, there is an Õ(m

√
n/δ) time randomized

algorithm, that given a directed weighted graph G = (V,E) with weights positive and polynomial
in n, can output an estimate ε′(s) for every vertex s ∈ V such that ε(s) ≤ ε′(s) ≤ (5 + δ)ε(s)
with high probability, where ε(s) is the min-eccentricity of vertex s in G.

I Theorem 4. For any constant δ with 1 > δ > 0, there is an Õ(m
√
n/δ2) time randomized

algorithm, that given a directed unweighted graph G = (V,E), can output an estimate ε′(s)
for every vertex s ∈ V such that ε(s) ≤ ε′(s) ≤ (3 + δ)ε(s) with high probability, where ε(s)
is the min-eccentricity of the vertex s in G.

ICALP 2019



46:4 Min-Distance Problems

1.2 Our Techniques
To obtain our results, we develop powerful new techniques which we outline below.

Partial search graphs. The idea of partial search graphs is used in the algorithms of [2]
for Min-Radius and Min-Diameter on DAGs. These algorithms use the following high-level
framework: perform Dijkstra’s algorithm from some vertices and then perform a partial
Dijkstra’s algorithm from every vertex. The partial search from a vertex v is with respect to
a carefully defined partial search graph Gv ⊂ G. The crux of the analysis for the algorithms
on DAGs is to argue that if the executions of Dijkstra’s algorithm on the full graph did not
find a good estimate for the desired quantity (either min-diameter or min-radius), then the
partial search from some vertex v returns a good estimate of the min-eccentricity of v, which
in turn is a good estimate for the desired quantity. In DAGs it is natural to define the partial
search graphs Gv by considering a topological ordering of the vertices and letting each Gv

be some interval containing v (though defining the exact intervals requires some work). For
general graphs it is completely unclear how to even define such intervals since there is no
natural notion of an ordering of the vertices, and thus figuring out what the Gv’s should
be is nontrivial. Our approach to overcoming this hurdle is to carefully define a DAG-like
structure in general graphs. Such a structure may be of independent interest.

Defining a DAG-like structure in general graphs. It would be ideal to directly reduce the
problem on general graphs to the problem on DAGs, however it is very unclear how to do
this. Instead, we recognize that it suffices to define a DAG-like structure in general graphs.
As a first step, we use the following idea. Suppose we have performed Dijkstra’s algorithm
from a vertex v. We let Sv = {u : d(u, v) < d(v, u)} and we let Tv = {u : d(u, v) > d(v, u)}2.
Then, we partially order the vertices so that the vertices in Sv appear before v and those in
Tv appear after v. We note that this partial ordering is “DAG-like” because it is consistent
with the topological ordering of a DAG; that is, if we apply this partition into Sv and Tv

to a DAG then there trivially exists a topological ordering such that every vertex in Sv

appears before v and every vertex in Tv appears after v. After partitioning into Sv and Tv,
we recursively partition each set to create a more precise partial ordering. Importantly, we
show that by recursively sampling vertices randomly, we can guarantee that our partitioning
is approximately balanced which is crucial for the runtime analysis. The obtained partial
ordering is the starting point for all of our algorithms.

Min-Diameter: graph augmentation. The Min-Diameter algorithm on DAGs from [2]
relies heavily on the following key property of DAGs. Consider a topological ordering and the
graphs induced by the first and second halves of the ordering; which are defined with respect
to the middle vertex in the ordering. For all pairs of vertices in the same half of the ordering,
their min-distance in the graph induced by this half is the same as their min-distance in
the full graph. As previously mentioned, if we sample a vertex v, we can make sure that Sv

and Tv are approximately balanced, so that we can think of Sv and Tv as corresponding to
the first and second half of a DAG topological ordering, respectively. However it is unclear
how to obtain a property of Sv and Tv analogous to the above key property of DAGs. In
particular, the min-distance between a pair of vertices in the graph induced by Sv could be
wildly different from their min-distance in the full graph, since paths whose endpoints are

2 u’s with d(u, v) = d(v, u) are added to either Sv or Tv as specified in the formal definition later
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in Sv can contain vertices outside of Sv. To overcome this hurdle, we augment the graph
induced by Sv and the graph induced by Tv by carefully adding edges so that distances
within these augmented graphs approximate distances in the original graph.

Min-Radius: refined DAG-like structure. Our Min-Radius algorithm is much more delicate
than our Min-Diameter algorithm due to the fact that for Min-Radius we care about small
distances instead of large distances. In particular, the graph augmentation idea from our
Min-Diameter algorithm does not help for Min-Radius because although the augmentations
do not distort large distances much, they heavily distort small distances. Furthermore, the
previously mentioned DAG-like structure for general graphs does not suffice for Min-Radius.
However we use it as a starting point to define a more refined DAG-like partial ordering.
Most of our algorithm is concerned with precisely arranging vertices in this partial ordering.
Specifically, we structure the partial ordering to satisfy roughly the following property: for
every pair of vertices u, v such that u appears before v in the partial ordering, d(v, u) is
large while d(u, v) is small.

1.3 Notation
Given a graph G = (V,E), n = |V | and m = |E|. Graphs are directed and have non-negative
weights polynomial in n unless otherwise specified. For any pair of vertices u and v, the
distance from u to v d(u, v) is the length of the shortest directed path from u to v. When
the context is not clear, we write dG(u, v) to specify the graph G. The min-distance between
a pair of vertices u and v is dmin(u, v) = min{d(u, v), d(v, u)}. The min-diameter of a graph
is maxu,v∈V dmin(u, v). The min-radius of a graph is minv∈V maxu∈V dmin(u, v). For any
vertex v, the min-eccentricity of v is ε(v) = maxu∈V dmin(u, v). When the context is not
clear, we say εG(v) to specify the graph G. Note that we do not use the min subscript to
denote the min-eccentricity of a vertex. For an algorithm with input size n we use with
high probability to denote the probability > 1 − 1/nc for all constants c. We say some
quantity is poly(n) to mean it is O(nc) for some fixed constant c. We use Õ notation to hide
polylogarithmic factors.

1.4 Organization
In Section 2 we give an overview of all of our algorithms, in Section 3 we describe a graph
partitioning procedure that begins all of our algorithms, in Section 4 we describe our Min-
Diameter algorithms. We defer the time/accuracy tradeoff algorithm for Min-Diameter, the
Min-Radius algorithm and the Min-Eccentricities algorithm to the full version [16].

2 Overview of Algorithms

We use the algorithms from [2] for Min-Diameter and Min-Radius on DAGs as inspiration.
For each problem, we first outline the DAG algorithm and then provide intuition for how to
apply these ideas to general graphs.

2.1 Min-Diameter
Algorithm for DAGs
We begin by outlining the Õ(n + m) time 2-approximation algorithm for Min-Diameter
on DAGs from [2]. Consider a topological ordering of the vertices and perform Dijkstra’s
algorithm from the middle vertex v. Then recurse on the graphs induced by the vertices in

ICALP 2019
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the first half (before v) and in the second half (after v). A key observation in the analysis is
that if the true endpoints s∗ and t∗ of the min-diameter fall on opposite sides of v in the
ordering, then the min-eccentricity ε(v) of v is a 2-approximation for the min-diameter D.
This is because if ε(v) < D/2 and s∗ and t∗ fall on opposite sides of v in the ordering, then
d(s∗, v) < D/2 and d(v, t∗) < D/2 so d(s∗, t∗) < D, a contradiction. So, suppose (without
loss of generality) that s∗ and t∗ both fall before v in the ordering. Since the graph is a
DAG, every path between s∗ and t∗ only uses vertices before v in the ordering. Thus, the
min-distance between s∗ and t∗ in the graph induced by the first half of the graph is still D.

Algorithm for general graphs

We now outline a precursor to our Min-Diameter algorithm for general graphs that mimics the
algorithm for DAGs. This Õ(n+m) time algorithm does not achieve a constant approximation
factor, however it provides intuition for our constant-factor approximation algorithms. We
begin by performing Dijkstra’s algorithm from a vertex v and constructing Sv and Tv as
defined in the previous section. Analogously to the DAG algorithm if the true min-diameter
endpoints s∗ and t∗ fall into different sets Sv, Tv then the min-eccentricity ε(v) is a 2-
approximation. This is because if ε(v) < D/2, s∗ ∈ Sv, and t∗ ∈ Tv then d(s∗, v) < D/2
and d(v, t∗) < D/2 so d(s∗, t∗) < D, a contradiction. However, unlike the DAG algorithm,
we cannot simply recurse independently on the graphs induced by Sv and Tv since the
shortest path between a pair of vertices in Sv may not be completely contained in Sv (and
analogously for Tv).

To overcome this hurdle, before recursing we first augment the graphs induced by Sv and
Tv by carefully adding edges so that distances within these augmented graphs approximate
distances in the original graph. Specifically, for every vertex u ∈ Sv, we add the directed
edge (u, v) with weight 0 and the directed edge (v, u) with weight max{0, d(v, u) − ε(v)}.
This choice of edges allows us to argue that the distances within the augmented graphs are
approximations of the distances in G up to an additive error of 2ε(v). Then, by returning the
maximum of ε(v) and the min-diameter estimates from recursing on the augmented graphs,
we get an approximation guarantee, which turns out to be a logarithmic factor. Intuitively,
the approximation factor is not constant because the recursion causes the distance distortion
to compound at each level of recursion.

To reduce the approximation factor to a constant, we would like to decrease the number
of recursion levels. To achieve this, we initially partition the graph into more than just two
parts Sv and Tv, by sampling more vertices. For our Õ(m

√
n) time 3-approximation, we

perform a full Dijkstra’s algorithm from Õ(
√
n) vertices to define an ordered partition of

the vertices into Õ(
√
n) parts of Õ(

√
n) vertices each. Then we apply the above idea of

adding weighted edges within each part, however we must refine the definition of the graph
augmentation to take into account all of the Õ(

√
n) vertices we initially perform Dijkstra’s

algorithm from, instead of just v. Finally we use brute force (without recursion) on each
part in the partition by running an exact all-pairs shortest paths algorithm.

To achieve our time-accuracy trade-off algorithm, we carefully combine ideas from the
logarithmic factor approximation and the 3-approximation algorithms. Specifically, we
initially perform Dijkstra’s algorithm from fewer than

√
n vertices to define an ordered

partition with larger parts than in the 3-approximation. Then we augment the graph induced
by each part and carry out a constant number of recursion levels to further partition the
graph before applying brute-force.
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2.2 Min-Radius
Algorithm for DAGs
We begin by outlining the Õ(m

√
n) time 3-approximation algorithm for Min-Radius on DAGs

from [2], which is very different from and more involved than the Min-Diameter algorithm
on DAGs. We begin by considering a topological ordering of the vertices and performing
Dijkstra’s algorithm from a set W of Õ(

√
n) evenly spaced vertices including the first and

last vertex. If a vertex v ∈W has min-eccentricity at most twice the true min-radius R then
we have obtained a 2-approximation. (We do not know R in advance but we repeatedly run
the algorithm with different values of R to perform a binary search on R.)

Otherwise, we will define intervals in the ordering such that the min-center c cannot be
contained in any of these intervals. A key observation is that if there is a pair of vertices
(u, v) such that u appears before v in the topological ordering and d(u, v) > 2R, then the
min-center c cannot fall between u and v in the topological ordering. This is because if
it did, then d(u, c) ≤ R and d(c, v) ≤ R, so d(u, v) ≤ 2R, a contradiction. We define the
intervals that cannot contain c as follows: for all v ∈W we let av be the first vertex in the
ordering such that d(av, v) > 2R (if it exists, otherwise av = v) and define bv to be the last
vertex in the ordering such that d(v, bv) > 2R (if it exists, otherwise bv = v). Then, the key
observation implies that c cannot fall in the interval [av, bv] in the ordering. Now, we have
a set of possibly overlapping intervals that cannot contain c. We take the union of these
intervals to get a set of disjoint intervals that cannot contain c.

Every vertex u that does not appear in such an interval, falls between two consecutive
intervals Iu and I ′u. We define the partial search graph of u to be the graph induced by the
set of vertices in Iu or I ′u or between Iu and I ′u. After performing the partial searches, the
algorithm returns 3 times the minimum min-radius of all partial search graph. Next we give
the idea of the analysis, which demystifies the factor of 3 in the returned value.

We claim that if the min-eccentricity of a vertex with respect to its partial search graph
is at most R, then its min-eccentricity with respect to the full graph is at most 3R, and
the min-eccentricity of the true min-center with respect to its partial search graph is at
most R (because for any path in a DAG whose starting and ending points are in a certain
interval, every vertex in the path is in that interval). Thus, assuming the claim, 3R is a
3-approximation for the min-radius. We now outline the proof of the claim. Let u be the min-
center with the minimum min-radius R of all partial search graphs. Let v ∈W such that av

is the first vertex (in the topological order) of Iu, then v ∈ Iu and d(v, u) ≤ R. Furthermore,
by the definition of av, all vertices that appear before the beginning of the interval Iu have
distance at most 2R to v, and thus distance at most 3R to u. A symmetric argument holds
for vertices that appear after the end of the interval I ′u. Hence the min-eccentricity of u with
respect to the full graph is at most 3R.

This algorithm runs in time O(m
√
n) because the vertices ofW are evenly spaced so there

are no more than
√
n vertices between each pair of consecutive intervals. This implies that

in the partial searches, each edge is only scanned O(
√
n) times. (Furthermore, repeatedly

running the algorithm to binary search for R adds a logarithmic factor to the runtime.)

Algorithm for general graphs
We now give a high-level outline of our Õ(m

√
n) time 3-approximation algorithm for Min-

Radius. This algorithm is much more delicate than our Min-Diameter algorithm, hence more
of the details are deferred to the full description. We begin by running Dijkstra’s algorithm
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from a set W of Õ(
√
n) randomly sampled vertices to recursively partition the vertices into

Sv and Tv as outlined in Section 1.2. This defines an initial DAG-like structure, however our
analysis requires constructing a much more refined DAG-like structure.

Perhaps counter-intuitively, it makes sense to place vertices that are far from each other
in the graph close to each other in the DAG-like structure. The reason for this is illuminated
by the Min-Radius algorithm on DAGs, in which we find pairs of vertices u, v that are far
from each other and apply the key observation that the min-center cannot be between u and
v in the topological ordering. Intuitively, it is as if we collapse the interval between u and
v in the DAG since we do not have to search within this interval for the min-center. An
analogous key observation is true for general graphs: if there is a pair of vertices (u, v) with
dmin(u, v) > 2R, then either c ∈ Su ∩ Sv or c ∈ Tu ∩ Tv. This is because if c ∈ Tu ∩ Sv, then
d(u, c) ≤ R and d(c, v) ≤ R so d(u, v) ≤ 2R, a contradiction; the last case c ∈ Su ∩ Tv is
symmetric. In our algorithm for general graphs, we ensure that far vertices are near each
other in the DAG-like structure by doing the following: we let the far graph Gfar be an
undirected graph on V with an edge between u ∈ W and v ∈ V if dmin(u, v) > 2R. All
vertices in W that are in the same connected component in Gfar will be grouped in the
DAG-like structure. We let Fi be the set of vertices in W that are in the ith connected
component of Gfar.

To construct the DAG-like structure, we show that precisely chosen groups of Fis can be
merged to create supercomponents, which constitute a DAG-like structure in the following
sense: there is an ordering of supercomponents such that for every pair of vertices u, v ∈W
where the supercomponent containing u appears before that containing v, d(u, v) is small and
d(v, u) is large. Specifically, we define the close graph H whose vertex set is the set of Fis. We
add a directed edge between a pair of vertices in H if there exists a short path (length ≤ 5R)
between the corresponding Fis. Then we merge all Fis that appear in the same strongly
connected component of H into a supercomponent. This contraction of strongly connected
components of H results in a DAG, which defines the ordering of the supercomponents.

Now that we have arranged the vertices in W into a DAG-like structure, we would
like to fit every vertex in the graph into this structure. Based on the precise way that we
have defined the supercomponents, we can use an intricate argument to show roughly the
following property: for every vertex v there exists an i such that for every vertex u ∈W in
the first i supercomponents, d(u, v) is small and for every vertex u ∈ W in the remaining
supercomponents, d(v, u) is small.

After fitting every vertex into the refined DAG-like ordering, we can define each partial
search graph to be an interval in the ordering that is large enough to contain several
supercomponents. In the algorithm for DAGs, there were two important properties of the
partial search graphs: (1) the min-eccentricity of the true min-center with respect to its
partial search graph is at most R, and (2) if the min-eccentricity of a vertex with respect
to its partial search graph is at most R then its min-eccentricity with respect to the full
graph is at most 3R. We show that due to the precise structure of the supercomponents,
refinements of properties (1) and (2) are also true for general graphs.

Intuitively, property (1) is roughly true because for every pair of vertices u, v ∈W such
that u’s supercomponent appears before v’s in the ordering, d(v, u) > 5R, since otherwise
this pair of supercomponents would be in the same strongly connected component of H
and would have been merged into a single supercomponent. This implies that paths of
length at most R to or from the min-center cannot stray beyond its partial search graph.
Intuitively, property (2) is roughly true because for every pair of vertices u, v ∈W such that
u’s supercomponents appears before v’s in the ordering, d(u, v) ≤ 2R because otherwise, u
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and v would be in the same component of Gfar and thus be in the same supercomponent.
Thus, like the argument for DAGs, for all u, all vertices that appear before u’s partial search
graph Gu have distance at most 2R to each supercomponent in Gu, and thus distance at
most 3R to u. A symmetric argument holds for vertices after u in the ordering.

2.3 Min-Eccentricities
Our Min-Eccentricities algorithm is a modification of our Min-Radius algorithm. In our
Min-Radius algorithm, we identify a vertex whose min-eccentricity is at most about 3R,
where R is the true min-radius. In our Min-Eccentricities algorithm, we show that with
some extra bookkeeping, the algorithm can identify all vertices with min-eccentricity at most
about 5ρ for any ρ. We run the algorithm repeatedly, increasing ρ by a factor of (1 + δ) at
each execution until we have estimated the min-eccentricity of every vertex.

The major modification of the Min-Radius algorithm here is that if one of the vertices
that we run Dijkstra from has min-eccentricity at most 3ρ, we cannot stop running the
algorithm, as we can in the Min-Radius algorithm. Instead, we use this vertex as a tool to
find vertices with min-eccentricity at most 5ρ.

3 Preliminary Graph Partitioning

In this section we describe a graph partitioning procedure we use as a first step in our
Min-Diameter, Min-Radius, and Min-Eccentricities algorithms. The goal of this partitioning
is to define a DAG-like structure in general directed graphs.

I Definition 5. Assign each vertex a unique ID from [n]. For each vertex v, let Sv = {u ∈
V : d(u, v) < d(v, u) ∨ [d(u, v) = d(v, u) ∧ ID(u) < ID(v)]}. Let Tv = V \ (Sv ∪ {v}).

The runtime of our algorithms relies on whether the partition into Sv and Tv is balanced.
Using the observation that if u ∈ Sv, then v ∈ Tu, the following lemma shows that for most
vertices, the partition is indeed approximately balanced.

I Lemma 6. For any n-vertex graph, there are > n
2 vertices v such that |Sv|

8 ≤ |Tv| ≤ 8 · |Sv|.
More generally, for any U ⊆ V , there are more than |U |

2 vertices v ∈ U such that
|Sv∩U |

8 ≤ |Tv ∩ U | ≤ 8|Sv ∩ U |.

Lemma 6 is proved in the full version [16]. Next, we describe how we use Lemma 6 to
recursively construct a balanced partition of the vertices into a given number of of sets.

I Lemma 7. Given an n-vertex graph G = (V,E) and a constant c > 0, in Õ(mn1−c) time
one can split V into disjoint sets W,V1, V2, . . . , Vq+1, where q = |W | = n1−c, such that with
high probability:
1. for all i, |Vi| = Θ( n

q );
2. for all i 6= j, there exists w ∈W such that either Vi ⊆ Sw,Vj ⊆ Tw, or Vi ⊆ Tw,Vj ⊆ Sw;

3. for all U ⊆W , let VU =
( ⋂

w∈U

Sw

)⋂ ⋂
w∈W\U

Tw

, then VU ⊆ Vi for some i ∈ [q + 1].

Proof. We begin with W = ∅ and we will iteratively populate W with vertices. We let
V0 = {V } and for all i ∈ [q] when we add the ith vertex to W , we will construct Vi from
Vi−1 by partitioning the largest set in Vi−1 into two parts. After adding q vertices to W we
will have constructed Vq = {V1 . . . Vq+1}.
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For all i ∈ [q], let Ai, Bi be the largest and smallest sets in Vi, respectively.
We describe how to construct W and Vq inductively. Suppose |W | = r − 1 and we

have constructed Vr−1. By Lemma 6, if we randomly sample O(log2 n) vertices from Ar−1,
with probability at least 1 − 2− log2 n = 1 − n− log n we will sample a vertex wr such that
AS = Ar−1 ∩ Swr and AT = Ar−1 ∩ Twr differ by a factor of at most 8. We add wr to W
and let Vr = Vr−1 ∪ {AS , AT } \ {Ar−1}.

By union bound over the q = n1−c partitionings, with probability at least 1− n1−c−log n,
every partitioning produces two sets that differ in size by a factor of at most 8.

We prove property 1 by induction on |W | = r. Specifically, we will show that for all r ∈ [q],
|Ar| ≤ 9|Br|. This implies that |Aq| = O(|Bq|), and property 1 follows. Lemma 6 implies
that |A1| ≤ 9|B1|. Assume inductively that |Ar−1| ≤ 9|Br−1|. Since no subset grows in size,
|Ar| ≤ |Ar−1| and |Br| ≤ |Br−1|. If |Br| = |Br−1|, then |Ar| ≤ |Ar−1| ≤ 9|Br−1| = 9|Br|.
Otherwise, |Br| < |Br−1|, which implies that Br is one of the two sets obtained by partitioning
Ar−1. Then by Lemma 6, |Ar−1| ≤ 9|Br|. Hence |Ar| ≤ |Ar−1| ≤ 9|Br|, completing
the induction.

Property 2 follows from the partitioning procedure: for any i 6= j, if for all w ∈ W ,
Vi, Vj ⊆ Sw or Vi, Vj ⊆ Tw then Vi ∪ Vj would never have been partitioned.

Property 3 also follows from the partitioning procedure: observe that for all w ∈ W
and all U ⊆ W , VU ⊆ Sw or VU ⊆ Tw, so VU is never partitioned and thus VU ⊆ Vi for
some i ∈ [q + 1].

Since we sample n1−c log2 n vertices and for all v finding Sv, Tv takes O(m) time, the
runtime is Õ(mn1−c). J

4 Min-Diameter Algorithm

Throughout this section, let D be the min-diameter, and let s∗, t∗ the endpoints of the min-
diameter. In this section we prove the time/accuracy trade-off theorem for Min-Diameter.

I Theorem 8. For any integer 0 < ` ≤ O(logn), there is an Õ(mn1/(`+1)) time randomized
algorithm that, given a directed weighted graph G with edge weights non-negative and polyno-
mial in n, can output an estimate D̃ such that D/(4`− 1) ≤ D̃ ≤ D with high probability,
where D is the min-diameter of G.

We first prove a special case of Theorem 8 where ` = 1, and the rest of the proof can be
found in the full version [16].

4.1 An Õ(m
√

n) time 3-approximation
I Theorem 9 (Theorem 8 with ` = 1). There is an Õ(m

√
n) time randomized algorithm, that

given a directed weighted graph G = (V,E) with edge weights non-negative and polynomial in
n, can output an estimate D̃ such that D/3 ≤ D̃ ≤ D with high probability, where D is the
min-diameter of G.

4.1.1 Algorithm Description
Applying Lemma 7 with q =

√
n we obtain a partition of the vertices intoW,V1, V2, . . . , V√n+1.

We perform Dijkstra’s algorithm from every vertex in W and define D′ = maxw∈W ε(w).
We will later show that D′ is a good approximation of the Min-Diameter when s∗ and t∗ are
not in the same vertex set Vi.
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w

u

v
x

Sw Tw

≤ D′

≤ D′

Figure 1 The case where u, v ∈ Sw and the shortest path from u to v contains a node x ∈ Tw∪{w}.

For every i ∈ [
√
n+ 1], define WS

i = {w ∈W : Vi ⊆ Sw}, and WT
i = {w ∈W : Vi ⊆ Tw}.

Then, for every i, we construct two graphs GS
i and GT

i . The first graph GS
i contains all

vertices of Vi and an additional node wS
i . It has the following edges:

1. For every directed edge (u, v) ∈ E such that u, v ∈ Vi, add this edge to GS
i .

2. Add a directed edge from wS
i to every v ∈ Vi, with weight max

{
minw∈W S

i
d(w, v)−D′, 0

}
,

and a directed edge from every v ∈ Vi to wS
i with weight 0.

The second graph GT
i is symmetric to GS

i . It contains all vertices in Vi and an additional
node wT

i . It has the following edges:
1. For every directed edge (u, v) ∈ E such that u, v ∈ Vi, add this edge to GT

i .
2. Add a directed edge from every v ∈ Vi to wT

i , with weight max
{

minw∈W T
i

d(v, w)−D′, 0
}
,

and add a directed edge from wT
i to every v ∈ Vi with weight 0.

For all i, we run an exact all-pairs shortest paths algorithm on GS
i and GT

i . This allows
us to compute for all i and all u, v ∈ Vi the quantity min{dGS

i
(u, v), dGT

i
(u, v)}, which we

denote by d′i(u, v).
We choose the larger between D′ and maxi∈[

√
n+1],u,v∈Vi

min{d′i(u, v), d′i(v, u)} as our
final estimate for the min-diameter.

4.1.2 Analysis
The following lemma will be used to show that D′ is a good estimate for the min-diameter if
s∗ and t∗ happen to fall into different sets Vi

I Lemma 10. For all vertices v, if either s∗ ∈ Sv, t∗ ∈ Tv, or t∗ ∈ Sv, s∗ ∈ Tv, then
ε(v) ≥ D/2.

Proof. We only consider the case when s∗ ∈ Sv and t∗ ∈ Tv as the other case is symmetric.
By way of contradiction, assume that ε(v) < D/2, then we have dmin(s∗, v) < D/2 and
dmin(t∗, v) < D/2. Since s∗ ∈ Sv, d(s∗, v) = dmin(s∗, v) < D/2; similarly, since t∗ ∈
Tv, d(v, t∗) = dmin(t∗, v) < D/2. Therefore, by the triangle inequality, d(s∗, t∗) < D,
a contradiction. J

The next two lemmas are used for the case where s∗ and t∗ fall into the same set Vi.

I Lemma 11. For every i, and every pair of vertices u, v ∈ Vi, d′i(u, v) ≤ d(u, v); that is,
min{dGS

i
(u, v), dGT

i
(u, v)} ≤ d(u, v).

Proof. Take any shortest path in the original graph G from u to v. If this path does not
leave Vi, then this path also exists in GS

i and GT
i , and thus the inequality is true.

It remains to prove for the case when the shortest u, v path in the original graph leaves
Vi. Let x 6∈ Vi be any vertex on a shortest u, v path. By Lemma 7, property 2, there exists
w ∈W such that x ∈ Sw ∪{w} and Vi ⊆ Tw, or x ∈ Tw ∪{w} and Vi ⊆ Sw. We first assume
x ∈ Tw ∪ {w} and Vi ⊆ Sw as shown in Figure 1, and the other case is symmetric.
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Vi

u

v

wS
i

x

0

Figure 2 A shortest u, v path in GS
i that contains wS

i . The path goes from u, directly to wS
i

using a weight 0 edge, then directly to a vertex x, and finally reaches v.

Since x is on the shortest path from u to v, we have d(u, v) ≥ d(x, v). Also, we have
d(w, x) ≤ D′, by definition of D′. Therefore,

d(u, v) ≥ d(x, v) ≥ d(x, v) + (d(w, x)−D′) ≥ d(w, v)−D′. (1)

Now consider the path u → wS
i → v in GS

i . The first part u → wS
i costs 0, because

there is an edge from u to wS
i with weight 0; the second part wS

i → v costs at most
max{0, d(w, v) − D′}. If d(w, v) < D′, then d′i(u, v) ≤ dGS

i
(u, v) = 0 ≤ d(u, v); otherwise,

d′i(u, v) ≤ dGS
i
(u, v) ≤ d(w, v)−D′ ≤ d(u, v), where the last step is Equation 1.

When x ∈ Sw ∪ {w}, and Vi ⊆ Tw, we have a symmetric argument: d(u, v) ≥ d(u, x) ≥
d(u, x) + (d(x,w)−D′) ≥ d(u,w)−D′. Consider the path u→ wT

i → v in GT
i . The second

part wT
i → v costs 0, because there is an edge from wT

i to v with weight 0; the first part
u → wT

i costs at most max{0, d(u,w) −D′}. If d(u,w) < D′, then d′i(u, v) ≤ dGT
i

(u, v) =
0 ≤ d(u, v); otherwise, d′i(u, v) ≤ dGT

i
(u, v) ≤ d(u,w)−D′ ≤ d(u, v). J

I Lemma 12. For every i, and every pair of vertices u, v ∈ Vi, d′i(u, v) ≥ d(u, v)− 2D′; that
is, dGS

i
(u, v) ≥ d(u, v)− 2D′ and dGT

i
(u, v) ≥ d(u, v)− 2D′.

Proof. We only provide full proof for dGS
i

(u, v) ≥ d(u, v)− 2D′. The inequality for GT
i can

be proved by a symmetrical argument. If the shortest path from u to v in GS
i does not

contain wS
i , then this path also exists in the original graph G, and thus the inequality is true.

Otherwise, the shortest path from u to v in GS
i contains wS

i , as shown in Figure 2. All
edges on the shortest path from wS

i to v exist in the original graph G except for the first
edge from wS

i to some node x, since a shortest path cannot use the vertex wS
i more than

once. That is, dGS
i
(x, v) = d(x, v).

By the definition of wS
i and the edges incident to it, there exists a w ∈ WS

i such that
d(w, x) ≤ dGS

i
(wS

i , x) +D′. Thus, we have

dGS
i
(u, v) = dGS

i
(u,wS

i ) + dGS
i
(wS

i , x) + dGS
i
(x, v)

= dGS
i
(wS

i , x) + dGS
i
(x, v) since dGS

i
(u, wS

i ) = 0 by construction

= dGS
i
(wS

i , x) + d(x, v) from argument above

≥ d(w, x)−D′ + d(x, v) by the definition of w

≥ d(w, v)−D′ by the triangle inequality

≥ (d(w, v)−D′) + (d(u,w)−D′) since d(u, w) ≤ D′ by definition

≥ d(u, v)− 2D′ by the triangle inequality J
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We are now ready to prove our approximation ratio guarantee: D/3 ≤ D̃ ≤ D. Clearly
D′ ≤ D because D′ is the min-eccentricity of a vertex. By Lemma 11
maxi,u∈Vi,v∈Vi

min{d′i(u, v), d′i(v, u)} ≤ maxi,u∈Vi,v∈Vi
dmin(u, v) ≤ D . Therefore, we never

over estimate the Min-Diameter.
If s∗ ∈W or t∗ ∈W , then since we run Dijkstra from all vertices in W we have D′ = D.

So assuming that s∗, t∗ /∈W , we have two cases.

Case 1: s∗ and t∗ are not in the same vertex set Vi. By Lemma 7, property 2, there exists
w ∈ W such that one of s∗ and t∗ is in Sw and the other is in Tw, so by Lemma 10,
ε(w) ≥ D/2. Since D′ ≥ ε(w), we have D′ ≥ D/2.

Case 2: s∗ and t∗ are in the same vertex set Vi for some i. By Lemma 12,
min (d′i(s∗, t∗), d′i(t∗, s∗)) ≥ dmin(s∗, t∗)−2D′ = D−2D′. Since max{D−2D′, D′} ≥ D/3,
we get a 3-approximation.

Runtime analysis

It takes Õ(m
√
n) time to perform the partitioning from Lemma 7 and to perform Dijkstra’s

algorithm from all w ∈W since |W | = O(
√
n).

For all i, the number of vertices in GS
i is |Vi| + 1 = O(

√
n) with high probability by

property 1 of Lemma 7 and the number of edges is mi +O(
√
n) where mi is the number of

edges in the graph induced by Vi. Hence we can run an all-pairs shortest paths algorithm on
GS

i in time Õ((mi +
√
n)
√
n). Summing over all i gives us Õ(m

√
n). The same analysis also

works for Gi
T .
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Abstract
Some of the most fundamental and well-studied graph parameters are the Diameter (the largest
shortest paths distance) and Radius (the smallest distance for which a “center” node can reach all
other nodes). The natural and important ST -variant considers two subsets S and T of the vertex
set and lets the ST -diameter be the maximum distance between a node in S and a node in T , and
the ST -radius be the minimum distance for a node of S to reach all nodes of T . The bichromatic
variant is the special case in which S and T partition the vertex set.

In this paper we present a comprehensive study of the approximability of ST and Bichromatic
Diameter, Radius, and Eccentricities, and variants, in graphs with and without directions and
weights. We give the first nontrivial approximation algorithms for most of these problems, including
time/accuracy trade-off upper and lower bounds. We show that nearly all of our obtained bounds are
tight under the Strong Exponential Time Hypothesis (SETH), or the related Hitting Set Hypothesis.

For instance, for Bichromatic Diameter in undirected weighted graphs with m edges, we present
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47:2 Bichromatic Diameter

1 Introduction

A fundamental and very well studied problem in algorithms is the Diameter of a graph,
where the output is the largest (shortest path) distance over all pairs of vertices. Over the
years many different algorithms have been developed for the problem, both in theory (e.g.
[3, 21, 24, 8, 4]) and in practice (e.g. [10, 25, 20]).

A very natural variant is the so called ST -Diameter problem [4]: given a graph and two
subsets S and T of its vertex set, determine the largest distance between a vertex of S and a
vertex of T . In the Subset version of ST -Diameter, we have S = T . Bichromatic Diameter is
the version of ST -Diameter for which S and T partition the vertex set. Besides Diameter,
the Radius (the smallest distance for which a “center” node can reach all other nodes) and
Eccentricities (the largest distance out of every vertex) problems are also very well studied,
and analogous ST , Subset, and Bichromatic versions are easy to define.

All of these parameters are simple to compute by computing all pairwise distances in the
graph, i.e. by solving All-Pairs Shortest Paths (APSP). In sparse n-node graphs, where the
number of edges m is Õ(n), APSP still needs Ω(n2) time, as this is the size of the output,
whereas it is apriori unclear whether this much time is needed for computing the Diameter,
Radius and Eccentricities or their ST and bichromatic variants, as the output is small.

A related extremely well-studied problem in computational geometry is Bichromatic
Diameter on point sets (commonly known as Bichromatic Farthest Pair), where one seeks to
determine the farthest pair of points in a given set of points in space (see e.g. [29, 13, 28, 2, 17]).
Another related problem is the Subset version of spanners (e.g. [19, 11]), as well as the ST
version of spanners (e.g. [9, 18]). Furthermore, the ST , Subset, and Bichromatic versions
of many problems have been of great interest; for instance Steiner Tree, Subset TSP, and
a number of problems in computational geometry such as Bichromatic Matching (e.g. [16])
and Bichromatic Line Segment Intersection (e.g. [7]).

There are several known approximation algorithms for the standard version of Diameter,
most of which have been developed in the last 6 years. Trivially, running Dijkstra’s algorithm
from an arbitrary vertex gives a simple Õ(m) time 2-approximation algorithm for directed and
weighted graphs. Non-trivial algorithms achieve an improved approximation factor with an
increased runtime: Building on Aingworth et al. [3], Roditty and Vassilevska W. [24] showed
for instance that an “almost” 1.5 approximation for Diameter can be computed in Õ(m

√
n)

time in m-edge n-vertex directed weighted graphs – the approximation factor is 1.5 if the
Diameter is divisible by 3, and there is a slight additive error otherwise. Chechik et al. [8]
gave a true 1.5 approximation at the expense of increasing the runtime to Õ(mn2/3), and
Cairo, Grossi and Rizzi [5] generalized the approach giving an Õ(mn1/(k+1)) time, “almost”
2− 1/2k approximation algorithm for all k ≥ 1 which works only in undirected graphs.

In STOC’18, Backurs et al. [4] gave the first non-trivial approximation algorithms for
ST -Diameter: an Õ(m3/2) time 2-approximation and an Õ(m) time 3-approximation. They
also showed that these algorithms cannot be improved significantly, unless the Strong
Exponential Time Hypothesis (SETH) fails. Backurs et al. did not provide algorithms for
ST -Eccentricities or ST -Radius, and they did not study the natural Subset and Bichromatic
versions. They also only focused on undirected graphs.

We study the following natural and fundamental questions:

How well can ST -Eccentricities and ST -Radius be approximated? Are any interesting
approximation algorithms possible for directed graphs for any of the ST -variants? Does the
approximability of the problems change when one turns to the Subset versions in which

S = T , or the Bichromatic versions in which S and T are required to partition
the vertex set?



M. Dalirrooyfard, V. Vassilevska Williams, N. Vyas, and N. Wein 47:3

1.1 Our Results
We present a comprehensive study of the approximability of the ST , Subset and Bichromatic
variants of the Diameter, Radius and Eccentricities problems in graphs, both with and
without directions and weights. We obtain the first non-trivial approximation algorithms
for most of these problems, including time/accuracy trade-off upper and lower bounds. We
show that nearly all of our approximation algorithms are tight under SETH (or under the
related Hitting Set Hypothesis for Radius). Additionally, we study a parameterized version
of these problems.

Our results are summarized in Tables 1-4.

Table 1 Bichromatic undirected results. All of our parameterized algorithms and near-linear time
algorithms, except for directed Subset Radius and Eccentricities, are deterministic. The rest are
randomized and work with high probability2. Our lower bounds for Diameter and Eccentricities are
under SETH and our lower bounds for Radius are under the Hitting Set (HS) Hypothesis, defined
later. All of our lower bounds hold even for unweighted graphs. The trade-off lower bounds in terms
of k hold for any integer k ≥ 2. δ is any constant > 0. B and B′ are parameters defined in our
parameterized algorithms. The lower bound constructions for the parameterized algorithms have
|B| = Õ(1).
* Multiplicative approximation factor is tight, but not runtime.

Upper Bounds Lower Bounds
Problem Runtime Approx. Comments Runtime Approx.

Diameter

O(m+ n logn) almost 2 unweighted, tight m1+o(1) 2− δ
Õ(m

√
n) almost 5/3 unweighted, nearly tight m

k
k−1−o(1) 2− 1

2k−1 − δ
Õ(m3/2) 5/3 weighted, tight " "
O(m|B|) almost 3/2 unweighted, tight* m2−o(1) 3/2− δ

Radius

O(m+ n logn) almost 2 unweighted
Õ(m

√
n) almost 5/3 unweighted, nearly tight* m2−o(1) 5/3− δ

Õ(m3/2) 5/3 weighted, tight* " "
O(m|B|) almost 3/2 unweighted, tight* m2−o(1) 3/2− δ

Eccentricities
O(m+ n logn) 3 weighted, tight m1+o(1) 3− δ

Õ(m
√
n) almost 2 unweighted, nearly tight m

k
k−1−o(1) 3− 2/k − δ

Õ(m3/2) 2 weighted, tight " "
O(m|B|) almost 5/3 unweighted, tight* m2−o(1) 5/3− δ

Table 2 Bichromatic directed results. See caption of Table 1.

Upper Bounds Lower Bounds
Problem Runtime Approx. Comments Runtime Approx.

Diameter Õ(m3/2) 2 weighted, tight* m2−o(1) 2− δ
O(m|B′|) almost 3/2 unweighted, tight* m2−o(1) 3/2− δ

Radius N/A N/A weighted, tight m2−o(1) any finite

Eccentricities N/A N/A weighted, tight m2−o(1) any finite

All our algorithms in m-edge, n-node graphs, run in Õ(m3/2) time or in Õ(m
√
n) time

when a small additive error is allowed. For sparse graphs the m3/2 runtime beats the fastest

2 with high probability means with probability at least 1− 1/nc for all constants c.
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Table 3 ST undirected results. See caption of Table 1.

Upper Bounds Lower Bounds
Problem Runtime Approx. Comments Runtime Approx.

Diameter[4]
O(m+ n logn) 3 weighted, tight m1+o(1) 3− δ

Õ(m
√
n) almost 2 unweighted, nearly tight m

k
k−1−o(1) 3− 2/k − δ

Õ(m3/2) 2 weighted, tight " "

Radius
O(m+ n logn) 3 weighted

Õ(m
√
n) almost 2 unweighted, nearly tight* m2−o(1) 2− δ

Õ(m3/2) 2 weighted, tight* " "

Eccentricities
O(m+ n logn) 3 weighted, tight m1+o(1) 3− δ [4]

Õ(m
√
n) almost 2 unweighted, nearly tight m

k
k−1−o(1) 3− 2/k − ε [4]

Õ(m3/2) 2 weighted, tight " "

Table 4 Subset results. See caption of Table 1.

Upper Bounds Lower Bounds
Problem Runtime Approx. Comments Runtime Approx.

Diameter Õ(m) 2 weighted, directed, tight m2−o(1) 2− δ

Radius Õ(m) 2 weighted, undirected, tight m2−o(1) 2− δ
Õ(m/δ) 2 + δ weighted, directed, tight up to an additive δ " "

Eccentricities Õ(m/δ) 2 + δ weighted, directed, tight up to an additive δ m2−o(1) 2− δ

APSP algorithms [6, 23, 22] as they run in Õ(mn) time. The m
√
n time of the algorithms

that allow small additive error beat the APSP algorithms for every graph sparsity.

Bichromatic Diameter and Radius

Our first contribution is an algorithm with the same running time as the 2-approximation ST -
Diameter algorithm of [4], achieving a better, 5/3 approximation for Bichromatic Diameter.
In other words, when S and T partition the vertex set of the graph, ST -Diameter can be
approximated much better! Moreover, we show that under SETH, neither the runtime nor
the approximation factor of our algorithm can be improved. The result is summarized in
Theorem 1 below, and proven in Theorems 11 and 12.

I Theorem 1. There is a randomized Õ(m3/2) time algorithm, that given an undirected
graph G = (V,E) with nonnegative integer edge weights and S ⊆ V, T = V \ S, can output
an estimate D′ such that 3DST /5 ≤ D′ ≤ DST with high probability, where DST is the
ST -Diameter of G.

Moreover, if there is an O(m3/2−ε) time 5/3-approximation algorithm for some ε > 0, or
if there is an O(m2−ε) time (5/3− ε)-approximation algorithm for the problem, then SETH
is false.

We also obtain an Õ(m
√
n) time algorithm that achieves an “almost” 5/3-approximation:

the guarantee for unweighted graphs is 3DST /5− 6/5 ≤ D′ ≤ DST . We also obtain a near-
linear time algorithm for weighted graphs that returns an estimate D′ with DST /2−W/2 ≤
D′ ≤ DST where W is the minimum weight of a S × T edge. Using our general theorem 12,
we get that this result is also essentially tight, as a (2− ε)-approximation for ε > 0 running
in near-linear time would refute SETH.

To obtain our improvements for Bichromatic Diameter over the known ST -Diameter
algorithms, we crucially exploit the basic fact that as S, T partition V any path that starts
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from a vertex s ∈ S and ends in a vertex t ∈ T must cross a (u, v) edge such that u ∈ S, v ∈ T .
While this fact is clear, it not at all obvious how one might try to exploit it.

We explain our technique in more detail for the bichromatic diameter problem, and
similar ideas are used for our algorithms for the other problems. Let s∗ ∈ S and t∗ ∈ T
be end-points of an ST -Diameter path. Similarly to prior Diameter algorithms, our goal
is to run Dijkstra’s algorithm from some s ∈ S which is close to s∗, and hence far from t∗,
or from some t ∈ T which is close to t∗ and hence far from s∗ (by the triangle inequality).
Our 5/3-approximation algorithms are a delicate combination of two themes: (1) randomly
sample nodes in S and nodes in T – similarly to prior works, the sampling works well if there
are many nodes of S that are close to s∗, or if there are many nodes of T that are close to t∗.
If (1) is not good enough, in theme (2) we show that we can find a node w ∈ S close to t∗
for which we can “catch” an S × T edge (s, t) on the shortest w → t∗ path, such that t is
close to t∗. Theme (2) is our new contribution. Because of theme (2), our algorithms are
more complicated than the ST -Diameter algorithms, but run in asymptotically the same
time, and achieve a better approximation guarantee. In order to better separate the ideas in
our algorithms, we explain them in several steps, where Theme (1) can be seen in the first
steps and Theme (2) appears towards the last steps.

Following a similar approach to our Bichromatic Diameter algorithms, we develop similar
algorithms for Bichromatic Radius. First, we give a simple near-linear time almost 2-
approximation algorithm, and then we adapt the 5/3-approximation for Bichromatic Diameter
to also give a 5/3-approximation for Bichromatic Radius. Moreover, we show that any
better approximation factor requires essentially quadratic time, under the Hitting Set (HS)
Hypothesis of [1] (see also [14]).

I Theorem 2. There is a randomized Õ(m3/2) time algorithm, that given an undirected
graph G = (V,E) with nonnegative integer edge weights and S ⊆ V, T = V \S, can output an
estimate R′ such that RST ≤ R′ ≤ 5RST /3 with high probability, where RST is the ST -Radius
of G. Moreover, if there is a 5/3− ε approximation algorithm running in O(m2−δ) time for
any ε, δ > 0, then the HS Hypothesis is false.

Similarly to the Bichromatic Diameter algorithm, if one is satisfied with a slight additive
error, one can improve the runtime to Õ(m

√
n).

ST -Eccentricities and ST -Radius

Prior work only considered ST -Diameter but did not consider the more general ST - Eccentri-
cities problem in which one wants to approximate for every s ∈ S, εST (s) := maxt∈T d(s, t).

Here we show that one can achieve exactly the same approximation factors for ST -
Eccentricities as for ST -Diameter. Since any conditional lower bound for ST -Diameter
also applies for the ST -Eccentricities problem, the algorithms we obtain are conditionally
optimal, similarly to the ST -Diameter algorithms in [4]. Interestingly, we show that the
same conditional lower bounds apply for Bichromatic Eccentricities (see the full version [12]),
and therefore our ST -Eccentricities algorithms are optimal even for the Bichromatic case.

I Theorem 3. There is a randomized Õ(m3/2) time algorithm, that given an undirected
graph G = (V,E) with nonnegative integer edge weights and S, T ⊆ V , can output for every
s ∈ S, an estimate ε′(s) such that εST (s)/2 ≤ ε′(s) ≤ εST (s) with high probability. Moreover,
if there is a 2− ε approximation algorithm running in O(m2−δ) time for any ε, δ > 0 or a
2-approximation algorithm running in O(m3/2−ε) time for ε > 0, even for the Bichromatic
case when T = V \ S, then SETH is false.

ICALP 2019



47:6 Bichromatic Diameter

Again, as before, one can improve the runtime to Õ(m
√
n) with a slight additive error,

and there is a simple near-linear time 3-approximation algorithm which is tight under SETH,
similar to the one in [4] for ST -Diameter. A simple argument shows that these algorithms
imply algorithms with the same running time and approximation factor for ST -Radius.

Bichromatic and ST Problems in Directed Graphs

Using simple reductions we first show that there can be no O(m2−ε) time (for ε > 0)
algorithms that achieve any finite approximation for ST -Diameter or ST -Eccentricities
(under SETH), or ST -Radius (under HS). Interestingly, the same holds for Bichromatic
Eccentricities (under SETH, see the full version [12] ) and Bichromatic Radius (under HS, see
[12] ), but not Bichromatic Diameter! Surprisingly, unlike those two problems, Bichromatic
Diameter does admit a finite, in fact 2-approximation algorithm running in subquadratic
time, and this algorithm is conditionally optimal:

I Theorem 4. There is a randomized Õ(m3/2) time algorithm, that given a directed graph
G = (V,E) with nonnegative integer edge weights and S ⊆ V, T = V \ S, can output
an estimate D′ such that DST /2 ≤ D′ ≤ DST with high probability, where DST is the
ST -Diameter of G.

Moreover, if there is an O(m2−ε) time 2− δ-approximation algorithm for the problem for
some ε, δ > 0, then SETH is false.

The previously known techniques for approximating Diameter in directed graphs fail
here. The main issue is that the prior techniques were general enough that they also gave
algorithms for Eccentricities and Radius as a byproduct. In the Bichromatic case, however,
there is a genuine difference between Diameter and Radius, as we noted above, and new
techniques are needed. Here again it turns out that combining theme (2) with a delicate
argument is sufficient to get conditionally tight algorithms under SETH.

Subset Versions

Recall that Subset Diameter, Radius, and Eccentricities are the versions of the corresponding
ST problems with the constraint that S = T . Interestingly, Subset Diameter, Radius, and
Eccentricities all exhibit the same sharp threshold behavior. For all three problems, there
are near-linear time algorithms that achieve a 2 (or almost 2) approximation, as well as
conditional lower bounds that show that there is no 2− δ approximation in m2−o(1) time.

Parameterized Algorithms

We consider the Bichromatic Diameter, Radius, and Eccentricities problems parameterized
by the size of the boundary between the S and T sets. If S′ is the set of vertices in S that
have a neighbor in T , and T ′ is the set of vertices in T that have a neighbor in S, then
the boundary B is whichever of S′ or T ′ is smaller in size. Our lower bound constructions
already have small boundary so they rule out algorithms even for graphs with small boundary.
However, interestingly we obtain near-linear time algorithms for graphs with small boundary
that achieve better multiplicative approximation factors than the optimal non-parameterized
algorithms. This is not a contradiction because our parameterized algorithms have a constant
additive error, while the apparently contradictory lower bounds do not tolerate additive error.
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2 Preliminaries

Given a graph G = (V,E) (directed or undirected, weighted or unweighted), let d(u, v)
denote the distance from u ∈ V to v ∈ V . For a subset X ⊆ V and v ∈ V , define
d(v,X) := minx∈X d(v, x). Similarly d(X, v) := minx∈X d(x, v).

Unless otherwise stated, m denotes the number of edges and n the number of vertices of
the underlying graph. Without loss of generality, we can assume that all undirected graphs
are connected, and all directed graphs are weakly connected, so that m ≥ n− 1.

The Eccentricity ε(v) of a vertex v ∈ V is maxu∈V d(v, u). The Diameter D(G) of G is
maxv∈V ε(v), and the Radius R(G) of G is minv∈V ε(v).

Given S, T ⊆ V , we define analogous parameters as follows. The ST -Eccentricity εST (v)
of v ∈ S is maxu∈T d(v, u). The ST -Diameter DST (G) is maxv∈S εST (v), and the ST -Radius
RST (G) is minv∈S εST (v).

The above parameters are called Bichromatic Eccentricities, Diameter, and Radius if S
and T form a partition of V , i.e. T = V \ S.

The above parameters are called Subset Eccentricities, Diameter, and Radius if S = T

and are notated with subscript S instead of ST .

2.1 Preliminaries for algorithms

I Lemma 5. Let G = (V,E) be a (possibly directed and weighted graph) and let W ⊆ V .
Let g ≥ Ω(lnn) be an integer. Let S ⊆ W be a random subset of c(|W |/g) lnn vertices for
some constant c > 1. For every v ∈ V , let W (v) be the set of vertices x ∈ W for which
d(v, x) < d(v, S). Then with probability at least 1 − 1/nc−1, for every v ∈ V , |W (v)| ≤ g,
and moreover, if one takes the closest g vertices of W to v, they will contain W (v).

Proof. For each v ∈ V , imagine sorting the nodes x ∈W according to d(v, x). Define Qv to
be the first g nodes in this sorted order - those are the nodes of W closest to v (in the v → x

direction).
We pick S randomly by selecting each vertex of W with probability (c lnn)/g. The

probability that a particular q ∈ Qv is not in S is 1 − (c lnn)/g, and the probability that
no q ∈ Qv is in S is (1− (c lnn)/g)g ≤ 1/nc. By a union bound, with probability at least
1− 1/nc−1, for every v ∈ V , we have that Qv ∩ S 6= ∅.

Now, for each particular v, say that w(v) is a node in Qv ∩ S. Since all nodes x ∈ W
with d(v, x) < d(v, w(v)) must be in Qv, and since d(v, w(v)) ≥ d(v, S), we must have that
W (v) ⊆ Qv. Hence, with probability at least 1− 1/nc−1, for every v ∈ V , |W (v)| ≤ g and
W (v) ⊆ Qv. J

I Lemma 6. Let G = (V,E) be a (possibly directed and weighted) graph. Let M,W ⊆ V

and let S ⊆W be a random subset of c(n/g) lnn vertices for some large enough constant c
and some integer g ≥ 1.

Then, for any D > 0 and for any w ∈ M with d(w, S) > D, if one takes the closest
g vertices of W to w, they will contain all nodes of W at distance < D from w, with
high probability.

Proof. Let Q be the closest g vertices of W to w. By Lemma 5, with high probability Q
contains all nodes of W at distance < d(w, S) from w, and hence Q contains all nodes of W
at distance < D from w, with high probability. J
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47:8 Bichromatic Diameter

We sometimes sample edges instead of vertices, so analogous lemmas to Lemmas 5 and 6
hold when the sample is from a set of edges. Here is the analogue of Lemma 6. The other
lemma is similar.

I Lemma 7. Let G = (V,E) be a (possibly directed and weighted graph) and let M,W ⊆ V .
Let E′ ⊆ E be a random subset of c(|E|/g) lnn edges for some large enough constant c and
some integer g ≥ 1. Let Q be the endpoints of edges in E′ that are in W .

Then, for any D > 0, and for any w with d(w, S) > D, if one takes the closest g edges
of E′ to w wrt the distance from their W endpoints, they will contain all edges of E′ whose
W endpoints are at distance < D from w, with high probability.

2.2 Preliminaries for lower bounds
The Strong Exponential Time Hypothesis (SETH) asserts that on a Word-RAM with O(logn)
bit words, there is no (2− ε)n time (possibly randomized) algorithm for some constant ε > 0
that can determine whether a given CNF-Formula with n variables and O(n) clauses is
satisfiable. (This version of SETH is equivalent to the original formulation by Impagliazzo,
Paturi and Zane [15].) By a result of Williams [27], the following Orthogonal Vectors (OV)
Problem requires n2−o(1)poly (d) time (on a word-RAM with O(logn) bit words), unless
SETH fails: given two sets U, V ⊆ {0, 1}d with |U | = |V | = n and d = ω(logn), determine
whether there are u ∈ U, v ∈ V with u · v = 0.

Given an arbitrary instance of OV with d = Õ(1) (while respecting d = ω(logn), e.g.
d = Θ(log2 n)), consider the following graph representation, which we call the OV-graph:
the vertex set consists of a node for every u ∈ U , for every v ∈ V and for every coordinate
c ∈ [d] = C, and there is an edge (x ∈ U ∪ V, c ∈ C) if and only if x[c] = 1. OV is then
equivalent to the question of whether there exist u ∈ U, v ∈ V such that d(u, v) > 2. In
fact, it is equivalent to distinguishing whether for every u ∈ U, v ∈ V , d(u, v) = 2 (no
OV-solution), or there is some u ∈ U, v ∈ V such that d(u, v) ≥ 4 (OV-solution). In other
words, if we set S = U, T = V , the ST -Diameter of the OV-graph is 2 if and only if there
is no OV-solution and at least 4 otherwise. Because the OV graph has m = Õ(n), under
SETH, any (2− δ)-approximation algorithm for ST -Diameter requires m2−o(1).

A related problem to OV is the Hitting Set (HS) problem [1, 14, 26]: given two sets
U, V ⊆ {0, 1}d with |U | = |V | = n and d = ω(logn), determine whether there is u ∈ U such
that for all v ∈ V , u · v 6= 0. A common hypothesis is that (on the word-RAM) HS requires
n2−o(1) time.

If we form the OV-graph on the HS instance input, then the HS problem becomes
equivalent to determining whether there is some u ∈ U such that for all v ∈ V , d(u, v) ≤ 2.
In other words, if we set S = U, T = V , the ST -Radius of the OV-graph is 2 if and only
if there is a HS-solution and at least 4 otherwise. Thus, under the HS hypothesis, any
(2− δ)-approximation algorithm for ST -Radius requires m2−o(1).

Additionally for our constructions we assume that if there is a HS solution u′ then for all
c ∈ C, d(u′, c) ≤ 3. This is because for every coordinate index i there must be v ∈ V with
v[i] = 1 as otherwise we can just delete the ith bit from all vectors.

Let k ≥ 2 be an integer. Then, a generalization of the OV problem is k-OV: given k

sets U1, . . . , Uk ⊆ {0, 1}d, are there u1 ∈ U1, . . . , uk ∈ Uk so that
∑d
c=1

∏k
i=1 ui[c] = 0? It is

known that, under SETH, when d = ω(logn), there is no nk−o(1) time algorithm for k-OV
(in the word RAM model) [27].

Similar to the OV-graph, Backurs et al. [4] define a graph for k-OV which we will refer
to as the k-OV-graph. We do not explicitly define the k-OV-graph here; instead we list its
properties in the following theorem.
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I Theorem 8 ([4]). Let k ≥ 2. Given a k-OV instance consisting of setsW0,W1, . . . ,Wk−1 ⊆
{0, 1}d, each of size n, we can in O(knk−1dk−1) time construct an unweighted, undirected
graph with O(nk−1 +knk−2dk−1) vertices and O(knk−1dk−1) edges that satisfies the following
properties.
1. The graph consists of k + 1 layers of vertices L0, L1, L2, . . . , Lk. The number of nodes in

the sets is |L0| = |Lk| = nk−1 and |L1|, |L2|, . . . , |Lk−1| ≤ nk−2dk−1.
2. L0 consists of all tuples (a0, a1, . . . , ak−2) where for each i, ai ∈ Wi. Similarly, Lk

consists of all tuples (b1, b2, . . . , bk−1) where for each i, bi ∈Wi.
3. If the k-OV instance has no solution, then d(u, v) = k for all u ∈ L0 and v ∈ Lk.
4. If the k-OV instance has a solution a0, a1, . . . , ak−1 where for each i, ai ∈ Wi then if

α = (a0, . . . ak−2) ∈ L0 and β = (a1, . . . , ak−1) ∈ Lk, then d(α, β) ≥ 3k − 2.
5. For all i from 1 to k − 1, for all v ∈ Li there exists a vertex in Li−1 adjacent to v and a

vertex in Li+1 adjacent to v.

2.3 Organization
In Section 3 we present our algorithms and conditional lower bound for undirected bichromatic
diameter. We defer the rest of our algorithms and conditional lower bounds to the full
version [12].

3 Algorithms and Lower Bound for Undirected Bichromatic Diameter

We begin with a simple near-linear time algorithm.

I Proposition 9. There is an O(m+ n logn) time algorithm, that given an undirected graph
G = (V,E) and S ⊆ V, T = V \ S, can output an estimate D′ such that DST (G)/2−W/2 ≤
D′ ≤ DST , where W is the minimum weight of an edge in S × T .

Proof. Let (s, t) be a minimum weight edge of G with s ∈ S and t ∈ T . Run Dijkstra’s
algorithm from s and from t. Let D′ = max{maxt′∈T d(s, t′),maxs′∈S d(s′, t)}. Let s∗ ∈
S, t∗ ∈ T be endpoints of an ST -Diameter path, i.e. d(s∗, t∗) = DST . Then, suppose
that maxt′∈T d(s, t′) < DST /2 −W/2. In particular, d(s, t∗) < DST /2 −W/2, and hence
d(s, s∗) > DST /2 +W/2 by the triangle inequality. Also by the triangle inequality,

DST /2 +W/2 < d(s, t) + d(t, s∗) ≤ w(s, t) + max
s′∈S

d(s′, t).

Hence, D′ > DST /2−W/2, where W is the minimum weight of an edge in S × T . J

Now we turn to our 5/3-approximation algorithms. Our first theorem is for unweighted
graphs. Later on, we modify the algorithm in this theorem to obtain an algorithm for
weighted graphs as well, and at the same time remove the small additive error that appears
in the theorem below.

I Theorem 10. There is an Õ(m
√
n) time algorithm, that given an unweighted undirected

graph G = (V,E) and S ⊆ V, T = V \ S, can output an estimate D′ such that 3DST (G)/5 ≤
D′ ≤ DST (G) if DST (G) is divisible by 5, and otherwise 3DST (G)/5− 6/5 ≤ D′ ≤ DST (G).

Proof. Let D = DST (G) and let us assume that D is divisible by 5. If D is not divisible
by 5, the estimate we return will have a small additive error. For clarity of presentation,
we omit the analysis of the case where D is not divisible by 5. However, we include such
analyses in our proofs for Bichromatic Radius and ST -Eccentricities (see ARXIV) and the
analysis for Diameter is analogous.
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Suppose the (bichromatic) ST -Diameter endpoints are s∗ ∈ S and t∗ ∈ T and that the
ST -Diameter is D. The algorithm does not know D, but we will use it in the analysis.
(Algorithm Step 1): The algorithm first samples Z ⊆ S of size c

√
n lnn uniformly at random.

For every z ∈ Z, run BFS, and let D1 = maxz∈Z,t∈T d(z, t).
(Analysis Step 1): If for some s′ ∈ Z we have that d(s∗, s′) ≤ 2D/5, then D1 ≥ d(s′, t∗) ≥

D − d(s∗, s′) ≥ 3D/5.
(Algorithm Step 2): Now, sample a set X from T of size C

√
n lnn uniformly at random for

large enough constant C. For every t ∈ X, run BFS and find the closest node s(t) of S
to t. Run BFS from every s(t). Let D2 = maxt∈X,t′∈T d(s(t), t′).

(Analysis Step 2): If s∗ is at distance ≤ D/5 from some node t of X, then d(s∗, s(t)) ≤ 2D/5
(since s(t) is closer to t than s∗), and so D2 ≥ d(s(t), t∗) ≥ 3D/5.
If neither D1, nor D2 are good approximations, it must be that d(s∗, X) > D/5 and
d(s∗, Z) > 2D/5. Consider the nodes M of S that are at distance > 2D/5 from Z, then
the node w ∈ M that is furthest from X among all nodes of M . If neither D1, nor
D2 was a good approximation, s∗ ∈ M and since d(s∗, X) > D/5, we must have that
d(w,X) > D/5 (and also d(w,Z) > 2D/5). In the next step we will look for such a w.

(Algorithm Step 3): For each s ∈ S define Ds to be the biggest integer which satisfies
d(s,X) > Ds/5 and d(s, Z) > 2Ds/5. Let w = arg maxDs and D′ = maxDs.

(Analysis Step 3): By Lemma 6 we have that whp, the number of nodes of T at distance
≤ D′/5 from w and the number of nodes of S at distance ≤ 2D′/5 from w are both ≤

√
n.

Also if neither D1, nor D2 are good approximations, it must be that d(s∗, X) > D/5 and
d(s∗, Z) > 2D/5 and hence D′ ≥ D.

(Algorithm Step 4): Run BFS from w. Take all nodes of S at distance ≤ 2D′/5 from w,
call these Sw, and run BFS from them. Whp, |Sw| ≤

√
n, so that this BFS run takes

O(m
√
n) time. Let D3 := maxs∈Sw,t∈T d(s, t).

For every s ∈ Sw, let t(s) be the closest node of T to s (breaking ties arbitrarily). Run
BFS from each t(s). Let D4 := maxs∈Sw,s′∈S d(s′, t(s)).

(Analysis Step 4): IfD3 ≥ 3D/5 orD4 ≥ 3D/5, we are done, so let us assume thatD3, D4 <

3D/5. Since D3 < 3D/5, and since D3 ≥ d(w, t∗), it must be that d(w, t∗) < 3D/5. Let
Pwt∗ be the shortest w to t∗ path. Consider the node b on Pwt∗ for which d(w, b) = 2D/5.
If b ∈ S, then since D′ ≥ D, b ∈ Sw and hence we ran BFS from t(b). But since
d(b, t∗) = d(w, t∗)−2D/5 < D/5, and d(b, t(b)) ≤ d(b, t∗) we have that d(t(b), t∗) ≤ 2D/5
and hence D4 ≥ d(s∗, t(b)) ≥ D − d(t(b), t∗) ≥ 3D/5. Thus, if D4 < 3D/5, it must be
that b ∈ T .

(Algorithm Step 5): Take all nodes of T at distance ≤ D′/5 from w, call these Tw and run
BFS from them. Since d(w,X) > D′/5, whp |Tw| ≤

√
n, so this step runs in O(m

√
n)

time. Let D5 = maxt∈Tw,s∈S d(t, s).
(Analysis Step 5): If D5 ≥ 3D/5, we would be done, so assume that D5 < 3D/5. Let a be

the node on the shortest w to t∗ path Pwt∗ with d(w, a) = D/5. Suppose that a ∈ T . Since
D′ ≥ D, a ∈ Tw and we ran BFS from it. However, also d(a, t∗) = d(w, t∗)− d(w, a) <
3D/5−D/5 = 2D/5, and hence D5 ≥ d(a, s∗) ≥ d(t∗, s∗)− d(t∗, a) ≥ D− 2D/5 = 3D/5.
Since D5 < 3D/5, it must be that a ∈ S.

Now, since a ∈ S and b ∈ T , somewhere on the a to b shortest path Pab, there must be
an edge (s′, t′) with s′ ∈ S, t′ ∈ T . Since s′ is before b, d(w, s′) ≤ 2D/5 ≤ 2D′/5, and hence
s′ ∈ Sw. Thus we ran BFS from t(s′). Since s′ has an edge to t′ ∈ T , d(s′, t(s′)) ≤ d(s′, t′) = 1.
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Also, since d(w, s′) ≥ d(w, a) = D/5 and d(w, t∗) ≤ 3D/5− 1, d(s′, t∗) ≤ 2D/5− 1. Thus,

D4 ≥ d(t(s′), s∗) ≥ d(s∗, t∗)− d(t(s′), t∗)
≥ D − d(t(s′), s′)− d(s′, t∗)
≥ D − 1− 2D/5 + 1 = 3D/5.

Hence if we set D′′ = max{D1, D2, D3, D4, D5}, we get that 3D/5 ≤ D′′ ≤ D. J

We now modify the algorithm for unweighted graphs, both making the algorithm work for
weighted graphs and removing the additive error, at the expense of increasing the runtime to
Õ(m3/2).

I Theorem 11. There is an Õ(m3/2) time algorithm, that given an undirected graph G =
(V,E) with nonnegative integer edge weights and S ⊆ V, T = V \ S, can output an estimate
D′ such that 3DST (G)/5 ≤ D′ ≤ DST .

Proof. Suppose as before the (bichromatic) ST -Diameter endpoints are s∗ ∈ S and t∗ ∈ T
and that the ST -Diameter is D.
(Algorithm Modified Step 1): The algorithm here samples E′ ⊆ E of size c

√
m lnn uni-

formly at random, for large enough c. Let Z be the endpoints of edges in E′ that are in
S. For every z ∈ Z, run Dijkstra’s algorithm, and let D1 = maxz∈Z,t∈T d(z, t).

(Analysis Step 1): If for some s′ ∈ Z we have that d(s∗, s′) ≤ 2D/5, then D1 ≥ d(s′, t∗) ≥
D − d(s∗, s′) ≥ 3D/5. Let us then assume that d(s∗, Z) > 2D/5.

(Algorithm Modified Step 2): Let X be the endpoints of edges in E′ that are in T . For
every t ∈ X, run Dijkstra’s algorithm and find the closest node s(t) of S to t. Run
Dijkstra’s algorithm from every s(t). Let D2 = maxt∈X,t′∈T d(s(t), t′).

(Analysis Step 2): If s∗ is at distance ≤ D/5 from some node t of X, then d(s∗, s(t)) ≤ 2D/5
(since s(t) is closer to t than s∗), and so D2 ≥ d(s(t), t∗) ≥ 3D/5. Let us then assume
that d(s∗, X) > D/5.
As before, if we consider the nodes M of S that are at distance > 2D/5 from Z, then
the node w ∈ M that is furthest from X among all nodes of M , would have both
d(w,Z) > 2D/5 and d(w,X) > D/5, as s∗ is in M and satisfies d(s∗, X) > D/5. We will
find a node w with these properties in the next step.

(Algorithm Unmodified Step 3): Perform exactly the same Step 3 as before, finding the
largest integer D′ such that there is some node w ∈ S with d(w,Z) > 2D′/5 and
d(w,X) > D′/5.

(Analysis Step 3): Let w ∈ S be the node we found such that d(w,X) > D′/5, d(w,Z) >
2D′/5. By Lemma 7 we have that whp, the number of edges (s, g) where s ∈ S, g ∈ V and
d(w, s) ≤ 2D′/5 and the number of edges (t, g′) where t ∈ T, g′ ∈ V and d(w, t) ≤ D′/5
is at most

√
m. Also, if D1, D2 < 3D/5, then D′ ≥ D, so that we also have that the

number of edges (s, b) where s ∈ S and d(w, s) ≤ 2D/5 and the number of edges (t, b′)
where t ∈ T and d(w, t) ≤ D/5 is at most

√
m, whp.

(Algorithm Modified Step 4): Run Dijkstra’s algorithm from w. Take all edges incident to
nodes of S at dist ≤ 2D′/5 from w. Call these edges ES and their endpoints Sw. Run
Dijkstra’s algorithm from both of their end points. Whp, |ES | ≤

√
m and so |Sw| ≤ 2

√
m,

so that this Dijkstra run takes Õ(m3/2) time. Let D3 := maxt∈Sw∩T,s∈S d(s, t).
For every s ∈ Sw ∩S, determine a closest node t(s) ∈ T to s, and run Dijkstra’s algorithm
from t(s) as well. This search also takes O(m3/2) time. Let D4 := maxs∈Sw∩S,s′∈S d(s′, t(s)).
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(Analysis Step 4): If d(w, t∗) ≥ 3D/5, or D3 ≥ 3D/5 or D4 ≥ 3D/5, we are done, so let us
assume that d(w, t∗), D3, D4 < 3D/5.
Now consider the node b on the shortest w to t∗ path Pwt∗ for which d(w, b) ≤ 2D/5, but
such that the node b′ after it on Pwt∗ has d(w, b′) > 2D/5.
Suppose that b ∈ S. Then since D′ ≥ D, we have d(w, b) ≤ 2D′/5 and hence (b, b′) ∈ ES .
Let us consider d(b′, t∗) = d(w, t∗)− d(b′, w). Since d(w, t∗) < 3D/5 and d(b′, w) > 2D/5,
d(b′, t∗) < D/5. If b′ ∈ T , then since we ran Dijkstra’s algorithm from b′, we got
D3 ≥ D − D/5 = 4D/5. If b′ ∈ S, then we ran Dijkstra’s algorithm from t(b′) and
d(t(b′), t∗) ≤ d(t(b′), b′) + d(b′, t∗) ≤ 2d(b′, t∗) < 2D/5, and hence D4 ≥ d(t(b), s∗) ≥
D − 2D/5 = 3D/5. Thus if neither d(w, t∗), D3, nor D4 are good approximations, then
b ∈ T .

(Algorithm Modified Step 5): Take all edges incident to nodes of T at dist ≤ D′/5 from
w. Call these edges ET and their endpoints that are in T , Tw. Run Dijkstra’s algorithm
from all nodes in Tw.
Since d(w,X) > D′/5, whp |Tw| ≤ 2

√
m, so this step runs in O(m3/2) time. Let

D5 = maxt∈Tw,s∈S d(t, s).
(Analysis Step 5): If D5 ≥ 3D/5, we would be done, so assume that D5 < 3D/5. Let

a be the node on Pwt∗ with d(w, a) ≤ D/5 but so that the node a′ after a on Pwt∗

has d(w, a′) > D/5. Suppose that a′ ∈ T . Since D′ ≥ D, (a, a′) ∈ ET , a′ ∈ Tw and
we ran Dijkstra’s algorithm from a′. However, also d(a′, t∗) = d(w, t∗) − d(w, a′) <
3D/5−D/5 = 2D/5, and hence D5 ≥ d(a, s∗) ≥ d(t∗, s∗)−d(t∗, a′) ≥ D−2D/5 = 3D/5.
Since D5 < 3D/5, it must be that a′ ∈ S.

Now, since a′ ∈ S and b ∈ T , somewhere on the a′ to b shortest path Pab, there
must be an edge (s′, t′) with s′ ∈ S, t′ ∈ T . However, since s′ is before b, we have that
d(w, s′) ≤ d(w, b) ≤ 2D/5 ≤ 2D′/5. Thus, (s′, t′) ∈ ES and we ran Dijkstra’s algorithm from
t′. However, d(t′, t∗) = d(w, t∗)− d(w, t′) ≤ d(w, t∗)− d(w, a′) < 3D/5−D/5 = 2D/5, and
hence D3 ≥ d(t′, s∗) ≥ d(s∗, t∗)− d(t′, t∗) > 3D/5.

Hence if we set D′′ = max{d(w, t∗), D1, D2, D3, D4, D5}, we get that 3D/5 ≤ D′′ ≤ D.
J

Conditional Lower Bound

The following theorem implies that our algorithms for undirected Bichromatic Diameter from
Theorem 11 and Proposition 9 are tight under SETH.

I Theorem 12. Under SETH, for every k ≥ 2, every algorithm that can distinguish
between Bichromatic Diameter 2k − 1 and 4k − 3 in undirected unweighted graphs requires
m1+1/(k−1)−o(1) time.

In particular setting k = 2 and 3 in Theorem 12 implies that ourm3/2 time 5/3-approximation
algorithm from Theorem 11 is tight in approximation factor and runtime, respectively. Fur-
thermore, setting k to be arbitrarily large implies that our Õ(m) time almost 2-approximation
algorithm from Proposition 9 is tight under SETH.

Theorem 12 follows from the following lemma.

I Lemma 13. Let k ≥ 2 be any integer. Given a k-OV instance, we can in O(knk−1dk−1)
time construct an unweighted, undirected graph with O(knk−1 + knk−2dk−1) vertices and
O(knk−1dk−1) edges that satisfies the following two properties.
1. If the k-OV instance has no solution, then for all pairs of vertices u ∈ S and v ∈ T we

have d(u, v) ≤ 2k − 1.



M. Dalirrooyfard, V. Vassilevska Williams, N. Vyas, and N. Wein 47:13

2. If the k-OV instance has a solution, then there exists a pair of vertices u ∈ S and v ∈ T
such that d(u, v) ≥ 4k − 3.

Proof.
Construction of the graph. We begin with the k-OV-graph from Theorem 8. Additionally,
we add k − 1 new layers of vertices Lk+1, . . . , L2k−1, where each new layer contains nk−1

vertices and is connected to the previous layer by a matching. That is, each new layer contains
one vertex for every tuple (a1, . . . , ak−1) where ai ∈Wi for all i, and each (a1, . . . , ak−1) ∈ Lj
is connected to its counterpart (a1, . . . , ak−1) ∈ Lj−1 by an edge, for all j.

We let S = L0 and we let T contain the rest of the vertices in the graph.

Correctness of the construction.
Case 1: The k-OV instance has no solution. By property 3 of Theorem 8 for all u ∈ S

and v ∈ Lk, d(u, v) = k. Then, since Lk, . . . , L2k−1 form a series of matchings, for all
u ∈ S and v ∈ Lk+1∪· · ·∪L2k−1, d(u, v) ≤ 2k−1. Furthermore, property 5 of Theorem 8
implies that for all u ∈ S and v ∈ L1 ∪ · · · ∪Lk−1, d(u, v) ≤ 2k− 1. Thus, we have shown
that for all u ∈ S and v ∈ T we have d(u, v) ≤ 2k − 1.

Case 2: The k-OV instance has a solution. Let (a0, a1, . . . , ak−1) be a solution to the k-
OV instance where ai ∈Wi for all i. We claim that d((a0, . . . , ak−2) ∈ S, (a1, . . . , ak−1) ∈
L2k−1)) ≥ 4k − 3. Since Lk, . . . , L2k−1 form a series of matchings, every path from
(a0, . . . , ak−2) ∈ S to (a1, . . . , ak−1) ∈ L2k−1 contains the vertex (a1, . . . , ak−1) ∈ Lk. By
property 4 of Theorem 8, d((a0, . . . , ak−2) ∈ S, (a1, . . . , ak−1) ∈ Lk) ≥ 3k − 2. Thus,
d((a0, . . . , ak−2) ∈ S, (a1, . . . , ak−1) ∈ L2k−1)) ≥ 4k − 3. J
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Abstract
In this paper, we present an improved algorithm for the All Pairs Non-decreasing Paths (APNP)
problem on weighted simple digraphs, which has running time Õ(n

3+ω
2 ) = Õ(n2.686). Here n is the

number of vertices, and ω < 2.373 is the exponent of time complexity of fast matrix multiplication
[Williams 2012, Le Gall 2014]. This matches the current best upper bound for (max, min)-matrix
product [Duan, Pettie 2009] which is reducible to APNP. Thus, further improvement for APNP
will imply a faster algorithm for (max, min)-matrix product. The previous best upper bound for
APNP on weighted digraphs was Õ(n

1
2 (3+ 3−ω

ω+1 +ω)) = Õ(n2.78) [Duan, Gu, Zhang 2018]. We also
show an Õ(n2) time algorithm for APNP in undirected simple graphs which also reaches optimal
within logarithmic factors.
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1 Introduction

Given a directed or undirected graph G = (V,E) with arbitrary real edge weights, a non-
decreasing path is a path on which edge weights form a non-decreasing sequence [11]. We
define the weight of a non-decreasing path to be the weight of its last edge, which we want
to minimize. The motivation of this definition comes from train scheduling [13]. Suppose
each train station is mapped to a vertex of a directed graph, and a train from station v1 to
station v2 scheduled at time w is mapped to a directed edge (v1, v2) with weight w. If we
neglect the time trains spent on their way, a trip from s to t is just a non-decreasing path
from s to t in the constructed graph, and the earliest time arriving at t equals the minimum
weight of such non-decreasing path. If we consider the train starts from v1 at time w1 and
arrives at v2 at time w2, we can add a vertex u and two edges (v1, u), (u, v2), then gives edge
weights w1, w2 on them, respectively.

The Single Source Non-decreasing Paths (SSNP) problem, first studied by Minty [11] in
1958, is to find the minimum weight non-decreasing path from a given source s to all t ∈ V .
The first linear time algorithm for SSNP problem in RAM model was given by Williams [13].
She also gave an O(m log logn) time algorithm in the standard addition-comparison model.
(m is the number of edges.)
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The All Pairs Non-decreasing Paths (APNP) problem is the all-pairs version of the above
problem, asking for the minimum weight non-decreasing path between all pairs of vertices in
the graph. Williams [13] gave the first truly sub-cubic time algorithm of APNP. The original
time complexity of the algorithm was Õ(n(15+ω)/6), obtained by using an Õ(n2+ω/3)-time
(min,≤)-matrix product1 algorithm [12] as a subroutine. Here ω < 2.373 is the exponent of
time complexity of fast matrix multiplication [2, 14, 8]. Recently, Duan et al. [5] obtained
a faster algorithm for APNP in Õ(n

1
2 (3+ 3−ω

ω+1 +ω)) = Õ(n2.78), by using a simple balancing
technique introduced in [6]. We also adapt this technique in our algorithm.

Computing APNP is at least as hard as the All Pair Bottleneck Paths (APBP) problem [13],
which asks for the maximum bottleneck path between every pair of vertices, where the
bottleneck of a path is defined as the minimum weight (capacity) among all edges on this
path [12, 15, 6, 9]. APBP is shown to have the same complexity as the (max,min)-matrix
product (Ci,j = maxk{min(Ai,k, Bk,j)}) [1, 12]. The current fastest algorithm for (max,min)-
matrix product runs in Õ(n(3+ω)/2) = Õ(n2.686) time [6]. Our algorithm for APNP matches
this running time, so any further improvement on APNP will imply a faster algorithm for
APBP and (max,min)-matrix product as well.

The vertex-weighted APNP problem on directed graphs, a restricted version of APNP,
is computationally equivalent to the problem of Maximum Witness for Boolean Matrix
Multiplication (MWBMM) [13]. An algorithm of O(n2+µ) time for MWBMM was given by
Czumaj et al. [3], where µ satisfies the equation ω(1, µ, 1) = 1 + 2µ and ω(1, µ, 1) is the
exponent of multiplying an n×nµ matrix with an nµ×n matrix. Currently, the best bounds
on rectangular matrix multiplication by Le Gall and Urrutia [7] imply that µ < 0.5286.

1.1 Our results

In this paper we describe a faster algorithm for directed APNP problem running in Õ(n(3+ω)/2)
time, which reaches optimal if the algorithm for APBP cannot be improved.

I Theorem 1. The all pairs non-decreasing paths (APNP) problem on directed simple graphs
can be solved in Õ(n(3+ω)/2) time.

As in Dijkstra search [4] we can maintain a priority queue of current non-decreasing paths
we have found, then the minimum unvisited one is the optimal paths between its endpoints.
Every time we visit an optimal path, we “relax” all edges following that path. In [5] they
partition the edge set into some parts by increasing order. For low-degree vertices in one part,
trivially relax all of its outgoing edges, while for high-degree ones, use matrix multiplication
to accelerate. Our algorithm adapt this idea, but we recursively divide the edges to O(logn)
levels. In order the optimize the running time, a careful analysis of matrix multiplication is
needed, and we need new ideas to use fast matrix multiplication to “predetermine” some of
the useless edges from high-degree vertices.

We also give a Õ(n2) time algorithm for undirected APNP using the dynamic sequence
data structure [10], which also reaches optimal within logarithmic factors.

I Theorem 2. The all pairs non-decreasing paths (APNP) problem on undirected simple
graphs can be solved in Õ(n2) time.

1 The (min,≤)-product of two matrices A, B is defined as Ci,j = mink{Bk,j : Ai,k ≤ Bk,j}.
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1.2 Organization of this paper

In Section 2, we introduce some terminologies used throughout this paper, and discuss how
to recursively divide the edges. Then Section 3 and 4 will discuss our APNP algorithm for
directed graphs in detail, where Section 3 explains the main techniques used, and Section 4
describes our whole algorithm and its analysis using procedures in Section 3 as subroutines.
Due to page limit, the algorithm for undirected graphs will be discussed in the full version of
this paper2.

2 Preliminaries

2.1 Basic definitions

APNP problem

Let G = (V,E) be a directed simple graph with edge weight w(e) for each edge e ∈ E. We
denote n = |V | and m = |E| = O(n2).

A path is a sequence of edges e1, e2, . . . , el. A non-decreasing path is a path satisfying
∀1 ≤ i ≤ l − 1, w(ei) ≤ w(ei+1), and the weight of this non-decreasing path is defined to be
w(el), the weight of the last edge. All pairs non-decreasing paths problem asks to determine
the minimum weight non-decreasing path between every pair of vertices. Let OPT (i, j)
denote the optimal (minimum) non-decreasing path between i and j. In contrast, during
the algorithm, we use d(i, j) to denote the current minimum non-decreasing path that our
algorithm has found so far. In our algorithm, instead of explicitly maintaining the paths, we
only need to maintain the weights of the paths d(i, j) and OPT (i, j) (and their last edges if
we want to retrieve the paths), so we will also use d(i, j) and OPT (i, j) to denote the weights
of corresponding paths d(i, j) and OPT (i, j), respectively. (Remember that w(j, k) denotes
the weight of the edge (j, k).)

Notation for String and Subgraph

Without loss of generality3, we assume all edges have distinct edge weights ranged from 0 to
2b − 1, where b = dlog2 |E|e ≤ 2 log2 n+O(1), so 2b = O(n2). Then every edge weight w(e)
corresponds to a b-bit 0-1 string [w(e)] which is its binary representation, with the rightmost
bit being the lowest bit.

To distinguish between values and strings, string s is written as [s]. LCP ([w1], [w2])
(which is also a binary string) is the longest common prefix of [w1] and [w2]. For example
LCP ([100], [101]) = [10], and LCP ([000], [100]) = [ ](empty string). |[w]| denotes the length
of the string [w], and [x][y] denotes the concatenation of two strings [x] and [y]. [x] < [y]
means that the lexicographical order of [x] is smaller. For example, [0111] < [101] < [1010].

We define E[x] = {e ∈ E | [w(e)] has prefix [x]} to be the set of all edges whose weight
has prefix [x] (also call the edges have prefix [x]), and similarly the subgraph G[x] = (V,E[x]).
For convenience, an edge set or a subgraph with subscript [x] means all of the edges in it
have prefix [x].

2 See https://arxiv.org/abs/1904.10701.
3 See the full version of this paper for the proof.
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Rectangular Matrix Multiplication

We use M(m,n, p) to denote the asymptotic time complexity of multiplying an m×n matrix
with an n × p matrix. We denote M(n, n, n) = O(nω), where ω < 2.373 [2, 14, 8]. In this
paper, rectangular matrix multiplications are straightforwardly reduced to square matrix
multiplications. So we will only use the following fact. (Here min(x1, · · · , xk) means the
minimum number in {x1, · · · , xk}.)

I Lemma 3. M(m,n, p) = O

(
mnp

min(m,n, p)3−ω

)
.

Proof. The rectangular matrices are decomposed into min(m,n, p) × min(m,n, p) square
matrices, then standard fast square matrix multiplication is applied. J

2.2 Naïve Algorithm
Let us first take a look at the naïve algorithm for APNP, a simple Dijkstra-type search [4].
Initially set d(i, j) = w(i, j) for all edges (i, j) ∈ E, and d(i, j) = +∞ otherwise. Each time
we visit the minimum unvisited d(i, j) and enumerate every out-going edge (j, k) of vertex j.
If d(i, j) and (j, k) form a nondecreasing path, then we update d(i, k)← min(d(i, k), w(j, k)).
(See Algorithm 1.) We refer to this update step as relaxing edge (j, k) w.r.t. d(i, j). By the
greedy nature of Dijkstra search, when we visit d(i, j), d(i, j) = OPT (i, j). Namely, it is
optimal.

Algorithm 1 Relaxing edges naïvely.
1: while there exists unvisited d(i, j) do
2: visit the minimum unvisited d(i, j)
3: for every (j, k) such that w(j, k) > d(i, j) do
4: perform update d(i, k)← min(d(i, k), w(j, k))

For clarity, our usages of symbols i, j, k stick to the following convention: d(i, k) refers
to the path being updated by the concatenation of path d(i, j) and edge (j, k).

The naïve algorithm takes O(n3) time when edge weights are integers from 0 to 2b − 1,
since a bucket heap is enough to maintain unvisited d(i, j).

2.3 Classifying edges according to degrees
In order to avoid relaxing all edges when visiting d(i, j), our algorithm will classify the edges
based on the degrees of their two endpoints, and partition the edges whose both endpoints
have high degrees into two sets by the order of their weights, then recursively deal with
these two sets. We relax different types of edges by different approaches. First, we define
“high-degree” and “low-degree” vertices in a subgraph.

High degree and low degree

In this paper, sometimes we use a subset of edges E′ ⊆ E to denote the subgraph G′ = (V ′, E′)
where V ′ is the set of vertices associated with E′, namely, vertices in E′ refers to vertices in
V ′. In a subgraph G′ = (V ′, E′) of G, a vertex has high outdegree if its outdegree is larger
than n1−t, and otherwise, it has low outdegree. Here t is a parameter to be determined later
(we will choose t = 3−ω

2 ). Similarly, a vertex has high indegree if its indegree is larger than
n1−t, and otherwise, it has low indegree. In our algorithm, edges (j, k) in a subgraph are
divided into three types based on the outdegree of j and indegree of k:
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Low edge: if j has low outdegree
High-high edge: if j has high outdegree and k has high indegree
High-low edge: if j has high outdegree and k has low indegree

Divide the edges

In this binary partition procedure, starting from the entire edge set E′[ ] = E, each time we
divide the set of high-high edges H[x] in E′[x] into two parts: H ′[x][0] and H ′[x][1], based on its
next bit after prefix [x], then recursively partition the edge sets H ′[x][0] and H ′[x][1]. Here we
use L[x] and Γ[x] to denote the low edges and high-low edges with prefix [x] obtained in the
algorithm.

Algorithm 2 Divide the edges.
1: procedure Divide(E′[x])
2: Consider the indegrees and outdegrees of vertices in the graph G′[x] = (V,E′[x]);
3: Let L[x] be the set of edges from low outdegree vertices;
4: Let H[x] be the set of edges from high outdegree vertices to high indegree vertices;
5: Let Γ[x] be the set of edges from high outdegree vertices to low indegree vertices;
6: Let H ′[x][0] = {(j, k) ∈ H[x] s.t. [w(j, k)] has prefix [x][0]} and H ′[x][1] = {(j, k) ∈
H[x] s.t. [w(j, k)] has prefix [x][1]}.

7: Divide(H ′[x][0])
8: Divide(H ′[x][1])
9: end procedure

At the beginning we call Divide(E). Since only the edges in H[x] go into the next
recursion, every edge can only appear in one of L[x] or Γ[x] but can appear in many H[x].

2.4 Outline of our algorithm
In our algorithm, we run a Dijkstra-type procedure. When visiting d(i, j), which is guaranteed
to be optimal, we relax all the edges (j, k) in L[x] and Γ[x] w.r.t. d(i, j) for all [x] which is
a prefix of [d(i, j)]. The outdegree of j is small in L[x] but not in Γ[x], so to relax L[x], we
relax all edges from j as the naïve algorithm. But to relax Γ[x], a preprocessing procedure of
the edges in Γ[x] is needed in order to save time. For edges in H[x], instead of immediately
relaxing them, we wait until all optimal paths with prefix [x][0] are visited, then perform
a (min,≤)-matrix product of these paths with the adjacency matrix of H ′[x][1] to relax all
edges in it. Details of these methods will be given in Section 3.

3 Basic techniques

In this section, we explain the method we use for relaxing edges. Suppose we are trying to
relax edges (j, k) w.r.t. d(i, j), it will be based on whether (j, k) is in L[x], H[x], or Γ[x].

As explained before, L[x] is easiest. Since j has low outdegree, like the naïve algorithm,
we simply relax all of its outgoing edges, which takes O(n1−t) time. H[x] and Γ[x] are handled
by different methods, though they both use the “row/column balancing” technique of matrix
proposed in [6]. Instead of considering it as splitting rows/columns on matrix, we describe
the balancing technique as splitting vertices so that every vertex has low outdegree/indegree.
In the following subsections we describe how to handle H[x] and Γ[x].

ICALP 2019
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Table 1 Balancing the indegrees of vertices k.

Balancing the indegrees of vertices
(S1) For every k, sort all the in-coming edges of k in increasing order and obtain the sorted
list Lk.
(S2) Split k into vertices k′1, k′2, · · · k′p, and divide Lk into segments each of size n1−t (while
the last segment is possibly incomplete). The edges in the r-th segment is assigned to vertex
k′r. Namely, edge (j, k) in the r-th segment now becomes edge (j, k′r).
(S3) Let [L(k′r), R(k′r)] denote the weight range of in-coming edges of k′r. Namely L(k′r)
is the minimum weight of in-coming edges of k′r, and R(k′r) is the maximum. Obviously,
L(k′1) ≤ R(k′1) < L(k′2) ≤ R(k′2) < · · · < L(k′p) ≤ R(k′p).

3.1 Balancing
A graph G = (V,E) contains at most |E|

n1−t vertices with high indegrees or outdegrees. If
there are Θ( |E|n1−t ) number of vertices with high degrees, we would expect an average degree
of O(n1−t). However, the degrees of some vertices may be far greater than n1−t. To balance
the indegree (outdegree) of each vertex, we split every vertex into several vertices each of
indegree (outdegree) n1−t and one vertex of indegree (outdegree) ≤ n1−t . The number
of new vertices with indegree (outdegree) exactly n1−t is bounded by O

(
|E|
n1−t

)
, and every

original high indegree (outdegree) vertex corresponds to at most one new vertex with indegree
(outdegree) < n1−t, thus we have at most O

(
|E|
n1−t

)
many new vertices each with indegree

(outdegree) ≤ n1−t.
In our algorithm, for edge set {(j, k)}, we use this technique to either balance the

outdegrees of vertices j or the indegrees of vertices k. Here we demonstrate this technique for
balancing indegrees of k as an example in Table 1. Denote the set of edges after balancing to
be Ē, then the graph corresponding to Ē is actually a bipartite graph with edges between
vertices j and k′r. The procedure for balancing outdegrees of j is symmetric.

3.2 High-high edges
The technique for high-high edges solves the following problem: Given a set P of optimal
paths of prefix [x][0] and a set H ′[x][1] of high-high edges, the problem asks to relax all edges
in H ′[x][1] w.r.t. paths in P , namely, extend paths in P by a single edge in H ′[x][1].

This problem is equivalent with a length-two nondecreasing path problem. As discussed
in Section 1, this can be solved by fast (min,≤)-product implied in [6]. But the rectangular
version is not covered by [6], so we fully describe the algorithm and its analysis (in graphs).

We have two extra guarantees when we use this procedure in our main algorithm:
P is the set of optimal paths OPT (i, j) such that [OPT (i, j)] has prefix [x][0], so any
path d(i, j) in P can form a nondecreasing path with any edge (j, k) in H ′[x][1].
All d(i, j) satisfying [d(i, j)] < [x][1] are already visited by Dijkstra search. So we can tell
whether [OPT (i, j)] < [x][1] or not.

Suppose there are n[x][1] many [OPT (i, j)] which have [x][1] as a prefix. In our algorithm
the time complexity will depend on n[x][1].

The first step is to apply the balancing technique in Section 3.1 to indegrees of vertices
k in H ′[x][1], and let the edge set after balancing be H̄ ′[x][1]. Here each high indegree vertex
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k is split into vertices {k′r}. We define the following two matrices: (j and k′r only include
vertices having out-going edges and in-coming edges in H̄ ′[x][1], respectively.)

Ai,j =
{

1 d(i, j) ∈ P
0 otherwise

Bj,k′r =
{

1 (j, k′r) ∈ H̄ ′[x][1]

0 otherwise

Then we multiply them with rectangular matrix multiplication. Let C = AB, then,

Ci,k′r

{
> 0 if there is a nondecreasing path from i to k′r
= 0 otherwise

For every pair (i, k) such that [OPT (i, k)] ≥ [x][1] (d(i, j) 6∈ P ) and k is an in-coming
vertex in H ′[x][1], we find the minimum r with Ci,k′r > 0 and relax all n1−t incoming edges
(j, k′r) of k′r w.r.t. d(i, j) if d(i, j) ∈ P . We can skip other r′ > r because OPT (i, k) ≤
R(k′r) < L(k′r′). Namely, we only have to relax O(n1−t) many edges for each (i, k), which
is the benefit of balancing. We attribute this O(n1−t) cost of relaxations to the OPT (i, k)
with prefix [x][1] found in these relaxations, which must exist if Ci,k′r > 0.

The procedure above consists of three parts: finding minimum r for each (i, k), relaxation
and matrix multiplication. The time cost for the first part is at most enumerating all nonzero
elements of C, so it is dominated by the matrix multiplication part.
I Lemma 4. The relaxation part takes O

(
n[x][1]n

1−t) time in total.
Proof. The cost of relaxation is attributed to each OPT (i, k) with prefix [x][1]. Since there
are n[x][1] many OPT (i, k) with prefix [x][1], and each corresponds to O(n1−t) relaxations, it
costs O(n[x][1]n

1−t) time in total. J

I Lemma 5. In the matrix multiplication part, A is an n × O
(

min
(
n, 2b−|[x]|

n1−t

))
matrix,

and B is a O
(

min
(
n, 2b−|[x]|

n1−t

))
× O

(
2b−|[x]|

n1−t

)
matrix, so the time complexity for matrix

multiplication is M
(
n,min

(
n, 2b−|[x]|

n1−t

)
, 2b−|[x]|

n1−t

)
.

Proof. There are at most min
(
n,
|H′[x][1]|
n1−t

)
many j because vertices j have high outdegrees.

After balancing, there are at most O
( |H′[x][1]|

n1−t

)
many k′r by discussion in Section 3.1. Since

each edge in H ′[x][1] has prefix [x][1], |H ′[x][1]| ≤ 2b−|[x]|−1 = O
(
2b−|[x]|). Plug in the size of

H ′[x][1] gives the desired bound. J

3.3 High-low edges
Now we consider the relaxation of the high-low edges in Γ[x] when visiting paths with the
same prefix [x]. To preprocess high-low edges, we run an initialization step when all optimal
paths less than [x] have been visited. As before, we denote the number of [OPT (i, j)] with
prefix [x] by n[x].

Since the outdegrees of vertices j are high, we cannot relax edges one by one. But we
still want to utilize the property that the indegrees of k are low. As in the last subsection,
we denote the set of optimal paths we have found to be P , namely when we visit d(i, j), we
add d(i, j) to P . By the nature of Dijkstra search, such d(i, j) is always visited in increasing
order. At the initialization step, P is the set of all optimal paths less than [x]. During the
procedure, optimal paths with prefix [x] are added to P .

We also maintain a dynamic set Q which is initially empty. When we relax an edge (j, k)
w.r.t. d(i, j), we put d(i, k) into Q only if [d(i, k)] ≥ [x], that is, d(i, k) was not visited at
initialization. So Q contains new nondecreasing path but not guaranteed to be optimal.

ICALP 2019
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Initialization by Matrix Multiplication

The first step is to apply the balancing technique to the outdegrees of vertices j in Γ[x] such
that every vertex j in Γ[x] is split into a sequence of vertices {j′r}. Suppose the edge set after
balancing is Γ̄[x]. Then, we define the following two matrices: (j′r and k only include vertices
having out-going edges and in-coming edges in Γ̄[x], respectively.)

Ai,k =
{

1 d(i, k) 6∈ P ∪Q
0 otherwise

Bk,j′r =
{

1 (j′r, k) ∈ Γ̄[x]

0 otherwise

We compute C = AB. Basically speaking, the matrix C can indicate whether we need to
relax edges (j′r, k) from j′r when visiting d(i, j). Note that when we run initialization, Q is
empty, so d(i, k) 6∈ Q is trivially true. But we will add paths to Q and dynamically update
the matrix multiplication later.

We make the following observation about Ci,j′r .

I Observation 1. If d(i, j) < L(j′r) and Ci,j′r > 0, there is at least one edge (j′r, k) such that
d(i, k) 6∈ P ∪Q and [x] is a prefix of [OPT (i, k)].
Conversely, if Ci,j′r = 0, there is no such an edge (j′r, k).

Proof. Since Ci,j′r > 0, at least one vertex k satisfy the following:
Ai,k > 0 : d(i, k) 6∈ P , so [OPT (i, k)] ≥ [x][0 · · · 0]. Also d(i, k) 6∈ Q.
Bk,j′r > 0 : (j′r, k) ∈ Γ̄[x].

Since d(i, j) < L(j′r), d(i, j) and the original edge of (j′r, k) form a non-decreasing path. So
[OPT (i, k)] ≤ [x][1 · · · 1].

Conversely, if Ci,j′r = 0, for every k, at least one of these happens:
Ai,k = 0 : d(i, k) ∈ P ∪Q
Bk,j′r = 0 : edge (j′r, k) does not exist in Γ̄[x]. J

Update matrix multiplication

When a new path d(i, k) is added to P or Q, the matrix A and product C need to be updated.
Adding a new path to P or Q only changes one entry of Ai,k, so we utilize the low indegree
of k. There are at most O(n1−t) many j′r such that Bk,j′r 6= 0, since Γ[x] contains high-low
edges only. So the update of C when changing one element Ai,k takes only O(n1−t) time by
enumerating all nonzero Bk,j′r . This cost can be attributed to each [OPT (i, k)] with prefix
[x], since every such path can only be added to P ∪Q once. However, adding d(i, k) to Q
does not mean we have found the optimal path OPT (i, k), as it can still be updated. How
to deal with this will be discussed later.

Relaxation when visiting d(i, j)

When we visit d(i, j), for each split vertex j′r of j, there are three cases:
1. d(i, j) > R(j′r) : d(i, j) cannot form a non-decreasing path with any out-going edge of j′r,

so we skip j′r.
2. d(i, j) ∈ [L(j′r), R(j′r)] : We relax all out-going edges of j′r larger than d(i, j).
3. d(i, j) < L(j′r) : Only when Ci,j′r > 0, we relax all out-going edges of j′r one by one.

By Observation 1, when Ci,j′r = 0, for each edge (j′r, k), either d(i, k) ∈ P or d(i, k) ∈ Q.
If d(i, k) ∈ P , it needs no more update. If d(i, k) ∈ Q, roughly speaking, since k has indegree
less than n1−t, the updates for d(i, k) can be done “in advance” when it is added to Q. The
details will be clear later. This is why we can skip j′r when Ci,j′r = 0.
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Since the degree of j′r is bounded by n1−t, the relaxation takes O(n1−t) time for each
j′r. For the second case, it only happens once for each d(i, j) because [L(j′r), R(j′r)] are
disjoint for different j′r, so the O(n1−t) cost is attributed to d(i, j). For the third case, by
Observation 1, there is at least one edge (j′r, k) such that OPT (i, k) 6∈ P ∪ Q with prefix
[x], so the O(n1−t) time is attributed to d(i, k). (If there is more than one such k, choose
an arbitrary one.) Then d(i, k) is added to Q, and the cost of updating A and C is also
bounded by n1−t, dominated by the cost of relaxation.

Because the first path d(i, k) we found for each (i, k) is not necessarily the optimal one,
we discuss how to handle all future updates of d(i, k) “in advance” after adding it to Q. We
enumerate every in-coming edge (j′′, k) ∈ Γ[x] of k. If d(i, j′′) is not in P , we add (i, k) to
a waiting list for (i, j′′), denoted by W (i, j′′). When d(i, j) is visited in the future, we can
go through its waiting list W (i, j) and update d(i, k) for all pair (i, k) in the list. There
are only n1−t in-coming edges for k, so the waiting list construction cost is also O(n1−t)
for every d(i, k).

In conclusion, we follow the procedure in Algorithm 3 when visiting d(i, j) with prefix [x].

Algorithm 3 High-low relaxation when visiting d(i, j).
1: Add d(i, j) to P and update A and C = AB.
2: for (i, k) in the waiting list W (i, j) do
3: Relax (j, k) w.r.t. d(i, j) if w(j, k) > d(i, j)
4: for every j′r satisfying d(i, j) ∈ [L(j′r), R(k′r)] or (d(i, j) < L(j′r) and Ci,j′r > 0) do
5: for every outgoing edge (j′r, k) of j′r larger than d(i, j) do
6: if d(i, k) 6∈ P ∪Q then
7: Relax (the original edge of) (j′r, k) w.r.t. d(i, j)
8: Add d(i, k) to Q and update A and C = AB

9: for incoming edge (j′′, k) of k do
10: Add (i, k) to the waiting list W (i, j′′) if d(i, j′′) 6∈ P

Complexity

This procedure is divided into matrix multiplication part (initialization) and relaxation part
(Algorithm 3) as well.

I Lemma 6. The relaxation part takes O
(
n[x]n

1−t) time.

Proof. From discussion above, the O(n1−t) cost of each relaxation is either attributed to
optimal d(i, j) with prefix [x] or d(i, k) ∈ Q. For each d(i, k) ∈ Q, OPT (i, k) is of course
larger than [x][0 · · · 0], and then relaxed by an edge ≤ [x][1 · · · 1], so the size of Q is also
bounded by n[x]. Since each d(i, j) can only be added to P and Q once, respectively, the
total time is O

(
n[x]n

1−t).
The total size of all waiting lists W (i, j) is bounded by O

(
n[x]n

1−t) as well, because each
time when an d(i, k) is added to Q, we enumerate ≤ n1−t many incoming edges of k, and
add (i, k) to waiting list at Line 10. Every waiting list can only be relaxed once, thus, the
relaxation of waiting list edges in Line 3 needs O

(
n[x]n

1−t) in total. J

The following lemma is crucial. Although edges (j, k) in Γ[x] are high-low edges, the
number of k is not directly bounded, but remind that in our binary partition of edges, only
high-high edges of previous level can be in this set, thus in fact the number of k cannot be
asymptotically larger than the number of j′r.
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I Lemma 7. In the matrix multiplication part, A is an n × O
(

min
(
n, 2b−|[x]|

n1−t

))
matrix,

and B is an O
(

min
(
n, 2b−|[x]|

n1−t

))
× O

(
2b−|[x]|

n1−t

)
matrix, so the time complexity of matrix

multiplication is M
(
n,min

(
n, 2b−|[x]|

n1−t

)
, 2b−|[x]|

n1−t

)
.

Proof. Since |Γ[x]| ≤ 2b−|[x]| (because each edge in it has prefix [x]), after balancing, there
are at most O

(
2b−|[x]|

n1−t

)
many j′r.

If [x] 6= [], suppose [x] = [x′][0/1], namely [x′] is the prefix of [x] which is one bit shorter.
If (j, k) ∈ Γ[x], by Algorithm 2, (j, k) ∈ H[x′]. Since k has high indegree in H[x′], the number
of such k is bounded by O

(
min

(
n,
|H[x′]|
n1−t

))
. Also |H[x′]| = O

(
2b−|[x]|). Plug it in gives the

O
(

min
(
n, 2b−|[x]|

n1−t

))
bound for the number of k. If [x] = [], of course the number of k is

bounded by n. J

4 Main algorithm for directed graphs and analysis

4.1 Main algorithm
Just like in the naïve algorithm, we use a bucket to maintain all d(i, j) we have found, and
the minimal unvisited d(i, j) is guaranteed to be optimal. Our algorithm enumerates the
value x from 0 to 2b − 1 and visit d(i, j) if d(i, j) = x. We carefully combine techniques
introduced in the previous section into this framework.

Recall that in Algorithm 2 of Section 2.3 we define L[x] to be the set of low edges (from
low outdegree vertices) and Γ[x] to be the set of high-low edges in H ′[x], which are high-high
edges in higher level, then divide the edge set H[x] of high-high edges in H ′[x] to H ′[x][0] and
H ′[x][1] and recursively deal with them. Our main algorithm is presented in Algorithm 4.

Algorithm 4 Main algorithm.
1: d(i, j) = w(i, j) for all edges (i, j) ∈ E, and d(i, j) = +∞ otherwise
2: for x from 0 to 2b − 1 do
3: for all prefix [y] of [x] do
4: if [x] = [y][000 · · · 0] then
5: Run high-low edge initialization for edges in Γ[y]

6: if [x] = [y][100 · · · 0] then
7: P[y][0] = {d(i, j) | [y][0] is a prefix of [d(i, j)]}
8: Append high-high edges in H ′[y][1] to paths in P[y][0]

9: for d(i, j) = x do
10: Mark d(i, j) as visited, add d(i, j) to P .
11: for all prefix [y] of [d(i, j)] do
12: Relax edges (j, k) ∈ L[y]
13: Relax edges (j, k) ∈ Γ[y] by Algorithm 3

When visiting an optimal path d(i, j), we need to relax all edges (j, k) which are larger
than d(i, j).

I Observation 2. For [d(i, j)] = [x], every edge (j, k) larger than d(i, j) must be one of the
following three cases: (so [y] is a prefix of both [x] and [w(j, k)].)

(j, k) ∈ L[y] for some prefix [y] of [x]
(j, k) ∈ Γ[y] for some prefix [y] of [x]
(j, k) ∈ H ′[y][1] where [y][0] is a prefix of [x]
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Proof. Consider the longest common prefix [y] = LCP ([x], [w(j, k)]). If (j, k) is not in the
L[y′] or Γ[y′] for any prefix [y′] of [y], it must be in H[y]. Since [y] is the longest common
prefix and w(j, k) is larger than d(i, j), [d(i, j)] has prefix [y][0] and [w(j, k)] has prefix [y][1],
thus (j, k) is in H ′[y][1]. J

Thus, we can simply relax the edges of the first type, and use the method in Section 3.2
to relax the edges in H ′[y][1] when all of the optimal paths with prefix [y][0] have been visited.
The method for high-low edges Γ[y] is like a dynamic data structure: we initialize it when
[x] = [y][0 · · · 0], and update it when relaxing an edge in Γ[y].

High-high edges

For high-high edges, when [x] = [y][100 · · · 0], before those d(i, j) = x are visited, we append
edges in H ′[y][1] to paths in P[y][0] = {d(i, j) | [y][0] is a prefix of [d(i, j)]} using the technique
introduced in Section 3.2. See Line 8, Algorithm 4.

In Section 3.2, we have two guarantees. Now we check them one by one:
Because each edge in H ′[y][1] has prefix [y][1], and each path in P[y][0] has prefix [y][0], the
maximum weight in P[y][0] is smaller than the minimum weight of H ′[y][1]. At the time of
[x] = [y][100 · · · 0], all paths in P[y][0] are optimal.
Since [x] = [y][100 · · · 0], all [d(i, j)] < [y][1] are visited, and none of [d(i, j)] ≥ [y][1] are
visited yet.

High-low edges

We initialize for Γ[y] when [x] = [y][000 · · · 0] before we visit those d(i, j) = x. See Line 5 of
Algorithm 4. All [d(i, j)] < [y] are visited, and none of [d(i, j)] ≥ [y] are visited. Once a d(i, j)
within the range [y][000 · · · 0] ∼ [y][111 · · · 1] is visited, we use the approach in Algorithm 3.

4.2 Correctness
We now prove the correctness of our algorithm. Suppose the last edge of OPT (i, k) is
(j, k). Then d(i, k) is correctly computed before it is visited if and only if the following two
conditions holds:

If i 6= j, d(i, j) is correctly computed before it is visited.
After d(i, j) is visited, before we visit d(i, k), d(i, k) is updated by relaxing the edge (j, k)
w.r.t. d(i, j).

We prove the second condition holds for every d(i, j), and the first one simply follows
from induction.

Suppose [z] = LCP ([OPT (i, j)], [OPT (i, k)]) = LCP ([OPT (i, j)], [w(j, k)]). By Obser-
vation 2 the last edge (j, k) must be in one of the three cases, so we check them one by
one.

I Lemma 8. If (j, k) is in L[y] for some prefix [y] of [z], and d(i, j) is correctly computed
before visited, then d(i, k) is also correctly computed before visited.

Proof. Because [y] is also a prefix of [OPT (i, j)], at Line 12, when we visit d(i, j), d(i, k) is
updated by relaxing (j, k). Because OPT (i, j) < OPT (i, k), d(i, k) is not visited yet. J

I Lemma 9. Suppose (j, k) is in H ′[y][1] where [y][0] is a prefix of [OPT (i, j)]. If d(i, j) is
correctly computed before visited, d(i, k) is also correctly computed before visited.
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Proof. We can see [y] = [z] from the proof of Observation 2. At Line 8, when [x] =
[y][100 · · · 0], d(i, k) is updated by d(i, j) and (j, k). d(i, j) is already visited before because
it has prefix [y][0]. d(i, k) will be visited later because it has prefix [y][1]. J

I Lemma 10. If (j, k) is in Γ[y] for some prefix [y] of [z], and d(i, j) is correctly computed
before visited, then d(i, k) is also correctly computed before visited.

Proof. Since [y] is a prefix of both [OPT (i, j)] and [w(j, k)], the initialization for Γ[y] is done
at Line 5 when [x] = [y][000 · · · 0]. After that, d(i, k) is updated when we visit d(i, j) at Line
13. d(i, k) is not visited yet because OPT (i, k) > OPT (i, j). J

I Lemma 11. All d(i, j) are correctly computed before visited.

Proof. This follows from a simple induction. In the base case, for all length 1 optimal
paths OPT (i, j), they are obviously correctly computed in Line 1. Then if all length l − 1
paths OPT (i, j) are correctly computed before visited, by Lemma 8, 9, 10, all length l paths
OPT (i, j) are also correctly computed before visited. J

4.3 Running time
I Lemma 12. The relaxation for low edges (L[x]) takes Õ

(
n3−t) time in total. (Line 12)

Proof. At Line 12, we only enumerate O(n1−t) many edges because j has low outdegree in
L[y]. Since there are only b = O(logn) many prefix [y] for each [d(i, j)], each d(i, j) takes
Õ(n1−t) time. So in total, these updates take Õ(n3−t) time for all O(n2) many d(i, j). J

I Lemma 13. The relaxation for high-high edges and high-low edges besides matrix multi-
plication takes Õ

(
n3−t) time in total.

Proof. By Lemma 4 and Lemma 6, for each [y], the complexity for relaxation is bounded by
(n[y] + n[y][1])n1−t = O

(
n[y]n

1−t), where n[y] stands for the number of optimal paths with
prefix [y]. Since an optimal path can be counted in O(logn) many n[y], the total time is
therefore Õ(n3−t). J

I Lemma 14. The matrix multiplication parts for high-high edge updates and the initialization
of high-low edge updates take Õ (nt+ω) time in total.

Proof. By Lemma 5 and Lemma 7, the complexity for matrix multiplication is at most
M
(
n,min

(
2b−|[y]|

n1−t , n
)
, 2b−|[y]|

n1−t

)
for each [y]. We fix the length of [y], denoted by l = |[y]|,

then consider the two cases:
2l < nt : There are at most 2l many such [y], and each takes

M

(
n, n,

2b−l

n1−t

)
= O

(
n2 · 2b−l

n1−t

n3−ω

)
= O

(
nt+ω · 2−l

)
This follows from both Lemma 3 and the fact that 2b = |E| = O(n2). For each l, the time
complexity is exactly O(nt+ω). So the total complexity is Õ(nt+ω) since l = O(log2(n)).
2l ≥ nt : There are at most 2l many such [y]. Each takes

M

(
n,

2b−l

n1−t ,
2b−l

n1−t

)
= O

(
n ·
(

2b−l

n1−t

)2−(3−ω))
= O

(
n(t+1)(ω−1)+1 · 2−l(ω−1)

)
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So for all [y] of length l, it takes O
(
n(t+1)(ω−1)+1 · 2−l(ω−2)) time. The term 2−l(ω−2) is

maximized when l is minimized, so 2−l(ω−2) ≤ n−t(ω−2), and the total time for all lengths
of [y] is

Õ
(
n(t+1)(ω−1)+1−t(ω−2)

)
= Õ

(
nt+ω

)
J

I Theorem 15. The All Pair Non-decreasing Paths (APNP) problem on directed simple
graphs can be solved in Õ

(
n

3+ω
2

)
time. The optimal path of length l between any two vertices

can also be explicitly found in O(l) time if we slightly modify the algorithm.

Proof. We choose t = 3−ω
2 . The running time of this algorithm follows from previous lemmas.

Since all optimal paths OPT (i, k) are obtained by relaxation of edges (j, k), we can store
the last edge (j, k) for each OPT (i, k), so retrieving the optimal path can be done in O(l)
time. J
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Abstract
Given an n-vertex m-edge graph G with non-negative edge-weights, a shortest cycle of G is one
minimizing the sum of the weights on its edges. The girth of G is the weight of such a shortest cycle.
We obtain several new approximation algorithms for computing the girth of weighted graphs:

For any graph G with polynomially bounded integer weights, we present a deterministic algorithm
that computes, in Õ(n5/3 + m)-time1, a cycle of weight at most twice the girth of G. This
matches both the approximation factor and – almost – the running time of the best known
subquadratic-time approximation algorithm for the girth of unweighted graphs.
Then, we turn our algorithm into a deterministic (2 + ε)-approximation for graphs with arbitrary
non-negative edge-weights, at the price of a slightly worse running-time in Õ(n5/3polylog(1/ε) +
m). For that, we introduce a generic method in order to obtain a polynomial-factor approximation
of the girth in subquadratic time, that may be of independent interest.
Finally, if we assume that the adjacency lists are sorted then we can get rid off the dependency
in the number m of edges. Namely, we can transform our algorithms into an Õ(n5/3)-time ran-
domized 4-approximation for graphs with non-negative edge-weights. This can be derandomized,
thereby leading to an Õ(n5/3)-time deterministic 4-approximation for graphs with polynomially
bounded integer weights, and an Õ(n5/3polylog(1/ε))-time deterministic (4 + ε)-approximation
for graphs with non-negative edge-weights.

To the best of our knowledge, these are the first known subquadratic-time approximation algorithms
for computing the girth of weighted graphs.
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1 Introduction

The exciting program of “Hardness in P” aims at proving (under plausible complexity
theoretic conjectures) the exact time-complexity of fundamental, polynomial-time solvable
problems in computer science. In this paper, we consider the Girth problem on edge-weighted
undirected graphs, for which almost all what is known in terms of finer-grained complexity

1 The Õ(·) notation suppresses polylogarithmic factors.
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49:2 Approximating the Girth on Weighted Graphs in Subquadratic Time

only holds for dense graphs (m = Ω(n2)). We recall that the girth of a given graph G is
the minimum weight of a cycle in G – with the weight of a cycle being defined as the sum
of the weights on its edges (see Sec. 2 for any undefined terminology in this introduction).
For dense graphs this parameter can be computed in time O(n3), and Vassilevska Williams
and Williams [19] proved a bunch of combinatorial subcubic equivalences between Girth
and other path and matrix problems. In particular, for every ε > 0, there cannot exist any
combinatorial (4/3− ε)-approximation algorithm for Girth that runs in truly subcubic time
unless there exists a truly subcubic combinatorial algorithm for multiplying two boolean
matrices. Roditty and Tov completed this above hardness result with an Õ(n2/ε)-time
(4/3 + ε)-approximation algorithm [15], thereby essentially completing the picture of what
can be done combinatorially in subcubic time. However, the story does not end here for at
least two reasons. A first simple but important observation is that as the graphs considered
get sparser, the complexity for computing their girth falls down to O(n2). In fact, when
the edge-weights are integers bounded by some constant M , there is a non-combinatorial
algorithm for computing the girth of any n-vertex graph G in time Õ(Mnω) where ω stands
for the the exponent of square matrix multiplication over a ring [16]. It is widely believed
that ω = 2 [13], and if true, that would imply we can compute the exact value of the girth in
quasi quadratic time – at least when edge-weights are bounded. So far, all the approximation
algorithms for Girth on weighted graphs run in Ω̃(n2)-time [10, 15]. This leads us to the
following, natural research question:

Does there exist a subquadratic approximation algorithm for Girth on weighted graphs?

In this paper, we answer to this above question in the affirmative.

1.1 Our contributions
We present new approximation algorithms for the girth of graphs with non-negative real
edge-weights. These are the first algorithms to break the quadratic barrier for this problem –
at the price of a slightly worse approximation factor compared to the state of the art [15]
– see Sec. 1.2 on the Related work for more details. Our first result is obtained for graphs
with bounded integer edge-weights.

I Theorem 1. For every G = (V,E,w) with edge-weights in {1, . . . ,M}, we can compute a
deterministic 2-approximation for Girth in time Õ(n5/3polylogM +m).

Our starting point for Theorem 1 is a previous 2-approximation algorithm from Lingas
and Lundell [10], that runs in quadratic time. Specifically, these two authors introduced an
Õ(n logM)-time procedure that takes as entry a specified vertex of the graph and needs
to be applied to every vertex in order to obtain the desired 2-approximation of the girth.
Inspired by the techniques used for approximate distance oracles [18] we informally modify
their algorithm as follows. We only apply their procedure to the vertices in a random subset
S: where each vertex is present with equal probability n−1/3 (we can derandomize our
approach by using known techniques from the litterature [14]). Furthermore, for the vertices
not in S, we rather apply a modified version of their procedure that is restricted to a small
subgraph – induced by some ball of expected size O(n1/3). A careful analysis shows this
is a 2-approximation. The reason why this above approach works is that, when we run
the procedure of Lingas and Lundell at some arbitrary vertex s, it will always detect a
short cycle if there is one passing close to s (but not necessarily passing through s itself).
This nice property has been noticed and exploited for related algorithms on unweighted
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graphs [10]2. However, we think we are the first to prove such a property in the weighted
case. We note that one of the two algorithms proposed by Roditty and Tov in [15] also
satisfies such a property. We did not find a way to exploit their algorithm in order to improve
our approximation factor.
Our approach for graphs with bounded integer edge-weights (see Sec. 3.2) is the cornerstone
of all our other results in the paper. We considerably refine this approach so that it also
applies to graphs with arbitrary non-negative edge-weights.

I Theorem 2. For every ε > 0 and G = (V,E,w) with non-negative edge-weights, we can
compute a deterministic (2 + ε)-approximation for Girth in time Õ(n5/3polylog1/ε+m).

We note that in [15], Roditty and Tov introduced a nice technique – that we partly reuse
in this paper – in order to transpose their results for bounded integer-weights to arbitrary
weights. However, we face several new difficulties, not encountered in [15], due to the need
to perform all the intermediate operations in subquadratic time. As a side contribution of
this work, we present an intricate modification of our approach for graphs with bounded
integer edge-weights that we use in order to approximate the girth of graphs with arbitrary
non-negative edge-weights up to a polynomial-factor. This subquadratic-time routine could
be useful to anyone improving our result for the graphs with integer-weights in order to
generalize their results to the graphs with non-negative real weights.
Our algorithms are subquadratic in the size of the graph, but they may be quadratic in
its order n if there are m = Θ(n2) edges. By a folklore application of Moore bounds,
any unweighted graph with O(n1+ 1

` ) edges has girth at most 2`, and so, we can always
output a constant upper-bound on the girth of moderately dense graphs. It implies that the
dependency on m can always be removed in the running-time of approximation algorithms
for the girth of unweighted graphs. However, in the full version of this paper, we prove by
using elementary arguments that any approximation algorithm for the girth on weighted
graphs must run in Ω(m)-time. We study what happens if we have sorted adjacency lists3.

I Theorem 3. Let G = (V,E,w) have sorted adjacency lists.
1. If all edge-weights are in {1, . . . ,M} then, we can compute a deterministic 4-approximation

for Girth in time Õ(n5/3polylogM).
2. If all edge-weights are non-negative then, we can compute a randomized 4-approximation

for Girth in time Õ(n5/3). For every ε > 0, we can also compute a deterministic
(4 + ε)-approximation for Girth in time Õ(n5/3polylog1/ε).

We observe that even assuming sorted adjacency lists, it is not clear whether the algorithm
of Theorem 1 can be implemented to run in time Õ(n5/3polylogM). Indeed, this algorithm
requires to build several induced subgraphs in time roughly proportional to their size,
that requires a different preprocessing on the adjacency lists. We prove that we do not
need to construct these induced subgraphs entirely in order to derive a constant-factor
approximation of the girth. Similarly, for graphs with non-negative edge-weights we cannot
use our polynomial-factor approximation algorithm for the girth directly, as it needs to
enumerate all edges in the graph. We overcome this difficulty through the help of a classical
density result for the C4-free unweighted graphs [4].

2 There is a subtle difference between our approach for weighted graphs and the one formerly applied to
unweighted graphs. Indeed, we need to consider all edges in the subgraphs that are induced by some
small balls in the graph, that might include some large-weight edges not on any shortest-path in G.
For unweighted graphs [10, 16], they mostly consider edges on some shortest-paths in G between a
pre-defined vertex and the other vertices in the ball.

3 Throughout this paper, we call an adjacency list sorted if it is sorted by edge-weight, and ordered if it is
sorted by neighbour index. See also Sec. 2.
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1.2 Related work

Approximation algorithms for the girth. Itai and Rodeh were the first to study the Girth
problem for unweighted graphs [9]. Among other results, they showed how to compute
an additive +1-approximation of the girth in time O(n2). This was later completed by
Lingas and Lundell [10], who proposed a randomized quasi 2-approximation algorithm for
this problem that runs in time O(n3/2√logn). In [17], Roditty and Vassilevska Williams
presented the first deterministic approximation algorithm for the girth of unweighted graphs.
Specifically, they obtained a 2-approximation algorithm in time Õ(n5/3), and they conjectured
that there does not exist any subquadratic (2 − ε)-approximation for Girth. We obtain
the same approximation factor for weighted graphs, and we almost match their running
time up to polylog factors and to an additional term in Õ(m). It would be interesting
to know whether in our case, this dependency on m can be removed while preserving the
approximation factor 2. Very recently, new subquadratic-time approximation algorithms
were proposed for Girth in unweighted graphs (see [7]). It is open whether one can achieve
a constant-factor approximation for the girth in, say, Õ(n1+o(1))-time.

Much less is known about the girth of weighted graphs. The first known subcubic
approximation was the one of Lingas and Lundell [10], that only applies to graphs with
bounded integer edge-weights. Their work somewhat generalizes the algorithm of Itai and
Rodeh for unweighted graphs. The approximation factor was later improved to 4/3 by
Roditty and Tov, still for the graphs with bounded integer weights, and to 4/3 + ε for the
graphs with arbitrary weights [15]. Our algorithms in this paper are faster than these two
previous algorithms, but they use the latter as a routine to be applied on several subgraphs
of sublinear size. Therefore, the approximation factors that we obtain cannot outperform
those obtained in [10, 15].

More recently, a breakthrough logarithmic approximation of the girth of directed weighted
graphs was obtained in [11].

Approximate distances. Finally, approximation algorithms for the girth are tightly related
to the computation of approximate distances in weighted graphs. In a seminal paper [18],
Thorup and Zwick showed that we can compute in expected time O(mn1/k) an approximate
distance oracle: that can answer any distance query in time O(k) with a multiplicative stretch
at most 2k − 1. This has been improved in several follow-ups [2, 5, 12, 14, 20]. However,
the construction of most oracles already takes (super)quadratic time for moderately dense
graphs. A key observation is that we do not need to construct these oracles entirely if we just
want to approximate the girth. This allows us to avoid a great deal of distance computations,
and so, to lower the running time.

1.3 Organization of the paper

We start gathering in Section 2 some known results from the literature that we will use for
our algorithm. Then, in Section 3, we give some new insights on the algorithm of Lingas and
Lundell [10] before presenting our main result (Theorem 1). Our algorithm is generalized
to graphs with arbitrary weights in Section 4. Finally, we remove the dependency on the
number of edges in the time complexity of our algorithms in Section 5. We conclude this
paper with some open perspectives (Section 6). Due to space restrictions, some of the proofs
are omitted. Full proofs can be found in our technical report [8].



G. Ducoffe 49:5

2 Preliminaries

We refer to [3] for any undefined graph terminology. Graphs in this study are finite, simple
(hence, without any loop nor multiple edges), connected and edge-weighted. Specifically, we
denote a weighted graph by a triple G = (V,E,w) where w : E → R+ is the edge-weight
function of G. The weight of a subgraph H ⊆ G, denoted w(H) :=

∑
e∈E(H) we, is the sum

of the weights on its edges. The girth of G is the minimum weight of a cycle in G. The
distance distG(u, v) between any two vertices u, v ∈ V is the minimum weight of an uv-path
in G. By extension, for every v ∈ V and S ⊆ V we define distG(v, S) := minu∈S distG(u, v).
– We will sometimes omit the subscript if no ambiguity on the graph G can occur. – For any
v ∈ V and r ≥ 0, we also define the ball BG(v, r) := {u ∈ V | distG(u, v) ≤ r}. Finally, an
r-nearest set for v is any r-set Nr(v) such that, for any x ∈ Nr(v) and y /∈ Nr(v), we have
distG(v, x) ≤ distG(v, y).

For every v ∈ V , let NG(v) = {u ∈ V | uv ∈ E} be the (open) neighbourhood of vertex
v and let dv = |NG(v)| be its degree. Let Qv = {vu | u ∈ NG(v)} be totally ordered. We
call it a sorted adjacency list if edges incident to v are ordered by increasing weight, i.e.,
Qv = (vu1, vu2, . . . , vudv

) and wvui
≤ wvui+1 for every i < dv. However, we call it an ordered

adjacency list if, given some fixed total ordering ≺ over V the neighbours of v are ordered
according to ≺ (i.e., ui ≺ ui+1 for every i < dv). Throughout the rest of the paper we will
assume that each vertex has access to two copies of its adjacency list: one being sorted and
the other being ordered. The latter can always be ensured up to an Õ(m)-time preprocessing.

2.1 The Hitting Set method

We gather many well-known facts in the literature, that can be found, e.g., in [14, 18, 1, 6].
All these facts are combined in order to prove the following useful result for our algorithms:

I Proposition 4. For any graph G = (V,E,w) with sorted adjacency lists, in Õ(n5/3)-time
we can compute a set S ⊆ V , and the open balls BS(v) := {u ∈ V | dist(v, u) < dist(v, S)}
for every v ∈ V , such that the following two properties hold true:
1. |S| = Õ(n2/3);
2. and for every v ∈ V we have |BS(v)| = O(n1/3).

It is well-known that a set S as requested by Proposition 4 can be constructed randomly as
follows: every vertex in V is added in S with equal probability n−1/3 [18]. This construction
was derandomized in [14, 18, 1, 6]. In what follows we will not only need the balls BS(v) for
every vertex v, but also the subgraphs these balls induce in G. Next, we observe that all
these subgraphs can be obtained almost for free. Namely:

I Lemma 5 (folklore). For every G = (V,E,w) and U ⊆ V we can compute the subgraph
G[U ] induced by U in time Õ(|U |2) (assuming ordered adjacency lists).

3 Case of graphs with bounded integer weights

This section is devoted to the proof of Theorem 1. We start presenting some new properties
of a previous approximation algorithm for the girth of weighted graphs (Section 3.1) as we
will need to use them in our own algorithm. Then, we prove our main result for graphs with
bounded integer weights in Section 3.2.
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49:6 Approximating the Girth on Weighted Graphs in Subquadratic Time

3.1 Reporting a close short cycle

We propose a deeper analysis of an existing approximation algorithm for Girth on weighted
graphs [10]. Roughly, this algorithm applies a same procedure to every vertex of the graph.
In order to derive the approximation factor of their algorithm, the authors in [10] were
considering a run that takes as entry some vertex on a shortest cycle. This is in contrast
with the classical algorithm from Itai and Rodeh on unweighted graphs [9], that also offers
provable guarantees on the length of the output assuming there is a shortest cycle passing
close to the source (but not necessarily passing by this vertex); see [10, Lemma 2]. We revisit
the analysis of the algorithm in [10] for weighted graphs, and we prove that this algorithm
also satisfies such a “closeness property”.

The HBD-algorithm from [10]. Given G = (V,E,w), s ∈ V and t ≥ 0, the algorithm
HBD(G, s, t) is a relaxed version of Dijkstra’s single-source shortest-path algorithm. We are
only interested in computing the ball of radius t around s, and so, we stop if there are no
more unvisited vertices at a distance ≤ t from s. Furthermore, whenever we visit a vertex
u ∈ BG(s, t), we only relax edges e = {u, v} such that dist(s, u) + we ≤ t. Then, a cycle is
detected if we already inferred that dist(s, v) ≤ t (i.e., using another neighbour of v than u).
Overall, the algorithm stops as soon as it encounters a cycle, or all the vertices in BG(s, t)
were visited. Assuming sorted adjacency lists, this algorithm runs in Õ(n)-time [10].

(a) HBD(G, s, t).

1: for all v ∈ V do
2: d(v)←∞; π(v)← NIL

3: d(s)← 0; Q← {s}
4: while Q 6= ∅ do
5: u← Extract-min(Q)
6: Controlled-Relax(u, t)

(b) Controlled-Relax(u, t).

1: Qu ← sorted adj. list
2: uv ← Extract-min(Qu)
3: while d(u) + wuv ≤ t do
4: RelaxOrStop(u, v)
5: uv ← Extract-min(Qu)

(c) RelaxOrStop(u, v).

1: if d(v) 6=∞ then
2: return a cycle and stop
3: else
4: d(v)← d(u) + wuv

5: Q← Q ∪ {v}

I Lemma 6 ( [10]). If HBD(G, s, t) detects a cycle, then its weight is ≤ 2t.

We now complete the analysis of the HBD-algorithm in order to derive a generalization
of [10, Lemma 2] to weighted graphs. Assuming no cycle has been detected, we first gain
more insights on the structure of the ball of radius t centered at s.

I Lemma 7. If HBD(G, s, t) does not detect a cycle then, for any v ∈ BG(s, t), there exists a
unique sv-path of weight ≤ t.

Based on Lemma 7, we state some bounds on the weight of the cycle detected using HBD.
In particular, Corollary 9 will play a key role in the analysis of our algorithms.

I Corollary 8. Given G = (V,E,w), let s ∈ V and let C be a cycle. The minimum t0 such
that HBD(G, s, t0) detects a cycle satisfies t0 ≤ dist(s, C) + w(C).

I Corollary 9. Given G = (V,E,w), let s ∈ V and let C be a cycle. Assume the existence of
a vertex x ∈ V (C) such that maxv∈V (C) distC(x, v) ≥ distG(s, x) > 0. Then, the minimum
t0 such that HBD(G, s, t0) detects a cycle satisfies t0 ≤ w(C).
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Proof. Let Bx = {v ∈ V (C) | distC(x, v) < distG(x, s)}. Since we assume that we have
maxv∈V (C) distC(x, v) ≥ distG(x, s), Bx 6= V (C). Hence there exist uy, vz ∈ E(C) distinct
such that u, v ∈ Bx but y, z /∈ Bx. W.l.o.g. distC(x, y) ≤ distC(x, z). We can bipartition
E(C) in two edge-disjoint xy-paths P1 and P2, with P1 being the xy-subpath passing by
vz (and so, P2 is the other xy-subpath passing by uy). Note that it implies distC(x, y) =
w(P2) ≤ w(C)/2. Then, by Lemma 7 we have t0 ≤ distG(s, x) + max{w(P1), w(P2)} =
distG(s, x) + w(P1) ≤ distC(x, y) + w(P1) = w(P2) + w(P1) = w(C). J

3.2 Subquadratic-time approximation
Proof of Theorem 1. We analyse the following Subquadratic-Approx algorithm:

(a) Approx-Girth(G, s,M).

1: Find the minimum t ∈ [3;M · |V (G)|] such
that: HBD(G, s, t) detects a cycle.

2: Let Cs be the shortest cycle we so computed.
3: return Cs.

(b) Subquadratic-Approx(G,M).

1: Let S and (BS(v))v∈V be as in Prop. 4.
2: for all s ∈ S do
3: Cs ← Approx-Girth(G, s,M)
4:
5: for all v /∈ S do
6: Let G′

v be induced by BS(v).
7: Cv ← Approx-Girth(G′

v, v,M)
8:
9: return a shortest cycle in {Cv | v ∈ V }.

The algorithm starts precomputing a set S ⊆ V and the open balls (BS(v))v∈V as
described in Proposition 4. This takes time Õ(n5/3), plus an additional preprocessing
time in Õ(m) for sorting the adjacency lists. Then, we process the vertices in S and
those in V \ S separately: For every s ∈ S, we compute the smallest ts ∈ [3;Mn] such that
HBD(G, s, ts) detects a cycle by using a dichotomic search (procedure Approx-Girth(G, s,M)).
We store the cycle Cs outputted by HBD(G, s, ts). Since each test we perform during the
dichotomic search consists in a call to the HBD-algorithm, this takes time Õ(n logM) per
vertex in S, and so, Õ(n|S| logM) = Õ(n5/3 logM) in total. We now consider the vertices
v ∈ V \ S sequentially. Let G′v be the subgraph of G induced by the open ball BS(v).
By Lemma 5, this subgraph can be computed in time Õ(|BS(v)|2) = Õ(n2/3) – assuming
a preprocessing of the graph in time O(m) for ordering the adjacency lists. We apply
the same procedure as for the vertices in S but, we restrict ourselves to the ball BS(v).
That is, we call Approx-Girth(G′v, v,M), and we denote by Cv the cycle outputted by this
algorithm. Since we restrict ourselves to a subgraph of order O(n1/3), this takes total time
Õ(n · (n2/3 + n1/3 logM)) = Õ(n5/3 logM).
Let C ∈ {Cv | v ∈ V } be of minimum weight. We claim that w(C) is a 2-approximation of
the girth of G, that will end proving the theorem. In order to prove this claim, we apply
the following case analysis to some arbitrary shortest cycle C0 of G. If V (C0) ∩ S 6= ∅ then,
let CS be a shortest cycle among {Cs | s ∈ S}. We prove as a subclaim that w(CS) is at
most twice the weight of a shortest cycle intersecting S. In order to prove this subclaim,
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it suffices to prove that for every s ∈ S, we compute a cycle Cs of weight no more than
twice the weight of a shortest cycle passing by s. By Corollary 8, if ts is the smallest t such
that HBD(G, s, t) detects a cycle then, a shortest cycle C passing by s must have weight
≥ ts. Furthermore, by Lemma 6 we get w(Cs) ≤ 2ts, thereby proving the subclaim. Thus,
w(CS) ≤ 2w(C0) if V (C0) ∩ S 6= ∅. From now on we assume V (C0) ∩ S = ∅. Let v ∈ V (C0)
be arbitrary. There are two subcases:

If V (C0) ⊆ BS(v) then, C0 is also a cycle in G′v. Moreover by Corollary 8 applied for
dist(v, C0) = 0, the smallest tv such that HBD(G′v, v, tv) detects a cycle satisfies tv ≤ w(C0).
By Lemma 6, w(C) ≤ w(Cv) ≤ 2w(C0).
Otherwise V (C0) 6⊆ BS(v). This implies that we have: maxu∈V (C0) distC0(u, v) ≥
maxu∈V (C0) distG(u, v) ≥ distG(v, S) > 0. Furthermore, let s ∈ S minimize distG(s, v).
Then, by Corollary 9, the smallest ts such that HBD(G, s, ts) detects a cycle satisfies
ts ≤ w(C0). As a result, by Lemma 6 w(C) ≤ w(Cs) ≤ 2w(C0).

Summarizing, w(C) ≤ 2w(C0) in all the cases. J

4 Generalization to unbounded weights

This section is devoted to the proof of Theorem 2. We divide it into two parts. In Section 4.1
we present a polynomial-factor approximation of the girth in subquadratic time. This part
is new compared to [15] and the techniques used are interesting in their own right. Then,
based on a clever technique from [15], we end up refining this rough estimate of the girth
until we obtain a constant-factor approximation (Section 4.2).

Throughout this section, we will use the main result of Roditty and Tov as a subroutine:

I Theorem 10 ( [15]). For every G = (V,E,w) with arbitrary non-negative edge-weights,
we can compute a (4/3 + ε)-approximation for Girth in time Õ(n2/ε).

4.1 A polynomial-factor approximation
For simplicity, we first reduce the general case of graphs with non-negative weights to the
subcase of graphs with positive weights. We omit the proof as it quite similar, but simpler,
to the one of Proposition 12 (presented next).

I Lemma 11. Assume there exists an T (n,m)-time α-approximation algorithm for Girth
for graphs with positive edge-weights, where T (n,m) = Ω(m). Then, there also exists
an O(T (n,m))-time α-approximation algorithm for Girth for graphs with non-negative
edge-weights.

We now obtain an approximation of the girth that only depends on the order of the graph.
We stress that for weighted graphs, this is already a non-trivial task.

I Proposition 12. For every G = (V,E,w) with arbitrary positive edge-weights, we can
compute an Õ(n2/3)-approximation for Girth in time Õ(n5/3 +m).

Proof. Let S be as in Proposition 4. We show a significantly more elaborate method that
uses S in order to approximate the girth. We divide this method into five main steps.

Step 1: check the small balls. For every v /∈ S, let G′v be the subgraph induced by the open
ball BS(v). As before, we first estimate the girth of G′v. Since this subgraph has order
O(n1/3), by Theorem 10 we can compute a constant-factor approximation for its girth
in time Õ(n2/3) (say, a 2-approximation). Overall, this step takes total time Õ(n5/3).
Furthermore, after completing this step the following property (also used in Theorem 1)
becomes true:
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B Claim 13. Let Cv be a shortest cycle passing through v. If w(Cv) < 2 · dist(v, S) then,
we computed a cycle of weight ≤ 2w(Cv).

Step 2: partitioning into (shortest path) subtrees. Intuitively, what we try to do next is
to approximate the weight of a shortest cycle passing close to S. The difference with
Theorem 1 is that we cannot use directly the algorithm of Roditty and Tov for that.
Indeed, their algorithm has some global steps (e.g., the approximate computation of the
girth of some sparse spanner) that we currently do not know how to do in subquadratic
time. So, we need to find some new techniques. Specifically, we partition the vertex-set
V into shortest-path subtrees (Ts)s∈S such that, for every s ∈ S and v ∈ V (Ts) we have
dist(v, s) = dist(v, S). As noted, e.g., in [18], a simple way to do that is to add a dummy
vertex xS /∈ V , edges sxS for every s ∈ S with weight 0, then to compute a shortest-path
tree rooted at xS in time Õ(m). See Fig. 3 for an example. In what follows, we show
how to use this tree structure in order to compute short cycles.
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Figure 3 An example of Step 2. The two vertices in S are drawn as rectangles.

Step 3: finding short cycles in a subtree. Let s ∈ S be fixed. Informally, we try to estimate
the weight of a shortest cycle in V (Ts). Note that every such a cycle has an edge that
is not contained in Ts. So, we consider all the edges e = uv such that u, v ∈ V (Ts) but
e /∈ E(Ts). Adding this edge in Ts closes a cycle. Let Ce,s be an (unknown) shortest cycle
passing by e and contained in V (Ts). We output dist(s, u) + we + dist(v, s) as a rough
estimate of w(Ce,s). Indeed, the latter is a straightforward upper-bound on w(Ce,s), and
this bound is reached if s ∈ {u, v}. Overall, this step takes total time O(m).

B Claim 14. Let C∗s be a shortest cycle contained in V (Ts). After Steps 1-3, we computed
a cycle of weight ≤ 2w(C∗s ).

Step 4: finding short cycles in two subtrees. We now want to estimate the weight of a
shortest cycle in V (Ts)∪V (Ts′), for some distinct s, s′ ∈ S. We only need to consider the
case where this cycle must contain two edges e, e′ with an end in V (Ts) and the other
end in V (Ts′) (all other cases have already been considered at Step 3).
1. We scan all the edges e = uv ∈ E such that u and v are not in a same subtree. Let

su, sv ∈ S such that u ∈ V (Tsu
), v ∈ V (Tsv

). We set `(e) = dist(su, u)+we+dist(v, sv).
2. Group all these above edges with their two ends in the same two subtrees. It takes

time O(m+ |S|) = O(m+ n2/3) by using, say, a linear-time sorting algorithm.
3. Finally, for every distinct s, s′ ∈ S, let E(s, s′) contain all the edges with one end in

Ts and the other end in Ts′ . If |E(s, s′)| ≥ 2 then, we pick e, e′ minimizing `(·) and we
output `(e) + `(e′). Overall, since the sets E(s, s′) partition the edges of G, this last
phase also takes time O(m).

B Claim 15. Let s, s′ ∈ S be distinct and let C∗s,s′ be a shortest cycle contained in
V (Ts) ∪ V (Ts′). After Steps 1-4, we computed a cycle of weight ≤ 3w(C∗s,s′).
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Step 5: the general case. We end up defining a weighted graph HS = (S,ES , w
S), where

ES = {ss′ | E(s, s′) 6= ∅}, and for every ss′ ∈ ES :

wS
ss′ = min

e∈E(s,s′)
`(e) = min

uv∈E(s,s′)
dist(s, u) + wuv + dist(v, s′).

Roughly, wS
ss′ is the smallest weight of an ss′-path with one edge in E(s, s′). We can

construct HS simply by scanning all the sets E(s, s′) (computed during Step 4). Overall,
since the sets E(s, s′) partition the edges of G, this takes total time O(m+ |S|) = O(m+
n2/3). Furthermore, by Theorem 10 we can compute a constant-factor approximation
of the girth of HS in time Õ(|S|2) = Õ(n4/3). The graph HS is not a subgraph of G.
However, given a cycle CH for HS , we can compute a cycle C∗H of G as follows. For
every s ∈ V (CH) let s′, s′′ ∈ V (CH) be its two neighbours. By construction, there exist
e = uv ∈ E(s′, s) and e′ = xy ∈ E(s, s′′) such that the edges ss′ and ss′′ in HS have
weights dist(s′, u) + we + dist(v, s) and dist(s, x) + we′ + dist(y, s′′), respectively. – We
may assume the edges e, e′ to be stored in HS so that s′, s′′ will choose the same common
edge with s. – Then, we replace s by the vx-path in Ts. It is important to notice
that, by construction, we have w(C∗H) ≤ w(CH). In particular, we can apply this above
transformation to the (approximately shortest) cycle of HS that has been outputted by
the algorithm of Roditty and Tov (Theorem 10).

Overall, let Cmin be a shortest cycle computed by the algorithm above (i.e., after Steps 1-
5). In order to finish the proof, we need to show that w(Cmin) is an Õ(n2/3)-approximation
of the girth of G. By Claims 14 and 15, this is the case if there exists a shortest cycle
intersecting at most two subtrees Ts, s ∈ S. From now on assume that any shortest cycle
C0 of G intersects at least three subtrees Ts. Write C0 = (v0, v1, . . . , vp−1, v0) and assume
w.l.o.g. v0, vp−1 are not contained into the same subtree Ts. We partition the vi’s into
the maximal subpaths P0, P1, . . . , Pq−1, q ≤ p that are contained into the vertex-set of a
same subtree Ts (in particular, v0 ∈ V (P0) and vp−1 ∈ V (Pq−1)). Furthermore for every
j ∈ {0, 1, . . . , q − 1} let sj ∈ S be such V (Pj) ⊆ V (Tsj ), and let ij be the largest index
such that vij

∈ V (Pj). For instance, iq−1 = p − 1 by construction. Since P0 = Pq and
q ≥ 3 by the hypothesis, there exist distinct indices j1, j2 such that sj1 = sj2+1 and for
every j ∈ {j1, j1 + 1, . . . , j2} the sj ’s are pairwise different (indices are taken modulo q).
Then, two cases may arise:

Case j2 = j1 + 1. We have: ej1 := vij1
vij1 +1, ej2 := vij2 +1vij2

∈ E(sj1 , sj2). Further-
more, C0 goes by vij1

(by vij1 +1, vij2 +1, vij2
, respectively), and so, by Claim 13, either

we computed a short cycle of weight ≤ 2w(C0) during Step 1, or we have w(C0) ≥ 2 ·
max{dist(sj1 , vij1

), dist(sj1 , vij2 +1), dist(sj2 , vij1 +1), dist(sj2 , vij2
)}. In the latter case,

there exists a cycle of weight: ≤ dist(sj1 , vij1
)+wej1

+dist(sj2 , vij1 +1)+dist(sj2 , vij2
)+

wej2
+ dist(sj1 , vij2 +1) ≤ 3w(C0) that is fully contained in V (Tsj1

) ∪ V (Tsj2
). By

Claim 15, we so computed a cycle of weight ≤ 9w(C0) at Step 4.

From now on let us assume j2 6= j1 + 1. For every j we have ej := vij
vij+1 ∈

E(sj , sj+1), and so, the edge sjsj+1 ∈ ES has weight no more than dist(sj , vij
) +

wej
+ dist(vij+1, sj+1) in HS (indices are taken modulo q for the sj ’s and modulo

p for the vi’s). Furthermore, C0 goes by vij
(by vij+1, respectively), and so, by

Claim 13, either we computed a short cycle of weight ≤ 2w(C0) during Step 1, or
we have w(C0) ≥ 2 ·max{dist(sj , vij

), dist(sj+1, vij+1} for every j. In the latter case,
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(sj1 , sj1+1, . . . , sj2 , sj2+1 = sj1) is a cycle in HS of weight:

≤ w(C0) +
j2∑

j=j1

(dist(vij−1+1, sj) + dist(sj , vij
))

≤ w(C0)(1 + (j2 − j1 + 1))

≤ w(C0)|S| = Õ(n2/3 · w(C0)).

Then, let CH be a cycle of HS such that w(CH) = Õ(n2/3 · w(C0)) (obtained by
applying the algorithm of Roditty and Tov to HS). As explained above, we can derive
from CH a cycle C∗H of G such that w(C∗H) ≤ w(CH) = Õ(n2/3 · w(C0)).

Summarizing, we obtain an Õ(n2/3)-approximation of the girth by outputting a shortest
cycle computed during Steps 1,3,4,5. J

4.2 Improving the approximation factor
Sketch Proof of Theorem 2. We may assume that all weights are positive by Lemma 11.
Let g∗ be the Õ(n2/3)-approximation that we computed by using Proposition 12. There exists
some (known) constant c such that the girth of G is somewhere between g∗/(cn2/3 logn) and
g∗. Then, let imin, imax be the smallest nonnegative integers such that g∗/(cn2/3 logn) ≤
(1 + ε/2)imin and in the same way g∗ ≤ (1 + ε/2)imax . We have that:

imax − imin = O
(

log1+ε/2

(
g∗

g∗/(cn2/3 logn)

))
= O(logn/ log (1 + ε/2)) = O(logn/ε).

Let S be as in Proposition 4. For every v ∈ V \ S, we compute a 2-approximation of a
shortest cycle in G′v: the subgraph of G induced by the ball BS(v)4. By Theorem 10, it
can be done in time Õ(n2/3) for each v, and so, this takes total time Õ(n5/3). Then, let
T = {(1 + ε/2)i | imin ≤ i ≤ imax}. For every s ∈ S, we compute the smallest t ∈ T such that
HBD(G, s, t) detects a cycle (if any). It can be done in time Õ(|S|n log |T |) = Õ(n5/3 log 1/ε)
by using a dichotomic search. Finally, let gmin be the value computed by the above algorithm
(with a corresponding cycle). In order to conclude we prove, with a similar case analysis as
for Theorem 1, that the girth of G is at least gmin/(2 + ε). J

5 A subquadratic algorithm for dense graphs

A drawback of the algorithms in Theorems 1 and 2 is that their time complexity also depends
on the number m of edges. It implies that for dense graphs with m = Θ(n2) edges we do
not achieve any improvement on the running time compared to [10, 15]. The main result
of this section is that assuming sorted adjacency lists, the dependency on m can always be
discarded (Theorem 3). Due to lack of space, we will only prove the following weaker result:

I Proposition 16. For every G = (V,E,w) with non-negative edge-weights and sorted
adjacency lists, we can compute:
1. a randomized 4-approximation for Girth in expected time Õ(n5/3);
2. and, for every ε > 0, a deterministic (8 + ε)-approximation for Girth

in time Õ(n5/3polylog1/ε).

4 In fact, this is already done in the proof of Proposition 12, but we restate it here for completeness of
the method.
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Roughly, we can prove Theorem 3 by combining this above Proposition 16 with a natural
modification of the algorithm presented in Section 3.2.
We will need the following well-known result in graph theory:

I Theorem 17 ( [4]). Every unweighted graph with order n and m ≥
( 1

2 + o(1)
)
n3/2 edges

contains a cycle of length four.

Proof of Proposition 16. If G has m = Õ(n5/3) edges then, we can simply apply Theorem 2
for ε = 2 (the latter can be easily verified by scanning the adjacency lists until we read the
end of it or we reach the desired upper-bound). From now on assume this is not the case
and let H be induced by the

⌈( 1
2 + o(1)

)
n3/2⌉ edges of minimum weight in G.

We claim that H can be constructed in time Õ(n3/2) by using a priority queue Q. Indeed,
initially we set E(H) = ∅ and for every v ∈ V we start inserting in Q the edge of minimum-
weight that is incident to v. This way, we ensure that a minimum-weight edge of G \ E(H)
is present in Q (recall that initially, E(H) = ∅, and so, G = G \ E(H)). Then, in order to
preserve this above invariant, each time a minimum-weight edge uv is extracted from Q and
added in H we insert in Q the remaining edge of minimum weight in Qu and the one in
Qv (if any). – Note that in doing so, a same edge can be added in Q twice, but this has no
consequence on the algorithm. –

We now apply Theorem 2 for ε′ = ε/4 to H, and we so obtain a cycle C that is a
(2+ε/4)-approximation of the girth of H. We claim that w(C) is also a (8+ε)-approximation
of the girth of G. In order to prove this claim, we need to consider two different cases:

Assume there exists a shortest cycle C0 of G such that E(C0) ⊆ E(H). By Theorem 2,
w(C) ≤ (2 + ε/4)w(C0) < (8 + ε)w(C0).
Otherwise, any shortest cycle C0 of G has at least one edge that is not contained in H.
Since edges are added by increasing weights, this implies that every shortest cycle contains
an edge of weight at least wmax, where wmax denotes the maximum-weight of an edge in
H. In particular, the girth of G is at least wmax. Furthermore, since H has enough edges
by construction, by Theorem 17 it contains a cycle of four vertices; the latter has weight
at most 4wmax. As a result, w(C) ≤ (2 + ε/4) · 4wmax = (8 + ε)wmax ≤ (8 + ε)w(C0).

The above proves the claim, and so, the deterministic version of the result. In order to obtain
a randomized 4-approximation, it suffices to pick ε ≤ 2 and to output any cycle C ′ of H
with four vertices (then, we output any of C,C ′ that has minimum weight). Up to some
constant multiplicative increase of the number of edges to add in H, this can be done by
using a randomized algorithm of Yuster and Zwick that runs in expected linear time [21,
Theorem 2.9]. Note that this is the only source of randomness in the algorithm. J

We recall that any unweighted graph with O(n1+ 1
` ) edges contains a cycle of length at

most 2`. We could use this density result instead of Theorem 17. In doing so, we could use a
much sparser subgraph H in the proof of Proposition 16. However, our algorithm would still
run in time Õ(n5/3) because the bottleneck is our call to the algorithm of Theorem 2.

6 Open problems

The most pressing question is whether we can achieve a 4/3-approximation for the girth
in subquadratic time. If it is not the case then, what is the best approximation factor
we can get in subquadratic time? We note that in [17], Roditty and Vassilevska Williams
conjectured that we cannot achieve a (2− ε)-approximation already for unweighted graphs5.

5 They did obtain such an algorithm for triangle-free graphs.
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If their conjecture is true then, this would imply our algorithm is essentially optimal (at least
for the non-dense graphs with O(n2−ε) edges). However, for the dense graphs with sorted
adjacency lists, we left open whether a better approximation-factor than 4 can be obtained
in o(n2)-time. Finally, another interesting question is whether a constant-approximation for
the girth can be computed in quasi linear time. We recall that this is wide open even for
unweighted graphs [7].
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Abstract
We call domain any arbitrary subset of a Cartesian power of the set {0, 1} when we think of it as
reflecting abstract rationality restrictions on vectors of two-valued judgments on a number of issues.
In Computational Social Choice Theory, and in particular in the theory of judgment aggregation,
a domain is called a possibility domain if it admits a non-dictatorial aggregator, i.e. if for some k

there exists a unanimous (idempotent) function F : Dk → D which is not a projection function.
We prove that a domain is a possibility domain if and only if there is a propositional formula of
a certain syntactic form, sometimes called an integrity constraint, whose set of satisfying truth
assignments, or models, comprise the domain. We call possibility integrity constraints the formulas
of the specific syntactic type we define. Given a possibility domain D, we show how to construct a
possibility integrity constraint for D efficiently, i.e, in polynomial time in the size of the domain.
We also show how to distinguish formulas that are possibility integrity constraints in linear time in
the size of the input formula. Finally, we prove the analogous results for local possibility domains,
i.e. domains that admit an aggregator which is not a projection function, even when restricted to
any given issue. Our result falls in the realm of classical results that give syntactic characterizations
of logical relations that have certain closure properties, like e.g. the result that logical relations
component-wise closed under logical AND are precisely the models of Horn formulas. However, our
techniques draw from results in judgment aggregation theory as well from results about propositional
formulas and logical relations.
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1 Introduction

We call domain any arbitrary subset of a Cartesian power {0, 1}n (n ≥ 1) when we think of it
as the set of yes/no ballots, or accept/reject judgment vectors on n issues that are “rational”
in the sense manifested by being a member of the subset. A domain D has a non-dictatorial
aggregator if for some k ≥ 1 there is a unanimous (idempotent) function F : Dk → D that
is not a projection function. Such domains are called possibility domains. The theory of
judgment aggregation was put in this abstract framework by Wilson [19], and then elaborated
by several others (see e.g. the work by Dietrich [4] and Dokow and Holzman [6, 5]). It can
be trivially shown that non-dictatorial aggregators always exist unless we demand that F is
defined on an issue by issue fashion (see next section for formal definitions). Such aggregators
are called Independent of Irrelevant Alternatives (IIA). In this work aggregators are assumed
to be IIA.

It is a well known fact from elementary Propositional Logic that for every subset D of
{0, 1}n, n ≥ 1, i.e. for every domain, there is a Boolean formula in Conjunctive Normal Form
(CNF) whose set of satisfying truth assignments, or models, denoted by Mod(φ), is equal to
D (see e.g. Enderton [8, Theorem 15B]). Zanuttini and Hébrard [21] give an algorithm that
finds such a formula and runs in polynomial-time with respect to the size of the representation
of D as input. Following Grandi and Endriss [11], we call such a φ an integrity constraint and
think of it as expressing the “rationality” of D (the term comes from databases, see e.g. [7]).

We prove that a domain is a possibility domain, if and only if it admits an integrity
constraint of a certain syntactic form to be precisely defined, which we call a possibility
integrity constraint. Very roughly, possibility integrity constraints are formulas that belong
to one of three types, the first two of which correspond to “easy” cases of possibility domains:
(i) formulas whose variables can be partitioned into two non-empty subsets so that no clause
contains variables from both sets and (ii) formulas whose clauses are exclusive OR’s of their
literals. The most interesting third type is comprised of formulas such that if we change the
logical sign of some of their variables, we get formulas that have a Horn part and whose
remaining clauses contain only negative occurrences of the variables in the Horn part. We call
such formulas renamable partially Horn, whereas we call partially Horn1 the formulas that
belong to the third type without having to rename any variables. Furthermore, we show that
the unified framework of Zanuttini and Hébrard [21] for producing formulas of a specific type
that describe a given domain, and which entails the notion of prime formulas (i.e. formulas
that we cannot further simplify its clauses; see Definition 2.11) works also in the case of
possibility integrity constraints. Actually, in addition to the syntactical characterization of
possibility domains, we give two algorithms: the first on input a formula decides whether it
is a possibility integrity constraint in time linear in the length of the formula (notice that
the definition of possibility integrity constraint entails searching over all subsets of variables
of the formula); the second on input a domain D halts in time polynomial in the size of

1 A weaker notion of Horn formulas has appeared before in the work of Yamasaki and Doshita [20];
however our notion is incomparable with theirs, in the sense that the class of partially Horn formulas in
neither a subset nor a superset (nor equal) to the class S0 they define.
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D and either decides that D is not a possibility domain or otherwise returns a possibility
integrity constraint that describes D. It should be noted that the satisfiability problem
remains NP-complete even when restricted to formulas that are partially Horn. However
in Computational Social Choice, domains are considered to be non-empty (see paragraph
preceding Example 2.6).

We then consider local possibility domains, that is, domains admitting IIA aggregators
whose components are all different than any projection function. Such aggregators are called
locally non-dictatorial (see [15]). Local non-dictatorial domains were introduced in [12] as
uniform possibility domains (the definition entails also non-Boolean domains). We show
that local possibility domains are described by formulas we call local possibility integrity
constraints and again, we provide a linear algorithm that checks if a formula is a local
possibility integrity constraint and a polynomial algorithm that checks if a domain is a
local possibility one and, in case it is, constructs a local possibility integrity constraint that
describes it.

As examples of similar classical results in the theory of Boolean relations, we mention
that domains component-wise closed under ∧ or ∨ have been identified with the class of
domains that are models of Horn or dual-Horn formulas respectively (see Dechter and Pearl
[1]). Also it is known that a domain is component-wise closed under the ternary sum mod 2
if and only if it is the set of models of a formula that is a conjunction of subformulas each of
which is an exclusive OR (the term “ternary” refers to the number of bits to be summed).
Finally, a domain is closed under the ternary majority operator if and only it is the set of
models of a CNF formula where each clause has at most two literals. The latter two results
are due to Schaefer [18]. The ternary majority operator is the ternary Boolean function that
returns 1 on input three bits if and only if at least two of them are 1. It is also known that
the respective formulas for each case can be found in polynomial time with respect to the
size of D (see Zanuttini and Hébrard [21]).

Our result can be interpreted as verifying that non-dictatorial voting schemes can always
be generated by integrity constraints that have a specific, easily recognizable syntactic form.
This can prove valuable for applications in the field of judgment aggregation, where relations
are frequently encountered in compact form, as the sets of models of integrity constraints.
As examples of such applications, we mention the work of Pigozzi [16] in avoiding the
discursive dilemma, the characterization of safe agendas by Grandi and Endriss [10] and
that of Endriss and de Haan [9] concerning the winner determination problem. Our proofs
draw from results in judgment aggregation theory as well as from results about propositional
formulas and logical relations. Specifically, as stepping stones for our algorithmic syntactic
characterization we use three results. First, a theorem implicit in Dokow and Holzman [5]
stating that a domain is a possibility domain if and only if it either admits a binary (of
arity 2) non-dictatorial aggregator or it is component-wise closed under the ternary direct
sum. This result was generalized by Kirousis et al. [12] for domains in the non-Boolean
framework. Second, a characterization of local possibility domains proven by Kirousis et al.
in [12]. Lastly, the “unified framework for structure identification” by Zanuttini and Hébrard
[21] (see next section for definitions).

Due to space restrictions, most proofs are omitted and can instead be found in [3].

2 Preliminaries

We first give the notation and basic definitions from Propositional Logic and judgment
aggregation theory that we will use.
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Let V = {x1, . . . , xn} be a set of Boolean variables. A literal is either a variable x ∈ V
(positive literal) or a negation ¬x of it (negative literal). A clause is a disjunction (li1∨· · ·∨lik

)
of literals from different variables. A propositional formula φ (or just a “formula”, without
the specification “propositional”, if clear from the context) in Conjunctive Normal Form
(CNF) is a conjunction of clauses. A formula is called k-CNF if every clause of it contains
exactly k literals. A (truth) assignment to the variables is an assignment of either 0 or 1
to each of the variables. We denote by a(x) the value of x under the assignment a. Truth
assignments will be identified with elements of {0, 1}n, or n-sequences of bits. The truth
value of a formula for an assignment is computed by the usual rules that apply to logical
connectives. The set of satisfying (returning the value 1) truth assignments, or models, of a
formula, is denoted by Mod(φ). In what follows, we will assume, except if specifically noted,
that n denotes the number of variables of a formula φ and m the number of its clauses.

We say that a variable x appears positively (resp. negatively) in a clause C, if x (resp.
¬x) is a literal of C. A variable x ∈ V is positively (resp. negatively) pure if it has only
positive (resp. negative) appearances in φ.

A Horn clause is a clause with at most one positive literal. A dual Horn is a clause with
at most one negative literal. A formula that contains only Horn (dual Horn) clauses is called
Horn (dual Horn, respectively). Generalizing the notion of a clause, we will also call clauses
sets of literals connected with exclusive OR (or direct sum), the logical connective that
corresponds to summation in {0, 1} mod 2. Formulas obtained by considering a conjunction
of such clauses are called affine. Finally, bijunctive are called the formulas whose clauses, in
inclusive disjunctive form, have at most two literals. A domain D ⊆ {0, 1}n is called Horn,
dual Horn, affine or bijunctive respectively, if there is a Horn, dual Horn, affine or bijunctive
formula φ of n variables such that Mod(φ) = D. In the previous section, we mentioned
efficient solutions to classical syntactic characterization problems for classes of relations with
given closure properties on one hand, and formulas of the syntactic forms mentioned above
on the other.

We have presented the above notions and results without many details, as they are all
classical results. For the notions that follow we give more detailed definitions and examples.
The first one, as far as we can tell, dates back to 1978 (see Lewis [13]).

I Definition 2.1. A formula φ whose variables are among the elements of the set V =
{x1, . . . , xn} is called renamable Horn, if there is a subset V0 ⊆ V so that if we replace every
appearance of every negated literal l from V0 with the corresponding positive one and vice
versa, φ is transformed to a Horn formula.

The process of replacing the literals of some variables with their logical opposite ones, is
called a renaming of the variables of φ.

I Example 2.2. Consider the formulas φ1 = (x1∨x2∨¬x3)∧(¬x1∨x3∨x4)∧(¬x2∨x3∨¬x5)
and φ2 = (¬x1∨x2∨x3∨x4)∧(x1∨¬x2∨¬x3)∧(x4∨x5), defined over V = {x1, x2, x3, x4, x5}.

The formula φ1 is renamable Horn. To see this, let V0 = {x1, x2, x3, x4}. By renaming
these variables, we get the Horn formula φ∗1 = (¬x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨
¬x3 ∨ ¬x5). On the other hand, it is easy to check that φ2 cannot be transformed into a
Horn formula for any subset of V , since for the first clause to become Horn, at least two
variables from {x2, x3, x4} have to be renamed, which will make the second clause not Horn.

�

It turns out that whether a formula is renamable Horn can be checked in linear time.
There are several algorithms that do that in the literature, with the one of del Val [2] being
a relatively recent such example. The original non-linear one was given by Lewis [13].
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We now proceed with introducing several syntactic types of formulas:

I Definition 2.3. A formula is called separable if its variables can be partitioned into two
non-empty disjoint subsets so that no clause of it contains literals from both subsets.

I Example 2.4. The formula φ3 = (¬x1∨x2∨x3)∧ (x1∨¬x2∨¬x3)∧ (x4∨x5) is separable.
Indeed, for the partition V1 = {x1, x2, x3}, V2 = {x4, x5} of V , we have that no clause of φ3
contains variables from both subsets of the partition. On the other hand, there is no such
partition of V for neither φ1 nor φ2 of the previous example. �

The fact that separable formulas can be recognized in linear time is relatively straightfor-
ward (see Proposition 3.1 in Subsection 3.1).

We now introduce the following notions:

I Definition 2.5. A formula φ is called partially Horn if there is a nonempty subset V0 ⊆ V
such that (i) the clauses containing only variables from V0 are Horn and (ii) the variables of
V0 appear only negatively (if at all) in a clause containing also variables not in V0.

If a formula φ is partially Horn, then any non-empty subset V0 ⊆ V that satisfies the
requirements of Definition 2.5 will be called an admissible set of variables. Also the Horn
clauses that contain variables only from V0 will be called admissible clauses (the set of
admissible clauses might be empty). A Horn clause with a variable in V \ V0 will be called
inadmissible (the reason for the possible existence of such clauses will be made clear in the
following example).

Notice that a Horn formula is, trivially, partially Horn too, as is a formula that contains
at least one negative pure literal. It immediately follows that the satisfiability problem
remains NP-complete even when restricted to partially Horn formulas (just add a dummy
negative pure literal). However, in Computational Social Choice, domains are considered
to be non-empty as a non-degeneracy condition. Actually, it is usually assumed that the
projection of a domain to any one of the n issues is the set {0, 1}.

I Example 2.6. We first examine the formulas of the previous examples. φ1 is partially Horn,
since it contains the negative pure literal ¬x5. The Horn formula φ∗1 is also trivially partially
Horn. On the other hand, φ2 and φ3 are not, since for every possible V0 ⊆ {x1, x2, x3, x4, x5},
we either get non-Horn clauses containing variables only from V0, or variables of V0 that
appear positively in inadmissible clauses.

The formula φ4 = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) is partially
Horn. Its first three clauses are Horn, though the third has to be put in every inadmissible
set, since x3 appears positively in the fourth clause which is not Horn. The first two clauses
though constitute an admissible set of Horn clauses. Finally, φ5 = (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) ∧
(¬x1 ∨ x3 ∨ x4) is not partially Horn. Indeed, since all its variables appear positively in some
clause, we need at least one clause to be admissible. The first two clauses of φ5 are Horn,
but we will show that they both have to be included in an inadmissible set. Indeed, the
second has to belong to every inadmissible set since x3 appears positively in the third, not
Horn, clause. Furthermore, x2 appears positively in the second clause, which we just showed
to belong to every inadmissible set. Thus, the first clause also has to be included in every
inadmissible set, and therefore φ5 is not partially Horn. �

Accordingly to the case of renamable Horn formulas, we define:

I Definition 2.7. A formula is called renamable partially Horn if some of its variables can
be renamed (in the sense of Definition 2.1) so that it becomes partially Horn.
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Observe that any Horn, renamable horn or partially Horn formula is trivially renamable par-
tially Horn. Also, a formula with at least one pure positive literal is renamable partially Horn,
since by renaming the corresponding variable, we get a formula with a pure negative literal.

I Example 2.8. All formulas of the previous examples are renamable partially Horn: φ∗1, φ1
and φ4 correspond to the trivial cases we discussed above, whereas φ2, φ3 and φ5 all contain
the pure positive literal x4.

Lastly, we examine two more formulas: φ6 = (¬x1∨x2∨x3∨x4)∧ (x1∨¬x2∨¬x3)∧¬x4
is easily not partially Horn, but by renaming x4, we obtain the partially Horn formula
φ∗6 = (¬x1 ∨ x2 ∨ x3 ∨¬x4)∧ (x1 ∨¬x2 ∨¬x3)∧ x4, where V0 = {x4} is the set of admissible
variables. One the other hand, the formula φ7 = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3) is not
renamable partially Horn. Indeed, whichever variables we rename, we end up with one Horn
and one non-Horn clause, with at least one variable of the Horn clause appearing positively
in the non-Horn clause. �

We prove, by Theorem 3.3 in Subsection 3.1 that checking whether a formula is renamable
partially Horn can be done in linear time in the length of the formula.

I Remark 2.9. Let φ be a renamable partially Horn formula, and let φ∗ be a partially Horn
formula obtained by renaming some of the variables of φ, with V0 being the admissible set of
variables. Let also C0 be an admissible set of Horn clauses in φ∗. We can assume that only
variables of V0 have been renamed, since the other variables are not involved in the definition
of being partially Horn. Also, we can assume that a Horn clause of φ∗ whose variables appear
only in clauses in C0 belongs to C0. Indeed, if not, we can add it to C0. �

IDefinition 2.10. A formula is called a possibility integrity constraint if it is either separable,
or renamable partially Horn or affine.

From the above and the fact that checking whether a formula is affine is easy we get Theorem
3.4 in Subsection 3.1, which states that checking whether a formula is a possibility integrity
constraint can be done in polynomial time in the size of the formula.

Now, given a clause C of a formula φ, we say that a sub-clause of C is any non-empty
clause created by deleting at least one literal of C. In Quine [17] and Zanuttini and Hébrard
[21], we find the following definitions:

I Definition 2.11. A clause C of a formula φ is a prime implicate of φ if no sub-clause of C
is logically implied by φ. Furthermore, φ is prime if all its clauses are prime implicates of it.

In sub-section 3.2, we use this notion in order to efficiently construct formulas whose set of
models is a possibility domain.

We now come to some notions from Social Choice Theory (for an introduction, see e.g.
List [14]). In the sequel, we will deal with k sequences of n-bit-vectors, each of which belongs
to a fixed domain D ⊆ {0, 1}n. It is convenient to present such sequences with an k × n
matrix xi

j , i = 1, . . . , k, j = 1, . . . , n with bits as entries. The rows of this matrix are denoted
by xi, i = 1, . . . , k and the columns by xj , j = 1, . . . , n. Each row represents a row-vector of
0/1 decisions on n issues by one of k individuals. Each column represents the column-vector
of the positions of all k individuals on a particular issue.

In Social Choice Theory, D ⊆ {0, 1}n is said to have a k-ary (of arity k) unanimous
aggregator if there are exists a sequence of n k-ary Boolean functions (f1, . . . , fn), fj :
{0, 1}k → {0, 1}, j = 1, . . . , n such that



J. Díaz, L. Kirousis, S. Kokonezi, and J. Livieratos 50:7

all fj are unanimous, i.e if b1 = · · · = bk are equal bits, then

fj(b1, . . . , bk) = b1 = · · · = bk, and

if for a matrix (xi
j)i,j that represents the opinions of k individuals on n issues we have

that the row-vectors xi ∈ D for all i = 1, . . . , k, then

(f1(x1), . . . , fn(xn)) ∈ D.

Notice that in the second bullet above, the fj ’s are applied to column-vectors, which have
dimension k. The fj ’s are called the components of the aggregator (f1, . . . , fn). Intuitively,
an aggregator is a sequence of functions that when applied onto some rational opinion vectors
of k individuals on n issues, in a issue-by-issue fashion, they return a row-vector that is still
rational. From now on, we will refer to unanimous aggregators, simply as aggregators. We
will also sometimes say that F is an aggregator, meaning that F is a sequence of n functions
(f1, . . . , fn) as above.

An aggregator (f1, . . . , fn) is called dictatorial if there is a d = 1. . . . , k such that
f1 = · · · = fn = prk

d, where prk
d : (b1, . . . , bk) 7→ bd is the k-ary projection function on the

d’th coordinate.
A k-ary aggregator is called a projection aggregator if each of its components is a projection

function prk
d, for some d = 1, . . . ,m.

Notice that it is conceivable to have non-dictatorial aggregators that are projection
aggregators.

A binary (of arity 2) Boolean function f : {0, 1}2 → {0, 1} is called symmetric if for all
pairs of bits b1, b2, we have that f(b1, b2) = f(b2, b1). A binary aggregator is called symmetric
if all its components are symmetric. Let us mention here the easily to check fact that the
only unanimous binary functions are the ∧, ∨ and the two projection functions pr2

1,pr2
2. Of

those four, only the first two are symmetric.

I Definition 2.12. A domain D is called a possibility domain if it has a (unanimous)
non-dictatorial aggregator of some arity.

Notice that the search space for such an aggregator is large, as the arity is not restricted.
However, from [12, Theorem 3.7] (a result that follows from Dokow and Holzman [5], but
without being explicitly mentioned there), we can easily get that:

I Theorem 2.13 (Dokow and Holzman [5]). A domain D is a possibility domain if and only
if it admits either: (i) a non-dictatorial binary projection aggregator or (ii) a non-projection
binary aggregator (i.e. at least one symmetric component) or (iii) a ternary aggregator all
components of which are the binary addition mod 2.

Nehring and Puppe [15] defined a type of non-dictatorial aggregators they called locally
non-dictatorial. A k-ary aggregator (f1, . . . , fn) is locally non-dictatorial if fj 6= prk

d, for all
d ∈ {1, . . . , k} and j = 1, . . . , n.

I Definition 2.14. D is a local possibility domain (lpd) if it admits a locally non-dictatorial
aggregator.

Consider the following ternary operators on {0, 1}: (i) ∧(3)(x, y, z) := ∧(∧(x, y), z)) (resp.
for ∨(3)), (ii) maj, where maj(x, y, z) = 1 if and only if at least two elements of its input are
1 and (iii) ⊕, where ⊕(x, y, z) = 1 if an only if exactly one or all of the elements of its input
are equal to 1. In [12], the following characterization of lpd’s has been proven:

I Theorem 2.15 (Kirousis et al. [12]). D ⊆ {0, 1} is a local possibility domain if and only if it
admits a ternary aggregator (f1, . . . , fn) such that fj ∈ {∧(3),∨(3),maj,⊕}, for j = 1, . . . , n.
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3 Syntactic characterization of possibility domains by possibility
integrity constraints

3.1 Identifying possibility integrity constraints
In this subsection, we show that identifying possibility integrity constraints can be done in
time linear in the length of the input formula. By Definition 2.10, it suffices to show that for
separable and renamable partially Horn formulas, since the corresponding problem for affine
formulas is trivial.

In all that follows, we assume that we have a set of variables V := {x1, . . . , xn} and
a formula φ defined on V that is a conjunction of m clauses C1, . . . , Cm, where Cj =
(lj1 , . . . , ljkj

), j = 1, . . . , n, and ljs
is a positive or negative literal of xjs

, s = 1, . . . , kj . We
denote the set of variables corresponding to the literals of a clause Cj by vbl(Cj).

We begin with the result for separable formulas:

I Proposition 3.1. There is an algorithm that, on input a formula φ, halts in time linear in
the length of φ and either returns that the formula is not separable, or alternatively produces
a partition of V in two non-empty and disjoint subsets V1, V2 ⊆ V , such that no clause of φ
contains variables from both V1 and V2.

Proof. (Sketch; detailed proof provided in [3].) Let the variables of φ be the vertices of a
simple graph G. We connect two such vertices if they appear consecutively in a common
clause of φ. The result is then obtained by showing that φ is separable if and only if G is
not connected. J

To deal with renamable partially Horn formulas, we will start with Lewis’ idea [13] of creating,
for a formula φ, a 2Sat formula φ′ whose satisfiability is equivalent to φ being renamable
Horn. However, here we need to (i) look for a renaming that might transform only some
clauses into Horn and (ii) deal with inadmissible Horn clauses, since such clauses can cause
other Horn clauses to become inadmissible too.

I Proposition 3.2. For every formula φ, there is a formula φ′ such that φ is renamable
partially Horn if and only if φ′ is satisfiable.

Proof. (Sketch; detailed proof provided in [3].) For each variable x ∈ V , we introduce a new
variable x′. Intuitively, setting x = 1 means that x is renamed, whereas setting x′ = 1 means
that x is in V0, but is not renamed. Finally we set both x and x′ equal to 0 in case x is not
in V0. Obviously, we should not not allow the assignment x = x′ = 1 (a variable in V0 cannot
be renamed and not renamed).

Suppose that a clause C of φ has the literals x,¬y. If we add x to V0 without renaming
it, we should not rename y, since we would have two positive literals in an admissible clause.
Also, we should not leave the latter out of V0, since we would have a variable of V0 appearing
positively in a clause containing a variable not in V0. Thus, we have that x′ → y′, which
is expressed by the equivalent clause (¬x′ ∨ y′). We add this clause to φ′ and we proceed
in this way for any possible combination of literals in a clause of φ. We also introduce the
clauses ¬x ∨ ¬x′, for all x ∈ V , in order to exclude the assignment x = x′ = 1. Finally, we
add the clause

∨
x∈V ′ x, to ensure that at least one variable is admissible. J

To compute φ′ from φ, one would need quadratic time in the length of φ. Thus, we introduce
the following linear algorithm that decides if a formula φ is renamable partially Horn, by
tying a property of a graph constructed based on φ, with the satisfiability of φ′.
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I Theorem 3.3. There is an algorithm that, on input a formula φ, halts in time linear in
the length of φ and either returns that φ is not renamable partially Horn or alternatively
produces a subset V ∗ ⊆ V such that the formula φ∗ obtained from φ by renaming the literals
of variables in V ∗ is partially Horn.

Proof. (Sketch; detailed proof provided in [3].) To prove Theorem 3.3, we define a directed
bipartite graph G, i.e. a directed graph whose set of vertices is partitioned in two sets such
that no vertices belonging in the same part are adjacent. One set is comprised of the variables
of φ′, and the other of the clauses of φ. Each variable is connected with the clauses it appears
in. Then, by computing its strongly connected components (scc), i.e. its maximal sets of
vertices such that every two of them are connected by a directed path, we show that at least
one of them does not contain both a variable x and x′ (and thus allows x to be admissible)
if and only if φ is renamable partially Horn. J

Because checking whether a formula is affine can be trivially done in linear time, we get:

I Theorem 3.4. There is an algorithm that, on input a formula φ, halts in linear time in the
length of φ and either returns that φ is not a possibility integrity constraint, or alternatively,
(i) either it returns that φ is affine or (ii) in case φ is separable, it produces two non-empty
and disjoint subsets V1, V2 ⊆ V such that no clause of φ contains variables from both V1 and
V2 and (iii) in case φ is renamable partially Horn, it produces a subset V ∗ ⊆ V such that the
formula φ∗ obtained from φ by renaming the literals of variables in V ∗ is partially Horn.

3.2 Syntactic Characterization of possibility domains
In this subsection, we provide a syntactic characterization for possibility domains, by proving
they are the models of possibility integrity constraints. Furthermore, we show that given a
possibility domain D, we can produce a possibility integrity constraint, whose set of models is
D, in time polynomial in the size of D. To obtain the characterization, we proceed as follows.
We separately show that each type of a possibility integrity constraint of Definition 2.10
corresponds to one of the conditions of Theorem 2.13: (i) Domains admitting non-dictatorial
binary projection aggragators are the sets of models of separable formulas, those admitting
non-projection binary aggregators are the sets of models of renamable partially Horn formulas
and (iii) affine domains are the sets of models of affine formulas.

We will need some additional notation. For a set of indices I, let DI := {(ai)i∈I | a ∈ D}
be the projection of D to the indices of I and D−I := D{1,...,n}\I . Also, for two (partial)
vectors a = (a1, . . . , ak) ∈ D{1,...,k}, k < n and b = (b1, . . . , bn−k) ∈ D{k+1,...,n}, we define
their concatenation to be the vector ab = (a1, . . . , ak, b1, . . . , bn−k). Finally, given two subsets
D,D′ ⊆ {0, 1}n, we write that D ≈ D′ if we can obtain D by permuting the coordinates of
D′, i.e. if D = {(dj1 , . . . , djn

) | (d1, . . . , dn) ∈ D′}, where {j1, . . . , jn} = {1, . . . , n}.
We begin with characterizing the domains closed under a non-dictatorial projection

aggregator as the models of separable formulas.

I Proposition 3.5. D admits a binary non-dictatorial projection aggregator (f1, . . . , fn) if
and only if there exists a separable formula φ whose set of models equals D.

Proof. (Sketch; detailed proof provided in [3].) First prove that D admits a binary non-
dictatorial projection aggregator if an only if there exists a partition (I, J) of {1, . . . , n} such
that D ≈ DI×DJ . To do that, take I to be the indices of the aggregator that are projections
to the first coordinate and J that of the indices that are projections to the second coordinate.

Then, take the formulas φ1 and φ2 such that Mod(φ1) = DI and Mod(φ2) = DJ and
prove that Mod(φ1 ∧ φ2) = D. J
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We now turn our attention to domains closed under binary non projection aggregators.

I Theorem 3.6. D admits a binary aggregator (f1, . . . , fn) which is not a projection aggre-
gator if and only if there exists a renamable partially Horn formula φ whose set of models
equals D.

Proof. (Sketch; detailed proof provided in [3].) We first show that any domain D admitting
a binary aggregator that has some components being projections to different coordinates,
also admits one whose projections are all to the same coordinate. Also, given a domain
admitting a binary aggregator with some components being ∨, we construct a domain D∗
admitting a binary aggregator that all of its symmetric components are ∧.

We then proceed to describing a partially Horn formula φ = φ0 ∧ φ1, such that φ0 is
Horn and describes DI , the projection of D to the indices corresponding to the symmetric
components of (f1, . . . , fn). φ1 is then constructed as the conjunction of smaller formulas
that describe the sets of partial vectors that extend those of DI . We also ensure that any
variable of φ0 appears only negatively in φ1. J

We thus get:

I Theorem 3.7. D is a possibility domain if and only if there exists a possibility integrity
constraint φ whose set of models equals D.

Proof. (Sketch; detailed proof provided in [3].) The proof follows by combining the charac-
terization of possibility domains of Theorem 2.13, with Proposition 3.5 for separable formulas,
Theorem 3.6, for renamable partially Horn formulas and the fact that an affine domain is
described by an affine formula. J

To finish this section, we will use Zanuttini and Hébrard’s “unified framework” [21]. Recall
the definition of a prime formula (Def. 2.11) and consider the following proposition:

I Proposition 3.8. Let φP be a prime formula and φ be a formula logically equivalent to
φP . Then:
1. if φ is separable, φP is also separable and
2. if φ is renamable partially Horn, φP is also renamable partially Horn.

Proof. (Sketch; detailed proof provided in [3].) Follows from the fact that neither resolution
nor omission can destroy separability or make an admissible variable non-admissible (see
also Quine [17]). J

We are now ready to prove our main result:

I Theorem 3.9. There is an algorithm that, on input D ⊆ {0, 1}n, halts in time O(|D|2n2)
and either returns that D is not a possibility domain, or alternatively outputs a possibility
integrity constraint φ, containing O(|D|n) clauses, whose set of satisfying truth assignments
is D.

Proof. Given a domain D, we first use Zanuttini and Hébrard’s algorithm to check if it is
affine [21, Proposition 8], and if it is, produce, in time O(|D|2n2) an affine formula φ with
O(|D|n) clauses, such that Mod(φ) = D. If it isn’t, we use again Zanuttini and Hébrard’s
algorithm [21] to produce, in time O(|D|2n2), a prime formula φ with O(|D|n) clauses, such
that Mod(φ) = D. Then, we use the linear algorithms of Proposition 3.1 and Theorem 3.3
to check if φ is separable or renamable partially Horn. If it is either of the two, then φ is
a possibility integrity constraint and, by Theorem 3.7, D is a possibility domain. Else, by
Proposition 3.8, D is not a possibility domain. J
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4 Local possibility domains

We turn now our attention to local possibility domains. As in the case of possibility domains,
we want to characterize lpd’s with a syntactic type of formulas.

We will first address a technical issue. Let V, V ′ be two disjoint sets of variables. By
further generalizing the notion of a clause of a CNF formula, we say that a (V, V ′)-generalized
clause is a clause of the form:

(l1 ∨ · · · ∨ ls ∨ (ls+1 ⊕ · · · ⊕ lt)),

where the literal lj corresponds to variable vj , j = 1, . . . , t, v1, . . . , vs ∈ V , vs+1, . . . , vt ∈ V ′
and 0 ≤ s < t. Such a clause if falsified by exactly those assignments that falsify every literal
li, i = 1, . . . , s and satisfy an even number of literals lj , j = s+ 1, . . . , t. An affine clause is
trivially a (V, V ′)-generalized clause, where all its literals correspond to variables from V ′.

Consider now the following definition, which is analogous to Definition 2.10.

I Definition 4.1. A formula φ is a local possibility integrity constraint (lpic) if there are
three pairwise disjoint subsets V0, V1, V2 ⊆ V , with V0∪V1∪V2 = V , where no clause contains
variables both from V1 and V2 and such that:
1. by renaming some variables of V0, we obtain a partially Horn formula φ∗, whose set of

admissible variables is V0,
2. any clause contains at most two variables from V1 and
3. the clauses containing variables from V2 are (V0, V2)-generalized clauses.

I Example 4.2. Easily, every (renamable) Horn, bijunctive or affine formula is an lpic. On
the other hand, consider the following possibility integrity constraint:

φ = (¬x1 ∨ x2 ∨ x3 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4).

φ is partially Horn, since it has the pure negative literal ¬x1 and thus a possibility integrity
constraint. But, it is not an lpic, since however we define V0, V1, either there will be a
variable of V0 with a positive appearence in a non-admissible clause (even after any possible
renaming of the variables of V0) and/or there will be a clause with more than two literals
from V1. �
By Definition 4.1, we get the following corollary:

I Corollary 4.3. If φ is a local possibility integrity constraint, then it is also a possibility
integrity constraint.

Proof. Let V0, V1 and V2 be as in Definition 4.1. If V0 6= ∅, φ is partially Horn. Else, if
V0 = V1 = ∅, then φ is affine. On the other hand, if V0 = ∅ and V1 and V2 are not, φ is
separable. Finally, if V1 = V , then φ is bijunctive and equivalently, 2-SAT. The result now
follows by the fact that any 2-SAT formula is renamable Horn. Indeed, let α be an assignment
satisfying φ and rename all the variables x ∈ V such that α(x) = 1. Then, every clause of φ
either has a positive literal that is renamed, or a negative one that is not renamed. J

The first theorem we prove is that we can recognize lpic’s efficiently.

I Theorem 4.4. There is an algorithm that, on input a formula φ, halts in linear time in
the length of φ and either returns that φ is not a local possibility constraint, or alternatively,
produces the sets V0, V1, V2 described in Definition 4.1.
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Proof. (Sketch; detailed proof provided in [3].) By Theorem 3.3, we check if φ is renamable
partially Horn in time linear to its length and obtain the set V0 of admissible variables, in
case it is. Then, we can trivially check if any sub-clause, obtained by a non-admissible clause
by deleting any variable from V0 is bijunctive or affine. J

We now syntactically characterize lpd’s as the sets of models of lpic’s.

I Theorem 4.5. A domain D ⊆ {0, 1}n is a local possibility domain if and only if there is a
local possibility integrity constraint φ such that Mod(φ) = D.

Proof. (Sketch; detailed proof provided in [3].) The proof is a variation of the one for
Theorem 3.6. J

We end this section by showing that, given an lpd D, we can efficiently construct an lpic φ
such that Mod(φ) = D.

I Theorem 4.6. There is an algorithm that, on input D ⊆ {0, 1}n, halts in time O(|D|2n2)
and either returns that D is not a local possibility domain, or alternatively outputs a local
possibility integrity constraint φ, containing O(|D|n) clauses, whose set of satisfying truth
assignments is D.

Proof. (Sketch; detailed proof provided in [3].) Using Zanuttini and Hébrard’s unified
framework, we compute a prime formula φ such that Mod(φ) = D in time O(|D|2n2) that
contains O(|D|n) clauses. We then check, in linear time to the length of φ, whether it
is an lpic. J

Concluding remarks

It is known that any domain on n issues can be represented either by n formulas φ1, . . . , φn

(an agenda), in which case the domain is the set of binary n-vectors, the i-component of
which represents the acceptance or rejection of φi in a consistent way (logic-based approach),
or, alternatively, by a single formula φ of n variables (an integrity constraint), in which
case the domain is the set of models of φ. In the former case, there are results, albeit of
non-algorithmic nature, that give us conditions on the syntactic form of the φi’s, so that
the domain accepts a non-dictatorial aggregator. In this work, we give a necessary and
sufficient condition on the syntactic form of a formula to be an integrity constraint of a
domain that accepts a (locally) non-dictatorial aggregator. We called such formulas, (local)
possibility integrity constraints. Our results are algorithmic, in the sense that (i) recognizing
a (local) possibility integrity constraint can be implemented in time linear in the length
of the input formula and (ii) given a (local) possibility domain, a corresponding (local)
possibility integrity constraint, whose number of clauses is polynomial in the size of the
domain, can be constructed in time polynomial in the size of the domain. Our proofs draw
from results in judgment aggregation theory as well from results about propositional formulas
and logical relations.
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Abstract
Geometric Complexity Theory as initiated by Mulmuley and Sohoni in two papers (SIAM J Comput
2001, 2008) aims to separate algebraic complexity classes via representation theoretic multiplicities
in coordinate rings of specific group varieties. We provide the first toy setting in which a separation
can be achieved for a family of polynomials via these multiplicities.
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question whether separating group varieties via representation theoretic multiplicities is stronger than
separating them via occurrences. We provide first finite settings where a separation via multiplicities
can be achieved, while the separation via occurrences is provably impossible. These settings are
surprisingly simple and natural: We study the variety of products of homogeneous linear forms (the
so-called Chow variety) and the variety of polynomials of bounded border Waring rank (i.e. a higher
secant variety of the Veronese variety).

As a side result we prove a slight generalization of Hermite’s reciprocity theorem, which proves
Foulkes’ conjecture for a new infinite family of cases.
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1 Introduction

In two landmark papers [22, 23] Mulmuley and Sohoni suggested the use of representation
theoretic multiplicities to separate group varieties that correspond to complexity classes. The
goal of this approach, which is called geometric complexity theory, is to achieve complexity
lower bounds that lead to the separation of algebraic complexity classes such as VP and VNP
(see [3] or [28] for the precise definitions, which will not be important in this paper). At the
heart of the approach was the hope that so-called occurrence obstructions (see Section 2) would
be sufficient to separate VP and VNP. In [16, 8] it was shown that occurrence obstructions
are too weak to provide the necessary separation, at least for the group varieties that were
originally proposed by Mulmuley and Sohoni. But representation theoretic multiplicities
might still be able to separate VP and VNP when we look at the finer separation criterion
via multiplicity obstructions (see also Section 2). Unfortunately, so far all known separations
of group varieties via multiplicity obstructions could also in fact be obtained via occurrence
obstructions, or at least there is no setting in which multiplicity obstructions are provably
stronger than occurrence obstructions, see e.g. [6, 7]. Indeed, little is known about multiplicity
obstructions in general, as the required multiplicities are often #P-hard to compute, see e.g.
[25, 5, 2], which implies that a polynomial time algorithm for their computation can only
exist if P=NP.

Scott Aaronson raised the question about the existence of a setting where multiplicity
obstructions are provably more powerful than occurrence obstructions. In this paper we give
the first example of such a situation in a finite setting, see Theorem 2.1 below.

Theorem 2.1 is not only about finite settings: For the first time multiplicity obstructions
are used to separate families of polynomials, even though the separation is extremely modest.
Prior work on obstructions focused on tensors instead of polynomials ([6, 7]).

As a side result we prove a slight generalization of Hermite’s reciprocity theorem, which
proves Foulkes’ conjecture (see (1)) for a new infinite family of cases, see Theorem 3.4.

2 Representation theoretic obstructions

In this section we review how to separate group varieties via representation theoretic
multiplicities. The setup is in complete analogy to the geometric complexity theory approach
of Mulmuley and Sohoni. We then list our main result, see Theorem 2.1.

Consider the space Anm := C[x1, . . . , xm]n of complex homogeneous polynomials of degree
n in m variables. Let V := A1

m be the space of homogeneous degree 1 polynomials. In this
paper we compare two subvarieties of Anm. The first is the so-called Chow variety

Chnm := {`1 · · · `n | `i ∈ V } ⊆ Anm,

which is the set of polynomials that can be written as a product of homogeneous linear forms,
see e.g. [20, §8.6]. In algebraic complexity theory this set is known as the set of polynomials
that have homogeneous depth-two algebraic circuits of the form ΠnΣ, i.e., circuits that
consists of an n-ary top product gate of linear combinations of variables. The second variety
is called a higher secant variety of the Veronese variety and can be written as

Pownm,k := {`n1 + · · ·+ `nk | `i ∈ V } ⊆ Anm,

which is the closure of the set of all sums of k powers of homogeneous linear forms. Note that
from a general principle it follows that the Zariski closure equals the Euclidean closure in
this case, see e.g. [24, §2.C] where this is shown for every constructible set. The polynomials
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in Pownm,k are exactly those that have border Waring rank at most k, see e.g. [20, §5.4].
In algebraic complexity theory this set is known as the set of polynomials that can be
approximated arbitrarily closely by homogeneous depth-three powering circuits of the form
ΣkΛnΣ, i.e., a k-ary sum of n-th powers of linear combinations of variables.

Anm is generated as a vector space by the powers vn, v ∈ V , see e.g. [20, Ex. 2.6.6.2]. Given
two elements g1, g2 ∈ GLm := GL(V ), and given v ∈ V , we clearly have g1(g2v) = (g1g2)v.
Thus we say that V admits a GLm-action. This natural action of GLm on V lifts canonically
to Anm via g(vn) := (gv)n, g ∈ GLm, v ∈ V , and linear continuation. Both varieties Chnm and
Pownm,k are closed under this action, i.e., for g ∈ GLm and v ∈ Chnm we have gv ∈ Chnm, and
analogously v ∈ Pownm,k implies gv ∈ Pownm,k. A variety that is closed under the action of
GLm is called a GLm-variety.

Let C[Anm] denote the coordinate ring of Anm, i.e., the polynomial ring in dimAnm =(
n+m−1

n

)
many variables, where these variables are in 1:1 correspondence to the monomials

in Anm. The action of GLm on Anm lifts to a linear action of GLm on C[Anm] via the canonical
pullback as follows: (gf)(h) := f(g−1h), g ∈ GLm, f ∈ C[Anm], h ∈ Anm. Moreover, the
action respects the natural grading of C[Anm], so that each homogeneous degree d part C[Anm]d
is a finite dimensional vector space that is closed under the action of GLm.

Recall that a finite dimensional vector space W that is closed under a linear action
of GLm is called a GLm-representation. This is equivalent to the existence of a group
homomorphism % : GLm → GL(W ). If we choose bases, then we can interpret GLm ⊆ Cm×m
and GL(W ) ⊆ CdimW×dimW and % is described by (dimW )2 many coordinate functions,
which are functions in m2 many variables. If these functions are polynomials, then we call
W a polynomial representation. Our main representation of interest, C[Anm]d, is a polynomial
representation. A linear subspace of W that is closed under the action of GLm is called a
subrepresentation. Subrepresentations of polynomial representations are clearly polynomial
representations again. For every GLm-representation W we have that W and 0 are two trivial
subrepresentations. IfW has no other subrepresentations, then we callW irreducible. A linear
map ϕ : W1 →W2 between two GLm-representations is called equivariant if gϕ(f) = ϕ(gf)
for all f ∈W1, g ∈ GLm. If there exists an equivariant vector space isomorphism from W1
to W2, then we say that W1 and W2 are isomorphic GLm-representations. An m-partition
of D is a nonincreasing list of m nonnegative integers that sum up to D. Every irreducible
polynomial GLm-representation has an associated isomorphism type, which is an m-partition,
see e.g. [10, Ch. 8]. Two irreducible GLm-representations are isomorphic iff their isomorphism
types coincide. We denote by {λ}m the irreducible GLm-representation corresponding to the
m-partition λ. We write {λ} = {λ}m is m is clear from the context.

The group GLm is linearly reductive, which means that every GLm-representation W

decomposes into a direct sum of irreducible GLm-representations, see e.g. [18, AII.5, Satz 4].
The number of times an irreducible representation of type λ occurs in the decomposition
is called the multiplicity of λ in W , written multλ(W ). Even though this decomposition
is usually not unique, the notation multλ(W ) makes sense, because the multiplicities are
independent of the actual decompositions.

The multiplicity aλ(d[n]) := multλ(C[Anm]d) is the infamous plethysm coefficient, which
is the object of study in Foulkes’ conjecture and also in Problem 9 in Stanley’s famous
list of open problems [30]. If we pad an m-partition λ with m′ −m many zeros to obtain
the m′-partitions λ′ = (λ1, . . . , λm, 0, . . . , 0), then multλ(C[Anm]d) = multλ′(C[Anm′ ]d), see
e.g. [14, Lem. 4.3.2]. For the sake of simplicity we identify m-partitions with m′-partitions
that arise from padding zeros. This justifies leaving out the parameter m in the notation
aλ(d[n]) by assuming that m is large enough. Foulkes’ conjecture states that

Conjecture : aλ(n[d]) ≤ aλ(d[n]) for all d ≥ n. (1)
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Conjecture (1) is known to be true (moreover, equality holds: aλ(d[n]) = aλ(n[d])) for all
2-partitions λ, which is often called Hermite reciprocity [13]. We make modest progress on
this conjecture by proving it for many families of 3-partitions, see Corollary 4.4.

Let Z be a GLm-variety, e.g., Z = Chnm or Z = Pownm,k. Then the vanishing ideal
I(Z) := {f ∈ C[Anm] | ∀h ∈ Z : f(h) = 0} is also closed under the action of GLm, which
is easy to verify: If f(h) = 0 for all h ∈ Z, then also (gf)(h) = f(g−1h) = 0, because
g−1h ∈ Z. Since the action respects the grading, each homogeneous degree d part I(Z)d is a
GLm-representation. The coordinate ring C[Z] is defined as the quotient algebra C[Anm]/I(Z)
and each homogeneous part C[Z]d = C[Anm]d/I(Z)d is a GLm-representation. Equivalently,
we can define C[Z] as the set of restrictions of functions in C[Anm] to Z.

For most sets of parameters we have Pownm,k 6⊆ Chnm, but there are some exceptions.
Clearly Pownm,1 ⊆ Chnm. Moreover, Pown1,k = Chn1 for all n ≥ 1, k ≥ 1; and Pow1

m,k = Ch1
m for

all m ≥ 1, k ≥ 1. It is also easy to see that Pow2
2,2 ⊆ Ch2

2, because `2
1 +`2

2 = (`1 +i`2)(`1−i`2),
where i2 = −1. More generally, (`1 + ζ`2)(`1 + ζ2`2) · · · (`1 + ζn`2) = `n1 + ζ

n(n+1)
2 `n2 for

ζn = 1, which implies Pownm,2 ⊆ Chnm. For m = 2, k ≥ 1, n ≥ 1, we have Pownm,k ⊆ Chnm by
the fundamental theorem of algebra. These are the only exceptions, as for n ≥ 2, m ≥ 3,
k ≥ 3 we have Pownm,k 6⊆ Chnm: the polynomial xn + yn + zn of the Fermat curve is in Pownm,k
and its irreducibility implies (since n ≥ 2) that xn + yn + zn /∈ Chnm.

We will see that for specific settings of parameters there exist multiplicity obstructions
that prove Pownm,k 6⊆ Chnm, but there do not exist occurrence obstructions that prove this fact
(see the definitions below). Our approach works as follows and is in complete analogy to the
approach proposed in [22, 23] to separate group varieties arising from algebraic complexity
theory. If Pownm,k ⊆ Chnm, then the restriction of functions gives a canonical GLm-equivariant
surjection C[Chnm]d � C[Pownm,k]d. In this case, Schur’s lemma (e.g. [11, Lemma 4.1.4])
implies that

multλ(C[Chnm]d) ≥ multλ(C[Pownm,k]d). (2)

for all m-partitions λ. Therefore, a partition λ that violates (2) proves that Pownm,k 6⊆ Chnm.
Such a λ is called a multiplicity obstruction. If additionally multλ(C[Chnm]d) = 0, then λ is
called an occurrence obstruction.

Since Chnm and Pownm,k are subvarieties of Anm and since all λ for which multλ(C[Anm]d) > 0
are m-partitions of dn, it follows that if multλ(C[Chnm]d) > 0 or multλ(C[Pownm,k]d) > 0,
then λ is an m-partition of dn.

I Theorem 2.1 (Main Theorem).
(1) Asymptotic result: Let m ≥ 3, n ≥ 2, k = d = n + 1, λ = (n2 − 2, n, 2). We have

multλ(C[Chnm]d) < multλ(C[Pownm,k]d), i.e., λ is a multiplicity obstruction that shows
Pownm,k 6⊆ Chnm.

(2) Finite result: In two finite settings we can show a slightly stronger separation:
(a) Let k = 4, n = 6, m = 3, d = 7, λ = (n2 − 2, n, 2) = (34, 6, 2). Then

multλ(C[Chnm]d) = 7 < 8 = multλ(C[Pownm,k]d), i.e., λ is a multiplicity obstruc-
tion that shows Pownm,k 6⊆ Chnm.

(b) Similarly, for k = 4, n = 7, m = 4, d = 8, λ = (n2 − 2, n, 2) = (47, 7, 2) we have
multλ(C[Chnm]d) < 11 = multλ(C[Pownm,k]d), i.e., λ is a multiplicity obstruction that
shows Pownm,k 6⊆ Chnm.

Both separations (a) and (b) cannot be achieved using occurrence obstructions, even for
arbitrary k: for all m-partitions µ that satisfy aµ(d[n]) > 0 we have multλ(C[Chnm]d′) > 0 in
these settings.
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One would like to show that there are no occurrence obstructions in all cases (1), but
this is wrong if n is not large enough with respect to m, see Prop. 3.11. Even for m = 3
or m = 4 ruling out occurrence obstructions as in (2) is done by a large-scale computer
calculation which is only suitable for a finite case, but not for sequences as in (1). The papers
[16, 8] rule out occurrence obstructions for families, but only in ranges where they would
give very strong new algebraic circuit lower bounds, so that we expect it to be difficult to
find multiplicity obstructions in those cases. Note also that [16, 8] are only dealing with
padded polynomials, for which [17] guarantees λ to have a very restricted shape.

We expect multiplicity obstructions to be more powerful than occurrence obstructions in
most cases relevant for geometric complexity theory, and Theorem 2.1 resolves the challenge
of finding a setting in which the corresponding multiplicities and occurrences could actually
be computed in a reasonable amount of time, while the setting is also involved enough
so that a difference between occurrence obstructions and multiplicity obstructions could
be witnessed.
I Remark 2.2. The partition (n2 − 2, n, 2) is known to be the type of one of Brill’s classical
set-theoretic equations for Chnm, see [12].

3 Proof of the main theorem

The main theorem (Theorem 2.1) makes a statement about the finite situations k = 4, n = 6,
m = 3, d = 7 and k = 4, n = 7, m = 4, d = 8, as well as the general situation m ≥ 3, n ≥ 2,
k = d = n+ 1. As a first step, in all these cases we show that

multλ(C[Pownm,k]d) = aλ(d[n]). (3)

In the finite cases the following computer calculation suffices to prove (3).

I Proposition 3.1. mult(34,6,2)(C[Pow6
3,4]7) = 8 = a(34,6,2)(7[6]) and mult(47,7,2)(C[Pow7

3,4]8) =
11 = a(47,7,2)(8[7]).

Proof. The plethysm coefficient computations were performed with the LiE software. The
rest is a small computer calculation completely analogous to the ones in [8, Sec. 6]. The
details can be found in the full version of this paper. J

For the general situation the equality (3) is a consequence of the following result on power
sums proved in [8, Prop. 3.2]:

I Proposition 3.2. If λ is an m-partition of dn and k ≥ d, then multλ(C[Pownm,k]d) =
aλ(d[n]).

As a second step we will use the following lemma for λ = (n2 − 2, n, 2).

I Lemma 3.3 (see also [19, Sec. 9.2.3]). Let λ be an m-partition and n ≥ m. Then
multλ(C[Chnm]d) ≤ aλ(n[d]).

Proof. Let GLn(x1 · · ·xn) := {g(x1 · · ·xn) | g ∈ GLn} ⊆ Ann denote the GLn-orbit of x1 · · ·xn.
We denote by GLn(x1 · · ·xn) the Zariski closure of this orbit, which equals its Euclidean clo-
sure by the same principles as in Section 2. Choose bases and embed Anm ⊆ Ann, so that Chnm
is the intersection of Anm and GLn(x1 · · ·xn). This implies (via argument analogous to that
for the plethysm coefficient ([14, Lem. 4.3.2])) that the multiplicity of the irreducible GLm-
representation {λ}m in C[Chnm]d equals the multiplicity of the irreducible GLn-representation
{λ}n in C[GLn(x1 · · ·xn)]. In other words multλ(C[Chnm]d) = multλ(C[GLn(x1 · · ·xn)]d). The
vector space C[GLn(x1 · · ·xn)]d consists of exactly the restrictions of polynomials in C[Ann]d to
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the orbit GLn(x1 · · ·xn). The coordinate ring C[GLn(x1 · · ·xn)] is also graded and its homo-
geneous degree d part C[GLn(x1 · · ·xn)]d consists of all homogeneous degree d regular func-
tions on GLn(x1 · · ·xn), in particular multλ(C[GLn(x1 · · ·xn)]d) ≤ multλ(C[GLn(x1 · · ·xn)]d).
The right-hand side can be understood via geometric invariant theory as follows (see [14,
Sec. 3.4(A)]): multλ(C[GLn(x1 · · ·xn)]d) = multλ∗(C[GLn]Hd ), where H = {diag(α1, . . . , αn) |∏n
i=1 α1 = 1} o Sn ⊆ GLn is the stabilizer of x1 · · ·xn. The algebraic Peter-Weyl theo-

rem (see e.g. [18, II.3.1 Satz 3], [11, Thm. 4.2.7], or [27, Ch. 7, 3.1 Thm.]) states that
C[GLn] =

⊕
λ{λ} ⊗ {λ∗} and we conclude multλ(C[GLn]Hd ) = dim{λ}H . There are several

ways of seeing that dim{λ}H = aλ(n[d]), see e.g. [19, Sec. 9.2.3] or [15, Prop. 3.3]. This
proves the lemma. J

Now an argument using symmetric functions is used to prove the following theorem.

I Theorem 3.4. a(n2−2,n,2)(n+ 1[n]) = 1 + a(n2−2,n,2)(n[n+ 1]).

Theorem 3.4 is a corollary of more general results, see Corollary 4.4 in the appendix.
This finishes the proof that (n2 − 2, n, 2) is a multiplicity obstruction in all cases of

Theorem 2.1.

No occurrence obstructions
To finish the proof of Theorem 2.1(2), it remains to show that there are no occurrence
obstructions in the finite situation n = 6, m = 3 and n = 7, m = 4. We will primarily go
into more detail for the first case and the second one will be proven similarly. We will do
this by showing that

aµ(d[n]) > 0 implies multµ(C[Chnm]d) > 0 for n = 6, m = 3. (4)

Note that this claim is independent of k. We start proving (4) by giving a complete
classification of when aµ(d[n]) > 0 for the case n = 6, m = 3.

First, the following lemma states that for a few special µ the plethysm coefficient
always vanishes.

I Lemma 3.5. Let λ̄ := (λ2, λ3, . . .) denote λ without its first row. If λ is an m-partition of
dn and λ̄ ∈ {(3, 3), (3, 1), (2, 1), (1, 1), (1)}, then aλ(d[n]) = 0.

Proof. This is proved by a finite calculation for all cases but (3, 3) as Thm 1.10(a) in
[16]. Exactly the same calculation can be used to also prove the result for the additional
partition (3, 3). J

For characterizing the set of all µ for which aµ(d[n]) is positive, we observe that they form
a finitely generated semigroup and hence we only need to find the semigroup’s generators:

If aµ(d[n]) > 0 and aν(d′[n]) > 0, then aµ+ν(d+ d′[n]) > 0. (5)

A detailed proof of (5) can be found for example in [1, Prop. 21.2.6].

I Proposition 3.6. Define the set
X := {(6), (6, 6), (8, 4), (10, 2), (6, 6, 6), (8, 6, 4), (10, 4, 4), (9, 6, 3), (8, 8, 2), (10, 6, 2), (11, 5, 2),
(10, 7, 1), (12, 4, 2), (11, 6, 1), (10, 8), (14, 2, 2), (13, 4, 1), (13, 5), (15, 3), (8, 8, 8), (10, 8, 6), (11, 7, 6),
(10, 9, 5), (11, 8, 5), (10, 10, 4), (12, 7, 5), (11, 9, 4), (13, 6, 5), (12, 8, 4), (11, 10, 3), (13, 7, 4), (12, 9, 3),
(13, 8, 3), (12, 10, 2), (15, 5, 4), (14, 7, 3), (13, 9, 2), (13, 10, 1), (16, 5, 3), (15, 7, 2), (14, 9, 1), (17, 4, 3),
(15, 8, 1), (15, 9), (19, 3, 2), (18, 5, 1), (17, 7), (10, 10, 10), (11, 10, 9), (12, 10, 8), (13, 9, 8), (12, 11, 7),
(13, 10, 7), (14, 9, 7), (13, 11, 6), (15, 8, 7), (13, 12, 5), (16, 7, 7), (15, 9, 6), (14, 11, 5), (13, 13, 4), (15, 10, 5),
(15, 11, 4), (14, 13, 3), (16, 11, 3), (15, 13, 2), (15, 14, 1), (17, 13), (13, 12, 11), (14, 11, 11), (13, 13, 10),
(15, 11, 10), (14, 13, 9), (16, 11, 9), (15, 13, 8), (15, 14, 7), (18, 9, 9), (15, 15, 6), (17, 17, 2), (18, 17, 1),
(26, 5, 5), (15, 14, 13), (16, 13, 13), (15, 15, 12), (17, 17, 8), (18, 15, 15), (17, 17, 14), (25, 23), (45, 45)}.
Here we truncated trailing zeros from the 3-partitions. The set X is the set of generators of
the semigroup of 3-partitions µ that have aµ(d[6]) > 0.
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The proof of Proposition 3.6 proceeds in several steps.
A direct computation with the LiE software verifies aµ(d[6]) > 0 for all µ ∈ X \{(45, 45)}.

The case d = 15 runs into memory problems when using LiE. Other software such as Schur
stops working when d = 8. We used the formula [32, Cor. 4.2.8] to verify a(45,45)(15[6]) > 0.

We call the number of nonzero parts the length of a partition. We use a brute-force
computer verification and a direct computation with LiE to show that for d ≤ 26 every
partition µ of length ≤ 2 with aµ(d[6]) > 0 is a sum of partitions from the set X. The same
computation is done for all 3-partitions, but only up to d ≤ 14. The following proposition
states that these finite computations completely describe all cases.

I Proposition 3.7. If λ is a 3-partition of 6d, d ≥ 15, and λ̄ /∈ {(3, 3), (3, 1), (2, 1), (1, 1), (1)},
then λ is a sum of partitions from X.

Proof. For 15 ≤ d ≤ 17 we use a computer calculation to show that we can write every
such partition λ as a sum of partitions from X. For d > 17 we prove this inductively by
showing that we can write every 3-partition λ of 6d with λ̄ /∈ {(3, 3), (3, 1), (2, 1), (1, 1), (1)}
as a sum of one of the partitions (6), (6, 6) or (6, 6, 6) and a smaller λ′ with again λ̄′ /∈
{(3, 3), (3, 1), (2, 1), (1, 1), (1)}.

Let ci denote the number of columns in λ with exactly i boxes for i ∈ {1, 2, 3}. Since we
have at least 108 boxes in λ, the pigeonhole principle implies that at least one must be true:
c1 ≥ 6, c2 ≥ 10 or c3 ≥ 10.

In the case c1 ≥ 6 we have λ = λ′ + (6) with λ′ being a sum of elements from X since
λ̄′ = λ̄. In the case c2 ≥ 10 we have λ = λ′ + (6, 6) with λ′ being a sum of elements from X

as λ′2 ≥ 4. In the case c3 ≥ 10 we have λ = λ′ + (6, 6, 6) with λ′ being a sum of elements
from X as λ′3 ≥ 4. J

This finishes the proof of Proposition 3.6.
To prove (4) it is sufficient (and necessary) to show that multµ(C[Chnm]d) > 0 for all

µ ∈ X, because a semigroup property analogous to (5) holds (the same proof applies, e.g. [1,
Prop. 21.2.6]):

If multµ(C[Chnm]d) > 0 and multν(C[Chnm]d′) > 0, then multµ+ν(C[Chnm]d+d′) > 0. (6)

If the length of µ is at most 2, we use the following general result.

I Proposition 3.8. Let µ be a 3-partition of length at most 2. If aµ(d[n]) > 0, then
multµ(C[Chnm]d) > 0.

Proof. We use an inheritance result: If for a 2-partition µ we have multµ(C[Chn2 ]d) > 0, and ν
is the 3-partition that arises from µ by adding a single 0, then multν(C[Chn3 ]d) > 0. The proof
is completely analogous to other inheritance results, see e.g. [14, Lemma 4.3.2 or Sec. 5.3].
Now for 2-partitions µ we have aµ(d[n]) = multµ(C[Chn2 ]d), because every homogeneous
polynomial in 2 variables decomposes as a product of homogeneous linear polynomials by
the fundamental theorem of algebra, see also e.g. [19, Exa. 9.1.1.8]. This is how the Hermite
reciprocity can be proved. An even simpler argument works if µ has length 1. J

We finish the proof of (4) by using a computer calculation to verify that for all 3-partitions
µ ∈ X of length 3 we have multµ(C[Ch6

3]) > 0, see Proposition 5.1.
This finishes the proof of Theorem 2.1(2a). The proof of Theorem 2.1(2b) is completely

analogous as follows. Let m = 4, n = 7.

ICALP 2019



51:8 On GCT: Multiplicity Obstructions Are Stronger Than Occurrence Obstructions

I Lemma 3.9. Let λ̄ := (λ2, λ3, . . .) denote λ without its first row. If λ is an m-partition
of dn and λ̄ ∈ Y for Y := {(1), (1, 1), (1, 1, 1), (2, 1), (2, 1, 1), (2, 2, 1), (3, 1), (3, 1, 1),
(3, 2, 1), (3, 3), (3, 3, 1), (3, 3, 2), (3, 3, 3), (4, 1, 1), (4, 3, 3), (5, 1, 1), (5, 5, 5), (6, 1, 1)}, then
aλ(d[n]) = 0.

Proof. This is proven exactly like Lemma 3.5. J

The semigroup of 4-partitions λ that have aλ(d[7]) > 0 has 948 generators, listed in the
full version of this paper. They form a set that we call X.

We again use a direct computation with the LiE software to verify aµ(d[7]) > 0 for all
µ ∈ X \ {(49, 49), (24, 24, 23, 23)}. For both the remaining partitions µ ∈ {(49, 49), (24, 24, 23,
23)} we prove multµ(C[Ch7

4]d) > 0 using our computer calculations which also implies
aµ(d[7]) > 0.

To prove those are all the generators we use the following proposition which is proved
completely analogously to Proposition 3.7.

I Proposition 3.10. If λ is a 4-partition of 7d, d ≥ 14, and λ̄ /∈ Y , then λ is a sum of
partitions from X.

For the next finite case (n = 7, k = d = 8, m = 5) we reached the computational limit of
our implementation. Here we were able to find 5016 generating partitions of the semigroup
of 4-partitions µ that have aµ(d[7]) > 0. Unfortunately these do not generate everything
excluding the exceptions yet. We were able to verify for 5000 generating partitions µ that
multµ(C[Chnm]d) > 0. For the remaining ones, we used up to 200 GB of RAM, but this was
not sufficient.

Some occurrence obstructions

As we degenerate the parameter settings and let n get closer to m, multiplicity obstructions
tend to become occurrence obstructions. More precisely, for m = 3 and values of n < 6, and
for (m,n) = (4, 6), some multiplicity obstructions are actually also occurrence obstructions,
as the following proposition shows.

I Proposition 3.11. The following partitions give occurrence obstructions that show
Pownm,d 6⊆ Chnm.

m n λ d aλ(d[n]) aλ(n[d])
3 2 (2, 2, 2) 3 1 0
3 3 (7, 3, 2) 4 1 0
3 4 (11, 9, 8) 7 1 0
3 5 (12, 9, 9) 6 1 0
4 6 (14, 14, 13, 13) 9 11 0

Proof. The plethysm coefficient computations were performed with the LiE software.
Lemma 3.3 implies that multλ(C[Chnm]d) ≤ aλ(n[d]) = 0. Proposition 3.2 implies
multλ(C[Pownm,d]d) > 0. J

See [4, Prop. 4] for additional occurrence obstructions in the case n = 3.
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4 Plethysm inequalities

We are interested in the plethysm coefficients aλ(d[m]) for certain values of λ and d,m.
Here we compute such values for infinite families of parameters and in particular, prove
Theorem 3.4.

We will work over the ring of symmetric functions Λ, defined as the ring of formal power
series (in finitely or infinitely many variables) which are invariant under any transposition
of the variables. For the definitions and main identities see e.g. [29]. Plethysms of sym-
metric functions are described also there in Appendix 2 of Chapter 7, here we review the
necessary definitions.

The characters of the irreducible GLr–module Wλ are the Schur functions sλ(x1, . . . , xr),
where x1, . . . , xr correspond to the eigenvalues of the conjugacy class representative from
GLr. Their combinatorial interpretation is as the generating function over all semi-standard
Young tableaux with entries 1, ..., r, but we will use certain determinantal formulas as
described below. The complete homogeneous symmetric functions h` are defined as s(`)
and are the characters of the Sym` module. The Symd(Symn(Cr)) module is obtained as
the composition of the two representations. The image in Symn(Cr) of a diagonal matrix
from GLr with entries (i.e. eigenvalues) x1, . . . , xr on the diagonal has eigenvalues all the
N :=

(
n+r−1
r−1

)
degree n monomials in x1, . . . , xr. Hence, the character of the representation

Symd(Symn(Cr)) of GLN can be obtained by evaluating the character hd of Symd at the
monomials, i.e. the eigenvalues above. This gives us the definition of the symmetric function
plethysm hd[hn(x1, . . . , xr)], that is, the evaluation of hd on the variables consisting of all
degree n monomials, i.e. hd[hn(x1, . . . , xr)] := hd(xn1 , xn−1

1 x2, x
n−1
1 x3, . . . , x

α1
1 · · ·xαrr , . . .),

where α = (α1, . . . , αr) runs over all compositions of n.
In general, knowing the character of a representation contains all the information to obtain

the multiplicities of the irreducible decomposition via the inner product of characters. As
the Schur functions sλ are the irreducible characters for GLr, the inner product is equivalent
to an inner product in the ring Λ, where {sλ}λ is an orthonormal basis. In other words, the
multiplicity of the Weyl module of weight λ is given by the multiplicity of the Schur function
sλ in the expansion of hd[hm]. We will now compute this via the inner product in the ring Λ
of symmetric functions, using some basic properties of this ring as found in [29] and [21].

We have that aλ(d[n]) is the multiplicity of {λ} in SymdSymn, translated into characters
this is also the coefficient at sλ of the expansion of hd[hn] in Schur function. By their
orthonormalitiy, this is the same as

aλ(d[n]) = 〈sλ, hd[hn]〉 (7)

We now invoke various symmetric function identities in order to compute the above inner
product. The Schur functions sλ can be expressed via the Jacobi-Trudi formula (see again [29,
Ch. 7]) as a signed sums of homogeneous symmetric functions, namely

sλ = det [hλi−i+j ]
`(λ)
i,j=1 , (8)

the inner product (7) can then be computed via a signed sum of inner products of the
form 〈hµ, hd[hn]〉. We remark that the orthogonal dual basis for the complete homogeneous
symmetric functions is the monomial symmetric functions, i.e. 〈hµ,mν〉 = δµ,ν , so we need
to express hd[hn] in terms of the monomial symmetric functions, defined by

mν(x1, . . . , xr) :=
∑

σ∈Sr(ν)

x
νσ(1)
1 x

νσ(2)
2 · · ·xνσ(r)

r ,
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where the sum ranges over all distinct permutations of (ν1, ν2, . . . , νr) and ν is completed
with 0s to the length r. Since he monomial symmetric functions form a basis for Λ, we can
expand any symmetric function in it uniquely. Let hd[hm] =

∑
ν cνmν , for some constants

cν (i.e. the coefficients in this expansion). Since each mν has a unique leading monomial (in
the lexicographic order) xν1

1 x
ν2
2 · · · , finding cν is equivalent to extracting the coefficient at

the single monomial xν1
1 · · · from the monomial expansion of the corresponding symmetric

function as a polynomial, i.e. cν = (xν1
1 x

ν2
2 . . .)@hd[hn(x1, x2, . . .)], where to avoid confusion

with the plethysm notation we denote by (X)@f the coefficient of the monomial X in the
monomial expansion of the polynomial f .

Let ν be a partition of length `. By the above remarks we need to consider only the
truncated expansion hd[hn(x1, . . . , x`)] as only the monomials in x1, . . . , x` will be relevant.

We have the following formula for the h’s, see e.g. [29]:

hN (x1, . . . , xr) =
∑

(b):b1+b2+···=N

xb1
1 x

b2
2 · · · ,

where (b) = (b1, b2, . . . , br) runs over all (weak) compositions of N . Hence, assuming some
total ordering for compositions αi of n, we have

hd[hn(x1, . . . , xr)] = hd[. . . , xα
i

, . . .] =
∑

(b):|b|=d

x
∑

i
biα

i

.

Thus for the coefficients cν we have:

cν(d, n) := (xν)@hd[hn] = 〈hν , hd[hn]〉 = #{(b) : |b| = d,
∑
i

biα
i = ν} (9)

By the Jacobi-Trudi identity (8) this gives a formula for computing the plethysm coeff. as

aλ(d[n]) = 〈det [hλi−i+j ]
`(λ)
i,j=1 , hd[hn]〉 =

∑
π∈S`(λ)

sgn(π)cλ+π−(1,2,...)(d, n), (10)

where the permutations π are viewed as vectors with entries 1, 2, . . . , `(λ)
We now turn towards the proof of Theorem 3.4 and consider sλ for λ = (λ1, λ2, 2) for

some k ≥ 2. By the Jacobi-Trudi identity (10) we need to compute only cν for ν having
at most 3 parts, with ν3 = 0, 1, 2. Let pr(a, b) denote the number of partitions of r which
fit inside an a× b rectangle, it’s generating function is the q-binomial coefficient (see [31]):(
a+b
a

)
q

= (1−q)···(1−qa+b)
(1−q)···(1−qa)(1−q)···(1−qb) =

∑ab
r=0 pr(a, b)qr

I Proposition 4.1. We have the following generating function identities for cν(d, n), where
`(ν) ≤ 3 and ν3 ≤ 2:

c(L,k,2) = (qk)@
((
n
1
)
q

(
n+d−2
n

)
q

+
(
n−1

1
)
q

(
n+d−1
n

)
q

+ q
(
n
2
)
q

(
n+d−2
n

)
q

)
c(L,k,1) = (qk)@

(
n
1
)
q

(
n+d−1
n

)
q

c(L,k,0) = (qk)@
(
n+d
n

)
q

= pk(n, d)

Proof. By formula (9), we have c(L,k,0) = #{(b) : |b| = d,
∑
biα

i = (L, k)}.
Hence, the only αi involved are of the form αi = (n− ai, ai), and after renumerating, we

can assume ai = i. So we are counting compositions b of d, s.t.
∑
i bii = k for i = 0 . . . n.

This is exactly the same as specifying an integer partition γ of k by the number of its parts,
i.e. γ = (0b0 , 1b1 , . . . , nbn), such that b0 + · · ·+ bn = d. These restrictions are equivalent to γ
fitting inside an n× d box, and the number of such γ is exactly pk(d, n).
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Next, when the second part in ν is 1, we have the following. Since ν3 = 1, the condition∑
i biα

i
3 = ν3 = 1 implies that there is a single i, such that biαi3 6= 0, and in fact must be 1,

so bi = αi3 = 1. After renumeration, we can assume that i = 0 (for separation purposes) with
b0 = α0

3 = 1 and α0 = (n−1− r, r, 1) for r = 0 . . . n−1. For the remaining bs and αs we have∑
i biα

i = (L, k)− (n− 1− r, r) = (L+ r − n+ 1, k − r) with b1 + · · · = d− 1, and |αi| = n.
This number is now, by the previous case, (qk−r)@

(
n+d−1
n

)
q
. The total number is thus

c(L,k,1) =
∑n−1
r=0 (qk−r)@

(
n+d−1
n

)
q

= (qk)@
∑n−1
r=0 q

r
(
n+d−1
n

)
q

= (qk)@
(
n
1
)
q

(
n+d−1
n

)
q
.

Finally, when ν3 = 2 we have the following two distinct options:
Either there is an index i, such that biαi3 = ν3 = 2, or i < j with biαi3 = 1 and bjαj3 = 1.
In the first case we have biα3

i = 2 – either bi = 2, in which case αi = (n− 1− r, 1) and
the rest of the b’s sum to d− bi = d− 2, which brings us to the previous case (of (L, k, 1)),
so the number is

(qk)@
(
n
1
)
q

(
n+d−2
n

)
q
.

Otherwise, bi = 1 and αi3 = 2. As in the case ν3 = 1, let i = 0 and α0 = (n− 2− r, r, 2),
b0 = 1, so we are looking for the number of (b1, . . .) with |b| = d − 1 and such that∑
i biα

i = (L− n+ r + 2, k − r) for all possible r = 0, . . . , n− 2. So this is∑n−2
r=0 (qk−r)@

(
n+d−1
n

)
q

= (qk)@
(
n−1

1
)
q

(
n+d−1
n

)
q

Last, when there are i < j with biα
i
3 = 1 and bjα

j
3 = 1, let i = −1, j − 0 (again,

renumerating for simplicity), with α−1 = (n− 1− r1, r1, 1) and α0 = (n− 1− r2, r2, 1) with
0 ≤ r1 < r2 ≤ n − 1. We thus have for the remaining α and bs that b1 + · · · = d − 2, and∑
i biα

i = (L− (n− 1− r1)− (n− 1− r2), k − r1 − r2). By the first case, this is
(qk−r1−r2)@

(
n+d−2
n

)
q
. Summing over all possible 0 < r1 < r2 ≤ n− 1, we have

(qk) @
∑

0≤r1<r2≤n−1

qr1+r2

(
n+ d− 2

n

)
q

= (qk)@q
∑

0≤r1≤r2−1≤n−2

qr1+(r2−1)
(
n+ d− 2

n

)
q

= (qk)@q
(
n− 2 + 2

2

)
q

(
n+ d− 2

n

)
q

,

where the last identity follows from interpreting (r2 − 1, r1) as a partition in the 2× n− 2
rectangle. Summing over all the cases considered here, we get the desired total coefficient. J

I Proposition 4.2. The plethysm coefficient for λ = (L, r, 2) is equal to

aλ(d[n]) = (qr+1) @
((
n+d−2
n

)
q

q(1−qn)(1−q2+q−qn)
1−q2

+
(
n+d−1
n

)
q
(qn+1 − 1) + (1− q)

(
n+d
n

)
q

)
Proof. Following equation (10), we have that
aλ(d[n]) = c(L,r,2) − c(L,r+1,1) − c(L+1,r−1,2) + c(L+1,r+1,0) + c(L+2,r−1,1) − c(L+2,r,0).

Substituting the formulas for the c’s from Proposition 4.1, and observing that (qr+j) @ f =
(qr) @ q−jf for any j, we have that

aλ(d[n]) = (qr+1) @
(
(q − q2)

((
n
1
)
q

(
n+d−2
n

)
q

+
(
n−1

1
)
q

(
n+d−1
n

)
q

+ q
(
n
2
)
q

(
n+d−2
n

)
q

)
+(q2 − 1)

(
n
1
)
q

(
n+d−1
n

)
q

+ (1− q)
(
n+d
n

)
q

)
Simplifying the above expression by grouping terms for the same binomial coefficients together
we obtain
aλ(d[n]) = (qr+1) @

((
n+d−2
n

)
q

q(1−qn)(1−q2+q−qn)
1−q2 +

(
n+d−1
n

)
q
(qn+1− 1) + (1− q)

(
n+d
n

)
q

)
. J

ICALP 2019



51:12 On GCT: Multiplicity Obstructions Are Stronger Than Occurrence Obstructions

I Proposition 4.3. Let λ = (L, r, 2). We have that

aλ(d[n])− aλ(n[d]) = (qr) @
(
n+d−2
n−1

)
q
(qn − qd) (1−qd−1)(1−qn−1)

(1−qd)(1−qn) .

Proof. Set [a]!q := (1−q) · · · (1−qa), a variant of the usual factorial q-analogue but multiplied
by (1− q)a, and consider the desired difference via the formula in Proposition 4.2:

aλ(d[n])− aλ(n[d]) = (qr+1) @{ ((
n+d−2
n

)
q

q(1−qn)(1−q2+q−qn)
1−q2 +

(
n+d−1
n

)
q
(qn+1 − 1)

−
(
n+d−2

d

)
q

q(1−qd)(1−q2+q−qd)
1−q2 −

(
n+d−1

d

)
q
(qd+1 − 1)

)
= [n+d−2]!q

[n−2]!q [d−2]!q
q(qn−1−qd−1)

(1−qn−1)(1−qd−1) −
[n+d−1]!q

[n−1]!q [d−1]!q
(1−q)(qn−qd)
(1−qn)(1−qd)

=
(
n+d−2
n−1

)
q
(qn − qd)

(
1− (1−qn+d−1)(1−q)

(1−qn)(1−qd)

)
=
(
n+d−2
n−1

)
q
(qn − qd) q(1−qd−1)(1−qn−1)

(1−qd)(1−qn)

}
Finally, observe that the RHS is a polynomial divisible by q, so the coefficient at qr+1 is the
same as the coefficient at qr after dividing by q. J

We are now ready to prove Theorem 3.4 as a Corollary of the above computations:

I Corollary 4.4. [Theorem 3.4] Let d = n + 1 and λ = (n2 + n − 2 − r, r, 2). Then
aλ((n+ 1)[n])− aλ(n[n+ 1]) ≥ 0, with

aλ((n+ 1)[n])− aλ(n[n+ 1]) =


0, when r < n,

1, when r = n,

> 0, when r > n and n ≥ 7,

with the exception in the last case when n = 8, and r = 35 when a(35,35,2)(9[8]) =
a(35,35,2)(8[9]).

Proof. Then by the Proposition 4.3 we have

aλ(n+ 1[n])− aλ(n[n+ 1]) = (qr) @
(2n−1
n−1

)
q
(qn − qn+1) (1−qn)(1−qn−1)

(1−qn+1)(1−qn)

= (qr) @
(2n−1
n−1

)
q
(qn − qn+1) (1−qn−1)

1−qn+1 = (qr) @
(2n−1
n−2

)
q
(qn − qn+1)

The last line follows by absorbing the fraction into the q-binomial coefficient. It is now
evident, that since the q-binomial coefficient expands into a polynomial of q (with coefficients
given by p∗(n− 2, n+ 1)), multiplying it with qn or qn+1 gives two polynomials whose lowest
order terms are qn and qn+1 respectively. So if r < n, there is no term of such degree, and the
coefficient is 0. when r = n we see that such term can only come from the first polynomial’s
first (lowest order) term, which is exactly qn since

(2n−1
n−2

)
q
qn = qn(1 + q + 2q2 + · · · ) =

qn +O(qn+1). Therefore we obtain the case r = n.
Let now r > n, and set r = n+ k + 1 for some k ≥ 0. We have that

aλ((n+ 1)[n])− aλ(n[n+ 1]) = (qk+1) @
(2n−1
n−2

)
q
− (qk) @

(2n−1
n−2

)
q

= pk+1(n+ 1, n− 2)− pk(n+ 1, n− 2)
= g((n2 − n− 3− k, k + 1), (n+ 1)n−2, (n+ 1)n−2) > 0,
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where g denotes the Kronecker coefficient for the symmetric group Sn for the 3 given
partititons, and the last identity and the strict positivity are shown to hold for n ≥ 9 in [26],
and the other cases are verified by direct expansion of the q-binomial coefficients. In particular,
we have that p26(9, 6) = 227 = p27(9, 6) which gives the only exceptional 0 plethysm. J

5 Computer calculations

I Proposition 5.1. If X is defined as in Proposition 3.6, then for all µ ∈ X of length 3 we
have multµ(C[Ch6

3]) > 0.
If X is the set of generators of the semigroup of 4-partitions µ that have aµ(d[7]) > 0

(see full version of this paper), then for all µ ∈ X we have multµ(C[Ch7
4]) > 0.

Proof. Proposition 5.1 is proved by a computer calculation that is a refinement and speedup
of the computation performed in [9]. Indeed, a run of the method from [9] would take
significantly too long to prove Proposition 5.1 in any reasonable time. Our new method
makes extensive use of memory resources, while the method from [9] uses almost no memory.
The description of the computation can be found in the full version of this paper. J
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Abstract
In this paper, we revisit the problem of sampling edges in an unknown graph G = (V,E) from a
distribution that is (pointwise) almost uniform over E. We consider the case where there is some
a priori upper bound on the arboriciy of G. Given query access to a graph G over n vertices and
of average degree d and arboricity at most α, we design an algorithm that performs O

(
α
d
· log3 n

ε

)
queries in expectation and returns an edge in the graph such that every edge e ∈ E is sampled with
probability (1± ε)/m. The algorithm performs two types of queries: degree queries and neighbor
queries. We show that the upper bound is tight (up to poly-logarithmic factors and the dependence
in ε), as Ω

(
α
d

)
queries are necessary for the easier task of sampling edges from any distribution over

E that is close to uniform in total variational distance. We also prove that even if G is a tree (i.e.,
α = 1 so that α

d
= Θ(1)), Ω

( logn
loglogn

)
queries are necessary to sample an edge from any distribution

that is pointwise close to uniform, thus establishing that a poly(logn) factor is necessary for constant
α. Finally we show how our algorithm can be applied to obtain a new result on approximately
counting subgraphs, based on the recent work of Assadi, Kapralov, and Khanna (ITCS, 2019).
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1 Introduction

Let G = (V,E) be a graph over n vertices and m edges. We consider the problem of sampling
an edge in G from a pointwise-almost-uniform distribution over E. That is, for each edge
e ∈ E, the probability that e is returned is (1 ± ε)/m, where ε is a given approximation
parameter. An algorithm for performing this task has random access to the vertex set
V = {1, . . . , n} and can perform queries to G. The allowed queries are (1) degree queries

EA
T

C
S

© Talya Eden, Dana Ron, and Will Rosenbaum;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 52; pp. 52:1–52:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:talyaa01@gmail.com
mailto:danaron@tau.ac.il
mailto:will.rosenbaum@gmail.com
https://doi.org/10.4230/LIPIcs.ICALP.2019.52
https://arxiv.org/abs/1902.08086
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


52:2 The Arboricity Captures the Complexity of Sampling Edges

denoted deg(v) (what is the degree, d(v), of a given vertex v) and (2) neighbor queries
denoted nbr(v, i) (what is the ith neighbor of v).1 We refer to this model as the uniform
vertex sampling model.

Sampling edges almost uniformly is a very basic sampling task. In particular it gives the
power to sample vertices with probability approximately proportional to their degree, which
is a useful primitive. Furthermore, there are sublinear algorithms that are known to work
when given access to uniform edges (e.g., [1, 2]) and can be adapted to the case when the
distribution over the edges is almost uniform (see Section 1.4 for details). An important
observation is that in many cases it is crucial that the sampling distribution is pointwise-close
to uniform rather than close with respect to the Total Variation Distance (henceforth TVD)
– see the discussion in [15, Sec. 1.1].

Eden and Rosenbaum [15] recently showed that Θ∗(
√
m/d) queries are both sufficient

and necessary for sampling edges almost uniformly, where d = 2m/n denotes the average
degree in the graph. (We use the notation O∗ to suppress factors that are polylogarithmic
in n and polynomial in 1/ε.) The instances for which the task is difficult (i.e., for which
Ω(
√
m/d) queries are necessary), are characterized by having very dense subgraphs, i.e., a

subgraph with average degree Θ(
√
m). Hence, a natural question is whether it is possible to

achieve lower query complexity when some a apriori bound on the density of subgraphs is
known. A well studied measure for bounded density “everywhere” is the graph arboricity
(see Definition 1.2 below). Indeed there are many natural families of graphs that have
bounded arboricity such as graphs of bounded degree, bounded treewidth or bounded genus,
planar graphs, graphs that exclude a fixed minor and many other graphs. In the context
of social networks, preferential attachment graphs and additional generative models exhibit
bounded arboricity [3, 6, 5], and this has also been empirically validated for many real-world
graphs [18, 16, 22].

We describe a new algorithm for sampling edges almost uniformly whose runtime is
O∗(α/d) where α is an upper bound on the arboricity of G. In the extremal case that
α = Θ(

√
m), the runtime of our algorithm is the same as that of [15] (up to poly-log factors).

For smaller α, our algorithm is strictly faster. In particular for α = O(1), the new algorithm
is exponentially faster than that of [15]. We also prove matching lower bounds, showing that
for all ranges of α, our algorithm is query-optimal, up to polylogarithmic factors and the
dependence in 1/ε.

Furthermore, while not as simple as the algorithm of [15], our algorithm is still easy to
implement and does not incur any large constants in the query complexity and running time,
thus making in it suitable for practical applications.

1.1 Problem definition
In order to state our results precisely, we define the notion of pointwise-closeness of probability
distributions (cf. [15]) and arboricity of a graph.

I Definition 1.1. Let D be a fixed probability distribution on a finite set X. We say that a
probability distribution D̂ is pointwise ε-close to D if for all x ∈ X,

∣∣∣D̂(x)−D(x)
∣∣∣ ≤ εD(x) , or equivalently 1− ε ≤ D̂(x)

D(x) ≤ 1 + ε .

1 If i > d(v) then a special symbol, e.g. ⊥, is returned.
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If D = U , the uniform distribution on X, then we say that D̂ is pointwise ε-close
to uniform.

For the sake of conciseness, from this point on, unless explicitly stated otherwise, when we
refer to an edge sampling algorithm, we mean an algorithm that returns edges according to
a distribution that is pointwise-close to uniform.

IDefinition 1.2. Let G = (V,E) be an undirected graph. A forest F = (VF , EF ) (i.e., a graph
containing no cycles) with vertex set VF = V and edge set EF ⊆ E is a spanning forest
of G. We say that a family of spanning forests F1, F2, . . . , Fk covers G if E =

⋃k
i=1EFi .

The arboricity of G, denoted α(G), is the minimum k such that there exists a family of
spanning forests of size k that covers G.

An edge-sampling algorithm is given as input an approximation parameter ε ∈ (0, 1) and
a parameter α which is an upper bound on the arboricity of G. The algorithm is required to
sample edges according a distribution that is pointwise ε-close to uniform. To this end the
algorithm is given query access to G. In particular we consider the aforementioned uniform
vertex sampling model.

1.2 Results
We prove almost matching upper and lower bounds on the query complexity of sampling an
edge according to a distribution that is pointwise-close to uniform when an upper bound on
the arboricity of the graph is known. The first lower bound stated below (Theorem 2) holds
even for the easier task of sampling from a distribution that is close to uniform in TVD.

I Theorem 1. There exists an algorithm A that for any n, m, α, and graph G = (V,E)
with n nodes, m edges, and arboricity at most α, satisfies the following. Given n and α, A
returns an edge e ∈ E sampled from a distribution Û that is pointwise ε-close to uniform
using O

(
α
d ·

log3 n
ε

)
degree and neighbor queries in expectation, where d = m/n.

In Section 1.5.1 we provide a high-level presentation of the algorithm referred to in
Theorem 1 and discuss how it differs from the algorithm in [15] (for the case that there is no
given upper bound on the arboricity).

We next state our lower bound, which matches the upper bound in Theorem 1 up to a
polylogarithmic dependence on n (for constant ε).

I Theorem 2. Fix ε ≤ 1/6 and let n,m and α be parameters such that α = α(n) ≤
√
m and

m ≤ nα. Let Gαn,m be the family of graphs with n vertices, m edges and arboricity at most α.
Then any algorithm A that for any G ∈ Gαn,m samples edges in G from a distribution that is
ε-close to uniform in total variation distance – and in particular, any distribution that is
pointwise ε-close to uniform – requires Ω (α/d) queries in expectation.

When α is a constant then (assuming that m = Ω(n)) the lower bound in Theorem 2 is
simply Ω(1), while Theorem 1 gives an upper bound of O(log3 n) (for constant ε). We prove
that an almost linear dependence on logn is necessary, even for the case that α = 1 (where
the graph is a tree).

I Theorem 3. Fix ε ≤ 1/6, and let Tn be the family of trees on n vertices. Then any
algorithm A that for any G ∈ Tn samples edges in G from a distribution that is pointwise
ε-close to uniform requires Ω

(
logn

loglogn

)
queries in expectation.

We note that both of our lower bounds hold when the algorithm is also given access to pair
queries, pair(u, v), which state whether u and v share an edge.

ICALP 2019
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1.3 Discussion of the results
Comparison to known results. The simplest algorithm for sampling edges uniformly is
based on rejection sampling. Namely, it repeats the following until an edge is output: Sample
a uniform vertex u, flip a coin with bias d(u)/dmax, where dmax is the maximum degree, and
if the outcome is HEADS, then output a random edge (u, v) incident to u. The expected
complexity of rejection sampling grows like dmax/d, that is, linearly with the maximum degree.
As noted earlier, Eden and Rosenbaum [11] show that this dependence on the maximum
degree is not necessary (for approximate sampling), as O∗(

√
m/d) queries and time always

suffice, even when the maximum degree is not bounded (e.g., is Θ(n)). However, if the
maximum degree is bounded, and in particular if dmax = o(

√
m), then rejection sampling has

lower complexity than the [11] algorithm (e.g., in the case that the graph is close to regular,
so that when dmax = O(d), we get complexity O(1)).

Since the arboricity of a graph is both upper bounded by dmax and by
√
m, our algorithm

can be viewed as “enjoying both worlds”. Furthermore, our results can be viewed as showing
that the appropriate complexity measure for sampling edges is not the maximum degree but
rather the maximum average degree (recall that the arboricity α measures the maximum
density of any subgraph of G – for a precise statement, see Theorem 4).

Sampling vs. Estimating. As shown by Eden, Ron and Seshadhri [11], Θ∗(α/d) is also
the complexity of estimating the number of edges in a graph when given a bound α on the
arboricity of the graph. Their algorithm improves on the previous known bound of O∗ (

√
m/d)

by Feige [17] and Goldreich and Ron [19] (when the arboricity is o(
√
m)). However, other

than the complexity, our algorithm for sampling edges and the algorithm of [11] for estimating
the number of edges do not share any similarities, in particular, as the result of [11] is allowed
to “ignore” an ε-fraction of the graph edges.

Furthermore, while the complexity of sampling and of approximate counting of edges are
the same (up to logn and 1/ε dependencies), we have preliminary results showing that for
other subgraphs this is not necessarily the case. Specifically, there exist graphs with constant
arboricity for which estimating the number of triangles can be done using O∗(1) queries, but
pointwise-close to uniform sampling requires Ω(n1/4) queries in expectation.

On the necessity of being provided with an upper bound on the arboricity. While our
algorithm does not require to be given any bound on the average degree d, it must be
provided with an upper bound α on the arboricity of the given graph. To see why this is true,
consider the following two graphs. The first graph consists of a perfect matching between
its vertices, so that both its average degree and its arboricity are 1. For α̃ > 1, the second
graph consists of a perfect matching over n − n/α̃ vertices and an α̃-regular graph over
the remaining n/α̃ vertices. This graph has an average degree of roughly 2, and arboricity
α̃. If an edge-sampling algorithm is not provided with an appropriate upper bound on the
arboricity, but is still required to run in (expected) time that grows like the ratio between
the arboricity and the average degree, then the algorithm can be used to distinguish between
the two graphs. However, assuming a random labeling of the vertices of the two graphs, this
cannot be done in time o(α̃).2

Pointwise closeness vs. closeness with respect to the TVD. The lower bound of The-
orem 2 holds for sampling from a distribution that is close to uniform with respect to TVD,

2 We note that this construction can be extended to work for any d ≤ α̃.
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and a fortiori to sampling from pointwise-almost-uniform distributions. In contrast, the
lower bound of Theorem 3 does not apply to sampling edges from a distribution that is ε-close
to uniform in TVD. Indeed, a simple rejection sampling procedure (essentially ignoring all
nodes with degrees greater than 1/ε) can sample edges from a distribution that is ε-close to
uniform in TVD using O(1/ε) queries in expectation. Thus, Theorem 3 gives a separation
between the tasks of sampling from distributions that are pointwise-close to uniform versus
close to uniform in TVD. The general upper and lower bounds of Theorems 1 and 2 show
that the separation between the complexity of these tasks can be at most poly-logarithmic
for any graph.

1.4 An application to approximately counting subgraphs
In a recent paper [2], Assadi, Kapralov, and Khanna made significant progress on the question
of counting arbitrary subgraphs in a graph in sublinear time. Specifically, they provide
an algorithm that estimates the number of occurrences of any arbitrary subgraph H in G,
denoted by #H, to within a (1 ± ε)-approximation with high probability. The running
time of their algorithm is O∗

(
mρ(H)

#H

)
, where ρ(H) is the fractional edge cover of H.3 Their

algorithm assumes access to uniform edge samples in addition to degree, neighbor and pair
queries. As noted in [2], their algorithm can be adapted to work with edge samples that are
pointwise ε-close to uniform (where this is not true for edge samples that are only ε-close to
uniform in TVD – e.g., when all the occurrences of H are induced by an ε-fraction of the
edges). Invoking the algorithm of [2], and replacing each edge sample with an invocation of
Sample-edge results in the following corollary.

I Corollary 1. Let G be a graph G = (V,E) with n nodes, m edges, and arboricity at most
α. There exists an algorithm that, given n, α, ε ∈ (0, 1), a subgraph H and query access to G,
returns a (1± ε) approximation of the number of occurrences of H in G, denoted #H. The
expected query complexity and running time of the algorithm are

O∗
(

min
{
m,

nα ·mρ(H)−1

#H

})
and O∗

(
nα ·mρ(H)−1

#H

)
,

respectively, where ρ(H) denotes the fractional edge cover of H, and the allowed queries are
degree, neighbor and pair queries.

Thus, by combining our result with [2], we extend the known results for approximately count-
ing the number of subgraphs in a graph in the uniform vertex sampling model. Furthermore,
for graphs in which m = Θ(nα), we obtain the same query complexity and running time
of [2] without the assumption that the algorithm has access to uniform edge samples.

1.5 A high-level presentation of the algorithm and lower bounds

1.5.1 The algorithm
While our results concern undirected graphs G = (V,E), it will be helpful to view each edge
{u, v} ∈ E as a pair of ordered edges (u, v) and (v, u). Sampling an edge (almost) uniformly
is equivalent to sampling a vertex with probability (almost) proportional to its degree. Hence

3 The fractional edge cover of a graph H = (VH , EH) is a mapping ψ : EH → [0, 1] such that for each
vertex a ∈ VH ,

∑
e∈EH ,a∈e ψ(e) ≥ 1. The fractional edge-cover number ρ(H) of H is the minimum

value of
∑

e∈EH
ψ(e) among all fractional edge covers ψ.

ICALP 2019
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we focus on the latter task. A single iteration of the algorithm we describe either returns a
vertex or outputs FAIL. We show that the probability that it outputs FAIL is not too large,
and that conditioned on the algorithm returning a vertex, each vertex v is returned with
probability proportional to its degree, up to a factor of (1± ε).

Our starting point is a structural decomposition result for graphs with bounded arboricity
(Lemma 2.3). Our decomposition defines a partition of the graph’s vertices into levels
L0, L1, . . . , L`. For parameters θ and β, the first layer L0 consists of all vertices with degree
at most θ, and for i > 0, level Li contains all vertices v that do not belong to previous levels
L0, . . . , Li−1, but have at least (1 − β)d(v) neighbors in these levels. We prove that that
for any graph with arboricity at most α, for θ = Θ(α logn/ε) and β = Θ(ε/ logn), there
exists such a partition into layers with ` = O(logn) levels. We stress that the algorithm does
not actually construct such a partition, but rather we use the partition in our analysis of
the algorithm.4

In order to gain intuition about the algorithm and its analysis, suppose that all vertices in
L0 have degree exactly θ, and that all edges in the graph are between vertices in consecutive
layers. Consider the following random walk algorithm. The algorithm first selects an index
j ∈ [0, `] uniformly at random. It then selects a vertex u0 uniformly at random. If u0 ∈ L0,
then it performs a random walk of length j starting from u0 (otherwise it outputs FAIL). If
the walk did not pass through any vertex in L0 (with the exception of the starting vertex
u0), then the algorithm returns the final vertex reached.

First observe that for every u ∈ L0, the probability that u is returned is 1
`+1 ·

1
n (the

probability that the algorithm selected j = 0 and selected u as u0). This equals d(u)
(`+1)·θ·n

(by our assumption that d(u) = θ for every u ∈ L0). Now consider a vertex v ∈ L1. The
probability that v is returned is at least 1

`+1 ·
(1−β)d(v)

n · 1θ = (1−β)d(v)
(`+1)·θ·n (the probability that the

algorithm selected j = 1, then selected one of v’s neighbors u ∈ L0, and finally selected to take
the edge between u and v). In general, our analysis shows that for every i and every v ∈ Li, the
probability that v is returned is at least (1−β)id(v)

(`+1)·θ·n . On the other hand, we show that for every
vertex v, the probability that v is returned is at most d(v)

(`+1)·θ·n . By the choice of θ and β we
get that each vertex v is returned with probability in the range [(1−ε)d(v)ρ(ε, n), d(v)ρ(ε, n)]
for ρ(ε, n) = Θ(ε/(αn log2 n)). By repeating the aforementioned random-walk process until
a vertex is returned – Θ

(
αn
m ·

log2 n
ε

)
= Θ

(
α
d ·

log2 n
ε

)
times in expectation – we obtain a

vertex that is sampled with probability proportional to its degree, up to (1± ε).
We circumvent the assumption that d(u) = θ for every u ∈ L0 by rejection sampling: In

the first step, if the algorithm samples u0 ∈ L0, then it continues with probability d(u)/θ
and fails otherwise. The assumption that all edges are between consecutive levels is not
necessary for the analysis described above to hold. The crucial element in the analysis is
that for every vertex v /∈ Li, where i > 0, at least (1 − β) of the neighbors of v belong to
L0, . . . , Li−1. This allows us to apply the inductive argument for the lower bound on the
probability that v is returned when we average over all choices of j (the number of steps in
the random walk). For precise details of the algorithm and its analysis, see Section 2.

We briefly discuss the relation between our algorithm for bounded-arboricity graphs,
which we denote by Aba and the algorithm presented in [15] (for the case that no upper
bound is given on the arboricity), which we denote by Aua. The algorithm Aua can be

4 This decomposition is related to the forest decomposition of Barenboim and Elkin [4]. The main
difference, which is essential for our analysis, is that the partition we define is based on the number of
neighbors that a vertex has in lower levels relative to its degree, while in [4] the partition is based on
the absolute number of neighbors in higher levels.
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viewed as considering a partition of the graph vertices into just two layers according to a
degree threshold of roughly

√
m/ε. It performs a random walk similarly to Aba, but where

the walk has either length 0 or 1. This difference in the number of layers and the length
of the walk, is not only quantitative. Rather, it allows Aua to determine to which layer a
vertex belongs simply according to its degree. This is not possible in the case of Aba (with
the exception of vertices in L0). Nonetheless, despite the apparent “blindness” of Aba to the
layers it traverses in the random walk, we can show the following: Choosing the length of
the random walk uniformly at random and halting in case the walk returns to L0, ensures
that each vertex is output with probability approximately proportional to its degree.

1.5.2 The lower bounds

In order to prove Theorem 2, we employ the method of [14] – which builds upon the paradigm
introduced in [7] – based on communication complexity. The idea of the proof is to reduce
from the two-party communication complexity problem of computing the disjointness function.
The reduction is such that (1) any algorithm that samples edges from an almost-uniform
distribution reveals the value of the disjointness function with sufficiently large probability,
and (2) every allowable query can be simulated in the two-party communication setting using
little communication.

As opposed to the proof of the lower bound for general α, in the case of α = 1 we did not
find a way to employ the communication-complexity method. Instead, we design a direct,
albeit somewhat involved, proof from first-principles.

Specifically, in order to prove Theorem 3, we consider a complete tree in which each
internal vertex has degree logn (so that its depth is Θ

(
logn

loglogn

)
). We then consider the

family of graphs that correspond to all possible labelings of such a tree. As noted in
Section 1.5.1, sampling edges almost uniformly is equivalent to sampling vertices with
probability approximately proportional to their degree. In particular, in our construction, the
label of the root should be returned with probability approximately logn/n. We show that
any algorithm that succeeds in returning the label of the root of the tree with the required
probability must perform Ω

(
logn

loglogn

)
queries.

To this end we define a process P that interacts with any algorithm A, answering A’s
queries while constructing a uniform random labeling of the vertices and edges in the tree.
The vertices of the tree are assigned random labels in [n], and for each vertex v in the tree,
its incident edges are assigned random labels in [d(v)]. We say that A succeeds, if after the
interaction ends, A outputs the label of the root of the tree, as assigned by P.

Let L = logn
C·loglogn be the lower bound we would like to prove, where C is a sufficiently

large constant (so that in particular, L is a (small) constant fraction of the depth of the
tree). Intuitively, A would like to “hit” a vertex at depth at most L and then “walk up the
tree” to the root. There are two sources of uncertainty for A. One is whether it actually hits
a vertex at depth at most L, and the second is which edges should be taken to go up the
tree. Our lower bound argument mainly exploits the second uncertainty, as we sketch next.

The process P starts with an unlabeled tree (of the aforementioned structure), and assigns
labels to its vertices and edges in the course of its interaction with A. Recall that P answers
the queries of A while constructing a uniform labeling. Therefore, whenever A asks a query
involving a new label (i.e., that has not yet appeared in its queries or answers to them), the
vertex to which this label is assigned, should be uniformly selected among all vertices that
are not yet labeled. We shall say that a vertex is critical it its depth is at most L. As long
as no critical vertex is hit, A cannot reach the root. This implies that if no critical vertex is
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hit in the course of its queries, then the probability that A succeeds is O(1/n).
While the probability of hitting a critical vertex is relatively small, it is not sufficiently

small to be deemed negligible. However, suppose that A hits a critical vertex u at depth
∆ < L, which occurs with probability roughly (logn)∆/n. Then, conditioned on this event,
each of the (logn)∆ edge-labeled paths from u is equally likely to lead to the root, and the
labels of vertices on these paths are uniformly distributed, thus intuitively conveying no
information regarding the “right path”.

A subtlety that arises when formalizing this argument is the following. Suppose that
in addition to hitting a critical vertex u, A hits another vertex, v, which is not necessarily
critical, but is at distance less than L from u (and in particular has depth at most 2L, which
we refer to as shallow). Then, a path starting from v might meet a path starting from u,
hence adding a conditioning that makes the above argument (regarding uniform labelings)
imprecise. We address this issue by upper bounding the probability of such an event (i.e., of
hitting both a critical vertex and a shallow vertex), and accounting for an event of this type
as a success of A.

1.6 Related work
Some of the works presented below were already mentioned earlier in the introduction, but
are provided in this subsection for the sake of completeness.

The work most closely related to the present work is the recent paper of Eden and
Rosenbaum [15]. In [15], the authors proved matching upper and lower bounds of Θ∗(

√
m/d)

for the problem of sampling an edge from an almost-uniform distribution in an arbitrary
graph using degree, neighbor, and pair queries.

The problem of sampling edges in a graph is closely related to the problem of estimating
m, the number of edges in the graph. In [17], Feige proved an upper bound of O∗(

√
m/d)

for obtaining a (2 + ε)-factor multiplicative approximation of m using only degree queries,5
and shows that it is not possible to go below a factor of 2 with a sublinear number of
degree queries. In [19], Goldreich and Ron showed that Θ∗(

√
m/d) queries are necessary and

sufficient to obtain a (1 + ε)-factor approximation of m if neighbor queries are also allowed.
Several works prove matching upper and lower bounds on the query complexity of counting

the number of triangles [8], cliques [13], and star-graphs of a given size [20] using degree,
neighbor, and pair queries (when the latter are necessary). Eden, Ron, and Seshadhri
devised algorithms for estimating the number of k-cliques [12] and moments of the degree
distribution [11] whose runtimes are parameterized by the arboricity α of the input graph
(assuming a suitable upper bound for α is given to the algorithm as input). These algorithms
outperform the lower bounds of [13] and [20] (respectively) in the case where α �

√
m.

In [9], Eden, Levi, and Ron described an efficient algorithm for distinguishing graphs with
arboricity at most α from those that are far from any graph with arboricity 3α.

Two recent works [1, 2] consider a query model that allows uniform random edge sampling
in addition to degree, neighbor, and pair queries. In this model, Aliakbarpour et al. [1]
described an algorithm for estimating the number of star subgraphs. In the same model,
Assadi et al. [2] devised an algorithm that relies on uniform edge samples as a basic query
to approximately count the number of instances of an arbitrary subgraph in a graph. The

5 To be precise, Feige [17] shows that, given a lower bound d0 on the average degree, O(
√
n/d0/ε) degree

queries are sufficient. If such a lower bound is not provided to the algorithm, then a geometric search
can be performed, as shown in [19].
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results in [1] and [2] imply that uniform edge samples afford the model strictly more power:
the sample complexity of the algorithm of [1] outperforms the lower bound of [20] for the
same task, and the sample complexity of the algorithm of [2] outperforms the lower bound
of [13] for estimating the number of cliques. (The results of [20, 13] are in the uniform vertex
sampling model.)

Organization
Due to space constraints, in this extended abstract we provide full details only for the proof
of our upper bound (Theorem 1). The proofs of Theorems 2 and 3 can be found in [10].

2 The Algorithm

In this section we describe an algorithm that samples an edge e from an arbitrary graph G
with arboricity at most α, according to a pointwise almost uniform distribution. Theorem 1
follows from our analysis of the algorithm. In what follows, for integers i ≤ j, we use [i, j] to
denote the set of integers {i, . . . , j}, and for a vertex v we let Γ(v) denote its set of neighbors.

As noted in the introduction, sampling edges from a uniform distribution is equivalent
to sampling vertices proportional to their degrees. Indeed, if each vertex v is sampled with
probability d(v)/2m, then choosing a random neighbor w ∈ Γ(v) uniformly at random returns
the (directed) edge e = (v, w) with probability 1/2m. Thus, it suffices to sample each vertex
v ∈ V with probability (approximately) proportional to its degree.

2.1 Decomposing graphs of bounded arboricity
Before describing the algorithm, we describe a decomposition of a graph G into layers
depending on its arboricity. We begin by recalling the following characterization of arboricity
due to Nash-Williams [21].

I Theorem 4 (Nash-Williams [21]). Let G = (V,E) be a graph. For a subgraph H of
G, let nH and mH denote the number of vertices and edges, respectively, in H. Then
α(G) = maxH {dmH/(nH − 1)e} , where the maximum is taken over all subgraphs H of G.

I Definition 2.1. Let G = (V,E) be a graph, and θ ∈ N, β ∈ (0, 1) parameters. We define
a (θ, β)-layering in G to be the sequence of non-empty disjoint subsets L0, L1, . . . , L` ⊆ V
defined by L0 = {v ∈ V | d(v) ≤ θ} and for i ≥ 1,

Li+1 =
{
v /∈ L0 ∪ L1 ∪ · · · ∪ Li

∣∣ |Γ(v) ∩ (L0 ∪ · · · ∪ Li)| ≥ (1− β)d(v)
}
.

That is, L0 consists of all vertices of degree at most θ, and a vertex v is in Li+1 if i is the
smallest index for which a (1− β)-fraction of v’s neighbors resides in L0 ∪ L1 ∪ · · · ∪ Li. We
say that G admits a (θ, β)-layered partition of depth ` if we have V = L0 ∪L1 ∪ · · · ∪L`.

I Notation 2.2. For a fixed i, we denote L≤i = L0 ∪ L1 ∪ · · · ∪ Li, and similarly for L<i,
L≥i, and L>i. We use the notation di(v) to denote |Γ(v) ∩ Li| and similarly for d≤i(v) and
d≥i(v).

I Lemma 2.3. Suppose G is a graph with arboricity at most α. Then G admits a (θ, β)-
layered partition of depth ` for θ = 4αdlogne/ε, β = ε/2dlogne, and ` ≤ dlogne.

Proof. For each i, let Wi = V \ (L0 ∪ L1 ∪ · · · ∪ Li−1) be the set of vertices not in levels
0, 1, . . . , i− 1. Let m(Wi) denote the number of edges in the subgraph of G induced by Wi.
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For any fixed i and v ∈Wi+1, we have d<i(v) < (1− β)d(v) because v /∈ L≤i. Therefore, v
has at least βd(v) > βθ neighbors in Wi. Summing over vertices v ∈Wi+1 gives

m(Wi) = 1
2
∑
v∈Wi

d≥i(v) ≥ 1
2
∑

v∈Wi+1

d≥i(v) > 1
2 |Wi+1| · βθ . (1)

On the other hand, sinceG has arboricity at most α, Theorem 4 implies thatm(Wi) ≤ α |Wi| .
Plugging this into Equation (1), we find that |Wi+1|

|Wi| ≤
2α
βθ = 1

2 , where the inequality is by
the choice of β and θ. Therefore, for ` ≤ dlogne, we have that W`+1 = ∅, implying that
V = L0 ∪ L1 ∪ · · · ∪ L`. J

2.2 Algorithm description
The algorithm exploits the structure of graphs G with arboricity at most α described in
Lemma 2.3. More precisely, as the algorithm does not have direct access to this structure,
the structure is used explicitly only in the analysis of the algorithm. Let L0, L1, . . . , L` be a
(θ, β)-layered partition of V with θ = 4αdlogne/ε, β = ε/dlogne, and ` = dlogne. Vertices
v ∈ L0 are sampled with probability exactly proportional to their degree using a simple
rejection sampling procedure, Sample-L0(G, θ). In order to sample vertices in layers Li for
i > 0, our algorithm performs a random walk starting from a random vertex in L0 chosen with
probability proportional to its degree. Specifically, the algorithm Sample-edge(G,α) chooses
a length j to the random walk uniformly in [0, `]. The subroutine Random-walk(G, θ, j)
performs the random walk for j steps, or until a vertex v ∈ L0 is reached in some step i > 0.
If the walk returns to L0, the subroutine aborts and does not return any vertex. (This
behavior ensures that samples are not too biased towards vertices in lower layers.) Otherwise,
Random-walk returns the vertex at which the random walk halts. Our analysis shows that
the probability that the random walk terminates at any vertex v ∈ V is approximately
proportional to d(v) (Corollary 2.7), although Sample-edge may fail to return any edge with
significant probability. Finally, we repeat Sample-edge until it successfully returns a vertex.

Sample-edge(G,α, ε)
1. Let θ = 4αdlogne/ε and let ` = dlogne.
2. Choose a number j ∈ [0, `] uniformly at random.
3. Invoke Random-walk(G, θ, j) and let v be the returned vertex if one was returned.

Otherwise, return FAIL.
4. Sample a uniform neighbor w of v and return e = (v, w).

Random-walk(G, θ, j)
1. Invoke Sample-L0(θ) and let v0 be the returned vertex if one was returned. Otherwise,

return FAIL.
2. For i = 1 to j do

a. Sample a random neighbor vi of vi−1.
b. If vi ∈ L0 then return FAIL.

3. Return vj .

Sample-L0(G, θ)
1. Sample a vertex u ∈ V uniformly at random and query for its degree.
2. If d(u) > θ return FAIL.
3. Return u with probability d(u)

θ , and with probability 1− d(u)
θ return FAIL.
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I Definition 2.4. We let Pj [v] denote the probability that Random-walk returns v, when
invoked with parameters G, θ and j ∈ [0, `]. We also let P≤j [v] def=

∑j
i=0 Pi[v] and similarly

for P≥j.

I Lemma 2.5. Let ` be as set in Step 1 of Sample-edge and let P≤j be as defined in
Definition 2.4. For all v ∈ V , P≤`[v] ≤ d(v)

nθ .

Proof. We argue by induction on j that for any j ∈ [0, `], P≤j [v] ≤ d(v)/nθ. For the
case j = 0, it is immediate from the description of Random-walk and Sample-L0 that
P0[v] = d(v)/(nθ) if v ∈ L0 and P0[v] = 0 otherwise. Further, for v ∈ L0, due to Step 2b,
Pi(v) = 0 for all i > 0, so that the lemma holds for all v ∈ L0. Now suppose that for all
v ∈ V we have P≤j−1(v) ≤ d(v)/nθ. Then for any fixed v /∈ L0 we compute

P≤j [v] =
j∑
i=1

Pi[v] =
j∑
i=1

∑
u∈Γ(v)

Pi−1[u] 1
d(u) =

∑
u∈Γ(v)

1
d(u)

j−1∑
i=0

Pi[u]

=
∑

u∈Γ(v)

1
d(u)P≤j−1[u] ≤

∑
u∈Γ(v)

1
d(u)

d(u)
nθ

= d(v)
nθ

.

The second equality holds by the definition of Random-walk, and the one before the last
inequality holds by the inductive hypothesis. J

I Lemma 2.6. Let ` be as set in Step 1 of Sample-edge. For every j ∈ [`], v ∈ Lj and
k ∈ [j, `], we have P≤k[v] ≥ (1−β)jd(v)

nθ .

Proof. We prove the claim by induction on j. For j = 0 and k = 0, by the description of
Random-walk and Sample-L0, for every v ∈ L0,

P0[v] = d(v)
nθ

. (2)

For j = 0 and 0 < k ≤ `,

P≤k[v] =
k∑
i=0

Pi[v] = P0[v] +
k∑
i=1

Pi[v] = d(v)
nθ

, (3)

where the last equality is due to Step 2b in Random-walk.
For j = 1 and 1 ≤ k ≤ `, for every v ∈ L1, according to Step 2b in the procedure

Random-walk, P0[v] = 0. Also, for every u /∈ L0, P0[u] = 0, since by Step 2 in Sample-L0 it
always holds that v0 is in L0. Therefore,

P1[v] =
∑

u∈Γ(v)

P0[u] · 1
d(u) =

∑
u∈Γ(v)∩L0

P0[u] · 1
d(u) =

∑
u∈Γ(v)∩L0

d(u)
nθ
· 1
d(u) = d0(v)

nθ
, (4)

where the second to last inequality is by Equation (2). By the definition of L1, for every
v ∈ L1, d0(v) ≥ (1− β)d(v), and it follows that P≤k[v] ≥ P1[v] ≥ (1− β)d(v)/(nθ).

We now assume that the claim holds for all i ≤ j − 1 and k ∈ [i, `], and prove that it
holds for j and for every k ∈ [j, `]. By the induction hypothesis and the definition of Lj , for
any v ∈ Lj we have

P≤k[v] ≥ P≤j [v] =
∑

u∈Γ(v)

P≤j−1[u] · 1
d(u) ≥

j−1∑
i=0

∑
u∈Γ(v)∩Li

P≤j−1[u] · 1
d(u)

≥
j−1∑
i=0

∑
u∈Γ(v)∩Li

(1− β)id(u)
nθ

· 1
d(u) ≥

(1− β)j−1d≤j−1(v)
nθ

≥ (1− β)jd(v)
nθ

.

Hence, the claim holds for every j ∈ [`] for every k ∈ [j, `]. J
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I Corollary 2.7. For any graph G with arboricity at most α, the procedure Sample-edge
when invoked with G, α and ε, returns each edge in the graph with probability in the range[

1−ε/2
ρ , 1

ρ

]
for ρ = nθ(`+ 1), θ = 4αdlogne/ε and ` = dlogne.

Proof. Consider a specific edge e∗ = (v∗, w∗), and let i be the index such that v∗ ∈ Li. By
the description of the procedure Sample-edge, the procedure Random-walk is invoked with
an index j that is chosen uniformly in [0, `]. Hence, the probability that v∗ is returned
by Random-walk in Step 3 is Pr[v = v∗] = 1

`+1
∑`
j=0 Pj [v] = 1

`+1P≤`[v]. By Lemma 2.5,
P≤`[v] ≤ d(v)

nθ , and by Lemma 2.6, P≤`[v∗] ≥ (1−β)`d(v∗)
nθ , where the probability is over the

random coins of the procedures Sample-edge and Random-walk. Hence,

Pr[v = v∗] ∈ [(1− β)`, 1] · d(v∗)
nθ(`+ 1) ,

implying that for ρ = nθ(`+ 1),

Pr[(v∗, w∗) is the returned edge] ∈ [(1− β)`, 1] · 1
nθ(`+ 1) ∈

[
1− ε/2

ρ
,

1
ρ

]
, (5)

where the last inequality is by the setting of β = ε/2dlogne. J

Proof of Theorem 1. Consider the algorithm that repeatedly calls Sample-edge(G,α) until
an edge e is successfully returned. For a single invocation of Sample-edge and fixed edge
e let Ae denote the event that Sample-edge returns e. By Corollary 2.7 we have that
Pr[Ae] ≥ (1− ε)/nθ(`+ 1). Further, for any edge e′ 6= e the events Ae and Ae′ are disjoint,
so we bound

Pr[Sample-edge returns an edge] = Pr
[⋃
e∈E

Ae

]
=
∑
e∈E

Pr[Ae] ≥
(1− ε)m
nθ(`+ 1) .

The expected number of iterations until Sample-edge succeeds is the reciprocal of this
probability, so

E[# invocations until success] ≤ nθ(`+ 1)
(1− ε)m = O

(nα
mε
· log2 n

)
.

Since each invocation of Sample-edge uses O(logn) queries, the expected number of queries
before an edge is returned is O( nαεm · log3 n).

Finally, when conditioned on a successful invocation of Sample-edge, Corollary 2.7 implies
that for any e, f ∈ E the probabilities pe, pf of returning e and f , respectively, satisfy

1− ε/2 ≤ pe
pf
≤ 1

1− ε/2 ≤ 1 + ε.

Therefore, the induced distribution P over edges returned by a successful invocation of
Sample-edge is pointwise ε-close to uniform, which gives the desired result. J
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obtaining nearly-optimal approximation guarantees for important classes of constraints but it leads
to Ω(n2) running times, since evaluating the multilinear extension is expensive. Our algorithm
maintains a fractional solution with only a constant number of entries that are strictly fractional,
which allows us to overcome this obstacle.
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1 Introduction

A set function f : 2V → R is submodular if for every A,B ⊆ V , we have f(A) + f(B) ≥
f(A ∪B) + f(A ∩B). Submodular functions naturally arise in a variety of contexts, both
in theory and practice. Submodular functions capture many well-studied combinatorial
functions including cut functions of graphs and digraphs, weighted coverage functions, as well
as continuous functions including the Shannon entropy and log-determinants. Submodular
functions are used in a wide range of application domains from machine learning to economics.
In machine learning, it is used for document summarization [9], sensor placement [7], exemplar
clustering [3], potential functions for image segmentation [4], etc. In an economics context,
it can be used to model market expansion [2], influence in social networks [5], etc. The
core mathematical problem underpinning many of these applications is the meta problem of
maximizing a submodular objective function subject to some constraints.
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A common approach to submodular maximization is a two-step framework based on the
multilinear extension F of f , a continuous function that extends f to the domain [0, 1]V . The
program first (1) maximizes F (x) subject to a continuous relaxation of the constraint and
then (2) rounds the solution x to an integral vector satisfying the constraint. This paradigm
has been very successful and it has led to the current best approximation algorithms for a
wide variety of constraints including cardinality constraints, knapsack constraints, matroid
constraints, etc. One downside with this approach is that in general, evaluating the multilinear
extension is expensive and it is usually approximately evaluated. To achieve the desirable
approximation guarantees, the evaluation error needs to be very small and in a lot of cases,
the error needs to be O(n−1) times the function value. Thus, even an efficient algorithm
with O(n) queries to the multilinear extension would require Ω(n2) running time.

In this work, we develop a new algorithm that achieves 1 − 1/e − ε approximation for
maximizing a monotone submodular function subject to a knapsack constraint. The basic
approach is still based on the multilinear extension but the algorithm ensures that the number
of fractional coordinates is constant, which allows evaluating the multilinear extension exactly
in constant number of queries to the original function. This approach allows us to bypass
the obstructions discussed above and get nearly linear running time.

I Theorem 1. There is an algorithm for maximizing a monotone submodular function subject
to a knapsack constraint that achieves a 1− 1/e− ε approximation using (1/ε)O(1/ε4)n logn
function evaluations and (1/ε)O(1/ε4)n log2 n arithmetic operations.

For simplicity, when stating running times, we assume that each call to the value oracle
of f takes constant time, since for the algorithms discussed the number of evaluations
dominates the running time up to logarithmic factors. Previously, Wolsey [11] gives an
algorithm with a 1− 1/eβ ≈ 0.35 approximation, where β is the unique root of the equation
ex = 2− x. Building on the work of Khuller et al. for the maximum k-coverage problem [6],
Sviridenko [10] gives an algorithm with a 1− 1/e approximation that runs in O(n5) time.
Badanidiyuru and Vondrak [1] give an algorithm with a 1− 1/e− ε approximation running
in n2(logn/ε)O(1/ε8) time. Our work builds on [1] and we discuss the relationship between
the two algorithms in more detail in Section 1.1.

Kulik et al. [8] obtain a 1 − 1/e − ε approximation for d knapsack constraints in time
Ω(nd/ε4) that comes from enumerating over d/ε4 items. The techniques in this paper
could likely be extended to obtain an algorithm for the continuous problem of maximizing
the multilinear extension subject to d knapsack constraints, with a running time that is
exponential in d and nearly-linear in n. We leave it as an open problem whether the rounding
can also be extended to multiple knapsack constraints.

Remark on the algorithm of [1]. We note that there are some technical issues in the
algorithm proposed in [1] for a knapsack constraint. The main issue, which was pointed out
by Yoshida [12], arises in the partitioning of the items into large and small items: an item e

is small if it has value f({e}) ≤ ε6f(OPT) and cost ce ≤ ε4, and it is large otherwise. The
algorithm enumerates the marginal values of the large items and thus the set of large items
was intended to be of size poly(1/ε). But this may not be true in general, as there could be
many items in OPT with singleton value greater than ε6f(OPT). On the other hand, the
assumption that the small items have small singleton values is crucial to ensuring that the
algorithm obtains a good value from the small items. Another issue arises in the rounding
algorithm. The fractional solution is rounded using a rounding algorithm for a partition
matroid that treats the parts independently. But in this setting an item participates in
several parts and we need to ensure that it is not selected more than once.
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1.1 Our techniques
As in the classical knapsack problem with a linear objective, the algorithms achieving optimal
approximation are based on enumeration techniques. One such approach is to enumerate the
most valuable items in OPT (in the submodular problem, we can determine which items
of OPT are valuable based on the Greedy ordering of OPT, see (1)) and greedily pack the
remaining items based on the marginal gain to cost density. This approach leads to the
optimal 1− 1/e approximation provided that we enumerate 3 items [10]. The running time
of the resulting algorithm is O(n5) and it can be improved to O(n4 log(n/ε)/ε) time at a loss
of ε in the approximation.

A different approach, inspired by the algorithms for the classical knapsack problem
that use dynamic programming over the (appropriately discretized) profits of the items, is
to enumerate over the marginal gains of the valuable items of OPT. Unlike the classical
setting with linear profits, it is considerably more challenging to leverage such an approach
in the submodular setting. Badanidiyuru and Vondrak [1] propose a new approach based
on this enumeration technique and continuous density Greedy with a running time of

n2
(

logn
ε

)O( 1
ε8 )

, which overcame the Ω(n4) running time barrier for the approaches that are
based on enumerating items.

In this work, we build on the approach introduced by [1] and we obtain a faster running
time of

( 1
ε

)O( 1
ε4 )

n log2 n. Our algorithm is impractical due to the high dependency on ε, but
it is theoretically interesting. Obtaining near-optimal approximations in nearly-linear time
for submodular maximization has been out of reach for all but a cardinality constraint.

Obtaining a fast running time poses several conceptual and technical challenges, and we
highlight some of them here. Let us denote the valuable items of OPT as OPT1, and let
OPT2 = OPT \ OPT1. For our algorithm, the set OPT1 has poly(1/ε) items and we can
handle them by enumerating over their marginal gains, appropriately discretized. Similarly
to [1], we use the guessed marginal gains to pack items that are competitive with OPT1: for
each guessed marginal gain, we find the cheapest item whose marginal gain is at least the
guessed value, and we add ε of the item to the fractional solution. The continuous approach
is necessary for ensuring that we obtain a good approximation, but it is already introducing
the following conceptual and technical difficulties:

We do not know how much budget is available for the remaining items. Since we packed
the items fractionally, we will need to perform the rounding to find out which of the
items will be in the final solution and their total budget. But we cannot do the rounding
before packing the remaining items. Additionally, we cannot afford to guess the budget
of OPT1, even approximately.
In the continuous setting, evaluating the multilinear extension takes Ω(n2) time in general.
We will need to ensure that we can round the resulting fractional solution.

A key idea in our algorithm, and an important departure from the approach of [1], is to
integrally pack the remaining items using density Greedy with lazy evaluations to obtain a
nearly-linear running time. The resulting fractional solution has only a constant number
of entries that are strictly fractional, and we show that this is beneficial both in terms of
running time and rounding: we can evaluate the multilinear extension in constant time and
we can exploit the special structure of the solution to round. However, the first difficulty
mentioned above remains a significant conceptual barrier for realizing this plan: if we cannot
get a handle on how much budget to allocate to density Greedy, we will not be able to round
the solution without violating the budget or losing value. Our solution here is based on the
following insights.

ICALP 2019



53:4 Fast Submodular Maximization with a Knapsack Constraint

Algorithm 1 Knapsack(f, ε).
1: t← 1/ε3
2: r ← 1/ε
3: M ← Θ(f(OPT))
4: Sbest ← ∅
5: Try all possible sequences:
6: {vp,i}: p ∈ {1, 2, . . . , 1/ε}, i ∈ {1, 2, . . . , t}, vp,i ∈ {0, εM/t, 2εM/t, . . . , 1}
7: {Wp}: p ∈ {1, 2, . . . , 1/ε}, Wp ∈ {0, εM, 2εM, . . . ,M}
8: {wp,i}: p ∈ {1, 2, . . . , 1/ε}, i ∈ {1, 2, . . . , r + 1}, wp,i ∈ {0, ε2Wp/r, 2ε2Wp/r, . . . ,Wp}
9: for every choice {vp,i}, {Wp}, {wp,i} do
10: x← KnapsackGuess(f, ε, {vp,i}, {Wp}, {wp,i})
11: S ← Round(x)
12: if f(S) > f(Sbest) then
13: Sbest ← S

14: end if
15: end for
16: Return Sbest

First, note that we may assume that every item in OPT2 has a cost that is small relative
to the total budget of OPT2: there can only be a small number of heavy items and each of
them has small marginal gain on top of OPT1, and thus we can discard them without losing
too much in the approximation. Moreover, if there are no heavy items at all, we can show
that density Greedy will not exceed the budget. Thus, if we knew the budget of OPT2, we
could remove all of the heavy items and run density Greedy on the remaining items.

Unfortunately, we cannot guess the budget of OPT2 since there are too many possible
choices. Instead, note that, since the cost of an item is its marginal value divided by its
density, a heavy item has large value or small density. If it has small density then intuitively
Greedy will not pick it. The problematic items are the ones that have large marginal values,
as density Greedy may pick them and they may be too heavy. Unfortunately, we cannot filter
out all the items with large marginal value, since those items may include items in OPT2
(note that even though every item in OPT2 has small marginal value on top of OPT1, it can
have large marginal value on top of our current fractional solution that does not necessarily
contain OPT1). Now the key observation is that the number of such items is small, and we
can handle them with additional guessing.

The final step of the algorithm is to round the fractional solution to a feasible integral
solution. Here we take advantage of the fact that the only entries that are strictly fractional
were introduced in the OPT1 stages of the algorithm. The fractional items can be mapped to
the items in OPT1 in such a way that every item in OPT1 is assigned a fractional mass of at
most 1 coming from items with smaller or equal cost. Thus, for each item in OPT1, we want
to select one of the items fractionally assigned to it. This is reminiscent of a partition matroid
and thus a natural approach is to use a matroid rounding algorithm such as pipage rounding
or swap rounding. However, an item may be fractionally assigned to more than one item in
OPT1, and we need to ensure that the rounding does not select the same item for different
items in OPT1. We show that we can do so using a careful application of swap rounding.
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Algorithm 2 KnapsackGuess(f, ε, {vp,i}, {Wp}, {wp,i}).
1: t← 1/ε3
2: r ← 1/ε
3: x0 ← 0
4: for p = 1, 2, . . . , 1/ε do
5: y(p,0) ← xp−1
6: Ap ← ∅
7: for i = 1, 2, . . . , t do
8: ap,i ← element with minimum size ce in {e /∈ Ap : F (y(p,i−1)∨1e)−F (y(p,i−1)) ≥
vp,i}

9: y(p,i) ← y(p,i−1) + ε1ap,i
10: Ap ← Ap ∪ {ap,i}
11: end for
12: if Wp = 0 then
13: Continue to the next phase p+ 1
14: end if
15: z(p,0) ← y(p,t)

16: Bp ← ∅
17: Let rp be the smallest i ∈ {0, 1, . . . , r} such that wp,i+1 ≤ ε(1− ε)Wp/r. If no such i

exists, let rp = r. 〈〈 rp is the number of large value elements in OPT2 〉〉
18: for i = 1, 2, . . . , rp do
19: bp,i ← element with minimum size ce in {e : F (z(p,i−1)∨1e)−F (z(p,i−1)) ≥ wp,i}
20: z(p,i) ← z(p,i−1) ∨ 1bp,i
21: Bp ← Bp ∪ {bp,i}
22: if F (z(p,i))− F (z(p,0)) ≥ ε(1− 12ε)Wp then
23: Set xp ← z(p,i) and continue to phase p+ 1
24: end if
25: end for
26: if F (z(p,rp))− F (z(p,0)) < ε(1− 12ε)Wp then
27: V ′ ← V \ {e : F (z(p,rp) ∨ 1e)− F (z(p,rp)) ≥ εWp/r}
28: Cp ← DensityGreedy(f, z(p,rp), ε(1− 12ε)Wp − F (z(p,rp)) + F (z(p,0)), V ′)
29: xp ← z(p,rp) ∨ 1Cp
30: end if
31: end for
32: Return x1/ε

2 The algorithm

We consider the problem of maximizing a monotone submodular function subject to a single
knapsack constraint. Each element e ∈ V has a cost ce ∈ R+, and the goal is to find a set
OPT ∈ argmax{f(S) :

∑
e∈S ce ≤ 1}. We assume that the knapsack capacity is 1, which we

may assume without loss of generality by scaling the cost of each element by the knapsack
capacity. We let F : [0, 1]V → R+ denote the multilinear extension f . For every x ∈ [0, 1]V ,
we have

F (x) =
∑
S⊆V

f(S)
∏
e∈S

xe
∏
e/∈S

(1− xe) = E[f(R(x))],
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53:6 Fast Submodular Maximization with a Knapsack Constraint

where R(x) is a random set that includes each element e ∈ V independently with probability
xe. For two vectors x and y, we let x ∨ y denote the vector such that (x ∨ y)i = max{xi, yi}
for all i ∈ V .

We fix an optimal solution to the problem that we denote by OPT. We assume that the
algorithm knows a constant approximation of f(OPT); such an approximation can be obtained
in nearly linear time by taking the best of the following two solutions: the solution obtained
by running Density Greedy (implemented using lazy evaluations, similarly to Algorithm 3)
and the solution consisting of the best single element. Let f(OPT) ≥M ≥ (1− ε)f(OPT)
denote the algorithm’s guess for the optimal value. There are O(1/ε) choices for M given
the constant approximation of f(OPT).

We order OPT as o1, o2, . . . , o|OPT|, where

oi = argmaxo∈OPT(f({o1, . . . , oi−1} ∪ {o})− f({o1, . . . , oi−1})) (1)

Let t = O(1/ε3), OPT1 = {o1, o2, . . . , ot}, and OPT2 = OPT \OPT1.
We emphasize that we use the above ordering of OPT and the partition of OPT into

OPT1 and OPT2 only for the analysis and to motivate the choices of the algorithm. In
particular, the algorithm does not know this ordering or partition.

It is useful to filter out from OPT2 the items that have large cost, more precisely, cost
greater than ε2(1 − c(OPT1)). Since every element o ∈ OPT2 satisfies f(OPT1 ∪ {o}) −
f(OPT1) ≤ ε3f(OPT1) and there are at most 1/ε2 such elements, this will lead to only an
εf(OPT) loss. For ease of notation, we use OPT2 to denote the set without these elements,
i.e., we assume that co ≤ ε2(1− c(OPT1)) for every o ∈ OPT2.

Algorithm 1 gives a precise description of the algorithm. The algorithm guesses a sequence
of values as follows.

Guessed values. Throughout the paper, we assume for simplicity that 1/ε is an integer.
Recall that t = 1/ε3. Let r = 1/ε (r is an upper bound on the number of items of OPT2
that have large marginal value in each phase).

A sequence
{
v1,1, v1,2, . . . , v1/ε,t

}
where vp,i ∈ {0, εM/t, 2εM/t, . . . ,M} is an integer

multiple of εM/t, for all integers p and i such that 1 ≤ p ≤ 1/ε and 1 ≤ i ≤ t. The value
vp,i is an approximate guess for the marginal value of oi ∈ OPT1 during phase p. There
are t/ε+ 1 = 1/ε4 + 1 choices for each vp,i and thus there are (1/ε4 + 1)1/ε4 = (1/ε)O(1/ε4)

possible sequences.
A sequence

{
W1,W2, . . . ,W1/ε

}
where Wp ∈ {0, εM, 2εM, . . . ,M} is an integer multiple

of εM , for all integers p such that 1 ≤ p ≤ 1/ε. The value Wp is an approximate guess
for the total marginal value of OPT2 in phase p. There are 1/ε+ 1 choices for each Wp

and thus there are (1/ε+ 1)1/ε possible sequences.
A sequence

{
w1,1, w1,2, . . . , w1/ε,1/ε+1

}
where wp,i ∈ {0, ε2Wp/r, 2ε2Wp/r, . . . ,Wp} is an

integer multiple of ε2Wp/r, for all integers p and i such that 1 ≤ p, i ≤ 1/ε (the value
Wp is the same as in the sequence above). The values wp,i, where i ∈ {1, 2, . . . , 1/ε}, are
approximate guesses for the marginal values of the items in OPT2 with large marginal
value in phase p. There are r/ε2 + 1 = 1/ε3 + 1 choices for each wp,i and thus there are
(1/ε)O(1/ε2) possible sequences.

The algorithm enumerates all possible such sequences. For each choice, the algorithm
works as follows. Let {vp,i}, {Wp}, and {wp,i} denote the current sequences. The algorithm
performs 1/ε phases. Each phase is comprised of three stages, executed in sequence in this
order: an OPT1 stage, a stage for the large value items in OPT2, and a Density Greedy
stage. We describe each of these stages in turn.
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The OPT1 stage of phase p. This stage uses the values {vp,i : 1 ≤ i ≤ t} as follows. We
perform t iterations. In each iteration i, we consider the items not selected in previous
iterations that have marginal value at least vp,i on top of the current solution, i.e., F (x ∨
1e)− F (x) ≥ vp,i. Among these items, we select the item with minimum cost and increase
its fractional value by ε. Together, the t iterations select t different items and increase their
fractional value by ε.

The stage of phase p for the large value items in OPT2. This stage uses the value Wp

and the values {wp,i : 1 ≤ i ≤ 1/ε} as follows. We perform at most r iterations. In each
iteration i, we find the minimum cost element that has marginal value at least wp,i on top
of the current solution, and we integrally select this item. (Note that this is similar to the
OPT1 stage, except that we select items integrally.) At the end of the stage, if the items
selected in this phase have total marginal gain at least ε(1− 12ε)Wp, then we end phase p
and proceed to the next phase. Otherwise, the algorithm proceeds to the Density Greedy
stage.

The Density Greedy stage of phase p. If the previous stage did not reach a total marginal
gain of at least ε(1− 12ε)Wp, we run the discrete Density Greedy algorithm until we reach
a gain of ε(1− 12ε)Wp. Before running Density Greedy, we remove from consideration all
elements whose marginal value is at least εWp/r. In every step, the Density Greedy algorithm
fully selects the item with largest density, i.e., ratio of marginal value to cost.

In order to achieve nearly linear time, we implement the Density Greedy algorithm using
approximate lazy evaluations as shown in Algorithm 3. We maintain the items in a priority
queue sorted by density. We initialize the marginal values and the densities with respect to
the initial solution. In each iteration of the algorithm, we find an item whose density with
respect to the current solution is within a factor of (1− ε) of the maximum density as follows.
We remove the item at the top of the queue. The marginal value of the item may be stale, so
we evaluate its marginal gain with respect to the current solution. If the new marginal gain
is within a factor of (1− ε) of the old marginal gain, it follows from submodularity that the
density of the item is within a factor of (1− ε) of the maximum density, and we select the
item. If the marginal gain has changed by a factor larger than (1− ε), we update the density
and reinsert the item in the queue. We also keep track of how many times each item’s density
has been updated and, if an item has been updated more than 2 ln(n/ε)/ε times, we discard
the item since it can no longer contribute a significant value to the solution.

Rounding the fractional solution. After 1/ε phases, we obtain a fractional solution with
O(1/ε4) fractional entries. We round the resulting fractional solution to an integral solution
using swap rounding, as shown in Algorithm 4.

The following theorem states our main result for the fractional solution. We will use the
second guarantee to obtain a fast rounding algorithm (see Section 3). We defer the proof of
the theorem to the full version of the paper.

I Theorem 2. There are choices for the guessed values {vp,i}, {Wp}, and {wp,i} for which
Algorithm 2 returns a fractional solution x with the following properties:
(1) F (x) ≥

(
1− 1

e −O(ε)
)
f(OPT);

(2) Let E be the set of all items e ∈ V such that 0 < xe < 1. There exists a mapping
σ : E × {1, 2, . . . , 1/ε} → OPT1 with the following properties:
(a) For every element e ∈ E and every phase p ∈ {1, 2, . . . , 1/ε} such that e ∈ Ap, σ(e, p)

is defined and c(e) ≤ c(σ(e, p)).
(b) For every element o ∈ OPT1, there are at most 1/ε pairs (e, p) such that σ(e, p) = o.
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Algorithm 3 LazyDensityGreedy(f, x,W, V ′).
1: S0 ← ∅
2: D ← ∅
3: u(e)← 0 for all e ∈ V ′
4: v(e)← F (x ∨ 1e)− F (x) for all e ∈ V ′
5: Maintain the elements in a priority queue sorted in decreasing order by key, where the

key of each element e is initialized to its density v(e)
c(e)

6: for i = 1, 2, . . . do
7: while true do
8: if queue is empty then
9: return Si−1
10: end if
11: Remove the element e from the priority queue with maximum key
12: v′(e)← F (x ∨ 1Si−1∪{e})− F (x ∨ 1Si−1)
13: u(e)← u(e) + 1
14: if v(e) ≥ (1− ε)v′(e) then
15: ei ← e

16: v(e)← v′(e)
17: Si ← Si−1 ∪ {ei}
18: if F (x ∨ 1Si)− F (x) ≥W then
19: return Si
20: end if
21: Exit the while loop and continue to iteration i+ 1
22: else
23: if u(e) ≤ 2 ln(n/ε)

ε then
24: v(e)← v′(e)
25: Reinsert e into the queue with key v′(e)

c(e)
26: else
27: D ← D ∪ {e}
28: end if
29: end if
30: end while
31: end for

3 Rounding algorithm and analysis of the final solution

In this section, we analyze the rounding algorithm (Algorithm 4) that rounds the fractional
solution x guaranteed by Theorem 2. We round the fractional entries of x as follows. We
initialize x̂ = x. For analysis purposes, we initialize O = OPT1. We sort the fractional
elements in non-increasing order according to their cost. While there are fractional elements,
we repeatedly move fractional mass between the two elements with highest cost as follows.
Let e1 and e2 be the fractional elements with the highest and second-highest cost, respectively.
We consider two cases:

Case 1: x̂e1 + x̂e2 ≤ 1. With probability x̂e1/(x̂e1 + x̂e2), we update x̂e1 ← x̂e1 + x̂e2

and x̂e2 ← 0; with the remaining probability, we update x̂e2 ← x̂e1 + x̂e2 and x̂e1 ← 0. If an
element becomes integral, we remove it from the list. For analysis purposes, if an element is
rounded up to 1, we pair it up with the element o1 ∈ O with highest cost, and we update
O ← O \ {o1}.
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Algorithm 4 Round(x).
1: Let σ1, . . . , σk be the fractional coordinates of x.
2: Sort σ1, . . . , σk so that cσ1 ≤ cσ2 ≤ · · · ≤ cσk .
3: while k > 0 do
4: if k = 1 then
5: xσ1 ← 1
6: return x

7: end if
8: if xσk + xσk−1 > 1 then
9: Pick u ∈ {0, 1} randomly such that Pr[u = 1] = 1−xσk−1

2−xσk−xσk−1

10: if u = 1 then
11: xσk ← 1
12: xσk−1 ← xσk−1 + xσk − 1
13: k ← k − 1
14: else
15: xσk−1 ← 1
16: xσk ← xσk−1 + xσk − 1
17: σk−1 ← σk
18: k ← k − 1
19: end if
20: else
21: Pick u ∈ {0, 1} randomly such that Pr[u = 1] = xσk

xσk+xσk−1

22: if u = 1 then
23: xσk ← xσk−1 + xσk
24: xσk−1 ← 0
25: σk−1 ← σk
26: k ← k − 1
27: else
28: xσk−1 ← xσk−1 + xσk
29: xσk ← 0
30: k ← k − 1
31: end if
32: if xσk = 1 then
33: k ← k − 1
34: end if
35: end if
36: end while

Case 2: x̂e1 + x̂e2 > 1. With probability (1− x̂e2)/(2− x̂e1− x̂e2), we update x̂e1 ← 1 and
x̂e2 ← x̂e1 +x̂e2−1; with the remaining probability, we update x̂e2 ← 1 and x̂e1 ← x̂e1 +x̂e2−1.
If an element becomes integral, we remove it from the list. For analysis purposes, if an
element is rounded up to 1, we pair it up with an element in O as follows. If the element e1
with the highest cost is rounded up to 1, we pair up e with the element o1 ∈ O with highest
cost, and we update O ← O \ {o1}. If the element e2 with the second-highest cost is rounded
up to 1, we pair up e2 with the element o2 ∈ O with the second-highest cost, and we update
O ← O \ {o2}.

If there is only one fractional entry then we can round this entry up to 1 and pair up this
element with the element o1 ∈ O with highest cost.
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We now turn to the analysis of the rounding. We first show that the expected value of
the rounded solution is at least F (x). We then show that the cost of the fractional elements
that were rounded up to 1 is at most c(OPT1), thus ensuring that the final rounded solution
is feasible.

I Lemma 3. E[F (x̂)] ≥ F (x).

Proof. Note that each iteration updates the solution as follows: x̂′ = x̂+ δ(1e1 −1e2), where
δ is a random value satisfying Eδ[x̂′] = x̂. The multilinear extension is convex along the
direction 1e−1e′ for every pair of elements e and e′. Therefore Eδ[F (x̂′)] ≥ F (Eδ[x̂′]) = F (x̂),
and the claim follows by induction. J

I Lemma 4. Let Ê be the set of elements corresponding to the fractional entries that were
rounded to 1. We have c(Ê) ≤ c(OPT1).

Proof. The lemma follows from the following invariant maintained by the algorithm for the
partially rounded solution x̂ and the set O ⊆ OPT1:
Invariant: Let o1, o2, . . . , op be the elements of O, labeled such that co1 ≥ co2 ≥ · · · ≥ cop .

Let e1, e2, . . . , e` be the elements corresponding to the fractional entries of x̂, labeled such
that ce1 ≥ ce2 ≥ · · · ≥ ce` . We define the following grouping of the elements e1, e2, . . . , e`
where each group contributes a fractional mass of 1 and each element belongs to at most
two groups. Consider the interval [0,

∑`
i=1 xei ] that is divided among the elements as

follows: [0, xe1) corresponds to e1 and, for all 2 ≤ i ≤ `, [
∑i−1
j=1 xej ,

∑i
j=1 xej ) corresponds

to ei. The elements that overlap with the interval [i− 1, i) define the i-th group. The
invariant is that x̂ and O satisfy the following properties:

(1)
∑`
i=1 x̂ei ≤ |O|, and

(2) for every i ≥ 1 and each element e in the i-th group, we have ce ≤ coi .
We will show the invariant using induction on the number of iterations. We start by showing
the invariant at the beginning of the rounding algorithm. We can show the invariant for x
and OPT1 using Theorem 2.

B Claim 5. The invariant holds for x and OPT1.

Proof. Recall that each phase p of the KnapsackGuess algorithm selects a set Ap of elements
and it increases the values of each of these elements by ε. Thus the fractional value xei of
each element ei ∈ E is equal to ε times the number of phases p such that ei ∈ Ap. Moreover,
by Theorem 2, there is a mapping σ : {e1, . . . , e`} × {1, 2, . . . , 1/ε} → OPT1 such that, for
each phase p such that ei ∈ Ap, σ(ei, p) exists and c(ei) ≤ c(σ(ei, p)).

We can think of each element ei having xei/ε copies and each element o ∈ OPT1 having
|σ−1(o)| ≤ 1/ε copies. By letting Ẽ and Õ be the copies of the elements in E and OPT1
(respectively), we can equivalently view σ as a bijection between Ẽ and Õ with the property
that, if σ((e, i)) = (o, j) then c(e) ≤ c(o). We may also assume that the elements of O with
the highest costs have 1/ε copies, i.e., there exists an index p′ such that o1, . . . , op′ have 1/ε
copies and op′+1, . . . , op have zero copies; we can ensure this property by reassigning pairs
in Ẽ to elements of O with higher cost. Thus, if we sort Ẽ and Õ in non-increasing order
according to costs, σ maps the first 1/ε elements of Ẽ to o1, the next 1/ε elements to o2, etc.
Since the i-th consecutive block of 1/ε elements of Ẽ represents the fractional mass of the
i-th group of elements, the second property of the invariant follows. The first property of the
invariant follows from the fact that ‖x‖1

ε = |Ẽ| = |Õ| ≤ |OPT1|
ε . C
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Now consider some iteration of the rounding algorithm, and suppose that the invariant
holds at the beginning of the iteration. The invariant guarantees that the total fractional
mass ‖x̂‖1 is at most |O| and, if we sort the fractional elements in non-increasing order
according to the cost, the first unit of fractional mass can be assigned to the element o1 with
highest cost in O, the next unit of fractional mass can be assigned to the element o2 with
second-highest cost in O, etc. We will use such an assignment to argue that the invariant
is preserved.

Suppose we are in Case 1, i.e., x̂e1 + x̂e2 ≤ 1, where e1 and e2 are the fractional elements
with the highest and second-highest cost. Let o1 be the element of O with the highest cost.
Since x̂e1 + x̂e2 ≤ 1, it follows from the invariant that the entire fractional mass of x̂e1 + x̂e2

is assigned to o1. Since the rounding step moves fractional mass between e1 and e2, this
property will continue to hold after the rounding step. If neither e1 nor e2 is rounded to 1,
the updated fractional solution clearly satisfies the invariant. Therefore we may assume that
one of e1, e2 is rounded to 1, and thus we must have had x̂e1 + x̂e2 = 1 before the rounding.
Since o1 is assigned a fractional mass of 1 in total, e1 and e2 are the only elements assigned
to o1. Therefore, after removing o1, e1, and e2, the remaining fractional entries and the set
O \ {o1} satisfy the invariant.

Suppose we are in Case 2, i.e., 1 < x̂e1 + x̂e2 ≤ 2, where e1 and e2 are the fractional
elements with the highest and second-highest cost, respectively. Let o1 and o2 be the elements
of O with the highest and second-highest cost, respectively. It follows from the invariant
that the fractional mass x̂e1 + x̂e2 is assigned to o1 and o2 as follows: the 1 unit of fractional
mass assigned to o1 is comprised of x̂e1 from e1 and 1− x̂e2 from e2, and o2 is assigned the
remaining x̂e1 + x̂e2 − 1 fractional mass of e2. The rounding step either rounds e1 to 1 by
moving 1− x̂e1 mass from e2 to e1 or it rounds e2 to 1 by moving 1− x̂e2 mass from e1 to
e2. In the former case, after removing e1 and o1, the remaining fractional entries and the set
O \ {o1} satisfy the invariant. Therefore we may assume that it is the latter, i.e., we round e2
to 1 and we remove e2 and o2. In this case, the fractional values on the elements e3, e4, . . .

move forward by 1− x̂e2 to fill in the space vacated by e2. We can also move forward their
assignment to O \ {o2}: e1 remains entirely assigned to o1 as before, and the assignment of
each of the elements e3, e4, . . . is shifted forward. Since we remove one unit from both the
total fractional mass and O, every remaining element becomes assigned to an element of
O \ {o2} whose cost is at least as much as the element of O that it was previously assigned.
Therefore the invariant is preserved. J
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1 Introduction

In this paper, we consider fast algorithms for monotone submodular maximization subject
to a matroid constraint. Submodular maximization is a central problem in combinatorial
optimization that captures several problems of interest, such as maximum coverage, facility
location, and welfare maximization. The study of this problem dates back to the seminal work
of Nemhauser, Wolsey and Fisher from the 1970’s [20, 21, 12]. Nemhauser et al. introduced a
very natural Greedy algorithm for the problem that iteratively builds a solution by selecting
the item with the largest marginal gain on top of previously selected items, and they showed
that this algorithm achieves a 1− 1/e approximation for a cardinality constraint and a 1/2
approximation for a general matroid constraint. The maximum coverage problem is a special
case of monotone submodular maximization with a cardinality constraint and it is 1− 1/e
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hard to approximate [10], and thus the former result is optimal. Therefore the main question
that was left open by the work of Nemhauser et al. is whether one can obtain an optimal,
1− 1/e approximation, for a general matroid constraint.

In a celebrated line of work [6, 24], Calinescu et al. developed a framework based on
continuous optimization and rounding that led to an optimal 1 − 1/e approximation for
the problem. The approach is to turn the discrete optimization problem of maximizing
a submodular function f subject to a matroid constraint into a continuous optimization
problem where the goal is to maximize the multilinear extension F of f (a continuous
function that extends f) subject to the matroid polytope (a convex polytope whose vertices
are the feasible integral solutions). The continuous optimization problem can be solved
approximately within a 1 − 1/e factor using a continuous Greedy algorithm [24] and the
resulting fractional solution can be rounded to an integral solution without any loss [1, 6, 8].
The resulting algorithm achieves the optimal 1− 1/e approximation in polynomial time.

Unfortunately, a significant drawback of this approach is that it leads to very high running
times. Obtaining fast running times is a fundamental direction both in theory and in practice,
due to the numerous applications of submodular maximization in machine learning, data
mining, and economics [18, 17, 14, 16, 9]. This direction has received considerable attention [2,
11, 3, 19, 5, 7], but it remains a significant challenge for almost all matroid constraints.

Before discussing these challenges, let us first address the important questions on how
the input is represented and how we measure running time. The algorithms in this paper as
well as prior work assume that the submodular function is represented as a value oracle that
takes as input a set S and returns f(S). For all these algorithms, the number of calls to the
value oracle for f dominates the running time of the algorithm (up to a logarithmic factor),
and thus we assume for simplicity that each call takes constant time.

The algorithms fall into two categories with respect to how the matroid is represented:
the independence oracle algorithms assume that the matroid is represented using an oracle
that takes as input a set S and returns whether S is feasible (independent); the representable
matroid algorithms assume that the matroid is given as input in an explicit form. The
representable matroid algorithms can be used for only a subclass of matroids, namely those
that can be represented as a linear matroid over vectors in some field1, but this class includes
practically-relevant matroids such as the uniform, partition, laminar, graphical, and general
linear matroids. The oracle algorithms apply to all matroids, but they are unlikely to lead to
the fastest possible running times: even an ideal algorithm that makes only O(k) independence
calls has a running time that is Ω(k2) in the independence oracle model (each oracle call
needs to read its input, which takes Θ(k) time in the worst case), even if the matroid is a
representable matroid such as a partition or a graphic matroid. This is because Thus there
have always been parallel lines of research for representable matroids and general matroids.

This work falls in the first category, i.e., we assume that the matroid is given as input
in an explicit form, and the goal is to obtain the best possible running times. Note that,
although all the representable matroids are linear matroids, it is necessary to consider each
class separately, since they have very different running times to even verify if a given solution
is feasible: for simple explicit matroids such as a partition or a graphic matroid, checking
whether a solution is feasible takes O(n) time, where n is the size of the ground set of
the matroid; for general explicit matroids represented using vectors in some field, checking
whether a solution is feasible takes O(kω) time, where k is the rank of the matroid and ω is
the exponent for fast matrix multiplication.

1 In a linear matroid, the ground set is a collection of n vectors and a subset of the vectors is feasible
(independent) if the vectors are linearly independent.
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Since in many practical settings only nearly-linear running times are feasible, an important
question to address is:

For which matroid constraints can we obtain
a nearly-optimal 1− 1/e− ε approximation in nearly-linear time?

Prior to this work, the only example of such a constraint was a cardinality constraint. For
a partition matroid constraint, the fastest running time is Ω(n3/2) in the worst case when
k = Ω(n) [5]. For a graphical matroid constraint, no faster algorithms are known than
a general matroid, and the running time is Ω(n2) in the worst case when k = Ω(n) [3].
Obtaining a best-possible, nearly-linear running time has been very challenging even for
these classes of matroids for the following reasons:

The continuous optimization is a significant time bottleneck. The continuous optimiza-
tion problem of maximizing the multilinear extension subject to the matroid polytope is an
integral component in all algorithms that achieve a nearly-optimal approximation guarantee.
However, the multilinear extension is expensive to evaluate even approximately. To achieve
the nearly-optimal approximation guarantees, the evaluation error needs to be very small
and in a lot of cases, the error needs to be O(n−1) times the function value. As a result, a
single evaluation of the multilinear extension requires Ω(n) evaluations of f . Thus, even a
very efficient algorithm with O(n) queries to the multilinear extension would require Ω(n2)
running time.

Rounding the fractional solution is a significant time bottleneck as well. Consider a
matroid constraint of rank k. The fastest known rounding algorithm is the swap rounding,
which requires k swap operations: in each operation, the algorithm has two bases B1 and B2
and needs to find x ∈ B1, y ∈ B2 such that B1 \ {x} ∪ {y} and B2 \ {y} ∪ {x} are bases. The
typical implementation is to pick some x ∈ B1 and try all y in B2, which requires us to check
independence for k solutions. Thus, overall, the rounding algorithm checks independence for
Ω(k2) solutions. Furthermore, each feasibility check takes Ω(k) time just to read the input.
Thus a generic rounding for a matroid takes Ω(k3) time.

Thus, in order to achieve a fast overall running time, one needs fast algorithms for both
the continuous optimization and the rounding. In this work, we provide such algorithms
for partition and graphic matroids, and we obtain the first algorithms with nearly-linear
running times. At the heart of our approach is a general, nearly-linear time reduction that
reduces the submodular maximization problem to two data structure problems: maintain an
approximately maximum weight base in the matroid through a sequence of decrease-weight
operations, and maintain an independent set in the matroid that allows us to check whether
an element can be feasibly added. This reduction applies to any representable matroid, and
thus it opens the possibility of obtaining faster running times for other classes of matroids.

1.1 Our contributions
We now give a more precise description of our contributions. We develop a new algorithm
for maximizing the multilinear extension subject to a general matroid constraint with a
1 − 1/e − ε approximation that achieves a fast running time provided we have fast data
structures with the following functionality:

A maximum weight base data structure: each element has a weight, and the goal is to
maintain an approximately maximum weight base in the matroid through a sequence of
operations, where each operation can only decrease the weight of a single element;
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An independent set data structure that maintains an independent set in the matroid and
supports two operations: add an element to the independent set, and check whether an
element can be added to the independent set while maintaining independence.

I Theorem 1. Let f be a monotone submodular function and letM be a matroid on a ground
set of size n. Let F be the multilinear extension of f and P (M) be the matroid polytope
ofM. Suppose that we have a data structure for maintaining a maximum weight base and
independent set as described above. There is an algorithm for the problem maxx∈P (M) F (x)
that achieves a 1− 1/e− ε approximation using O(n poly(logn, 1/ε)) calls to the value oracle
for f , data structure operations, and additional arithmetic operations.

Using our continuous optimization algorithm and additional results that are included
in the full version of this paper, we obtain the first nearly-linear time algorithms for both
the discrete and continuous problem with a graphic and a partition matroid constraint. In
the graphic matroid case, the maximum weight base data structure is a dynamic maximum
weight spanning tree (MST) data structure and the independent data structure is a dynamic
connectivity data structure (e.g., union-find), and we can use existing data structures that
guarantee a poly-logarithmic amortized time per operation [15, 13, 23]. For a partition
matroid, we provide data structures with a constant amortized time per operation. We
also address the rounding step and provide a nearly-linear time algorithm for rounding a
fractional solution in a graphic matroid. A nearly-linear time rounding algorithm for a
partition matroid was provided in [5].

I Theorem 2. There is an algorithm for maximizing a monotone submodular function subject
to a generalized partition matroid constraint that achieves a 1− 1/e− ε approximation using
O(n poly(1/ε, logn)) function evaluations and arithmetic operations.

I Theorem 3. There is an algorithm for maximizing a monotone submodular function
subject to a graphic matroid constraint that achieves a 1 − 1/e − ε approximation using
O(n poly(1/ε, logn)) function evaluations and arithmetic operations.

Previously, the best running time for a partition matroid was Ω(n3/2 poly(1/ε, logn)) in
the worst case when k = Ω(n) [5]. The previous best running time for a graphic matroid is
the same as the general matroid case, which is Ω(n2 poly(1/ε, logn)) in the worst case when
k = Ω(n) [3].

As shown by Vondrak [24], there is an efficient reduction from the submodular welfare
maximization problem to the submodular maximization problem with a partition matroid
constraint. Using this reduction and our algorithm for a partition matroid, we obtain a
nearly-linear time algorithm for welfare maximization as well.

I Theorem 4. There is a 1 − 1/e − ε approximation algorithm for submodular welfare
maximization using O(npoly(1/ε, logn)) function evaluations and arithmetic operations.

We conclude with a formal statement of the contributions made in this paper on which
the results above are based.

I Theorem 5. There is a dynamic data structure for maintaining a maximum weight base in
a partition matroid through a sequence of decrease weight operations with an O(1) amortized
time per operation.

I Theorem 6. There is a randomized algorithm based on swap rounding for the graphic
matroid polytope that takes as input a point x represented as a convex combination of bases
and rounds it to an integral solution S such that E[f(S)] ≥ F (x). The running time of the
algorithm is O(nt log2 n), where t is the number of bases in the convex combination of x.
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1.2 Technical overview
The starting point of our approach is the work [5]. They observed that the running time
of the continuous algorithm using the multilinear extension of [3] depends on the value
of the maximum weight base when the value is measured in the modular approximation
f ′(S) =

∑
e∈S f(e). It is clear that this approximation is at least the original function

and it can be much larger. They observed that the running time is proportional to the
ratio between the maximum weight base when weights are measured using the modular
approximation compared with the optimal solution when weights are measured using the
original function. On the other hand, in the greedy algorithm, the gain in every greedy step
is proportional to the maximum weight base when weights are measured using the modular
approximation. Thus, the discrete greedy algorithm makes fast progress precisely when the
continuous algorithm is slow and vice versa. Therefore, one can start with the discrete greedy
algorithm and switch to the continuous algorithm when the maximum weight solution is
small even when weights are measured using the modular approximation.

Our algorithm consists of two key components: (1) a fast dynamic data structure for
maintaining an approximate maximum weight base through a sequence of greedy steps, and
(2) an algorithm that makes only a small number of queries to the data structure. Even if
fast dynamic data structures are available, previous algorithms including that of [5] cannot
achieve a fast time, since they require Ω(nk) queries to the data structure: the algorithm of
[5] maintains the marginal gain for every element in the current base and it updates them
after each greedy step; since each greedy step changes the marginal gain of every element in
the base, this approach necessitates Ω(k) data structure queries per greedy step.

Our new approach uses random sampling to ensure that the number of queries to the
data structure is nearly-linear. After each greedy step, our algorithm randomly samples
elements from the base to check and update the marginal gains. Because of sampling, it can
only ensure that at least 1/2 of the elements in every value range have good estimates of
their values. However, this is sufficient for maintaining an approximate maximum weight
base. The benefit is that the running time becomes much faster: the number of checks
that do not result in updates is small and if we make sure that an update only happens
when the marginal gain change by a factor 1 − ε then the total number of updates is at
most O(n logn/ε). Thus we obtain an algorithm with only a nearly-linear number of data
structure queries and additional running time for any matroid constraint.

Our approach reduces the algorithmic problem to the data structure problem of main-
taining an approximate maximum weight base through a sequence of value updates. In fact,
the updates are only decrement in the values and thus can utilize even the decremental data
structures as opposed to fully dynamic ones. In the case of a partition matroid constraint,
one can develop a simple ad-hoc solution. In the case of a graphic matroid, one can use
classical data structures for maintaining minimum spanning trees [15].

In both cases, fast rounding algorithms are also needed. The work [5] gives an algorithm
for the partition matroid. We give an algorithm for the graphic matroid based on swap
rounding and classical dynamic graph data structures. To obtain fast running time, in each
rounding step, instead of swapping a generic pair, we choose a pair involving a leaf of the
spanning tree.

1.3 Basic definitions and notation
Submodular functions. Let f : 2V → R+ be a set function on a finite ground set V of size
n := |V |. The function is submodular if f(A) + f(B) ≥ f(A ∩B) + f(A ∪B) for all subsets
A,B ⊆ V . The function is monotone if f(A) ≤ f(B) for all subsets A ⊆ B ⊆ V . We assume
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that the function f is given as a value oracle that takes as input any set S ⊆ V and returns
f(S). We let F : [0, 1]V → R+ denote the multilinear extension f . For every x ∈ [0, 1]V ,
we have

F (x) =
∑
S⊆V

f(S)
∏
e∈S

xe
∏
e/∈S

(1− xe) = E[R(x)],

where R(x) is a random set that includes each element e ∈ V independently with probabil-
ity xe.

Matroids. A matroidM = (V, I) on a ground set V is a collection I of subsets of V , called
independent sets, that satisfy certain properties (see e.g., [22], Chapter 39). In this paper, we
consider matroids that are given to the input to the algorithm. Of particular interest are the
partition and graphic matroids. A generalized partition matroid is defined as follows. We are
given a partition V1, V2, . . . , Vh of V into disjoint subsets and budgets k1, k2, . . . , kh. A set S
is independent (S ∈ I) if |S ∩ Vi| ≤ ki for all i ∈ [h]. We let k =

∑h
i=1 ki denote the rank of

the matroid. A graphic matroid is defined as follows. We are given a connected graph on
k + 1 vertices and n edges. The independent sets of the matroid are the forests of this graph.

Additional notation. Given a set S ∈ I, we let fS denote the function fS : 2V \S → R≥0
such that fS(S′) = f(S′ ∪S)− f(S) for all S′ ⊆ V \S. We letM/S = (V \S, I ′) denote the
matroid obtained by contracting S inM, i.e., S′ ∈ I ′ iff S′ ∪ S ∈ I. We let P (M) denote
the matroid polytope ofM: P (M) is the convex hull of the indicator vectors of the bases of
M, where a base is an independent set of maximum size.

Constant factor approximation to f(OPT). Our algorithm needs a O(1) approximation
to f(OPT). Such an approximation can be computed very efficiently (see e.g. [5], Lemma 3.2).

1.4 Paper organization
In Section 2, we describe our algorithm for the continuous optimization problem of maximizing
the multilinear extension subject to a general matroid constraint, with the properties stated
in Theorem 1. As discussed in the introduction, our algorithm uses certain data structures
to achieve a fast running time. In the full version of the paper, we show how to obtain these
data structures for partition and graphic matroids. By combining these data structures
with the results of Section 2, we obtain nearly-linear time algorithms for the continuous
problem of maximizing the multilinear extension subject to a partition and graphic matroid
constraint. To obtain a fast algorithm for the discrete problem, we also need a fast algorithm
to round the fractional solution. Buchbinder et al. [5] give a nearly-linear time rounding
algorithm for a partition matroid. In the full version of the paper, we give a nearly-linear
time rounding algorithm for a graphic matroid, and prove Theorem 6. These results together
give Theorems 2 and 3.

2 The algorithm for the continuous optimization problem

In this section, we describe and analyze our algorithm for the problem maxx∈P (M) F (x) for
a general matroidM, and prove Theorem 1. The algorithm is given in Algorithm 1 and it
combines the continuous Greedy algorithm of [3] with a discrete Greedy algorithm that we
provide in this paper, building on [5].
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Algorithm 1 Algorithm for the continuous problem maxx∈P (M) F (x).

1: procedure ContinuousMatroid(f,M, ε)
2: c′ = Θ(1/ε), where the Θ hides a sufficiently large absolute constant
3: S = LazySamplingGreedy(f,M, ε)
4: x = ContinuousGreedy(fS ,M/S, c′, ε)
5: return 1S ∨ x 〈〈 x ∨ y is the vector (x ∨ y)i = max{xi, yi} for all i 〉〉
6: end procedure

The continuous Greedy algorithm. The algorithm used on line 4 is the algorithm of [3].
To obtain a fast running time, we use an independent set data structure to maintain the
independent sets constructed by the algorithm. The data structure needs to support two
operations: add an element to the independent set, and check whether an element can be
added to the independent set while maintaining independence. For a partition matroid, such
a data structure with O(1) time per operation is trivial to obtain. For a graphic matroid, we
can use a union-find data structure [13, 23] with a O(log∗ k) amortized time per operation.

I Lemma 7 (Corollary 3.1 in [5]; [3]). When run with values c and δ as input, Con-
tinuousGreedy uses O(n ln(n/δ)/δ2) independent set data structure operations, and
O(cn ln2(n/δ)/δ4) queries to the value oracle of f and additional arithmetic operations.
Moreover, if maxS∈I

∑
e∈S f(e) ≤ c · f(OPT), where OPT ∈ argmaxS∈If(S), the solution

x returned by the algorithm satisfies F (x) ≥ (1− 1
e − δ)f(OPT).

The discrete Greedy algorithm is given in Algorithm 2. The algorithm works for any
matroid constraint for which we can provide a fast data structure for maintaining a maximum
weight base (note that the base is only an approximate maximum weight base, and we drop
the word approximate for simplicity). We now describe the properties we require from this
data structure. As discussed in the introduction, we give such data structures for a graphic
matroid and a partition matroid in the full version of this paper.

The dynamic maximum weight base data structure. Algorithm 2 makes use of a data
structure for maintaining the maximum weight base in the matroid, where each element has
a weight and the weights are updated through a sequence of updates that can only decrease
the weights. The data structure needs to support the following operation: UpdateBase
decreases the weight of an element and it updates the base to a maximum weight base for
the updated weights. The data structures that we provide in the full version of the paper for
a graphic and a partition matroid support this operation in O(poly(log k)) amortized time.

We note here that the data structure maintains a maximum weight base of the original
matroidM, and not the contracted matroidM/S obtained after picking a set S of elements.
This suffices for us, since the discrete Greedy algorithm that we use will not change the
weight of an element after it was added to the solution S. Due to this invariant, we can show
that the maximum weight base B ofM that the data structure maintains has the property
that S ⊆ B at all times, and B \ S is a maximum weight base inM/S. This follows from
the observation that, if an element e is in the maximum weight base B and the only changes
to the weights are such that the weight of e remains unchanged and the weights of elements
other than e are decreased, then e remains in the new maximum weight base.

The discrete Greedy algorithm. The algorithm (Algorithm 2) is based on the random
residual Greedy algorithm of [4]. The latter algorithm constructs a solution S over k iterations.

ICALP 2019



54:8 Fast Submodular Maximization with Matroid Constraints

Algorithm 2 LazySamplingGreedy(f,M, ε).
1: M = Θ(f(OPT)), c = Θ(1/ε), N = 2 ln(k/ε)/ε
2: 〈〈 maintain cached (rounded) marginal values 〉〉
3: For each e ∈ V , let w(e) = (1− ε)NM if f({e}) ≤ (1− ε)NM and w(e) = (1− ε)j−1M if
f({e}) ∈ ((1− ε)jM, (1− ε)j−1M ]

4: 〈〈 maintain a base B of maximum w(· ) value in a data structure that
supports the UpdateBase operation 〉〉

5: B = argmaxS∈I
∑
e∈S w(e)

6: 〈〈 maintain a partition of B into buckets 〉〉
7: B(j) = {e ∈ B : w(e) = (1− ε)j−1M} for each j ∈ [N ]
8: W =

∑
e∈B w(e)

9: 〈〈 main loop 〉〉
10: S = ∅
11: for t = 1, 2, . . . , k do
12: Call RefreshValues
13: if W ≤ 4cM then
14: return S

15: end if
16: Sample an element e uniformly at random from B

17: S ← S ∪ {e}
18: Remove e from the buckets of B for refreshing purpose so that w(e) is now fixed
19: end for
1: procedure RefreshValues 〈〈 Spot check and update values 〉〉
2: for j = 1 to N do
3: T = 0
4: while T < 4 log2 n do
5: if B(j) is empty then
6: Exit the while loop and continue to iteration j + 1
7: end if
8: Sample e uniformly at random from B(j)

9: Let v(e) = f(S ∪ {e})− f(S) be the current marginal value of e
10: if v(e) < (1− ε)jM then
11: T = 0
12: UpdateBase(e, j, v(e))
13: else
14: T ← T + 1
15: end if
16: end while
17: end for
18: end procedure

In each iteration, the algorithm assigns a linear weight to each element that is equal to the
marginal gain f(S ∪ {e}) − f(S) on top of the current solution, and it finds a maximum
weight base B inM/S. The algorithm then samples an element of B uniformly at random
and adds it to the solution. As discussed in Section 1.2, the key difficulty for obtaining a fast
running time is maintaining the maximum weight base. Our algorithm uses the following
approach for maintaining an approximate maximum weight base. The algorithm maintains
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the marginal value of each element (rounded to the next highest power of (1− ε)), and it
updates it in a lazy manner; at every point, w(e) denotes the cached (rounded) marginal
value of the element, and it may be stale.

The algorithm maintains the base B using the data structure discussed above that
supports the UpdateBase operation. Additionally, the elements of B \ S are stored into
buckets corresponding to geometrically decreasing marginal values. More precisely, there
are N = O(log(k/ε)/ε) buckets B(1), B(2), . . . , B(N). The j-th bucket B(j) contains all of
the elements of B with marginal values in the range ((1 − ε)jM, (1 − ε)j−1M ], where M
is a value such that f(OPT) ≤ M ≤ O(1)f(OPT) (we assume that the algorithm knows
such a value M , as it can be obtained in nearly-linear time, see e.g. Lemma 3.2 in [5]). The
remaining elements of B that do not appear in any of the N buckets have marginal values
at most (1 − ε)NM ; these elements have negligible total marginal gain, and they can be
safely ignored.

In order to achieve a fast running time, after each Greedy step, the algorithm uses
sampling to (partially) update the base B, the cached marginal values, and the buckets. This
is achieved by the procedure RefreshValues, which works as follows. RefreshValues
considers each of the buckets in turn. The algorithm updates the bucket B(j) by spot checking
O(logn) elements sampled uniformly at random from the bucket. For each sampled element
e, the algorithm computes its current marginal value and, if it has decreased below the range
of its bucket, it moves the element to the correct buckets and call UpdateBase to maintain
the invariant that B is a maximum weight base.

When the algorithm finds an element whose bucket has changed, it resets to 0 the count
for the number of samples taken from the bucket. Thus the algorithm keeps sampling from
the bucket until Θ(logn) consecutive sampled elements do not change their bucket. The
sampling step ensures that, with high probability, in each bucket at least half of the elements
are in the correct bucket. (We remark that, instead of resetting the sample count to 0, it
suffices to decrease the count by 1, i.e., the count is the total number of samples whose
bucket was correct minus the number of samples whose bucket was incorrect. The algorithm
then stops when this tally reaches Θ(logn). This leads to an improvement in the running
time, but we omit it in favor of a simpler analysis.)

After running RefreshValues, the algorithm samples an element e uniformly at random
from B \ S and adds it to S. The algorithm then removes e from the buckets; this ensures
that the weight of e will remain unchanged for the remainder of the algorithm.

2.1 Analysis of the approximation guarantee
Here we show that Algorithm 1 achieves a 1− 1/e− ε approximation. We first analyze the
LazySamplingGreedy algorithm. We start with some convenient definitions. Consider
some point in the execution of the LazySamplingGreedy algorithm. Consider a bucket
B(j). At this point, each element e ∈ B(j) is in the correct bucket iff its current marginal
value f(S ∪ {e}) − f(S) lies in the interval ((1 − ε)jM, (1 − ε)j−1M ] (its cached marginal
value w(e) lies in that interval, but it might be stale). We say that the bucket B(j) is good if
at least half of the elements in B(j) are in the correct bucket, and we say that the bucket is
bad otherwise.

The following lemma shows that, with high probability over the random choices of
RefreshValues, each run of RefreshValues ensures that every bucket B(j) with j ∈ [N ]
is good.

I Lemma 8. Consider an iteration in which LazySamplingGreedy calls RefreshValues.
When RefreshValues terminates, the probability that the buckets {B(j) : j ∈ [N ]} are all
good is at least 1− 1/n2.
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Proof. We will show that the probability that a given bucket is bad is at most 5 logn/n3; the
claim then follows by the union bound, since there are N ≤ n/(5 logn) buckets. Consider a
bucket B(j), where j ∈ [N ], and suppose that the bucket is bad at the end of RefreshValues.
We analyze the probability the bucket is bad because the algorithm runs until iteration
t, which is the last time the algorithm finds an element in B(j) in the wrong bucket, and
for 4 logn iterations after t, it always find elements in the right bucket even though only
1/2 of B(j) are in the right bucket. Since at most half of the elements of B(j) are in the
correct bucket and the samples are independent, this event happens with probability at most
(1/2)4 log2 n = 1/n4. By the union bound over all choices of t = 1, 2, . . . , 5n logn, the failure
probability for bucket B(j) is at most 5 logn/n3. J

Since LazySamplingGreedy performs at most k ≤ n iterations, it follows by the union
bound that all of the buckets {B(j) : j ∈ [N ]} are all good throughout the algorithm with
probability at least 1− 1/n. For the remainder of the analysis, we condition on this event.
Additionally, we fix an event specifying the random choices made by RefreshValues and
we implicitly condition all probabilities and expectations on this event.

Let us now show that B is a suitable approximation for the maximum weight base in
M/S with weights given by the current marginal values f(S ∪ {e})− f(S).

I Lemma 9. Suppose that every bucket of B is good throughout the algorithm. Let v(e) =
f(S ∪ {e})− f(S) denote the current marginal values. We have
(1) w(S′) ≥ v(S′) for every S′ ⊆ V ;
(2) w(B) ≥ w(S′) for every S′ ⊆ V ;
(3) v(B) ≥ 1−ε

2 · w(B)− ε2

k ·M .

Proof. The first property follows from the fact that, by submodularity, the weights w(·) are
upper bounds on the marginal values.

The second property follows from the fact that the algorithm maintains the invariant
that B is the maximum weight base inM/S with respect to the weights w(·).

Let us now show the third property. Consider the following partition of B into sets B1,
B2, and B3, where: B1 is the set of all elements e ∈ B such that e is in one of the buckets
{B(j) : j ∈ [N ]} and moreover e is in the correct bucket (note that (1− ε)w(e) ≤ v(e) ≤ w(e)
for every e ∈ B1); B2 is the set of all elements e ∈ B such that e is in one of the buckets
{B(j) : j ∈ [N ]} but e is not in the correct bucket (i.e., (1 − ε)NM < w(e) but v(e) <
(1− ε)w(e)); B3 is the set of all elements e ∈ B such that w(e) < (1− ε)NM ≤ (ε/k)2M .

Since |B3| ≤ k, we have w(B3) ≤ |B3| ·
(
ε
k

)2
M ≤ ε2

kM.

Since all of the buckets are good, it follows that the total w(·) weight of the elements
that are in the correct bucket is at least 1

2 · w(B \B3). Indeed, we have

w(B1) =
N∑
j=1

w(B1∩B(j)) =
N∑
j=1

(1−ε)j−1M |B1∩B(j)| ≥
N∑
j=1

(1−ε)j−1M
|B(j)|

2 = w(B \B3)
2 .

Finally, since v(e) ≥ (1− ε)w(e) for every e ∈ B1, we have

v(B) ≥ v(B1) ≥ (1− ε)w(B1) ≥ 1− ε
2 w(B \B3) ≥ 1− ε

2 w(B)− ε2

k
M. J

Now we turn to the analysis of the main for loop of LazySamplingGreedy (lines
11–19). Let Z be a random variable equal to the number of iterations where the algorithm
executes line 17. We define sets {St : t ∈ {0, 1, . . . , k}} and {OPTt : t ∈ {0, 1, . . . , k}} as
follows. Let S0 = ∅ and OPT0 = OPT. Consider an iteration t ≤ Z and suppose that
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St−1 and OPTt−1 have already been defined and they satisfy St−1 ∪ OPTt−1 ∈ I and
|St−1|+ |OPTt−1| = k. Consider a bijection π : B → OPTt−1 so that OPTt−1 \ {π(e)}∪ {e}
is a base ofM/St−1 for all e ∈ B (such a bijection always exists, see e.g., Corollary 39.12a in
[22]). Let et be the element sampled on line 17 and ot = π(et). We define St = St−1 ∪ {et}
and OPTt = OPTt−1 \ {ot}. Note that St ∪OPTt ∈ I. For each t > Z, we define St = SZ
and OPTt = OPTZ .

In each iteration t, the gain in the Greedy solution value is f(St)− f(St−1), and the loss
in the optimal solution value is f(OPTt−1)− f(OPTt) (when we add an element to St−1,
we remove an element from OPTt−1 so that St ∪ OPTt remains a feasible solution). The
following lemma relates the two values in expectation.

I Lemma 10. For every t ∈ [k], if all of the buckets B(j) are good, we have
E[f(St)− f(St−1)] ≥ c · E[f(OPTt−1)− f(OPTt)].

Proof. Consider t ∈ [k]. Recall that Z is the number of iterations where the algorithm
executes line 17. If t > Z, the inequality is trivially satisfied, since both expectations
are equal to 0. Therefore we may assume that t ≤ Z and thus St = St−1 ∪ {et} and
OPTt = OPTt−1 \ {ot}.

Let us now fix an event Rt−1 specifying the random choices for the first t− 1 iterations,
i.e., the random elements e1, . . . , et−1 and o1, . . . , ot−1. In the following, all the probabilities
and expectations are implicitly conditioned on Rt−1. Note that, once Rt−1 is fixed, St−1 and
OPTt−1 are deterministic.

Let us first lower bound E[f(St−1 ∪ {et})− f(St−1)]. Let wt, Bt, and Wt denote w, B,
and W right after executing RefreshValues in iteration t. Note that, since Rt−1 and the
random choices of RefreshValues are fixed, wt, Bt, and Wt are deterministic.

Recall that all of the buckets of Bt are good, i.e., at least half of the elements of B(j)
t are

in the correct bucket, for every j ∈ [N ]. Let B′t be the subset of Bt consisting of all of the
elements that are in the correct bucket, and let B′′t be the subset of Bt consisting of all of
the elements that are not in any bucket.

For every e ∈ B′t, we have f(St−1 ∪ {e})− f(St−1) ≥ (1− ε)wt(e). For every e ∈ B′′t , we
have f(St−1∪{e})−f(St−1) ≤ wt(e) = (1−ε)NM ≤ (ε/k)2M, and therefore wt(B′′t ) ≤ ε2

kM.

Since all of the buckets are good and Wt > 4cM (the algorithm did not terminate on line 14),
we have

∑
e∈B′t

wt(e) =
N∑
j=1

wt(B′t ∩B
(j)
t ) =

N∑
j=1

(1− ε)j−1M |B′t ∩B
(j)
t | ≥

N∑
j=1

(1− ε)j−1M
|B(j)
t |
2

= wt(Bt \B′′t )
2 ≥ Wt

2 −
ε2

2kM ≥
(

2c− ε2

2k

)
M ≥

(
2c− ε2

2k

)
f(OPT).

By combining these observations, we obtain

E[f(St−1 ∪ {et})− f(St−1)] ≥ E[f(St−1 ∪ {et})− f(St−1)|et ∈ B′t] Pr[et ∈ B′t]

= E[f(St−1 ∪ {et})− f(St−1)|et ∈ B′t] ·
|B′t|
|Bt|

≥ (1− ε)E[wt(et)|et ∈ B′t] ·
|B′t|
|Bt|

= (1− ε)wt(B′t) ·
1
|B′t|

· |B
′
t|

|Bt|
≥

(1− ε)
(

2c− ε2

2k

)
|Bt|

f(OPT) ≥ c

|Bt|
f(OPT)

Let us now upper bound E[f(OPTt−1)− f(OPTt)]. Recall that et is chosen randomly from
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B and thus, ot is chosen uniformly at random from OPTt−1 (since π is a bijection). Hence

E[f(OPTt−1)−f(OPTt−1 \{ot})] =
∑

o∈OPTt−1

(f(OPTt−1)−f(OPTt−1 \{o})) ·
1

|OPTt−1|

By submodularity, we have

f(OPTt−1) ≥
m∑
j=1

(f(OPTt−1)− f(OPTt−1 \ {oj}).

Therefore

E[f(OPTt−1)− f(OPTt−1 \ {ot})] ≤
f(OPTt−1)
|OPTt−1|

≤ f(OPT)
|OPTt−1|

.

To recap, we have shown that:

E[f(St−1 ∪ {et})− f(St−1)] ≥ c · f(OPT)
|Bt|

,

E[f(OPTt−1)− f(OPTt−1 \ {ot})] ≤
f(OPT)
|OPTt−1|

.

Since |Bt| = |OPTt−1|, we have

E[f(St−1 ∪ {et})− f(St−1)] ≥ c · E[f(OPTt−1)− f(OPTt−1 \ {ot})].

Since the above inequality holds conditioned on every given event Rt−1, it holds uncondi-
tionally, and the lemma follows. J

The following lemma follows from Lemmas 9 and 10.

I Lemma 11. If all of the buckets B(j) are good, the LazySamplingGreedy algorithm
(Algorithm 2) returns a set S ∈ I with the following properties.
(1) maxS′ : S′∪S∈I

∑
e∈S′ fS(e) ≤ 4cM = O(1/ε)f(OPT).

(2) There is a random subset OPT′ ⊆ OPT depending on S with the following properties:
S ∪OPT′ ∈ I and E[f(OPT′)] ≥ f(OPT)− 1

c · E[f(S)] ≥
(
1− 1

c

)
f(OPT).

By combining Lemmas 7 and 11, we obtain:

I Lemma 12. The ContinuousMatroid algorithm (Algorithm 1) returns a solution
1S ∨ x ∈ P (M) such that F (1S ∨ x) ≥ (1− 1/e−O(ε))f(OPT) with constant probability.

Proof. Note that, in order to apply Lemma 7, we need the following condition to hold:
maxS′ : S′∪S∈I

∑
e∈S′ fS(e) ≤ c′fS(OPT′′), where OPT′′ ∈ argmaxS′ : S′∪S∈IfS(S′).

Using Lemma 11, we can show that the above condition holds with constant probability
as follows. Let OPT′ be the set guaranteed by Lemma 11. We have fS(OPT′) ≤ fS(OPT′′)
and f(S ∪OPT′) ≥ f(OPT′). Therefore fS(OPT′′) ≥ fS(OPT′) ≥ f(OPT′)− f(S).

By Lemma 11, we have E[f(OPT)− f(OPT′)] ≤ f(OPT)/c. Therefore, by the Markov
inequality, with probability at least 2/3, we have f(OPT)−f(OPT′) ≤ 3f(OPT)/c. Consider
two cases. First, if f(S) ≥ (1− 1/e)f(OPT) then the algorithm can simply return S. Second,
if f(S) < (1 − 1/e)f(OPT) then fS(OPT′′) ≥ f(OPT′) − f(S) ≥ (1/e − 3/c)f(OPT).
Therefore, maxS′ : S′∪S∈I

∑
e∈S′ fS(e) ≤ O(cfS(OPT′′)) ≤ c′fS(OPT′′). Thus the conditions

of Lemma 7 are satisfied and thus the continuous Greedy algorithm returns a solution
x ∈ P (M/S) such that

F (1S ∨ x)− f(S) ≥
(

1− 1
e
− ε
)

(f(OPT′)− f(S))

≥
(

1− 1
e
− ε
)(

1− 3
c

)
f(OPT)− f(S) ≥

(
1− 1

e
− 2ε

)
f(OPT)− f(S). J
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Abstract

Exact string matching in labeled graphs is the problem of searching paths of a graph G = (V,E) such
that the concatenation of their node labels is equal to the given pattern string P [1..m]. This basic
problem can be found at the heart of more complex operations on variation graphs in computational
biology, of query operations in graph databases, and of analysis operations in heterogeneous networks.

We prove a conditional lower bound stating that, for any constant ε > 0, an O(|E|1−εm)-time,
or an O(|E|m1−ε)-time algorithm for exact string matching in graphs, with node labels and patterns
drawn from a binary alphabet, cannot be achieved unless the Strong Exponential Time Hypothesis
(SETH) is false. This holds even if restricted to undirected graphs with maximum node degree two,
i.e. to zig-zag matching in bidirectional strings, or to deterministic directed acyclic graphs whose
nodes have maximum sum of indegree and outdegree three. These restricted cases make the lower
bound stricter than what can be directly derived from related bounds on regular expression matching
(Backurs and Indyk, FOCS’16). In fact, our bounds are tight in the sense that lowering the degree
or the alphabet size yields linear-time solvable problems.

An interesting corollary is that exact and approximate matching are equally hard (quadratic
time) in graphs under SETH. In comparison, the same problems restricted to strings have linear-time
vs quadratic-time solutions, respectively (approximate pattern matching having also a matching
SETH lower bound (Backurs and Indyk, STOC’15)).
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55:2 On the Complexity of String Matching in Graphs

1 Introduction

String matching is the classical problem of finding the occurrences of a pattern string
as a substring of a text string [22]. As most of today’s data is linked, it is natural to
investigate string matching in labeled graphs. Indeed, large-scale labeled graphs are becoming
ubiquitous in several areas, such as graph databases [6, 16, 30, 27], graph mining [19, 12], and
computational biology [11]. Applications require sophisticated operations on these graphs,
and often rely on primitives that locate paths whose nodes have labels or types matching
a pattern given at query time. The most basic pattern is a string and, as we will see, this
already poses a challenge when performing string matching in graphs.

Problem Definition

Given an alphabet Σ of symbols, consider a labeled graph G = (V,E, L), where (V,E)
represents a directed or undirected graph and L : V → Σ is a function that defines which
symbol from Σ is assigned to each node as label.1 A node labeled with σ ∈ Σ is called a
σ-node, and an edge whose endpoints are labeled σ1 and σ2, respectively, is called a σ1σ2-edge.
If G is a directed graph, we say that G is deterministic if, for any two out-neighbors of the
same node, their labels are different. In the following, we introduce the acronym 3-DDAG to
indicate a deterministic directed acyclic graph (DAG) such that its nodes are labeled with a
binary alphabet and the sum of indegree and outdegree of each node is at most 3.

Given a pattern string P [1..m] over Σ, we say that P has a match in G if there is a
path u1, . . . , uk such that P = L(u1) · · ·L(uk) (we also say that P occurs in G, and that
u1, . . . , uk is an occurrence of P ).

I Problem 1 (String Matching in Labeled Graphs (SMLG)).
input: A labeled graph G = (V,E,L) and a pattern string P , both over an alphabet Σ.
output: True if and only if there is at least one occurrence of P in G.

Results

We give conditional bounds for the SMLG problem using the Orthogonal Vectors (OV)
hypothesis [34]. The latter states that for any constant ε > 0, no algorithm can solve in
O(n2−εpoly(d)) time the OV problem: given two sets X,Y ⊆ {0, 1}d such that |X| = |Y | = n

and d = ω(logn), decide whether there exist x ∈ X and y ∈ Y such that x and y are
orthogonal, namely, x · y = 0. We observe that it is common practice to use the Strong
Exponential Time Hypothesis (SETH) [20] but, since SETH implies the OV hypotesis [34], it
suffices to use the OV hypothesis in the bounds, as they hold also for SETH.

First, we consider the SMLG problem on directed graphs. Their weakest form is a 3-DDAG,
for which we prove in Section 2 that subquadratic time for exact string matching cannot be
achieved unless the OV hypothesis is false.

I Theorem 1. For any constant ε > 0, the String Matching in Labeled Graphs (SMLG)
problem for a binary alphabet and a labeled deterministic directed acyclic graph (DAG) cannot
be solved in either O(|E|1−εm) or O(|E|m1−ε) time unless the OV hypothesis fails. This
holds even if it is restricted to graphs in which the sum of outdegree and indegree of any node
is at most three (i.e, 3-DDAGs).

1 Note that we can also define the node labels as nonempty strings, but it suffices to use single symbols
to show that string matching in graphs is challenging.
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Table 1 Legend: V = set of nodes, E = set of edges, occ = number of matches for the pattern in
the graph, m = pattern length, N = total length of text in all nodes, (1) errors only in the pattern,
(2) errors in the graph, (3) matches span only one edge. The two rows highlighted in gray report
the best known bounds for exact and approximate string matching, respectively.

State of the art for SMLG
Year Authors Graph Exact/ Time

Approximate
1992 Manber, Wu [24] DAG approximate(1) O(m|E|+ occ lg lgm)
1993 Akutsu [2] tree exact O(N)
1995 Park, Kim [26] DAG exact(3) O(N +m|E|)
1997 Amir et al. [5] general exact O(N +m|E|)
1997 Amir et al. [5] general approximate(2) NP-Hard
1997 Amir et al. [5] general approximate(1) O(Nm lgN +m|E|)
1998 Navarro [25] general approximate(1) O(Nm+m|E|)

2017 Rautiainen,
Marschall [29] general approximate(1) O(N +m|E|)

2019 Jain et al. [21] general
binary alphabet approximate(2) NP-Hard

Next, we consider the SMLG problem on undirected graphs and introduce the zig-zag
pattern matching problem in strings, which models searching a string P along a path of an
undirected graph. While an exact occurrence of P in a text string is found by scanning the
text forward for increasing positions in P , a zig-zag occurrence of P can be found by partially
scanning forward and backward adjacent text positions, as many times as needed (e.g. for an
edge {u, v} with L(u) = a and L(v) = b, all patterns of the form a, ab, aba, abab, . . . occur
starting from u). We prove in Section 3 the following result.

I Theorem 2. The conditional lower bound stated in Theorem 1 holds even if it is restricted
to undirected graphs whose nodes have degree at most 2, where the pattern and the node labels
are drawn from a binary alphabet.

Our results can cover arbitrary graphs in this way. Interpreting the graphs from Theorem 2
as directed, we observe that they have nodes with both indegree and outdegree 2. Looking
at Theorem 1, we observe that it involves directed graphs with both nodes of indegree at
most 1 and outdegree 2, and nodes with outdegree at most 1 and indegree 2. Thus, the
only uncovered case is that of directed graphs with only nodes of indegree at most 1, or
directed graphs with only nodes of outdegree at most 1. For such graphs, we observe that
their edges can be decomposed into forests of directed trees (arborescences), whose roots may
be connected in a directed cycle (at most one cycle per forest). In the extended version of
this work we will show that the Knuth-Morris-Pratt algorithm [22] can be easily extended to
solve exact string matching for these special directed graphs in linear time, thus completing
the full picture.

History and Implications

The idea of extending the problem of string matching to graphs, as given in SMLG, is
not new. If the nodes u1, . . . , uk are required to be distinct (i.e., to be a simple path),
this problem is NP-hard as it solves the well-known Hamiltonian Path problem, so this
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requirement is removed for this reason. The SMLG problem was studied over 25 years ago as
a search problem for hypertext by Manber and Wu [24]. The history of key contributions is
given in Table 1, where a common feature of the reported bounds is the appearance of the
quadratic term m |E| (except for some special cases). The quadratic cost of the approximate
matching in graphs is asymptotically optimal under the Strong Exponential Time Hypothesis
(SETH) [20] as (i) it solves the approximate string matching as a special case, since a graph
consisting of just one directed path of |E|+ 1 nodes and |E| edges is a text string of length
n = |E|+ 1, and (ii) it has been recently proved that the edit distance of two strings of length
n cannot be computed in O(n2−ε) time, for any constant ε > 0, unless SETH is false [7].
This conditional lower bound explains why the O(m|E|) barrier has been difficult to cross
in the approximate case. Specifically, Amir et al. [4, 5], gave a quadratic-time solution for
exact string matching in O(N + m · |E|) time, where N =

∑
u∈V |L(u)|. Rautiainen and

Marschall [29] and Jain et al. [21] recently gave the best bound for errors in pattern only,
O(N +m · |E|) time, same as the exact string matching. The two best results for exact and
approximate pattern matching, both taking quadratic time in the worst case, are highlighted
in Table 1. As allowing errors in the graph makes the problem NP-hard [5], we consider here
errors in the pattern only.

In this scenario and the application domains mentioned at the beginning, our results have
a number of implications discussed below.

While we can explain the complexity of approximate string matching in graphs, not much
is known on the complexity of exact string matching in graphs. The classical exact string
matching can be solved in linear time [22], so one could expect the corresponding problem
on graphs to be easier than approximate string matching. A lower bound (i.e., NP-hard,
as mentioned above) exists only in the case when the pattern is restricted to match only
simple paths in the graph. Extensions of this type of matching for special graph classes
have been studied in [23]. Here we study the general case, where paths can pass through
nodes multiple times. Somewhat surprisingly Theorems 1 and 2 imply that exact and
approximate pattern matching are equally hard in graphs, even if they are 3-DDAGs.
Our results imply that the algorithm for directed graphs by Amir et al. [4, 5] is essentially
the best we can hope for asymptotic bounds unless the OV hyptothesis is false. This
also applies to the case of undirected graphs by the simple transformation so that each
edge {u, v} is transformed into a pair of arcs (u, v) and (v, u). Note that we need also
Theorem 2 to explicitly state that this is the best possible also for undirected graphs of
maximum degree 2. To complete the picture, we show how to get linear time for the
above special case of directed graphs where each node has indegree at most 1, or directed
graphs whose nodes have outdegree at most 1.
Our results also explain why it has been difficult to find indexing schemes for fast exact
string matching in graphs, with other than best-case or average-case guarantees [31, 17],
except for limited search scenarios [32]. They complement recent findings about Wheeler
graphs [17, 18, 3]. Wheeler graphs are a class of graphs admitting an index structure that
can be constructed in linear time and that supports linear-time exact pattern matching.
Gibney and Thankachan [18] claim that it is NP-complete to recognize whether a (non-
deterministic) DAG is a Wheeler graph. Alanko et al. [3] claim a linear-time algorithm
for recognizing whether a deterministic DAG is a Wheeler graph. Theorem 1 shows that
converting an arbitrary deterministic DAG into an equivalent Wheeler graph should take
at least quadratic time unless the OV hypothesis is false. In particular, the 3-DDAG
obtained in the reduction from OV in the proof of Theorem 1 is not a Wheeler graph.
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We observe that, for any given pattern P , the 3-DDAG obtained by our reduction admits
at most one occurrence per node, as it is deterministic and acyclic. When both P and
a node u are given, it takes linear time to search P starting from u. Interestingly, if P
alone is given, we observe that our results imply that an algorithm reporting whether
there exists a node u from which an occurrence of P starts cannot take subquadratic
time unless the OV hypothesis is false. Indeed, this hypothetical algorithm would be able
to solve the SMLG problem also on that 3-DDAG.
In the extended version of this work we will describe a simple transformation so that
we can see our 3-DDAG and the pattern P as two DFAs, so that our SMLG problem
reduces to the emptiness intersection for the string sets recognized by these two DFAs.
In this way we give a quadratic conditional lower bound for the latter problem using OV.
This adds to the results known in the literature for DFAs (tree automata) under SETH
[33] and 3SUM [13]. It is worth noting that our SMLG problem on tree automata takes
instead linear time, as will be discussed in the extended version of this work, and this
seems to suggest that SMLG could be easier than emptiness intersection for two DFAs
under SETH, even though both problems have conditional quadratic lower bounds.

Our reductions share some similarities with those for string problems [7, 10, 1, 8, 9].
The closest connection is with a conditional hardness of several forms of regular expression
matching [8]. Especially, one could start with a non-deterministic finite automaton (NFA)
derived from the regular expression matching of type | · |, and add universal “jolly” gadgets
(see our reduction) to come up with an OV lower bound for exact pattern matching in directed
non-deterministic graphs. (For the interested reader, this is what we have done in an early
version of this work [14].) However, to cover the deterministic and bounded degree cases, we
build our reduction using a different strategy. This strategy yields a graph of small degree
and enables local merging of non-deterministic subgraphs into deterministic counterparts.
This locality feature of our reduction is crucial, since converting an NFA into a deterministic
finite automaton (DFA) can take exponential time [28]. Finally, while this reduction works
also for undirected graphs of small degree, it does not cover undirected graphs of degree two.
For this case (zig-zag matching in a bidirectional string), we need a more intricate reduction
as the underlying graph has less structure.

2 Deterministic Directed Acyclic Graphs

In this section we reduce the OV problem to the SMLG problem for the restricted case of
3-DDAGs. Since any SMLG algorithm for arbitrary directed graphs can be applied also to
3-DDAGs in the same complexity, we will show that a subquadratic-time SMLG algorithm
would make the OV hypothesis false. In this scenario, 3-DDAGs are the most restricted case,
as otherwise the SMLG problem can be solved in linear time.

Given an OV instance with sets X = {x1, . . . , xn} and Y = {y1, . . . , yn} of d-dimensional
binary vectors, we show how to build a pattern P and a 3-DDAG G such that P will have
a match in G if and only if there exists a vector in X orthogonal to one in Y . We first
describe how to build P and how to obtain a directed graph whose nodes are labeled with a
constant-sized alphabet. Then we discuss how to turn such graph into the 3-DDAG G.

2.1 Pattern
Pattern P is over the alphabet Σ = {b, e, 0, 1}, has length |P | = O(nd), and can be
built in O(nd) time from the first set of vectors X = {x1, . . . , xn}. Namely, we define
P = bbPx1e bPx2e . . . bPxnee where Pxi is a string of length d that is associated with xi ∈ X,
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Y = {y1, y2, y3, y4} = {(1 1 0), (0 1 1), (1 0 0), (0 0 1)}

GW = b

0 0 0

1

e

1 1 0

b

0 0 0

1

e

0 1 1

b

0 0 0

1 1

e

1 0 0

b

0 0 0

1 1

e

0 0 1

G
(1)
W G

(2)
W G

(3)
W G

(4)
W

Figure 1 Gadget GW .

for 1 ≤ i ≤ n. The h-th symbol of Pxi
is either 0 or 1, for each h ∈ {1, . . . , d}, such that

Pxi
[h] = 1 if and only if xi[h] = 1.2 We thus view the vectors in X as subpatterns Pxi

s which
are concatenated by placing separator characters eb. Note that P starts with bb and ends
with ee: such strings are found nowhere else in P , marking thus its beginning and its end.

2.2 Directed Graph
The gadget implementing the main logic of the reduction is a directed graph GW =
(VW , EW , LW ), illustrated in Figure 1. Starting from the second set of vectors Y , set
VW can be seen as n disjoint groups of nodes V (1)

W , V
(2)
W , . . . , V

(n)
W (plus some extra nodes),

where the nodes in V (j)
W are uniquely associated with vector yj ∈ Y , for 1 ≤ j ≤ n. The cor-

responding induced subgraph G(j)
W = (V (j)

W , E
(j)
W ) will contain an occurrence of a subpattern

Pxi
if and only if xi · yj = 0. We give more details below.
The nodes in V (j)

W are defined as follows. For 1 ≤ h ≤ d, we consider entry yj [h] of vector
yj ∈ Y . If yj [h] = 1, we place just a 0-node w0

jh to indicate that we only accept Pxi [h] = 0
for this h coordinate. Instead, if yj [h] = 0, we place both a 0-node w0

jh and a 1-node w1
jh

to indicate that the value of Pxi
[h] does not matter. The nodes in V (j)

W are preceded by a
special begin b-node b(j)

W and succeeded by a special end e-node e(j)
W . The overall nodes are

thus VW =
⋃

1≤j≤n(V (j)
W ∪ {b(j)

W , e
(j)
W }), and it holds that |VW | = O(nd).

As for the edges in E(j)
W , they properly connect the nodes inside each group V (j)

W . Specific-
ally, node b(j)

W is connected to w0
j1 and, if it exists, to w1

j1. Also, we place edges connecting
both nodes w0

jd and w1
jd (if this exists) to node e(j)

W . Moreover, there is an edge for every pair
of nodes that are consecutive in terms of h coordinate, for 1 ≤ h < d (e.g., w1

jh is connected
to w0

j h+1). The overall edges are thus EW =
⋃

1≤j≤nE
(j)
W , where |EW | = O(nd).

In this way we define the directed graphGW = (VW , EW , LW ), which can be built in O(nd)
time from set Y and consists of n connected components G(j)

W , one for each vector yj ∈ Y .
We observe that pattern occurrences in GW have some useful combinatorial properties.

The lemma below is an immediate observation, which follows from the fact that each G(j)
W is

acyclic and not connected to any other G(j′)
W .

I Lemma 3. If subpattern bPxi
e has a match in GW then the nodes matching Pxi

share the
same j coordinate and have distinct and consecutive h coordinates.

Lemma 4 (whose proof will be provided in the extended version of this work) relates the
occurrence of a subpattern to the OV problem.

2 Note that 1 is a symbol of Σ while 1 is the truth value in xi.
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b

0 0 0

1 1 1

e b

0 0 0

1 1 1

e · · · b

0 0 0

1 1 1

e

(2n− 2)(2d+ 2) = O(nd) nodes

d d d

Figure 2 Gadget GU .

I Lemma 4. Subpattern bPxi
e has a match in GW if and only if there exist yj ∈ Y such

that xi · yj = 0.

In the following we will also use gadget GU = (VU , EU , LU ), the degenerate case of GW
with 2n − 2 (instead of just n) connected components G(j)

U where, for all 1 ≤ j ≤ 2n − 2
and 1 ≤ h ≤ d, we place both a 0-node and a 1-node: we call these two nodes u0

jh and u1
jh,

respectively, to distinguish them from those in GW . Moreover, every e-node of this gadget is
connected with the next b-node, in terms of j coordinate (see Figure 2). As it can be seen,
any subpattern Pxi

occurs in GU , so it can be used as a “jolly” gadget.

2.3 Non-deterministic Graph
A possible approach is based on suitably combining one instance of gadget GW and two
instances of gadgets GU , named GU1 and GU2. The idea is that, when xi · yj = 0, we want
P to occur in G, so that the three conditions below hold.

Instance GU1: Px1 occurs in G(n−1+j−(i−1))
U1 , . . . , Pxi−1 occurs in G(n−1+j−1)

U1 .
Instance GW : Pxi occurs in G(j)

W .
Instance GU2: Pxi+1 occurs in G(j)

U2, . . . , Pxn
occurs in G(j+n−i−1)

U2 .

On the other hand, when xi ·yj 6= 0, we do not want Pxi
to occur in G(j)

W . We can suitably
link the instances GW , GU1 and GU2 so that we get the above conditions: we connect the
e-nodes in GU1 to b-nodes in GW , the e-nodes in GW to b-nodes in GU2 and we place
additional starting b-nodes and additional ending e-nodes, to properly match the bb and ee
prefix and suffix of P , respectively. However, even if GW , GU1 and GU2 are deterministic,
their resulting composition is not so, because of the out-neighbours of the e-nodes.3 We show
below how to obtain a deterministic graph by suitably merging GW with portions of GU .

2.4 Deterministic Graph
In order to obtain a deterministic DAG, we need to suitably combine one instance of gadget
GW with the two instances GU1 and GU2 (recall that both GU1 and GU2 have instances of
gadget G(j)

U , for all 1 ≤ j ≤ 2n− 2). While GU2 will be used as is, GU1 needs to be partially
merged with GW to obtain determinism. We start building our final graph G from GW by
adding parts of GU1 when needed, obtaining a deterministic graph called GU1W , as shown
in Figure 3. Consider subgraph G(j)

W and assume that the first position in which the 1-node
is lacking is h. We place a partial version of subgraph G(j′)

U1 , j
′ := n− 1 + j, by adding to

the graph the nodes and edges of G(j′)
U1 that are located between position h + 1 and node

3 An e-node can have two b-nodes as out-neighbors when linking GU1 to GW , see [15].
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GW b

0 0 0

1

e b

0 0 0

1

e b

0 0 0

1 1

e b

0 0 0

1 1

e

Partial GU1

0 0

1 1 1

e

0

1 1

e

0 0

1 1 1

e

G
(1)
W G

(2)
W G

(3)
W G

(4)
W

Partial G
(4)
U1 Partial G

(5)
U1 Partial G

(6)
U1

Figure 3 Graph GU1W after merging GU1 (from Figure 2) with GW (from Figure 1).

e
(j′)
U1 (included). If h = d we place only node e(j′)

U1 . We also place 1-node u1
jh and we connect

the 0-node and the 1-node (if any) of G(j)
W in position h− 1 to it (if h > 1), or we connect

b
(j)
W to it (if h = 1). Moreover, we connect node u1

jh to the first 0- and 1-node of partial
G

(j′)
U1 . If h = d we connect u1

jh to e(j′)
U1 . Then we scan G

(j)
W from left to right looking for

those positions h′, h ≤ h′ < d, such that there is no 1-node in position h′ + 1. We connect
the 0-node and the 1-node (if any) of G(j)

W in position h′ to the 1-node of G(j′)
U1 in position

h′ + 1. Finally, we place edge (e(j′)
U1 , b

(j+1)
W ). To complete the merging task, we apply the

above modification to all G(j)
W , for 1 ≤ j ≤ n− 1, and thus obtain gadget GU1W .

At this point, we place gadget GU2 and we connect GU1W to it by placing edges (e(j)
W , b

(j)
U2),

for all 1 ≤ j ≤ n. Also, for every b-node of GU1W we place an additional b-node as in-
neighbor. We do the same for every e-node of GU2, placing an e-node as out-neighbor.
Adding subgraphs G(1)

U1, . . . , G
(n−1)
U1 with one additional b-node as in-neighbor of their b-nodes,

and connecting the e-node of G(n−1)
U1 to the b-node of G(1)

W , completes the transformation
into the wanted deterministic directed acyclic graph, which we call G. Figure 4 gives an
overall picture of G.

It is easy to verify that every b- and e-node in G can have no more than two out-neighbours
and, in such case, they have different labels. This shows that graph G is deterministic.

b G
(1)
U1

e · · · b G
(1)
W

e b · · · e b G
(n)
W

e

eG
(n)
U1

(partial)
v1nh

b G
(1)
U2

e · · · b G
(n)
U2

e · · · b G
(2n−2)
U2

e

b b b b

e e e

e e e

G =

· · ·
· · ·

Figure 4 Final deterministic DAG G. In such graph there are n − 1 instances of G(j)
U1, n − 1

partial instances of G(j)
U1, n instances of G(j)

W and 2n− 2 instances of G(j)
U2.

The deterministic DAG G has a crucial property which, combined with Lemma 3 and
Lemma 4, is key to ensure the correctness of our reduction.

I Lemma 5. Pattern P has a match in G if and only if a subpattern bPxi
e of P has a

match in the underlying subgraph GW of GU1W .
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Proof. For the (⇒) implication, because of the directed eb-edges, each distinct subpattern
bPxi

e matches a path from either a distinct portion of GU1W (or from the G(j)
U1 subgraphs,

1 ≤ j ≤ n− 1, before it) or GU2. Moreover, each occurrence of P must begin with bb and
end with ee. String bb can be matched only in GU1W (or in the G(j)

U1 subgraphs before it),
hence the match must start here. On the other hand, string ee is found either in GU1W
or in GU2. Observe that, by construction, once a match for pattern P is started in GU1W
(or in the G(j)

U1 subgraphs before it), the only way to successfully conclude it is either by
matching ee within GU1W , or by matching also a portion of GU2 and then ee. Because of
the structure of the graph, in both cases a subpattern bPxi

e of P must match one of the
subgraphs G(j)

W that are present in GU1W .
The (⇐) implication is trivial. In fact, if bPxi

e has a match in one subgraph G(j)
W , then

by construction we can match bPx1e . . . bPxi−1e possibly in the G(j)
U1 subgraphs before GU1W ,

then possibly in the partial G(j)
U1 subgraphs of GU1W . We can then match bPxi+1e . . . bPxne

in GU2, and thus have a full match for P in G. J

We are now ready to prove our main result.

Proof of Theorem 1. First, we prove that the reduction is correct. Then we analyze its cost
and show how a subquadratic-time algorithm for SMLG would contradict the OV hypothesis.
Then, we explain how the graph can be modified to become a 3-DDAG using a binary
alphabet.

Correctness. We need to ensure that pattern P has a match in G if and only if there
exist vectors xi ∈ X and yj ∈ Y which are orthogonal. This follows from Lemma 5, which
guarantees that P has a match in G if and only if a subpattern Pxi

has a match in GW , and
the fact that, by Lemma 4, this holds if and only if xi · yj = 0.

Cost. As observed during the construction in Section 2.1 and Section 2.2, both pattern
P and graph G have size O(nd). Indeed, for each one of the n vectors xi ∈ X we place in P
characters b and e plus d characters that can be either 0 or 1. In graph G, the size of each
subgraph is proportional to the dimension d of the vectors and we place O(n) of them.

Using the OV hypothesis. The last step is to show that any O(|E|1−εm)-time or
O(|E|m1−ε)-time algorithm A for SMLG contradicts the OV hypothesis. Given two sets of
vectors X and Y , we can perform our reduction obtaining pattern P and graph G in O(nd)
time, by observing that |E| = O(nd) and m = O(nd). No matter whether A has O(|E|1−εm)
or O(|E|m1−ε) time complexity, we will end up with an algorithm deciding if there exists
a pair of orthogonal vectors between X and Y in O(nd · (nd)1−ε) = O(n2−εpoly(d)) time,
which contradicts the OV hypothesis.

Maximum sum of indegree and outdegree 3. Observe that every node in G can have
at most 2 in-neighbours and 2 out-neighbours. An emblematic case is that of four nodes, say
v, w, v′, and w′, with edges (v, w), (v, w′),(v′, w), and (v′, w′). To reduce to 1 the outdegree
of v and v′, and the indegree of w and w′, the idea is to add two dummy nodes v̄ and w̄
connected by an edge (v̄, w̄), and then replace the four edges above with (v, v̄), (v′, v̄), (w̄, w),
and (w̄, w′). The dummy nodes can be labeled e.g. with 0 and then one can do a symmetric
modification in the pattern. One needs to apply such transformations between any two
consecutive columns of G.

Alphabet size. Our alphabet is of size 4. One can reduce the alphabet size to binary
using the encoding α(0) = 0000, α(1) = 1111, α(b) = 10, and α(e) = 01 for both the pattern
and the graph. (That is, we replace each σ-node with a path of as many nodes as characters
in α(σ).) Observe that, after small adjustments that do not weaken our results, there is a
bijection from matches before and after applying the encoding. J
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As discussed in the Introduction, G has both nodes of indegree at most 1 (and outdegree
more than 1), and nodes of outdegree at most 1 (and indegree more than 1). In the extended
version of this work we will give a linear-time algorithm for directed graphs with nodes of
only one such type.

3 Undirected Graphs: Zig-zag Matching

The lower bound given for the SMLG problem can cover the special case of an undirected
graph with maximum degree 2. To this end, we need to modify the reduction defining a
new alphabet, pattern and graph. The original alphabet Σ = {b, e, 0, 1} is replaced with
Σ′ = {b, e, A, B, s, t}. Characters 1 and 0 are encoded in the following manner:

1 = ABA and 0 = ABABABA .

When such encoding is applied, character s will be used as a separator marking the beginning
and the end of the old characters. As an example, the subpattern

Pxi = 1 0 1 will be encoded as P ′xi
= s ABA s ABABABA s ABA s .

A new pattern P ′ is built applying this encoding to each one of the subpatterns Pxi
,

thus obtaining new subpatterns P ′xi
. We then concatenate all the subpatterns P ′xi

by placing
the new character t to separate them, instead of eb. Finally, we place characters bt at the
beginning of the new pattern, and te at the end. Here follows an example:

P = bb 100 e b 101 ee

1 0 0
P ′ = b t s ABA s ABABABA s ABABABA s

1 0 1
t s ABA s ABABABA s ABA s t e

Note that for each subpattern we are introducing a constant number of new characters,
hence the size of the entire pattern P ′ still is O(nd).

An analogous encoding will be applied to the graph. The strategy is to encode GW in an
undirected path by concatenating subpaths representing each G(j)

W , one after another.
The positions h in which both a 0- and a 1-node are present in G(j)

W are replaced by a
path that can be matched both by 0 = ABABABA and 1 = ABA. Positions h with only a 0-node
and no 1-node are encoded instead with a path that can be matched only by 0 = ABABABA
(see Figure 5). We use s-nodes to separate these paths. We denote by LG(j)

W (Linear G(j)
W )

this linearized version of G(j)
W . Moreover, given subgraph G(j)

W , two new t-nodes will mark the
beginning and the ending of its encoding. Figure 6 illustrates this transformation for G(j)

W .
In a similar manner, GU is also encoded as a path. We do not need to encode all its

2n− 2 subgraphs: since the matching path can go through nodes more than once, we only
need to encode one of these subgraphs, in the same manner as done for G(j)

W . Let LGU be
the linearized version of only one of the “jolly” gadgets that were composing the original GU .

Then, for each 1 ≤ j ≤ n, we build structure LG(j) by placing t-nodes, LGU instances,
LG

(j)
W , a b-node on the left and an e-node on the right, as in Figure 7. In such structure the

b-node and the e-node delimit the beginning and the end of a viable match for a pattern.
The t-nodes are separating the LGU structures from LG

(j)
W and, in general, they are marking

the beginning and the end of a match for a subpattern P ′xi
. The idea behind LG(j) is that

a match of P can traverse LGU from beginning to end, backwards and forwards as many
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⇓

0

1 · · ·

· · ·

· · ·

· · ·

BAs· · · A s · · ·

(a)

⇓

0· · · · · ·

BABAs· · · A B A s · · ·

(b)

Figure 5 New substructures. (a) The old substructure is replaced by an undirected path that
can match either sABAs (which represents 1) by going forward only, or sABABABAs (which represents
0), by going forward, backward, and forward again. (b) The an undirected path replacing a 0-node
can match only the string sABABABAs.

00 0

1

O(d)

A

B

A B A

B

At s A

B

A B A

B

As A

B

A

s ts

G
(j)
W =

⇓

LG
(j)
W

Figure 6 A subgraph G(j)
W is converted into a linear structure LG(j)

W using s as separator.

times as needed, before starting a match of some subpattern P ′xi
inside LG(j)

W . Notice also
that this allows only subpatterns on even positions i to match inside LG(j)

W . We will address
this minor issue at the end (see page 12).

b t LGU t LG
(j)
W

t LGU t e

O(d) O(d) O(d)

LG(j) =

Figure 7 The LG(j)
W structure surrounded by two instances of LGU . The t-nodes establish the

beginning and the end of a match for a subpattern tP ′xi
t while the b- and e-nodes are the starting

and ending point for a match of the whole pattern P ′.

In order to construct the final graph LG we concatenate all LG(1), LG(2), . . . , LG(n)

into a single undirected path. Figure 8 gives a picture of the end result.
No issues arise regarding the size of the graph, since we are replacing every 0-node, or

every pair of a 0-node and a 1-node, with a constant number of new nodes. By construction,
the two gadgets LGU and LGW both have size O(d), since for each one of the d entries of a
vector we place one of the two possible encodings. In LG there are n instances of LG(j)

W , each
one surrounded by two LGU instances. Hence the total size of the graph remains O(nd).

In order to prove the correctness of the reduction, we will show some properties on LG
by introducing the following lemmas, whose formal proofs will be available in the extended
version of this work. We use tlLG(j)

W tr to refer to LG
(j)
W extended with the t-nodes on

its left and on its right. When referring to the k-th s-character in P ′xi
we mean the k-th

s-character found scanning P ′xi
from left to right; in the same manner we refer to the k-th

s-node in LG(j)
W .
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LG(1)b e LG(2)b e · · · LG(n)b e

O(d) O(d) O(d)

LG =

Figure 8 The final graph LG.

I Lemma 6. If subpattern tP ′xi
t has a match in tlLG(j)

W tr starting at tl and ending at tr,
then the k-th s-character in P ′xi

matches the k-th s-node in LG(j)
W , for all 1 ≤ k ≤ d+ 1.

I Lemma 7. Subpattern tP ′xi
t has a match in tlLG(j)

W tr starting at tl and ending at tr if
and only if there exist yj ∈ Y such that xi · yj = 0.

The main difference with the original proof resides in assuming that a match for P ′xi

starts at tl and ends at tr. This feature is crucial for the correctness of the reduction and
can be safely exploited since, as shown in the following, the b- and e-nodes guarantee that in
case of a match for P ′ we will cross the LG(j)

W gadget from left to right at least once.

I Lemma 8. Pattern P ′ has a match in LG if and only if there exist i and j such that i is
even and subpattern tP ′xi

t has a match in tlLG(j)
W tr starting at tl and ending at tr.

Proof. For the (⇒) implication, first observe that the b- and e-nodes in LG are forcing a
direction to follow. Let LG(j)

Ul and LG(j)
Ur be the LGU gadgets to the left and to the right

of LG(j)
W , respectively. Since pattern P ′ starts with a b and ends with an e, a match can

only start at the b-node on the left of LG(j)
Ul and end at the e-node on the right of LG(j)

Ur, for
some j. Hence LG(j)

W needs to be crossed by a match from left to right at least once. Thus,
there must exist a subpattern tP ′xi

t that has a match starting at tl and ending at tr. For
such a pattern Lemma 7 applies. Moreover, because of our construction, only a subpattern
on even position can achieve such a match.

The (⇐) implication is immediate since given a subpattern tP ′xi
t which has a match in

tlLG
(j)
U tr one can match btP ′x1

t . . . tP ′xi−1
t in LG(j)

Ul and tP ′xi+1
t . . . tP ′xn

te in LG(j)
Ur and

have a full match for P ′ in LG. J

Since Lemma 8 gives us a property which holds only if a subpattern is in even position,
we need to tweak pattern P ′ to make the reduction work. Indeed, we define two patterns.
The first pattern P ′(1) is P ′ itself; the second pattern P ′(2) is obtained by swapping the
subpatterns P ′xi

on odd position with the next subpatterns P ′xi+1
on even position, for every

i = 1, 3, . . .. For example, if n is even, we will have:

P ′(1) = bt P ′x1
t P ′x2

t P ′x3
t P ′x4

t . . . t P ′xn−1
t P ′xn

te = P ′

P ′(2) = bt P ′x2
t P ′x1

t P ′x4
t P ′x3

t . . . t P ′xn
t P ′xn−1

te

While P ′(1) checks the even positions of P ′, P ′(2) checks the odd ones. If n is even then the
last subpattern would not have the chance to be matched against any G(j)

W . In such case
we can simply add a dummy subpattern P̄ = s ABA s ABA s . . . s ABA s (with d repetitions
of ABA) at the end of P as it were its last subpattern, so that the number of subpatterns
becomes odd. Indeed, observe that P̄ corresponds to vector x̄ = (11 . . . 1), which has null
product only with vector ȳ = (00 . . . 0). Hence if ȳ 6∈ Y then P̄ does not have a match in any
LG(j), while if ȳ ∈ Y every subpattern P ′xi

has a match in the LG(j) built on top of ȳ. This
means that P̄ does not disrupt our reduction.

Now we are ready to present the end result.
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I Lemma 9. Either P ′(1) or P ′(2) has a match in LG if and only if there exist vectors
xi ∈ X and yj ∈ Y which are orthogonal.

Proof. For (⇒) we assume that either P ′(1) or P ′(2) have a match in LG. By Lemma 8 this
means that there exists a subpattern P ′(q)

xi , q ∈ {1, 2} which has a match in LG(j)
W , for some

j. Lemma 7 then ensures that xi · yj = 0, thus xi and yj are orthogonal. For the other
implication (⇐) we assume that there exists two orthogonal vectors xi ∈ X and yj ∈ Y .
Thanks to Lemma 7 we find a subpattern P ′xi

matching LG(j)
W . By construction, P ′xi

has to
be in even position either in P ′(1) or in P ′(2). By Lemma 8 this means that either P ′(1) or
P ′(2) has a match in LG. J

Theorem 2 follows directly from the correctness of these constructions, except for the
alphabet size reduction to binary, which will be covered in the extended version of this work.
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1 Introduction

The complexity class TFNP contains search problems that are guaranteed to have a solution,
and whose solutions can be verified in polynomial time [44]. While it is a semantically defined
complexity class and thus unlikely to contain complete problems, a number of syntactically
defined subclasses of TFNP have proven very successful at capturing the complexity of total
search problems. In this paper, we focus on two in particular, PPAD and PLS. The class
PPAD was introduced in [49] to capture the difficulty of problems that are guaranteed total
by a parity argument. It has attracted intense attention in the past decade, culminating in a
series of papers showing that the problem of computing a Nash-equilibrium in two-player
games is PPAD-complete [10, 13], and more recently a conditional lower bound that rules out
a PTAS for the problem [52]. No polynomial-time algorithms for PPAD-complete problems
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are known, and recent work suggests that no such algorithms are likely to exist [4, 25].
PLS is the class of problems that can be solved by local search algorithms (in perhaps
exponentially-many steps). It has also attracted much interest since it was introduced in [38],
and looks similarly unlikely to have polynomial-time algorithms. Examples of PLS-complete
problems include computing: a pure Nash equilibrium in a congestion game [19], a locally
optimal max cut [53], or a stable outcome in a hedonic game [24].

If a problem lies in PPAD and PLS then it is unlikely to be complete for either class, since
this would imply an extremely surprising containment of one class in the other. Daskalakis
and Papadimitriou [14] observed that several prominent total function problems for which no
polynomial-time algorithms are known lie in PPAD∩PLS. Motivated by this they introduced
CLS, a syntactically defined subclass of PPAD ∩ PLS, that captures optimization problems
over a continuous domain in which a continuous potential function is being minimized, with
access to a polynomial-time continuous improvement function. They showed that many
well-studied problems are in CLS, including the problem of solving a simple stochastic game,
the more general problems of solving a P-matrix Linear Complementarity Problem, finding
an approximate fixpoint to a contraction map, finding an approximate stationary point of a
multivariate polynomial, and finding a mixed Nash equilibrium of a congestion game. In this
paper we study an interesting subset of CLS consisting of problems with unique solutions.
Contraction. In this problem we are given a function f : Rd → Rd that is purported to be

c-contracting, meaning that for all points x, y ∈ [0, 1]n we have d(f(x), f(y)) ≤ c · d(x, y),
where c is a constant satisfying 0 < c < 1, and d is a distance metric. Banach’s fixpoint
theorem states that if f is contracting, then it has a unique fixpoint [3], meaning that
there is a unique point x ∈ Rd such that f(x) = x.

P-LCP. The P-matrix linear complementarity problem (P-LCP) is a variant of the linear
complementarity problem in which the input matrix is a P-matrix [12]. An interesting
property of this problem is that, if the input matrix actually is a P-matrix, then the
problem is guaranteed to have a unique solution [12]. Designing a polynomial-time
algorithm for P-LCP has been open for decades, at least since the 1978 paper of Murty [47]
that provided exponential-time examples for Lemke’s algorithm [42] for P-LCPs.

USO. A unique sink orientation (USO) is an orientation of the edges of an n-dimensional
hypercube such that every face of the cube has a unique sink. Since the entire cube is a
face of itself, this means that there is a unique vertex of the cube that is a sink, meaning
that all edges are oriented inwards. The USO problem is to find this unique sink.

All of these problems are most naturally stated as promise problems, since we have no way
of efficiently verifying whether a function is contracting, whether a matrix is a P-matrix,
or whether an orientation is a USO. Hence, it makes sense, for example, to study the
contraction problem where it is promised that the function f is contracting, and likewise for
the other two. However, each of these problems can be turned into non-promise problems
that lie in TFNP. In the case of Contraction, if the function f is not contracting, then there
exists a short certificate of this fact. Specifically, any pair of points x, y ∈ Rd such that
d(f(x), f(y)) > c · d(x, y) give an explicit proof that the function f is not contracting. We
call these violations, since they witness a violation of the promise inherent in the problem.

So, Contraction can be formulated as the non-promise problem of either finding a solution
or finding a violation. This problem is in TFNP because in the case where there is not a
unique solution, there must exist a violation of the promise. The P-LCP and USO problems
also have violations that can be witnessed by short certificates, and so they can be turned
into non-promise problems in the same way, and these problems also lie in TFNP. For
Contraction and P-LCP we actually know that both are in CLS [14]. Prior to this work USO
was not known to lie in any non-trivial subclass of TFNP, and placing USO into a non-trivial
subclass of TFNP was identified as an interesting open problem by Kalai [39, Problem 6].
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We remark that not every problem in CLS has the uniqueness properties that we identify
above. For example, the KKT problem [14] lies in CLS, but has no apparent notion of having
a unique solution. The problems that we study share the special property that there is a
natural promise version of the problem, and that promise problem has a unique solution.

Our contributions. We define the complexity classes PromiseUEOPL and UniqueEOPL to
capture problems in CLS that have unique solutions. We argue that UniqueEOPL is likely
to be a strict subset of CLS. We introduce the notion of promise-preserving reductions,
which allow us to simultaneously obtain results for the promise and non-promise versions
of problems. We show that all of our motivating problems – USO, P-LCP, and finding a
fixpoint of a Piecewise-Linear Contraction under an `p-norm – are contained in UniqueEOPL
(PromiseUEOPL for the promise versions) via promise-preserving reductions. Thus, we resolve
the open problem of Kalai mentioned above, by showing that USO is in UniqueEOPL and
thus also CLS, PPAD and PLS. Our results also imply that parity, mean-payoff, discounted,
and simple-stochastic games lie in UniqueEOPL. We also provide a complete problem for
UniqueEOPL, called One-Permutation Discrete Contraction (OPDC). It is motivated by a
discretized version of contraction, but it is also closely related to USO, and we consider its
hardness to be a substantial step towards showing hardness for contraction and USO.

The new techniques used in our reductions also lead to new algorithmic results. We
obtain direct polynomial-time algorithms for finding fixpoints of contraction maps in fixed
dimension for any `p norm, where previously such algorithms relied on a reduction to the
Tarski fixpoint problem [51]. Our reduction for P-LCP allows a technique of Aldous [2] to
be applied, which in turn gives the fastest-known randomized algorithm for P-LCP.

A main message of our paper is that several important problems lie in UniqueEOPL and
that UniqueEOPL is likely to be a proper subset of CLS.

Related work. Hubáček and Yogev [36] proved lower bounds for CLS. They introduced a
problem known as EndOfMeteredLine which they showed was in CLS, and for which they
proved a query complexity lower bound of Ω(2n/2/

√
n) and hardness under the assumption

that there were one-way permutations and indistinguishability obfuscators for problems in
P/poly. Recently, two variants of ContractionMap have been shown to be CLS-complete.
Whereas in the original definition of ContractionMap it is assumed that an `p or `∞ norm
is fixed, and the contraction property is measured w.r.t. the induced metric, in these two
complete variants, a metric [15] and meta-metric [20] are given as input to the problem.

Papadimitriou showed that P-LCP, the problem of solving the LCP or returning a
violation of the P-matrix property, is in PPAD [49] using Lemke’s algorithm. The relationship
between Lemke’s algorithm and PPAD has been studied by Adler and Verma [1]. Later,
Daskalakis and Papadimitrou showed that P-LCP is in CLS [14], using the potential reduction
method in [41]. Many algorithms for P-LCP have been studied, e.g., [47, 46, 40]. However,
no polynomial-time algorithms are known for P-LCP. The best-known algorithms for P-LCP
are based on a reduction to Unique Sink Orientations (USOs) of cubes [59]. For an P-matrix
LCP of size n, the USO algorithms of [60] apply, and give a deterministic algorithm that
runs in time O(1.61n) and a randomized algorithm with expected running time O(1.43n).
The application of Aldous’ algorithm [2] to the UniqueEOPL instance that we produce
from a P-matrix LCP takes expected time 2n/2 · poly(n) = O(1.4143n) in the worst case.

We study USOs of cubes, a problem that was first studied by Stickney and Watson [59]
in the context of P-matrix LCPs. Motivated by Linear Programming, acylic USOs (AUSOs)
have also been studied, both for cubes and general polytopes [33, 28]. Recently Gärtner
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and Thomas studied the computational complexity of recognizing USOs and AUSOs [29].
A series of papers provide upper and lower bounds for approaches for solving (A)USOs,
including [60, 31, 22, 43, 55, 23, 61, 26, 54]. To the best of our knowledge, we are first to
study the general problem of solving a USO from a complexity-theoretic point of view.

The problem of computing a fixpoint of a continuous map f : D → D with Lipschitz
constant c has been extensively studied, in both continuous and discrete variants [9, 8, 16].
For arbitrary maps with c > 1, exponential bounds on the query complexity are known [32, 7].
In [6, 35, 58], algorithms for computing fixpoints of weakly (c = 1) and strictly (c < 1)
contracting maps are studied.

A number of algorithms are known for contractions w.r.t. the `2 norm [48, 34, 57]. There
is an exponential lower bound for absolute approximation with c = 1 [57]. For relative
approximation (||x− f(x)|| ≤ ε) in dimension d, an O(d · log 1/ε) time algorithm is known
[34]. For absolute approximation (||x− x∗|| ≤ ε where x∗ is an exact fixpoint) with c < 1, an
ellipsoid-based algorithm with time complexity O(d · [log(1/ε) + log(1/(1− c))]) is known
[34]. For the `∞ norm, [56] gave an algorithm to find an ε-relative approximation in time
O(log(1/ε)d) which is polynomial for constant d. A polynomial time algorithm for finding an
approximate fixpoint of a contraction map in constant dimension can be obtained through a
reduction to the Tarski fixpoint problem [51].

2 Unique End of Potential Line

We define two new complexity classes called EOPL and UniqueEOPL. EOPL combines
EndOfLine and SinkOfDag, the canonical complete problems for PPAD and PLS [49].

I Definition 1 (EndOfPotentialLine). Given Boolean circuits S, P : {0, 1}n → {0, 1}n

such that P (0n) = 0n 6= S(0n) and a Boolean circuit V : {0, 1}n → {0, 1, . . . , 2m − 1} such
that V (0n) = 0 find one of the following:
(R1) A point x ∈ {0, 1}n such that S(P (x)) 6= x 6= 0n or P (S(x)) 6= x.
(R2) A point x ∈ {0, 1}n such that x 6= S(x), P (S(x)) = x, and V (S(x))− V (x) ≤ 0.
This problem defines an exponentially large graph where each vertex has in-degree and
out-degree at most one (as in EndOfLine) that is also a DAG (as in SinkOfDag). An
edge exists from x to y if and only if S(x) = y, P (y) = x, and V (x) < V (y). Only some
bit-strings encode vertices. Specifically, if S(x) = x for some bit-string x, then x does not
encode a vertex. The problem consists of a single instance that is simultaneously an instance
of EndOfLine and an instance of SinkOfDag. To solve the problem, it suffices to solve
either of these problems. Solutions of type 1 are ends of lines, and solutions of type 2 are
points where the potential does not increase along an edge.

We define the complexity class EOPL to consist of all problems that can be reduced in
polynomial time to EndOfPotentialLine. We show the following containment.

I Theorem 2. EOPL ⊆ CLS.

To prove this, we reduce EndOfPotentialLine to the EndOfMeteredLine, which was
defined and shown to be in CLS by Hubáček and Yogev [36]. The difference between the two
problems is that EndOfMeteredLine requires that the potential increases by exactly one
along each edge. Our reduction inserts new vertices into the instance to satisfy this property.

2.1 Promise problems with unique solutions
Each of the problems that we study have a promise, and if the promise is satisfied the
problem has a unique solution. For example, in the contraction problem, we are given a
function as a circuit but cannot efficiently check whether the function is actually contracting.
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If the function is contracting, then Banach’s fixpoint theorem states that it has a unique
fixpoint [3]. If it is not contracting, there exist violations that can be witnessed by short
certificates. We can use violations to formulate the problem as a non-promise problem that
lies in TFNP: we ask for either a fixpoint or a violation of contraction.

When we place this type of problem in EOPL, we obtain an instance with extra properties.
Specifically, if the original problem has no violations, i.e., the promise is satisfied, then the
EndOfPotentialLine instance will contain a single line that starts at 0n, and ends at the
unique solution. So, if we ever find two distinct lines, we immediately know that the instance
fails to satisfy the promise. We define the following problem to capture these properties.

I Definition 3 (UniqueEOPL). Given Boolean circuits S, P : {0, 1}n → {0, 1}n such that
P (0n) = 0n 6= S(0n) and a Boolean circuit V : {0, 1}n → {0, 1, . . . , 2m − 1} such that
V (0n) = 0 find one of the following:
(U1) A point x ∈ {0, 1}n such that P (S(x)) 6= x.

(UV1) A point x ∈ {0, 1}n such that x 6= S(x), P (S(x)) = x, and V (S(x))− V (x) ≤ 0.
(UV2) A point x ∈ {0, 1}n such that S(P (x)) 6= x 6= 0n.
(UV3) Two points x, y ∈ {0, 1}n, such that x 6= y, x 6= S(x), y 6= S(y), and either

V (x) = V (y) or V (x) < V (y) < V (S(x)).

0
0n

1 2 3
x

5
S(x)

7
UV1

8
UV2

9
U1

2 3 4
y

5 7
U1

Figure 1 UniqueEOPL instance with 3 lines. The main line starts at 0n and ends with a UV1
solution. There is a final line of length one to the bottom right, whose start vertex is a UV2 solution.
The ranges of potential values for the main line and top line intersect, so they contribute many UV3
solutions. We highlight one on the diagram with x, S(x), and y, such that V (x) < V (y) < V (S(x)).

We split solutions into two types: proper solutions and violations. Solutions of type 1 encode
the end of a line, which are the proper solutions. 1 violations are vertices at which the
potential fails to increase. 2 violations are the start of any line other than 0n. 3 violations
are a different witness that there are more than one line, namely a pair of vertices x and
y, with either V (x) = V (y), or such that V (y) lies between V (x) and V (S(x)), so x and y
cannot lie on the same line. See Figure 1 for an illustration.

We remark that 1 and 2 violations already capture the property that “there is a unique
line”, since if we exclude them, then a second line cannot exist. However, with only these two
violations, we may find two vertices on two different lines, but both may be exponentially
many steps away from the start of their respective lines. 3 violations make any pair of vertices
that are provably on two different lines a violation. All of the problems in UniqueEOPL have
the property that if we ever find a 3 violation, the problem can be solved immediately.

We define UniqueEOPL to be the class of problems that can be reduced in polynomial
time to UniqueEOPL1. For each of our problems, it is also interesting to consider the
promise variant, in which it is guaranteed via a promise that no violations exist. We define

1 We remark that Hubáček and Yogev [36] mention that their lower bound results for CLS may also apply
to such problems, but they did not investigate a corresponding complexity class.
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PromiseUniqueEOPL to be the promise version of UniqueEOPL in which it is promised
that 0n is the only start of a line, and PromiseUEOPL to be the class of promise problems
that can be reduced in polynomial time to PromiseUniqueEOPL.

The problem UniqueEOPL has the interesting property that, if it is promised that there
are no violation solutions, then there must be a unique solution. All of the problems that we
study in this paper share this property, and indeed when we reduce them to UniqueEOPL,
the resulting instance will have a unique line whenever the original problem has no violation
solutions. We formalise this by defining the concept of a promise-preserving reduction. This
is a reduction between two problems A and B, both of which have proper solutions and
violation solutions. The reduction is promise-preserving if, when it is promised that A has
no violations, then the resulting instance of B also has no violations. Hence, if we reduce a
problem to UniqueEOPL via a chain of promise-preserving reductions, and we know that
there are no violations in the original problem, then there is a unique line ending at the
unique proper solution in the instance. So, if we show that a problem is in UniqueEOPL (or
UniqueEOPL-complete) via a chain of promise-preserving reductions, then we automatically
get that the promise version of that problem, where it is promised that there are no violations,
lies in PromiseUEOPL (or PromiseUEOPL-complete).

3 One-Permutation Discrete Contraction (OPDC)

OPDC plays a crucial role in our results. We show that it lies in UniqueEOPL, and the we
reduce both PL-Contraction and Unique-Sink-Orientation to it, thereby showing that
those problems also lie in UniqueEOPL. We also show that UniqueEOPL can be reduced
to OPDC, making it the first example of a non-trivial UniqueEOPL-complete problem.

Direction functions. OPDC can be seen as a discrete variant of the continuous contraction
problem. A contraction map is a function f : [0, 1]n → [0, 1]d that is contracting under a
metric d, i.e., d(f(x), f(y)) ≤ c · f(x, y) for all x, y ∈ [0, 1]d and some constant c satisfying
0 < c < 1. We discretize this by overlaying a grid of points on the [0, 1]d cube. Let [k]
denote the set {0, 1, . . . , k}. Given a tuple of grid widths (k1, k2, . . . , kd), we define the set
P (k1, k2, . . . , kd) as [k1]× [k2]× · · · × [kd]. We sometimes refer to P (k1, k2, . . . , kd) simply
as P . Note that each point p ∈ P is a tuple (p1, p2, . . . , pd), where pi is an integer between 0
and ki, and this point maps onto the point (p1/k1, p2/k2, . . . , pd/kd) ∈ [0, 1]d.

Instead of a single function f , in the discretized problem we use a family of direction func-
tions over the grid P . For each dimension i ≤ d, we have function Di : P → {up, down, zero}.
Intuitively, the natural reduction from a contraction map f to a family of direction functions
would, for each point p ∈ P and each dimension i ≤ d set: Di(p) = up whenever f(p)i > pi,
Di(p) = down whenever f(p)i < pi, and Di(p) = zero whenever f(p)i = pi. In other words,
the function Di simply outputs whether f(p) moves up, down, or not at all in dimension i.
So a point p ∈ P with Di(p) = zero for all i would correspond to the fixpoint of f .

A 2d example. To illustrate this definition, consider the 2d instance given in the two
leftmost parts of Figure 2, which we use as a running example. These are two direction
functions: the left one shows a direction function for the up-down dimension, which we
will call dimension 1 and illustrate in blue. The right one shows the left-right dimension,
which we will call dimension 2 and illustrate in red. Each square represents a point in the
discretized space, and the value of the direction function is shown inside the box. Note that
there is exactly one point p where D1(p) = D2(p) = zero, which is the fixpoint that we seek.
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Figure 2 This figure should be viewed in color. From left to right: A direction function for the
up/down dimension; a direction function for the left/right dimension; the red and blue surfaces; the
path that we follow.

Slices. We will frequently refer to subsets of P in which some dimensions have been fixed. A
slice is represented as a tuple (s1, s2, . . . , sd), where each si is either: a number in [ki], which
indicates that dimension i should be fixed to si; or the special symbol ∗, which indicates that
dimension i is free to vary. We define Sliced to be the set of all possible slices in dimension d.
Given a slice s ∈ Sliced, we define Ps ⊆ P to be the set of points in that slice, i.e., Ps contains
every point p ∈ P such that pi = si whenever si 6= ∗. We say that a slice s′ ∈ Sliced is a
sub-slice of a slice s ∈ Sliced if sj 6= ∗ =⇒ s′j = sj for all j ∈ [d]. An i-slice is a slice s for
which sj = ∗ for all j ≤ i, and sj 6= ∗ for all j > i. In other words, all dimensions up to and
including dimension i are allowed to vary, while all other dimensions are fixed.

In our 2d example, there are three types of i-slices. There is one 2-slice: the slice (∗, ∗)
that contains every point. For each x, there is a 1-slice (∗, x), which restricts the left/right
dimension to the value x. For each pair x, y there is a 0-slice (y, x), which contains only the
exact point corresponding to x and y.

The OPDC problem. Let P be a grid of points in dimension d and D = (Di)i=1,...,d a
family of direction functions over P . We say that a point p ∈ Ps in some slice s is a fixpoint
of s if Di(p) = zero for all dimensions i where si = ∗. The promise version of OPDC promises
that for every i-slice s, the following conditions hold.
1. There is a unique fixpoint of s.
2. Let s′ ∈ Sliced be a sub-slice of s where some coordinate i for which si = ∗ has been fixed.

If q is the unique fixpoint of s, and p is the unique fixpoint of s′, then pi < qi implies
Di(p) = up, and pi > qi implies Di(p) = down.

Since the slice (∗, ∗, . . . , ∗) is an i-slice, the first condition implies that all i-slices including
the full problem have a unique fixpoint. Intuitively, the second condition just ensures that
the Di behave as direction functions. It says that if we have found the unique fixpoint p
of the (i+ 1)-slice s′, and if it is not the unique fixpoint of the i-slice s, then Di(p) tells us
which way to walk to find the fixpoint of s. This is a crucial property used in our reduction
from OPDC to UniqueEOPL, and in our algorithms for contraction maps.

In our 2d example, the first condition requires that every slice (∗, x) has a unique fixpoint,
i.e., in every column there is a unique blue zero. The second condition says that, if we are
at some blue zero, then the red direction function at that point tells us the direction of the
overall fixpoint. Our example satisfies both conditions. We next define a total variant of
OPDC that uses violations to cover the cases where D fails to satisfy these two conditions.

I Definition 4 (OPDC). Given a tuple (k1, k2, . . . , kd) and circuits (Di(p))i=1,...,d, where
each circuit Di : P (k1, k2, . . . , kd)→ {up, down, zero}, find one of the following
(O1) A point p ∈ P such that Di(p) = zero for all i.

(OV1) An i-slice s and points p, q ∈ Ps with p 6= q s.t. Dj(p) = Dj(q) = zero for all j ≤ i.
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(OV2) An i-slice s and points p, q ∈ Ps s.t. Dj(p) = Dj(q) = zero for all j < i, pi = qi + 1,
and Di(p) = down and Di(q) = up.

(OV3) An i-slice s and a point p ∈ Ps s.t. Dj(p) = Dj(q) = zero for all j < i, and either
pi = 0 and Di(p) = down, or pi = ki and Di(p) = up.

Solution type 1 encodes a fixpoint, which is the proper solution of OPDC. Solution type 1
witnesses a violation of the fact that each i-slice should have a unique fixpoint, by giving
two different points p and q that are both fixpoints of the same i-slice. Solutions of type 2
witness violations of the first and second properties. In these solutions we have two points p
and q that are both fixpoints of their respective (i− 1)-slices and are directly adjacent in an
i-slice s. If there is a fixpoint r of the slice s, then this witnesses a violation of the fact that
Di(p) and Di(q) should both point towards r, since clearly one of them does not. On the
other hand, if slice s has no fixpoint, then p and q also witness this fact, since the fixpoint
should be in-between p and q, which is not possible. Solutions of type 3 consist of a point p
that is a fixpoint of its (i− 1)-slice but Di(p) points outside the boundary of the grid. These
are violations because Di(p) should point towards the fixpoint of the i-slice containing p, but
that fixpoint cannot be outside the grid.

It is perhaps not immediately obvious that OPDC is a total problem. Our promise-
preserving reduction from OPDC to UniqueEOPL proves totality, and shows that if the
OPDC instance has no violations then it has a unique solution. The prefix One-Permutation
was chosen to emphasize that our solution conditions only consider i-slices. In the continuous
contraction map problem with an `p metric, every slice has a unique fixpoint, and our
reduction from contraction maps to OPDC works for any permutation of the dimensions.

3.1 One-Permutation Discrete Contraction is UniqueEOPL-complete

To show that OPDC lies in UniqueEOPL under promise-preserving reductions, we make
use of an intermediate problem that we call UniqueForwardEOPL, which is a version of
UniqueEOPL in which we only have a successor circuit S, meaning that no predecessor
circuit P is given. Without this circuit, there is no way to tell if a vertex is the start of a line,
so the only solutions to this problem are the end of a line, a vertex at which the potential fails
to increase, or the analogue of 3. Although we no longer have a predecessor circuit, it is still
the case that if the problem is promised to have no violations, then it must contain a single
line ending at the unique proper solution. We reduce OPDC to UniqueForwardEOPL,
and then reduce UniqueForwardEOPL to UniqueEOPL.

An illustration of the reduction. We illustrate using the 2d example shown in Figure 2.
The reduction uses the notion of a surface. The surface of a direction function Di is exactly
the set of points p ∈ P such that Di(p) = zero. In the third part of Figure 2, we have overlaid
the surfaces of the two direction functions from Figure 2. The fixpoint p that we seek has
Di(p) = zero for all dimensions i, and so it lies at the intersection of these surfaces.

To reach the overall fixpoint, we walk along a path starting from the bottom-left corner,
which is shown on the rightmost part of Figure 2. The path begins by walking upwards
until it finds the blue surface. Once it has found the blue surface, it then there are two
possibilities: either we have found the overall fixpoint, in which case the line ends, or we
have not found the overall fixpoint, and the red direction function tells us that the direction
of the overall fixpoint is to the right. If we have not found the overall fixpoint, then we move
one step to the right, go back to the bottom of the diagram, and start walking upwards
again. We keep repeating this until we find the overall fixpoint.



J. Fearnley, S. Gordon, R. Mehta, and R. Savani 56:9

How do we define a potential? Observe that the dimension-two coordinates of the points
on the line are weakly monotone, i.e., the line never moves to the left. Furthermore, for any
dimension-two slice (any slice in which the left/right coordinate is fixed), the dimension-one
coordinate is increasing. So, if p = (p1, p2) denotes any point on the line, if k denotes the
maximum coordinate in either dimension, then the function V (p1, p2) = k · p2 + p1 is a
function that monotonically increases along the line, which we can use as a potential function.

Uniqueness. For a promise-preserving reduction, the line must be unique whenever the
OPDC instance has no violations. To do this we must be careful that only points that are to
the left of the fixpoint are actually on the line, and that no “false” line exists to the right of
the fixpoint. Here we rely on the following fact: if the line visits a point with coordinate x in
dimension 2, then it must have visited the point p on the blue surface in the slice defined by
x− 1. Moreover, for that point p we must have D2(p) = up, which means that it is to the
left of the overall fixpoint. Using this fact, each vertex on our line will be a pair (p, q), where
p is the current point that we are visiting, and q is either the symbol −, indicating that we
are still in the first column of points, and we have never visited a point on the blue surface,
or a point q that is on the blue surface that satisfies q2 = p2 − 1 and D2(q) = up. Hence q
is always the last point that we visited on the blue surface, which provides a witness that
we have not yet walked past the overall fixpoint. When we finish walking up a column, and
find the point on the blue surface, we overwrite q with the new point. This step is not easily
reversible, since to determine the predecessor of a vertex we would need to recover the value
that was overwritten. So we create a UniqueForwardEOPL instance, and our onwards
reduction to UniqueEOPL will produce a predecessor circuit.

Violations. Our 2d example does not contain any violations, but our reduction can still
handle all possible violations in the OPDC instance. At a high level, there are two possible
ways in which the reduction can go wrong if there are violations.
1. It is possible, that as we walk upwards in some column, we do not find a fixpoint, and our

line will get stuck. In our 2d example, this case corresponds to a column of points in which
there is no point on the blue surface. However, if there is no point on the blue surface,
then we will either: find two adjacent points p and q in that column with D1(p) = up and
D2(p) = down, which is a solution of type 2, or find a point p at the top of the column
with D1(p) = up, or a point q at the bottom of the column with D1(q) = down. Both of
these are solutions of type 3. There is also the similar case where we walk all the way to
the right without finding an overall fixpoint, in which case we will find a point p on the
right-hand boundary that satisfies D1(p) = zero and D2(p) = up, which is a solution of
type 3.

2. The other possibility is that there may be more than one point on the blue surface in
some columns. This inevitably leads to multiple lines, since if q and q′ are both on the
blue surface in some column, and p is in the column to the right of p and q, then (p, q)
and (p, q′) will both be valid vertices on two different lines. We map these violations back
to solutions of type 1. Specifically, the points p and q, which are given as part of the two
vertices, are both fixpoints of the same slice, which is exactly what 1 asks for.

Our reduction is promise-preserving because violations in the UFEOPL instance are never
mapped back to proper solutions of the OPDC instance.

Generalizing to d dimensions. The full reduction from OPDC to UniqueForwardEOPL
generalizes the approach given above to d dimensions. We say that a point p ∈ P is on
the i-surface if Dj(p) = zero for all j ≤ i. In our 2d example we followed a line of points
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on the 1-surface, in order to find a point on the 2-surface. In between any two points on
the 1-surface, we followed a line of points on the 0-surface (every point is trivially on the
0-surface). Our line will visit a sequence of points on the (d− 1)-surface in order to find the
point on the d-surface, which is the fixpoint. Between any two points on the (d− 1)-surface
the line visits a sequence of points on the (d − 2)-surface, between any two points on the
(d− 2)-surface the line visits a sequence of points on the (d− 3)-surface, and so on. Every
time we find a point on the i-surface, we remember it, increment our position in dimension i
by 1, and reset our coordinates back to 0 for all dimensions j < i. Hence, a vertex will be a
tuple (p0, p1, . . . , pd), where each pi is either the symbol −, indicating that we have not yet
encountered the i-surface, or the most recent point on the i-surface that we have visited.

The potential is likewise generalized so that the potential of a point p is proportional
to

∑d
i=1 k

ipi, where k is some constant that is larger than the grid size. Thus progress
in dimension i dominates progress in dimension j whenever j < i, and the potential
monotonically increase along the line. We are also able to deal with all possible violations.

Completing the reduction to UniqueEOPL. The final step of the reduction uses
SinkOfVerifiableLine, a problem introduced by Bitansky et al [4]. SinkOfVerifi-
ableLine is intuitively similar to UniqueForwardEOPL. It was shown by Hubáček and
Yogev [36] that SinkOfVerifiableLine can be reduced to an EndOfMeteredLine in-
stance with a unique line, and hence to UniqueEOPL. However, [36] only deals with the
promise problem. Our contribution is to deal with violations. In doing so, we complete our
chain of promise-preserving reductions from OPDC to UniqueEOPL. It is worth pointing
out that this step of the reduction implies that the cryptographic hardness results shown by
Bitansky et al. for SinkOfVerifiableLine [5] also apply to UniqueEOPL.

Hardness of OPDC. We show that OPDC is UniqueEOPL-hard by giving a polynomial-time
promise-preserving reduction from UniqueEOPL to OPDC. Our reduction produces an
OPDC instances where the set of points P is the Boolean hypercube {0, 1}n. In the case
where the UniqueEOPL instance has no violations, meaning that it contains a single line,
the reduction embeds this line into the hypercube. To do this, it splits the line in half.
The second half is embedded into a particular sub-cube, while the first half is embedded
into all other sub-cubes. This process is recursive, so each half of the line is again split in
half, and further embedded into sub-cubes. The reduction ensures that the only fixpoint of
the instance corresponds to the end of the line. If the UniqueEOPL instance does have
violations, this embedding may fail, but we are then able to produce a violation for the
original UniqueEOPL instance. We remark that this reduction makes significant progress
towards showing hardness for Contraction and USO, since OPDC is a discrete variant of
Contraction, and when the set of points is a hypercube, the problem is also very similar
to USO. The key difference is that OPDC insists that only i-slices have a unique fixpoint,
whereas Contraction and USO insist that all slices have unique fixpoints.

I Theorem 5. OPDC is UniqueEOPL-complete under promise-preserving reductions, even
when the set of points P is a hypercube.

4 UniqueEOPL containment results

We show that USO, P-LCP, and a variant of Contraction all lie in UniqueEOPL. For each of
these three problems, we provide a reduction to OPDC, shown to be in UniqueEOPL in the
previous section.
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A USO instance naturally gives rise to an OPDC instance where the underlying grid of
points is actually a cube, and there is an easy reduction that shows the following.

I Theorem 6. USO is in UniqueEOPL under promise-preserving reductions.

This result substantially advances our knowledge about USO, since prior to this work, it was
only known to lie in TFNP, and Kalai [39, Problem 6] had posed the challenge to place it in
some non-trivial subclass of TFNP. We place it in all of the standard subclasses of TFNP2.

We provide two reductions from P-LCP to UniqueEOPL. One is via the known reduction
from P-LCP to USO [59]. The other uses Lemke’s algorithm and produces a UEOPL instance
with size linear in that of the P-LCP, which we require for our algorithmic result in Section 5.
Lemke’s algorithm is a PPAD-style path-following algorithm. The potential comes from a
parameter used in Lemke’s algorithm that changes monotonically on an P-matrix LCP. The
complication is to deal with violations when the input matrix is not a P-matrix.

The reason for two reductions is that each produces different types of violation. We
emphasize that all violations used are well-known and natural, and perhaps one can convert
between them in polynomial time. Moreover, for the promise problem the choice of violations
is irrelevant: each reduction independently shows that promise P-LCP lies in PromiseUEOPL.

I Theorem 7. P-LCP ∈ UniqueEOPL under promise-preserving reductions.

For contraction, we study maps specified by piecewise linear functions. This differs from [14],
where the map is given by an arbitrary arithmetic circuit. Although every contraction map
has a unique fixpoint, for an arbitrary arithmetic circuit, the unique exact fixpoint may
be irrational, and finding it is not known to be in FNP. Prior work instead asked for an
approximate fixpoint [14]. However, given our interest in uniqueness of solutions we need to
consider exact fixpoints, and thus study the problem with LinearFIXP arithmetic circuits [18],
where multiplication of two variables is disallowed, and when the function is contracting,
there is a unique rational fixpoint. This is still an interesting class of contraction maps, since
it is powerful enough to represent the well-studied simple-stochastic games [18, 11]. We
place this problem in UniqueEOPL via a promise-preserving reduction to OPDC. When the
promise is not satisfied, the reduction either produces the standard violation, a pair of points
at which the function is not contracting, or a different, more technical, violation.

OPDC was inspired by the continuous contraction problem, and our reduction from
contraction is to OPDC. The most complicated part of the reduction is picking a suitable set
of points for the OPDC instance that is small enough, but also is guaranteed to contain the
unique fixed point of the contraction instance. To do this, we formulate the fixpoint problem
for a LinearFIXP circuit as an LCP and reason about the bit-length of solutions to this LCP.

I Theorem 8. Finding the fixpoint of a piecewise linear contraction map in the `p norm is
in UniqueEOPL under promise-preserving reductions for any p ∈ N ∪ {∞}.

Finally, we note that our results imply that several other problems lie in UniqueEOPL. The
simple-stochastic game (SSG) problem is known to reduce to piecewise-linear Contraction [18]
and P-LCP [30]. Discounted games are known to reduce to SSGs [62], mean-payoff games to
discounted games [62], and parity games to mean-payoff games [50]. So all these problems lie
in UniqueEOPL too. [27] noted that ARRIVAL [17] lies in EOPL; since their EndOfPoten-
tialLine instance contains only one line, ARRIVAL also lies in UniqueEOPL. However, none
of these are promise-problems. Each can be formulated so as to unconditionally have a unique
solution. Hence, they seem to be easier than other problems captured by UniqueEOPL.

2 However, we do not place the problem in the recently defined class PWPP [37]
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I Theorem 9. The following problems are in UniqueEOPL: Solving a parity game; mean-
payoff game; discounted game; simple-stochastic game; the ARRIVAL problem.

5 New algorithms

The insights provided by our containment results give two algorithmic results. Firstly, we
obtain simple polynomial-time algorithms for finding the fixpoint of a contraction map in
fixed dimension for any `p norm. This result was already known via a reduction to the
problem of finding a Tarski fixpoint [51], but our algorithm utilises the structural properties
of contraction that arise from our reduction to OPDC, and is arguably simpler.

Secondly, as noted in [27], one of our reductions for P-LCP allows a technique of Aldous [2]
to be applied, giving the fastest known randomized algorithm for P-LCP.

6 Conjectures and conclusions

I Conjecture 1. USO is hard for UniqueEOPL.

Among our three motivating problems, USO seems the most likely to be UniqueEOPL-
complete. Our hardness proof for OPDC already goes some way towards proving this, since
it applies even on a hypercube. Going further, could we even show the stronger result of
hardness for P-LCP, which would imply hardness of USO? The complexity of these two
problems has been open for decades.

I Conjecture 2. Piecewise-Linear Contraction in an `p norm is hard for UniqueEOPL.

For this result, in addition to the i-slice vs. all slice issue, we would also need to convert the
discrete OPDC problem to the continuous contraction problem. Converting discrete problems
to continuous fixpoint problems has been well-studied in the context of PPAD-hardness
reductions [13, 45], but here we must additionally maintain the contraction property.

Aside from hardness, we also think that the relationship between Contraction and
USO should be explored further, since OPDC exposes significant, previously unrecognised,
similarities between the two problems.

I Conjecture 3. UniqueEOPL ⊂ EOPL = CLS.

The question of EOPL vs CLS is unresolved, and we actually think it could go either way. One
could show that EOPL = CLS by placing either of the two known CLS-complete Contraction
variants into EOPL [15, 20]. If the two classes are actually distinct, then it is interesting to
ask which of the problems in CLS are also in EOPL.

On the other hand, we believe that UniqueEOPL is a strict subset of EOPL. The evidence
for this is that the extra violation in UniqueEOPL that does not appear in EndOfPo-
tentialLine changes the problem significantly. It introduces many new solutions whenever
there are multiple lines in the instance, and so it is unlikely, in our view, that one could
reduce EndOfPotentialLine to UniqueEOPL. We also believe it very unlikely that
other problems in CLS, such as the KKT problem of finding an approximate stationary
point of a multivariate polynomial, are in UniqueEOPL. Of course, there is little hope to
unconditionally prove that UniqueEOPL ⊂ EOPL, but we can ask for further evidence, such
as oracle separations, to support the idea.
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Abstract
In one of the most actively studied version of Constraint Satisfaction Problem, a CSP is defined
by a relational structure called a template. In the decision version of the problem the goal is to
determine whether a structure given on input admits a homomorphism into this template. Two
recent independent results of Bulatov [FOCS’17] and Zhuk [FOCS’17] state that each finite template
defines CSP which is tractable or NP-complete.

In a recent paper Brakensiek and Guruswami [SODA’18] proposed an extension of the CSP
framework. This extension, called Promise Constraint Satisfaction Problem, includes many naturally
occurring computational questions, e.g. approximate coloring, that cannot be cast as CSPs. A
PCSP is a combination of two CSPs defined by two similar templates; the computational question is
to distinguish a YES instance of the first one from a NO instance of the second.

The computational complexity of many PCSPs remains unknown. Even the case of Boolean
templates (solved for CSP by Schaefer [STOC’78]) remains wide open. The main result of Brakensiek
and Guruswami [SODA’18] shows that Boolean PCSPs exhibit a dichotomy (PTIME vs. NPC)
when “all the clauses are symmetric and allow for negation of variables”. In this paper we remove the
“allow for negation of variables” assumption from the theorem. The “symmetric” assumption means
that changing the order of variables in a constraint does not change its satisfiability. The “negation
of variables” means that both of the templates share a relation which can be used to effectively
negate Boolean variables.

The main result of this paper establishes dichotomy for all the symmetric boolean templates.
The tractability case of our theorem and the theorem of Brakensiek and Guruswami are almost
identical. The main difference, and the main contribution of this work, is the new reason for hardness
and the reasoning proving the split.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory
of computation → Constraint and logic programming

Keywords and phrases promise constraint satisfaction problem, PCSP, algebraic approach

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.57

Category Track A: Algorithms, Complexity and Games

Related Version A full version of the paper is avaialable at https://arxiv.org/abs/1904.12424,
[11] .

Funding Research was partially supported by National Science Centre, Poland grant no.
2014/2013/B/ST6/01812.

EA
T

C
S

© Miron Ficak, Marcin Kozik, Miroslav Olšák, and Szymon Stankiewicz;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 57; pp. 57:1–57:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3104-6354
mailto:miron.ficak@student.uj.edu.pl
https://orcid.org/0000-0002-1839-4824
mailto:marcin.kozik@uj.edu.pl
mailto:mirek@olsak.net
https://orcid.org/0000-0003-2235-4849
mailto:szymon.stankiewicz@student.uj.edu.pl
https://doi.org/10.4230/LIPIcs.ICALP.2019.57
https://arxiv.org/abs/1904.12424
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


57:2 Dichotomy for Symmetric Boolean PCSPs

1 Introduction

Constraint Satisfaction Problems have been studied in computer science in many forms. In
the general approach an instance of the CSP consists of variables and constraints. In the
decision version of the problem the objective is to verify whether there exists an evaluation
of variables that meets all the constraints.

One particular type of CSPs received a lot of attention in the past years. In this approach
constraints are relations taken from a fixed, finite relational structure called a template.
The interest in this particular version was driven by a conjecture of Feder and Vardi [10]
postulating that each finite template defines a CSP which is tractable or NP-complete.

A great variety of decision problems independently studied by computer scientists can
be cast as CSPs. To name a few: 3-SAT, k-colorability, (generalized) unreachability in
directed graphs or solving systems of linear equation over a finite field, are all CSPs defined
by finite templates. The class of all the computational problems falling into the scope of the
conjecture is very big and its verification was a gradual and lengthy process. Nevertheless,
from the start, the claim was supported by strong evidence. In this context the classical
result of Schaefer [15] showing that the dichotomy holds for templates over Boolean domain,
is perhaps the most important.

The dichotomy for all the finite templates was recently confirmed by two, independent
results of Bulatov [6] and Zhuk [16]. Both of them use the algebraic approach [13, 7], where
the complexity of a template is studied via compatible operations called polymorphisms.
The algebraic approach proved very successful not only in the decision version of the CSP: a
number of important results in optimization [14], approximation [2] etc. of the CSP is based
on some versions of polymorphisms.

A positive resolution of the dichotomy conjecture motivates the following question: is
the class of CSPs unique, or maybe a part of a larger, natural class which also exhibits a
dichotomy? Note that such a class should be amenable to some sort of the algebraic approach,
as no other tools offer comparable power even in the case of the CSP. In the recent paper [5]
Brakensiek and Guruswami proposed a candidate for such a class.

The Constraint Satisfaction Problem defined by a fixed language can be cast as a problem
of finding homomorphism from a relational structure given on input to a fixed template.
The class proposed by Brakensiek and Guruswami as an extension of CSP is called Promise
Constraint Satisfaction Problems. A PCSP is based on two CSPs with similar templates and
the question is to distinguish YES instances of the first CSP from NO instances of the second.

To provide a few examples: the CSP defined by an undirected clique (without loops)
of size k as a template is just k-colorability. Defining PCSP by two cliques, say of sizes k
and l satisfying k < l, we get the following problem: distinguish between the graphs with
chromatic number ≤ k and those with chromatic number > l. These problems are studied
independently [9, 12, 3, 8], but the characterization of complexities for all pairs (k, l) is either
incomplete or done under additional assumptions.

Another example is a Boolean PCSP. A single ternary relation {(0, 0, 1), (0, 1, 0), (1, 0, 0)}
defines a CSP which is known as Monotone-1-in-3-SAT, and similarly the relation {0, 1}3 \
{(0, 0, 0), (1, 1, 1)} gives rise to the CSP known as Monotone-NAE-SAT. Thus the question
of distinguishing between instances which are satisfiable as Monotone-1-in-3-SAT instances
and not satisfiable as Monotone-NAE-SAT instances is a PCSP. Surprisingly this problem is
tractable even allowing for the negation of variables [1, 5].

Further examples of problems expressible as PCSPs can be found in [5]. Promise
Constraint Satisfaction Problems generalize CSPs and include many additional, natural
problems. The algebraic approach to the CSP can be adjusted to work in the case of
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the PCSP. The first Galois correspondence between PCSPs and the polymorphisms was
introduced in [5], and the more abstract algebraic approach was proposed in [8]. Despite all
the interest, PCSPs lack a classification result that would play the role of Schaefer’s theorem.
This motivates a more systematic study of Boolean PCSPs.

The main result of Brakensiek and Guruswami, Theorem 2.1 in [5], establishes dichotomy
for a certain class of Boolean PCSPs. A PCSP template falls into this class if all the
relations in the templates are symmetric (i.e. invariant under permutations, or equivalently,
determined by Hamming weights of the tuples) and additionally the template contains a
relation which can be used to negate Boolean variables in both CSP templates. As the
additional relation is binary and symmetric, the result concerns all the symmetric templates
containing this particular relation. In this paper we remove the additional assumption and
show that all symmetric Boolean templates exhibit a dichotomy.

Let us further compare the results. The algorithms required for the original and extended
result are exactly the same: Gaussian elimination or linear programming relaxation depending
on the polymorphisms of the template. The list of polymorphisms implying tractability differs
slightly as we need to allow additional threshold functions (Boolean functions returning 0
if and only if the number of 1’s is below a threshold). Unfortunately the condition which
guarantees hardness in the original paper fails when the negating relation is absent. The
new hardness condition and a more involved analysis of the minion of polymorphisms are
required in the proof and constitute the main contribution of this paper.

The publication is organized as follows. The next section contains basic definitions
commonly used in context of an algebraic approach to the CSP or the PCSP. Section 3
contains a list of polymorphisms that guarantee tractability, statement of the main theorem
and a proof of the tractability case. In section 4 we introduce notation and nomenclature.
Section 5 contains the algebraic condition implying hardness of PCSP and a proof of this
implication. The main part of the reasoning behind the result is focused on showing that lack
of polymorphisms from the tractability list implies, in our case, the condition for hardness.
Section 6 contains an overview of this proof and a complete reasoning can be found in the
full version of the paper.

2 Basic definitions

This section contains basic definitions and notions relevant to CSP and PCSP. A relation
R ⊆ An is an n-ary relation and the set A is its universe. A relation is symmetric, if for
every permutation σ of [n] (where [n] is defined to be {1, . . . , n}) if (a1, . . . , an) ∈ R then
also (aσ(1), . . . , aσ(n)) ∈ R. A relation Rm ⊆ (Am)n is a Cartesian power of R ⊆ An if
(a1, . . . , an) ∈ Rm if and only if (a1

i , . . . , a
n
i ) ∈ R for every i (i.e. Rm is defined from R

coordinate-wise).
A relational structure A is a tuple (A;R1, . . . Rn) where each Ri is a relation on A, and

we call a relational structure symmetric if all its relations are. Two relational structures are
similar if they have the same sequence of arities of their relations. E.g. a relational struc-
ture (A;R1, . . . Rn) and it’s m-th power (Am; (R1)m, . . . (Rn)m) are similar. For two similar
structures say A = (A;R1, . . . , Rn) and B = (B;S1, . . . , Sn) a function h : A→ B is a homo-
morphism if for every i and every tuple (a1, . . . , am) ∈ Ri the tuple (h(a1), . . . , h(am)) ∈ Si.

The Constraint Satisfaction Problem defined by a relational structure B (denoted by
CSP(B)) is the following decision problem:
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57:4 Dichotomy for Symmetric Boolean PCSPs

Input: a relational structure A similar to B
Question: does there exists a homomorphism from A to B?

The relational structure B is called a template of such a problem.
The Promise Constraint Satisfaction Problem is a promise problem defined by a pair of

similar relational structures (B,C) such that there exists a homomorphism from B to C.
The PCSP(B,C) is:

Input: a relational structure A similar to B and C
Output YES: if there exists a homomorphism from A to B
Output NO: if there is no homomorphism from A to C.

Just like in the case of the CSP, the pair (B,C) is called a template. Clearly PCSP(B,B) is
CSP(B) and therefore the PCSP generalizes the CSP.

Both problems exhibit a Galois correspondence i.e. instead of studying the structure of
the template one can choose to analyze the structure of template’s polymorphisms [13, 7, 5, 8].
A polymorphism of a relational structure B is a homomorphism from a finite Cartesian power
of B to B. Similarly a polymorphism of a PCSP template (B,C) is a homomorphism from
a finite Cartesian power of B to C. We denote the set of all polymorphisms of B by Pol(B),
and the set of all polymorphisms of (B,C) by Pol(B,C).

For each relational structure B the set Pol(B) is clone i.e. it contains projections and
is closed under composition. Similarly for a pair (B,C) the set Pol(B,C) is a minion. A
minion is a set of functions closed under taking minors i.e. creating functions by identifying
variables, permuting variables and introducing dummy variables. If f(x1, . . . , xn) is a function
and f ′(x) = f(x, . . . , x) then f ′(x) is the unary minor of f(x1, . . . , xn) and f ′′(x, y) =
f(x, y, . . . , y) is a binary minor of f(x1, . . . , xn).

In some cases, instead of considering a PCSP template ((A;R1, . . . , Rn), (B;S1, . . . , Sn))
we work with an equivalent concept of a language i.e. a sequence of pairs [R1, S1], . . . , [Rn, Sn].
We say that a pair [S, T ] is compatible with a minion M, if every member of M maps an
appropriate power of S to T (the exponent of the power is the arity of the operation).

A primitive positive formula (pp-formula) is a formula constructed using atomic formulas,
conjunction and existential quantification. Such formulas play a special role in CSP and
PCSP: if a relation R has a primitive positive definition in B then R is compatible with
Pol(B) and adding R to B does not change the computational complexity of the CSP(B).
Similarly, if a pair [R,S] has a pp-definition in the language of (A,B) (pp-formula in [Ri, Si]
defines such [R,S] in the natural way) then [R,S] is compatible with Pol(A,B) and adding it
to the language/template does not change the complexity [5]. One more construction, called
strict relaxation, plays an important role in the theory of PCSP: if [Ri, Si] is an element of
the language (B,C) and R ⊆ Ri while Si ⊆ S then [R,S] is compatible with Pol(A,B) and
adding it to the language/template does not change the complexity.

3 Main theorem and tractability

Focusing on the Boolean domain we present the main theorem of the paper and prove that
the tractable cases are indeed solvable in P. In this part of the proof our paper does not
deviate much from [5]; the polymorphisms which imply tractability are almost the same with
an exception of the threshold case.

A n-ary function is a max (a min) if it returns maximum (resp. minimum) of its
arguments (in the natural order on {0, 1}).
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A function f(x1, . . . , xn) is an alternating threshold if n = 2k + 1 and

f(x1, . . . , xk, xk+1, . . . , xn) =
{

0 if
∑k
i=1 xi ≥

∑n
i=k+1 xi,

1 if
∑k
i=1 xi <

∑n
i=k+1 xi,

A function f(x1, . . . , xn) is an xor if n is odd and f(x1, . . . , xn) = x1 + · · ·+ xn mod 2.
A function f(x1, . . . , xn) is a q-threshold (where q is a rational between 0 and 1) if

f(x1, . . . , xn) =
{

0 if
∑n
i=1 xi < nq,

1 if
∑n
i=1 xi > nq,

and nq is not an integer. Note that all the evaluations of the f(x1, . . . , xn) are determined.
We denote the set of all max functions by MAX, all the min functions by MIN, all alternating
thresholds by AT all xor by XOR and all q-thresholds by THRq. For a set of functions F by
F we denote {1− f(x1, . . . , xn) : f(x1, . . . , xn) ∈ F}. We are ready to state the main result
of the paper.

I Theorem 1. Let (A,B) be a symmetric, Boolean PCSP language. If Pol(A,B) contains
a constant or includes at least one of the sets MAX, MIN, AT, XOR , THRq (for some q),
MAX, MIN, AT, XOR or THRq (for some q) then PCSP(A,B) is tractable. Otherwise it
is NP-complete.

Comparing the statement of Theorem 1 and Theorem 2.1 of [5] we find two differences: the
earlier paper additionally assumes that negated variables can appear in instances and it
allows the authors to substitute “THRq for some q” with THR1/2 in the list of conditions
that force tractability.

In the remaining part of this section we will show the tractability case of Theorem 1. The
reasoning differs very little from the one found in [5] and therefore we cover it quickly: If
Pol(A,B) contains a constant function PCSP(A,B) is clearly tractable; if it includes MAX,
MIN and XOR tractability follows from Lemma 3.1 of [5]. If AT ⊆ Pol(A,B) then Claim 2 of
Section 3.2 [5] implies tractability. Finally the case of THRq is a minor generalization of the
argument in Claim 1 of Section 3.2 in the same paper, or a special case of Theorem 5.2 in [4].

The remaining cases reduce, just like in [5], to the ones from the previous paragraph:
let relational structure B′ be obtained from B by exchanging the roles of 0 and 1 (that is,
in every relation in B, in every tuple of this relation and at every position in this tuple we
change x to 1− x). The YES instances of PCSP(A,B′) and PCSP(A,B) are trivially the
same and so are the NO instances. If MIN ⊆ Pol(A,B) then MIN ⊆ Pol(A,B′) and, by
the cases already established, PCSP(A,B′) is tractable. Clearly PCSP(A,B) is tractable as
well and all the remaining tractable cases can be dealt with the same way.

4 The notation for symmetric Boolean PCSPs

In order to show NP-hardness in the remaining case of Theorem 1, we require a few definitions
which allow us to work with symmetric Boolean relations and Boolean function concisely.

Every symmetric relation R ⊆ {0, 1}m is uniquely determined by the set I ⊆ {0, . . . ,m}
consisting of the Hamming weights of its elements. This fact allows us to use R and
I interchangeably. Let (B,C) be a symmetric, Boolean PCSP template with language
[R1, S1], . . . , [Rn, Sn] where the arities of the relations are a1, . . . , an. We will denote such a
language by [ I1 | J1 ]a1

, . . . , [ In | Jn ]an
where Ii (Ji) is a set of Hamming weights of elements
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of Ri (Si respectively). We will often use a flattened form of this notation: we will denote
[ {1} | {1, 2} ]2 by [ 1 | 1, 2 ]2 and so on as well as [n] = {1, . . . , n}.

Focusing on compatibility; an operation f(x1, . . . , xn) is compatible with [ 0 | 0 ]1 if and
only if f(0, . . . , 0) = 0 and compatible with [ 1 | 1 ]1 if and only if f(1, . . . , 1) = 1. The pair
[ 1 | 1 ]2 defines negation in A and B and therefore the main result of [5] is a special case of
Theorem 1; the additional assumption states that [ 1 | 1 ]2 is in the language of PCSP.

We proceed to illustrate a number of pp-definitions and strict relaxations that appear
repeatedly in the proofs. Using [ I | J ]n and [ 0 | 0 ]1 one can define [ I \ {n} | J \ {n} ]n−1
using the following pp-formula:

∃x1 [ 0 | 0 ]1(x1) ∧ [ I | J ]n(x1, . . . , xn).

Similarly

∃x1 [ 1 | 1 ]1(x1) ∧ [ I | J ]n(x1, . . . , xn)

defines [ I ′ | J ′ ]n−1 where I ′ = {i− 1 : i ∈ I and i 6= 0} and J ′ = {j − 1 : j ∈ J and j 6= 0}.
The strict relaxations we use are straightforward: take [ I | J ]n with i ∈ I while j /∈ J then,
for example, [ i | {0, . . . , n} \ {j} ]n is a strict relaxation of [ I | J ]n.

In the proof of tractability for (B,C) (at the end of Section 3) we swapped the role of
0 and 1 in C. In the new notation we change [ I1 | J1 ]a1

, . . . , [ In | Jn ]an
to [ I1 | J ′1 ]a1

, . . . ,

[ In | J ′n ]an
where J ′k = {ak − j : j ∈ Jk}. In some of the proofs we reuse this construction,

although we usually swap for both B and C at the same time.
We define notation for Boolean functions next. A Boolean function f(x1, . . . , xn) is

idempotent if f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1. By the discussion above a minion is
idempotent (i.e. contains idempotent functions only) if it is compatible with [ 0 | 0 ]1 and
[ 1 | 1 ]1. Moreover the idempotent part of Pol(B,C) can be obtained by adding these pairs
to the language.

For a Boolean function f(x1, . . . , xn) and a set U ⊆ [n] the value f(U) is defined as
f(x1, . . . , xn) where {i : xi = 1} = U . When n is clear from the context we can write U
instead of [n] \ U . Let f(x1, . . . , xn) be a Boolean function U ⊆ [n] then U is

a 1-SET if f(U) = 1,
a 0-SET if f(U) = 0,
a 1-FIXING-SET (0-FIXING-SET) if every V ⊇ U is a 1-SET (resp. 0-SET).

Moreover we say that a minion has small fixing sets, if there exists a constant N such
that every function from the minion has a 1-FIXING-SET smaller than N , or every function
from the minion has a 0-FIXING-SET smaller than N . Finally we say that a minion has
bounded antichains, if there exist a constant M such that no function in the minion has M
pairwise disjoint 1-SETs, and no function in the minion has M pairwise disjoint 0-SETs.

5 The hardness proof

In order to satisfy the assumptions of Lemma 5.1, we need some structural properties of the
minion Pol(A,B). The following theorem collects these properties and is a cornerstone of
our classification.

I Theorem 2. Let A,B be a symmetric PCSP language such that Pol(A,B) is idempotent.
If Pol(A,B) does not include MAX, MIN, AT, XOR and THRq (for any q), then Pol(A,B)
has small fixing sets and bounded antichains.
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The Brakensiek and Guruswami [5] version of Theorem 2 requires that (A,B) contains
[ 1 | 1 ]2 and concludes that there exists a constant M such that every member of Pol(A,B)
has a set of size at most M which is a 1-FIXING-SET and a 0-FIXING-SET at the same
time. The following example illustrates that their condition fails in our case.

I Example 3. Consider PCSP defined by a language consisting of [ 0 | 0 ]1, [ 1 | 1 ]1, [ 1 | 1, 2 ]3
and [ 1 | 1, 2 ]4. It is easy to verify that it falls into the hardness case of Theorem 1. On
the other hand for each odd n the function f(x1, . . . , xn) defined as maximum of x1 and
n-ary element of THR1/2 is compatible with all the relational pairs. These functions have no
uniform bound on the size of minimal 0-FIXING-SETs.

In the reminder of this section we use Theorem 2 to finish the proof of Theorem 1. We
begin by introducing the machinery developed in [8] (a direct proof is possible, but involves a
bit more technical considerations). The paper [8] defines minor identity as a formal expression
of the form

f(x1, . . . , xn) ≈ g(xπ(1), . . . , xπ(m))

where f and g are function symbols (of arity n and m, respectively), x1, . . . , xn are variables,
and π : [m]→ [n]. A minor identity is satisfied in a minion M (of functions from A to B) if
there exists an interpretation of the function symbols f and g in M, say ζ, satisfying

ζ(f)(a1, . . . , an) = ζ(g)(aπ(1), ..., aπ(m))

for all a1, . . . , an ∈ A.
A bipartite minor condition is a finite set of minor identities in which function symbols

used on the right- and left-hand sides are disjoint. A minor condition is satisfied in a
minion, if there exists an interpretation simultaneously satisfying all the identities. A minor
condition is trivial if it is satisfied in every minion, in particular, in the minion consisting of
all projections on a set A that contains at least two elements. Finally, still following [8], a
bipartite minor condition Σ is ε-robust (for some ε > 0) if no ε-fraction of identities from Σ
is trivial.

I Lemma 5.1 (Corollary 5.8 from [8]). If there exists an ε > 0 such that Pol(A,B) does not
satisfy any ε-robust bipartite minor condition, then PCSP (A,B) is NP-hard.

In order to apply Lemma 5.1 to PCSP(A,B) we need to ensure that Pol(A,B) does not satisfy
any ε-robust bipartite minor condition. Our first step is to prove it in the idempotent case.

I Proposition 5.2. Let M be an idempotent minion with small fixing sets, and bounded
antichains. Then M does not satisfy any ε-robust bipartite minor condition.

Proof. The proof follows the same pattern as the proofs of Propositions 5.10 and 5.12 in [8]
so we will use the notation from those Propositions in this proof. All we need to do is to
find ε > 0 and a mapping assigning to each member of M a probability distribution on its
variables. The probability distribution needs to satisfy the following condition: if f, g ∈M

and f(x1, . . . , xn) ≈ g(xπ(1), . . . , xπ(m)) then
choosing a variable from the LHS according to the distribution for f and
choosing a variable from the RHS according to the distribution for g,

with probability greater than ε we will choose the same variable.
In order to find such ε and the mapping for M we assume without loss of generality that

small fixing sets in M are 1-FIXING-SETs and their size as well as a size of an antichain
is bounded by constant M . We choose ε < 1/M4 and define the probability distribution
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as follows: fix f ∈M and from the collection of 1-FIXING-SETs smaller than M choose a
maximal subset of pairwise disjoint 1-FIXING-SETs. Let Uf be the set of numbers appearing
in this subset and the probability distribution for f is the uniform distribution on Uf .

Take an identity as above; as |Uf | ≤ M2 and |Ug| ≤ M2 in order to prove the claim it
suffices to show that π(Ug) ∩Uf 6= ∅. Let U be one of the 1-FIXING-SETs which defined Ug.
The set π(U) is a 1-FIXING-SET of f and its size is bounded by M . The maximality of the
subset defining Uf implies that Uf and π(U) intersect, which concludes the proof. J

We are now ready to finish the proof of Theorem 1 (modulo Theorem 2) following
a reasoning similar to the one used in [5]. Let (B,C) be a PCSP language such that
Pol(B,C) doesn’t contain constant functions and do not include any of MAX, MIN, AT,
XOR, THRq, MAX, MIN, AT, XOR, THRq. Let (B+,C+) be (B,C) with [ 1 | 1 ]1 and
[ 0 | 0 ]1 added. By Theorem 2 and Proposition 5.2 Pol(B+,C+) does not satisfy any ε-robust
minor condition (for some fixed ε). Note that Pol(B+,C+) consists of these elements of
Pol(B,C) which have identity as the unary minor. Thus Pol(B,C) \ Pol(B+,C+) consists
of elements of Pol(B,C) which have x 7→ 1− x as the unary minor.

Consider the set Pol(B,C) \ Pol(B+,C+). It is a minion and it is equal to Pol(B−,C−),
where (B−,C−) is obtained from (B,C) in two steps: first the roles of 0 and 1 are swapped
in C (just like in the tractability proof) and then [ 1 | 1 ]1, [ 0 | 0 ]1 are added to the language.
Applying Proposition 5.2 to (B−,C−) we conclude that Pol(B,C) \ Pol(B+,C+) does not
satisfy any ε-robust minor condition (for some ε). The same holds for Pol(B,C)\Pol(B+,C+)
and therefore Pol(B,C) is a disjoint union of two minions which, for some ε, do not satisfy
any ε-robust minor conditions. It follows that Pol(B,C) does not satisfy any ε-robust minor
condition and by Lemma 5.1 the PCSP(B,C) is NP-hard.

6 Proof overview

Our proof of Theorem 2 consists of the following four propositions.

I Proposition 6.1. Let (A,B) be a symmetric language such that M = Pol(A,B) is idem-
potent. If M does not include neither MAX nor MIN, then it is compatible with some
relational pair [ a | 1, . . . , a+ 1 ]a+1 and some relational pair [ 1 | 0, . . . , c ]c+1.

For the next proposition we need to specialize the notion of bounded antichains. We say that
a minion has bounded antichains of 1-SETs (0-SETs) if there exists a uniform bound on the
number of pairwise disjoint 1-SETs (0-SETs respectively) an element of the minion can have.

I Proposition 6.2. Let M be a minion compatible with [ a | 1, . . . , a+ 1 ]a+1 and
[ 1 | 0, . . . , c ]c+1. Then M has bounded antichains of 1-SETs if and only if M has bounded
antichains of 0-SETs.

I Proposition 6.3. Let (A,B) be a symmetric language such that M = Pol(A,B) is idem-
potent. If M is compatible with some [ a | 1, . . . , a+ 1 ]a+1, some [ 1 | 0, . . . , c ]c+1 and does
not have bounded antichains then M includes XOR or AT.

I Proposition 6.4. Let (A,B) be a symmetric language such that M = Pol(A,B) is idem-
potent. If M has bounded antichains and does not include any of THRq then it has small
fixing sets.

The structure of the proof is as follows: if Pol(A,B) has MIN or MAX we are in a
tractable case. Otherwise we split the reasoning in two cases: either Pol(A,B) fails the
bounded antichain condition and by Proposition 6.3 we are tractable due to AT or XOR, or
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we have bounded antichains and by Proposition 6.4 we are either tractable due to THRq or
have small fixing sets which implies hardness (by Proposition 5.2). Proposition 6.2 allows us
to “flip” the template if necessary.

In this section, we prove Propositions 6.1 and 6.2. We also provide proof sketches of
Propositions 6.3 and 6.4. Detailed proofs can be found in the full version of the paper.

Proof of Proposition 6.1. The proof splits into two parts:
M does not have MIN then M is compatible with [ a | 1, . . . , a+ 1 ]a+1
M does not have MAX then M is compatible with [ 1 | 0, . . . , c ]c+1

Proof of both cases is analogous, so we will only prove the first part. Let us assume that
M = Pol(A,B) and M does not have MIN. So there must be [ I | J ]n in the language of
(A,B) such that MIN is not compatible with it. This implies that there exists b < a < n

such that a ∈ I and b 6∈ J . Now, using pp-definitions and strict relaxations from Section 4,
we will show that M is compatible with [ a− b | 1, . . . , a− b+ 1 ]a−b+1:

use strict relaxation of [ I | J ]n to obtain [ a | 0, . . . , b− 1, b+ 1, . . . , n ]n;
from the last pair pp-define, using [ 0 | 0 ]1, the pair [ a | 0, . . . , b− 1, b+ 1, . . . , a+ 1 ]a+1,
finally from the previous pair pp-define, this time using [ 1 | 1 ]1, the required pair
[ a− b | 1, . . . , a− b+ 1 ]a−b+1. J

The following lemma is used in the proof of Proposition 6.2.

I Lemma 6.5. Let M be a minion. Then:
if M is compatible with some [ a | 1, . . . , a+ 1 ]a+1, then for each f in M a union of
a-many pairwise disjoint 0-SETs is a 1-SET.
if M is compatible with some [ 1 | 0, . . . , c ]c+1, then for each f in M a union of c-many
pairwise disjoint 1-SETs is a 0-SET.

Proof. The proofs of the two cases are analogous, so we will only prove the second one.
Let U1, . . . , Uc be disjoint 1-SETs of the n-ary function f ∈ M and U =

⋃c
i=1 Ui. Since

every coordinate i occurs in exactly one set of U1, . . . , Uc, U and f is compatible with
[ 1 | 0, . . . , c ]c+1, the tuple (f(U1), . . . , f(Uc), f(U)) cannot evaluate to (1, . . . , 1). Therefore
f(U) = 0 and U is a 0-SET. See Figure 1 for example.

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0

Figure 1 Example of c disjoint 1-SETs creating a 0-SET with c = 3. The yellow column represents
the result of an evaluation of function f on tuples represented by other columns. The columns are
in [ 1 | 0, 1, 2, 3 ]4 and the grey cells are U1, . . . , Uc while the red cells are U . J

Proof of Proposition 6.2. By using Lemma 6.5 we conclude that:
if f contains an antichain of 1-SETs of size n then it also contains an antichain of 0-SETs
of size at least bnc c
if f contains an antichain of 0-SETs of size n then it also contains an antichain of 1-SETs
of size at least bna c

so if one of the antichains of 0-SETs or 1-SETs is bounded then the other one has to be
bounded as well. J
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Proof sketch of Proposition 6.3. Since M has unbounded antichains, we can take a function
fromM with a arbitrarily large antichain of 1-SETs. By taking its minor, we obtain f satisfying

f(1, 0, . . . , 0) = f(0, 1, 0, . . . , 0) = · · · = f(0, . . . , 0, 1, 0) = 1.

Notice that the last coordinate is exceptional, it does not have to form a 1-SET. By taking
further minors of f we either get g, of arbitrarily large arity, that satisfies

g(1, 0, . . . , 0) = g(0, 1, 0, . . . , 0) = · · · = g(0, . . . , 0, 1) = 1,

or compatibility with AT (see the full version of the paper). We are left with the case when
g’s, of arbitrarily large arity, are in M.

If M does not include AT, it is compatible (after possibly changing ones to zeros and zeros
to ones) with [ 1 | 0, . . . , n− 2, n ]n or [ 0, d | 0, . . . , n− 1 ]n for some d < n. We use these
relational pairs for forcing further behavior of g, and finally obtain an xor of an arbitrarily
large arity. This implies that XOR is a subset of M. J

Proof sketch of Proposition 6.4. If a minion M has bounded antichains and does not have
q-threshold for any q, we can find (skipping an easy case discussed in the full version of the
paper) positive integers a, b, c, d such that c/d < a/b < 1 such that M is compatible with
relational pairs

[ a | 0, . . . , b− 1 ]b, [ c | 1, . . . , d ]d. (1)

Notice that the converse, i.e. that these relational pairs prevent threshold, is clear since (1)
disallows any q-threshold such that q < a/b and any q-threshold such that q > c/d. It can
be shown that these relational pairs are the general obstacle to a threshold polymorphism.
We prove the proposition by induction on a+ b+ c+ d.

For the reminder of the proof to work we are forced to work with weaker assumptions –
instead of M being compatible with (1) we assume that M is “almost compatible” with the
relational pairs. Nevertheless, the “almost compatibility” notion is rather technical, and we
ignore it in this sketch. For a formal proof, see the full version of the paper. Here, let us
simply assume that M is compatible with (1).

It turns out that the only interesting case is c/d < a/b < 1/2. All the other cases can
be either resolved directly or reduced to this one. Now, consider a minimal (ordered by
inclusion) 0-SET U and let fU denote |U |-ary operation obtained from f by plugging zeros to
every coordinate not contained in U . Since f is compatible with [ a | 0, . . . , b− 1 ]b and U is a
0-SET, fU is compatible with [ c | 1, . . . , d− c ]d−c. Every 1-SET in fU is also a 1-SET in f , so
fU has bounded antichains of 1-SETs. (bounded across every f ∈M and every U). Moreover,
since U is minimal, the complement U of U is “almost” a 1-SET (every strict superset
is). If U was a 1-SET, fU would be compatible with [ a | 0, 1, . . . , b− a− 1 ]b−a since f is
compatible with [ a | 0, 1, . . . , b− 1 ]b. This is where the weaker notion of compatibility (the
star-compatibility) is necessary in the full proof. However for the sake of simplicity, assume
that fU is compatible with [ a | 0, 1, . . . , b− a− 1 ]b−a. Since fU has bounded antichains of
1-SETs and it is compatible with relational pairs

[ a | 0, 1, . . . , b− a− 1 ]b−a, [ c | 1, . . . , d− c ]d−c

where c/(d− c) < a/(b− a), it has also bounded antichains of 0-SETs. Therefore, we can
apply the induction hypothesis and obtain a small (bounded across every f ∈M and every
U) 1-FIXING-SET or 0-FIXING-SET V in fU . For our purposes, we don’t need to know



M. Ficak, M. Kozik, M. Olšák, and S. Stankiewicz 57:11

that the set is fixing, it suffices that it is a 0-SET or a 1-SET. Let Lf denote the set of all
possible sets V above across all minimal 0-SETs U . From the induction hypothesis, we also
get that either every V ∈ Lf is a 1-SET in the appropriate fU , or every V ∈ Lf is a 0-SET
in the appropriate fU .

B Claim 4. The size of pairiwise disjoint subsystems of Lf is bounded by a number
independent of the chosen f ∈M.

If every V ∈ Lf is a 1-SET in the appropriate fU , then V is a 1-SET in f and the claim
follows from M having bounded antichains. Let us prove the claim if every V ∈ Lf is a
0-SET in the appropriate fU . Consider c disjoint elements V1, . . . , Vc ∈ L, and let U1, . . . , Uc
be the appropriate minimal 0-SETs. Thus also every Ui ∪ Vi is a 0-SET. Since

U1, U2, . . . , Uc, U1 ∪ V1, U2 ∪ V2, . . . , Uc ∪ Vc

are 0-SETs, V1 ∪ . . . ∪ Vc is a 1-SET by compatibility with [ c | 1, 2, . . . 2c+ 1 ]2c+1. Let M
be the bound on antichains of 1-SETs in M, the size of antichains in L is bounded by cM .

Finally, we use the claim to find a small 1-FIXING-SET in f . Consider any maximal
sequence V1, . . . , Vn ∈ L of disjoint sets and let

W = V1 ∪ V2 ∪ . . . ∪ Vn,

Every 0-SET contains a minimal 0-SET, every minimal 0-SET contains some V ∈ L and
every V ∈ L intersects W . Therefore every 0-SET intersects W , so W is the desired
1-FIXING-SET. J
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Abstract
The seminal result of Kahn, Kalai and Linial shows that a coalition of O( n

log n
) players can bias

the outcome of any Boolean function {0, 1}n → {0, 1} with respect to the uniform measure. We
extend their result to arbitrary product measures on {0, 1}n, by combining their argument with a
completely different argument that handles very biased input bits.

We view this result as a step towards proving a conjecture of Friedgut, which states that Boolean
functions on the continuous cube [0, 1]n (or, equivalently, on {1, . . . , n}n) can be biased using
coalitions of o(n) players. This is the first step taken in this direction since Friedgut proposed the
conjecture in 2004.

Russell, Saks and Zuckerman extended the result of Kahn, Kalai and Linial to multi-round
protocols, showing that when the number of rounds is o(log∗ n), a coalition of o(n) players can bias
the outcome with respect to the uniform measure. We extend this result as well to arbitrary product
measures on {0, 1}n.

The argument of Russell et al. relies on the fact that a coalition of o(n) players can boost the
expectation of any Boolean function from ε to 1− ε with respect to the uniform measure. This fails
for general product distributions, as the example of the AND function with respect to µ1−1/n shows.
Instead, we use a novel boosting argument alongside a generalization of our first result to arbitrary
finite ranges.
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1 Introduction

How can distributed processors collectively flip a somewhat fair coin if some processors may
try to bias the outcome? In the Collective Coin-Flipping Problem, a classical problem in
distributed computing, n processors wish to generate a single common random bit, even in
the presence of faulty and possibly malicious processors. Collective coin-flipping protocols
can be used to expedite Byzantine Agreement [6] and are closely related to Leader Election
Protocols [7]. The problem has been considered in several scenarios, depending on the
assumptions made on the type of the communication between the processors, the kind and
number of faults, and the power of the adversary [6, 3, 7, 2].

A Boolean function f : {0, 1}n → {0, 1}, where {0, 1}n is endowed with a product measure
µ, naturally corresponds to a single round collective coin-flipping protocol in the perfect
information model introduced by Ben-Or and Linial [2], where n players each broadcast a bit
according to a private distribution, and at the end, the output of the protocol is the value of
f on the broadcast string. An interesting and important concept in the design of collective
coin-flipping protocols is resilience against coalitions of a significant number of players who
attempt to influence the output of the protocol towards a particular value.

A coalition is a subset S of players that have a particular desired value b ∈ {0, 1} in
mind, and if possible, broadcast bits that set the output of the protocol to b. We study the
model where the coalition is allowed rushing: the corrupt players may wait until all the other
players broadcast their bits before deciding on what bit to broadcast. In other words, they
succeed on x ∼ µ if it is possible to modify x only on the coordinates in S to obtain a string
y with f(y) = b; they fail if the value of f is already determined to be not equal to b by the
bits broadcast by the players outside the coalition. The success of such a coalition can be
easily quantified as the probability that the coalition succeeds on a random x ∼ µ.

Fix a parameter ε > 0. A protocol f is said to be ε-resilient against coalitions of ` players
if no coalition of size at most ` succeeds with probability at least 1− ε. How resilient can a
function be against large coalitions? Over the uniform distribution, perhaps the most natural
candidate for a highly resilient function is the majority function, which can be easily seen
to be resilient against Ω(

√
n) size coalitions. However, somewhat surprisingly, it turns out

that plain democracy is not the most effective way to be immune against the influence of
coalitions. Indeed, Ajtai and Linial [1] gave a randomized construction of a Boolean function
that is resilient against coalitions of size Ω(n/ log2 n), significantly better than the Ω(

√
n)

bound of the majority function. More recently, Chattopadhyay and Zuckerman [5] gave an
explicit construction of a highly resilient function over the uniform measure. This was a
key ingredient in their breakthrough work that introduced explicit two-source extractors

https://eccc.weizmann.ac.il/report/2019/029/
https://eccc.weizmann.ac.il/report/2019/029/
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for polylogarithmic min-entropy. Subsequently, Meka [11] gave an explicit construction of a
monotone depth three Boolean function that is as resilient as the randomized construction of
Ajtai and Linial.

In this article, we are mainly interested in the limitations of resilience. The most classical
theorem in this direction is due to Kahn, Kalai, and Linial [10], who proved that, for the
uniform distribution, no Boolean function is resilient against coalitions of size ω(n/ logn).
Closing the gap between this bound and the Ω(n/ log2 n) construction of Ajtai and Linial
remains a longstanding open problem.

Starting with the work of Ben-Or and Linial [2], researchers have studied two natural
ways to generalize the discussed protocols: First, allow players to broadcast longer messages,
and second, allow many rounds. In this paper, we mostly focus on the latter generalization.
In the multi-round setting, the voting procedure that is described above is repeated r times:
at every round, first the players who are not in the coalition broadcast their random messages,
and then the players in the coalition decide and broadcast their messages in an adversarial
manner. When the players are sending single-bit messages, the outcome is decided by a
function f : ({0, 1}n)r → {0, 1}.

The most efficient known protocols are due to Russell and Zuckerman [13] and to Feige [8].
In the case where players are allowed to send longer messages, they constructed log? n+O(1)
round protocols resilient against coalitions of size βn for any β < 1/2. In the case when
players are allowed to broadcast single bit messages, their protocols use (1 − o(1)) logn
rounds, and are still resilient against coalitions of size βn for any β < 1/2. For a discussion
of various models and known upper and lower bounds, see a survey of Dodis [7].

In the multi-round setting, the players in the coalition have the disadvantage that they
will not see the future-round votes of the other players before voting in the current round.
Thus, it becomes significantly more difficult to prove limitations on resilience as r grows, and
naturally the known bounds are weaker. Russell, Saks and Zuckerman [12], building upon
the work of Kahn et al. [10], showed that over the uniform measure, no Boolean function
f : ({0, 1}n)r → {0, 1} is ε-resilient against coalitions of size ωε

(
r2n

log(2r−1) n

)
, where log(2r−1) n

is an iterated logarithm. It follows as a simple corollary that Ω(log? n) rounds are necessary
in order for a protocol to be resilient against coalitions of size Ω(n).

The purpose of this paper is to generalize the above results from the uniform distribution
to arbitrary product distributions on the Boolean cube.

A moment of reflection reveals that there are major differences between the uniform
distribution and the general case, and indeed, prior to this work, it was not clear to us
whether similar results were true for general product distributions. We will elaborate on
this later, but for now, we only mention that the coordinates xi that are not highly biased,
i.e. t ≤ Pr[xi = 1] ≤ 1− t for some t that is not too small, can be handled using the same
argument as in Kahn et al. [10]. Similarly, the argument of Russell et al. [12] can be used to
analyze these coordinates in the multi-round setting. However, the highly biased coordinates
behave very differently, and to handle those, we need to take an entirely new approach, and
employ a new set of ideas. Indeed, our proofs for the highly biased case have almost no
resemblance to those in previous works.

Our first theorem concerns single round protocols. By combining the argument of Kahn,
Kalai and Linial with an argument geared towards biased coordinates, we are able to show
that these protocols can always be influenced towards a single value, with coalitions which
are only slightly worse than those guaranteed by the KKL theorem.
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I Theorem 1. Over any product distribution µ, there is no function f : {0, 1}n → {0, 1}
that is ε-resilient against coalitions of size ωε(n log logn

logn ) .

(In contrast, the KKL theorem shows the impossibility of ε-resilience against coalitions of
size ωε( n

logn ).)
Next, we prove an impossibility result for resilience in the multi-round setting over

arbitrary product distributions. This was posed as an open problem by Russell et al. [12].
Here we face several new challenges. Generalizing our argument for the biased coordinates
to the multi-round setting is far from straightforward, and combining it with the argument
of Russell et al. [12] for the unbiased coordinates also requires new ideas.

I Theorem 2. Let n and r < n be given. Over any product distribution µ over ({0, 1}n)r,
there is no r-round coin-flipping protocol f : ({0, 1}n)r → {0, 1} that is ε-resilient against
coalitions of size ωε

(
n(log? n)2

log(4r) n

)
.

As a result, over any product distribution µ, Ω(log? n) rounds are necessary in order for a
protocol to be resilient against coalitions of size Ω(n).

Influences. The notion of resilience of a Boolean function is related to the influences of
variables and coalitions of variables. For a Boolean function f : {0, 1}n → {0, 1} over a
product probability measure µ, the influence of the k-th variable is defined as

Ik(f) := Pr
x∼µ

[f is not constant on Bk(x)] ,

where Bk(x) := {y ∈ {0, 1}n : yj = xj for all j 6= k}.
The influence of the k-th variable towards a value b ∈ {0, 1} is defined as

Ibk(f) := Pr
x∼µ

[b ∈ f(Bk(x))] .

Similarly, the influence of a coalition S ⊆ [n] towards a value b ∈ {0, 1} is defined as

IbS(f) := Pr
x∼µ

[b ∈ f(BS(x))] ,

where BS(x) := {y ∈ {0, 1}n : yj = xj for all j /∈ S}.
Equivalently, IbS(f) is the probability that a random x ∼ µ can be modified on its S

variables such that the output of f becomes b.
A function f is not ε-resilient against coalitions of size ` if and only if there exists a set S

of size at most ` and a value b such that IbS(f) ≥ 1− ε.

The seminal work of Kahn, Kalai and Linial introduced discrete Fourier-analytic techniques
to the study of influences. Their main theorem, known as the KKL inequality, states that over
the uniform measure, every unbiased Boolean function f : {0, 1}n → {0, 1} has an influential
variable. Formally, there exists k such that Ik(f) ≥ Ω(α logn

n ) when α ≤ E[f(x)] ≤ 1 − α.
Let b ∈ {0, 1} satisfy Pr[f(x) = b] ≥ ε. Then repeated applications of the KKL inequality
imply the existence of a set S with |S| = Oε

(
n

logn

)
such that IbS(f) ≥ 1− ε. In particular,

there are no ωε(n/ logn)-resilient functions over the uniform distribution.
The above argument shows that unless f is already very biased towards 0 or 1, one can

pick any b ∈ {0, 1} and find a small coalition S that can bias f towards b. However, this is
no longer true if we consider general product distributions.
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I Example 3. Consider the p-biased distribution µnp over {0, 1}n, i.e. each coordinate is
1 with probability p. Set p = 1/n and let f be the OR function

∨n
i=1 xi. Obviously,

E[f ] = 1 − (1 − p)n ≈ 1 − 1
e , and yet for every S with |S| = o(n), we have I0

S(f) =
1 − (1 − p)n−|S| ≈ 1 − 1

e . In other words, despite the fact that the expected value of the
function is bounded away from both 0 and 1, no small coalition can influence the output of
the function towards 0. However, this is not a counterexample to Theorem 1 because any set
S with |S| = 1 satisfies I1

S(f) = 1, and thus the function is not even 1-resilient.

As the above example illustrates, part of the difficulty of generalizing the coalition theorem
of KKL is to figure out which b ∈ {0, 1} to bias towards.

Using the notation IbS(f), Theorem 1 can be restated as follows.

I Theorem 4 (Theorem 1 reformulated). Let f : {0, 1}n → {0, 1} be a function over a product
distribution µ. There exists a set S of size Oε(n log logn

logn ) such that IbS(f) ≥ 1− ε for some
b ∈ {0, 1}.

I Remark 5. To simplify the statement, in Theorem 4, we did not explicitly state the
dependence of |S| on ε. Our proof yields the bound |S| = O( log(1/ε)n

ε logn + n log logn
ε logn ).

Continuous cube and a conjecture of Friedgut. The Bernoulli distribution on {0, 1} with
parameter p can be embedded in the continuous interval [0, 1] via the measure-preserving map
σ : [0, 1]→ {0, 1} defined as σ(x) = 1 if and only if x ≥ 1− p. By taking the product of these
maps, for every product probability measure µ on {0, 1}n, we obtain a measure-preserving
map σµ : [0, 1]n → {0, 1}n. As a result, every function f : ({0, 1}n, µ) → {0, 1} naturally
corresponds to a function f : [0, 1]n → {0, 1} defined by f = f ◦ σµ. Note that IbS [f ] = IbS [f ],
for every S ⊆ [n] and b ∈ {0, 1}. Thus, a more general setting for studying resilience is
the set of measurable functions f : [0, 1]n → {0, 1}. Indeed, Bourgain et al [4] proved a
generalization of the KKL inequality, but erroneously claimed that as a corollary, if ε ≤ E[f ],
then I1

S [f ] ≥ 1 − ε for a set S of size |S| = oε(n). Interestingly, Example 3, which was
introduced in the same paper to demonstrate that the proof of the KKL inequality breaks
down for the continuous cube, is also a counterexample to this false claim. Friedgut [9]
pointed out this error, and suggested the following tantalizing conjecture to replace the false
statement1.

I Conjecture 6 ([9]). Let f : [0, 1]n → {0, 1} be a measurable function. There exists a set S
of size oε(n) such that IbS(f) ≥ 1− ε for some b ∈ {0, 1}.

A standard compression argument shows that it suffices to prove this conjecture for in-
creasing functions, and indeed the original form of the conjecture is stated for increasing
functions. Furthermore, by discretization, the statement can be further reduced to functions
f : {1, . . . , n2}n → {0, 1}, where the domain is endowed with the uniform measure. Note
that this form of the conjecture corresponds to resilience of one-round collective coin-flipping
protocols where each player is allowed to send logn-bit messages.

The above discussion show that, qualitatively, Conjecture 6 is a generalization of The-
orem 4, and thus our theorem can be considered as a step towards resolving Friedgut’s
conjecture. However, our techniques and ideas seem to fall short of proving the full conjecture.

1 Nati Linial told the last author about this error and conjecture years earlier, but as far as we know this
is the first published account.
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Beyond the Boolean range. As we discussed above, the coalition theorem of KKL says
that if E[f(x) = b] ≥ ε then there exists a small coalition S such that IbS(f) ≥ 1− ε. Now
consider a function h : {0, 1}n → R over the uniform distribution, where R is a constant
size set. Pick any b ∈ R with Pr[h(x) = b] ≥ ε. We can apply the KKL theorem to the
function f : {0, 1}n → {0, 1} defined as f(x) = 1 if and only if h(x) = b, and conclude that
there is a coalition of size Oε (n/ logn) with IbS(f) ≥ 1− ε. This shows that over the uniform
distribution, the general range R easily reduces to the Boolean range.

Unfortunately, the above reduction cannot be carried for general product distributions,
for in Theorem 4, the final outcome b is dictated to us by the function. To illustrate the
problem, consider a function h : {0, 1}n → {0, 1, 2} and a general product distribution µ. By
bundling {1, 2} into a single value and applying Theorem 4, we can conclude that there exists
a small coalition S such that either it biases the outcome of the function towards 0, or it
biases the outcome towards being in {1, 2}. If it is the former case, then we are done, but in
the latter case, it is not clear how to proceed.

We know that except for the x’s that belong to a small-measure set E , the coalition can
modify x in such a way that the outcome is in {1, 2}. Now at first glance, it might seem that
by applying Theorem 4 again, we can find another coalition T that can modify x further
to refine the outcome to a single value b ∈ {1, 2}, and thus conclude that for most x’s the
alliance S ∪ T can influence the outcome of the function towards b. Unfortunately, this is
actually not the case. One reason is that S and T might intersect, and suggest conflicting
modifications to x. Even if S and T are disjoint, the proof doesn’t work: denoting by x′ the
vector obtained from x ∼ µ after modification by S, we no longer have x′ ∼ µ, and so there
is no guarantee that on most inputs T can be applied successfully. In other words, Pr[x′ ∈ E ]
need not be small.

The above discussion shows that one cannot deduce the general case via the simple
reduction that was outlined above for the uniform measure, but surely, as cumbersome as
it may be, one can go over the proof and generalize every step from {0, 1} to {0, 1, 2} by
making small notational adjustments. This turns out not to be the case either! The proof of
Theorem 4, rather unexpectedly, relies on the assumption that the function takes only two
values. Indeed, to generalize the result to larger ranges, we had to introduce new ideas, and
in particular a strengthening of Theorem 4 (see Theorem 15 below) that provides stronger
control over the set E described above.

I Theorem 7 (Single round, general range). Let R be a constant size set, and f : {0, 1}n → R
be a function over a product distribution µ. There exists a set S of size Oε(n log logn

logn ) such
that IbS(f) ≥ 1− ε for some b ∈ R.

I Remark 8. At the heart of the proof of Theorem 7 there is an intermediate result,
Theorem 15, which states that if all coordinates are biased, say Pr[xi = 1] < α, then a
random coalition of size O(log3 |R| log log |R| · αn) biases the outcome with high probability.
This intermediate result is an essential ingredient in the proof of our result on the multi-round
setting, Theorem 2. For this application, it was crucial to obtain a bound which depends
only polylogarithmically in |R|.

Even though Theorem 4 is a special case of Theorem 7, we prove them separately, as
Theorem 4 can be proven using a shorter and simpler proof.

Paper organization. We prove Theorem 1, which shows that all single-round protocols can
be biased using coalitions of size o(n), in Section 2. We prove Theorem 7, which generalizes
the preceding result to arbitrary finite domains, in Section 3. We prove our main result,
Theorem 2, which shows the multi-round protocols can be biased, in Section 4.
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Due to space constraints, some of the proofs are available only in the full version of the
paper, which is attached as an appendix.

2 Single Round Case: Proof of Theorem 1

In this section we prove Theorem 1, showing that, under any product distribution, there
exists a small coalition which can bias the output of the function towards one of the outputs.

Note that in order to prove Theorem 1, without loss of generality, we can assume that
Prx∼µ[xi = 1] ≤ 1

2 for every i ∈ [n], as otherwise we can simply change the role of 0 and 1
for the i-th coordinate. In light of this observation, the coordinates can be divided into two
sets: the small bias coordinates, satisfying Prx∼µ[xi = 1] ∈ (α0,

1
2 ], and the highly biased

coordinates, satisfying Prx∼µ[xi = 1] ≤ α0, where α0 is a threshold that is chosen to be
α0 = 1

logn .
Indeed, we first consider the case where all the coordinates are of the same type:
Small bias case: Prx∼µ[xi = 1] ∈ (α0,

1
2 ] for every i ∈ [n].

Large bias case: Prx∼µ[xi = 1] ≤ α0 for every i ∈ [n].

We handle the large bias case in Section 2.1, which is the novel part of the proof. The
small bias case is handled in Section 2.2 via a reduction to the previous work of Russell et
al. [12]. Finally, in Section 2.3 we show how to combine the two cases to handle any product
distribution µ, thus completing the proof of Theorem 1.

2.1 Large Bias Case
We will sometimes identify the subsets of [n] with elements of {0, 1}n. For example, S ∼ µ
would mean that S = supp(x), where x is sampled according to µ. We construct the coalitions
from a certain boosted form of µ.

I Definition 9 (Boosted distribution). For a positive integer t, we denote by µ(t) the distri-
bution of x1 ∨ · · · ∨ xt, where x1, . . . , xt are i.i.d. random variables distributed according to
µ.

The large bias case of Theorem 1 follows from the following general proposition, that
holds for distributions that are not necessarily product distributions.

I Proposition 10. Consider f : ({0, 1}n, µ) → {0, 1}, where µ is an arbitrary probability
measure, and let S ∼ µ(k), where k ≈ 10 log 1

ε

ε . For some b ∈ {0, 1}, we have PrS [IbS [f ] >
1− ε] > 1− ε.

Note that Proposition 10 implies (via a straightforward concentration bound) that in
the large bias case, there exists a random coalition of expected size at most kα0n such that
PrS [IbS [f ] > 1 − ε] > 1 − ε. As it will become apparent later, for the application to the
multiround setting, it is important that in Proposition 10 the set S is chosen randomly from
a distribution that does not depend on f .

Proposition 10 is a direct consequence of the following lemma, as for the Boolean range
{0, 1}, either Condition I holds for b = 0 or Condition II holds for b = 1. This, however, is
not true for larger R.

I Lemma 11 (Key Lemma for Single Round). Consider f : ({0, 1}n, µ)→ R, where µ is an
arbitrary probability measure. Let x, y ∼ µ, S ∼ µ(k), where k ≈ 10 log 1

ε

ε . For b ∈ R, either of
Condition I: Prx[Pry[f(x ∨ y) = b] ≥ 1− ε] > ε/2, or
Condition II: Prx[Pry[f(x ∨ y) = b] ≥ ε] ≥ 1− ε/2,

implies PrS [IbS [f ] > 1− ε] > 1− ε.

ICALP 2019



58:8 Biasing Boolean Functions

Proof. Let S = supp(y1 ∨ · · · ∨ yk), where y1, . . . , yk ∼ µ are drawn independently. Let the
sets XI and XII denote the following subsets of the input space {0, 1}n:

XI = {x : Pr
y

[f(x ∨ y) = b] ≥ 1− ε},

XII = {x : Pr
y

[f(x ∨ y) = b] ≥ ε}.

If we are in the Type I setting, then Pr
[
XI
]
> ε/2, and so

Pr
S

[S contains some x ∈ XI ] ≥ 1− Pr
[
y1, . . . , yk 6∈ XI

]
≥ 1−

(
1− ε

2

)k
> 1− ε.

Note that if there exists z ∈ XI which is a subset of S then for every x, the two elements x
and x ∨ z can only differ on a subset of S, and thus

IbS(f) ≥ Pr
x

[f(x ∨ z) = b] > 1− ε.

Now we turn our attention to Condition II. In this case, we shall prove that PrS [IbS [f ] <
1− ε] ≤ ε. Indeed,

Pr
S

[IbS [f ] < 1− ε] ≤ Pr
y1,...,yk

[
Pr
x

[∃i ∈ [k], f(x ∨ yi) = b] < 1− ε
]

= Pr
y1,...,yk

[
Pr
x

[∀i ∈ [k], f(x ∨ yi) 6= b] ≥ ε
]
. (1)

To bound the last probability, for x ∈ {0, 1}n let Ex denote the event that for every i ∈ [k],
f(x ∨ yi) 6= b. Then

Pr
x

[Ex] ≤ Pr
x

[x 6∈ XII ] + Pr
x

[Ex ∧ x ∈ XII ] ≤ ε

2 + Pr
x

[Ex | x ∈ XII ].

Plugging this into (1), we get

Pr
S

[IbS [f ] < 1− ε] ≤ Pr
y1,...,yk

[Pr
x

[Ex] ≥ ε] ≤ Pr
y1,...,yk

[
Pr
x

[Ex | x ∈ XII ] ≥ ε

2

]
≤

1
(ε/2) Pr

y1,...,yk,x
[Ex | x ∈ XII ].

Since k ≈ 10 log 1
ε

ε ,

Pr
x,y1,...,yk

[Ex | x ∈ XII ] ≤ (1− ε)k ≤ ε2

2 ,

showing that

Pr
S

[IbS [f ] < 1− ε] ≤ 1
(ε/2) ·

ε2

2 ≤ ε. J

2.2 Small Bias Case
To handle the small bias case for the sake of proving Theorem 1, one can simply repeat the
argument of Kahn et al. [10], i.e. iteratively select influential variables and set them to the
value that increases the probability of success. However, for the purposes of our results in
the multi-round setting, we will need to prove a stronger result, which states that even if
the coalition is selected randomly, there is a nontrivial chance of succeeding in influencing
the outcome.
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I Lemma 12. Let n ∈ N, γ ∈ (0, 1/2) and m ≤ n. Let f : ({0, 1}n, µ)→ {0, 1}, where µ is
a product distribution such that for all i, 1/n < α ≤ E[xi] ≤ 1/2. Assume m > n log 1/α

2γ logn . If
E[f ] ≥ γ then

Pr
S⊆[n] : |S|=m

[
I1
S [f ] ≥ 1− γ

]
>

1
2

(
m

4n log 1/α

)2
80n log 1/α

mγ

.

Proof. The result is proved in [12] for constant α. The general case follows by representing
a µp distributed variable as an AND of t variables that are distributed according µc, where
c ≈ 1/2 and p = ct. The complete details appear in the full version of the paper. J

2.3 Finishing the Proof: Combining the Two Cases
We are ready to finish the proof of Theorem 1. Let A := {i : Prx∼µ[xi = 1] ∈ (α0,

1
2 ]},

and recall that α0 = 1
logn . For every y ∈ {0, 1}A, define fy : {0, 1}[n]\A → {0, 1} as

fy(z) := f(y, z). By Proposition 10, for every y ∈ {0, 1}A, there exists b := by ∈ {0, 1}
such that

Pr
S∼µ(k)

[n]\A

[
IbS [fy] > 1− ε

2

]
> 1− ε

2 ,

where k = O
(

log(1/ε)
ε

)
. Moreover, since every variable i in [n]\A satisfies E[xi] ≤ α0 =

1/ logn, Chernoff’s bound gives,

Pr
S∼µ(k)

[n]\A

[
|S| ≥ C log(1/ε)n

ε logn

]
≤ exp

(
−Ω

(
log(1/ε)n
ε logn

))
≤ ε

2 ,

for some constant C > 0. Therefore,

Pr
S∼µ(k)

[n]\A

[
IbS [fy] > 1− ε

2 and |S| ≤ C log(1/ε)n
ε logn

]
> 1− ε.

It follows that

E
S∼µ(k)

[n]\A

[
Pr
y,b

[
IbS [fy] ≥ 1− ε

2

]]
>

1− ε
2 ≥ 1

4 ,

assuming without loss of generality that ε ≤ 1/2. Hence, there exists a fixed b0 ∈ {0, 1} and
a set S, satisfying |S| ≤ C log(1/ε)n

ε logn and

Pr
y

[
Ib0
S [fy] ≥ 1− ε

2

]
≥ 1

4 .

Now, define h : {0, 1}n → {0, 1} as h(y) = 1 if and only if Ib0
S [fy|A ] ≥ 1− ε/2. Note that,

h depends only on A variables. The above inequality asserts that E[h] ≥ 1
4 . Since, A contains

only small bias variables, we may apply Lemma 12. Namely, there is m = O(n log logn
ε logn )

such that

Pr
T⊆[n] : |T |=m

[
I1
T [h] ≥ 1− ε

2

]
> 0.

Thus, there exists a coalition T ⊆ A of size O(n log logn
ε logn ) of players that can bias h towards 1.

In other words, T can bias y towards cases where S is able to bias fy towards b0. As a result,

Ib0
S∪T [f ] ≥

(
1− ε

2

)(
1− ε

2

)
> 1− ε.

Moreover, |S ∪ T | = O
(
n log logn
ε logn + log(1/ε)n

ε logn

)
, as desired.
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3 The Larger Range: Proof of Theorem 7

As outlined in the introduction, there are certain obstacles to generalizing Theorem 1 to
larger ranges. In particular, the fact that the set E of all the points on which the coalition
fails in Theorem 1 is of small measure does not seem to be a sufficiently strong condition for
an induction to go through. We will need to prove a strengthening of Theorem 1 which shows
that not only is E of small measure, but it is also small if it is measured via the boosted
distributions introduced in Definition 9. This leads to a more general definition of influence.

I Definition 13 (Boosted influence towards value). Let R be an arbitrary set. For a function
f : {0, 1}n → R and b ∈ R, define Ib,tS (f) = Prx∼µ(t) [b ∈ f(BS(x))].

Note that IbS(f) = Ib,1S (f), as µ(1) = µ.

The following lemma generalizes Lemma 11, as we spell out in its corollary.

I Lemma 14. Consider f : {0, 1}n → R, let t ∈ N, and let S ∼ µ(k), where k = 10t
δ log t

ε .
Let b ∈ R. We have PrS [∀` ≤ t, Ib,`S (f) ≥ 1− ε] ≥ 1− ε, if any of the following two cases
hold:

Case I: For some s ≤ t, Pru∼µ(s) [Prv∼µ(t) [f(u ∨ v) = b] ≥ 1− ε/2] ≥ δ.
Case II: For every s ≤ t, Pru∼µ(s) [Prv∼µ(t) [f(u ∨ v) = b] ≥ δ] ≥ 1− ε

2 .

Proof. The complete proof can be found in the full version of the paper. J

We can now state the main result of this section. The failure output † allows the inductive
proof of Theorem 15, as well as our multi-round result, Theorem 17, to go through, as we
explain in Section 4.

I Theorem 15. Let f : {0, 1}n → {0, 1}m ∪ {†}, and suppose that {0, 1}n is endowed with a
probability measure µ. Let t be a positive integer, and let S ∼ µ(k), where k = k(m, t, ε) =
O(tm3ε−2 log tm

ε ). If Prµ(`) [†] < ε4

216 for every ` ≤ 2t, then there exists a value b ∈ {0, 1}m

such that PrS
[
∀` ≤ t, Ib,`S (f) ≥ 1− ε

]
≥ 1− ε.

Proof. The complete proof can be found in the full version of the paper. J

Theorem 7 follows from Theorem 15 using an argument very similar to that in Section 2.3,
as we show in the full version of the paper.

4 Multi-Round Protocols: Proof of Theorem 2

In this section we will prove Theorem 2, showing that even in the multi-round setting, there
are no protocols that are resilient against all coalitions of size o(n). As described in the
introduction, here at every round, first the players who are not in the coalition broadcast their
random messages, and then the players in the coalition decide and broadcast their messages
in an adversarial manner. The outcome is decided by a function f : ({0, 1}n)r → {0, 1}.

To be more formal, let µ = µ1×· · ·×µr be a product distribution over {0, 1}rn ≡ ({0, 1}n)r,
where each µi is a product distribution over {0, 1}n. An (n, r) coin-flipping protocol is simply
a map f : ({0, 1}n)r → {0, 1}. Such a protocol is executed in r rounds. In the presence of a
coalition B ⊆ [n] of bad players, the protocol operates as follows. In round i, the players
in [n]\B select αi ∈ {0, 1}[n]\B according to µi|[n]\B . Then, the bad players B choose their
values depending on α1, . . . , αi. Formally, an (n, r)-strategy for a set B ⊆ [n] is a sequence
π = (π1, . . . , πr) of functions where πi : ({0, 1}[n]\B)i → {0, 1}B. The function πi describes
the choice of bits the bad players make in the i-th round based on the broadcasted bits of
the good players in the first i rounds.
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I Definition 16. Let f : ({0, 1}n)r → {0, 1} be an (n, r) coin-flipping protocol, and let µ be
a product distribution on ({0, 1}n)r. Given a Boolean value b ∈ {0, 1}, a set B ⊆ [n], and an
(n, r)-strategy π for the bad players B,

Ibπ,B(f) is the probability that f outputs b given that the bad players B follow π.
IbB(f) := supπ{Ibπ,B(f)} is the influence of B on f towards b.

Our goal is to show that there exists a coalition B of size o(n) such that IbB(f) ≥ 1− ε
for some b ∈ {0, 1}. For the moment, let us assume that we have only two rounds, and let
f(x, y) denote the protocol, where x, y ∈ {0, 1}n correspond to the inputs in the first and
the second round respectively. Let us also denote fx(y) : = f(x, y).

Russell et al. [12] proof of the uniform case. Pick b ∈ {0, 1} such that Pr[f(x, y) = b] ≥ 1
2 .

Let A be the set of all x ∈ {0, 1}n that satisfy Pry[fx(y) = b] ≥ 1
4 , and note that Prx[x ∈

A] ≥ 1
4 . By Lemma 12 of Russell et al. [12], for every x ∈ A, a random coalition S can bias

fx towards b, with a probability δ that is not too small. Since S is chosen randomly and
independently of x, it follows that there exists a fixed coalition S0 that can bias fx for at
least a δ fraction of x ∈ A, and thus for at least a δ

4 fraction of {0, 1}n. Let A′ ⊆ A ⊆ {0, 1}n
denote the set of such x. If x ∈ A′, the coalition S0 is able to bias the protocol by only
interfering in the second round. The set A′ is of measure at least δ

4 , which is not too small.
Thus, applying Lemma 12 again, we can find another coalition T0 = o(n) which can modify
most x’s to fall in A′. Now we can form the desired coalition B = T0 ∪ S0: In the first
round, the players in T0 try to modify x into an element in A′, and if they succeed, in the
second round, the players in S0 interfere to change the outcome of the protocol into b. This
argument easily generalizes to more rounds.

We point out that it was crucial for the above argument, that the distribution of S in
Proposition 10 is independent of f .

What fails for the general product distributions. Consider f(x, y) over µ = µ1×µ2, where
µ1 is highly biased, and µ2 is the uniform distribution. Similar to the previous paragraph,
we can find a set A′ ⊆ {0, 1}n, a value b ∈ {0, 1}, and a small coalition S0 such that
Prx∼µ1 [x ∈ A′] ≥ δ

4 , and moreover for every x ∈ A′, the coalition S0 is able to influence f
towards b by interfering only in the second round. Now, if we are to follow the argument of
Russell et al., we would like to find a set T0 of players to add to the coalition such that, with
high probability, T0 is able to modify a random x ∼ µ1 into an element in A′. We could then
conclude that B = S0 ∪ T0 can bias f towards b.

Unfortunately, Proposition 10, the highly-biased counterpart of Lemma 12, only guarantees
the existence of a small coalition T0 which either modifies a random x ∼ µ into being in
A′ or modifies a random x ∼ µ into not being in A′; in the latter case, the coalition T0 is
useless. As Example 3 shows, this is not just a caveat of the proof of the proposition. To be
more concrete, suppose µ1 is the 1

n -biased distribution, and A′ consists only of the single
element x = ~0. Even though Pr[x ∼ A] ≥ 1

4 , there is no coalition of size o(n) which can,
with high probability, modify a random x ∼ µ1 into an element in A′. On the other hand,
even a single player can modify every x into an element outside A′, but this is not helpful
for our purposes, as the elements outside A′ are the elements that S0 cannot handle.

How to overcome the problem. Consider the same setting as in the previous paragraph.
We know that for every x, a random coalition S of size o(n) succeeds in influencing fx
towards one of the outputs, with probability at least δ, where δ is not too small. Instead of
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picking one S0, we select a collection of coalitions that cover almost all x’s. More precisely,
we find S1, . . . , SM and b1 . . . , bM , where M = Oδ(1), such that apart from a small set of
exceptions E ⊆ {0, 1}n, every fx can be biased towards some bi using the coalition Si.

Let h : {0, 1}n → {1, . . . ,M} ∪ {†} be defined as follows: If x ∈ E , then h(x) = †, and
otherwise h(x) is equal to some i such that Si can bias fx towards bi. This brings us to
the non-Boolean range case, which was analyzed in Section 3. We can apply Theorem 15
to find a coalition T that can influence h towards one of the values in j ∈ {1, . . . ,M}. Now
B = T ∪Sj will be our desired coalition. With high probability, in the first round the players
in T can successfully modify a random element x into an element x′ with h(x′) = j, and then
in the second round, the players in Sj can modify x′ to bias the outcome towards bj . This is
the main new idea used below to resolve the multi-round setting over arbitrary distributions.

Theorem 2 is a consequence of the following more elaborate theorem which states that for
sufficiently large n, and r ≤ log? n/5, no (n, r) protocol over an arbitrary product distribution
is resilient against coalitions of m = o(n) bad players.

I Theorem 17. For every ε > 0, and integers n > 0, and r < log? n/5, there exists δ =
Ω( 1

log(1/ε)rn ), and m = o(n) such that the following holds. For every f : ({0, 1}n)r → {0, 1}
over a product distribution µ, there exists b ∈ {0, 1}, such that the corresponding r-round
protocol satisfies PrS∼ν [IbS(f) ≥ 1− ε] ≥ δr, where ν is a distribution on

([n]
m

)
that depends

only µ but not on f . To be more precise, one can take m = Oε

(
n·r·4r

log(4r) n

)
= Oε

(
n(log? n)2

log(4r) n

)
.

Proof. The complete proof can be found in the full version of the paper. J

5 Concluding Remarks and Open Problems

Perhaps the most interesting next step is proving limitations for resilience of protocols
where players may send longer messages. As was discussed below Conjecture 6, it is
conjectured that even when the players are allowed to broadcast arbitrarily long messages,
only resilience against coalitions of size o(n) is possible. This question has also been
studied in the multi-round setting [12, 13, 8]. In this case, if the players are allowed
logn-bit messages, we know of (log? n+O(1))-round protocols resilient against coalitions
of size (1/2 − ε)n [13, 8]. On the other hand, Russell et al. [12] showed that Ω(log? n)
rounds are necessary if we have the added restriction that in the i-th round the players
are allowed messages of length (log(2i−1) n)1−o(1). Strengthening this impossibility result
to messages of length Ω(logn) is another interesting problem that remains open.
The key qualitative point of Theorems 1 and 2 is that there always exists a coalition of size
o(n) that can bias the outcome of the protocol towards a particular value. Interestingly,
we are not aware of a simpler proof of this weaker qualitative statement even in the case of
the uniform measure. The proof techniques introduced in this paper for the highly biased
coordinates are more combinatorial and probabilistic in nature; however, the less biased
coordinates are ultimately handled by the Fourier-analytic proof of [10]. These Fourier
analytic arguments are hard in nature, in the sense that their purpose is to give effective
bounds. It would be interesting to find more intuitive combinatorial proofs for these
statements, potentially at the cost of obtaining less effective bounds, or by appealing to
soft analytic tools such as compactness, at the cost of obtaining no quantitative bounds.
We refer the reader to Terence Tao’s blog post [14] for a discussion about hard and soft
analysis.
Over the uniform distribution, Kahn et al. [10] proved that there exists no Boolean
function that is ε-resilient against coalitions of size ωε

(
n

logn

)
. In this work we show that

a similar bound of ωε
(
n log logn

logn

)
on resilience holds over arbitrary product distributions.
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A natural question is whether the log logn in our bound necessary. However, even in
the uniform setting there is work left to be done. Here, the best known constructions
guarantee resilience against coalitions of size O( n

log2 n
) [11, 1], which is a factor of logn

off from the impossibility result of Kahn, Kalai, and Linial.
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Abstract
Perturbed graphic matroids are binary matroids that can be obtained from a graphic matroid
by adding a noise of small rank. More precisely, an r-rank perturbed graphic matroid M is a
binary matroid that can be represented in the form I + P , where I is the incidence matrix of
some graph and P is a binary matrix of rank at most r. Such matroids naturally appear in a
number of theoretical and applied settings. The main motivation behind our work is an attempt
to understand which parameterized algorithms for various problems on graphs could be lifted to
perturbed graphic matroids.

We study the parameterized complexity of a natural generalization (for matroids) of the following
fundamental problems on graphs: Steiner Tree and Multiway Cut. In this generalization, called
the Space Cover problem, we are given a binary matroid M with a ground set E, a set of terminals
T ⊆ E, and a non-negative integer k. The task is to decide whether T can be spanned by a subset
of E \ T of size at most k.

We prove that on graphic matroid perturbations, for every fixed r, Space Cover is fixed-
parameter tractable parameterized by k. On the other hand, the problem becomes W[1]-hard when
parameterized by r + k + |T | and it is NP-complete for r ≤ 2 and |T | ≤ 2.

On cographic matroids, that are the duals of graphic matroids, Space Cover generalizes another
fundamental and well-studied problem, namely Multiway Cut. We show that on the duals of
perturbed graphic matroids the Space Cover problem is fixed-parameter tractable parameterized
by r + k.
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1 Introduction

In this paper we develop parameterized algorithms on low-rank perturbations of graphic
matroids and their duals. These matroids and their matrices naturally appear in various
settings. For example, in the emerging Matroid Minors Project of Geelen, Gerards, and
Whittle [15], perturbed matroids play a significant role in the characterization of proper
minor-closed classes of binary matroids. More precisely, for each proper minor-closed class
M of binary matroids, there exists a nonnegative integer r such that every sufficiently highly
connected matroidM ∈M, is either a perturbation of graphic or cographic matroid. In other
words, there exist matrices I, P ∈ GF(2)`×n such that I is the incidence matrix of a graph,
the rank of P is at most r, and either M or its dual M∗ is represented by I + P . Another
example of closely related concept is the robust Principal Component Analysis (PCA), a
popular approach to robust subspace learning and tracking by decomposing the data matrix
into low-rank and sparse matrices. Here data matrix M is assumed to be a superposition of
a low-rank perturbation component P and a sparse component I, that is, M = I + P. See
Candès et al. [4], Wright et al. [24], and Chandrasekaran et al. [5] for further references
on robust PCA. In particular, one of the well-studied, see e.g. [22, 26], of the variants of
robust PCA is when the structure of the sparse matrix I is imposed from the structure of
some graph. Perturbed matroids also come naturally in the settings when a structural input
is corrupted by a noise. In graph algorithms, one of the questions studied in the literature
about corrupted inputs is – what happens to special graph classes when they are perturbed
adversarially? For example, Magen and Moharrami [19], and Bansal, Reichman, Umboh [2],
studied approximation algorithms on noisy minor-free graphs, which are the graphs obtained
from minor-free graphs by corrupting a fraction of edges and vertices.

Our results. We work with the following classes of binary matroids. A binary matroid M
such that M can be represented in the form I + P , where I is the incidence matrix of some
graph and P is a binary matrix of rank at most r, is called the r-rank perturbed graphic
matroid. Similarly, when the dual matroid M∗ can be represented as I+P for some incidence
matrix I and r-rank matrix P , we refer to M as to an r-rank perturbed cographic matroid.

In this paper we study parameterized complexity on binary perturbed matroids of the
following generic problem. Let us remind that in a matroid M , a set F spans T , denoted by
T ⊆ span(F ), if the sets F and T ∪ F are of the same rank.

Space Cover
Input: A binary matroid M with a ground set E, a set of terminals T ⊆ E, and a
non-negative integer k.
Question: Is there a set F ⊆ E \ T with |F | ≤ k such that T ⊆ span(F )?

In other words, Space Cover is the problem of covering a given set of vectors T over
GF(2) by a minimum-dimension subspace of the space generated by vectors from E \ T .
Space Cover encompasses various problems arising in different domains, such as coding
theory, machine learning, and graph algorithms. For example, Space Cover is a natural
generalization of Matroid Girth, the problem of finding a minimum set of dependent
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elements in a matroid. Matroid Girth can be reduced to Space Cover by computing for
each element t of M a minimum set of elements of the remaining part of the matroid that
covers T = {t}.

On graphs (equivalently, special classes of binary matroids, namely graphic and cographic
matroids), Space Cover generalizes well-studied optimization problems Steiner Tree
and Multiway Cut. Various algorithmic techniques were developed for these problems,
see e.g. [7], and it is very interesting to see which of these techniques, if any, can be lifted
to matroids.

We obtain the following results about the complexity of Space Cover on r-rank perturbed
matroids. (In all these results we assume that representation of r-rank perturbed matroid in
the form I + P is given.)

Our first main algorithmic result (Theorem 1) states the following: On r-rank perturbed
graphic matroids, for every fixed r, Space Cover is fixed-parameter tractable (FPT)
when parameterized by k.
We also show that a “weaker” parameterization makes the problem intractable. More
precisely, we prove that on r-rank perturbed graphic matroids, Space Cover is W[1]-
hard when parameterized by r + k + |T | and the problem is NP-complete for r ≤ 2 and
|T | ≤ 2 (see Theorems 3 and 4 respectively of [14]).
Our second main algorithmic result (Theorem 2) concerns r-rank perturbed cographic
matroids. This theorem states that Space Cover is FPT on r-rank perturbed co-
graphic matroids when parameterized by r + k. We find it a bit surprising that the
parameterized complexity of Space Cover is different on r-rank perturbed graphic and
cographic matroids.

Previous work. Geelen and Kapadia [17] studied the problem of computing the girth of
a binary r-rank perturbed matroid. (The girth of a matroid is the length of its shortest
circuit.) Geelen and Kapadia have proved that the girth of an r-rank perturbed matroid is
fixed-parameter tractable being parameterized by r. Let us note that while Space Cover
generalizes Matroid Girth, our results are incomparable. In our FPT result for r-rank
perturbed graphic matroids the parameter is k while the parameter r should be fixed. As
our complexity lower bounds show, the requirement that r should be fixed and that k should
be the parameter are, most likely, unavoidable. For binary matroids, Matroid Girth has
several equivalent formulations. For example, it is equivalent to the Minimum Distance
problem from coding theory, which asks for a minimum dependent set of columns in a matrix
over GF(2). The complexity of this problem was open until 1997, when Vardy showed it to
be NP-complete [23]. On the other hand, Geelen, Gerards and Whittle in [16] conjecture
that for any proper minor-closed class M of binary matroids, there is a polynomial-time
algorithm for computing the girth of matroids in M. The parameterized version of the
problem, namely Even Set, asks whether there is a dependent set F ⊆ X of size at most k.
The parameterized complexity of Even Set was a long-standing open question in the area,
see e.g. [10], whose complexity was resolved only recently [3].

Space Cover on graphic and cographic matroids is a generalization of Steiner Tree
and Multiway Cut, two very well-studied problems on graphs. By the classical result of
Dreyfus and Wagner [12], Steiner Tree is fixed-parameter tractable (FPT) parameterized
by the number of terminals T . Similar approach can be used to show that Space Cover
is FPT on graphic matroids. On cographic matroids Space Cover is equivalent to the
Restricted Edge-Subset Feedback Edge Set introduced by Xiao and Nagamochi [25]
who also showed that the problem is FPT parameterized by k. Due to its connection to
Multiway Cut, the NP-completeness result of Dahlhaus et al. [8] for Multiway Cut
with three terminals implies that Space Cover is NP-hard even if |T | = 3 on cographic

ICALP 2019



59:4 Covering Vectors by Spaces

matroids. Fomin et al. in [13] extended the results for Space Cover on graphic and
cographic matroids to a more general class of binary matroids, namely, regular matroids, by
providing an algorithm of running time 2O(k) · ||M ||O(1). While the class of regular matroids
is a proper minor-class of binary matroids, this class of matroids is incomparable to the
class of perturbed matroids. It is also known that Space Cover is hard on general class of
binary matroids: By the result of Downey et al. [11], Space Cover is W[1]-hard on binary
matroids when parameterized by k even if restricted to the inputs with one terminal.

Organization of the paper. Due to space constraints, we only sketch the proofs of our main
algorithmic results (Theorems 1 and 2) in Section 2. The detailed proofs of these theorems
and our algorithmic lower bounds (Theorems 3 and 4) are given in the full version of the
paper [14]. We conclude in Section 3 by stating some open problems.

2 Overview of Algorithmic Theorems

In this section, we give short descriptions of both of our algorithmic results. For standard
graph and matroid-related terms, we refer to the books by Diestel [9] and Oxley [21]. We
also give the formal definitions of graph and matroid-related terms in Section 3 of [14].

2.1 Perturbed Graphic Matroids
In this section, we give an overview of the proof of the first main result of the paper. The
detailed proof is given in Section 4 of [14] version of the paper.

In this case, r-rank perturbed matroid M is represented by the perturbed incidence
matrix I(G) of a (multi) graph G. Formally we define the following problem.

Space Cover on Perturbed Graphic Matroid (Space Cover on PGM)
Input: A (multi) graph G with n vertices and m edges, an (n × m)-matrix P over
GF (2) with rank(P ) ≤ r, a set of terminals T ⊆ E where E is the set of columns of the
matrix A = I(G) + P , and a non-negative integer k.
Question: Is there a set F ⊆ E \ T with |F | ≤ k such that T ⊆ span(F ) in the binary
matroid M represented by A?

I Theorem 1. For any fixed constant r, Space Cover on PGM is solvable in time
kO(k) · (n+m)O(1). In particular, Space Cover on PGM is FPT when parameterized by
k whenever r is a constant.

We underline that r is a constant here, that is, the constants hidden behind the big-O
notation in the running time depend on r.

Before proceeding with the overview, it is useful to discuss how Space Cover on PGM
is solvable when r = 0, i.e. on graphic matroids and what are the main challenges for solving
the problem for r > 0. On graphic matroids Space Cover corresponds to the following
problem. Given a set of terminal edges T = {e1, e2, . . . , es}, we want to find a set of at
most k edges F ⊆ E \ T such that for every ei, graph G[F ∪ ei] has a cycle containing ei.
This can be seen as a variant of the Steiner Tree, and more generally, of the Steiner
Forest problem. Here we are given a graph G, a collection of pairs of distinct non-adjacent
terminal vertices {x1, y1}, . . . , {xs, ys} of G, and a non-negative integer k. The task is to
decide whether there is a set F ⊆ E(G) with |F | ≤ k such that for each i ∈ {1, . . . , s}, graph
G[F ] (which we can be assumed to be a forest) contains an (xi, yi)-path. The special case
when x1 = x2 = · · · = xs, i.e. when edge set F is a tree spanning all demand vertices, is the
Steiner Tree problem. To see that Steiner Forest is a special case of Space Cover,
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we construct the following graph: For each i ∈ {1, . . . , s}, we add a new edge xiyi to G.
Denote by G′ the obtained graph and let T be the set of added edges and let M(G′) be the
graphic matroid associated with G′. Then a set of edges F ⊆ E(G) forms a graph containing
all (xi, yi)-paths if and only if T ⊆ span(F ) in M(G′).

Similar to Steiner Tree, Steiner Forest is fixed-parameter tractable parameterized
by the number of terminals. This can be shown by applying a dynamic programming
algorithm similar to the classical algorithm of Dreyfus and Wagner [12]. Notice that by [14,
Theorem 4]), Space Cover on PGM is NP-complete when restricted to the instances
with r ≤ 2 and |T | ≤ 2. This shows that for our problem the parameterization just by the
number of terminals |T | will not work; it also indicates that for matroids we should try a
different approach. To show that Steiner Forest is FPT parameterized by the size k of
the forest F , one can use the following idea. Since the size of F is at most k, there are 2O(k)

non-isomorphic forests, so we can guess the structure of F . In other words, we can guess
a forest H on at most k edges such that the solution F to Steiner Forest is isomorphic
to H. Thus for each guess of H, the task is reduced to the following constraint variant of
Subgraph Isomorphism: For given graph G and forest H, decide whether G contains a
forest isomorphic to H and spanning all terminal vertices of G in the prescribed way. This
problem can be solved by combining a color coding technique of Alon, Zwick, and Yuster [1]
with dynamic programming.

This is exactly the approach we want to push forward for r > 0. However in this
case reduction to constraint Subgraph Isomorphism is way more difficult. First, while
perturbation matrix P is of bounded rank, adding it to I(G) can change an unbounded
number of its elements. On the other hand, since the rank of perturbation matrix P is
bounded, we know that matrix P contains only a small number of different columns. Thus
while adding P to I(G) changes many elements of I(G), the variety of these changes is
bounded. We exploit this in order to guess the structure of a solution. Second, for graphic
matroids, the way a forest H should be mapped into G is very clear – for every terminal
element t, adding t to the solution should create a cycle containing t. This defines the
constraints how the edges of the guessed solution should be connected to terminal edges and
allows us to reduce the problem to a constraint variant of Subgraph Isomorphism. For
r > 0, adding P to I(G) completely destroys this nice property of the solution. Interestingly,
the bounded rank of perturbation still allows us to establish the constraints expressed as
parities of vertex degrees of a small number of vertices in G, coloring of edges of G, and
some additional mappings. As a result, by a sequence of reductions, we succeed in reducing
the original problem to a version of constraint Subgraph Isomorphism. Due to the nature
of constraints, the solution to this problem also requires new ideas on top of color coding
and dynamic programming.

We proceed with an overview of the proof of Theorem 1. The proof consists of two main
parts. The first part is an FPT-Turing reduction from Space Cover to the following version
of Subgraph Isomorphism, which we call Pattern Cover.

Pattern Cover
Input: A (multi) graph G with n vertices and m edges, a non-negative integer t that
is a fixed constant, a function `G : E(G) → {1, 2, . . . , t}, a non-negative integer k, a
forest H with k vertices, a function `H : E(H)→ {1, 2, . . . , t}, a set U ⊆ V (H) and an
injective function f : U → V (G).
Question: Is there an injective homomorphism g : V (H) ∪ E(H) → V (G) ∪ E(G)
such that (i) for all e ∈ E(H), it holds that `H(e) = `G(g(e)), and (ii) for all v ∈ U , it
holds that g(v) = f(v)?
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In other words, we give a reduction that for an input (G,P, T, k) of Space Cover on
PGM in time kO(k) · (n+m)O(1) constructs kO(k) · (n+m)O(1) instances of Pattern Cover
such that (G,P, T, k) is a yes-instance if and only if at least one of the instances of Pattern
Cover is.

The second part of the proof is an algorithm for solving Pattern Cover in time
kO(k) · (n+m)O(1). The combination of the two parts provides the proof of the theorem.

In what follows, we provide a brief description of the FPT-Turing reduction. The reduction
is done by a sequence of steps. For simplicity, here we explain how to construct a reduction
in time 2O(k2) · (n + m)O(1); in Section 4 of [14] we provide more precise arguments that
allow to reduce the running time.

We start by bounding |T | by k. In case the columns in T are not linearly independent,
we let T ′ denote a basis of T , and else we denote T ′ = T . We remove the columns in T \ T ′
from I(G) and P , and let (G′, P ′, T ′, k) denote the resulting instance. Clearly, (G,P, T, k) is
a yes-instance if and only if (G′, P ′, T ′, k) is a yes-instance. Moreover, given a set X of size t
of linearly independent vectors, for some t ∈ N, there does not exist any set Y of vectors
of size smaller than t such that X ⊆ span(Y ). Thus, in case |T ′| > k, the input instance
is a no-instance. Therefore, from now onwards we implicitly assume that |T | ≤ k. We use
the term solution to refer to any set F ⊆ E \ T with |F | ≤ k such that T ⊆ span(F ) in the
binary matroid M represented by A.

We define disc(P ) = {C1, . . . , Ct} to be the set of the distinct vectors that correspond
to the columns in {P e : e ∈ E(G)} (we index the columns of A, I(G) and P by the edges
of G). Since the rank of P is r, it is easy to see that it has at most 2r different columns,
thus t ≤ 2r. We say that an edge e ∈ E(G) is of type i, 1 ≤ i ≤ t, if P e = Ci (as vectors).
Given an edge e ∈ E(G), we let type(e) denote its type. Given a set of edges E′ ⊆ E(G), we
denote type(E′, i) = |{e ∈ E′ : type(e) = i}| mod 2. Towards to constructing the reduction
to Pattern Cover, we define `G : E(G)→ {1, . . . , t} by setting `G(e) = type(e).

We proceed by identifying a small graph that we can guess, and which will guide us how
to find a solution. Let F be an inclusion-wise minimal solution; note that the minimality of
F implies that F is an independent set. Consider the graph H = G[edges(F )]. The crucial
structural lemma that we use states that H is “almost” a forest. More precisely, we show
that H has at most 2t cycles. To see it, assume that H has at least 2t + 1 cycles. There
are at most t edge types in H. Hence by the pigeonhole principle, there are distinct sets of
edges C1 and C2 of H that compose cycles and such that type(C1, i) = type(C2, i) for all
i ∈ {1, . . . , t}. Then for the symmetric difference C = C14C2, we obtain that type(C, i) = 0
for i ∈ {1, . . . , t}. Thus the sum of the columns of P corresponding to edges of C is the
zero-vector. Notice that since C is the union of cycles of H, the sum of the columns of matrix
I(G) corresponding to its edges is also the zero-vector. Hence, the sum of the corresponding
vectors of A is also zero; and thus the corresponding set of columns of A, {Ae | e ∈ C} ⊆ F
is not independent. But this contradicts the minimality of F .

Let H denote the set of all non-isomorphic graphs with at most k edges, at most 2t cycles,
and no isolated vertices. Thus (G,P, T, k) is a yes-instance of Space Cover on PGM if
and only if (G,P, T, k) has a solution isomorphic to some H ∈ H. It is possible to show
that all non-isomorphic graphs in H can be enumerated within time 2O(k). Therefore, we
may explicitly examine each graph H ∈ H and check whether we have a solution F with
subgraph of G, G[edges(F )], isomorphic to H. In other words, we are looking for an injective
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homomorphism g : V (H) ∪ E(H)→ V (G) ∪ E(G)1 such that F = {Ae | e ∈ g(E(H))} is a
solution. This is an FPT-Turing reduction which reduces in time 2O(k) the solution of the
original problem to the solution of 2O(k) new problems. We will use a less formal term guess
to refer to such type of reductions. So we guess graph H.

Next, we observe that we can guess the types of edges of H. Since H has at most k edges,
there are at most tk = 2O(k) distinct functions `H : E(H)→ {1, . . . , t}. Then for each guess
of function `H , we want to decide whether there is an injective homomorphism g such that
`G(g(e)) = `H(e) for every e ∈ E(H) and such that the set of columns F of A corresponding
to the image of g, which is F = {Ae | e ∈ g(E(H))}, is a solution.

By definition, if F = {Ae | e ∈ g(E(H))} is a solution, then for each W ∈ T , there is
FW ⊆ F such that

W =
∑

e∈FW

Ae. (1)

(The summations here are modulo 2.) We denote by EW = g−1(edges(FW )) the edge subset
of H corresponding to FW . Then by (1),

W =
∑

e∈g(EW )

(Ie(G) + P e) =
∑

e∈g(EW )

Ie(G) +
∑

e∈g(EW )

P e.

Each column P e is equal to vector C`H(e) from partition disc(P ). Thus

W =
∑

e∈g(EW )

Ie(G) +
∑

e∈EW

C`H(e). (2)

Let W ′ = W +
∑

e∈EW
C`H(e). The rows of matrix I(G) and thus the elements of W ′

are indexed by the vertices of G. For v ∈ V (G), we denote by wv the element of W ′ indexed
by v. Note that wv is either 0 or 1. Let VW = {v ∈ V (G) | wv = 1}. Observe that VW is
uniquely defined by the choice of W and EW . The crucial insight, whose proof is given in [14,
Section 4], is that (2) and, therefore, (1) holds if and only if g acts as a bijection between
VW and vertices of H[EW ] of odd degrees. This is the most important part of the reduction;
it allows to reduce the algebraic requirement that every terminal vector should be in the
span of the solution to constraints in the form of bijections, which can be guessed efficiently.

We exploit this property for the next set of guesses. For each W ∈ T , we guess a set
EW ⊆ E(H) and construct VW as described above. Since |T | ≤ k and |E(H)| ≤ k, we have
at most 2k2 possible choices of the sets EW . Then we find the set UW ⊆ V (H[EW ]) of
vertices that have odd degrees in H[EW ]. If |VW | 6= |UW |, we discard the choice. Otherwise,
we set U = ∪W∈TUW . Notice that if our guesses correspond to a (potential) solution F ,
we have that corresponding injective homomorphism g should map U to V ′ = ∪W∈TVW

bijectively and, moreover, g should act as bijection between each UW and VW . We make
all possible guesses of a bijection f : U → U ′. Since |U | ≤ 2k, we have at most (2k)2k

possible choices. Then for each U and f , we are searching for an injective homomorphism
g : V (H) ∪ E(H)→ V (G) ∪ E(G) such that (i) for all e ∈ E(H), `H(e) = `G(g(e)), and (ii)
for each v ∈ U , g(v) = f(v).

Now we are ready for the final step of our reduction. Recall that H in the statement of
Pattern Cover is required to be a forest. The graph H that was guessed so far does not
have this property, but it is “almost” a forest, that is, it has at most 2t cycles. To fix it, we

1 Since we handle multi graphs, we define the domain and image of g to include edge-sets.
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guess a set of edges S ⊆ E(H) of size at most 2t such that the graph obtained from H by the
deletion of S is a forest and set H = H −S. Since |S| ≤ 2t, and t is a constant depending on
r only, we can make a polynomial number of guesses how solution g could map S to E(G);
we have at most |E(G)|2t = mO(1) possibilities for such partial mappings. For each guess of
mapping h : S → V (G), we modify U and f respectively. Namely, we set U = U ∪ V (H[S])
and define f(v) = h(v) for v ∈ V (H[S]) as prescribed by our choice of the mapping h of S.

This concludes the description of the construction of an instance of Pattern Cover. It
is possible to show that (G,P, T, k) is a yes-instance of Space Cover on PGM if and only
if for at least one of the described guesses of a forest H, functions `H , `G, set U ⊆ V (H)
and function f : U → V (G), the instance of Pattern Cover with these parameters is
a yes-instance. Since the total number of guesses we make is , 2O(k2) · (n + m)O(1), our
construction is the required FPT-Turing reduction.

In order to solve Pattern Cover, and to complete the proof of Theorem 1, we still
have to solve Pattern Cover. This is done by a non-trivial application of the color coding
technique combined with dynamic programming. We give all the details in [14, Section 4].

2.2 Duals of Perturbed Graphic Matroids
In this section, we give an overview of the proof of our second main result. The detailed
proof of the theorem is given in [14, Section 5].

Formally, we define the following problem.

Space Cover on Dual of Perturbed Graphic Matroid (Space Cover on
Dual-PGM)
Input: A (multi) graph G with n vertices and m edges, an (n × m)-matrix P over
GF (2) with rank(P ) ≤ r, a set of terminals T ⊆ E where E is the set of columns of the
matrix A = I(G) + P , and a non-negative integer k.
Question: Is there a set F ⊆ E \ T with |F | ≤ k such that T ⊆ span(F ) in the dual
M∗ of the binary matroid M represented by A?

I Theorem 2. Space Cover on Dual-PGM is solvable in time 22O((2r+k2)k) · (n+m)O(1).
In particular, Space Cover on Dual-PGM is FPT when parameterized by r + k.

As in the case with graphic matroids, it is useful to recall how Space Cover on Dual-
PGM is solvable for r = 0, i.e. on cographic matroids. In a cographic matroid a circuit
corresponds to a cut in the underlying graph G. In this case the solution set F should
satisfy the following property: for every terminal element e ∈ T there is a partition (or a
cut) (Xe, Xe) of the vertex set of G such that this cut, i.e. the set of edges between Xe and
Xe, is of the form {e} ∪ Fe, where Fe ⊆ F . Thus e is the only edge in the cut from T and
all other edges are from F .

In graph theory this problem is known under name Edge Subset Feedback Edge
Set. Xiao and Nagamochi [25] showed that this problem is FPT parameterized by k = |F |.
The algorithm for solving Edge Subset Feedback Edge Set, as well as its special case
Multiway Cut, uses the technique of Marx based on important separators [20]. The essence
of this technique is that all required information about the cuts in a graph can be extracted
from a carefully selected set of separators of size at most k. However, we do not see how this
approach can be shifted to more general matroids, even when the rank of perturbation matrix
is 1. The difficulty in this case is that solution F together with T cannot be represented as
the union of the sets of edges of cuts in G anymore, and thus the sizes of important separators
in G cannot be bounded by a function of k only. In order to overcome this challenge, we
have to apply more powerful method of recursive understanding [6].
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On a general level, the structure of the proof of Theorem 2 is similar to the structure
of the proof of Theorem 1. It consists of two parts. In the first part we give FPT-Turing
reduction to a cut problem on graphs and in the second part we use the method of recursive
understanding to solve the problem. But here the similarities end. While on perturbation
of graphic matroids Space Cover is about subgraph isomorphisms, on perturbation of
cographic matroids it is about collections of cuts in graphs. This makes both parts of the
proof of Theorem 2 much more challenging than in Theorem 1. In order to introduce the
graph-cut problem we reduce to, we need several definitions.

Graph problem. Let G be a graph with n vertices and m edges given together with a set of
terminal edges T and a partition of V (G) = (V1, V2, . . . , Vt). In addition, for every e ∈ T graph
G is provided with a function fe : E(G)→ {0, 1} and a binary vector Be = (be

1, b
e
2, . . . , b

e
t ).

For terminal edge e ∈ T and a partition (X, X̄) of V (G), we say that an edge e′ ∈ E(G)
contributes to (e, (X, X̄)) (with respect to fe) if one of the following conditions holds
1. Both endpoints of e′ belong to X and fe(e′) = 1.
2. Both endpoints of e′ belong to X̄ and fe(e′) = 1.
3. Exactly one of the endpoints of e′ belongs to X and fe(e′) = 0.
Accordingly, we define contribute(e,X) as the set of edges that contribute to (e, (X, X̄)).

For partition (X, X̄) of V (G), and terminal edge e ∈ T , we say that (X, X̄) almost fits e
(with respect to fe) if T ∩ contribute(e,X) = {e}. Moreover, if (X, X̄) almost fits e and for
all 1 ≤ i ≤ t, it holds that |X ∩ Vi| = be

i mod 2, then we say that (X, X̄) fits e (with respect
to fe and Be).

We are now ready to define our graph problem.

Edge-Set Cover
Input: A (multi) graph G with n vertices and m edges, non-negative integers k and t, a
partition (V1, V2, . . . , Vt) of V (G), a set T ⊆ E(G), a binary vector Be = (be

1, b
e
2, . . . , b

e
t )

for e ∈ T , and a function fe : E(G)→ {0, 1} for e ∈ T .
Question: Is there a set F ⊆ E(G) \ T with |F | ≤ k such that for each e ∈ T , there
exists a partition (Xe, X̄e) of V (G) that fits e and such that contribute(e,Xe)\{e} ⊆ F?

In other words, we a looking for a set of edges F of size k, such that for every terminal
edge e, there is a cut (Xe, X̄e) such that (i) the parities of the intersections of Xe with sets
Vi constitute vector Be, (ii) e is the only terminal edge contributing to the cut and all other
edges contributing to the cut are from F .

In the first part of the proof we give a reduction that for an input (G,P, T, k) of Space
Cover on Dual-PGM in time 2O(k2r) ·(n+m)O(1) constructs 2O(k2r) ·(n+m)O(1) instances
of Edge-Set Cover such that (G,P, T, k) is a yes-instance if and only if at least one of the
instances of Edge-Set Cover is.

As in the case of perturbed graphic matroids, we can assume that |T | ≤ k. Let disr(P ) =
{R1, . . . , Rt} be the set of the distinct vectors corresponding the rows of P . Since the rank
of P is r, it has at most 2r different rows, hence t ≤ 2r. Accordingly, we say that a vertex
v ∈ V (G) is of type i, 1 ≤ i ≤ t, if Pv = Ri. Given a vertex v ∈ V (G), we let type(v) denote
its type. For i ∈ {1, . . . , t}, we denote by Vi the set of vertices of type i.

Characterization of solutions. For Space Cover on Dual-PGM, we use the term solution
to refer to a set F ⊆ E \T with |F | ≤ k such that T ⊆ span(F ) in the dual M∗ of the binary
matroid M represented by A. Let I be a binary vector with m elements. Recall that given
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F ⊆ E, edges(F ) denotes the set of all edges e ∈ E(G) such that Ae ∈ F . Now, given a set
F ⊆ E, we say that I is the characteristic vector of F if the ith entry of I is 1 if and only if
F contains the ith column of A. Moreover, a set F ⊆ E is a cocycle in M if and only if it is
a cycle in M∗. We need the following folklore result (see, e.g., [17]) characterizing cocycles
of binary matroids.

I Proposition 3. Let M be a binary matroid represented by an (n×m)-matrix A, and let
F be a subset of E, where E is the set of columns of A. Then, F is a cocycle in M if and
only if the characteristic vector of F belongs to span(V ), where V is the set of rows of A.

Note that a set F ⊆ E \T is a solution if and only if for each terminal W ∈ T , there exists
a subset FW ⊆ F such that FW ∪ {W} is a cocycle in M . Thus, in light of Proposition 3, we
can think of a solution as follows:

I Observation 4. A set F ⊆ E \T is a solution if and only if |F | ≤ k and for each terminal
W ∈ T , there exists a subset FW ⊆ F such that the characteristic vector of FW ∪ {W}
belongs to span(V ), where V is the set of rows of A.

Let F be a solution. For each W ∈ T , denote by e(W ) the edge of G corresponding
to the terminal W . By Observation 4, for each W ∈ T , there is FW ⊆ F such that the
characteristic vector IW of F ′W = FW ∪{W} belongs to span(V ). It means that there is a set
of vertices Xe(W ) ⊆ V (G) such that IW =

∑
v∈Xe(W )

Av. Hence, for each W ∈ T , we have
the corresponding partition (Xe(W ), X̄e(W )) of V (G), and the solution can be represented as
a collection of cuts {(Xe(W ), X̄e(W )) |W ∈ T} of G.

For each W ∈ T and i ∈ {1, . . . , t}, we guess the parity of |Xe(W ) ∩ Vi| and define
the vector Be(W ) = (be(W )

1 , . . . , b
e(W )
t ) respectively by setting be(W )

i = |Xe(W ) ∩ Vi| mod 2.
Notice that we have at most 2tk choices for Be(W ), because |T | ≤ k. For each guess, we are
now looking for a solution represented by a collection of cuts {(Xe(W ), X̄e(W )) |W ∈ T} of
G such that |Xe(W ) ∩ Vi| mod 2 = b

e(W )
i for W ∈ T and i ∈ {1, . . . , t}.

Let IW =
∑

v∈Xe(W )
Av and let iWe for e ∈ E(G) denote the elements of IW . We have

that

IW =
∑

v∈Xe(W )

(Iv(G) + Pv) =
∑

v∈Xe(W )

Iv(G) +
∑

v∈Xe(W )

Pv. (3)

Let PW =
∑

v∈Xe(W )
Pv. Since |Xe(W ) ∩ Vi| mod 2 = b

e(W )
i for W ∈ T and i ∈ {1, . . . , t},

we obtain that PW =
∑t

i=1 b
e(W )
i Ri. Notice that vector PW is uniquely defined by the choice

of Be(W ). We define fe(W ) : E(G)→ {0, 1}, by setting fe(W )(e) to be equal to the element
of PW corresponding to e.

Recall that IW is the characteristic vector of the cocycle F ′W . It means that Ae ∈ F ′W if
and only if iWe = 1. By making use of (3), we are able to show that for each edge e ∈ E(G),
Ae ∈ F ′W if and only if one of the following holds:

Both endpoints of e belong to Xe(W ) and fe(W )(e) = 1.
Both endpoints of e belong to X̄e(W ) and fe(W )(e) = 1.
Exactly one of the endpoints of e belongs to Xe(W ) and fe(W )(e) = 0.

We have that W ∈ F ′W and W is the unique element of T in this set. It means that for
edge e(W ), cut (Xe(W ), X̄e(W )) almost fits e(W ) with respect to fe(W ). Since |Xe(W ) ∩ Vi|
mod 2 = b

e(W )
i for each W ∈ T and i ∈ {1, . . . , t}, we have that (Xe(W ), X̄e(W )) fits e(W )

with respect to fe(W ) and Be(W ). Moreover, we prove that for each W ∈ T and i ∈ {1, . . . , t}
the following are equivalent
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F ′W is a cocycle ofM such that |Xe(W )∩Vi| mod 2 = b
e(W )
i and such that its characteristic

vector is expressible as IW =
∑

v∈Xe(W )
Av;

Cut (Xe(W ), X̄e(W )) fits e(W ) with respect to fe(W ) and Be(W ).
We also have that F ′W = contribute(e(W ), Xe(W )).

Now we can complete the reduction to Edge-Set Cover. We consider the partition
(V1, . . . , Vt) of V (G) and the set of terminal edges TG = {e(W ) |W ∈ T}. For each W ∈ T ,
we have a binary vector Be(W ) and a function fe(W ). Together, all these parameters compose
an instance of Edge-Set Cover.

Solving Edge-Set Cover. The algorithm for Edge-Set Cover is the most technical part
of the paper. Here we briefly highlight the approach. On a high-level, we use the method
of recursive understanding [6], in which we incorporate various new, delicate subroutines.
Informally, this means that at the basis, we are going to deal with a “highly-connected” or a
small graph, and at each step where our graph is not highly-connected, we will break it using
a very small number of edges into two graphs that are both neither too small nor too large.

Let G be a connected graph, and let p and q be positive integers. A partition (X,Y ) of
V (G) is called (q, p)-good edge separation if |X|, |Y | > q, |E(X,Y )| ≤ p, and G[X] and G[Y ]
are connected graphs.

Roughly speaking, a graph G is unbreakable if every partition of V (G) with few edges
going across must contain a large chunk of V (G) in one of its two sets. Intuitively, this
means that G is “highly-connected”: any attempt to “break” it severely by using only few
edges is futile. Formally, a graph G is (q, p)-unbreakable if it does not have a (q, p)-good edge
separation.

If a graph G is not (q, p)-unbreakable, we say that it is (q, p)-breakable. Chitnis et al. [6]
proved the following result.

I Proposition 5 ([6]). There exists a deterministic algorithm that given a connected graph
G along with integers q and p, in time O(2min{q,p}·log(q+p) · (n+m)3 log(n+m)) either finds
a (q, p)-good edge separation, or correctly concludes that G is (q, p)-unbreakable.

In our case, we set p = 2(k + 1) and q = 22λ(t+k2)|T | for some appropriate constant
λ. To apply the method of recursive understanding, we introduce a special variant of
Edge-Set Cover called Annotated Edge-Set Cover (see [14, Section 5] for the formal
definition) that is tailored to apply recursion. We show that we can assume that the input
graph G is connected. If G has bounded (by some function of r and k) size, we solve
Annotated Edge-Set Cover directly. Otherwise, we use Proposition 5 to check whether
G is (q, p)-unbreakable.

If G is not (q, p)-unbreakable, we find a (q, p)-good separation (X,Y ) of G. Then we
solve a special instance of Annotated Edge-Set Cover for one of the graphs G[X] and
G[Y ] recursively. We use the obtained solution to construct a new instance of the problem
for a graph G′ that has less vertices than G. Then we call our algorithm for this smaller
instance.

If G is (q, p)-unbreakable, we obtain the crucial basic case that we briefly discuss here.
For simplicity, we consider this case for Edge-Set Cover.

Recall that in the definition of Edge-Set Cover, we ask about a set F ⊆ E(G) \T with
|F | ≤ k such that for each e ∈ T , there exists a partition (Xe, X̄e) of V (G) that fits e and
such that contribute(e,Xe) \ {e} ⊆ F . We relax these conditions and look for a collection of
partitions {(Ye, Ȳe) | e ∈ T} such that (Ye, Ȳe) almost fits e and | contribute(e, Ye) \ {e}| ≤ k
for e ∈ T . Then we can find such an auxiliary collection of partitions {(Ye, Ȳe) | e ∈ T} by
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reducing the relaxed problem to at most k instances of the Edge Odd Cycle Transversal
problem (also known as Edge Bipartization). The latter problem could be solved by the
results of Guo et al. [18]. Finally we use auxiliary partitions {(Ye, Ȳe) | e ∈ T} to construct
the required collection of partitions {(Xe, X̄e) | e ∈ T} and a set F of size at most k. The
final construction heavily exploit the high connectivity of G which allows to search only a
“small neighborhood” of (Ye, Ȳe).

3 Conclusion

In this paper we established the fixed-parameter tractability of Space Cover on PGM
and Space Cover on Dual-PGM. We also know that on the class of binary matroids
Space Cover is not tractable. So where lies the tractability border for Space Cover?
Our positive results on perturbed matroids, combined with the structure theorem of Geelen,
Gerards, and Whittle [16], rise a natural question: could the tractability of Space Cover
be extended to any proper minor-closed classM of binary matroids? Let us note that while
we formulate Space Cover only on binary matroids, it can be naturally defined on any
class of matroids. In particular, the parameterized complexity of Space Cover on proper
minor-closed classes of matroids representable over a finite field is open.

Finally, two concrete open questions. First, what is the parameterized complexity of
Space Cover on PGM when |T | is a constant and the parameter is r + k? Second, we
know that Space Cover on PGM is NP-complete even when |T | = 2 and r ≤ 2 (see [14,
Theorem 4]). On the other hand, for r = 0 the problem is in P for any fixed number of
terminals (it is actually FPT parameterized by |T |). What about the case |T | = 2 and r = 1?
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Abstract
Bidimensionality is the most common technique to design subexponential-time parameterized
algorithms on special classes of graphs, particularly planar graphs. The core engine behind it is
a combinatorial lemma of Robertson, Seymour and Thomas that states that every planar graph
either has a

√
k ×
√
k-grid as a minor, or its treewidth is O(

√
k). However, bidimensionality theory

cannot be extended directly to several well-known classes of geometric graphs like unit disk or map
graphs. This is mainly due to the presence of large cliques in these classes of graphs. Nevertheless, a
relaxation of this lemma has been proven useful for unit disk graphs. Inspired by this, we prove a
new decomposition lemma for map graphs, the intersection graphs of finitely many simply-connected
and interior-disjoint regions of the Euclidean plane. Informally, our lemma states the following. For
any map graph G, there exists a collection (U1, . . . , Ut) of cliques of G with the following property:
G either contains a

√
k ×
√
k-grid as a minor, or it admits a tree decomposition where every bag is

the union of O(
√
k) cliques in the above collection.

The new lemma appears to be a handy tool in the design of subexponential parameterized
algorithms on map graphs. We demonstrate its usability by designing algorithms on map graphs with
running time 2O(

√
k log k) · nO(1) for Connected Planar F-Deletion (that encompasses problems

such as Feedback Vertex Set and Vertex Cover). Obtaining subexponential algorithms
for Longest Cycle/Path and Cycle Packing is more challenging. We have to construct tree
decompositions with more powerful properties and to prove sublinear bounds on the number of ways
an optimum solution could “cross” bags in these decompositions.

For Longest Cycle/Path, these are the first subexponential-time parameterized algorithm
on map graphs. For Feedback Vertex Set and Cycle Packing, we improve upon known
2O(k0.75 log k) · nO(1)-time algorithms on map graphs.
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60:2 Decomposition of Map Graphs with Applications

1 Introduction

In this paper, we develop new proof techniques to design parameterized subexponential-
time algorithms for problems on map graphs, particularly problems that involve hitting or
connectivity constraints. The class of map graphs was introduced by Chen, Grigni, and
Papadimitriou [7, 8] as a modification of the class of planar graphs. Roughly speaking, map
graphs are graphs whose vertices represent countries in a map, where two countries are
considered adjacent if and only if their boundaries have at least one point in common; this
common point can be a single common point rather than necessarily an edge as standard
planarity requires. Formally, a map M is a pair (E , ω) defined as follows : E is a plane
graph (i.e., a planar graph with an embedding) where each connected component of E is
biconnected, and ω is a function that maps each face f of E to 0 or 1. A face f of E is called
nation if ω(f) = 1 and lake otherwise. The graph associated withM is the simple graph G
where V (G) consists of the nations ofM, and E(G) contains {f1, f2} for every pair of faces
f1 and f2 that are adjacent (that is, share at least one vertex). Accordingly, a graph G is
called a map graph if there exists a mapM such that G is the graph associated withM.

Every planar graph is a map graph [7, 8], but the converse does not hold true. Moreover,
map graphs can have cliques of any size and thus they can be “highly non-planar”. These
two properties of map graphs can be contrasted with those of H-minor free graphs and unit
disk graphs: the class of H-minor free graphs generalizes the class of planar graphs, but can
only have cliques of constant size (where the constant depends on H), while the class of unit
disk graphs does not generalize the class of planar graphs, but can have cliques of any size.
At least in this sense, map graphs offer the best of both worlds. Nevertheless, this comes at
the cost of substantial difficulties in the design of efficient algorithms on them.

Arguably, the two most natural and central algorithmic questions concerning map graphs
are as follows. First, we would like to efficiently recognize map graphs, that is, determine
whether a given graph is a map graph. In 1998, Thorup [29] announced the existence of a
polynomial-time algorithm for map graph recognition. Although this algorithm is complicated
and its running time is about O(n120), where n is the number of vertices of the input graph,
no improvement has yet been found; the existence of a simpler or faster algorithm for map
graph recognition has so far remained an important open question in the area (see, e.g., [9]).

The second algorithmic question – or rather family of algorithmic questions – concerns
the design of efficient algorithms for various optimization problems on map graphs. Most
well-known problems that are NP-complete on general graphs remain NP-complete when
restricted to planar (and hence on map) graphs. Nevertheless, a large number of these
problems can be solved faster or “better” when restricted to planar graphs. For example,
nowadays we know of many problems that are APX-hard on general graphs, but which admit
polynomial time approximation schemes (PTASes) or even efficient PTASes (EPTASes) on
planar graphs (see, e.g., [4, 14, 15, 22]). Similarly, many parameterized problems that on
general graphs cannot be solved in time 2o(k) ·nO(1) unless the Exponential Time Hypothesis
(ETH) of Impagliazzo, Paturi and Zane [24] fails, admit parameterized subexponential-time
algorithms on planar graphs (see, e.g., [1, 2, 14, 27]). It is compelling to ask whether the
algorithmic results and techniques for planar graphs can be extended to map graphs.

For approximation algorithms, Chen [6] and Demaine et al. [12] developed PTASes for
the Maximum Independent Set and Minimum r-Dominating Set problems on map
graphs. Moreover, Fomin et al. [21, 22] developed an EPTAS for Treewidth-η Modulator
for any fixed constant η ≥ 0, which encompasses Feedback Vertex Set (FVS) and
Vertex Cover (VC). For parameterized subexponential-time algorithms on map graphs,
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the situation is less explored. While on planar graphs there are general algorithmic methods
– in particular, the powerful theory of bidimensionality [15, 13] – to design parameterized
subexponential-time algorithms, we are not aware of any general algorithmic method that
can be easily adapted to map graphs. Demaine et al. [12] gave a parameterized algorithm for
Dominating Set, and more generally for (k, r)-Center, with running time 2O(r log r

√
k)nO(1)

on map graphs. Moreover, Fomin et al. [21, 22] gave 2O(k0.75 log k)nO(1)-time parameterized
algorithms for FVS and Cycle Packing on map graphs. Additionally, Fomin et al. [21, 22]
noted that the same approach yields 2O(k0.75 log k)nO(1)-time parameterized algorithms for
Vertex Cover and Connected Vertex Cover (CVC) on map graphs. However, the
existence of a parameterized subexponential-time algorithm for Longest Path/Cycle on
map graphs was left open. (In these problems we are asked whether an n-vertex graph contains
a path/cycle of length at least k.) Furthermore, time complexities of 2O(k0.75 log k)nO(1),
although having subexponential dependency on k, remain far from time complexities of
2O(

√
k log k)nO(1) and 2O(

√
k)nO(1) that commonly arise for planar graphs [27]. We remark

that time complexities of 2O(
√
k log k)nO(1) and 2O(

√
k)nO(1) are particularly important since

they are often known to be essentially optimal under the aforementioned ETH [27].
In the field of Parameterized Complexity, Longest Path/Cycle , FVS and Cycle

Packing serve as testbeds for development of fundamental algorithmic techniques such
as color-coding [3], methods based on polynomial identity testing [25, 26, 30, 5], cut-and-
count [11], and methods based on matroids [19]. By combining the bidimensionality theory
of Demaine et al. [13] with efficient algorithms on graphs of bounded treewidth [17, 10],
Longest Path/Cycle, Cycle Packing and FVS are solvable in time 2O(

√
k)nO(1) on

planar graphs. Furthermore, the parameterized subexponential-time “tractability” of these
problems can be extended to graphs excluding some fixed graph as a minor [15].

Our results. We design parameterized subexponential-time algorithms with running time
2O(

√
k log k) · nO(1) for a number of natural and well-studied problems on map graphs.

Let F be a family of connected graphs that contains at least one planar graph. Then
Connected Planar F-Deletion (or just F-Deletion) is defined as follows. The input
is a graph G and a non-negative integer k, and our objective is to test whether there exists a
set S of at most k vertices such that G−S does not contain any of the graphs in F as a minor.
F-Deletion is a general problem and several problems such as VC, FVS, Treewidth-η
Vertex Deletion, Pathwidth-η Vertex Deletion, Treedepth-η Vertex Deletion,
Diamond Hitting Set and Outerplanar Vertex Deletion are its special cases. We
give the first parameterized subexponential algorithm for this problem on map graphs, which
runs in time 2O(

√
k log k) ·nO(1). Our approach for F-Deletion also directly extends to yield

2O(
√
k log k) · nO(1)-time parameterized algorithms for CVC and Connected Feedback

Vertex Set (CFVS) on map graphs. (In this versions we are asked if there is a connected
vertex cover or a feedback vertex set of size at most k.)

With additional ideas, we derive the first subexponential-time parameterized algorithm on
map graphs for Longest Path/Cycle. Our technique also allows to improve the running
time for Cycle Packing (does a map graph contains at least k vertex-disjoint cycles) from
2O(k0.75 log k) · nO(1) to 2O(

√
k log k) · nO(1). Our results are summarized in Table 1.

Our methods. The starting point of our study is the technique of bidimensionality [15, 13].
The core engine behind this technique is a combinatorial lemma of Robertson, Seymour and
Thomas [28] that states that every planar graph either has a

√
k×
√
k-grid as a minor, or its

treewidth is O(
√
k). Unfortunately, a clique on k−1 vertices has no

√
k×
√
k-grid as a minor
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Table 1 Parameterized complexity of problems on map graphs. For F-Deletion, Longest
Cycle, and Longest Path no faster (than on general graphs) algorithms were known.

Our results Previous work
(Connected) Vertex Cover 2O(

√
k log k) · nO(1) 2O(k0.75 log k) · nO(1) [22]

(Connected) Feedback Vertex Set 2O(
√

k log k) · nO(1) 2O(k0.75 log k) · nO(1) [22]
F-Deletion 2O(

√
k log k) · nO(1) 2O(k)nO(1) [18]

Longest Cycle/Path 2O(
√

k log k) · nO(1) 2O(k)nO(1) [10]
Cycle Packing 2O(

√
k log k) · nO(1) 2O(k0.75 log k) · nO(1) [22]

and its treewidth is k − 2. Because classes of geometric graphs such as unit disk graphs and
map graphs can have arbitrarily large cliques, the combinatorial lemma is inapplicable to
them. Nevertheless, a relaxation of this lemma has been proven useful for unit disk graphs.
Specifically, every unit disk graph G has a natural partition (U1, . . . , Ut) of V (G) such that
each part induces a clique with “nice” properties – in particular, it has neighbors only in a
constant number (to be precise, this constant is at most 24) of other parts; it was shown that
G either has a

√
k ×
√
k-grid as a minor, or it has a tree decomposition where every bag is

the union of O(
√
k) of these cliques [20]. In particular, given a parameterized problem where

any two cliques have constant-sized “interaction” in a solution, it is implied that any bag has
O(
√
k)-sized “interaction” with all other bags in a solution. For any map graph G, there

also exists a natural collection of subsets of V (G) that induce cliques with “nice” properties.
However, not only are these cliques not vertex disjoint, but each of these cliques can have
neighbors in arbitrarily many other cliques.

In this paper, we first prove that every map graph either has a
√
k ×
√
k-grid as a minor,

or it has a tree decomposition where every bag is the union of O(
√
k) of the cliques in

the above collection. For F-Deletion, CVC, and CFVS, this combinatorial lemma alone
already suffices to design 2O(

√
k log k) · nO(1)-time algorithms on map graphs. Indeed, we can

choose a fixed constant c > 0 so that in case we have a c
√
k× c

√
k-grid as a minor, there does

not exist a solution, and otherwise we can solve the problem by using dynamic programming
over the given tree decomposition. Specifically, since every bag is the union of O(

√
k) cliques,

and the size of each clique is upper bounded by O(k) (once we know that no c
√
k× c

√
k-grid

exists), only O(
√
k) vertices in the bag are not to be taken into a solution – there are only

2O(
√
k log k) choices to select these vertices, and once they are selected, the information stored

about the remaining vertices is the same as in normal dynamic programming over a tree
decomposition of O(

√
k) width.

This approach already substantially improves upon the previously best known algorithms
for FVS, VC and CVC of Fomin et al. [21, 22]. However, 2O(

√
k log k) ·nO(1)-time algorithms

for Longest Path/Cycle and Cycle Packing on map graphs require more efforts. The
main reason why we cannot apply the same arguments as for unit disk graphs is the following.
Recall that for unit disk graphs, given a parameterized problem where any two cliques
have constant-sized “interaction” in a solution (in our case, this means a path/cycle on at
least k vertices, or a cycle packing of k cycles), it is implied that any bag has O(

√
k)-sized

“interaction” with all other bags in a solution. Here, interaction between two cliques refers to
the number of edges in a solution “passing” between these two cliques; similarly, interaction
between a bag B and a collection of other bags refers to the number of edges in a solution
that have one endpoint in B and the other endpoint in some bag in the collection. In this
context, dealing with map graphs is substantially more difficult than dealing with unit disk
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graphs. In map graphs vertices in a clique can have neighbors in arbitrarily many other
cliques in the collection rather than only in a constant number as in unit disk graphs. This
is why it is difficult to obtain an O(

√
k)-sized “interaction” as for unit disk graphs.

Hence, we are forced to take a different approach for map graphs by bounding “the
interaction within a clique across all the bags of a decomposition”. Towards this, we first
need to strengthen our tree decomposition. To explain the new properties required, we note
that every clique in the aforementioned collection of cliques, say K, is either a single vertex
or the neighborhood of some “special vertex” in an exterior bipartite graph (see Section 2).
Further, every vertex of G occurs as a singleton in K. We construct our decomposition in
a way such that every bag is not necessarily a union of O(

√
k) cliques in K, but a union

of carefully chosen subcliques of O(
√
k) cliques in K (with one subclique for each of these

O(
√
k) cliques); subcliques of the same clique chosen in different bags may be different.

We then prove properties that roughly state that, if we look at the collection of bags that
include some vertex v of G, then this collection induces a subtree and a path as follows: (♣)
the subtree consists of the bags that correspond to the singleton clique v, and the path goes
“upwards” (in the tree decomposition) from the root of this subtree. We thereby implicitly
derive that in every bag B, every subclique of size larger than 1 can only have as neighbors
vertices that are (i) in the bag B itself or in one of its descendants, or (ii) in cliques that
have a subclique in the bag B. In particular, this means that if we prove that there exists
a solution such that for any clique K in K, the number of edges in E(K) that “cross any
bag B” (i.e., the edges in E(K) with one endpoint in B and the other in the collection of
all bags that are not descendants of B) is a constant, then we obtain a bound of O(

√
k) on

the interaction between any bag B and the collection of all bags that are not descendants of
B. We prove the mentioned statement using property (♣). The proof that such a property
simultaneously holds for all cliques and all bags is the most challenging part of the proof.

In Section 3 we give our special tree decomposition of map graphs and in Section 4 we
explain its application in the algorithm for Longest Cycle on map graphs. For the proofs
of results marked with ? and all other results we refer to the full version of the paper.

2 Preliminaries

For any t ∈ N, we use [t] and [t]0 as shorthands for {1, 2, . . . , t} and {0, 1, . . . , t}, respectively.
For a set U , we use 2U to denote the power set of U . For a sequence σ = x1x2 . . . xn and
any 1 ≤ i ≤ j ≤ n, the sequence σ′ = xi . . . xj is called a segment of σ. For a sequence
σ = x1x2 . . . xn and a subset Z ⊆ {x1, . . . , xn}, the restriction of σ on Z, denoted by σ|Z , is
the sequence obtained from σ by deleting the elements of {x1, . . . , xn} \ Z.

Graphs. We use standard notation and terminology from the book of Diestel [16] for graph-
related terms. Given a graph G, let V (G) and E(G) denote its vertex-set and edge-set,
respectively. For a set Q of graphs we slightly abuse terminology and let V (Q) and E(Q)
denote the union of the sets of vertices and edges of the graphs in Q, respectively. For a
vertex subset X ⊆ V (G) in a graph G, E(X) denotes the set {{u, v} ∈ E(G) : u, v ∈ X}.
For a graph G and a degree-2 vertex v ∈ V (G), by contracting v, we mean deleting v from G

and adding an edge between the two neighbors of v in G.
A binary tree is a rooted tree where each node has at most two children. In a labelled

binary tree, for each node with two children one of the children is labelled as “left child” and
the other child is labelled as “right child”. A postorder transversal of a labelled binary tree T
is the sequence σ of V (T ) where for each node t ∈ V (T ), t appears after all its descendants,
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60:6 Decomposition of Map Graphs with Applications

and if t has two children, then the nodes in the subtree rooted at the left child appear
before the nodes in the subtree rooted at the right child. For a binary tree T , we say that a
sequence σ of V (T ) is a postorder transversal if there is a labelling of T such that σ is its
postorder transversal.

I Definition 2.1 (Treewidth). A tree decomposition of a graph G is a pair T = (TT , βT ),
where T is a rooted tree and βT is a function from V (TT ) to 2V (G), that satisfies the following
three conditions. (We use the term nodes to refer to the vertices of TT .)
(a)

⋃
x∈V (TT ) βT (x) = V (G).

(b) For every edge {u, v} ∈ E(G), there exists x ∈ V (TT ) such that {u, v} ⊆ βT (x).
(c) For every vertex v ∈ V (G), the set of nodes {t ∈ V (TT ) : v ∈ βT (t)} induces a

(connected) subtree of TT .
The width of T is maxx∈V (TT ) |βT (x)| − 1. Each set βT (x) is called a bag. Moreover, γT (x)
denotes the union of the bags of x and its descendants. The treewidth of G is the minimum
width among all possible tree decompositions of G, and it is denoted by tw(G).

I Definition 2.2. A tree decomposition T = (TT , βT ) of a graph G is nice if for the root r
of TT , it holds that βT (r) = ∅, and each node v ∈ V (TT ) is of one of the following types.

Leaf: v is a leaf in TT and βT (v) = ∅. This bag is labelled with leaf.
Forget vertex: v has exactly one child u, and there exists a vertex w ∈ βT (u) such that
βT (v) = βT (u) \ {w}. This bag is labelled with forget (w).
Introduce vertex: v has exactly one child u, and there exists a vertex w ∈ βT (v) such
that βT (v) \ {w} = βT (u). This bag is labelled with introduce(w).
Join: v has exactly two children, u and w, and βT (v) = βT (u) = βT (w). This bag is
labelled with join.

We will use the following folklore observation and proposition in the later sections.

I Observation 2.3. Let T be a nice tree decomposition of a graph G. For any v ∈ V (G),
there is exactly one node t ∈ V (TT ) such that t is labelled with forget(v).

I Proposition 2.4 (Theorem 7.23 in [10], [23, 28]). There exists an O(n2) time algorithm
that given an n-vertex planar graph G and t ∈ N, either outputs a (nice) tree decomposition
of G of width less than 5t, or constructs a t× t grid minor in G.

Map graphs. Map graphs are the intersection graphs of finitely many connected and interior-
disjoint regions of the Euclidean plane. Map graphs can be represented as the half-squares
of planar bipartite graphs. For a bipartite graph B with bipartition V (B) = W ] U , the
half-square of B is the graph G with vertex set W and edge set is defined as follows: two
vertices inW are adjacent in G if they are at distance 2 in B. It is known that the half-square
of a planar bipartite graph is a map graph [7, 8]. Moreover, for any map graph G, there
exists a planar bipartite graph B such that G is a half-square of B [7, 8]; we refer to such B
as a planar bipartite graph corresponding to the map graph G (see Figure 1).

Throughout this paper, we assume that any input map graph G is given with a corres-
ponding planar bipartite graph B. This assumption is made without loss of generality in the
sense that if G is given with an embedding instead to witness that it is a map graph, then B
is easily computable in linear time [7, 8]. We remark that we consider map graphs as simple
graphs, that is, there are no multiple edges between two vertices u and v, even if there are two
or more internally vertex-disjoint paths of length 2 between u and v in B. For a map graph
G with a corresponding planar bipartite graph B having bipartition V (B) = W ] U , we
refer to the vertices in W = V (G) simply as vertices and the vertices in U as special vertices.
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(b) A map graph G as-
sociated withM.
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(c) A corresponding planar bipartite graph B
of the map graph G. Here, red colored vertices
are special vertices.

r r rr

r

r r

∅

v1 v3 v4v2r r rr

v1 v3 v4v2

(d) A tree decomposition D = (TD, βD) of B
of width < 2. The nodes colored blue, green,
red, and yellow are labelled with introduce(vi),
introduce(r), forget(vi) and join, resp.

Figure 1 Example of a map graph G, and a corresponding planar bipartite graph B. Figure 1d
represents a tree decomposition of B (obtained after deleting the leaves of a nice tree decomposition).

Moreover, we denote the special vertices by S(G). Notice that for any s ∈ S(G), NB(s) forms
a clique in G; we refer to these cliques as special cliques of G. We remark that the collection
K of cliques mentioned in Section 1 refers to {NB(s) : s ∈ S(G)} ∪ {{v} : v ∈ V (G)}.

3 Few Cliques Tree Decomposition of Map Graphs

In this section, we define a special tree decomposition for map graphs. This decomposition
will be derived from a tree decomposition of the bipartite planar graph corresponding to the
given map graph. Once we have defined our new decomposition, we will gather a few of its
structural properties that will be useful in designing fast subexponential time algorithms.

I Definition 3.1. Let G be a map graph with a corresponding planar bipartite graph B. Let
D = (TD, βD) be a tree decomposition of B of width less than `. A pair D′ = (TD′ , βD′) is
called the `-few cliques tree decomposition derived from D, or simply an (`,D)-FewCliTD, if
it is constructed as follows (see Figure 2).
1. The tree TD′ is equal to TD. Whenever D′ and D are clear from context, we denote both

TD′ and TD by T .
2. For each node t ∈ V (T ), βD′(t) = (βD(t)∩ V (G))∪ (

⋃
s∈βD(t)∩S(G) NB(s)∩ γD(t)). That

is, for each node t ∈ V (T ), we derive βD′(t) from βD(t) by replacing every special vertex
s ∈ βD(t) ∩ S(G) by NB(s) ∩ γD(t).

In words, the second item states that for every vertex v ∈ V (G) and node t ∈ V (T ), we
have that v ∈ βD′(t) if and only if either (i) v ∈ βD(t) ∩ V (G) or (ii) v ∈ NB(s) for some
s ∈ S(G) ∩ βD(t) and v ∈ βD(t′) for some node t′ in the subtree of T rooted at t.

We can prove that the (`,D)-FewCliTD (T, βD′) in Definition 3.1 is a tree decomposition
of G (see the full version of the paper for a proof). We remark that if we replace the term
NB(s) ∩ γD(t) by the term NB(s) in the second item of Definition 3.1, then we still derive a
tree decomposition, but then some of the properties proved later do not hold true.

To simplify statements ahead, from now on, we have the following notation.
Throughout the section, we fix a map graph G, a corresponding planar bipartite graph B
of G, an integer ` ∈ N, a nice tree decomposition D of B of width less than ` and an `-few
cliques tree decomposition D′ of G derived from D using Definition 3.1

Recall that T = TD = TD′ and that for each node t ∈ V (T ), βD′(t) was obtained from
βD(t) by replacing every special vertex s ∈ S(G) with NB(s) ∩ γD(s).

ICALP 2019



60:8 Decomposition of Map Graphs with Applications

I Definition 3.2. For a node t ∈ V (T ), we use Original(t) to denote the set βD(t) ∩ βD′(t),
Fake(t) to denote the set βD′(t) \ βD(t), and Cliques(t) to denote the set {NB(s) : s ∈
S(G) ∩ βD(t)} of special cliques of G.

Informally, for a node t ∈ V (T ), Original(t) denotes the set of vertices of V (G) present in the
bag βD(t), Fake(t) denotes the set of “new” vertices added to βD′(t) while replacing special
vertices in βD(t), and Cliques(t) is the set of special cliques in G that consist of one for each
special vertex s ∈ βD(t). For example, let t be the node in Figure 1d that is labelled with
forget(v1) by D. Then, Original(t) = ∅, Fake(t) = {v1} and Cliques(t) = {{v1, . . . , v4}}.

In the remainder of this section we prove properties related to D and D′, which we
use later in the paper. Towards the formulation of the first property, consider the tree
decomposition D′ in Figure 2 and the set of its nodes whose bags contain the vertex v1 as a
“fake” vertex. This set of nodes forms a path with one end-vertex being the unique node tv1

of T labelled with forget(v1) by D and the other end-vertex being an ancestor of tv1 . In
fact, the set of nodes Q = {t ∈ V (T ) : v1 ∈ Fake(t) and r ∈ βD(t)} forms the unique path in
T from tv1 to tr where tr is the unique child of the node labelled with forget(r) by D. This
observation is abstracted and formalized in the following lemma.

I Lemma 3.3. Let v ∈ V (G) and s ∈ S(G) such that v ∈ NB(s) and Q = {t ∈ V (T ) : v ∈
Fake(t) and s ∈ βD(t)} 6= ∅. Let x be the node in T labelled with forget(v) by D, and y be
the unique child of the node labelled with forget(s) by D. Then, y is an ancestor of x, and
Q induces a path in T which is the unique path between x and y in T .

Proof. First, we prove that Q induces a (connected) subtree of T . Suppose not. Then, there
exist two connected components C1 and C2 of T [Q] such that there exists a path P in T from
a vertex in C1 to a vertex in C2 whose internal vertices all belong to V (T ) \Q. By Property
(c) of the tree decomposition D, we have that s ∈ βD(t) for any t ∈ V (P ). Moreover, there is
an internal vertex w of P such that w is an ancestor of one of the end-vertices of P . This
implies that v ∈ γD(w), because v belong to the bags of the endpoints of P (by the definition
of Q and Fake). As we have also shown that s ∈ βD(t) for all t ∈ V (P ), this implies that
w ∈ Q, which is a contradiction. Hence, we have proved that T [Q] is connected.

Next, we prove that T [Q] is a path such that one of its endpoints is a descendant of
the other. Towards this, it is enough to prove that (i) for any distinct t, t′ ∈ Q, either t
is a descendant of t′ or t′ is a descendant of t. For the sake of contradiction, assume that
there exist t, t′ ∈ Q such that neither t is a descendent of t′ nor t′ is a descendent of t. By
the definition of Q and because t, t′ ∈ Q, we have that v ∈ γD(t) and v ∈ γD(t′). Thus by
Property (c) of the tree decomposition D, we have that v ∈ βD(t) and v ∈ βD(t′). Because
v ∈ Fake(t) and v ∈ Fake(t′), this is a contradiction to the definition of Fake.

It remains to prove that y is an ancestor of x and that x and y are endpoints of T [Q].
First, we prove that x is an end-vertex of the path T [Q]. Let x′ be the only child of x. To
prove x is an end-vertex of the path T [Q], it is enough to show that x ∈ Q and x′ /∈ Q. Since
x is labelled with forget(v) by D, we have that v /∈ βD(x), v ∈ βD(x′), and v ∈ γD(x). This
implies that v ∈ Original(x′) and hence x′ /∈ Q. Now, we prove that x ∈ Q. For this purpose,
let R = {t ∈ V (T ) : s ∈ βD(t)}. Clearly, Q ⊆ R. By Property (c) of the tree decomposition
D, we have that T [R] is connected. We have already proved that T [Q] is a path and since
Q ⊆ R, T [Q] is a path in T [R]. Since x is labelled with forget(v) by D, for any node x′′ in
the subtree rooted at x and x′′ 6= x, either v ∈ βD(x′′) or v /∈ γD(x′′) (this fact follows from
Property (c) of D). This implies that Q contains no node in the subtree of T rooted at x
and not equal to x. Moreover, observe that there exists a node x? in the subtree of T rooted
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v1 v3 v4v2

v1 v3 v4v2

v1 v3v2 v4

v1 v3 v4v2

v1 v3 v4v2

fake introduce(vi)

introduce(vi)

join

redundant

join
forget({v1, v2, v3, v4})

Figure 2 An (`,D)-FewCliTD D′ derived from the nice tree decomposition D in Figure 1d using
Definition 3.1. The labels of the nodes in D′ are mentioned on the right.

at x such that {s, v} ⊆ βD(x?) and hence x? ∈ R. Now, since Q is non-empty and T [Q] is
connected, we have that s ∈ βD(x). Since v /∈ βD(x), v ∈ γD(x) and s ∈ βD(x), we conclude
that x ∈ Q. Thus, we have proved that x is an end-vertex of the the path T [Q].

Next we prove that y is the other end-vertex of the path T [Q] and y is an ancestor of
x. Since y is the only child of the node y′ labelled with forget(s), we have that s ∈ βD(y)
and s /∈ βD(y′). This implies that y′ /∈ Q. Thus to prove that y is an end-vertex of the path
T [Q], it is enough to prove that y ∈ Q. Since s ∈ βD(x), s ∈ βD(y), s /∈ βD(y′) and y′ is the
parent of y, by Property (c) of D, we have that y is an ancestor of x. This also implies that
v ∈ γD(y) and v /∈ βD(y). Hence, y ∈ Q. This completes the proof of the lemma. J

In the next lemma we show that for any special vertex s ∈ S(G) and any node t in T
labelled with introduce(s) by D, it holds that t and its child carry the “same information”.

I Lemma 3.4 (?). Let s ∈ S(G) and t be a node in T labelled with introduce(s) by D. Let
t′ be the only child of t. Then, Original(t) = Original(t′) and Fake(t) = Fake(t′).

Next, we see a property of nodes t ∈ V (T ) labelled with join.

I Lemma 3.5 (?). Let t be a node in T labelled with join by D, and t1 and t2 are its chil-
dren. Then, Original(t) = Original(t1) = Original(t2), Cliques(t) = Cliques(t1) = Cliques(t2),
Fake(t1) ∩ Fake(t2) = ∅, and Fake(t) = Fake(t1) ∪ Fake(t2).

Now, we define a notion of nice `-few cliques tree decomposition of G as the tree decom-
position of G derived from a nice tree decomposition D of B of width < ` (see Definition 3.1)
with additional labeling of nodes. In what follows, we describe this additional labeling of
nodes. Towards this, observe that because of Lemma 3.4, for any special vertex s ∈ S(G)
and any node t ∈ V (T ) labelled with introduce(s) by D, the bags βD′(t) and βD′(t′) carry
the “same information” where t′ is the only child of t. Informally, one may choose to handle
these nodes by contracting them. However, to avoid redundant proofs ahead, instead of
getting rid of such nodes, we label them with redundant in D′. Next, we explain how to
label other nodes of T in the decomposition D′ (see Figure 2). To this end, let t ∈ V (T ).

If t is labelled with leaf by D, then we label t with leaf. Here, βD′(t) = ∅.
If t is labelled with introduce(v) by D for some v ∈ V (G), then we label t with
introduce(v). In this case, t has only one child t′ in T and βD′(t) \ {v} = βD′(t′).
If t is labelled with forget(v) by D for some v ∈ V (G) and v ∈ Fake(t), then we label t
with fake introduce(v). In this case, t has only one child t′ and βD′(t) = βD′(t′), but
Original(t) = Original(t′) \ {v} and Fake(t) = Fake(t′) ∪ {v}.
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If t is labelled with forget(v) by D for some v ∈ V (G) and v /∈ Fake(t), then we
label t with forget(v). In this case, t has only one child t′, βD′(t) = βD′(t′) \ {v},
Original(t) = Original(t′) \ {v} and Fake(t) = Fake(t′).
Suppose t is labelled with forget(s) by D for some s ∈ S(G). Then, t has only one child
t′. Here, we label t with forget(βD′(t′) \ βD′(t)). In this case, Fake(t) ⊆ Fake(t′) and
Original(t) = Original(t′).
If t is labelled with join by D, then we label t with join. Let t1 and t2 be the children of
t. Then, Original(t) = Original(t1) = Original(t2), Cliques(t) = Cliques(t1) = Cliques(t2),
Fake(t1) ∩ Fake(t2) = ∅, and Fake(t) = Fake(t1) ∪ Fake(t2). (See Lemma 3.5).
If t is labelled with introduce(s) for some s ∈ S(G), then we label t with redundant.

This completes the definition of the nice `-few cliques tree decomposition of G derived
from D, to which we simply call an (`,D)-NFewCliTD. Notice that for each node t in T ,
|Original(t)|+ |Cliques(t)| ≤ `. That is, for any node t ∈ V (T ), there exist i, j ∈ N such that
i + j ≤ `, the cardinality of Original(t) is at most i, and the vertices in βD′(t) \ Original(t)
were obtained from at most j special cliques. From now on, we assume that D′ is an
(`,D)-NFewCliTD of a map graph G.

Since the number of nodes with label forget(v) in the tree decomposition D is exactly
one for any v ∈ V (B) (see Observation 2.3), at most one node in T is labelled with fake
introduce(v) in D′. This is formally stated in the following observation.

I Observation 3.6. Let t ∈ V (T ) and v ∈ Fake(t). Then,
(i) there is a unique node t′ ∈ V (T ) such that t′ is labelled with fake introduce(v) in D′,
(ii) t is an ancestor of t′ or t = t′, and
(iii) for any node t′′ in the unique path between t and t′, we have that v ∈ Fake(t′′).

The correctness of Observation 3.6 follows from Observation 2.3 and Lemma 3.3. The
discussion above, along with Proposition 2.4, implies the following lemma.

I Lemma 3.7 (?). Given a map graph G, a corresponding planar bipartite graph B, and
an integer ` ∈ N, in time O(n2), one can either correctly conclude that B contains an `× `
grid as a minor, or compute a nice tree decomposition D of B of width less than 5` and a
(5`,D)-NFewCliTD of G.

Lastly, we prove an important property of D′. In particular, the edges considered in the
following lemma are precisely those that connect the vertices “already seen” (when we use
dynamic programming (DP)) with vertices to “see in the future”.

I Lemma 3.8. For any node t ∈ V (T ), the edges with one endpoint in γD′(t) and other in
V (G) \ γD′(t) are of two kinds: (i) edges incident with vertices in Original(t), and (ii) edges
belonging to some special clique in Cliques(t) (these edges are incident to vertices in Fake(t)).

Proof. Fix t ∈ V (T ). Since D′ is a tree decomposition of G, for any edge e ∈ E(G) with one
endpoint in γD′(t) and other in V (G) \ γD′(t), the endpoint of e in γD′(t) should belong to
βD′(t). Let u be the endpoint of e that belongs to βD′(t), and v be the other endpoint of e.
Notice that the set βD′(t) is partitioned into Original(t) and Fake(t), so u belongs to either
Original(t) or Fake(t), and in the former case we are done. We now assume that u ∈ Fake(t).

Since {u, v} = e ∈ E(G), there is a special vertex s ∈ S(G) such that {u, s}, {v, s} ∈ E(B).
If s ∈ βD(t), then the edge {u, v} belongs to the special clique K = NB(s) in G and
K ∈ Cliques(t). We claim that indeed s ∈ βD(t). Towards this, notice that u ∈ Fake(t). This
implies that u /∈ βD(t), but u is present in a bag βD(t′) of some descendant t′ of t. Moreover,
since {u, s} ∈ E(B), we further know that {u, s} ⊆ βD(t1) for some descendent t1 of t. Since
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{v, s} ∈ E(B) and v /∈ γD′(t), there is a bag βD(t2) such that {v, s} ⊆ βD(t2) and t2 is not a
descendent of t. Thus, since s ∈ βD(t1) ∩ βD(t2), by Property (c) of the tree decomposition
D, we have that s ∈ βD(t). This completes the proof of the lemma. J

4 Longest Cycle

In this section we prove the following theorem.

I Theorem 4.1. Longest Cycle on map graphs can be solved in 2O(
√
k log k) · nO(1) time.

Notice that if there is a special vertex s ∈ S(G) such that |NB(s)| ≥ k, then G has a
cycle of length at least k, because NB(s) forms a clique in G. Moreover, observe that if
there is a “large enough” grid in B, then we can answer Yes. These observations along with
Lemma 3.7 lead to the following lemma.

I Lemma 4.2 (?). There is an algorithm that given an instance (G,B, k) of Longest Cycle,
runs in time O(n2), and either correctly concludes that G has a cycle of length at least k, or
outputs a nice tree decomposition D of B of width < 5

√
2k and a (5

√
2k,D)-NFewCliTD D′

of G such that for each node t ∈ V (T ), |βD′(t)| ≤ 5
√

2 · k1.5.

Because of Lemma 4.2, to prove Theorem 4.1, we may assume that the input contains
a (5
√

2k,D)-NFewCliTD D′ of G (derived from a nice tree decomposition D of B) such
that for each node t ∈ V (T ), |βD′(t)| ≤ 5

√
2 · k1.5. That is, from now on, we fix our input

to be an instance (G,B, k) of Longest Cycle, a nice tree decomposition D of B and
a (5
√

2k,D)-NFewCliTD D′ of G such that for each node t ∈ V (T ), |βD′(t)| ≤ 5
√

2 · k1.5.
Towards the proof of Theorem 4.1, the main ingredient is to prove the following claim: if G
has a cycle of length `, then there is a cycle C of length `, with the following property.
For each node t ∈ V (T ), the number of edges of E(C) with one endpoint in βD′(t) and the
other in V (G) \ γD′(t) is upper bounded by O(

√
k).

The above mentioned property is encapsulated in the following sublinear crossing lemma.

I Lemma 4.3 (Sublinear Crossing Lemma (?)). Let C be a cycle in G. Then there is a cycle
C ′ of the same length as C such that for any node t ∈ V (T ), the number of edges in E(C ′)
with one endpoint in βD′(t) and the other in V (G) \ γD′(t) is at most 20

√
2k.

Lemma 4.3 lies at the heart of the proof of Theorem 4.1 and is one of the main technical
contributions of the paper. Assuming Lemma 4.3, the proof of Theorem 4.1 is by designing
a DP algorithm on a (5

√
2k,D)-NFewCliTD of G. This part is similar to the algorithm for

Longest Cycle in [20] on a so called special path decomposition. The main ingredient of
Lemma 4.3 is the following lemma (Lemma 4.4). The proof of Lemma 4.3 is by an inductive
argument assuming Lemma 4.4. The rest of the section is devoted to the proof of Lemma 4.4.

I Lemma 4.4. Let C be a cycle in G and K be a special clique in G. Then, there is a
cycle C ′ of the same length as C such that E(C ′) \E(K) = E(C) \E(K) and for any node
t ∈ V (T ), the number of edges of E(C ′) ∩ E(K) with one endpoint in Fake(t) ∩K and the
other in V (G) \ γD′(t) is at most 4.

Before formally proving Lemma 4.4, we give a high level overview of the proof and an
auxiliary lemma which we use in the proof of Lemma 4.4. The proof idea is to change the
edges of E(K) ∩ E(C) in C (because in Lemma 4.4 our objective is to bound the “crossing
edges” from a subset of E(K) for each node t ∈ V (T )) to obtain a new cycle C ′ of the same
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length as C that satisfies the following property: (i) for any node t ∈ V (T ), the number of
edges of E(C ′) ∩ E(K) with one endpoint in Fake(t) ∩K and the other in V (G) \ γD′(t) is
at most 4. For the ease of presentation, assume that K ⊆ V (C). Now, consider the graph P
obtained from the cycle C after deleting edges in E(K). Without loss of generality assume
that E(C) ∩ E(K) 6= ∅. Otherwise, Lemma 4.4 is true where C ′ = C. We consider P as a
collection of vertex-disjoint paths where the end-vertices of the paths are in K. Some paths
in P may be of length 0. Let Z be the set of end-vertices of the paths in P . Clearly, Z ⊆ K.
We will “complete” the collection of paths P to a cycle by adding edges from E(Z) satisfying
Statement (i). Any cycle C ′ with V (C ′) = V (P) has the same length as C. So, all the work
that is required for us is to complete the collection of paths P to a cycle by adding edges from
E(Z) satisfying Statement (i). Towards that, let σ̂ = v1, . . . , vk′ be an arbitrary sequence of
vertices in Z. We show (in Claim 4.7) that (ii) there is a subset of edges F ⊆ E(Z) such
that E(P) ∪ F forms a cycle C ′ with vertex set V (P) and for any j ∈ [k′], the number of
edges in F with one endpoint in {v1, . . . , vj} and the other in {vj+1, . . . , vk′} is at most 2.
This implies that for any 1 ≤ i ≤ j ≤ k′, the number of edges in F with one endpoint in
{vi, . . . , vj} and the other in Z \ {vi, . . . , vj} is at most 4. In the light of Statement (ii),
our aim will be to prove that (iii) for any node t ∈ V (T ), there exist 1 ≤ i ≤ j ≤ k′ such
that Fake(t) ∩ Z ⊆ {vi, . . . , vj} and no vertex in Z \ γD′(t) belongs to {vi, . . . , vj}. Then,
Statement (i) will follow (because edges of C ′ incident with vertices in K \ Z are from
E(G) \ E(K) and will not be counted in Statement (i)). In fact, we will prove that there is
a sequence σ on Z (derived from a postorder transversal of T ) such that Statement (iii) is
true (see Claim 4.8). The proof of Statement (ii) is encapsulated in the following lemma.

I Lemma 4.5 (?). Let ` ≥ 3 be an integer. Let u1, . . . , u` be a sequence of vertices in a graph
H where X = {u1, . . . , u`} is a clique in H. Let Q be a family of vertex-disjoint paths in H
(which possibly contains paths of length 0) such that each v ∈ X is an end-vertex of a path in
Q and E(Q) ∩ E(X) = ∅. Then, there is a set F ⊆ E(X) with the following conditions.
(a) E(Q) ∪ F forms a cycle containing all the vertices of V (Q),
(b) For any j ∈ [`], the number of edges in F with one endpoint in {u1, . . . , uj} and the

other in {uj+1, . . . , u`} is at most 2.

Next, we move to a formal proof of Lemma 4.4.

Proof of Lemma 4.4. Without loss of generality, assume that K ⊆ V (C). Otherwise, we
can consider the statement of the lemma for cycle C in the graph G′ = G− (K \ V (C)) and
special clique K ∩ V (C) of G′. We also assume that E(C) ∩ E(K) 6= ∅, else the correctness
is trivial because we can take C ′ as C.

Let π′ be a postorder transversal of the nodes in the rooted binary tree T , and let π be
the restriction of π′ where we only keep the nodes that are labeled with fake introduce(v)
for some v ∈ K. Denote π = t1, . . . , tk′′ such that each ti, i ∈ [k′′], is labelled with
fake introduce(xi) where xi ∈ K. Notice that

⋃
t∈V (T ) Fake(t) ∩K = {x1, . . . , xk′′} (by

Observation 3.6). Let σ1 be the sequence x1, . . . , xk′′ and U = {x1, . . . , xk′′}. Let σ2 be a
fixed arbitrary sequence of K \U , i.e., all the vertices of K that are never “fakely introduced”.
Let σ be the sequence which is a concatenation of σ1 and σ2.

Let P = (V (C), E(C) \ E(K)). That is, P is the graph obtained by deleting edges of
E(K) from the cycle C. Notice that each connected component of P is a path (may be of
length 0) with end-vertices in K. Let Z be the set of end-vertices of the paths in P. Notice
that for any vertex u ∈ K \ Z, both edges of C incident with u are from E(C) \ E(K) (see
the left part of Figure 3). That is, E(C) \ E(K) = E(C) \ E(Z) = E(P). Since we seek
a cycle C ′ in which E(C ′) \ E(K) = E(C) \ E(K), no edge of C ′ incident with u for any
vertex u ∈ K \ Z, is in E(K). That is, all the edges of E(C ′) ∩ E(K) will belong to E(Z).
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v1 v2 v3 v4 v5 v6 v7 v1 v2 v3 v4 v5 v6 v7

Figure 3 Left part illustrates a cycle C interacting with a special clique K = {v1, . . . , v7}. The
red curves represent edges in E(C) ∩ E(K) and green curves represent paths in C with endpoints
in K and (at least one) internal vertices in V (G) \ K. Thus, P is the collection of paths that
is a union of the set of two “green” paths ((v2 − v3) and (v1 − v7 − v5 − v6)) and {[v4]}. Here
Z = {v1, v2, v3, v4, v6}. Any edge of E(C) incident with v5 and v7 (i.e., vertices in K \ Z) are from
E(C)\E(K). The right part illustrates the proof of Claim 4.7. The edges of E(C′)\E(C) mentioned
in the proof of Claim 4.7 are colored blue.

I Observation 4.6. Let C ′ be a cycle in G such that E(C ′) \ E(K) = E(C) \ E(K) and
t ∈ V (T ). The number of edges of E(C ′) ∩ E(K) with one endpoint in Fake(t) ∩K and the
other in V (G) \ γD′(t) is equal to the number of edges of E(C ′) ∩E(Z) with one endpoint in
Fake(t) ∩ Z and the other in V (G) \ γD′(t).

Let Z = {v1, . . . , vk′} and σ′ = σ|Z = v1, . . . , vk′ . The main ingredients of the proof are
the following two claims.

B Claim 4.7. There is a cycle C ′ of the same length as C such that (i) E(C ′) \ E(Z) =
E(C) \ E(Z), and (ii) for any j ∈ [k′], the number of edges of E(C ′) ∩ E(Z) with one
endpoint in {v1, . . . , vj} and the other in {vj+1, . . . , vk′} is at most 2.

The proof of Claim 4.7 follows from Lemma 4.5.

B Claim 4.8. For any node t ∈ V (T ), there is a segment σ′′ of σ′ such that each vertex in
Fake(t) ∩ Z appears in σ′′, and each vertex in Z \ γD′(t) does not appear in σ′′.

Proof. Fix a node t ∈ V (T ). Recall that σ = σ1σ2 and σ′ = σ|Z . Here, the set of vertices
present in σ1 is U = (

⋃
t∈V (T ) Fake(t) ∩K) ⊇ (

⋃
t∈V (T ) Fake(t) ∩ Z) (because Z ⊆ K), and

no vertex in σ2 is from U . This implies that all the vertices of Fake(t)∩Z are in the sequence
σ1. That is, the sequence σ′′ we seek is also a sequence of σ1|Z and this is the reason we
defined σ to be σ1σ2. Thus, to prove the claim it is enough to prove that there is a segment
σ′

1 of σ1|Z such that each vertex in Fake(t) ∩ Z appears in σ′
1 and each vertex in Z \ γD′(t)

does not appear in σ′
1.

Recall that σ1 = x1 . . . xk′′ is obtained from the sequence π = t1, . . . , tk′′ . In turn, recall
that π is the restriction of the postorder transversal π′ of T , where for each i ∈ [k′′], ti is
labelled with fake introduce(xi) for xi ∈ K. LetWt be the nodes of the subtree of T rooted
at t, and Vt = {v ∈ K : there is t′ ∈Wt such that t′ is labelled with fake introduce(v)}.

The vertices in Wt appear consecutively in π. Thus, we can let πt be the minimal segment
of π that contains all the nodes in Vt. Let i, j ∈ [k′′] be such that πt = ti, . . . , tj . Now, we
define σt be the segment xi, . . . , xj of σ1. Now we prove the claim. By conditions (i) and (ii)
in Observation 3.6, Fake(t) ∩ Z ⊆ Vt. Clearly, no vertex in Z \ γD′(t) is in Vt. This implies
that each vertex in Fake(t) ∩ Z appears in σt and no vertex from Z \ γD′(t) appears in σt.
In turn, this implies that σt|Z is the required segment σ′′ of σ′ = σ|Z . C

Now, having the above two claims, we are ready to prove the lemma. By Claim 4.7, we
have that there is a cycle C ′ such that (i) E(C ′) \ E(Z) = E(C) \ E(Z), and (ii) for any
j ∈ [k′], the number of edges of E(C) ∩E(Z) with one endpoint in {v1, . . . , vj} and other in
{vj+1, . . . , vk′} is at most 2. By Claim 4.8, we know that for any t ∈ V (T ), there is a segment
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σ′′ of σ′ such that all vertices in Fake(t) ∩ Z appear in a segment σ′′ and no vertex from
Z \ γD′(t) appears in σ′′. That is, there exist i, j ∈ [k′] such that Fake(t) ∩ Z ⊆ {vi, . . . , vj}
and (Z \ γD′(t)) ∩ {vi, . . . , vj} = ∅. Therefore, by (ii), the number of edges of E(C ′) ∩ E(Z)
with one endpoint in Fake(t) ∩ Z and the other in V (G) \ γD′(t) is at most 4. Then, by
Observation 4.6, the proof of the lemma is complete. J
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Abstract
Propositional satisfiability (SAT) is one of the most fundamental problems in computer science. Its
worst-case hardness lies at the core of computational complexity theory, for example in the form of
NP-hardness and the (Strong) Exponential Time Hypothesis. In practice however, SAT instances
can often be solved efficiently. This contradicting behavior has spawned interest in the average-case
analysis of SAT and has triggered the development of sophisticated rigorous and non-rigorous
techniques for analyzing random structures.

Despite a long line of research and substantial progress, most theoretical work on random SAT
assumes a uniform distribution on the variables. In contrast, real-world instances often exhibit
large fluctuations in variable occurrence. This can be modeled by a non-uniform distribution of the
variables, which can result in distributions closer to industrial SAT instances.

We study satisfiability thresholds of non-uniform random 2-SAT with n variables and m clauses
and with an arbitrary probability distribution (pi)i∈[n] with p1 > p2 > . . . > pn > 0 over the n

variables. We show for p2
1 = Θ

(∑n

i=1 p2
i

)
that the asymptotic satisfiability threshold is at m =

Θ
((

1−
∑n

i=1 p2
i

)
/
(

p1 ·
(∑n

i=2 p2
i

)1/2
))

and that it is coarse. For p2
1 = o

(∑n

i=1 p2
i

)
we show that

there is a sharp satisfiability threshold at m =
(∑n

i=1 p2
i

)−1. This result generalizes the seminal
works by Chvatal and Reed [FOCS 1992] and by Goerdt [JCSS 1996].
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1 Introduction

Satisfiability of Propositional Formulas (SAT) is one of the most thoroughly researched topics
in theoretical computer science. It was one of the first problems shown to be NP-complete
by Cook [15] and, independently, by Levin [30]. Today SAT stands at the core of many
techniques in modern complexity theory, for example NP-completeness proofs [29] or running
time lower bounds assuming the (Strong) Exponential Time Hypothesis [10, 17, 26, 27].

In addition to its importance for theoretical research, Propositional Satisfiability is also
famously applied in practice. Despite the theoretical hardness of SAT, many problems
arising in practice can be transformed to SAT instances and then solved efficiently with
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state-of-the-art solvers. Problems like hard- and software verification, automated planning,
and circuit design are often transformed into SAT instances. Such formulas arising from
practical and industrial problems are therefore referred to as industrial SAT instances. The
efficiency of SAT solvers on these instances suggests that they have a structure that makes
them easier to solve than the theoretical worst-case.

1.1 Uniform Random k-SAT and the satisfiability threshold conjecture:
Random k-SAT is used to study the average-case complexity of Boolean Satisfiability. In the
model, a random formula Φ with n variables, m clauses, and k literals per clause is generated
in conjunctive normal form. Each of these formulas has the same uniform probability to be
generated. Therefore, we also refer to this model as uniform random k-SAT.

One of the most prominent questions related to studying uniform random k-SAT is trying
to prove the satisfiability threshold conjecture. The conjecture states that for a uniform
random k-SAT formula Φ with n variables and m clauses there is a real number rk such that

lim
n→∞

Pr (Φ is satisfiable) =
{

1 m/n < rk;
0 m/n > rk.

Chvatal and Reed [11] and, independently, Goerdt [24] proved the conjecture for k = 2 and
showed that r2 = 1. For larger values of k upper and lower bounds have been established,
e. g., 3.52 6 r3 6 4.4898 [18, 25, 28]. Methods from statistical mechanics [32] were used to
derive a numerical estimate of r3 ≈ 4.26. Coja-Oghlan and Panagiotou [12, 13] showed a
bound (up to lower order terms) for k > 3 with rk = 2k log 2− 1

2 (1 + log 2)± ok(1). Finally,
Ding, Sly, and Sun [19] proved the exact position of the threshold for sufficiently large values
of k. Still, for k between 3 and the values determined by Ding, Sly, and Sun the conjecture
remains open.

The satisfiability threshold is also connected to the average hardness of solving instances.
For uniform random k-SAT for example, the on average hardest instances are concentrated
around the threshold [33].

1.2 Non-Uniform Random SAT
There is a large body of work which considers other random SAT models, e. g. regular random
k-SAT [7, 8, 14, 38], random geometric k-SAT [9] and 2 + p-SAT [1, 35, 34, 36]. However,
most of these are not motivated by modeling the properties of industrial instances. One
such property is community structure [6], i. e. some variables have a bias towards appearing
together in clauses. It is clear by definition that such a bias does not exist in uniform random
k-SAT. Therefore, Giráldez-Cru and Levy [23] proposed the Community Attachment Model,
which creates random formulas with clear community structure. However, the work of Mull
et al. [37] shows that instances generated by this model have exponentially long resolution
proofs with high probability, making them hard on average for solvers based on conflict-driven
clause learning.

Another important property of industrial instances is their degree distribution. The
degree distribution of a formula Φ is a function f : N→ N, where f(x) denotes the fraction
of different Boolean variables that appear x times in Φ (negated or unnegated). Instances
created with the uniform random k-SAT model have a binomial distribution, while some
families of industrial instances appear to follow a power-law distribution [4], i. e. f(x) ∼ x−β ,
where β is a constant intrinsic to the instance. Therefore, Ansótegui et al. [5] proposed
a random k-SAT model with a power-law degree distribution. Empirical studies by the
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same authors [2, 3, 4, 5] found that this distribution is beneficial for the runtime of SAT
solvers specialized in industrial instances. However, it looks like instances generated with
their model can be solved faster than uniform instances, but not as fast as industrial
ones: median runtimes around the threshold still seem to scale exponentially for several
state-of-the-art solvers [21].

Therefore, we want to consider a generalization of the model by Ansótegui et al. [4]. Our
model allows instances with any given ensemble of variable distributions instead of only
power laws: We draw m clauses of length k at random. For each clause the k variables
are drawn with a probability proportional to the n-th distribution in the ensemble, then
they are negated independently with a probability of 1/2 each. This means, the probability
ensemble is part of the model, but the number of variables n determines which distribution
from the ensemble we actually use. We call this model non-uniform random k-SAT and
denote it by D (n, k, (~px)x∈N,m). Although D (n, k, (~px)x∈N,m) cannot capture all properties
of industrial instances, e.g. community structure, it can help us to investigate the influence
of the degree distribution on the structure and on the computational complexity of such
instances in an average-case scenario.

As one of the steps in analyzing this connection, we would like to find out for which
ensembles of variable probability distributions an equivalent of the satisfiability threshold
conjecture holds in non-uniform random k-SAT. In previous works we already proved
upper and lower bounds on the threshold position [20] and showed sufficient conditions
on sharpness [22]. In this work we are interested in actually determining the satisfiability
threshold for k = 2. This is helpful in determining bounds on the satisfiability threshold for
higher values of k, since 2-SAT instances appear as parts of k-SAT instances. We already
successfully used this approach in [20] to derive lower bounds on the satisfiability threshold
for non-uniform random k-SAT with a power-law distribution on the variables.

It has to be noted that Cooper et al. [16] and Levy [31] already studied thresholds in a
similar random 2-SAT model. The difference is that in their models the degrees are fixed and
the random instances determined in a configuration-model-like fashion, while in our model we
only have a sequence of expected degrees from which the actual degrees might deviate. Note
that it is not clear if the satisfiability thresholds in these two models coincide if they use the
same sequence of (expected) degrees. Cooper et al. derive the position of the satisfiability
threshold in their model if the maximum degree is sufficiently bounded. Levy only shows
necessary conditions on unsatisfiability in the model of Cooper et al. This is not enough
to derive the actual threshold position. In contrast, our result allows us to determine the
position of the satisfiability threshold for any probability ensemble in the model we consider.

1.3 Our Results
We investigate the position and behavior of the satisfiability threshold for non-uniform
random 2-SAT. That is, we fix the number of variables n and the variable distribution ~pn
from the ensemble and vary the number of clauses m(n). To this end, we use the following
definition and say that a function m∗(n) is an asymptotic satisfiability threshold if

Pr
Φ∼D(n,k,(~px)x∈N,m)

(Φ satisfiable) =
{

1− o(1) if m(n) = o(m∗(n))
o(1) if m(n) = ω(m∗(n)).

We also say that an asymptotic satisfiability threshold m∗(n) is sharp if for all ε > 0

Pr
Φ∼D(n,k,(~px)x∈N,m)

(Φ satisfiable) =
{

1− o(1) if m(n) 6 (1− ε) ·m∗(n)
o(1) if m(n) > (1 + ε) ·m∗(n).

ICALP 2019
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If an asymptotic threshold is not sharp, we call it coarse.
Let ~pn = (p1, p2, . . . , pn) be the variable probability distribution we use. W. l. o. g. we

assume p1 > p2 > . . . > pn. We are going to show that there are three cases depending on
~pn:
1. If p2

1 = Θ
(∑n

i=1 p
2
i

)
and p2

2 = Θ
(∑n

i=2 p
2
i

)
, then we can show that the asymptotic

satisfiability threshold is at m = Θ
(
q−1
max
)
, where qmax = Θ

(
(p1 · p2) /

(
1−

∑n
i=1 p

2
i

))
is

the maximum clause probability. We can also show that this threshold is coarse. The
coarseness stems from the emergence of an unsatisfiable sub-formula of size 4, which
contains only the two most probable variables.

2. If p2
1 = Θ

(∑n
i=1 p

2
i

)
and p2

2 = o
(∑n

i=2 p
2
i

)
, then the asymptotic threshold is at m =

Θ
((

1−
∑n
i=1 p

2
i

)
/
(
p1 ·

(∑n
i=2 p

2
i

)1/2)) and it is again coarse. This time the coarseness
stems from the emergence of an unsatisfiable sub-formula with 3 variables and 4 clauses.

3. If p2
1 = o

(∑n
i=1 p

2
i

)
, then there is a sharp threshold at exactly m = 1/

(∑n
i=1 p

2
i

)
.

Note that these three cases give us a complete dichotomy of coarseness and sharpness
for the satisfiability threshold of non-uniform random 2-SAT. This result generalizes the
seminal works by Chvatal and Reed [11] and by Goerdt [24] to arbitrary variable probability
distributions and includes their findings as a special case (c. f. Section 6). We summarize our
findings in the following theorem.

I Theorem 1.1. Let D (n, 2, (~px)x∈N,m) be the non-uniform random 2-SAT model with
n variables, m clauses, and an ensemble of probability distributions (~px)x∈N. Let ~pn =
(p1, p2, . . . , pn) be the n-th distribution from the ensemble. W. l. o. g. let p1 > p2 > . . . > pn.
If p2

1 = o
(∑n

i=1 p
2
i

)
, then D (n, 2, (~px)x∈N,m) has a sharp satisfiability threshold at m =(∑n

i=1 p
2
i

)−1. Otherwise, D (n, 2, (~px)x∈N,m) has a coarse satisfiability threshold at m =
Θ
((

1−
∑n
i=1 p

2
i

)
/
(
p1 ·

(∑n
i=2 p

2
i

)1/2)).
1.4 Techniques

For the sharp threshold result, we only show the conditions on sharpness. These also imply
the existence of an asymptotic threshold. For the coarse threshold results, however, we first
have to show the existence of an asymptotic threshold at some number of clauses m∗(n).
Then, we have to show that for some range of constants ε ∈ [ε1, ε2] the probability to generate
a satisfiable instance at ε ·m∗(n) is a constant bounded away from zero and one.

We extend and generalize the proof ideas of Chvatal and Reed [11]. In order to show
a lower bound on the threshold, we investigate the existence of bicycles. Bicycles were
introduced by Chvatal and Reed. They are sub-formulas which appear in every unsatisfiable
formula. We can show with a first moment argument, that these do not appear below a
certain number of clauses, thus making formulas satisfiable.

In order to show an upper bound on the threshold, we investigate the existence of snakes.
Snakes are unsatisfiable sub-formulas and have also been introduced by Chvatal and Reed.
We can show with a second-moment argument that snakes of certain sizes do appear above
a certain number of clauses, thus making formulas unsatisfiable. However, we need to
be careful and distinguish more possibilities of partially mapping snakes onto each other
than in the uniform case. Unfortunately, this method does not work if p2

1 = Θ
(∑n

i=1 p
2
i

)
and p2

2 = Θ
(∑n

i=2 p
2
i

)
. In that case we lower-bound the probability that an unsatisfiable

sub-formula containing only the two most-probable variables exists. This can be done with a
simple inclusion-exclusion argument and the resulting lemma also work for k > 3.
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2 Preliminaries

We analyze non-uniform random k-SAT on n variables and m clauses. We denote by
X1, . . . , Xn the Boolean variables. A clause is a disjunction of k literals `1 ∨ . . . ∨ `k,
where each literal assumes a (possibly negated) variable. For a literal `i let |`i| denote the
variable of the literal. A formula Φ in conjunctive normal form is a conjunction of clauses
c1 ∧ . . . ∧ cm. We conveniently interpret a clause c both as a Boolean formula and as a set of
literals. We say that Φ is satisfiable if there exists an assignment of variables X1, . . . , Xn

such that the formula evaluates to 1. Now let (~pn)n∈N be an ensemble of probability
distributions, where ~pn = (pn,1, pn,2, . . . , pn,n) is a probability distribution over n variables
with Pr (X = Xi) = pn,i =: pn(Xi).

I Definition 2.1 (Clause-Drawing Non-Uniform Random k-SAT). Let m,n, k be given, and
consider any ensemble of probability distributions (~pn)n∈N, where ~pn = (pn,1, pn,2, . . . , pn,n)
is a probability distribution over n variables with

∑n
i=1 pn,i = 1. The clause-drawing non-

uniform random k-SAT (non-uniform random k-SAT) model D (n, k, (~px)x∈N,m) constructs
a random SAT formula Φ by sampling m clauses independently at random. Each clause is
sampled as follows:
1. Select k variables independently at random from the distribution ~pn. Repeat until no

variables coincide.
2. Negate each of the k variables independently at random with probability 1/2.

For the sake of simplicity and since we will always only consider one distribution from the
ensemble, we will omit the index n throughout the paper, e. g. the probability distribution
~pn will be denoted as (p1, p2, . . . , pn). W. l. o. g. we will assume p1 > p2 > . . . pn.

The clause-drawing non-uniform random k-SAT model is equivalent to drawing each
clause independently at random from the set of all k-clauses which contain no variable more
than once. The probability to draw a clause c over n variables is then

qc :=
∏
`∈c p(|`|)

2k
∑
J∈Pk({1,2,...,n})

∏
j∈J pj

, (2.1)

where Pk(·) denotes the set of cardinality-k elements of the power set. The factor 2k
in the denominator comes from the different possibilities to negate variables. Note that
k!
∑
J∈Pk({1,2,...,n})

∏
j∈J pn,j is the probability of choosing a k-clause that contains no

variable more than once. We can now write

qc = C
k!
2k
∏
X∈S

pn(X), (2.2)

where we define C := 1/
(
k! ·
∑
J∈Pk({1,2,...,n})

∏
j∈J pn,j

)
. For k = 2 it holds that C =

1/
(
1−

(∑n
i=1 p

2
i

))
. Hiding this factor in C makes clause probabilities easier to handle.

Throughout the paper we let qmax denote the maximum clause probability as defined in
equation (2.2). In Section 3 and Section 4 we will assume qmax = o(1). The case qmax = Θ(1)
will be handled in Section 5. Note that this case can only happen for p2

1 = Θ
(∑n

i=1 p
2
i

)
and

p2
2 = Θ

(∑n
i=2 p

2
i

)
.
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3 Bi-Cycles and a Lower Bound on the Satisfiability Threshold

Chvatal and Reed [11] define the following sub-structure of 2-SAT formulas and show that
every unsatisfiable 2-CNF contains this substructure.

I Definition 3.1 (bi-cycle). We define a bicycle of length t to be a sequence of t+ 1 clauses
of the form

(u,w1) , (w1, w2) , . . . , (wt−1, wt) , (wt, v),

where w1, . . . , wt are literals of distinct variables and u, v ∈ {w1, . . . , wt, w1, . . . , wt}.

To lower-bound the probability for a random 2-CNF to be satisfiable it is therefore sufficient
to upper-bound the probability that such a formula contains a bicycle. This is done in the
following two lemmas. Their proofs are oriented along the lines of the proof of Theorem 3
from [11].

I Lemma 3.1. Consider a non-uniform random 2-SAT formula Φ with p2
1 = o

(∑n
i=1 p

2
i

)
.

Then, Φ is satisfiable with probability at least 1 − o(1) for a number of clauses m <

(1− ε)
(∑n

i=1 p
2
i

)−1, where ε > 0 is a constant.

Proof. To show this result, we show that the expected number of bicycles is o(1) for the
setting we consider. The result then follows by Markov’s inequality.

First, we fix a set S ⊆ [n] of variables to appear in a bicycle with |S| = t > 2 . The
probability that a specific bicycle B with these variables appears in Φ is

Pr (B in Φ) =
(

m

t+ 1

)
(t+ 1)!︸ ︷︷ ︸

positions of B in Φ

·Pr (u ∨ w1) · Pr (wt ∨ v)
t−1∏
h=1

Pr (wh ∨ wh+1).

For literals wi over variables xi it holds that

Pr (wj ∨ wi) = C

2 pi · pj ,

where 1 6 C =
(
1−

∑n
i=1 p

2
i

)−1 = 1 + o(1), since
∑n
i=1 p

2
i = o(1) due to the requirement

p2
1 = o

(∑n
i=1 p

2
i

)
. There are at most t! possibilities to arrange the t variables in a bicycle and

2t possibilities to choose literals from the t variables. For the probability that any bicycle
with the variables from S appears in Φ it now holds that

Pr (S-bicycle in Φ) 6 mt+1 · t! · 2t ·
(
C

2

)t+1
·
∏
i∈S

p2
i

(
2 ·
∑
i∈S

pi

)2

where the last factor accounts for the possibilities to choose u and v. It now holds that

Pr (Φ contains a bicycle) 6
n∑
t=2

∑
S⊆Pt(V )

mt+1 · t! · 2t ·
(
C

2

)t+1
22 ·

∏
i∈S

p2
i

(∑
i∈S

pi

)2

6 2 ·
n∑
t=2

(C ·m)t+1 · t! · t2 · p2
1 ·

∑
S⊆Pt(V )

∏
i∈S

p2
i

6 2 ·
n∑
t=2

(C ·m)t+1 · t2 · p2
1 ·

(∑
i∈S

p2
i

)t

= o

2 ·
n∑
t=2

(
C ·m

(∑
i∈S

p2
i

))t+1

· t2
 ,
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where we used
∑
i∈S pi 6 t · p1 in the second,

∑
S⊆Pt(V )

∏
i∈S p

2
i 6 1

t! ·
(∑

i∈S p
2
i

)t in
the third line, and the requirement p2

1 = o
(∑n

i=1 p
2
i

)
in the fourth line. It is obvious

that this probability is o(1) as soon as the sum becomes a constant. This holds for
m < (1− ε)

(∑n
i=1 p

2
i

)−1
<
(
C ·
∑n
i=1 p

2
i

)−1, where ε > 0 is a constant. J

It has to be noted that in the former lemma we ignored the factor C in our bound. We
can do this, since for p2

1 = o
(∑n

i=1 p
2
i

)
it always is 1 +o(1) and does not make a difference for

sharpness due to our definition. In the case of p2
1 = Θ

(∑n
i=1 p

2
i

)
, we can show the following

result with a similar proof, but now we have to take C into account, since it might become
super-constant. Also we have to do a case distinction between the terms with p1 ∈ S and
p1 /∈ S to get

∑
S⊆Pt(V )

(∏
i∈S p

2
i

)
·
(∑

i∈S pi
)2 = O

(
t3 · p4

1 · 1
t! ·
(∑n

i=2 p
2
i

)t−1
)
. See the full

version of the paper for the whole proof.

I Lemma 3.2. Consider a non-uniform random 2-SAT formula Φ with p2
1 = Θ

(∑n
i=1 p

2
i

)
and qmax = o(1). Then, Φ is satisfiable with probability at least 1 − o(1) for a num-

ber of clauses m = o

((
C · p1 ·

(∑n
i=2 p

2
i

)1/2)−1
)
. Also, there is a constant ε ∈ (0, 1)

such that Φ is satisfiable with a positive constant probability for a number of clauses
m 6 (1− ε)

(
C · p1 ·

(∑n
i=2 p

2
i

)1/2)−1
.

Note that this lemma captures both cases for p2
1 = Θ

(∑n
i=1 p

2
i

)
. If also p2

2 = Θ
(∑n

i=2 p
2
i

)
,

then
(
C · p1 ·

(∑n
i=2 p

2
i

)1/2)−1
= Θ

(
q−1
max
)
is the asymptotic threshold as we stated in the

introduction. The case qmax = Θ(1) has to be excluded, since for that case the asymptotic
threshold is a constant. The above lemma might then give us a value so small that the ranges
where we can lower- and upper-bound satisfiability to constants away from zero resp. one do
not overlap. Thus, this case is handled separately in Section 5.

4 Snakes and an Upper Bound on the Satisfiability Threshold

The two lemmas from the previous section provided a lower bound on the satisfiability
threshold for non-uniform random 2-SAT. By using the second moment method, we can
also derive an upper bound on the threshold. Again, this proof is inspired by Chvatal and
Reed [11, Theorem 4], who provide us with the following definition.

I Definition 4.1 (snake). A snake of size t is a sequence of literals w1, w2, . . . , w2t−1 over
distinct variables. Each snake A is associated with a set FA of 2t clauses (wi, wi+1), 0 6 i 6
2t− 1, such that w0 = w2t = wt.

We will also call the variable |wt| of a snake its central variable. Note that the set of clauses
FA defined by a snake A is unsatisfiable. Also, the snakes (w1, . . . , wt−1, wt, wt+1, . . . , ws),
(wt−1, wt−2 . . . , w1, wt, wt+1, . . . , ws), (w1, . . . , wt−1, wt, ws, ws−1 . . . , wt+1) and (wt−1,

wt−2 . . . , w1, wtws, ws−1 . . . , wt+1) create the same set of formulas.
The variable-variable incidence graph (VIG) for a formula Φ is a simple graph GΦ =

(VΦ, EΦ) with VΦ consisting of all variables appearing in Φ and two variables being connected
by an edge if they appear together in at least one clause of Φ. An example for a snake’s
VIG can be seen in Figure 1. This representation will come in handy later in the proofs of
Lemmas 4.4 and 4.6.

In order to show our upper bounds, we will prove that snakes of a certain length t appear
with sufficiently high probability in a random formula Φ ∼ D (n, k, (~px)x∈N,m) To this end we
utilize the second moment method: If X > 0 is a random variable with finite variance, then

Pr (X > 0) > E[X ]2
E[X2 ] .

ICALP 2019
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x1 x2 xt−1 xt xt+1 xs−1 xs

Figure 1 Variable-variable-incidence graph of a snake w1, w2, . . . , ws where |wi| = xi (the variable
of the literal wi) for 1 6 i 6 s = 2t− 1.

We define the following indicator variables for each snake A of size t

XA =
{

1 if FA appears exactly once in Φ
0 otherwise

and their sum Xt =
∑
AXA. For carefully chosen t we will show E

[
X2
t

]
= O(E [Xt ]2)

to show a coarse and E
[
X2
t

]
= (1 + o(1)) · (E [Xt ]2) to show a sharp threshold. This

implies a constant resp. 1− o(1) probability to be unsatisfiable due to the second moment
method. In the case of p2

1 = o(
∑n
i=1 p

2
i ), we will chose t = Θ

(
log2 f(n)

)
, where we define

f(n) =
(∑n

i=1 p
2
i

)
/p2

1. For p2
1 = Θ(

∑n
i=1 p

2
i ) and p2

2 = o(
∑n
i=2 p

2
i ) we choose t = 2. We only

want to use the method for these two cases. The third case with p1 = Θ
(∑n

i=1 p
2
i

)
and

p2 = Θ
(∑n

i=2 p
2
i

)
will be handled with the more general Lemma 4.7.

Now, if we want to use the second moment method, we first have to ensure that the
expected number of snakes of a certain size is large enough. The following lemma provides a
lower bound on this expected number. Due to space limitations, its proof can be found in
the full version.

I Lemma 4.1. Let Xt be the number of snakes of size s+ 1 = 2t whose associated formulas
appear exactly once in a non-uniform random 2-SAT formula. Then it holds that

E [Xt ] > 1
2(m− 2t)2t · C2t · e−(m−2t) 2t·qmax

1−2t·qmax ·

(
n∑
i=1

p4
i

)
·

(
n∑
i=2

p2
i − (2t− 2) · p2

2

)2t−2

.

In order to use the second moment method we have to show that this expected value is
at least a constant if we want to show a coarse threshold and asymptotically bigger than
a constant if we want to show a sharp threshold. Hence, the following lemmas give lower
bounds on E [Xt ] for the first two cases and the respective ranges of t we consider. Again,
their proofs can be found in the full version of this paper.

I Lemma 4.2. Let Xt be the number of snakes of size t that appear exactly once in a
non-uniform random 2-SAT formula with p2

1 = o(
∑n
i=1 p

2
i ) and m = (1 + ε)

(∑n
i=1 p

2
i

)−1 for
some ε > 0. Then it holds that

E [Xt ] > (1− o(1)) ·m2t

(
n∑
i=1

p4
i

)
·

(
n∑
i=1

p2
i

)2t−2

= ω(1)

if t = o
(√

f(n)
)
∩ ω (log f(n)), where f(n) =

(∑n
i=1 p

2
i

)
/p2

1.
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I Lemma 4.3. Let Xt be the number of snakes of size t that appear exactly once in a
non-uniform random 2-SAT formula with p2

1 = Θ(
∑n
i=1 p

2
i ) and p2

2 = o(
∑n
i=2 p

2
i ). For t = 2

and m = Ω
((

C · p1 ·
(∑n

i=2 p
2
i

)1/2)−1
)
∩ o
(
q−1
max
)
it holds that

E [X2 ] > (1− o(1)) ·m4 · C4 · p4
1 ·

(
n∑
i=1

p2
i

)2

.

Furthermore,

E [X2 ] =


Ω(1) ,m = Θ

((
C · p1

(∑n
i=2 p

2
i

)1/2)−1
)
and

ω(1) ,m = ω

((
C · p1

(∑n
i=2 p

2
i

)1/2)−1
)
∩ o
(

(qmax)−1
)
.

Now we are ready to prove an upper bound on the non-uniform random 2-SAT threshold.
To get to know the proof technique, we start with the much simpler case p2

1 = Θ
(∑n

i=1 p
2
i

)
and p2

2 = o
(∑n

i=2 p
2
i

)
. The proof contains a small case distinction depending on how the

shared clauses of two snakes A and B influence Pr (XA ∧XB). The next lemma establishes
that there is a regime of m where random formulas are unsatisfiable with a positive constant
probability. Its proof is in the full version.

I Lemma 4.4. Consider a non-uniform random 2-SAT formula Φ with p2
1 = Θ

(∑n
i=1 p

2
i

)
and p2

2 = o
(∑n

i=2 p
2
i

)
. Then Φ is unsatisfiable with positive constant probability for m =

Θ
((

C · p1
(∑n

i=2 p
2
i

)1/2)−1
)
.

The following lemma complements the former one, showing that above that regime of m
random formulas are unsatisfiable with probability 1− o(1). Its proof is very similar and is
therefore omitted. It can be found in the full version of this work.

I Lemma 4.5. Consider a non-uniform random 2-SAT formula Φ with p2
1 = Θ

(∑n
i=1 p

2
i

)
and

p2
2 = o

(∑n
i=2 p

2
i

)
. Then Φ is unsatisfiable with probability 1 − o(1) for

m = ω

((
C · p1

(∑n
i=2 p

2
i

)1/2)−1
)
.

The former two lemmas together with Lemma 3.2 establish that in the case of p2
1 =

Θ
(∑n

i=1 p
2
i

)
and p2

2 = o
(∑n

i=2 p
2
i

)
the asymptotic threshold is at

m = Θ
((

C · p1
(∑n

i=2 p
2
i

)1/2)−1
)

and that it is coarse.

We now turn to the case p2
1 = Θ

(∑n
i=1 p

2
i

)
. Again, we have to consider different

possibilities for the shared clauses of snakes A and B to influence Pr (XA ∧XB). In the
proofs of the former case this was rather easy, since we only considered the smallest possible
snakes of size 3. Now the distinction becomes a bit more difficult. We will distinguish
several cases: If the number of shared clauses is at least t − 1 then Pr (XA ∧XB) is by
roughly a factor of (1 + ε)t smaller than E [Xt ]2. If the shared clauses form at least two
connected sub-formulas, then there are enough variable appearances pre-defined for B to
make Pr (XA ∧XB) sufficiently small. The last case is that there is only one connected
sub-formula, which is a lot smaller than t − 1. In that case we have to carefully consider
what happens to the central variable from B, since this variable appears most times in B and
the many appearances take degrees of freedom away from other variables, therefore making
Pr (XA ∧XB) small. The whole proof of the lemma can be found in the full version.
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I Lemma 4.6. Consider a non-uniform random 2-SAT formula Φ with p2
1 = o

(∑n
i=1 p

2
i

)
.

Then Φ is unsatisfiable with probability 1− o(1) for m > (1 + ε) ·
(∑n

i=1 p
2
i

)−1, where ε > 0
is a constant.

Lemma 4.6 and Lemma 3.1 now establish the existence of a sharp threshold at m =(∑n
i=1 p

2
i

)−1.
Now we still have to consider the case p2

1 = Θ
(∑n

i=1 p
2
i

)
and p2

2 = Θ
(∑n

i=2 p
2
i

)
. In the

following lemma, we give a lower bound on the probability to be unsatisfiable by showing the
existence of an unsatisfiable sub-formula consisting only of the two most-probable variables.
The lemma generally holds for k > 2, but it especially serves our purpose of considering the
remaining case. The proof uses a simple inlcusion-exclusion argument and can be found in
the full version.

I Lemma 4.7. Consider a non-uniform random k-SAT formula Φ with qmax = o(1). Then
Φ is unsatisfiable with probability at least

2k∑
l=0

((
2k

l

)
(−1)l (1− l · qmax)m

)
> (1− exp (−qmax ·m))2k − q2

max · 22k ·m · (1 + exp (−qmax ·m))2k
.

The former lemma now yields the following corollary.

I Corollary 4.1. Consider a non-uniform random k-SAT formula Φ with qmax = o(1). Then
1. Pr(Φ unsatisfiable) = Ω(1) for m = Θ

(
q−1
max
)
and

2. Pr(Φ unsatisfiable) = 1− o(1) for m = ω(q−1
max).

In the second case the result follows from Lemma 4.7 for m = ω(q−1
max) ∩ o(q−2

max) and by
monotonicity of the satisfiability probability in m. This corollary together with Lemma 3.2 es-

tablishes the existence of a coarse threshold atm = Θ
((

C · p1
(∑n

i=2 p
2
i

)1/2)−1
)

= Θ
(
q−1
max
)

for non-uniform random 2-SAT with p2
1 = Θ

(∑n
i=1 p

2
i

)
, p2

2 = Θ
(∑n

i=2 p
2
i

)
.

5 Constant Clause Probabilities

We assumed qmax = o(1) throughout the paper. For the sake of completeness we still have
to take care of the case qmax = Θ (1). It is easy to see that for Φ ∼ D (n, 2, (~px)x∈N,m) and
a constant m > 4 it holds that Pr (Φ unsatisfiable) > qmmax, since this is the probability of
an unsatisfiable instance, where the most probable clause appears with all four combina-
tions of signs and then one of these clauses appears an additional m− 4 times. Similarly,
Pr (Φ satisfiable) > qmmax, as this is the probability of a satisfiable instance, where the same
most probable clause appears m times with the same sign. Since 0 < qmax 6 1/4 is a constant,
the probability is a constant bounded away from zero and one. It remains to show that Φ is
unsatisfiable with probability 1− o(1) for m = ω(1). The following lemma establishes this.
Again, this lemma also holds for k > 2 in general.

I Lemma 5.1. Consider a non-uniform random k-SAT formula Φ. Then Φ is unsatisfiable
with probability at least

2− (1 + exp (−qmax ·m))2k
.
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Proof. As in Lemma 4.7, it holds that

Pr (Φ unsat) >
2k∑
l=0

((
2k

l

)
(−1)l (1− l · qmax)m

)
.

We can now estimate
2k∑
l=0

((
2k

l

)
(−1)l (1− l · qmax)m

)
> 1−

2k∑
l=1

((
2k

l

)
(1− l · qmax)m

)

> 1−
2k∑
l=1

((
2k

l

)
exp

(
−m · l · qmax

1− l · qmax

)m)

> 1−
2k∑
l=1

((
2k

l

)
exp (−m · l · qmax)

)
= 2− (1 + exp (−m · qmax))2k J

For qmax = Θ(1) and m = ω
(
q−1
max
)
this lemma implies Pr (Φ unsatisfiable) > 1− o(1). All

lemmas together now imply our main theorem.

I Theorem 1.1. Let D (n, 2, (~px)x∈N,m) be the non-uniform random 2-SAT model with
n variables, m clauses, and an ensemble of probability distributions (~px)x∈N. Let ~pn =
(p1, p2, . . . , pn) be the n-th distribution from the ensemble. W. l. o. g. let p1 > p2 > . . . > pn.
If p2

1 = o
(∑n

i=1 p
2
i

)
, then D (n, 2, (~px)x∈N,m) has a sharp satisfiability threshold at m =(∑n

i=1 p
2
i

)−1. Otherwise, D (n, 2, (~px)x∈N,m) has a coarse satisfiability threshold at m =
Θ
((

1−
∑n
i=1 p

2
i

)
/
(
p1 ·

(∑n
i=2 p

2
i

)1/2)).
6 Example Applications of our Theorem

We will now show on some examples how our main theorem can be applied.

6.1 Uniform Distribution
The simplest distribution we can apply our theorem to is the uniform distribution, i. e.
~pn =

( 1
n ,

1
n , . . . ,

1
n

)
for all n ∈ N. It holds that p2

1 = 1
n2 and

∑n
i=1 p

2
i = 1

n . Thus, Theorem 1.1
implies a sharp threshold at m∗(n) = n for all n ∈ N. This reproves [11, 24] the satisfiability
threshold conjecture for k = 2, since these sharp threshold are all at m∗(n) = n.

6.2 Power Law Distribution
Another ensemble of distributions we can choose are power-law distributions, i.e. we consider
the power law random 2-SAT model introduced by Ansótegui et al. [5]. Thus, for a constant
β > 2 we choose ~pn = (p1, p2, . . . , pn) with

pi = (n/i)
1

β−1(∑n
j=1 (n/j)

1
β−1
) .

It already holds that p1 > p2 > . . . > pn. Now it is an easy exercise to show that n∑
j=1

(n/j)
1

β−1

 = (1− o(1)) · β − 1
β − 2 .
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Furthermore

p2
1 = (1± o(1)) ·

(
β − 1
β − 2

)2
· n−2 β−2

β−1 .

Finally, one can show that

n∑
i=1

p2
i =


(1± o(1)) · (β−2)2

(β−3)·(β−1) · n
−2 β−2

β−1 for β < 3
(1± o(1)) · 1

4 ·
lnn
n for β = 3

(1± o(1)) · (β−2)2

(β−3)·(β−1) · n
−1 for β > 3.

Thus, applying our theorem we can see that for β < 3 there is a coarse threshold at
m = Θ

(
n−2 β−2

β−1

)
, since p2

1 = Θ
(∑n

i=1 p
2
i

)
= Θ

(
n2 β−2

β−1

)
and C = 1 + o(1). For β = 3

there is a sharp threshold at 4 · n
lnn , since p

2
1 = Θ

(
n−1) = o

( lnn
n

)
. Also, there is a sharp

threshold at (β−3)·(β−1)
(β−2)2 · n for β > 3, since p2

1 = Θ
(
n−2 β−2

β−1

)
= o(n). We already observed

the behavior for the latter case experimentally in previous works [21, 20]. Thus, we can say
that for power-law random 2-SAT with a fixed power-law exponent β > 3 an equivalent of
the satisfiability threshold conjecture holds, since the sharp thresholds converge to a function
with the same leading constant factor.

6.3 Geometric Distribution
Ansótegui et al. [5] also considered an ensemble of geometric distributions with

pi = b · (1− b−1/n)
b− 1 · b−(i−1)/n

for i = 1, . . . , n and for some constant b > 1. Again, it already holds that p1 > p2 > . . . > pn.
It holds that

p2
1 = b2 · (1− b−1/n)2

(b− 1)2

and
n∑
i=1

p2
i = b+ 1

b− 1 ·
1− b−1/n

1 + b−1/n .

One can show that p2
1 = o(

∑n
i=1 p

2
i ). Theorem 1.1 now tells us that there is a sharp threshold

at b−1
b+1 ·

1+b−1/n

1−b−1/n . This function grows as fast as 2·(b−1)
(b+1)·ln b · n in the limit. Again, we can

say that an equivalent of the satisfiability threshold conjecture holds for geometric random
2-SAT with some fixed b > 1, since the sharp thresholds m∗(n) converge to 2·(b−1)

(b+1)·ln b · n.

7 Discussion and Future Work

We showed a dichotomy of coarse and sharp thresholds for the non-uniform random 2-SAT
model depending on the variable probability distribution. In the case of a coarse threshold,
the coarseness either stems from two variables being present in too many clauses and forming
an unsatisfiable sub-formula of size 4 with constant probability or from a snake with three
variables which emerges with constant probability. Furthermore we determined the exact
position of the satisfiability threshold in the case of a sharp threshold. Hence, our result
generalizes the seminal works by Chvatal and Reed [11] and by Goerdt [24] to arbitrary
variable probability distributions. It allows us to prove or disprove an equivalent of the
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satisfiability threshold conjecture for non-uniform random 2-SAT. For example for power-law
random 2-SAT, an equivalent of the conjecture holds for power law exponents β > 3 and the
satisfiability threshold is at exactly (β−3)·(β−1)

(β−2)2 · n for β > 3 and exactly at 4 · n
lnn for β = 3.

The grand goal of our works is to show similar results for higher values of k, where we
already made a first step by showing sharpness for certain variable probability distribu-
tions [22]. Another direction we are interested in for k > 3 is proving bounds on the average
computational hardness of formulas around the threshold, for example by showing resolution
lower bounds like Mull et al. [37].
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Abstract
The determinant polynomial Detn(x) of degree n is the determinant of a n × n matrix of formal
variables. A polynomial f is equivalent to Detn(x) over a field F if there exists a A ∈ GL(n2,F) such
that f = Detn(A · x). Determinant equivalence test over F is the following algorithmic task: Given
black-box access to a f ∈ F[x], check if f is equivalent to Detn(x) over F, and if so then output
a transformation matrix A ∈ GL(n2,F). In (Kayal, STOC 2012), a randomized polynomial time
determinant equivalence test was given over F = C. But, to our knowledge, the complexity of the
problem over finite fields and over Q was not well understood.

In this work, we give a randomized poly(n, log |F|) time determinant equivalence test over finite
fields F (under mild restrictions on the characteristic and size of F). Over Q, we give an efficient
randomized reduction from factoring square-free integers to determinant equivalence test for quadratic
forms (i.e. the n = 2 case), assuming GRH. This shows that designing a polynomial-time determinant
equivalence test over Q is a challenging task. Nevertheless, we show that determinant equivalence test
over Q is decidable: For bounded n, there is a randomized polynomial-time determinant equivalence
test over Q with access to an oracle for integer factoring. Moreover, for any n, there is a randomized
polynomial-time algorithm that takes input black-box access to a f ∈ Q[x] and if f is equivalent to
Detn over Q then it returns a A ∈ GL(n2, Ł) such that f = Detn(A · x), where Ł is an extension
field of Q and [Ł : Q] ≤ n.

The above algorithms over finite fields and over Q are obtained by giving a polynomial-time
randomized reduction from determinant equivalence test to another problem, namely the full matrix
algebra isomorphism problem. We also show a reduction in the converse direction which is efficient if
n is bounded. These reductions, which hold over any F (under mild restrictions on the characteristic
and size of F), establish a close connection between the complexity of the two problems. This then
leads to our results via applications of known results on the full algebra isomorphism problem over
finite fields (Rónyai, STOC 1987 and Rónyai, J. Symb. Comput. 1990) and over Q (Ivanyos et al.,
Journal of Algebra 2012 and Babai et al., Mathematics of Computation 1990).
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1 Introduction

Two m-variate polynomials f(x) and g(x) with coefficients from a field F are said to be
equivalent over F if there exists a A ∈ GL(m,F) such that f = g(A · x). The algorithmic
task of determining if f is equivalent to g, and if so then finding a linear transformation A
such that f = g(A · x), is known as the polynomial equivalence test problem. It is a natural
problem arising in algebraic complexity theory, becoming more important with the advent
of Geometric Complexity Theory (GCT) [22] – which proposes the uses of deep tools and
insights from group theory, representation theory and algebraic geometry towards the study
of the VP vs VNP question.

A naïve approach for equivalence test is to reduce it to solving a system of polynomial
equations over F. But, unfortunately, polynomial solvability problem is NP-hard over C
and finite fields and not known to be decidable over Q. Nevertheless, it does appear that
the complexity of equivalence test is much lower than the complexity of solving polynomial
systems. It is known that over finite fields, the polynomial equivalence problem can not be
NP-hard unless PH collapses (when the polynomials are given as lists of coefficients) [29, 28].

Can we hope to solve equivalence test over C and over finite fields 1 in (randomized)
polynomial time? Finding such an algorithm is indeed quite demanding as it was shown in
[1, 2] that the graph isomorphism problem reduces in polynomial time to equivalence test
for cubic forms (i.e. homogeneous degree three polynomials) over any field. Over Q, it is
not even known if cubic form equivalence is decidable. On the other hand, we have a fairly
good understanding of the complexity of quadratic form equivalence test: Over C and finite
fields, equivalence of two quadratic forms can be tested in polynomial time due to well-known
results on classification of quadratic forms. Quadratic form equivalence over Q can be done
in polynomial-time with access to an oracle for integer factoring (IntFact). Moreover, IntFact
reduces in randomized polynomial time to quadratic form equivalence over Q (see [31]).
Given this state of affairs, designing efficient equivalence tests for even bounded degree
polynomials seems like a difficult proposition. Indeed, there is a cryptographic authentication
scheme based on the presumed average-case hardness of equivalence test for constant degree
polynomials (see [23]).

The work in [15] initiated the study of a kind of equivalence test in which one polynomial f
is given as input and the other polynomial g belongs to a well-defined polynomial family. Some
of the polynomial families that are well-studied in algebraic complexity theory, particularly
in the context of arithmetic circuit lower bounds, are those defined by the power symmetric
polynomial, the elementary symmetric polynomial, the permanent, the determinant and the
iterated matrix multiplication polynomial. In [15], randomized polynomial time equivalence
tests over C were given for the power symmetric polynomial and the elementary symmetric
polynomial families. These equivalence tests, which also hold over finite fields and Q, work

1 Typically, a computation model over C assumes that basic arithmetic operations with complex numbers
and root finding of univariate polynomials over C can be done efficiently. Also, we will work with finite
fields that have sufficiently large size and characteristic.
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even if f is given as a black-box2. Henceforth, let us assume that the input polynomial f is
given as a black-box. Subsequently, in [16], randomized polynomial time equivalence tests
over C were given for the permanent and the determinant polynomial families. The test for
the permanent holds over finite fields and Q, but the same is not true for the determinant
equivalence test in [16]. In [18], an equivalence test for the iterated matrix multiplication
(IMM) was given which holds over C, finite fields and Q (see also [13]). The iterated matrix
multiplication and the determinant families have very similar circuit complexity: Both the
families are complete under p-projections for class of algebraic branching programs (ABP)
(see [20, 21]). But, it was unclear if determinant admits an efficient equivalence test over
finite fields and Q, just like the iterated matrix multiplication polynomial. In this paper, we
fill in this gap in our understanding.

It is worth noting that determinant equivalence test is interesting in the context of
the permanent versus determinant problem [30], which conjectures that the permanent is
not an affine projection of a polynomial-size determinant. Geometric Complexity Theory
[22], an approach to resolving this conjecture, suggests (among other things) to look for an
algorithm to determine if the (padded) permanent is in the orbit closure of a polynomial-size
determinant. In this language, determinant equivalence testing is the related problem of
checking if a given polynomial is in the orbit of the determinant polynomial.

1.1 Our results
Let n ∈ N×, X = (xij)i,j∈[n] be a n × n matrix of formal variables, and
x = (x11 x12 . . . xn n−1 xnn)T a column vector consisting of the variables in X arranged
in a row-major fashion. The polynomial Detn(x) := det(X); we will drop the subscript
n whenever it is clear from the context. Hereafter, we will use the acronym DET for
Determinant Equivalence Test.

I Theorem 1 (DET over finite fields). Let F be a finite field such that |F| ≥ 10n4 and
char(F) - n(n − 1). There is a randomized poly(n, log |F|) time algorithm that takes input
black-box access to a f ∈ F[x] of degree n and does the following with high probability: If
f is equivalent to Det(x) over F then it outputs a A ∈ GL(n2,F) such that f = Det(A · x);
otherwise, it outputs “Fail”.

In [17], a DET over a finite field Fq was given that is similar to the equivalence test for
the permanent in [16], but the test outputs a A ∈ GL(n2,Fqn). Whereas, our algorithm
(which is different and relatively more involved) outputs a A ∈ GL(n2,Fq). One consequence
of this is that the average-case ABP reconstruction algorithm in [17] holds over the base
field Fq.

I Theorem 2 (DET over Q).
(a) There is a randomized algorithm, with oracle access to IntFact, that takes input black-box

access to a f ∈ Q[x] of degree n and does the following with high probability: If f is
equivalent to Det(x) over Q then it outputs a A ∈ GL(n2,Q) such that f = Det(A · x);
otherwise, it outputs “Fail”. If n is bounded then the algorithm runs in time polynomial
in the bit length of the coefficients of f .

2 An algorithm with black-box access to a m-variate polynomial f is only allowed to query the black-box
for evaluations of f at points in Fm.
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(b) There is a randomized algorithm that takes input black-box access to a f ∈ Q[x] of degree
n and does the following with high probability: If f is equivalent to Det(x) over Q then
it outputs a A ∈ GL(n2,Ł) such that f = Det(A · x), where Ł is an extension field of Q
and [Ł : Q] ≤ n. The algorithm runs in time polynomial in n and the bit length of the
coefficients of f .

To our knowledge, it was not known if DET over Q is decidable prior to this work. It is
natural to wonder if we can get rid of the IntFact oracle from part (a) of the above theorem.
In this regard, we show the following.

I Theorem 3 (IntFact reduces to DET for quadratic forms). Assuming GRH, we give a
randomized polynomial-time reduction from factoring square-free integers to finding a A ∈
M2(Q) such that a given quadratic form f ∈ Q[x] equals Det2(A · x), if f is equivalent to
Det2.

The complexity of IntFact is the same as that of DET over Q for quadratic forms (modulo
GRH and the use of randomization). Theorem 3 is a reduction from a result in [24].

Theorem 1 and 2 are proved by reducing DET to the full matrix algebra isomorphism
problem. An F-algebra A has two binary operations + and · defined on its elements such
that (A,+) is a F-vector space, (A,+, ·) is an associative ring, and for every a, b ∈ F and
B,C ∈ A it holds that (aB)C = B(aC) = a(BC). For example, the set Mn(F) of all n× n
matrices over F is a F-algebra with respect to the usual matrix addition and multiplication
operations; it is called the full matrix algebra. Two F-algebra A1 and A2 are isomorphic,
denoted by A1 ∼= A2, if there is a bijection φ from A1 to A2 such that for every a, b ∈ F and
B,C ∈ A1 it holds that φ(aB + bC) = aφ(B) + bφ(C) and φ(BC) = φ(B)φ(C). Any finite
dimensional F-algebra is isomorphic to a F-algebra A′ ⊆ Mm(F), where m = dimF(A). A
F-algebra A ⊆Mm(F) can be specified by a F-basis B1, . . . , Br ∈Mm(F).

I Definition 4. The full matrix algebra isomorphism (FMAI) problem over F is the following:
Given a basis of a F-algebra A ⊆ Mm(F), check if A ∼= Mn(F), where n2 = dimF(A). If
A ∼= Mn(F) then output an isomorphism from A to Mn(F).

In [24, 25], a poly(m, log |F|) time randomized algorithm was given to solve FMAI over a
finite field F. Over Q, the FMAI problem is more difficult. In [14, 6], a randomized algorithm
(with access to a IntFact oracle) was given to solve FMAI over Q. The algorithm runs in
polynomial-time if dimQ(A) is bounded. In [3, 10], randomized polynomial time algorithms
were given to compute an isomorphism from A⊗Q Ł to Mn(Ł) for some extension field Ł ⊇ Q
satisfying [Ł : Q] ≤ n, if A ∼= Mn(Q) to begin with. We give a randomized polynomial-time
reduction from DET to FMAI over any sufficiently large F in Section 4, thereby proving
Theorem 1 and 2. The reduction is obtained by giving an algorithm to decompose the Lie
algebra of f into its two simple Lie subalgebras over any sufficiently large F (see Section
3). The same reduction also gives DET over R and C via the FMAI algorithms in [9, 26]
(thereby giving alternative algorithms to the one presented in [16]). We also show a reduction
from FMAI to DET (in Section 7) which is efficient if the dimension n is bounded.

The above results underscore the close connection between the DET and the FMAI
problems. In order to get efficient DET over Q for even bounded degree polynomials, we need
to solve FMAI efficiently for Q-algebras of bounded dimensions. Currently, the best known
algorithm for FMAI over Q uses an IntFact oracle [14]. This situation of the determinant
is somewhat surprising as it contrasts that of IMM (the close cousin of the determinant)
– IMM equivalence test over Q can be solved efficiently for polynomials of degree greater
than four [18].
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2 Preliminaries

2.1 Notations
The set of trace zero or traceless matrices in Mn(F) is denoted by Zn(F); we will drop F from
Mn(F) and Zn(F) when it is clear from the context. Let In be the n× n identity matrix. ⊗
denotes tensor product of two matrices. Define,

Mcol := In ⊗Mn, Mrow := Mn ⊗ In and Lcol := In ⊗Zn, Lrow := Zn ⊗ In.

Observe Mcol, Mrow ⊆ Mn2 are F-algebras isomorphic to Mn, and Lcol, Lrow are their
subspaces , respectively, of dimension n2− 1 each. Henceforth, we set m = n2 and r = n2− 1.

2.2 Definitions
I Definition 5 (Lie bracket). For A,B ∈Mn, the Lie bracket operation [A,B] := AB −BA.

I Definition 6 (Lie algebra of a polynomial). The Lie algebra gf of a m-variate polynomial
f ∈ F[x] is the set of matrices B = (bi,j)i,j∈[m] satisfying,∑

i,j∈[m]

bi,j · xj ·
∂f

∂xi
= 0.

It is easy to verify that [·, ·] is a F-bilinear map on Mn, and gf is an F-vector space.3 Let V
be a F-vector space, EndF(V) := {ϕ : ϕ is a F-linear map from V to V} and T ⊆ EndF(V).

I Definition 7. A subspace U of V is called T -invariant if for every ϕ ∈ T , ϕ(U) ⊆ U .

If T ⊆M2r, the terminology “invariant subspace of T ” means T -invariant subspace of F2r.

I Definition 8 (Irreducible invariant subspace). A T -invariant subspace U of V is irreducible
if there do not exist proper T -invariant subspaces U1,U2 of U , such that U = U1 ⊕ U2.

I Definition 9 (Closure of a vector). Let w ∈ V. Then, the closure of w with respect to T ,
denoted closureT (w), is the smallest T -invariant subspace of V containing w.

2.3 Some basic results
I Observation 2.1. For i, j ∈ [n], i 6= j, let Eij ∈ Mn be such that the (i, j)-th entry is 1
and other entries are 0, and for ` ∈ [2, n], let E` ∈Mn be a diagonal matrix with the (1, 1)-th
and (`, `)-th entries as 1 and −1 respectively and other entries as 0. Then,
1. {In ⊗ Eij , In ⊗ E` : i, j ∈ [n], i 6= j, and ` ∈ [2, n]} is a basis of Lcol. Denote the ele-

ments of this standard basis as S1, . . . , Sr.
2. {Eij ⊗ In, E` ⊗ In : i, j ∈ [n], i 6= j, and ` ∈ [2, n]} is a basis of Lrow. Denote the ele-

ments of this standard basis as Sr+1, . . . , S2r.

I Observation 2.2. For every F ∈Mrow and L ∈Mcol, [F,L] = FL− LF = 0.

I Observation 2.3. For every L1, L2 ∈ Lcol (or Lrow), [L1, L2] ∈ Lcol (respectively. Lrow).

3 Over C, gf also turns out to be a Lie algebra i.e. closed under the Lie bracket operation. However,
over finite fields, it is not clear if it is closed under the bracket operation. We still stick with the
terminology Lie algebra of a polynomial since in many cases, it does turn out to be closed under the
bracket operation.
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A proof of the following standard fact is given in Section A.1 of the Appendix of the full
version [11].
I Fact 1. Let B ∈Mn. Then, the dimension of the space of matrices in Mn that commute
with B is at least n, and the dimension of the space of matrices in Zn that commute with B
is at least n− 1.

We would also need the following facts (see [16, 18] for their proofs).
I Fact 2. If g ∈ F[x] and f(x) = g(A · x) for some A ∈ GL(m,F) then gf = A−1 · gg ·A.
I Fact 3. Suppose we have black box access to a m-variate polynomial f ∈ F[x], where
|F| ≥ 2n3. Then, a basis of gf can be computed in randomized polynomial time.
I Fact 4. Given a basis {T1, . . . , Ts} of T ⊆ M2r and a w ∈ F2r, a basis of closureT (w)
can be computed in time polynomial in r and the bit length of the entries in w and T1, . . . , Ts.

The following theorem on the Lie algebra of Det is well-known over C. We give a proof over
any field (with a mild condition on the characteristic) in Section A.2 of the Appendix of [11].
I Theorem 10 (Lie algebra of Det). Let n ≥ 2 and F be a field such that char(F) - n. Then, the
Lie algebra of Detn equals the direct sum of the spaces Lrow and Lcol, i.e., gDet = Lrow⊕Lcol.

The theorem implies that {S1, . . . , S2r}, in Observation 2.1, forms a basis of gDet. The
rows and columns of every element in gDet are indexed by the x variables, in order. Let
f = Det(A · x) for some A ∈ GL(m,F). Then, Theorem 10 and Fact 2 imply that gf =
A−1 ·Lrow ·A ⊕ A−1 ·Lcol ·A. We denote A−1 ·Lrow ·A and A−1 ·Lcol ·A by Frow and Fcol
respectively, and refer to Frow and Fcol (similarly, Lrow and Lcol) as the Lie subalgebras of
gf (respectively, gDet) 4. From Theorem 10, Observation 2.2 and 2.3, we get the following.
I Observation 2.4. For every E,F ∈ gf , [E,F ] ∈ gf .
I Observation 2.5. Let A ⊆Mm be the F-algebra generated by a basis of Fcol. Then,

A = A−1 · (In ⊗Mn) ·A.

This can be proved easily. Finally, we record a special case of the Skolem-Noether theorem
which will be used in Section 4. Its general statement can be found in [19] (page 173).
I Theorem 11 (Skolem-Noether). Let n, s ∈ N× such that n | s, and A ⊆ Ms be a F-
algebra (containing Is) that is isomorphic to Mn via φ : Mn → A. Then there exists a
K ∈ GL(s,F) s.t.,

φ(C) = K−1 · (Is/n ⊗ C) ·K, for every C ∈Mn.

3 Decomposition of gf into its Lie subalgebras

We show how to compute bases of Frow and Fcol from black box access to f = Det(A · x).
I Theorem 12 (Decomposition of gf ). Let n ≥ 2, |F| ≥ 10n4 and char(F) - n(n− 1). There
is a randomized algorithm, which takes input black box access to f and outputs bases of Frow
and Fcol with high probability. The running time is poly(n, γ), where γ is the bit length of
coefficients of f .

We first present the proof idea, and then the algorithm and its proof of correctness. The
missing proofs are given in Sections B,C and D of the Appendix of [11].

4 Observation 2.3 implies that Frow and Fcol are closed under the Lie bracket operation and hence they
are matrix Lie algebras.
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3.1 Proof of Theorem 12: The idea
The algorithm relies on finding the irreducible invariant subspaces of a set of F-linear maps
on gf . These linear maps (a.k.a adjoint homomorphisms of gf ) are defined for every F ∈ gf ,

ρF : gf → gf ; E 7→ [E,F ].

It is easy to see that ρF is linear. Let {B1, . . . , B2r} be a basis of gf which can be
computed in randomized polynomial time (by Fact 3). As ρF is F-linear, we can associate
a matrix PF ∈ M2r with ρF , after fixing an ordering of the basis (B1, . . . , B2r). Let
P := {PF : F ∈ gf}.

B Claim 13. gf and P are isomorphic as vector spaces via the map F 7→ PF for every
F ∈ gf .

Its proof is given in Section B.1 of the Appendix of [11]. This implies the following.

I Observation 3.1. The matrices {PB1 , . . . , PB2r
} is a basis of P, which can be efficiently

computed from {B1, . . . , B2r} (by considering the elements [Bi, Bj ], for i, j ∈ [2r]).

We intend to study the irreducible invariant subspaces of P in order to compute bases of
Frow and Fcol. The following Claim 14 would be useful in this regard.

It follows from Fact 2 that Ji := A ·Bi ·A−1, for i ∈ [2r], is a basis of gDet. Like ρF , we
can associate a F-linear map (i.e. adjoint homomorphism) χL with every L ∈ gDet as follows:

χL : gDet → gDet ; K 7→ [K,L].

Let QL ∈ M2r be the matrix corresponding to the linear map χL, with respect to the
(ordered) basis (J1, . . . , J2r). The following claim implies that P does not depend on the
transformation matrix A. Thus, it is sufficient to focus on gDet to study the invariant
subspaces of P. The proof of the claim is given in Section B.2 of the Appendix of [11].

B Claim 14. For every i ∈ [2r], QJi
= PBi

and so the space P = {QL : L ∈ gDet}.

Like Claim 13, gDet and P are isomorphic as vector spaces via the map L 7→ QL, for
L ∈ gDet. The algorithm computes two invariant subspaces V1 and V2 of P that are defined
as follows

V1 =

v = (a1, . . . , a2r)T ∈ F2r :
∑

i∈[2r]

ai · Ji ∈ Lcol

 ,

V2 =

v = (b1, . . . , b2r)T ∈ F2r :
∑

i∈[2r]

bi · Ji ∈ Lrow

 . (1)

Clearly, dim(V1) = dim(V2) = r. As Bi = A−1 · Ji ·A, for i ∈ [2r], we get

V1 =

v = (a1, . . . , a2r)T ∈ F2r :
∑

i∈[2r]

ai ·Bi ∈ Fcol

 ,

V2 =

v = (b, . . . , b2r)T ∈ F2r :
∑

i∈[2r]

bi ·Bi ∈ Frow

 . (2)

From bases of V1 and V2, and (B1, . . . , B2r), we get bases of Fcol and Frow readily. The
aspects of the space P that help in computing V1 and V2 are the facts that these are the
only two irreducible invariant subspaces of P and bases of these can be computed from a
random element of P. These facts are proved in the proof of correctness of Algorithm 1.
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3.2 The decomposition algorithm

Algorithm 1 Computation of bases of Frow and Fcol.
Input: Black box access to f .
Output: Bases of spaces V1 and V2 (as in Equation (2)).

1: Compute a basis B1, . . . , B2r of gf (see Fact 3), and form the basis PB1 , . . . , PB2r
of P .

2: Pick a random element Q = r1PB1 + · · · + r2rPB2r
from P, where every ri is chosen

uniformly and independently at random from a fixed subset of F of size 10n4.
3: Compute the characteristic polynomial h(z) of Q.
4: Factor h(z) into irreducible factors over F. Let h(z) = z2(n−1) · h1(z) · · ·hk(z), where
z, h1, . . . , hk are mutually coprime and irreducible. If this is not the split, output “Fail”.

5: For every i ∈ [k], compute a basis of the null space Ni of hi(Q), pick a vector v from the
basis of Ni and compute a basis of Ci := closureP(v) (using Fact 4).

6: Remove repetitive spaces from the set {C1, . . . , Ck}. After this, if we are not left with
exactly two spaces U1 and U2 then output “Fail”. Else, output bases of U1 and U2.

3.3 Analysis of the algorithm
Let us view the space P through the lens of a convenient basis of gDet, namely the standard
basis {S1, . . . , S2r} (given in Observation 2.1). For K ∈ gDet, let wK ,vK ∈ F2r be the
coordinate vectors of K with respect to the ordered bases (S1, . . . , S2r) and (J1, . . . , J2r)
respectively. There is a basis change matrix H ∈ GL(2r,F), such that for every K ∈ gDet,

vK = H ·wK . (3)

Recall QL from Claim 14. Let RL := H−1 ·QL ·H, for every L ∈ gDet, and

R := {RL : L ∈ gDet} = H−1 · P ·H. (4)

Observe that {RS1 , . . . , RS2r} is a basis of R. Also, for every L,K ∈ gDet.

RL ·wK = w[K,L], (5)

I Observation 3.2. Every R ∈ R ⊆M2r is a block diagonal matrix having two blocks of size
r × r each, i.e, the non-zero entries of R are confined to the entries {(Si, Sj) : i, j ∈ [r]}
and {(Si, Sj) : i, j ∈ [r + 1, 2r]}.

The proof of Observation 3.2 is given in Section C.1 of the Appendix of [11]. We refer to
the two blocks of R as R(1) and R(2), corresponding to {S1, . . . , Sr} and {Sr+1, . . . , S2r},
respectively. Observation 3.3 follows directly from definition of R.

I Observation 3.3. W is an invariant subspace of R iff H ·W is an invariant subspace of P.

It allows us to switch from P to R while studying the invariant subspaces of P . The following
lemmas on the invariant subspaces of R are crucial in arguing the correctness of Algorithm
1. Their proofs are given in Sections C.2 and C.3 of the Appendix of [11].

I Lemma 15 (Irreducible invariant subspaces). Let wK ∈ F2r for a nonzero K in Lcol or in
Lrow.

Then, closureR(wK) = {wL : L ∈ Lcol} =:W1, if K ∈ Lcol,

closureR(wK) = {wL : L ∈ Lrow} =:W2, if K ∈ Lrow.

Moreover, W1 and W2 are the only two irreducible invariant subspaces of R, and F2r =
W1 ⊕W2.
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I Lemma 16 (Characteristic polynomial). Let R =
∑

i∈[2r] `i(r1, . . . , r2r) ·RSi , where `1, . . . , `2r

are F-linearly independent linear forms and r1, . . . , r2r are picked uniformly and independently
at random from a fixed subset of F of size 10n4. Then, with high probability, the character-
istic polynomial hR(z) of R factors as z2(n−1) · h1(z) · · ·hk(z), where z, h1(z), . . . , hk(z) are
mutually coprime irreducible polynomials over F.

3.3.1 Proof of correctness of Algorithm 1
In Step 2, we choose a random Q from P. By Equation (4), there is a R ∈ R, such that,

R = H−1 ·Q·H = r1RJ1 +· · ·+r2rRJ2r
= `1(r1, . . . , r2r)·RS1 +· · ·+`2r(r1, . . . , r2r)·RS2r

,

where `1, . . . , `2r are F-linearly independent linear forms in r1, . . . , r2r. By Lemma 16, Step
4 holds with high probability. From Observation 3.2, R is a block diagonal matrix with
blocks R(1) and R(2). Let h(z) = g1(z) · g2(z), where g1(z) and g2(z) are the characteristic
polynomials of R(1) and R(2), respectively. There are a couple of factors of h, say h1 and
h2, that divide g1 and g2, respectively. In Step 5, we compute the null spaces N1 and N2 of
h1(Q) and h2(Q) respectively. As h1(R) = H−1 · h1(Q) ·H and h2(R) = H−1 · h2(Q) ·H,
the null spaces of h1(R) and h2(R), denoted by O1 and O2 respectively, satisfy O1 =
H−1 · N1 and O2 = H−1 · N2 (due to Equation (3)).

B Claim 17. If wK ∈ O1 (similarly, wK ∈ O2) then K ∈ Lcol (respectively, K ∈ Lrow).

Its proof is given in Section D.1 of the Appendix of [11]. In Step 5, we also pick a vector v
from a null space, say N1, and compute closureP(v). Clearly, v = vK for some K ∈ gDet. So,
vK ∈ N1 if and only if wK = H−1 · vK ∈ O1. As R = H−1 · P ·H, Observation 3.3 implies

closureP(vK) = H · closureR(wK)
= H · W1 ( by Claim 17 and Lemma 15)
= V1 ( by Equations (1) and (3), as V1 = {vL : L ∈ Lcol}).

Similarly, if we pick a v ∈ N2 then closureP(v) = V2. Thus, in Step 6, one of U1 and U2 is
V1 and the other is V2. Finally, we can take U1 = V1 and U2 = V2 without loss of generality:
Let P ∈Mm be the permutation matrix, such that when multiplied to x, P maps xij to xji.
Clearly, P−1 = P . The following equation holds because P is a symmetry of Det.

Det(x) = Det(P · x) and hence f(x) = Det(A · x) = Det(PA · x).

Observe that Lcol = P−1 · Lrow · P . Hence,

Fcol = A−1P−1 · Lrow · PA and Frow = A−1P−1 · Lcol · PA.

As the transformation matrix is unknown to the algorithm, we can take it to be either
A or PA.

A comparison with [8], [4]: In [8, 7], a polynomial time algorithm was given to decompose
a semisimple Lie algebra over Q (more generally, a characteristic 0 field) into a direct
sum of simple Lie subalgebras. The Lie algebra gDet is semisimple and Lcol and Lrow are
its two simple Lie subalgebras. So, our decomposition problem is a special case of the
problem studied in [8]. However, our algorithm works over any sufficiently large field F (in
particular, finite fields), if char(F ) - n(n − 1). It is not quite clear to us if the algorithm
in [8] (which is somewhat different from our algorithm) can be easily adapted to achieve
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the same result in this special case. Lemma 15 shows that the decomposition of F2r into
irreducible invariant subspaces of R is unique. Using this information, it is possible to use
the module decomposition algorithm in [4] to compute bases of Fcol and Frow in randomized
polynomial time over finite fields. However, the module decomposition algorithm in [4] does
not work in general over Q without moving to an extension field.

A comparison with [12, 13]: In [12] and Section 4.9 of [13], a DET over C was given by
reducing it to the Lie algebra conjugacy problem. It was also suggested there that the
approach can be made to work over finite field by reduction to the problem of finding and
diagonalizing split Cartan subalgebra and then applying Ryba’s algorithm [27]. However, it
is not quite clear to us how to carry out this approach in full details. Despite the similarities
between these two approaches originating from the use of Lie algebra, our approach of
reducing DET to FMAI does appear somewhat different from the approach suggested in
[12, 13].

4 Reduction of DET to FMAI

We give a randomized polynomial time reduction from DET to the FMAI problem. Recall
the FMAI problem from Definition 4: An algorithm for FMAI takes input an ordered basis
(L1, . . . , Lm) of a F-algebra A ⊆Ms such that A ∼= Mn, and outputs a F-algebra isomorphism
φ : A → Mn in the form of an ordered basis (C1, . . . , Cm) of Mn, where Ci = φ(Li) for
i ∈ [m].

I Lemma 18 (Reduction of DET to FMAI). Let n ≥ 2, |F| > 10n4 and char(F) - n(n − 1).
Then, there exists a randomized algorithm, with oracle access to FMAI, that takes input
black-box access to a f ∈ F[x] of degree n and solves DET for f over F with high probability.
The running time of the algorithm is polynomial in n and the bit length of the coefficients of f .

The proof of this lemma follows from the proof of correctness of the following algorithm.

4.1 The algorithm

Algorithm 2 Reduction of DET to FMAI.
Input: Black-box access to f ∈ F[x] of degree n, and oracle access to an algo for FMAI.
Output: B ∈ GL(m,F) such that f = Det(B · x), if such a B exists. Else, output “Fail”.

1: Invoke Algorithm 1. Let {U1, . . . , Ur} be the basis of the space U1 returned by Algorithm
1, where U1 = Fcol.

2: Generate a basis {L1, . . . , Lk} of the algebra A := F[U1, . . . , Ur]. If k 6= m, output “Fail”.

3: Invoke the FMAI oracle on (L1, . . . , Lm) which returns a basis (C1, . . . , Cm) of Mn.
4: Pick a random M ∈Mm satisfying Li ·M = M · (In ⊗ Ci) for every i ∈ [m].
5: Let b be the evaluation of f(M · x) at x11 = . . . = xnn = 1 and remaining xij set to 0.
6: If M 6∈ GL(m,F) or b = 0, output “Fail”. Else, set D = diag(b, 1, . . . , 1) ∈Mn. Output

(In ⊗D) ·M−1.
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4.2 Proof of correctness of Algorithm 2
If f is not equivalent to Det then it can be detected with high probability by checking
if f(a) = b · Det(M−1a) at a random point a ∈r Sm, where S ⊆ F is sufficiently large.
So, assume that f = Det(A · x) for some A ∈ GL(m,F). The correctness of Algorithm
1 ensure that U1 = Fcol without loss of generality. Step 2 can be executed efficiently by
checking if UiUj ∈ spanF{U1, . . . , Ur} for i, j ∈ [r]. Observation 2.5 implies that A ∼= Mn, i.e.,
Li = A−1 · (In⊗Bi) ·A for every i ∈ [m], where {B1, . . . , Bm} is a basis ofMn. In Step 3, the
FMAI oracle returns a F-algebra isomorphism φ : A →Mn such that {Ci = φ(Li) : i ∈ [m]}
is a basis of Mn. The following claim ensures the existence of a matrix M , computed in Step
4. Its proof is given in Section E.1 of the Appendix of [11].

B Claim 19. There exists a S ∈ GL(n,F) such that Bi = S−1 · Ci · S for every i ∈ [m].

Consider the linear system defined by the equation Li ·M = M · (In ⊗ Ci), where the
entries of M are taken as variables. Step 4 is executed by picking the free variables of the
solution space of the system from a sufficiently large subset of F. Finally, the correctness
of Step 6 is argued in the proof of the following claim which is given in Section E.2 of the
Appendix of [11].

B Claim 20. Suppose f = Det(A ·x), where A ∈ GL(m,F). Then, f = Det((In⊗D) ·M−1 ·x)
with high probability.

5 DET over finite fields and over Q

The proofs of Theorem 1 and 2 are completed by replacing the FMAI oracle in Step 3 of
Algorithm 2 by the following known algorithms for FMAI over finite fields and Q.

I Theorem 21 (Theorem 5.1 of [25]). Let F be a finite field. Given a basis of a F-algebra
A ⊆Mm such that A ∼= Mn, an isomorphism φ : A →Mn can be constructed in randomized
(m, log |F|) time.

I Theorem 22 (Theorem 1 of [14]). There is a randomized algorithm with oracle access to
IntFact that takes input a basis of a Q-algebra A ⊆Mm such that A ∼= Mn, and outputs an
isomorphism φ : A →Mn with high probability. The algorithm runs in time polynomial in
the bit length of the input, if n is bounded.

I Theorem 23 (Lemma 2.5 of [3]). There is a randomized algorithm that takes input a basis
of a Q-algebra A ⊆Mm such that A ∼= Mn, and outputs an isomorphism φ : A⊗QŁ→Mn(Ł)
with high probability, where Ł is an extension field of Q satisfying [Ł : Q] ≤ n. The algorithm
runs in time polynomial in the bit length of the input.

6 Factoring hardness of DET over Q

This section is devoted to proving Theorem 3. We show that DET in the 2× 2 setting over
Q is at least as hard as factoring square-free integers. We will need the following theorem.

I Theorem 24 ([24]). Assuming GRH, there is a randomized polynomial time reduction
from the problem of factoring square-free integers to the following problem: Given non-zero
a, b ∈ Q, find rational numbers x, y, z (not all zero) such that x2 − ay2 − bz2 = 0, if there
exists such a solution.

We will also need the following proposition, cited in [24], to prove the next theorem. We
give a proof from [5] in Section F.1 of [11], for completeness.
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I Proposition 25. Let a, b ∈ Q×. Then the equation x2 − ay2 − bz2 = 0 has a non-zero
rational solution if and only if the equation x2 − ay2 − bz2 + abw2 = 0 has a non-zero
rational solution.

We are now ready to prove integer factoring hardness of DET in the next theorem.

I Theorem 26. Consider the polynomial fa,b(x) = x2
1,1 − ax2

1,2 − bx2
2,1 + abx2

2,2, where
a, b ∈ Q are non-zero. Then fa,b(x) = Det2(A · x) for some A ∈ GL(4,Q) if and only if
the equation x2 − ay2 − bz2 = 0 has a non-zero rational solution (moreover, such a rational
solution can be efficiently computed from A).

Its proof is given in Section F.2 of [11]. Combining Theorems 24 and 26, we obtain
Theorem 3.

I Remark 27. We want to explain how we got to the above reduction. Ronyai [24] proved
that the FMAI problem over Q is factoring hard even for n = 2 via quaternion algebras. If
one takes a specific quaternion algebra and tries to constructs a polynomial f whose Lie
algebra is the traceless part of the quaternion algebra, then it turns out the polynomial
fa,b(x) is the unique homogeneous degree 2 polynomial that comes out. But in any case, in
hindsight, the polynomial fa,b(x) seems like a natural candidate to use.

7 Characterization of the determinant by its Lie algebra

In this section, we reduce FMAI to DET under mild restrictions on F. We start with the claim
that the Lie algebra of the determinant characterizes the determinant. This is well known
over C, but we give a proof in Section G.1 of [11] that works under mild restrictions on F.

I Lemma 28. Let f ∈ F[x] be any homogeneous polynomial of degree n such that Lcol ⊆ gf

(recall Lcol from Section 2). Also suppose char(F) - n. Then f(x) = α · Detn(x) for some
α ∈ F.

I Remark 29. Note that without the char(F) - n condition, Lemma 28 is not true. For
example, f(x) = xn

1,1 + Detn(x) will have the same Lie algebra as Detn(x) if char(F) | n.

I Corollary 30. Let f ∈ F[x] be a degree n homogeneous polynomial. Suppose that A−1 ·
Lcol ·A ⊆ gf for some A ∈ GL(n2,F) and char(F) - n. Then f(x) = α ·Detn(A · x) for some
α ∈ F.

Proof. Consider f ′(x) = f(A−1 ·x). By Fact 2, gf ′ = A · gf ·A−1, so Lcol ⊆ gf ′ . By Lemma
28, we get that f ′(x) = α · Detn(x) for some α ∈ F and hence f(x) = α · Detn(A · x). J

Corollary 30 allows us to reduce FMAI to DET when n is constant (see Algorithm 3).

7.1 Proof of correctness of Algorithm 3 when char(F) - n

The proof of correctness will follow from the following proposition, proved in Section G.2 of
[11]. The matrices Bi,j and Li,j are as defined in Step 2 of the algorithm.

I Proposition 31. Suppose the algebra A spanned by B1,1, . . . , Bn,n is isomorphic to Mn.
Then there exist K ∈ GL(n2,F) and C1,1, . . . , Cn,n ∈Mn, s.t. Li,j = K−1 (In ⊗ Ci,j)K for
all i, j ∈ [n].
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Now let us proceed to the proof of correctness of Algorithm 3. First of all, it is easy to
ensure that whenever the algorithm outputs an isomorphism, it is actually an isomorphism.
So what we need to prove is the converse. Suppose the algebra A is isomorphic to Mn. Then
by Proposition 31, the space spanned by L̃1, . . . , L̃n2−1 is K−1 · Lcol ·K. Then by Corollary
30, there is a unique solution to the equations in Step 4 given by f(x) = α · Detn(K · x), for
some α ∈ F, and so f is equivalent to the determinant. Hence, in Step 5, we will get an
A ∈ GL(n2,F) s.t. f(x) = Detn(A · x). Since L̃1, . . . , L̃n2−1 span a Lie algebra of dimension
n2−1 and since they lie inside the Lie algebra of Detn(A·x), we must have that L̃1, . . . , L̃n2−1
span either A−1 · Lcol · A or A−1 · Lrow · A. From this, we get that one of the following
conditions should be true:

There exist matrices F1,1, . . . , Fn,n ∈ Mn such that A · Li,j · A−1 = In ⊗ Fi,j for all
i, j ∈ [n].
There exist matrices F1,1, . . . , Fn,n ∈ Mn such that A · Li,j · A−1 = Fi,j ⊗ In for all
i, j ∈ [n].

The implies that the algorithm will output 1 and an isomorphism into Mn. The complexity
of the reduction is dominated by Step 4 which takes nO(n) field operations.

Algorithm 3 Reduction of FMAI to DET.
Input: Basis {B1, . . . , Br} of a F-algebra A ⊆Mm, and access to an algorithm for DET.
Output: if A ∼= Mn for some n ∈ N, then output an isomorphism, 0 otherwise.

1: If r = dimFA 6= n2 for any n ∈ N, output 0 and halt.
2: Index the basis elements by [n] × [n], i.e., rename them as B1,1, . . . , Bn,n. Com-

pute n2 × n2 matrices L1,1, . . . , Ln,n as follows: Li,j is the matrix corresponding
to the left-multiplication action of Bi,j on B1,1, . . . , Bn,n. That is Bi,j · Bi2,j2 =∑

i1,j1
Li,j ((i1, j1), (i2, j2)) ·Bi1,j1 .

3: Compute a basis for the traceless parts of the matrices Li,j . That is, compute a basis
L̃1, . . . , L̃s of the space spanned by L1,1− tr(L1,1)

n2 In2 , . . . , Ln,n− tr(Ln,n)
n2 In2 . If s 6= n2−1,

output 0 and halt.
4: Find a non-zero homogeneous polynomial of degree n, f(x), satisfying the equations∑

i1,j1,i2,j2

M((i1, j1), (i2, j2)) · xi2,j2 ·
∂f

∂xi1,j1

= 0

for every M ∈ {L̃1, . . . , L̃n2−1} (these give linear equations in the coefficients of f). If
no such non-zero polynomial exists then output 0 and halt.

5: Run DET on f . If the output is “Fail” then output 0 and halt. If f(x) = Detn(A ·x) then
check if there exist matrices F1,1, . . . , Fn,n ∈Mn such A ·Li,j ·A−1 = In⊗Fi,j for all i, j.
If yes, output 1 and the isomorphism φ(Bi,j) = Fi,j (extended linearly to whole of A). If
no, check if there exist matrices F1,1, . . . , Fn,n ∈Mn such that A · Li,j ·A−1 = Fi,j ⊗ In

for all i, j. If yes, output 1 and the isomorphism φ(Bi,j) = Fi,j (extended linearly to
whole of A). If no, output 0.
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Abstract
We consider the online problem of scheduling jobs on identical machines, where jobs have precedence
constraints. We are interested in the demanding setting where the jobs sizes are not known up-front,
but are revealed only upon completion (the non-clairvoyant setting). Such precedence-constrained
scheduling problems routinely arise in map-reduce and large-scale optimization. For minimizing the
total weighted completion time, we give a constant-competitive algorithm. And for total weighted
flow-time, we give an O(1/ε2)-competitive algorithm under (1+ε)-speed augmentation and a natural
“no-surprises” assumption on release dates of jobs (which we show is necessary in this context).

Our algorithm proceeds by assigning virtual rates to all waiting jobs, including the ones which are
dependent on other uncompleted jobs. We then use these virtual rates to decide on the actual rates of
minimal jobs (i.e., jobs which do not have dependencies and hence are eligible to run). Interestingly,
the virtual rates are obtained by allocating time in a fair manner, using a Eisenberg-Gale-type convex
program (which we can solve optimally using a primal-dual scheme). The optimality condition
of this convex program allows us to show dual-fitting proofs more easily, without having to guess
and hand-craft the duals. This idea of using fair virtual rates may have broader applicability in
scheduling problems.
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1 Introduction

We consider the problem of online scheduling of jobs under precedence constraints. We seek
to minimize the average weighted flow time of the jobs on multiple parallel machines, in
the online non-clairvoyant setting. Formally, there are m identical machines, each capable
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63:2 Non-Clairvoyant Precedence Constrained Scheduling

of one unit of processing per unit of time. A set of [n] jobs arrive online. Each job has
a processing requirement pj and a weight wj , and is released at some time rj . If the job
finishes at time Cj , its flow or response time is defined to be Cj − rj . The goal is to give
a preemptive schedule that minimizes the total (or, equivalently, the average) weighted
flow-time

∑
j∈[n] wj · (Cj − rj). The main constraints of our model are the following: (i) the

scheduling is done online, so the scheduler does not know of the jobs before they are released;
(ii) the scheduler is non-clairvoyant – when a job arrives, the scheduler knows its weight but
not its processing time pj . (It is only when the job finishes its processing that the scheduler
knows the job is done, and hence knows pj .); And (iii) there are precedence constraints
between jobs given by a partial order ([n],≺): j ≺ j′ means job j′ cannot be started until j
is finished. Naturally, the partial order should respect release dates: if j ≺ j′ then rj ≤ r′j .
(We will require a stronger assumption for some of our results.)

This model for constrained parallelism is a natural one, both in theory and in practice.
In theory, this precedence-constrained (and non-clairvoyant!) scheduling model (with other
objective functions) goes back to Graham’s work on list scheduling [8]. In practice, most
languages and libraries produce parallel code that can be modeled using precedence DAGs [20,
1, 9]. Often these jobs (i.e., units of processing) are distributed among some m workstations
or servers, either in server farms or on the cloud, i.e., they use identical parallel machines.

1.1 Our Results and Techniques
Weighted Completion Time. We develop our techniques on the problem of minimizing
the average weighted completion time

∑
j wjCj . Our convex-programming approach gives us:

I Theorem 1.1. There is a 10-competitive deterministic online algorithm for minimizing the
average weighted completion time on parallel machines with both release dates and precedences,
in the online non-clairvoyant setting.

For this result, at each time t, the algorithm has to know only the partial order restricted
to {j ∈ [n] | rj ≤ t}, i.e., the jobs released by time t. The algorithmic idea is simple in
hindsight: the algorithm looks at the minimal unfinished jobs (i.e., they do not depend on
any other unfinished jobs): call them It. If Jt is the set of (already released and) unfinished
jobs at time t, then It ⊆ Jt. To figure out how to divide our processing among the jobs in It,
we write a convex program that fairly divides the time among all jobs in the larger set Jt,
such that (a) these jobs can “donate” their allocated time to some preceding jobs in It, and
that (b) the jobs in It do not get more than 1 unit of processing per time-step.

For this fair allocation, we maximize the (weighted) Nash Welfare
∑

j∈Jt
wj logRj , where

Rj is the virtual rate of processing given to job j ∈ Jt, regardless of whether it can currently
be run (i.e., is in It). This tries to fairly distribute the virtual rates among the jobs [19],
and can be solved using an Eisenberg-Gale-type convex program. (We can solve this convex
program in our setting using a simple primal-dual algorithm, see the full version.) The proof
of Theorem 1.1 is via writing a linear-programming relaxation for the weighted completion
time problem, and fitting a dual to it. Conveniently, the dual variables for the completion
time LP naturally fall out of the dual (KKT) multipliers for the convex program!

Weighted Flow Time. We then turn to the weighted flow-time minimization problem. We
first observe that the problem has no competitive algorithm if there are jobs j that depend
on jobs released before rj . Indeed, if OPT ever has an empty queue while the algorithm is
processing jobs, the adversary could give a stream of tiny new jobs, and we would be sunk.
Hence we make an additional no-surprises assumption about our instance: when a job j is
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released, all the jobs having a precedence relationship to j are also released at the same time.
In other words, the partial order is a collection of disjoint connected DAGs, where all jobs in
each connected component have the same release date. A special case of this model has been
studied in [20, 1] where each DAG is viewed as a “hyper-job” and there are no precedence
constraints between different hyper-jobs. In this model, we show:

I Theorem 1.2. There is an O(1/ε2)-competitive deterministic non-clairvoyant online
algorithm for the problem of minimizing the average weighted flow time on parallel machines
with release dates and precedences, under the no-surprises and (1 + ε)-speedup assumptions.

Interestingly, the algorithm for weighted flow-time is almost the same as for weighted
completion time. In fact, exactly the same algorithm works for both the completion time and
flow time cases, if we allow a speedup of (2 + ε) for the latter. To get the (1 + ε)-speedup
algorithm, we give preference to the recently-arrived jobs, since they have a smaller current
time-in-system and each unit of waiting proportionally hurts them more. This is along the
lines of strategies like LAPS and WLAPS [7].

1.2 The Intuition
Consider the case of unit weight jobs on a single machine. Without precedence constraints,
the round-robin algorithm, which runs all jobs at the same rate, is O(1)-competitive for the
flow-time objective with a 2-speed augmentation. Now consider precedences, and let the
partial order be a collection of disjoint chains: only the first remaining job from each chain
can be run at each time. We generalize round-robin to this setting by running all minimal
jobs simultaneously, but at rates proportional to length of the corresponding chains. We can
show this algorithm is also O(1)-competitive with a 2-speed augmentation. While this is
easy for chains and trees, let us now consider the case when the partial order is the union of
general DAGs, where each DAG may have several minimal jobs. Even though the sum of the
rates over all the minimal jobs in any particular DAG should be proportional to the number
of jobs in this DAG, running all minimal jobs at equal rates does not work. (Indeed, if many
jobs depend on one of these minimal jobs, and many fewer depend on the other minimal
jobs in this DAG, we want to prioritize the former.)

Instead, we use a convex program to find rates. Our approach assigns a “virtual rate”
Rj to each job in the DAG (regardless of whether it is minimal or not). This virtual rate
allows us to ensure that even though this job may not run, it can help some minimal jobs to
run at higher rates. This is done by an assignment problem where these virtual rates get
translated into actual rates for the minimal jobs. The virtual rates are then calculated using
Nash fairness, which gives us max-min properties that are crucial for our analysis.

Analysis Challenges: In typical applications of the dual-fitting technique, the dual variables
for each job encode the increase in total flow-time caused by arrival of this job. Using this
notion turns out to create problems. Indeed, consider a minimal job of low weight which is
running at a high rate (because a large number of jobs depend on it). The increase in overall
flow-time because of its arrival is very large. However the dual LP constraints require these
dual variables to be bounded by the weights of their jobs, which now becomes difficult to
ensure. To avoid this, we define the dual variables directly in terms of the virtual rates of
the jobs, given by the convex program.

Having multiple machines instead of a single machine creates new problems. The actual
rates assigned to any minimal job cannot exceed 1, and hence we have to throttle certain
actual rates. Again the versatility of the convex program helps us, since we can add this as a
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constraint. Arguing about the optimal solution to such a convex program requires dealing
with the suitable KKT conditions, from which we can infer many useful properties. We also
show in the full version that the optimal solution corresponds to a natural “water-filling”
based algorithm.

Finally, we obtain matching results for the case of (1 + ε)-speed augmentation. Im et
al. [12] gave a general-purpose technique to translate a round-robin based algorithm to a
LAPS-like algorithm. In our setting, it turns out that the LAPS-like policy needs to be run
on the virtual rates of jobs. Analyzing this algorithm does not follow in a black-box manner
(as prescribed by [12]), and we need to adapt our dual-fitting analysis suitably.

1.3 Related Work and Organization
Completion Time. Minimizing

∑
j wjCj on parallel machines with precedence constraints

has O(1)-approximations in the offline setting: Li [16] improves on [11, 18] to give a 3.387+ε-
approximation. For related machines, the precedence constraints make the problem much
harder: there is a O(logm/ log logm)-approximation [16] improving on a prior O(logm)
result [4], and a hardness of ω(1) under certain complexity assumptions [3]. In the online
setting, any offline algorithm for (a dual problem to)

∑
j wjCj gives an clairvoyant online

algorithm, losing O(1) factors [11]. Two caveats: it is unclear (a) how to make this algorithm
non-clairvoyant, and (b) how to solve the (dual of the) weighted completion time problem
with precedences in poly-time.

Flow Time without Precedence. To minimize
∑

j wj(Cj − rj), strong lower bounds are
known for the competitive ratio of any online algorithm even on a single machine [17]. Hence
we use speed augmentation [14]. For the general setting of non-clairvoyant weighted flow-time
on unrelated machines, Im et al. [13] showed that weighted round-robin with a suitable
migration policy yields a (2 + ε)-competitive algorithm using (1 + ε)-speed augmentation.
They gave a general purpose technique, based on the LAPS scheduling policy, to convert any
such round-robin based algorithm to a (1 + ε)-competitive algorithm while losing an extra
1/ε factor in the competitive ratio. Their analysis also uses a dual-fitting technique [2, 10].
However, they do not consider precedence constraints.

Flow Time with Precedence. Much less is known for flow-time problems with precedence
constraints. For the offline setting on identical machines, [15] give O(1)-approximations
with O(1)-speedup, even for general delay functions. In the current paper, we achieve a
poly(1/ε)-approximation with (1 + ε)-speedup for flow-time. Interestingly, [15] show that
beating a n1−c-approximation for any constant c ∈ [0, 1) requires a speedup of at least the
optimal approximation factor of makespan minimization in the same machine environment.
However, this lower bound requires different jobs with a precedence relationship to have
different release dates, which is something our model disallows. (The full version gives
another lower bound showing why we disallow such precedences in the online setting.)

In the online setting, [20] introduced the DAG model where each job is a directed acyclic
graph (of tasks) released at some time, and a job/DAG completes when all the tasks in it are
finished, and we want to minimize the total unweighted flow-time. They gave a (2 + ε)-speed
O(κ/ε)-competitive algorithm, where κ is the largest antichain within any job/DAG. [1]
show poly(1/ε)-competitiveness with (1 + ε)-speedup, again in the non-clairvoyant setting.
The case where jobs are entire DAGs, and not individual nodes within DAGs, is captured in
our weighted model by putting zero weights for all original jobs, and adding a unit-weight
zero-sized job for each DAG which now depends on all jobs in the DAG. Assigning arbitrary
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weights to individual nodes within DAGs makes our problem quite non-trivial – we need
to take into account the structure of the DAG to assign rates to jobs. Another model to
capture parallelism and precedences uses speedup functions [6, 5, 7]: relating our model to
this setting remains an open question.

Our work is closely related to Im et al. [12] who use a Nash fairness approach for
completion-time and flow-time problems with multiple resources. While our approaches are
similar, to the best of our understanding their approach does not immediately extend to the
setting with precedences. Hence we have to introduce new ideas of using virtual rates (and
being fair with respect to them), and throttling the induced actual rates at 1. The analyses
of [12] and our work are both based on dual-fitting; however, we need some new ideas for the
setting with precedences.

Organization. The weighted completion time case is solved in §2. A (2 + ε)-speedup result
for weighted flow-time is in §3. In the full version we improve this to a (1 + ε)-speedup.
There we also show the need for the “no-surprises” assumption on release dates, how to solve
the convex program using a “water-filling” based algorithm, and the missing proofs.

2 Minimizing Weighted Completion Time

In this section, we describe and analyze the scheduling algorithm for the problem of minimizing
weighted completion time on parallel machines. Recall that the precedence constraints are
given by a DAG G, and each job j has a release date rj , processing size pj and weight wj .

2.1 The Scheduling Algorithm
We first assume that each of the m machines run at rate 2 (i.e., they can perform 2 units of
processing in a unit time). We will show later how to remove this assumption (at a constant
loss of competitive ratio). We begin with some notation. We say that a job j is waiting at
time t (with respect to a schedule) if rj ≤ t, but j has not been processed to completion
by time t. We use Jt to denote the set of waiting jobs at time t. Note that at time t, the
algorithm gets to see the subgraph Gt of G which is induced by the jobs in Jt. We say that
a job j is unfinished at time t if it is either waiting at time t, or its release date is at least
t (and hence the algorithm does not even know about this job). Let Ut denote the set of
unfinished jobs at time t. Clearly, Jt ⊆ Ut. At time t, the algorithm can only process those
jobs in Jt which do not have a predecessor in Gt – denote these minimal jobs by It: they are
independent of all other current jobs. For every time t, the scheduling algorithm needs to
assign a rate to each job j ∈ It. We now describe how it decides on these rates.

Consider a time t. The algorithm considers a bipartite graph Ht = (It, Jt, Et) with vertex
set consisting of the minimal jobs It on left and the waiting jobs Jt on right. Since It ⊆ Jt, a
job in It appears as a vertex on both sides of this bipartite graph. When there is no confusion,
we slightly overload terminology by referring to a job as a vertex in Ht. The set of edges Et

are as follows: let jl ∈ It, jr ∈ Jt be vertices on the left and the right side respectively. Then
(jl, jr) is an edge in Et if and only if there is a directed path from jl to jr in the DAG Gt.

The following convex program now computes the rate for each vertex in It. It has variables
zt

e for each edge e ∈ Et. For each job j on the left side, i.e., for j ∈ It, define Lt
j :=

∑
e∈∂j z

t
e

as the sum of ze values of edges incident to j. Similarly, define Rt
j :=

∑
e∈∂j z

t
e for a job

j ∈ Jt, i.e., on the right side. The objective function is the Nash bargaining objective function
on the Rt

j values, which ensures that each waiting job gets some attention. In the full version
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we give a combinatorial algorithm to efficiently solve this convex program.

max
∑
j∈Jt

wj lnRt
j (CP)

Lt
j =

∑
j′∈Jt:(j,j′)∈Et

zt
jj′ ∀j ∈ It (1)

Rt
j =

∑
j′∈It:(j′,j)∈Et

zt
j′j ∀j ∈ Jt (2)

Lt
j ≤ 1 ∀j ∈ It (3)∑

j∈It

Lt
j ≤ m (4)

zt
e ≥ 0 ∀e ∈ Et (5)

Let (z̄t, L̄t, R̄t) be an optimal solution to the above convex program. We define the rate of a
job j ∈ It as being L̄t

j .
Although we have defined this as a continuous time process, it is easy to check that the

rates only change if a new job arrives, or if a job completes processing. Also observe that we
have effectively combined the m machines into one in this convex program. But assuming
that all events happen at integer times, we can translate the rate assignment to an actual
schedule as follows. For a time slot [t, t + 1], the total rate is at most m (using (4)), so
we create m time slots [t, t+ 1]i, one for each machine i, and iteratively assign each job j
an interval of length L̄t

j within these time slots. It is possible that a job may get assigned
intervals in two different time slots, but the fact that L̄t

j ≤ 1 means it will not be assigned
the same time in two different time slots. Further, we will never exceed the slots because
of (4). Thus, we can process these jobs in the m time slots on the m parallel machines such
that each job j gets processed for L̄t

j amount of time and no job is processed concurrently
on multiple machines. This completes the description of the algorithm; in this, we assume
that we run the machines at twice the speed. Call this algorithm A.

The final algorithm B, which is only allowed to run the machines at speed 1, is obtained
by running A in the background, and setting B to be a slowed-down version of A. Formally,
if A processes a job j on machine i at time t ∈ R≥0, then B processes this at time 2t. This
completes the description of the algorithm.

2.2 A Time-Indexed LP formulation
We use the dual-fitting approach to analyze the above algorithm. We write a time-indexed
linear programming relaxation (LP) for the weighted completion time problem, and use the
solutions to the convex program (CP) to obtain feasible primal and dual solutions for (LP)
which differ by only a constant factor.

We divide time into integral time slots (assuming all quantities are integers). Therefore,
the variable t will refer to integer times only. For every job j and time t, we have a variable
xj,t which denotes the volume of j processed during [t, t+ 1]. Note that this is defined only
for t ≥ rj . The LP relaxation is as follows:

min
∑

j,t wj · t·xj,t

pj
(LP)∑

t≥rj

xj,t

pj
≥ 1 ∀j (6)∑

j xj,t ≤ m ∀t (7)∑
s≤t

xj,s

pj
≥
∑

s≤t

xj′,s

pj′
∀t, j ≺ j′ (8)
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The following claim, whose proof is deferred to the full version, shows that it is a valid
relaxation.

B Claim 2.1. Let opt denote the weighted completion time of an optimal off-line policy
(which knows the processing time of all the jobs). Then the optimal value of the LP relaxation
is at most opt.

The (LP) has a large integrality gap. Observe that the LP just imagines the m machines
to be a single machine with speed m. Therefore, (LP) has a large integrality gap for two
reasons: (i) a job j can be processed concurrently on multiple machines, and (ii) suppose
we have a long chain of jobs of equal size in the DAG G. Then the LP allows us to process
all these jobs at the same rate in parallel on multiple machines. We augment the LP lower
bound with another quantity and show that the sum of these two lower bounds suffice.

A chain C in G is a sequence of jobs j1, . . . , jk such that j1 ≺ j2 ≺ . . . ≺ jk. Define
the processing time of C, p(C), as the sum of the processing time of jobs in C. For a
job j, define chainj as the maximum over all chains C ending in j of p(C). It is easy to
see that

∑
j wj · (rj + chainj) is a lower bound (up to a factor 2) on the objective of an

optimal schedule.
We now write down the dual of the LP relaxation above. We have dual variables αj for

every job j, and βt for every time t, and γs,j→j′

max
∑

j

αj −m
∑

t

βt (DLP)

αj − wj · t+
∑
s≥t

(∑
j≺j′

γs,j→j′ −
∑
j′≺j

γs,j′→j

)
≤ pj · βt ∀j, t ≥ rj (9)

αj , βt ≥ 0

We write the dual constraint (9) in a more readable manner. For a job j and time s, let
γins,j denote

∑
j′≺j γs,j′→j , and define γouts,j similarly. We now write the dual constraint (9) as

αj − wj · t+
∑
s≥t

(
γouts,j − γins,j

)
≤ pj · βt ∀j, t ≥ rj (10)

2.3 Properties of the Convex Program
We now prove certain properties of an optimal solution (z̄t, L̄t, R̄t) to the convex program (CP).
The first property, whose proof is deferred to the full version, is easy to see:

B Claim 2.2. If
∑

j∈It
L̄t

j < m, then L̄t
j = 1 for all j ∈ It.

We now write down the KKT conditions for the convex program. (In fact, we can use (1)
and (2) to replace L̄t

j and R̄t
j in the objective and the other constraints.) Then letting

θt
j ≥ 0, ηt ≥ 0, νt

e ≥ 0 be the Lagrange multipliers corresponding to constraints (3), (4)
and (5), we get

wj

R̄t
j

= θt
j′ + ηt − νt

e ∀e = (j′, j), j′ ∈ It, j ∈ Jt (11)

θt
j (L̄t

j − 1) = 0 ∀j ∈ It (12)
ηt (
∑

j∈It
L̄t

j −m) = 0 (13)

νt
e · z̄t

e = 0 ∀e ∈ Et (14)

We derive a few consequences of these conditions, the proofs are deferred to the full
version.
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B Claim 2.3. Consider a job j ∈ Jt on the right side of Ht. Then wj ≥ R̄t
j · ηt.

B Claim 2.4. Consider a job j ∈ Jt on the right side of Ht. Suppose j has a neighbor j′ ∈ It

such that L̄t
j′ < 1 and z̄t

j′j > 0. Then wj = R̄t
j · ηt.

A crucial notion is that of an active job:

I Definition 2.5 (Active Jobs). A job j ∈ Jt is active at time t if it has at least one neighbor
in It (in the graph Ht) running at rate strictly less than 1.

Let Jactt denote the set of active jobs at time t. We can strengthen the above claim
as follows.

I Corollary 2.6. Consider an active job j at time t. Then wj = R̄t
j · ηt.

B Claim 2.7. w(Jactt )/m ≤ ηt ≤ w(Jt)/m.

2.4 Analysis via Dual Fitting
We analyze the algorithm A first. We define feasible dual variables for (DLP) such that the
value of the dual objective function (along with the chainj values that capture the maximum
processing time over all chains ending in j) forms a lower bound on the weighted completion
time of our algorithm. Intuitively, αj would be the weighted completion time of j, and βt

would be 1/2m times the total weight of unfinished jobs at time t. Thus,
∑

j αj −m
∑

t βt

would be at 1/2 times the total weighted completion time. This idea works as long as all
the machines are busy at any point of time, the reason being that the primal LP essentially
views the m machines as a single speed-m machine. Therefore, we can generate enough dual
lower bound if the rate of processing in each time slot is m. If all machines are not busy, we
need to appeal to the lower bound given by the chainj values.

We use the notation used in the description of the algorithm. In the graph Ht, we had
assigned rates L̄t

j to all the nodes j in It. Recall that a vertex j ∈ Jt on the right side of Ht

is said to be active at time t if it has a neighbor j′ ∈ It for which L̄t
j′ < 1. Otherwise, we say

that j is inactive at time t. We say that an edge e = (jl, jr) ∈ Et, where jl ∈ It, jr ∈ Jt is
active at time t if the vertex jr is active. Let At denote the set of active edges in Et. Let
e = (jl, jr) be an edge in Et. By definition, there is a path from jl to jr in Gt – we fix such
a path Pe. As before, let Cj denote the completion time of job j. The dual variables are
defined as follows:

For each job j and time t, we define quantities αj,t. The dual variable αj would be equal
to
∑

t≥0 αj,t. Fix a job j. If t /∈ [rj , Cj ] we set αj,t to 0. Now, suppose j ∈ Jt. Consider
the job j as a vertex in Jt (i.e., right side) in the bipartite graph Ht. We set αj,t to wj if
j is active at time t, otherwise it is inactive.
For each time t, we set β to 1/2m · w(Ut) (Recall that Ut is the set of unfinished jobs at
time t).
We now need to define γt,j′→j , where j′ ≺ j. If j or j′ does not belong to Jt, we set this
variable to 0. So assume that j, j′ ∈ Jt (and so the edge (j′, j) lies in Gt). We define

γt,j′→j := ηt ·
∑

e:e∈At,(j′→j)∈Pe

z̄t
e.

In other words, we consider all the active edges e in the graph Ht for which the cor-
responding path Pe contains (j′, j). We add up the fractional assignment z̄t

e for all
such edges.
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This completes the description of the dual variables.
We first show that the objective function for (DLP) is close to the weighted completion

time incurred by the algorithm. The proof is deferred to the full version.

B Claim 2.8. The total weighted completion time of the jobs in A is at most 2(
∑

j αj −m ·∑
t βt) +

∑
j wj · (chainj + 2rj).

We now argue about feasibility of the dual constraint (9). Consider a job j and time
t ≥ rj . Since αj,s ≤ wj for all time s,

∑
s≤t αj,s ≤ wj · t. Therefore, it suffices to show:∑

s≥t

αj,s +
∑
s≥t

(
γouts,j − γins,j

)
≤ pj · βt (15)

Let t?j be the first time t when the job j appears in the set It. This would also be the
first time when the algorithm starts processing j because a job that enters It does not leave
It before completion.

B Claim 2.9. For any time s lying in the range [rj , t
?
j ), αj,s + γouts,j − γins,j = 0.

Proof. Fix such a time s. Note that j /∈ Is. Thus j appears as a vertex on the right side in
the bipartite graph Hs, but does not appear on the left side. Let e be in active edge in Hs

such that the corresponding path Pe contains j as an internal vertex. Then z̄s
e gets counted

in both γouts,j and γins,j . There cannot be such a path Pe which starts with j, because then j
will need to be on the left side of the bipartite graph. There could be paths Pe which end
with j – these will correspond to active edges e incident with j in the graph Ht (this happens
only if j itself is active). Let Γ(j) denote the edges incident with j. We have shown that

γouts,j − γins,j = −ηt ·
∑

e∈Γ(j)∩As

z̃s
e . (16)

If j is not active, the RHS is 0, and so is αj,s. So we are done. Therefore, assume that j is
active. Now, A(s) contains all the edges incident with j, and so, the RHS is same as −ηt · R̄t

j .
But then, Corollary 2.6 implies that −ηt · R̄t

j = −wj . Since αj,s = wj , we are done again. C

Coming back to inequality (15), we can assume that t ≥ t?j . To see this, suppose t < t?j .
Then by Claim 2.9 the LHS of this constraint is same as∑

s≥t?
j

αj,s +
∑
s≥t?

j

(
γouts,j − γins,j

)
.

Since βt ≥ βt?
j
(the set of unfinished jobs can only diminish as time goes on), (15) for time t

follows from the corresponding statement for time t?j . Therefore, we assume that t ≥ t?j . We
can also assume that t ≤ Cj , otherwise the LHS of this constraint is 0.

B Claim 2.10. Let s ∈ [t?j , Cj ] be such that j is inactive at time s. Then αj,s + γouts,j − γins,j ≤
ηs · L̄s

j .

Proof. We know that αj,s = 0. As in the proof of Claim 2.9, we only need to worry about
those active edges e in Hs for which Pe either ends at j or begins with j. Since any edge
incident with j as a vertex on the right side is inactive, we get (let Γ(j) denote the edges
incident with j, where we consider j on the left side)

αj,s + γouts,j − γins,j = ηs ·
∑

e∈Γ(j)∩A(s)

z̄s
e ≤ ηs · L̄s

j ,

because ηs ≥ 0 and L̄s
j =

∑
e∈Γ(j) z̄

s
e . C
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B Claim 2.11. Let s ∈ [t?j , Cj ] be such that j is active at time s. Then αj,s + γouts,j − γins,j ≤
ηs · L̄s

j .

Proof. The argument is very similar to the one in the previous claim. Since j is active,
αj,s = wj . As before we only need to worry about the active edges e for which Pe either
ends or begins with j. Any edge which is incident with j on the right side (note that there
will only one such edge – one the one joining j to its copy on the left side of Ht) is active.
The following inequality now follows as in the proof of Claim 2.10:

αj,s + γouts,j − γins,j ≤ wj + ηs · L̄s
j − ηs · R̄s

j .

The result now follows from Corollary 2.6. C

We are now ready to show that (15) holds. The above two claims show that the LHS
of (15) is at most

∑Cj

s=t η
s · L̄s

j . Note that for any such time s, the rate assigned to j is L̄j
s,

and so, we perform 2 · L̄j
s amount of processing on j during this time slot. It follows that∑Cj

s=t L̄
s
j ≤ pj/2. Now Claim 2.7 shows that ηs ≤ w(Us)/m ≤ w(Ut)/m, and so we get

Cj∑
s=t

ηs · L̄s
j ≤

pj · w(Ut)
2m = pj · βt.

This shows that (15) is satisfied. We can now prove our algorithm is constant competitive.

I Theorem 2.12. The algorithm B is 10-competitive.

Proof. We first argue about A. We have shown that the dual variables are feasible to (DLP),
and so, Claim 2.8 shows that the total completion time of A is at most 2opt +

∑
j wj(chainj +

2rj), where opt denotes the optimal off-line objective value. Clearly, opt ≥
∑

j wj · rj and
opt ≥

∑
j wj · chainj . This implies that A is 5-competitive. While going from A to B the

completion time of each job doubles. J

3 Minimizing Weighted Flow Time

We now consider the setting of minimizing the total weighted flow time, again in the non-
clairvoyant setting. The setting is almost the same as in the completion-time case: the major
change is that all jobs which depend on each other (i.e., belong to the same DAG in the
“collection of DAGs view” have the same release date). In the full version we show that if
related jobs can be released over time then no competitive online algorithms are possible.

As before, let Jt denote the jobs which are waiting at time t, i.e., which have been released
but not yet finished, and let Gt be the union of all the DAGs induced by the jobs in Jt.
Again, let It denote the minimal set of jobs in Jt, i.e., which do not have a predecessor in Gt

and hence can be scheduled.

I Theorem 3.1. There exists an O(1/ε)-approximation algorithm for non-clairvoyant DAG
scheduling to minimize the weighted flow time on m parallel machines, when there is a speedup
of 2 + ε.

The rest of this section gives the proof of Theorem 3.1. The algorithm remains unchanged
from §2 (we do not need the algorithm B now): we write the convex program (CP) as before,
which assign rates L̄t

j to each job j ∈ It. The analysis again proceeds by writing a linear



N. Garg, A. Gupta, A. Kumar, and S. Singla 63:11

programming relaxation, and showing a feasible dual solution. The LP is almost the same
as (LP), just the objective is now (with changes in dashed box):

∑
j,t

wj ·
(t− rj) · xj,t

pj
.

Hence, the dual is also almost the same as (DLP): the new dual constraint requires that for
every job j and time t ≥ rj :

αj +
∑
s≥t

(
γouts,j − γins,j

)
≤ βt · pj + wj (t− rj) . (17)

3.1 Defining the Dual Variables
In order to set the dual variables, define a total order ≺ on the jobs as follows: First arrange
the DAGs in order of release dates, breaking ties arbitrarily. Let this order be D1, D2, . . . , D`.
All jobs in Di appear before those in Di+1 in the order ≺. Now for each dag Di, arrange
its jobs in the order they complete processing by our algorithm. Note that this order is
consistent with the partial order given by the DAG. This also ensures that at any time t, the
set of waiting jobs in any DAG Di form a suffix in this total order (restricted to Di).

For a time t and j ∈ Jt, let I[j ∈ Jactt ] denote the indicator variable which is 1 exactly if
j is active at time t. The dual variables are defined as follows:

For a job j ∈ Jt, we set αj :=
∑Cj

t=rj
αj,t, where the quantity αj,t as defined as:

αj,t := 1
m

[
wj · I[j ∈ Jactt ] ·

( ∑
j′∈Jt:j′�j

R̄t
j′

)
+ R̄t

j ·
( ∑

j′∈Jact
t :j′≺j

wj′

)]
.

The variable βt := w(Jt)
(1+ε)m . Recall that the machines are allowed 2(1 + ε)-speedup.

The definition of the γ variables changes as follows. Let (j′ → j) be an edge in the DAG
Gt. Earlier we had considered paths Pe containing (j′ → j) only for the active edges
e. But now we include all edges. Moreover, we replace the multiplier ηt by ηt

j , where
ηt

j := 1
m ·
(∑

j′∈Jt:j′�j wj′

)
. In other words, we define

γt,j′→j := ηt
j ·

∑
e:e∈Ht,(j′→j)∈Pe

z̄t
e.

In the following sections, we show that these dual settings are enough to “pay for” the flow
time of our solution (i.e., have large objective function value), and also give a feasible lower
bound (i.e., are feasible for the dual linear program).

3.2 The Dual Objective Function
We first show that

∑
j αj −m

∑
t βt is close to the total weighted flow-time of the jobs. The

quantity chainj is defined as before. Notice that chainj is still a lower bound on the flow-time
of job j in the optimal schedule because all jobs of a DAG are simultaneously released. The
following claim, whose result is deferred to the full version, shows that the dual objective
value is close to the weighted flow time of the algorithm.

B Claim 3.2. The total weighted flow-time is at most 2
ε

(∑
j αj −m

∑
t βt +

∑
j wj · chainj

)
.
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3.3 Checking Dual Feasibility
Now we need to check the feasibility of the dual constraint (17). In fact, we will show the
following weaker version of that constraint:

αj + 2
∑
s≥t

(
γouts,j − γins,j

)
≤ βt · pj + 2 wj(t− rj). (18)

This suffices to within another factor of 2: indeed, scaling down the α and β variables by
another factor of 2 then gives dual feasibility, and loses only another factor of 2 in the
objective function. We begin by bounding αj,s in two different ways.

I Lemma 3.3. For any time s ≥ rj, we have αj,s ≤ 2wj.

Proof. Consider the second term in the definition of αj,s. This term contains
∑

j′∈Jact
s :j′≺j wj′ .

By Corollary 2.6, for any j′ ∈ Jacts we have wj′ = R̄s
j′ · ηs. Therefore,∑

j′∈Jact
s :j′≺j

wj′ ≤ ηs ·
∑

j′∈Jact
s :j′≺j

R̄s
j′ ≤ ηs ·

∑
j′∈Js

R̄s
j′ .

Now we can bound αj,s by dropping the indicator on the first term to get

1
m
·
[(
wj ·

∑
j′∈Js:j′�j

R̄s
j′

)
+ R̄s

j ·
(
ηs ·

∑
j′∈Jact

s :j′≺j

R̄s
j′

)]
≤ 1

m
wj

[ ∑
j′∈Js

R̄s
j′ +

∑
j′∈Js

R̄s
j′

]
,

the last inequality using Claim 2.3. Simplifying, αj,s ≤ 2
m · wj ·

∑
j′′∈Is

L̄s
j′′ = 2wj . J

Here is a slightly different upper bound on αj,s.

I Lemma 3.4. For any time s ≥ rj, we have αj,s ≤ 2ηs
j · R̄s

j .

Proof. The second term in the definition of αj,s is at most ηs
j · R̄s

j , directly using the
definition of ηs

j . For the first term, assume j is active at time s, otherwise this term is 0.
Now Corollary 2.6 shows that wj = ηs · R̄s

j , so the first term can be bounded as follows:

wj

m
·
∑

j′∈Js:j′�j

R̄s
j′ =

R̄s
j · ηs

m
·
∑

j′∈Js:j′�j

R̄s
j′

(Claim 2.3)
≤

R̄s
j

m
·
∑

j′∈Js:j′�j

wj′ = R̄s
j ·ηs

j ,

which completes the proof. J

To prove (18), we write αj =
∑t−1

s=rj
αj,s +

∑
s≥t αj,s, and use Lemma 3.3 to cancel the

first summation with the term 2wj(t− rj). Hence, it remains to prove∑
s≥t

αj,s + 2
∑
s≥t

(
γouts,j − γins,j

)
≤ βt · pj . (19)

Let t?j be the time at which the algorithm starts processing j. We first argue why we can
ignore times s < t?j on the LHS of (19).

B Claim 3.5. Let s be a time satisfying rj ≤ s < t?j . Then αj,s + 2(γouts,j − γins,j) ≤ 0.

Proof. While computing γouts,j − γins,j , we only need to consider paths Pe for edges e in Hs

which have j as end-point. Since j does not appear on the left side of Hs, this quantity is
equal to −ηs

j · R̄s
j . The result now follows from Lemma 3.4. C
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So using Claim 3.5 in (19), it suffices to show∑
s≥max{t,t?

j
}

αj,s + 2
∑

s≥max{t,t?
j
}

(
γouts,j − γins,j

)
≤ βt · pj . (20)

Note that we still have βt on the right hand side, even though the summation on the left is
over times s ≥ max{t, t?j}. The proof of the following claim is deferred to the full version.

B Claim 3.6. Let s be a time satisfying s ≥ max{t, t?j}. Then αj,s + 2(γouts,j − γins,j) ≤
2(1 + ε)βt · L̄s

j .

Hence, the left-hand side of (20) is at most 2(1 + ε)βt ·
∑

s≥max{t,t?
j
} L̄

s
j . However, since

job j is assigned a rate of L̄s
j and the machines run at speed 2(1 + ε), we get that this

expression is at most pj · βt, which is the right-hand side of (20). This proves the feasibility
of the dual constraint (18).

Proof of Theorem 3.1. In the preceding §3.3 we proved that the variables αj/2, βt/2 and
γt,j′→j satisfy the dual constraint for the flow-time relaxation. Since

∑
j(αj/2)−m

∑
t(βt/2)

is a feasible dual, it gives a lower bound on the cost of the optimal solution. Moreover,∑
j wj · chainj is another lower bound on the cost of the optimal schedule. Now using the

bound on the weighted flow-time of our schedule given by Claim 3.2, this shows that we have
an O(1/ε)-approximation with 2(1 + ε)-speedup. J

In the full version we show how to use a slightly different scheduling policy that prioritizes
the last arriving jobs to reduce the speedup to (1 + ε).
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Abstract
For any relation f ⊆ {0, 1}n × S and any partial Boolean function g : {0, 1}m → {0, 1, ∗}, we
show that

R1/3(f ◦ gn) ∈ Ω(R4/9(f) ·
√

R1/3(g)),

where Rε(·) stands for the bounded-error randomized query complexity with error at most ε, and
f ◦ gn ⊆ ({0, 1}m)n × S denotes the composition of f with n instances of g.

The new composition theorem is optimal, at least, for the general case of relational problems:
A relation f0 and a partial Boolean function g0 are constructed, such that R4/9(f0) ∈ Θ

(√
n
)
,

R1/3(g0) ∈ Θ(n) and R1/3(f0 ◦ gn0 ) ∈ Θ(n).
The theorem is proved via introducing a new complexity measure, max-conflict complexity,

denoted by χ̄(·). Its investigation shows that χ̄(g) ∈ Ω(
√

R1/3(g)) for any partial Boolean function
g and R1/3(f ◦ gn) ∈ Ω(R4/9(f) · χ̄(g)) for any relation f , which readily implies the composition
statement. It is further shown that χ̄(g) is always at least as large as the sabotage complexity of g.
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1 Introduction

For a relational problem f ⊆ {0, 1}n×S and a partial Boolean function g : {0, 1}m → {0, 1, ∗},
their composition f ◦ gn ⊆ ({0, 1}m)n × S is defined as

f ◦ gn(x) =
{
S if ∗ ∈

{
g(xi)

∣∣i ∈ [n]
}
;

f(g(x1), . . . , g(xn)) otherwise.

Relating the complexity of f ◦ gn to the complexities of f and g is a natural research problem.
A query algorithm for computing h is allowed to query individual bits of the input x, with

the goal of outputting h(x) (or an element of h(x) if the problem is a relational one). The
query complexity of an algorithm is the maximum possible number of queries that it makes.

Query algorithms can be deterministic, randomized or quantum, where the latter two
classes allow for (bounded) errors. The corresponding query complexity of a function –
denoted, respectively, by D(h), R(h) or Q(h) – is the minimal query complexity of an
algorithm that belongs to the corresponding class and computes h with error 1/31. Section 2
contains formal definitions of various query complexity measures.

It is easy to see that D(f ◦ gn) ≤ D(f) ·D(g). 2 For the cases of randomized and quantum
query complexity the argument is slightly more subtle, though very similar conceptually; in
particular, both R(f ◦ gn) ∈ O(R(f) · R(g) · logn) and Q(f ◦ gn) ∈ O(Q(f) · Q(g)) hold. 3

Showing a strong lower bounds on the query complexity of f ◦gn (preferably, matching the
trivial upper bound) is often more interesting, the corresponding statements are sometimes
called composition theorems. Such results can lead to further theoretical developments (e.g.,
separating complexity measures, as well as different classes in structural complexity).

For deterministic query complexity it has been shown [10, 13] that

D(f ◦ gn) = D(f) · D(g),

which means that the trivial query algorithm for f ◦ gn described above is optimal. Similarly,
for bounded-error quantum query complexity it has been shown [8, 11] that

Q(f ◦ gn) ∈ Θ(Q(f) · Q(g)).

Prior to this work, the randomized query complexity of composition has remained an
open problem. We partially solve it for the most general case of composition: namely, letting
f be a relational problem and g be a partial Boolean function. 4

1 In general, Rε(h) (resp. Qε(h)) stands for the randomized (resp. quantum) query complexity with
respect to error ε.

2 To compute f ◦ gn, one can simulate an optimal query algorithm for f , serving every query of this
algorithm by running an optimal query algorithm for g.

3 The multiplicative factor of logn in the case of R(h) is due to the need to reduce the error in computing
each instance of g to O(1/n); in the quantum case this can be handled in a more elegant, “lossless” way.

4 Letting g be a relation seems to result in a rather awkward definition of f ◦ gn. Letting g be a
non-Boolean promise function doesn’t seem to lead to any interesting development (the original version
of this work [5] has demonstrated the same composition result for an arbitrary partial g; switching to
the Boolean case in the current version has allowed somewhat clearer presentation).



D. Gavinsky, T. Lee, M. Santha, and S. Sanyal 64:3

I Theorem 1. For any relation f ⊆ {0, 1}n × S and any partial Boolean function g :
{0, 1}m → {0, 1, ∗},

R1/3(f ◦ gn) ∈ Ω
(

R4/9(f) ·
√

R1/3(g)
)
.

Note that the above lower bound does not match the trivial upper bound, so its optimality
has to be addressed separately. That is done via constructing an example where the above
bound is tight: in other words, while some incomparable lower bounds on R1/3(f ◦ gn) are
conceivable, the statement of Theorem 1 is a strongest possible in general. 5

I Theorem 2. There exists a relation f0 ⊆ {0, 1}n × {0, 1}n and a partial Boolean function
g0 : {0, 1}n → {0, 1, ∗}, such that

R4/9(f0) ∈ Θ
(√
n
)
, R1/3(g0) ∈ Θ(n) and R1/3(f0 ◦ gn0 ) ∈ Θ(n).

Our approach
We introduce a new complexity measure of Boolean functions, the max-conflict complexity,
denoted by χ̄(g). We show that χ̄(g) is a quadratically tight lower bound on randomized
query complexity of a (partial) function g.
I Theorem 3. For any partial Boolean function g : {0, 1}m → {0, 1, ∗},

χ̄(g) ∈ Ω
(√

R1/3(g)
)
.

The main technical ingredient of this work is the following composition statement for the
max-conflict complexity.
I Theorem 4. For any relation f ⊆ {0, 1}n × S and any partial Boolean function g :
{0, 1}m → {0, 1, ∗},

R1/3(f ◦ gn) ∈ Ω
(
R4/9(f) · χ̄(g)

)
.

Combining Theorem 3 with Theorem 4 implies Theorem 1.

Previous work
In the special case of f being a partial function and g being a total one, a significant progress
has been made by Ben-David and Kothari [4], who showed recently that

R1/3(f ◦ gn) ∈ Ω
(
R1/3(f) ·

√
R0(g)

logR0(g)

)
. (1)

To prove the above statement, the authors have introduced and investigated a new
complexity measure of Boolean functions, sabotage complexity, denoted by RS(g). This
notion has a very natural definition and is of independent interest. In this work we show
that max-conflict complexity is always lower-bounded by the sabotage complexity of the
same function.
I Theorem 5. For any partial Boolean function g : {0, 1}m → {0, 1, ∗},

χ̄(g) ≥ RS(g).

Theorem 5 along with Theorem 4 imply (1).

5 The following construction also witnesses the possibility of R(f ◦ gn) ∈ O(R(g)) when R(f) ∈ Ω
(√

n
)

– in other words, it is not, in general, true, that composition with a “hard” relation makes a Boolean
function harder for randomized query algorithms.

ICALP 2019
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1.1 Proof Technique
At a high level, the proof of Theorem 4 follows the structure of the proof by Anshu et al.
[2] and Ben-David and Kothari [4]. We show that for every probability distribution η over
the input space {0, 1}n of f , there exists a deterministic query algorithm A that makes
O(R1/3(f ◦ gn)/

√
R1/3(g)) queries in the worst case, and computes f with high probability,

Prz∼η[(z,A(z)) ∈ f ] ≥ 5/9. By the minimax principle (Fact 4) this implies Theorem 4.
We do this by using a query algorithm for f ◦ gn to construct a query algorithm for f .

We define a sampling procedure that for any z ∈ {0, 1}n samples x = (x1, . . . , xn) such that
(z, s) ∈ f if and only if (x, s) ∈ f ◦ gn. This procedure is defined in terms of Q, which is a
probability distribution over pairs of distributions (µ0, µ1), where µ0 is supported on g−1(0)
and µ1 is supported on g−1(1). We define a distribution γη over ({0, 1}m)n in terms of this
sampling process as follows:
1. Sample z = (z1, . . . , zn) from {0, 1}n according to η.
2. Independently sample (µ(i)

0 , µ
(i)
1 ) from Q for i = 1, . . . , n.

3. Sample xi = (x(1)
i , . . . , x

(m)
i ) according to µ(i)

zi for i = 1, . . . , n. Return x = (x1, . . . , xn).
Notice that steps (1) and (2) are independent and the order in which they are performed
does not matter. For future reference, for a fixed z let γz(Q) be the probability distribution
defined by the last two steps.

Now γη is simply a probability distribution over ({0, 1}m)n. Thus by the minimax
principle (Fact 4 below), there is a deterministic query algorithm A′ of worst-case complexity
at most R1/3(f ◦gn) such that Prx∼γη [(x,A′(x)) ∈ f ◦gn] ≥ 2/3. We first use A′ to construct
a randomized query algorithm T for f with bounded expected query complexity and error
at most 1/3. The final algorithm A will be a truncation of T which has bounded worst-case
complexity and error at most 4/9.

On input z, the algorithm T seeks to sample a string x from γz(Q), and run A′ on x.
Put another way, γz(Q) induces a probability distribution over the leaves of A′, and the
goal of T is to sample a leaf of A′ according to this distribution. Since for each s ∈ S,
(x, s) ∈ f ◦ gn if and only if (z, s) ∈ f , and Prx∼γη [(x,A′(x)) ∈ f ◦ gn] ≥ 2/3, we have that
Prz∼η[(z, T (z)) ∈ f ] ≥ 2/3. Thus T meets the accuracy requirement.

The catch, of course, is to specify how T samples from γz(Q) without making too many
queries to z. To sample xi from µ

(i)
zi seems to require knowledge of zi, and thus T would

have to query all of z.
To bypass this problem, we remember that A′, being an efficient algorithm, will query

only a few bits of x. This allows us to sample x bit by bit as and when they are queried
by A′. To see this more clearly, consider a run of T where the pairs of distributions
(µ(1)

0 , µ
(1)
1 ), . . . , (µ(n)

0 , µ
(n)
1 ) were chosen in step (2) of the sampling procedure. Suppose that

T is trying to simulate A′ at a vertex v where x(j)
i is queried. To respond to this query, T

will sample x(j)
i from its marginal distribution according to µ(i)

zi conditioned on the event
x ∈ v. Let the following be the marginal distributions of x(j)

i for the two possible values of zi.

Pr
xi∼µ(i)

zi

[x(j)
i = 0 | x ∈ v] Pr

xi∼µ(i)
zi

[x(j)
i = 1 | x ∈ v]

zi = 0 p0 1− p0
zi = 1 p1 1− p1

Without loss of generality, assume that p0 ≤ p1. T answers the query by the procedure
Bitsampler given in Algorithm 1. Note that the bit returned by Bitsampler has the
desired distribution. The step in which Bitsampler returns the bit depends on the value
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Algorithm 1: Bitsampler (suppose p0 ≤ p1).
1 Sample r ∼ [0, 1] uniformly at random.
2 if r < p0 then
3 return 0.
4

5 else if r > p1 then
6 return 1.
7

8 else
9 query zi.

10 if r ≤ pzi then
11 return 0.
12 else
13 return 1.

of r sampled in step 1. In particular, zi is queried if and only if r ∈ [p0, p1], and the bit is
returned in step 11 or 13. Such a query to zi contributes to the query complexity of T . Thus
the probability that T makes a query when the underlying simulation of A′ is at vertex v is
(p1 − p0). We refer to this quantity as ∆(v). It plays an important role in our analysis (in
particular, in the proof of Theorem 6 that can be found in [6]).

Our sampling procedure and the tools we use to bound its cost is reminiscent of work
of Barak et al. [3] in communication complexity. They look at a communication analog of
our setting where two players are trying to sample a leaf in a communication protocol while
communicating as little as possible.

1.1.1 Conflict complexity and max-conflict complexity

Bounding the query complexity of T naturally suggests the quantities that we define in this
work: the conflict complexity χ(g) and the max-conflict complexity χ̄(g) of a partial Boolean
function g. A formal definition can be found in Section 4; here we give the high-level idea
and motivation behind these quantities.

Forget about T for a moment and just consider a deterministic query algorithm B
computing the partial function g ⊆ {0, 1}m × {0, 1}. Let µ0, µ1 be distributions with
support on g−1(0), g−1(1), respectively. For each vertex v ∈ B let p0(v) (respectively p1(v))
be the probability that the answer to the query at v is 0 on input x ∼ µ0 (respectively
x ∼ µ1), conditioned on x reaching v. Now we can imagine a process P(B, µ0, µ1) that runs
BITSAMPLER on the tree B: P(B, µ0, µ1) begins at the root, and at a vertex v in B it
uniformly chooses a random real number r ∈ [0, 1]. If r < min{p0(v), p1(v)} then the query
is “answered” 0 and it moves to the left child. If r > max{p0(v), p1(v)} then the query is
“answered” 1 and it moves to the right child. If r ∈ [min{p0(v), p1(v)},max{p0(v), p1(v)}]
then the process halts. The conflict complexity χ(B, (µ0, µ1)) is the expected number of
vertices this process visits before halting. The conflict complexity of g is defined to be

χ(g) = max
(µ0,µ1)

min
T
χ(T, (µ0, µ1)) ,

ICALP 2019
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where the minimum is taken over trees T that compute g. For max-conflict complexity we
enlarge the set over which we maximize. Let Q be a distribution over pairs of distributions
(µ0, µ1), where supp(µ0) ⊆ g−1(0), supp(µ1) ⊆ g−1(1) for each pair (µ0, µ1) in the support of
Q. Let χ(B,Q) = E(µ0,µ1)∼Q [χ(B, (µ0, µ1))]. The max-conflict complexity χ̄(g) is defined as

χ̄(g) = max
Q

min
T
χ(T,Q) ,

where the minimum is taken over trees T that compute g. Clearly, the max-conflict complexity
is at least as large as the conflict complexity.

To motivate the max-conflict complexity, note that the query complexity of T is the
number of times step 9 in Bitsampler is executed, i.e. when the random number r ∈ [p0, p1].
In the definition of T we will choose Q to achieve the optimal value in the definition of
χ̄(g). Then intuitively one expects that for each i, T queries zi only after A′ makes about
χ̄(g) queries into xi. By means of a direct sum theorem for max-conflict complexity we
make this intuition rigorous and prove that the expected query complexity of T is at most
R1/3(f ◦ gn)/χ̄(g). We refer the reader to [6] for a formal proof.

1.1.2 χ̄(g) and R(g)
Note that applying Theorem 4 with the outer function f(z) = z1 shows that R1/3(g) ∈ Ω(χ̄(g)).
We complete the proof of Theorem 1 by showing that max-conflict complexity is a quadratically
tight lower bound on randomized query complexity, even for partial functions g. In fact, we
show the stronger result that this is true even for the conflict complexity.

I Theorem 6. For any partial Boolean function g ⊆ {0, 1}m × {0, 1},

χ(g) ∈ Ω
(√

R1/3(g)
)
.

A proof of Theorem 6 can be found in [6]. At a high level, our proof is reminiscent of the
result of [3] on compressing communication protocols in that both look at a random sampling
process to navigate a tree, and relate the probability of this process needing to query or
communicate at a node to the amount of information that is learned at the node.

To prove R(g) ∈ O(χ(g)2), we again resort to the minimax principle; we show that for
each probability distribution µ over the valid inputs to g, there is an accurate and efficient
distributional query algorithm for g. For b ∈ {0, 1}, let µb be the distribution obtained by
conditioning µ on the event g(x) = b. By the definition of χ(g), there is a query algorithm B
such that the following is true: if its queries are served by Bitsampler, step 9 is executed
within expected χ(B, µ0, µ1) ≤ χ(g) queries. Note that at a vertex v which queries i, the
probability that step 9 is executed is ∆(v) = |Prµ0 [xi = 0 | x at v]− Prµ1 [xi = 0 | x at v]|.
This roughly implies that for a typical vertex v of B, ∆(v) is at least about 1

χ(g) . By a technical
claim this implies that the query outcome at v carries about 1

χ(g)2 bits of information about
g(x). Using the chain rule of mutual information, we can show that the mutual information
between g(x) and the outcomes of first O(χ(g))2 queries by B is Ω(1). This enables us to
conclude that we can infer the value of g(x) with success probability 1/2 + Ω(1) from the
transcript of B restricted to the first O(χ(g)2) queries. The distributional algorithm of g for
µ is simply the algorithm B terminated after O(χ(g)2) queries.

1.1.3 χ̄(g) and RS(g)
To see why χ̄(g) ≥ RS(g), we first give an alternative characterization of RS(g). For a
deterministic tree T computing g and strings x, y such that g(x) 6= g(y), let sepT (x, y) be
the depth of the node v in T such that x and y both reach v yet xq(v) 6= yq(v), where q(v)
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is the index queried at v. Let T be a zero-error randomized protocol for g, i.e. T is a
probability distribution supported on deterministic trees that compute g. Then we have (for
a proof see [6])

RS(g) = min
T

max
x,y

g(x)6=g(y)

ET∼T [sepT (x, y)] .

By von Neumann’s minimax theorem [14], this is equal to

RS(g) = max
p

min
T

E(x,y)∼p[sepT (x, y)] .

Here, the max is taken over distributions p on pairs (x, y) where g(x) 6= g(y), and the min is
taken over deterministic trees T computing g.

We have seen that the definition of χ̄(g) is

χ̄(g) = max
Q

min
T

E(µ0,µ1)∼Q [χ(T, (µ0, µ1))] ,

where Q is a distribution over pairs (µ0, µ1) and T is a deterministic tree computing g.
When (µ0, µ1) are taken to be singleton distributions, i.e. µ0 puts all its weight on a single
x with g(x) = 0, and µ1 puts all its weight on a single y with g(y) = 1, it can be shown
that χ(T, (µ0, µ1)) = sepT (x, y) (see [6] for details). Thus χ̄(g) is at least as large as the
sabotage complexity of g as Q is allowed to be a distribution over general (µ0, µ1), not just
singleton distributions.

2 Preliminaries

Let g ⊆ {0, 1}m×{0, 1} be a partial Boolean function. For b ∈ {0, 1}, g−1(b) is defined to be
the set of strings x in {0, 1}m for which (x, b) ∈ g and (x, b) /∈ g. We refer to g−1(0)∪ g−1(1)
as the set of valid inputs to g. We assume that for all strings y /∈ g−1(0)∪ g−1(1), both (y, 0)
and (y, 1) are in g. For a string x ∈ g−1(0)∪ g−1(1), g(x) refers to the unique bit b such that
(x, b) ∈ g. All the probability distributions µ over the domain of a partial Boolean function g
in this paper are assumed to have support on g−1(0) ∪ g−1(1). Thus g(x) is well-defined for
any x in the support of µ.

Let S be any set. Let h ⊆ {0, 1}k × S be any relation. Consider query algorithms A that
accept a string x ∈ {0, 1}k as input, query various bits of x, and produce an element of S as
output. We denote the output by A(x).

I Definition 1 (Deterministic query complexity). A deterministic query algorithm A is said
to compute h if (x,A(x)) ∈ h for all x ∈ {0, 1}k. The deterministic query complexity D(h)
of h is the minimum over all deterministic query algorithms A computing h of the maximum
number of queries made by A over x ∈ {0, 1}k.

I Definition 2 (Bounded-error randomized query complexity). Let ε ∈ [0, 1/2). We say that
a randomized query algorithm A computes h with error ε if Pr[(x,A(x)) ∈ h] ≥ 1 − ε for
all x ∈ {0, 1}k. The bounded-error randomized query complexity Rε(h) of h is the minimum
over all randomized query algorithms A computing h with error ε of the maximum number
of queries made by A over all x ∈ {0, 1}k and the internal randomness of A.

I Definition 3 (Distributional query complexity). Let µ a distribution on the input space
{0, 1}k of h, and ε ∈ [0, 1/2). We say that a deterministic query algorithm A computes h
with distributional error ε on µ if Prx∼µ[(x,A(x)) ∈ h] ≥ 1 − ε. The distributional query
complexity Dµ

ε (h) of h is the minimum over deterministic algorithms A computing h with
distributional error ε on µ of the maximum over x ∈ {0, 1}k of the number of queries made
by A on x.
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We will use the minimax principle in our proofs to go between distributional and ran-
domized query complexity.

I Fact 4 (Minimax principle). For any integer k > 0, set S, and relation h ⊆ {0, 1}k × S,

Rε(h) = max
µ

Dµε (h).

A proof of Fact 4 can be found in [6].
Let µ be a probability distribution over {0, 1}k. We use supp(µ) to denote the support

of µ. By x ∼ µ we mean that x is a random string drawn from µ. Let C ⊆ {0, 1}k be an
arbitrary set such that Prx∼µ[x ∈ C] =

∑
y∈C µ(y) > 0. Then µ | C is defined to be the

probability distribution obtained by conditioning µ on the event that the sampled string
belongs to C, i.e.,

(µ | C)(x) =
{

0 if x /∈ C
µ(x)∑
y∈C

µ(y)
if x ∈ C

For a distribution Q over pairs of distributions (µ0, µ1), let supp0(Q) = ∪{supp(µ0) :
∃µ1, (µ0, µ1) ∈ supp(Q)}. Similarly let supp1(Q) = ∪{supp(µ1) : ∃µ0, (µ0, µ1) ∈ supp(Q)}.
We say that Q is consistent if supp0(Q) and supp1(Q) are disjoint sets. We say that Q is
consistent with a (partial) function g if supp0(Q) ⊆ g−1(0) and supp1(Q) ⊆ g−1(1).

I Definition 5 (Subcube, co-dimension). A subset C ⊆ {0, 1}m is called a subcube if there
exists a set S ⊆ {1, . . . ,m} of indices and an assignment function σ : S → {0, 1} such that
C = {x ∈ {0, 1}m : ∀i ∈ S, xi = σ(i)}. The co-dimension codim(C) of C is defined to be |S|.

Now we define the composition of a relation and a partial Boolean function.

I Definition 6 (Composition of a relation and a partial Boolean function). Let f ⊆ {0, 1}n×S
and g ⊆ {0, 1}m × {0, 1} be a relation and a partial Boolean function respectively. The
composed relation f ◦ gn ⊆ ({0, 1}m)n × S is defined as follows: For x = (x(1), . . . , x(n)) ∈
({0, 1}m)n and s ∈ S, (x, s) ∈ f ◦ gn if and only if one of the following holds:

xi /∈ g−1(0) ∪ g−1(1) for some i ∈ {1, . . . , n}.
xi ∈ g−1(0) ∪ g−1(1) for each i ∈ {1, . . . , n} and ((g(x1), . . . , g(xn)), s) ∈ f .

We will often view a deterministic query algorithm as a binary decision tree. In each vertex
v of the tree, an input variable is queried. Depending on the outcome of the query, the
computation goes to a child of v. The child of v corresponding to outcome b of the query is
denoted by vb.

The set of inputs that lead the computation of a decision tree to a certain vertex is a
subcube. We will use the same symbol (e.g. v) to refer to a vertex as well as the subcube
associated with it.

The execution of a decision tree terminates at some leaf. If the tree computes some
relation h ⊆ {0, 1}k × S, the leaves are labelled by elements of S, and the tree outputs the
label of the leaf at which it terminates. We will also consider decision tree with unlabelled
leaves (see Section 4).

3 Conflict Complexity

In this section, we define the conflict complexity and max-conflict complexity of a partial
Boolean function g on m bits. For this, we will need to introduce some notation related to a
deterministic decision tree T . For a node v ∈ T , let π(v) = ⊥ if v is the root and π(v) be the
parent of v otherwise. Let q(v) be the index that is queried at v in T , and let dT (v) be the
number of vertices on the unique path in T from the root to v. The depth of the root is 1.
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Now fix a partial function g ⊆ {0, 1}m × {0, 1} and probability distributions µ0, µ1
over g−1(0), g−1(1), respectively. Let T be a tree that computes g. For a node v ∈ T let
p0(v) = Prµ0 [xq(v) = 0|x at v] and p1(v) = Prµ1 [xq(v) = 0|x at v], and

R(v) =
{

1 if v is the root
R(π(v)) ·min{Prµ0 [x→ v|x at π(v)],Prµ1 [x→ v|x at π(v)]} otherwise .

Also define

∆(v) = |p0(v)− p1(v)| .

To gather intuition about these quantities, imagine a random walk on T that begins at
the root. At a node v, this walk moves to the left child with probability min{p0(v), p1(v)},
and it moves to the right child with probability 1−max{p0(v), p1(v)}. With the remaining
probability, ∆(v), it terminates at v. Note that for any tree T computing g we have∑
v∈T ∆(v)R(v) = 1. This is because the walk always terminates before it reaches a leaf of

T . In particular, this means that
∑
v∈T dT (v)∆(v)R(v) – the expected number of steps the

walk takes before it terminates – is always at most the depth of the tree T .

I Definition 7 (Conflict complexity and max-conflict complexity). Let g be a partial function.
For distributions µ0, µ1 with supp(µb) ⊆ g−1(b) for b ∈ {0, 1}, and a deterministic decision
tree T computing g, define

χ(T, (µ0, µ1)) =
∑
v∈T

dT (v)∆(v)R(v) .

The conflict complexity of g is

χ(g) = max
µ0,µ1

min
T
χ(T, (µ0, µ1)) ,

where the maximum is over all pairs of distributions (µ0, µ1) supported on g−1(0) and g−1(1)
respectively, and the minimum is taken over all deterministic trees T computing g. For Q a
distribution over pairs satisfying suppb(Q) ⊆ g−1(b) for b ∈ {0, 1}, and T a deterministic tree
computing g, let χ(T,Q) = E(µ0,µ1)∼Q[χ(T, (µ0, µ1))]. Finally, the max-conflict complexity
of g is

χ̄(g) = max
Q

min
T
χ(T,Q) ,

where the maximum is taken over Q with suppb(Q) ⊆ g−1(b) for b ∈ {0, 1}, and the minimum
is taken over deterministic trees T computing g.

We can extend the definition of conflict complexity and max-conflict complexity to more
general query processes that do not necessarily compute a function. We first need the notion
of FULL.

I Definition 8. For a deterministic tree T and pair of distributions (µ0, µ1) with disjoint
support, we say that (T, (µ0, µ1)) is FULL if

∑
v∈T ∆(v)R(v) = 1, i.e. if the random walk

described above terminates with probability 1. We say that (T,Q) is FULL if (T, (µ0, µ1)) is
FULL for each (µ0, µ1) ∈ supp(Q).

I Definition 9. For a deterministic tree T and pair of distributions (µ0, µ1) such that
(T, (µ0, µ1)) is FULL, define χ(T, (µ0, µ1)) =

∑
v∈T dT (v)∆(v)R(v). For a distribution Q

such that (T,Q) is FULL, define χ(T,Q) = E(µ0,µ1)∼Q[χ(T, (µ0, µ1))].
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3.1 Comparison with other query measures
Li [9] shows that the conflict complexity of a total Boolean function g is at least the block
sensitivity of g. As mentioned in Section 1.1.3, in this work we show that the max-conflict
complexity of a (partial) function g is at least as large as the sabotage complexity of g. For a
total Boolean function g, Ben-David and Kothari [4] show that the sabotage complexity of g
is at least as large as the fractional block sensitivity of g [1, 13, 7], which in turn is at least as
large as the block sensitivity. They also show examples where the sabotage complexity is much
larger than the partition bound, quantum query complexity and approximate polynomial
degree, thus the same holds for max-conflict complexity as well.

I Theorem 7. Let g ⊆ {0, 1}m × {0, 1} be a partial function. Then χ̄(g) ≥ RS(g).

A proof of Theorem 7 can be found in [6].

4 Query Process

We now come to the most important definition of the paper, that of the query process
P(B,Q). Let t > 0 be any integer and B be any deterministic query algorithm that runs
on inputs in ({0, 1}m)t. Let x = (x(j)

i ) i=1,...,t
j=1,...,m

be a generic input to B, and let xi stand for

(x(j)
i )j=1,...,m. For a vertex v of B, let v(i) denote the subcube in v corresponding to xi, i.e.,

v = v(1) × . . .× v(t). Recall from Section 2 that vb stands for the child of v corresponding to
the query outcome being b, for b ∈ {0, 1}.

The query process P(B,Q) runs on an input z ∈ {0, 1}t and uses the BITSAMPLER
(Algorithm 1) routine to simulate the queries of B to x when it can. This process is the heart
of how we will transform an algorithm for f ◦ gn into a query efficient algorithm for f .

I Definition 10 (Query process P(B,Q)). Let B be a decision tree that runs on inputs
({0, 1}m)t. Let Q be a consistent probability distribution over pairs of distributions (µ0, µ1).
The query process P(B,Q) is run on an input z ∈ {0, 1}t and is defined by Algorithm 2.

A few comments about Definition 10. First, we think of B and P as query procedures
that query input variables and terminate. In particular, they do not have to produce outputs,
i.e. their leaves do not have to be labeled. Also note that in Algorithm 2 the segment from
line 9 to line 19 corresponds to the Bitsampler procedure in Algorithm 1. Queries to the
input bits zi are made in line 15, which corresponds to step 9 of Bitsampler.

We now present an important structural result about P(B,Q). In particular, this formally
proves that the procedure Bitsampler given in Algorithm 1 samples the bits from the right
distribution.

I Theorem 8. Let B be a deterministic decision tree running on inputs from ({0, 1}m)t, and
let v be a vertex in B. Let Az(v,Q) be the event that P(B,Q), when run on z, reaches node
v. Let Bz(v,Q) be the event that for a random input x sampled from γz(Q), the computation
of B reaches v. Then for every z ∈ {0, 1}t and each vertex v of B,

Pr[Az(v,Q)] = Pr[Bz(v,Q)] .

A proof of Theorem 8 is given in [6].
We will be interested in the number of queries P(B,Q) is able to simulate before making

a query to zi. To this end, let the random variable Ni(B, z,Q) stand for the value of the
variable Ni in Algorithm 2 after the termination of P(B,Q) on input z. Note that Ni depends
on the randomness in the choices of r (step 9) and also on the randomness in Q in the choice
of distributions (µ(k)

0 , µ
(k)
1 ) (step 4).
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Algorithm 2: P(B,Q).
Input: z = (z1, . . . , zt) ∈ {0, 1}t.

1 for 1 ≤ k ≤ t do
2 QUERYk ← 0. // Indicates if zk is queried.
3 Nk ← 0. // Counts references to xk till zk is queried.

4 Sample (µ(k)
0 , µ

(k)
1 ) from Q.

5 v ←Root of B // Corresponds to ({0, 1}m)t.
6 while v is not a leaf of B do
7 Let q(v) = (i, j), the jth coordinate of xi
8 if QUERYi = 0 then
9 Sample a fresh real number r ∼ [0, 1] uniformly at random.

10 if r < minb Pr
xi∼µ(i)

b

[x(j)
i = 0 | xi ∈ v(i)] then

11 v ← v0.

12 else if r > maxb Pr
xi∼µ(i)

b

[x(j)
i = 0 | xi ∈ v(i)] then

13 v ← v1.
14 else
15 Query zi. QUERYi ← 1.
16 if r ≤ Pr

xi∼µ(i)
zi

[x(j)
i = 0 | xi ∈ v(i)] then

17 v ← v0.
18 else
19 v ← v1.

20 Ni ← Ni + 1.
21 else

22 b←

 1 with probability Pr
xi∼µ(i)

zi

[x(j)
i = 1 | xi ∈ v(i)]

0 with probability Pr
xi∼µ(i)

zi

[x(j)
i = 0 | xi ∈ v(i)]

23 v ← vb

4.1 Relating P(B,Q) to max-conflict complexity
A key to our composition theorem will be relating the number of simulated queries made by
P(B,Q) to max-conflict complexity, which we do in this section. Let B be a query algorithm
taking inputs from {0, 1}m. In this case, N1(B, 1,Q) = N1(B, 0,Q). This is because the
behavior of P(B,Q) on input 0 is exactly the same as the behavior on input 1 before a query
to z is made, and after z is queried the value of Ni does not change.

B Claim 11. Let B be an algorithm taking inputs from {0, 1}m. Then (B,Q) is FULL if and
only if P(B,Q) queries z with probability 1. If (B,Q) is FULL then

χ(B,Q) = E[N1(T, 1,Q)]

Proof. Note that until z is queried, P(B, (µ0, µ1)) exactly executes the random walk described
in Section 3, and querying z in P(B, (µ0, µ1)) corresponds to this random walk terminating.
The first part of the claim then follows as P(B,Q) queries z with probability 1 if and only if
P(B, (µ0, µ1)) queries z with probability 1 for every (µ0, µ1) ∈ supp(Q).
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Also because P(B, (µ0, µ1)) exactly executes the random walk described in Section 3 we
see that χ(B, (µ0, µ1)) = E[N1(T, 1, (µ0, µ1))]. The second part of the claim follows by taking
the expectation of this equality over (µ0, µ1) ∼ Q. C

The correspondence of claim 11 prompts us to define FULL in a more general setting.

I Definition 12 (FULL). Let B be a query algorithm taking inputs from ({0, 1}m)t. The
pair (B,Q) is said to be FULL if for every z ∈ {0, 1}t it holds that P(B,Q) queries zi with
probability 1, for every i = 1, . . . , t.

5 The Composition Theorem

A proof of Theorem 4 is given in [6].

6 Tightness: R1/3(f ◦ gn) ∈ O
(
R4/9(f) ·

√
R1/3(g)

)
is possible

In this section we prove Theorem 2. We construct a relation f0 ⊆ {0, 1}n × {0, 1}n (i.e.,
S = {0, 1}n) and a promise function g0 ⊆ {0, 1}n × {0, 1} (i.e., m = n), such that R4/9(f0) ∈
Θ(
√
n), R1/3(g0) ∈ Θ(n) and R1/3(f0 ◦ gn0 ) ∈ Θ(n).
For strings x = (x1, . . . , xn), z = (z1, . . . , xn) in {0, 1}n, let x ⊕ z be the string (x1 ⊕

z1, . . . , xn⊕ zn) obtained by taking their bitwise XOR. Let |x| stand for the Hamming weight
|{i ∈ [n] : xi = 1}| of x. We define f0 as follows:

f0(z) def=
{

(a, z) ∈ {0, 1}n × {0, 1}n
∣∣∣|a⊕ z| ≤ n

2 −
√
n
}

Now we define g0 by specifying g−1
0 (0) and g−1

0 (1).

g−1
0 (0) def=

{
(x, 0)

∣∣x ∈ {0, 1}n, |x| ≤ n/2−
√
n
}
,

g−1
0 (1) def=

{
(x, 1)

∣∣x ∈ {0, 1}n, |x| ≥ n/2 +
√
n
}
.

We now determine the randomized query complexities of f0, g0 and f0 ◦ gn0 .

B Claim 13.
(i) R4/9(f0) ∈ Ω(

√
n).

(ii) R1/3(g0) ∈ Ω(n).
(iii) Rε(f0 ◦ gn0 ) ∈ O

(
n ·
√

log(1/ε)
)
.

A proof of Claim 13 can be found in [6]. Theorem 2 follows from Theorem 4 and Claim 13
with ε set to 1/3.
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Abstract
The Hairy Ball Theorem states that every continuous tangent vector field on an even-dimensional
sphere must have a zero. We prove that the associated computational problem of computing an
approximate zero is PPAD-complete. We also give a FIXP-hardness result for the general exact
computation problem.

In order to show that this problem lies in PPAD, we provide new results on multiple-source variants
of End-of-Line, the canonical PPAD-complete problem. In particular, finding an approximate
zero of a Hairy Ball vector field on an even-dimensional sphere reduces to a 2-source End-of-Line
problem. If the domain is changed to be the torus of genus g ≥ 2 instead (where the Hairy Ball
Theorem also holds), then the problem reduces to a 2(g − 1)-source End-of-Line problem.

These multiple-source End-of-Line results are of independent interest and provide new tools
for showing membership in PPAD. In particular, we use them to provide the first full proof of
PPAD-completeness for the Imbalance problem defined by Beame et al. in 1998.
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1 Introduction

The Hairy Ball Theorem (HBT) is a well-known topological theorem stating that there is no
non-vanishing continuous tangent vector field on an even-dimensional k-sphere. It has various
informal statements such as “you can’t comb a hairy ball flat without creating a cowlick”1,
or “there is a point on the surface of the earth with zero horizontal wind velocity”. The HBT
is superficially reminiscent of the Borsuk-Ulam Theorem, stating that given any continuous
mapping from the 2-sphere to the plane, there are two antipodal points that map to the
same value. (Informally, “there are two antipodal points on the surface of the earth where
the temperature and pressure are the same”). As we shall see, the present paper highlights a
fundamental difference between the two, in terms of the complexity class naturally associated
with each of them.

The HBT was first proved in 1885 by Poincaré [29] for the case k = 2. The theorem as
stated for all even k was proved in 1912 by Brouwer [5]. Accordingly, this result is sometimes
also called the Poincaré-Brouwer theorem. In fact, the result proved by Poincaré [29] is

1 https://en.wikipedia.org/wiki/Hairy_ball_theorem

EA
T

C
S

© Paul W. Goldberg and Alexandros Hollender;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 65; pp. 65:1–65:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5436-7890
mailto:Paul.Goldberg@cs.ox.ac.uk
https://orcid.org/0000-0001-5255-9349
mailto:alexandros.hollender@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.ICALP.2019.65
https://arxiv.org/abs/1902.07657
https://en.wikipedia.org/wiki/Hairy_ball_theorem
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


65:2 The Hairy Ball Problem is PPAD-Complete

stronger than stated above. It follows from it that for any (sufficiently well-behaved) 2-
dimensional manifold with genus g 6= 1, any continuous tangent vector field must have a zero.
In particular, this means that the HBT also holds for the torus of genus g for g ≥ 2, i.e. the
2-dimensional torus with g holes. It is easy to see that it does not hold for the standard
single-hole torus.

Over the years, various papers in the American Mathematical Monthly have presented
alternative proofs of the Hairy Ball Theorem and variants, for example [22, 26, 4, 14, 24, 9].

Topological existence results (such as the HBT, Borsuk-Ulam, and the Brouwer and
Banach fixpoint theorems) have a very interesting relationship with complexity classes of
search problems in which any instance has a guaranteed solution. Any such theorem has a
corresponding computational challenge, of searching for such a solution, given a circuit that
computes an appropriate function. The assumption that these complexity classes are distinct
from each other (the ones of main interest here being PPAD and PPA, discussed below in
more detail) provides a taxonomy of these theorems. Our results highlight a fundamental
distinction between the HBT and Borsuk-Ulam, by showing that the corresponding search
problem for the HBT is characterised by the complexity class PPAD, in contrast to Borsuk-
Ulam, which is characterised by PPA [1]. The complexity-theoretic analysis of topological
search problems provides a well-defined sense in which the HBT is “Brouwer-like” rather
than “Borsuk-Ulam-like”. It has previously been noted that the HBT may be used to prove
Brouwer’s fixed point theorem [26], but not the other way around.

1.1 Background on NP total search and PPAD

The complexity class TFNP is the set of all total function computation problems in NP:
functions where every input has an efficiently-checkable solution (in Section 2.2 we give a
precise definition). Many problems in TFNP appear to be computationally difficult, notably
Factoring, the problem of computing a prime factorisation of a given number, also Nash,
the problem of computing a Nash equilibrium of a game. However, such problems are unlikely
to be NP-hard, due to the 1991 result of Megiddo and Papadimitriou [25] showing that TFNP
problems cannot be NP-hard unless NP is equal to co-NP. This basic fact, that hard TFNP
problems are in a very strong sense “NP-intermediate”, provides TFNP’s strong theoretical
appeal. This has led to the classification of these problems in terms of certain syntactic
subclasses of TFNP, whose problems are shown to be total due to some basic combinatorial
principle. The best-known of these classes are PLS, PPP, PPAD, and PPA, identified by
Papadimitriou in 1994 [28].

PPAD consists of problems whose totality is based on the principle that given a source in a
directed graph whose vertices have in-degree and out-degree at most 1, there exists another
degree-1 vertex. Its canonical problem End-of-Line consists of an exponentially-large
graph of this kind, presented concisely via a circuit.

PPA differs from PPAD in that the graph need not be directed; being a more general
principle, PPA is thus a superset of PPAD. Its canonical problem Leaf is similar, only
the graph is undirected.

Subsequently, many TFNP problems of interest were shown PPAD-complete [10, 7, 23, 13],
while more recently others were shown PPA-complete [17, 18]. Despite their similar definitions,
PPAD and PPA are usually conjectured to be different, and (along with other syntactic
TFNP subclasses) are separated by oracles [3].
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1.2 Our results and their significance

Given the long-standing interest in the Hairy Ball Theorem, it is natural to study the
corresponding computational search problem. In this paper, we prove that computing
an approximate zero of a Hairy Ball vector field is PPAD-complete. While many PPAD-
completeness results already exist, a noteworthy novelty of our results is that we find that
computing HBT solutions corresponds with multiple-source variants of the End-of-Line
problem: given a large directed graph implicitly represented by a circuit, suppose you
are shown several sources and told to find another degree-1 vertex. This is in contrast
with previous PPAD-complete problems that naturally reduce to standard single-source
End-of-Line.

In Section 6 we prove that these multiple-source End-of-Line variants are PPAD-
complete (membership of PPAD being the tricky aspect). Our results make progress on the
general question (studied in [19]) of whether there exist combinatorial principles indicating
totality of search problems, that are fundamentally different from the known ones that give
rise to complexity classes such as PPAD. In particular, in Section 6.3, we note that a proof
of PPAD-completeness for the Imbalance problem by Beame et al. [3] is incomplete and
provide a full proof using our results.

The generalisation of Poincaré’s result to higher dimensions is called the Poincaré-Hopf
theorem (see e.g. [20]). This theorem relates the number and types of zeros of a vector field
on a manifold with its Euler characteristic, a topological invariant. In particular, if the
Euler characteristic of a manifold is not 0, then any continuous tangent vector field on the
surface must have a zero. The Euler characteristic of even-dimensional spheres is 2, while it
is 2(1− g) for 2-dimensional toruses of genus g ≥ 2. For odd-dimensional spheres it is 0.

We believe that the reduction to multiple-source End-of-Line is not an artefact of our
techniques, but instead intrinsically related to the Euler characteristic of the domain. Indeed,
the reduction from the HBT problem on even-dimensional spheres to End-of-Line yields 2
sources (Section 4). On the other hand, if we consider the HBT problem on the 2-dimensional
torus of genus g ≥ 2, then we obtain 2(g − 1) sources (Section 7 of the full version). The
connection between HBT and directed graph problems has previously only appeared in a
proof for the 2-dimensional sphere case [22].

Finally, we note that PPAD-hardness is obtained by constructing a HBT vector field from
multiple copies of a discrete Brouwer fixpoint problem. The usage of multiple copies is a
new conceptual feature, closely related to the multi-source aspect. Using the same high-level
idea, we also provide a FIXP-hardness result for the problem of computing an exact solution
(Section 5.2).

1.3 Other related work

Banach’s Fixed Point Theorem [2] says that a contraction map has a unique fixpoint. Its
corresponding computational problem Contraction, is to find a fixed point of a given
contraction map. Some versions of Contraction have been shown complete for CLS, a
subclass of PPAD [11, 12, 16]. The search for Brouwer fixpoints (including discretised versions
of Brouwer functions) is PPAD-complete for most variants of the problem [28, 7], which is
why we say the HBT is “Brouwer-like”. Finally – in contrast – the computational problem
of searching for a Borsuk-Ulam solution is PPA-complete [1]. Other topological existence
results that have PPA-complete search problems include the Hobby-Rice theorem [17] and
the Ham Sandwich Theorem [18].

ICALP 2019



65:4 The Hairy Ball Problem is PPAD-Complete

2 Preliminaries

Let k be a positive integer. For x ∈ Rk, ‖x‖2, ‖x‖1 and ‖x‖∞ denote the standard `2-
norm, `1-norm and `∞-norm respectively. For x, y ∈ Rk, 〈x, y〉 :=

∑m
i=1 xiyi denotes the

inner product.
The k-dimensional unit sphere in Rk+1 (or k-sphere) is denoted Sk = {x ∈ Rk+1 : ‖x‖2 =

1}. A continuous tangent vector field on Sk is a continuous function f : Sk → Rk+1 such
that for all x ∈ Sk we have 〈f(x), x〉 = 0. The Hairy Ball Theorem can be stated as follows:

I Theorem 1 (Poincaré [29]–Brouwer [5]). If k ≥ 2 is even, then for any continuous tangent
vector field f : Sk → Rk+1, there exists x ∈ Sk such that f(x) = 0.

2.1 Model of Computation
We work in the standard Turing machine model. All numbers appearing in computations are
rational numbers where the numerator and denominator are integers represented in binary.
For a rational number x, size(x) denotes the size of the representation of x, i.e. the sum of
the representation length of its numerator and denominator in binary. For an arithmetic
circuit F , size(F ) denotes the number of gates in the circuit added to the representation
length of any rational constants used by the circuit.

2.2 Formal definition of TFNP
A computational search problem is given by a binary relation R ⊆ {0, 1}∗×{0, 1}∗, interpreted
as follows: y ∈ {0, 1}∗ is a solution to instance x ∈ {0, 1}∗, if and only if (x, y) ∈ R. The
search problem R is in FNP (Functions in NP), if R is polynomial-time computable (i.e.
(x, y) ∈ R can be decided in polynomial time in |x|+ |y|) and there exists some polynomial p
such that (x, y) ∈ R =⇒ |y| ≤ p(|x|). Here {0, 1}∗ denotes all finite length bit-strings and
|x| is the length of bit-string x.

The class TFNP (Total Functions in NP [25]) contains all search problems R that are in
FNP and are total, i.e. every instance has at least one solution. Formally, this corresponds
to requiring that for every x ∈ {0, 1}∗ there exists y ∈ {0, 1}∗ such that (x, y) ∈ R.

Let R and S be total search problems in TFNP. We say that R (many-one) reduces to S,
if there exist polynomial-time computable functions f, g such that

(f(x), y) ∈ S =⇒ (x, g(x, y)) ∈ R.

Note that if S is polynomial-time solvable, then so is R. We say that two problems R and S
are (polynomial-time) equivalent, if R reduces to S and S reduces to R.

To be PPAD-complete, a problem must be equivalent to End-of-Line (Definition 12);
in Section 6 we show that the multiple-source version MS-EoL (Definition 13) is equivalent.

3 The Hairy-Ball Problem

3.1 The kD-Hairy-Ball problem
The Hairy Ball Theorem naturally yields a corresponding computational problem. We are
given a continuous tangent vector field f on the unit sphere and have to find a point where it
is zero. In trying to formalise this, some issues need to be addressed. First, one has to decide
how the vector field should be represented in the input. Here we take the usual approach of
assuming that it is represented as an arithmetic circuit.
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Before we discuss the types of gates that we want to allow in the circuit, let us briefly
handle the second issue: the vector field might not have a rational zero. Indeed, consider the
following example: at x ∈ S2 the vector field is simply the vector (1, 1, 1) projected onto the
tangent space of S2 at x. In this case, the only solutions are ±(1/

√
3, 1/
√

3, 1/
√

3). Thus,
we cannot hope to always output an exact solution. We bypass this problem by asking for
an approximate solution instead, i.e. a point x ∈ S2 such that ‖f(x)‖∞ ≤ ε for some ε > 0
provided in the input. This notion of approximate solution is the standard one used when
studying topological existence theorems in the context of TFNP (e.g. Brouwer’s fixed point
theorem or the Borsuk-Ulam theorem).

As mentioned above, the vector field will be represented as an arithmetic circuit. In the
case of S2, the circuit will have three input gates and three output gates. The arithmetic
circuit will be allowed to use gates {+,−,×ζ,max,min} and rational constants. All the
gates have fan-in 2, except ×ζ which has fan-in 1 and corresponds to multiplication by a
rational constant ζ. Note that such a circuit is polynomially equivalent to a circuit only using
gates {+,×ζ,max} and rational constants, since the other gates can be efficiently simulated
using these. These circuits correspond to LINEAR-FIXP-type circuits that are known to be
sufficient to obtain PPAD-hardness of Brouwer [15]. A discussion about why we don’t use
more powerful gates in our definition can be found in Section 3.2 of the full version.

This type of circuit yields piece-wise affine functions that are continuous. Furthermore, it
has the following nice property: for any such arithmetic circuit F , and any rational x, we
can compute F (x) exactly in polynomial time in size(F ) and size(x). One potential issue is
that F might not be tangent to the sphere, but this is easy to fix by simply considering the
vector field given by the projection of F onto the corresponding tangent space to the sphere.
Thus, we define the computational problem as follows:

I Definition 2 (kD-Hairy-Ball). Let k ≥ 2 be even. The kD-Hairy-Ball problem is
defined as: given ε > 0 and an arithmetic circuit F with k + 1 inputs and outputs, using
gates {+,×ζ,max} and rational constants, find x ∈ Sk such that ‖Px[F (x)]‖∞ ≤ ε.

Here Px[·] denotes the projection onto the tangent space to the sphere Sk at x ∈ Sk. Note
that for any v ∈ Rk+1, we have Px[v] = v − 〈v, x〉x, because ‖x‖2 = 1. Thus, the projection
of any rational vector v onto the tangent space at rational x ∈ Sk can be computed exactly in
polynomial time in size(v) and size(x). Note that we are looking for a solution with respect
to the `∞-norm, but we could also have used the `2- or `1-norm, since all these versions are
computationally equivalent.

kD-Hairy-Ball lies in TFNP. Clearly, any solution can be checked in polynomial time.
Totality of kD-Hairy-Ball will immediately follow when we prove that it lies in PPAD
(Corollary 8). The following Lemma is proved in Section 3.1 of the full version.

I Lemma 3. Let k ≥ 2 be even. Let F be an arithmetic circuit with k + 1 inputs and
outputs, using gates {+,×ζ,max} and rational constants. Then, the function Sk → Rk+1,
x 7→ Px[F (x)] is Lipschitz-continuous with Lipschitz constant L = k · 2size(F )2+3 (w.r.t.
`∞-norm).

Our main result is Theorem 4. Containment in PPAD, which turns out to be the
most challenging part of this result, is presented in Section 4 (using the multiple-source
End-of-Line results of Section 6). PPAD-hardness is presented in Section 5.

I Theorem 4. For all even k ≥ 2, kD-Hairy-Ball is PPAD-complete.
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4 The Hairy-Ball Problem is in PPAD

In this section we present our main result: the problem of computing an approximate Hairy
Ball solution reduces to End-of-Line, the canonical PPAD-complete problem.

From a purely mathematical standpoint, our proof can be used to provide a (fairly
cumbersome) proof of the Hairy Ball theorem by using Brouwer’s fixed point theorem. Indeed,
it is known [28] that End-of-Line reduces to Brouwer (in fact, even 2D-Brouwer [7]).
Thus, given a Hairy Ball function f , using our reduction and Brouwer’s fixed point theorem,
one can prove the existence of a point xk such that ‖f(xk)‖ ≤ 1/2k for any k (using the fact
that f must be uniformly continuous since the sphere is compact). Then, since any sequence
in a compact set must have a converging subsequence it follows that there must exist x such
that f(x) = 0. Finding a more direct way to deduce the Hairy Ball theorem from Brouwer’s
fixed point theorem is an interesting open question.

Our goal is to prove that the Hairy Ball problem lies in PPAD in a setting that is as
general and encompassing as possible. The way the function is represented, as a circuit
or otherwise, should not play a role. Thus, we are only going to make two assumptions
about the tangent vector field: that it can be evaluated in polynomial time and that it is
polynomially continuous in some well-defined sense. The first assumption is very natural:
if we are given a Hairy Ball function, we expect to be able to evaluate it efficiently. The
motivation for the second assumption is that if we omit it, then there is no guarantee that
there will exist an approximate solution with representation size that is polynomial in the
input size.

We now define these assumptions formally, following the analogous definitions by Etessami
and Yannakakis [15] for Brouwer fixed point problems. Let F be a class of Hairy Ball functions
f : Sk → Rk+1 (i.e. continuous tangent vector fields) with k ≥ 2 even. Note that here k is
not fixed for all f ∈ F , but we assume that k ≤ size(f). For any f ∈ F , size(f) denotes the
length of the representation of f in F . In the case of kD-Hairy-Ball, k is fixed and F is
the class of all such functions represented using arithmetic circuits with gates {+,×ζ,max}
(with the projection onto the tangent space at the end). In that case, size(f) is the size
of the circuit representing f . Recall that for rational vector x, size(x) is the length of the
representation of x.

I Definition 5 ([15]). Let F be a class of Hairy Ball functions.
F is polynomially computable, if there exists some polynomial p such that for any f ∈ F
and any rational input x ∈ Sk, f(x) can be computed in time p(size(f) + size(x)).
F is polynomially continuous, if there exists some polynomial q such that for any f ∈ F
and any rational ε > 0, there exists a rational δ > 0 with size(δ) ≤ q(size(f) + size(ε))
such that for all x, y ∈ Sk we have ‖x− y‖∞ ≤ δ =⇒ ‖f(x)− f(y)‖∞ ≤ ε.

Note that kD-Hairy-Ball yields a class F that is both polynomially computable and
polynomially continuous (by Lemma 3).

I Definition 6. Let F be a class of Hairy Ball functions. The problem Hairy-Ball(F) is
defined as: given f ∈ F and ε > 0, find x ∈ Sk such that ‖f(x)‖∞ ≤ ε.

For simplicity we assume that we can recognise whether some string in {0, 1}∗ represents
an element f ∈ F in polynomial time. If this does not hold, then Hairy-Ball(F) has to be
studied as a promise problem. The reduction to End-of-Line given in the proof below still
holds. However, this does not imply that the problem lies in PPAD, because TFNP requires
the problem to be total without any promise.
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I Theorem 7. Let F be a class of Hairy Ball functions that is polynomially computable and
polynomially continuous. Then, Hairy-Ball(F) lies in PPAD.

I Corollary 8. For all even k ≥ 2, kD-Hairy-Ball lies in PPAD.

Proof Overview for Theorem 7. The proof can be subdivided into two parts. In the first
part, we reduce kD-Hairy-Ball to a 2-source End-of-Line problem. In the second part,
we show that the 2-source version reduces to the standard version of End-of-Line, where a
single source is known. Surprisingly, the reduction from 2 sources to 1 is non-trivial. The
proof for this is presented separately in Section 6. In fact, we prove the more general result:
as long as the number of known sources in an End-of-Line instance is polynomial, we can
reduce to standard End-of-Line. Various implications of this result are also presented
in Section 6.

We now give some details about the first part of the proof, in which we reduce kD-
Hairy-Ball to 2-source End-of-Line through a Sperner argument. The inspiration for
this comes from a proof of the 2-dimensional Hairy Ball Theorem via a version of Sperner’s
Lemma, given by Jarvis and Tanton [22]. Our contribution here is two-fold: we extend their
proof to any higher (even) dimension and we turn it into a polynomial-time reduction.

In order to obtain a polynomial-time reduction, instead of working directly on the sphere,
we use a stereographic projection to “unfold” the sphere Sk (⊂ Rk+1) into the space Rk, along
with the vector field. Then, we consider a sufficiently large cross-polytope C of Rk and prove
that the “unfolded” vector field satisfies certain boundary conditions. In the case k = 2, this
corresponds to the vector field making two full rotations when we move along the boundary
of C (see Figure 1a). Next, we pick an efficient triangulation of C and a suitable colouring
of its nodes. The last step then requires us to prove that this colouring yields exactly two
starting points (on the boundary) for Sperner paths (see Figure 1b) that lead to panchromatic
simplices. Using standard Sperner-arguments this yields a 2-source End-of-Line instance.
The full proof for any even k can be found in Section 4.2 of the full version. Note that, as
expected, the proof does not work if k is odd. Indeed, the construction then yields a starting
point and an ending point on the boundary, instead of two starting points. J

(a) Boundary conditions after “unfolding” ...

2

2

11

2

2 0

0 2

0

2
12

(b) ... yielding a Sperner instance with two sources.

Figure 1 An example for the proof of Theorem 7 in the case k = 2. The region C is represented
in grey.

ICALP 2019



65:8 The Hairy Ball Problem is PPAD-Complete

5 Computational Hardness for Hairy Ball Problems

It is possible to prove Brouwer’s fixed point theorem using the Hairy Ball Theorem as follows
(see [26] for the full details). Let Bk ⊂ Rk be the unit ball. If we assume that a function
f : Bk → Bk does not have any fixed point, then we can construct a Hairy Ball function
g : Sk → Rk that does not have a zero. Brouwer’s theorem follows by contradiction. The
main idea for the construction of g is the following. Consider f ′(x) = f(x)− x and assume
that it points directly inward on the boundary of Bk. Take one copy of Bk with the vector
field f ′ and one copy with the vector field −f ′, and glue their boundaries together. The
resulting object can be deformed to yield the sphere Sk and the vector fields will perfectly
match on the glued region. Thus, assuming that f ′ has no zero, g will have no zero either.

By making this idea fully constructive and efficient, we obtain reductions from Brouwer
problems to Hairy Ball problems. Thus, existing PPAD- and FIXP-hardness results for
Brouwer also hold for the corresponding Hairy Ball problems. We note that these reductions
always involve using two copies of a Brouwer instance to obtain a single Hairy Ball instance.
This further supports our claim that the fact that we obtain two sources when reducing kD-
Hairy-Ball to End-of-Line (Section 4) is not an artefact of our reduction, but intrinsic
to the problem.

5.1 PPAD-hardness
I Theorem 9. For all even k ≥ 2, kD-Hairy-Ball is PPAD-hard.

Note that this result is particularly strong, because the type of circuit allowed in the
definition of kD-Hairy-Ball (Definition 2) is particularly weak. Furthermore, the hardness
is proved for inversely exponential ε/L (where L is the Lipschitz constant of the function),
which is the best we can hope for in the fixed dimension case. Indeed, if ε/L is inversely
polynomial, then the following is a polynomial time algorithm that solves the problem:
divide the domain into a sufficiently small (but polynomial) number of regions and check an
arbitrary point in each region. In the case where the dimension is not fixed, it seems likely
that the problem should be hard even for constant ε/L, but we do not investigate this in
this paper.

Proof Overview. One way to prove this result is to take an instance F of a 2D-Brouwer
problem, which is known to be PPAD-complete [7], and embed a copy F and a copy −F
on the south and north hemisphere of S2 respectively. However, since our 2D-Hairy-Ball
circuit can only use gates in {+,×ζ,max}, we first shrink the domain of F so that we embed
it in a small region around the south pole. This ensures that even after projection onto the
tangent space, no bogus solutions will appear. We do the same for −F in the north pole and
then define G on the rest of the sphere in such a way that no solution appears there.

In spirit, we follow this general proof idea, but take a slight detour, because it gives us
the chance to define and study a discrete analog to 2D-Hairy-Ball: the 2D-Hairy-Cube
problem. Intuitively, this problem is obtained from 2D-Hairy-Ball the same way that
discrete 2D-Brouwer is obtained from continuous 2D-Brouwer. The domain is discretised
by a grid and a circuit computes the local direction of the function in every grid-square.
The natural way to discretise the sphere S2 is to replace it by a cube with a grid on each
face. The advantage of 2D-Hairy-Cube is that PPAD-hardness is easy to prove: just put
a (slightly modified) discrete 2D-Brouwer instance on one face, and the inverse instance
on the opposite face. Defining the instance on the remaining faces is trivial in this case. In
Section 6 of the full version we define the problem and prove PPAD-hardness. An illustration
of a 2D-Hairy-Cube instance is given in Figure 2.
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Figure 2 Partial view of a 2D-Hairy-Cube instance.

The next step is reducing 2D-Hairy-Cube to 2D-Hairy-Ball. Even though it seems
natural that this should hold, the reduction is technically tedious. In particular, we have to
simulate a Boolean circuit using an arithmetic circuit, but the input bits cannot always be
computed exactly. Thus, we need to use an averaging trick (see [10, 8]). The details are in
Appendix A of the full version.

This yields PPAD-hardness for 2D-Hairy-Ball. The final step is to extend this to
kD-Hairy-Ball, by showing that kD-Hairy-Ball reduces to (k+ 2)D-Hairy-Ball. The
proof can be found in Appendix B of the full version. J

5.2 FIXP-hardness
Up to this point we have only considered the problem of computing an approximate Hairy
Ball solution. However, there are other computational problems one could consider, e.g.
computing a point that is close to an exact solution, or computing the first n bits of an
exact solution.

The corresponding problems for Brouwer fixed points have been studied by Etessami and
Yannakakis [15]. In particular, they define the class FIXP that captures the complexity of
computing an exact fixed point of a function given by an arithmetic circuit and mapping the
unit cube into itself. They prove that computing an exact Nash equilibrium of a 3-player game
is FIXP-complete. In doing so, they use a special type of reduction, called an SL-reduction,
that ensures that the reduction also holds for three problems that can be studied in the
standard Turing machine model: the “strong approximation problem” (i.e. find a point close
to an exact solution), the “partial computation” problem (i.e. compute the first n bits of
an exact solution) and various decision problems. This means that computing a strong
approximation for 3-player Nash is as hard as computing a strong approximation of a Brouwer
function given by an arithmetic circuit. We prove that the corresponding problems for the
Hairy Ball Theorem are at least as hard as their Brouwer counterparts.

I Definition 10. The Exact-Hairy-Ball problem is defined as: given an arithmetic circuit
F (with gates {+,−,×, /,max,min}, rational constants and that never divides by 0) that
computes a tangent vector field Sk → Rk+1, k even, find x ∈ Sk such that F (x) = 0.

Note that the vector field will be continuous since we never divide by 0. The vector field can
be syntactically forced to be tangent to the sphere because we can compute the projection
exactly using this kind of circuit.

I Theorem 11. Exact-Hairy-Ball is FIXP-hard. Furthermore, the corresponding strong
approximation, partial computation and decision problems are also hard for the corresponding
versions of FIXP (as defined in [15]).
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Proof Overview. We embed two copies of a Brouwer instance (after some preprocessing) on
the sphere such that any exact Hairy Ball solution yields an exact Brouwer fixed point. The
details can be found in Section 5.2 of the full version. Note that this reduction makes use of
the × and / gates and cannot be used to prove PPAD-hardness of kD-Hairy-Ball. J

Following Etessami and Yannakakis, we could define a class HB that captures the
complexity of computing an exact Hairy Ball solution (and corresponding versions of the
class for the related problems) by taking the set of all problems that reduce to Exact-
Hairy-Ball. Then, Theorem 11 is saying that FIXP ⊆ HB. Note that the three discrete
problems that can be studied in the Turing machine model lie in PSPACE, by using the
same technique as in [15, Proposition 4.2].

6 End-of-Line: One Source to Rule Them All

End-of-Line is the canonical problem used to define PPAD. Investigating variants of the
problem is of independent interest, in particular in order to gain a better understanding of
PPAD and how it relates to other similar subclasses of TFNP. An additional motivation for
studying these variants is given by this paper, since a multiple-source variant of End-of-Line
is used to prove that finding an approximate Hairy Ball solution lies in PPAD (Section 4).

This section is an improved version of the corresponding content in the technical report [21].
In [21] we use these results to show that a computational problem related to the Mutilated
Chessboard puzzle is PPAD-complete.

6.1 The End-of-Line problem

The End-of-Line problem is informally defined as follows: given a directed graph where
each vertex has in- and out-degree at most 1 and given a known source of this graph, find a
sink or another source. The problem is computationally challenging, because the graph is
not given explicitly in the input. Instead, we are given an implicit concise representation of
the graph through circuits that compute the predecessor and successor of a vertex in the
graph. In what follows, we sometimes interpret the input and output of the circuits, which
are elements in {0, 1}n, as the numbers {0, 1, . . . , 2n − 1}.

IDefinition 12 (End-of-Line [10]). The End-of-Line problem is defined as: given Boolean
circuits S, P with n input bits and n output bits and such that P (0) = 0 6= S(0), find x such
that P (S(x)) 6= x or S(P (x)) 6= x 6= 0.

The circuits define a graph as follows. There is a directed edge from vertex x to y (x 6= y), if
and only if S(x) = y and P (y) = x. Note that any badly defined edge, i.e. S(x) = y and
P (y) 6= x, or P (y) = x and S(x) 6= y, qualifies as a solution of End-of-Line as defined
above (because P (S(x)) 6= x or S(P (x)) 6= x respectively). Note that 0 is a source of the
graph, unless P (S(0)) 6= 0, in which case 0 is a valid solution to the problem as stated above.

It is easy to check that this formal definition of the problem is computationally equivalent
to the informal description given above. By definition, End-of-Line is PPAD-complete [28].
Furthermore, reduction from End-of-Line is a very common technique to show PPAD-
hardness (e.g. [10, 7]).
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6.2 Multiple-Source End-of-Line

What if, instead of just one, we already know two sources of an End-of-Line instance? We
are still interested in finding any sink or any other source. Intuitively, the problem might
seem easier, because the existence of two sources implies the existence of at least two sinks,
hence more potential solutions. In fact, it is easy to see that this problem is actually at least
as hard as End-of-Line: just duplicate the whole End-of-Line instance.

The other direction, however, is not trivial. Indeed, if we interpret our 2-source End-
of-Line instance as a standard End-of-Line instance (and pick one of the two sources as
the standard source), then the other known source is a valid solution to End-of-Line, but
not a valid solution to our original problem. In other words, it is not clear how to solve this
problem if we are given access to an oracle solving End-of-Line, because the oracle could
just return the other known source. We consider the following more general problem, where
we are given an End-of-Line graph and an explicit list of known sources.

I Definition 13 (MS-EoL). The Multiple-Source End-of-Line problem, abbreviated
MS-EoL, is defined as: given circuits S, P with n inputs and n outputs and s1, . . . , sk ∈
{0, 1}n such that P (si) = si 6= S(si) for all i, find x ∈ {0, 1}n such that P (S(x)) 6= x or
x /∈ {s1, . . . , sk} such that S(P (x)) 6= x.

In passing, let us note that in the undirected case this kind of generalisation is trivial.
The undirected analogue of End-of-Line is Leaf: given an undirected graph where every
vertex has degree at most 2 and given a vertex of degree 1, find another vertex of degree 1,
i.e. another leaf. Assume that we know k leaves instead of just one. If k is even, then the
problem is not even in TFNP. If k is odd, then we can add edges between known leaves until
exactly one is left. Thus, the problem is equivalent to Leaf. This kind of reduction does not
work for the directed case. Nevertheless, we obtain2:

I Theorem 14. Multiple-Source End-of-Line is equivalent to End-of-Line.

Proof Overview. We inductively construct a vertex set containing various combinations of
subsets of the original graph. The successor and predecessor circuits are carefully constructed
so as to ensure that any solution yields a solution to the original problem. The full proof can
be found in Section 8.2 of the full version. J

I Remark (Multiple Known Sources and Sinks). A natural generalisation of Multiple-Source
End-of-Line is the following problem: given an End-of-Line graph and a list of k known
sources and m known sinks, find another source or sink. Note that for this problem to be
in TFNP, we must require k 6= m. Using Theorem 14, it is easy to see that this problem is
equivalent to End-of-Line. If k > m, then we add an edge from each of the m known sinks
to some corresponding known source and obtain an instance with k −m known sources and
no known sinks. Similarly, if k < m, then we first reverse all directed edges and then apply
the same trick.

The next two sections present additional consequences of Theorem 14.

2 This problem was discussed in an online thread (https://cstheory.stackexchange.com/q/37481).
E. Jeřábek proved membership in PPADS and PPA-p for every prime p (but not membership in PPAD).
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6.3 The Imbalance problem
Up to this point, we have only considered graphs where every vertex has in- and out-degree at
most 1. However, the principle that guarantees the existence of a solution in an End-of-Line
graph can be generalised to higher degree graphs. If we are given a directed graph and an
unbalanced vertex, i.e. a vertex with in-degree 6= out-degree, then there must exist another
unbalanced vertex.

Beame et al. [3] defined the corresponding problem Imbalance, which is seemingly more
general than End-of-Line. In this problem, every vertex is not constrained to have in- and
out-degree at most 1. Instead, in- and out-degree are bounded by some polynomial of the
input length3. We are given a vertex that is unbalanced and have to find another unbalanced
vertex (which is guaranteed to exist). The problem can be informally defined as follows:

I Definition 15 (Imbalance [3], informal). The Imbalance problem is defined as: given a
directed graph (represented concisely by predecessor and successor functions) and a vertex z
that has in-degree 6= out-degree, find a vertex x 6= z that also has in-degree 6= out-degree.

Beame et al. [3] claim that Imbalance reduces to End-of-Line, using the same argument
as for the corresponding problems on undirected graphs. However, if the graph is directed, a
complication arises (that is not an issue in the undirected case). Indeed, their proof idea
is incomplete, because they overlook the fact that their reduction yields an End-of-Line
instance with multiple known sources. Using Theorem 14 we can provide a full proof of
their claim.

I Theorem 16. Imbalance is PPAD-complete.

A formal definition of the problem and a full proof can be found in Section 8.3 of the
full version.

6.4 Looking for multiple solutions
If we are given an End-of-Line instance with k known sources, then we can ask for k sinks
or k unknown sources. The problem is total, because at least k sinks are guaranteed to exist.

I Definition 17 (k-EoL). Let k ∈ N. The k-Ends-of-Line problem, abbreviated k-EoL,
is defined as: given circuits S, P with n inputs and n outputs and such that P (z) = z 6= S(z)
for all z < k, find distinct x1, . . . , xk such that P (S(xi)) 6= xi for all i or S(P (xi)) 6= xi ≥ k
for all i.

Intuitively, this problem seems harder than End-of-Line or MS-Eol, because we are now
looking for more than one solution. However, using Theorem 14 we can show:

I Theorem 18. For any k ∈ N, k-Ends-of-Line is PPAD-complete.

Proof Overview. The reduction to End-of-Line is obtained by constructing a Turing
reduction (using Theorem 14) and then applying a result by Buss and Johnson [6] that PPAD
is closed under Turing reductions. The details are in Section 8.4 of the full version. J

I Remark. The same proof also yields PPAD-completeness for the following problem. Fix
some polynomial p. The problem is: given k sources, find k sinks or p(k) sources. This seems
quite surprising, as one might have expected this problem to be closer to PPADS.

3 Note that this trivially holds, if the input consists of circuits that explicitly output the predecessor and
successor list.
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Some analogous results for the class PPADS and its canonical complete problem Sink [27,
3] are presented in Section 8.4 of the full version. Sink is identical to End-of-Line, except
that we only accept a sink as a solution and are not interested in other sources. In this case
the results are easier to obtain, because there is no need for an analogue of Theorem 14.

7 Conclusion and Further Work

We have obtained a satisfying answer to the question of the computational complexity of
the Hairy Ball Theorem, if we are looking for an approximate solution. For other solution
concepts related to exact solutions, we have provided a FIXP-hardness result. This leaves
open the question of whether the problem is FIXP-complete in this case. Indeed, our
reduction from Hairy Ball to Brouwer only works for approximate solutions. A first step
would be to try to reduce Hairy Ball to Borsuk-Ulam, even though no such (fully constructive)
mathematical proof seems to be known.

Our results on multiple-source variants of the End-of-Line problem open the way for
two new research directions. First, they provide a new tool for showing membership of PPAD,
which can be used to put further problems in this class. It seems very unlikely that the
Hairy Ball Theorem should be the only “natural” application of these results. Furthermore,
a second interesting research direction is investigating the complexity of End-of-Line with
a super-polynomial number of known sources (implicitly given in the input).
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1 Introduction

Minimum Circuit Size Problem (MCSP) asks to decide if a given boolean function f : {0, 1}n →
{0, 1} (presented by its truth table of length N = 2n) can be computed by a boolean circuit
of size at most s, for a given parameter 0 ≤ s ≤ 2n. There is no nontrivial algorithm currently
known for MCSP other than the “brute force” enumeration of all circuits of size up to s and
checking if any one of them computes f . On the other hand, while MCSP is obviously in NP,
it is a major open question to decide if MCSP is NP-complete (and there is a growing list of
research papers providing arguments for and against various NP-completeness reductions to
MCSP [17, 2, 4, 3, 6, 13, 12, 24]).

Another natural question is to prove circuit lower bounds (for restricted circuit models)
for MCSP. Here some results are known. Allender et al. [2] showed that MCSP requires
super-polynomial-size AC0 circuits (constant-depth circuits with AND, OR, and NOT gates).
Hirahara and Santhanam [11] proved that MCSP requires almost quadratic-size De Mor-
gan formulas.

It was an open question [5, 25] to prove that MCSP requires super-polynomial AC0[p]
circuits (constant-depth circuits with AND, OR, NOT and mod p counting gates), for a
prime p > 0. We resolve this question in the present paper. Our main result is that MCSP
requires d-depth AC0[p] circuits of size at least exp(N0.49/d), where N = 2n is the size of an
input truth table of an n-variate boolean function.

Previous proof methods of circuit lower bounds for MCSP

The lack of NP-completeness reductions to MCSP and the scarcity of circuit lower bounds
for MCSP underscore the general phenomenon that there are very few known reductions to
MCSP. The main (if not the only one) use of MCSP inside known reductions is to “break”
pseudorandom function generators, an idea going back to the celebrated paper of Razborov
and Rudich [28] on “natural proofs”. The point is that known candidate constructions of
pseudorandom function generators produce pseudorandom functions that do have “small”
circuit complexity, whereas truly random functions are known to require “high” circuit
complexity. Thus, an assumed efficient MCSP algorithm can distinguish between the truth
tables of such pseudorandom functions and those of truly random functions, thereby “breaking”
the pseudorandom function generator.
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Both previously known circuit lower bounds for MCSP by Allender et al. [2] and by
Hirahara and Santhanam [11] used MCSP’s ability to break pseudorandom function generators
together with the existence of known pseudorandom (function) generators that are provably
secure against AC0 and quadratic-size De Morgan formulas, respectively. The same approach
cannot be applied to the case of AC0[p] circuits as we currently do not have any strong
enough pseudorandom generators secure against AC0[p]!

Our approach

Our approach instead is to reduce the Majority function to MCSP, and use the known AC0[p]
lower bounds against Majority [27, 31]. In fact, we give a reduction to MCSP from the coin
problem where one is asked to distinguish between an N -bit uniformly random string, and an
N -bit string sampled so that each bit is independently set to 1 with probability 1/2− ε (and
to 0 otherwise), for some parameter ε > 0. We then use the result of Shaltiel and Viola [29]
showing that any algorithm solving such a coin problem yields an efficient algorithm for
computing the Majority function on inputs of length 1/ε. To conclude super-polynomial-
size AC0[p] circuit lower bounds for MCSP from the known lower bounds for the Majority
function, we need to be able to solve the coin problem for N -bit strings with the parameter
ε < 1/poly(logN).

Here is some intuition why MCSP could be useful for solving the coin problem. For
N = 2n, an N -bit random string has binary entropy N . On the other hand, N -bit strings
sampled using a biased coin with probability p = 1/2− ε of being 1 would likely have close
to pN < N/2 ones only, and so come from a smaller set of about

(
N
pN

)
≈ 2H(p)·N strings of

size N , where H is the binary entropy function. Information-theoretically, we can describe
each string with at most pN ones using about H(p) · N bits. For p � 1/2, we have that
H(p) ·N � N , and so most biased functions have a description of bit complexity much less
than N . If somehow we could extend this information-theoretic argument to show that most
biased functions will have circuit complexity noticeably smaller than that of random functions,
we’d be done because MCSP would be able to distinguish between random functions (of
higher circuit complexity) and random biased functions (of lower circuit complexity).

Lupanov in 1965 [21] proved that, indeed, biased random functions have circuit complexity
smaller than that of random boolean functions. However, Lupanov’s result applies only to
the case of bias probability p = 1/2− ε for large (close to constant) ε only, and doesn’t give
anything useful for our case of ε < 1/poly(logN). To circumvent the lack of tighter circuit
upper bounds for slightly biased random functions, we employ two new ideas.

First, we show that the circuit complexity of q-random functions is very tightly concentrated
around its expectation, for every probability q. This can be proved using a simple martingale
argument (McDiarmid’s Inequality [22]). The point is that the circuit complexity of a
given n-variate boolean function f changes by at most O(n) when we change the value of
f on exactly one n-bit input (which can be simply hard-wired into the new circuit for the
modified function).

Secondly, we use a hybrid argument. By Lupanov’s result [21], one can show that for
p = 0.01, almost all p-biased random functions will have circuit complexity noticeably smaller
that 2n/n, and in particular, the expected circuit complexity of a p-biased random function
is at most 0.1 · 2n/n. On the other hand, for p′ = 1/2, well-known counting arguments show
that almost all such random functions have circuit complexity very close to 2n/n, and in
particular, the expected circuit complexity of a random function is at least 0.9 ·2n/n. Imagine
we have t equally spaced probabilities between p = 0.01 and p′ = 1/2, for some number t to
be chosen. Then by the hybrid argument, there will exist two successive probabilities q and
q′ ≈ q + 1/t, where the expected circuit sizes for q-random and q′-random functions differ by
at least Ω(2n/n)/t.

ICALP 2019
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By the “concentration around the expected circuit size” result mentioned above, we
conclude that MCSP is able to distinguish between most q-random boolean functions and
most q′ ≈ q + 1/t-random ones. By re-scaling, we conclude that MCSP is able to distinguish
between 1/2− 1/t-random function and 1/2-random ones, i.e., that MCSP solves the coin
problem for the bias ε = 1/t. Finally, our concentration result is strong enough to allow us to
choose t = 2Ω(n), which yields an exponential AC0[p] circuit lower bound for MCSP. (To get
the quantitatively strongest circuit lower bound for MCSP, we use the recent AC0[p] lower
bounds for the coin problem by [18], rather than apply the reduction from the Majority
function to the coin problem from [29].)

Other results

We are able to generalize our AC0[p] circuit lower bounds to several natural variants of MCSP.
For a circuit class C, let C-MCSP denote the MCSP problem asking about the C-type circuit
complexity of a given truth table. For example, C can be the class AC0, where we ask about
the gate complexity of a smallest AC0 circuit computing a given boolean function, or C can be
the class of boolean formulas, where we ask about the formula (leaf) complexity of a smallest
formula. We show that for both such cases of C, the problem C-MCSP requires exponential-
size AC0[p] circuits. This generalization requires us to re-visit Lupanov’s general circuit upper
bounds for biased random functions. We provide new “hashing-based” arguments for such
circuit constructions that apply to the case of formulas as well as constant-depth circuits
and formulas.

As a corollary of our reduction of the coin problem to MCSP and some previous results,
we obtain that every function in NC1 can be computed by a non-uniform AC0 circuit with
MCSP oracle gates. We also show that at least one of the following lower bounds must be
true: either NEXP 6⊂ P/poly, or MCSP 6∈ ACC0.

Finally, we give a new coin-problem based proof of AC0[p] circuit lower bounds for MKTP,
a Kolmogorov-complexity variant of MCSP, re-proving the result of [5].

The rest of the paper

We give the necessary definitions and facts in Section 2. We prove the aforementioned circuit
complexity concentration result for random biased functions in Section 3, and then prove
our AC0[p] circuit lower bound for MCSP in Section 4. In Section 5, we give corollaries of
our main result. The lower bound for MKTP is given in Section 7. We generalize our lower
bounds to the case of C-MCSP in Section 6. Section 8 lists some open questions.

2 Preliminaries

2.1 Complexity basics
For a boolean function f : {0, 1}n → {0, 1}, let size(f) denote the size of a smallest circuit
(using AND, OR, and NOT gates) that computes f . Let size(n) be the maximum of size(f),
over all n-variate boolean functions f . Finally, define sn = E[size(f)] to be the average of
circuit complexities over all n-variate boolean functions.

Below, all logarithms are base 2, unless stated otherwise.
Building on the work by Shannon [30], Lupanov [19] proved the following lower and upper

bounds for size(n).
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I Theorem 2.1 (Lupanov [19]). For all sufficiently large n ∈ N,

size(n) ≤ 2n

n
+O

(
2n logn
n2

)
.

Moreover, all but o(1) fraction of uniformly random n-variate boolean functions f require

size(f) ≥ 2n

n
+ Ω

(
2n logn
n2

)
.

For the case of n-variate functions with a fixed fraction of 1 inputs, Lupanov [21] proved
the following generalization of his earlier bounds.

I Theorem 2.2 (Lupanov [21]). Let f : {0, 1}n → {0, 1} be any boolean function that has the
value 1 on k ≤ 2n−1 inputs, where k ∈ Ω(2n). Then, for all sufficiently large n ∈ N,

size(f) ≤
log
(2n

k

)
log log

(2n

k

) +O

(
2n logn
n2

)
.

Moreover, all but o(1) fraction of random such functions f require

size(f) ≥
log
(2n

k

)
log log

(2n

k

) + Ω
(

2n logn
n2

)
.

2.2 Probability basics
I Theorem 2.3 (McDiarmid’s Inequality [22]). Let X1, . . . , XN ∈ {0, 1} be independent
random variables. Let f : {0, 1}n → R be any function such that, for some function c = c(N),
for all 1 ≤ i ≤ N and for all b1, . . . , bN , b̃i ∈ {0, 1}, it holds that∣∣∣f(b1, . . . , bN )− f(b1, . . . , bi−1, b̃i, bi+1, . . . , bN )

∣∣∣ ≤ c.
Then, for any λ > 0,

Pr [|f(X1, . . . , XN )−E [f(X1, . . . , XN )]| ≥ λ] ≤ 2 · exp
(

2λ2

Nc2

)
.

Roughly speaking, the inequality states that with high probability the value of f will be
of distance at most O(

√
N · c) around its mean.

2.3 Coin problem
A coin problem is the problem to distinguish between two coins (boolean-valued random
variables), where one coin has probability p of being 1, and the other coin probability q > p.
Usually, p = 1/2 − ε and q = 1/2 + ε, for some ε > 0; or, p = 1/2 − ε and q = 1/2. By a
simple “translation argument”, it is possible to show that all of these problems are essentially
equivalent. For completeness, we state this argument next.

B Claim 2.4 (Translation Argument). Let 0 < p ≤ q < 1, ε > 0. Suppose C is a circuit of
size S that solves the p(1− ε) versus p coin problem on inputs of length N with advantage
α. Then, there exists a circuit C̃ of size at most S that solves the q(1 − ε) versus q coin
problem on inputs of length N with advantage at least α.

ICALP 2019
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Proof. For p ∈ (0, 1), we denote by µp the product distribution on {0, 1}N where each bit is
independently sampled to be 1 with probability p, and 0 otherwise. Let C be a circuit of
size S that solves the p(1− ε) versus p coin problem with advantage

α := Pr
x∼µp(1−ε)

[C(x)]− Pr
x∼µp

[C(x)].

We construct a distribution over circuits C ′ that achieves the same advantage on the q(1− ε)
versus q coin problem. The randomized circuit C ′ is defined as follows: “For each input bit xi,
let x′i = xi with probability p/q and x′i = 0 otherwise. Apply C on (x′1, . . . , x′N ).” Note that,
by design, if x is distributed according to a µq then x′ is distributed according to µp, and if
x is distributed according to µq(1−ε), then x′ is distributed according to µp(1−ε). We get a
distribution over circuits C ′ that solves the q(1− ε) versus q coin problem with advantage
at least α. By averaging, there must exist a deterministic circuit C̃ that solves the q(1− ε)
versus q coin problem with advantage at least α. Note that C̃ is obtained from C ′ by fixing
the internal randomness that C ′ used to decide for each 1 ≤ i ≤ N whether to set x′i = xi or
x′i = 0. With those choices fixed, C̃(x1, . . . , xN ) is just a restriction of C(x1, . . . , xN ) where
some xi’s are set to 0. Hence, the size of C̃ is at most that of C, as claimed. C

I Theorem 2.5 ([29]). Let A be an algorithm that distinguishes, with constant distinguishing
probability, between n-bit uniformly random strings, and n-bit strings sampled so that each
bit is independently set to 1 with probability 1/2− ε (and to 0 otherwise). Then there is a
non-uniform AC0 circuit of size poly(n/ε) that computes the majority function on binary
inputs of length 1/ε, using A-oracle gates.

Using the theorem above as well as the well-known lower bound for the majority function
against AC0[p] circuits, for any constant prime p, we can deduce that any algorithm solving
the coin problem with bias ε on n-bit inputs requires AC0[p] depth d circuits of size at least
exp((1/ε)1/O(d)). This lower bound has been recently sharpened.

I Theorem 2.6 ([18]). Let A be a boolean function that distinguishes, with constant distin-
guishing probability, between n-bit uniformly random strings, and n-bit strings sampled so
that each bit is independently set to 1 with probability 1/2− ε (and to 0 otherwise). Then
any depth d AC0[p] circuit computing A must have size at least exp(Ω((1/ε)1/(d−1))).

3 Concentration of Circuit Complexity

For every n ≥ 1, let µ be any product distribution over {0, 1}N , where N = 2n. Recall that
size(f) is the size of a smallest circuit computing a boolean function f . For each integer
n ≥ 1, define

sµn = Ef∼µ [size(f)] ,

the expectation of size(f) over n-variate boolean functions f whose N -bit truth tables are
sampled according to µ. We show that a random n-variate boolean function sampled from µ

is likely to have its circuit complexity very close to the expected circuit complexity sµn.

I Theorem 3.1. For µ and sµn as defined above, if a boolean function f : {0, 1}n → {0, 1} is
chosen at random according to distribution µ, then, with probability at least 1− 2−n,

|size(f)− sµn| ≤
√
N · n2.
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Proof. Observe that for any two n-variate boolean functions f and g that differ on exactly
one input a ∈ {0, 1}n, we have that |size(f)−size(g)| ≤ O(n). Indeed, suppose, without loss
of generality, that size(f) ≤ size(g). Then we can compute g as follows: “Given z ∈ {0, 1}n,
check if z = a. If so, then output the bit b = g(a). Otherwise, use the circuit for f to
output f(z).” More precisely, if C is a circuit computing f , then the circuit D for g can be
described as

D(z) := (b ∧ (∧ni=1(zi = ai))) ∨ (C(z) ∧ (∨ni=1(zi 6= ai))) , (1)

where (zi = ai) is defined to be zi for ai = 1, and the negation zi for ai = 0; and (zi 6= ai) is
the negation of (zi = ai). Clearly, the size of D is that of C plus O(n).

LetX1, . . . , XN ∈ {0, 1} be independent random variables sampled from the product distri-
bution µ. We apply McDiarmid’s Inequality of Theorem 2.3 to the function size : {0, 1}N → N,
which, as we just argued, differs by at most c = O(n) on any two truth tables that agree in
all but one coordinate. We get the desired concentration result by choosing λ =

√
N · n2.

That is, all but exp(−n) fraction of µ-random n-variate boolean functions f have their circuit
size size(f) within

√
N · n2 of the expected circuit size sµn. J

4 Main theorem

I Theorem 4.1. Let p ≥ 2 be any prime. For any depth d > 0 and large enough in-
put size N = 2n, MCSP on N-bit truth tables requires depth d AC0[p] circuits of size
exp(Ω(N0.49/(d−1))).

Proof. Let t = d20.49ne. Consider an arithmetic sequence of probabilities (p0, p1, p2, ...., pt)
with p0 = 0.01, pt = 0.5 and pi = p0 + i · 0.49/t. For each i = 0, . . . , t, let µi be the product
distribution on {0, 1}N , where each bit is independently sampled to be 1 with probability pi,
and 0 with probability 1− pi. Let

si = sµ
i

n = Ef∼µi [size(f)] .

By Lupanov’s estimates of Theorem 2.1, we have

st ≥ (1− o(1)) · 2n

n
≥ 0.9 · 2n

n
.

By the Chernoff bound, almost all n-variate boolean functions sampled according to µt will
assume the value 1 on at most k = 0.011 ·N inputs. By Theorem 2.2, we have

s0 ≤ H(0.011) · 2n

n
+ o

(
2n

n

)
≤ 0.1 · 2n

n
,

where H() is the binary entropy function. It follows that

st − s0 ≥ 0.8 · 2n

n
.

This means that there must be an i such that si+1 ≥ si + Ω(20.51n/n). Let s∗ =
(si + si+1)/2. By circuit complexity concentration given in Theorem 3.1, we get that, with
high probability, n-variate random boolean functions sampled from µi have circuit size smaller
than s∗, and those sampled from µi+1 have circuit size larger than s∗. Hence, MCSP(x, s∗)
can distinguish between µi and µi+1, with a constant distinguishing probability.

ICALP 2019
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Finally, assume by contradiction that MCSP ∈ AC0[p] of size S and depth d. Let n be
large enough, and let N = 2n. Then, by fixing the second input of MCSP to s∗, we get an
AC0[p] circuit that on N -bit inputs solves the coin problem distinguishing between pi and
pi+1. By Claim 2.4, there exists a circuit of size at most S and depth at most d that solves
the (1− ε)/2 versus 1/2 coin problem for ε = 1− pi/pi+1 = Θ(1/t) = Θ(N−0.49). However,
the latter implies by Theorem 2.6 that S ≥ exp(Ω(ε−1/(d−1))) = exp(Ω(N0.49/(d−1))). J

5 Consequences

Below, whenever we talk about circuit classes such as AC0, ACC0, and TC0, we mean
non-uniform circuit classes.

Using Theorem 2.5, we get the following corollary to Theorem 4.1 regarding the MAJOR-
ITY function, denoted MAJ.

I Corollary 5.1. MAJ ∈ (AC0)MCSP.

Combined with the inclusion NC1 ⊆ (TC0)MCSP of [25], Corollary 5.1 yields the following.

I Corollary 5.2. NC1 ⊆ (AC0)MCSP.

In fact, using the same techniques, we can prove something more general.

I Theorem 5.3. Let C ⊆ P/poly be any complexity class that has a complete problem under
TC0-computable reductions that is also random-self-reducible via a TC0-computable reduction.
Then we have

C ⊆ (AC0)MCSP.

Proof sketch. It follows from [7] that any function f ∈ P/poly has a non-uniform (TC0)MCSP

circuit C of polynomial size that agrees with f on all but an inverse polynomial fraction
of inputs. If f is random-self-reducible via a TC0 reduction, we can recover from C a new
polynomial-size (TC0)MCSP circuit computing f exactly (on all inputs). Applying Corollary 5.1
concludes the proof. J

As the class GapL has Determinant as a complete problem under AC0 reductions (see [1]
for a survey on logspace counting complexity classes), we get the following.

I Corollary 5.4. GapL ⊆ (AC0)MCSP.1

The following is a non-uniform version of a similar “Karp-Lipton”-style “collapse” theorem
from [14], which we state just for the class EXP.

I Theorem 5.5. If EXP ⊆ P/poly, then EXP ⊆ (AC0)MCSP.

Proof. Using TC0-computable locally list-decodable binary codes of [10], we get that EXP
contains a complete language that is random-self-reducible via a TC0-computable reduction.
We then appeal to Theorem 5.3. J

1 The potentially bigger class DET is the class of languages that are NC1-Turing reducible to computing
the determinant of an integer matrix [8]. It is not immediately clear if DET ⊆ (AC0)MCSP. Perhaps, one
can use the techniques of [5] who showed such a result for MKTP.
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We do not know if MCSP is NP-complete. There is a line of research showing that MCSP
(or its variants) can’t be NP-complete under very restricted kinds of reductions (e.g., “local”
reductions of [24]). One corollary of Theorem 5.5 is that it will be difficult to rule out
non-uniform Turing AC0 reductions from SAT to MCSP.

I Corollary 5.6. If SAT 6∈ (AC0)MCSP, then EXP 6⊆ P/poly.

Finally, while we don’t know how to disprove that MCSP ∈ ACC0, we get that at least
some lower bound must be true.

I Corollary 5.7. Either NEXP 6⊆ P/poly, or MCSP 6∈ ACC0.

Proof. Towards a contradiction, suppose that both (1) NEXP ⊆ P/poly, and (2) MCSP ∈
ACC0. By the Easy Witness Lemma of [15], (1) implies that NEXP = EXP. Then by
Theorem 5.5, we get that NEXP ⊆ (AC0)MCSP. Combining this with (2) yields that NEXP ⊆
ACC0. But the latter contradicts the known lower bound of [32]. J

6 Generalizations

Here we show that, for a number of typical circuit classes C, our lower bound proof (and a
reduction from MAJORITY) works also for C-MCSP. In particular, we will show that both
AC0-MCSP and Formula-MCSP require exponential AC0[p] circuit lower bounds.

Our lower bound for MCSP used two main ingredients: (1) circuit size concentration
for random (biased) boolean functions, and (2) a noticeable difference between most likely
circuit sizes for uniformly random and biased boolean functions (where each bit of the truth
table is 1 with a small constant probability, say 0.01).

For property (1), we note that the concentration argument only needs the Lipschitz
property of a given circuit size measure, which comes from the fact that changing a boolean
function on a single n-bit input may change the circuit size of the function by at most
O(n) additive term. This holds for virtually every reasonable circuit model, as the proof of
Theorem 3.1 shows; there is a potential increase in depth for constant-depth circuits, but
this can be avoided for the case where the circuit size is defined to be the total number of
gates in the constant-depth circuit (see the proof of Corollary 6.2).

For property (2), we need a Shannon-style counting argument to show that most random
n-variate functions have at least certain size S in a given circuit model C, as well as a
Lupanov-style argument that (most) boolean functions with very few (a small constant
fraction α of) 1s have C-circuit complexity at most some constant fraction δ of S, for some
0 < δ < 1 (dependent on α).

Property (2) is known for the case of boolean circuits, as implied by Lupanov’s Theorem 2.2,
and is known for formulas, by the work of Pippenger [26]. Moreover, it is possible to use the
celebrated constructions of Lupanov, giving tight upper bounds for circuit complexity [19]
and formula complexity [20] for all boolean functions, to show that biased random functions
have relatively small circuits as well as small formulas (see the full version of this paper on
ECCC for more details). However, we give a different argument (based on some hashing
ideas) that will allow us to reduce the problem of showing small circuit complexity of a
random biased boolean function to the known worst-case upper bounds for boolean function
on fewer variables. Using such known worst-case upper bounds for the classes of circuits,
formulas, and constant-depth circuits (counting the number of gates), we then obtain the
required upper bounds for the circuit complexity of constant-biased random functions in
these circuit models.
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I Theorem 6.1. Let 0 < α < 1/2 be any constant. For all but o(1) fraction of α-biased
n-variate random functions f , we have
1. circuit-size(f) ≤ O(α · log 1/α) · 2n

n ,
2. (AC0)-formula-size(f) ≤ O(α · log 1/α) · 2n

logn , and
3. AC0-circuit-size(f) ≤ O(α · log 1/α) · 2n/2 (where consider the gate complexity of a

given constant-depth circuit); moreover, the upper bound is for some fixed depth d0 > 0
(independent of f).

We omit the proof of Theorem 6.1 due to space constraints (see the full version of this
paper on ECCC for more details).

Using Theorem 6.1, we conclude the following.

I Corollary 6.2. Let C be the class of general circuits, or formulas, or constant-depth
AC0 circuits. For any prime p ≥ 2 and any depth d > 0 and large enough input size
N = 2n, C-MCSP on N-bit truth tables requires depth d AC0[p] circuits of size at least
exp(Ω(N0.49/(d−1))).

Proof. As observed earlier, our lower bound proof for MCSP requires three ingredients: the
Lipschitz property of the circuit complexity measure, a Shannon-style lower bound on the
complexity measure for random n-variate boolean functions, and a O(α log(1/α)) factor
smaller upper bound on the complexity measure for random α-biased boolean functions (which
can be made an arbitrary constant factor ε smaller than the corresponding Shannon-style
upper bound by choosing the constant bias α > 0 to be sufficiently small).

The Lipschitz property is easily seen to hold for both general circuits and formulas. For
constant-depth circuits, where we count the number of gates, it also holds, provided the
depth of our circuits is at least 3. We sketch the argument next.

We may assume that the circuit has alternating levels of ANDs and ORs, with negations
on the bottom variables level. Without loss of generality, the top gate is an OR. (The other
case is symmetric.) Case 1. We want to flip the value on a ∈ {0, 1}n from 0 to 1. Add an
AND of xai

i ’s, and feed this AND into the top OR gate. (Use just one extra gate.) Case 2:
We want to flip from 1 to 0 on a ∈ {0, 1}n. Add an OR of x1−ai

i ’s, and feed this OR into
every AND-gate just one level below the top OR-gate. (Use just one extra gate.) Note that
the depth doesn’t change, if the original circuit is of depth d ≥ 3.

The Shannon-style lower bounds for random n-variate functions are known for general
circuits Ω(2n/n), formulas Ω(2n/(logn)), and constant-depth circuits Ω(2n/2) (see, e.g., [16]).
Finally, Theorem 6.1 gives matching upper bounds for biased functions. The proof follows. J

7 Circuit lower bounds for MKTP via the coin problem

Here we show how to re-prove a known AC0[p] circuit lower bound for MKTP [5], using the
coin problem. This was the starting point in our attempt to prove an AC0[p] lower bound
for MCSP. For MKTP, we managed to show that biased random strings have a noticeably
smaller KT complexity than that of uniformly random strings, where the bias 1/2− ε can be
chosen for a sufficiently small ε so that we immediately get an AC0[p] circuit lower bound for
MKTP using Theorem 2.6. We provide the details next.

We first define the KT complexity [2]. Fix a universal random-access Turing machine U .
The KT complexity of a string x ∈ {0, 1}N is defined as the

min{|d|+ t | ∀ 0 ≤ i ≤ N + 1 Ud(i) = xi in at most t steps},
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and xN+1 = ⊥. In other words, x can be computed at every position i in time at most t by
a TM U that has random access to some binary string d, and we want to minimize the total
sum of the length of such an auxiliary string d and the time bound t.

MKTP is then naturally defined as follows: Given x ∈ {0, 1}N and a parameter s, decide
if the KT complexity of x is at most s.

To prove a super-polynomial AC0[p] circuit lower bound for MKTP via the coin problem
approach (using Theorem 2.6), it would suffice to show that the MKTP oracle can distinguish
between uniformly random N -bit strings and those where each bit is sampled, independently,
with probability 1/2− ε, for some ε� 1/poly logN . We’ll show how to do this for ε = N−γ ,
for some γ > 0 (in fact, for γ ≈ 1/6).

What we need is to show that a random biased N -bit string can be compressed to have
its KT complexity noticeably smaller than that of a uniformly random N -bit. Let q = 1/2− ε
be the probability for sampling each bit to be 1 in a random biased string. By standard
concentration bounds, we know that a random biased N -bit string will have, with very high
probability, the number of 1s very close to K = qN . For the simplicity of exposition, we
will assume that our random biased strings have at most K = qN ones in them. We then
show that every N -bit string with (at most) K ones has its KT complexity much less than
N , which is the lower bound on the KT complexity of a uniformly random N -bit string.

It is natural to think of an N -bit string with K ones as a subset of size K in the universe
of size N . As there are exactly

(
N
K

)
such subsets, the minimal bit complexity to represent any

one of such subsets is OPT = log2
(
N
K

)
. Such an information-theoretically optimal encoding

of K-size subsets of the N -size universe is known, and is achieved by using the combinatorial
number system where we represent each such subset by the unique number of the form

(
cK
K

)
+ · · ·+

(
c2
2

)
+
(
c1
1

)
.

In more detail, suppose we have x ∈ {0, 1}N where X has exactly K ones. For the base
case, when K = 0, we output 0. For K > 0, we associate with x an integer number using
the following recursive procedure: if xN = 1, then output

(
N−1
K

)
+ R1, where R1 is the

recursively computed integer associated with N − 1-bit prefix of x and the parameter K − 1;
if xN = 0, then output R0, which is the integer associated with the N − 1-bit prefix of x and
the parameter K.

Note that the final integer associated with a given K-size subset x ∈ {0, 1}N has value at
most

(
N
K

)
(using Pascal’s identity that

(
N
K

)
=
(
N−1
K−1

)
+
(
N−1
K

)
), and so has the optimal bit

complexity. The encoding is efficient (as outlined above). The decoding is also efficient: given
an integer B encoding some unknown K-size subset x ∈ {0, 1}N , if B ≥

(
N−1
K

)
, then set

xN = 1, and recursively decode B −
(
N−1
K

)
for a K − 1-size subset of the N − 1-size universe;

otherwise, set xN = 0, and recursively decode B for a K-size subset of the N−1-size universe.
The running time of such a decoding algorithm is clearly poly(N), and can be shown to be
about O(N2).

For the KT complexity of a string x ∈ {0, 1}N with K ones, we could define d to be the
integer encoding this K-size subset, and then define Ud(i) to be an algorithm that does the
decoding of d to get all the bits of x. The problem with this is that the runtime to do a
complete decoding of d into x is more than N , which is too much. However, the decoding
we do is global, recovering all bits xi simultaneously, whereas we just need to give a local
decoding algorithm: given i, recover xi.
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Encoding

To get a locally decodable representation for our string x ∈ {0, 1}N , we partition x into
blocks of size b (for b to be determined). For each block j, 1 ≤ j ≤ N/b, let Ki be the
number of ones in that block. Note that

∑N/b
j=1 Kj = K. Given Kj , encode each block j

information-theoretically optimally as described above, using at most log2
(
b
Kj

)
bits. Write

the resulting encodings of all blocks one after the other; add N/b pointers (of at most logN
bits each) that point to the beginnings of the encodings of the blocks; add N/b numbers
Kj ’s to the encoding. We get that the total bit size of the overall encoding of x is at most

O(N/b)(logN + log b) +
N/b∑
j=1
dlog2

(
b

Kj

)
e.

The latter sum is at most
N/b∑
j=1

log2

(
b

Kj

)
+N/b = log2

N/b∏
j=1

(
b

Kj

)
+N/b ≤ log2

(
N

K

)
+N/b,

since the number of sets with Kj ones in block j is at most the number of all subsets of [N ]
with K ones. Overall, the encoding size is OPT +O(N logN/b).

Decoding

Given i ∈ [N ], we first figure out which block j it is in, and then decode that entire block
(after looking up its number of ones in Kj and its compressed image). As discussed earlier,
the decoding runs in time about O(b2).

Upper-bounding the KT complexity

To keep the KT complexity of x low, we choose b to be N1/3. Then the KT complexity of x
is at most OPT +O(N2/3).

Finally, we show that MKTP 6∈ AC0[p] as follows. Recall that we consider random biased
strings of length N where the bias probability is q = 1/2− ε. Let K = qN be the expected
number of ones in a typical biased string, and let’s assume that most biased strings have at
most K ones in them (for simplicity). We get that for such a biased string, its KT complexity
is at most

log2

(
N

K

)
+O(N2/3) ≈ H(q) ·N +O(N2/3),

where H is the binary entropy function. For q = 1/2− ε, we can estimate H(q) ≈ 1−O(ε2).
Thus, to have the KT complexity of a typical q-biased N -bit string to be strictly less than N ,
we need N ·O(ε2)−O(N2/3) > 0, which implies that we need ε > Ω(N−1/6). This implies
by Theorem 2.6 that MKTP on inputs of size N requires AC0[p] circuits of depth d of size at
least exp(Ω(N1/6(d−1))).

8 Open questions

We managed to find a work-around the lack of a tighter Lupanov-style upper bound on
the circuit complexity of just slightly biased random functions where the bias probability is
arbitrarily close to 1/2 (as opposed to the bias probability being a small constant bounded
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away from 1/2). Our proof would be much more direct and constructive if we had such
refinements of Lupanov’s circuit upper bounds for biased boolean functions (since then we
could have proceeded similarly to our proof for the MKTP case in the previous section). Can
one prove such tighter circuit upper bounds?

Our current circuit lower bound applies to MCSP, but doesn’t seem to apply for its
average-case version, the Razborov-Rudich natural property [28]. Can one show such
an extension?

Finally, we showed (Corollary 5.7) that either NEXP 6⊆ P/poly or MCSP 6∈ ACC0. For the
proof, we used the original Easy Witness Lemma of [15], the existence of random-self-reducible
problems in EXP, plus the known lower bound that NEXP 6⊆ ACC0 [32]. Given the new Easy
Witness Lemma and the improved circuit lower bound that NQP = NTIME[npoly logn] 6⊆
ACC0 [23], it is natural to ask the following: Can we show that either NQP 6⊆ P/poly or
MCSP 6∈ ACC0? Our current proof techniques rely on the existence of a random-self-reducible
problem complete for EXP, and no such problem is known for the class NQP.
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67:2 Stochastic Online Metric Matching

1 Introduction

We study the minimum-cost metric (perfect) matching problem under online i.i.d. arrivals.
In this problem, we are given a fixed metric (S, d) with a server at each of the n = |S| points.
Then n requests arrive online, where each request is at a location that is drawn independently
from a known probability distribution D over the points. Each such arriving request has to
be matched immediately and irrevocably to a free server, whereupon it incurs a cost equal to
distance of its location to this server. The goal is to minimize the total expected cost.

The minimization version of online matching was first considered in the standard ad-
versarial setting by Khuller et al. [25] and Kalyanasundaram and Pruhs [22]; both papers
showed (2n− 1)-competitive deterministic algorithms, and proved that this was tight for,
say, the star metric. After about a decade, a randomized algorithm with an O(log3 n)-
competitiveness was given by Meyerson et al. [30]; this was improved to O(log2 n) by Bansal
et al. [4], which remains the best result known. (Recall that the maximization version of
matching problems have been very widely studied, but they use mostly unrelated techniques.)

The competitive ratio model with adversarial online arrivals is often considered too
pessimistic, since it assumes an all-powerful adversary. One model to level the playing field,
and to make the model perhaps closer to practice, is to restrict the adversary’s power. Two
models have been popular here: the random-order arrivals (or secretary) model, and the
i.i.d. model defined above. The random-order model is a semi-random model, in which the
worst-case input is subjected to random perturbations. Specifically, the adversary chooses a
set of requests, which are then presented to the algorithm in a uniformly random order. The
min-cost online matching problem in this random-order model was studied by Raghvendra,
who gave a tight O(logn)-competitive algorithm [35]. The random-order model also captures
the i.i.d. setting, so the natural goal is to get a better algorithm for the i.i.d. model. Indeed,
our main result for the i.i.d. model gives exactly such a result:

I Theorem 1.1 (Main Theorem). There is an O((log log logn)2)-competitive algorithm for
online minimum-cost metric perfect matching in the i.i.d. setting.

Observe that the competitiveness here is better than the lower bounds of Ω(logn) known
for the worst-case and random-order models.

Matching on the Line and Trees. There has also been much interest in solving the problem
for the line metric. However, getting better results for the line than for general metrics has
been elusive: an O(logn)-competitive randomized algorithm for line metrics (and for doubling
metrics) was given by [18]. In the deterministic setting, recently Nayyar and Raghvendra [34]
gave an O(log2 n)-competitive algorithm, whose competitive ratio was subsequently proven to
be O(logn) by Raghvendra [36], improving on the o(n)-competitive algorithm of Antoniadis
et al. [2]. To the best of our knowledge, nothing better is known for tree metrics than for
general metrics in both the adversarial and the random-order models. Our second result for
the i.i.d. model is a constant-competitive algorithm for tree metrics.

I Theorem 1.2 (Algorithm for Trees). There is a 9-competitive algorithm for online minimum-
cost metric perfect matching on tree metrics in the i.i.d. setting.

Max-Weight Perfect Matching. Recently, Chang et al. [7] presented a 1/2-competitive
algorithm for the maximum-weight perfect matching problem in the i.i.d. setting. We
show that our algorithm is versatile, and that a small change to our algorithm gives us a
maximization variant matching this factor of 1/2. Our approach differs from that of [7], in
that we match an arriving request based on the realization of free servers, while they do so
based on the “expected realization”. See the full version for details.
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1.1 Our Techniques
Both theorems 1.1 and 1.2 are achieved by the same algorithm. The first observation guiding
this algorithm is that we may assume that the distribution D of request locations is just the
uniform distribution on the server locations. (In the full version we show how this assumption
can be removed with a constant factor loss in the competitiveness.) Our algorithm is inspired
by the following two complementary consequences of the uniformity of D.

Firstly, each of the n− t+ 1 free servers’ locations at time t are equally likely to get a
request in the future, and as such they should be left unmatched with equal probability.
Put otherwise, we should match to them with equal probability of 1/(n− t+ 1). However,
matching any arriving request to any free server with probability 1/(n− t+ 1) is easily
shown to be a bad choice.
So instead, we rely on the second observation: the tth request is equally likely to arrive
at each of the n server locations. This means we can couple the matching of free server
locations with the location of the next request, to guarantee a marginal probability of
1/(n− t+ 1) for each free server to be matched at time t.

Indeed, the constraints that each location is matched at time t with probability 1/n (i.e., if it
arrives) and each of the free servers are matched with marginal probability 1/(n− t+ 1) can
be expressed as a bipartite flow instance, which guides the coupling used by the algorithm.
Loosely speaking, our algorithm is fairly intuitive. It finds a min-cost fractional matching
between the current open server locations and the expected arrivals, and uses that to match
new requests. The challenge is to bound the competitive ratio – in contrast to previously
used approaches (for the maximization version of the problem) it does not just try to match
vertices using a fixed template of choices, but rather dynamically recomputes a template
after each arrival.

A major advantage of this approach is that we understand the distribution of the open
servers. We maintain the invariant that after t steps, the set of free servers form a uniform
random (n−t)-subset of [n] – the randomness being over our choices, and over the randomness
of the input. This allows us to relate the cost of the algorithm in the tth step to the expected
cost of this optimal flow between the original n points and a uniformly random subset of
(n− t) of these points. The latter expected cost is just a statistic based on the metric, and
does not depend on our algorithm’s past choices. For paths and trees, we bound this quantity
explicitly by considering the variance across edge-cuts in the tree – this gives us the proof
of Theorem 1.2.

Since general metrics do not have any usable cut structure, we need a different idea
for Theorem 1.1. We show that tree-embedding results can be used either explicitly in the
algorithm or just implicitly in the proof, but both give an O(logn) loss. To avoid this loss,
we use a different balls-and-bins argument to improve our algorithm’s competitiveness to
O((log logn))2). In particular, we provide better bounds on our algorithm’s per-step cost
in terms of E[OPT ] and the expected load of the k most loaded bins in a balls and bins
process, corresponding to the number of requests in the k most frequently-requested servers.
Specifically, we show that E[OPT ] is bounded in terms of the expected imbalance between
the number of requests and servers in these top k server locations. Coupling this latter
uniform k-tuple with the uniform k-tuple of free servers left by our algorithm, we obtain our
improved bounds on the per-step cost of our algorithm in terms of E[OPT ] and these bins’
load, from which we obtain our improved O((log logn)2) competitive ratio. Interestingly,
combining both balls and bins and tree embedding bounds for the per-step cost of step k
(appealing to different bounds for different ranges of k) gives us a further improvement: we
prove that our algorithm is O((log log logn)2) competitive.
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1.2 Further Related Work
I.i.d. stochastic arrivals have been studied for various online problems, e.g., for Steiner
tree/forest [15], set cover [17], and k-server [9]. Closer to our work, stochastic arrivals have
been widely studied in the online matching literature, though so far mostly for maximization
variants. Much of this work was motivated by applications to online advertising, for which
the worst-case optimal (1− 1/e)-competitive ratios [24, 29, 1] seem particularly pessimistic,
given the financial incentives involved and time-learned information about the distribution
of requests. Consequently, many stochastic arrival models have been studied, and shown to
admit better than 1− 1/e competitive guarantees. The stochastic models studied for online
matching and related problems, in increasing order of attainable competitive ratios, include
random order (e.g., [16, 23, 27]), unknown i.i.d. – where the request distribution is unknown –
(e.g., [10, 31]), and known i.i.d. (e.g., [13, 3, 6]). Additional work has focused on interpolating
between adversarial and stochastic input (e.g., [11, 26]). See Mehta’s survey [28] and recent
work [8, 19, 21, 20, 14, 33] for more details. The long line of work on online matching, both
under adversarial and stochastic arrivals, have yielded a slew of algorithmic design ideas,
which unfortunately do not seem to carry over to minimization problems, nor to perfect
matching problems.

As mentioned above, the only prior work for stochastic online matching with minimization
objectives was the random order arrival result of Raghvendra [35]. We are hopeful that our
work will spur further research in online minimum-cost perfect matching under stochastic
arrivals, and close the gap between our upper bounds and the (trivial) lower bounds for
the problem.

2 Our Algorithm

In this section we present our main algorithm, together with some of its basic properties.
Throughout the paper we assume that the distribution over request locations is uniform
over the n servers’ locations. We show in the full version that this assumption is WLOG: it
increases the competitive ratio by at most a constant. In particular, we show the following.

I Lemma 2.1. Given an α-competitive algorithm ALGU for the uniform distribution over
server locations, U , we can construct a (2α + 1)-competitive algorithm ALGD for any
distribution D.

Focusing on the uniform distribution over server locations, our algorithm is loosely the
following: in each round of the algorithm, we compute an optimal fractional matching
between remaining free servers and remaining requests (in expectation). Now when a new
request arrives, we just match the newly-arrived request according to this matching.

2.1 Notation
Our analysis will consider k-samples from the set S = [n] both with and without replacement.
We will set up the following notation to distinguish them:

Let Ik be the distribution over k-sub-multisets of S = [n] obtained by taking k i.i.d.
samples from the uniform distribution over S. (E.g., In is the request set’s distribution.)
Let Uk be the distribution over k-subsets of S obtained by picking a uniformly random
k-subset from

(
S
k

)
.

In other words, Ik is the distribution obtained by picking k elements from S uniformly with
replacement, whereas Uk is without replacement.
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For a sub-(multi)set T ⊆ S of servers, let M(T ) denote the optimal fractional min-cost
b-matching in the bipartite graph induced between T and the set of all locations S, with
overall unit capacity on either side. That is, the capacity for each node in T is 1/|T | and the
capacity for each node in S is 1/n. So, if we denote by di,j the distance between locations i
and j, we let M(T ) correspond to the following linear program.

M(T ) := min
∑

i∈T,j∈S

di,j · xi,j (M(·))

s.t.
∑
j∈S

xi,j = 1
|T | ∀i ∈ T

∑
i∈T

xi,j = 1
n ∀j ∈ S

x ≥ 0

We emphasize that in the above LP, several servers in S (and likewise in T ) may happen to
be at the same point in the metric space, and hence there is a separate constraint for each
such point j (and likewise i). Slightly abusing notation, we let M(T ) denote both the LP
and its optimal value, when there is no scope for confusion.

2.2 Algorithm Description
The algorithm works as follows: at each time k, if Sk ⊆ S is the current set of free servers, we
compute the fractional assignment M(Sk), and assign the next request randomly according
to it. As argued above, since each free server location is equally likely to receive a request
later (and therefore it is worth not matching it), it seems fair to leave each free server
unmatched with equal probability. Put otherwise, it is only fair to match each of these
servers with equal probability. Of course, matching any arriving request to a free server
chosen uniformly at random can be a terrible strategy. In particular, it is easily shown to be
Ω(
√
n)-competitive for n servers equally partitioned among a two-point metric. Therefore, to

obtain good expected matching cost, we should bias servers’ matching probability according
to the arrived request, and in particular we should bias it according to M(Sk). This intuition
guides our algorithm fair-bias, and also inspires its name.

Algorithm 1 fair-bias.
1: Sn ← S. . Sk is the set of free servers, with |Sk| = k.
2: for time step k = n, n− 1, · · · , 1 do
3: compute optimal fractional matching M(Sk), denoted by xSk .
4: upon arrival of request rk = r do
5: randomly choose server s from Sk, where si is chosen w/prob. pi = n · xSk

si,r.
6: assign r to s.
7: end event
8: Sk−1 ← Sk \ {s}.
9: end for

A crucial property of our algorithm is that the set Sk of free servers at each time k
happens to be a uniformly random k-subset of S. Recall that fair-bias assigns each arriving
request according to the assignment M(Sk). This means that to analyze the algorithm,
it suffices to relate the optimal assignment cost OPT to the optimal assignment costs for
uniformly random subsets Sk, as follows.

ICALP 2019
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I Lemma 2.2 (Structure Lemma). For each time k, the set Sk is a uniformly-drawn k-subset
of S; i.e., Sk ∼ Uk. Consequently, the algorithm’s cost is

E[ALG] =
n∑

k=1
ESk∼ Uk

[M(Sk)].

Proof. The proof of the first claim is a simple induction from n down to 1. The base case of
Sn is trivial. For any k-subset T = {s1, · · · , sk} ⊆ S,

Pr [Sk = T ] =
∑

s∈S\T

Pr [Sk+1 = T ∪ {s}] · Pr [rk+1 assigns to s | Sk+1 = T ∪ {s}]

= (n− k) · 1(
n

k+1
) · 1

k + 1 = 1(
n
k

) ,
where the second equality follows from induction and the fact that

Pr [rk+1 assigned to s | Sk+1 = T ∪ {s}] =
∑
r∈S

xSk+1
s,r = 1

k + 1 .

To compute the algorithm’s cost, we consider some set Sk = T of k free servers. Since the
request rk = r is chosen with probability 1/n, following which we match it to some free
server s ∈ Sk with probability n · xSk

s,r, we find that the next edge matched by the algorithm
has expected cost

E[ds,rk
| Sk = T ] =

∑
r

1
n
·
∑
s∈T

n · xT
s,r · ds,r = M(T ).

Therefore, the expected cost of the algorithm is indeed

E[ALG] =
n∑

k=1
E[ds,rk

] =
n∑

k=1

∑
T∈(S

k)
Pr

Sk∼Uk

[Sk = T ] · E[ds,rk
| Sk = T ]

=
n∑

k=1

∑
T∈(S

k)
Pr

Sk∼Uk

[Sk = T ] ·M(T ) =
n∑

k=1
ESk∼Uk

[M(Sk)]. J

The structure lemma implies that we may assume from now on that the set of free servers
Sk is drawn from Uk. In what follows, unless stated otherwise, we have Sk ∼ Uk. More
importantly, Lemma 2.2 implies that to bound our algorithm’s competitive ratio by α, it
suffices to show that

∑
k E[M(Sk)] ≤ α · E[OPT]. This is exactly the approach we use in the

following sections.

3 Bounds for General Metrics

In Section 4 we will show that algorithm fair-bias is O(1)-competitive for line metrics (and
more generally tree metrics), by relying on variance bounds of the number of matches across
tree edges in OPT and M(Sk), our algorithm’s guiding LP. For general metrics, if we first
embed the metric in a low-stretch tree metric [12] (blowing up the expected cost of E[OPT]
by O(logn)) and run algorithm fair-bias on the obtained metric, we immediately obtain
an O(logn)-competitive algorithm. In fact, explicitly embedding the input metric in a tree
metric is not necessary in order to obtain this result using our algorithm. By relying on an
implicit tree embedding, we obtain the following lemma (mirroring the variance-based bound
underlying our result for tree metrics). This lemma’s proof is deferred to the full version.
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I Lemma 3.1. ESk∼Uk
[M(Sk)] ≤ O(log n)√

nk
· E[OPT].

Summing over all values of k ∈ [n], we find that fair-bias is O(logn)-competitive on
general metrics. While this bound is no better than that of Raghvendra’s t-net algorithm for
random order arrival [35] (and therefore for i.i.d arrivals), the result will prove useful in our
overall bound for our algorithm. In Sections 3.1 and 3.2, we use a different balls-and-bins
argument to decrease our bounds on the algorithm’s competitive ratio considerably, to
O((log logn))2), by considering the imbalance between number of requests and servers in the
top k most requested locations. (The former quantity corresponds to the load of the k most
loaded bins in a balls and bins process – motivating our interest in this process.) Finally,
in Section 3.3, we combine this improved bound with the one from Lemma 3.1, summing
different bounds for different ranges of k, to prove our main result: an O((log log logn)2)
bound for our algorithm’s competitive ratio.

3.1 Balls and Bins: The Poisson Paradigm
For our results, we need some technical facts about the classical balls-and-bins process.

The following standard lemma from [32, Theorem 5.10] allows us to use the Poisson
distribution to approximate monotone functions on the bins. For i ∈ [n], let Xm

i be a random
variable denoting the number of balls that fall into the ith bin, when we throw m balls into
n bins. Let Y m

i be independent draws from the Poisson distribution with mean m/n.

I Lemma 3.2. Let f(x1, · · · , xn) be a non-negative function such that E[f(Xm
1 , · · · , Xm

n )]
is either monotonically increasing or decreasing with m, then

E[f(Xm
1 , · · · , Xm

n )] ≤ 2 · E[f(Y m
1 , · · · , Y m

n )].

A classic result states that for m = n balls, the maximum bin load is Θ(logn/ log logn)
w.h.p. (see e.g., [32]). The following lemma is a partial generalization of this result. Its proof,
which relies on the Poisson approximation of Lemma 3.2, is deferred to the full version.

I Lemma 3.3. Let n balls be thrown into n bins, each ball thrown independently and uniformly
at random. Let Lj be the load of the jth heaviest bin, and Nk :=

∑
j≤k Lj be the number of

balls in the k most loaded bins. There exists a constant C0 > 0 such that for any k ≤ C0n,

E[Nk] ≥ Ω
(
k · log(n/k)

log log(n/k)

)
.

In the next lemma, whose proof is likewise deferred to the full version, we rely on a simple
Chernoff bound to give a weaker lower bound for E[Nk] that holds for all k ≤ n/2.

I Lemma 3.4. For sufficiently large n and any k ≤ n/2, we have E[Nk] ≥ 1.5k.

3.2 Relating Balls and Bins to Stochastic Metric Matching
We now bound the expected cost incurred by fair-bias at time k by appealing to the above
balls-and-bins argument; this will give us our stronger bound of O((log logn)2). Specifically,
we will derive another lower bound for E[OPT] in terms of ESk∼Uk

[M(Sk)]. In our bounds
we will partition the probability space In (corresponding to n i.i.d. requests) into disjoint
parts, based on Tk, the top k most frequently requested locations (with ties broken uniformly
at random). By symmetry, Pr[Tk = T ] = 1/

(
n
k

)
for all T ∈

(
S
k

)
. By coupling Tk with Uk,

we will lower-bound E[OPT ] by ESk∼Uk
[M(Sk)] times E[Nk] − k, the expected imbalance

between number of requests and servers in Tk. Here E[Nk] is the expected occupancy of the
k most loaded bins in the balls and bins process discussed in Section 3.1.

ICALP 2019



67:8 Stochastic Online Metric Matching

To relate E[OPT | Tk = Sk] to M(Sk), we will bound both these quantities by the cost of
a min-cost perfect b-matching between Sk and S \ Sk; i.e., each vertex v has some (possibly
fractional) demand bv which is the extent to which it must be matched. To this end, we
need the following simple lemma, which asserts that for any min-cost metric b-matching
instance, there exists an optimal solution which matches co-located servers and requests
maximally. We defer the lemma’s proof, which follows from a local change argument and
triangle inequality, to the full version.

I Lemma 3.5. Let I be a fractional min-cost bipartite metric b-matching instance, with
demand `i and ri for the servers and requests at location i. Then, there exists an optimal
solution x for I with xii = min{`i, ri} for every point i in the metric.

We are now ready to prove our main technical lemma, lower-bounding E[OPT | Tk = Sk]
in terms of M(Sk) and the imbalance between number of requests of the k most requested
locations, Nk, and the number of servers in those locations.

I Lemma 3.6. For all k < n and Sk ∈
(

S
k

)
, we have E[OPT | Tk = Sk] ≥ (E[Nk]−k)·M(Sk).

Proof. Applying Lemma 3.5 to M(Sk), we find that the optimal value of M(Sk) is equal to
that of a min-cost bipartite perfect b-matching instance with left vertices associated with Sk,
each with demand 1

k −
1
n , and right vertices associated with S \ Sk, each with demand 1

n .
We now turn to the meat of the proof – lower bounding E[OPT | Tk = Sk]. In particular,

we will lower bound E[OPT | Tk = Sk] by a min-cost bipartite perfect b-matching instance
with left and right vertices as above (i.e., Sk and S \ Sk, respectively), but with uniform
demands on both sides of at least (E[Nk]−k)/k and (E[Nk]−k)/(n−k), respectively. That is,
the biregular min-cost bipartite b-matching whose cost C we showed lower boundsM(Sk), but
scaled by an f ≥ (E[Nk]−k)

k·(1/k−1/n) factor. Before proving this lower bound on E[OPT | Tk = Sk],
we note that it implies our desired bound, as

E[OPT | Tk = Sk] ≥ (E[Nk]− k)
k · (1/k − 1/n) · C > (E[Nk]− k) · C = (E[Nk]− k) ·M(Sk).

It remains to lower bound E[OPT | Tk = Sk] in terms of such a biregular b-matching instance.
For the remainder of this proof, for notational simplicity we denote by Ω the probability

space induced by conditioning on the event Tk = Sk. To lower bound EΩ[OPT ], we
will provide a fractional perfect matching ~x of the expected instance (in Ω), and show
that EΩ[OPT ] ≥

∑
ij dij · xij , while

∑
j∈S\Sk

xij ≥ (E[Nk] − k)/k for all i ∈ Sk and∑
i∈S xij ≥ (E[Nk] − k)/(n − k) for all j ∈ S \ Sk. Consequently, focusing on edges

(i, j) ∈ Sk × (S \ Sk), we find that the min-cost biregular bipartite perfect b-matching above
lower bounds

∑
i∈Sk,j∈S\Sk

dij · xij ≤
∑

ij dij · xij ≤ EΩ[OPT ]. We now turn to producing
an ~x satisfying our desired properties.

For any two locations i, j ∈ S, we let (i, j) ∈ OPT indicate that a request in location
i is served by the server in location j. Let pij := PrΩ[(i, j) ∈ OPT ]. We will show
how small modifications to ~p will yield a fractional perfect matching ~x as discussed in
the previous paragraph. Let Yi be the number of requests at server i. By Lemma 3.5,
we know that (i, i) ∈ OPT ⇐⇒ Yi ≥ 1. So, pii = PrΩ[Yi ≥ 1]. Consequently, if we
let ∆in(j) :=

∑
j′∈S\{j} pj′j and ∆out(j) :=

∑
j′∈S\{j} pjj′ , we have by Lemma 3.5 that

∆in(j) = Pr[Yi ≥ 1] and ∆out(i) = E[(Yi − 1)+] for all i ∈ S. (As usual, x+ = max{x, 0}.)
Consequently, ∆in(j) = ∆in(j′) and ∆out(j) = ∆out(j′) for all j, j′ ∈ S \ Sk, as [Yj | Ω] and
[Y ′j | Ω] are identically distributed. Moreover, as

∑
j∈S\Sk

(∆in(j)−∆out(j)) = Nk − k ≥ 0,
we find that ∆in(j) −∆out(j) ≥ 0 for all j ∈ S \ Sk. Now, suppose Yi ≥ 1 for all i ∈ Sk
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(conditioning on the complementary event is similar), we have by Lemma 3.5 that pji = 0 for
all i ∈ Sk and j ∈ S \ {i}. Moreover, by symmetry we have ∆out(i) = (E[Nk]− k)/k for all
k locations i ∈ Sk. We now show how to obtain from ~p a fractional matching ~x between Sk

and S \ Sk of no greater cost than ~p, such that pjj′ = 0 for all j 6= j′ ∈ S \ Sk and such that
the values ∆in(j)−∆out(j) are unchanged for all j ∈ S. Consequently, all (simple) edges
in the support of ~x go between Sk and S \ Sk, and ∆out(i) = (E[Nk]− k)/k for all i ∈ Sk

and ∆in(j) = (E[Nk] − k)/(n − k) for all j ∈ S \ Sk, yielding our desired lower bound on
EΩ[OPT ] in terms of a biregular bipartite b-matching instance.

We start by setting ~x← ~p. While there exists a pair j 6= j′ ∈ S \Sk with xj′j > 0, we pick
such a pair. As ∆in(j)−∆out(j) ≥ 0, there must also be some flow coming into j. We follow
a sequence of edges j1 ← j2 ← j3 ← . . . with each jr ∈ S \ Sk and with xjrjr−1 > 0 until we
either repeat some jr ∈ S\ or reach some jr with xijr

0 for some i ∈ S. (Note that one such
case must happen, as ∆in(j)−∆out(j) ≥ 0 for all j ∈ S \ Sk.) If we repeat a vertex, jr, we
only consider the sequence of nodes given by the obtained cycle, j1 ← j2 ← j3 · · · ← jr = j1.
Let ε = minr xjrjr−1 be the smallest xjj′ in our trail. If we repeated a vertex, we found a
cycle, and we decrease xjj′ by ε for all consecutive j, j′ in the cycle. If we found some i ∈ S
and xijr

> 0, we decrease all xjj′ values along the path (including xijr
) by ε and increase xij1

by ε. In both cases, we only decrease the cost of ~x (either trivially, or by triangle inequality)
and we do not change ∆in(j)−∆out(j) for any j ∈ S, while decreasing

∑
j 6=j′∈S\Sk

xjj′ . As
the initial x-values are all rational, repeating the above terminates, with the above sum equal
to zero, which implies a biregular fractional solution ~x as required. The lemma follows. J

Coupling the distribution of Tk and the set of k free servers, we obtain the following.

I Lemma 3.7. ESk∼Uk
[M(Sk)] ≤ E[OPT]/(E[Nk]− k).

Proof. Taking expectations over Sk ∼ Uk, we obtain our claimed bound.

ESk∼Uk
[M(Sk)] =

∑
Sk∈(S

k)

1(
n
k

) ·M(Sk) defn. of Uk

≤
∑

Sk∈(S
k)

1(
n
k

) 1
(E[Nk]− k) · E[OPT | Tk = Sk] Lemma 3.6

= 1
(E[Nk]− k) · E[OPT]. Pr[Tk = Sk] = 1(

n
k

) . J

Plugging in the lower bounds of Lemmas 3.3 and 3.4 for the top k most loaded bins’ loads,
E[Nk], we obtain the following bounds on fair-bias’s per-step cost in terms of E[OPT ].

I Lemma 3.8. For C0 a constant as in Lemma 3.3, there exists a constant C such that

ESk∼Uk
[M(Sk)] ≤

{
C · log log(n/k)

k log(n/k) · E[OPT] if k < C0n
2
k · E[OPT] if C0n ≤ k ≤ n/2.

The following lemma allows us to leverage Lemma 3.8, as it allows us to focus on
ESk∼Uk

[M(Sk)] for k ≤ n/2. Its proof relies on our characterization of M(Sk) in terms of a
balanced b-matching instance between Sk and S \ Sk as in the proof of Lemma 3.6, which
implies that M(Sk) ≤M(Sn−k) for all k ≤ n/2. Its proof is deferred to the full version.

I Lemma 3.9.
∑n

k=1 ESk∼Uk
[M(Sk)] ≤ 2 ·

∑n/2
k=1 ESk∼Uk

[M(Sk)].

Using our upper bound on ESk∼Uk
[M(Sk)] of Lemma 3.8 and summing the two ranges

of k ≤ n/2 in Lemma 3.9 we find that fair-bias is O((log logn)2) competitive. We do not
elaborate on this here, as we obtain an even better bound in the following section.
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3.3 Our Main Result
We are now ready to prove our main result, by combining our per-step cost bounds given
by our balls and bins argument (Lemma 3.8) and our implicit tree embedding argument
(Lemma 3.1).

I Theorem 3.10. Algorithm fair-bias is O((log log logn)2)-competitive for the online bi-
partite metric matching problem under i.i.d arrivals on general metrics.

Proof. By the structure lemma (Lemma 2.2) and Lemma 3.9, we have that

E[ALG] =
n∑

k=1
ESk∼Uk

[M(Sk)] ≤ 2 ·
n/2∑
k=1

ESk∼Uk
[M(Sk)]. (1)

We use the three bounds from Lemma 3.1 and Lemma 3.8 for different ranges of k to bound
the above sum. Specifically, by relying on Lemma 3.1 for k ≤ n/ log2 n, we have that

n/ log2 n∑
k=1

ESk∼Uk
[M(Sk)] ≤

n/ log2 n∑
k=1

O(logn)√
nk

· E[OPT ]

≤ O
(√

n

log2 n
· logn · E[OPT ]√

n

)
= O(1) · E[OPT ].

Next, by the first bound of Lemma 3.8 applied to k ∈ [n/ log2 n,C0n], we have that

C0n∑
k=n/ log2 n

ESk∼Uk
[M(Sk)] ≤

C0n∑
k=n/ log2 n

O(log log(n/k))
k · log(n/k) · E[OPT ]

≤ O
(
−(log log(n/k))2

∣∣∣C0n

n/ log2 n

)
· E[OPT ]

= O((log log logn)2) · E[OPT ].

Finally, by the second bound of Lemma 3.8 applied to k ≥ C0n, we have that

n/2∑
k=C0n

ESk∼Uk
[M(Sk)] ≤

n/2∑
C0n

2
k
· E[OPT ] ≤ O

(
log
(
n/2
C0n

))
· E[OPT ] = O(1) · E[OPT ].

Combining all three bounds with Equation (1), the theorem follows. J

4 A Simple O(1) Bound for Tree Metrics

In this section we show the power of the structure lemma, by analyzing fair-bias on tree
metrics. Recall that a tree metric is defined by shortest-path distances in a tree T = (V,E),
with edge lengths de. By adding zero-length edges, we may assume that the tree has n
leaves, and that servers are on the leaves of the tree. For any edge e in the tree, deleting
this edge creates two components T1(e) and T2(e); denote by T1(e) the component with
fewer servers/leaves. Let ne denote the number of leaves on this smaller side, T1(e). Hence
ne ≤ n/2 for all edges e.

We now lower bound E[OPT], by considering the mean average deviation of the number
of requests which arrive in T1(e) for each edge e.

I Lemma 4.1. The expected optimal matching cost in a tree metric on n ≥ 2 vertices is at
least E[OPT] ≥ 1

2 ·
∑

e∈T de ·
√
ne.
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Proof. Let Xe denote the number of requests that arrive in the component with fewer leaves,
T1(e). Every matching will match at least |Xe − ne| = |Xe − E[Xe]| requests across the edge
e (with the equality due to the uniform IID arrivals). Summing over all edges and taking
expectations, we find that

E[OPT] ≥
∑

e

de · E
[
|Xe − ne|

]
=
∑

e

de · E
[
|Xe − E[Xe]|

]
. (2)

It remains to lower bound E[|Xe − E[Xe]|], the mean average deviation of Xe. Observe that
Xe ∼ Bin(n, ne/n), with ne ∈ [1, n − 1]. The following probabilistic bound appears in [5,
Theorem 1]:

I Claim 4.2. Let Y ∼ Bin(n, p), with n ≥ 2 and p ∈ [1/n, 1− 1/n]. Then, we have both

E|Y − EY | ≥ std(Y )/
√

2,

(Note that convexity implies that E|Y − EY | ≤ std(Y ) holds for all distributions, so this
is a partial converse.) Applying Claim 4.2 to our case, where p = ne/n ∈ [1/n, 1− 1/n],

E[|Xe − EXe|] ≥ std(Xe)/
√

2 =
√
ne(1− ne/n)/2 ≥

√
ne/4,

where the second inequality follows from ne ≤ n/2. Combined with (2), the lemma follows. J

To upper bound E[M(Sk)], we again consider the mean average deviation of the number
of requests in T1(e), but this time when drawing k i.i.d. samples. First, we need to bound
the cost of M(Sk) for a set Sk resulting from k draws without replacement by the cost for a
multiset obtained by taking k i.i.d. draws with replacement.

I Lemma 4.3. (Replacement Lemma) For all S and k ∈ [|S|], we have

ESk∼Uk
[M(Sk)] ≤ ESk∼Ik

[M(Sk)].

We defer the proof of this lemma to the full version, where we prove a more general
statement regarding stochastic convex optimization with constraints and coefficients determ-
ined by elements of a set chosen uniformly with and without replacement. Armed with this
lemma, it suffices to bound ESk∼Ik

[M(Sk)] from above, which we do in the following.

I Lemma 4.4. ESk∼Ik
[M(Sk)] ≤

∑
e∈T de ·

√
ne/(kn).

Proof. Fix some edge e and let T1(e) be its smaller subtree, containing ne ≤ n/2 leaves. Let
Xe ∼ Bin(k, ne/n) be the random variable denoting the number of servers in T1(e) chosen in
k i.i.d samples from S. For any given realization of Sk (and therefore of Xe) the fractional
solution to M(Sk) utilizes edges between the different subtrees of e by exactly |Xe/k−ne/n|.
Since this is a tree metric, we have

M(Sk) =
∑
e∈T

de ·
∣∣∣∣Xe

k
− ne

n

∣∣∣∣ =
∑
e∈T

de ·
1
k
·
∣∣∣∣Xe −

k

n
· ne

∣∣∣∣ =
∑
e∈T

de ·
1
k
· |Xe − E[Xe]|.

Taking expectations over Sk, and using the fact that the mean average deviation is always
upper bounded by the standard deviation (by Jensen’s inequality), we find that indeed

ESk∼Ik
[M(Sk)] =

∑
e∈T

de ·
1
k
· E[|Xe − E[Xe]|] ≤

∑
e∈T

de ·
1
k
· std(Xe)

=
∑
e∈T

de ·
1
k
·
√
k · ne

n

(
1− ne

n

)
≤
∑
e∈T

de ·
√

ne

k · n
. J
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Combining the replacement lemma (Lemma 4.3) with Lemmas 4.4 and 4.1, we obtain the
following upper bound on ESk∼Uk

[M(Sk)] in terms of E[OPT ].

I Lemma 4.5. ESk∼Uk
[M(Sk)] ≤ 2 · E[OP T ]√

nk
.

We can now prove our simple result for tree metrics.

I Theorem 4.6. (Tree Bound) Algorithm fair-bias is 4-competitive on tree metrics with
n ≥ 2 nodes, if the requests are drawn from the uniform distribution.

Proof. We have by the structural lemma (Lemma 2.2) and Lemma 4.5 that

E[ALG] =
n∑

k=1
E[M(Sk)] ≤

n∑
k=1

2 · E[OPT ]√
nk

≤ 2 · E[OPT ]√
n
·
(

1 +
∫ n

x=1

1√
x
dx

)
≤ 4 · E[OPT ]. J

The above bound holds for all n ≥ 2 (for n = 1 any algorithm is trivially 1 competitive).
For n large, however, our proof yields an improved asymptotic bound of

√
2 · e + o(1) ≈

(3.845 + o(1)), by relying on the asymptotic counterpart of Claim 4.2 in [5, Corollary 2],
E|Y −EY | ≥ std(Y )/(e/2+o(1)). Combining Theorem 4.6 with our transshipment argument
(Lemma 2.1), we obtain a 9-competitive algorithm under any i.i.d. distribution on tree metrics
on n ≥ 2 nodes, and even better than 9-competitive algorithms for large enough n.

5 Open Questions

In this work, we presented algorithm fair-bias and proved that it is O((log log logn)2)-
competitive for general metrics, and 9-competitive for tree metrics. Perhaps the first question
is whether our algorithm (or indeed any algorithm) is O(1) competitive for (known or
unknown) i.i.d arrivals for general metrics. Indeed, we do not know of any instances where
Algorithm fair-bias’s performance is worse than O(1) competitive. However, it is not clear
how to extend our proofs to establish an O(1) competitive ratio.

Another question is the relationship between the known and unknown i.i.d. models and
the random order model. The optimal competitive ratios for the various arrival models for
online problems can be sorted as follows (see e.g. [28, Theorem 2.1])

C.R.(Adversarial) ≥ C.R.(Random Order) ≥ C.R.(Unknown IID) ≥ C.R.(Known IID).

For the online metric matching problem the best bounds known for the above are, re-
spectively, O(log2 n) [4], Θ(logn), O(logn) (both [35]), and O((log log logn)2) (this work).
Given the lower bound of [35], our work implies that one or both of the inequalities in
C.R.(Random Order) ≥ C.R.(Unknown IID) ≥ C.R.(Known IID) is strict (and asymp-
totically so). It would be interesting to see which of these inequalities is strict, by either
presenting a o(logn)-competitive algorithm for unknown i.i.d or a ω((log log logn)2) lower
bound for this model. For the line metric, we give the first constant-competitive algorithm
for this well-studied metric under any non-trivial arrivals. Extending this result, and more
generally understanding the exact relationships between these arrival models for this simple
metric may prove useful in understanding the relationships between the different stochastic
arrival models more broadly. Moreover, it would be interesting to study these questions for
other combinatorial optimization problems with online stochastic arrivals.
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Abstract
Local Reconstruction Codes (LRCs) allow for recovery from a small number of erasures in a local
manner based on just a few other codeword symbols. They have emerged as the codes of choice
for large scale distributed storage systems due to the very efficient repair of failed storage nodes
in the typical scenario of a single or few nodes failing, while also offering fault tolerance against
worst-case scenarios with more erasures. A maximally recoverable (MR) LRC offers the best possible
blend of such local and global fault tolerance, guaranteeing recovery from all erasure patterns
which are information-theoretically correctable given the presence of local recovery groups. In an
(n, r, h, a)-LRC, the n codeword symbols are partitioned into r disjoint groups each of which include
a local parity checks capable of locally correcting a erasures. The codeword symbols further obey h

heavy (global) parity checks. Such a code is maximally recoverable if it can correct all patterns of a

erasures per local group plus up to h additional erasures anywhere in the codeword. This property
amounts to linear independence of all such subsets of columns of the parity check matrix.

MR LRCs have received much attention recently, with many explicit constructions covering
different regimes of parameters. Unfortunately, all known constructions require a large field size
that is exponential in h or a, and it is of interest to obtain MR LRCs of minimal possible field
size. In this work, we develop an approach based on function fields to construct MR LRCs. Our
method recovers, and in most parameter regimes improves, the field size of previous approaches.
For instance, for the case of small r � ε log n and large h > Ω(n1−ε), we improve the field size
from roughly nh to nεh. For the case of a = 1 (one local parity check), we improve the field size
quadratically from rh(h+1) to rhb(h+1)/2c for some range of r. The improvements are modest, but
more importantly are obtained in a unified manner via a promising new idea.
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1 Introduction

Interest in erasure codes has surged in recent years, with the demands of massive cloud
storage systems raising hitherto unexplored, yet very natural and mathematically deep,
questions concerning the parameters, robustness, and efficiency of the code. Distributed
storage systems need to build in redundancy in the data stored in order to cope with the loss
or inaccessibility of the data on one or more storage nodes. Traditional erasure codes offer a
natural strategy for such robust data storage, with each storage node storing a small part
of the codeword, so that the data is protected against multiple node failures. In particular,
MDS codes such as Reed-Solomon codes can operate at the optimal storage vs. reliability
trade-off – for a given amount of information to be stored and available storage space, these
codes can tolerate the maximum number of erasures without losing these stored information.

Individual storage nodes in a large scale system often fail or become unresponsive.
Reconstruction (repair) of the content stored on a failed node with the help of remaining
active nodes is important to reinstate the system in the event of a permanent node failure,
and to allow access to the data stored on a temporarily unavailable node. The use of erasure
codes in large storage systems, therefore, brings to the fore a new requirement: the ability to
very efficiently reconstruct parts of a codeword from the rest of the codeword.

Local Reconstruction Codes (LRCs), introduced in [7], offer an attractive way to meet
this requirement. An LRC imposes local redundancies in the codewords, so that a single (or
a small number of) erased symbol can be recovered locally from less than r other codeword
symbols.1 Here r is the locality parameter that is typically much smaller than the code
length n. In the distributed storage context, an LRC allows for the low-latency repair of
any failed node as one only needs to wait for the response from r nodes. LRCs have found
spectacular practical applications with their use in the Windows Azure storage system [12].

The challenge in an LRC design is to balance the locality requirement, that allows fast
recovery from a single or few erasures, with good global erasure-resilience (via traditional
slower methods) for more worst-case scenarios. One simple metric for global fault tolerance is
the minimum distance d of the code, which means that any pattern of fewer than d erasures
can be corrected. The optimal trade-off between the distance, redundancy, and locality of an
LRC was established in [8], and an elegant sub-code of Reed-Solomon codes meeting this
bound was constructed in [17].

This work concerns a much stronger requirement on global fault-tolerance, called Maximal
Recoverability. This requires that the code should simultaneously correct every erasure
pattern that is information-theoretically possible to correct, given the locality conditions
imposed on the codeword symbols. Let us describe it more formally in the setting of interest
in this paper. Define an (n, r, h, a)`-LRC to be a linear code over F` of length n whose
n codeword symbols are partitioned into r disjoint groups each of which includes a local
parity checks capable of locally correcting a erasures. The codeword symbols further obey
h heavy (global) parity checks. With this structure of parity checks, it is not hard to see
that the erasure patterns one can hope to correct are precisely those which consist of up
to a erasures per local group plus up to h additional erasures anywhere in the codeword.

1 LRCs are also expanded as Locally Repairable Codes or Locally Recoverable Codes, eg. [16, 17, 10].
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A maximal recoverable (MR) LRC is a single code that is capable of simultaneously correcting
all such patterns. Thus, an MR code gives the most bang-for-the-buck for the price one pays
for locality.

This notion was introduced in [2] motivated by applications to storage on solid-state
devices, where it was called partial MDS codes. The terminology maximally recoverable
codes was coined in [7], and the concept was more systematically studied in [7, 6]. By picking
the coefficients of the heavy parity checks randomly, it is not hard to show the existence of
MR LRCs over very large fields, of size exponential in h. An explicit construction over such
large fields was also given in [7], which also proved that random codes need such large field
sizes with high probability.2

Since encoding a linear code and decoding it from erasures involve performing numerous
finite field arithmetic operations, it is highly desirable to have codes over small fields
(preferably of characteristic 2). Obtaining MR LRCs over finite fields of minimal size has
therefore emerged as a central problem in the area of codes for distributed storage. So far,
no construction of MR LRCs that avoid the exponential dependence on h has been found.
A recent lower bound shows that, unlike MDS codes, for certain parameter settings one
cannot have MR LRCs over fields of linear size. This shows that the notion of maximal
recoverability is quite subtle, and pinning down the optimal field size is likely a deep question.
There remains a large gap between the upper and lower bounds on field size of MR LRCs,
closing which is a challenge of theoretical and practical importance.

In this work, we develop a novel approach to construct MR LRCs based on function
fields. Our framework recovers and in fact slightly improves most of the previous bounds
in the literature in a unified way. We note that since there are at least three quantities of
significance – the locality r, the local (intra group) erasure tolerance a, and number of global
parity checks h – the landscape of parameters and different constructions in this area is
quite complex. Also, depending on the motivation, the range of values of interest of these
parameters might be different. For example, if extreme efficiency of local repair is important,
r should be small. But on the other hand this increase the redundancy and thus storage
requirement of the code, so from this perspective a modest r (say

√
n) might be relevant. If

good global fault tolerance is required, we want larger h, but then the constructions have
large field size. It is therefore of interest to study the problem treating these as independent
parameters, without assumptions on their relative size. We next review the field size of
previous constructions, and then turn to the parameters we achieve in different regimes.

1.1 Known field size bounds
For a ∈ {0, r − 1}, optimal maximally recoverable local reconstruction codes (MR LRCs,
for short) can be constructed by using either Reed-Solomon codes or their repetition. For
h 6 1, constructions of MR LRCs over fields of size O(r) were given in [2]. For the remaining
case: 1 6 a 6 r − 2 and h > 2, there are quite a number of constructions in literature
[1, 2, 3, 4, 5, 7, 6, 9, 11, 18].

For the cases of h = 2 and h = 3, the best known constructions of MR LRCs were given
in [9] with field sizes of O(n) and O(n3) respectively, uniformly for all r, a. (Their field sizes
were worse by no(1) factors compared to these bounds when the field is required to be of

2 This is akin to what happens for random codes to have the MDS property. However, for MDS codes,
the Vandermonde construction achieves a linear field size explicitly.
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characteristic 2.) For most other parameter settings, the best constructions by [5] provide a
family of MR LRCs over fields of sizes

` = O
(
r · n(a+1)h−1

)
(1)

as well as

` = max
{
O(n

r
), O(r)h+a

}h

, (2)

The bound (1) outperforms the bound (2) when r = Ω(n), while the bound (2) is better
when r � n. In both the bounds, the field size grows exponentially with h and a.

Recently, by using maximum rank distance (MRD) codes, the paper [15] (specifically
Corollary 14) gives a family of MR LRCs over fields of sizes

` = O
(
r

n(r−a)
r

)
. (3)

When r = Ω(n), and a is close to r or h is large, (3) is better than bounds (1) or (2). By
using probabilistic arguments, the paper [15] shows existence of a family of MR LRCs over
fields of sizes

` = O

((
n− 1
k − 1

))
, (4)

where k = n
(
1− a

r

)
− h is the dimension of the code.

On the other hand, a lower bound on the field size was presented in [9]. Stating the
bound when h 6 n

r for simplicity, they show that the field size ` of an (n, r, h, a)` MR LRC
must obey

` = Ωa,h

(
n · rmin{a,h−2}

)
. (5)

The lower bound (5) is still quite far from the upper bounds (1) and (2). In particular, the
exponent a or h is to the base growing with n in the known constructions, but only to the
base r in the above lower bound. Thus, one can conjecture that there is still room to improve
both the constructions and the lower bounds. We note that under more complex structural
requirements on the local groups, notably grid-like topologies and product codes, the optimal
field size has been pinned down to exp(Θ(n)) [13].

Several techniques have been employed in literature for constructions of MR LRCs. One
prevalent idea is to use a “linearized” version of the Vandermonde matrix, where the heavy
parity check part of the matrix consists of columns (αi, α

q
i , . . . , α

qh−1

i )T where αi ∈ F` for
a sufficiently high degree extension field F` of Fq. This construction is combined with
2h-wise independent spaces to get an O(nh) field size in [7], and is also employed in [5].
Another approach is based on rank-metric codes (see, for instance, [4, 15]). Various ad hoc
methods have been employed for good constructions of MR LRCs for small h, for example
for h = 2, 3 in [9].

1.2 Our results
In this work, we develop a new approach to construct MR LRCs based on algebraic function
fields. We discuss the key elements underlying our strategy in Section 1.4, but for now state
the field sizes of the MR LRCS we can construct for various regimes of parameters. Most
of the existing results in literature can be recovered through our methods in a unified way.
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In most regimes, the parameters of our codes beat the known ones. For easy reference, we
summarize the different possible trade-offs we can achieve in one giant theorem statement
below. Since this comprehensive statement may be overwhelming to parse, let us highlight
just two of our significant improvements: item (i) for a = 1, where we improve rh+1 term
in (2) quadratically to rbh+1

2 c, and item (vi) for sufficiently large h, where the exponent h
in bounds (1) and (2) is improved to εh. Also the exponent h is replaced by min{h, n/r}
in the bounds (i)-(iv) that improve (2). In the bounds (vii) and (viii) the factor n/r in the
exponent is improved to min{k, n/r}; this improvment is less significant as it only applies to
the low-rate setting but included for completeness and also to reflect a construction approach
based on generator matrices (as opposed to parity check matrices which is a more potent
way to reason about MR LRCs that underlies the other parts of the theorem).

I Theorem 1. One has a maximally recoverable (n, r, h, a)`-local reconstruction code over
a field of size ` with parameters satisfying any of the following conditions. (Below Õ(f)
denotes f logO(1) f .)
(i) (see Theorem 10) a = 1,r > h+ 2 and

` 6
(

max
{
Õ(n

r
), (2r)b

h+1
2 c
})min{h, n

r } and ` is even;

(ii) (see Theorem 11) a = 1 and

` 6
(

max
{
Õ(n

r
), 2r

})min{h, n
r } and ` is even;

(iii) (see Theorem 13) for all settings of n, r, h, a and

` 6
(

max
{
Õ(n

r
), (2r)h+a

})min{h, n
r } ;

(iv) (see Theorem 14) for all settings of n, r, h, a and

` 6
(

max
{
Õ(n

r
), (2r)r

})min{h, n
r } ;

(v) (see Theorem 17) r = O
(

log n
log log n

)
and hr > Ω

(
n

2
3

ε

)
for a positive real ε ∈ (0, 0.5) and

` 6 O
(
n

2h
3 (1+ε)

)
;

(vi) (see Theorem 18) r = O
(

ε log n
log log n

)
and hr = Ω

(
n1−ε

)
for a positive real ε ∈ (0, 0.5)

and

` 6 nεh;

(vii) (see Theorem 5) for all settings of n, r, h, a

` 6

{
2min{rk,n} 6 2n if r > logn
2dlog nemin{k, n

r } if r 6 logn

where k =
(
1− a

r

)
− h is the dimension of the code;

(viii) (see Theorem 7) r − a = Ω(logn) and

` 6 2rb
r−a

2 cmin{k, n
r } and ` is even.
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The first two bounds, and the bounds in (vii) and (viii) of Theorem 1 are derived from the
rational function field F2(x). In addition, bounds in (i) and (viii) of Theorem 1 are obtained
via a combination with binary BCH codes. Bounds in (iii) and (iv) of Theorem 1 are derived
from rational function field Fq(x), where ` is a power of q. The fifth bound is obtained
via Hermitian function fields, while the sixth bound is derived from the Garcia-Stichtenoth
function field tower. Our codes achieving the trade-offs stated in the above theorem can in
fact be explicitly specified. But we note that for MR codes even existence questions over
small fields are interesting and non-trivial.

1.3 Comparison
Each of our bounds in Theorem 1 beats the known results in some parameter regimes. Let
us compare them one by one.

The bound in Theorem 1(i) outperforms the bound (2) due to the quadratically better
exponent for r.
The bound in Theorem 1(ii) outperforms even the bound in Theorem 1(i) for r

log r <
⌊

h+1
2
⌋
.

The bound in Theorem 1(iii) outperforms the bound (2) for h > n
r .

The bound in Theorem 1(iv) even outperforms the bound in Theorem 1(iv) for r < h+ a,
and hence it beats the bound (2) for n

h < r < h+ a.
The bound in Theorem 1(v) outperforms both the bounds (1) and (2) for all parameter
settings subject to r = Õ(logn) and hr = Ω

(
n

2
3

ε

)
. It is clear that the bound in Theorem

1(v) is better than (1). As r = Õ(logn), then we have
(

n
r

)h
> nh(1−o(1)) > n2h(1+ε)/3

and hence the bound in Theorem 1(v) beats (2) in this case.
As the bound in Theorem 1(vi) is even better than the bound in Theorem 1(v), the
bound in Theorem 1(vi) beats both the bounds (1) and (2) for all parameter settings
subject to r = Õ(ε logn) and hr = O

(
n1−ε

)
for a positive real ε ∈ (0, 0.5).

When the dimension k is much smaller than n, then the probabilistic bound (4) gives the
field size O(nk) = O(2k log n) which is the same size as in Theorem 1(vii) for r 6 logn.
When the dimension k is proportional to n, then the probabilistic bound (4) gives the
field size 2O(n) which is the same as the bound 2n in Theorem 1(vii) for r > logn.
Finally, the bound in Theorem 1(viii) clearly outperforms the bound (3) when k < n/r.

1.4 Our techniques
Note that construction of MR LRCs is equivalent to construction of certain generator or
parity-check matrices with requirement of column linear independence (see Section 2.1).

Our construction idea departs from previous approaches and is based on function fields
over a finite field Fq. The key in constructing an MR LRC is the choice of the heavy parity
checks. We now briefly describe our idea to pick these. We associate with each of the g = n/r

local groups a distinguishing (high degree) place Pi, 1 6 i 6 g. The degree of the place is
chosen large enough to guarantee the existence of at least g such places. For each local group,
we pick functions fij , 1 6 j 6 r, that have exactly one pole at Pi. The coefficients of the h
heavy parity checks corresponding to the j’th symbol of i’th local group are chosen to be

(fij(Q), fq
ij(Q), . . . , fqh−1

ij (Q))T , (6)

where Q is a place of sufficiently high degree, so that the evaluations fij(Q) belong to an
extension field F` which will be the final alphabet size of the MR LRC. By properties of the
Moore determinant (Section 2.2) and the large degree of Q, the required linear independence
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of columns such as (6) over F` reduces to a certain linear independence requirement for
the fij ’s over Fq. Across different local groups such linear independence follows because
a function with one pole at Pi cannot cancel a function with one pole at a different place
Pi′ . Within a local group, the required linear independence is ensured by choosing the fij ’s
within a group so that any h+ a of them (which is the maximum number of erasures we can
have within a group) are linearly independent over Fq.

We remark that all our various guarantees of Theorem 1 except Parts (v) and (vi) are
obtained using just the rational function field, and can be described in elementary language
using just polynomials, as we do in Section 3.

1.5 Organization
The paper is organized as follows. In Section 2, we introduce some preliminaries such as MR
LRCs (both the generator and parity check matrix viewpoints) and Moore determinants.
In Section 3, we present our constructions of MR LRCs using the rational function field
together with a concatenation with classical codes of good rate vs. distance trade-off. We
give two constructions, using the generator matrix viewpoint in the first part (yielding Parts
(vii) and (viii) of Theorem 1), and then a parity check based construction in the second part
which yields Parts (i)-(iv) of Theorem 1. This section is elementary and only uses properties
of polynomials. In Section 4, we generalize the construction of MR LRCs via parity-check
matrix given in Section 3 by making use of arbitrary algebraic function fields. We then apply
this construction to Hermitian function fields and the Garcia-Stichtenoth tower to obtain
MR LRCs promised in Parts (v) and (vi) of Theorem 1 respectively.

2 Preliminaries

2.1 Maximally recoverable local reconstruction codes
Throughout this paper, Fq denotes the finite field of q elements for a prime power q. We use
Fk×n

q to denote the set of all k × n matrices over Fq.
Consider a distributed storage system where there are g disjoint locality groups and each

group has size r and can locally correct any a erasure errors. In addition, the system can
correct any h erasure errors together with any a erasure errors in each group. This requires
a class of codes called maximally recoverable local reconstruction codes or partial MDS codes
for error correction of such a system. The precise definition of MR LRCs is given below.

I Definition 1. Let ` be a prime power and let a, g, r, h be positive integers satisfying
ga+ h < gr. Put n = gr and k = n− ga− h. An `-ary [n, k]-linear code with a generator
matrix of the form

G = (B1|B2| · · · |Bg) ∈ Fk×n
`

is called a maximally recoverable (n, r, h, a)`-local reconstruction code (or an MR (n, r, h, a)`-
LRC, for short) if
(i) each Bi has size k × r;
(ii) the row span of each Bi is an [r, r − a, a+ 1]`-MDS code for 1 6 i 6 g (note that Bi is

not a generator matrix of this MDS code in general);
(iii) after puncturing a columns from each Bi, the remaining matrix of G generates an

[n− ga, k, h+ 1]`-MDS code.
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From the definition, an MR (n, r, h, a)q-LRC can correct h erasure errors at arbitrarily
positions together with any a erasure errors in each of g groups. To see the recovery
procedure for an MR (n, r, h, a)`-LRC, we first recover h erasure errors (this can be done
from (iii) of Definition 1). We can then correct a errors from each block by (ii) of Definition 1.

The following lemma directly follows from Definition 1.

I Lemma 2. A matrix G = (B1|B2| · · · |Bg) ∈ Fk×n
` is a generator matrix of an MR

(n, r, h, a)`-LRC if and only if every k × k submatrix S of G with at most r − a columns per
block Bi is invertible.

One can have an equivalent definition via parity-check matrix.

I Definition 2. Let ` be a prime power and let a, g, r, h be positive integers satisfying
ga+ h < gr. Put n = gr and k = n− ga− h. An `-ary [n, k]-linear code with a parity-check
matrix of the form

H =


A1 O · · · O

O A2 · · · O
...

...
. . .

...
O O · · · Ag

D1 D2 · · · Dg

 ∈ F(n−k)×n
` (7)

is called an MR (n, r, h, a)`-LRC if
(i) each Ai has size a× r and each Di has size h× r;
(ii) each Ai generates an [r, a, r − a+ 1]`-MDS code for 1 6 i 6 g (note that the nullspace

of Ai is [r, r − a, a+ 1]` code);
(iii) every ag + h columns consisting of any a columns in each group and other arbitrary h

columns are F`-linearly independent.
I Remark 1.
(i) To see equivalence between Definitions 1 and 2, we note that each Ai in Definition 2 is

actually a parity-check matrix of the code generated by Bi given in Definition 1.
(ii) In this paper, we will use both Definitions 1 and 2 for constructions of MR LRCs.

However, the major results of this paper come from the constructions based one
Definition 2, i.e., via parity-check matrices of the required form in (7).

2.2 Moore determinant
Let ` be a power of q. For elements α1, . . . , αh ∈ F`, the Moore matrix is defined by

M =


α1 α2 · · · αh

αq
1 αq

2 · · · αq
h

...
...

. . .
...

αqh−1

1 αqh−1

2 · · · αqh−1

h

 ∈ Fh×h
` .

The determinant det(M) is given by the following formula

det(M) =
∏

(c1,...,ch)

(c1α1 + · · ·+ chαh),

where (c1, . . . , ch) runs through all non-zero direction vectors in Fh
q . Thus, det(M) 6= 0 if

and only if α1, . . . , αh are Fq-linearly independent.
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3 Explicit constructions via rational function fields

In this section, we only introduce constructions of MR LRCs from rational function fields. Our
description will be self-contained and elementary in terms of polynomials and we don’t require
any background on algebraic function fields (we have therefore deferred the background on
function fields to Section 4 ahead of our more general construction in the next section).

3.1 Constructions via generator matrix

In this subsection, we present constructions of MR LRCs using Definition 1, i.e., via generator
matrices of MR LRCs.

Let Nq(d) denote the number of monic irreducible polynomials of degree d over Fq. Then
one has

∑
d|m dNq(d) = qm for any m > 1 (see [14, Corollary 3.21 of Chapter 3]). This gives∑

d|m Nq(d) > qm

m . For each monic irreducible polynomial p(x) of degree d with d|m, we

get a polynomial p(x)m/d of degree m. Thus, for any g 6
⌈

qm

m

⌉
, there are g polynomials

p1(x), p2(x), . . . , pg(x) of degree m such that gcd(pi(x), pj(x)) = 1 for all 1 6 i 6= j 6 g

Assume that (i) m > r; or (ii) m < r and there is a q-ary [r, r −m,> r − a+ 1]-linear
code, i.e. there exists a subset of Fm

q of size r such that any r− a elements in this subset are
Fq-linearly independent.

Choose g 6
⌈

qm

m

⌉
polynomials p1(x), p2(x), . . . , pg(x) of degree m such that

gcd(pi(x), pj(x)) = 1 for all 1 6 i 6= j 6 g. Then for each 1 6 i 6 g, we can form an
Fq-vector space Vi :=

{
f(x)
pi(x) : f(x) ∈ Fq[x], deg(f(x)) 6 m− 1

}
of dimension m. As there

is a q-ary [r, r −m,> r − a+ 1]-linear code, its parity-check matrix is an r ×m matrix and
any r − a columns of this matrix are linearly independent. This implies that one can find r
functions gi1(x), . . . , gir(x) ∈ Vi such that any r − a polynomials out of {gi1(x), . . . , gir(x)}
are Fq-linearly independent. Choose an irreducible polynomial Q(x) ∈ Fq[x] such that Q(x)
is coprime with every pi(x) for 1 6 i 6 g. For a function h(x) ∈ Vi, we use h(Q) to denote
the residue class of h(x) in the residue class field Fq[x]/Q(x) ' Fqdeg(Q) .

I Lemma 3. Let T be a subset {1, 2, . . . , g} with |T | 6 deg(Q)/m. If
∑

i∈T gi(Q) = 0 for
some functions gi ∈ Vi, then gi = 0 for all i ∈ T .

Proof. Write gi = fi

pi
for some polynomials fi with deg(fi) 6 m − 1. The equality∑

i∈T gi(Q) = 0 implies that
∑

i∈T fi(x)
∏

j∈T\{i} pj(x) is divisible by Q(x). As the degree of∑
i∈T fi(x)

∏
j∈T\{i} pj(x)) is less than m|T |, we must have that

∑
i∈T fi(x)

∏
j∈T\{i} pj(x)

is the zero polynomial. Suppose that ft 6= 0 for some t ∈ T , then we have∑
i∈T\{t}

fi(x)
∏

j∈T\{i}

pj(x) = −ft(x)
∏

j∈T\{t}

pj(x) .

The l.h.s. of the above equality is divisible by pt(x), while the r.h.s. is not divisible by pt(x).
This contradiction completes the proof. J

Let Q be an irreducible polynomial in Fq[x] of degree

min{km, gm} = min
{
km,

nm

r

}
= min

{
(n− an

r
− h)m, nm

r

}
.
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Define the k × r matrix Bi as follows.

Bi =


gi1(Q) gi2(Q) · · · gir(Q)
gq

i1(Q) gq
i2(Q) · · · gq

ir(Q)
...

...
...

...
gqk−1

i1 (Q) gqk−1

i2 (Q) · · · gqk−1

ir (Q)

 ∈ Fk×r
qdeg(Q) . (8)

The proofs of the remaining results of this Section can be found in the full version of the
paper that is available at https://arxiv.org/abs/1808.04539.

I Lemma 4. Assume that m > r or there is a q-ary [r, r − m,> r − a + 1]-linear code.
Let Bi be the matrix given in (8). Put ` = qmin{(n− an

r −h)m, nm
r } = qmin{km, nm

r } and
G = (B1|B2| · · · |Bg) ∈ Fk×n

` . Then the `-ary code C with the generator matrix G is an MR
(n, r, h, a)`-LRC.

By taking m = r, we obtain the following result.

I Theorem 5. If r > logn, then there exists an MR (n, r, h, a)-LRC of dimension k =
n− na

r − h over a field of size

` 6

{
2min{rk,n} 6 2n if r > logn
2min{kdlog ne, n

r dlog ne} if r 6 logn

By considering binary BCH codes, we obtain the following binary codes.

I Lemma 6. There exists a binary [r, r −m,> d]-linear code with m = bd−1
2 c · dlog2 re+ 1.

Combining the binary BCH codes of Lemma 6 with Lemma 4 applied with rational
function field F2(x) yields the following theorem.

I Theorem 7. If r − a = Ω(logn), then there exists an MR (n, r, h, a)-LRC of dimension
k = n− na

r − h over a field of size

` 6 2rmin{kb r−a
2 c,

n
r b

r−a
2 c} 6 2r n

r b
r−a

2 c.

3.2 Constructions via parity-check matrix
To construct parity-check matrices of MR LRCs, we only need to construct matrices Di

given in (7). The idea of constructing matrices Di is quite similar to that of constructing
matrices Bi in the previous subsection, and leads to the following theorem.

I Theorem 8. Let r, g, a, h,m be positive integers with a 6 r. Suppose that q > r is a prime
power satisfying qm > mn

r and there is a q-ary [r, r − a, a+ 1]-linear code. If (i) m > r; or
(ii) m < r and there exists a q-ary [r, r −m,> h+ a+ 1]-linear code, then there exists an
MR (n, r, h, a)-LRC with n = rg over a field of size ` = qmin{hm, nm

r }.

We now instantiate Theorem 8 with suitable choices of parameters to deduce the promises
parts (i)–(iv) of Theorem 1.

3.2.1 The case where a = 1
Let r, h > 2 be integers. Then there is a q-ary [r, 1, r]-MDS code for any prime power q.
Rewriting Theorem 8 for a = 1 gives the following lemma.
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I Lemma 9. Suppose that qm > mn
r . If (i) m > r; or (ii) m < r and there exists a q-ary

[r, r −m,> h+ 2]-linear code, then there exists an MR (n, r, h, 1)-LRC over a field of size
` = qmin{hm, nm

r }.

To apply Lemma 9, we need to find suitable codes and function fields as well. By taking
the rational function field F2(x) and applying BCH code given in Lemma 6, we obtain the
following result.

I Theorem 10. If r > h+ 2, then there exists an MR (n, r, h, 1)-LRC over a field of size

` 6
(

max
{
Õ(n

r
), (2r)b

h+1
2 c
})min{h, n

r }
.

Proof. Consider the rational function field F = F2(x). Put

m = max
{⌊

h+ 1
2

⌋
· dlog2 re+ 1,

⌈
log2

(n
r

)
+ 2 log2 log2

(n
r

)⌉}
.

Then n
r 6 1

m 2m. This implies that there are n
r places of degree m in F2(x). By Lemma 6,

there exists a binary [r, r −m,> h + 2]-linear code. It follows from Lemma 9 that there
exists an MR (n, r, h, 1)-LRC over a field of size 2min{mh,m n

r }. By choice of our parameters,
the desired result follows. J

I Theorem 11. There exists an MR (n, r, h, 1)-LRC over a field of size

` 6
(

max
{
Õ(n

r
), 2r

})min{h, n
r }

.

Proof. Consider the rational function field F2(x). Put m = max{r,
⌈
log2

(
n
r

)
+ 2 log2 log2

(
n
r

)⌉
}.

Then n
r 6 1

m 2m. The desired result follows from Lemma 9. J

I Remark 2. Theorem 11 gives a better bound on the field size than Theorem 10 for
h > 2r

log2 r − 1, while Theorem 10 gives a better bound on the field size than Theorem 11 for
h < 2r

log2 r − 1.

3.2.2 The case where 2 6 a 6 r − 1
I Lemma 12. Let a 6 r 6 q + 1 and m > h + a. If qm > mn

r , then there exists an MR
(n, r, h, a)-LRC code over a field of size ` = qmin{mh, mn

r }.

Proof. When a 6 r 6 q + 1 and m > h+ a, we have an [r, r − a, a+ 1]q-MDS code and an
[r, r −m,h+ a+ 1]q-linear code. The result thus follows from Theorem 8. J

I Theorem 13. There exists an MR (n, r, h, a)-LRC over a field of size

` 6
(

max
{
Õ(n

r
), (2r)h+a

})min{h, n
r }

.

Proof. Let q be the smallest prime power such that q− 1 > r. We may take q to be a power
of two, so that q 6 2r. Consider the rational function field F = Fq(x) and let

m = max
{
h+ a,

⌈
logq

(n
r

)
+ 2 logq logq

(n
r

)⌉}
.

Then n
r 6 1

mq
m. The desired result follows from Theorem 8. J

ICALP 2019



68:12 Constructions of Maximally Recoverable Local Reconstruction Codes

I Remark 3. The field size ` 6 Õ
(

max
{

n
r , r

h+a
}h
)
in Theorem 13 was already given in [5,

Corollary 11]. Here we provide a better result for h > n
r via a different approach.

I Theorem 14. There exists an MR (n, r, h, a)-LRC over a field of size

` 6
(

max
{
Õ(n

r
), (2r)r

})min{h, n
r }

.

Proof. Put q = 2dlog2 re. Then 2r > q > r and hence we have a q-ary [r, a]-MDS code for any
a 6 r. Put m = max{r,

⌈
logq

(
n
r

)
+ 2 logq logq

(
n
r

)⌉
}. Then n

r 6 1
mq

m. The desired result
follows from Theorem 10. J

I Remark 4. Theorem 14 gives a better bound on the field size than Theorem 13 for h+a > r,
while Theorem 13 gives a better bound on the field size than Theorem 14 for h+ a < r.

4 Explicit construction via general function fields

The construction via rational function fields given in Section 3 can be easily generalized to
arbitrary function fields. We only generalize the constructions of MR LRCs via parity-check
matrices given in Section 3.2. The necessary background on algebraic function fields, and
specifically Hermitian and Garcia-Stichtenoth tower of function fields, can be found in the
full version of this paper. We refer the proofs in this section to the full version of this paper.

Let q be a prime power and let a, r, h, g be integers with a 6 r 6 q + 1. Let F/Fq be a
function field of genus g. Let P1, P2, . . . , Pg be g positive divisors of degree r whose supports
are pairwise disjoint. Let G be a divisor of degree 2g− 1. By Riemann-Roch, dimL(G) = g.
Assume that {f1, f2, . . . , fg} is a basis of L(G). For each i, extend this basis to a basis
{f1, f2, . . . , fg, fi1, fi2, . . . , fir} of L(G+ Pi).

Let Q be a place of degree 2g + min{hr, n} and define the matrix

Di =


fi1(Q) fi2(Q) · · · fir(Q)
fq

i1(Q) fq
i2(Q) · · · fq

ir(Q)
...

...
...

...
fqh−1

i1 (Q) fqh−1

i2 (Q) · · · fqh−1

ir (Q)

 (9)

By mimicking the proof of Theorem 8, we have the following result.

I Lemma 15. Let Ai ∈ Fa×r
q be a generator matrix of an [r, a]q-MDS code for 1 6 i 6 g.

Let Di be the matrix given in (9). Put ` = q2g+min{hr,n}. Then the `-ary code C with the
matrix H defined in (7) is an MR (n, r, h, a)`-LRC.

Consequently, we have the following theorem.

I Theorem 16. Let r, g, a, h be positive integers with a 6 r 6 q + 1. If there is a function
field F/Fq of genus g with g positive divisors of degree r whose supports are disjoint, then
there exists an MR (n, r, h, a)-LRC with n = rg over a field of size ` = q2g+min{hr,n}.

Finally, let us instantiate the above result with the Hermitian function fields and the
Garcia-Stichtenoth tower, to deduce Parts (v) and (vi) promised in Theorem 1 respectively.
Note that both the results below kick-in for block lengths which are asymptotically at least
rO(r), which is why we have the condition r 6 O( log n

log log n ) in the statement of Theorem 1,
Parts (v), (vi).
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I Theorem 17. Let a 6 r be integers. Then there are infinitely many n > rΩ(r) such that
there is MR (n, r, h, a)-LRC over a field of size at most n 2h

3 (1+ε) for any desired ε ∈ (0, 0.5)
provided hr > Ω

(
n

2
3

ε

)
.

We finally state a similar result using the Garcia-Stichtenoth tower of function fields.

I Theorem 18. Let a 6 r be positive integers and let ε ∈ (0, 0.5). Then there are infinitely
many n > rΩ(r/ε) such that there is MR (n, r, h, a)-LRC over a field of size at most nεh

provided hr > Ω
(
n1−ε

)
.
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Abstract
In this paper we provide new quantum algorithms with polynomial speed-up for a range of problems
for which no such results were known, or we improve previous algorithms. First, we consider
the approximation of the frequency moments Fk of order k ≥ 3 in the multi-pass streaming
model with updates (turnstile model). We design a P -pass quantum streaming algorithm with
memory M satisfying a tradeoff of P 2M = Õ

(
n1−2/k), whereas the best classical algorithm requires

PM = Θ(n1−2/k). Then, we study the problem of estimating the number m of edges and the number
t of triangles given query access to an n-vertex graph. We describe optimal quantum algorithms
that perform Õ

(√
n/m1/4) and Õ (√n/t1/6 +m3/4/

√
t
)
queries respectively. This is a quadratic

speed-up compared to the classical complexity of these problems.
For this purpose we develop a new quantum paradigm that we call Quantum Chebyshev’s

inequality. Namely we demonstrate that, in a certain model of quantum sampling, one can
approximate with relative error the mean of any random variable with a number of quantum
samples that is linear in the ratio of the square root of the variance to the mean. Classically the
dependence is quadratic. Our algorithm subsumes a previous result of Montanaro [47]. This new
paradigm is based on a refinement of the Amplitude Estimation algorithm of Brassard et al. [11] and
of previous quantum algorithms for the mean estimation problem. We show that this speed-up is
optimal, and we identify another common model of quantum sampling where it cannot be obtained.
Finally, we develop a new technique called “variable-time amplitude estimation” that reduces the
dependence of our algorithm on the sample preparation time.
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1 Introduction

Motivations and Background. Randomization and probabilistic methods are among the
most widely used techniques in modern science, with applications ranging from mathematical
economics to medicine or particle physics. One of the most successful probabilistic approaches
is the Monte Carlo Simulation method for algorithm design, that relies on repeated random
sampling and statistical analysis to estimate parameters and functions of interest. From
Buffon’s needle experiment, in the eighteenth century, to the simulations of galaxy formation
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or nuclear processes, this method and its variations have become increasingly popular to tackle
problems that are otherwise intractable. The Markov chain Monte Carlo method [35] led for
instance to significant advances for approximating parameters whose exact computation is
#P-hard [39, 37, 20, 36].

The analysis of Monte Carlo Simulation methods is often based on concentration in-
equalities that characterize the deviation of a random variable from some parameter. In
particular, the Chebyshev inequality is a key element in the design of randomized methods
that estimate some target numerical value. Indeed, this inequality guarantees that the
arithmetic mean of ∆2/ε2 independent samples, from a random variable with variance σ2

and mean µ satisfying ∆ ≥ σ/µ, is an approximation of µ under relative error ε with high
probability. This basic result is at the heart of many computational problems, such as
counting via Markov chains [35, 54], estimating graph parameters [16, 25, 28, 22], testing
properties of classical [29, 8, 15, 13] or quantum [12, 7] distributions, approximating the
frequency moments in the data stream model [2, 46, 4].

Various quantum algorithms have been developed to speed-up or generalize classical Monte
Carlo methods (e.g. sampling the stationary distributions of Markov-chains [55, 51, 19, 53, 17],
estimating the expected values of observables or partition functions [41, 56, 51, 47]). The
mean estimation problem (as addressed by Chebyshev’s inequality) has also been studied
in the quantum sampling model. In this model, a distribution is represented by a unitary
transformation (called a quantum sampler) preparing a superposition over the elements of
the distribution, with the amplitudes encoding the probability mass function. A quantum
sample is defined as one execution of a quantum sampler or its inverse. The number of
quantum samples needed to estimate the mean of a distribution on a bounded space [0, B],
with additive error ε, was proved to be O (B/ε) [32, 10], or Õ (σ̄/ε) [47] given an upper-bound
σ̄2 on the variance. On the other hand, the mean estimation problem with relative error ε can
be solved with O

(√
B/(ε√µ)

)
quantum samples [11, 56]. Interestingly, this is a quadratic

improvement over σ2/(εµ)2 if the sample space is {0, B} (this case maximizes the variance).
Montanaro [47] posed the problem of whether this speed-up can be generalized to other
distributions. He assumed that one knows an upper bound1 ∆ on 1 + σ/µ, and gave an
algorithm using2 Õ

(
∆2/ε

)
quantum samples (thus improving the dependence on ε, compared

to the classical setting). This result was reformulated in [43] to show that, having bounds
L ≤ µ ≤ H, it is possible to use Õ (∆/ε ·H/L) quantum samples. However, it is usually the
case that the only upper-bound known on µ is H = B. In this situation, the latter algorithm
is less efficient than previous works [11, 56].

Quantum Chebyshev’s Inequality. Our main contribution (Theorem 10 and Theorem 11)
is to show that the mean µ of any distribution with variance σ2 can be approximated with
relative error ε using Õ (∆ · log(H/L) + ∆/ε) quantum samples, given an upper bound ∆ on
1 + σ/µ and two bounds L,H such that L < µ < H. This is an exponential improvement in
H/L compared to previous works [43]. Moreover, if log(H/L) is negligible, this is a quadratic
improvement over the number of classical samples needed when using the Chebyshev inequality.
A corresponding lower bound is deduced from [50] (Theorem 12). We also show (Theorem
14) that no such speed-up is possible if we only had access to copies of the quantum state
representing the distribution.

1 More precisely, ∆ is an upper bound on φ/µ where φ2 is the second moment, which satisfies σ/µ ≤
φ/µ ≤ 1 + σ/µ.

2 We use the notation Õ (x) to indicate O (x · polylog x).
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Our algorithm is based on sequential analysis. Given a threshold b ≥ 0, we will consider
the “truncated” mean µ<b defined by replacing the outcomes larger than b with 0. Using
standard techniques, this mean can be encoded in the amplitude of some quantum state√

1− µ<b/b|ψ〉 +
√
µ<b/b|ψ⊥〉 (Corollary 4). We then run the Amplitude Estimation al-

gorithm of Brassard et al. [11] on this state for ∆ steps (i.e. with ∆ quantum samples),
only to see whether the estimate of µ<b/b it returns is nonzero (this is our stopping rule).
A property of this algorithm (Corollary 4 and Remark 7) guarantees that it is zero with
high probability if and only if the number of quantum samples is below the inverse

√
b/µ<b

of the estimated amplitude. The crucial observation (Lemma 9) is that
√
b/µ<b is smaller

than ∆ for large values of b, and it becomes larger than ∆ when b ≈ µ∆2. Thus, by
repeatedly running the amplitude estimation algorithm with ∆ quantum samples, and doing
O (log(H/L)) steps of a logarithmic search on decreasing values of b, the first non-zero value
is obtained when b/∆2 is approximately equal to µ. The precision of the result is later
improved, by using more precise “truncated” means.

This algorithm is extended to cover the common situation where one knows a non-
increasing function f such that f(µ) ≥ 1 + σ/µ, instead of having explicitly ∆ ≥ 1 + σ/µ.
For this purpose, we exhibit another property (Corollary 4 and Remark 6) of the amplitude
estimation algorithm, namely that it always outputs a number smaller than the estimated
value (up to a constant factor) with high probability. This shall be seen as a quantum
equivalent of the Markov inequality. Combined with the previous algorithm, it allows us to
find a value f(µ̃) ≥ 1 + σ/µ, with a second logarithmic search on µ̃. This result is detailed
in the full version of the paper [31].

Next, we study the quantum analogue of the following standard fact: s classical samples,
each taking average time Tav to be prepared, can be obtained in total average time s·Tav. The
notion of “average preparation time” is adapted to the quantum setting using the framework
of variable-time algorithms introduced by Ambainis [3]. This captures the situation where
the superposition prepared by the quantum sampler has different parts taking different
times to be computed. We develop a variable-time amplitude estimation algorithm that
approximates the target value efficiently in this case. We use it in place of the standard
amplitude estimation technique to obtain an algorithm whose complexity depends on the
average, instead of worst-case, sample preparation time. This result is detailed in the full
version of the paper [31].

Applications. We describe two applications that illustrate the use of the above results.
We first study the problem of approximating the frequency moments Fk of order k ≥ 3 in
the multi-pass streaming model with updates. Classically, the best P -pass algorithms with
memory M satisfy PM = Θ

(
n1−2/k) [46, 57]. We give a quantum algorithm for which

P 2M = Õ
(
n1−2/k) (Theorem 18). This problem was studied before in [48], where the

author obtained quantum speed-ups for F0, F2 and F∞, but no significant improvement for
k ≥ 3. Similar tradeoff results are known for Disjointness (P 2M = Θ̃ (n) in the quantum
streaming model [42] vs. PM = Θ (n) classically), and Dyck(2) (P 3M = Ω (

√
n) [49] vs.

PM = Θ̃ (
√
n) [45, 14, 34]).

Our construction starts with a classical one-pass linear sketch streaming algorithm [46, 4]
with memory polylogn, that samples (approximately) from a distribution with mean Fk and
variance O

(
n1−2/kF 2

k

)
. We implement it with a quantum sampler, that needs two passes for

one quantum sample. The crucial observation is that the reverse computation of a linear
sketch algorithm can be done efficiently in one pass (whereas usually that would require
processing the same stream but in the reverse direction).

ICALP 2019
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As a second application, we study the approximation of graph parameters using neigh-
bor, vertex-pair and degree queries. We show that the numbers m of edges and t of
triangles, in an n-vertex graph, can be estimated with Θ̃

(
n1/2/m1/4) (Theorem 19) and

Θ̃
(√
n/t1/6 +m3/4/

√
t
)
(Theorem 21) quantum queries respectively. This is a quadratic

speed-up over the best classical algorithms [28, 22]. The lower bounds (Theorems 20 and 22)
are obtained with a property testing to communication complexity reduction method.

The number of edges is approximated by translating a classical estimator [52] into a
quantum sampler. The triangle counting algorithm is more involved. We need a classical
estimator [22] approximating the number tv of adjacent triangles to any vertex v. The average
sample preparation time of this estimator being small, we obtain a quadratic speed-up for
estimating tv using our mean estimation algorithm for variable-time samplers. We then
diverge from the classical triangle counting algorithm of [22], that requires to set up a data
structure for sampling edges uniformly in the graph. This technique seems to be an obstacle
for a quadratic speed-up. We circumvent this problem by adapting instead a bucketing
approach from [21] that partitions the graph’s vertices according to the value of tv. The size
of each bucket is estimated using a second quantum sampler.

2 Preliminaries

2.1 Computational Model
In this paper we consider probability distributions d on some finite sample spaces Ω ⊂ R+.
We denote by d(x) the probability to sample x ∈ Ω in the distribution d. We also make the
assumption, which is satisfied for most of applications, that Ω is equipped with an efficient
encoding of its elements x ∈ Ω. In particular, we can perform quantum computations on the
Hilbert space HΩ defined by the basis {|x〉}x∈Ω. Moreover, given any two values 0 ≤ a < b,
we assume the existence of a unitary Ra,b that can perform the Bernoulli sampling (see
below) in time polylogarithmic in b. In the rest of the paper we will neglect this complexity,
including the required precision for implementing any of those unitary operators.

I Definition 1. Given a finite space Ω ⊂ R+ and two reals 0 ≤ a < b, an (a, b)-Bernoulli
sampler over Ω is a unitary Ra,b acting on HΩ ⊗ C2 and satisfying for all x ∈ Ω:

Ra,b(|x〉|0〉) =
{
|x〉
(√

1− x
b |0〉+

√
x
b |1〉

)
when a ≤ x < b,

|x〉|0〉 otherwise.

We say that Ω is Bernoulli samplable if any (a, b)-Bernoulli sampler can be implemented in
polylogarithmic time in b, when a, b have polylog-size encodings in b.

The Ra,b operation can be implemented with a controlled rotation, and is reminiscent of
related works on mean estimation (e.g. [56, 10, 47]). In what follows, we always use a = 0 or
a = b/2. Using these notions, we can now define what a quantum sample is.

I Definition 2. Given a finite Bernoulli samplable space Ω ⊂ R+ and a distribution d on
Ω, a (quantum) sampler S for d is a unitary operator acting on Hg ⊗HΩ, for some Hilbert
space Hg, such that

S(|0〉|0〉) =
∑
x∈Ω

√
d(x)|ψx〉|x〉

where |ψx〉 are arbitrary unit vectors. A quantum sample is one execution of S or S−1

(including their controlled versions). The output of S is the random variable v(S) obtained
by measuring the x-register of S(|0〉|0〉). Its mean is denoted by µS , its variance by σ2

S , and
its second moment by φ2

S = E
[
v(S)2].
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Given a non-negative random variable X and two numbers 0 ≤ a ≤ b, we define the
random variable Xa,b = ida,b(X) where ida,b(x) = x when a ≤ x < b and ida,b(x) = 0
otherwise. If a = 0, we let X<b = X0,b. Similarly, X≥b = id≥b(X) where id≥b(x) = x when
x ≥ b and id≥b(x) = 0 otherwise.

We motivate the use of a Bernoulli sampler Ra,b by the following observation: for any
sampler S and values 0 ≤ a < b, the modified sampler Ŝ = (IHg

⊗ Ra,b)(S ⊗ IC2) acting
on Hĝ ⊗ HΩ̂, where Hĝ = Hg ⊗ HΩ and Ω̂ = {0, 1}, generates the Bernoulli distribution
d(0) = 1− p, d(1) = p of mean p = E

[
v(Ŝ)

]
= b−1E [v(S)a,b] (see the proof of Corollary 4).

This central result will be used all along this paper.

Other Quantum Sampling Models. Instead of having access to the unitary S, one could
only have copies of the state

∑
x∈Ω

√
d(x)|ψx〉|x〉 (as in [5] for instance). However, as we

show in Theorem 14, the speed-up presented in this paper is impossible to achieve in this
model. On another note, Aharonov and Ta-Shma [1] studied the Qsampling problem, which
is the ability to prepare

∑
x∈Ω

√
d(x)|x〉 given the decription of a classical circuit with

output distribution d. This problem becomes straightforward if a garbage register ψx can be
added (using standard reversible-computation techniques). Bravyi, Harrow and Hassidim
[12] considered an oracle-based model, that is provably weaker than Qsampling, where a
distribution d = (d(1), . . . , d(N)) on Ω = [N ] is represented by an oracle Od : [S] → [N ]
(for some S), such that d(x) equals the proportion of inputs s ∈ [S] with Od(s) = x. It
is extended to the quantum query framework with a unitary Od such that Od|s〉|0〉 =
|s〉|Od(s)〉. It is not difficult to see that applying Od on a uniform superposition gives∑
x∈[N ]

√
d(x)

(
1√
d(x)S

∑
s∈[S]:Od(s)=x |s〉

)
|x〉, as required by Definition 2 (where |ψx〉 =

1√
d(x)S

∑
s∈[S]:Od(s)=x |s〉). Finally, Montanaro [47] presented a model that is similar to ours,

where he replaced the x-register of S(|0〉|0〉) with a k-qubit register (for some k) combined
with a mapping φ : {0, 1}k → Ω where x = φ(s) is the sample associated to each s ∈ {0, 1}k.

2.2 Amplitude Estimation
The essential building block of this paper is the amplitude estimation algorithm [11], combined
with ideas from [56, 10, 47], to estimate the modified mean b−1E [v(S)a,b] of a quantum
sampler S to which a Bernoulli sampler Ra,b has been applied. We will need the following
result about amplitude estimation.

I Theorem 3. There is a quantum algorithm AmplEst, called Amplitude Estimation, that
takes as input a unitary operator U , an orthogonal projector Π, and an integer t > 2. The
algorithm outputs an estimate p̃ = AmplEst (U,Π, t) of p = 〈ψ|Π|ψ〉, where |ψ〉 = U |0〉, such
that{

|p̃− p| ≤ 2π
√
p

t + π2

t2 , with probability 8/π2;
p̃ = 0, with probability sin2(tθ)

t2 sin2(θ) .

and 0 ≤ θ ≤ π/2 satisfies sin(θ) = √p. It uses O
(
log2(t)

)
2-qubit quantum gates (independent

of U and Π) and makes 2t+ 1 calls to (the controlled versions of) U and U−1, and t calls to
the reflection I − 2Π.

We now present an adaptation of the algorithms from [56, 10, 47] to estimate b−1E [v(S)a,b].
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Input: a sampler S acting on Hg ⊗HΩ, two values (a, b), an integer t, a failure parameter
0 < δ < 1.
Output: an estimate p̃ = BasicEst (S, (a, b), t, δ) of p = b−1E [v(S)a,b]

1. Let U = (IHg ⊗Ra,b)(S ⊗ IC2) and Π = IHg ⊗ IHΩ ⊗ |1〉〈1|.
2. For i = 1, . . . ,Θ (log(1/δ)): compute p̃i = AmplEst (U,Π, t).
3. Output p̃ = median{p̃1, . . . , p̃Θ(log(1/δ))}.

Algorithm 1 The Basic Estimation algorithm BasicEst.

I Corollary 4. Consider a quantum sampler S and two values 0 ≤ a < b. Denote p =
b−1E [v(S)a,b]. Given an integer t > 2 and a real 0 < δ < 1, BasicEst (S, (a, b), t, δ) (see
Algorithm 1) uses O (t log(1/δ)) quantum samples and outputs p̃ satisfying all of the following
inequalities with probability 1− δ:

(1) |p̃− p| ≤ 2π
√
p

t
+ π2

t2 , for any t; (2) p̃ ≤ (1 + 2π)2 · p, for any t;

(3) p̃ = 0, when t < 1
2√p ; (4) |p̃− p| ≤ ε · p, when t ≥ 8

ε
√
p

and 0 < ε < 1.

Proof. We show that each p̃i satisfies the inequalities stated in the corollary, with probability
8/π2. Since p̃ is the median of Θ (log 1/δ) such values, the probability is increased to 1− δ
using the Chernoff bound.

For each x ∈ Ω, denote νx = x
b if a ≤ x < b, and νx = 0 otherwise. Since p =

∑
x∈Ω νxd(x),

observe that

U(|0〉|0〉|0〉) =
∑
x∈Ω

√
d(x)|ψx〉|x〉

(√
1− νx|0〉+

√
νx|1〉

)
=
√

1− p|ψ′0〉|0〉+√p|ψ′1〉|1〉

where |ψ′0〉 = 1√
1−p

∑
x∈Ω

√
d(x)
√

1− νx|ψx〉|x〉 and |ψ′1〉 = 1√
p

∑
x∈Ω

√
d(x)√νx|ψx〉|x〉

are unit vectors. Thus, the output p̃i of the AmplEst algorithm applied on U and Π is
an estimate of p satisfying the output conditions of Theorem 3. Therefore |p̃i − p| ≤
2π
√
p

t + π2

t2 with probability 8/π2, for any t. By plugging t ≥ 8
ε
√
p into this inequality we

have |p̃i − p| ≤ ε · p. By plugging t ≥ 1
2√p we also have |p̃i − p| ≤ (4π + 4π2)p, and thus

p̃i ≤ (1 + 2π)2 · p. Finally, if t < 1
2√p , denote 0 ≤ θ ≤ π/2 such that sin(θ) = √p and observe

that θ ≤ π
2
√
p ≤ π

4t (since 2
πx ≤ sin(x) ≤ x, for x ∈ [0, π/2]). The probability to obtain

p̃i = 0 is sin2(tθ)
t2 sin2(θ) ≥

sin2(tπ/(4t))
t2 sin2(π/(4t)) ≥

sin2(π/4)
t2(π/(4t))2 = 8/π2, since x 7→ sin2(tx)/(t2 sin2(x)) is

decreasing for 0 < x ≤ π/t. Moreover, when t < 1
2√p , the first two inequalities are obviously

satisfied if p̃i = 0. J

The four results on p in Corollary 4 lie at the heart of this paper. We make a few
comments on them.
I Remark 5. Consider a sampler S over Ω = {0, 1} for the Bernoulli distribution of parameter
p. Using the Chebyshev inequality, we get that O

(
(1− p)/(ε2p)

)
classical samples are

enough for estimating p with relative error ε. The inequality (4) of Corollary 4 shows that
t = O

(
1/(ε√p)

)
quantum samples are sufficient. Our main result (Section 3) generalizes

this quadratic speed-up to the non-Bernoulli case.

I Remark 6. The inequality (2) shall be seen as an equivalent of the Markov inequality3,
namely that p̃ does not exceed p by a large factor with large probability.

3 The Markov inequality for a non-negative random variable X states that P(X ≥ kE [X]) ≤ 1/k for any
k > 0. Here, although we do not need this result, it is possible to prove that P(p̃ ≥ kp) ≤ C/

√
k, for

some absolute constant C.
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Input: a sampler S, an integer ∆S , two values 0 < L < H, two reals 0 < ε, δ < 1/2.
Output: an estimate µ̃S of µS .

1. Set M = 8H and p̃ = 0
2. While p̃ = 0 and M ≥ 2L:

a. Set M = M/2.
b. Compute p̃ = BasicEst

(
S, (0,M∆2

S), 25∆S , δ′
)
where δ′ = δ

2(3+log(H/L)) .

3. If M < 2L then output µ̃S = 0.

4. Else, compute q̃ = BasicEst
(
S, (0, ε−1M∆2

S), 352ε−3/2∆S , δ/2
)

and output µ̃S =
(ε−1M∆2

S) · q̃.

Algorithm 2 ε−approximation of the mean of a quantum sampler S.

I Remark 7. If p 6= 0, inequalities (3) and (4) imply that, with large probability, t < 8/√p
when p̃ = 0, and t ≥ 1/(2√p) when p̃ 6= 0. This phenomenon, at t = Θ(1/√p), is crucially
used in the next section.

3 Quantum Chebyshev’s Inequality

We describe our main algorithm for estimating the mean µS of any quantum sampler S,
given an upper bound ∆S ≥ φS/µS (we recall that φ2

S = E
[
v(S)2] and σS/µS ≤ φS/µS ≤

1 + σS/µS). The two main tools used in this section are the BasicEst algorithm of Corollary
4, and the following lemma on “truncated” means. We recall that X<b (resp. X≥b) is defined
from a non-negative random variable X by substituting the outcomes greater or equal to b
(resp. less than b) with 0. Note that X = X<b +X≥b for all b > 0.

I Fact 8. For any random variable X and real numbers 0 < a ≤ b, we have E [Xa,b] ≤
E[X2

a,b]
a

and E [X≥b] ≤
E[X2

≥b]
b .

I Lemma 9. Let X be a non-negative random variable and ∆ ≥
√
E [X2]/E [X]. Then, for

all c1, c2,M > 0 such that c1 · E [X] ≤M ≤ c2 · E [X], we have(
1− 1

c1

)
E [X] ≤ E [X<M∆2 ] ≤ E [X] and

√
c1 ·∆ ≤

√
M∆2

E [X<M∆2 ] ≤

√
c2

(
1− 1

c1

)
·∆

Proof. The first inequality is a consequence of E [X<M∆2 ] = E [X] − E [X≥M∆2 ] and 0 ≤
E [X≥M∆2 ] ≤ E

[
X2
≥M∆2

]
/(M∆2) ≤ E

[
X2] /(M∆2) ≤ (1/c1) · E [X] (using Fact 8). The

second inequality is a direct consequence of the left one, and of the hypothesis c1 · E [X] ≤
M ≤ c2 · E [X]. J

Our mean estimation algorithm works in two stages. We first compute a rough estimate
M ∈ [2µS , 2500µS ] with Õ (∆S · log(H/L)) quantum samples (where 0 < L < µS < H are
known bounds on µS). Then, we improve the accuracy of the estimate to any value ε, at
extra cost Õ

(
∆S/ε3/2

)
.

I Theorem 10. If ∆S ≥ φS/µS and L < µS < H then the output µ̃S of Algorithm 2
satisfies |µ̃S − µS | ≤ εµS with probability 1 − δ. Moreover, for any ∆S , L,H it satisfies
µ̃S ≤ (1 + 2π)2µS with probability 1 − δ. The number of quantum samples used by the
algorithm is O

(
∆S ·

(
log
(
H
L

)
log
(

log(H/L)
δ

)
+ ε−3/2 log

( 1
δ

)))
.

ICALP 2019
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Proof. Assume that ∆S ≥ φS/µS and L < µS < H. We denote p = (M∆2
S)−1 ·

E
[
v(S)<M∆2

S

]
. By Lemma 9, if M ≥ 2500µS then 25∆S ≤ 1

2√p , and if 2µS ≤ M ≤ 4µS
then 25∆S > 8√

p . Therefore, by Corollary 4, with probability 1− δ′, the value p̃ computed
at Step 2.(b) is equal to 0 when M ≥ 2500µS , and is different from 0 when 2µS ≤M ≤ 4µS .
Thus, the first time Step 2.(b) of Algorithm 2 computes p̃ 6= 0 happens forM ∈ [2µS , 2500µS ],
with probability at least (1− δ′)1+log(4H/(2µS)) > 1− δ/2.

Consequently, we can assume that Step 4 is executed with M ∈ [2µS , 2500µS ], and we
let M ′ = M/ε. According to Lemma 9 we have (1 − ε/2)µS ≤ E

[
v(S)<M ′∆2

S

]
≤ µS and

352ε−3/2∆S ≥ 8
(ε/2)√q , where q = (M ′∆2

S)−1 · E
[
v(S)<M ′∆2

S

]
. Thus, according to Corollary

4, the value q̃ satisfies |q̃− q| ≤ (ε/2)q with probability 1− δ/2. Using the triangle inequality,
it implies |(ε−1M∆2

S) · q̃ − µS | ≤ εµS .
If L ≥ µS this may only increase the probability to stop at Step 3 and output µ̃S = 0. If

Step 4 is executed we still have µ̃S ≤ (1 + 2π)2µS with probability 1− δ, as a consequence of
Corollary 4. J

In the full version [31], we improve Step 4 of Algorithm 2 to obtain the following result
with (nearly) optimal dependence on ε.

I Theorem 11. There is an algorithm that, given a sampler S, an integer ∆S , two values
0 < L < H, and two reals 0 < ε, δ < 1, outputs an estimate µ̃S of µS . If ∆S ≥ φS/µS and
L < µS < H, it satisfies |µ̃S − µS | ≤ εµS with probability 1− δ. Moreover, for any ∆S , L,H
it satisfies µ̃S ≤ (1 + 2π)2µS with probability 1− δ. The number of quantum samples used by
the algorithm is O

(
∆S ·

(
log
(
H
L

)
log
(

log(H/L)
δ

)
+ ε−1 log3/2(∆S) log

(
log ∆S
δ

)))
.

In Section 4, we describe an Ω((∆S −1)/ε) lower bound for this mean estimation problem.
Before, we present three kinds of generalizations of the above algorithms.

Higher moments. Given an upper-bound ∆2
S ≥ (E

[
v(S)k

]
/E [v(S)]k)1/(k−1) on the

relative moment of order k ≥ 2, one can easily generalize Facts 8, Lemma 9 and Theorem 11
to show that µS can be estimated using Õ

(
∆S · ε−1/(2(k−1)) log(H/L) log(1/δ)

)
quantum

samples.
Implicit upper bound on φS/µS . If instead of an explicit value ∆S ≥ φS/µS we are
given a non-increasing function f such that f(µS) ≥ φS/µS , we can still estimate the
mean µS using Õ

(
f(µS/c) · ε−1 log(H/L) log(1/δ)

)
quantum samples, where c > 1 is an

absolute constant. The proof is deferred to the full version [31] (it crucially uses the
Markov-like inequality “µ̃S ≤ (1 + 2π)2µS” of Corollary 4 and Remark 6).
Time complexity and variable-time samplers. The time complexity (number of
quantum gates) of all above algorithms is essentially equal to the number of quantum
samples multiplied by the time complexity Tmax(S) of the considered sampler. However,
Tmax(S) is often much larger than the more desirable `2-average running time T`2(S)
defined by Ambainis [3] in the context of variable-time algorithms, where some branches
of computation may stop earlier than the others. In the full version [31], we develop a new
technique called variable-time amplitude estimation that improves the time complexity of
our algorithm to Õ

(
∆S · ε−2T`2(S) · log4(Tmax(S)) log(H/L) log(1/δ)

)
.

The last two results are combined together in the algorithm of Theorem 21 to approximate
the number of triangles in any graph.
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4 Optimality and Separation Results

Using a result due to Nayak and Wu [50] on approximate counting, we can show a correspond-
ing lower bound to Theorem 11 already in the simple case of Bernoulli variables. For this
purpose, we define that an algorithm A solves the Mean Estimation problem for parameters
ε,∆ if, for any sampler S satisfying φS/µS ∈ [∆, 4∆] (the constant 4 is arbitrary), it outputs
a value µ̃S satisfying |µ̃S − µS | ≤ εµS with probability 2/3.

I Theorem 12. Any algorithm solving the Mean Estimation problem for parameters 0 < ε <

1/5 and ∆ > 1 on the sample space Ω = {0, 1} must use Ω ((∆− 1)/ε) quantum samples.

Proof. Consider an algorithm A solving the Mean Estimation problem for parameters
0 < ε < 1/5, ∆ > 1 using N quantum samples. Take two integers 0 < t < n large enough
such that

√
2∆ ≤

√
n/t ≤ 4∆ and εt > 1. For any oracle O : {1, . . . , n} → {0, 1}, define

the quantum sampler SO(|0〉|0〉) = 1√
n

∑
i∈[n] |i〉|O(i)〉 and let tO = |{i ∈ [n] : O(i) = 1}|.

Observe that µSO = φ2
SO = tO/n, and one quantum sample from SO can be implemented

with one quantum query to O.
According to [50, Corollary 1.2], any algorithm that can distinguish tO = t from tO = d(1+

4ε)te makes Ω
(√

n/(εt) +
√
t(n− t)/(εt)

)
= Ω

(
(
√
n/t− 1)/ε

)
= Ω ((∆− 1)/ε) quantum

queries to O. However, given the promise that tO = t or tO = d(1 + 4ε)te we can use A with
input SO, ε, ∆ to distinguish between the two cases using N samples, that is N queries to O.
Indeed, φSO/µSO =

√
n/tO ∈ [∆, 4∆] for such samplers (since d(1 + 4ε)te ≤ (1 + 5ε)t ≤ 2t).

Thus, A must use N = Ω ((∆− 1)/ε) quantum samples. J

One may wonder whether the quantum speed-up presented in this paper holds if we only
have access to copies of a quantum state

∑
x∈Ω

√
d(x)|ψx〉|x〉 (instead of access to a unitary

S preparing it). Below we answer this question negatively. For this purpose, we define that
an algorithm A solves the state-based Mean Estimation problem for parameters ε,∆ if, using
access to some copies of an unknown state |d〉 =

∑
x∈Ω

√
d(x)|x〉 satisfying φd/µd ∈ [∆, 4∆]

(where µd =
∑
x d(x)x and φ2

d =
∑
x d(x)x2), it outputs a value µ̃d satisfying |µ̃d−µd| ≤ εµd

with probability 2/3.

I Lemma 13. Consider two distributions d, d′ represented by the states |d〉 =
∑
x∈Ω

√
d(x)|x〉

and |d′〉 =
∑
x∈Ω

√
d′(x)|x〉. The smallest integer T needed to be able to discriminate |d〉⊗T

and |d′〉⊗T with success probability 2/3 satisfies T ≥ ln(9/8)
D(d||d′) , where D(d||d′) is the KL-

divergence from d to d′.

Proof. According to Helstrom’s bound [33] the best success probability to discriminate
two states |ψ〉 and |φ〉 is 1

2 (1 +
√

1− |〈ψ|φ〉|2). Consequently, T must satisfy 1
2 (1 +√

1− 〈d|d′〉2T ) ≥ 2/3, which implies

T ≥ ln(9/8)
− ln(〈d|d′〉2) = ln(9/8)

−2 ln
(∑

x d(x)
√
d′(x)/d(x)

) ≥ ln(9/8)∑
x d(x) ln (d(x)/d′(x)) = ln(9/8)

D(d||d′)

where we used the concavity of the − ln function. J

I Theorem 14. Any algorithm solving the state-based Mean Estimation problem for para-
meters 0 < ε < 1/100 and ∆ > 1 on the sample space Ω = {0, 1} must use Ω

(
(∆2 − 1)/ε2

)
copies of the input state.
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Proof. Consider an algorithm A solving the state-based Mean Estimation problem for
parameters 0 < ε < 1/100, ∆ > 1 using N copies of the input state. Given any |d〉 =√

1− p|0〉+√p|1〉 with φd/µd ∈ [
√

6∆,
√

8∆] (notice that µd = φ2
d = p and 1−p ≥ 5/6 ≥ 12ε),

we show how to construct a state |d′〉 =
√

1− p′|0〉+
√
p′|1〉 such that

(1) (1+4ε)µd < µd′ < (1+24ε)µd ; (2) φd′/µd′ ∈ [∆, 4∆] ; (3) D(d||d′) ≤ (12ε)2/(∆2−1).

It is clear that A can be used to discriminate two such states. On the other hand, according
to Lemma 13, any such algorithm muse use N = Ω (1/D(d||d′)) = Ω

(
(∆2 − 1)/ε2

)
copies of

the input state.
The construction of d′ is adapted from [18, Section 7]. We set p′ = peα(1−p)/ψ where

α = 12ε/(1−p) < 1 and ψ = (1−p)e−αp+peα(1−p) (so that 1−p′ = (1−p)e−αp/ψ). We let
.
ψ

(resp.
..
ψ) denote the first (resp. second) derivative of ψ with respect to α. A simple calculation

shows that µd′ − µd =
.
ψ/ψ and D(d||d′) = lnψ. Moreover, σ2

d′ = Ex∼d′
[
(x− µd′)2] =

Ex∼d′
[
(x− µd)2]+ 2(µd − µd′)Ex∼d′ [x− µd] + (µd − µd′)2 = Ex∼d

[
(x− p)2eα(x−p)−lnψ]−

(µd − µd′)2 =
..
ψ/ψ − (

.
ψ/ψ)2.

Since ψ = Ex∼d
[
eα(x−p)], it can be deduced from the standard inequality 1 + u+ u2/3 ≤

eu ≤ 1 + u + u2 (when |u| ≤ 1) that 1 ≤ 1 + p(1−p)
3 · α2 ≤ ψ ≤ 1 + p(1 − p) · α2 ≤ 2.

Consequently, 2p(1−p)
3 · α ≤

.
ψ ≤ 2p(1− p) · α and 2p(1−p)

3 ≤
..
ψ ≤ 2p(1− p). It implies that

4εp ≤ µd′ − µd ≤ 24εp and p(1− p)/3− (24εp)2 ≤ σ2
d′ ≤ 2p(1− p). Thus, (1 + 4ε)µd ≤ µd′ ≤

(1+24ε)µd ≤
√

2µd and 1
6σ

2
d/µ

2
d−(24ε/

√
2)2 ≤ σ2

d′/µ
2
d′ ≤ 2σ2

d/µ
2
d. Since σ2

d′/µ
2
d′ = φ2

d′/µ
2
d′−1

and φd/µd ∈ [
√

6∆,
√

8∆], we obtain that ∆ ≤ 1√
6φd/µd ≤ φd′/µd′ ≤

√
2φd/µd ≤ 4∆.

Finally, D(d||d′) = lnψ ≤ p(1− p) · α2 = (12ε)2p/(1− p) ≤ (12ε)2/(∆2 − 1). J

I Remark 15. An intermediate version of Theorem 12 can be deduced from Theorem 14,
when S is accessed via the reflection oracle OS = I − 2S(|0〉|0〉)(〈0|〈0|)S−1 only (observe
that this is the case for our algorithms). Indeed, according to [38, Theorem 4], for any
algorithm performing q queries to a reflection oracle O = I − 2|φ〉〈φ|, it is possible to remove
the queries to O by using ∼ q2 copies of |φ〉 instead.

5 Applications

We describe two applications of the Quantum Chebyshev Inequality. The first one (Section
5.1) concerns the computation of the frequency moments Fk of order k ≥ 3 in the streaming
model. We design a P -pass algorithm with quantum memory M satisfying a tradeoff of
P 2M = Õ

(
n1−2/k), whereas the best algorithm with classical memory requires PM =

Θ(n1−2/k). We then study (Section 5.2) the edge and triangle counting problems in the
general graph model with quantum query access. We describe nearly optimal algorithms
that approximate these parameters quadratically faster than in the classical query model.

5.1 Frequency Moments in the Multi-Pass Streaming Model
In the streaming model with update (turnstile model), the input is a vector x ∈ Rn obtained
through a stream ~u = u1, u2, . . . of updates. Initially, x(0) = (0, . . . , 0), and each uj =
(i, λ) ∈ [n]×R modifies the i-th coordinate of x(j) by adding λ to it. The goal of a streaming
algorithm T is to output, at the end of the stream, some function of the final vector x while
minimizing the number M � n of memory cells. In the multi-pass model, the same stream
is repeated for a certain number P of passes, before the algorithm outputs its result.
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Input: a stream ~u, an integer k ≥ 3, a real F̃2, an approximation parameter 0 < ε < 1.
Output: an estimate F̃k of the frequency moment of order k of ~u.

1. Compute i ∈ [n] using the streaming algorithm of Theorem 16 with input ~u, ε/4, F̃2.
2. Compute xi using a second pass over ~u.
3. Output F̃2 · |xi|k−2.

Estimator 3 Frequency moment Fk of a stream.

The frequency moment of order k is defined, for the final vector x = (x1, . . . , xn), as
Fk(x) =

∑
i∈[n] |xi|k. The problem of approximating Fk when k ≥ 3 has been addressed first

with the AMS algorithm [2], that uses O
(
n1−1/k) classical memory cells in the insertion-only

model (where uj ∈ [n]×R+). A series of works in the turnstile model culminated in optimal
one-pass algorithms with memory Θ

(
n1−2/k) [44, 26], and nearly optimal P -pass algorithms

with memory Θ̃
(
n1−2/k/P

)
[46, 4, 57]. In the quantum setting, Montanaro [48] obtained a

small improvement in terms of the approximation parameter ε only.
Our algorithm relies on a classical procedure for `2 sampling. Given x ∈ Rn, we let Dq,x

denotes the `q distribution that returns i ∈ [n] with probability |xi|q
Fq(x) . One can observe that

the (suboptimal) AMS algorithm [2] essentially samples i ∼ D1,x and computes F1 · |xi|k−1.
This is an unbiased estimator for Fk(x) with variance O

(
n1−1/kFk(x)2) (thus requiring to

compute O
(
n1−1/k) samples in one pass). Instead, we base our algorithm on the estimator

F2(x) · |xi|k−2 where i ∼ D2,x. It reduces the variance to O
(
n1−2/kFk(x)2) [46], but it

requires a procedure for `2 sampling. To this end, we use the following algorithm from [4] to
sample from an (ε, δ)-approximator to D2,x (meaning that each i ∈ [n] is sampled with a
probability pi satisfying (1− ε) |xi|2

F2(x) − δ ≤ pi ≤ (1 + ε) |xi|2
F2(x) + δ).

I Theorem 16 ([4]). There is a randomized streaming algorithm that, given a stream ~u with
final vector x, a real 0 < ε < 1/3 and a value F̃2 such that |F̃2 − F2(x)| ≤ (1/2) · F2(x),
outputs a value i ∈ [n] that is distributed according to an (ε, n−2)-approximator to D2,x.
The algorithm uses M = O

(
ε−2 log3 n

)
classical memory cells. Moreover, each element of

the stream is processed in time Tupd = O
(
ε−1 logn

)
, and the output is computed in time

Trec = O
(
ε−1n logn

)
after the last element is received.

I Proposition 17 ([46, 4]). If we let X denote the output random variable of Estimator 3,
then E [X] = (1± ε/2)Fk and Var [X] ≤ O

(
n1−2/kF 2

k

)
, when |F̃2 − F2| ≤ (ε/4) · F2.

It is known that any deterministic computation can be made reversible, and therefore
implemented by a unitary map with a limited overhead on the time and space complexities [9].
Nonetheless, implementing naively the reverse computation of a streaming algorithm would
require processing the same stream but in the reverse direction, which may not be always
possible. This motivates our specific notion of reversible streaming algorithms. We say that a
streaming algorithm T with memory size M is reversible if there exists a streaming algorithm
T −1 with memory size M such that each computational steps of T and T −1 are reversible,
and in addition each pass of T can be undone by one pass of T −1 in the same direction. In
the full version [31] we show how to make the algorithm of Theorem 16 reversible (our result
is in fact more general and holds for any linear sketch streaming algorithm). We combine the
quantum sampler that is obtained from this result with the Quantum Chebyshev Inequality
(Theorem 11) to obtain the following tradeoff.
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I Theorem 18. There is a quantum streaming algorithm that, given a stream ~u, two integers
P ≥ 1, k ≥ 3 and an approximation parameter 0 < ε < 1, outputs an estimate F̃k such
that |F̃k − Fk| ≤ εFk with probability 2/3. The algorithm uses Õ

(
n1−2/k/(εP )2) quantum

memory cells, and it makes Õ
(
P · (k logn+ ε−1)

)
passes over the stream ~u.

Proof. We first compute, in one pass, a value F̃2 such that |F̃2 − F2| ≤ (ε/2)F2 with high
probability, using [2, 48] for instance. The complexity is absorbed by the final result. Then,
using the reversible streaming algorithm associated to Estimator 3, we can design a quantum
sampler S using memory M = Õ

(
ε−2 log3 n

)
such that S(|0〉|0〉) =

∑
r∈{0,1}M |r〉|ψr〉|fr〉

where each |r〉 corresponds to a different random seed for the linear sketch algorithm of
Theorem 16, |fr〉 is the output of Estimator 3, and |ψr〉 is some garbage state obtained when
making Estimator 3 reversible. According to Proposition 17, we have µS = (1± ε/2)Fk and
σS ≤ O

(√
n1−2/kFk

)
. Moreover one quantum sample can be implemented with two passes

over the stream.
We “concatenate” Q = n1−2/k/P 2 such samplers and compute the mean f̄ = Q−1 · (fr1 +

· · ·+ frQ
) of their results to obtain

S̄(|0〉|0〉) =
∑

r1,...,rQ∈{0,1}M
|r1, . . . , rQ〉|ψ1, . . . , ψQ〉|fr1 , . . . , frQ

〉|f̄〉.

This sampler satisfies µS̄ = µS and σS̄ = σS/
√
Q ≤ O (PFk), and it requires two passes and

memory M̄ = Õ
(
Q · ε−2 log3 n

)
to be implemented. Finally, we approximate Fk by applying

Theorem 11 on S̄, which uses Õ
(
P · (k logn+ ε−1)

)
quantum samples. J

5.2 Approximating Graph Parameters in the Query Model
In this section, we consider the general graph model [40, 27] that provides query access to a
graph G = (V,E) through the following operations: (1) degree query (given v ∈ V , returns
the degree dv of v), (2) neighbor query (given v ∈ V and i, returns the i-th neighbor of v if
i ≤ dv, and ⊥ otherwise), and (3) vertex-pair query (given u, v ∈ V , indicates if (u, v) ∈ E).
This is a combination of the dense graph model (pair queries) and the bounded-degree model
(neighbor and degree queries). We refer the reader to [27, Chapter 10] for a more detailed
discussion about it. It can be extended to the standard quantum query framework. A
quantum degree query is represented as a unitary Odeg such that Odeg|v〉|b〉 = |v〉|y ⊕ dv〉
where v ∈ V and y ∈ {0, 1}dlogne. The quantum neighbor Oneigh and vertex-pair Opair
queries are defined similarly. The query complexity of an algorithm in the quantum general
graph model is the number of times it uses Odeg, Onei or Opair.

In the following, we let n denote the number of vertices, m the number of edges and t
the number of triangles in G. We consider the problems of estimating m and t, for which we
provide nearly optimal quantum algorithms. The description and analysis of these algorithms
is deferred to the full version [31].

Edge counting. In the classical setting, Feige [25] showed that Θ(n/(ε
√
m)) degree queries

are sufficient to compute a factor (2+ ε) approximation of m, but no factor (2− ε) approxima-
tion can be obtained in sublinear time. Using both degree and neighbor queries, it is possible
to compute a factor (1 + ε) approximation with Θ (n/(

√
εm)) classical queries [28, 52, 23].

These results were generalized to k-star counting in [30, 23]. In the quantum setting, we
prove the following results.
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I Theorem 19. There is an algorithm that, given query access to any n-vertex graph G
with m edges, and an approximation parameter ε < 1, outputs an estimate m̃ of m such that
|m̃−m| ≤ εm with probability 2/3. This algorithm performs Õ

(
n1/2

εm1/4

)
quantum degree and

neighbor queries in expectation. Moreover, it does not use vertex-pair queries.

I Theorem 20. Any algorithm that computes an ε-approximation of the number m of edges
in any n-vertex graph, given query access to it, must use Ω

(
n1/2

(εm)1/4 · log−1(n)
)
quantum

queries in expectation.

Triangle counting. In the classical general graph model, the triangle counting problem re-
quires Θ̃(n/t1/3 +min(m,m3/2/t)) queries in expectation [21, 22]. This result was generalized
to k-clique counting in [24]. In the quantum setting, we prove the following results.

I Theorem 21. There is an algorithm that, given query access to any n-vertex graph G with m
edges and t triangles, and an approximation parameter ε < 1, outputs an estimate t̃ of t such
that |t̃− t| ≤ εt with probability 2/3. This algorithm performs Õ

(( √
n

t1/6 + m3/4
√
t

)
· poly(1/ε)

)
quantum queries in expectation.

I Theorem 22. Any algorithm that computes an ε-approximation to the number t of triangles
in any n-vertex graph with m vertices, given query access to it, must use Ω

(( √
n

t1/6 + m3/4
√
t

)
·

log−1(n)
)
quantum queries in expectation.

6 Open Questions

Is it possible to improve the complexity of our main result (Theorem 11) to O (∆S/ε)
exactly? Can we generalize it to sample spaces with negative values? What are other possible
applications? Two promising problems are minimum spanning tree weight [16] and arbitrary
subgraph counting [24, 6].
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Abstract
We initiate the algorithmic study of retracting a graph into a cycle in the graph, which seeks a
mapping of the graph vertices to the cycle vertices so as to minimize the maximum stretch of any
edge, subject to the constraint that the restriction of the mapping to the cycle is the identity map.
This problem has its roots in the rich theory of retraction of topological spaces, and has strong ties
to well-studied metric embedding problems such as minimum bandwidth and 0-extension. Our first
result is an O(min{k,

√
n})-approximation for retracting any graph on n nodes to a cycle with k

nodes. We also show a surprising connection to Sperner’s Lemma that rules out the possibility of
improving this result using certain natural convex relaxations of the problem. Nevertheless, if the
problem is restricted to planar graphs, we show that we can overcome these integrality gaps by giving
an optimal combinatorial algorithm, which is the technical centerpiece of the paper. Building on our
planar graph algorithm, we also obtain a constant-factor approximation algorithm for retraction of
points in the Euclidean plane to a uniform cycle.
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1 Introduction

Originally introduced in 1930 by K. Borsuk in his PhD thesis [5], retraction is a fundamental
concept in topology describing continuous mappings of a topological space into a subspace
that leaves the position of all points in the subspace fixed. Over the years, this has developed
into a rich theory with deep connections to fundamental results in topology such as Brouwer’s
Fixed Point Theorem [22]. Inspired by this success, graph theorists have extensively studied a
discrete version of the problem in graphs, where a retraction is a mapping from the vertices of
a graph to a given subgraph that produces the identity map when restricted to the subgraph
(i.e., it leaves the subgraph fixed). For a rich history of retraction in graph theory, we refer
the reader to [21]. Define the stretch of a retraction to be the maximum distance between
the images of the endpoints of any edge, as measured in the subgraph. We use stretch-k
retraction to mean a retraction whose stretch is k; in particular, a stretch-1 retraction is a
mapping where every edge of the graph is mapped to either an edge of the subgraph, or both
its ends are mapped to the same vertex of the subgraph1.

In this paper, we study the algorithmic problem of finding a minimum stretch retraction
in a graph. This problem belongs to the rich area of metric embeddings, but somewhat
surprisingly, has not received much attention in spite of the deep but non-constructive
results in the graph theory literature. The graph retraction problem has a close resemblance
to the well-studied 0-extension problem [6, 24, 25] (and its generalizations such as metric
labeling [27, 8]), which is also an embedding of a graph G to a metric over a subset of
terminals H with the constraint that each vertex in H maps to itself. The two problems
differ in their objective: whereas 0-extension seeks to minimize the average stretch of edges,
graph retraction minimizes the maximum stretch. The different objectives lead to significant
technical differences. For instance, a well-studied linear program called the earthmover
LP has a nearly logarithmic integrality gap for 0-extension. In contrast, we show that a
corresponding earthmover LP for graph retraction has integrality gap Ω(

√
n). A well-studied

problem in the metric embedding literature that considers the maximum stretch objective is
the minimum bandwidth problem, where one seeks an isomorphic embedding of a graph into
a line (or cycle) that minimizes maximum stretch. In contrast, in graph retraction, we allow
homomorphic maps2 but additionally require a subset of vertices (called the anchors) to be
mapped to themselves.

From an applications standpoint, our original motivation for studying minimum-stretch
graph retraction comes from a distributed systems scenario where the aim is to map processes
comprising a distributed computation to a network of servers where some processes are
constrained to be mapped onto specific servers. The objective is to minimize the maximum
communication latency between two communicating processes in the embedding. Such
anchored embedding problems can be shown to be equivalent to graph retraction for gen-
eral subgraphs, and arise in several other domains including VLSI layout, multi-processor
placement, graph drawing, and visualization [20, 19, 31].

1 In the literature, a stretch-1 retraction is often simply referred to as a retraction or a retract [21]. Also,
in many studies, a (stretch-1) retraction requires that the two end-points of an edge in the graph are
mapped to two end-points of an edge in the subgraph. These studies differentiate between the case
where the subgraph being retracted to is reflexive (has self-loops) or irreflexive (no self-loops). In this
sense, our notion of graph retraction corresponds to their notion of retraction to a reflexive subgraph.

2 A homomorphic map is one where an image can have multiple pre-images, while an isomorphic map
requires that every image has at most one pre-image.
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1.1 Problem definition, techniques, and results
We begin with a formal definition of the minimum stretch retraction problem.

IDefinition 1. Given an unweighted guest graph G = (V,E) and a host subgraph H = (A,E′)
of G, a mapping f : V → A is a retraction of G to H if f(v) = v for all v ∈ A. For a given
retraction f of G to H, define the stretch of an edge e = (u, v) ∈ E(G) to be dH(f(u), f(v)),
where dH is the distance metric induced by H, and define the stretch of f to be the maximum
stretch over all edges of graph G. The goal of the minimum-stretch graph retraction problem
is to find a retraction of G to H with minimum stretch. We refer to the vertices of A
as anchors.

The graph retraction problem is easy if the subgraph H is acyclic (see, e.g., [29]); therefore,
the first non-trivial problem is to retract a graph into a cycle. Indeed, this problem is NP-
hard even when H is just a 4-cycle [13]. Given this intractability result, a natural goal is
to obtain an algorithm for retracting graphs to cycles that approximately minimizes the
stretch of the retraction. This problem is the focus of our work. While there has been
considerable interest in identifying conditions under which retracting to a cycle with stretch
1 is tractable [17, 21, 37], there has been no work (to the best of our knowledge) on deriving
approximations to the minimum stretch.3

We consider the following lower bound for the problem: if anchors u and v are distance
` in H, and there exists a path of p vertices in G between u and v, then every retraction
has stretch at least `/p. This lower bound turns out to be tight when H is acyclic, which is
the reason retraction to acyclic graphs is an easy problem. However, this lower bound is no
longer tight when H is a cycle. For example, consider a grid graph where H is the border of
the grid. The lower bound given above says that any retraction has stretch at least Ω(1).
However, using the well-known Sperner’s lemma, we show that the optimal retraction has
stretch at least Ω(

√
n).

Using just the simple distance based lower bound, we show that the gap on the grid is in
fact the worst possible by giving a O(min{k,

√
n})-approximation for the problem, where k

is the number of vertices of H. Our algorithm works by first mapping vertices of the graph
into a grid, then projecting vertices outward to the border from the largest hole in the grid,
which is the largest region containing no vertices.

I Theorem 2. There is a deterministic, polynomial-time algorithm that computes a retraction
of a graph to a cycle with stretch at most min{k/2, O(

√
n)} times the optimal stretch, where

n and k are respectively the number of vertices in the graph and the cycle.

Our results for retracting a general graph to a cycle appear in Section 2. We also give
evidence that the gap induced by Sperner’s lemma on a grid graph is fundamental, showing an
Ω(min{k,

√
n}) integrality gap for natural linear and semi-definite programming relaxations

of the problem. To overcome this gap, we focus on the special case of planar graphs, of which
the grid is an example. Retraction in planar graphs has been considered in the past, most
notably in a beautiful paper of Quilliot [30] that uses homotopy techniques to characterize
stretch-1 retractions of a planar graph to a cycle. Quillot’s proof, however, does not yield
an efficient algorithm. In Section 3, we provide an exact algorithm for retraction in planar
graphs by developing the gap induced by Sperner’s lemma on a grid into a general lower
bound on the optimal stretch for planar graphs.

3 One direct implication of the NP-hardness proof is that approximating the maximum stretch to a
multiplicative factor better than 2 is also NP-hard.
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I Theorem 3. There is a deterministic, polynomial-time algorithm that computes a retraction
of a planar graph to a cycle with optimal stretch.

Unfortunately, our techniques rely heavily on the planarity of the graph, and do not
appear to generalize to arbitrary graphs. While we leave the question of obtaining a better
approximation for general graphs open, we provide a more sophisticated linear programming
formulation that captures the Sperner lower bound on general graphs as a possible route to
attack the problem.

We also study natural special cases and generalizations of the problem, all of which are
presented in the full version of our paper [18]. First, we consider a geometric setting, where
a set of points in the Euclidean plane has to be retracted to a uniform cycle of anchors. By a
uniform cycle of anchors we mean a set of anchors which are distributed uniformly on a circle
in the plane. We obtain a constant approximation algorithm for this problem, by building on
our planar graph algorithm. We next consider retraction of a graph of bounded treewidth to
an arbitrary subgraph, and obtain a polynomial-time exact algorithm. Finally, we apply the
lower bound argument of [24] for 0-extension to show that a general variant of the problem
that seeks a retraction of an arbitrary weighted graph G to a metric over a subset of the
vertices of G is hard to approximate to within a factor of Ω(log1/4−ε n) for any ε > 0.

1.2 Related work
List homomorphisms and constraint satisfaction. The graph retraction problem is a
special case of the list homomorphism problem introduced by Feder and Hell [13], who
established conditions under which the problem is NP-complete. Given graphs G,H, and
L(v) ⊂ V (H) for each v ∈ V (G), a list homomorphism of G to H with respect to L is a
homomorphism f : G→ H with f(v) ∈ L(v) for each v ∈ V (G).

Several special cases of graph retraction and variants of list homomorphism have been
subsequently studied (e.g., [12, 21, 36, 37]). These studies have established and exploited the
rich connections between list homomorphism and Constraint Satisfaction Problems (CSPs).
Though approximation algorithms for CSPs and related problems such as Label Cover have
been extensively studied, the objective pursued there is that of maximizing the number of
constraints that are satisfied. For our graph retraction problem, this would correspond to
maximizing the number of edges that have stretch below a certain threshold. Our notion
of approximation in graph retraction, however, is the least factor by which the stretch
constraints need to be relaxed so that all edges are satisfied.

0-extension, minimum bandwidth, and low-distortion embeddings. From an approxima-
tion algorithms standpoint, the graph retraction problem is closely related to the 0-extension
and minimum bandwidth problems [14, 4, 15, 35, 9, 32]. In the 0-extension problem, one
seeks to minimize the average stretch, which can be solved to an O(log k/ log log k) approx-
imation using a natural LP relaxation [6, 11]. In contrast, we give polynomial integrality
gaps for the graph retraction problem. In the minimum bandwidth problem, the objective
is to find an embedding to a line that minimizes maximum stretch, but the constraint
is that the map must be isomorphic rather than that the anchor vertices must be fixed.
In a seminal result [14], Feige designed the first polylogarithmic-approximation using a
novel concept of volume-respecting embeddings. A slightly improved approximation was
achieved in [10] by combining Feige’s approach with another bandwidth algorithm based on
semidefinite-programming [4]. Interestingly, the minimum bandwidth problem is NP-hard
even for (guest) trees, while graph retraction to (host) trees is solvable in polynomial time.
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Conversely, the bandwidth problem is solvable in time O(nb) for bandwidth b graphs [16],
while graph retraction to a cycle is NP-complete even when the host cycle has only four
vertices. Nevertheless, it is conceivable that volume-respecting embeddings, in combination
with random projection, could lead to effective approximation algorithms for graph retraction
to a cycle in a manner similar to what was achieved for VLSI layout on the plane [35].

Also related are the well-studied variants of linear and circular arrangements, but their
objective functions are average stretch, as opposed to maximum stretch. Finally, another
related area is that of low-distortion embeddings (e.g., [23]), where recent work has considered
embedding one specific n-point metric to another n-point metric [26, 28, 2] similar to the
graph retraction problem. But low-distortion embeddings typically require non-contracting
isomorphic maps, which distinguishes them significantly from the graph retraction problem.

A related recent work studies low-distortion contractions of graphs [3]. Specifically, the
goal is to determine a maximum number of edge contractions of a given graph G such that
for every pair of vertices, the distance between corresponding vertices in the contracted
graph is at least a given affine function of the distance in G. Several upper bounds and
hardness of approximations are presented in [3] for many special cases and problem variants.
While graph retraction and contraction problems share the notion of mapping to a subgraph,
the problems are considerably different; for instance, in the graph retraction problem the
subgraph H is part of the input, and the objective is to minimize the maximum stretch.

2 Retracting an arbitrary graph to a cycle

In this section, we study the problem of retracting an arbitrary graph to a cycle over a
subset of vertices of the graph. Let G denote the guest graph over a set V of n vertices, with
shortest path distance function dG. Let H denote the host cycle with shortest path distance
function dH over a subset A ⊆ V of k anchors.

Arguably, the simplest lower bound on the optimal stretch is the distance-based bound
`(G,H) = maxu,v∈A dH(u, v)/dG(u, v), since every retraction places a path of length dG(u, v)
in G on a path of length at least dH(u, v) in H.

We now present our algorithm (Algorithm 1), which achieves a stretch of
min{k/2, `(G,H)

√
n}. Here, we give a high level overview of the algorithm. The first

step of algorithm is to embed the input graph G into a grid of size k/4× k/4 subject to some
constraints. The second step is to find the largest empty sub-grid D such that no point is
mapped inside of D and center of D is within a desirable distance from center of grid M .
And final step is to project the points in grid M to its boundary with respect to center of
sub-grid D.

We now show how to implement the first step of Algorithm 1. Our goal is to embed each
vertex u ∈ G to some point g(u) in a k/4× k/4 grid such that for every u, v, we have the
following inequality, where d∞(a, b) denotes the L∞ distance between a and b. (That is, for
two points (x1, y1) and (x2, y2), d∞((x1, y1), (x2, y2)) = max{|x1 − x2|, |y1 − y2|}.)

d∞(g(u), g(v)) ≤ `(G,H)dG(u, v) (1)

Additionally, we require that H is embedded to the boundary of the grid, such that adjacent
anchors lie on adjacent grid points.

I Lemma 4. For every G, we can find an embedding g satisfying inequality 1.

Proof. We incrementally construct the embedding g. Initially, we place the anchors on the
boundary of the grid so that the boundary is isometric to dH . (This can be done since H is
a cycle.) Since d∞(g(u), g(v)) ≤ dH(u, v) and dH(u, v) ≤ `(G,H)dG(u, v), inequality 1 holds
for all anchors u and v in H.
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Algorithm 1 Algorithm for retracting an arbitrary graph to a cycle.
Input: Graph G, host cycle H
Output: Embedding function f

Embedding in a grid: Determine embedding g from G into a k/4 × k/4 grid M

such that H is embedded one-to-one to the boundary of M and for every u, v ∈ V ,
d∞(g(u), g(v)) ≤ `(G,H)dG(u, v).
Find largest hole: Find the largest square sub-grid D of M such that (a) its center c is
at L∞ distance at most k/16 from the center of M and (b) there is no vertex u in G for
which g(u) is in the interior of D.
Projection embedding: For all v in G:
1. R(v)← ray originating from the center of D and passing through g(v).
2. f(v)← the anchor on the boundary of grid M nearest in the clockwise direction to the

intersection of R(v) with the boundary of M .
return f

We next inductively embed the remaining vertices of G. Suppose we need to embed
vertex vi, and vertices U = v1, . . . , vi−1 have already been embedded. Assume inductively
that the embedding of the vertices of U satisfies inequality 1 for the vertices in U .

Let B∞(g(u), r) denote the L∞ ball around g(u) with radius r (note that these balls
are axis-aligned squares). Let x be any point in

⋂
u∈U B∞(g(u), `(G,H)dG(u, vi)). If we

set g(vi) = x, then inequality 1 holds for all points in U ∪ {vi}. We now show that this
intersection is nonempty (it is straightforward to find an element in the intersection). The
set of axis aligned squares has Helly number4 2; therefore it is enough to show that for every
u, u′ ∈ U , B∞(g(u), `(G,H)dG(u, vi)) and B∞(g(u′), `(G,H)dG(u′, vi)) intersect. Otherwise,

d∞(g(u), g(u′)) > `(G,H)(dG(u, vi) + dG(u′, vi)) ≥ `(G,H)dG(u, u′).

This contradicts our induction hypothesis that the set of vertices in U satisfies inequality 1,
and completes the proof of the lemma. J

In the following lemma, we analyze the projection embedding step of the algorithm.

I Lemma 5. Suppose r is the side length of the largest empty square D inside M . Then for
any vertices u and v in G, dH(f(u), f(v)) is at most 1 + (10

√
2k/r)d∞(g(u), g(v)).

Proof. For any point x, let π(x) denote the intersection of the boundary of M and the ray
from the center c of D passing through x. Note that for any vertex v in G, f(v) is the anchor
in H nearest in clockwise direction to π(g(v)). We show that for any x, y ∈M , the distance
between π(x) and π(y) along the boundary of M is at most (10

√
2k/r)d∞(x, y).

We first argue that it is sufficient to establish the preceding claim for points on the
boundary of D, at the loss of a factor of

√
2. Let x and y be two arbitrary points in M but

not in the interior of D. Let x′ (resp., y′) denote the intersection of R(x) (resp., R(y)) and
the boundary of D. From elementary geometry, it follows that d(x′, y′) ≤ d(x, y), where d
is the Euclidean distance; since d∞(x, y) ≥ d(x, y)/

√
2 and d∞(x′, y′) ≤ d(x′, y′), we obtain

d∞(x′, y′) ≤
√

2d∞(x, y). Since π(x) = π(x′) and π(y) = π(y′), establishing the above
statement for x′ and y′ implies the same for x and y, up to a factor of

√
2.

4 A family of sets has Helly number h if any minimal subfamily with an empty intersection has h or fewer
sets in it.



S. Haney, M. Liaee, B.M. Maggs, D. Panigrahi, R. Rajaraman, and R. Sundaram 70:7

(a) Points x and y are on the
same side of square D, and
points π(x) and π(y) are on one
side of boundary of M parallel
to segment xy.

(b) Points x and y are on the
same side of square D, and
points π(x) and π(y) are on one
side of boundary of M ortho-
gonal to segment xy.

(c) General case where Points
x and y (resp. points π(x)
and π(y)) are anywhere on the
boundary of D (resp. on the
boundary of M).

Figure 1 Embedding of points inside the grid M to its boundary using an empty square D.
Referred to in the proof of Lemma 5.

Consider points x and y on the boundary of D. We consider three cases. In the first
two cases, x and y are on the same side of D. In the first case (Figure 1a), π(x) and π(y)
are on the same side of the boundary of M and segment π(x)π(y) is parallel to segment
xy; then, by similarity of triangle formed by c, x, and y and the one formed by c, π(x) and
π(y), we obtain that the distance between π(x) and π(y) is at most 3kd∞(x, y)/(16r). In
the second case (Figure 1b), π(x) and π(y) are on same side of the boundary of M , and
segment π(x)π(y) is orthogonal to segment xy. In this case, w.l.o.g. assume that π(y) is
closer to center c than π(x) with respect to d∞ distance. Let point z be a point on segment
cπ(x) such that segments xy and π(y)z are parallel. From center c extend a line parallel to
segment xy until it hits the side of M on which π(x) and π(y) are. Let w be the intersection.
Using elementary geometry and similarity argument, we have the following:

|π(x)π(y)|
|zπ(y)|

= |π(x)w|
|cw|

≤ k/4
k/16 = 4 and zπ(y)

xy
= π(y)w

r
≤ k

4r

We thus obtain |π(x)π(y)|
|xy| ≤ k/r. For the third case (Figure 1c), we observe that d∞(x, y) is

at least half the shortest path between x and y that lies within the boundary of D. This
latter shortest path consists of at most five segments, each residing completely on one side of
the boundary of D. We apply the argument of the first and second case to each of these
segments to obtain that the distance between π(x) and π(y) is at most 10kd∞(x, y)/r.

To complete the proof, we note that distance between anchor nearest (clockwise) to π(x)
and anchor nearest (clockwise) to π(y) is at most one plus the distance between π(x) and
π(y). Therefore, the dH(f(u), f(v)) is at most 1 + 10

√
2kd∞(g(u), g(v))/r. J

I Theorem 6. Algorithm 1 computes a retraction of G to the cycle H with stretch at most
the minimum of k/2 and O(

√
n) times the optimal stretch.

Proof. By Lemma 4, the embedding g satisfies inequality 1 for every u and v in G. By a
straightforward averaging argument, there exists a square of side length k/(8

√
n) whose

center is at L∞ distance at most k/16 from the center of M and which does not contain g(u)
for any u in V . By Lemma 5, the projection embedding ensures that for any u and v in V ,
dH(f(u), f(v)) is at most 1 +O(

√
n)`(G,H)dG(u, v). Since the distance in H cannot exceed

k/2, the claim of the theorem follows. J

ICALP 2019



70:8 Retracting Graphs to Cycles

The Sperner bottleneck. Unfortunately, we cannot improve on the approximation ratio in
Theorem 6 using only the distance-based lower bound. Consider the following instance: the
guest graph G is the

√
n×
√
n grid, and the host H is the cycle of G formed by the 4

√
n

vertices on the outer boundary of G. It is easy to see that the distance-based lower bound
has a value of 2 on this instance. On the other hand, using Sperner’s Lemma from topology,
we show that a stretch of o(

√
n) is ruled out:

I Lemma 7. The optimal stretch achievable for an n-vertex grid is at least 2
√
n/3.

Proof. Suppose we triangulate the grid by adding northwest-to-southeast diagonals in each
cell of the grid. Consider the following coloring of the boundary H with 3 colors. Divide H
into three segments, each consisting of a contiguous sequence of at least b4

√
n/3c vertices; all

vertices in the first, second, and third segment are colored red, green, and blue, respectively.
Let f be any retraction from G to H. Let cf denote the following coloring for G \H: the
color of u is the color of f(u). By Sperner’s Lemma [34], there exists a tri-chromatic triangle.
This implies that there are two vertices within distance at most two in G that are at least
4
√
n/3 apart in the retraction f , resulting in a stretch of at least 2

√
n/3. J

Note that k = Θ(
√
n) in this instance, so the above lemma also rules out an o(k) approximation

using the distance-based lower bound. A natural approach to improving the approximation
factor is to use an LP or SDP relaxation for the problem. Indeed, the so-called earthmover
LP used for the closely related 0-extension problem [24, 7] can be easily adapted to our
minimum stretch retraction problem. Similarly, SDP relaxations previously used for minimum
bandwidth and related problems [4, 33] can also be adapted to our problem. However, these
convex relaxations also have an integrality gap of Ω(

√
n) for precisely the same reason: they

capture the distance-based lower bound but not the one from Sperner’s lemma on the grid
(see the full version of the paper [18] for a detailed discussion of these LP/SDP relaxations
and integrality gaps).

In spite of these gaps, we show that the grid is not a particularly challenging instance of
the problem. In fact, in the next section, we give an exact algorithm for retraction in planar
graphs, of which the grid is an example. Retraction of planar graphs to cycles has been
considered in the past, and non-constructive characterizations of stretch-1 embeddings were
known [30]. Our constructive result, while using planarity extensively, suggests that there
might be a general technique for addressing the Sperner bottleneck described above. Indeed,
we give a candidate LP relaxation (in the full version of the paper [18]) that captures the
Sperner bound on the grid. Rounding this LP to obtain a better approximation ratio, or
showing an integrality gap for it, is an interesting open question.

3 Retracting a planar graph to a cycle

The main result of this section is the following theorem.

I Theorem 8. Let G be a planar graph and H a cycle of G. Then there is a polynomial
time algorithm that finds a retraction from G to H with optimal stretch.

We begin by presenting some useful definitions and elementary claims in Section 3.1. We
then present an overview of our algorithm in Section 3.2. Finally, we present the algorithm
and its analysis in Section 3.3, leading to the proof of Theorem 8.
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3.1 Preliminaries
We begin with a simple lemma that reduces the problem of finding a minimum-stretch
retraction to the problem of finding a stretch-1 retraction, in polynomial time. Formally,
suppose we have an algorithm A that, given graphs G and H either finds a stretch-1 retraction
from G to H, or proves that no such retraction exists. Then, we can use this algorithm to find
the minimum stretch embedding of G into H, using Lemma 9 below, whose straightforward
proof is deferred to the full paper [18]. Let Gk be the graph where we replace each edge
e ∈ G, e 6∈ H with a path of k edges. Clearly, Gk can be computed in polynomial time.

I Lemma 9. G can be retracted to H with stretch k if and only if Gk can be retracted in H
with stretch-1.

The following lemma, proved in [18], implies that degree-1 vertices can be eliminated.

I Lemma 10. Without loss of generality, we can assume G is 2-vertex connected.

Lemmas 9 and 10 apply to general graphs. In the rest of this subsection, we focus our
attention on planar graphs. We note that all the transformations in Lemmas 9 and 10
preserve planarity of the graph. In 2-connected planar graph, every face of a plane embedding
is bordered by a simple cycle. Finally, we can assume that there is a planar embedding
of G with H bordering the outer face. If this is not the case, G \H contains at least two
connected components, which can each be retracted independently.

Next, we give some definitions related to planar graphs. We call G triangulated if it is
maximally planar, i.e., adding any edge results in a graph that is not planar. Equivalently, G
is triangulated if every face of a plane embedding (including the outer face) of G has 3 edges.
We will make use of the Jordan curve theorem, which says that any closed loop partitions the
plane into an inner and outer region (see e.g. [1]). In particular, this implies that any curve
crossing from the inner to the outer region intersects the loop. For some cycle C in G and a
plane embedding of G, we denote the subset of R2 surrounded by C as RC (including the
intersection with C itself). We say that R ⊂ R2 is inside cycle C of G for a plane embedding
if R ⊆ RC . If R is inside C, we also say that C surrounds R. In a slight abuse of notation,
we say C surrounds subgraph G′ of G for some fixed plane embedding, if C surrounds the
subset of R2 on which G′ is drawn in the plane embedding.

3.2 Overview of our algorithm
Consider some plane embedding of graph G such that H is the subgraph of G bordering G’s
outer face. We give a polynomial-time algorithm that finds a stretch-1 retraction from G to
H or proves that none exists. Using Lemma 9, this immediately yields an algorithm that
finds a minimum stretch retraction from G to H.

Fix a planar embedding of G, let H be defined as above, and let F be a bounded face of
G. A key component of our algorithm is to find a suitable set of curves connecting F to H.
Our aim is to find a set of k = |V (H)| curves in R2 such that the following hold.

Each curve begins at a distinct vertex of F and ends at a distinct vertex of H.
The curves do not intersect each other.
A curve that intersects an edge of G either contains the edge, or intersects the edge only
at its vertices.
Each curve lies totally in RH \ F .
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F

H

(a) A graph G. The outer cycle
H and the face F are shown in
bold.

F

H

(b) Non-intersecting curves par-
tition the region contained in H
but not in F .

`1

`2

u

v

(c) Vertices on `1 are mapped to
u, and vertices on `2 are mapped
to v. All other vertices in the
region are mapped arbitrarily to
u or v.

Figure 2 Using non-intersecting curves to find an embedding from face F to H.

We call curves with these properties valid with respect to F . We argue that the curves
partition RH \ F (up to their boundaries being duplicated) into a set of regions. Each of
these regions is defined by the subset of R2 surrounded by the closed loop made up of two of
the aforementioned curves, a single edge of H, and a path on the boundary of F .

Given a face F and a set of curves valid with respect to F , we can give a stretch-1
retraction from G to H. In essence, the curves partition the graph into regions such that all
vertices in a particular region map to one of two end-points of a particular edge of H. See
Figure 2 for an illustration.

Of course, it is not obvious that a valid set of curves exists for a given face, and, if it
does, how to compute it. We show that if the graph has a stretch-1 retraction, then there is
some face F with k valid curves, and that we can efficiently compute them. Our algorithm
(Algorithm 2) iterates over all faces in the graph, in each case finding the maximum number
of valid curves it can with respect to that face. The number of valid curves we can find is
the length of the shortest cycle surrounding F . If the shortest cycle C surrounding F has
length `, then it is impossible to find more than ` valid curves with respect to F : By the
Jordan curve theorem, each curve must intersect C, and by the definition, valid curves do
not intersect each other and can intersect C only at its vertices. Our construction of the
valid curves shows that this is tight (i.e. we can always find ` curves). We show that if a
stretch-1 retraction exists, then there is some face for which ` = k. Algorithm 2 gives an
outline of the algorithm.

Algorithm 2 Outline for finding a stretch-1 retraction, or proving that none exists.
1: for inner face F in G do
2: Compute maximum number of valid curves between F and H p1, . . . , p`
3: if ` = k then
4: Compute stretch-1 retraction from G to H using p1, . . . , pk
5: end if
6: end for
7: If no retraction was computed, report no stretch-1 retraction exists
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3.3 Algorithm and analysis
This section gives the details of various components of Algorithm 2, and provides a proof of
correctness. The following is an outline of the rest of the section:
1. Lemma 12 shows how to compute a stretch-1 retraction using the k valid curves in line 4

of Algorithm 2.
2. Next, Lemma 13 shows that if a stretch-1 retraction exists, there must be some face F in

the graph such that the smallest cycle surrounding F has length k.
3. Finally, Lemma 15 gives a construction of largest set of valid curves for a given face F

from line 2, and shows that the number of curves computed equals the length of the
smallest cycle surrounding F .

We begin by showing in Lemma 11 a somewhat obvious fact: A set of valid curves
partition RH \F , and each region of the partition contains a single edge of H. We then show
in Lemma 12 that this partition can be used to produce a stretch-1 embedding. See Figure 2
for pictorial presentation of these two lemmas.

I Lemma 11. Let {p1, · · · , pk} be a set of curves that are valid with respect to F . Let Z
denote the set of faces of H∪F ∪

⋃
i pi excluding the outer face and F . Then, each face f ∈ Z

is bordered by exactly 1 edge of H, and every vertex of G \
⋃
i pi is in a unique face of Z.

Proof. Consider the faces of H ∪ F ∪
⋃
i pi. H and F still define faces since the paths pi fall

in RH \F . Let (u, v) be an edge of H, and consider X = pi ∪ (u, v)∪ pj ∪ pF (i, j) where pi is
the path containing u, pj is the path containing v, and pF (i, j) is the path on the boundary
of F between the vertices where i and j meet F such that F is not contained in X. If pi and
pj are both degenerate (i.e., each is empty), then (u, v) = pF (i, j). Otherwise X is a simple
cycle. We claim that X defines a face. In particular, we show that the path pF (i, j) contains
no other vertex of path pz for all z 6= i, j. Suppose it does and let w be that vertex. Let w′
be the vertex adjacent to w on pz. Then w′ ∈ RH \ F , and so w′ ∈ X. The other end of
path pz, call it vertex y, is in H, but y 6= u, v. By the Jordan curve theorem, pz \ w must
cross X. Since the graph is planar, pz \ w must contain a vertex of F,H, pi, or pj . Any of
these outcomes leads to a contradiction. J

I Lemma 12. Given a non-outer face F and a set {p1, p2, . . . , pk} of curves that are valid
with respect to F , we can construct a stretch-1 retraction from G to H in polynomial time.

Proof. Let Z be as defined in Lemma 11. For each vertex w on pi, map w to the unique
vertex v ∈ H∩pi. Otherwise, map w to u or v, where (u, v) is the unique edge of H contained
in the same face of Z as w. Fix a face f of Z. Let (u, v) be the unique edge of H contained
in f . Any edge (x, y) contained in f also has x, y ∈ f , and so x and y are each mapped to
either u or v. Thus, this retraction to H has stretch 1. J

As mentioned earlier, we will show that our construction produces ` valid curves for face
F , where ` is the minimum length cycle surrounding F . So we must show that if a stretch-1
retraction exists, there is some F such that every cycle surrounding F has length at least k.

I Lemma 13. Fix a plane embedding of G where H defines the outer face of the embedding
and suppose there is a stretch-1 retraction G to H. Then there exists a non-outer face F
such that every cycle surrounding F has length at least k.
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Proof. We prove a related claim that implies the statement in the lemma. Fix some stretch-1
retraction of G to H. Then there exists a non-outer face F such that for every cycle C in the
set of cycles surrounding F , and for each vertex v ∈ H, there is some vertex of C mapped to
v. This implies that each of these cycles has length at least k, since the statement says that
vertices of C are mapped to k vertices of H.

The claim is very similar to Sperner’s lemma, and the proof is similar as well. Let
φ : V (G) → V (H) denote the retraction. We associate a score with each cycle C of the
graph: Order the vertices of the cycle in clockwise order, denoted v1, v2, . . . , vj , vj+1 = v1.
Consider the sequence φ(v1), . . . , φ(vj), φ(vj+1). Let the score of C be 0 to start. For each
pair φ(vi), φ(vi+1), we have: either φ(vi) = φ(vi+1), or φ(vi) and φ(vi+1) are adjacent in H.
If φ(vi+1) is clockwise of φ(vi) (i.e. if they are in the same order as on C), add 1 to the score
of C. If they are in counterclockwise order, subtract 1. If they are the same vertex, the score
remains the same. If φ(v1), . . . , φ(vj) does not contain every vertex on the outer cycle, the
score of C must be 0, since each edge along the path φ(v1), . . . , φ(vj+1) is traversed exactly
the same number of times in each direction. On the other hand, a cycle with a non-zero
score must have a score that is divisible by k.

Next, we claim that the score of cycle C is the same as the sum of the scores of the cycles
defining the faces contained in C. To see this, consider the total contribution to the scores of
these cycles from any fixed edge. If the edge is not in cycle C, it is a member of exactly 2
faces contained in C, and contributes either 0 to both faces, or −1 to one and 1 to the other.
Edges in C are each a member of just one face surrounded by C. Therefore, the score of
cycle C is the same as the sum of scores of its surrounded faces. Since the score of cycle H
is k, there must be some face f that has non-zero score.

Finally, we show that there is some face with nonzero score such that every cycle
surrounding the face also has nonzero score. Suppose this is not the case. Then, every face
with a non-zero score is surrounded by a cycle with score 0, which implies that the sum of
all scores of faces with non-zero scores is 0. This is a contradiction, since it implies that the
sum of scores of all internal faces in the graph is 0. J

We complete the section by giving a construction of the largest set of valid curves with
respect to some face F , and show that the number of curves equals the length of the shortest
cycle surrounding F . Our curves will be disjoint paths in a supergraph G∆(F ) of G. It is
necessary to relate the maximum number of disjoint paths to the length of the shortest cycle
surrounding F . The following lemma, proved in full paper [18], establishes this connection.
We believe this lemma should be known, but cannot find it in the relevant literature.

I Lemma 14. Let G be a triangulated graph. The graph induced by any minimum s-t vertex
cut is the shortest simple cycle separating s and t.

If G was already triangulated, we could compute a set of vertex disjoint paths from F

to H (note that a set of vertex disjoint paths yields a set of valid curves). By Menger’s
theorem and Lemma 14, we would find ` paths, where ` is the shortest cycle surrounding F .
G may not be triangulated, so instead we could first triangulate G and then compute the
paths. However, the number of paths we find in this case is the length of the shortest cycle
surrounding F in the triangulation of G, which may be smaller than `. We prevent this from
happening by producing a triangulation that adds vertices as well as edges.

I Lemma 15. Fix a planar embedding of G with H as the outer face, and let F be other
face. Then we can compute ` valid curves in polynomial time, where ` is the length of the
shortest cycle surrounding F .
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(a) Some face F ′ with y>3
edges.

(b) Add a new cycle C with y−1
edges inside F ′ along with con-
necting edges.

(c) Add stars in the newly
created faces, except the one
formed by C. Distances between
vertices of the original face are
preserved.

Figure 3 Iteratively triangulate faces.

Proof. We build a triangulated graph G∆(F ) from the planar embedding of G. First, add
vertices and edges to every face of G, excluding the outer face and F . We do this such that
(1) every face except F and the outer face is a triangle, and (2) the distance between any
u, v ∈ G is preserved. From each face with more than 3 edges, we create one new face that
has one fewer edge. One step of this iterative construction is shown in Figure 3.

Note that distances are preserved inductively, and we make progress by reducing the size
of some face. The graph we produce has 3 edges bordering each face, except for the outer
face and F . In all, the number of vertices and edges added to each face of G is polynomial
in the number of edges bordering the face.

Finally, we add vertices s and t, and edges from s to each vertex of F and from t to each
vertex of C. The resulting graph is triangulated, and we call this graph G∆(F ).

At this point, we can find the maximum set of vertex disjoint paths between s and t in
G∆(F ), by setting vertex capacities to 1 and computing a max flow between s and t. Because
we have preserved distances between vertices of G in our construction of G∆(F ), the length
of the minimum cycle surrounding F must be `. Therefore, the number of disjoint paths we
find must also be `. Finally, we claim that this set of disjoint paths from F to H in G∆(F )
is a set of valid curves for G. This is because G is a subgraph of G∆(F ), and therefore the
criteria for valid curves are still met after removing the vertices and edges of G∆(F ) \G. J

We conclude by tying together the pieces of the section to show we proved Theorem 8.

Proof of Theorem 8. Fix a face F . By Lemma 14, we determine the set of ` disjoint paths
from F to H where the surrounding minimum cycle is of length `. By Lemma 13, there is a
stretch-1 retraction only if there exists a face F whose surrounding min-cycle is of length
k. So if there is no stretch-1 retraction, we find < k disjoint paths for all faces, and our
algorithm returns “no”. Otherwise, there exists a face F for which the surrounding min-cycle
is of length k, and this gives a set of k valid paths. Then, by Lemma 12, the retraction that
we construct has stretch 1. J

4 Open problems

Our work leaves several interesting directions for further research. First, we would like to
determine improved upper and/or lower bounds on the best approximation factor achievable
for retracting a general graph to a cycle. Second, we would like to explore extending our
approach for planar graphs (Section 3) and Euclidean metrics (details in the full paper
[18]) to more general graphs and high-dimensional metrics. Another open problem is that
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of finding approximation algorithms for retracting a general guest graph to an arbitrary
host graph over a subset of anchor vertices, for which we present a hardness result in the
full paper [18].
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Abstract
In the fundamental Maximum Matching problem the task is to find a maximum cardinality set of
pairwise disjoint edges in a given undirected graph. The fastest algorithm for this problem, due to
Micali and Vazirani, runs in time O(

√
nm) and stands unbeaten since 1980. It is complemented

by faster, often linear-time, algorithms for various special graph classes. Moreover, there are fast
parameterized algorithms, e.g., time O(km logn) relative to tree-width k, which outperform O(

√
nm)

when the parameter is sufficiently small.
We show that the Micali-Vazirani algorithm, and in fact any algorithm following the phase

framework of Hopcroft and Karp, is adaptive to beneficial input structure. We exhibit several graph
classes for which such algorithms run in linear time O(n+m). More strongly, we show that they
run in time O(

√
km) for graphs that are k vertex deletions away from any of several such classes,

without explicitly computing an optimal or approximate deletion set; before, most such bounds
were at least Ω(km). Thus, any phase-based matching algorithm with linear-time phases obliviously
interpolates between linear time for k = O(1) and the worst case of O(

√
nm) when k = Θ(n). We

complement our findings by proving that the phase framework by itself still allows Ω(
√
n) phases,

and hence time Ω(
√
nm), even on paths, cographs, and bipartite chain graphs.
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1 Introduction

The objective in the fundamental Maximum Matching problem is to find a set of disjoint
edges of maximum cardinality in a given undirected graph G = (V,E). Maximum Matching
has been heavily studied and was the first problem for which a polynomial-time algorithm
has explicitly been established [17]. Several algorithms [8, 23, 27, 39] achieve the best known
running time of O(

√
nm) for graphs with n vertices and m edges, starting with the algorithm

of Micali and Vazirani [39] in 1980. Since then, the time of O(
√
nm) remains unbeaten.

This state-of-the-art has motivated extensive research into faster algorithms for Maximum
Matching on special inputs: Extensive effort went into beating the worst case running time
of O(

√
nm) for Maximum Matching on special graph classes, resulting in a large number

of publications [14, 21, 22, 24, 26, 29, 34, 35], often even obtaining linear-time algorithms
[10, 12, 38, 43, 45]. Similarly, there is a great variety of algorithms whose running time
depends on n and m but also on some structural parameter of the input graph, like its
tree-width, its genus, or its vertex-deletion distance to a certain graph class (summarized in
Table 2). As an example, one can solve Maximum Matching in time O(k(n+m)) when
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Table 1 The second column shows the running times of dedicated algorithms for Maximum
Matching on restricted inputs, which follow as special cases of previous work (see Table 2). Columns
three and four show our results for algorithms employing the phase framework with linear-time
phases. Only vertex cover number and matching number had known time O(

√
km), others had

Ω(km) prior to our work. The parameters mw and md refer to modular-width and modular-depth.

Dedicated algorithm Phase framework algorithms
Parameter / Graph class Parameter s Parameter s Dist. k to parameter s

Vertex cover number O(
√
sm) O(

√
sm) n.a.

Star forest O(m) O(m) O(
√
km)

Bounded tree-depth O(m) O(m) O(
√
km)

Cluster graph O(m) O(m) O(
√
km)

Minimum degree n− s O(sn2 logn) O(sm) O(
√
ksm)

Independence number none O(sm) O(
√
ks2m)

Neighborhood diversity O((s2 log s)n+m) O(sm) O(
√
ksm)

Parameter mw and md O((mw2 log mw)n+m) O((cmw)mdm) O(
√
k(cmw)mdm)

the input graph G is given together with a set S of k vertices such that G− S belongs to a
class C in which Maximum Matching can be solved in linear time (cf. [38]): It suffices to
solve the problem on G− S in linear time and to then apply at most k augmentation steps
to account for vertices in S; each such step can be implemented in linear time.

A caveat of this great number of different algorithms for special cases is that we may have
to first find the relevant structure, e.g., a set S so that G−S belongs to a certain graph class
C, and to then decide which algorithm to apply. In some cases, finding the relevant optimal
structure is NP-hard and using approximate structure may lead to increase in running time.
Moreover, except for time O(

√
km) relative to vertex cover number k or maximum matching

size k, which can be seen to follow from the general analysis of Hopcroft and Karp [29], the
previously known time bounds improve on O(

√
nm) only if k = O(

√
n), at best.

Our results. We approach the Maximum Matching problem from the perspective of
adaptive analysis (of algorithms). Rather than developing further specialized algorithms
for special classes of inputs, we prove that a single algorithm actually achieves the best
time bounds relative to several graph classes and parameters; in particular, several new or
improved time bounds are obtained. Moreover, that algorithm is known since 1980, namely it
is the Micali-Vazirani-algorithm [39], and it is oblivious to the actual structure and parameter
values. In fact, our analysis does not depend on overly specific aspects of that algorithm and,
rather, applies to any algorithm for Maximum Matching that follows the “phase framework”
established by Hopcroft and Karp [29] for Bipartite Matching and that implements each
phase in linear time, e.g., the algorithms by Blum [8] and Goldberg and Karzanov [27]. In
this framework, each phase is dedicated to finding a disjoint and maximal packing of shortest
augmenting paths, and it can be shown that O(

√
n) phases always suffice (cf. [29]).

We show that algorithms following the phase framework adapt to beneficial structure
in the form of inputs from special graph classes or inputs that are few vertex deletions
away from such a class, without running a recognition algorithm or computing the deletion
distance (i.e., they are obliviously adaptive). Concretely, we show that any such algorithm
solves Maximum Matching in linear time on several graph classes such as cluster graphs or
graphs of bounded neighborhood diversity. Moreover, for many such classes we also show
that any such algorithm takes time O(

√
km) on graphs that are k vertex deletions away
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from the class, without explicitly computing such a set of deletions (or even knowing the
class in question). Furthermore, this running time interpolates between the worst-case time
O(
√
nm) for k ∈ Θ(n) and linear time for k ∈ Θ(1), hence remaining competitive even in the

absence of beneficial input structure. Except for the matching number and the vertex cover
number, time bounds of the form O(

√
km) are new, even for dedicated algorithms. Besides

that, we improve upon the algorithm by Yuster [46] for the special case of minimum degree
n− s and we improve upon the algorithm by Kratsch and Nelles [33] for the special case of
bounded neighborhood diversity. Our positive results are summarized in Table 1.

We complement our findings by exhibiting several graph classes on which the phase
framework still allows the worst-case of Θ(

√
n) phases, and hence Θ(

√
nm) time. We prove

this for paths, trivially perfect graphs, which are a subclass of cographs, and bipartite chain
graphs (and hence their superclasses). This, of course, does not contradict the existence of
dedicated linear-time algorithms nor the possibility of tweaking a phase-based algorithm
to avoid the obstructions. Nevertheless, these results do rule out the possibility of proving
adaptiveness of arbitrary phase-based algorithms, and they showcase obstructions that need
to be handled to obtain more general adaptive algorithms for Maximum Matching.

Related work. Our work fits into the recent program of “FPT in P”1 or efficient parame-
terized algorithms, initiated independently by Abboud et al. [1] and Giannopoulou et al. [25].
This program seeks to apply the framework of parameterized complexity to tractable problems
to obtain provable running times relative to certain parameters that outperform the fastest
known algorithms or (conditional) lower bounds obtained in the fine-grained analysis program
(see, e.g., [2, 9, 41]). In particular, Mertzios et al. [38] have suggested Maximum Matching
as the “drosophila” of FPT in P, i.e., as a central subject of study, similar to the role that
Vertex Cover plays in parameterized complexity. Already, there is a large number of
publications on parameterized algorithms for Maximum Matching [11, 15, 16, 20, 33, 36],
apart from large interest in FPT in P in general [1, 6, 19, 30, 31, 32]. There has also been in-
terest in linear-time preprocessing, which, relative to some parameter k, reduces the problem
to solving an instance of size f(k) and leads to time bounds of the form O(n+m+ g(k)) [37].

Adaptive analysis of algorithms has been most successful in the context of sorting and
searching [3, 4, 13, 18]. We are not aware of prior (oblivious) adaptive analysis of established
algorithms for the Maximum Matching problem but two works have designed dedicated
adaptive algorithms relative to tree-depth [31] and modular-width [33].

Bast et al. [5] analyzed the Micali-Vazirani algorithm for random graphs, obtaining a
running time of O(m logn) with high probability.

Organization. Some preliminaries on graphs and matchings are recalled in Section 2.
Section 3 is dedicated to recalling the analysis of Hopcroft and Karp [29] and defining
phase-based algorithms. In Section 4 we present the positive results, except for results related
to neighborhood diversity and modular decomposition which can be found in the full version
of the paper. The lower bounds for paths and trivially perfect graphs are given in Section 5;
the lower bound for bipartite chain graphs is in the full version of the paper. We conclude in
Section 6.

1 An FPT-algorithm solves a given (usually NP-hard) problem in time f(k)nc where k is some problem-
specific parameter and n is the input size.
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Table 2 Known parameterized algorithms for Maximum Matching, k denotes the corresponding
parameter value and ω is the matrix multiplication constant.

Parameter Running Time Reference

Matching Number O(
√
km) [8, 27, 29, 39]

Vertex Cover Number O(
√
km) / O(k(n+m) / O(n+m+ k3) [29, 39] / [36] / [36]

Feedback Vertex Number O(k(n+m)) / O(kn+ 2O(k)) [36] / [37]
Feedback Edge Number O(k(n+m)) / O(n+m+ k1.5) [36] / [37]

∆(G)− δ(G) O(kn2 logn) [46]
Tree-width O(k4n logn) / O(km logn) [20] / [31]
Tree-depth O(km) [31]

Modular-width O(k4n+m) / O((k2 log k)n+m) [11] / [33]
Split-width O((k log2 k)(n+m) logn) [15]
P4-sparseness O(k4(n+m)) [11]

Genus O(f(k)nω/2) [47]
H-minor-free O(f(H)n3ω/(ω+3)) [47]

Dist. to Cocomparability O(k(n+m)) [38]
Distance to Chain Graph O(k(n+m)) / O(n+m+ k3) [36] / [37]

2 Preliminaries

We mostly consider simple graphs, unless stated otherwise, and denote an edge between v
and w as the concatenation of its endpoints, vw. Let G = (V,E) denote a graph. A path
P in G is denoted by listing its vertices in order, i.e., P = v1v2 . . . v`. We use the following
notation to refer to subpaths of a path P :

P[vi,vj ] =
{
vivi+1 . . . vj if i ≤ j,
vivi−1 . . . vj if i > j.

By disjoint paths we will always mean vertex-disjoint paths. For a set of vertices S ⊆ V ,
we define δ(S) = {vw ∈ E : v ∈ S,w /∈ S}. For two sets X,Y their symmetric difference is
denoted by X4Y = (X \ Y ) ∪ (Y \X).

A set C ⊆ V is a vertex cover of G if every edge of G has at least one endpoint in C;
the vertex cover number τ(G) of G is the minimum cardinality of any vertex cover of G.
An independent set of G is a set S ⊆ V of pairwise nonadjacent vertices; the independence
number α(G) of a graph G is the maximum cardinality of any independent set of G. The
maximum degree and minimum degree of G are denoted by ∆(G) and δ(G) respectively. For
a class C of graphs we define dC(G) = minS⊆V :G−S∈C |S| to be the vertex deletion distance
of G to C; a set S such that G− S ∈ C is called a modulator. E.g., the vertex cover number
τ(G) is the vertex deletion distance of G to edgeless graphs, i.e., independent sets.

A matching in a graph is a set of pairwise disjoint edges. Let G = (V,E) be a graph
and let M ⊆ E be a matching in G. The matching M is maximal if there is no matching
M ′ in G such that M (M ′ and M is maximum if there is no matching M ′ in G such that
|M | < |M ′|; the matching number ν(G) of G is the cardinality of a maximum matching in G.

A vertex v ∈ V is called M -matched if there is an edge in M that contains v, and v is
called M -exposed otherwise. We do not mention M if the matching is clear from the context.
We say that an edge e ∈ E is blue if e /∈ M and e is red if e ∈ M . An M -alternating path
is a path in G that alternatingly uses red and blue edges. An M -augmenting path is an
M -alternating path that starts and ends with anM -exposed vertex; a shortest M -augmenting
path is an M -augmenting path that uses as few edges as possible.
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It is well known that matchings can be enlarged along augmenting paths and that an
augmenting path always exists if the matching is not maximum. We say that the matching
M4E(P ) is obtained by augmenting M along P .

I Lemma 2.1. If M is a matching in G and P is an M-augmenting path, then M4E(P )
is also a matching in G and has size |M4E(P )| = |M |+ 1.

I Theorem 2.2 ([29]). Let M and N be matchings in G = (V,E) with |N | > |M |. The sub-
graph G′ = (V,M4N) of G contains at least |N | − |M | vertex-disjoint M -augmenting paths.

I Corollary 2.3 ([7]). A matching M is maximum if and only if there is no M -augmenting
path.

3 Hopcroft-Karp analysis

Many of the fastest algorithms for Maximum Matching make use of a framework introduced
by Hopcroft and Karp [29] for the special case of bipartite matching. We give an overview of
the framework in this section, mostly following Hopcroft and Karp [29]. The main idea is to
search for shortest augmenting paths instead of arbitrary augmenting paths. Exhaustively
searching for shortest augmenting paths and augmenting along them leads to Algorithm 1.

Algorithm 1: Generic Matching Algorithm.
Input: Graph G
Output: Maximum matching M

1 M ← ∅;
2 while M is not maximum do
3 Find a shortest M -augmenting path P ;
4 M ←M4E(P );
5 return M ;

Let P1, P2, . . . , P` be the sequence of augmenting paths in the order found during an
execution of Algorithm 1. Hopcroft and Karp [29] observed the following properties of the
computed shortest augmenting paths.

I Lemma 3.1 ([29]). Let M be a matching, let P be a shortest M -augmenting path, and let
P ′ be a M4E(P )-augmenting path, then |P ′| ≥ |P |+ 2|P ∩ P ′|.

I Corollary 3.2 ([29]). The sequence |P1|, . . . , |P`| is non-decreasing.

I Corollary 3.3 ([29]). If |Pi| = |Pj | for some i 6= j, then Pi and Pj are vertex-disjoint.

Following these observations, we can partition the sequence P1, . . . , P` into maximal
contiguous subsequences Pi, Pi+1, . . . , Pj such that |Pi| = |Pi+1| = · · · = |Pj | < |Pj+1|, due
to Corollary 3.3 the paths Pi, Pi+1, . . . , Pj must be pairwise vertex-disjoint. Every such
subsequence is called a phase and corresponds to a maximal set of vertex-disjoint shortest
augmenting paths due to Corollary 3.3. With the terminology of phases introduced, it is
useful to restate Algorithm 1 as follows.
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Algorithm 2: Phase Framework.
Input: Graph G
Output: Maximum matching M

1 M ← ∅;
2 while M is not maximum do
3 Find a maximal set S of vertex-disjoint shortest M -augmenting paths;
4 Augment M along all paths in S;
5 return M ;

In Algorithm 2 each iteration of the while-loop corresponds to a single phase. If an
algorithm implements Algorithm 2 we say that it employs the phase framework. In the
following, we will abstract from the implementation details of algorithms employing the
phase framework and only bound the number of phases that are required in the worst case.
Hopcroft and Karp [29] presented an upper bound in terms of the matching number ν(G).

I Theorem 3.4 ([29]). Every algorithm employing the phase framework requires at most
2
⌈√

ν(G)
⌉

+ 2 phases.

The next bound is a simple corollary of Theorem 3.4 by noticing that ν(G) ≤ n
2 , but we

opt to give an independent proof to serve as an instructive example for the proofs to come.

I Theorem 3.5 (folklore). Every algorithm employing the phase framework requires at most
O(
√
n) phases.

Proof. Let M denote the matching obtained after performing d
√
ne phases of Algorithm 2.

Every further M -augmenting path has length at least d
√
ne by Corollary 3.2. This implies

that we can pack at most d
√
ne such augmenting paths into G and hence by Theorem 2.2, at

most d
√
ne augmentations remain. Since we perform at least one augmentation per phase,

Algorithm 2 must have terminated after an additional d
√
ne phases. Thus, Algorithm 2

terminates after at most 2 d
√
ne phases. J

Several of the fastest Maximum Matching algorithms employ the phase framework
[8, 27, 39]. Any one of these algorithms yields the following time bound for a single phase.

I Theorem 3.6. There is an algorithm that given a matching M computes a maximal set of
vertex-disjoint shortest M -augmenting paths in time O(m). In particular, each phase of the
phase framework can be implemented to run in time O(m).

With Theorem 3.5 and Theorem 3.4 we obtain the following time bounds.

I Theorem 3.7. There is an algorithm employing the phase framework that solves Maximum
Matching in time O(

√
nm) and O(

√
ν(G)m).

4 Adaptive parameterized analysis

In this section we will perform an adaptive analysis for algorithms employing the phase
framework by analyzing the required number of phases in terms of various graph parameters.
Theorem 3.6 yields an improved running time if the considered parameter is small enough.

Many of the considered parameters are NP-hard to compute, e.g., the vertex cover number.
This is not an issue, however, as we only require the parameter value for the running time
analysis and not for the execution of the algorithm. In this sense, algorithms employing the
phase framework are proved to obliviously adapt to the studied parameters.
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4.1 Short alternating paths
Our main lemma relies on bounding the length of shortest augmenting paths. In the interest
of simplifying later arguments, we will not only bound the length of shortest augmenting
paths, but also of alternating paths that are not necessarily augmenting. The strategy for
obtaining such upper bounds is to take a long alternating path P and deduce that additional
edges must exist in G[V (P )] that enable us to find a shorter alternating path P ′ in G[V (P )]
between the endpoints of P . Hence, the replacement path P ′ will only visit vertices that are
also visited by the original path P . The following definition formalizes this idea.

I Definition 4.1. Given a matchingM in a graph G and anM -alternating path P = v1 . . . v`.
We say that an M -alternating path P ′ = w1 . . . wk replaces P if the following is true:

V (P ′) ⊆ V (P ),
w1 = v1 and wk = v`,
P ′ has the same parity as P with respect to M , i.e.,
v1v2 ∈M ⇐⇒ w1w2 ∈M and v`−1v` ∈M ⇐⇒ wk−1wk ∈M .

In particular, if P ′ replaces P , then P ′ is at most as long as P .

A technicality that arises from considering general alternating paths, as opposed to
augmenting paths, is that an alternating path that starts and ends with a blue edge, i.e.
an edge not in the matching, might have endpoints that are not exposed. If we want to
shortcut by taking a different edge incident to such an endpoint, then this edge might be red
which causes our constructions to fail. To avoid this issue, it suffices to consider the subpath
resulting from the removal of the first and last edge.

I Definition 4.2. A graph G is `-replaceable if for every matching M each M -alternating
path can be replaced by anM -alternating path of length at most `. The class of `-replaceable
graphs is denoted R[`].

We will now show that algorithms employing the phase framework require only few phases
for graphs that are close, in the sense of vertex deletion distance, to `-replaceable graphs.

I Lemma 4.3. Every algorithm employing the phase framework requires at most O(
√
k`)

phases on graphs G with dR[`](G) ≤ k. In particular, Maximum Matching can be solved in
time O(

√
k`m) for such graphs.

Proof. Let S ⊆ V with |S| ≤ k, such that G−S ∈ R[`] and let M be the matching obtained
after performing d

√
k`e phases of Algorithm 2. We claim that every shortest M -augmenting

path uses at least b
√
kc vertices of S; every such path has a length of at least d

√
k`e due

to Corollary 3.2. Consider such a path P , since G− S is `-replaceable, we can assume that
every time P enters G− S it uses at most `+ 1 vertices of G− S before going back to S.
Hence, P must use at least b

√
kc − 1 vertices of S to have a length of d

√
k`e or more.

Since S is of size at most k and due to the properties of replacing paths, this implies that
we can pack at most 2d

√
ke M -augmenting paths into G as

2
⌈√

k
⌉(⌊√

k
⌋
− 1
)
≥ 2
√
k
(√

k − 2
)

= 2k − 4
√
k ≥ k for k ≥ 16.

By Theorem 2.2 at most 2d
√
ke augmentations remain, which require at most 2d

√
ke phases.

In total, we need d
√
k`e+2d

√
ke ∈ O(

√
k`) phases. Theorem 3.6 implies the time bound. J

The following running time bound relative to the vertex cover number τ(G) follows
directly from Theorem 3.7 by the use of the well-known inequality ν(G) ≤ τ(G).
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A1

B1

e1 A2

B2

e2 A3

B3

e3

ẽ

Figure 1 The construction in Theorem 4.6 for α(G) = 2, the red dotted edges are matched and
the blue edges are unmatched. The thickened edges represent the shorter alternating path P ′.

I Theorem 4.4. Every algorithm employing the phase framework requires at most O(
√
τ(G))

phases. In particular, Maximum Matching can be solved in time O(
√
τ(G)m).

Alternatively, observe that if C is the class of independent sets, then dC(G) = τ(G) and
hence Theorem 4.4 is implied by Lemma 4.3 as independent sets are trivially 1-replaceable.

More generally, every graph without paths of length `+ 1 is `-replaceable. It is known
that a graph class has bounded path length if and only if it has bounded tree-depth (see,
e.g., [40, Chapter 6]). As a further special case consider the class of star forests, i.e., graphs
where every connected component is a star and therefore must be 2-replaceable. Hence, we
obtain the following corollary of Lemma 4.3.

I Corollary 4.5. Let C be the class of star forests. Every algorithm employing the phase
framework requires at most O(

√
dC(G)) phases. In particular, Maximum Matching can be

solved in time O(
√

dC(G)m).

4.2 Independence number
A graph with independence number k contains many edges in the sense that any set of k + 1
vertices must induce an edge. We will use this property to shorten long alternating paths.

I Theorem 4.6. Suppose that G is a graph such that α(G) ≤ k, then G is O(k2)-replaceable.

Proof. First, fix a matching M . We show how to replace alternating paths that begin and
end with a blue edge, i.e., an edge not in M . By replacing appropriate subpaths of long
alternating paths with other parities, the general result will follow.

Suppose that P = a1b1a2b2 . . . a`b` is an alternating path that is longer than 4(k+ 1)2 + 1
and that starts and ends with a blue edge. We can assume that ` is odd. Distinguishing
the vertices of P by their parity, we define A = {ai : i ∈ [`]} and B = {bi : i ∈ [`]}.
Furthermore, we define the sets Ai and A′i for i = 1, . . . , k + 1 by

Ai = {a(i−1)(2k+2)+j : j = 1, 2, 3, . . . , 2k + 1} and A′i = {aj ∈ Ai : j odd}.

Note that |A′i| = k + 1 > k for all i, hence the A′i cannot be independent sets. Thus, there is
at least one edge ei in G[A′i]. We denote the endpoints of ei by

ei = apiaqi , where pi ≤ qi − 2, for all i = 1, . . . , k + 1. (1)

We now consider the vertices of B that lie between the endpoints of ei on P ; we
omit bpi

to ensure that the constructed path is shorter than P . Concretely, let Bi =
{bpi+1, bpi+2, . . . , bqi−1} for all i = 1, . . . , k + 1. Equation (1) implies that Bi 6= ∅. Now, we
arbitrarily choose a vertex b′i from each Bi and define B′ = {b′i : i = 1, . . . , k + 1}. Observe
that B′ cannot be an independent set as B′ contains k + 1 vertices; thus, there must exist
an edge ẽ = b′ib

′
j with i < j. We construct the path P ′ that replaces P by (see Figure 1)

P ′ = P[a1,api
]P[aqi

,b′
i
]P[b′

j
,b`],
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using edges apiaqi and b′ib′j ; note that P[aqi
,b′

i
] is a subpath of P in reverse order. Note that

both edges are blue because aqi
and b′i are already incident with red edges on P . It can be

easily checked that P ′ is an alternating path and, in particular, that it is a valid replacement
for P . We will now show that P ′ is strictly shorter than P . It suffices to compare the length
of P1 = P[api

,b′
j
] and P2 = P ′[api

,b′
j
] = api

P[aqi
,b′

i
]b
′
j as P and P ′ agree on the remaining parts.

Let s and t be the indices such that b′i = bs and b′j = bt. The length of P1 is 2(t− pi) + 1.
For the length of P2 we obtain

|P2| = 1 + (2(s− qi) + 1) + 1 = 2(s− qi) + 3 < 2(s− (pi + 1)) + 3 = 2(s− pi) + 1
< 2(t− pi) + 1 = |P1|,

where the first inequality follows from Equation (1). J

By combining this result with Lemma 4.3 we obtain the following corollary.

I Corollary 4.7. Every algorithm employing the phase framework requires at most O(α(G)2)
phases. In particular, Maximum Matching can be solved in time O(α(G)2m).

Let Ck denote the class of graphs with independence number at most k in each connected
component. Every algorithm employing the phase framework requires at most O(

√
dCk

(G)k2)
phases. In particular, Maximum Matching can be solved in time O(

√
dCk

(G)k2m).

A better analysis in terms of the independence number can be achieved by not using
replaceability, but in exchange we lose the square root dependence on the size of the modulator.

I Lemma 4.8. Every maximal matching M covers at least n− α(G) vertices.

Proof. If α(G) + 1 vertices were exposed, they would not be an independent set and hence
have an edge between them. Thus, M would not be maximal. J

I Corollary 4.9. Every algorithm employing the phase framework requires at most O(α(G))
phases. In particular, Maximum Matching can be solved in time O(α(G)m).

Proof. After the first phase, we know that at most α(G) vertices are exposed by Lemma 4.8.
Hence, α(G)/2 further augmentations suffice. J

4.3 s-plexes
An s-plex, s ≥ 1, is an n-vertex graph G with minimum degree δ(G) ≥ n − s. They were
introduced by Seidman and Foster [42] as a generalization of cliques, which are 1-plexes.
Problems related to s-plexes have been studied in parameterized complexity before [28, 44].
Let P[s] denote the class of graphs that are disjoint unions of s-plexes. Given a vertex v and
a set W ⊆ V \ {v} of size at least s in an s-plex, we know that there is an edge vw for some
w ∈W . Thus, s-plexes allow for better control than a small independence number as we can
guarantee the existence of an edge incident to some specific vertex instead of just getting
some edge in a large set of vertices.

I Theorem 4.10. If G is a k-plex, i.e., if δ(G) ≥ n− k, then G is O(k)-replaceable.

Proof. Let M be a matching in G and suppose that P = v1 . . . v` is an M -alternating path
in G of length ` − 1 ≥ 2k + 5. Let i be the smallest integer such that vi is M -exposed or
vi−1vi is red, i.e., vi−1vi ∈ M . Let j be the largest integer such that vj is M -exposed or
vjvj+1 is red. We have i ∈ {1, 2, 3} and j ∈ {`− 2, `− 1, `}.

ICALP 2019
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i i+ 2 i+ 4

i+ 1 i+ 3

· · ·

j − 2(k − 1)

s · · ·

j W

Figure 2 Replacing alternating paths in a k-plex.

Consider the vertices W = {vj , vj−2, vj−4, . . . , vj−2(k−1)} and observe that vi /∈ W as
3 < `−2k. The set W contains k vertices and since G is a k-plex there must be some vs ∈W
such that vivs ∈ E. By choice of i and s the edges vivi+1 and vs−1vs must be blue. Similarly,
by choice of i, the edge vivs is blue. Hence, as seen in Figure 2, we can replace P by the shorter
M -alternating path P ′ = P[v1,vi]P[vs,v`] with length |P ′| ≤ 2 + 2(k − 1) + 2 = 2k + 2. J

By Lemma 4.3, we obtain the following corollary.

I Corollary 4.11. Every algorithm employing the phase framework requires at most O(n−
δ(G)) phases. In particular, Maximum Matching can be solved in time O((n− δ(G))m).

Every algorithm employing the phase framework requires at most O(
√

dP[s](G)s) phases.
Hence, Maximum Matching can be solved in time O(

√
dP[s](G)sm). In particular, Maxi-

mum Matching can be solved in time O(
√
km) on graphs that have distance at most k to

cluster graphs.

5 Lower bounds on the number of phases

In this section, we show that several restrictive graph classes do not admit results such as
those obtained in the previous section. To this end, we show that the assumptions made
about algorithms that follow the phase framework still allow a worst case of Ω(

√
n) phases.

In other words, further assumptions about the behavior of such an algorithm are necessary
to avoid these lower bounds and to again get adaptive running times.

5.1 Paths and forests

G1

G2

G3

H2

H3

Figure 3 Lower bound construction for paths.

I Lemma 5.1. An algorithm employing the phase framework may choose a sequence of
augmentations resulting in at least Ω(

√
n) phases on paths.



F. Hegerfeld and S. Kratsch 71:11

Proof. We will concatenate increasingly long paths where we take every second edge into
the matching in such a way that the matching on the newly added path is maximal but not
maximum, so that every one of the concatenated paths requires a separate phase. More
formally, on P2i = v1v2 . . . v2i we use the matching {v2kv2k+1 : k ∈ [i− 1]}. This matching
is one edge away from the maximum and the only augmenting path has length 2i− 1.

Let Hi be obtained by concatenating two copies of P2i through identification of two
endpoints (obtaining a path on 4i− 1 vertices). The matching on Hi can be augmented once
by an augmenting path of length 2i− 1. There are two augmenting paths on Hi, we always
choose to augment along the copy of P2i that is attached to the previously constructed path,
i.e., the left copy in Figure 3. Using two copies of P2i in Hi ensures that every Hi requires
at least one augmentation. This is not the case if we simply concatenate P2, P4, . . . , P2k.

We can now define our desired paths. Let G1 = H1 = P3 and in this exceptional case we
assume that the left edge of P3 is matched. Furthermore, let Gi+1 be obtained from Gi by
concatenating Hi+1 at the right. The number of vertices of Gd√ne can be bounded by

d√ne∑
i=1

2|V (P2i)| ≤ 4(
⌈√

n
⌉
)2 ∈ O(n).

Now, we argue that our choice of augmentations leads to Ω(
√
n) phases for Gd√ne. In the

first phase we choose to find the maximal matching that we associated with each Hi. Now,
observe that Gd√ne contains augmenting paths of lengths 3, 5, . . . , 2 d

√
ne − 1. In phase i,

i ≥ 2 we augment along the left copy of P2i in Hi. As this does not affect the augmenting
paths in the other Hi, we need d

√
ne phases in total. J

Using the parameter values on paths, we obtain the following parameterized lower bounds.

I Corollary 5.2. An algorithm employing the phase framework may choose a sequence of
augmentations resulting in Ω(

√
α(G)), Ω(

√
τ(G)), Ω(

√
dP[1](G)) or Ω(

√
nd(G)) phases,

where nd(G) is the neighborhood diversity of G.

5.2 Cographs

Mertzios et al. [36] devised a Maximum Matching algorithm parameterized by vertex
deletion distance to cocomparability graphs and there are several Maximum Matching
algorithms parameterized by modular-width [11, 33]. In the interest of showing that these
results cannot be replicated or improved by our approach, we give a lower bound result for
cographs, i.e., the graphs of modular-width 2 and a subclass of cocomparability graphs.

I Definition 5.3. A graph is a cograph if it can be constructed from the following operations:
K1 is a cograph,
the disjoint union G ∪H of two cographs G and H is a cograph,
the join G×H of two cographs G and H is a cograph, where V (G×H) = V (G) ∪ V (H)
and E(G×H) = E(G) ∪ E(H) ∪ {vw : v ∈ V (G), w ∈ V (H)}.

I Theorem 5.4. There is a family of cographs such that an algorithm employing the phase
framework may choose a sequence of augmentations resulting in Ω(

√
n) phases on this family.
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G0 G1

w1

G2

v2

w2

G3

v3

w3

(a) Increasingly long augmenting paths.

H4

G0 G1 G2

(b) Construction of H4.

Figure 4 Cographs with increasingly long augmenting paths, the red dotted edges are matched
and the blue edges are unmatched. The thickened edges denote the chosen augmenting paths.

Proof. We will construct appropriate cographs using the cograph operations. Let G0 = K1
and G1 = K1 ×K1 = P2 and for i ≥ 1 define Gi+1 = (Gi ∪K1) ×K1 as auxiliary graphs.
Given n, we construct

Hn =

d
√

ne⋃
i=0

Gi

×G0.

Observe that Gi has at most 2i+ 1 vertices, therefore Hn has O(n) vertices. We will now
describe a sequence of augmentations in Hn that requires Ω(

√
n) phases.

In each Gi, i ≥ 2, there is exactly one vertex of degree one, which we call wi. For G1, we
fix an arbitrary vertex that is called w1. Furthermore, the vertex that is joined last in the
construction of Gi, i ≥ 2, is referred to as vi, see Figure 4. First, we describe which maximal
matchings to associate with the graphs Gi. In G0 there is no edge to choose, in G1 we choose
the only possible edge and in G2 we take the edge v2w1. Inductively, for Gi+1, i ≥ 2, we use
the maximal matching of Gi and add the edge vi+1wi. With Hn we associate the union of
these matchings and add the edge between the two copies of G0 to the matching. In this
way we obtain the matching that is supposed to be found in the first phase.

We now argue that Gi, i ≥ 2, has exactly one shortest augmenting path of length 2i− 1.
This is true for i = 2; the other cases follow by induction. Let Pi be the shortest augmenting
path in Gi starting at wi, then Pi+1 = wi+1vi+1Pi is an augmenting path of length 2i+ 1
in Gi+1. There are no further augmenting paths as there are only two exposed vertices in
Gi+1 and one of them is wi+1 with degree one; starting at wi+1, we must first take the edge
wi+1vi+1 and then the matched edge vi+1wi, hence we must take the path Pi+1 by induction.

Let v denote the vertex inG0 that is joined last in the construction ofHn. The construction
of Hn does not create any additional augmenting paths as every maximal alternating path
that passes through v must have one matched endpoint, namely the vertex in the other copy
of G0. In phase i we augment the shortest augmenting path of length 2i− 1 in the copy of
Gi. By repeating the previous argument, these augmentations cannot introduce any new
augmenting paths in the later phases. Hence, we require d

√
ne phases for this sequence of

augmentations, thereby proving the claimed lower bound. J

The graphs in the previous proof are also C4-free, therefore these graphs are not only
cographs but also trivially perfect graphs.
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6 Conclusion

We have conducted an adaptive analysis that applies to all algorithms for Maximum
Matching that follow the phase framework of Hopcroft and Karp [29], such as the algorithms
due to Micali and Vazirani [39], Blum [8], and Goldberg and Karzanov [27]. The main take-
away message of our paper is that these algorithms not only obtain the best known time
O(
√
nm) for solving Maximum Matching but that they are also (obliviously) adaptive to

beneficial structure. That is, they run in linear time on several graph classes and they run in
time O(

√
km) for graphs that are k vertex deletions away from any of several classes; before,

most bounds were Ω(km). Arguably, such adaptive algorithms are the best possible result
for dealing with unknown beneficial structure because they are never worse than the general
bound, in this case taking Ω(

√
nm) when k = Θ(n), and smoothly interpolate to linear time

on well-structured instances. Moreover, in the present case, they unify several special cases
and remove the need to find exact or approximate beneficial structure.

We complemented our findings by proving that the phase framework alone still allows
taking Ω(

√
n) phases, and, hence, total time Ω(

√
nm), even on restrictive classes like paths,

trivially perfect graphs, and bipartite chain graphs (and their superclasses), despite the
existence of (dedicated) linear-time algorithms. Of course, all of these cases are easy to
handle but it raises the question whether there are simple further properties to demand of a
phase-based algorithm so that it is provably adaptive to larger classes such as cocomparability
or bounded treewidth graphs? In the same vein, it would be interesting whether time O(

√
km)

is possible relative to feedback vertex number k, i.e., relative to deletion distance to a forest.
More generally, with the large interest in “FPT in P” (or efficient parameterized algo-

rithms), it seems interesting what other fundamental problems admit adaptive algorithms
that interpolate between, say, linear time and the best general bound. Are there other cases
where a proven algorithmic paradigm, like the path packing phases of Hopcroft and Karp [29],
also obliviously yields the best known running times relative to beneficial input structure?
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1 Introduction

1.1 Balancing Families
Balancing set families are families of proper non-empty subsets of a finite universe that
satisfy a discrepancy type property. They are well studied objects in combinatorics [12, 10,
4, 15, 5, 14], and they have found many applications in computer science [4, 20, 16, 5, 14].
In this work we prove new lower bounds on the size of such families, and then use them to
prove lower bounds on depth-2 majority and threshold circuits that compute the majority
and weighted threshold functions. We establish new sharp lower bounds on the fan-in of the
gates in such circuits.

A central contribution of this work is the following lemma that shows a lower bound on
the degree of a special class of polynomials.

I Lemma 1. Let p be prime, and let f(x1, . . . , x2p) be a polynomial over Fp, where Fp is
the field with p elements. Let f be such that for every input x ∈ {0, 1}2p with exactly p ones,
we have f(x) = 0, and f(x) is non-zero when x1 = x2 = . . . = x2p = 0. Then, the degree of
f is at least p.

Hegedűs [15] used a similar lemma to prove lower bounds for balancing sets (in his lemma
there are 4p variables, and the focus is on inputs with 3p ones). Hegedűs’s proof uses Gröbner
basis methods and linear algebra. Srinivasan found a simpler proof of Hegedűs’s lemma that
is based on Fermat’s little theorem and linear algebra. Alon [3] gave an alternate proof of
Hegedűs’s lemma using the Combinatorial Nullstellensatz. The above lemma is inspired by
Srinivasan’s proof of Hegedűs’s lemma [21, 5]. Our simple proof is presented in Section 3.

For a positive integer n, let [n] denote the set {1, 2, . . . , n}. Various notions of balancing
set families have been considered in the past [12, 10, 4, 15, 5] with various terminologies. We
use the following definition in this work.

I Definition 2. Let k be a positive integer and n be a positive even integer. We say that
proper non-empty subsets S1, . . . , Sk ⊂ [n] are a balancing set family if for every X ⊂ [n] of
size n/2 there is an i ∈ [k] such that |Si ∩X| = |Si|/2.

Given any even n, let B(n) denote the minimum k for which a balancing set family of size k
exists. Our first result gives tight bounds on B(n):

I Theorem 3. If n = 2p for a prime p, then B(n) = n/2 = p.

Moreover, if n is divisible by 4, we give an example of a balancing set family establishing
that B(n) ≤ n/2 − 1. If n is divisible by 2, we show that B(n) ≤ n/2 by constructing a
balancing set family of size n/2, in which each set is of size 2. We also show that this is
tight when each set in the family is of size 2 (see the full version for a proof). Previously, for
arbitrary values of n, Alon, Kumar and Volk [5] showed that B(n) ≥ Ω(n). We show

I Theorem 4. If n is an even integer, then B(n) ≥ n/2−O
(
n0.98).

Our lower bounds on B(n) are the most interesting and they are proved using Lemma 1. See
Section 4 and Section 5 for a full exposition of the proofs. We also apply our techniques
to other questions about balancing sets in the literature and improve some of the previous
bounds. We now briefly discuss two such notions from the literature.

(a) Galvin’s question [12, 10, 15] asks for the smallest balancing family, denoted by G(n),
where each set in the family is of size n/2, and n is a positive integer that is a multiple of 4.
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(b) Jansen [16] and Alon, Kumar, and Volk [5] studied a variant where the size of each set in
the family must satisfy 2τ ≤ |Si| ≤ n− 2τ for a positive integer τ , and for every X ⊂ [n]
of size n/2, there is a set in the family such that |Si|/2 − τ < |Si ∩ X| < |Si|/2 + τ .
Denote by J(n, τ) to be the family of smallest size satisfying the above conditions.

We defer the discussion of previous known bounds on the quantities G(n) and J(n, τ) to
Section 2. We prove the following lower bounds on G(n) and J(n, τ).

I Theorem 5. If n is divisible by 4, then G(n) ≥ n/2−O
(
n0.53).

I Theorem 6.
1. If n = 2p for a prime p then J(n, τ) ≥ n

4τ−2 .

2. J(n, τ) ≥ n−O(n0.98)
7τ .

We proceed to define the notion of unbalancing set families used in this work.

I Definition 7. Let n be a positive even integer, and k ≥ 0, 0 ≤ t ≤ n/2 be integers. We
say that subsets S1, . . . , Sk ⊂ [n] are an unbalancing set family if for every X ⊂ [n] of size
n/2− t, there is an i ∈ [k] such that |Si ∩X| > |Si|/2.

Given any even n, let U(n, t) denote the minimum k for which an unbalancing set family of
size k exists. For unbalancing set families, we determine U(n, t) exactly:

I Theorem 8. U(n, t) = 2t+ 2.

Again, the lower bound here is more interesting than the upper bound. It is proved by
showing a connection between U(n, t) and the chromatic number of an appropriately defined
Kneser graph [18].

1.2 Threshold Circuits
We now discuss our results on depth-2 majority and threshold circuits. The majority function,
MAJ(x) for x ∈ {0, 1}n, is defined as

MAJ(x1, . . . , xn) =
{

1
∑n
i=1 xi ≥ n/2,

0 otherwise.

The unweighted threshold function, Tt(x) for x ∈ {0, 1}n, is defined as

Tt(x1, . . . , xn) =
{

1
∑n
i=1 xi ≥ t,

0 otherwise,

for some non-negative integer t. In the rest of the paper, unless stated otherwise, we refer to
threshold functions when we mean unweighted threshold functions.

A depth-2 circuit is defined by boolean functions h, g1, . . . , gk, for some integer k, and
the depth-2 circuit is said to compute a function f on input x ∈ {0, 1}n if

f(x) = h(g1(x), . . . , gk(x)).

Here h, g1, . . . , gk are called the gates of the circuit. h is referred to as the top gate, and
g1, . . . , gk are referred to as the bottom gates of the circuit. Our lower bounds often hold
even when h is allowed to be an arbitrary boolean function. The fan-in of a gate in the
circuit measures the number of variables that need to be read for the gate to carry out its
computation. The fan-in of the top gate in the circuit is defined to be k. The fan-in of each

ICALP 2019



72:4 Lower Bounds on Balancing Sets

of the gates gi is ri if gi depends on ri of the input variables. We sometimes refer to the top
fan-in when we mean k and the bottom fan-in when we mean the maximum of r1, . . . , rk. We
say that the fan-in of the circuit is r, if r is the maximum of the top fan-in and bottom fan-in.

When functions g1, . . . , gk, h each compute majority, the circuit is called a majority circuit.
Similarly, if all gates compute thresholds, then the circuit is called a threshold circuit. Kulikov
and Podolskii [17] asked the following question: What is the minimum fan-in required to
compute majority using a depth-2 majority circuit? Balancing set families are closely related
to depth-2 majority circuits computing majority. One can prove that there is a depth-2
majority circuit computing majority of n bits with top fan-in at most 2 · B(n) + 2, when n is
even. Indeed, let S1, . . . , Sk be the balancing set family. Define k majority gates, each on
variables indexed by Si, and another k majority gates, each on variables indexed by [n] \ Si.
The top majority gate, with fan-in 2k+ 2, reads these 2k gates along with two 0 inputs. It is
easy to see that this circuit correctly computes the majority.

To obtain a lower bound on the fan-in of such circuits, a potential approach is to show
that every depth-2 majority or threshold circuit corresponds to a balancing set family. We
are able to leverage the ideas that are used to prove Theorem 3 to obtain lower bounds on
the fan-in of these circuits. Moreover, our lower bounds are sharp up to a constant factor.

Let n = 2p for a prime p. Note that the threshold function defined by the inequality∑n
i=1 xi ≥ p is the majority function on n bits, and yields a circuit with top fan-in 1. We

prove a lower bound on the top fan-in of a depth-2 threshold circuit when the bottom gates
do not have the threshold p:

I Theorem 9. Suppose that n = 2p for a prime p. Then in any depth-2 circuit computing the
majority of n bits, if the bottom gates compute unweighted thresholds and read no constants,
either the top fan-in is at least n/2 = p, or some gate at the bottom computes a threshold Tt
with t = p.

In fact, Theorem 9 implies a similar lower bound on the top fan-in when the bottom threshold
gates read constants - see Section 6. Observe that in Theorem 9 we do not assume that the
top gate h computes a threshold function. The lower bound holds with no restrictions on h.

Theorem 9 also gives tight lower bounds for the fan-in of threshold circuits computing
majority. Firstly, any non-constant threshold function Tt reading at most r inputs must
have t ≤ r. Secondly, any bottom gate that computes a threshold function Tt by reading
constants is equivalent to computing a threshold function Tt′ on the same input variables,
for some t′ ≤ t, and Tt′ reads no constants. Here, t′ = t− α where α is the number of ones
read by Tt. Consequently, we get:

I Corollary 10. Suppose that n = 2p for a prime p. Then in any depth-2 circuit computing
the majority of n bits, if the bottom gates compute unweighted thresholds, the fan-in of the
circuit must be at least n/2 = p.

Since majority is a special case of the threshold function, the above corollary implies the
same lower bound on the fan-in of majority circuits that compute the majority. However, by
directly invoking Theorem 9, we obtain a slightly stronger lower bound for majority circuits
computing the majority:

I Corollary 11. Suppose that n = 2p for a prime p. Then in any depth-2 majority circuit
computing the majority of n bits, either the bottom fan-in is more than 2p− 2 = n− 2 or the
top-fan in is at least p = n/2.

This is because when the bottom fan-in of the majority circuit is at most 2p−2, the threshold
of bottom gates are at most p− 1 and Theorem 9 applies.
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Table 1 Summary of results on balancing and unbalancing families. p is a prime.

Balancing Sets

B(n) = n/2 when n = 2p Theorem 3
B(n) ≥ n/2− o(n) Theorem 4
G(n) ≥ n/2− o(n) Theorem 5
J(n, τ) ≥ n/(4τ − 2) when n = 2p Theorem 6
J(n, τ) ≥ n(1− o(1))/7τ Theorem 6

Unbalancing Sets U(n, t) = 2t+ 2 Theorem 8

Theorem 9, Corollary 10 and Corollary 11 discuss the case when n = 2p for a prime p.
For arbitrary values of n, we can generalize Theorem 9 to show that either the top fan-in is
at least n/2− o(n) or some gate at the bottom computes a threshold Tt with t ≥ p, where p
is the largest prime such that p ≤ n/2 (see Section 6 for the proof). Naturally, this lower
bound translates to Corollary 10 and Corollary 11. In particular, we get that any depth-2
majority circuit computing the majority of n bits must have that either the bottom fan-in
at least n − o(n) or the top fan-in at least n/2 − o(n). This nearly matches Amano’s [6]
construction of a depth-2 majority circuit with bottom fan-in n− 2 and top fan-in n/2 + 2.

Another kind of result that we investigate is whether weighted threshold functions can be
computed using unweighted thresholds of low fan-in. To that end, let n = (3p− 1)/2 for an
odd prime p, and consider the weighted threshold function

T (x) =
{

1 if
∑
i≤p−1 xi + 2

∑
i>p−1 xi ≥ p,

0 otherwise.

T (x) is a weighted threshold function with weights 1 and 2.

I Theorem 12. Any depth-2 circuit computing T (x) where the bottom gates compute un-
weighted thresholds must have top fan-in at least (p− 1)/2 = (n− 1)/3.

Observe that in Theorem 12 we do not assume an upper bound on the fan-in of the bottom
gates. Our bounds are much stronger and significantly simpler than past lower bounds
([17, 9]) on such circuits. Our proofs of Theorem 3 and Theorem 9 are based on proving
lower bounds on the degree of specific polynomials, using Lemma 1, that are constructed
using the balancing set families and depth-2 threshold circuits, respectively.

Table 1 and Table 2 summarize all our results discussed in the introduction.

Outline
The rest of the paper is organized as follows. We discuss related work in Section 2. We
prove Lemma 1 in Section 3. Theorem 3 is proved in Section 4, and the application of
our techniques to generalizations of balancing set families are discussed in Section 5. In
particular, Section 5 contains the proofs of Theorem 4, 5 and 6. Theorems 9 and 12 are
proved in Sections 6 and 7 respectively. Theorem 8 is proved in Section 8.

Notation
Fp denotes the field with p elements, where p is a prime. For a positive integer n, µ(n)
denotes the largest prime p so that p ≤ n. For a natural number n, [n] denotes the set
{1, 2, . . . , n}. For every x ∈ {0, 1}n and i ∈ [n], xi denotes the i’th coordinate of x. For
x ∈ {0, 1}n, when x1 = x2 = . . . = xn = 0, we refer to x as the all-zeros vector or the
all-zeros input. The all-ones vector or all-ones input is defined similarly.
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Table 2 Summary of results on depth-2 circuits. n is the number of input bits and p is a prime.
k is the top fan-in and r is the maximum fan-in of the bottom gates. µ(n) denotes the largest prime
that is no more than n.

Function Bottom Gates Result

Majority thresholds and reads no
constants

k ≥ n/2 or threshold = p when
n = 2p Theorem 9

Majority thresholds max{k, r} ≥ n/2 when n = 2p Corollary 10

Majority majority k ≥ n/2 or r > n− 2 when n =
2p Corollary 11

Majority thresholds k ≥ n/2 − o(n) or threshold ≥
µ(n/2) Theorem 20

Majority thresholds max{k, r} ≥ n/2− o(n) Corollary 21

T (x) unbounded fan-in
thresholds k ≥ (n− 1)/3 Theorem 12

Bounds on µ(n)

Generalizations of Theorems 3 and 9 to the case when n 6= 2p for a prime p are obtained
by using a known lower bound on µ(n). Baker, Harman and Pintz [8] showed that the
largest gap between consecutive primes is bounded by O(n0.53). As a consequence, we can
conclude that

I Theorem 13 ([8]). µ(n) ≥ n−O(n0.53).

2 Related Work

2.1 Balancing Families
Various notions of balancing set families have been studied. We first describe the question
posed by Galvin [12, 10, 15].

I Definition 14. Let n be a positive integer that is divisible by 4. A family of proper subsets
S1, . . . , Sk ⊂ [n] is exactly balancing if each Si is of size n/2 and for every X ⊂ [n] of size
n/2 there is an i ∈ [k] such that |X ∩ Si| = |Si|/2.

When n is divisible by 4, let G(n) denote the minimum k for which an exactly balancing
set family of size k exists. Clearly, the family of all subsets of [n] of size n/2 is exactly
balancing, and any family with only one set is not exactly balancing. Therefore finding the
minimum number of sets in any exactly balancing set family is interesting.

Galvin [12] observed that G(n) ≤ n/2; take n/2 consecutive intervals of length n/2.
Frankl and Rödl [12] proved that G(n) ≥ Ω(n) if n/4 is odd, and later Enomote, Frankl,
Ito and Nomura [10] proved that if n/4 is odd, then G(n) ≥ n/2. Proofs in [12, 10] are
based on techniques from linear algebra and extremal set theory. Recently, Hegedűs [15]
used algebraic techniques to proved that if n/4 is prime, then G(n) ≥ n/4. For arbitrary
values of n, Alon, Kumar and Volk [5] proved that G(n) ≥ Ω(n). Theorem 5 improves the
bound of Alon, Kumar and Volk.

Several natural variants of Galvin’s problem have been studied. One such variant was
studied by Jansen [16], and Alon, Kumar and Volk [5]:
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I Definition 15. Let n be an even integer, and let τ be a positive integer. Let S1, . . . , Sk ⊂ [n]
with 2τ ≤ |Si| ≤ n − 2τ . We say that S1, . . . , Sk is a τ -balancing set family if for every
X ⊂ [n] of size n/2 there is an i ∈ [k] such that

|Si|/2− τ < |X ∩ Si| < |Si|/2 + τ.

When n is even and τ is positive, let J(n, τ) denote the minimum k for which such a family
of size k exists. This variant allows the family to have sets with different sizes and the
intersection sizes to take more than just one value. Alon, Kumar and Volk proved that
J(n, τ) ≥ 1

105 · (n/τ). This lower bound is sharp up to a constant factor. Theorem 6 improves
their bound to n−o(n)

7τ .
Our techniques yield a quantitatively stronger lower bound on balancing set families.

The improvement stems from the fact that the ratio of the degree of the polynomial to the
number of variables of the polynomial increases from 1/4 to 1/2. Moreover, the application
of Lemma 1 eliminates an additional argument using the probabilistic method employed in
the work of Alon, Kumar and Volk.

There are many applications of balancing set families. Alon, Bergmann, Coppersmith
and Odlyzko [4] studied a different version of balancing sets that has applications to optical
data communication. Jansen [16] and Alon, Kumar, and Volk [5] showed applications to
proving lower bounds for syntactic multilinear algebraic circuits (also see [20]).

2.2 Threshold Circuits
A depth-d majority circuit can be defined in analogy to depth-2 majority circuits. Let Md(n)
denote the minimum fan-in of a depth-d majority circuit that computes the majority of n
bits. A long line of work has addressed the question of computing the majority function
using majority circuits. Ajtai, Komlós and Szemerédi [1] showed that Mc·logn(n) = O(1), for
some constant c. Using probabilistic arguments, Valiant [22] showed the existence of depth
O(logn) majority circuit that computes the majority, where each gate has constant fan-in.
Allender and Koucky [2] showed that Mc(n) = O(nε(c)), where c is a constant and ε(c) is
a function of c. Kulikov and Podolskii proved that M3(n) ≤ Õ

(
n2/3)1. See [17, 9, 11] and

references within for a detailed treatment.
We now discuss previous bounds on M2(n). Kulikov and Podolskii [17] used probabilistic

arguments to show that M2(n) ≥ Ω̃
(
n7/10). They also proved that M2(n) ≥ Ω̃

(
n13/19) when

the gates are not required to read distinct variables. Amano and Yoshida [7] showed that
for every odd n ≥ 7, M2(n) ≤ n− 2, where they allowed some of the gates to read variables
multiple times. Later, Engles, Garg, Makino and Rao [9] used ideas from discrepancy theory
to prove that M2(n) ≥ Ω(n4/5) when the gates do not read constants. Posobin [19] showed
that majority can be computed by a depth-2 majority circuit of fan-in at most 2n/3 + 4
(this was also proved independently by Bauwens [19]). Very recently, Amano [6] gave a
construction of a depth-2 majority circuit computing majority with bottom fan-in n− 2 and
top fan-in n/2 + 2.

Kulikov and Podolskii [17] studied and proved lower bounds on other variants of depth-2
majority circuits. In particular, they consider circuits in which each majority gate can read a
variable multiple times. Let W be the maximum over the number of times a variable is read.
They prove that M2(n) ≥ min

{
Ω̃
(
n13/19) , Ω̃( n7/10

W 3/10

)}
. In this case, our techniques yield a

lower bound of M2(n) ≥ Ω
(
n
W

)
. Essentially, their lower bound is stronger when W ≥ n6/19

and our bound is stronger when W ≤ n6/19.

1 In the rest of the paper, Õ(a) and Ω̃(a) mean that polylog(a) factors are ignored.

ICALP 2019



72:8 Lower Bounds on Balancing Sets

The question of computing weighted thresholds using a depth-2 threshold function is
connected to the study of exact threshold circuits initiated by Hansen and Podolskii [13].
It may also be useful in studying the expressibility of general functions using threshold or
ReLu gates; see the work of Williams [23].

We would like to emphasize that the lower bounds in Theorems 9 and 12 are tight and
only off by constant factors. In addition, most functions considered in past work on majority
and threshold circuit lower bounds do not admit depth-2 majority or threshold circuits with
linear fan-in on the gates. In fact, one can prove exponential lower bounds on the size of
circuits computing these functions (see [13]).

3 Proof of Lemma 1

Let f be as in the assumption of Lemma 1. Consider the polynomial

g(x1, . . . , x2p) = (1− x1) ·
p−1∏
i=1

(
i−

2p∑
i=1

xi

)
,

which has degree p. For x ∈ {0, 1}2p, observe that g(x) = 0 if the number of ones in x is not
a multiple of p or x is the all-ones input, and g(x) 6= 0 if x is the all-zeros input. Therefore,
f · g is non-zero on the all-zeros input and 0 elsewhere in {0, 1}2p.

We will now show that the degree of f · g is at least 2p. Consider the polynomial h that is
obtained by multilinearizing f · g. In other words, replace every power xki with xi in f · g, for
k ≥ 1, Observe that the degree of h is at most the degree of f . Define α = h(0, . . . , 0). Recall
that there is a one-to-one correspondence between multilinear polynomials over Fp on 2p
variables and the set of all functions from {0, 1}2p → Fp. Since h is the same as the function
that is α on the all-zeros input and 0 elsewhere in {0, 1}2p, we can use this correspondence
to conclude that

h(x1, . . . , x2p) = α ·
2p∏
i=1

(1− xi).

Therefore the degree of h is 2p.
Hence the degree of f · g is at least 2p, implying that the degree of f is at least p.

4 Upper and Lower Bounds on B(n)

In this section, we describe some explicit balancing set families.

I Lemma 16.
1. If n is divisible by 4 and n 6= 4, then B(n) ≤ n/2− 1.
2. If n is divisible by 2 and n 6= 2, then B(n) ≤ n/2.

Proof. When 4 divides n, there is a family of k = n
2 − 1 sets that are balancing: take any k

sets, each of size 4, satisfying Si ∩ Sj = {1, 2} for all i 6= j. This family has the property
that for any subset X ⊂ [n] of size n/2, there is an i ∈ [k] such that |X ∩ Si| = 2.

When 2 divides n, there is a family of k = n/2 sets that are balancing: take any k sets,
each of size 2, satisfying Si ∩ Sj = {1} for all i 6= j. This family has the property that for
any subset X ⊂ [n] of size n/2, there is an i ∈ [k] such that |X ∩ Si| = 1. J

As implied by Theorem 3, when n = 2p for a prime p, there is no construction with
k = n

2 − 1 sets; the minimum possible k in this case is n
2 . We now prove Theorem 3.
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Proof of Theorem 3. Lemma 16 implies that B(n) ≤ p = n/2. We now proceed to show
that B(n) ≥ p = n/2. Let S1, . . . , Sk be the balancing set family. Without loss of generality
each |Si| is even, and therefore 1 ≤ |Si|/2 ≤ p− 1 for all i ∈ [k]. We will now construct a
polynomial that is non-zero on the all-zeros input and vanishes on all x ∈ {0, 1}2p with p
ones. Define the polynomial

f(x1, . . . , x2p) =
k∏
i=1

|Si|/2−∑
j∈Si

xj

 ,

over Fp that has degree k. Since 1 ≤ |Si|/2 ≤ p− 1 for all i ∈ [k], f(0) 6= 0. We will show
that f(x) = 0, for x ∈ {0, 1}2p, when x exactly has p ones. This is because the input x to f
with exactly p ones corresponds to a set X ⊂ [2p] of size p. The fact that there is an i ∈ [k]
such that |Si ∩X| = |Si|/2, implies that |Si|/2−

∑
j∈Si

xj = 0. By applying Lemma 1, we
can conclude that k ≥ p. J

Remark

In Definition 2, since |Si ∩X| = |Si|/2, it is no loss of generality to assume that each Si
is even sized. The definition can be relaxed by having |Si ∩X| = d|Si|/2e. In this relaxed
definition, the family {1}, {2, . . . , 2p} is balancing and the size of the family is 2. However, if
we impose an extra condition that each |Si| ≥ 2, then we can prove that the size of any such
family is at least p.

5 Balancing Families: Generalizations and Improvements

In this section we prove Theorems 4, 5 and 6. The following lemma is crucial in the proofs
these theorems.

I Lemma 17. Let n be an even integer. Let S1, . . . , Sk ⊂ [n] and T1, . . . , Tk ⊆ [µ(n/2)− 1].
Suppose that there is a set R ⊆ [n] of size n− 2µ(n/2) such that for every i ∈ [k] and t ∈ Ti,
|Si ∩ R| < t, and for every X ⊂ [n] of size n/2 there is an i ∈ [k] such that |X ∩ Si| ∈ Ti.
Then

∑k
i=1 |Ti| ≥ µ(n/2).

Proof. Define the polynomial

F (x1, . . . , xn) =
k∏
i=1

∏
t∈Ti

t−∑
j∈Si

xj

 .

Let p = µ(n/2). Define the polynomial f(x1, x2, . . . , x2p) over Fp by setting in F half of the
variables indexed by R to 0 and the other half to 1. The degree of f is at most

∑k
i=1 |Ti|.

We claim that f takes the value 0 on all inputs with exactly p ones and f is non-zero on the
all-zeros input. This is sufficient to prove the theorem as Lemma 1 implies that

∑k
i=1 |Ti| ≥ p.

The former part of the claim is true because the input x to f with exactly p ones along
with the variables in R that are set to 1 correspond to a set X ⊂ [n] of size n/2. The fact
that there is an i ∈ [k] and t ∈ Ti with |Si ∩X| = t, implies t−

∑
j∈Si

xj = 0.
We now proceed to show that f is non-zero on the all-zeros input. On the all-zeros input

for f , we know that all variables indexed by [n] \ R are set to 0 and we do not have any
control on the assignment to the variables in R. However, since for every i ∈ [k] and t ∈ Ti,
0 < t < p and |Si ∩R| < t, f is non-zero on the all-zeros input. J
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Implications of Lemma 17
We now discuss the implications of Lemma 17 to the questions about balancing set families
discussed in Section 1 and Section 2. The choice of R in Lemma 17 depends on the context.
We obtain an asymptotically sharp lower bound for Galvin’s problem and an improvement
over the lower bound of Alon, Kumar and Volk.

B(n)

We prove Theorem 4 using the following claim (the proof of the claim is presented in the full
version of the paper).

B Claim 18. Let n be a positive integer and S1, . . . , Sk ⊂ [n] be a balancing set family. If n
is large enough and k < n/2− 2n0.98, then there exists a R ⊂ [n] of size n− 2µ(n/2) such
that for every i ∈ [k], |Si ∩R| < |Si|/2.

Proof of Theorem 4. Assume for contradiction that B(n) < n/2 − 2n0.98. Let R be the
set given by Claim 18. By invoking Lemma 17 with R and each Ti = {|Si|/2}, we get
B(n) ≥ µ(n/2) ≥ n/2−O

(
n0.53), where the last inequality follows from Theorem 13. This

contradicts the assumption for large values of n. J

J(n, τ )

We prove Theorem 6. We have that each

Ti = {|Si|/2− τ + 1, . . . , |Si|/2, . . . , |Si|/2 + τ − 1}.

When n = 2p for a prime p, R = ∅. Observing that each Ti is of size 2τ − 1, Lemma 17
implies Part 1 of Theorem 6.

We now proceed to prove Part 2 of Theorem 6. We need the following claim, and this
claim is proved in the full version of the paper.

B Claim 19. Let n be a positive integer, τ be a positive integer, and S1, . . . , Sk ⊂ [n] be
τ -balancing set family. If n is large enough and k < n/(7τ)− n0.98/(7τ), then there exists a
R ⊂ [n] of size n− 2µ(n/2) such that for every i ∈ [k], |Si ∩R| ≤ |Si|/2− τ .

Proof of Part 2 of Theorem 6. Assume for contradiction that

J(n, τ) < n/(7τ)− n0.98/(7τ).

Let R be the set given by Claim 19. By invoking Lemma 17 with R and each

Ti = {|Si|/2− τ + 1, . . . , |Si|/2, . . . , |Si|/2 + τ − 1},

we get J(n, τ) ≥ µ(n/2)
2τ−1 ≥

n−O(n0.53)
4τ−2 , where the last inequality follows from Theorem 13.

This contradicts the assumption for large values of n. J

G(n)

We prove Theorem 5. For Galvin’s problem, n is divisible by 4, each Si is of size n/2 and
each Ti = {n/4}. R can be chosen to be any arbitrary set of size n− 2µ(n/2). For Lemma
17 to apply, we need that for each i ∈ [k] and t ∈ Ti, Ti ⊆ [µ(n/2)− 1] and |Si ∩R| < t. This
translates in to the condition that µ(n/2) > 3n/8. Lemma 17 in conjunction with Theorem
13 implies Theorem 5.
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Specifically Theorem 5 shows that our lower bound is sharp up to an additive o(n) term
as G(n) ≤ n/2. It is worth noting that G(n) < n/2 for n ∈ {8, 16}, so a general n/2 lower
bound is false (see [5]).

6 Computing Majority using Depth-2 Threshold Circuits

We first prove Theorem 9.

Proof of Theorem 9. Let k be the top fan-in of the circuit, and let g1, . . . , gk be the threshold
functions given by the bottom gates of the circuit. We know that gi is defined by an inequality
of the form Li(x) ≥ ti for a linear function Li. Assume towards a contradiction that k < p

and each ti 6= p.
Define the polynomial

f(x) =
∏

i∈{j|0<tj<2p}

(Li(x)− ti)

over Fp that has degree at most k. By definition, f(0) is non-zero. We claim that f(x) = 0
on every x ∈ {0, 1}2p with p ones. Indeed, for such a x we have that MAJ(x) = 1, but for x′
that is obtained from x by flipping a coordinate with value 1 to 0, we have that MAJ(x′) = 0.
Observe that each Li is a linear function with coefficients in {0, 1}. Since x and x′ only
differ in one coordinate, we have Li(x)− Li(x′) ∈ {0, 1} for every i ∈ [k]. MAJ(x) = 1 and
MAJ(x′) = 0 implies that there is an i ∈ [k] such that gi(x) = 1 and gi(x′) = 0. This means
that Li(x) = ti, but Li(x′) = ti − 1. Moreover, this implies that 0 < ti < 2p. Hence, for
every x ∈ {0, 1}2p with p ones, there is an i ∈ [k] such that Li(x) = ti and 0 < ti < 2p,
which makes f(x) = 0. Therefore Lemma 1 implies that the degree of f is at least p, which
is a contradiction. J

We obtain the following theorem for arbitrary values of n, which is proved using Theorem 9.

I Theorem 20. In any depth-2 circuit computing the majority of n bits, if the bottom gates
compute unweighted thresholds, either the top fan-in is at least µ(n/2), or some gate at the
bottom computes a threshold Tt with t ≥ µ(n/2).

Proof. Let k be the top fan-in of the circuit, and let p = µ(n/2). If there exists a bottom
gate with threshold at least p, then we are done. So assume that all bottom gates have
threshold less than p. Set half the variables in x2p+1, . . . , xn to 0 and the other half to 1. We
get a new depth-2 circuit computing the majority of x1, . . . , x2p. Any bottom threshold gate
computing Tt that reads constants is equivalent to a threshold gate computing Tt′ on the
same input variables with t′ ≤ t < p, and Tt′ reads no constants. Here, t′ = t− α, where α
is the number of ones read by Tt. Replacing each bottom gate that reads constants with its
equivalent gate that reads no constants, we obtain a depth-2 circuit in which each bottom
gate computes a threshold function with threshold less than p and does not read constants.
By applying Theorem 9, we can conclude that k ≥ p. J

Using Theorem 13 we get a corollary to Theorem 20.

I Corollary 21. In any depth-2 circuit computing the majority of n bits, if the bottom gates
compute unweighted thresholds, then the fan-in is at least n/2−O(n0.53).
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7 Proof of Theorem 12

Let g1, . . . , gk be the threshold functions given by the bottom gates of the circuit. Let

L(x) =
∑
i≤p−1

xi + 2
∑
i>p−1

xi.

Note that L is a polynomial on 3p−1
2 variables. For i ∈ [k], we know that gi is defined by an

inequality of the form Li(x) ≥ ti for a linear function Li with coefficients in {0, 1}.
Consider the polynomial

f(x) =
∏

i∈{j|0<tj<p}

(Li (x)− ti)

over Fp that has degree at most k. By definition, f is non-zero on the all-zeros input. We
will show that f(x) = 0 on x ∈ {0, 1}

3p−1
2 such that L(x) = p.

Let x ∈ {0, 1}
3p−1

2 be such that L(x) = p. Note that for every such x, the number of
ones in it is at most p − 1 and at least 1. For every x′ ∈ {0, 1}

3p−1
2 that is obtained by

flipping one of the coordinates of x with value 1 to 0, we have T (x′) = 0. For such x, x′,
there must be an i ∈ [k] such that gi(x) = 1 and gi(x′) = 0. Moreover, Li being a linear
function with coefficients in {0, 1} implies that Li(x)− Li(x′) ∈ {0, 1}. Since gi(x) 6= gi(x′),
we have Li(x) = ti. In addition, since the number ones in x is at most p− 1 and at least 1,
we get that 0 < ti < p. Hence we can conclude that f(x) = 0.

We now find a polynomial g that is 0 everywhere in {0, 1}
3p−1

2 , except on the all-zeros
input and x such that L(x) = p. Define

g(x) = (1− x1) ·
p−1∏
i=1

(i− L(x)) .

The degree of g is p, and f · g is non-zero on the all-zeros input and 0 elsewhere in {0, 1}
3p−1

2 .
We will show that the degree of f · g is at least (3p− 1)/2. As in the proof of Lemma 1, let h
be the multilinearization of f · g. Then h is non-zero on the all-zeros input and 0 elsewhere
in {0, 1}

3p−1
2 . Therefore the degree of h is at least (3p − 1)/2. Since the degree of h is at

most the degree of f · g, the degree of f is at least (p− 1)/2.

8 Upper and Lower Bounds on U(n, t)

Theorem 8 is proved in this section. We first recall the definition of a Kneser graph. The
Kneser graph Kn,α is a graph whose vertices are identified with the subsets of [n] of size
α, and there is an edge between two vertices if and only if the corresponding subsets are
disjoint. We need the following theorem bounding the chromatic number of Kneser graphs.

I Theorem 22 ([18]). Consider the Kneser graphs in which the vertex set is given by subsets
of [n] of size α. Then the chromatic number of this graph is max{1, n− 2α+ 2}.

Proof of Theorem 8. We first prove the upper bound. The following 2t + 2 sets form an
unbalancing family:

{1}, {2}, . . . , {2t+ 1}, {2t+ 2, 2t+ 3, . . . , n}.
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The above family has the property that for a given X ⊆ [n] of size n/2 − t, either X ⊆
{2t+ 2, 2t+ 3, . . . , n} or not. In the former case,

|X ∩ {2t+ 2, 2t+ 3, . . . , n}| = n/2− t > n− 2t− 1
2 .

In the latter case, there will be an i ∈ [2t+ 1] such that i ∈ X. Therefore, |X ∩ {i}| = 1 > 1
2 .

We now prove the lower bound. Consider the Kneser graph in which the vertex set is
given by subsets of [n] of size n/2− t. We claim that the chromatic number of this graph is
at most k. The coloring is as follows: For every X ⊆ [n] of size n/2− t, we know that there
is an i ∈ [k] such that |Si ∩X| > |Si|/2. The vertex associated with X is given the color i.
This is a proper coloring because for every X,Y ⊆ [n], each of size n/2− t that are disjoint,
it cannot be the case that |X ∩ Si| > |Si|/2 and |Y ∩ Si| > |Si|/2. Therefore by Theorem 22,
we can conclude that k ≥ 2t+ 2. J
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Abstract
We introduce an (ε, δ)-jointly differentially private algorithm for packing problems. Our algorithm
not only achieves the optimal trade-off between the privacy parameter ε and the minimum supply
requirement (up to logarithmic factors), but is also scalable in the sense that the running time is
linear in the number of agents n. Previous algorithms either run in cubic time in n, or require a
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1 Introduction

Suppose a trusted principal has b copies of some privacy-sensitive good, and there are n
agents interested in getting a copy of it. Each agent has some value for receiving a copy of
the good. The principal would like to choose a subset of up to b agents to receive the good so
that sum of their values is maximized.1 However, one of the agents, Alice, gets paranoid that
the others may be able to learn a lot of information about her value for the sensitive good.
In particular, here is a hypothetical scenario that Alice worries about. Suppose the principal
simply allocate to the k agents with the largest values, with Alice being one of them. Then,
all the other n− 1 agents may exchange information and figure out that only b− 1 of them
get a copy and, hence, Alice must also get one. Further suppose that the b-th highest value
among them is, say, $1,000; they would also learn that Alice’s value for the sensitive good
is at least $1,000. Is there an allocation algorithm that addresses Alice’s concerns without
losing too much in the objective?

This problem has been studied in a series of works in the last few years [14, 15, 17]. More
broadly, let us consider a general packing problem with m resources and n agents. Each
agent demands a bundle consists of a certain amount of each resource, and has a certain
value for getting it. The goal is to pick a subset of the agents such that granting them the
corresponding bundles approximately maximizes to sum of the values, subject to the supply
constraints of the resources, while protecting the privacy of any individual agent. This line
of works focus on a specific notation of privacy called joint differential privacy. In a nutshell,

1 This is also known as social welfare maximization in the literature of mechanism design.
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73:2 Scalable and Jointly Differentially Private Packing

it requires that for any individual agent, say, Alice in our example, an adversary shall not
be able to learn more than a negligible amount of information about the agent’s private
information, i.e., her value and demands, from the allocations and prices of the other agents.

How can packing algorithms guarantee joint differential privacy? At a high level, such
algorithms leave some amount of supply of each resource unallocated in some meticulous
and randomized way, so that even if someone knows the allocations and prices of all other
agents as in Alice’s hypothetical scenario, he will not be able to learn with certainty whether
Alice gets a copy of the item, or her value for it. Further, to ensure that the objective is
approximately optimal even with the unallocated supplies, all jointly private algorithms
require the supply of each resource to be sufficiently large. Hence, the literature measures
how good a jointly private algorithm is by the trade-off between the privacy level, quantified
by a parameter ε > 0, and the minimum supply requirement, subject to getting an additive
αn approximation. To this end, Huang and Zhu [17] show that a supply of

√
m
εα per resource,

up to logarithmic factors, is both sufficient and necessary.
Another important consideration is the running time of the algorithms. This is particularly

relevant for (jointly) differentially private algorithms, since they generally require the size of
the dataset, i.e., n, to be sufficiently large to achieve good approximation in the objective.
We argue that practical (jointly) differentially private algorithms must be scalable in the
sense by Teng [26], i.e., the running time shall be quasi-linear in n or better. However,
the aforementioned algorithm by Huang and Zhu [17], which achieves the optimal Õ

(√m
εα

)
supply requirement, is not scalable, as its running time depends cubically in n. Neither are
the earlier algorithms by Hsu et al. [14, 15]. Although Huang and Zhu [17] also propose
an alternative algorithm that is scalable, it requires a much larger supply of Õ

(√mn
εα

)
per

resource. The following question is explicitly left open [17]:

Are there jointly differentially private algorithm that are scalable and at the same time
only require a minimum supply of Õ

(√m
εα

)
per resource?

1.1 Our Contributions
We introduce a jointly differentially private packing algorithm that answers the above open
question affirmatively. The main theorem of this paper is the following:

I Theorem 1. There is an (ε, δ)-jointly differentially private algorithm such that:
1. it returns with high probability a feasible packing solution that is optimal up to an αn

additive factor, provided that the supply per resource is at least Õ
(√m
αε

)
;

2. it stops in O(n) time, omitting dependence in other parameters, with high probability.

The algorithm follows the same high-level framework as the previous ones, which we
summarize below. It maintains for each resource a price (per unit of the resource), which
can be viewed as a dual variable that Lagrangianizes the corresponding resource constraint
of the packing problem. We shall imagine that the prices are posted on a public billboard
for everyone to see, including the agents and the adversary. Given the current prices, each
agent gets the bundle if and only if her value is higher than the total price of the bundle.
The agents’ decisions induce a total demand on each resource, which can be viewed as a
subgradient for the dual prices w.r.t. some dual objective. The algorithm then increases the
prices of the overdemanded resources and decreases those of the underdemended ones. This
process repeats for a certain number of rounds; the final allocation is obtained by averaging
over all the rounds. Since the agents’ allocation is coordinated only through the prices, it
suffices to ensure that the sequence of prices is privacy-preserving. This is formulated as the
billboard lemma by Hsu et al. [14].
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What are the main differences between our algorithm and the existing ones? The previous
non-scalable algorithms are essentially noisy versions of some existing optimization algorithms,
including gradient descent [15] and multiplicative weight update [17], run on the dual space
with a fix step size. They are not scalable because (1) the number of rounds needed by such
algorithm generally depends on how large each coordinate of the subgradient could be (a.k.a.,
the width of the problem), which is roughly n in our problem, and (2) the time needed to
compute the subgradient in each round is linear in n.

The scalable algorithm by Huang and Zhu [17], on the other hand, is a noisy version
of the online multiplicative weight update algorithm (e.g., [2]), which use the demand of
a single agent as an estimator of the overall demand in each round, iterating through all
agents once in a random order. However, it does not seem plausible to avoid having an extra√
n factor in the minimum supply requirement using this approach, as it is not only jointly

differentially private, but also locally private,2 in the sense that it can be implemented in a
way such that the agents add noises themselves so that even the algorithm never accesses
any non-private version of the data. The extra

√
n factor is ubiquitous in the literature of

locally private algorithms [3, 9].
In contrast, our algorithm is a noisy version of the multiplicative weight update algorithm

run on the dual space with different step sizes, which are optimized according on the scale of
the subgradient in each round. Intuitively, it chooses a small step size when the scale of the
subgradient is large, to avoid dramatic changes in prices, and a large step size when the scale
of the subgradient is small, to ensure a good enough progress. The idea of using different
step sizes is widely used in non-private packing algorithms to get width-independent running
time (e.g., [20]). Despite being standard in non-private packing, a direct combination of it
and how the existing approaches add noises to the subgradients lead to suboptimal minimum
supply requirement and/or super-linear running time in n. Instead, we need to further use
different noise scales in different rounds that are tailored to the scales of the subgradients
and, by induction, the corresponding step sizes. In a round where the scale of the subgradient
is large (respectively, small) and the step size is small (respectively, large), the algorithm
adds noises at a larger (respectively, smaller) scale to the subgradient and, in some sense,
uses up less (respectively, more) of the privacy budget. Setting noise scales adaptively over
time introduces several technical difficulties which we will address in details in the technical
sections. To get the results in Theorem 1, the noise scale is inversely proportional to the
square root of the step size. Hence, our algorithm is more precisely characterized as a noisy
version of the multiplicative weight update algorithm run on the dual space with different step
sizes and noise scales, both of which are optimized according on the scale of the subgradient
in each round. Table 1 provides a brief comparison of our algorithm and the existing ones.

1.2 Related Work

The notion of differential privacy is introduced by Dwork et al. [10]. It has evolved through a
long line of works to become a standard notion of privacy in theoretical computer science. See
Dwork and Roth [12] for a textbook introduction. A particularly related line of works study
differentially private algorithms for combinatorial optimization problems and mathematical
programs. McSherry and Talwar [22] introduce a generic (yet computationally inefficient)
method called the exponential mechanism for privately solving optimization problems whose

2 This is not explicitly stated in Huang and Zhu [17]. Nonetheless, it follows straightforwardly from the
definition of the algorithm.
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Table 1 A comparison of the algorithm in this paper and those in previous works. n and m

denote the number of agents and number of resources respectively. ε and α quantify the privacy and
approximation guarantees respectively.

Reference Algorithm Min Supply Running Time (in n)

Hsu et al. [15] Dual GD Õ
(
m
αε

)
O(n3)

Huang and Zhu [17]
Dual MWU (fixed step size) Õ

(√
m
αε

)
O(n3)

Dual Online MWU Õ
(√

mn
αε

)
O(n)

This paper Dual MWU (different step sizes) Õ
(√

m
αε

)
O(n)

feasible set of output is independent on the dataset (e.g., k-means clustering). It is not
applicable to the packing problem considered in this paper, since the set of feasible allocations
crucially rely on the dataset. Hsu et al. [16] study what linear programs can be solved in
a differentially private manner. Unfortunately, packing linear programs are not among the
solvable ones [14].

Subsequently, Kearns et al. [19] introduce a relaxed notion called joint differential privacy.
It is still strong enough to provide provable privacy guarantees, but is also flexible enough
to allow positive results for problems that cannot be solved under the original notion of
differential privacy. This relaxed notion is widely used not only in resource allocation
problems [14, 15, 17] such as the packing problem considered in this paper, but also in
coordinating large games [24, 6, 23, 19, 7], privacy-presering learning [5, 25], privacy-preserving
surveys [13], privacy-preserving prediction markets [8], etc.

Recently, jointly differentially private resource allocation algorithms find further applica-
tions in regularizing strategic behaviors in the problem of learning reserve prices online in
strategic environments [21].

2 Model

For any positive integer `, let [`] denote the set of integers between 1 and `, i.e., {1, 2, . . . , `}.

Packing

Consider a packing problem with n agents and m resources. Each agent i ∈ [n] demands
a bundle of resources; let aij denote her demand for each resource j ∈ [m]. Further, agent
i has value vi for getting the bundle, and 0 for not getting it. We assume that aij ’s
and vi’s are bounded between 0 and 1, which is standard in the literature of differential
privacy. For any agent i ∈ [n], the demands aij ’s and the value vi are her private data. Let
U = {(v, a1, a2, . . . , am) ∈ [0, 1]m+1} denote the data universe. Let D ∈ Un denote a dataset
of n agents. For any resource j ∈ [m], let bj denote its supply. The goal is then to choose a
subset of the agents who get their demanded bundles, such that the sum of the values of
the chosen agents is maximized, subject to that the total demand on each resource does not
exceed the corresponding supply.

We remark that we can make two simplifying assumptions because the focal point of
the jointly differentially private packing problem lies in whether the minimum supply is
sufficiently large. First, we may assume without loss of generality (wlog) that the supplies of
all resources are equal; otherwise, we may rescale the larger ones down to be equal to the



Z. Huang and X. Zhu 73:5

minimum one. Second, we may focus on fractional solutions wlog; any fractional solution
can be converted into an integral one using independent rounding with essentially the same
objective and total demands on the resources, since we are in the large supply regime.

Therefore, the problem can be formulated as the following packing linear program:

maximize
∑
i∈[n] vixi

subject to
∑
i∈[n] aijxi ≤ b ∀j ∈ [m]

0 ≤ xi ≤ 1 ∀i ∈ [n]

Differential Privacy and Joint Differential Privacy

Next, we formally define differential privacy and joint differential privacy with respect to the
packing problem. Two datasets D,D′ ∈ Un are i-neighbors if they differ only in the data of
the i-th agent, that is, if Dj = D′j for all j 6= i. We simply say that they are neighbors if they
are i-neighbors for some i ∈ [n]. Further, let Xi = [0, 1] denote the set of feasible decision to
each agent i ∈ [n]. Let X = X1×X2× · · · ×Xn denote the set of feasible outcomes, ignoring
the supply constraints. The notion of differential privacy by Dwork et al. [10] requires that
the allocation of all agents is chosen from similar distributions for any neighboring datasets
in the following sense:

I Definition 2 (Differential Privacy). A mechanism M : Un 7→ X is (ε, δ)-differentially
private if for any neighbors D,D′ ∈ Un, and any subset of feasible allocations S ⊆ X:

Pr
[
M(D) ∈ S

]
≤ exp(ε) ·Pr

[
M(D′) ∈ S

]
+ δ .

The notion of joint differential privacy by Kearns et al. [19], on the other hand, allows
the allocation to each agent to depend non-privately on her own data, so long the allocation
to the other agents does not. More precisely, the notion is defined as follows:

I Definition 3 (Joint Differential Privacy). A mechanism M : Un 7→ X is (ε, δ)-jointly
differentially private if for any i ∈ [n], any i-neighbors D,D′ ∈ Un, and any subset of feasible
allocations to agents other than i, S−i ⊆ X−i:

Pr
[
M(D)−i ∈ S−i

]
≤ exp(ε) ·Pr

[
M(D′)−i ∈ S−i

]
+ δ .

The technical connections between the two notions are best explained by the following
billboard lemma by Hsu et al. [14].

I Lemma 4 (Billboard Lemma). SupposeM : Un 7→ Y is (ε, δ)-differentially private. Then,
for any collection of functions fi : U × Y 7→ Xi, i ∈ [n], the mechanismM′ that allocates to
each agent i with fi

(
Di,M(D)

)
is (ε, δ)-jointly differentially private.

3 Technical Preliminaries

3.1 Lagrangian
The Lagrangian of the packing linear program is:

maxx∈X minp∈[0,∞)m

∑
i∈[n] vixi −

∑
j∈[m] pj

(∑
i∈[n] aijxi − bj

)
.

Let L(x, p) denote the partial Lagrangian objective, that is:

L(x, p) =
∑
i∈[n] vixi −

∑
j∈[m]

(∑
i∈[n] aijxi − b

)
pj

=
∑
j∈[m] bpj +

∑
i∈[n]

(
vi −

∑
j∈[m] aijpj

)
xi .
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Let D(p) = maxx∈[X] L(x, p) denote the dual objective. We shall interpret pj as the unit
price of resource j for any j ∈ [m]. Given any prices p, an optimal solution x∗(p) of the
optimization problem maxx∈[X] L(x, p) is defined as, for any i ∈ [n]:

x∗i (p) =
{

1, if vi −
∑
j∈[m] aijpj ≥ 0;

0, otherwise.

We have the following envelope theorem (see, e.g., Afriat [1]).

I Lemma 5 (Envolope Theorem). Given any prices p, the derivatives of the Lagrangian
objective w.r.t. the prices, i.e., ∇pL(x, p), is a sub-gradient of D(p) when x = x∗(p).

3.2 Truncated Laplacian Distributions
The Laplacian distribution, given mean µ ∈ R and scale parameter b > 0, is a continuous
distribution defined on (−∞,+∞) such that the probability density of any x ∈ R is:

1
2b exp

(
−|x− µ|

b

)
.

Let Lap(µ, b) denote this distribution. It has mean µ and variance 2b2.
Further, we will consider the truncated Laplacian distribution with support [µ − 1 +

α, µ+ 1− α], denoted as Lap1−α(µ, b). The probability density of any x in the interval is
proportional to that of Lap(µ, b); the density is 0 if it is outside the interval. Lap1−α(µ, b)
also has mean µ, and variance O(b2). (See below for a formal statement.)

Given any mean µ ∈ [−α, α] and target standard deviation (up to a constant factor)
0 < σ ≤ α, let N (µ, σ) = Lap1−α(µ, σ). We use this notation to emphasize that the family
of noise distributions, N (µ, σ)’s, can be replaced by distributions other than the truncated
Laplacian distributions, as long as they satisfy the following properties.The proofs are deferred
to the full version.

I Lemma 6. The noise distributions N (µ, σ)’s satisfy that:
1. the mean of N (µ, σ) is µ;
2. the variance of N (µ, σ) is at most 2σ2.

I Lemma 7. Suppose −α ≤ µ1, µ2 ≤ α, and 0 < σ1, σ2 ≤ α satisfy that for some 0 < η ≤ α,
σ = max{σ1, σ2}, and δ > 0: (1)

∣∣ 1
σ2

1
− 1

σ2
2

∣∣ ≤ η
ασ2 ; (2)

∣∣µ1 − µ2
∣∣ ≤ η; and δ ≤ η ln(2/δ)

σ .
Then, for any S ⊆ R, we have:

Prz∼N (µ1,σ1)
[
z ∈ S

]
≤ exp

(
4η ln(2/δ)

σ

)
·Prz∼N (µ2,σ2)

[
z ∈ S

]
+ δ .

4 Our Algorithm

The algorithm follows a primal dual approach, running best response on the primal (i.e.,
allocation x) and a noisy version of the multiplicative weight update (MWU) method on
the dual (i.e., the prices p). Similar approaches are also used in the previous works that
study jointly differentially private packing problem (e.g., [15, 17]). The new ingredients of
our algorithm are the use of nonuniform step sizes as well as nonuniform noise scales, both
of which are meticulously optimized to achieve both scalable running time and the optimal
trade-off between privacy and the minimum supply requirement. In contrast, all previous
algorithms use a fix step size and a fix noise scale across different rounds.
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Algorithm 1 Private Dual MWU with Optimized Step Sizes and Noise Scales.
Input:

Dataset D ∈ Un, represented by aij ’s and vi’s;
Supply (per resource) b.

Assumptions:
b ≥ Õ

(√m
αε

)
;

We also assume n ≥ b as the problem is trivial otherwise.
Parameters:

Upper bound on dual prices pmax = 2n
b ;

Initial dual prices p1 such that p1
j = pmax

m+1 for any j ∈ [m+ 1];
Upper bound on the sum of step sizes ηsum = ln(m+1)

αb .
1: for t = 1, 2, . . . , until

∑
t η
t ≥ ηsum (via a private counter) do

2: Let xt = x∗(pt), i.e., the best response to pt from the primal viewpoint.
3: Let ∇jD(pt) = b−

∑
i∈[n] aijx

t
i for all j ∈ [m]; let ∇m+1D(pt) = 0.

4: Let the step size and the noise scale be:

ηt = min
{
α

b
,

α

∇1D(pt) ,
α

∇2D(pt) , . . . ,
α

∇mD(pt)

}
, σt =

√
mηsumηt ln(Tm/δ)

ε
.

5: Draw δtj ∼ N
(
µtj , σ

t
)
where µtj = ηt∇jD(pt) for all j ∈ [m]; let δtm+1 = 0.

6: Let p̂t+1
j = ptj · exp(−δtj) for all j ∈ [m+ 1].

7: Let pt+1 be such that pt+1
j ∝ p̂t+1

j and
∑
j∈[m+1] p

t+1
j = pmax.

8: end for
9: Let T be the number of iterations in the for loop.

Output: x̄ = 1
ηsum

∑T
t=1 η

txt, where agent i observes x̄i.

See Algorithm 1 for an exposition by pseudocode.
We now describe the algorithm in more details. Let us first explain the basic dynamic of

the dual MWU algorithm. For technical reasons, we add a dummy resource with 0 supply,
and 0 demands from all agents, and assume that the dual prices sum to a fix and sufficiently
large number pmax. Starting from some initial guess p1 of the prices, say, with pmax uniformly
distributed among the m+ 1 coordinates, the MWU algorithm repeatedly calculates:

xt = x∗
(
pt
)

; pt+1
j ∝ ptj · exp

(
−ηt∇jD

(
pt
))

, ∀j ∈ [m+ 1]

where ηt > 0 is the step size of round t. That is, the allocation xt is the best response to
pt, which induces a subgradient of the dual objective at pt by Lemma 5. Then, from pt to
pt+1, each coordinate j ∈ [m + 1] decreases exponentially by an amount proportional to
corresponding subgradient, before they are rescaled to sum to pmax. With appropriate step
sizes, standard analysis shows that the weighted average allocation across different rounds,
where the weight of each round is its step size, converges to an optimal allocation.3

To obtain the desired privacy guarantee, our algorithm updates the prices with zero-mean
noises added to the subgradients. Below we discuss the choice of step sizes and noise scales.

Step Sizes. Some standard choices of step sizes include uniform step sizes, i.e., ηt = η, which
is used in previous works on jointly private packing algorithms [15, 17], decreasing step sizes,
e.g., ηt = η

t , and step sizes inversely proportional to the magnitude of the subgradient, which

3 The prices also converge, although this is not relevant for our analysis.
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are what our algorithm uses (see, e.g., Koufogiannakis and Young [20], for an application in
the non-private packing problem). Intuitively, our choice of step sizes ensure that at least
one coordinate will be updated by an η amount, which in turns lower bounds the amount of
progress made in each round. Our algorithm has one caveat, however, as it further caps the
step size by an upper bound, which is set to α

b for technical reasons, so that the noise added
in any single round does not affect the result by too much.

Noise Scales. Not surprisingly, our first attempt is to add a uniform amount of noise to
every round like the previous jointly private algorithms in the literature [14, 15, 17]. This,
however, either requires the minimum supply to be much larger than the best possible, or is
not scalable. To see why, let us first consider an overly-simplified argument of why uniform
noise scales work in the previous algorithms. Suppose the algorithm takes T rounds in total.
By a standard composition theorem of differential privacy (see, e.g., Dwork and Roth [12]),
adding noises at a uniform scale Õ

(√
T
ε

)
is sufficient for achieving (ε, δ)-joint differential

privacy. Then, if the algorithm uses a uniform step size η, by the standard concentration
bound, the cumulative noise summing over T rounds is roughly Õ

(
ηT
ε

)
. After averaging, this

is essentially a fixed amount of noise Õ
( 1
ε

)
independent of T and η!

With non-uniform step sizes, however, this is no longer true. As a thought experiment,
suppose there are T ′ � T rounds that have large step sizes, say, all equal to η; the rest of
the rounds can be omitted due to negligible step sizes. Note that the uniform noise scale, i.e.,
Õ
(√

T
ε

)
, is still determined by the total number of rounds, repeating the above calculation

gives that the amount of noise after averaging is Õ
( √

T
ε
√
T ′

)
� Õ

( 1
ε

)
.

The lesson we learned from this though experiment is that the algorithm must choose
non-uniform noise scales: smaller noise scales for more important rounds that have larger
step sizes; and larger noise scales for less important rounds that have smaller step sizes.
More precisely, we optimize the noise scale in each round t to be inversely proportional to
the square root of the step size, i.e,

√
ηt; this is derived form a Cauchy-Schwarz inequality

to balance different aspects of the analysis. (Note that δtj ’s in Algorithm 1 denote the noises
added to the subgradients multiplied by the corresponding step size and, hence, its scale is
proportional to

√
ηt, rather than inversely proportional to it.)

Privacy-preserving Stopping Criteria. Finally, note that the stopping criteria of
∑
t η
t ≥

ηsum must be implemented approximately in a privacy-preserving manner as well. This
can be done by maintaining

∑
t η
t using a standard technique called private counter (e.g.,

Chan et al. [4], Dwork et al. [11]). For simplicity of exposition, we will omit this standard
component and analyze the algorithm assuming the stopping criteria is implemented exactly.

5 Utility and Time Complexity

This section sketches the analysis of utility guarantees provided by Algorithm 1 and its time
complexity, under the assumption that the supply is sufficiently large, i.e., b ≥ Õ

(√m
αε

)
.

5.1 No-regret Lemma
We first introduce a technical lemma that will serve as the overarching tool in the analysis of
the algorithm’s approximation guarantees in terms of the objective and constraint violations,
and its running time. It states that if we compare the Lagrangian objective achieved by the
sequence of xt’s and pt’s computed in the algorithm, and what could have be achieved by
replacing pt’s with an arbitrary but fix p, the difference can be bounded. In other words, the
dual price sequence has no regret in the terminology of online learning.
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I Lemma 8. For any p such that ‖p‖1 = pmax, with high probability, we have:

∑T
t=1 η

t
(
L(xt, pt)− L(xt, p)

)
≤ DKL(p‖p1) + ηsum ·O

(
αn
)
.

Proof Sketch of Lemma 8. We present a proof sketch of a weaker claim that the inequality
holds in expectation, which captures the bottleneck of the analysis. Further showing the
stronger claim in the lemma takes a (slightly nonstandard) concentration inequality for
martingales. See the full version for a complete proof of the lemma.

Readers familiar with this kind of analysis will find it standard and may directly jump to
the end to verify that the contribution from the variance term can be bounded given the
noise scales chosen in the algorithm. Fix any step t, we have the followings:

E
[
ηt
(
L(xt, pt)− L(xt, p)

)]
= E
[
〈ηt∇D(pt), pt − p〉

]
= E
[
〈δt, pt − p〉

]
= E

[〈
ln
(
p̂t+1

pt

)
, p− pt

〉]
= E
[
DKL

(
p‖pt

)
−DKL

(
p‖p̂t+1)+DKL

(
pt‖p̂t+1)]

≤ E
[
DKL

(
p‖pt

)
−DKL

(
p‖pt+1)+DKL

(
pt‖p̂t+1)−DKL

(
pt+1‖p̂t+1)]

≤ E
[
DKL

(
p‖pt

)
−DKL

(
p‖pt+1)+DKL

(
pt‖p̂t+1)] .

We abuse notation and let ln
(
p̂t+1

pt

)
denote a vector whose j-th coordinate is ln

( p̂t+1
j

pt
j

)
for any j ∈ [m+ 1], in the 4th line of the above equation. The last two inequalities follow by
the generalized Pythagorean theorem and the non-negativity of divergences, respectively.

Summing over t ∈ [T ], the first two terms form a telescopic sum; it is bounded by the
first term on the right-hand-side of the inequality stated in the lemma. For the last term, we
have:

E
[
DKL

(
pt‖p̂t+1)] = E

[∑m+1
j=1

(
ptj ln

( pt
j

p̂t+1
j

)
− ptj + p̂t+1

j

)]
= E

[∑m+1
j=1 ptj

(
δtj − 1 + exp

(
− δtj

))]
≤ E

[∑m+1
j=1 ptj

(
δtj
)2] = E

[∑m+1
j=1 ptj

(
E
[
δtj
]2 + Var

[
δtj
])]

.

Note that the step sizes ensure E
[
δtj
]
≤ α. The first part on the right-hand-side sums to:

E
[∑m+1

j=1
∑T
t=1 p

t
j ·E

[
δtj
]2] ≤ αE

[∑m+1
j=1 ptj ·

∑T
t=1
∣∣E[δtj]∣∣]

≤ αE
[∑m+1

j=1 ptj ·
(

2b
∑T
t=1 η

t −
∑T
t=1 η

tE
[
δtj
])]

= ηsum ·O(αn)− αE
[∑m+1

j=1 ptj
∑T
t=1 η

tE
[
δtj
]]

≤ ηsum ·O(αn)− αE
[∑m+1

j=1 ptj
∑T
t=1 η

t∇jD(pt)
]

= ηsum ·O(αn)− αE
[∑m+1

j=1 ηt
(
L(xt, pt)−

∑n
i=1 vix

t
i

)]
≤ ηsum ·O(αn)− αE

[∑m+1
j=1 ηtL(xt, pt)

]
≤ ηsum ·O(αn) .
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Finally, the contribution from the variance part sums to:

E
[∑m+1

j=1
∑T
t=1 p

t
j ·Var

[
δtj
]]
≤ E

[∑m+1
j=1

∑T
t=1 p

t
j · 4

(
σt
)2
]

(Lemma 7)

≤ Õ
(∑T

t=1
pmaxmηsumη

t

ε2

)
(Definition of σt’s)

≤ Õ
(pmaxmη

2
sum

ε

)
= ηsum · Õ

(
n

αε2b2

)
≤ ηsum ·O(αn) . (Assumption on b)

Putting them together proves the lemma. J

By the choice of p1, pmax, ηsum, the fact that L(xt, pt) ≥ OPT since xt’s are best responses,
and the definition of x̄, we further have it in a simpler form as a corollary.

I Lemma 9. For any p such that ‖p‖1 = pmax, with high probability, we have:

OPT− L
(
x̄, p
)
≤ O

(
αn
)
.

5.2 Approximate Optimality
We now argue that the algorithm gets an objective that is optimal up to an O(αn) additive
factor, with the understanding that further improving it to an αn factor does not affect
any of the asymptotic bound. To do so, simply let p be such that the first m coordinates
are all equal to 0, and the last dummy coordinate equals pmax. Then, we have that
L(x̄, p) =

∑n
i=1 vix̄i = ALG. The claim then follows from Lemma 9.

5.3 Feasibility
Next, we argue that the algorithm provides an allocation x̄ that is approximately feasible in
the sense that the total demand for each resource is at most

(
1 +O(α)

)
b. To convert it into

an exactly feasible solution as stated in Theorem 1, we can simply scale the allocation down
by a 1 +O(α) factor, at the cost of further reducing the objective by at most O(αn).

Suppose resource j∗ has the largest demand. Let s =
∑n
i=1 aij∗ x̄i − b the gap between

this demand and the supply b. Let p be such that all but the j∗-th coordinate are equal to 0,
and the j∗-th coordinate is equal to pmax. Then, we have:

L
(
x̄, p
)

= ALG− pmaxs ≤
(
1 + s

b

)
OPT− pmaxs .

By Lemma 9, we get that:(
pmax − OPT

b

)
s ≤ O

(
αn
)
.

Putting together with our choice of pmax = 2n
b , and that OPT ≤ n, we get s ≤ O

(
αb
)
.

5.4 Time Complexity
We next show that the number of iterations of the for loop is upper bounded by a polynomial
of the parameters other than n. More precisely, we show that T ≤ O

(m ln(m+1)
α2

)
.

To do so, we classify the iterations into m+ 1 types, according to how the step size is
chosen. If the step size is ηt = α

b , we call it type 0. Otherwise, if the step size is ηt = α
∇jD(pt)

for some j ∈ [m], we call it type j.
First, the number of type 0 iterations is at most ln(m+1)

α2 , before the sum of the step sizes
exceeds ηsum = ln(m+1)

αb .
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Next, consider the iterations of type j, for each resource j ∈ [m]. In each iteration t of
type j, we have that ηt∇jD(pt) = α. We argue that there cannot be too many such iterations,
because

∑T
t=1 η

t∇jD(pt) is upper bounded as a result of the approximate feasibility of x̄,
which follows from Lemma 9 as argued in the Section 5.3.

On the one hand, we have:∑T
t=1 η

t∇jD(pt) =
∑T
t=1 η

t
(∑n

i=1 aij x̄i − b
)
≤ ηsum ·O(αb) = Õ

(
1
)
.

On the other hand, suppose there are Tj such iterations, we have:∑T
t=1 η

t∇jD(pt) =
∑
t∈Tj

α+
∑
t/∈Tj

ηt∇jD(pt)

≥
∑
t∈Tj

α+
∑
t/∈Tj

ηt(−b) ≥ α|Tj | − 2bηsum = α|Tj | − 2 ln(m+1)
α .

Putting together gives |Tj | ≤ 3 ln(m+1)
α2 .

6 Privacy: Proof Sketch

This section sketches the proof that Algorithm 1 is (ε, δ)-jointly differentially private. See
the full version for a complete argument.

First, consider any fix step t. Suppose D and D̃ are two neighboring datasets. Further
suppose the random realizations of the first t − 1 iterations are such that x1, x2, . . . , xt−1

and p1, p2, . . . , pt−1 are identical on D and D̃. Let us consider the privacy of step t alone.
In fact, let us focus on a resource j ∈ [m]. How does the distribution from which δtj is

drawn differ on the two datasets? Suppose the step sizes are η and η̃ respectively. Then, by
the choice of step sizes in the algorithm and that ∇jD(pt) differs by at most 1, we have:∣∣ 1

η −
1
η̃

∣∣ ≤ 1
α .

Suppose the standard deviations are σ and σ̃, and the means are µ and µ̃, respectively
on the two datasets. They satisfy that:∣∣ 1

σ2 − 1
σ̃2

∣∣ = ε2

mηsum ln(T/δ)
∣∣ 1
η −

1
η̃

∣∣ ≤ ε2

αmηsum ln(Tm/δ) = η
ασ2 ,∣∣µ− µ̃∣∣ ≤ η∣∣µη − µ̃

η̃

∣∣+ µ̃η
∣∣ 1
η −

1
η̃

∣∣ ≤ η + αηα−1 = 2η ,

where
∣∣µ
η −

µ̃
η̃

∣∣ ≤ 1 because it measures the difference in ∇jD(pt).
Also it’s easy to verify that ηt ≤ α. Therefore, by Lemma 7, we have that the update

from price ptj to p̃t+1
j posted in round t for resource j is (εt, δ

Tm )-differentially private for:

εt = O
(
ηt

σt

)
= ε
√
ηt ln(Tm/δ)
√
mηsum

.

Then, intuitively by the composition theorem (see, e.g., Dwork and Roth [12]), the price
sequence is (ε, δ)-differentially private because:

T∑
t=1

m∑
j=1

(
εt
)2 = O

( ε2ηt ln2(Tm/δ)
mηsum

)
= O

(
ε2

ln(2/δ)
)
.

However, note that the standard statement of the composition theorem does not directly
apply here since the privacy budget εt in each step is chosen adaptively. Fortunately, the
underlying argument still goes through. Again, see the full version for details.

Finally, the privacy guarantee of Algorithm 1 follows by the billboard lemma (Lemma 4).
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Abstract
Graph Balancing is the problem of orienting the edges of a weighted multigraph so as to minimize
the maximum weighted in-degree. Since the introduction of the problem the best algorithm known
achieves an approximation ratio of 1.75 and it is based on rounding a linear program with this exact
integrality gap. It is also known that there is no (1.5− ε)-approximation algorithm, unless P = NP.
Can we do better than 1.75?

We prove that a different LP formulation, the configuration LP, has a strictly smaller integrality
gap. Graph Balancing was the last one in a group of related problems from literature, for which it
was open whether the configuration LP is stronger than previous, simple LP relaxations. We base our
proof on a local search approach that has been applied successfully to the more general Restricted
Assignment problem, which in turn is a prominent special case of makespan minimization on
unrelated machines. With a number of technical novelties we are able to obtain a bound of 1.749
for the case of Graph Balancing. It is not clear whether the local search algorithm we present
terminates in polynomial time, which means that the bound is non-constructive. However, it is a
strong evidence that a better approximation algorithm is possible using the configuration LP and it
allows the optimum to be estimated within a factor better than 1.75.

A particularly interesting aspect of our techniques is the way we handle small edges in the local
search. We manage to exploit the configuration constraints enforced on small edges in the LP. This
may be of interest to other problems such as Restricted Assignment as well.
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1 Introduction

In this paper we consider weighted, undirected multigraphs that may contain loops. We write
such a multigraph as G = (V,E, r, w), where V is the set of vertices, E is the set of edge
identities, and r is a function E → {{u, v} : u, v ∈ V } that defines the endpoints for every
edge. Note that in the definition above we allow u = v, which describes a loop. E is often
defined as a set of vertex pairs. We use the function r instead, since it avoids some issues
due to multigraphs. The weight function w : E → R>0 assigns positive weights to the edges.
In the Graph Balancing problem we want to compute an orientation of the edges, i.e., one
of the ways to turn the graph into a directed graph. The goal is to minimize the maximum
weighted in-degree over all vertices, that is maxv∈V

∑
e∈δ−(v) w(e), where δ−(v) are the

incoming edges of vertex v in the resulting digraph. Apart from being an arguably natural
problem, Graph Balancing has been of particular interest to the scheduling community.
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It is one of the simplest special cases of makespan minimization on unrelated machines for
which an inapproximability bound of 1.5− ε is known, which is already the best that is known
in the general problem. In the interpretation as a scheduling problem, machines correspond
to vertices and jobs to edges, i.e., each job has only two potential machines to which it
can be assigned. The problem was introduced by Ebenlendr, Krčál, and Sgall [9] and they
gave a polynomial time 1.75-approximation for it. Indepenently and under a different name,
Asahiro et al. [4] studied the problem and showed that no (1.5− ε)-approximation is possible
unless P = NP. The algorithm by Ebenlendr et al. rounds the solution of a particular
linear programming formulation. This appears to be the best one can hope for using their
techniques, since the ratio between integral optimum and fractional optimum of the LP, the
integrality gap, can be arbitrarily close to 1.75 [9]. Using a completely different approach
to [9], Huang and Ott developed a purely combinatorial algorithm for the problem [10]. With
5/3 + 4/21 ≈ 1.857, however, their approximation ratio is inferior to the original algorithm.
Another algorithm for Graph Balancing, developed by Wang and Sitters [21], achieves an
approximation ratio of 11/6 ≈ 1.833, i.e., also worse than the original, but notable for being
simpler. For the special case of only two different edge weights, three independent groups
found a tight 1.5-approximation [7, 10, 17].

A good candidate for a stronger linear program to that from [9] is the configuration LP.
It was introduced by Bansal and Sviridenko for the more general problem Scheduling on
Unrelated Machines and the closely related Santa Claus problem [5]. It is easy to
show that this LP is at least as strong as the LP from [9] (see the same paper), i.e., the
integrality gap must be at most 1.75 as well. The best lower bound known is 1.5 (see for
instance [11], this holds even for the case of Graph Balancing). In recent literature, the
configuration LP has enabled breakthroughs in the restricted variants for both of the problems
above [3, 19]. The restricted variant of Scheduling on Unrelated Machines (also known
as Restricted Assignment) can be seen as Graph Balancing with hyperedges. In
particular, it contains the Graph Balancing problem as a special case. In this setting, the
configuration LP was shown first to have an integrality gap of at most 33/17 ≈ 1.941 [19],
which was improved to 11/6 ≈ 1.833 by us [13]. This non-constructive proof is by a local
search algorithm that is not known to terminate in polynomial time. In this paper, we present
a sophisticated local search algorithm for Graph Balancing and obtain the following result.

I Theorem 1. The integrality gap of the configuration LP is at most 1.749 for Graph
Balancing.

In other words, it is stronger than the LP from [9]. Although this does not give a polynomial
time approximation algorithm, it is strong evidence that such an algorithm can be developed
using the configuration LP. Furthermore, the optimal solution can be estimated in polynomial
time within a factor of 1.749 + ε for any ε > 0 by approximating the configuration LP. We
emphasize that the purpose of this paper is to show a separation between the configuration
LP and the previously used LP relaxation. The constants in the proof are not optimized. We
chose to keep the case analysis (which is already difficult) and constants as simple as possible
instead of improving the third decimal place. A summary of results regarding the configuration
LP is given in Table 1. In fact, for all of the problems except for Graph Balancing it
was known whether the configuration LP improves over the previous state-of-the-art. Our
work in [15] indicates that earlier bounds on the integrality gap of the configuration LP in
related problems disregard many constraints enforced on small edges/jobs, but that without
them the LP might be much weaker. More precisely, these proofs used only properties that
are already enforced by a weaker configuration LP that allows small edges/jobs to appear
fractionally in a configuration. This weaker LP, however, has an integrality gap strictly
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Table 1 Integrality gap of the configuration LP for various problems.

Lower bound Upper bound
Scheduling on Unrelated Machines 2 2 [16]
⊃ Restricted Assignment 1.5 1.833.. [13]
⊃ Graph Balancing 1.5 1.749
⊃ Unrelated Graph Balancing 2 [20] 2
Santa Claus ∞ [5] ∞ [5]
⊃ Restricted Santa Claus 2 3.833.. [14, 8]
⊃ Max-Min Unrelated Graph Balancing 2 2 [20]

higher than 1.5, whereas for the configuration LP it is still open whether 1.5 is the correct
answer. The backbone of our new proof is the utilization of these small edge constraints (see
end of Section 3.1). This may be relevant to other related local search based proofs as well.

Other related work. The problem of minimizing the maximum out-degree is equivalent
to the maximum in-degree. The very similar problem of maximizing the minimum in- or
out-degree has been settled by Wiese and Verschae [20]. They gave a 2-approximation and
this is the best possible assuming P 6= NP. Surprisingly, this holds even in the unrelated case
when the value of an edge may be different on each end. They do not use the configuration LP,
but it is easy to also get a bound of 2 on its integrality gap using their ideas. For the restricted
case (a special case of the unrelated one) this bound of 2 was already proven by [6]. We
are not aware of any evidence that Graph Balancing is easier on simple weighted graphs
(without multiedges and loops). The same reduction for the state-of-the-art lower bound
holds even in that case. A number of recent publications deal with the important question
on how related local search algorithms can be turned into efficient algorithms [1, 2, 12, 18].

2 Preliminaries

Notation. For some v ∈ V we will denote by δ(v) the incident edges, i.e. those e ∈ E with
v ∈ r(e). When a particular orientation is clear from the context, we will write δ−(v) for the
incoming edges and δ+(v) for the outgoing edges of a vertex. For some F ⊆ E we will denote
by δF (v) the incident edges of v restricted to F and δ−F (v), δ+

F (v) accordingly. For some
e ∈ E we will describe by t(e) ∈ r(e) the vertex it is oriented towards and by s(e) ∈ r(e)
the vertex it is leaving. For a loop e, i.e., r(e) = {v} for some v ∈ V , it always holds that
t(e) = s(e). For a subset of edges S ⊆ E we will write w(S) for

∑
e∈S w(e) and similar for

other functions over the edges.

LP relaxations. The following linear programs have no objective functions. Instead they
parameterized by τ , the makespan. The optimum is the lowest τ for which it is feasible. This
will be denoted by OPT∗ (referring to the configuration LP in the rest of the paper). First
we look at the assignment LP by Lenstra, Shmoys, and Tardos [16]. It has a variable xe,v for
every vertex v and incident edge e ∈ δ(v), which indicates whether e is oriented towards v.

The assignment LP.∑
e∈δ(v)

w(e) · xe,v ≤ τ ∀v ∈ V,
∑
v∈r(e)

xe,v = 1 ∀e ∈ E, xe,v ∈ [0, 1]
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The first constraint ensures that no vertex has more than weight τ of edges oriented towards
it. The second one describes that each edge is oriented towards one vertex. The assignment
LP has an integrality gap of 2. Let B denote the big edges e, which have w(e) > 0.5 · τ . It is
clear that an integral orientation can assign at most one such edge to each vertex. Ebenlendr
et al. [9] show that adding the constraint

∑
e∈δB(v) xe,v ≤ 1 ∀v ∈ V improves the integrality

gap to 1.75. They also give other LP relaxations, but show that none of them have an
integrality gap strictly better than 1.75.

Now we will introduce the configuration LP. A configuration is a subset of edges that can be
oriented towards a particular vertex without exceeding a particular makespan τ . Formally, we
define the configurations of a vertex v and a makespan τ as C(v, τ) := {C ⊆ δ(v) : w(C) ≤ τ}.
The configuration LP now assigns fractions of configurations to each machine.

Primal of the configuration LP. Dual of the configuration LP.∑
v∈V

∑
C∈C(v,τ)

xv,C ≤ 1 ∀v ∈ V

∑
v∈r(e)

∑
C∈C(v,τ):e∈C

xv,C ≥ 1 ∀e ∈ E

xv,C ≥ 0

min
∑
v∈V

yv −
∑
e∈E

ze

s.t.
∑
e∈C

ze ≤ yv ∀v ∈ V,C ∈ C(v, τ)

y, z ≥ 0

Although the configuration LP has exponential size, a (1+ε)-approximation can be computed
in polynomial time for every ε > 0 [5]. We are particularly interested in the dual of the
configuration LP (which is constructed after adding the objective function min (0, . . . , 0)Tx).
Note that τ is considered a constant in both the primal and the dual. A common idea for
proving τ is lower than the optimum is to show that the dual is unbounded for τ (instead of
directly showing that the primal is infeasible for τ).

I Lemma 2. If there exists y : V → R≥0, and z : E → R≥0, such that
∑
e∈C z(e) ≤ y(v) for

all v ∈ V,C ∈ C(v, τ) and
∑
v∈V y(v) <

∑
e∈E z(e), then τ < OPT∗.

This holds because y, z is a feasible solution with negative objective value for the dual and so
are the same values scaled by any α > 0. This way an arbitrarily low objective value can be
obtained. Lemma 2 can be seen as a generalization of a space argument: Consider y(v) = τ

and z(e) = w(e). Then for all v ∈ V,C ∈ C(v, τ),
∑
e∈C z(e) =

∑
e∈C w(e) ≤ τ = y(v). Thus,

by the Lemma we have that |V | · τ =
∑
v∈V y(v) <

∑
e∈E z(e) = w(E) implies τ < OPT∗.

3 Graph Balancing in a special case

To introduce our techniques, we first consider a simplified case where w(e) ∈ (0, 0.5] ∪ {1}
for each e ∈ E and the configuration LP is feasible for 1. We will show that there exists
an orientation with maximum weighted in-degree 1 +R where R = 0.74. The proof for the
general case (with a slightly worse rate) can be found in the full version of the paper.

I Definition 3 (Tiny, small, big edges). We call an edge e tiny, if w(e) ≤ 1− R; small, if
1−R < w(e) ≤ 1/2; and big, if w(e) = 1. We will write for the tiny, small, and big edges
T ⊆ E,S ⊆ E, and B ⊆ E, respectively.

I Definition 4 (Good and bad vertices). For a given orientation, we call a vertex v good, if
w(δ−(v)) ≤ 1 +R. A vertex is bad, if it is not good.
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The local search algorithm starts with an arbitrary orientation and flips edges until all
vertices are good. During this process, a vertex that is already good will never be made
bad. It is then proved that (1) the algorithm terminates and (2) when it cannot find a
useful edge to flip, the configuration LP also cannot distribute the edges well, i.e., OPT∗ > 1,
a contradiction.

3.1 Informal overview
Before we give a formal definition of the local search algorithm, we devote this section to
giving intuition. We start with very easy algorithms and give challenging instances that
motivate the more advanced ideas.

As a toy algorithm consider the following: Start with an arbitrary orientation and repeat
until all vertices are good. Whenever there is an edge oriented towards a bad vertex such
that its other vertex is good and would remain good even if the edge was flipped (this is
called a valid flip), flip this edge. In the following example, both LP and integral optimum
are 1. Suppose the algorithm tries to obtain a solution of makespan 2− ε with ε > 0.

u v w
1

1 1

u is bad, v and w are good. However, the algorithm cannot flip one of the edges between u
and v, because this would make v bad. It will not flip the edge between v and w, because v
is already good. Hence, the algorithm fails. Obviously, in this example we should flip the
edge between v and w and then fix u. Let us try to integrate this in the algorithm. We
introduce the concept of pending flips. When the algorithm wants to flip an edge, but it
cannot, because this would make a vertex bad, we add this edge to a list of pending flips.
These will be executed once the flip is valid. In the example above, the algorithm could add
the edges between u and v to the pending flips, but would not change their orientation, yet.
For a pending flip e let us call s(e) the prospect vertex and t(e) the current vertex. As seen
in the example above a sensible local search algorithm should try to move edges away from
pending flips’ prospect vertices as well (in addition to the bad vertices).

We now state the second toy algorithm. Initialize the pending flips as an empty list.
Repeat the following until all vertices are good. Let U be the set of vertices that are either
bad or prospect vertices of pending flips. Find an edge from V/U to U and add it to the
pending flips. As long as there is a valid pending flip, (1) execute it and (2) delete all pending
flips added after it. (2) is to ensure obsolete pending flips are removed. Without it there
can be situations where a pending flip has its current vertex in V \ U , because the pending
flip that initially led us to adding it has been executed. This algorithm always succeeds for
makespan 1.75 in the special case where weights are in (0, 0.5] ∪ {1} and OPT∗ = 1. We
will quickly go over the arguments, since it gives a good idea on how to use the dual of the
configuration LP. At this point we will only argue that the algorithm does not get stuck.
Normally, we would also have to prove that it terminates (we omit this for sake of brevity).
Suppose toward contradiction that the algorithm gets stuck, i.e., there is no valid pending
flip and there are no edges from V/U to U . Let F be the big edges e with t(e) ∈ U . We set

z(e) =
{
w(e) if t(e) ∈ U ,
0 otherwise.
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y(v) =


w(δ−(v)) + 1

4 |δ
+
F (v)| − 1

4 |δ
−
F (v)| if v ∈ U and v is good,

w(δ−(v)) + 1
4 |δ

+
F (v)| − 1

4 |δ
−
F (v)| − 0.1 if v ∈ U and v is bad,

1
4 |δ

+
F (v)| − 1

4 |δ
−
F (v)| if v ∈ V \ U .

What is left to do is to check that for these values the premise of Lemma 2 is fulfilled. Let
v ∈ V and C ∈ C(v, 1). Recall that by definition, C ⊆ δ(v) and w(C) ≤ 1. We have to verify
that z(C) ≤ y(v).

Case 1: v ∈ V \U . Since the algorithm is stuck, there is no edge e ∈ δ+(v) with t(e) ∈ U .
Hence, z(e) = 0 for all e ∈ δ(v) and z(C) = 0. By definition of F we have that δ−F (v) = ∅.
Thus, y(v) ≥ 0 = z(C).

Case 2: v ∈ U . If v is bad, then w(δ−(v)) > 1.75 and

y(v) ≥
{
w(δ−F (v))− 1

4 |δ
−
F (v)| − 0.1 ≥ 3

4 |δ
−
F (v)| − 0.1 ≥ 1.4 > z(C) if |δ−F (v)| ≥ 2,

w(δ−(v))− 1
4 |δ
−
F (v)| − 0.1 > 1.75− 1

4 − 0.1 ≥ 1.4 > z(C) if |δ−F (v)| ≤ 1.

If v ∈ U is good, then it is the prospect vertex of some pending flip e. An invariant of the
algorithm is that all pending flips have their current vertex in U . In particular, z(e) = w(e).
Furthermore, e is not a valid flip. Thus, w(δ−(v)) +w(e) > 1.75. Also note that |δ−F (v)| ≤ 1,
since v is good. If w(e) ≤ 0.5, then

y(v) ≥ w(δ−(v))− 1
4 |δ
−
F (v)| > 1.75− w(e)− 1

4 ≥ 1 ≥ z(C).

If w(e) = 1, then e ∈ δ+
F (v). Hence,

y(v) ≥
{
w(δ−(v)) + 1

4 |δ
+
F (v)| − 1

4 |δ
−
F (v)| ≥ 1.75− w(e) + 1

4 ≥ 1 ≥ z(C) if |δ−F (v)| = 0,
w(δ−F (v)) + 1

4 |δ
+
F (v)| − 1

4 |δ
−
F (v)| ≥ 1 + 1

4 −
1
4 ≥ 1 ≥ z(C) if |δ−F (v)| = 1.

The second condition of Lemma 2 is that z(E) > y(V ). This holds because

z(E) =
∑
v∈U

w(δ−(v)) =
∑
v∈U

w(δ−(v)) + 1
4
∑
v∈V

[|δ+
F (v)| − |δ−F (v)|] > y(V ).

The strict inequality follows from the fact that there is at least one bad vertex. In the general
case this algorithm does not get better than 2 as can be seen in the example below. In a
similar, but more complicated way one can also show that in the special case with weights in
(0, 0.5] ∪ {1}, the algorithm does not succeed for 1.75− ε, where ε > 0 is arbitrary. In other
words, the analysis for 1.75 is tight.

u

v0 v1

. . .
v1/ε−1 v1/εw0w1

. . .
w1/ε−1w1/ε

1− ε

1− ε 1− ε

ε
ε

ε
1− ε

1− ε1− ε

ε
ε

ε

The LP and integral optima are again 1. Suppose the algorithm tries to find a solution with
makespan 2− 3ε. The only bad vertex is u. Hence, the algorithm will add the (1− ε)-edges
to the pending flips one after another. However, at the time it reaches v1/ε or w1/ε it will
get stuck, since there is a load of 1/ε× ε on them. The way to fix this is to allow edges (in
this case those of weight ε) to also be flipped towards vertices in U , i.e., vertices where we
wanted to reduce the load. We cannot simply allow arbitrary flips back and forth between U ,
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because we have to take care that the algorithm eventually terminates. This is where the
concept of vertices repelling edges comes in: Depending on the current orientation of the
edges and the list of pending flips we will define a binary relation between vertices and edges.
The exact definition has to be chosen carefully. For a pair (v, e) of this relation we write
vertex v repels edge e. When a vertex repels an edge, it means it is undesirable that the edge
is oriented towards this vertex. When it does not repel the edge, we do not care. This will
be used in the algorithm when adding pending flips: An edge e may only be added to the
pending flips, when it is repelled by its current vertex and not repelled by its prospect vertex.

In the earlier toy algorithms a vertex either repels all edges (when it is in U) or none
(when it is not in U). By adding a fine-grained strategy of repelled edges, we gain much
more flexibility. A strategy that appears particularly simple and powerful is the following.
(1) We let bad vertices repel all edges. Moreover, (2) for every pending flip e with prospect
vertex v we find maximum threshold W such that all edges in δ−(v) with weight at least W
are already enough to prevent the flip from being executed, i.e., their total weight is greater
than 1 +R− w(e). We let v repel all edges of weight at least min{w(e),W}.

Now the third toy algorithm is to repeat the following until all vertices are good. Find
an edge e that is repelled by t(e), but not by s(e) and add it to the list of pending flips. As
long as there is a valid pending flip, execute it and delete all pending flips added after it.
This algorithm succeeds in the previous example. It will add the (1− ε)-edges to the pending
flips, but the vertices u, v1, . . . , v1/ε−1, w1, . . . , w1/ε−1 repel only the (1 − ε)-edges and not
the ε-edges. Once the pending flips reach w1/ε or v1/ε, these vertices will repel the ε-edges
and start flipping them. Finally, there will be enough space on w1/ε or v1/ε and the 1− ε
edges can be flipped one after another.

For the simple case at least this is very close to the algorithm that gives us the bound of
1.74. However, to make the analysis work, we add a couple of tweaks. One of them is the
idea of critical vertices. When the threshold of repelled edges, i.e., min{w(e),W}, reaches
a low value, e.g., 0.26, we make the vertex repel all edges. We call such a vertex a critical
vertex. This tweak (together with some technicalities) allows us to argue that at least half of
the critical vertices are prospect vertices of pending flips for tiny edges. This is helpful, since
(unless the pending flip is valid) such prospect vertices have a lot of weight oriented towards
them and this makes it easier to argue that the configuration LP also cannot distribute this
weight very well; thereby reaching a contradiction.

An important novelty in this paper compared to earlier local search algorithms is that we
are able to repel only a subset of edges small/tiny edges. In the Restricted Assignment
proofs [19, 13] it is always the case that a machine (vertex) repels all small/tiny jobs (edges)
or none. To utilize the flexibility in the small/tiny edges we scale the z values of tiny edges
up by a factor β > 1. It is not obvious at all that this works out and the proof is quite tricky.

In a sense, we push the threshold for repelling all edges down to some value less than
0.5 (see description of critical vertices above). A logical conclusion to draw would be that
pushing it down even more (or removing it completely) should give an even better algorithm.
This would bring us back to toy algorithm 3. In fact, we are not aware of bad instances. It
is an intriguing question whether this can also be proved that this simple algorithm is good.

3.2 Algorithm
The central data structure we use is an ordered list of pending flips P = (eP1 , eP2 , . . . , eP` ).
Here, every component ePk , stands for an edge the algorithm wants to flip. If P is clear from
the context, we simply write flip when we speak of a pending flip ePk . A tiny flip is a flip
where ePk is tiny. In the same way we define small and big flips. The prospect vertex of a
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flip ePk is the vertex s(ePk ) to which we want to orient it. The algorithm will not perform
the flip, if this would create a bad vertex, i.e., w(δ−(s(ePk ))) + w(ePk ) > 1 + R. If it does
not create a bad vertex, we say that the flip ePk is a valid flip. For every 0 ≤ k ≤ ` define
P≤k := (eP1 , . . . , ePk ), i.e., the first k elements of P (with P≤0 being the empty list).

At each point during the execution of the algorithm, the vertices repel certain edges.
This can be thought of as a binary relation between vertices and their incident edges, i.e., a
subset of {(v, e) : v ∈ r(e)}, and this relation changes dynamically as the current orientation
or P change. The definition of which vertices repel which edges is given in Section 3.3. The
algorithm will only add a new pending flip e to P , if e is repelled by the vertex it is oriented
towards and not repelled by the other.

Algorithm 1: Local search algorithm for simplified Graph Balancing.
Input :Weighted multigraph G = (V,E, r, w) with OPT∗ = 1 and

w(e) ∈ (0, 0.5] ∪ {1} for all e ∈ E
Result: Orientation s, t : E → V with maximum weighted in-degree 1 +R

let s, t : E → V map arbitrary source and target vertices to each edge ;
// i.e., {s(e), t(e)} = r(e) for all e ∈ E
`← 0 ; // number of pending edges P to flip
while there is a bad vertex do

if there exists a valid flip e ∈ P then
let 0 ≤ k ≤ ` be minimal such that e is repelled by t(e) w.r.t. P≤k ;
exchange s(e) and t(e) ;
P ← P≤k; `← k; // Forget pending flips ePk+1, . . . , e

P
`

else
choose an edge e ∈ E \ P with w(e) minimal and

e is repelled by t(e) and not repelled by s(e) w.r.t. P ;
P`+1 ← e; ` = `+ 1; // Append e to P

end
end

3.3 Repelled edges
Consider the current list of ` pending flips P≤`. The repelled edges are defined inductively.
For some k ≤ ` we will now define the repelled edges w.r.t. P≤k.
(initialization) If k = 0, let every bad vertex v repel every edge in δ(v). Furthermore, let

every vertex v repel every loop e where {v} = r(e).
(monotonicity) If k > 0 and v repels e w.r.t. P≤k−1, then let v repel e w.r.t. P≤k.
The rule on loops is only for a technical reasons. Loops will never appear in the list of
pending flips. The remaining rules regard k > 0 and the last pending flip in P≤k, ePk . The
algorithm should reduce the load on s(ePk ) to make it valid.

Which edges exactly does the prospect vertex of ePk , i.e., s(ePk ), repel? First, we define
Ẽ(P≤k−1) ⊆ E where e ∈ Ẽ(P≤k−1) if and only if e is repelled by s(e) w.r.t. P≤k−1. We will
omit P≤k−1 when it is clear from the context. Ẽ are edges that we do not expect to be able
to flip: Recall that when an edge e is repelled by s(e), it cannot be added to P . Moreover,
for every W define E≥W = {e ∈ E : w(e) ≥W}. We are interested in values W such that

w(δ−
Ẽ∪E≥W

(s(ePk ))) + w(ePk ) > 1 +R. (1)
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Let W0 ∈ (0, w(ePk )] be maximal such that (1) holds. To be well-defined, we set W0 = 0, if
no such W exists. In that case, however, it holds that w(δ−(s(ePk ))) + w(ePk ) ≤ 1 +R. This
means that ePk is valid and the algorithm will remove it from the list immediately. Hence,
the case is not particularly interesting. We define the following edges to be repelled by s(ePk ):
(uncritical) If W0 > 1−R, let s(ePk ) repel every edge in δẼ∪E≥W0

(s(ePk )).
(critical) If W0 ≤ 1−R, let s(ePk ) repel every edge in δ(s(ePk )).
Note that in the cases above there is not a restriction to incoming edges like in (1).

I Fact 1. s(ePk ) repels ePk w.r.t. P≤k.

This is because of W0 ≤ w(ePk ) in the rules for P≤k. An important observation is that
repelled edges are stable under the following operation.

I Fact 2. Let e /∈ P≤k be an edge that is not repelled by any vertex w.r.t. P≤k−1, and
possibly by t(e) (but not s(e)) w.r.t. P≤k. If the orientation of e changes and this does not
affect the sets of good and bad vertices, the edges repelled by some vertex w.r.t. P≤k will still
be repelled after the change.

Proof. We first argue that the repelled edges w.r.t. P≤k′ , k′ = 0, . . . , k− 1 have not changed.
This argument is by induction. Since the good and bad vertices do not change, the edges
repelled w.r.t. P≤0 do not change. Let k′ ∈ {1, . . . , k−1} and assume that the edges repelled
w.r.t. k′−1 have not changed. Moreover, letW0 be as in the definition of repelled edges w.r.t.
P≤k′ before the change. We have to understand that e is not and was not in δ−

Ẽ∪E≥W0
(s(ePk′))

(with Ẽ = Ẽ(P≤k′−1)). This means that flipping it does not affect the choice of W0 and,
in particular, not the repelled edges. Let v and v′ denote the vertex e is oriented towards
before the flip and after the flip, respectively. Since e was not repelled by v and v′ w.r.t.
P≤k′ , it holds that v, v′ 6= s(ePk ) or w(e) < W0: s(ePk ) repelled all edges greater or equal W0
in both the case (uncritial) and (critical), but e was not repelled by v or v′.

Therefore e /∈ δ−E≥W0
(s(ePk′)) before and after the change. Moreover, since e was not

repelled by any vertex w.r.t. P≤k′−1 (and by induction hypothesis, it still is not), it follows
that e /∈ Ẽ(P≤k′−1). By this induction we have that edges repelled w.r.t. P≤k−1 have not
changed and by the same argument as before, e is not in δ−

Ẽ∪E≥W0
(s(ePk )) after the change.

This means W0 has not increased and edges repelled w.r.t. P≤k are still repelled. It could be
that W0 decreases, if e was in δ−

Ẽ∪E≥W0
(s(ePk )) before the flip. This would mean that the

number of edges repelled by s(ePk ) increases. J

We note that W0 (in the definition of P≤k) is either equal to w(ePk ) or it is the maximal
value for which (1) holds. Furthermore,

I Fact 3. Let W0 be as in the definition of repelled edges w.r.t. P≤k. If W0 < w(ePk ), then
there is an edge of weight exactly W0 in δ−(s(ePk )). Furthermore, it is not a loop and it is
not repelled by its other vertex, i.e., not s(ePk ), w.r.t. P≤k.

Proof. We prove this for P≤k−1. Since the change from P≤k−1 to P≤k only affects s(ePk ), this
suffices. All edges that are repelled by their other vertex w.r.t. P≤k−1 (in particular, loops)
are in Ẽ. Recall that w(δ−

Ẽ∪E≥W0
(s(ePk )) + w(ePk ) > 1 + R. Assume toward contradiction

there is no edge of weight W0 in δ−(s(ePk )), which is not in Ẽ. This means there is some
ε > 0 such that δ−

Ẽ∪E≥W0+ε
(s(ePk )) = δ−

Ẽ∪E≥W0
(s(ePk )). Hence, W0 is not maximal. J
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3.4 Analysis
The following analysis holds for the values R = 0.74 and β = 1.1. β is a central parameter in
the proof. These can be slightly improved, but we refrain from this for the sake of simplicity.
The proof consists of two parts. We need to show that the algorithm terminates and that
there is always either a valid flip in P or some edge can be added to P .

I Lemma 5. The algorithm terminates after finitely many iterations of the main loop.

Proof. We consider the potential function s(P ) = (g, |Ẽ(P≤0)|, . . . , |Ẽ(P≤`)|,−1), where g
is the number of good vertices. We will argue that this vector increases lexicographically
after every iteration of the main loop. Intuitively |Ẽ(P≤k)|, k ≤ `, is an measure for progress.
When an edge e is repelled by a vertex v, then we want that s(e) = v. |Ẽ(P≤k)| counts
exactly these situations. Since ` is bounded by |E|, there can be at most |V | · |E|O(|E|)

possible values for the vector. Thus, the algorithm must terminate after at most this many
iterations. In an iteration either a new flip is added to P or a flip is executed.

If a flip e is added as the (`+ 1)-th element of P , then clearly Ẽ(P≤i) does not change for
i ≤ `. Furthermore, the last component of the vector is replaced by some non-negative value.

Now consider a flip e ∈ P that is executed. If this flip turns a bad vertex good, we are
done. Hence, assume otherwise and let v and v′ be the vertex it was previously and the one
it is now oriented towards. Furthermore, let `′ be the length of P after the flip. Recall that `′
was chosen such that before the flip is executed v repels e w.r.t. P≤`′ , but not w.r.t. P≤k for
any k ≤ `′ − 1. Also, e is not repelled by v′ w.r.t. P≤k for any k ≤ `′ or else the flip would
not have been added to P in the first place. By Fact 2 this means that repelled edges w.r.t.
P≤k, k ≤ `′, are still repelled after the flip. Because of this and because the only edge that
changed direction, e, is not in Ẽ(P≤k) for any k ≤ `′, |Ẽ(P≤k)| has not decreased. Finally, e
has not been in Ẽ(P≤`′) before the flip, but now is. Thus, the first `′ − 1 components of the
vector have not decreased and the `′-th one has increased. J

I Lemma 6. If there at least one bad vertex remaining, then there is either a valid flip in P
or a flip that can be added to P .

Proof. We assume toward contradiction that there exists a bad vertex, no valid pending flip
and no edge that can be added to P . We will show that this implies OPT∗ > 1.

Like above we denote by Ẽ = Ẽ(P ) those edges e that are repelled by s(e). In particular,
if an edge e is in P or repelled by t(e) it must also be in Ẽ: If such an edge is in P , this
follows from Fact 1. Otherwise, such an edge must be repelled also by s(e) or else it could
be added to P . For every e ∈ E \ Ẽ, set z(e) = 0. For every e ∈ Ẽ, set

z(e) =


1 if w(e) = 1,
w(e) if 1−R < w(e) ≤ 1/2, and
βw(e) if w(e) ≤ 1−R.

In general, we would like to set each y(v) to z(δ−(v)) (or equivalently, z(δ−
Ẽ

(v))). However,
there are two kinds of amortization between vertices that we include in the values of y.

As can be seen in the definition of repelled edges, a vertex v repels either edges with
weight at least a certain threshold W > 1−R and edges in δ−(v) that are repelled by their
other vertex; or they repel all edges. We will call vertices of the latter kind critical. In other
words, a vertex v is critical, if in the inductive definition of repelled edges at some point
v = s(ePk ) and the rule (critical) applies. There might be a coincidence where only rule
(uncritical) applies for v, but this already covers all edges in δ−(v). This is not a critical
vertex. We note that every vertex that is prospect vertex of a tiny flip ePk must be critical: In
the inductive definition when considering ePk we have that W0 ≤ w(ePk ) ≤ 1−R by definition.
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Critical vertex amortization. If v is a good vertex and critical, but is not a prospect vertex
of a tiny flip, set av := β − 1. If v is a good vertex and prospect vertex of tiny flip (in
particular, v is critical), set av := −(β − 1). Otherwise, set av = 0.

Big edge amortization. Let F ⊆ P denote the set of big flips. Then in particular F ⊆ Ẽ

(Fact 1). We define for all v ∈ V , bv := (|δ+
F (v)| − |δ−F (v)|) · (1−R).

We conclude the definition of y by setting y(v) = z(δ−(v)) + av + bv for all good vertices v
and y(v) = z(δ−(v)) + av + bv − µ for all bad vertices v, where µ = 0.01.

B Claim 7. It holds that
∑
v∈V y(v) <

∑
e∈E z(e).

B Claim 8. y(v), z(e) ≥ 0 f.a. v ∈ V, e ∈ E and f.a. v ∈ V , C ∈ C(v, 1),
∑
e∈C z(e) ≤ y(v).

By Lemma 2 this implies that OPT∗ > 1. J

Proof of Claim 7. First we note that∑
v∈V

bv = (1−R) (
∑
v∈V
|δ+
F (v)| −

∑
v∈V
|δ−F (v)|)︸ ︷︷ ︸

=0

= 0.

Moreover, we have that
∑
v∈V av ≤ 0: This is because at least half of all good vertices that

are critical are prospect vertices of tiny flips. The proof for this is omitted due to space
constraints. We conclude,∑

e∈E
z(e) ≥

∑
v∈V

∑
e∈δ−(v)

z(e) +
∑
v∈V

[bv + av] >
∑
v∈V

y(v),

where the strict inequality holds because there exists at least one bad vertex. C

Proof of Claim 8. Let v ∈ V and C ∈ C(v, 1). We need to show that z(C) ≤ y(v). Obviously
the z values are non-negative. By showing the inequality above, we also get that the y values
are non-negative. First, we will state some auxiliary facts.

I Fact 4. For every edge flip e ∈ P , we have w(δ−
Ẽ

(s(e))) + w(e) > 1 +R.

This is due to the fact that e is not a valid flip and by definition of repelled edges.

I Fact 5. If v is a good vertex and not prospect vertex of a tiny pending flip, then y(v) ≥
z(C) + w(δ−

Ẽ
(v))− 1 + bv. In other words, it is sufficient to show that w(δ−

Ẽ
(v)) + bv ≥ 1.

If v is critical, then y(v) = z(δ−(v)) +β−1 + bv ≥ w(δ−
Ẽ

(v)) +z(C)−1 + bv. If v is uncritical,
all edges e ∈ C with z(e) > w(e) must be in δ−(v). Otherwise, the flip e could be added to
P . Therefore,

y(v) = z(δ−(v)) + av + bv ≥ z(δ−Ẽ (v))− w(δ−
Ẽ

(v)) + w(δ−
Ẽ

(v)) + bv

≥ z(C̃) − w(C̃) + w(δ−
Ẽ

(v)) + bv ≥ z(C) + w(δ−
Ẽ

(v)) − 1 + bv.

I Fact 6. For every vertex v it holds that (1) v repels no edges, (2) v repels all edges
(critical), or (3) there exists a threshold W > 1 − R such that v repels edges e ∈ δ−(v) if
w(e) ≥W or they are also repelled by s(e).

Furthermore, in (3) we have that W = mine∈δ+
P

(v) w(e) or W < mine∈δ+
P

(v) w(e) and
W ∈ {w(e) : e ∈ δ−

Ẽ
(v)} (see Fact 3).
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Case 1: v is a bad vertex. If |δ−F (v)| ≥ 2,

y(v) ≥ z(δ−(v))−|δ−F (v)| ·(1−R)−µ ≥ |δ−F (v)| ·(1−(1−R))−µ ≥ 2R−µ ≥ β ≥ z(C).

Otherwise, |δ−F (v)| ≤ 1 and therefore

y(v) ≥ z(δ−(v))−1+R−µ ≥ w(δ−(v))−1+R−µ > 1+R−1+R−µ = 2R−µ ≥ β ≥ z(C).

Here we use that w(δ−(v)) > 1 + R by the definition of a bad vertex. Assume for the
remainder that v is a good vertex, in particular that |δ−F (v)| ≤ 1.

Case 2: v is good and prospect vertex of a tiny flip. Using Fact 4 we get w(δ−
Ẽ

(v)) > 1 +
R−(1−R) = 2R. Since z(e) ≥ w(e) for all e ∈ Ẽ, we also have z(δ−(v)) ≥ 2R. Moreover,
since the vertex is good, |δ−F (v)| ≤ 1 and consequently bv ≥ −(1−R). We conclude

y(v) ≥ z(δ−(v))− (β − 1)− (1−R) ≥ 2R− (β − 1)− (1−R) = β + 3R− 2β︸ ︷︷ ︸
≥0

≥ z(C).

Case 3: v is good, not prospect vertex of a tiny flip, but prospect vertex of a small flip.
If |δ−F (v)| = 0, again with Fact 4 we get w(δ−

Ẽ
(v)) + bv ≥ 1 +R− 0.5 + 0 > 1. This suffices

because of Fact 5. Moreover, if |δ−F (v)| = 1 and δ−
Ẽ

(v) contains a small edge, it holds that

w(δ−
Ẽ

(v)) + bv ≥ w(δ−F (v)) + (1−R) + bv ≥ 1 + (1−R)− (1−R) = 1.

Here we use that the small edge must have a size of at least 1−R. The case that remains
is where δ−

Ẽ
(v) contains one edge from F and tiny edges. Since the overal weight of δ−

Ẽ
(v)

is at least 1 +R− 0.5, the weight of tiny edges is at least R− 0.5. Thus, the z-value of
the tiny edges is at least β(R− 0.5). If v is critical,

y(v) ≥ z(δ−(v))− (1−R) + (β − 1) ≥ 1 + β(R− 0.5)− (1−R)︸ ︷︷ ︸
≥0

+(β − 1) ≥ z(C).

Notice that β(R− 0.5) ≥ 1−R by choice of R and β. Assume for the remainder of this
case that v is uncritical. If C contains a big edge, this must be the only element in C.
Therefore,

y(v) ≥ z(δ−(v))− (1−R) ≥ 1 + β(R− 0.5)− (1−R) ≥ 1 = z(C).

Consider the case where C ∩ Ẽ contains at most one small edge and no big edge. Since v
is uncritical, all tiny edges in C with positive z value must also be in δ−(v). Therefore,
z(C) ≤ 0.5 + z(δ−T (v)). Thus,

y(v) ≥ z(δ−(v))− (1−R) ≥ 1 + z(δ−T (v))− (1−R) > 0.5 + z(δ−T (v)) ≥ z(C).

In the final case C ∩ Ẽ contains k ∈ {2, 3} small edges. We let s denote the weight of the
smallest edge with a pending flip whose prospect vertex is v. Since v is not critical and
there is no small edge in δ−(v), v repels exactly those edges with weight at least s. This
means the small edges in C ∩ Ẽ must be of weight at least s: Otherwise, they could be
added as pending flips. Therefore,

y(v) ≥ z(δ−(v))− (1−R) ≥ z(δ−F (v)) + z(δ−T (v))− (1−R)
≥ 1 + β(w(δ−

Ẽ
(v))−w(δ−F (v)))− (1−R) = R+ β(w(δ−

Ẽ
(v))− 1) ≥ R+ β(R− s).
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Note that s ≤ 1/k and, by choice of β, k − β(k − 1) ≥ 0. It follows that

z(C) ≤ k · s+ β(1− k · s)

≤ y(v) + k · s−R+ β(1−R− (k − 1)s) ≤ y(v) + k · 1
k
−R+ β

(
1−R− k − 1

k

)
= y(v) + 1− R + β

(
1
k
−R

)
≤ y(v) + 1− R + β(0.5− R) ≤ y(v).

Case 4: v is good and not prospect vertex of a small/tiny flip. If |δ+
F (v)| = 0, then v

does not repel any edges. In particular, δ−F (v) = ∅ and every e ∈ δ(v) with z(e) > 0
must be in δ−(v). Therefore, z(C) ≤ z(δ−(v)) ≤ y(v). We assume in the remainder that
|δ+
F (v)| = 1.

If |δ−F (v)| = 1, we get w(δ−
Ẽ

(v)) + bv ≥ 1 + 0. Otherwise, it must hold that |δ−F (v)| = 0
and w(δ−

Ẽ
(v)) + bv ≥ R+ (1−R) = 1. C
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Abstract

We study an important case of ILPs max{cT x | Ax = b, l ≤ x ≤ u, x ∈ Znt} with n · t variables and
lower and upper bounds `, u ∈ Znt. In n-fold ILPs non-zero entries only appear in the first r rows of
the matrix A and in small blocks of size s× t along the diagonal underneath. Despite this restriction
many optimization problems can be expressed in this form. It is known that n-fold ILPs can be
solved in FPT time regarding the parameters s, r, and ∆, where ∆ is the greatest absolute value of
an entry in A. The state-of-the-art technique is a local search algorithm that subsequently moves
in an improving direction. Both, the number of iterations and the search for such an improving
direction take time Ω(n), leading to a quadratic running time in n. We introduce a technique based
on Color Coding, which allows us to compute these improving directions in logarithmic time after a
single initialization step. This leads to the first algorithm for n-fold ILPs with a running time that is
near-linear in the number nt of variables, namely (rs∆)O(r2s+s2)L2 · nt logO(1)(nt), where L is the
encoding length of the largest integer in the input. In contrast to the algorithms in recent literature,
we do not need to solve the LP relaxation in order to handle unbounded variables. Instead, we give
a structural lemma to introduce appropriate bounds. If, on the other hand, we are given such an LP
solution, the running time can be decreased by a factor of L.
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1 Introduction

Solving integer linear programs of the form max {cTx | Ax = b, x ∈ Z≥0} is one of the most
fundamental tasks in optimization. This problem is very general and broadly applicable, but
unfortunately also very hard. In this paper we consider n-fold ILPs, a class of integer linear
programs with a specific block structure. This is, when non-zero entries appear only in the
first r rows of A and in blocks of size s× t along the diagonal underneath. More precisely,
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the contraint matrix in an n-fold ILP has the form

A =


A1 A2 . . . An
B1 0 . . . 0
0 B2 . . . 0
...

...
. . .

...
0 0 . . . Bn

 ,

where A1, . . . , An are r × t matrices and B1, . . . , Bn are s× t matrices. In n-fold ILPs we
also allow upper and lower bounds on the variables. Throughout the paper we subdivide a
solution x into bricks of length t and denote by x(i) the i-th one. The corresponding columns
in A will be called blocks.

Lately, n-fold ILPs received great attention [2, 7, 12, 14, 16] and were studied intensively
due to two reasons. Firstly, many optimization problems are expressible as n-fold ILPs [5,
10, 12, 14]. Secondly, n-fold ILPs indeed can be solved much more efficiently than arbitrary
ILPs [7, 10, 16]. The previously best algorithm has a running time of (rs∆)O(r2s+rs2)L ·
(nt)2 log2(n · t) + LP and is due to Eisenbrand et al. [7]. Here LP is the running time required
for solving the corresponding LP relaxation. This augmentation algorithm is the last one
in a line of research, where local improvement/augmenting steps are used to converge to
an optimal solution. Clever insights about the structure of the improving directions allow
them to be computed fast. Nevertheless, the dependence on n in the algorithm above is
still high. Indeed, in practice a quadratic running time is simply not suitable for large
data sets [3, 6, 13]. For example when analyzing big data, large real world graphs as in
telecommunication networks or DNA strings in biology, the duration of the computation
would go far beyond the scope of an acceptable running time [3, 6, 13]. For this reason
even problems which have an algorithm of quadratic running time are still studied from the
viewpoint of approximation algorithms with the objective to obtain results in subquadratic
time, even at the cost of a worse quality [3, 6, 13]. Hence, it is an intriguing question,
whether the quadratic dependency on the number nt of variables can be eliminated. In this
paper, we answer this question affirmatively. The technical novelty comes from a surprising
area: We use a combinatorial structure called splitter, which has been used to derandomize
Color Coding algorithms. It allows us to build a powerful data structure that is maintained
during the local search and from which we can derive an improving direction in logarithmic
time. Handling unbounded variables in an n-fold ILP is a non-trivial issue in the previous
algorithms from literature. They had to solve the corresponding LP relaxation and use
proximity results. Unfortunately, it is not known whether linear programming can be solved
in near-linear time in the number of variables. Hence, it is an obstacle for obtaining a
near-linear running time. We manage to circumvent the necessity of solving the LP by
introducing artificial bounds as a function of the finite upper bounds and the right-hand side
of the n-fold ILP.

Summary of Results

We present an algorithm, which solves n-fold ILPs in time (rs∆)O(r2s+s2)L · nt log5(nt) +
LP, where LP is the time to solve the LP relaxation of the n-fold ILP. This is the first
algorithm with a near-linear dependence on the number of variables. The crucial step is
to speed up the computation of the improving directions.
We circumvent the need for solving the LP relaxation. This leads to a purely combinatorial
algorithm with running time (rs∆)O(r2s+s2)L2 · nt log7(nt).
In the running times above the dependence on the parameters, i.e., (rs∆)O(r2s+s2),
improves on the function (rs∆)O(r2s+rs2) in the previous best algorithms.
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Outline of New Techniques

We will briefly elaborate the main technical novelty in this paper. Let x be some feasible,
non-optimal solution for the n-fold ILP. It is clear that when y∗ is an optimal solution for
max{cT y | Ay = 0, `−x ≤ y ≤ u−x, y ∈ Znt}, then x+y∗ is optimal for the initial n-fold ILP.
In other words, y∗ is a particularly good improving step. A sensible approximation of y∗ is to
consider directions y of small size and multiplying them by some step length, i.e., find some
λ · y with ‖y‖1 ≤ k for a value k depending only on ∆, r, and s. This implies that at most k
of the n blocks are used for y. If we randomly color the blocks with k2 colors, then with high
probability at most one block of every color is used. This reduces the problem to choosing
a solution of a single brick for every color and to aggregate them. We add data structures
for every color to implement this efficiently. There is of course a chance that the colors do
not split y perfectly. We handle this by using a deterministic structure of multiple colorings
(instead of one) such that it is guaranteed that at least one of them has the desired property.

Related Work

The first XP-time algorithm for solving n-fold integer programs is due to De Loera et al. [5]
with a running time of ng(A)L. Here g(A) denotes a so-called Graver complexity of the
constraint matrix A and L is the encoding length of the largest number in the input. This
algorithm already uses the idea of iterative converging to the optimal solution by finding
improving directions. Nevertheless, the Graver complexity appears to be huge even for
small n-fold integer linear programs and thus this algorithm was of no practical use [10].
The exponent of this algorithm was then greatly improved by Hemmecke et al. [10] to a
constant factor yielding the first cubic time algorithm for solving n-fold ILPs. More precisely,
the running time of their algorithm is ∆O(t(rs+st))L · (nt)3, i.e., FPT-time parameterized
over ∆, r, s, and t. Lately, two more breakthroughs were obtained. One of the results is
due to Koutecký et al. [16], who gave a strongly polynomial algorithm with running time
∆O(r2s+rs2)(nt)6 · log(nt) + LP . Here LP is the running time for solving the corresponding
LP relaxation, which is possible in strongly polynomial time, since the entries of the matrix
are bounded. Simultaneously, Eisenbrand et al. reduced in [7] the running time from a cubic
factor to a quadratic one by introducing new proximity and sensitivity results. This leads
to an algorithm with running time (∆rs)O(r2s+rs2)L · (nt)2 log2(nt) + LP . Note that both
results require only polynomial dependency on t.

As for applications, n-fold ILPs are broadly used to model various problems such as
string, flow or scheduling problems. We refer to the works [5, 10, 11, 12, 15, 19] and the
references therein for an overview.

Structure of the Document

In Section 2 we introduce the necessary preliminaries. Section 3 gives the algorithm for
efficiently computing the augmenting steps. This is then integrated into an algorithm for
n-fold ILPs in Section 4. At first we require finite variable bounds and then discuss how
to eliminate this requirement using the solution of the LP relaxation. Finally, in Section 5
we discuss how to handle infinite variable bounds without the LP relaxation and give new
structural results.

ICALP 2019
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2 Preliminaries

In the following we introduce n-fold ILPs formally and state the main results regarding them.
Further we familiarize splitters, a technique known from Color Coding.

I Definition 1. Let n, r, s, t ∈ N. Furthermore let A1, . . . , An be r × t integer matrices and
B1, . . . , Bn be s× t integer matrices. Then the n-fold matrix A is of following form:

A =


A1 A2 . . . An
B1 0 . . . 0
0 B2 . . . 0
...

...
. . .

...
0 0 . . . Bn

 .

The matrix A is of dimension (r+n ·s)×n ·t. We will divide A into blocks of size (r+n ·s)×t.
Similarly, the variables of a solution x are partitioned into bricks of length t. This means
each brick x(i) corresponds to the columns of one submatrix Ai and therefore also Bi. Given
c, `, u ∈ Zn·t and b ∈ Zr+n·s, the corresponding n-fold Integer Linear Programming problem
is defined by:

max {cTx | Ax = b, ` ≤ x ≤ u, x ∈ Zn·t}.

The main idea for the state-of-the-art algorithms relies on some insight about the Graver
basis of n-fold ILPs, which are special elements of the kern of A. More formally, we introduce
the following definitions:

I Definition 2. The kern of a matrix A is defined as the set of integral vectors x ∈ Zn·≈

with Ax = 0. We write kern(A) for them.

I Definition 3. A Graver basis element g is a minimal element of kern(A). An element is
minimal, if it is not the sum of two sign-compatible elements u, v ∈ kern(A).

Here, sign-compatible means that ui · vi ≥ 0 for every i.

I Theorem 4 ([4]). Let A ∈ Zn×m and let x ∈ kern(A). Then there exist 2n − 1 Graver
basis elements g1, . . . , g2n−1, which are sign-compatible with x such that

x =
∑2n−1

i=1
λigi

for some λ1, . . . , λ2n−1 ∈ Z≥0.

Many results for n-fold ILPs rely on the fact that the `1-norm of Graver basis elements for
n-fold matrices are small. The best bound known for the `1-norm is due to Eisenbrand et
al. [7].

I Theorem 5 ([7]). The `1-norm of the Graver basis elements of an n-fold matrix A is
bounded by O(rs∆)rs.

Next, we will introduce a technique called splitters (see e.g. [17]), which has its origins in
the FPT community and was used to derandomize the Color Coding technique [1]. So far it
has not been used with n-fold ILPs. We refer the reader to the outline of techniques in the
introduction for the idea on how we apply the splitters.
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I Definition 6. An (n, k, `) splitter is a family of hash functions F from {1, . . . , n} to
{1, . . . , `} such that for every S ⊆ {1, . . . , n} with |S| = k, there exists a function f ∈ F that
splits S evenly, that is, for every j, j′ ≤ ` we have |f−1(j) ∩ S| and |f−1(j′) ∩ S| differ by
at most 1.

If ` ≥ k, the above means that there is some hash function that has no collisions when
restricted to S. Interestingly, there exist splitters of very small size.

I Theorem 7 ([1, 18]). There exists an (n, k, k2) splitter of size k6 log(k) log(n) which is
computable in time k6 log(k) · n log(n).

We note that an alternative approach to the result above is to use FKS hashing. Although it
has an extra factor of log(n), it is particularly easy to implement.

I Theorem 8 (Corollary 2 and Lemma 2, [9]). Define for every prime q < k2 log(n) and
prime p < q the hash function x 7→ 1 + (p · (x mod q) mod k2). This is an (n, k, k2) splitter
of size O(k4 log2(n)).

We remark that a hash function from {1, . . . , n} to {1, . . . , `} naturally corresponds to a
partition of the set {1, . . . , n} into exactly ` subsets.

3 Efficient Computation of Improving Directions

The backbone of our algorithm is the efficient computation of augmenting steps. The
important aspect is the fact that we can update the augmenting steps very efficiently if the
input changes only slightly. In other words, whenever we change the current solution by
applying an augmenting step, we do not have to recompute the next augmenting step from
scratch. The augmenting steps depend on a partition of the bricks. In the following we define
the notion of a best step based on a fixed partition. Later, we will independently find steps
for a number of partitions and take the best among them.

I Definition 9. Let P be a partition of the n bricks into k2 disjoint sets P1, P2, . . . , Pk2 . Let
u ∈ Znt≥0 and ` ∈ Znt≤0 be some upper and lower bounds on the variables (not necessarily the
same as in the n-fold ILP). A (P, k)-best step is an optimal solution of the system below. We
slightly abuse notation by using Pj or bricks Sj ∈ Pj for the indices of variables contained in
them.

max cTx

Ax = 0∑
i∈Sj

|xi| ≤ k ∀j ∈ {1, . . . , k2}

xi = 0 ∀j ∈ {1, . . . , k2}, i ∈ Pj \ {Sj}
` ≤ x ≤ u

x ∈ Znt

Sj ∈ Pj ∀j ∈ {1, . . . , k2}.

This means a (P, k)-best step is an element of kern(A), which uses only one brick of every
Pj ∈ P . Within that brick the norm of the solution must be at most k. Later, we will choose
k as the upper bound for the `1-norm of a Graver basis element, i.e., k = O(rs∆)rs.

ICALP 2019
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I Theorem 10. Consider the problem of finding a (P, k)-best step in an n-fold matrix where
the lower and upper bounds u, ` can change. This problem can be solved initially in time
kO(r) ·∆O(r2+s2) · nt and then in kO(r) ·∆O(r2+s2) · log(nt) update time whenever the bounds
of a single variable change.

Proof. Let P be a partition of the bricks from matrix A into k2 disjoint sets P1, P2, . . . , Pk2 .
Solving the (P, k)-best step problem requires that from each set Pj ∈ P we choose at most
one brick and set this brick’s variables. All variables in other bricks of Pj must be 0.

Let x be a (P, k)-best step and let x(j) have the values of x in variables of Pj and 0 in
all other variables. Then by definition, ‖x(j)‖1 ≤ k. This implies that the right-hand side
regarding x(j), that is to say, Ax(j), is also small. Since the absolute value of an entry in
A is at most ∆, we have that ‖Ax(j)‖∞ ≤ k∆. Let ai be the i-th row of A. If i > r, then
aix

(j) = 0. This is because Ax = 0 and ai has all its support either completely inside Pj or
completely outside Pj . Meaning, the value of Ax(j) is one of the (2k∆ + 1)r many values we
get by enumerating all possibilities for the first r rows. Furthermore, since P has only k2 sets,
the partial sum A(x(1) + · · ·+x(j)) is always one of (2k3∆ + 1)r = (k∆)O(r) many candidates.

Hence to find a (P, k)-best step we can restrict our search to solutions whose partial sums
stay in this range. To do so, we set up a graph containing k2 + 2 layers L0, L1, . . . Lk2 , Lk2+1.
An example is given in figure 1. The first layer L0 will consist of just one node marking the
starting point with partial sum zero. Similarly, the last layer Lk2+1 will just contain the
target point also having partial sum zero, since a (P, k)-best step is an element of kern(A).
Each layer Lj with 1 ≤ j ≤ k2 will contain (2k3∆ + 1)r many nodes, each representing one
possible value of A(x(1) + · · ·x(j)). Two points v, w from adjacent layers Lj−1, Lj will be
connected if the difference of the corresponding partial sums, namely w − v, can be obtained
by a solution y of variables from only one brick of Pj (with ‖y‖1 ≤ k). The weight of the edge
will be the largest gain for the objective function cT y over all possible bricks. Hence, it could
be necessary to compute and compare up to n values for each Pj and each difference in the
partial sums to insert one edge into the graph. Finally, we just have to find the longest path
in this graph as it corresponds to a (P, k)-best step. The out-degree of each node is bounded
by (2k3∆ + 1)r since at most this many nodes are reachable in the next layer. Therefore the
overall number of edges is bounded by

(k2 + 2) · (2k3∆ + 1)r · (2k3∆ + 1)r = (k∆)O(r).

Using the Bellman-Ford algorithm we can solve the Longest Path problem for a graph with
N vertices and M edges in time O(N ·M) as the graph is directed and acyclic. This gives a
running time of (k∆)O(r) · (k∆)O(r) = (k∆)O(r) for solving the problem. Constructing the
graph, however, requires solving a number of IPs of the form

max c′Tx(
Aj
Bj

)
x =

(
b′

0

)
‖x‖1 ≤ k
`′ ≤ x ≤ u′

x ∈ Zt,

where b′ ∈ Zr is the corresponding right-hand side of the top rows and `′, u′, c′ are the upper
and lower bounds, and the objective of the block. This is an IP with r + s+ 1 constraints, t
variables, lower and upper bounds, and entries of the matrix bounded by ∆ in absolute value.
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Using the algorithm by Eisenbrand and Weismantel [8], solving one of them requires time

t · O(r+ s+ 1)r+s+4 · O(∆)(r+s+1)(r+s+4) · log2((r+ s+ 1)∆) + LP = t ·∆O(r2+s2) + LP,

where LP is the time for solving the LP relaxation. Note that strictly speaking the constraint
‖x‖1 ≤ k is not linear, but by standard construction the ILP can easily be transformed into
an equivalent one replacing every variable xi with a composition x+

i − x
−
i of two positive

variables. Then the `1-norm is simply the sum over all variables. This does not affect the
asymptotic running time.

Furthermore, a little thought allows us to reduce the dependency on t to a logarithmic
one: Since the number of constraints in the ILP above is very small, there are only ∆O(r+s)

many different columns. Because of the cardinality constraint ‖x‖1 ≤ k, we only have to
consider 2k many variables of each type of column, namely: The k many with u′i > 0 and
maximal c′i and the k many with `′i < 0 and minimal c′i.

If some solution uses a variable not in this set, then by pigeonhole principle there is
a variable with the same column values and a superior objective value and which can
be increased/decreased. We can reduce the variable outside this set and increase the
corresponding variable inside this set until all variables outside the set are 0. We can use an
appropriate data structure (e.g. AVL trees) to maintain a set of all variables with u′i > 0
(`′i < 0) such that we can find the k best among them in time O(k log(t)). Whenever the
bounds of some variable change, we might have to add or remove entries, which also takes
only logarithmic time. After initialization in time O(nt) (in total for all bricks) solving such
an IP can therefore be implemented in time

k log(t) + 2k∆O(r+s)∆O(r2+s2) + LP ≤ k log(t)∆O(r2+s2) + LP ≤ k log(t)∆O(r2+s2).

The last inequality holds, because using Tardos’ algorithm [20] LPs can be solved in time
polynomial in the encoding size of the matrix, which can be bounded by 2k∆O(r+s) · (r+ s) ·
log(∆). This is dominated by the other term. The number of IPs to solve is at most n times
the number of edges, since we have to compare the values of up to n bricks. This gives a
running time of

O(nt) + n · (k∆)O(r) · log(t) ·∆O(r2+s2) ≤ nt · kO(r) ·∆O(r2+s2)

for constructing the graph. To obtain the update time from the premise of the theorem,
it is perfectly fine to solve the Longest Path problem again, but we cannot construct the
graph from scratch. However, in order to construct the graph we still have to find the best
value over all bricks for each edge. Fortunately, if only a few bricks are updated (in their
lower and upper bounds) it is not necessary to recompute all values. Each edge corresponds
to a particular Pj ∈ P and a fixed right-hand side (a possible value of Ax(j)). We require
an appropriate data structure De for every edge e, which supports fast computation of the
operations FindMax, Insert, and Delete. Again, an AVL tree computes each of these
operations in time O(log(N)), where N is the number of elements. In De we store pairs (v, i)
where i is a brick in Pj and v is the maximum gain of brick i for the right-hand side of e.
The pairs are stored in lexicographical order. Since there are at most n bricks in Pj , the
data structure will have at most n elements. Initially, we can build De in time nt ·∆O(r2+s2)

(this is replicated for each edge). Now consider a change to the instance. Recall that we are
looking at changes that affect only a single brick, namely the upper and lower bounds within
that brick change. We are going to update the data structure De (for each edge) to reflect
the changes and we are going to recompute the edge value of each edge e using De. Then we
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Layer L0 Layer L1 Layer L2 Layer Lk2 Layer Lk2+1

. . .

. . .

...
...

...

. . .

Figure 1 This figure shows an example for a layered graph obtained while solving the (P, k)-best
step problem. There are k2 + 2 layers, visually separated by gray dashed lines. This includes one
source layer L0, one target layer Lk2+1 both with just a single node representing the zero sum.
Further there are k2 layers with (2k3∆ + 1)r nodes each, where in one layer the nodes stand for
all reachable partial sums. Two points v, w from adjacent layers Lj−1, Lj will be connected if the
difference of the corresponding partial sums, namely w − v, can be obtained by a solution y of
variables from only one brick of Pj (with ‖y‖1 ≤ k). The weight of the edge will be the largest gain
for the objective function cT y over all possible bricks. For the sake of clarity both the values of the
nodes and the edges are not illustrated.

simply solve the Longest Path problem again. Let Pj ∈ P be the set that contains the brick
i that has changed in some variable. We only have to consider edges from Lj−1 to Lj , since
none of the other edges are affected by the change. For a relevant edge e we compute the
previous value v and current value v′ that the brick i would produce (before and after the
bounds have changed). In De we have to remove (v, i) and insert (v′, i). Both operations
need only O(log(n)) time. Then the running time to update De for one edge is

k log(t) ·∆O(r2+s2) +O(log(n)) ≤ k log(nt) ·∆O(r2+s2).

In order to update the edge value of e using De, we simply have to find the maximum
element in De, which again takes time O(log(n)). To summarize, the total time to update
the (P, k)-best step after a change to a single brick consists of (1) updating each De, (2)
finding the maximum in each De, and (3) solving the Longest Path problem. We conclude
that the update time is

k log(nt) ·∆O(r2+s2) · (k∆)O(r) + log(n) · (k∆)O(r) + (k∆)O(r)

≤ kO(r)∆O(r2+s2) · log(nt). J

4 The Augmenting Step Algorithm

In this section we will assume that all lower and upper bounds are finite and give a complete
algorithm for this case. Later, we will explain how to cope with infinite bounds. We start by
showing how to converge to an optimal solution when an initial feasible solution is given. To
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compute the initial solution, we also apply this algorithm on a slightly modified instance.
The approach resembles the procedure in previous literature, although we apply the results
from the previous section to speed up the computation of augmenting steps.

Let x be a feasible solution for the n-fold ILP, in particular Ax = b. Let x∗ be an optimal
one. Theorem 4 states that we can decompose the difference vector x′ = x∗ − x into at most
2nt− 1 weighted Graver basis elements, that is

x′ = x∗ − x =
∑2nt−1

j=1
λjgj .

For intuition, consider the following simple approach (this is similar to the algorithm by
Hemmecke et al. [10]). Suppose we are able to guess the best vector λigi = argmaxj{cT (λjgj)}
regarding the gain for the objective function. This pair of step length λi and Graver element
gi is called the Graver best step. Then we can augment the current solution x by adding λigi
to it, i.e., we set x← x+ λigi. Feasibility follows because all gj are sign-compatible. This
procedure is repeated until no improving step is possible and therefore x must be optimal. In
each iteration this decreases the gap to the optimal solution by a factor of at least 1− 1/(2nt)
by the pigeonhole principle. It may be costly to guess the precise Graver best step, but for
our purposes it will suffice to find an augmenting step that is approximately as good.

We will now describe how to guess λi. Since x+λigi is feasible, we have that λigi ≤ u−x ≤
u− ` and λigi ≥ `− x ≥ `− u. Let (gi)j ∈ supp(gi) be some non-zero variable. If (gi)j > 0,
then λi ≤ (λigi)j ≤ uj − `j . Otherwise, (gi)j < 0 and λi ≤ −(λigi)j ≤ −(`j − uj) = uj − `j .
Hence, it suffices to check all values in the range {1, . . . ,Γ}, where Γ = maxj{uj − `j}.
Proceeding like in [7], we lower the time a bit further by not taking every value into
consideration. Instead, we look at guesses of the form λ′ = 2k for k ∈ {0, . . . , blog(Γ)c}.
Doing so we lose a factor of at most 2 regarding the improvement of the objective function,
since cT (λ′gi) > 0.5 · cT (λigi) when taking λ′ = 2blog(λi)c > λi/2. Fix λ′ to the value above.
Next we describe how to compute an augmenting step that is at least as good as λ′gi. Note
that gi is a solution of

Ay = 0
‖y‖1 ≤ k

d`− x
λ′
e ≤ y ≤ bu− x

λ′
c,

where k = O(rs∆)rs is the bound on the norm of Graver elements from Theorem 5. Suppose
we have guessed some partition P = {P1, . . . , Pk2} of the bricks such that of each Pj only
a single brick has non-zero variables in gi. Clearly, the augmenting step λ′y∗, where y∗
is a (P, k)-best step with bounds ` = d `−xλ′ e and u = bu−xλ′ c would be at least as good as
λ′gi. Indeed Theorem 10 explains how to compute such a (P, k)-best step dynamically and
when we add λ′gi to x we only change the bounds of at most k3 many variables. Hence,
it is very efficient to recompute (P, k)-best steps until we have converged to the optimal
solution. However, valid choices of λ′ and P might be different in every iteration. Regarding
λ′, we simply compute (P, k)-best steps for each of the O(log(Γ)) many guesses and take the
best among them. We proceed similarly for P . We guess a small number of partitions and
guarantee that always at least one of them is valid. For this purpose we employ splitters.
More precisely, we compute a (n, k, k2) splitter of the n bricks. Since gi has a norm bounded
by k, it can also only use at most k bricks. Therefore the splitter always contains a partition
P = {P1, . . . , Pk2} where gi only uses a single brick in every Pj .

To recap, in every iteration we solve a (P, k)-best step problem for every guess λ′ and
every partition P in the splitter and take the overall best solution as an improving direction
λ′y∗. Then we update our solution x by adding λ′y∗ onto it. At most k2 many bricks change
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(and within each brick only k variables can change) and therefore we can efficiently recompute
the (P, k)-best steps for every guess for the next iteration. This way we guarantee that
we improve the solution by a factor of at least 1− 1/(4nt) in every iteration. The explicit
running time of these steps will be analyzed in the next theorem.

Recall that we still have to find an initial solution. This solution can indeed be computed
by using the augmenting step algorithm described above. Roughly speaking, we modify
our n-fold matrix by introducing new variables, such that it admits a trivial initial solution.
Introducing a new objective function which penalizes using these new variables, an optimal
solution clearly corresponds to an initial solution of the original n-fold ILP. The detailed
procedure is given in the full version of this paper.

I Theorem 11. The dynamic augmenting step algorithm described above computes an
optimal solution for the n-fold Integer Linear Program problem in time (rs∆)O(r2s+s2) ·
O(L2 · nt log5(nt)) when finite variable bounds are given for each variable. Here L is the
encoding length of the largest occurring number in the input.

Proof. Due to Theorem 4 we know that the difference vector of an optimal solution x∗ to
our current solution x, i.e. x′ = x∗ − x, can be decomposed into 2nt− 1 weighted Graver
basis elements. Hence, if we adjust our solution x with the Graver best step, we reduce the
gap between the value of an optimal solution and our current solution by a factor of at least
1− 1/(2nt) due to the pigeonhole principle. Our algorithm finds an augmenting step that is
at least half as good as the Graver best step. Therefore, the gap to the optimal solution is
still reduced by at least a factor of 1− 1/(4nt).

Regarding the running time we first have to compute the splitter. Theorem 7 says, that
this can be done in time kO(1) · n log(n) = (rs∆)O(rs) · n log(n). Next we have to try all
values for the weight λ. Due to our step-length we get O(log(Γ)) guesses. Recall that Γ
denotes the largest difference between an upper bound and the corresponding lower bound,
i.e., Γ = maxj{uj − `j}. Fixing one, we have to find the best improving direction regarding
each of the ((rs∆)O(rs))O(1) log(n) = (rs∆)O(rs) log(n) partitions. In the first iteration
we have to set up the tables in time kO(r) · ∆O(r2+s2) · nt = (rs∆)O(r2s) · ∆O(r2+s2) · nt
by computing the gain for each possible summand for each set and setting up the data
structure. In each following iteration we update each table and search for the optimum in
time kO(r) ·∆O(r2+s2) · log(nt) = (rs∆)O(r2s) ·∆O(r2+s2) · log(nt). Now it remains to bound
the number I of iterations needed to converge to an optimal solution. To obtain such a
bound we calculate:

1 > (1− 1/(4nt))I |cT (x∗ − x)|.

By reordering the term, we get

I <
− log(|cT (x∗ − x)|)

log(1− 1/(4nt)) .

As log(1 + x) = Θ(x), we can bound log(1− 1/(4nt)) by Θ(−1/(4nt)) and thus

I < O(− log(|cT (x∗ − x)|)
−1/(4nt) ) ≤ O(4nt log(|cT (x∗ − x)|)).

As the maximal difference between the current solution x and an optimal one x∗ can be
at most the maximal value of c times the largest number in between the bounds for each
variable, we get |cT (x∗ − x)| ≤ ntmaxi |ci| · Γ and thus

I < O(4nt log(|cT (x∗ − x)|)) ≤ O(nt log(ntmax
i
|ci| · Γ)) ≤ O(nt log(ntΓ max

i
|ci|)).
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Let L denote the encoding length of largest integer in the input. Clearly 2L bounds the
largest absolute value in c and thus we get

I < O(nt log(ntΓ max
i
|ci|)) = O(nt log(ntΓ2L)) = O(nt log(ntΓ2L)).

Hence after this amount of steps by always improving the gain by a factor of at least
1− 1/(4nt) we close the gap between the initial solution and an optimal one. Given this, we
can now bound the overall running time with:

(rs∆)O(rs) · n log(n)︸ ︷︷ ︸
Splitter

+ (rs∆)O(rs) log(n)︸ ︷︷ ︸
Partitions

· (rs∆)O(r2s) · (rs∆)O(r2+s2) · nt︸ ︷︷ ︸
First Iteration

+

O(nt log(ntΓ2L))︸ ︷︷ ︸
I

· O(log(Γ))︸ ︷︷ ︸
λ Guesses

· (rs∆)O(rs) log(n)︸ ︷︷ ︸
Partitions

· (rs∆)O(r2s) · (rs∆)O(r2+s2) · log(nt))︸ ︷︷ ︸
Update Time

= O((nt log(ntΓ2L)) · O(log(Γ)) · (rs∆)O(r2s+s2) · log2(nt)

= (rs∆)O(r2s+s2) · O(log2(Γ + 2L) · nt log3(nt)).

Here Splitter denotes the time to compute the initial set P of partitions and Partitions
denotes the cardinality of P. First Iteration is the time to solve the first iteration of the
(P, k)-best step problem. Further λ Guesses is the number of guesses we have to do to get
the right weight and lastly Update Time is the time needed to solve each following (P, k)-best
step including updating the bounds and data structures.

Note, that we still have to argue about finding the initial solution, since in the construction
of the modified n-fold ILP the parameters slightly change. The length of a brick expand to
t′ = t+ r + s, as shown in the full version of this paper. This, however, can be hidden in the
O-Notation of (rs∆)O(r2s+s2). Further, Γ′, the biggest difference in upper and lower bounds
can change as we introduced new variables admitting new bounds. The difference between
the bounds of old variables does not change. For the new variables, however, the difference
can be as large as ‖b′‖∞. Thus we bound this value by

‖b′‖∞ = ‖b−A`‖∞ ≤ ‖b‖∞ + ‖A`‖∞ ≤ ‖b‖∞ + ∆ · ‖`‖1 ≤ O(∆ · nt · 2L).

We conclude that the running time for finding an initial solution (and also the overall
running time) is

(rs∆)O(r2s+s2)O(log2(Γ′ + 2L)nt log3(nt)) = (rs∆)O(r2s+s2)O(log2(∆2Lnt)nt log3(nt))

= (rs∆)O(r2s+s2) · L2nt log5(nt). J

Handling Infinite Bounds

Remark, that if no finite bounds are given for all variables, we have to introduce some
artificial bounds first. Here we can proceed as in [7], where first the LP relaxation is solved
to obtain an optimal fractional solution z∗. Using the proximity results from [7], we know
that an optimal integral solution x∗ exists such that ‖x∗ − z∗‖1 ≤ nt(rs∆)O(rs). This allows
us to introduce artificial upper bounds for the unbounded variables. Remark that this comes
at the price of solving the corresponding relaxation of the n-fold Integer Linear Program
problem. However we also lessen the dependency from L2 to L as the finite upper and lower
bounds can also be bounded more strictly due to the same proximity result. This yields an
overall running time of (rs∆)O(r2s+s2) · L · nt log5(nt) + LP. Nevertheless, solving this LP
can be very costly, indeed it is not clear if a potential algorithm even runs in time linear in n.
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Thus, it may even dominate the running time of solving the n-fold ILP with finite upper
bounds. Fortunately we can circumvent the necessity of solving the LP as we will describe in
the following section using new structural results.

I Theorem 12. The dynamic augmenting step algorithm described above computes an optimal
solution for the n-fold Integer Linear Program problem in time (rs∆)O(r2s+s2) ·L·nt log5(nt)+
LP when some variables have infinite upper bounds. Here LP is the running time to solve
the corresponding relaxation of the n-fold ILP problem.

5 Bounds on `1-norm

In the following, we state that even with infinite variable bounds in an n-fold ILP there
always exists a solution of small norm (if the n-fold ILP has a finite optimum). Therefore,
we can apply the algorithm for finite variable bounds by replacing every infinite one with
this value. However, due to space restrictions, the proofs are omitted. They can be found in
the full version of this paper.

I Lemma 13. If the n-fold ILP is feasible and y is some vector satisfying the variable bounds,
then there exists a feasible solution x with ‖x‖1 ≤ O(rs∆)rs+1 · (‖y‖1 + ‖b‖1)

I Lemma 14. If the n-fold ILP is bounded and feasible, then there exists an optimal solution
x with ‖x‖1 ≤ (rs∆)O(rs) · (‖b‖1 + ntζ), where ζ denotes the largest absolute value among
all finite variable bounds.

This yields an alternative approach to solving the LP relaxation, because now we can
simply replace all infinite bounds with ±(rs∆)O(rs) ·nt ·2L. Then we can apply the algorithm
that works only on finite variable bounds. The new encoding length L′ of the largest integer
in the input can be bounded by

L′ ≤ log((rs∆)O(rs) · 2L · nt) ≤ O(rs · log(rs∆) · L · log(nt)).

This way we obtain the following.

I Corollary 15. We can compute an optimal solution for an n-fold ILP in time
(rs∆)O(r2s+s2) · L2 · nt log7(nt).

In a similar way, we can derive the following bound on the sensitivity of an n-fold ILP. This
bound is not needed in our algorithm, but may be of independent interest, since it implies
small sensitivity for problems that can be expressed as n-fold ILPs.

I Theorem 16. Let x be an optimal solution of an n-fold ILP with right-hand side b, in
particular, Ax = b. If the right hand side changes to b′ and the n-fold ILP still has a
finite optimum, then there exists an optimal solution x′ for b′ (Ax′ = b′) with ‖x− x′‖1 ≤
O(rs∆)rs · ‖b− b′‖1.

It is notable that this bound does not depend on n. This is in contrast to the known bounds
for the distance between LP and ILP solutions of an n-fold ILP [7].
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Abstract
The 0-1 knapsack problem is an important NP-hard problem that admits fully polynomial-time
approximation schemes (FPTASs). Previously the fastest FPTAS by Chan (2018) with approximation
factor 1 + ε runs in Õ(n + (1/ε)12/5) time, where Õ hides polylogarithmic factors. In this paper we
present an improved algorithm in Õ(n + (1/ε)9/4) time, with only a (1/ε)1/4 gap from the quadratic
conditional lower bound based on (min, +)-convolution. Our improvement comes from a multi-level
extension of Chan’s number-theoretic construction, and a greedy lemma that reduces unnecessary
computation spent on cheap items.
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1 Introduction

1.1 Background
In the 0-1 knapsack problem, we are given a set I of n items where each item i ∈ I has
weight wi and profit pi, and we want to select a subset J ⊆ I such that

∑
j∈J wj ≤W and∑

j∈J pj is maximized.
The 0-1 knapsack problem is a fundamental optimization problem in computer science

and is one of Karp’s 21 NP-complete problems [8]. An important field of study on NP-hard
problems is to find efficient approximation algorithms. A (1+ε)-approximation algorithm (for
a maximization problem) outputs a value SOL such that SOL ≤ OPT ≤ (1 + ε) · SOL, where
OPT denotes the optimal answer. The 0-1 knapsack problem is one of the first problems that
were shown to have fully polynomial-time approximation schemes (FPTASs), i.e., algorithms
with approximation factor 1 + ε for any given 0 < ε < 1 and running time polynomial in
both n and 1/ε.

There has been a long line of research on finding faster FPTASs for the 0-1 knapsack
problem, as summarized in Table 1. The first algorithm with only subcubic dependence
on 1/ε was due to Rhee [15]. Very recently, Chan [3] gave an elegant algorithm for the 0-1
knapsack problem in deterministic O(n log 1

ε + ( 1
ε )5/2/2Ω(

√
log(1/ε))) via simple combination

of the SMAWK algorithm [1] and a standard divide-and-conquer technique. The speedup of
superpolylogarithmic factor 2Ω(

√
log(1/ε)) is due to recent progress on (min,+)-convolution

[2, 16, 4]. Using an elementary number-theoretic lemma, Chan further improved the algorithm
to O(n log 1

ε + ( 1
ε )12/5/2Ω(

√
log(1/ε))) time, and obtained two new algorithms running in

Õ( 1
εn

3/2) and O(( 1
ε )4/3n+( 1

ε )2)/2Ω(
√

log(1/ε))) time respectively, which are faster for small n.
FPTASs on several special cases of 0-1 knapsack are also of interest. For the unbounded

knapsack problem, where every item has infinitely many copies, Jansen and Kraft [7]
obtained an O(n + ( 1

ε )2 log3 1
ε )-time algorithm; the unbounded version can be reduced

mailto:jinc16@mails.tsinghua.edu.cn
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Table 1 FPTASs for 0-1 knapsack.

O(n log n + ( 1
ε
)4 log 1

ε
) Ibarra and Kim [6] 1975

O(n log 1
ε

+ ( 1
ε
)4) Lawler [13] 1979

O(n log 1
ε

+ ( 1
ε
)3 log2 1

ε
) Kellerer and Pferschy [11] 2004

O(n log 1
ε

+ ( 1
ε
)5/2 log3 1

ε
) (randomized) Rhee [15] 2015

O(n log 1
ε

+ ( 1
ε
)12/5/2Ω(

√
log(1/ε))) Chan [3] 2018

O(n log 1
ε

+ ( 1
ε
)9/4/2Ω(

√
log(1/ε))) This work

O( 1
ε
n3) Textbook algorithm

O( 1
ε
n2) Lawler [13] 1979

O(( 1
ε
)2n log 1

ε
) Kellerer and Pferschy [10] 1999

Õ( 1
ε
n3/2) (randomized, Las Vegas) Chan [3] 2018

O((( 1
ε
)4/3n + ( 1

ε
)2)/2Ω(

√
log(1/ε))) Chan [3] 2018

O((( 1
ε
)3/2n3/4 + ( 1

ε
)2)/2Ω(

√
log(1/ε)) + n log 1

ε
) This work

to 0-1 knapsack with only a logarithmic blowup in the problem size [5]. For the subset
sum problem, where every item has pi = wi, Kellerer et al. [9] obtained an algorithm
with O(min{n/ε, n + ( 1

ε )2 log 1
ε}) running time, which will be used in our algorithm as a

subroutine. For the partition problem, which is a special case of the subset sum problem where
W = 1

2
∑
i∈I wi, Mucha et al. [14] obtained an algorithm with a subquadratic Õ(n+ ( 1

ε )5/3)
running time.

On the lower bound side, recent reductions showed by Cygan et al. [5] and Künnemann
et al. [12] imply that 0-1 knapsack and unbounded knapsack have no FPTAS in O((n+ 1

ε )2−δ)
time, unless (min,+)-convolution has truly subquadratic algorithm [14]. It remains open
whether 0-1 knapsack has a matching upper bound.

1.2 Our results
In this paper we present improved FPTASs for the 0-1 knapsack problem. Our results are
summarized in the following two theorems.

I Theorem 1. There is a deterministic (1 + ε)-approximation algorithm for 0-1 knapsack
with running time O(n log 1

ε + ( 1
ε )9/4/2Ω(

√
log(1/ε))).

I Theorem 2. For n = O( 1
ε ), there is a deterministic (1 + ε)-approximation algorithm for

0-1 knapsack with running time O
((
n3/4( 1

ε )3/2 + ( 1
ε )2)/2Ω(

√
log(1/ε))

)
.

Theorem 2 gives the current best time bound for ( 1
ε )2/3 � n� 1

ε , improving upon the
previous O(( 1

ε )4/3n+ (1
ε )2)/2Ω(

√
log(1/ε))) algorithm by Chan [3]. For n � ( 1

ε )2/3, Chan’s
Õ( 1

εn
3/2) time randomized algorithm [3] remains the fastest.

For n� 1
ε , Theorem 1 gives a better time bound, improving upon the previous O(n log 1

ε +
( 1
ε )12/5/2Ω(

√
log(1/ε))) algorithm by Chan [3].

1.3 Outline of our algorithm
We give an informal overview of our improved algorithm for 0-1 knapsack.

Using a known reduction [3], it suffices to solve an easier instance of 0-1 knapsack where
profits of all items satisfy pi ∈ [1, 2]. Here “solving an instance” means approximating the
function f(x) := [maximum total profit of items with at most x total weight] for all x ≥ 0,
rather than for just a single point x = W . In this restricted case, simple greedy (sorting
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according to unit profits pi/wi) gives an additive error of at most maxj pj = O(1), so it suffices
to approximate the capped function min{ε−1, f(x)} with approximation factor 1 + O(ε).
Chan gave an algorithm that (1 + ε)-approximates min{B, f(x)} in Õ(n+ ε−2B1/2) time
(implied by [3, Lemma 7]), which immediately implies an Õ(n + ε−5/2) time FPTAS by
setting B = ε−1.

Greedy. Now we explain how to use a greedy argument (described in detail in Section
5) to improve this algorithm to Õ(n + ε−7/3) time. We sort all items (with pi ∈ [1, 2]) in
non-increasing order of unit profits pi/wi, and divide them into three subsets H,M,L (items
with high, medium, low unit profits), where H contains the top Θ(ε−1) items, and L contains
all items i for which pi/wi ≤ (1− ε2/3) ·minh∈H{ph/wh}, so there is a gap between the unit
profits of H-items and L-items. Intuitively, there are sufficiently many H-items available,
so it’s not optimal to include too many cheap L-items when the knapsack capacity is not
very big. To be more precise, we prove that in any optimal solution we care about (i.e.,
having optimal total profit smaller than ε−1), the total profit contributed by L-items cannot
exceed O(ε−2/3). Hence, for subset L we only need to approximate up to B = Θ(ε−2/3) in
Õ(n+ ε−2B1/2) = Õ(n+ ε−7/3) time. Subset H has only O(ε−1) items and can be solved
using Chan’s Õ(ε−4/3n + ε−2) algorithm in Õ(ε−7/3) time. To solve subset M , we round
down the profit value pi for every item i ∈M , so that the unit profit pi/wi becomes a power
of (1 + ε). Then there are O(ε−1/3) distinct unit profit values in M . Items with the same
unit profit can be solved together using the efficient FPTAS for subset sum by Kellerer et al.
[9] in Õ(n+ ε−2) time. Finally we merge the results for H,M,L. The total time complexity
is Õ(n+ ε−7/3).

Multi-level number-theoretic construction. The above approach invokes two of Chan’s
algorithms: an Õ(n + ε−2B1/2) algorithm (useful for small B) and an Õ(ε−4/3n + ε−2)
algorithm (useful for small n). The key ingredient in these algorithms is a number-theoretic
lemma: we can (1 + ε)-approximate all profit values pi ∈ [1, 2] by multiples of elements from
a small set ∆ ⊂ [δ, 2δ] of size |∆| = Õ( δε ) (small |∆| can reduce the additive error incurred
from rounding).

Chan obtained an Õ(n+ ε−2B2/5) time algorithm using some additional tricks. First,
evenly partition ∆ into r subsets ∆(1), . . . ,∆(r), and divide the items into P = P (1)∪· · ·∪P (r)

accordingly, so that profit values from P (j) are approximated by ∆(j)-multiples. To (1 + ε)-
approximate the profit function fj for each P (j), pick a threshold B0 � B, and return the
combination of a (1 + ε)-approximation of min{fj , B0} and an εB0-additive-approximation
of min{fj , B}. Since the size of ∆(j) is only |∆|/r, the latter function can be approximated
faster when r � 1. Finally, merge fj over all 1 ≤ j ≤ r. By fine-tuning the parameters
r, δ, B1, the time complexity is improved to Õ(n+ ε−2B2/5).

Our new algorithm extends this technique to multiple levels. To (1 + ε)-approximate
the profit function fj for each P (j), we will pick B0 � B1 � · · · � Bd−1 � Bd ≈ B, and
compute the εBi−1-additive-approximation of min{fj , Bi}, for all i ∈ [d]. An issue of this
multi-level approach is that, different levels have different optimal parameters δi and different
∆(1)
i , . . . ,∆(r)

i , but we have to stick to the same partition of items P = P (1)∪· · ·∪P (r) over all
levels. We overcome this issue by enforcing that ∆(j)

i at level i must be generated by multiples
of elements from ∆(j)

i−1 at level i− 1, so that P (j) can be approximated by ∆(j)
i -multiples for

all levels. To achieve this, we need a multi-level version of the number-theoretic lemma. We
will discuss this part in detail in Section 4.
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Using this multi-level construction, we obtain algorithms in Õ(n+ ε−2B1/3) time and
Õ(ε−3/2n3/4 + ε−2) time. Combining these improved algorithms with the greedy argument
previously described (the threshold which splits M and L needs to be adjusted accordingly),
we obtain an algorithm in Õ(n+ ε−9/4) time as claimed in Theorem 1.

2 Preliminaries

Throughout this paper, log x stands for log2 x, and Õ(f) stands for O(f · poly log(f)).
We will describe our algorithm with approximation factor 1 +O(ε), which can be lowered

to 1 + ε if we scale down ε by a constant factor at the beginning.
We are only interested in the case where n = O(ε−4). For greater n, Lawler’s O(n log 1

ε +
( 1
ε )4) algorithm [13] is already near-optimal. Hence we assume logn = O(log ε−1).

Assume 0 < wi ≤ W and pi > 0 for every item i. Then a trivial lower bound of the
maximum total profit is maxj pj . At the beginning, we discard all items i with pi ≤ ε

n maxj pj .
Since the total profit of discarded items is at most εmaxj pj , the optimal total profit is only
reduced by a factor of 1 +O(ε). So we can assume that maxj pj

minj pj
≤ n

ε .
We adopt Chan’s terminology in presenting our algorithm. For a set I of items, define

the profit function

fI(x) = max
{∑
i∈J

pi :
∑
i∈J

wi ≤ x, J ⊆ I

}

over non-negative real numbers x ≥ 0. Note that fI is a monotone (nondecreasing) step
function. The complexity of a monotone step function refers to the number of its steps.

We say that a function f̃ approximates a function f with factor 1 + ε if f̃(x) ≤ f(x) ≤
(1 + ε)f̃(x) for all x ≥ 0. We say that f̃ approximates f with additive error δ if f̃(x) ≤
f(x) ≤ f̃(x) + δ for all x ≥ 0. Our goal is to approximate fI with factor 1 + O(ε) on the
input item set I.

Let I1, I2 be two disjoint subsets of items, and I = I1 ∪ I2. We have fI = fI1 ⊕ fI2 , where
⊕ denotes the (max,+)-convolution, defined by (f ⊕ g)(x) = max0≤x′≤x(f(x′) + g(x− x′)).
If two non-negative monotone step functions f, g are approximated with factor 1 + ε by
functions f̃ , g̃ respectively, then f ⊕ g is also approximated by f̃ ⊕ g̃ with factor 1 + ε.

For a monotone step function f with range1 contained in {0} ∪ [A,B], we can obtain a
function f̃ with complexity only O(ε−1 log(B/A)) which approximates f with factor 1 + ε,
by simply rounding f down to powers of (1 + ε). For our purposes, B/A will be bounded by
polynomial of n and 1/ε, hence we may always assume that the approximation results are
monotone step functions with complexity Õ(ε−1).

For an item set I with the same profit pi = p for every item i ∈ I, the step function
fI can be exactly computed in O(n logn) time by simple greedy: the function values are
0, p, 2p, . . . , np and the x-breakpoints are w1, w1 + w2, . . . , w1 + · · ·+ wn, after sorting all
wi’s in nondecreasing order. We say that a monotone step function is p-uniform if its
function values are of the form 0, p, 2p, . . . , lp for some l. We say that a p-uniform function
is pseudo-concave if the differences of consecutive x-breakpoints are nondecreasing from
left to right. In the previous case where all pi’s are equal to p, fI is indeed p-uniform
and pseudo-concave.

1 Here range refers to the set of possible output values of the function.
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3 Chan’s techniques

In this section we review several useful lemmas by Chan [3].

3.1 Merging profit functions
I Lemma 3 ([3, Lemma 2(i)]). Let f1, . . . , fm be monotone step functions with total complexity
O(n) and ranges contained in {0} ∪ [A,B]. Then we can compute a monotone step function
that approximates f1 ⊕ · · · ⊕ fm with factor 1 +O(ε) and complexity Õ( 1

ε logB/A) in O(n) +
Õ(( 1

ε )2m/2Ω(
√

log(1/ε)) logB/A) time.

I Remark 4. Lemma 3 is proved using a divide-and-conquer method, which was also used
previously in [10]. The speedup of superpolylogarithmic factor 2Ω(

√
log(1/ε)) is due to recent

progress on (min,+)-convolution [2, 16, 4].

Lemma 3 enables us to focus on a simpler case where all pi ∈ [1, 2]. For the general
case, we divide the items into O(log maxj pj

minj pj
) = O(log ε−1) groups, each containing items

with pi ∈ [2j , 2j+1] for some j (which can be rescaled to [1, 2]), and finally merge the profit
functions of all groups by using Lemma 3 in Õ(n+ ε−2) time.

Assuming ε−1 is an integer and every pi ∈ [1, 2], we can round every pi down to a
multiple of ε, introducing only a 1 + ε error factor. Then there are only m = O(ε−1) distinct
values of pi. For every value of pi, the corresponding profit function fi is pi-uniform and
pseudo-concave, and can be obtained by simple greedy (as discussed in Section 2).

3.2 Approximating big profit values using greedy
When all pi’s are small, simple greedy gives good approximation guarantee when the answer
is big enough.

I Lemma 5. Suppose pi ∈ [1, 2] for all i ∈ I. For B = Ω(ε−1), the function fI can be
approximated with additive error O(εB) in O(n logn) time.

Proof. Sort the items in nonincreasing order of unit profit pi/wi. Let f̃ be the monotone
step function resulting from greedy, with function values 0, p1, p1 + p2, . . . , p1 + · · ·+ pn and
x-breakpoints 0, w1, w1 + w2, . . . , w1 + · · ·+ wn. It approximates fI with an additive error
of maxi pi ≤ 2 ≤ O(εB) for B = Ω(ε−1). J

When every pi ∈ [1, 2], we set B = ε−1 and let fH denote the result from greedy (Lemma 5).
Then we only need to obtain a function fL which 1 +O(ε) approximates min{fI , B}, and
finally return max{fL, fH} as a 1 +O(ε) approximation of fI (because when fI(x) exceeds
B, an additive error O(εB) implies 1 +O(ε) approximation factor).

3.3 Approximation using ∆-multiples of small set ∆

For a set ∆ of numbers, we say that p is a ∆-multiple if it is a multiple of δ for some δ ∈ ∆.

I Lemma 6 ([3, Lemma 5]). Let f1, . . . , fm be monotone step functions with ranges contained
in [0, B]. Let ∆ ⊂ [δ, 8δ]. If every fi is pi-uniform and pseudo-concave for some pi ∈ [1, 2]
which is a ∆-multiple, then we can compute a monotone step function that approximates
min{f1 ⊕ · · · ⊕ fm, B} with additive error O(|∆|δ) in Õ(Bm/δ) time.
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I Remark 7. An intuition of Lemma 6 is as follows. When pi’s are exact multiples of δ,
standard dynamic programming algorithm maintains a result array of length B/δ, and adding
a new fi to the result can be done in linear time (by exploiting the pseudo-concavity of fi
using the SMAWK algorithm2). Now if the next pi to be considered is a multiple of δ′ 6= δ,
we first have to round down the current results to multiples of δ′, introducing an additive
error of δ′. We round our results for |∆| − 1 times, so smaller |∆| implies smaller overall
additive error.

I Corollary 8. Let f1, . . . , fm be monotone step functions with ranges contained in [0, B].
If every fi is pi-uniform and pseudo-concave for some pi ∈ [1, 2], then we can compute a
monotone step function that approximates min{f1 ⊕ · · · ⊕ fm, B} with factor 1 + O(ε) in
Õ(ε−1Bm) time.

Proof. Assuming ε−1 is an integer, adjust every pi down to the nearest multiple of ε, and
adjust fi accordingly. This introduces a 1 + ε overall error factor. Then use Lemma 6 with
δ = ε,∆ = {ε} to compute the desired function in Õ(Bmε−1) time. J

4 Extending Chan’s number-theoretic construction

As mentioned in Section 1.3, the main results of this section are two approximation algorithms
in Õ(n+ ε−2B1/3) and Õ(ε−3/2n3/4 + ε−2) time respectively (the latter time bound assumes
n = O(1/ε)). These results rely on Lemma 6.

4.1 Number-theoretic construction
To avoid checking boundary conditions, from now on we assume ε > 0 is sufficiently small.

Our algorithm extends Chan’s technique by using a multi-level structure defined as follows.

I Definition 9. For fixed parameters δ1, δ2, . . . , δd satisfying condition

ε ≤ δ1, δi ≤ δi+1/2, δd ≤ 1/8 (1)

and a finite real number set ∆1 ⊂ [δ1, 8δ1], a set tower (∆1,∆2, . . . ,∆d) generated by ∆1 is
defined by recurrence3

∆i+1 := [δi+1, 8δi+1] ∩
⋃
k∈Z

k∆i, i = 1, 2, . . . , d− 1. (2)

We refer to ∆1 as the base set and ∆d as the top set of this set tower. We also say that the
base set ∆1 generates the top set ∆d.

If ∆∗d is the top set generated by a singleton base set ∆∗1 = {x}, then for every y ∈ ∆∗d we
say x generates y.

We have the following simple facts about set towers.

I Proposition 10. If x generates y then x ∈ ∆1 implies y ∈ ∆d. Conversely, for every
y ∈ ∆d, there exists x ∈ ∆1 which generates y, and for every 1 ≤ i ≤ d there exists z ∈ ∆i

such that both y/z and z/x are integers.

2 The SMAWK algorithm [1] finds all row-minima in an n× n matrix A satisfying the Monge property
A[i, j] + A[i + 1, j + 1] ≤ A[i, j + 1] + A[i + 1, j] using only O(n) queries.

3 For a number k and a set A of numbers, kA := {ka : a ∈ A}.
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I Proposition 11. For any 1 ≤ i ≤ d, |∆i| ≤ 8i−1(δi/δ1)|∆1|, and we can compute ∆i in
Õ(8i−1(δi/δ1)|∆1|) time given ∆1 as input.

Proof. For 2 ≤ i ≤ d, we have

|∆i| =
∣∣∣[δi, 8δi] ∩ ⋃

k∈Z
k∆i−1

∣∣∣ ≤ ∑
x∈∆i−1

8δi/x ≤ |∆i−1|8δi/δi−1.

The proof of size upper bounds follows by induction. Elements of ∆i can be generated
straightforwardly within the time bound. J

I Lemma 12. Let T1, T2, . . . , Td be positive real numbers satisfying T1 ≥ 2 and Ti+1 ≥ 2Ti.
There exist at least Td

/
(log Td)O(d) integers t satisfying the following condition: t can be

written as a product of integers t = n1n2 · · ·nd, such that n1n2 · · ·ni ∈ (Ti/2, Ti] for every
1 ≤ i ≤ d.

The proof of Lemma 12 is deferred to Appendix A. Lemma 12 helps us prove the following
fact, which is a multi-level extension of [3, Lemma 6].

I Lemma 13. For any parameters δ1, . . . , δd satisfying condition (1), there exists a base set
∆1 of size δ1

ε · (log ε−1)O(d), such that every p ∈ [1, 2] can be approximated by a ∆d-multiple
with additive error O(ε), where ∆d is the top set generated by ∆1.

This base set ∆1 can be constructed in Õ(ε−1δ−1
1 ) time deterministically.

Proof. Let P = {1, 1 + ε, 1 + 2ε, . . . , 1 + b 1
εcε}. It suffices to approximate every value

p ∈ P with additive error ε using ∆d-multiples. For any p ∈ P and y ∈ ∆d ⊂ [δd, 8δd], p is
approximated with additive error ε by a multiple of y if and only if y ∈

⋃
j∈Z

[
p−ε
j , pj

]
.

Our constructed base set ∆1 will satisfy ∆1 ⊂ [δ1, 4δ1]. Suppose integers k1, k2, . . . , kd−1
satisfy

k1k2 · · · ki−1 ∈ [δi/δ1, 2δi/δ1], for every 2 ≤ i ≤ d. (3)

Then by Definition 9, for any x ∈ ∆1 ⊂ [δ1, 4δ1], we have xk1k2 · · · ki−1 ∈ ∆i for every
2 ≤ i ≤ d.

For any integer j satisfying

k1k2 · · · kd−1j ∈ [p/(4δ1), p/(2δ1)], (4)

the interval [ p−ε
k1k2···kd−1j

, p
k1k2···kd−1j

] is contained in [δ1, 4δ1].
We say an integer K is good for p, if K can be expressed as a product of integers

k1k2 · · · kd−1j satisfying conditions (3) and (4). For such K, any x ∈ [ p−εK , pK ]∩∆1 generates
an element y = xk1k2 · · · kd−1 ∈ ∆d ∩ [ p−εj , pj ] such that p can be approximated by a multiple
of y with additive error ε.

By Lemma 12, the number of good integers K for p is at least

p/(4δ1)(
log(p/(4δ1))

)O(d) = Ω
( δ−1

1
(log ε−1)O(d)

)
,

and at most p/(2δ1) = O(δ−1
1 ), by (4). Using conditions (3) and (4) we can compute all these

K’s by simple dynamic programming. We denote the union of their associated intervals by

Ip :=
⋃

K good for p

[
p− ε
K

,
p

K

]
⊂
[
δ1, 4δ1

]
. (5)
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Note that these intervals are disjoint since p/(K + 1) ≤ (p− ε)/K, so the total length of Ip
can be lower-bounded as

λ(Ip) ≥
δ−1
1

(log ε−1)O(d) ·
p− (p− ε)

maxK ≥ ε

(log ε−1)O(d) . (6)

We have seen that p is approximated by a ∆d-multiple with additive error ε as long as
∆1 ∩ Ip 6= ∅. We compute Ip for every p ∈ P , and use the standard greedy algorithm (for
Hitting Set problem) to construct a base set ∆1 ⊂ [δ1, 4δ1] which intersects with every Ip:
in each round we find a point x ∈ [δ1, 4δ1] that hits the most Ip’s, include x into ∆1, and
remove the Ip’s that are hit by x. In each round the number of remaining Ip’s decreases by

s := minp λ(Ip)
4δ1 − δ1

≥ ε/δ1
(log ε−1)O(d) ,

so the solution size |∆1| is upper-bounded by

1 + log1/(1−s) |P | = O

(
log |P |
s

)
= δ1

ε
(log ε−1)O(d).

To implement this greedy algorithm, we use standard data structures (for example, segment
trees) that support finding x which hits the most intervals, reporting an interval hit by x,
removing an interval, all in logarithmic time per operation. The number of operations is
bounded by the total number of small intervals, so the running time is at most Õ(|P | · p

2δ1
) =

Õ(δ−1
1 ε−1). J

The following lemma evenly partitions the base set ∆1 into r subsets ∆(1)
1 , . . . ,∆(r)

1 , and
partitions the profit values P = {p1, . . . , pm} into P (1) ∪ · · · ∪ P (r), so that P (j) can be
approximated by ∆(j)

d -multiples. An additional requirement is that P (1), . . . , P (r) should
have size O(|P |/r) each.

I Lemma 14. Let δ1, . . . , δd be parameters satisfying condition (1). Let P = {p1, . . . , pm} ⊂
[1, 2] with m = O(ε−1). Given a positive integer parameter r = O(min{ δ1

ε ,m}), there
exist r base sets ∆(1)

1 ,∆(2)
1 , . . . ,∆(r)

1 each of size δ1
εr · (log ε−1)O(d), and a partition of P =

P (1) ∪ P (2) ∪ · · · ∪ P (r) each of size O(m/r), such that for every 1 ≤ j ≤ r, every p ∈ P (j)

can be approximated by a ∆(j)
d -multiple with additive error O(ε), where ∆(j)

d is the top set
generated by ∆(j)

1 .
These r base sets and the partition of P can be computed by a deterministic algorithm in

Õ(ε−2/r) time .

Proof. First construct the base set ∆1 of size δ1
ε (log ε−1)O(d) from Lemma 13 in Õ(δ−1

1 ε−1) =
Õ(ε−2/r) time, and compute the top set ∆d that it generates. By Proposition 11, |∆d| ≤
8d−1 δd

δ1
|∆1| ≤ δd

ε (log ε−1)O(d). Generate and sort all ∆d-multiples in interval [1, 2]. For every
p ∈ P , use binary search to find the ∆d-multiple ky ≤ p (y ∈ ∆d) closest to p, and then add
p to the set Qx, where x ∈ ∆1 is an element that generates y. (Qx is initialized as empty for
every x ∈ ∆1.) Then remove every x with Qx = ∅ from ∆1, so that |∆1| ≤ m, while every
p ∈ P can still be approximated with O(ε) additive error by a ∆d-multiple.

Let D := max{r, |∆1|} and let s := dm/De. For every x ∈ ∆1 we divide Qx evenly into
small subsets each having size at most s. The total number of these small subsets is∑

x∈∆1

d|Qx|/se ≤ |∆1|+
∑
x∈∆1

|Qx|/s = |∆1|+m/s ≤ 2D.
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We merge these small subsets into r groups, each having at most d2D/re small subsets. Then,
define set P (j) as the union of small subsets from the j-th group, and let base set ∆(j)

1 contain
x ∈ ∆1 if any of these small subsets comes from Qx. So |∆(j)

1 | ≤ d2D/re = δ1
εr (log ε−1)O(d),

and |P (j)| ≤ s · d2D/re = O(m/D) ·O(D/r) = O(m/r). J

4.2 Approximation using set towers
We first prove a slightly improved version of Corollary 8. The only purpose of this lemma is
to get rid of the (log ε−1)O(log log ε−1) factor in the final running time.

I Lemma 15. Let f1, . . . , fm be monotone step functions with ranges contained in [0, B] for
some 1 ≤ B ≤ O(ε−1). If every fi is pi-uniform and pseudo-concave for some pi ∈ [1, 2],
then we can compute a monotone step function that approximates min{f1⊕ · · ·⊕ fm, B} with
factor 1 +O(ε) in Õ(ε−1(Bm+ ε−1)/B0.01) time.

Proof. Using Lemma 13 with parameters d = 1, δ1 = εB0.01, we get ∆ ⊂ [δ1, 8δ1] with
size |∆| ≤ Õ(δ1/ε) = Õ(B0.01), in Õ(ε−2/B0.01) time. Adjust every pi down to the nearest
∆-multiple, and adjust fi accordingly. This introduces at most 1+O(ε) error factor. Then use
Lemma 6 to compute a monotone step function fH that approximates min{f1⊕ · · · ⊕ fm, B}
with additive error e = O(|∆|δ1) = Õ(εB0.02), in Õ(B0.99mε−1) time.

Let BL := e/ε, and use Corollary 8 to compute a monotone step function fL that approx-
imates min{f1⊕· · ·⊕fm, BL} with factor 1+O(ε) in only Õ(BLmε−1) = Õ(B0.02mε−1) time.

Since fH approximates min{f1 ⊕ · · · ⊕ fm, B} with additive error εBL, max{fL, fH} is a
1 +O(ε) approximation of min{f1 ⊕ · · · ⊕ fm, B}. J

Now we can approximate the profit function min{B,
⊕

pk∈P (j) fk} for each group P (j),
using the multi-level approach described in Section 1.3.

I Lemma 16. Let f1, . . . , fm be given monotone step functions with ranges contained
in [0, B], and every fk is pk-uniform and pseudo-concave for some pk ∈ [1, 2]. Assume
m = O(ε−1), Ω(ε−0.01) ≤ B ≤ O(ε−1). Let r be a given positive integer parameter with
r = O(m), r = o(B).

We can set d = O(log log ε−1) and choose d parameters δ1, . . . , δd satisfying condition
(1), such that the following statement holds:

Let P (1) ∪ · · · ∪P (r) be the partition of set P = {p1, . . . , pm} returned by the algorithm in
Lemma 14 with the above parameters. Then for any 1 ≤ j ≤ r, using the base set ∆(j)

1 from
Lemma 14, we can compute a monotone step function that approximates min{B,

⊕
pk∈P (j) fk}

with factor 1 +O(ε), in (ε−2/r0.01 +mε−1B1/2/r3/2)(log ε−1)O(d) time.

Proof. We can assume B ≥ 4r, and define d to be the unique positive integer such that

22d−1
≤
√
B√
r
< 22d

= 42d−1
.

Then d = O(log log
√
B√
r

) = O(log log ε−1). Pick α ∈ [2, 4) such that

α2d−1
=
√
B√
r
. (7)

Define

δi := ε
√
Br
/
α2d−i

, 0 ≤ i ≤ d. (8)
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Then

δd = ε
√
Br

α
, δ1 = εr (9)

Note that δd = ε
√
B · O(

√
r) = ε

√
B · o(

√
B) = ε · o(B) = o(1). Hence the parameters

δ1, . . . , δd satisfy condition (1) for sufficiently small ε.
The base set ∆(j)

1 from Lemma 14 has size δ1
εr (log ε−1)O(d). We compute the generated

set tower ∆(j)
1 ,∆(j)

2 , . . . ,∆(j)
d . By Proposition 11, |∆(j)

i | ≤
δi

εr (log ε−1)O(d). Let

t := max
{
α, max

j
|∆(j)

i |
/ δi
εr

}
= (log ε−1)O(d) (10)

and define

Bi := Bt
/
α2d−i

, 0 ≤ i ≤ d. (11)

Then B ≤ Bd ≤ B · (log ε−1)O(d), and it’s easy to verify that

|∆(j)
i | · δi ≤ Bi−1ε, (1 ≤ i ≤ d). (12)

For every 1 ≤ i ≤ d, adjust every pk ∈ P (j) down to the nearest ∆(j)
i -multiple and adjust

fk accordingly, which introduces a 1 + O(ε) error factor. Then use Lemma 6 to obtain a
monotone step function gi which approximates min{

⊕
pk∈P (j) fk, Bi} with additive error

O(|∆(j)
i |δi) = O(εBi−1) in Õ(|P (j)|Bi/δi) time.

Then we use Lemma 15 to obtain a monotone step function g0 which approximates
min{

⊕
pk∈P (j) fk, B0} with 1 +O(ε) factor, in Õ(ε−1(|P (j)|B0 + ε−1)B−0.01

0 ) time. Notice
that B0 = rt.

Finally, max{g0, g1, g2, . . . , gd} is a 1 + O(ε) approximation of min{
⊕

pk∈P (j) fk, Bd},
where Bd ≥ B. Overall running time is

Õ(ε−1(|P (j)|B0 + ε−1)B−0.01
0 ) +

∑
1≤j≤d

Õ(|P (j)|Bj/δj)

= Õ
(
ε−1(m

r
· (rt) + ε−1)(rt)−0.01)+ d · Õ

(m
r
Bd/δd

)
= (ε−2/r0.01 +mε−1B1/2/r3/2)(log ε−1)O(d). J

Now we merge the results from all r groups, and obtain an approximation of the final
result min{f1 ⊕ · · · ⊕ fm, B}.

I Lemma 17. Let f1, . . . , fm be given monotone step functions with ranges contained
in [0, B], and every fk is pk-uniform and pseudo-concave for some pk ∈ [1, 2]. Assume
m = O(1/ε),Ω(ε−0.01) ≤ B ≤ O(ε−1). We can approximate min{f1 ⊕ · · · ⊕ fm, B} with
factor 1 +O(ε) in O(ε−2B1/3/2Ω(

√
log(1/ε))) time.

Proof. Assume m ≥ ε−1, by adding zero functions which do not change the answer.
Let r = o(B) be a positive integer parameter to be determined later.
Using Lemma 14 and Lemma 16, we can get a partition of {p1, . . . , pm} = P (1)∪· · ·∪P (r)

and then get an 1 + O(ε) approximation of min{
⊕

pk∈P (j) fk, B} for every 1 ≤ j ≤ r,
in r · (ε−2/r0.01 + mε−1B1/2/r3/2)(log ε−1)O(d) = (r0.99 +

√
B/r)ε−2(log ε−1)O(log log ε−1)

overall time.
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Then we use Lemma 3 to merge all these r functions in Õ(( 1
ε )2r/2Ω(

√
log(1/ε))) time.

Setting r = B1/32c
√

log(1/ε), where c > 0 is some small enough constant, the total
complexity is

O(ε−2B1/3/2Ω(
√

log(1/ε))). J

I Lemma 18. Let I be a set of m items with pi ∈ [1, 2] for every i ∈ I, where Ω(ε−2/3) ≤
m ≤ O(ε−1). One can approximate fI with factor 1 + O(ε) in O(ε−3/2m3/4/2Ω(

√
log(1/ε)))

time.

Proof. Let f1, . . . , fm denote the profit functions of the m items.
Let r = o(m1/2) be a positive integer parameter to be determined later. Obtain a

partition of {p1, . . . , pm} = P (1) ∪ · · · ∪ P (r) using Lemma 14. Let B := maxi
∑
p∈P (i) p ≤

2 maxi |P (i)| = Θ(m/r). Then r = o(B). Use Lemma 16 to get an 1 + O(ε) approx-
imation of

⊕
pk∈P (j) fk = min{

⊕
pk∈P (j) fk, B} for every 1 ≤ j ≤ r, in r · (ε−2/r0.01 +

mε−1B1/2/r3/2)(log ε−1)O(d) = (ε−2r0.99 +m3/2ε−1/r)(log ε−1)O(log log ε−1) overall time.
Then we use Lemma 3 to merge all these r functions in Õ(( 1

ε )2r/2Ω(
√

log(1/ε))) time.
Setting r = m3/4ε1/22c

√
log(1/ε), where c > 0 is some small enough constant, the total

complexity is

O(ε−3/2m3/4/2Ω(
√

log(1/ε))). J

I Corollary 19 (restated Theorem 2). For n = O( 1
ε ), there is a deterministic (1 + ε)-

approximation algorithm for 0-1 knapsack in O
((
n3/4( 1

ε )3/2 + ( 1
ε )2)/2Ω(

√
log(1/ε))

)
time.

Proof. Divide the items into O(log n
ε ) groups, each containing items with pi ∈ [2j , 2j+1] for

some j. Use Lemma 18 to solve each group, and merge them using Lemma 3. J

5 Main algorithm

5.1 A greedy lemma
Our improved algorithm uses the following lemma, which gives an upper bound on the total
profit of cheap items (with low pi/wi) in an optimal knapsack solution.

I Lemma 20. Let H,L be two subsets of items with pi ∈ [1, 2]. Let W =
∑
h∈H wh and

q = minh∈H ph

wh
. Suppose maxl∈L pl

wl
≤ q(1− α) for some 0 < α < 1. Let f = fH ⊕ fL, f̃ =

fH ⊕min{ 2
α , fL}. Then for every x ≤W , f(x) = f̃(x).

Proof. By greedy, f(W ) =
∑
h∈H ph = f̃(W ) clearly holds. Now consider 0 ≤ x < W .

Suppose fL(x′) + fH(x− x′) achieves its maximum value at x′ = wL, i.e., f(x) = fL(wL) +
fH(x− wL). It suffices to prove fL(wL) ≤ 2

α .
Let J ⊆ H be a subset of items with total weight wJ ≤ x−wL and total profit achieving

optimal value fH(x− wL). Let K ⊆ H\J be a subset of items with total weight wK , such
that wK ≤ wL, and wK +wi > wL for every remaining item i ∈ H\(J ∪K). Such K can be
constructed by a simple greedy algorithm.

Since wJ + wK ≤ (x − wL) + wL < W =
∑
h∈H wh, the remaining set H\(J ∪ K)

contains at least one item h0. Hence, wL − wK < wh0 = ph0/
ph0
wh0
≤ 2/q, and equivalently

qwK > qwL − 2.



12 An Improved FPTAS for 0-1 Knapsack

Since J ∪K is a subset of H with total weight bounded by x, we have fH(x) ≥
∑
k∈K pk+∑

j∈J pj , and thus fH(x)− fH(x− wL) = fH(x)−
∑
j∈J pj ≥

∑
k∈K pk ≥ qwK > qwL − 2.

Hence qwL − 2 < fH(x) − fH(x − wL) ≤ f(x) − fH(x − wL) = fL(wL) ≤ q(1 − α)wL,
which shows that qαwL ≤ 2. So fL(wL) ≤ q(1 − α)wL ≤ qwL ≤ 2/α, which concludes
the proof. J

5.2 FPTAS for Subset Sum
We will use the efficient FPTAS for the subset sum problem by Kellerer et al. [9] as a
subroutine in our algorithm.

I Lemma 21 ([9], implicit). Let I be a set of n items and W be a number. We can obtain
a list S of O( 1

ε ) numbers in O(n+ ( 1
ε )2 log 1

ε ) time, such that for every s ≤ W that is the
subset sum s =

∑
j∈J wj of some subset J ⊆ I, there exists s′ ∈ S with s− εW ≤ s′ ≤ s.

I Remark 22. This result wasn’t explicitly stated in [9], but can be easily seen from their
analysis of the correctness of the FPTAS.

I Corollary 23. Let I be a set of n items with pi ∈ [1, 2] and pi = wi for every item i ∈ I.
We can approximate fI with factor 1 +O(ε) in O(n logn+ ε−2 log 1

ε logn) time.

Proof. Notice that approximating s with additive error εW implies approximation factor
1+O(ε) for W/2 ≤ s ≤W . So we simply apply Lemma 21 with W = 2j for 0 ≤ j ≤ 1+logn,
and merge all obtained lists. J

5.3 Improved algorithm
I Lemma 24. Let I be a set of n items with pi ∈ [1, 2] for every i ∈ I. We can approximate
fI with factor 1 +O(ε) in O(n log 1

ε + ( 1
ε )9/4/2Ω(

√
log(1/ε))) time.

Proof. Let B = dε−1e and assume n ≥ B (if n < B, we can simply apply Lemma 18). By
Lemma 5, we can approximate fI with additive error O(εB) in O(n log 1

ε ) time, so we only
need to approximate min{fI , B} with factor 1 +O(ε).

We sort the items by their unit profits pi/wi. Let set H contain the top B items with
the highest unit profits. Define q = minh∈H ph

wh
, and let M be the set of remaining items i

with q(1 − α) ≤ pi

wi
≤ q, where parameter 0 < α < 1 is to be determined later. Let set L

contain the remaining items not included in H or M .
Using Lemma 18, we can compute f̃H which approximates fH with factor 1 +O(ε) in

time O(B3/4ε−3/2/2Ω(
√

log(1/ε))) = O(ε−9/4/2Ω(
√

log(1/ε))).
Since maxl∈L pl

wl
< q(1 − α), Lemma 20 states that fH ⊕ fL and fH ⊕ min{2/α, fL}

agree when x ≤ WH =
∑
h∈H wh. Since (fH ⊕ fL)(WH) =

∑
h∈H ph ≥ B, this implies

min{B, fH ⊕ fL} = min{B, fH ⊕min{2/α, fL}}. For every item l ∈ L, we round down pl to
a power of 1+ε, so that there are only log1+ε 2 = O(ε−1) distinct values. This only multiplies
the approximation factor by 1 + ε. Then we use Lemma 17 to compute an approximation of
min{2/α, fL} with factor 1 +O(ε) in Õ(ε−2(2/α)1/3/2Ω(

√
log(1/ε))) time. We merge it with

f̃H and obtain an approximation of min{fH ⊕ fL, B} with factor 1 +O(ε).
For every m ∈M , we round down pm so that the unit profit pm/wm becomes a power of

1 + ε. After rounding, the approximation factor is only multiplied by 1 + ε, and there are at
most log1+ε

q
q(1−α) = O(α/ε) distinct unit profits in M . Let Mq denote the set of items in

M with unit profit q. For each q, we use Lemma 23 to obtain a 1 + ε approximation of the
function fMq

in O(|Mq|+ ε−2) time. Then we use Lemma 3 to merge these functions and
obtain a 1 + ε approximation of fM . The total time is O(|M | logn) + Õ(αε−3).
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Finally we merge the functions and get an approximation of min{B, fL ⊕ fH ⊕ fM} with
factor 1 +O(ε). The total time is O(n log 1

ε ) + Õ(αε−3 + ε−2(2/α)1/3/2Ω(
√

log(1/ε))), which
is O(n log 1

ε + ε−9/4/2Ω(
√

log(1/ε))) if we choose α = ε3/4/2c
√

log(1/ε) for a sufficiently small
constant c. J

I Corollary 25 (restated Theorem 1). There is a deterministic (1+ε)-approximation algorithm
for 0-1 knapsack with running time O(n log 1

ε + ( 1
ε )9/4/2Ω(

√
log(1/ε))).

Proof. Divide the items into O(log n
ε ) groups, each containing items with pi ∈ [2j , 2j+1] for

some j. Use Lemma 24 to solve each group, and merge them using Lemma 3. J
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A Proof of Lemma 12

I Theorem 26 (Reminder of Lemma 12). Let T1, T2, . . . , Td be positive real numbers satisfying
T1 ≥ 2 and Ti+1 ≥ 2Ti. There exist at least Td

/
(log Td)O(d) integers t satisfying the

following condition: t can be written as a product of integers t = n1n2 · · ·nd, such that
n1n2 · · ·ni ∈ (Ti/2, Ti] for every 1 ≤ i ≤ d.

Proof. For every 1 ≤ k ≤ d, we say an ordered k-tuple (p1, p2, . . . , pk) is valid if every pi
is prime, and p1p2 · · · pi ∈ (Ti/2, Ti] for every 1 ≤ i ≤ k. Then the product t = p1p2 · · · pd
of any valid d-tuple (p1, . . . , pd) satisfies our condition. For any integer t, there are at
most d! different valid d-tuples with product t (which could be obtained by permuting
t’s prime factors). Let Nk denote the number of valid k-tuples. Then it suffices to show
Nd/(d!) ≥ Td/(log Td)O(d).

By the prime number theorem and Bertrand-Chebyshev theorem, there exists a positive
constant C such that

π(x)− π(x/2) ≥ x/(C log x), for all x ≥ 2,

where π(x) denotes the number of primes less than or equal to x. We will prove Nk ≥
Tk/(C log Tk)k for all 1 ≤ k ≤ d by induction.

First note that this statement is trivial for k = 1. For k ≥ 2, a valid k-tuple (p1, . . . , pk)
can be obtained by appending any prime pk ∈

(
Tk/(2P ), Tk/P

]
to any valid (k − 1)-tuple

(p1, . . . , pk−1) with product P = p1 · · · pk−1 ≤ Tk−1. The number of such primes pk is

π(Tk/P )− π
(
Tk/(2P )

)
≥ Tk/P

C log(Tk/P ) ≥
Tk/Tk−1

C log Tk
.

Summing over all valid (k − 1)-tuples, we have

Nk ≥ Nk−1 ·
Tk/Tk−1

C log Tk
≥ Tk−1

(C log Tk−1)k−1 ·
Tk/Tk−1

C log Tk
≥ Tk

(C log Tk)k .

Hence, Nd ≥ Td/(C log Td)d by induction. Observe that Td ≥ 2d and we have

Nd
d! ≥

Td
(Cd log Td)d

≥ Td

(C log2 Td)d
≥ Td

(log Td)O(d) ,

which finishes the proof. J
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Abstract
A Valued Constraint Satisfaction Problem (VCSP) provides a common framework that can express a
wide range of discrete optimization problems. A VCSP instance is given by a finite set of variables,
a finite domain of labels, and an objective function to be minimized. This function is represented as
a sum of terms where each term depends on a subset of the variables. To obtain different classes
of optimization problems, one can restrict all terms to come from a fixed set Γ of cost functions,
called a language.

Recent breakthrough results have established a complete complexity classification of such classes
with respect to language Γ: if all cost functions in Γ satisfy a certain algebraic condition then all
Γ-instances can be solved in polynomial time, otherwise the problem is NP-hard. Unfortunately,
testing this condition for a given language Γ is known to be NP-hard. We thus study exponential
algorithms for this meta-problem. We show that the tractability condition of a finite-valued language
Γ can be tested in O( 3√3 |D| · poly(size(Γ))) time, where D is the domain of Γ and poly(·) is some
fixed polynomial. We also obtain a matching lower bound under the Strong Exponential Time
Hypothesis (SETH). More precisely, we prove that for any constant δ < 1 there is no O( 3√3 δ|D|)
algorithm, assuming that SETH holds.
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1 Introduction

Minimizing functions of discrete variables represented as a sum of low-order terms is a
ubiquitous problem occurring in many real-world applications. Understanding complexity of
different classes of such optimization problems is thus an important task. In a prominent
VCSP framework (which stands for Valued Constraint Satisfaction Problem) a class is
parameterized by a set Γ of cost functions of the form f : Dn → Q ∪ {∞} that are allowed
to appear as terms in the objective. Set Γ is usually called a language.

Different types of languages give rise to many interesting classes. A widely studied
type is crisp languages Γ, in which all functions f are {0,∞}-valued. They correspond to
Constraint Satisfaction Problems (CSPs), whose goal is to decide whether a given instance
has a feasible solution. Feder and Vardi conjectured in [11] that there exists a dichotomy
for CSPs, i.e. every crisp language Γ is either tractable or NP-hard. This conjecture was
refined by Bulatov, Krokhin and Jeavons [7], who proposed a specific algebraic condition

EA
T

C
S

© Vladimir Kolmogorov;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 77; pp. 77:1–77:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vnk@ist.ac.at
https://doi.org/10.4230/LIPIcs.ICALP.2019.77
https://arxiv.org/abs/1803.02289
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


77:2 Testing the Complexity of a Valued CSP Language

that should separate tractable languages from NP-hard ones. The conjecture was verified for
many special cases [27, 5, 3, 2, 8], and was finally proved in full generality by Bulatov [6]
and Zhuk [31].

At the opposite end of the VCSP spectrum are the finite-valued CSPs, in which functions
do not take infinite values. In such VCSPs, the feasibility aspect is trivial, and one has to
deal only with the optimization issue. One polynomial-time algorithm that solves tractable
finite-valued CSPs is based on the so-called basic linear programming (BLP) relaxation, and
its applicability (also for the general-valued case) was fully characterized by Kolmogorov,
Thapper and Živný [22]. The complexity of finite-valued CSPs was completely classified by
Thapper and Živný [29], where it is shown that all finite-valued CSPs not solvable by BLP
are NP-hard.

A dichotomy is also known to hold for general-valued CSPs, i.e. when cost functions in Γ
are allowed to take arbitrary values in Q ∪ {∞}. First, Kozik and Ochremiak showed [23]
that languages that do not satisfy a certain algebraic condition are NP-hard. Kolmogorov,
Krokhin and Rolínek then proved [21] that all other languages are tractable, assuming the
(now established) dichotomy for crisp languages conjectured in [7].

In this paper languages Γ that satisfy the condition in [23] are called solvable. Since
optimization problems encountered in practice often come without any guarantees, it is
natural to ask what is the complexity of checking solvability of a given language Γ. We
envisage that an efficient algorithm for this problem could help in theoretical investigations,
and could also facilitate designing optimization approaches for tackling specific tasks.

Checking solvability of a given language is known as a meta-problem or a meta-question in
the literature. Note that it can be solved in polynomial time for languages on a fixed domain
D (since the solvability condition can be expressed by a linear program with O(|D||D|m)
variables and polynomial number of constraints, where m = 2 if the language is finite-valued
and m = 4 otherwise). This naive solution, however, becomes very inefficient if D is a part
of the input (which is what we assume in this paper).

The meta-problem above was studied by Thapper and Živný for finite-valued lan-
guages [29], and by Chen and Larose for crisp languages [10]. In both cases it was shown to
be NP-complete. We therefore focus on exponential-time algorithms. We obtain the following
results for the problem of checking solvability of a given finite-valued language Γ:

An algorithm with complexity O( 3
√

3 |D| · poly(size(Γ))), where D is the domain of Γ
and poly(·) is some fixed polynomial.
Assuming the Strong Exponential Time Hypothesis (SETH), we prove that for any constant
δ < 1 the problem cannot be solved in O( 3

√
3 δ|D| · poly(size(Γ))) time.

We also present a few weaker results for general-valued languages (see Section 3).

Other related work. There is a vast literature devoted to exponential-time algorithms for
various problems, both on the algorithmic side and on the hardness side. Hardness results
usually assume one of the following two hypotheses [15, 16, 9].

I Conjecture 1 (Exponential Time Hypothesis (ETH)). Deciding satisfiability of a 3-CNF-SAT
formula on n variables cannot be solved in O(2o(n)) time.

I Conjecture 2 (Strong Exponential Time Hypothesis (SETH)). For any δ < 1 there exists
integer k such that deciding satisfiability of a k-CNF-SAT formula on n variables cannot be
solved in O(2δn) time.

Below we discuss some results specific to CSPs. Let (k, d)-CSP be the class of CSP
problems on a d-element domain where each constraint involves at most k variables. The
number of variables in an instance will be denoted as n. A trivial exhaustive search for
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a (k, d)-CSP instance runs in O∗(dn) time, where notation O∗(·) hides factors polynomial
in the size of the input. For (2, d)-CSP instances the complexity can be improved to
O∗((d− 1)n) [26]. Some important subclasses of (2, d)-CSP can even be solved in O∗(2O(n))
time. For example, [25] and [4] developed respectively O(2.45n) and O∗(2n) algorithms for
solving the d-coloring problem. On the negative side, ETH is known to have the following
implications:

The (2, d)-CSP problem cannot be solved in do(n) = 2o(n log d) time [30].
The Graph Homomorphism problem cannot be solved in 2o(

n log d
log log d ) time [12]. (This

problem can be viewed as a special case of (2, d)-CSP, in which a single binary relation is
applied to different pairs of variables).

Recently, exponential-time algorithms for crisp NP-hard languages have been studied using
algebraic techniques [17, 18, 24]. For example, [18] showed that the following conditions are
equivalent, assuming the (now proved) algebraic CSP dichotomy conjecture: (a) ETH fails;
(b) there exists a finite crisp NP-hard language Γ that can be solved in subexponential time
(i.e. all Γ-instances on n variables can be solved in O(2o(n)) time); (c) all finite crisp NP-hard
languages Γ can be solved in subexponential time.

The rest of the paper is organized as follows: Section 2 gives a background on the VCSP
framework, and Section 3 presents our results. All proofs are given in the full version of
this paper [20].

2 Background

We denote Q = Q∪{∞}, where∞ is the positive infinity. A function of the form f : Dn → Q
will be called a cost function over D of arity n. We will always assume that the set D is
finite. The effective domain of f is the set dom f = {x | f(x) < ∞}. Note that dom f can
be viewed both as an n-ary relation over D and as a function Dn → {0,∞}. We assume
that f is represented as a list of pairs {(x, f(x)) : x ∈ dom f}. Accordingly, we define
size(f) =

∑
x∈dom f [n log |D| + size(f(x))], where the size of a rational number p/q (for

integers p, q) is log(|p|+ 1) + log |q|.

I Definition 1. A valued constraint satisfaction language Γ over domain D is a set of
cost functions f : Dn → Q, where the arity n depends on f and may be different for
different functions in Γ. The domain of Γ will be denoted as DΓ. For a finite Γ we define
size(Γ) = |D|+

∑
f∈Γ size(f).

A language Γ is called finite-valued if all functions f ∈ Γ take finite (rational) values.
It is called crisp if all functions f ∈ Γ take only values in {0,∞}. We denote Feas(Γ) =
{dom f | f ∈ Γ} to be the crisp language obtained from Γ in a natural way. Throughout
the paper, for a subset A ⊆ D we use uA to denote the unary function D → {0,∞} with
arg min uA = A. (Domain D should always be clear from the context). For a label a ∈ D we
also write ua = u{a} for brevity.

I Definition 2. An instance I of the valued constraint satisfaction problem (VCSP) is a
function DV → Q given by

fI(x) =
∑
t∈T

ft(xv(t,1), . . . , xv(t,nt)) (1)

It is specified by a finite set of variables V , finite set of terms T , cost functions ft : Dnt → Q of
arity nt and indices v(t, k) ∈ V for t ∈ T, k = 1, . . . , nt. A solution to I is a labeling x ∈ DV

with the minimum total value. The size of I is defined as size(I) = |V |+|D|+
∑
t∈T size(ft).

The instance I is called a Γ-instance if all terms ft belong to Γ.
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The set of all Γ-instances will be denoted as VCSP(Γ). A finite language Γ is called tractable
if all instances I ∈ VCSP(Γ) can be solved in polynomial time, and it is NP-hard if the
corresponding optimization problem is NP-hard. A long sequence of works culminating with
recent breakthrough papers [6, 31] has established that every finite language Γ is either
tractable or NP-hard.

2.1 Polymorphisms and cores
Let O(m)

D denote the set of all operations g : Dm → D and let OD =
⋃
m≥1O

(m)
D . When D

is clear from the context, we will sometimes write simply O(m) and O.
Any language Γ defined on D can be associated with a set of operations on D, known as

the polymorphisms of Γ, which allow one to combine (often in a useful way) several feasible
assignments into a new one.

I Definition 3. An operation g ∈ O(m)
D is a polymorphism of a cost function f : Dn → Q

if, for any x1, x2, . . . , xm ∈ dom f , we have that g(x1, x2, . . . , xm) ∈ dom f where g is applied
component-wise.

For any valued constraint language Γ over a set D, we denote by Pol(m)(Γ) the set of
all operations on O(m)

D which are polymorphisms of every f ∈ Γ. We also let Pol(Γ) =⋃
m≥1 Pol(m)(Γ).

Clearly, if g is a polymorphism of a cost function f , then g is also a polymorphism of dom f .
For {0,∞}-valued functions, which naturally correspond to relations, the notion of a poly-
morphism defined above coincides with the standard notion of a polymorphism for relations.
Note that the projections (aka dictators), i.e. operations of the form ein(x1, . . . , xn) = xi,
are polymorphisms of all valued constraint languages. Polymorphisms play the key role in
the algebraic approach to the CSP, but, for VCSPs, more general constructs are necessary,
which we now define.

I Definition 4. An m-ary fractional operation ω on D is a probability distribution on O(m)
D .

The support of ω is defined as supp(ω) = {g ∈ O(m)
D | ω(g) > 0}.

For an operation g ∈ O(m) we will denote χg to be characteristic vector of g, i.e. the fractional
operation with χg(g) = 1 and χg(h) = 0 for h 6= g.

I Definition 5. A m-ary fractional operation ω on D is said to be a fractional polymorphism
of a cost function f : Dn → Q if, for any x1, x2, . . . , xm ∈ dom f , we have∑

g∈supp(ω)

ω(g)f(g(x1, . . . , xm)) ≤ 1
m

(f(x1) + . . .+ f(xm)). (2)

For a constraint language Γ, fPol(m)(Γ) will denote the set of all m-ary fractional
operations that are fractional polymorphisms of each function in Γ. Also, let fPol(Γ) =⋃
m≥1 fPol(m)(Γ), supp(m)(Γ) =

⋃
ω∈fPol(m)(Γ) supp(ω) and supp(Γ) =

⋃
m≥1 supp(m)(Γ).

(It is easy to check that supp(Γ) ⊆ Pol(Γ), and supp(Γ) = Pol(Γ) if Γ is crisp).

Next, we will need the notion of cores.

I Definition 6. Language Γ on domain D is called a core if all operations g ∈ supp(1)(Γ) are
bijections. Subset B ⊆ D is called a core of Γ if B = g(D) for some operation g ∈ supp(1)(Γ)
and the language Γ[B] is a core, where Γ[B] is the language on domain B obtained by
restricting each function f : Dn → Q in Γ to Bn.
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The following facts are folklore knowledge. We do not know an explicit reference (at least in
the case of general-valued languages), so we prove them in [20] for completeness.

I Lemma 7. Let B be a subset of D = DΓ such that B = g(D) for some g ∈ supp(1)(Γ).
(a) Set B is a core of Γ if and only if |B| = core-size(Γ) def= min {|g(D)| : g ∈ supp(1)(Γ)}.
(b) There exists vector ω ∈ fPol(1)(Γ) such that g(D) ⊆ B for all g ∈ supp(ω). Furthermore,

if B is a core of Γ then such ω can be chosen so that g(a) = a for all g ∈ supp(ω) and
a ∈ B.

(c) Let I be a Γ-instance on variables V . Then minx∈BV fI(x) = minx∈DV fI(x).
For a language Γ we denote Bcore

Γ to be the set of subsets B ⊆ D which are cores of Γ, and
Ocore

Γ to be set of operations g ∈ supp(1)(Γ) such that g(D) ∈ Bcore
Γ (or equivalently such

that |g(D)| = core-size(Γ)).

2.2 Dichotomy theorem
Several types of operations play a special role in the algebraic approach to (V)CSP.

I Definition 8. An operation g ∈ O(m)
D is called

idempotent if g(x, . . . , x) = x for all x ∈ D;
cyclic if m ≥ 2 and g(x1, x2, . . . , xm) = g(x2, . . . , xm, x1) for all x1, . . . , xm ∈ D;
symmetric if m ≥ 2 and g(x1, x2, . . . , xm) = g(xπ(1), xπ(2), . . . , xπ(m)) for all x1, . . . , xm ∈
D, and any permutation π on [m];
Siggers if m = 4 and g(r, a, r, e) = g(a, r, e, a) for all a, e, r ∈ D.

A fractional operation ω is said to be idempotent/cyclic/symmetric if all operations in supp(ω)
have the corresponding property.

Note, the Siggers operation is traditionally defined in the literature as an idempotent
operation g satisfying g(r, a, r, e) = g(a, r, e, a). Here we follow the terminology in [1] that
does not require idempotency. (In [10] such an operation was called quasi-Siggers).

We can now formulate the dichotomy theorem.

I Theorem 9. Let Γ be a language. If the core of Γ admits a cyclic fractional polymorphism
then Γ is tractable [21, 6, 31]. Otherwise Γ is NP-hard [23].

We will call languages Γ satisfying the condition of Theorem 9 solvable. The following
equivalent characterizations of solvability are either known or can be easily be derived from
previous work [28, 19, 22, 23] (see [20]):

I Lemma 10. Let Γ be a language and g ∈ supp(1)(Γ). The following conditions are
equivalent:
(a) Γ is solvable.
(b) Γ admits a cyclic fractional polymorphism of some arity m ≥ 2.
(c) supp(Γ) contains a Siggers operation.
(d) Γ ∪ {ua | a ∈ B} is solvable for any core B of Γ.
(e) Γ[g(DΓ)] is solvable.
Furthermore, a finite-valued language Γ is solvable if and only if it admits a symmetric
fractional polymorphism of arity 2.

Note that checking solvability of a given language Γ is a decidable problem. Indeed, con-
dition (c) can be tested by solving a linear program with |O(4)

D | = |D||D|4 variables and
O(poly(size(Γ))) constraints, where we maximize the total weight of Siggers operations
subject to linear constraints expressing that ω ∈ RO

(4)
D is a fractional polymorphism of Γ

of arity 4.
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2.3 Basic LP relaxation
Symmetric operations are known to be closely related to LP-based algorithms for CSP-related
problems. One algorithm in particular has been known to solve many VCSPs to optimality.
This algorithm is based on the so-called basic LP relaxation, or BLP, defined as follows.

Let Mn = {µ ≥ 0 |
∑
x∈Dn µ(x) = 1} be the set of probability distributions over labelings

in Dn. We also denote ∆ = M1; thus, ∆ is the standard (|D| − 1)-dimensional simplex. The
corners of ∆ can be identified with elements in D. For a distribution µ ∈Mn and a variable
v ∈ {1, . . . , n}, let µ[v] ∈ ∆ be the marginal probability of distribution µ for v:

µ[v](a) =
∑

x∈Dn:xv=a
µ(x) ∀a ∈ D.

Given a VCSP instance I in the form (1), we define the value BLP(I) as follows:

BLP(I) = min
µ,α

∑
t∈T

∑
x∈dom ft

µt(x)ft(x) (3)

s.t. (µt)[k] = αv(t,k) ∀t ∈ T, k ∈ {1, . . . , nt}
µt ∈ Mnt

∀t ∈ T
µt(x) = 0 ∀t ∈ T, x /∈ dom ft
αv ∈ ∆ ∀v ∈ V

If there are no feasible solutions then BLP(I) =∞. The objective function and all constraints
in this system are linear, therefore this is a linear program. Its size is polynomial in size(I),
so BLP(I) can be found in time polynomial in size(I).

We say that BLP solves I if BLP(I) = minx∈Dn fI(x), and BLP solves VCSP(Γ) if it
solves all instances I of VCSP(Γ). The following results are known.

I Theorem 11 ([22]). (a) BLP solves VCSP(Γ) if and only if Γ admits a symmetric fractional
polymorphism of every arity m ≥ 2. (b) If Γ is finite-valued then BLP solves VCSP(Γ) if
and only if Γ admits a symmetric fractional polymorphism of arity 2 (i.e. if it is solvable).

BLP relaxation also plays a key role for general-valued languages, as the following result
shows. Recall that uA for a subset A ⊆ D is the unary function D → {0,∞} with domuA = A.

I Definition 12. Consider instance I with the set of variables V and domain D. For node
v ∈ V denote Dv = {a ∈ D | ∃x ∈ DV s.t. fI(x) < ∞, xv = a}. We define Feas(I) and
I + Feas(I) to be the instances with variables V and the following objective functions:

fFeas(I)(x) =
∑
v∈V

uDv
(xv) fI+Feas(I)(x) = fI(x) + fFeas(I)(x)

It is easy to see that fI(x) = fI+Feas(I)(x) for any x ∈ DV . However, the BLP relaxations
of these two instances may differ.

I Theorem 13 ([21]). If Γ is solvable and I is a Γ-instance then BLP solves I + Feas(I).

If Γ is solvable and we know a core B of Γ, then an optimal solution for every Γ-instance
can be found by using the standard self-reducibility method, in which we repeatedly add
unary terms of the form ua(xv) to the instance for different v ∈ V and a ∈ B and check
whether this changes the optimal value of the BLP relaxation. A formal description of
the method is given below. (Notations I[B] and I + ua(xv) should be self-explanatory; in
particular, the former is the instance obtained from I by restricting each term to domain B).
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Algorithm 1: LP-Probe(I, B). Input: instance I with variables V and domain D,
set B ⊆ D. Output: either a labeling x∗ ∈ arg minx∈DV fI(x) with x∗ ∈ BV or a
flag in {∅, FAIL}.

1 compute value LP ∗=BLP (I+Feas(I)), then update I ← I[B] (or return ∅ if
LP ∗ =∞)

2 for each variable v ∈ V in some order do
3 for each label a ∈ B in some order do
4 let I ′ = I + ua(xv), and compute LP ′ = BLP (I ′ + Feas(I ′))
5 if LP ′=LP ∗ then update I←I ′ and go to line 2 (i.e. proceed with the next

variable v)
6 return FAIL

7 return labeling x∗ ∈ BV where x∗v equals the label a for which term ua(xv) has been
added

I Lemma 14.
(a) If LP-Probe(I, B) returns a labeling x∗ then x∗ ∈ arg minx∈DV fI(x).
(b) If LP-Probe(I, B) returns ∅ then instance I is infeasible.
(c) Suppose that I is a Γ-instance where Γ is solvable and B ∈ Bcore

Γ . Then LP-Probe(I, B) 6=
FAIL.

Proof. Part (a) holds by construction, and part (b) can be derived from the following two
facts (which hold under the preconditions of part (b)):

minx∈BV fI(x) = minx∈DV fI(x) by Lemma 7(c).
BLP solves all instances to which it is applied during the algorithm. Indeed, by Lemma 10
the language Γ′ = Γ[B] ∪ {ua | a ∈ B} is solvable. The initial instance is a Γ-instance,
and all instances in line 4 are Γ′-instances. The claim now follows from Theorem 13. J

2.4 Meta-questions and uniform algorithms
In the light of the previous discussion, it is natural to ask the following questions about a given
language Γ: (i) Is Γ solvable? (ii) Is Γ a core? (iii) What is a core of Γ? Such questions are
usually called meta-questions or meta-problems in the literature. For finite-valued languages
their computational complexity has been studied in [29].

I Theorem 15 ([29]). Problems (i) and (ii) for {0, 1}-valued languages are NP-complete
and co-NP-complete, respectively.

I Theorem 16 ([29]). There is a polynomial-time algorithm that, given a core finite-valued
language Γ, either finds a binary idempotent symmetric fractional polymorphism ω of Γ with
| supp(ω)| = O(poly(size(Γ))), or asserts that none exists.

For crisp languages the following hardness results are known.

I Theorem 17 ([14]). Deciding whether a given crisp language Γ with a single binary relation
is a core is a co-NP-complete problem. (Equivalently, testing whether a given directed graph
has a non-bijective homomorphism onto itself is an NP-complete problem).

I Theorem 18 ([10]). Deciding whether a given crisp language Γ with binary relations is
solvable is an NP-complete problem.
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It is still an open question whether an analogue of Theorem 16 holds for crisp languages,
i.e. whether solvability of a given core crisp language Γ can be tested in polynomial time.
However, it is known [10] that the answer would be positive assuming the existence of a
certain uniform polynomial-time algorithm for CSPs.

I Definition 19. Let F be a class of languages. A uniform polynomial-time algorithm for
F is a polynomial-time algorithm that, for each input (Γ, I) with Γ ∈ F and I ∈ VCSP(Γ),
computes minx fI(x).

I Theorem 20 ([10]). Suppose that there exists a uniform polynomial-time algorithm for
the class of solvable core crisp languages. Then there exists a polynomial-time algorithm
that decides whether a given core crisp language is solvable (or equivalently admits a Siggers
polymorphism).

Currently it is not known whether a uniform polynomial-time algorithm for core crisp
languages exists. (Algorithms in [6, 31] assume that needed polymorphisms of the language
are part of the input; furthermore, the worst-case bound on the runtime is exponential in |D|).

We remark that [10] considered a wider range of meta-questions for crisp languages. In
particular, they studied the complexity of deciding whether a given Γ admits polymorphism
g ∈ O

(m)
D satisfying a given strong linear Maltsev condition specified by a set of linear

identities. Examples of such identities are g(x, . . . , x) ≈ x (meaning that g is idempotent),
g(x1, x2, . . . , xm) ≈ g(x2, . . . , xm, x1) (meaning that g is cyclic), and g(r, a, r, e) ≈ g(a, r, e, a)
(meaning that g is Siggers). We refer to [10] for further details.

3 Our results

In this section the domain of language Γ is always denoted as D, and its size as d = |D|.
Our algorithms will construct Γ-instances I on n = dm variables (where m ≤ 4) with

size(I) = O(poly(size(Γ))) for some fixed polynomial. We denote Tn,Γ to be the running
time of a procedure that computes Feas(I) for such I’s. Also, let T ∗n,Γ be the combined
running times of computing Feas(J ) for instances J during a call to LP-Probe(I, B) for
such I and some subset B. Note, if Γ is finite-valued then computing Feas(I) is a trivial
problem, so Tn,Γ and T ∗n,Γ would be polynomial in n+ size(Γ).

Conditional cores. First, we consider the problem of computing a core B ∈ Bcore
Γ of a given

language Γ. A naive solution is to solve a linear program with |O(1)| = dd variables. We
will present an alternative technique that runs more efficiently (in the case of finite-valued
languages) but is allowed to output an incorrect result if Γ is not solvable. It will be
convenient to introduce the following terminology: language Γ is a conditional core if either
Γ is a core or Γ is not solvable. Similarly, set B is a conditional core of Γ if either B ∈ Bcore

Γ
or Γ is not solvable. Note, B = ∅ is a conditional core of Γ if and only if Γ is not solvable.

To compute a conditional core of Γ, we will use the following approach. Consider a
pair (Γ, σ) where σ is a string of size O(poly(Γ)) that specifies set Bσ of candidate cores
of Γ. Formally, Bσ = {B1, . . . , BN} where ∅ 6= Bi ⊆ D for each i ∈ [N ]. We assume that
elements of Bσ can be efficiently enumerated, i.e. there exists a polynomial-time procedure
for computing B1 from σ and Bi+1 from (σ,Bi). If B is a set of subsets B ⊆ D, we will
denote

O[B] = {g ∈ O(1) | g(D) = B for some B ∈ B}
Ô[B] = {g ∈ O(1) | g(D) ⊆ B for some B ∈ B}
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I Theorem 21. There exists an algorithm that for a given input (Γ, σ) does one of the
following:
(a) Produces a fractional polymorphism ω ∈ fPol(1)(Γ) with supp(ω) ⊆ Ô[Bσ] and
| supp(ω)| ≤ 1 +

∑
f∈Γ | dom f |.

(b) Asserts that there exists no vector ω ∈ fPol(1)(Γ) with supp(ω) ⊆ Ô[Bσ].
(c) Asserts that one of the following holds: (i) Γ is not solvable; (ii) Bσ ∩ Bcore

Γ = ∅.
It runs in (|Bσ|+O(poly(size(Γ))))·(T ∗d,Γ+O(poly(size(Γ)))) time and uses O(poly(size(Γ)))
space.

The algorithm in the theorem above is based on the ellipsoid method [13], which tests
feasibility of a polytope using a polynomial number of calls to the separation oracle. In
our case this oracle is implemented via one or more calls to LP-Probe(I, B) for appropriate
I and B.

One possibility would be to use Theorem 21 with the set Bσ = {B ⊆ D |B 6= ∅, B 6= D}.
If the algorithm returns result (a) then we can take operation g ∈ supp(ω) and call the
algorithm recursively for the language Γ[g(D)] on a smaller domain. If we get result (b) or (c)
then one can show that Γ is a conditional core, so we can stop. For finite-valued languages this
approach would run in O(2d · poly(size(Γ))) time. We will pursue an alternative approach
with an improved complexity O( 3

√
3 d · poly(size(Γ))).

This approach will use partitions Π = {D1, . . . , Dk} of domain D. For such Π we denote

OΠ = {g ∈ O(1)
D : g(a) = g(b) ∀a, b ∈ A ∈ Π}

Π⊥ = {B ⊆ D : |B ∩A| = 1 ∀A ∈ Π}

We say that Π is a partition of Γ if the set OΠ ∩ supp(Γ) is non-empty. In particular, the
partition Π = {{a} | a ∈ D} of D into singletons is a partition of Γ, since supp(Γ) contains
the identity mapping D → D. We say that Π is a maximal partition of Γ if Π is a partition
of Γ and no coarser partition Π′ � Π (i.e. Π′ with OΠ′ ⊂ OΠ) has this property. Clearly, for
any Γ there exists at least one Π which is a maximal partition of Γ. By analogy with cores,
we say that Π is a conditional (maximal) partition of Γ if either Π is a (maximal) partition
of Γ or Γ is not solvable.

In the results below Π is always assumed to be a partition of D.

I Lemma 22.
(a) If Π is a maximal partition of Γ then Bcore

Γ ⊆ Π⊥ and Ocore
Γ = O[Π⊥] ∩ supp(Γ).

(b) If Π is a partition of D then |Π⊥| ≤ 3
√

3 d.

I Theorem 23. There exists an algorithm with runtime Td,Γ + T|Π|,Γ + O(poly(size(Γ)))
that for a given input (Γ,Π) does one of the following:
(a) Asserts that Π is a conditional partition of Γ.
(b) Asserts that Π is not a partition of Γ.
As before, the algorithm in Theorem 23 is based on the ellipsoid method. However, now we
cannot use procedure LP-Probe(I, B) to implement the separation oracle, since a candidate
core B is not available. Instead, we solve the BLP relaxation of instance I and derive a
separating hyperplane from a (fractional) optimal solution of the relaxation.

I Corollary 24. (1) A conditional maximal partition Π of Γ can be computed in O(d2) ·Td,Γ +
O(poly(size(Γ)) time. (2) Once such Π is found, a conditional core B of Γ can be computed
using (|Π⊥|+O(poly(size(Γ))) · (T ∗d,Γ +O(poly(size(Γ)))) time and O(poly(size(Γ))) space.
If B 6= ∅ then the algorithm also produces a fractional polymorphism ω ∈ fPol(Γ) such
that supp(ω) ⊆ O[Π⊥], | supp(ω)| ≤ 1 +

∑
f∈Γ | dom f | and supp(ω) contains an operation g

with g(D) = B.

ICALP 2019



77:10 Testing the Complexity of a Valued CSP Language

In part (1) we use a greedy search that starts with Π = {{a} | a ∈ D} and then repeatedly
calls the algorithm in Theorem 23 for coarser partitions Π. In part (2) we call the algorithm
from Theorem 21 with σ = Π and Bσ = Π⊥. For further details we refer to [20].

Testing solvability of a conditional core. Once we have found a conditional core B of Γ,
we need to test whether language Γ[B] is solvable. This problem is known to be solvable
in polynomial-time for finite-valued languages [29], see Theorem 16. Their result can be
extended as follows.

I Theorem 25. There exists an algorithm that for a given language Γ does one of the
following:
(a) Produces an idempotent fractional polymorphism ω ∈ fPol(Γ) certifying solvability of Γ:

ω has arity m = 2 and is symmetric, if Γ is finite-valued;
ω has arity m = 4 and contains a Siggers operation in the support, if Γ is not finite-
valued. Furthermore, in each case vector ω satisfies | supp(ω)| ≤ 1 +

∑
f∈Γ

(| dom f |
m

)
.

(b) Asserts that one of the following holds: (i) Γ is not solvable; (ii) Γ is not a core.

Its runtime is O(poly(size(Γ))) if Γ is finite-valued, and O(T ∗d4,Γ · poly(size(Γ))) otherwise.

Combining procedures in Corollary 24 and the algorithm in Theorem 25 yields our main
algorithmic result.

I Corollary 26. Solvability of a given finite-valued language Γ can be tested in O( 3
√

3 d ·
poly(size(Γ))) time. If the answer is positive, the algorithm also returns a fractional
polymorphism ω1 ∈ fPol(1)(Γ) with supp(ω1) ⊆ Ocore

Γ and a symmetric idempotent fractional
polymorphism ω2 ∈ fPol(2)(Γ[B]) where B = g(D) for some g ∈ supp(ω1); furthermore,
| supp(ωm)|≤1+

∑
f∈Γ

(| dom f |
m

)
for m∈{1, 2}.

Hardness results. Let us fix a constant L ∈ {1,∞}. As Theorems 15, 17 and 18 state,
testing whether Γ is (i) solvable and (ii) is a core are both NP-hard problems for {0, L}-
valued languages. We now present additional hardness results under the Exponential Time
Hypothesis (ETH) and the Strong Exponential Time Hypothesis (SETH) (see Conjectures 1
and 2). Note that for Theorem 27 we simply reuse the reductions from [10]. We say that a
family of languages F is k-bounded if each Γ ∈ F satisfies size(Γ) = O(poly(d)) for some
fixed polynomial, and arity(f) ≤ k for all f ∈ Γ.

I Theorem 27. Suppose that ETH holds. Then there exists a 2-bounded family F of
{0, L}-valued languages such that the following problems cannot be solved in O(2o(d)) time:
(a) Deciding whether language Γ ∈ F is solvable.
(b) Deciding whether language Γ ∈ F is a core.

I Theorem 28. Suppose that SETH holds. Then for any δ < 1 there exists an O(1)-bounded
family F of {0, L}-valued languages such that the following problems cannot be solved in
O( 3
√

3 δd) time:
(a) Deciding whether language Γ ∈ F is solvable (assuming the existence of a uniform

polynomial-time algorithm for core crisp languages, in the case when L =∞).
(b) Deciding whether language Γ ∈ F satisfies core-size(Γ) ≤ d/3.
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Abstract
We show that any n-variate polynomial computable by a syntactically multilinear circuit of
size poly(n) can be computed by a depth-4 syntactically multilinear (ΣΠΣΠ) circuit of size at
most exp

(
O
(√

n log n
))
. For degree d = ω(n/ log n), this improves upon the upper bound of

exp
(
O(
√

d log n)
)
obtained by Tavenas [14] for general circuits, and is known to be asymptotically

optimal in the exponent when d < nε for a small enough constant ε. Our upper bound matches the
lower bound of exp

(
Ω
(√

n log n
))

proved by Raz and Yehudayoff [12], and thus cannot be improved
further in the exponent. Our results hold over all fields and also generalize to circuits of small
individual degree.

More generally, we show that an n-variate polynomial computable by a syntactically multilinear
circuit of size poly(n) can be computed by a syntactically multilinear circuit of product-depth ∆
of size at most exp

(
O
(
∆ · (n/ log n)1/∆ · log n

))
. It follows from the lower bounds of Raz and

Yehudayoff [12] that in general, for constant ∆, the exponent in this upper bound is tight and cannot
be improved to o

(
(n/ log n)1/∆ · log n

)
.
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1 Introduction

An algebraic circuit over a field F and variables x = (x1, x2, . . . , xn) is a directed acyclic
graph whose internal vertices (called gates) are labeled as either + (sum) or × (product),
and leaves (vertices of indegree zero) are labeled by the variables in x or constants from F.
The gates of outdegree zero in a circuit are called its output gates. Algebraic circuits give
a natural and succinct representation for multivariate polynomials; analogous to the way
Boolean circuits give a succinct representation of Boolean functions. We refer the reader
to the excellent survey of Shpilka and Yehudayoff [13] for an introduction to the area of
algebraic circuit complexity. One of the main protagonists in the results in this paper will be
the class of syntactically multilinear circuits which we now define.

I Definition 1 (Syntactically Multilinear Circuits). An algebraic circuit C is said to be
syntactically multilinear if at every product gate v in C with inputs u1, u2, . . . , ut, the set of
variables in the sub-circuits rooted at ui are pairwise disjoint from each other.

The size of an algebraic circuit is the number of edges in it, and its depth is the length of
the longest path from an output gate to a leaf. Intuitively, the size of a circuit is an indicator
of the time complexity of computing the polynomial, and its depth indicates how fast the
polynomial can be computed in parallel.

We now introduce a sequence of fundamental structural results for algebraic circuits, that
are collectively called depth reductions; this is the main focus of this paper.

Depth Reductions

In a beautiful, surprising and influential work, Valiant et al. [15] showed that every polynomial
family which is efficiently computable by an algebraic circuit is also efficiently computable in
parallel. Formally, they showed the following theorem.

I Theorem 2 ([15]). There is an absolute constant c ∈ N such that the following is true. If P

be an n-variate homogeneous polynomial of degree d over any field F which can be computed
by an algebraic circuit C of size s, then P can be computed by an algebraic circuit C ′ (of
unbounded fan-in) of depth c log d and size (snd)c.

In particular, the theorem says that every polynomial family of polynomially bounded (in n)
degree that is computable by a circuit of size poly(n) and arbitrary depth, is also efficiently
computable by a circuit of size poly(log n) and depth O(log n).

In a remarkable extension of Theorem 2, Agrawal and Vinay [1] showed that one can
parallelize algebraic circuits even more (reducing the depth to a constant), at the cost of a
larger (a non-trivial subexponential factor) blow up in the circuit size. The version of their
theorem stated below is due to Tavenas [14], who optimized the parameters further.

I Theorem 3 ([1, 8, 14]). There is an absolute constant c ∈ N such that the following is
true. If P is an n-variate homogeneous polynomial of degree d over any field F which can
be computed by an algebraic circuit C of size s, then P can be computed by a homogeneous
ΣΠΣΠ algebraic circuit C ′ of size (snd)c

√
d.

Here, a ΣΠΣΠ circuit is an algebraic circuit with four layers of alternating sum and
product gates with the top layer being a sum layer. Throughout this paper, when we say a
depth-4 circuit, we mean a ΣΠΣΠ circuit.

We note that while Theorem 3 as stated above reduces a homogeneous circuit of arbitrary
depth to a homogeneous circuit of depth-4, but it easily follows from the proof that the depth
reduction preserves syntactic restrictions. That is, if we start with a syntactically multilinear
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and homogeneous circuit, the resulting depth-4 circuit is also syntactically multilinear and
homogeneous. This statement will be of particular interest as we study depth reductions for
syntactically multilinear circuits in this paper.

On the optimality of reductions to depth-4

An immediate consequence of Theorem 2 and Theorem 3 is that strong enough lower bounds
for algebraic circuits of bounded depth imply superpolynomial lower bounds for general
algebraic circuits. Thus, the questions of proving lower bounds for bounded depth circuits,
and that of understanding if the parameters in Theorem 3 can be improved further seem to
be of fundamental interest. In the last few years, we have had significant progress on both
these fronts. Following a long line of work starting with a work of Kayal [7] and Gupta et
al. [5], we now know extremely good lower bounds for homogeneous depth-4 circuits.

I Theorem 4 (Kumar and Saraf [9]). There exists a polynomial family {fn}, where fn is a
homogeneous n-variate polynomial of degree d = nε, for an absolute constant ε > 0, such
that fn is computable by an algebraic circuit of size poly(n), but any homogeneous depth-4
circuit computing fn has size nΩ(

√
d).

Moreover, the family {fn} is computable by a syntactically multilinear circuit of polynomial
size.

If we allow the hard polynomial to be explicit but not necessarily have small circuits, then
upper bound on the degree d in the above theorem can be increased to as large as n1−ε

for any constant ε > 0.1 Thus, in general, the exponent in the upper bound on the size of
the depth-4 circuit obtained in Theorem 3 cannot be improved asymptotically. In fact, the
theorem shows that we cannot even expect such an improvement for syntactically multilinear
circuits in the setting when the degree d is sufficiently smaller than the number of variables
n. A natural question here is to understand if Theorem 3 is also asymptotically tight in the
exponent when the degree is larger. The following result of Raz and Yehudayoff goes a long
way towards answering this question.

I Theorem 5 ([12]). There is a family of multilinear polynomials {fn} such that, for every
n, the polynomial fn is an n-variate degree d = Θ(n) polynomial that can be computed
by a syntactically multilinear circuit of size poly(n), but any multilinear circuit of depth-4
computing fn has size n

Ω
(√

n/ log n
)
.

More generally, for any constant ∆, any syntactically multilinear circuit of product-depth2

∆ computing fn must have size nΩ((n/ log n)1/∆).

For depth-4 circuits (or ∆ = 2), asimilar result was proved by Hegde and Saha [6] for
the more general3 class of circuits called multi-k-ic circuits, where the formal degree of any
variable in the circuit is bounded by a parameter k (formally defined in Definition 17).

I Theorem 6 ([6]). There is an explicit family {fn} of n-variate multilinear polynomials
of degree d = Θ(n) such that, for every k ≤ (n log n)0.9, any multi-k-ic circuit of depth-4
computing fn has size at least n

Ω
(√

n/(k log n)
)
.

1 Though this is not explicitly mentioned in these results, the proofs can be extended to this regime of
parameters.

2 Also referred to as a syntactically multilinear (ΣΠ)∆ circuit.
3 A multilinear circuit is a multi-k-ic circuit for k = 1.
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Thus, Theorem 5 and Theorem 6 shows that the exponent
√

d in the exponent in Theorem 3
cannot be replaced by o

(√
n/ log n

)
. Thus, in the regime when d = Θ(n), there is a gap

of
√

log n between the known lower bounds and what is potentially achievable via depth
reduction. Raz and Yehudayoff [12] also observe that using their techniques, the lower bound
cannot be improved to nω(

√
n/ log n). Our main motivation for this work was to bridge this

gap. In the light of Theorem 4, we believed the upper bound of nO(
√

d) in Theorem 3 to be
right bound for multilinear circuits for all d, and had hoped to improve the lower bound
in Theorem 5 to nΩ(

√
n).

However, as we discuss next, the correct exponent for depth reduction to depth-4 in the
high degree regime turns out to be

√
n/ log n. In addition to being surprising, this also offers

a potentially viable approach to the question of proving superpolynomial lower bounds for
syntactically multilinear circuits by extending Theorem 4 to the high degree regime. We now
state our results and discuss the connections to multilinear circuit lower bounds.

1.1 Results
We start by stating our main theorems.

I Theorem 7. Let C be a multi-k-ic circuit of size s computing a polynomial in n variables.
Then, there is a multi-k-ic ΣΠΣΠ circuit C ′ of size s

O
(√

kn
log s

)
computing the same polynomial.

The ideas in the proof of Theorem 7 generalize to give the following statement about
reduction to depth ∆ circuits for any constant ∆.

I Theorem 8. Let C be a multi-k-ic circuit of size s computing a polynomial in n variables.
Then, there is a multi-k-ic (ΣΠ)∆ circuit C ′ computing the same polynomial whose size is
at most

sO(∆·(nk/ log s)1/∆).

Thus, for s = poly(n), k = o(log s) and n ≥ d ≥ ω
(

kn
log s

)
, the exponents in the upper

bounds in Theorem 7 are asymptotically better than that in Theorem 3. An immediate
consequence of Theorem 7 is the following corollary.

I Corollary 9. Let {fn} be an explicit family of multilinear polynomials, such that fn

is an n variate polynomial of degree d = ω(n/ log n), and any multilinear ΣΠΣΠ circuit
computing fn has size at least nΩ(

√
d). Then, {fn} requires superpolynomial size syntactically

multilinear circuits.

The corollary is of interest since by Theorem 4, we know nΩ(
√

d) lower bounds for homogeneous
multilinear ΣΠΣΠ circuits, when d = nε. Thus extending these bounds so that they hold for
higher degree polynomials will imply superpolynomial lower bounds for multilinear circuits.
The current best lower bound known for multilinear circuits is a nearly quadratic lower bound
in a recent work of Alon et al. [3]. The standard technique for proving lower bounds for
multilinear models is via the rank of the partial derivative matrix under a random partition
of variables (due to Raz [10]). This has been useful in almost all of the known lower bounds
for multilinear models, such as super polynomial lower bounds for multilinear formulas [10],
exponential lower bounds for constant depth multilinear circuits [12] as well as the currently
known superlinear and nearly quadratic lower bounds for multilinear circuits [11, 3]. However,
this technique is too weak to yield even super-cubic lower bounds for syntactically multilinear
circuits. Thus, currently we do not even have potential approaches to proving superpolynomial
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lower bounds for multilinear circuits. In the light of this, it certainly seems worth exploring if
the partial derivative based methods used in the proof of Theorem 4 can be extended to work
for multilinear polynomials whose degree d = ω(n/ log n) is high. As far as we understand,
there does not seem to be strong evidence one way or the other about this.

For multi-k-ic circuits, we do not even know superpolynomial lower bounds for formulas
or even constant depth formulas. Based on the discussion above, Theorem 7 does seem to
offer a potentially viable approach to prove these lower bounds.

Finally, we note again that the upper bound on the size of the depth-4 circuit obtained
in Theorem 7 cannot be further improved asymptotically in the exponent as Theorem 5 shows.

1.2 Proof Overview
We focus on giving an outline of the proof of Theorem 7 for the multilinear case (or k = 1).
The proof follows the strategy of the proof of Theorem 3 with some key differences, which we
point out as we go along. There are two main steps and we now give a sketch of both of them.

Balancing a syntactically multilinear circuit

For this step, the key notion is that of a balanced circuit. We say that a circuit C is balanced
with respect to a potential function Φ : C → N (e.g. degree, number of variables), if the
fan-in of every product g in C is a constant, and Φ(g) ≥ 2Φ(h) for every child h of g. In the
proof of Theorem 3, the authors essentially use the results of Valiant et al. [15] to balance a
homogeneous circuit with the potential function Φ being the formal degree of a gate. For
our proof, we show that a syntactically multilinear circuit can in fact be balanced with the
potential function being the number of variables in the sub-circuit rooted at a gate. Our proof
of this part involves the machinery of gate quotients and frontier decompositions developed
by Valiant et al. in their original proof, although there are some crucial differences which
require some non-trivial (albeit simple) insights.

One such challenge stems from the fact that in a homogeneous circuit, the formal degree
of any two children of a product gate is the same and equal to the formal degree of the
parent, whereas the children might depend on very different (even completely disjoint) sets of
variables. To get around this, our notion of frontier is different from that of Valiant et al [15].
In [15], frontier is defined with respect to vertices, whereas we define frontier with respect to
edges. As a consequence, our frontier decomposition statements are slightly different from
those in [15], although they continue to have a natural semantic meaning. This is detailed
in Section 5.

Reduction to depth-4 from a balanced circuit

In the second part of our proof, we show that any balanced syntactically multilinear circuit
of size s computing a polynomial in n variables can be depth reduced to a syntactically
multilinear depth-4 circuit of size sO(

√
n/ log n). The proof is along the lines of the proof of

the analogous statement in the homogeneous (non-multilinear) setting by Chillara et al. [4].
The high level idea of the proof is the following : in a balanced circuit C, the polynomial
computed at any gate g can be written as a sum of product of terms, where the product
fan-in is a constant, the sum fan-in is upper bounded by the size of the circuit, and the
number of variables in any of the terms is at most half of the number of variables in g.
Moreover, each of the terms is a polynomial computed by a gate in C, so this decomposition
can be recursively applied. We apply this decomposition repeatedly till every term in the
sum of products expression of the output depends on at most t variables. We argue that the
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sum fan-in of this sum of products expression is at most sO(n/t). Now, we expand each of the
terms (which is a multilinear polynomial) as a sum of multilinear monomials in t variables.
Thus, the total size of the ΣΠΣΠ circuit obtained is 2t · sO(n/t) which is sO(

√
n/ log s) for

t =
√

n log s.
In the proof of the analogous statement for homogeneous non-multilinear circuits, at the

end of the repeated applications of the decomposition, each of the terms is of degree at most
t. Thus, a sum of product expansion of each such term has size

(
n
t

)
, and so the total size of

the ΣΠΣΠ circuit obtained is nt · sO(n/t), which for s = poly(n) is minimized for t =
√

n

and equals sO(
√

n). This explains the gain in the size obtained by Theorem 7.

2 Preliminaries

In this section, we describe the notion of parse-trees and gate quotients which are crucial to
our proof and set up some of the machinery we need for the proof.

2.1 Parse-trees and quotients
I Definition 10 (Parse-trees). Let C be an algebraic circuit. For any u0 ∈ C, a parse-tree T

rooted at u0 is a subcircuit of C that satifies the following properties:
the node u0 ∈ T ,
if u ∈ T is a multiplication gate of C with u = v1 × v2, then v1, v2 are also in T ,
if u ∈ T is an addition gate of C with u = v1 + v2, then exactly one of v1 or v2 is in T .

Any such sub-circuit computes just a monomial, and this shall be called the value the parse-tree.
Although the parse-tree defined above need not be a tree, it shall unfolded to a tree.

If T is a parse-tree rooted at u, and v is a node that appears on its right-most path, then
the tree T ′ obtained by replacing v only on the right-most path by a leaf labelled 1 is said to
be a v-snipped parse-tree rooted at u.

I Definition 11 (Var operator). For any nodes u ∈ C, we denote by Var(u) the vector
(d1, . . . , dn) ∈ Nn

≥0 where di is the maximum xi-degree over all parse-trees rooted at u.
Similarly, for any pair of nodes u, v ∈ C, we denote by Var(u : v) the vector (d1, . . . , dn)

where di is the maximum xi-degree over all v-snipped parse-tree rooted at u.

We shall also define |(d1, . . . , dn)| =
∑

di.

For a syntactically multilinear circuit C, note that |Var(g)| for any gate g ∈ C is precisely
the number of distinct variables in the sub-circuit rooted at g.

I Remark 12. Throughout this discussion, we will assume that the circuit is right heavy.
This means that for every multiplication gate, w = wL×wR, Var(wR) ≥ Var(wL). Note that
this is without loss of generality, since left and right are merely labels that we can assign
arbitrarily to the children of every gate in the circuit.

I Definition 13 (Gate Quotient). For every two gates u, v in C, the gate quotient of u with
respect to v, denoted by [u : v] is defined inductively as follows.

If u = v, then [u : v] = 1.
If u = u1 + u2, then [u : v] = [u1 : v] + [u2 : v].
If u = uL × uR, then [u : v] = [uL][uR : v].
If v does not appear in the subcircuit rooted at u, then [u : v] = 0.
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I Lemma 14. Let u, v ∈ C. Then, the polynomial [u] is the sum of values of all parse-trees
rooted at u. Furthermore, the polynomial [u : v] is the sum of the values of all the v-snipped
parse-trees T that are rooted at u.

The above lemma is almost folklore and a proof of it can be seen in the work of Allender
et al. [2].

2.2 Syntactic restrictions on parse-trees
We remark that throughout this paper, by degree, we mean the syntactic or formal degree,
which could be much larger than the actual or semantic degree. The following observation
records some basic properties of the Var operator.

I Observation 15. Let C be any algebraic circuit. Then,
Var(u) is monotonically non-increasing as u moves towards the leaves. That is, if u is
an ancestor of v, then ever coordinate of Var(u) is at least as large as the corresponding
coordinate in Var(v).
Similarly, for any fixed v, the vector Var(u : v) is monotonically non-increasing as u

moves towards the leaves.
For any multiplication gate u = u1 × u2, we have Var(u) = Var(u1) + Var(u2). Similarly
for any v, we have Var(u : v) = Var(u1) + Var(u2 : v).
For any addition gate u = u1 + u2, we have Var(u) = max(Var(u1), Var(u2)), the
coordinate-wise max of the two vectors. Similarly for any v, Var(u : v) = max(Var(u1 :
v), Var(u2 : v)).

Proof. The proofs immediately follow from the definitions. J

For two vectors v1, v2 ∈ Nn
≥0, we shall say v1 � v2 if each coordinate of v1 is at most

the corresponding coordinate in v2.

I Observation 16. Suppose u ∈ C and w is a node in C such that there is some parse-tree
rooted at u with w appearing on its rightmost path. Then,

Var(u : w) + Var(w) � Var(u).

Similarly, suppose w is a node in C such that there is some v-parse-tree rooted at u with w

appearing on its rightmost path. Then,

Var(u : w) + Var(w : v) � Var(u : v).

Proof. The proof is straightforward; we just give the proof of the second equation. Fix a
coordinate i. If di = (Var(u : w))i then there is some w-snipped parse-tree Ti rooted at
u whose xi-degree equals di. Similarly if ei = (Var(w : v))i, then there is some v-snipped
parse-tree T ′i rooted at w whose xi-degree is ei. Clearly the gluing of Ti and T ′i obtained by
replacing the snipped vertex w in Ti with the tree T ′i is a v-snipped parse-tree rooted at u

with xi-degree di + ei. Therefore di + ei ≤ (Var(u : v))i and the claim follows. J

I Definition 17 (Syntactically multilinear and multi-k-ic circuits). A circuit C is said to be
syntactically multilinear if Var(u) ∈ {0, 1}n for all u ∈ C.

A circuit C is said to be syntactically multi-k-ic if Var(u) ∈ {0, 1, . . . , k}n for all u ∈ C.
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3 Frontier edges and quotient

I Definition 18 (Frontier edges). For a circuit C, an edge between two gates g1, g2 (where
g1 is the parent) is said to be an m-frontier edge (for a parameter m) if

|Var(g1)| ≥ m and |Var(g2)| < m.

We use F×m to denote the set of all m-frontier edges (g1, g2) where g1 is a multiplication gate
and g2 is its right child. We use F+

m to denote those where g1 is an addition gate.

Furthermore, if v ∈ C is a fixed gate, we shall say that (g1, g2) is an m-frontier edge with
respect to v if

|Var(g1 : v)| ≥ m and |Var(g2 : v)| < m.

We will use F×m,v to denote the set of all edges (g1, g2) that are m-frontier edges with respect
to v where g1 is a multiplication gate (and g2 is its right child), and F+

m,v to denote those
where g1 is an addition gate (and g2 is any child).

4 Decomposition via gate quotients

In this section, we prove the following lemma, which is the key technical observation needed
for our proofs.

I Lemma 19. Let u, v be gates in an algebraic circuit C with |Var(u)| ≥ m and |Var(v)| < m.
Then,

[u] =
∑

(w,z)∈F×m

[u : w] · [wL] · [z] +
∑

(w,z)∈F+
m

[u : w] · [z] (1)

[u : v] =
∑

(w,z)∈F×m,v

[u : w] · [wL] · [z : v] +
∑

(w,z)∈F+
m,v

[u : w] · [z : v] (2)

We shall give an informal sketch using the concept of parse-trees. A complete formal
proof of the lemma can be found in Appendix A. For any u, v, we have that [u : v] is the
sum of all v-snipped parse-trees rooted at u. For any parse-tree, since |Var(u)| ≥ m and
|Var(v)| < m and Var(·) is a monotonically non-increasing function as we move towards the
leaves, there must be a unique edge (w, z) ∈ F×m,v ∪ F+

m,v on its right-most path such that
|Var(w)| ≥ m and |Var(z)| < m.

If (w, z) ∈ F×m,v, then w = wL × z is a multiplication gate. Therefore, the sum of the
values of all v-snipped parse-trees with w (and hence the edge (w, z)) on its rightmost path
is exactly [u : w][w : v] = [u : w][wL][z : v].

If (w, z) ∈ F+
m,v, then w = w1 + z is an addition gate. Then, [u : w] · [w : v] is the sum

of all v-snipped parse-trees with w on its rightmost path and [u : w][w : v] = [u : w][w1 :
v] + [u : w][z : v]. Each v-snipped parse-tree with w on its rightmost path either has (w, w1)
on the rightmost path or (w, z). The term [u : w][w1 : v] is precisely the sum of the values of
such4 parse-trees with (w, w1) on its rightmost path, and [u : w][z : v] is precisely the sum of
the values of those parse-trees with (w, z) on its rightmost path.

4 v-snipped parse-trees rooted at u that have w on its rightmost path
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Since the rightmost path of any v-snipped parse-tree rooted at u has a unique edge
(w, z) ∈ F×m,v ∪ F+

m,v, summing over all such potential edges gives

[u : v] =
∑

(w,z)∈F×m,v

[u : w] · [wL] · [z : v] +
∑

(w,z)∈F+
m,v

[u : w] · [z : v].

5 Balancing syntactically multilinear circuits

In this section, we prove the following theorem.

I Theorem 20. Suppose C is an algebraic circuit of size s. Then, there is a circuit C ′ of
size poly(s) computing the same polynomial with the following structural properties.

all addition gates in C ′ have fan-in O(s4),
all multiplication gates in C ′ have fan-in at most 5,
for any multiplication gate g ∈ C ′, any child h of g satisfies |Var(h)| ≤ |Var(g)| /2.

Furthermore, if C is syntactically multi-k-ic, then so is C ′.

Proof. Without loss of generality, we may assume that the circuit is right-heavy in the sense
that for every multiplication gate u = u1 × u2 we have |Var(u2)| ≥ |Var(u1)|. We shall build
a new circuit C ′ that computes all [u : v]’s and [u]’s for gates u, v ∈ C using the equations in
Lemma 19.

We shall assume inductively that we have already computed all [w]’s with |Var(w)| < t

and also all [w, v] with |Var(w, v)| < t. Suppose u ∈ C such that |Var(u)| = t. Using (1)
from Lemma 19 with m = t/2 we have

[u] =
∑

(w,z)∈F×m

[u : w] · [wL] · [z] +
∑

(w,z)∈F+
m

[u : w] · [z].

By Observation 16, |Var(w)| ≥ t/2 implies that |Var(u : w)| ≤ t/2. Furthermore, |Var(z)| ≤
t/2 by the choice of the frontier edge and |Var(wL)| ≤ t/2 since C is right-heavy. This allows
us to compute all nodes of the form [u] with |Var(u)| ≤ t.

If u, v ∈ C such that |Var(u : v)| = t. Using (2) from Lemma 19 with m = t/2, we have

[u : v] =
∑

(w,z)∈F×m,v

[u : w] · [wL] · [z : v] +
∑

(w,z)∈F+
m,v

[u : w] · [z : v].

We can restrict the edges in the RHS to only those edges (w, z) that is present in at
least one v-snipped parse-tree rooted at u (if not, this edge’s contribution to the RHS is
zero). Therefore by Observation 16, Var(w : v) + Var(u : w) � Var(u : v) and therefore
we have |Var(u : w)| ≤ t/2. Furthermore, by the choice of the frontier, we also have
|Var(z : v)| ≤ t/2. The non-trivial case is Var(wL) which could in principle be large but
again Var(wL) � Var(w : v) � Var(u : v) as any parse-tree rooted wL is a sub-tree of a
v-snipped tree rooted at u. Since we have already computed all gates [w] with Var(w) ≤ t,
we can write

[u : v] =
∑

(w,z)∈F×m,v

[u : w] · [wL] · [z : v] +
∑

(w,z)∈F+
m,v

[u : w] · [z : v]

=
∑

(w,z)∈F×m,v

[u : w] ·

 ∑
(p,q)∈F×mw

[wL : p] · [pL] · [q] +
∑

(p,q)∈F+
mw

[wL : p] · [q]

 · [z : v]
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+
∑

(w,z)∈F+
m,v

[u : w] · [z : v],

where mw = Var(wL)/2.

The required structural properties of C ′ are readily seen from the above construction. J

6 Reduction to depth four from balanced circuits

We now show how to reduce a balanced circuit to a depth-4 circuit. This would complete the
proof of our main theorem. We shall use the notation ΣΠ (ΣΠ)t to refer to ΣΠΣΠ circuits
computing polynmomials of the form

F =
∑

i

∏
j

Qij ,

with |Var(Qij)| ≤ t.
The proof of this part follows the outline of a similar argument in Chillara et al. [4]

of reducing to depth-4 from a balanced circuit. However, there are some differences: our
potential is |Var( · )| and not the degree (as is usually the case). Since this potential function
also falls as we go from a sum (+) gate to its children, we need one more simple observation
in our argument to bound the number of steps in the recursion in the proof. We now provide
the details.

I Lemma 21. Let C be a multi-k-ic circuit of size s such that every multiplication gate g in
C has fan-in at most 5 and for every child h of g in C, Var(h) ≤ Var(g)/2.

Then, for any positive integer 0 ≤ t ≤ kn, there is an equivalent multi-k-ic ΣΠ (ΣΠ)t

circuit C ′ that computes the same polynomial, with the following properties:
the top fan-in of C ′ is at most sO(kn/t),
the size of C ′ is at most 2t · sO(kn/t),
each of the (+)-gates closer to the leaves compute polynomials that are computed by
gates in C.

Proof. Since C is balanced, with product fan-in at most 5, every gate g in C can be written as

g =
s∑

i=1

5∏
j=1

gi,j , (3)

where each gi,j is also computed by a gate in the circuit C, |Var(gi,j)| ≤ |Var(g)|/2. With
this notation, (3) applied on the root of C says that C, which is a syntactically multi-k-ic
circuit, can be trivially written as a ΣΠ (ΣΠ)kn/2. A natural idea would be to apply (3)
on the gi,j ’s until we get a ΣΠ (ΣΠ)t circuit. All that is needed is to bound the number of
summands (or the top fan-in of the resulting ΣΠ (ΣΠ)t circuit) at the end of this process.
Observe that for every i ∈ {1, 2, . . . , s}, we could have that

∣∣∣Var(
∏5

j=1 gi,j)
∣∣∣ is much smaller

than |Var(g)| itself. To handle this, we shall pretend that
We will view the process as a tree in the natural way. The root of the tree corresponds

to the root of the circuit, and all other nodes in the tree correspond to products of addition
gates in C. The children of a node in the tree correspond to the summands in the sum of
product representation of that node obtained by expanding one of its factors according to
(3). The leaves of this tree are products of addition gates

∏
g′i such that |Var(g′i)| ≤ t for
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each factor g′i. The tree has a branching factor of at most s, hence it suffices to get a bound
on the depth of the tree to get a bound on the number of leaves which would be the top
fan-in of the ΣΠ (ΣΠ)t representation.

Let g
∏

` w` be an internal node in the tree with |Var(g)| > t. After applying (3) on g,
we get

g

(∏
`

w`

)
=

s∑
i=1

 5∏
j=1

gi,j ·
∏

`

w`

 .

We now consider two cases.∣∣∣Var
(∏5

j=1 gi,j

)∣∣∣ < 3t/4 : In this case,∣∣∣Var
(∏5

j=1 gi,j ·
∏

` w`

)∣∣∣ ≤ |Var (g ·
∏

` w`)| − t/4.∣∣∣Var
(∏5

j=1 gi,j

)∣∣∣ ≥ 3t/4 : Since Var(g) � Var(gi,1 · · · gi,5) = Var(gi,1) + · · ·+ Var(gi,5)
and |Var(gi,j)| ≤ t/2, it follows that the number of factors h in

∏5
j=1 gi,j ·

∏
` w` with

|Var(h)| ≥ t/16 is at least one more than the number of such factors in g ·
∏

` w`. This
is because besides the factor gi,j with largest |Var(gi,j)|, the other four factors together
must contribute at least (3t/4) − (t/2) = (t/4) to |Var(gi,1 · · · gi,5)| and hence at least
one of them must have |Var(gi,k)| ≥ t/16.

Thus, in any edge of the tree, either |Var( · )| decreases by t/4 or the number of factors with
|Var( · )| ≥ t/16 increases by one. The root node g0 has |Var(g0)| ≤ kn. Hence, the depth
of the tree is bounded by (16 + 4)(kn/t) = O(nk/t). Therefore, C can be computed by a
syntactically multi-k-ic ΣΠ (ΣΠ)t circuit of top fan-in at most sO(nk/t).

To get the bound on the overall size of the ΣΠ (ΣΠ)t circuit, we need to bound the sparsity
of the polynomials computed by bottom two layers. Note that if Var(f) = (d1, . . . , dn), then
f can have at most

∏
(1 + di) monomials. Since 2x ≥ 1 + x for all positive integers x, it

follows that |Var(f)| ≤ t implies that f has at most 2t monomials. Therefore, the total size
of the ΣΠ (ΣΠ)t circuit is 2t · sO(kn/t) = 2O(t+ kn log s

t ). J

From Theorem 20 and setting t =
√

kn log s in Lemma 21, we get Theorem 7 restated below.

I Theorem 7. Let C be a multi-k-ic circuit of size s computing a polynomial in n variables.
Then, there is a multi-k-ic ΣΠΣΠ circuit C ′ of size s

O
(√

kn
log s

)
computing the same polynomial.

6.1 Reduction to higher depths
We now prove Theorem 8 which shows that similar savings can be obtained in depth reductions
to larger depth.

I Theorem 8. Let C be a multi-k-ic circuit of size s computing a polynomial in n variables.
Then, there is a multi-k-ic (ΣΠ)∆ circuit C ′ computing the same polynomial whose size is
at most

sO(∆·(nk/ log s)1/∆).

Proof of Theorem 8. We shall assume, without loss of generality, that the circuit C is
balanced (by applying Theorem 20 if necessary). The proof follows via repeated applications
of Lemma 21.
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Applying Lemma 21 with t = nk/(nk/ log s)1/∆, we obtain a ΣΠ (ΣΠ)t circuit C ′

of the form

C ′ =
s′∑

i=1

∏
j

gij ,

with s′ = sO((kn/ log s)1/∆) and |Var(gij)| ≤ t for all i, j. Furthermore, since each gij being a
polynomial computed by a gate in C, they are computable by multi-k-ic circuits of size at
most s. By induction, each gij has a multi-k-ic (ΣΠ)∆−1 circuit of size at most

sO((∆−1)·(t/ log s)1/(∆−1)) = sO((∆−1)·(nk/ log s)1/∆).

Replacing each gij by this circuit, we obtain a (ΣΠ)∆ circuit of size at most

s′ · sO((∆−1)·(nk/ log s)1/∆) = sO(∆·(kn/ log s)1/∆). J

7 Open problems

The most interesting question that comes out of this work is to prove a lower bound of
nω(
√

n/ log n) for syntactically multilinear circuits of depth-4 for an explicit polynomial. A
natural and first approach to this could be to understand if the shifted partials based methods
can prove a lower bound of nΩ(

√
d) for homogeneous depth-4 circuits for a polynomial family

with degree d = ω(n/ log n).
Another question of interest would be to understand the correct exponent for the depth

reduction results to depth-4 (and also to higher depth) for various regimes of the degree
d. From [9], we know that for d = O(nε) for a small enough constant ε,

√
d is the correct

exponent, whereas for d being nearly n, the results in this paper and those of Raz and
Yehudayoff [12] show that the correct exponent is

√
n/ log n. But we do not understand this

phenomenon for other values of d.
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On the other hand, if |Var(uR)| < m then [u : w] = 0 for any w 6= u with |Var(w)| ≥ m.
Hence,

RHS =
∑

(w,z)∈F×m,v

[u : w] · [wL] · [z : v] +
∑

(w,z)∈F+
m,v

[u : w] · [z : v]

= [u : u] · [uL] · [uR : v] = [u : v] = LHS.

Case 2: u = u1 + u2. For any w, we have that [u : w] = 1 if u = w, and [u : w] = [u1 :
w] + [u2 : w] whenever u 6= w. In particular, since |Var(v)| < m ≤ |Var(u)| the LHS is
[u : v] = [u1 : v] + [u2 : v].
Since u is a + gate, (u, uj) /∈ F×m,v for any j. If |Var(uj)| < m for some j, then the edge
(u, uj) ∈ F+

m,v. Hence,

RHS =
∑

(w,z)∈F×m,v

[u : w] · [wL] · [z : v] +
∑

(w,z)∈F+
m,v

[u : w] · [z : v]

=: T1 + T2

In T1, since every (w, z) ∈ F×m,v has w 6= u we have

T1 :=
∑

(w,z)∈F×m,v

(∑
i

[ui : w]

)
· [wL] · [z : v]

=
∑

(w,z)∈F×m,v

( ∑
i:|Var(ui)|≥m

[ui : w]

)
· [wL] · [z : v] (since [uj : w] = 0 if |Var(uj)| < m)

=
∑

i:|Var(ui)|≥m

∑
(w,z)∈F×m,v

[ui : w] · [wL] · [z : v].

As for the other term, it can be written as

T2 :=
∑

(w,z)∈F+
m,v

[u : w] · [z : v]

=
∑

(w,z)∈F+
m,v

w 6=u

[u : w] · [z : v] +
∑

j:|Var(uj)|<m

[u : u] · [uj : v]

=
∑

(w,z)∈F+
m,v

w 6=u

(∑
i

[ui : w]
)
· [z : v] +

∑
j:|Var(uj)|<m

[uj : v]

=
∑

(w,z)∈F+
m,v

w 6=u

 ∑
i:|Var(ui)|≥m

[ui : w]

 · [z : v] +
∑

j:|Var(uj)|<m

[uj : v]

=
∑

i:|Var(ui)|≥m

∑
(w,z)∈F+

m,v

[ui : w] · [z : v] +
∑

j:|Var(uj)|<m

[uj : v].

The last equality holds because [ui : u] = 0. Putting it together,

RHS = T1 + T2

=
∑

i:|Var(ui)|≥m

 ∑
(w,z)∈F×m,v

[ui : w] · [wL] · [z : v] +
∑

(w,z)∈F+
m,v

[ui : w] · [z : v]
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+
∑

j:|Var(uj)|<m

[uj : v]

=
∑

i:|Var(ui)|≥m

[ui : v] +
∑

j:|Var(uj)|<m

[uj : v] (induction)

= [u : v] = LHS. J
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Abstract
We introduce a method for proving bounds on the SoS rank based on Boolean Function Analysis
and Approximation Theory. We apply our technique to improve upon existing results, thus making
progress towards answering several open questions.

We consider two questions by Laurent. First, finding what is the SoS rank of the linear
representation of the set with no integral points. We prove that the SoS rank is between d n

2 e and
d n

2 +
√
n log 2n e. Second, proving the bounds on the SoS rank for the instance of the Min Knapsack

problem. We show that the SoS rank is at least Ω(
√
n) and at most d n+4d

√
n e

2 e. Finally, we consider
the question by Bienstock regarding the instance of the Set Cover problem. For this problem we
prove the SoS rank lower bound of Ω(

√
n).
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1 Introduction

A boolean hypercube optimization problem is a (constrained) polynomial optimization problem
in n-variables, where the set of feasible points is restricted to a subset of an n-dimensional
hypercube. This family of problems lies at the heart of theoretical computer science. However,
solving general optimization problem over boolean hypercube is NP-hard, since the class
contains, e.g., the Independent Set problem.

One of the most successful approaches for constructing theoretically efficient algorithms
for this family of problems is the Sum of Squares (SoS) algorithm [23, 41, 43, 51]. For a wide
variety of combinatorial optimization problems it provides the best available algorithms [1,
20, 5, 24, 36]. Recently, SoS has also been applied to problems in robust estimation [26],
dictionary learning [3, 49] and tensor completion and decomposition [4, 25, 45].
Other applications can be found in [5, 7, 12, 13, 17, 18, 24, 38, 39, 46]; see also the surveys [14,
33, 35].

On the other hand it is known that the SoS algorithm admits certain weaknesses. For
example, a Ω(n) degree SoS certificate is needed to detect a simple integrality argument for
some instance of the Knapsack problem as shoved by Grigoriev in [21], see also [22, 28, 34].
Further weaknesses of SoS for Knapsack problems were proved in [11, 31]. Some lower
bounds on the effectiveness of the SoS have been shown for CSP problems [27, 52] and for
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the planted clique problem [2, 40]. Finally, degree Ω(
√
n) SoS was proved to have problems

scheduling unit size jobs on a single machine to minimize the number of late jobs, see [30].
The problem is solvable in polynomial time using the Moore-Hodgson algorithm.

Proving SoS lower bounds is not an easy task. In most of the results, the lower bound is
proved on the Lasserre relaxation side, by explicitly giving a pseudoexpectation operator that
maps polynomials of certain degree to real numbers, such that the corresponding moment
matrix for variables and localizing matrices for constraints are Positive Semi-definite (PSD).
Both finding a suitable pseudoexpectation and proving PSDness might be very difficult.

In this paper we follow the less common approach of working on a dual side, the SoS
certificate of nonnegativity. This approach does not require finding a pseudoexpectation
operator and proving PSDness of the matrices, which we find very convenient. We prove
lower bounds by exploiting the properties of boolean functions and by using the results
from approximation theory, especially the theory of approximating boolean functions, see
e.g. [44, 50, 53]. This, in our case, directly implies the existence/non-existence of the SoS
certificate. To the best of our knowledge there are not that many SoS lower bounds using
this approach, see e.g. [37].

On an intuitive level our approach might be explained in the following way. Imagine
one wants to write a degree d SoS certificate for some function f that is nonnegative over
a subset of the boolean hypercube. Consider a vertex x of the hypercube, where f(x) < 0.
Note that in order to successfully write a certificate one has to use the constraint g, that
made the point x infeasible, and multiply it by some SoS polynomial s of degree at most 2d.
Moreover, the values f(x) and g(x) give some lower bound on the value of s(x). Ideally, we
would like s to take value zero on other vertices of the hypercube, this is the case for degree
n certificates. However, the lower the degree d, the more other vertices of the hypercube are
”affected” by the value of s(x).

This simple observation is strong enough to provide the best known SoS ranks for the
following problems:

For B ≥ 2. The Empty Integral Hull (EIH) problem is a feasibility problem of
the form

EIH = {0, 1}n ∩ {x ∈ [0, 1]n |
∑

i∈[n]\I

xi +
∑
i∈I

(1− xi) ≥
1
B

for all I ⊆ [n]} (1.1)

For B = 2, a long list of results for the performance of the lift and project methods for
EIH problem is known. In [33], Laurent shows that the Sherali-Adams rank is n. They
then conjecture the SoS rank of EIH is n− 1. Moreover, the rank is also equal to n for the
Lovász-Schrijver N+ operator (with positive semidefiniteness) [19], the Lovász-Schrijver N+
operator strengthen with Chvátal cuts [15], and the N+ operator combined with Gomory
mixed integer cuts (equivalent to disjunctive cuts) [16]. Recently, in [29], the conjecture was
disproved, and it was shown that the SoS rank of EIH is between Ω(

√
n) and n− Ω(n1/3).

In this paper we prove the following result:

I Theorem 1. For B = 2, the SoS rank of EIH problem is between dn2 e and d
n
2 +
√
n log 2n e.

In this paper we also prove lower and upper bounds on the SoS rank for any B ≥ 2, see
Theorem 12 and Lemma 13.

The second considered problem is the instance of the Min Knapsack (MK) problem.
For P ≥ 2, the problem is defined as:

MK: min
∑
i∈[n]

xi s.t.
∑
i∈[n]

xi ≥
1
P

(1.2)

x ∈ {0, 1}n
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For P = 2 the problem was previously considered by Cook and Dash [15]. They proved that
the Lovasz-Schrijver hierarchy rank is n. For the Sherali-Adams hierarchy Laurent in [33]
proved that the rank is also equal to n and raised the open question to find the rank for the
SoS hierarchy. For n = 2 they also proved that the SoS rank is 2, but whether or not this
happens for general n was left open. In [30] the possibility that the Lasserre/SoS rank is n
for n ≥ 3 is ruled out. Finally, in [28], a SoS rank lower bound of t = Ω(log1−ε n), for ε > 0,
was presented. In this paper we prove the following result:

I Theorem 2. For P = 2, the SoS rank of the MK problem is between Ω(
√
n) and dn+4d

√
ne

2 e.

Moreover, we prove a SoS rank lower bound for any P ≥ 2 of the value Ω(
√
n+
√
n logP ),

see Lemma 14.
The third problem we consider is the instance of the Set Cover (SC) problem:

SC: min
∑
i∈[n]

xi s.t.
∑

i∈[n]\{j}

xi ≥ 1 ∀j ∈ [n] (1.3)

x ∈ {0, 1}n

This instance was considered in [8], where an open question was raised asking what is the
rank of this polytope, conjecturing that the SoS rank is at least n/4, based on numerical
experiments. In [29], the conjecture was supported by proving that the rank is at least
log1−δ(n) for any δ > 0. Finally, the instance can be seen as the Min Knapsack instance
with Knapsack Cover inequalities, see [29]. In this paper we prove the following result:

I Theorem 3. The SoS rank of the SC problem is at least Ω(
√
n).

2 Preliminaries

For any n ∈ N we denote [n] = {1, . . . , n}. Let R[x] = R[x1, . . . , xn] be the ring of n-variate
real polynomials. Furthermore, let G be the set of polynomials

G := {g0 := 1, g1, . . . , gm : gi ∈ R[x] for all i ∈ [m]}.

For a given set G, the corresponding semialgebraic set is defined as

G+ := {x ∈ Rn | g(x) ≥ 0 for all g ∈ G} ⊆ Rn.

Moreover, for any given semialgebraic set G+ ⊆ Rn, let K(G+) be the set of nonnegative
polynomials over the set G+

K(G+) := {f ∈ R[x] | f(x) ≥ 0 for all x ∈ G+}.

For a given f ∈ R[x] and a set G we define the corresponding constrained polynomial
optimization problem (CPOP)

f∗ := min{f(x) | x ∈ G+} = max{λ ∈ R | f − λ ∈ K(G+)}. (2.1)

and the constrained polynomial feasibility problem (CPFP), which consists in testing whether
the corresponding set G+ is empty or not, see e.g., [9].

Since the problems CPOP and CPFP are NP-hard in general it is desirable to find a
proper subset that is a good inner approximation of K(G+) such that the corresponding
program is computationally tractable.

ICALP 2019
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SoS method

The SoS method approximates the cone K(G+) by using the set of sum of square polynomials.
Let SOS := {s | s =

∑k
i=1 f

2
i , f ∈ R[x], k ∈ N∗} be the set of (finite) sum of square

polynomials (SoS). Let

ΣGn,d :=
{∑m

i=1 sigi | si ∈ SOS, gi ∈ G, deg(si) ≤ 2d, for all i ∈ [m] and deg(s0) ≤ 2
⌈

2d+deg(G)
2

⌉}
,

where deg(G) = max{deg(g) | g ∈ G}. The degree d SoS certificate for f being nonnegative
over G+ is f ∈ ΣGn,d. The degree d SoS program for CPOP takes the form:

fdSOS := max{λ ∈ R | f − λ ∈ ΣGn,d}; (2.2)

and for CPFP it consists in testing whether or not −1 ∈ ΣGn,d and, if so, implying that the
set G+ is empty.

SoS method over the boolean hypercube

In this paper we consider optimization over the boolean hypercube H := {0, 1}n. We assume
that G is such that G+ ⊆ H. We fix the following notation. Let H+ and H− be G+ and H\G+,
respectively. For I ∈ [n], let xI ∈ Rn be the characteristic vector of set I such that (xI)i = 1
if i ∈ I and 0 otherwise. Moreover, for any f ∈ R[x], let H−(f) := {x ∈ H | f(x) < 0} and
H+(f) := {x ∈ H | f(x) ≥ 0}.

Throughout the paper we assume that G is always of the form

G := {g0 := 1, g1, . . . , gm,±(x2
1 − x1), . . . ,±(x2

n − xn) : gi ∈ R[x] for all i ∈ [m]}.

In this case solving a degree d SoS program can be done via Semi-definite Program (SDP)
of size O(

∑d
k=0

(
n
k

)
). Moreover, it is known that degree n SoS program is exact meaning

that for CPOP we have fnSOS = f∗ and for CPFP we have −1 ∈ Σn,n if and only if the set
G+ is empty, see e.g. [6, 32, 33]. A very useful result was recently proved in [48] giving an
upper bound on the degree of the SoS certificate for every degree r unconstrained boolean
hypercube optimization problem:

I Theorem 4 ([48]). Every n-variate polynomial of degree r, nonnegative over the uncon-
strained boolean hypercube has a degree dn+r−1

2 e SoS certificate.

Now we give the following definition.

I Definition 5. The SoS rank for a CPOP (CPFP) is the smallest degree d such that the
degree d SoS program is exact.

That is why the SoS rank for EIH problem is the smallest degree d such that there exist SoS
polynomials sI , for all I ⊆ [n] of degree at most 2d and s0 of degree at most 2d + 2 such
that: −1 = s0 +

∑
I⊆[n] sI(x)

(∑
i∈[n]\I xi +

∑
j∈I(1− xj)− 1/B

)
.

Analogously, the SoS rank for the MK problem is the smallest d such that there exist
SoS polynomials s1 of degree at most 2d and s0 of degree at most 2d + 2 such that:∑
i∈[n] xi − 1 = s0 + s1

(∑
i∈[n] xi − 1/P

)
.

Finally, the SoS rank for the SC problem is the smallest degree d such that there exist
SoS polynomials s1, . . . , sn of degree at most 2d and s0 of degree at most 2d+ 2 such that:∑
i∈[n] xi − 2 = s0 +

∑
j∈[n] sj(x)

(∑
j 6=i∈[n] xi − 1

)
.
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3 Analysis of boolean functions

In this section we show some properties of boolean functions.
The first one is a very intuitive statement saying that the lower degree SoS boolean

function we consider, the less of the total mass of the values is in one particular point.
The second one is the special case of results in [44, 50, 53] giving a lower bound on the

degree of a real polynomial that approximates the NOR boolean function in `∞-norm.

I Lemma 6. For every function f : {0, 1}n → R of degree at most d and every subset J ⊆ [n]
the following holds:∑

S⊆[n]

f2(xS) ≥ 2n∑d
i=0
(
n
i

)f2(xJ).

Moreover, for every J ⊆ [n] there exists a degree d polynomial such that the above inequality
is satisfied with equality.

Proof. We will use some elementary Fourier analysis of boolean functions (see e.g. [42, Ch. 1]).
For the sake of following an established notation we analyze the function h : {±1}n → R
instead of f : {0, 1}n → R using the bijective transformation f(x) = h(w), for w = 1− 2x.
Clearly this transformation preserves the degree of the function.

Let wI ∈ Rn be the characteristic vector of set I ⊆ [n] such that (wI)i = −1 if i ∈ I and
1 otherwise. The Fourier expansion of the function h takes the following form:

h(w) =
∑
I⊆[n]
|I|≤d

ĥ(I)
∏
i∈I

wi,

where ĥ(I) it the Fourier coefficient of the monomial
∏
i∈I wi. Let g : {±1}n → R be such

that g := h2. Thus g(w) =
(∑

I⊆[n]
|I|≤d

ĥ(I)
∏
i∈I wi

)2

and its Fourier expansion is of the form:

g(w) =
∑
I⊆[n]
|I|≤d

(
ĥ(I)

)2
+

∑
I 6=K⊆[n]
|I|,|K|≤d

ĥ(I)ĥ(K)
∏

i∈I4K

wi, (3.1)

since all monomials squared evaluate to 1 over the {±1}n boolean hypercube.
By [42, Fact 1.12] and Equation 3.1 we know that

ĝ(∅) = E
w∼{±1}n

g(w) = 2−n
∑
I⊆[n]

g(wI) =
∑
I⊆[n]
|I|≤d

(
ĥ(I)

)2
(3.2)

Without loss of generality, we assume that the set J in the statement of the Theorem is the
empty set. Thus:

g(w∅) =
∑
I⊆[n]
|I|≤d

(
ĥ(I)

)2
+

∑
I 6=K⊆[n]
|I|,|K|≤d

ĥ(I)ĥ(K). (3.3)

Now, we show that among all boolean functions normalized to have expected value over
{±1}n boolean hypercube equal to

∑
I⊆[n]
|I|≤d

(
ĥ(I)

)2
the function g := h2, such that all Fourier
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coefficients of h are the same, takes the largest value on the point w∅. Indeed, consider a
function g evaluated at point w∅. The RHS of Equation 3.3 satisfies:

∑
I,K⊆[n]
|I|,|K|≤d

ĥ(I)ĥ(K) ≤ 1
2

∑
I,K⊆[n]
|I|,|K|≤d

(
ĥ2(I) + ĥ2(K)

)
=

d∑
i=0

(
n

i

) ∑
I⊆[n]
|I|≤d

ĥ2(I)

and the equality holds when all Fourier coefficients of h are the same.
Finally, we show that for the function g = h2, such that all Fourier coefficients of h are

the same, the Theorem holds. Assume w.l.o.g. that for every I ⊆ [n], ĥ(I) = 1. Then we get

h2(w∅) = g(w∅) =
(

d∑
i=0

(
n

i

))2

and
∑
I⊆[n]

h2(wI) = 2n
∑
I⊆[n]
|I|≤d

(
ĥ(I)

)2
= 2n

d∑
i=0

(
n

i

)
.

thus the first part of the statement follows.
Note, that, for J = ∅, the above proof gives an explicit construction of a degree d

polynomial that satisfies the inequality in the statement of Lemma 6 with equality. In an
analogous way one can construct a function for other sets J ⊆ [n], thus the second part of
the claim follows. J

Clearly a similar statement holds for functions being a sum of squares of boolean functions.

I Corollary 3.1. For every function s =
∑
i h

2
i such that for every i, hi : {0, 1}n → R is of

degree at most d and every subset J ⊆ [n] the following holds:∑
S⊆[n]

s(xS) ≥ 2n∑d
i=0
(
n
i

)s(xJ).

Now we present the second result in [44, 50, 53]. We start with the following definitions.
A boolean function f : {0, 1}n → R is symmetric if f(x) = fi ∈ R for every x ∈ {0, 1}n

such that |x| = i. A polynomial p : Rn → R approximates a symmetric boolean function f in
`∞-norm within an error c, if |f(x)− p(x)| ≤ c for every x ∈ {0, 1}n. A symmetric boolean
function f := {0, 1}n → {0, 1} is a NOR function if it satisfies f(0, . . . , 0) = 1 and f(x) = 0
for every other x ∈ {0, 1}n.

Now we present the result proved in [44, 50, 53].

I Theorem 7 ( [44, 50, 53]). For every constant 2−n ≤ c < 1/2 the minimum degree of a
real polynomial that approximates a NOR boolean function in `∞-norm within en error c is
Θ(
√
n+

√
n log 1/c).

3.1 Application to the SoS certificates
In this section, we apply Theorem 4, Corollary 3.1 and Theorem 7 to provide lower and upper
bounds on the SoS rank for some family of problems. We start with the following definition.

I Definition 8. A polynomial f is called a Single Vertex Cutting (SVC) constraint if there
exists only one x ∈ {0, 1}n such that f(x) < 0. A set G is SVC if all functions g1, . . . , gm ∈ G
are SVC and every x ∈ {0, 1}n is cut by at most one g ∈ G. A problem is SVC if its
corresponding set G is SVC.

Note that all three problems considered in this paper are SVC Problems.
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I Theorem 9. Consider an SVC system G. For some f ∈ R[x], assume that H−(f) = H−,
thus |H−(f)| = m. For every xJ ∈ H−(f) let gJ ∈ G be such that gJ(xJ) < 0, gJ is unique.

There is no degree d certificate for f over system G, if for every cJ ≥ 1, for every J such
that xJ ∈ H−(f), the following holds

∑
xJ∈H+(f)

f(xJ)+
∑

xJ∈H−(f)

f(xJ)(1−cJ) <
(

2n∑d
k=0

(
n
k

) − 1
) ∑
xI∈H−(f)

cI
f(xI)
gI(xI)

· min
xJ∈H
J 6=I

gI(xJ)

Proof. Assume, there exists a SoS certificate for f of degree d over G, then

f(x) = s0 +
∑

xJ∈H−
sJ(x)gJ(x), for every x ∈ {0, 1}n,

for sJ , being SoS of degree at most 2d, and s0 being SoS of degree at most 2
⌈

2d+deg(G)
2

⌉
.

Consider xJ ∈ H−(f). Since gJ is the only constraint from G that is negative on this point
we get that

sJ(xJ) ≥ f(xJ)
gJ(xJ)

Let cJ ≥ 1 be such that sJ(xJ) = cJ · f(xJ )
gJ (xJ ) , we obtain:

f(xJ) = s0(xJ)︸ ︷︷ ︸
≥0

+ sJ(xJ)gJ(xJ)︸ ︷︷ ︸
=cJf(xJ )

+
∑

xI∈H−
I 6=J

sI(xJ)gI(xJ)︸ ︷︷ ︸
≥0

.

By summing up over all points in H−(f) we get:∑
xJ∈H−(f)

f(xJ) =
∑

xJ∈H−(f)

s0(xJ)

︸ ︷︷ ︸
≥0

+
∑

xJ∈H−(f)

sJ(xJ)gJ(xJ)

︸ ︷︷ ︸
=
∑

xJ∈H−(f)
cJf(xJ )

+
∑

xJ∈H−(f)

∑
xI∈H−
I 6=J

sI(xJ)gI(xJ)

thus

∑
xJ∈H−(f)

f(xJ)(1− cJ) =
∑

xJ∈H−(f)

s0(xJ) +
∑

xJ∈H−(f)

 ∑
xI∈H−
I 6=J

sI(xJ)gI(xJ)

 .

Finally, we have

∑
xJ∈H+(f)

f(xJ) +
∑

xJ∈H−(f)

f(xJ)(1− cJ) =
∑
xJ∈H

s0(xJ) +
∑
xJ∈H

 ∑
xI∈H−
I 6=J

sI(xJ)gI(xJ)

 ,

where

∑
xJ∈H

 ∑
xI∈H−
I 6=J

sI(xJ)gI(xJ)

 ≥ ∑
xI∈H−

( 2n∑d
k=0

(
n
k

) − 1
)
sI(xI)

min
xJ∈H
J 6=I

gI(xJ)


and the last inequality follows by Corollary 3.1. Since,

∑
xJ∈H s0(xJ) ≥ 0 and sI(xI) =

cI · f(xI )
gI (xI ) , the claim follows. J
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I Theorem 10. If every SoS certificate of f over system G of the form f = s0 +
∑m
i=1 sigi,

is such that the polynomial s(x) :=
∑m
i=1 si(x) necessarily has to take at least value 1 − c

for x = (0, 0, . . . . , 0) and at most value c, for every other x ∈ {0, 1}n, for some constant
2−n ≤ c < 1/2, then the degree of the certificate is at least Ω

(√
n+

√
n log 1/c

)
.

Proof. Assume by contradiction that there exists a SoS certificate of degree smaller than
Ω
(√

n+
√
n log 1/c

)
. Note that s is a real polynomial that approximates the NOR function

in `∞-norm within the constant error c. Since s is of degree smaller than Ω
(√

n+
√
n log 1/c

)
it contradicts Theorem 7. J

Finally, we show an argument for an upper bounds on the SoS rank.

I Lemma 11. Let f be of degree at most d+ 1 and let gi for i ∈ [m] be linear. If there exist
SoS polynomials si, . . . , sm of degree at most d such that

f(x) ≥
m∑
i=1

si(x)gi(x), for every x ∈ {0, 1}n,

then there exists a SoS certificate for f of degree dn+d
2 e.

Proof. Note that f(x)−
∑m
i=1 si(x)gi(x) ≥ 0, for every x ∈ {0, 1}n. By Theorem 4 and the

fact that we consider gi linear, for i ∈ [m], we get that there exists a SoS polynomial s0 of
degree at most dn+(d+1)−1

2 e such that: f(x)−
∑m
i=1 si(x)gi(x) = s0. J

4 Application to the EIH problem

In this section we show how to use the results presented in Section 3.1 to derive lower and
upper bounds on the SoS rank for the Empty Integral Hull problem.

4.1 SoS rank lower bounds
In this section we prove a lower bounds on the SoS rank for the Empty Integral Hull problem.

I Theorem 12. The SoS rank for the Empty Integral Hull problem parametrized by constant
B, is greater or equal the minimum d, which satisfies:

B

B − 1 ≥
2n∑d
k=0

(
n
k

) .
Proof. We directly apply Theorem 9. We want to prove that for f(x) = −1 there is no
SoS certificate of degree d, for d such that B

B−1 <
2n∑d

k=0 (n
k) . Following the notation from

Theorem 9 note that for every gI ∈ G, the smallest nonnegative value over the hypercube
{0, 1}n of gI is 1− 1/B. By Theorem 9 there is no degree d SoS certificate for f = −1, if for
every cI ≥ 1, I ⊆ [n], the following is satisfied:

(−1)
∑
I⊆[n]

(1− cI) <
(

2n∑d
k=0

(
n
k

) − 1
) ∑
I⊆[n]

cI
−1
− 1
B

·
(

1− 1
B

)
.

Let c = 1/2n
∑
I⊆[n] cI . The above is satisfied if

c− 1
c

<

(
2n∑d
k=0

(
n
k

) − 1
)

(B − 1) .

Since c ≥ 1, we have c−1
c < 1 and the above inequality holds if 1

B−1 <

(
2n∑d

k=0 (n
k) − 1

)
. J
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We get the following corollary.

I Corollary 4.1. The SoS rank for the EIH problem with B = 2, is at least dn/2e.

Proof. By Theorem 12 the SoS rank of the EIH for B = 2 is greater or equal to the minimum
d that satisfies: 2 ≥ 2n∑d

k=0 (n
k) . which holds for d ≥ dn/2e. J

One can apply Theorem 12 to easily reprove the result from [31], saying that for B = 2n+1

the SoS rank is at least n.

I Corollary 4.2. For B = 2n+1 the EIH problem has the SoS rank n.

4.2 SoS rank upper bounds
In this section we prove an upper bound on the SoS rank for the Empty Integral Hull problem.

I Lemma 13. The SoS rank for the Empty Integral Hull problem parametrized by the constant
B, is less or equal the minimum d, that satisfies

Bn

Bn− 1 >
2n∑d
k=0

(
n
k

) .
Proof. We follow the notation and reasoning from Theorem 9. Let cI ≥ 1, for I ⊆ [n] be
large enough constants, whose value is specified later.

Our goal is to construct a SoS certificate for f = −1 using the SoS polynomials of
degree at most 2d, for d given in the statement of this lemma. In our construction we
take s0 = 0 and consider sJ , for J ⊆ [n], to be 2n polynomials squared, each of which
constructed as in Lemma 6, such that for every I, J ⊆ [n] we have

∑
K⊆[n] sI(xK)gI(xK) =∑

K⊆[n] sJ(xK)gJ(xK).
We want to prove that there exists a certificate of the form

−1 = f(xJ) = sJ(xJ)gJ(xJ)︸ ︷︷ ︸
=cJf(xJ )=−cJ

+
∑
xI∈H
I 6=J

sI(xJ)gI(xJ)︸ ︷︷ ︸
≥0

, for every J ⊆ [n], (4.1)

where, for every J ⊆ [n], by the construction of the polynomial sJ , we know that:

(
2n∑d

k=0 (n
k) − 1

)
sJ(xJ)

min
xI∈H
I 6=J

gJ(xI)︸ ︷︷ ︸
=1−1/B

 ≤
∑
xI∈H
I 6=J

sI(xJ)gI(xJ)︸ ︷︷ ︸
≥0

≤
(

2n∑d

k=0 (n
k) − 1

)
sJ(xJ)

max
xI∈H
I 6=J

gJ(xI)︸ ︷︷ ︸
=n−1/B

 .

Let

∑
xI∈H
I 6=J

sI(xJ)gI(xJ)︸ ︷︷ ︸
≥0

= α

(
1− 1

B

)(
2n∑d
k=0

(
n
k

) − 1
)
sJ(xJ), for every J ⊆ [n],

for some 1 ≤ α ≤ n−1/B
1−1/B . Since sJ(xJ) = cJ · f(xJ)/gJ(xJ) = cJ · −1

−1/B = cJ · B, thus
satisfying Equation 4.1 requires:

cJ − 1
cJ

= α

(
2n∑d
k=0

(
n
k

) − 1
)

(B − 1) , for every J ⊆ [n].
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Now, put all cJ equal and note that cJ can be chosen arbitrarily, so there exists SoS certificate
of degree d if we can satisfy,

α

(
2n∑d
k=0

(
n
k

) − 1
)

(B − 1) < 1.

which holds if

n− 1/B
1− 1/B (B − 1)

(
2n∑d
k=0

(
n
k

) − 1
)

= (Bn− 1)
(

2n∑d
k=0

(
n
k

) − 1
)
< 1.

Finally, the above is satisfied if 2n∑d

k=0 (n
k) <

Bn
Bn−1 . J

For B = 2 we get the following corollary.

I Corollary 4.3. The SoS rank for the EIH problem for B = 2 is at most d n2 +
√
n log 2n e.

Proof. By Lemma 13 we know that the SoS rank is smaller or equal to the smallest d
that satisfies

2n∑d
k=0

(
n
k

) < 2n
2n− 1 .

Since 2n =
∑d
k=0

(
n
k

)
+
∑n
k=d+1

(
n
k

)
we get the requirement∑n

k=d+1
(
n
k

)
2n −

∑n
k=d+1

(
n
k

) < 2n
2n− 1 − 1

and finally
n∑

k=d+1

(
n

k

)
<

2n

2n.

By the standard Chernoff bound, see e.g. [10], for d > n/2 we know that
∑n
k=d+1

(
n
k

)
=∑n−d−1

k=0
(
n
k

)
≤ 2n exp −(2d+2−n)2

4n . Thus for d > 1
2
(
n− 2 + 2

√
n log 2n

)
there exists a SoS

certificate for EIH problem for B = 2. J

5 Application to the MK problem

In this section we prove SoS rank lower and upper bounds for the MK problem.

5.1 SoS rank lower bound
We start with presenting the lower bound for the MK Problem.

I Lemma 14. The SoS rank lower bound for the MK problem for is at least Ω(
√
n+
√
n logP ).

Proof. By contradiction, assume there exists a SoS certificate of degree smaller than Ω(
√
n+√

n logP ) for the function
∑n
i=1 xi − 1, namely

n∑
i=1

xi − 1 = s0(x) + s1(x)
(

x∑
i=1

xi −
1
P

)
, for every x ∈ {0, 1}n.
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for s0 and s1 SoS of degree smaller than Ω(
√
n +
√
n logP ). Since s0(x) ≥ 0, for every

x ∈ {0, 1}n, we know that

s1(0, . . . , 0) ≥ −1
− 1
P

= P and s1(x) ≤
∑n
i=1 xi − 1∑x
i=1 xi −

1
P

≤ 1 for every other x ∈ {0, 1}n.

This implies the existence of the function s(x) = s(x)/P of degree smaller than Ω(
√
n +√

n logP ) that approximates the NOR function within `∞-norm within the error 1/P which
contradicts Theorem 10. J

A direct application of Lemma 14 gives the following corollary:

I Corollary 5.1. The SoS rank lower bound for MK problem for P = 2 is at least Ω(
√
n).

5.2 SoS rank upper bounds
In this section we prove an upper bound on the SoS rank for the MK problem for P = 2.
We start with proving the following Lemma.

I Lemma 15. For every n ∈ N there exists a function f : {0, 1}n → R of degree 2d
√
n e

such that f(0, . . . , 0) ≥ 2, f(x) = 0 for every x ∈ {0, 1}n such that |x| = 1 and for every
other x ∈ {0, 1}n the function takes the value |f(x)| ≤ 1.

Proof. Our construction provides a symmetric polynomial thus in the following we construct
a univariate polynomial g : R→ R such that f(x1, . . . , xn) := g(

∑n
i=1 xi) satisfies the claimed

properties. We start with presenting steps for constructing polynomial g.
Step 1: Consider a Chebyshev polynomial Td(x) : [−1, 1] → [−1, 1] of degree d = 2d

√
n e.

Prove that the smallest root (left-most one) appears before point x = −1 + 1/n.
Step 2: Shift and spread the polynomial Td(x) such that the domain is [0, n], namely consider

T
′

d(x) = Td(2x/n− 1). Note that the smallest zero of T ′d appears before point x = 1/2.
Step 3: Extend the domain of T ′d(x) to be [−1/2, n] and then prove that T ′d(−1/2) =

Td(−1− 1/n) takes the absolute value at least 2.
Step 4: Consider a polynomial T ′′d obtained from shifting the polynomial T ′d to the right

such that the smallest zero is exactly at point x = 1. Note that g := T
′′

d satisfies all the
required properties.

It remains to prove the claims from Step 1 and 3. Let us start with the claim from Step 1.
It is known that Chebyshev polynomial of degree d, Td(x), has zeros at points cos

( 2j−1
d

π
2
)

for j = 1, . . . , d see e.g. [47][Equation 1.17], thus smallest zero is at the point cos
(
π − π

2d
)
.

We consider d = 2d
√
n e, thus it is sufficient to prove that cos

(
π − π

4
√
n

)
+ 1 − 1

n ≤ 0 for
every n ∈ R+. To do so, consider the function

h(z) = cos
(
π − π

4z

)
+ 1− 1

z2

and note that h(z) is increasing in z for z ∈ R+. Indeed the derivative of h(z) is equal to

h
′
(z) = 2

z3 −
π

4z2 sin
(
π − π

4z

)
=

8− πz sin
(
π
4z
)

4z3 .

Since, for all z ∈ R+, sin z ≤ z, it is enough to show that 8− πz π4z ≥ 0, which is clearly the
case. Next we show that limz→∞ h(z) = 0. Indeed, by the algebraic limit theorem

lim
z→∞

(
cos
(
π − π

4z

)
+ 1− 1

z2

)
= lim
z→∞

cos
(
π − π

4z

)
− lim
z→∞

1
z2 + 1 = 0.
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It remains to prove the claim from Step 3. To do so, we use the characterization of
Chebyshev polynomial given in [47, Equation 1.12]:

Td(x) = 1
2

((
x−

√
x2 − 1

)d
+
(√

x2 − 1 + x
)d)

.

For d = 2d
√
ne and x = −1− 1/n we get:

T2d
√
ne

(
−1− 1

n

)
≥ 1

2


−1− 1

n
−

√(
−1− 1

n

)2
− 1

2d
√
n e


≥ 1
2

((
−1−

√
2√
n

)2
√
n
)

where 1
2

((
−1−

√
2√
n

)2
√
n
)

is increasing in n and for n = 1 takes value bigger than 2. J

Finally, we prove the SoS rank upper bound for the MK problem for P = 2.

I Lemma 16. The SoS rank for the MK for P = 2 is at most d = dn+4d
√
ne

2 e.

Proof. We show that there exist a SoS certificate of degree d = dn+4d
√
ne

2 e for the function∑m
i=1 xi − 1. Consider the polynomial f of degree 2d

√
ne constructed in Lemma 15. Take

s1 = f2 and note that
∑n
i=1 xi − 1 − 0.8f2(x) (

∑m
i=1 xi − 1/2) ≥ 0 for every x ∈ {0, 1}n,

since (0.8 · 2)2 > 2 and 0.82 < 2/3. Applying Theorem 4 we get that there exists a SoS
certificate for

∑n
i=1−1 of degree d = dn+4d

√
ne

2 e. J

6 Application to the SC problem

In the last section we prove the SoS rank lower bound for the SC problem.

I Lemma 17. The SoS rank for the SC problem is at least Ω(
√
n).

Proof. By contradiction, assume there exists a SoS certificate of degree smaller than Ω(
√
n)

for the function
∑n
i=1 xi − 2, namely:

∑n
i=1 xi − 2 = s0(x) +

∑n
j=1 sj(x)

(∑n
i=1
i 6=j

xi − 1
)
.

We follow the idea in the proof of Lemma 14. Let s(x) =
∑n
i=1 si(x) and take k = bn/3c.

For every j ∈ [n] and x ∈ {0, 1}n such that |x| ≥ 3 we know that
∑n
i=1
i6=j

xi − 1 ≥
∑n
i=1 xi − 2.

Thus, note that for every ` ∈ [k] and for every x ∈ {0, 1}n such that |x| = 3` we have:

s(0, . . . , 0) ≥ 2 and s(x) ≤ 1, for every x ∈ {0, 1}n, s.t. |x| = 3`, for ` ∈ [k].

Now consider a symmetric function s over k-dimensional boolean hypercube {0, 1}k, s :=
{0, 1}k → R that takes the values:

s(z) :=
(
n

3`

)−1 ∑
x∈{0,1}n

|x|=3`

s(x), for every z ∈ {0, 1}k, |z| = `.

Clearly, deg(s) is at most deg(s) and note that it holds:

s(0, . . . , 0) ≥ 2 and s(z) ≤ 1 for every other z ∈ {0, 1}k

and the function s(z)/3 is of degrees smaller than Ω(
√
n) and approximates the NOR function

in `∞-norm within the error 1/3, which contradicts Theorem 10. J
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Abstract
Dynamic time warping distance (DTW) is a widely used distance measure between time series, with
applications in areas such as speech recognition and bioinformatics. The best known algorithms for
computing DTW run in near quadratic time, and conditional lower bounds prohibit the existence of
significantly faster algorithms.

The lower bounds do not prevent a faster algorithm for the important special case in which
the DTW is small, however. For an arbitrary metric space Σ with distances normalized so that
the smallest non-zero distance is one, we present an algorithm which computes dtw(x, y) for two
strings x and y over Σ in time O(n · dtw(x, y)). When dtw(x, y) is small, this represents a significant
speedup over the standard quadratic-time algorithm.

Using our low-distance regime algorithm as a building block, we also present an approximation
algorithm which computes dtw(x, y) within a factor of O(nε) in time Õ(n2−ε) for 0 < ε < 1. The
algorithm allows for the strings x and y to be taken over an arbitrary well-separated tree metric
with logarithmic depth and at most exponential aspect ratio. Notably, any polynomial-size metric
space can be efficiently embedded into such a tree metric with logarithmic expected distortion.
Extending our techniques further, we also obtain the first approximation algorithm for edit distance
to work with characters taken from an arbitrary metric space, providing an nε-approximation in
time Õ(n2−ε), with high probability.

Finally, we turn our attention to the relationship between edit distance and dynamic time
warping distance. We prove a reduction from computing edit distance over an arbitrary metric
space to computing DTW over the same metric space, except with an added null character (whose
distance to a letter l is defined to be the edit-distance insertion cost of l). Applying our reduction to
a conditional lower bound of Bringmann and Künnemann pertaining to edit distance over {0, 1}, we
obtain a conditional lower bound for computing DTW over a three letter alphabet (with distances
of zero and one). This improves on a previous result of Abboud, Backurs, and Williams, who gave a
conditional lower bound for DTW over an alphabet of size five.

With a similar approach, we also prove a reduction from computing edit distance (over generalized
Hamming Space) to computing longest-common-subsequence length (LCS) over an alphabet with
an added null character. Surprisingly, this means that one can recover conditional lower bounds for
LCS directly from those for edit distance, which was not previously thought to be the case.

2012 ACM Subject Classification Theory of computation; Theory of computation → Design and
analysis of algorithms

Keywords and phrases dynamic time warping, edit distance, approximation algorithm, tree metrics

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.80

Category Track A: Algorithms, Complexity and Games

Related Version https://arxiv.org/abs/1904.09690

Funding William Kuszmaul: Supported by an MIT Akamai Fellowship and a Fannie & John Hertz
Foundation Fellowship. Also supported by NSF Grants 1314547 and 1533644. Parts of this research
were performed during the Stanford CURIS research program.

EA
T

C
S

© William Kuszmaul;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 80; pp. 80:1–80:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kuszmaul@mit.edu
https://doi.org/10.4230/LIPIcs.ICALP.2019.80
https://arxiv.org/abs/1904.09690
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


80:2 Dynamic Time Warping in Strongly Subquadratic Time

Acknowledgements The author would like to thank Moses Charikar for his mentoring and advice
throughout the project, Ofir Geri for his support and for many useful conversations, and Virginia
Williams for suggesting the problem of reducing between edit distance and LCS.

1 Introduction

Dynamic Time Warping distance (DTW) is a widely used distance measure between time
series. DTW is particularly flexible in dealing with temporal sequences that vary in speed.
To measure the distance between two sequences, portions of each sequence are allowed to
be warped (meaning that a character may be replaced with multiple consecutive copies of
itself), and then the warped sequences are compared by summing the distances between
corresponding pairs of characters. DTW’s many applications include phone authentication
[19], signature verification [35], speech recognition [34], bioinformatics [1], cardiac medicine
[15], and song identification [44].

The textbook dynamic-programming algorithm for DTW runs in time O(n2), which can
be prohibitively slow for large inputs. Moreover, conditional lower bounds [13, 3] prohibit the
existence of a strongly subquadratic-time algorithm1, unless the Strong Exponential Time
Hypothesis is false.

The difficulty of computing DTW directly has motivated the development of fast heuristics
[39, 28, 29, 27, 11, 38] which typically lack provable guarantees.

On the theoretical side, researchers have considered DTW in the contexts of locality
sensitive hashing [20] and nearest neighbor search [21], but very little additional progress has
been made on the general problem in which one is given two strings x and y with characters
from a metric space Σ, and one wishes to compute (or approximate) dtw(x, y).

To see the spectrum of results one might aim for, it is helpful to consider edit distance,
another string-similarity measure, defined to be the minimum number of insertions, deletions,
and substitutions needed to get between two strings. Like DTW, edit distance can be
computed in time O(n2) using dynamic programming [42, 37, 41], and conditional lower
bounds suggest that no algorithm can do significantly better [7, 13]. This has led to researchers
focusing on specialized versions of the problem, especially in two important directions:

Low-Distance Regime Algorithms: In the special case where the edit distance
between two strings is small (less than

√
n), the algorithm of Landau, Myers and Schmidt

[33] can be used to compute the exact distance in time O(n). In general, the algorithm
runs in time O(n+ ed(x, y)2). Significant effort has also been made to design variants of
the algorithm which exhibit small constant overhead in practice [17].
Approximation Algorithms: Andoni, Krauthgamer and Onak introduced an al-
gorithm estimating edit distance within a factor of (logn)O(1/ε) in time O(n1+ε) [5],
culminating a long line of research on approximation algorithms that run in close to linear
time [6, 10, 9, 18]. Recently, Chakraborty et al. gave the first strongly subquadratic
algorithm to achieve a constant approximation, running time O(n12/7) [16].

This paper presents the first theoretical results in these directions for DTW.

1 An algorithm is said to run in strongly subquadratic time if it runs in time O(n2−ε) for some constant
ε > 0. Although strongly subquadratic time algorithms are prohibited by conditional lower bounds,
runtime improvements by subpolynomial factors are not. Such improvements have been achieved [25].
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A Low-Distance Regime Algorithm for DTW (Section 3)

We present the first algorithm for computing DTW in the low-distance regime. Our algorithm
computes dtw(x, y) in time O(n · dtw(x, y)) for strings x and y with characters taken from
an arbitrary metric space in which the minimum non-zero distance is one. The key step in
our algorithm is the design of a new dynamic-programming algorithm for DTW, which lends
itself especially well to the low-distance setting.

Our dynamic program relies on a recursive structure in which the two strings x and
y are treated asymmetrically within each subproblem: One of the strings is considered as
a sequence of letters, while the other string is considered as a sequence of runs (of equal
letters). The subproblems build on one-another in a way so that at appropriate points in the
recursion, we toggle the role that the two strings play. The asymmetric treatment of the
strings limits the number of subproblems that can have return-values less than any given
threshold K to O(nK), allowing for a fast algorithm in the low-distance setting.

We remark that the requirement of having the smallest distance between distinct characters
be 1 is necessary for the low-distance regime algorithm to be feasible, since otherwise distances
can simply be scaled down to make every DTW instance be low-distance.

Approximating DTW Over Well Separated Tree Metrics (Section 4)

We design the first approximation algorithm for DTW to run in strongly subquadratic
time. Our algorithm computes dtw(x, y) within an nε-approximation in time Õ(n2−ε). The
algorithm allows for the strings x and y have characters taken from an arbitrary well-
separated tree metric of logarithmic depth and at most exponential aspect ratio.2 These
metric spaces are universal in the sense that any finite metric space M of polynomial size can
be efficiently embedded into a well-separated tree metric with expected distortion O(log |M |)
and logarithmic depth [22, 8].

An important consequence of our approximation algorithm is for the special case of
DTW over the reals. Exploiting a folklore embedding from R to a well-separated tree metric
metric, we are able to obtain with high probability an O(nε)-approximation for dtw(x, y) in
time Õ(n2−ε), for any strings x and y of length at most n over a subset of the reals with a
polynomial aspect ratio.

In the special case of DTW over the reals, previous work has been done to find approx-
imation algorithms under certain geometric assumptions about the inputs x and y [4, 43].
To the best of our knowledge, our approximation algorithm is the first to not rely on any
such assumptions.

It is interesting to note that our results on low-distance regime and approximation
algorithms for DTW have bounds very similar to the earliest results for edit distance in the
same directions. Indeed, the first algorithm to compute edit distance in the low-distance
regime [23] exploited properties of a (now standard) dynamic-programming algorithm in
order to compute ed(x, y) in time O(n · ed(x, y)). This implicitly resulted in the first
approximation algorithm for edit distance, allowing one to compute an O(nε)-approximation
in time O(n2−ε). Until the work of [6] and [5], which culminated in an algorithm with a
polylogarithmic approximation ratio, the best known approximation ratio for edit distance
remained polynomial for roughly twenty years [33, 9, 10].

2 The aspect ratio of a metric space is the ratio between the largest and smallest non-zero distances in
the space.
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The Õ(n2−ε)-time O(nε)-approximation tradeoff is also the current state-of-the-art for
another related distance measurement known as Fréchet distance [14], and is achieved using
an algorithm that differs significantly from its edit-distance and DTW counterparts.

Reduction from Edit Distance to DTW (Section 5)

We show that the similarity between our results for DTW and the earliest such results for edit
distance is not coincidental. In particular, we prove a simple reduction from computing edit
distance over an arbitrary metric space to computing DTW over the same metric space (with
an added null character). Consequently, any algorithmic result for computing DTW in the
low-distance regime or approximating DTW immediately implies the analogous result for edit
distance. The opposite direction is true for lower bounds. For example, the conditional lower
bound of Bringmann and Künnemann [13], which applies to edit distance over the alphabet
{0, 1}, now immediately implies a conditional lower bound for DTW over an alphabet of
size three (in which characters are compared with distances zero and one). This resolves
a direction of work posed by Abboud, Backurs, and Williams [3], who gave a conditional
lower bound for DTW over an alphabet of size five, and noted that if one could prove
the same lower bound for an alphabet of size three, then the runtime complexity of DTW
over generalized Hamming space would be settled (modulo the Strong Exponential Time
Hypothesis). Indeed, it is known that over an alphabet of size two, DTW can be computed
in strongly subquadratic time [3].

Using a similar approach we also prove a simple reduction from computing edit distance
(over generalized Hamming space) to computing the longest-common-subsequence length
(LCS) between two strings. Thus conditional lower bounds for computing edit distance
directly imply conditional lower bounds for computing LCS (over an alphabet with one
additional character). This was not previously though to be the case. Indeed, the first
known conditional lower bounds for LCS came after those for edit distance [2, 7], and it was
noted by Abboud et al. [2] that “A simple observation is that the computation of the LCS is
equivalent to the computation of the Edit-Distance when only deletions and insertions are
allowed, but no substitutions. Thus, intuitively, LCS seems like an easier version of Edit
Distance, since a solution has fewer degrees of freedom, and the lower bound for Edit-Distance
does not immediately imply any hardness for LCS.” Our reduction violates this intuition
by showing that edit distance without substitutions can be used to efficiently simulate edit
distance without substitutions.

Approximating Edit Distance Over an Arbitrary Metric (Section 6)

The aforementioned results for approximating edit distance [23, 9, 10, 33, 6, 5, 16, 32] consider
only the case in which insertion, deletion, and substitution costs are all constant. To the
best of our knowledge, no approximation algorithm is known for the more general case in
which characters are taken from an arbitrary metric space and edit costs are assigned based
on metric distances between characters. This variant of edit distance is sometimes referred
to as general edit distance [36]. The study of general edit distance dates back to the first
papers on edit distance [42, 40], and allowing for nonuniform costs is important in many
applications, including in computational biology [26].

We present an approximation algorithm for edit distance over an an arbitrary metric.
Our algorithm runs in time Õ(n2−ε) and computes an O(nε)-approximation for ed(x, y) with
high probability. Note that for the case where characters are taken from a well-separated
tree metric with logarithmic depth and at most exponential aspect ratio, the result already
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follows from our approximation algorithm for DTW, and our reduction from edit distance
to DTW. The approach taken in Section 6 is particularly interesting in that it places no
restrictions on the underlying metric space.

Both our approximation algorithm for DTW and our approximation algorithm for edit dis-
tance exhibit relatively weak runtime/approximation tradeoffs. To the best of our knowledge,
however, they are the first such algorithms to run in strongly subquadratic time.

2 Preliminaries

In this section, we present preliminary definitions and background on dynamic time warping
distance (DTW) and edit distance.

Dynamic Time Warping Distance

For a metric space Σ, the dynamic time warping distance (DTW) between two strings
x, y ∈ Σn is a natural measure of similarity between the strings.

Before fully defining DTW, we first introduce the notion of an expansion of a string.

I Definition 2.1. The runs of a string x ∈ Σn are the maximal subsequences of consecutive
letters with the same value. One can extend a run by replacing it with a longer run of the
same letter. An expansion of the string x is any string which can be obtained from x by
extending runs.

As an example, consider x = aaaccbbd. Then the runs of x are aaa, cc, bb, and d. The
string x = aaacccccbbdd is an expansion of x and extends the runs containing c and d.

Using the terminology of expansions, we now define DTW.

IDefinition 2.2. Consider strings x and y of length n over a metric (Σ, d). A correspondence
(x, y) between x and y is a pair of equal-length expansions x of x and y of y. The cost of a
correspondence is given by

∑
i d(xi, yi).

The dynamic time warping distance dtw(x, y) is defined to be the minimum cost of a
correspondence between x and y.

When referring to a run r in one of x or y, and when talking about a correspondence
(x, y), we will often use r to implicitly refer to the extended run corresponding with r in the
correspondence. Whether we are referring to the original run or the extended version of the
run should be clear from context.

Note that any minimum-length optimal correspondence between strings x, y ∈ Σn will
be of length at most 2n. This is because if a run r1 in x overlaps a run r2 in y in the
correspondence, then we may assume without loss of generality that at most one of the two
runs is extended by the correspondence. (Otherwise, we could un-extend each run by one
and arrive at a shorter correspondence with no added cost.)

Edit Distance Over an Arbitrary Metric

The simple edit distance between two strings x and y is the minimum number of insertions,
deletions, and substitutions needed to transform x into y. In this paper we will mostly
focus on a more general variant of edit distance, in which characters are taken from an
arbitrary metric:
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I Definition 2.3. Let x and y be strings over an alphabet Σ, where (Σ ∪ {∅}, d) is a metric
space. We say that the magnitude |l| of a letter l ∈ Σ is d(∅, l). We define the edit distance
between x and y to be the minimum cost of a sequence of edits from x to y, where the insertion
or deletion of a letter l costs d(∅, l), and the substitution of a letter l to a letter l′ costs d(l, l′).

3 Computing DTW in the Low-Distance Regime

In this section, we present a low-distance regime algorithm for DTW (with characters from
an arbitrary metric in which all non-zero distances are at least one). Given that dtw(x, y)
is bounded above by a parameter K, our algorithm can compute dtw(x, y) in time O(nK).
Moreover, if dtw(x, y) > K, then the algorithm will conclude as much. Consequently, by
doubling our guess for K repeatedly, one can compute dtw(x, y) in time O(n · dtw(x, y)).

Consider x and y of length n with characters taken from a metric space Σ in which all
non-zero distances are at least one. In the textbook dynamic program for DTW [30], each
pair of indices i, j ∈ [n] represents a subproblem T (i, j) whose value is dtw(x[1 : i], y[1 : j]).
Since T (i, j) can be determined using T (i− 1, j), T (i, j − 1), T (i− 1, j − 1), and knowledge
of xi and yj , this leads to an O(n2) algorithm for DTW. A common heuristic in practice
is to construct only a small band around the main diagonal of the dynamic programming
grid; by computing only entries T (i, j) with |i− j| ≤ 2K, and treating other subproblems
as having infinite return values, one can obtain a correct computation for DTW as long as
there is an optimal correspondence which matches only letters which are within K of each
other in position. This heuristic is known as the Sakoe-Chiba Band [39] and is employed, for
example, in the commonly used library of Giorgino [24].

The Sakoe-Chiba Band heuristic can perform badly even when dtw(x, y) is very small,
however. Consider x = abbb · · · b and y = aaa · · · ab. Although dtw(x, y) = 0, if we restrict
ourselves to matching letters within K positions of each other for some small K, then the
resulting correspondence will cost Ω(n).

In order to obtain an algorithm which performs well in the low-distance regime, we
introduce a new dynamic program for DTW. The new dynamic program treats x and y

asymmetrically within each subproblem. Loosely speaking, for indices i and j, there are
two subproblems SP(x, y, i, j) and SP(y, x, i, j). The first of these subproblems evaluates to
the DTW between the first i runs of x and the first j letters of y, with the added condition
that the final run of y[1 : j] is not extended. The second of the subproblems is analogously
defined as the DTW between the first i runs of y and the first j letters of x with the added
condition that the final run of x[1 : j] is not extended.

The recursion connecting the new subproblems is somewhat more intricate than for the
textbook dynamic program. By matching the i-th run with the j-th letter, however, we limit
the number of subproblems which can evaluate to less than K. In particular, if the j-th
letter of y is in y’s t-th run, then any correspondence which matches the i-th run of x to
the j-th letter of y must cost at least Ω(|i − t|). (This is formally shown in the extended
paper [31].) Thus for a given j, there are only O(K) options for i such that SP(x, y, i, j)
can possibly be at most K, and similarly for SP(y, x, i, j). Since we are interested in the
case of dtw(x, y) ≤ K, we can restrict ourselves to the O(nK) subproblems which have
the potential to evaluate to at most O(K). Notice that, in fact, our algorithm will work
even when dtw(x, y) > K as long as there is an optimal correspondence between x and y
which only matches letters from x from the rx-th run with letters from y from the ry-th run
if |rx − ry| ≤ O(K).



W. Kuszmaul 80:7

Formally we define our recursive problems in a manner slightly different from that
described above. Let x and y be strings of length at most n and let K be a parameter which
we assume is greater than dtw(x, y). Our subproblems will be the form SP(x, y, rx, ry, oy),
which is defined as follows. Let x′ consist of the first rx runs of x and y′ consist of the first
ry runs of y until the oy-th letter in the ry-th run. Then SP(x, y, rx, ry, oy) is the value of
the optimal correspondence between x′ and y′ such that the ry-th run in y′ is not extended.3
If no such correspondence exists (which can only happen if ry ≤ 1 or rx = 0), then the value
of the subproblem is ∞. Note that we allow rx, ry, oy to be zero, and if ry is zero, then oy
must be zero as well. We also consider the symmetrically defined subproblems of the form
SP(y, x, ry, rx, ox). We will focus on the subproblems of the first types, implicitly treating
subproblems of the second type symmetrically.
I Example 3.1. Suppose characters are taken from generalized Hamming space, with distances
of 0 and 1. The subproblem SP(efabbccccd, ffaabcccddd, 5, 4, 2) takes the value of the optimal
correspondence between efabbcccc and ffaabcc such that the final cc run in the latter is not
extended. The subproblem’s value turns out to be 3, due to the correspondence:

e f a a b b c c c c
f f a a b b b b c c .

The next lemma presents the key recursive relationship between subproblems. The lemma
focuses on the case where rx, ry, oy ≥ 1.

I Lemma 3.2. Suppose that rx and ry are both between 1 and the number of runs in x and
y respectively; and that oy is between 1 and the length of the ry-th run in y. Let lx be the
length of the rx-th run in x and ly be the length of the ry-th run in y. Let d be the distance
between the letter populating the rx-th run in x and the letter populating the ry-th run in y.
Then SP(x, y, rx, ry, oy) is given by{

min (SP(x, y, rx, ry, oy − 1) + d, SP(x, y, rx − 1, ry, oy − lx) + d · lx) if lx ≤ oy
min (SP(x, y, rx, ry, oy − 1) + d, SP(y, x, ry − 1, rx, lx − oy) + d · oy) if lx > oy.

Proof. Consider a minimum-cost correspondence A between the first rx runs of x and the
portion of y up until the oy-th letter in the ry-th run, such that the ry-th run in y is not
extended.

If the rx-th run in A is extended, then the cost of A will be SP(x, y, rx, ry, oy − 1) + d. If
the rx-th run in A is not extended, then we consider two cases.

In the first case, lx ≤ oy. In this case, the entirety of the rx-th run of x is engulfed by
the ry-th run of y in the correspondence A. Since the rx-th run is not extended, the cost of
the overlap is lx · d. Thus the cost of A must be SP(x, y, rx − 1, ry, oy − lx) + d · lx.

Moreover, since A is minimum-cost, as long as lx ≤ oy, the cost of A is at most the above
expression, regardless of whether the rx-th run in x is extended in A.

In the second case, lx > oy. In this case, the first oy letters in the ry-th run of y all
overlap the rx-th run of x in A. Since the ry-th run is not extended, the cost of the overlap
is d · oy. Thus, since the rx-th run in x is also not extended in A, the cost of A must be
SP(y, x, ry − 1, rx, lx − oy) + d · oy. Moreover, since A is minimal, as long as lx > oy, the cost
of A is at most the above expression, regardless of whether the rx-th run in x is extended. J

3 If oy = 0, then the ry-th run in y′ is empty and thus trivially cannot be extended.
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The above lemma handles cases where rx, ry, oy > 0. In the case where rx > 0, ry > 0, and
oy = 0, SP(x, y, rx, ry, oy) is just the dynamic time warping distance between the first rx runs
of x and the first ry−1 runs of y, given by min (SP(x, y, rx, ry − 1, t1),SP(y, x, ry − 1, rx, t2)) ,
where t1 is the length of the (ry − 1)-th run in y and t2 is the length of the rx-th run
in x. The remaining cases are edge-cases with SP(x, y, rx, ry, oy) ∈ {0,∞}. (See the
extended paper [31].)

One can show that any correspondence A in which a letter from the rx-th run of x is
matched with a letter from the ry-th run of y must contain must contain at least |rx−ry|−1

2
instances of unequal letters being matched. It follows that if dtw(x, y) ≤ K, then we can
limit ourselves to subproblems in which |rx − ry| ≤ O(K). For each of the n options of
(ry, oy), there are only O(K) options of rx that must be considered. This limits the total
number of subproblems to O(nK). The resulting dynamic program yields the following
theorem, the full proof of which appears in the extended paper [31].

I Theorem 3.3. Let x and y be strings of length n taken from a metric space Σ with
minimum non-zero distance at least one, and let K be parameter such that dtw(x, y) ≤ K.
Then there exists a dynamic program for computing dtw(x, y) in time O(nK). Moreover, if
dtw(x, y) > K, then the dynamic program will return a value greater than K.

By repeatedly doubling one’s guess for K until the computed value of dtw(x, y) evaluates
to less than K, one can therefore compute dtw(x, y) in time O(n · dtw(x, y)).

4 Approximating DTW Over Well-Separated Tree Metrics

In this section, we present an Õ(n2−ε)-time O(nε)-approximation algorithm for DTW over a
well-separated tree metric with logarithmic depth. We begin by presenting a brief background
on well-separated tree metrics.

I Definition 4.1. Consider a tree T whose vertices form an alphabet Σ, and whose edges
have positive weights. T is said to be a well-separated tree metric if every root-to-leaf path
consists of edges ordered by nonincreasing weight. The distance between two nodes u, v ∈ Σ
is defined as the maximum weight of any edge in the shortest path from u to v.

Well-separated tree metrics are universal in the sense that any metric Σ can be efficiently
embedded (in time O(|Σ|2)) into a well-separated tree metric T with expected distortion
O(log |Σ|) [22]. Moreover, the tree metric may be made to have logarithmic depth using
Theorem 8 of [8]. For strings x, y ∈ Σn, let dtwT (x, y) denote the dynamic time warping
distance after embedding Σ into T . Then the tree-metric embedding guarantees that
dtw(x, y) ≤ dtwT (x, y) and that E[dtwT (x, y)] ≤ O(logn) · dtw(x, y). (The latter fact may
be slightly nonobvious and is further explained in the extended paper [31].)

It follows that any approximation algorithm for DTW over well-separated tree metrics
will immediately yield an approximation algorithm over an arbitrary polynomial-size metric
Σ, with two caveats: the new algorithm will have its multiplicative error increased by
O(logn); and O(logn) instances of Σ embedded into a well-separated tree metric must be
precomputed for use by the algorithm (requiring, in general, O(|Σ|2 logn) preprocessing time).
In particular, given O(logn) tree embeddings of Σ, T1, . . . , TO(logn), with high probability
mini (dtwTi(x, y)) will be within a logarithmic factor of dtw(x, y).

The remainder of the section will be devoted to designing an approximation algorithm
for DTW over a well-separated tree metric. We will prove the following theorem:
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I Theorem 4.2. Consider 0 < ε < 1. Suppose that Σ is a well-separated tree metric of
polynomial size and at most logarithmic depth. Moreover, suppose that the aspect ratio of Σ is
at most exponential in n (i.e., the ratio between the largest distance and the smallest non-zero
distance). Then in time Õ(n2−ε) we can obtain an O(nε)-approximation for dtw(x, y) for
any x, y ∈ Σn.

An important consequence of the theorem occurs for DTW over the reals. When Σ is an
O(n)-point subset of the reals with a polynomial aspect ratio, there exists an O(n logn)-time
embedding with O(logn) expected distortion from Σ to a well-separated tree metric of size
O(n) with logarithmic depth. (This is further discussed in the extended paper [31].). This
gives the following corollary:

I Corollary 4.3. Consider 0 < ε < 1. Suppose that Σ = [0, nc]∩Z for some constant c. Then
in time Õ(n2−ε) we can obtain an O(nε)-approximation for dtw(x, y) with high probability
for any x, y ∈ Σn.

In proving Theorem 4.2, our approximation algorithm will take advantage of what we
refer to as the r-simplification of a string over a well-separated tree metric.

I Definition 4.4. Let T be a well-separated tree metric whose nodes form an alphabet Σ.
For a string x ∈ Σn, and for any r ≥ 1, the r-simplification sr(x) is constructed by replacing
each letter l ∈ x with its highest ancestor l′ in T that can be reached from l using only edges
of weight at most r/4.

Our approximation algorithm will apply the low-distance regime algorithm from the
previous section to sr(x) and sr(y) for various r in order to extract information about
dtw(x, y). Notice that using our low-distance regime algorithm for DTW, we get the
following useful lemma for free:

I Lemma 4.5. Consider 0 < ε < 1. Suppose that for all pairs l1, l2 of distinct letters in Σ,
d(l1, l2) ≥ γ. Then for x, y ∈ Σn there is an O(n2−ε) time algorithm which either computes
dtw(x, y) exactly, or concludes that dtw(x, y) > γn1−ε.

The next lemma states three important properties of r-simplifications. We remark that
the same lemma appears in our concurrent work on the communication complexity of DTW,
in which we use the lemma in designing an efficient one-way communication protocol [12].

I Lemma 4.6. Let T be a well-separated tree metric with distance function d and whose
nodes form the alphabet Σ. Consider strings x and y in Σn.

Then the following three properties of sr(x) and sr(y) hold:
For every letter l1 ∈ sr(x) and every letter l2 ∈ sr(y), if l1 6= l2, then d(l1, l2) > r/4.
For all α, if dtw(x, y) ≤ nr/α then dtw(sr(x), sr(y)) ≤ nr/α.
If dtw(x, y) > nr, then dtw(sr(x), sr(y)) > nr/2.

The first and second parts of Lemma 4.6 are straightforward from the definitions of sr(x)
and sr(y). The third part follows from the observation that a correspondence C between
x and y can cost at most |C| · r4 more than the corresponding correspondence between
sr(x) and sr(y), where |C| denotes the length of the correspondence. Since there exists an
optimal correspondence between sr(x) and sr(y) of length no more than 2n, it follows that
dtw(x, y) ≤ dtw(sr(x), sr(y)) + nr/2, which implies the third part of the lemma.

A full proof of Lemma 4.6 appears in the extended paper [31]. Next we prove Theorem 4.2.
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Proof of Theorem 4.2. Without loss of generality, the minimum non-zero distance in Σ is 1
and the largest distance is some value m, which is at most exponential in n.

We begin by defining the (r, nε)-DTW gap problem for r ≥ 1, in which for two strings
x and y a return value of 0 indicates that dtw(x, y) < nr and a return value of 1 indicates
that dtw(x, y) ≥ n1−εr. By Lemma 4.6, in order to solve the (r, nε)-DTW gap problem for
x and y, it suffices to determine whether dtw(sr(x), sr(y)) ≤ n1−εr. Moreover, because the
minimum distance between distinct letters in sr(x) and sr(y) is at least r/4, this can be
done in time O(n2−ε logn) using Lemma 4.5.4

In order to obtain an nε-approximation for dtw(x, y), we begin by using Lemma 4.5 to
either determine dtw(x, y) or to determine that dtw(x, y) ≥ n1−ε. For the rest of the proof,
suppose we are in the latter case, meaning that we know dtw(x, y) ≥ n1−ε.

We will now consider the (2i, nε/2)-DTW gap problem for i ∈ {0, 1, 2, . . . , dlogme}.
(Recall that m is the largest distance in Σ.) If the (20, nε/2)-DTW gap problem returned 0,
then we would know that dtw(x, y) ≤ n, and thus we could return n1−ε as an nε-approximation
for dtw(x, y). Therefore, we need only consider the case where the (20, nε/2)-DTW gap
returns 1. Moreover we may assume without computing it that (2dlogme, nε/2)-DTW gap
returns 0 since trivially dtw(x, y) cannot exceed nm. Because (2i, nε/2)-DTW gap returns 1
for i = 0 and returns 0 for i = dlogme, there must be some i such that (2i−1, nε/2)-DTW
gap returns 1 and (2i, nε/2)-DTW gap returns 0. Moreover, we can find such an i by
performing a binary search on i in the range R = {0, . . . , dlogme}. We begin by computing
(2i, nε/2)-DTW gap for i in the middle of the range R. If the result is a one, then we can
recurse on the second half of the range; otherwise we recurse on the first half of the range.
Continuing like this, we can find in time Õ(n2−ε log logm) = Õ(n2−ε) some value i for which
(2i−1, nε/2)-DTW gap returns 1 and (2i, nε/2)-DTW gap returns 0. Given such an i, we
know that dtw(x, y) ≥ 2i−1n

nε/2 = 2in1−ε and that dtw(x, y) ≤ 2in. Thus we can return 2in1−ε

as an nε approximation of dtw(x, y). J

5 Reducing Edit Distance to DTW and LCS

In this section we present a simple reduction from edit distance over an arbitrary metric to
DTW over the same metric.At the end of the section, we prove as a corollary a conditional
lower bound for DTW over three-letter Hamming space, prohibiting any algorithm from
running in strongly subquadratic time.

Surprisingly, the exact same reduction, although with a different analysis, can be used to
reduce the computation of edit distance (over generalized Hamming space) to the computa-
tion of longest-common-subsequence length (LCS). Since computing LCS is equivalent to
computing edit distance without substitutions, this reduction can be interpreted as proving
that edit distance without substitutions can be used to efficiently simulate edit distance with
substitutions, also known as simple edit distance.

Recall that for a metric Σ∪{∅}, we define the edit distance between two strings x, y ∈ Σn
such that the cost of a substitution from a letter l1 to l2 is d(l1, l2), and the cost of a deletion
or insertion of a letter l is d(l, ∅). Additionally, define the simple edit distance edS(x, y) to
be the edit distance using only insertions and deletions.

For a string x ∈ Σn, define the padded string p(x) of length 2n + 1 to be the string
∅x1∅x2∅x3 · · ·xn∅. In particular, for i ≤ 2n+ 1, p(x)i = ∅ when i is odd, and p(x)i = xi/2
when i is even. The following theorem proves that dtw(p(x), p(y)) = ed(x, y).

4 The logarithmic factor comes from the fact that evaluating distances between points may take logarithmic
time in our well-separated tree metric.
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I Theorem 5.1. Let Σ∪{∅} be a metric. Then for any x, y ∈ Σn, dtw(p(x), p(y)) = ed(x, y).

Proof sketch. A key observation is that when constructing an optimal correspondence
between p(x) and p(y), one may w.l.o.g. extend only runs consisting of ∅ characters. In
particular, suppose that one extends a non-∅ character a in p(x) to match a non-∅ character
b in p(y). Then the extended run of a’s must not only overlap b, but also the ∅-character
preceding b. The total cost of extending a to overlap b is therefore d(a, ∅) + d(a, b), which by
the triangle inequality is at least d(∅, b). Thus instead of extending the run containing a, one
could have instead extend a run of ∅-characters to overlap b at the same cost.

The fact that optimal correspondences arise by simply extending runs of ∅-characters
can then be used to prove Theorem 5.1; in particular, given such a correspondence, one
can obtain a sequence of edits from x to y by performing a substitution every time the
correspondence matches two non-∅ characters and a insertion or deletion every time the
correspondence matches a non-∅ character and a ∅-character. J

Theorem 5.2 proves an analogous reduction from edit distance to LCS.

I Theorem 5.2. Let Σ be a generalized Hamming metric. Then for any x, y ∈ Σn,
edS(p(x), p(y)) = 2 ed(x, y).

Proof sketch. Each edit in x can be simulated in s(x) using exactly two insertions/deletions.
In particular, the substitution of a character in x corresponds with the deletion and insertion
of the same character in s(x); and the insertion/deletion of a character in x corresponds with
the insertion/deletion of that character and an additional ∅-character in s(x).

This establishes that edS(p(x), p(y)) ≤ 2 ed(x, y). The other direction of inequality is
somewhat more subtle, and is differed to the extended paper [31]. J

Whereas Theorem 5.2 embeds edit distance into simple edit distance with no distortion,
Theorem 5.3 shows that no nontrivial embedding in the other direction exists.

I Theorem 5.3. Consider edit distance over generalized Hamming space. Any embedding
from edit distance to simple edit distance must have distortion at least 2.

Combining Theorem 5.1 with known conditional lower bounds for computing edit distance
[13] yields a new conditional lower bound for computing DTW over a three-letter alphabet
(in which character distances are zero or one). This concludes a direction of work initiated
by Abboud, Backurs, and Williams [3], who proved the same result over five-letter alphabet.

I Corollary 5.4. Let Σ = {a, b, c} with distance function d(a, b) = d(a, c) = d(b, c) = 1. If
we assume the Strong Exponential Time Hypothesis, then for all ε > 1, no algorithm can
compute dtw(x, y) for x, y ∈ Σn in time less than O(n2−ε).

The full proofs of Theorems 5.1, 5.2, and 5.3, as well as Corollary 5.4 are differed to the
extended paper [31].

6 Approximating Edit Distance Over an Arbitrary Metric

In this section we present an approximation algorithm for edit distance over an arbitrary
metric space. Our algorithm achieves approximation ratio at most nε (with high probability)
and runtime Õ(n2−ε). Note that when the metric is a well-separated tree metric, such an
algorithm can be obtained by combining the approximation algorithm for DTW from Section
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4 with the reduction in Section 5. Indeed the algorithm in this section is structurally quite
similar to the one in Section 4, but uses a probability argument exploiting properties of edit
distance in order to hold over an arbitrary metric.

I Theorem 6.1. Let (Σ ∪ {∅}, d) be an arbitrary metric space such that |l| ≥ 1 for all l ∈ Σ.
For all 0 < ε < 1, and for strings x, y ∈ Σn, there is an algorithm which computes an
O(nε)-approximation for ed(x, y) (with high probability) in time Õ(n2−ε).

Using the standard dynamic-programming algorithm for computing ed(x, y) [42, 37, 41],
one can easily obtain the following observation, analogous to Lemma 4.5 in Section 4:
I Observation 6.2. Consider x, y ∈ Σn, and let R be the smallest magnitude of the letters
in x and y. There is an O(n2−ε)-time algorithm which returns a value at least as large as
ed(x, y); and which returns exactly ed(x, y) when ed(x, y) ≤ R · n1−ε.

In order to prove Theorem 6.1, we present a new definition of the r-simplification of a
string. The difference between this definition and the one in the preceding section allows the
new definition to be useful when studying edit distance rather than dynamic time warping.

I Definition 6.3. For a string x ∈ Σn and for r ≥ 1, we construct the r-simplification sr(x)
by removing any letter l satisfying |l| ≤ r.

In the proof of Theorem 6.1 we use randomization in the selection of r in order to ensure
that sr(x) satisfies desirable properties in expectation. The key proposition follows:

I Proposition 6.4. Consider strings x and y in Σn. Consider 0 < ε < 1 and R ≥ 1. Select
r to be a random real between R and 2R. Then the following three properties hold:

Every letter l in sr(x) or sr(y) satisfies |l| ≥ R.
If ed(x, y) ≤ nR

15nε then E[ed(sr(x), sr(y))] ≤ nR
3nε .

If ed(x, y) > 5nR, then ed(sr(x), sr(y)) > nR.

The full proofs of Proposition 6.4 and of Theorem 6.1 appear in the extended paper [31].
Structurally, both proofs are similar to the analogous results in Section 4. The key difference
appears in the proof of the second part of Proposition 6.4, which uses the random selection
of r in order to probabilistically upper-bound ed(sr(x), sr(y). This is presented below.

I Lemma 6.5. Consider strings x and y in Σn. Consider R ≥ 1 and select r to be a random
real between R and 2R. Then E[ed(sr(x), sr(y))] ≤ 5 ed(x, y).

Proof. Consider an optimal sequence S of edits from x to y. We will consider the cost of
simulating this sequence of edits to transform sr(x) to sr(y). Insertions and deletions are
easily simulated by either performing the same operation to sr(x) or performing no operation
at all (if the operation involves a letter of magnitude less than or equal to r). Substitutions
are slightly more complicated as they may originally be between letters l1 ∈ x and l2 ∈ y of
different magnitudes. By symmetry, we may assume without loss of generality that |l1| < |l2|.
We will show that the expected cost of simulating the substitution of l1 to l2 in sr(x) is
at most 5d(l1, l2). Because insertions and deletions can be simulated with no overhead, it
follows that E[ed(sr(x), sr(y))] ≤ 5 ed(x, y).

If |l1| ≤ r < |l2| then l1 does not appear in sr(x) but l2 remains in sr(y). Thus what was
previously a substitution of l1 with l2 becomes an insertion of l2 at cost |l2|. On the other
hand, if we do not have |l1| ≤ r < |l2|, then either both l1 and l2 are removed from sr(x) and
sr(y) respectively, in which the substitution operation no longer needs to be performed, or
both l1 and l2 are still present, in which case the substitution operation can still be performed
at cost d(l1, l2). Therefore, the expected cost of simulating the substitution of l1 to l2 in
sr(x) is at most

Pr[|l1| ≤ r < |l2|] · |l2|+ d(l1, l2). (1)
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Because r is selected at random from the range [R, 2R], the probability that |l1| ≤ r < |l2|
is at most |l2|−|l1|R . By the triangle inequality, this is at most d(l1,l2)

R . If we suppose that
|l2| ≤ 4R, then it follows by (1) that the expected cost of simulating the substitution of l1 to
l2 in sr(x) is at most d(l1,l2)

R · 4R+ d(l1, l2) ≤ 5d(l1, l2).
If, on the other hand, |l2| > 4R, then in order for |l1| ≤ r to be true, we must have

|l1| ≤ 2R, meaning by the triangle inequality that d(l1, l2) ≥ |l2|/2. Thus in this case
|l2| ≤ 2d(l1, l2), meaning by (1) that the expected cost of simulating the substitution of l1 to
l2 in sr(x) is at most three times as expensive as the original substitution. J
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Abstract
Given an n-vertex bipartite graph I = (S,U,E), the goal of set cover problem is to find a minimum
sized subset of S such that every vertex in U is adjacent to some vertex of this subset. It is NP-hard
to approximate set cover to within a (1− o(1)) lnn factor [14]. If we use the size of the optimum
solution k as the parameter, then it can be solved in nk+o(1) time [16]. A natural question is: can
we approximate set cover to within an o(lnn) factor in nk−ε time?

In a recent breakthrough result[24], Karthik, Laekhanukit and Manurangsi showed that assuming
the Strong Exponential Time Hypothesis (SETH), for any computable function f , no f(k) ·nk−ε-time
algorithm can approximate set cover to a factor below (logn)

1
poly(k,e(ε)) for some function e.

This paper presents a simple gap-producing reduction which, given a set cover instance I =
(S,U,E) and two integers k < h ≤ (1− o(1)) k

√
log |S|/ log log |S|, outputs a new set cover instance

I ′ = (S,U ′, E′) with |U ′| = |U |h
k

|S|O(1) in |U |h
k

· |S|O(1) time such that
if I has a k-sized solution, then so does I ′;
if I has no k-sized solution, then every solution of I ′ must contain at least h vertices.

Setting h = (1 − o(1)) k
√

log |S|/ log log |S|, we show that assuming SETH, for any computable
function f , no f(k) · nk−ε-time algorithm can distinguish between a set cover instance with k-sized
solution and one whose minimum solution size is at least (1− o(1)) · k

√
logn

log logn . This improves the
result in [24].
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1 Introduction

We consider the set cover problem (SetCover): given an n-vertex bipartite graph I =
(S,U,E), where U is the underlying universe set and S represents the set family, find a
minimum sized subset C of S such that every vertex of U is adjacent to some vertex of C.
We use S(I), U(I) and opt(I) to denote the sets S, U and the minimum size of the solution
of I respectively. A vertex u ∈ U is covered by a subset C ⊆ S if u is adjacent to some
vertex of C. The set cover problem is NP-hard [23]. Unless P = NP , we do not expect to
solve it in polynomial time. One way to handle NP-hard problems is to use approximation
algorithms. An algorithm of SetCover achieves an r-approximation if for every input
instance I, it returns a subset C of S(I) such that C covers U(I) and |C| ≤ r · opt(I). The
polynomial time approximability of SetCover is well-understood: the greedy algorithm can
output a solution of size at most opt(I) · (1 + lnn) [10, 21, 28, 34, 35] and it was shown that
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no polynomial time algorithm can achieve an approximation factor within (1 − o(1)) lnn
unless P = NP [4, 14, 17, 29, 32]. On the other hand, if we take the optimum solution size
k = opt(I) as a parameter, then the simple brute-force searching algorithm can solve this
problem in nk+1 time. Assuming the exponential time hypothesis (ETH) [19, 20], i.e., 3-SAT
on n variables cannot be solved in 2o(n) time, there is no no(k) time algorithm for SetCover.
Under the strong exponential time hypothesis (SETH) [19, 20], which claims that for any
ε ∈ (0, 1) there exists a d ≥ 3 such that d-SAT on n variables cannot be solved in 2(1−ε)n

time, we can further rule out nk−ε-time algorithm for set cover for any ε > 0 [31]. It is quite
natural to ask [11]:

Is there any o(lnn)-approximation algorithm for the parameterized set cover problem (or
dominating set problem) with running time nk−ε?

Exponential time approximation algorithms for the unparameterised version of set cover
problem were studied in [7, 13]. It was shown that for any ratio r, there is a (1 + ln r)-
approximation algorithm for SetCover with running time 2n/rnO(1). No nk−ε time al-
gorithm for SetCover achieving an approximation ratio in o(lnn) is known in literature. On
the other hand, proving inapproximability for a parameterized problem is not an easy task. In
fact, even the constant FPT-approximability, i.e., the existence of f(k) ·nO(1)-time algorithm
for any computable function f (henceforth referred to as FPT-algorithm) with constant
approximation, has been open for many years [30]. Lacking techniques like PCP-theorem [5],
many results on the parameterized inapproximability of set cover problem had to use strong
conjectures [6, 8] to create a gap in the first place. It is of great interest to develop techniques
to prove hardness of approximation for parameterized problems only using hypothesis such
as SETH, ETH or even weaker assumptions like W[1] 6= FPT or W[2] 6= FPT [15, 18]
from the parameterized complexity theory. The success of this quest might extend the
arsenal of methods for proving hardness of approximation and lead to PCP-like theorems for
Fine-Grained Complexity [3].

The first constant FPT-inapproximability result for parameterized SetCover based on
W[1] 6= FPT was given by [9] using the one-sided gap of Biclique from [26]. In fact, [9]
deals with dominating set problem, which is essentially the same as SetCover. Recently,
Karthik, Laekhanukit and Manurangsi [24] significantly improved the FPT-inapproximation
factor to (logn)1/kO(1) under the hypothesis W[1] 6= FPT . They also rule out the existence
of (logn)1/kO(1) -approximation algorithm with running time f(k) · no(k) for any computable
function f , assuming ETH, and the existence of (logn)

1
(k+e(ε))O(1) -approximation algorithms

with running time f(k)·nk−ε, assuming SETH. Their approach is to first establish a (logn)
1

Ω(k)

gap for MaxCover, then reduce MaxCover to SetCover and obtain a (logn)
1

Ω(k2) -gap.
This paper presents a new technique which allows us to design simple reductions improving
the inapproximation factor to (1 − ε) · k

√
logn

log logn . The reduction in [8] can get the ratio
(logn)Ω(1/k) but it has to assume Gap-ETH.

I Theorem 1. Assuming SETH, for every ε, δ ∈ (0, 1), sufficiently large k1 and computable
function f : N→ N, there is no f(k) ·Nk−ε time algorithm that can, given an N -vertex set
cover instance I, distinguish between

opt(I) ≤ k,

opt(I) > 1
1+δ

(
logN

log logN

) 1
k .

1 We need large k to get the 1
1+δ

( logN
log logN

) 1
k gap for small δ. If we want to obtain an Θ

(
k

√
logN

log logN

)
gap, then our reduction works for all k ≥ 2.
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I Theorem 2. Assuming ETH, there is a constant ε ∈ (0, 1) such that for every δ ∈ (0, 1)
and computable function f : N→ N, no f(k) ·N εk time algorithm that can, given an N -vertex
set cover instance I , distinguish between

opt(I) ≤ k,

opt(I) > 1
1+δ ·

(
logN

log logN

) 1
k .

Behind these results is a reduction which, given an integer k, an n-vertex set cover instance
I and an integer h ≤ O(logn/ log logn), produces an nO(1) · (|U(I)|)O(hk)-vertex instance I ′
in nO(1) · |U(I)|O(hk) time such that if opt(I) ≤ k then opt(I ′) ≤ k, otherwise opt(I ′) > h.
Therefore, to prove the h-factor parameterized inapproximability of SetCover, it suffices
to show the hardness of SetCover when the input instances have nO(1/hk)-size universe
set. Note that the standard reduction for the SETH-hardness of set cover parameterized by
the solution size k produces instances I with |U(I)| = O(k log |S(I)|). With our reduction,
this immediately yields the above theorems. Let us not fail to mention that the results of
[24] also imply the hardness of SetCover with logarithmic sized universe set assuming
the k-SUM hypothesis and W[1] 6= FPT hypothesis respectively. Similarly, we can obtain
the corresponding inapproximability for set cover based on each of these hypotheses as
well. In particular, using a simple trick, we can even rule out (logN)1/ε(k)-approximation
FPT-algorithm of set cover for any unbounded computable function ε under W[1] 6= FPT .

I Theorem 3. Assuming k-SUM hypothesis for any δ, ε ∈ (0, 1), sufficiently large k and
computable function f : N→ N, there is no f(k) ·Ndk/2e−ε time algorithm that can, given
an N -vertex set cover instance I, distinguish between

opt(I) ≤ k,

opt(I) > 1
1+δ

(
logN

log logN

) 1
k .

I Theorem 4. Assuming W[1] 6= FPT , for and computable function f : N → N and
unbounded computable function ε : N→ N, there is no f(k) ·NO(1)-time algorithm that can,
given an N -vertex set cover instance I, distinguish between

opt(I) ≤ k,
opt(I) > logN1/ε(k).

Technique contribution. The main technique contribution of this paper is to introduce a
gadget that can be used to design gap-producing reductions from the set cover problem to its
approximation version and provide a construction of this gadget using (n, k)-universal sets.
Compared to the reductions in [24], the gap amplification step in this paper is independent
of the starting assumptions. This simplifies the proof for showing the inapproximability
of the set cover problem. In particular, the inapproximability result in [24] assuming
SETH needs some heavy machinery like AG codes to create the gap, while our reduction is
completely elementary.

In addition to it simplicity, an important feature of our reduction is that it can be
computed by constant depth circuits. Combining this observation with Rossman’s Ω(nk/4)
size lower bound for constant depth circuits detecting k-clique [33], Wenxin Lai [25] showed
that there is no constant-depth circuits of size f(k)no(

√
k) that can distinguish between a set

cover instance with solution size at most k and one whose minimum solution size is at least
(logn/log logn)1/(k2).

Another advantage of our reduction is that it can give hardness approximation result from
assumptions that the distributed PCP technique cannot. If we assume that k-set-cover with
large universe set, say |U | = n1/h(k)k , has no nk−ε-time algorithm, then our reduction gives
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h(k) factor hardness of approximation k-set-cover in nk−ε time. This cannot be achieved by
the distributed PCP technique used in [24] due to known lower bounds in communication
complexity of set disjointness.

The gap-gadget we introduce in this paper is similar to the bipartite graphs with threshold
property in [26, 27]. Such kind of gadgets may have further applications in proving hardness
of approximation for other parameterized problems.

2 Preliminaries

For n, k ∈ N, an (n, k)-universal set is a set of binary strings with length n, such that the
restriction to any k indices contains all the 2k possible binary configurations.

I Lemma 5. [See Sections 10.5 and 10.6 of [22]] For k2k ≤
√
n, (n, k)-universal sets of size

n can be computed in O(n3) time.

Hypotheses. Below is a list of hardness hypotheses we will use in this paper.
W[1] 6= FPT : for any computable function f : N → N, no algorithm can, given an
n-vertex graph G and an integer k, decide if G contains a k-clique in f(k) · nO(1) time.
W[2] 6= FPT : for any computable function f : N→ N, there is no algorithm which, given
an n-vertex set cover instance I and an integer k, decides if opt(I) ≤ k in f(k) ·nO(1) time.
Exponential Time Hypothesis (ETH)[19, 20]: there exists a δ ∈ (0, 1) such that 3-SAT
on n variables cannot be solved in O(2δn) time.
Strong Exponential Time Hypothesis (SETH)[19, 20] for any ε ∈ (0, 1) there exists d ≥ 3
such that d-SAT on n variables cannot be solved in O(2(1−ε)n) time.
k-SUM hypothesis (k-SUM) [1]: for every k ≥ 2 and ε > 0, no O(ndk/2e−ε) time algorithm
can, given k sets S1, . . . , Sk each with n integers in [−n2k, n2k], decide if there are k
integers x1 ∈ S1, . . . , xk ∈ Sk such that

∑
i∈[k] xi = 0.

We refer the reader to [18, 15] for more information about the parameterized complexity
hypotheses. Using the Sparsification lemma [20], we can assume that the instances of 3-SAT
in ETH have Cn clauses for some constant C and the instances of d-SAT in SETH have
Cd,εn clauses where Cd,ε depends on d and ε.

3 Reductions

We start with the definition of (k, n,m, `, h)-gap-gadgets. In Lemma 7, we show how to
use theses gadgets to create an (h/k)-gap for the set cover problem. Lemma 10 gives a
polynomial time construction of gap-gadgets with h ≤ O(logn/ log logn) and ` = hk. Since
for every input instance I = (U, S,E) of set cover, our reduction runs in time |S|O(1)|U |`. If
|U | = Ω(n), we can not afford such running time. Our next step is to prove the hardness of
set cover with U = f(k) · (logn)O(1) based on each of the aforementioned hypotheses.

I Definition 6 ((k, n,m, `, h)-Gap-Gadget). A (k, n,m, `, h)-Gap-Gadget is a bipartite graph
T = (A,B,E) satisfying the following conditions.
(G1) A is partitioned into (A1, A2, . . . , Am). For every i ∈ [m], |Ai| = `.
(G2) B is partitioned into (B1, B2, . . . , Bk). For every j ∈ [k], |Bj | = n.
(G3) For all b1 ∈ B1, b2 ∈ B2, . . . bk ∈ Bk, there exist a1 ∈ A1, . . . , am ∈ Am such that for

all i ∈ [m] and j ∈ [k], ai is adjacent to bj.
(G4) For all X ⊆ B and a1 ∈ A1, . . . , am ∈ Am, if every ai has at least k + 1 neighbors in

X, then |X| > h.
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To use this gadget, given a set cover instance I = (S,U,E), we will identify the set B
with the set S. Then we construct a new set cover instance I ′ = (S′, U ′, E′) with S′ = S

such that
(?) for any subset X of S′ that can cover U ′, there must exist a vertex ai ∈ Ai for every

i ∈ m witnessing that X contains a solution of I, i.e., there exists C ⊆ X that can cover
U in the instance I and all the vertices of C are adjacent to ai in the gap-gadget.

It is easy to check the correctness of this reduction:
If there is a k-vertex set X that can cover U , then by (G3) we can pick ai ∈ Ai for all

i ∈ [m] such that ai is adjacent to all vertices in X. This means that X is also a solution of I ′.
If opt(I) > k, then no matter how we pick ai ∈ Ai, each ai must have k + 1 neighbors in

X. This implies that X > h by (G4).
To achieve (?), we will use the idea of hypercube set system from Feige’s work [17] (which

is also used in [24, 8]). For each i ∈ [m], we construct a set UAi . Each element in UAi can
be regarded as a function f : Ai → U . In the new set cover instance, f is covered by s ∈ S if
there exists ai ∈ Ai such that ai is adjacent to s in the gap-gadget and f(ai) is covered by s
in I. More details can be found in the proof of the following lemma.

I Lemma 7. There is an algorithm which, given an integer k, an instance I = (S,U,E)
of SetCover, where S = S1 ∪ S2 . . . ∪ Sk and |Si| = n for all i ∈ [k], and a (k, n,m, `, h)-
Gap-Gadget, outputs a set cover instance I ′ = (S′, U ′, E′) with S′ = S and U ′ = m|U |` in
|U |` · nO(1) time such that

if there exist s1 ∈ S1, . . . , sk ∈ Sk that can cover U , then opt(I ′) ≤ k;
if opt(I) > k, then opt(I ′) > h.

Proof. Let T = (A,B,ET ) be the (k, n,m, `, h)-Gap-Gadget. Without loss of generality,
assume that for all i ∈ [k] Bi = Si. The new instance I ′ = (S′, U ′, E′) is defined as follows.

S′ = S.
U ′ = (

⋃
i∈[m] U

Ai).
For all s ∈ S′ and f ∈ UAi where i ∈ [m], E′ contains {s, f} if there exists an a ∈ Ai
such that
(E’1) {s, f(a)} ∈ E,
(E’2) {a, s} ∈ ET .

Completeness. If opt(I) ≤ k, then there exist s1 ∈ S1, . . . , sk ∈ S that can cover the whole
set U . We will show that for every f ∈ U ′, f is covered by some vertex in {s1, s2, · · · , sk}.
Firstly, by (G3), there exist a1 ∈ A1, . . . , am ∈ Am such that aisj ∈ ET for all i ∈ [m] and
j ∈ [k]. Assume that f ∈ UAi for some i ∈ [m]. Observe that f(ai) ∈ U must be covered
by some sj with j ∈ [k], i.e., {sj , f(ai)} ∈ E. Since {ai, sj} ∈ ET and {sj , f(ai)} ∈ E,
according to the definition of E′, we must have {sj , f} ∈ E′.

Soundness. Suppose opt(I) > k. Let X ⊆ S′ be a set covering U ′. For every a ∈ A, let
NT (a) be the set of neighbors of a in T . We have the following claim.

B Claim 8. For every i ∈ [m] there exists ai ∈ Ai such that |NT (ai) ∩X| ≥ k + 1.

Proof. Suppose there exists an i ∈ [m] such that for all a ∈ Ai, |NT (a) ∩ X| ≤ k. Since
opt(I) > k, every solution of I has size at least k + 1. It follows that for every a ∈ Ai, there
exists some ua ∈ U such that ua is not covered by NT (a) ∩X in the set cover instance I.
Define a function f ∈ UAi such that f(a) = ua for every a ∈ Ai. We claim that f is not
covered by X. Otherwise, suppose there exists an s ∈ X that can cover f . According to the
definition of E′, there must exists an a ∈ Ai such that (E’1) and (E’2) hold. However, if
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s ∈ NT (a) ∩X, then {s, f(a)} = {s, ua} /∈ E. On the other hand, if s /∈ NT (a) ∩X, then
{a, s} /∈ ET . In both cases, we obtain contradictions. C

By Claim 8, we can pick ai ∈ Ai for each i ∈ [m] such that every ai has at least k + 1
neighbors in X. By the property of Gap-Gadget, |X| > h. J

I Remark 9. Recall that the greedy algorithm can approximate the set cover problem within a
(1+ln |U |)-approximation ratio. If one could construct a gap-gadget for parameters satisfying

k(1 + ln |U ′|) = k(1 + ` ln |U |+ lnm) < h,

then applying the greedy algorithm on input I ′ could decide whether opt(I) = k in |U |` ·nO(1)

time.
It is well known that given a CNF formula φ on n variables, one can construct a set cover

instance I = (S,U,E) with |U | = O(n) and |S| = Θ(k2n/k) in 2O(n/k) time such that φ is
satisfiable if and only if opt(I) = k. This implies that, assuming ETH there is no algorithm
that can construct (k, |S|,m, `, h)-gap-gadgets with k(1 + `ln|U |+ lnm) < h and |U |` ≤ 2o(n)

in 2o(n) time.

3.1 Construction of Gap-Gadgets
In [27], a similar gadget is used to prove the parameterized complexity of k-Biclique. One
would wonder if the randomized construction from [27] can be used to construct the gap-
gadget in this paper. Informally, the gadget in [27] is a bipartite random graph T = (A,B,E)
satisfying the following properties with high probability:
(T1) a k-vertex set in B has m = nΘ(1/k) common neighbors;
(T2) any (k + 1)-vertex set in B has at most O(k2) common neighbors.
It is not hard to show that if Y ⊆ A is an m-vertex set and every vertex in Y has at least
k + 1 neighbors in X ⊆ B, then |X| ≥ k+1

√
|Y |
O(k2) by (T2) and the pigeonhole principle. We

may partition the vertex set A into m parts. Each part contains n1−Θ(1/k) vertices. This
gives us a gap-gadget with large gap h = k+1

√
m

O(k2) and ` = n1−Θ(1/k). Unfortunately, such
gadget does not suit our purpose. We need a gap-gadget with ` ≤ logn/ log logn. In this
section, we provide a construction using universal sets.

I Lemma 10. There is an algorithm that can, for every k, h, n ∈ N with k log logn ≤ logn
and h ≤ logn

(2+ε) log logn , compute a (k, n, n log h, hk, h)-Gap-Gadget in O(n4) time.

Proof. Let m = n log h and K = h log h. Note that (logm)/2 = (logn + log log h)/2 ≥
(2 + ε)h log h/2 ≥ log h + log log h + h log h = logK + K, i.e., K2K ≤

√
m. By Lemma 5,

an (m,K)-universal set S = {s1, s2, . . . , sm} can be constructed in O(m3) ≤ O(n4) time.
Partition every s ∈ S into n = m

logh blocks so that each block has length log h. Interpret the
values of blocks as integers in [h]. We obtain an m× n matrix M by setting the value Mr,c

equal to the value of the c-th block of sr. The matrix M satisfies the following conditions.
(M1) For all r ∈ [m] and c ∈ [n], Mr,c ∈ [h].
(M2) For any set C ⊆ [n] with |C| ≤ h, there exists a row r ∈ [m] such that |{Mr,c : c ∈

C}| = |C|.
Condition (M1) is obvious. To see why (M2) holds, for each C ⊆ [n] with |C| ≤ h, let C ′ be
the set of indices corresponding to the blocks in C. Note that |C ′| = |C| log h ≤ h log h = K.
By the property of (m,K)-universal set, there exists an sr ∈ S such that each block in C
takes distinct value. It follows that |{Mr,c : c ∈ C}| = |C|.
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For each i ∈ [m], let

Ai = {(a1, a2, . . . , ak) : for all j ∈ [k], aj ∈ [h]}.

Note that |Ai| = hk. For each j ∈ [k], let Bj = [n]. Let T = (A,B,E) be a bipartite graph
with

A =
⋃
i∈[m]Ai.

B =
⋃
j∈[k]Bj .

E = {{~a, b} : ~a ∈ Ai, b ∈ Bj and Mi,b = ~a[j] for all j ∈ [k]}.
We will show that T is an (k, n,m, hk, h)-gap-gadget. Obviously, T satisfies (G1) and (G2).

T satisfies (G3). For any b1 ∈ B1, b2 ∈ B2, . . . , bk ∈ Bk. We define ~ai ∈ Ai by setting

~ai = (Mi,b1 ,Mi,b2 , . . . ,Mi,bk).

It is routine to check that {~ai, bj} ∈ E for all i ∈ [m] and j ∈ [k].

T satisfies (G4). Let X ⊆ B and ~a1 ∈ A1,~a2 ∈ A2, . . . ,~am ∈ Am. Suppose for every
i ∈ [m], ~ai has at least k + 1 neighbors in X and |X| ≤ h. By (M2), there exists an
r ∈ [m] such that |{Mr,c : c ∈ X}| = |X|. Since ~ar has at least k + 1 neighbors in X,
there exists an j ∈ [k] such that ~ar has two neighbors b, b′ in X ∩Bj . According to the
definition of E, we must have

Mr,b = Mr,b′ = ~ar[j].

This contradicts the fact that |{Mr,c : c ∈ X}| = |X|. J

The construction above produces gap-gadgets with ` = hk. Note that the parameter h is
related to the inapproximation factor we will get for the set cover problem and the running
time of our reduction is nO(1)|U |`. We want to set h as large as possible while keeping the
running time of reduction in f(k) · nO(1). Assuming |U | = g(k) · (logn)O(1), the best we can
achieve is h = (logn/ log logn)1/k.

On the probabilistic construction. A natural question is, can we construct gap-gadgets
with better parameters h and `, say ` = h = o(logn), using the probabilistic method?

Consider the probability space of bipartite random graphs on the vertex sets A = A1∪A2∪
· · ·∪Am and B = B1∪B2∪· · ·Bk, where |Ai| = ` and |Bj | = n. Let p be the edge probability.
Each bipartite graph T on A ∪B has probability Pr[T ] = p|E(T )|(1− p)|A|·|B|−|E(T )|. Fix k
vertices b1, b2, . . . , bk in B. Let Xgood be the random variable that for every bipartite graph
T , Xgood(T ) is the number of complete bipartite subgraphs of T which contains exactly one
vertex in each Ai and the k vertices b1, b2, . . . , bk in B. Let Xbad be the random variable that
for every bipartite graph T , Xbad(T ) is the number of subgraphs of T with h vertices in B
and one vertex in each Ai such that each vertex in Ai has at least k + 1 neighbors in B. We
want to set the edge probability p so that Pr[Xbad(T ) ≥ 1] + Pr[Xgood(T ) = 0] ≤ 1− n−c for
some constant c > 0. One way to bound Pr[Xbad(T ) ≥ 1] above is to use Markov’s inequality,
which gives us Pr[Xbad(T ) ≥ 1] ≤ E[Xbad]. So we might assume that E[Xbad] < 1. On
the other hand, we have E[Xgood] ≥ Pr[Xgood(T ) ≥ 1] ≥ n−c. Note that expectations of
these two random variables are E[Xgood] = `mpkm and E[Xbad] = `m

(
n
h

)
p(k+1)m( h

k+1
)m. We

deduce that

m log `+mk log p > −c logn

ICALP 2019
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and

m log `+ h logn+m(k + 1) log p+m(k + 1) log h < 0.

Thus

c logn
mk

+ log `
k

>
log `

(k + 1) + h logn
m(k + 1) + log h. (1)

We might choose m large enough so that the terms c logn
mk and h logn

m(k+1) in (1) become relatively
small. In order to make (1) hold, we have to set ` ≥ hO(k2). This does not give us better
(k, n,m, `, h)-gap-gadgets.

3.2 Proofs of Theorem 1 and Theorem 2

I Lemma 11. There is an algorithm, which given k ∈ N, δ > 0 with (1 + 1/k3)1/k ≤
(1+δ)/(1+δ/2) and (1+δ/2)k ≥ 2k4 and a SAT instance φ with n variables and Cn clauses,
where n is much larger than k and C, outputs an integer N ≤ 2n/k+n/k3 and a set cover
instance I satisfying the following conditions in 25n/k time.
|S(I)|+ |U(I)| ≤ N .
If φ is satisfiable, then opt(I) ≤ k.

If φ is not satisfiable, then opt(I) > 1
1+δ ·

k

√
logN

log logN .

Proof. Let k be a positive integer and φ be a CNF with n variables and Cn clauses. We first
construct a set cover instance I ′ = (S′, U ′, E′) as follows. Partition the variable set into k
parts, each having at most dn/ke variables. For each i ∈ [k], let Si be the set of assignments
to the i-th part. Let S′ = S1 ∪ · · · ∪ Sk. Let U ′ be the set consisting of all the clauses of φ
and k additional nodes u1, u2, . . . , uk. For every i ∈ [k] and assignment s ∈ Si, we add an
edge between s and ui. If the assignment s ∈ S′ satisfies a clause u ∈ U ′, we also add an
edge between u and s. The set cover instance I ′ has the following properties.

If φ is satisfiable, then opt(I ′) = k. Moreover, there exist k vertices s1 ∈ S1, · · · , sk ∈ Sk
that can cover the whole set U ′.
If φ is not satisfiable, then opt(I ′) > k.
|U ′| = k + Cn.
|S′| ≤ k2n/k.

Let M = k2n/k ≥ |S| and N = M1+1/k3 ≤ 2n/k+n/k3 . Note that logM/ log logM ≥
n/(k logn) ≥ k. Applying Lemma 10 with k ← k, n←M , `← logM

(1+δ/2)k log logM , h← 1
1+δ/2 ·

k

√
logM

log logM and m ← M log h ≤ M log logM , we obtain a gap-gadget T in O(M4 ≤ 25n/k)
time. Using Lemma 7 on I ′ and T , we obtain our target set cover instance I = (S,U,E)
satisfying the following properties.

If φ is a yes-instance, then opt(I) ≤ k.
If φ is a no-instance, then opt(I) > 1

1+δ/2 ·
k
√

logM/ log logM . Using (1 + 1/k3)1/k ≤
(1 + δ)/(1 + δ/2), we get opt(I) > 1

1+δ ·
k
√

logN/ log logN .

|S| = |S| ≤ k2n/k.

|U | ≤M log logM · |U |
logM

(1+δ/2)k log logM = M log logM · (k + Cn)
logM

(1+δ/2)k log logM .
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The number of vertices in I is

|S(I)|+ |U(I)| ≤M +M log logM · (k + Cn)
logM

(1+δ/2)k log logM

≤M +M log logM · (2Ck logM)
logM

(1+δ/2)k log logM

≤M +M log logM · (logM)
2 log logM

(1+δ/2)k log logM (using logM ≥ 2Ck for large n)

≤M +M log logM ·M
2

(1+δ/2)k

≤M +M log logM ·M1/k4
(using (1 + δ/2)k ≥ 2k4)

≤M1+1/k3
(using M1/k3

≥ 1 +M1/k4
log logM for large n)

= N. J

Now we are ready to prove Theorem 1. Suppose for some computable function f , there is
an f(k) ·Nk−ε-time algorithm that can, for every N -vertex set cover instance I and every
integer k, distinguish between opt(I) ≤ k and opt(I) ≥ 1

1+δ ·
k

√
logN

log logN . For every δ ∈ (0, 1),
choose k ∈ N large enough so that (1 + 1/k3)1/k ≤ (1 + δ)/(1 + δ/2) and (1 + δ/2)k ≥ 2k4

hold. Let ε′ = 1− ε/k + 1/k2, by SETH, there exists an integer d such that d-SAT with n
variables cannot be solved in 2n(1−ε′)-time. Given an instance φ of d-SAT with n variables
and m clauses. By the sparsification lemma [20], we can assume that m = Cd,ε′ · n for
some constant Cd,ε′ depending on d and ε′. Without loss of generality, assume that n is
much larger than k. Applying Lemma 11 on φ and k, we obtain a set cover instance I with
N ≤ 2n/k+n/k3 vertices in time 25n/k ≤ 2εn for k ≥ 5/ε. Then we use the approximation
algorithm to decide if opt(I) ≤ k or opt(I) ≥ 1

1+δ ·
k

√
logN

log logN . Thus we can solve d-SAT
in time 2εn + f(k) ·Nk−ε ≤ 2εn + f(k) · 2(n/k+n/k3)(k−ε) ≤ 2n(1−ε/k+1/k2) = 2n(1−ε′), which
contradicts SETH.

Theorem 2 can be proved similarly. By ETH, there exists ε > 0 such that 3-SAT on n
variables cannot be solved in 2εn time. Let ε′ = ε/2. For every 3-SAT instance φ with n
variable and Cn clause, where n is much larger than k, apply Lemma 11 to obtain a set cover
instance I with N = 2n/k+n/k3 vertices in 25n/k ≤ 2ε′n time. If there is an f(k) ·N ε′k-time
algorithm that can distinguish between opt(I) ≤ k and opt(I) > 1

1+δ ·
k

√
logN

log logN , then we
can decide whether φ is satisfiable in time 2ε′n + f(k) · 2(n/k+n/k3)·ε′k ≤ 2εn.

3.3 Proof of Theorem 3
We use a lemma in [2] to reduce k-SUM to k-VECTOR-SUM over small numbers. Then we
present a reduction from k-VECTOR-SUM to set cover.

I Lemma 12 (Lemma 3.1 of [2]). Let k, p, d, s,M ∈ N satisfy k < p, pd ≥ kM + 1, and
s = (k + 1)d−1. There is a collection of mappings f1, . . . , fs : [0,M ]× [0, kM ]→ [−kp, kp]d,
each computable in time O(poly logM + kd), such that for all numbers x1, . . . , xk ∈ [0,M ]
and targets t ∈ [0, kM ],

k∑
j=1

xj = t⇔ ∃i ∈ [s] such that
k∑
j=1

fi(xj , t) = ~0.

I Lemma 13. There is an algorithm which, given k sets S1, S2, . . . , Sk where Si is a set
of n vectors in [−f(k), f(k)]g(k) logn for some computable functions f and g, outputs a set
cover instance I = (S,U,E) with |U | ≤ k(2f(k))k−1

g(k) logn and S = S1 ∪ S2 ∪ . . . ∪ Sk in
k(2f(k))k−1

g(k)nO(1)-time such that
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(i) if there exist ~x1 ∈ S1, . . . , ~xk ∈ Sk such that
∑
i∈[k] ~xi = ~0, then {~x1, . . . , ~xk} covers U ;

(ii) if the sum of any k vectors ~x1 ∈ S1, . . . ~xk ∈ Sk is not zero, then opt(I) > k.

Proof. Let D = {(d1, . . . , dk) ∈ [−f(k), f(k)]k :
∑
i∈[k] di = 0}. Note that |D| ≤ (2f(k))k−1.

Suppose D = {~a1, . . . ,~a|D|}. For every j ∈ [g(k) logn], let Uj = [k]|D|. We define the target
set cover instance I = (S,U,E) as follows.

S = S1 ∪ · · · ∪ Sk.
U =

⋃
i∈[g(k) logn] Ui.

For every ~x ∈ Si and every ~u ∈ Uj , we add an edge {~x, ~u} into E if there exists ` ∈ [|D|]
such that ~u[`] = i and ~x[j] = ~a`[i].

Completeness. Suppose there exist ~x1 ∈ S1, . . . , ~xk ∈ Sk such that
∑
i∈[k] ~xi = ~0. Then for

all j ∈ [g(k) logn] we have ~x1[j] + ~x2[j] + . . .+ ~xk[j] = 0, i.e.,

(~x1[j], ~x2[j], . . . , ~xk[j]) = ~a` ∈ D for some ` ∈ [|D|]. (2)

For all ~u ∈ Uj , let i = ~u[`] ∈ [k]. Then by (2), ~xi[j] = ~a`[i]. It follows that {~xi, ~u} ∈ E.

Soundness. Suppose the sum of any k vectors in S1 ∪ · · · ∪ Sk is not zero. Let X be a
subset of S with |X| ≤ k, we need to show that X does not cover U . Firstly, we note
that if X ∩ Si = ∅ for some i ∈ [k], then the vector ~u = (i, i, . . . , i) ∈ [k]|D| is not covered
by any vector in X. Now assume that X = {~x1, ~x2, . . . , ~xk} and ~xi ∈ Si for all i ∈ [k].
Since

∑
i∈[k] ~xi 6= ~0, there exists a j ∈ [g(k) logn] such that∑

i∈[k]

~xi[j] 6= 0.

We deduce that

(~x1[j], ~x2[j], . . . , ~xk[j]) /∈ D.

In other word, for all ` ∈ [|D|], there exists an i` ∈ [k] such that

~xi` [j] 6= ~a`[i`]. (3)

Define a vector ~u ∈ Uj such that for all ` ∈ [|D|],

~u[`] = i`. (4)

Suppose ~u is covered by xi ∈ X, then by the definition, there exists ` ∈ [|D|] such that
i = ~u[`] = i` and ~xi` [j] = ~a`[i`], which contradicts (3) and (4). J

Proof of Theorem 3. Given k sets S1, . . . , Sk of integers in [−n2k, n2k]. Let p = k4kc+1 ,
M = 2n2k and d = logn/kc. Without loss of generality, assume that k is large and n is much
larger than k, we have pd = k4k logn ≥ n4k ≥ 2kn2k + 1. On the other hand, for any ε > 0,
we can pick c such that s = (k+ 1)d = nlog(k+1)/kc ≤ nε/4. Applying Lemma 12, we obtain a
collection of mappings f1, . . . , fs : [0,M ]× [0, kM ]→ [−kp, kp]d in O(poly logM + kd) time
such that

there exist x1 ∈ S1, . . . , xk ∈ Sk with
∑
j∈[k] xj = 0 if and only if there exist i ∈ [s] such

that
∑
j∈[k] fi(xj + n2k, kn2k) = ~0.

Using Lemma 10, we construct a (k, n,O(n log logn), logn
(1+δ/2)k log logn ,

1
(1+δ/2) · (

logn
log logn )1/k)-

gap-gadget T for some small δ > 0. For every i ∈ [s], and j ∈ [k], let Sij = {fi(x+n2k, kn2k) :
x ∈ Sj}. Applying Lemma 7 to Si1, Si2, . . . , Sik and T , we obtain a set cover instance Ii with
S(Ii) = Si1 ∪ Si2 . . . Sik and |U(Ii)| ≤ n log logn · (g(k) logn)

logn
(1+δ/2)k log logn ≤ n1+1/k3 . The set

cover instances I1, . . . , Is satisfy the following properties.
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If there exist x1 ∈ S1, . . . , xk ∈ Sk with
∑
j∈[k] xj = 0, then there exist i ∈ [s] and

y1 = fi(x1 + n2k, n2k) ∈ Si1 . . . yk = fi(xk + n2k, n2k) ∈ Sik such that y1, . . . , yk cover
U(Ii).
If there are no x1 ∈ S1, . . . , xk ∈ Sk with

∑
j∈[k] xj = 0, then for all i ∈ [s], opt(Ii) >

1
1+δ/2 ·

(
logn

log logn

)1/k
.

Let N = n1+1/k2 . We have

|S(Ii)|+ |U(Ii)| ≤ kn+ n1+1/k3
≤ N,

f(k) ·Ndk/2e−ε ≤ ndk/2e−ε+1/k,

and

1
(1 + δ)

(
logN

log logN

)1/k
≤ 1

(1 + δ/2)

(
logn

log logn

)1/k
.

For every i ∈ [s], we apply the f(k) · Ndk/2e−ε-time algorithm to decide if opt(Ii) ≤ k

or opt(Ii) > 1
1+δ · (logN/ log logN)1/k. If for some i ∈ [s], it found that opt(Ii) ≤ k,

then we know that the input instance of k-SUM is a yes-instance. The running time is
O(poly logM + kd) + f(k) ·Ndk/2e−ε ≤ O(poly logM + kd) + s · ndk/2e−ε+1/k ≤ ndk/2e−ε/2

for large k. J

3.4 Proof of Theorem 4

Firstly, we give a reduction from Clique to SetCover which produces instances with
logarithmic sized universe set. The main idea of this reduction is due to Karthik et al. [24].

I Lemma 14. There is an nO(1)-time algorithm which, given an integer k, an n-vertex graph
G with V (G) = V1 ∪V2 ∪ · · · ∪Vk such that G[Vi] is an independent set for all i ∈ [k], outputs
a set cover instance I = (S,U,E) with |U | = kO(1) logn and S = E(G) =

⋃
{i,j}∈([k]

2 ) S{i,j},
where each S{i,j} is the set of edges between Vi and Vj, such that
(i) if G contains a k-clique, then opt(I) ≤

(
k
2
)
. Moreover, there exists a

(
k
2
)
-sized subset of

S, which contains exactly one vertex from each S{i,j} ({i, j} ∈
([k]

2
)
), that can cover U ;

(ii) if G contains no k-clique, then opt(I) >
(
k
2
)
.

Proof. We will construct a set cover instance I such that if G has a k-clique, then we
can select its

(
k
2
)
edges to cover the whole universe set. For every v ∈ V (G), denote by

encode(v) ∈ {0, 1}logn the binary string representation of v. For every ` ∈ [logn], the `th
bit of encode(v) is encode(v)[`]. For every i ∈ [k], let σi : [k] \ {i} → [k − 1] be an arbitrary
bijection. Our target set cover instance I = (S,U,E) is defined as follows.

S = E(G) =
⋃
{i,j}∈([k]

2 ) S{i,j}, where S{i,j} = {{vi, vj} : vi ∈ Vi, vj ∈ Vj , {vi, vj} ∈
E(G)}.
U = [k]× [k − 1]{0,1} × [logn].
For s = {vi, vj} ∈ S and u = (i, f, `) ∈ U we add {s, u} into E if

vi ∈ Vi, vj ∈ Vj and f(encode(vi)[`]) = σi(j).

The set cover instance I satisfies the following conditions.
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If G contains a k-clique, then there exists a
(
k
2
)
-sized subset of S which contains exactly one

vertex from each S{i,j} ({i, j} ∈
([k]

2
)
) that can cover U . Suppose that v1 ∈ V1, . . . , vk ∈ Vk

induce a k-clique. Let X = {{vi, vj} : {i, j} ∈
([k]

2
)
}. We will show that X covers the

whole set U . For any (i, f, `) ∈ U , let b = encode(vi)[`]. Since f(b) ∈ [k − 1], there must
exist a j ∈ [k] \ {i} such that σi(j) = f(b). By the definition of E, {vi, vj} is adjacent to
(i, f, `) .
If G does not contain a k-clique, then opt(I) >

(
k
2
)
. Let X ⊆ S be a set such that

|X| ≤
(
k
2
)
and X covers U .

For each {i, j} ∈
([k]

2
)
, define

X{i,j} = {{vi, vj} : vi ∈ Vi, vj ∈ Vj , {vi, vj} ∈ X}.

We claim that for every {i, j} ∈
([k]

2
)
, |X{i,j}| > 0. Otherwise let f(0) = f(1) = σi(j) and

consider the vertex (i, f, 1) ∈ U . According to the definition of E, if a vertex {v, u} ∈ S
covers (i, f, 1), then either v or u must be in Vi. Let us assume v ∈ Vi and u ∈ Vj′ for
some j′ ∈ [k] \ {i}. We must have f(encode(vi)[1]) = σi(j′). However, if j 6= j′, then
f(0) = f(1) = σi(j) 6= σi(j′).
Since

(
k
2
)
≥ |X| =

∑
{i,j}∈([k]

2 ) |X{i,j}| and |X{i,j}| > 0, we conclude that |X{i,j}| = 1 for

all {i, j} ∈
([k]

2
)
.

For every i ∈ [k] and distinct j, j′ ∈ [k]\{i}, let {{v, vj}} = X{i,j} and {{v′, vj′}} = Xi,j′ ,
where v, v′ ∈ Vi, we claim that v = v′. Otherwise, since v 6= v′ there exists ` ∈ [logn] such
that encode(v)[`] 6= encode(v′)[`]. Now consider a function f with f(encode(v′)[`]) =
σi(j) and f(encode(v)[`]) = σi(j′). The vertex (i, f, `) must be covered by some {x, y}
with x ∈ Vi and y ∈ Vh such that σi(h) = f(encode(v)[`]) ∈ {σi(j), σi(j′)}. We
must have y ∈ Vj or y ∈ Vj′ . Since |X{i,j}| = |X{i,j′}| = 1, we deduce that either
{x, y} = {v, vj} or {x, y} = {v′, vj′}. However, if {x, y} = {v, vj}, we must have
σi(j) = f(encode(v)[`]) = σi(j′) 6= σi(j), a contradiction. Similarly, if {x, y} = {v′, vj′},
then σi(j′) = f(encode(v′)[`]) = σi(j) 6= σi(j′). We conclude that the vertex (i, f, `) can
not be covered by X.
Now we have for every i ∈ [k], there exists a vi ∈ Vi such that

{vi} =
⋂

j∈[k]\{i},e∈X{i,j}

e.

Obviously, for every {i, j} ∈
([k]

2
)
, {{vi, vj}} = X{i,j}. This implies that {v1, v2, . . . , vk}

is a k-clique in G. J

Proof of Theorem 4. Given an n-vertex graph G and a positive integer k, we invoke
Lemma 14 to obtain a set cover instance I = (S,U,E) with |S| = |E(G)| and |U | ≤
k3 logn satisfying (i) and (ii). Let m = |S|. Then we use Lemma 10 to construct a
(
(
k
2
)
,m, nO(1), logm

log logm ,
logm

log logm
1/(k2))-gap-gadget T inmO(1) = nO(1) time. Applying Lemma 7

on I and T , we finally obtain our target set cover instance I ′ = (S′, U ′, E′) with the following
properties:

if G has a k-clique, then opt(I ′) =
(
k
2
)
,

if G has no k-clique, then opt(I ′) >
(

logm
log logm

)1/(k2),
|S′| = |E(G)| = m,
|U ′| = (k3 logn)logm/ log logm = m1+o(1).
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Let N = |U ′| + |S′|. We have N = nO(1). Since ε is an unbounded computable function,
there is a computable function g : N→ N such that k′ = g(k) >

(
k
2
)
and ε(k′) >

(
k
2
)
. When

n is large enough,

logm
log logm

1/(k2)
≥ logN
O(log logN)

1/(k2)
≥ (logN)1/ε(k′).

Any f(k′) ·NO(1) time algorithm that can distinguish between opt(I ′) ≤ k′ and opt(I ′) >
(logN)

1
ε(k′) can be used to decide if an input graph G has k-clique in f(g(k))nO(1) time. J

4 Conclusion

We have improved the hardness approximation factor for the parameterized set cover problem
using a simple reduction. Our result shows that in order to prove inapproximability of
parameterized set cover, it suffices to prove the hardness of set cover problem with small
universe set. A natural question is:

Is there any algorithm that can, given an n-vertex set cover instance I and an integer k,
outputs a new instance I ′ and an integer k′ in f(k) ·nO(1) time for some computable function
f : N→ N such that

k′ = g(k) for some computable function g : N→ N,
opt(I) ≤ k if and only if opt(I ′) ≤ k′,
|U(I ′)| ≤ h(k) · (log |S(I ′)|)O(1) for some computable function h : N→ N.

A positive answer to the above question would imply that SetCover parameterized
by the optimum solution size has no (logn)1/ε(k)-approximation FPT algorithm assuming
W[2] 6= FPT . Of course, if we just want a ρ-factor hardness of approximation, then it suffices
to have |U(I ′)| ≤ h(k)|S(I ′)|O(1/ρk). Note that using Dynamic Programming, SetCover
can be solved in 2|U(I)|(|U(I)|+ |S(I)|)O(1) time [12]. We do not expect to reduce the size of
universe set below o(k logn) under ETH.

Our hardness result is far from matching the (1+lnn) approximation ratio of the greedy al-
gorithm in polynomial time. Could it be the case that there exists a (lnn)1/ρ(k)-approximation
algorithm for SetCover with running time nk−ε? What is the best approximation ratio we
can achieve for parameterized set cover in nk−ε time?
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Abstract
The min-cost matching problem suffers from being very sensitive to small changes of the input. Even
in a simple setting, e.g., when the costs come from the metric on the line, adding two nodes to the
input might change the optimal solution completely. On the other hand, one expects that small
changes in the input should incur only small changes on the constructed solutions, measured as the
number of modified edges. We introduce a two-stage model where we study the trade-off between
quality and robustness of solutions. In the first stage we are given a set of nodes in a metric space
and we must compute a perfect matching. In the second stage 2k new nodes appear and we must
adapt the solution to a perfect matching for the new instance.

We say that an algorithm is (α, β)-robust if the solutions constructed in both stages are α-
approximate with respect to min-cost perfect matchings, and if the number of edges deleted from
the first stage matching is at most βk. Hence, α measures the quality of the algorithm and β its
robustness. In this setting we aim to balance both measures by deriving algorithms for constant α and
β. We show that there exists an algorithm that is (3, 1)-robust for any metric if one knows the number
2k of arriving nodes in advance. For the case that k is unknown the situation is significantly more
involved. We study this setting under the metric on the line and devise a (10, 2)-robust algorithm
that constructs a solution with a recursive structure that carefully balances cost and redundancy.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms

Keywords and phrases matchings, robust optimization, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.82

Category Track A: Algorithms, Complexity and Games

Related Version A full version of the paper is available at https://arxiv.org/abs/1811.10580.

Funding The authors were supported by Project Fondecyt Nr. 1181527, the Alexander von Humboldt
Foundation with funds of the German Federal Ministry of Education and Research (BMBF), BAYLAT,
and the Deutsche Forschungsgemeinschaft under grant BR 4744/2-1.

Acknowledgements We thank anonymous reviewers for their helpful feedback.

1 Introduction

Weighted matching is one of the founding problems in combinatorial optimization, playing
an important role in the settling of the area. The work by Edmonds [8] on this problem
greatly influenced the role of polyhedral theory on algorithm design [23]. On the other
hand, the problem found applications in several domains [1, 2, 6, 22, 26]. In particular
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ε ε ε ε ε ε ε1− ε 1− ε 1− ε 1− ε 1− ε 1− ε

Figure 1 Example instance on the line. Vertices in Stage 1 are depicted by light grey dots and
second stage arrivals are indicated as dark grey crosses. First and second state optimum are depicted
by solid and dotted edges, respectively. The arrival of two new vertices leads to a significant drop in
the cost of the optimum.

routing problems are an important area of application, and its procedures often appeared as
subroutines of other important algorithms, the most notable being Christofides’ algorithm [5]
for the traveling salesperson problem (TSP).

An important aspect of devising solution methods for optimization problems is studying
the sensitivity of the solution towards small changes in the input. This sensitivity analysis
has a long history and plays an important role in practice [10]. Min-cost matching is a
problem that has particularly sensitive optimal solutions. Assume for example that nodes
lie on the real line at points ` and `+ 1− ε for some 0 < ε < 1 and all ` ∈ {1, . . . , n}, see
Figure 1. The min-cost matching, for costs equal the distance on the line, is simply the
edges {`, `+ 1− ε}. However, even under a minor modification of the input, e.g., if two new
nodes appear at points 1− ε and n+ 1, the optimal solution changes all of its edges, and
furthermore the cost decreases by a Θ(1/ε) factor. Rearranging many edges in an existing
solution is often undesirable and may incur large costs, for example in an application context
where the matching edges imply physical connections or binding commitments between
nodes. A natural question in this context is whether we can avoid such a large number
of rearrangements by constructing a robust solution that is only slightly more expensive.
In other words, we are interested in studying the trade-off between robustness and the
cost of solutions.

We consider a two-stage robust model with recourse. Assume we are given an underlying
metric space (X , c). The input for the first stage is a complete graph G1 whose node set
V (G1) is a finite, even subset of X . The cost of an edge {v, w} is given by the corresponding
cost c(v, w) in the metric space1. In a second stage we get an extended complete graph G2
containing all nodes in V (G1) plus 2k additional nodes. As before, costs of edges in G2 are
given by the underlying metric. In the first stage we must create a perfect matching M1 for
G1. In the second stage, after G2 is revealed, we must adapt our solution by constructing
a new perfect matching M2 for G2, called the second stage reply. We say that a solution
M1 is two-stage (α, β)-robust if for any instantiation of the second stage there exists a
solution M2 such that two conditions hold. First, the total cost of edges in Mi must satisfy
c(Mi) ≤ α · c(Oi) for i ∈ {1, 2}, where Oi denotes a min-cost perfect matching in Gi. Second,
it must hold that |M1 \M2| ≤ βk. An algorithm is two-stage (α, β)-robust if, given G1
and c, it returns a two-stage (α, β)-robust matching and, given the set of new arrivals, a
corresponding second stage reply. We refer to α as the competitive factor and β as the
recourse factor of the algorithm. Our main goal is to balance cost and recourse, and thus we
aim to obtain algorithms where α and β are constants.

Our model is closely related to an online model with recourse. Consider a graph whose
nodes are revealed online two by two. Our objective is to maintain a perfect matching at all
times. As above, irrevocable decisions do not allow for constant competitive factors. This
suggests a model where in each iteration we are allowed to modify a constant number of edges.

1 Graphs with arbitrary cost functions do not allow for (O(1), O(1))-robust matchings in general, e.g.,
consider a variant of the example in Figure 1 in which all omitted edges have infinite cost.
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An online algorithm that maintains an α-approximation at all time while deleting at most β
edges per iteration can be easily transformed into a two-stage (α, β)-robust algorithm. Given
an instance of the two-stage model, we choose an arbitrary order for the nodes available in the
first stage and create M1 by following the updates proposed by an online algorithm. Then,
we repeat the procedure for the arrivals in Stage 2. Thus, our two-stage model is also the first
necessary step for understanding this more involved online model. Megow et al. [20] study a
similar online model for minimum spanning trees and the TSP in metric graphs. After giving
a (1 + ε)-competitive algorithm with recourse factor 1

ε log( 1
ε ) for the former problem, they

are able to derive a (2 + ε)-competitive algorithm with constant recourse factor for the latter
problem by combining their results with a modified version of the well-known double-tree
algorithm. An algorithm for the online variant of our proposed model together with the
aforementioned results, would give rise to an online variant of Christofide’s algorithm which
can yield an improved competitiveness factor for the considered online TSP.

Our Results and Techniques. We distinguish two variants of the model. In the k-known
case we assume that in Stage 1 we already know the number of new nodes 2k that will arrive
in Stage 2. For this case we present a simple two-stage (3, 1)-robust algorithm.

I Theorem 1. Let (X , c) be a metric space, V1 ⊆ X with |V1| even, and G1 be the complete
graph on V1. For k ∈ N known in advance, there is a perfect matching M1 in G1 that is
two-stage (3, 1)-robust for 2k arrivals. Such a matching and corresponding second stage reply
can be computed in time poly(|V1|, k).

The example in Figure 1 illustrates a worst case scenario for the strategy of choosing O1
as the first stage matching for k = 1. The reason for this is that the nodes arriving in Stage 2
induce a path in O1∆O2 that incurs a significant drop in the optimal cost. Our algorithm is
designed towards preparing for such bad scenarios. To this end, we define the notion of gain
for a path P with respect to a matching X as follows:

gainX(P ) := c(P ∩X)− c(P \X).

In Stage 1, our algorithm chooses k edge-disjoint O1-alternating paths of maximum total
gain with respect to O1. For each such path P we modify O1 by removing P ∩O1 and adding
(P \O1) ∪ {e(P )}, where e(P ) is the edge that connects the endpoints of P . Our choice of
paths of maximum gain implies that P ∩O1 is larger than P \O1. Therefore we can bound
the cost of the solution in the first stage against that of O1 and also infer that most of its
costs is concentrated on the edges e(P ). For the second stage we construct a solution for the
new instance by removing the k edges of the form e(P ) and adding new edges on top of the
remaining solution. The algorithm is described in detail in Section 2.

For the case where k is unknown the situation is considerably more involved as a first
stage solution must work for any number of arriving nodes simultaneously. In this setting we
restrict our study to the real line and give an algorithm that is two-stage (10, 2)-robust.

I Theorem 2. Let X = R and c = | · |, V1 ⊆ X with |V1| even, and let G1 be the complete
graph on V1. Then there is a perfect matching M1 in G1 that is two-stage (10, 2)-robust.
Such a matching, as well as the second stage reply, can be computed in time poly(|V1|, k).

The first stage solution M is constructed iteratively, starting from the optimal solution.
We will choose a path P greedily such that it maximizes gainM (P ) among all alternating
paths that are heavy, i.e., the cost of P ∩M is a factor 2 more expensive than the cost of
P \M . Then M is modified by augmenting along P and adding edge e(P ), which we fix to
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be in the final solution. We iterate until M only consists of fixed edges. As we are on the line,
each path P corresponds to an interval and we can show that the constructed solution form
a laminar family. Furthermore, our choice of heavy paths implies that their lengths satisfy
an exponential decay property. This allows us to bound cost of the first stage solution. For
the second stage, we observe that the symmetric difference O1∆O2 induces a set of intervals
on the line. For each such an interval, we remove on average at most two edges from the first
stage matching and repair the solution with an optimal matching for the exposed vertices.
A careful choice of the removed edges, together with the greedy construction of the first
stage solution, enables us to bound the cost of the resulting second stage solution within a
constant factor of the optimum. See Sections 3 and 4 for a detailed description of this case.

Related Work. Intense research has been done on several variants of the online bipartite
matching problem [17, 16, 18, 4, 21]. In this setting we are given a known set of servers while
a set of clients arrive online. In the online bipartite metric matching problem servers and
clients correspond to points from a metric space. Upon arrival, each client must be matched
to a server irrevocably, at cost equal to their distance. For general metric spaces, there is
a tight bound of (2n− 1) on the competitiveness factor of deterministic online algorithms,
where n is the number of servers [18, 16]. Recently, Raghvendra presented a deterministic
algorithm [24] with the same competitiveness factor, that in addition is O(log(n))-competitive
in the random arrival model. Also, its analysis can be parameterized for any metric space
depending on the length of a TSP tour and its diameter [21]. For the special case of the
metric on the line, Raghvendra [25] recently refined the analysis of the competitive ratio
to O(log(n)). This gives a deterministic algorithm that matches the previously best known
bound by Gupta and Lewi [15], which was attained by a randomized algorithm. As the lower
bound of 9.001 [9] could not be improved for 20 years, the question whether there exists a
constant competitive algorithm for the line remains open.

The online matching with recourse problem considers an unweighted bipartite graph. Upon
arrival, a client has to be matched to a server and can be reallocated later. The task is to
minimize the number of reallocations under the condition that a maximum matching is always
maintained. The problem was introduced by Grove, Kao and Krishnan [11]. Chaudhuri et
al. [4] showed that for the random arrival model a simple greedy algorithm uses O(n log(n))
reallocations with high probability and proved that this analysis is tight. Recently, Bernstein,
Holm and Rotenberg [3] showed that the greedy algorithm needs O(n log2 n) allocations in
the adversarial model, leaving a small gap to the lower bound of O(n logn). Gupta, Kumar
and Stein [14] consider a related problem where servers can be matched to more than one
client, aiming to minimize the maximum number of clients that are assigned to a server.
They achieve a constant competitive factor server while doing in total O(n) reassignments.

Online min-cost problems with reassignments have been studied in other contexts. For
example in the online Steiner tree problem with recourse a set of points on a metric space
arrive online. We must maintain Steiner trees of low cost by performing at most a constant
(amortized) number of edge changes per iteration. While the pure online setting with no
reassignment only allows for Ω(log(n)) competitive factors, just one edge deletion per iteration
is enough to obtain a constant competitive algorithm [12]; see also [13, 20].

The concept of recoverable robustness is also related to our setting [19]. In this context
the perfect matching problem on unweighted graphs was considered by Dourado et. al. [7].
They seek to find perfect matchings which, after the failure of some edges, can be recovered
to a perfect matching by making only a small number of modifications. They establish
computational hardness results for the question whether a given graph admits a robust
recoverable perfect matching.
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2 Known Number of Arrivals

In this section, we consider the setting where k (number of arrival pairs in Stage 2) is already
known in Stage 1. Let G1 be the complete graph given in Stage 1 (with edge costs c induced
by an arbitrary metric) and let O1 be a min-cost perfect matching in G1. Without loss of
generality assume that |O1| > 2k, as otherwise, we can remove all edges of M1 in Stage 2.

Algorithm 1.1 works as follows:
(i) Let P1, . . . , Pk be edge-disjoint, O1-alternating paths maximizing

∑k
i=1 gainO1(Pi).

(ii) Set M := O1∆P1∆ . . .∆Pk.
(iii) Return M1 := M ∪ {e(Pi) : i ∈ [k]}.

It is easy to see that each path Pi starts and ends with an edge from O1 and gainO1(Pi) ≥ 0.
As a consequence, M1 is a perfect matching and

c(M) = c(O1)−
∑k

i=1 gainO1(Pi) ≤ c(O1).

Using c(e(Pi)) ≤ c(Pi) and
⋃k

i=1 Pi = O1∆M ⊆ O1 ∪M we obtain

c(M1) ≤ c(M) +
∑k

i=1 c(Pi) ≤ c(M) + c(M) + c(O1) ≤ 3 · c(O1).

Now consider the arrival of 2k new vertices, resulting in the graph G2 with min-cost
matching O2. Note that O2∆M is a U -join, where U is the union of the endpoints of the
paths P1, . . . , Pk and the 2k newly arrived vertices.

Algorithm 1.2 works as follows:
(i) Let P ′1, . . . , P ′2k be the 2k maximal paths from O2∆M .
(ii) Return M2 := M ∪ {e(P ′i ) : i ∈ [2k]}.

Note that O1∆O2 consists of k alternating paths R1, . . . , Rk, from which we remove
the starting and ending O2-edge. Then these paths would have been a feasible choice
for P1, . . . , Pk, implying that the total gain of the Ri’s is at most that of the Pi’s. We
conclude that

c(M) = c(O1)−
∑k

i=1 gainO1(Pi) ≤ c(O1)−
∑k

i=1 gainO1(Ri) ≤ c(O2).

Applying
⋃2k

i=1 P
′
i ⊆ O2∆M ⊆ O2 ∪M , we obtain

c(M2) ≤ c(M) +
∑2k

i=1 c(P ′i ) ≤ c(M) + c(M) + c(O2) ≤ 3 · c(O2).

As |M1 \M2| ≤ |M1 \M | = k, we conclude that M1 is indeed two-stage (3, 1)-robust.
We remark that M is always a min-cost matching of cardinality |V (G1)| − 2k in G1.

Thus, alternatively to Algorithm 1.1, we can compute a min-cost matching of cardinality
|V (G1)| − 2k and match uncovered nodes at minimum cost. Finding M directly as well as
finding gain-maximizing paths as described in Algorithm 1.1 can be done efficiently by solving
a min-cost T -join problem in an extension of G1. This concludes our proof of Theorem 1.

3 Unknown Number of Arrivals – Stage 1

In this section, we consider the case that the underlying metric corresponds to the real line.
This implies that there is a Hamiltonian path L in G1 such that c(v, w) = c(L[v, w]) for
all v, w ∈ V (G1), where L[v, w] is the subpath of L between nodes v and w. We will refer
to L as the line and call the subpaths of L intervals. The restriction to the metric on the
line results in a uniquely defined min-cost perfect matching O1 with a special structure. All
proofs omitted due to space constraints can be found in the appendix of the full version.
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c1 c3 c3 c1 c1c2 c2
[. . . ] [. . . ] [. . . ]

Figure 2 For fixed α, β ∈ O(1), we construct an instance for which Algorithm 1.1 is not (α, β)-
robust for any k ∈ O(1). G1 is constructed such that O1 contains β + 1 edges of size c1 and β3 + β2

of size c3 that are equally distributed between c1-edges. The distance between any two consecutive
edges in O1 is c2. Values c1, c2, c3 are chosen depending on α, guaranteeing c1 � β3c2 � β6c3.
Algorithm 1.1 with k ≥ β + 1 chooses M1 = O1. Now, assume there are two arrivals at the extremes
of the line: while the optimal costs in the second stage decrease heavily to c(O2) ∈ Θ(β3c2), only β
deletions are allowed within M1. As a result, there does not exist a feasible second stage reply. Now,
consider Algorithm 1.1 with k ≤ β. Then, M1 contains more than β2 + β edges of size c2. If in the
second stage 2(β + 1) nodes arrive right next to the endpoints of c1-edges, the optimal costs drop to
Θ(β3c3) while only β2 + β deletions are allowed. Again, no feasible second stage reply exists.

I Lemma 3. O1 is the unique perfect matching contained in L.

When the number of arrivals is not known in the first stage, the approach for constructing
the first stage matching introduced in Section 2 does not suffice anymore. Figure 2 illustrates
a class of instances for which Algorithm 1.1 cannot achieve (O(1), O(1))-robustness, no matter
how we choose k. For a matching M , define g(M) := maxe∈L |{{v, w} ∈ M : e ∈ L[v, w]}|.
Informally speaking, g(M) captures the maximal number of times a part of the line is
traversed by edges in M . The example in Figure 2 can be generalized to show that we cannot
restrict ourselves to constructing matchings M1 such that g(M1) is bounded by a constant.

In view of the example in Figure 2, we adapt the approach from Section 2 as follows.
Instead of creating a fixed number of paths, our algorithm now iteratively and greedily selects
a path P of maximum gain with respect to a dynamically changing matching X (initially
X = O1). In order to bound the total cost incurred by adding edges of the form e(P ), we
only consider paths P for which X ∩ P contributes a significant part to the total cost of P .

I Definition 4. Let X,P ⊆ E(G1).
1. We say that P is X-heavy if c(P ∩X) ≥ 2 · c(P \X).
2. We say that P is X-light if c(P ∩X) ≤ 1

2 · c(P \X).

Algorithm 2.1 works as follows:
(i) Set M1 := ∅ and X := O1.
(ii) While X 6= ∅: Let P be an X-heavy X-alternating path maximizing gainX(P ) and

update M1 ←M1 ∪ {e(P )} and X ← X∆P .
(iii) Return M1.

Note that in each iteration, the path P starts and ends with an edge from X as it is
gain-maximizing (if P ended with an edge that is not in X, we could simply remove that
edge and obtain a path of higher gain). Therefore it is easy to see that X ∪M1 is always a
perfect matching, and in each iteration the cardinality of X decreases by 1.

Now number the iterations of the while loop in Algorithm 2.1 from 1 to n. Let X(i) be
the state of X at the beginning of iteration i. Let P (i) be the path chosen in iteration i and
let e(i) = e(P (i)) be the corresponding edge added to M . The central result in this section is
Lemma 7, in which we show that the paths P (i) form a laminar family of intervals on the line.

Within the proof we will make use of observations stated in Lemmas 5 and 6. For
convenience, we define the projection ψ(e) := L[v, w] that maps an edge e = {v, w} ∈ E(G1)
to the corresponding subpath L[v, w].
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P (i)
P (j)

Figure 3 A minimal example of a situation in which Lemma 7 would be violated. There are two
iterations i < j with paths P (i) (depicted in blue) and P (j) (depicted in red) such that X ∩ P (j)

was not modified between iteration i and iteration j. Then, extending the blue path P (i) with the
rightmost edge yields an X(i)-heavy path with higher gain than P (i), a contradiction.

I Lemma 5. Let X ⊆ E(G1).
1. Let A,B ⊆ E(G1) be two X-heavy (X-light, respectively) sets with A ∩ B = ∅. Then

A ∪B is X-heavy (X-light, respectively).
2. Let A,B ⊆ E(G1) with B ⊆ A. If A is X-heavy and gainX(B) < 0, then A \ B is

X-heavy. If A is X-light and gainX(B) > 0, then A \B is X-light.

I Lemma 6. Let X ⊆ L be a matching.
1. Let P be an X-heavy X-alternating path maximizing gainX(P ). If X covers all vertices

in V (ψ(P )), then P = ψ(P ).
2. Let I ⊆ L be an interval. Then there is an X-alternating path P such that c(P ∩X) =

c(X ∩ I) and c(P \X) = c(I \X).

I Lemma 7.
1. X(i), P (i) ⊆ L for all i ∈ [n].
2. For all i, j ∈ [n] with i < j, either P (i) ∩ P (j) = ∅ or P (j) ⊂ P (i).

Proof. We say a pair (i, j) with i < j is violating if ψ(P (i)) ∩ ψ(P (j)) 6= ∅ and ψ(P (j)) \
ψ(P (i)) 6= ∅. We will show that no violating pair exists. This proves the lemma as the
following claim asserts.

B Claim. If P (j) 6= ψ(P (j)), then there is a violating pair (i′, j′) with i′ < j′ ≤ j.

Proof. Let j′ be minimal with P (j′) 6= ψ(P (j′)). Note that minimality of j′ implies that
X(j′) = O1∆P (1)∆ . . .∆P (j′−1) ⊆ L. Then Lemma 6 implies that there must be a vertex
v ∈ V (ψ(P (j′))) not covered by X(j′). Because X(j′) covers exactly those vertices not covered
by {e(i′) : i′ < j′}, there must be an i′ < j′ such that v is an endpoint of P (i′). The vertex v
cannot be an endpoint of P (j′), because v is exposed in X(j′) and P (j′) starts and ends with
edges from X(j′). This implies that (i′, j′) is a violating pair. C

Now let us assume there are no violating pairs. Then P (i) = ψ(P (i)) ⊆ L for all i ∈ [n]
by the claim, which also implies X(i) ⊆ L. This implies the lemma as, in this situation, the
condition for violating pairs coincides with the condition in point 2 of the lemma.

By contradiction assume there is a violating pair. Choose j such that j is minimal among
all possible choices of violating pairs. Then choose i such that it is maximal for that j among
all violating pairs.

Note that the claim implies that P (i), X(i), X(j) ⊆ L. Furthermore, our choice of i and
j implies that ψ(P (j′)) ∩ ψ(P (j)) = ∅ for all j′ with i < j′ < j, as otherwise (i, j′) or (j′, j)
would be a violating pair. In particular, P (j′) ∩ P (j) = ∅ for all j′ with i < j′ < j and thus

X(j) ∩ P (j) = X(i+1) ∩ P (j) = (X(i)∆P (i)) ∩ P (j). (1)

Now consider I1 := ψ(P (j)) ∩ P (i) and I2 := ψ(P (j)) \ P (i), both of which are non-empty
since (i, j) is a violating pair. Then (1) implies X(j)∩ I1 = I1 \X(i) and I1 \X(j) = X(i)∩ I1.
We conclude that gainX(j)(I1) = − gainX(i)(I1) ≤ 0, as I1 is a prefix of the gain-maximizing
path P (i) (see the appendix of the full version for a formal proof).
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Figure 4 a) Illustration of the matching created by an example execution of Algorithm 2.1.
Edges added to M1 in an iteration from WH are depicted by blue solid lines and edges created in an
iteration from WL are illustrated by red dotted lines. b) Illustration of the corresponding tree. For
every tree-node i ∈W , grey edges indicate X(i) and an arc illustrates the edge connecting the end
nodes of P (i). c) Illustration of example assignment of requests to iterations (defined in Section 4).
Requests R,R′, R′′ ∈ R are assigned such that R,R′′ ∈ R(0) and R′ ∈ R(2). R̄ ∈ R̄(0) is a gap
between two requests associated with tree-node 0.

Therefore I2 = ψ(P (j)) \ I1 is X(j)-heavy by Lemma 5. But then I2 is also X(i)-heavy
because (1) implies X(j) ∩ I2 = X(i) ∩ I2. Hence I ′ := P (i) ∪ I2 is X(i)-heavy by Lemma 5
and further

gainX(i)(I ′) = gainX(i)(P (i)) + gainX(j)(I2) > gainX(i)(P (i)),

because gainX(j)(I2) ≥ 1
3c(I2). By Lemma 6 there is an X(i)-heavy, X(i)-alternating path

with higher gain than P (i), a contradiction. J

Tree structure. Lemma 7 induces a tree structure on the paths selected by Algorithm 2.1.
We define the directed tree T = (W,A) as follows. We let W := {0, . . . n} and define
P (0) := L. For i, j ∈W we add the arc (i, j) to A if P (j) ⊂ P (i) and there is no i′ ∈W with
P (j) ⊂ P (i′) ⊂ P (i). It is easy to see that T is an out-tree with root 0. We let T [i] be the
unique 0-i-path in T . We define the set of children of i ∈W by ch(i) := {j ∈W : (i, j) ∈ A}.
Furthermore, let WH := {i ∈W : |T [i]| is odd} and WL := {i ∈W : |T [i]| is even} be the set
of heavy and light nodes in the tree, respectively. These names are justified by the following
lemma. See Figure 4 a)-b) for an illustration.

I Lemma 8. If i ∈ WH, then P (i) ∩X(i) = P (i) ∩O1 and, in particular, P (i) is O1-heavy.
If i ∈WL \ {0}, then P (i) ∩X(i) = P (i) \O1 and, in particular, P (i) is O1-light.

Proof. Let i ∈W \ {0}. From Lemma 7 we know that for every iteration i′ ∈W \ {0} with
i′ < i it holds that either P (i) ∩ P (i′) = ∅ or P (i) ⊂ P (i′). In the first case it holds that
P (i)∩X(i′+1) = P (i)∩X(i′), in the latter case it holds that P (i)∩X(i′+1) = P (i)∩(P (i)∆X(i′)).
Moreover, it is easy to see that i′ < i and P (i) ⊂ P (i′) holds if and only if i′ ∈ V (T [i]) \ {0, i}.
If i ∈ WH, this implies that there exist an even number of iterations i′ < i for which
P (i) ⊂ P (i′) holds. Hence, we obtain

P (i) ∩X(i) = P (i) ∩ (P (i)∆ . . .∆P (i)︸ ︷︷ ︸
evenly often

∆O1) = P (i) ∩O1.

If i ∈WL, this implies that there exist an odd number of iterations i′ < i for which P (i) ⊂ P (i′)

holds. Hence, we can deduce that

P (i) ∩X(i) = P (i) ∩ (P (i)∆ . . .∆P (i)︸ ︷︷ ︸
oddly often

∆O1) = P (i) \O1. J
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The fact that nested paths are alternatingly O1-heavy and O1-light implies an exponential
decay property. As a consequence we can bound the cost of M1.

I Lemma 9. Let i ∈W \ {0}. Then
∑

j∈ch(i) c(P (j)) ≤ 1
2 · c(P

(i)).

Proof. Let i ∈W \ {0}. Then∑
j∈ch(i)c(P (j)) ≤ 3

2
∑

j∈ch(i) c(P (j) ∩X(j)) ≤ 3
2c(P

(i) \X(i)) ≤ 1
2c(P

(i)),

where the first inequality follows from the fact that P (j) is X(j)-heavy; the second inequality
follows from the fact that P (j) ∩ X(j) ⊆ P (i) \ X(i) for j ∈ ch(i) and the fact that the
intervals P (j) for all children are disjoint; the last inequality follows from the fact that P (i)

is X(i)-heavy. J

I Lemma 10. c(M1) ≤ 3c(O1).

Proof. Note that c(M1) =
∑n

i=1 c(e(i)) =
∑

i∈W\{0} c(P (i)). For ` ∈ N, let

W` := {i ∈W : |T [i]| = `}.

Observe that Lemma 9 implies that
∑

i∈W`
c(P (i)) ≤

( 1
2
)`−1∑

i∈W1
c(P (i)) for all ` ∈ N.

Furthermore
∑

i∈W1
c(P (i)) ≤ 3

2c(O1), because W1 ⊆WH. Hence

c(M1) =
∞∑

`=1

∑
i∈W`

c(P (i)) ≤
∞∑

`=1

(
1
2

)`−1 ∑
i∈W1

c(P (i)) = 2 · 3
2c(O1). J

4 Unknown Number of Arrivals – Stage 2

We now discuss how to react to the arrival of 2k additional vertices. We let O2 be the
min-cost perfect matching in the resulting graph G2 and define

R := {P : P is a maximal path in (O1∆O2) ∩ L}.

We call the elements of R requests. An important consequence of our restriction to the
metric space on the line is that |R| ≤ k (in fact, each of the k maximal paths of O1∆O2 is
contained in L after removing its first and last edge).

I Lemma 11. |R| ≤ k and each R ∈ R starts and ends with an edge of O1.

For simplification of the analysis we make the following assumptions on the structure of
the request set.

I Assumption A. For all i ∈ WL and all R ∈ R, either P (i) ∩ R = ∅ or P (i) ⊆ R, or
R ⊆ P (i).

I Assumption B. For all j ∈WH, if
⋃

R∈RR∩P (j) 6= ∅, then the first and last edge of P (j)

are in
⋃

R∈RR.

In the appendix of the full version we prove formally that these are without loss of
generality. For intuition, we give a short sketch of the proof. Assume we are confronted
with a set of requests R that violates at least one of the assumptions. Based on R, we
can construct a modified set of requests R′ complying with the assumptions and fulfilling
two properties: First, gainO1(

⋃
R∈R′ R) > gainO1(

⋃
R∈RR), i.e., R′ induces smaller second
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stage optimal costs than R and secondly, |R′| ≤ |R|, i.e., R′ allows for at most as many
modifications as R does. As a consequence, if we run our proposed second stage algorithm
for R′ and construct M2 accordingly, the analysis of the approximation and recourse factor
carry over from the analysis of R′ to the actual set of requests R. Hence, we can assume
w.l.o.g. that R fulfills the assumptions.

From the set of requests R, we will determine a subset of at most 2k edges that we delete
from M1. To this end, we assign each request to a light node in WL as follows. For R ∈ R
we define iR := max{i ∈WL : R ⊆ P (i)}, i.e., P (iR) is the inclusionwise minimal interval of
a light node containing R. For i ∈WL, let

R(i) :=
{
R ∈ R : iR = i

}
.

Furthermore, we also keep track of the gaps between the requests in R(i) as follows. For
i ∈WL, let

R̄(i) :=
{
R̄ ⊆ P (i) : R̄ is a maximal path in P (i) \

⋃
R∈R(i)R and

R̄ ⊆ P (j) for some j ∈ ch(i)
}
.

Note that R′ ∩R′′ = ∅ for all R′, R′′ ∈ R(i) ∪ R̄(i), i ∈WL. However, R̄ ∈ R̄(i) may contain
a request R ∈ R(j) from descendants j of i. See Figure 4 c) for an illustration of the
assignment.

For i ∈ WL, let WH(i) := ch(i) and WL(i) := {i′ ∈ W : i′ ∈ ch(j) for some j ∈ WH(i)}.
Note that WH(i) ⊆WH and WL(i) ⊆WL. Before we can state the algorithm for computing
the second stage reply, we need one final lemma.

I Lemma 12. Let i ∈ WL. For every R ∈ R(i), there is a j ∈ WH(i) with P (j) ∩ R 6= ∅.
For every R̄ ∈ R̄(i), there is an i′ ∈WL(i) with P (i′) ∩R 6= ∅.

We are now ready to state the algorithm. We first describe and discuss a simplified
version, which yields an approximation guarantee of 19. At the end of the paper, we discuss
how to slightly adapt the algorithm so as to obtain the factor of 10 given in Theorem 2.

Algorithm 2.2 works as follows:
(i) Create the matching M ′ by removing the following edges from M1 for each i ∈WL:

1. The edge e(i) if i 6= 0 and R(i) 6= ∅.
2. For each R ∈ R(i) the edge e(j∗R) where j∗R := min{j ∈WH(i) : P (j) ∩R 6= ∅}.
3. For each R̄ ∈ R̄(i) the edge e(i∗

R̄
) where i∗

R̄
:= min{i′ ∈WL(i) : P (i′) ∩R 6= ∅}.

(ii) Let M ′′ be a min-cost matching on all vertices not covered by M ′ in G2.
(iii) Return M2 := M ′ ∪M ′′.

Let Z be indices of the edges removed in step (i). It is not hard to see that |R̄(i)| ≤
|R(i)| − 1 for each i ∈WL and therefore |Z| ≤ 2k, bounding the recourse of Algorithm 2.2 as
intended.

I Lemma 13. |Z| ≤ 2k.

Now let Y := W \ (Z ∪ {0}) be the nodes corresponding to edges that have not been
removed and

Ȳ := {i ∈ Y : T [i] \ {0, i} ⊆ Z}

the nodes that correspond to maximal intervals that have not been removed.
The following lemma is a consequence of the exponential decay property. It shows that

in order to establish a bound on the cost of M2, it is enough to bound the cost of all paths
P (i) for i ∈ Ȳ .
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e(iR)

e(j∗R)

RA(R) A(R)

Figure 5 Illustration of the proof of Lemma 15. The solid dark grey lines depict edges in O1 ∩R.
At the time when Algorithm 2.1 constructed P (j∗R), no other child interval of iR intersecting with R
was present. Thus X(j∗R) ∩R = X(iR+1) ∩R = O1 ∩R. If A(R) was O1-heavy, then P (j∗R) ∪A(R)
would be an O1-heavy path of higher O1-gain than P (j∗R), contradicting the greedy construction.

I Lemma 14. c(M2) ≤ c(O2) + 3
∑

i∈Ȳ c(P (i)).

It remains to bound the cost of the paths associated with the tree nodes in Ȳ . We
establish a charging scheme by partitioning the line into three areas A,B,C:

1. For R ∈ R, let A(R) := R \ P (j∗R). We define A :=
⋃

R∈RA(R).
2. For i ∈WL and R̄ ∈ R̄(i), let B(R̄) := R̄ \

⋃
i′∈WL(i)∩Z P

(i′).
We define B :=

⋃
R̄∈R̄B(R̄).

3. We define C := L \ (A ∪B).

Consider a set A(R) for some R ∈ R. Recall that iR is the index of the smallest light
interval constructed by Algorithm 2.1 containing R and that j∗R is the first child interval
of iR created by Algorithm 2.1 that intersects R. From the choice of j∗R and the greedy
construction of P (j∗R) as a path of maximum X(j∗R)-gain we can conclude that A(R) is not
O1-heavy; see Figure 5 for an illustration. Therefore c(A(R) \O1) > 1

3c(A(R)). Note that
O2 ∩A(R) = A(R) \O1, because A(R) ⊆ R. Hence we obtain the following lemma.

I Lemma 15. Let R ∈ R. Then 1
3c(A(R)) ≤ c(O2 ∩A(R)).

A similar argument implies the same bound for all sets of the type B(R̄) for some R̄ ∈ R̄(i)
and i ∈WL.

I Lemma 16. Let R̄ ∈ R̄. Then 1
3c(B(R̄)) ≤ c(O2 ∩B(R̄)).

Furthermore, one can show that the sets of the form A(R) and B(R̄) and the set C form
a partition of L (see the appendix of the full version). We define x : L→ R+ by

x(e) :=


1
3 if e ∈ A ∪B
1 if e ∈ C ∩O2

0 if e ∈ C \O2

and obtain the following lemma as a consequence of Lemmas 15 and 16.

I Lemma 17.
∑

e∈L c(e)x(e) ≤ c(O2 ∩ L).

We are now able to bound the cost of each path P (i) for i ∈ Ȳ against its local budget∑
e∈P (i) c(e)x(e). We consider the cases where i ∈ Ȳ corresponds to a heavy and light edge

in Lemma 18 and Lemma 19, respectively.

I Lemma 18. Let j ∈ Ȳ ∩WH. Then c(P (j)) ≤ 6
∑

e∈P (j) c(e)x(e).
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Proof. We first show that each request intersecting with P (j) is either contained in a child
interval of j or the edges in P (j) intersecting with the request are covered by A.

B Claim. Let R ∈ R with R ∩ P (j) 6= ∅. Then R ∩ P (j) ⊆ A(R) or R ⊆ P (i′) for some
i′ ∈ ch(j).

Proof. Assume R 6⊆ P (i′) for any i′ ∈ ch(j). In particular, this implies that iR /∈ desc(j). Let
i be the parent node of j in T . We first exclude the possibility that iR is an ancestor of i.
Indeed, if this was the case then R 6⊆ P (i) and thus by Assumption A, P (i) ⊆ R. But then
P (i) can neither contain other request intervals, nor can it intersect any non-request intervals.
Therefore R(i) = ∅ and i 6= i∗

R̄
for all R̄ ∈

⋃
i′∈WL

R̄(i′). Therefore, i /∈ Z, a contradiction to
j ∈ Ȳ . This implies that iR = i. Further note that j ∈ Ȳ implies j 6= j∗R for all R ∈ R, as
otherwise, j would have been tagged for removal. We conclude that j∗R ∈ ch(i) \ {j} and
thus R ∩ P (j) ⊆ R \ P (j∗R) = A(R), as P (j) and P (j∗R) are disjoint. C

Let Q :=
⋃

i′∈ch(j) P
(i′). Consider e ∈ P (j) ∩ O1. Note that the claim implies that if

e /∈ A ∪Q, then e ∈ O2. We conclude that (P (j) ∩O1) \Q ⊆ A ∪B ∪ (C ∩O2). Further, a
variant of Lemma 9 implies that c(P (j) ∩O1) ≤ 4

3c((P
(j) ∩O1) \Q) (see appendix of the full

version for details). We obtain

c(P (j)) ≤ 3
2c(P

(j) ∩O1) ≤ 2c((P (j) ∩O1) \Q) ≤ 6
∑

e∈P (j) c(e)x(e),

where the first inequality follow from the fact that P (j) is O1-heavy and the last inequality
follows from the fact that x(e) ≥ 1/3 for every e ∈ A∪B∪(C∩O2). This proves the lemma. J

I Lemma 19. Let i ∈ Ȳ ∩WL. Then c(P (i)) ≤ 3
∑

e∈P (i) c(e)x(e).

The proof of Lemma 19 is given in the appendix of the full version. We state a short
proof sketch for intuition. Let i ∈ Ȳ ∩WL. Due to the removal of light edges with associated
requests and Assumption A, we know that P (i) either does not intersect with any request or
P (i) is completely covered by a request. In the former case one can show that P (i) is included
in B and hence the lemma holds. In the latter case, P (i) is either included in A and hence
the lemma holds or it is included in C in which case the lemma holds since P (i) is O1-light.

As a consequence, we can now show a first constant factor bound. Because the paths P (i)

for i ∈ Ȳ are pairwise disjoint, Lemmas 17 to 19 imply
∑

i∈Ȳ c(P (i)) ≤ 6c(O2). Plugging
this into Lemma 14 we obtain

c(M2) ≤ c(O2) + 3
∑

i∈Ȳ c(P (i)) ≤ 19c(O2).

Improvement of approximation factor. We can improve the approximation factor from
19 to 10 by a slight modification of the set of edges removed in Stage 2. To this end, note
that the factor for the bound given in Lemma 18 is greater than the one given in Lemma 19.
Indeed, the only reason for the weaker bound is that edges in Ȳ ∩WH can have descendants
with associated requests. Excluding this case improves the factor within the bound of the
lemma from 6 to 3. We formalize this in the following lemma.

I Lemma 20. Let j ∈ Ȳ ∩WH such that ch(j) ∩ Z = ∅. Then c(P (j)) ≤ 3
∑

e∈P (j) c(e)x(e).

We now modify Algorithm 2.2 as follows: Compute the set Z of edges tagged for removal
by Algorithm 2.2. Now construct the set Z ′ by defining

H̄ := {j ∈WH \ Z : ch(j) ∩ Z 6= ∅} and Z ′ := (Z ∪ H̄) \
⋃

j∈H̄ ch(j).
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Now execute step 2 of Algorithm 2.2 with Z ′ instead of Z, i.e., remove the edges with
indices in Z ′ and connect the unmatched vertices by a min-cost matching. It is easy to see
that |Z ′| ≤ |Z| and therefore the recourse factor is still bounded by 2. For analyzing the
approximation factor, we define Y ′ := W \ (Z ′ ∪ {0}) the nodes corresponding to edges that
have not been removed and Ȳ ′ := {i ∈ Y : T [i] \ {0, i} ⊆ Z ′} in analogy to the original
analysis. It is easy to see that ch(j) ∩ Z = ∅ for every j ∈ Ȳ ′ ∩WH = Ȳ \ H̄ and hence
c(P (j)) ≤ 3

∑
e∈P (j) c(e)x(e) by Lemma 20. Furthermore, if i ∈ Ȳ ′ ∩WL then either i ∈ Ȳ

and c(P (i)) ≤ 3
∑

e∈P (i) c(e)x(e) by Lemma 19, or i ∈ ch(j) for some j ∈ Ȳ \ Ȳ ′ = H̄. Note
that Lemmas 9 and 18 imply∑

j∈H̄

∑
i∈ch(j) c(P (i)) ≤ 1

2
∑

j∈H̄ c(P (j)) ≤ 3
∑

j∈H̄

∑
e∈P (j) c(e)x(e).

We thus obtain
∑

i∈Ȳ ′ c(P (i)) ≤ 3c(O2) and hence for the modified algorithm it holds that

c(M2) ≤ c(O2) + 3
∑

i∈Ȳ ′ c(P (i)) ≤ 10c(O2).
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Abstract
We study the minimum weight basis problem on matroid when elements’ weights are uncertain.
For each element we only know a set of possible values (an uncertainty area) that contains its real
weight. In some cases there exist bases that are uniformly optimal, that is, they are minimum weight
bases for every possible weight function obeying the uncertainty areas. In other cases, computing
such a basis is not possible unless we perform some queries for the exact value of some elements.

Our main result is a polynomial time algorithm for the following problem. Given a matroid with
uncertainty areas and a query cost function on its elements, find the set of elements of minimum
total cost that we need to simultaneously query such that, no matter their revelation, the resulting
instance admits a uniformly optimal base. We also provide combinatorial characterizations of all
uniformly optimal bases, when one exists; and of all sets of queries that can be performed so that
after revealing the corresponding weights the resulting instance admits a uniformly optimal base.

2012 ACM Subject Classification Mathematics of computing → Matroids and greedoids

Keywords and phrases Minimum spanning tree, matroids, uncertainty, queries

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.83

Category Track A: Algorithms, Complexity and Games

Related Version A full version of the paper is available at https://arxiv.org/abs/1904.11668.

Funding Work supported by Conicyt via Fondecyt Grant 1181180 and PIA AFB-170001.

1 Introduction

We study fundamental combinatorial optimization problems on weighted structures where
the numerical data is uncertain but it can be queried at a cost. We focus on the problem
of finding a minimum weight base of a matroid under uncertainty, a problem that includes
finding the smallest k elements of a list and the minimum spanning tree (MST) problem.
In our setting, for every element e of the matroid we know a set A(e), called uncertainty
area, of possible values that contains its real weight we. We can reveal this real weight by
paying some query cost ce. We assume that the queries are done in a non-adaptive way, or
equivalently, that all the elements queried reveal their values at the same time. A set of
elements F is a feasible query if for every possible revelation of the weights of F it is possible
to compute a minimum weight base T of the resulting instance. The task of the Minimum
Cost Query Problem on Matroids is to determine a minimum-cost feasible query.
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[0, 2]

[4, 9]

[1, 3]

(a) The empty set is feasible.

[0, 1]

[0, 1]

[0, 1]

(b) Only the full set is feasible.

{0, 1}

{0, 1}

{0, 1}

(c) Any 2-set is feasible.

Figure 1 Feasible queries.

To better illustrate this, consider the problem of computing an MST of a triangle graph
in three possible situations as shown in Figure 1. In the first situation, the edges with areas
[0, 2] and [1, 3] always form an MST, so we don’t need to query any element. In this case
we say that the matroid (the graph) admits a uniformly optimal basis, that is, a basis (a
spanning tree) having minimum weight for every possible realization of the elements’ weights.
In the second situation, all edges have uncertainty area [0, 1] and the only feasible query is
the entire set of edges. For if we only query two edges, we could be in a situation where both
have weight 1/2. With that information we cannot compute an MST: if the unqueried edge
e had weight 0, then e must be in the MST. However, if it had weight 1, then e cannot be in
an MST. In the last situation, all uncertainty areas are finite: they have two elements {0, 1}.
Here, every set of size two is feasible. Indeed, if both elements reveal a weight of 0, then they
form an MST. Otherwise, the set obtained by deleting any edge with weight 1 is an MST.

Paper outline and results

In Section 2 we give formal definitions and show a simple but strong result: the uniformly
optimal bases (UOB) of an uncertainty matroid form the bases of a second matroid. In
Section 3 we extend the classic MST red and blue rules to uncertainty matroids, introducing
the concept of colored elements, and study their properties. We then show that an uncertainty
matroid admits a UOB if and only if all its elements are colored, and use this to give a
combinatorial description of the matroid of uniformly optimal bases. We provide polynomial
time algorithms for testing the existence of a UOB and for finding one if it exists. In Section 4
we study the minimum cost feasible query problem in detail. By using our coloring framework
we construct a partition of the elements into groups that characterize minimal feasible queries.
We show that every minimal feasible query set is formed by taking the first group (denoted
as the core) completely and by deleting exactly one element from each other group. Our
main result is an algorithm to find this partition that we use to fully solve the minimum cost
feasible query problem on matroids. Unlike related work on the MST, the uncertainty areas
in our setting can be arbitrary sets of real numbers, and not just intervals. Our algorithms
only assume access to an independence oracle for the matroid, and a very mild type of access
to the uncertainty areas. At the end of our study we show that the interval uncertainty area
case is special, as there is a unique minimal size feasible query. We also relate the solutions
for the MST with {0, 1}-areas case with the 2-connected components of the graph.

Related Work

Traditional research in optimization with uncertain data mostly focuses on finding solutions
whose value is good, either in the worst case (robust optimization) or in some probabilistic
sense (stochastic optimization), without gaining new information about the uncertain data.
Our problem contributes to the query model setting, a different approach that has gained
some strength in the last years. In this model one assumes that the algorithm can learn the
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exact value of an uncertain input data by paying some query cost in order to solve a certain
problem P (e.g., determining the MST of a graph). The aim is to minimize the cost of the
queries while guaranteeing that an exact/approximate solution can be computed. Work in
this area (see [3] for a survey) falls into three main categories:

Adaptive online. In this setting, the algorithm can query elements one by one, using the
information revealed until a certain step to guide the decision of the next element to query.
Even though algorithms for this version can be analyzed with a traditional worst-case approach
(e.g., minimizing the depth of the decision tree associated to the algorithm’s strategy), most
of the work in this setting prefers to measure performance in terms of competitive analysis,
comparing the number of queries an algorithm makes with the minimum number of queries
that an adversary algorithm (that knows the real values beforehand) would make in order to
verify that an answer is correct. Probably the first one to consider this model is Kahan [9]
who provide optimal online algorithms to compute all the elements achieving the maximum,
median and minimum gap of a list of closed intervals. Feder et al. [7] devise optimal online
competitive algorithms to determine the numerical value of the median, and more generally,
the K-th top element of the list within some prescribed tolerance. Bruce et al. [1] introduce a
general method, called the witness algorithm, for adaptive online problems with open intervals
and singletons uncertainty areas. They apply this method to geometric problems such as
finding all maximum points in the plane from a family with uncertain coordinates. Erlebach
et al. [5] studied the MST problem under two types of uncertainty, the edge uncertainty
one (which is the same as ours) and the vertex uncertainty setting, in which the graph is
complete, the vertices are points in the plane whose coordinates are uncertain, and the weight
of an edge is the distance between its endpoints. They get 2 and 4 competitive algorithms,
respectively, for both types of uncertainty, under open intervals and singletons areas, which is
optimal for deterministic algorithms. The algorithm for edge uncertainty, denoted as U-RED,
was later extended by Erlebach, Hoffmann and Kammer [4] to the minimum weight base
problem on matroids achieving an optimal 2 competitive algorithm. Megow, Meißner and
Skutella [13] show that by using randomization one can do better, lowering the competitive
ratio down to 1 + 1/

√
2. They also studied the non-uniform cost case. Gupta et al. [8]

studied variants where queries return refined estimates of the areas, instead of a single value.

Verification. The verification problem is the one the offline adversary of the previous setting
has to solve. That is, given both the uncertainty areas and a family of assumed real values,
to determine the minimum number of queries one has to make so that, if the values obtained
from the queries and the assumed values coincide, then no more queries are needed in order
to obtain an optimal solution. Charalambous and Hoffman [2] show that the verification
problem for maximal points in the plane is NP-hard for uncertainty areas of size at most 2.
Erlebach and Hoffmann [3] show that the verification problem of MST with (open interval
and singleton) uncertainty in the edges is in P, while that for vertex uncertainty is NP-hard.

Non-adaptive online. This setting encompasses our work and is sometimes called the offline
problem. In it, an algorithm must determine a set F of queries to perform simultaneously,
in order to have enough information to solve the problem. The only conceptual difference
between the non-adaptive online problem and the verification one, is that in the latter, the
algorithm can make use of the real values of the elements to guide the decision of which
queries to perform, while in the former, that information is not available. Feder et al. [7]
provide optimal algorithms for finding the K-th top element of a list up to additive tolerance.
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Later, Feder et al. [6] consider the problem of finding the shortest s-t path on a DAG with
closed-intervals uncertainty on the edges. They show that determining the length of the
shortest s-t path within a given additive error is neither in NP nor in co-NP unless NP=co-NP,
and provide exact algorithms for some special cases. To the best of our knowledge, the MST
and, more generally, the matroid case have not been considered before this work.

Further related work. A common approach to deal with closed-interval uncertainty for
a problem, without querying extra information, is to find a solution that minimizes the
maximal regret, that is, the difference between the (real) weight of the chosen solution and
the weight of the best solution that could have been picked had the true weights been known.
Zero maximal regret bases and uniformly optimal bases of a matroid coincide. In the context
of the MST problem, Yaman et al. [16] characterize trees with zero regret when they exists.
In [10], Kaspersky and Zielinsky give a 2-approximation algorithm for the minmax regret
problem on general matroids with interval data, and in [11] they give algorithms to find zero
maximal regret bases. It is worth noting that all these results assume interval areas on the
elements, while we allow for arbitrary uncertainty areas.

2 Preliminaries – Uniformly Optimal Bases

We assume familiarity with basic concepts in matroid theory such as bases, independent sets,
span, circuit, cocircuits and duality, contraction, deletion and matroid connectivity. For an
introduction and specific results, we refer to Oxley’s book [14]. However, most of this paper
can be understood by having the graphic matroid of a connected graph in mind. This is a
matroid whose elements are the edges. The bases, independent sets, circuits and cocircuits,
are the spanning trees, forests, cycles and minimal edge cut-sets, respectively. An element e

is in the span (cospan) of a set F if there is a circuit (cocircuit) in F ∪ {e} containing e. We
also use the standard notation X + e and X − e to denote X ∪ {e} and X \ {e}.

I Definition 1 (Uncertainty Matroid). An uncertainty matroid is a pair (M,A) where
M = (E, I) is a matroid and A : E → 2R \ {∅} is a function mapping each element e ∈ E in
the ground set to a nonempty set A(e) of real numbers denoted the uncertainty area of e. We
denote inf A(e) by Le and supA(e) by Ue.

If A(e) is a singleton, we say that the element e is certain, otherwise, we say it is uncertain.
If all the elements are certain, then we can identify A with the associated weight function
w : E → R, such that A(e) = {we} so that (M, w) becomes a weighted matroid.
I Remark 2. For our algorithms, we assume access to matroidM via an independence oracle.
We also need a very mild access to the uncertainty areas. More precisely, we assume that both
Le and Ue are known for every element, and that for every pair of (not necessarily distinct)
elements e and f we can test if (Le, Ue)∩A(f) is empty in constant time. A polynomial time
algorithm will, therefore, only use a polynomial number of calls to the independence oracle
and to the uncertainty areas. Furthermore, for simplicity we will assume that all the infima
and suprema Le and Ue are finite. Otherwise we can apply a suitable strictly increasing
function mapping the reals to a bounded set (such as arctan), and work in its image instead.

Intuitively, an uncertainty matroid models the situation in which we do not know the
actual weight of every element e in the matroid, but we do know a set A(e) containing it.
We can learn the actual weight of e by querying it. In this work we are concerned with
non-adaptive (simultaneous) queries. The new uncertainty area function obtained after
querying a subset of elements will be called a revelation of A. The formal definition is below.



A. I. Merino and J. A. Soto 83:5

I Definition 3 (Revelations and realizations). Let X ⊆ E. A revelation of X in (M,A) is a
function B : E → 2R \ {∅} such that:
(i) ∀e ∈ X, B(e) = {be} ⊆ A(e) is a singleton, and
(ii) ∀e ∈ E \X, B(e) = A(e).

In particular, (M,B) is also an uncertainty matroid. A realization is a revelation of the
entire ground set E. The collection of all revelations of X in (M,A) is denoted by R(X,A).

Suppose we want to compute a minimum weight basis of a matroid, but we only know
uncertainty areas for its elements. In certain situations (e.g., Figure 1 (a)), we can find sets
that are optimal bases for every realization, we call them uniformly optimal bases.

I Definition 4 (Uniformly optimal bases). A set T ⊆ E is a uniformly optimal basis of (M,A)
(or simply, an A-basis) if for every realization w, T is a minimum weight basis (a w-basis).

Recall that a nonempty family of sets form the bases of a matroid if and only if they satisfy
the strong basis exchange axiom. Our first basic result is the following:

I Lemma 5. Let B be the collection of all uniformly optimal bases of (M,A). Suppose
B 6= ∅ and let T1 and T2 be two sets in B. If e is an element in T1 \ T2 then:
(i) e is certain, and
(ii) strong basis exchange holds, i.e., there is an element f in T2\T1 such that both T1−e+f

and T2 − f + e are in B.
In particular, if B 6= ∅, then B is the set of bases of a matroid, that we denote by mat(M,A)

Proof. Let e ∈ T1 \ T2. By strong basis exchange ofM, there is an element f ∈ T2 \ T1 such
that both T1 − e + f and T2 + e− f are bases ofM. Assume first by contradiction that e

is uncertain, then there is a realization w ∈ R(E,A) such that we 6= wf . If we > wf then
w(T1 − e + f) < w(T1) contradicting the fact that T1 is uniformly optimal. On the other
hand, if we < wf then w(T2 + e− f) < w(T2) contradicting that T2 is uniformly optimal. We
conclude not only that e is certain, but also that in every realization wf = we. In particular,
for every realization w, w(T1− e + f) = w(T1) = w(T2) = w(T2− f + e), i.e. both T1− e + f

and T2 − f + e are uniformly optimal bases. J

3 Blue and red rules for uncertainty matroids

By Lemma 5, we conclude that if an uncertain element e is in some uniformly optimal
basis then it is in every uniformly optimal basis. Our next task is to characterize the set of
uncertain elements that are in every uniformly optimal basis. Now it is useful to remember
the classic blue and red rules for computing an MST. An edge of a weighted graph is called
blue if it is in at least one MST, and it is called red if it is outside at least one MST. Virtually
every algorithm for the MST work in steps: if it detects a red edge from the current graph,
it deletes it from the graph, and if it detects a blue edge then it adds it to the solution and
contracts it. The following definitions extend the coloring notion to uncertainty matroids.

I Definition 6 (Blue and red elements). An element e ∈ E is blue (resp. red) if for every
realization w ∈ R(E,A) there exists a w-basis T such that e ∈ T (resp. e /∈ T ). We say that
e is colored if e is red or blue (or both at the same time), otherwise we say that e is uncolored.

Note that e is blue (resp. red) on (M,A) if and only if e is blue (resp. red) on (M, w)
for every realization w ∈ R(E,A). Standard matroid arguments show that for any such w, if
an element e is any heaviest element of a circuit, then it avoids some w-basis (i.e., it is red
on (M, w)), and if it is the unique heaviest element, then it cannot be in a w-basis (i.e., it is
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not blue on (M, w)). Blue elements in graphs / matroids with interval uncertainty areas
have been studied before under the name of strong edges [16] or necessarily optimal elements
[11]. We start with a basic result on colored elements, they are preserved under revelations.

I Lemma 7. Let X ⊆ E and B ∈ R(X,A). If e is blue (resp. red) in (M,A), then it is
blue (resp. red) in (M,B).

Proof. Suppose e is blue in (M,A) and consider any w ∈ R(E,B). Since R(E,B) ⊆ R(E,A)
we get that there exists some w-basis T such that e ∈ T , implying that e is blue in (M,B).
The proof works analogously if e is red in (M,A). J

We can characterize blue and red elements of an uncertainty matroid using its span
and cospan functions2 of a set X in the matroidM (resp., in the dual matroidM∗). The
span and cospan of a set can be computed using a polynomial number of calls to the
independence oracle.

I Lemma 8. Let F (e) = {f ∈ E − e : Lf < Ue} and F ∗(e) = {f ∈ E − e : Le < Uf} .
(i) e ∈ E is blue if and only if e /∈ span F (e).
(ii) e ∈ E is red if and only if e /∈ cospan F ∗(e).

In particular, we can test in polynomial time if any element is blue, red, both or none.

I Remark 9. Proofs involving blue and red elements follow the same main ideas. Most of
the time we only consider the blue case, since the red case follows by duality arguments.
More precisely, consider the dual matroid M∗ with inverted uncertainty area function
−A(e) = {−x : x ∈ A(e)}. Since the bases ofM∗ are complements of the bases ofM we also
get that the uniformly optimal bases of (M,A) are the complements of those in (M∗,−A),
that the red elements in (M,A) are the blue elements of (M∗,−A) and vice versa.

Proof of Lemma 8. We only prove (i), since (ii) follows by duality arguments using that
F ∗(e) is the analogue of F (e) for (M∗,−A).

Let e be a blue element and let K = min
f∈F (e)

(Ue − Lf ) > 0. For each f ∈ E − e choose

εf ∈ [0, K/2) such that Lf + εf ∈ A(f). In a similar way, choose εe ∈ [0, K/2) such that

Ue − εe ∈ A(e). Consider the realization w ∈ R(E,A) given by wf =
{

Ue − εe if f = e,
Lf + εf if f 6= e.

By construction, for every f ∈ F (e), wf < we. Suppose now that e ∈ span F (e). Then,
there exists a circuit C ⊆ F (e) + e such that e is the unique heaviest (with respect to w)
element of C. This implies that e is outside every w-basis, which contradicts that e was blue.

Now let e be an element outside span F (e) and suppose that e is not blue. Then, there
exists a realization w ∈ R(E,A) such that e is not in any w-basis. Choose T to be any
w-basis and let C be the fundamental circuit3 of T + e. As e /∈ span F (e) we have that
C − e 6⊆ F (e). Select any f ∈ (C − e) \ F (e), then: wf ≥ Lf ≥ Ue ≥ we. We conclude that
T − f + e is a w-basis that contains e, which is a contradiction. J

Even though certain elements can be blue and red at the same time (e.g., in a circuit in
which every element has the same weight every element has both colors), this is not possible
for uncertain ones as shown by the next lemma whose proof is deferred to the full version.

2 We recall that span(X) for X ⊆ E is the unique maximal set U ⊇ X with the same rank as X and
cospan(X) is its span in the dual matroid. The span and cospan of a set in a matroid are related by
the expression cospan(X) = X ∪ {e ∈ E : e /∈ span[(E − e) \X]}

3 Recall that if T is a basis and e an element, the fundamental circuit C of T + e is the only circuit of
T + e. For any f ∈ C, T − f + e is a basis.
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I Lemma 10. If e is red and blue, then e is certain.

The definition of blue and red will be useful even if e is certain, or if the uncertainty
matroid has no uniformly optimal basis. The following lemma, whose proof is in the full
version, highlights the utility of this definition.

I Lemma 11. Let (M,A) be an uncertainty matroid such that an A-basis exists.
(i) If e is blue (resp. red) then there exists an A-basis T such that e ∈ T (resp. e 6∈ T ).
(ii) Let e be an uncertain element. Then e is blue (resp. red) if and only if e is inside (resp.

outside) every A-basis.

The previous lemma shows that if the set of uniformly optimal bases is nonempty then
all uncertain elements are colored either red or blue. Furthermore the uncertain elements
contained in every A-basis are exactly the blue uncertain elements. The next theorem, which
is the main result of this section, shows that a converse also holds.

I Theorem 12. An A-basis exists if and only if every uncertain element is colored.

In order to prove this theorem we need the following simple lemmas, whose proofs are
deferred to the full version. Basically, they show that contracting blue elements and/or
deleting red elements preserves structure and colors.

I Lemma 13. Let e ∈ E be a colored element (certain or uncertain).
(i) If e is blue: T is an (M/e,A|E−e)-basis if and only if T + e is an (M,A)-basis.
(ii) If e is red: T is an (M\ e,A|E−e)-basis if and only if T is an (M,A)-basis.

I Lemma 14. Let e ∈ E be a colored uncertain element, and f ∈ E − e.
(i) Suppose e is blue. If f is blue (resp. red) in (M,A), then f is blue (resp. red) in

(M/e,A|E−e).
(ii) Suppose e is red. If f is blue (resp. red) in (M,A), then f is blue (resp. red) in

(M\ e,A|E−e).

Proof of Theorem 12. We only need to prove the converse and we proceed by induction
on the number of uncertain elements k. If k = 0 an A-basis is simply a basis of minimum
weight, which clearly exists. Suppose that k > 0, and let e ∈ E be any uncertain element.
If e is blue, we have that every uncertain element of E − e is colored in (M/e,A|E−e), as
colors were preserved. By inductive hypothesis, we have an (M/e,A|E−e)-basis T and by
Lemma 13 we have that T + e is an (M,A)-basis. If e is red, one can proceed similarly but
deleting instead. J

I Remark 15. The previous theorem gives an algorithmic way to test if (M,A) admits an
A-basis: we simply check if every element is colored, using Lemma 8. Let us now consider the
problem of finding one such base. It is worth noting that algorithms for this task are available
for closed interval and open interval uncertainty areas. For closed interval uncertainty areas,
one can find an A-basis by using Kaspersky and Zielinsky’s approach [10] for finding a zero
maximal regret basis. For open intervals (or singletons), one can simply run the 2-competitive
U-RED algorithm by Erlebach, Hoffmann and Kammer [4] for the online adaptive variant:
if this algorithm does not perform any query, then it outputs a uniformly optimal basis.
Otherwise, the algorithm finds a witness set, i.e., a set for which at least one element must
be queried in order to find a solution. In what follows we provide a new algorithm that finds
A-bases for arbitrary uncertainty areas (not just intervals).
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If uniformly optimal bases exist, then the elements are partitioned into blue uncertain,
red uncertain and certain elements. After contraction of the set B of all blue uncertain
elements and deletion of the set R of all red uncertain elements, we are left with a matroid
that only has certain elements, we call such weighted matroid the certain weighted matroid
(Mc, wc), where Mc = M/B \ R, and wc = A|E\(R∪B). The following theorem shows
that every uniformly optimal basis arises by extending some optimal basis on the certain
weighted matroid.

I Theorem 16. Let (M,A) be an uncertainty matroid for which an A-basis exists and
(Mc, wc) its certain weighted matroid. Then T is an A-basis if and only if:
(i) T contains every blue uncertain element,
(ii) T avoids each red uncertain element, and
(iii) The certain elements of T form a minimum weight basis of (Mc, wc).

Proof. A-bases always contain every blue uncertain element and avoid each red uncertain
element by Lemma 11. By Lemma 14, we can delete each red uncertain element while
preserving colors. More so, from Lemma 13 we conclude that T is uniformly optimal after
these deletions. A similar argument allows us to now contract each blue uncertain element
while preserving colors in each contraction. We are only left with the certain elements of T

and by Lemma 13 we conclude they form a minimum weight basis of (Mc, wc).
We show the converse by induction on the number of uncertain elements k of E. If k = 0,

using (iii) we get that T is a minimum weight basis of (Mc, wc). Noting thatM =Mc and
A = wc we conclude that T is an (M,A)-basis.

If k > 0 select any uncertain element e ∈ E. If e is blue, we have from (i) that e ∈ T . As
colors are preserved when contracting e, it follows by inductive hypothesis that T − e is an
(M/e,A|E−e)-basis, and using Lemma 13 we conclude that T is an (M,A)-basis. If e is red,
then e /∈ T by (ii). We now proceed as before but deleting e instead. J

Theorems 12 and 16 allow for algorithmic implementation. We can decide if an A-basis
exists by checking if all elements are colored. If every element is colored, we contract every
blue uncertain element, delete each red uncertain element, compute a minimum weight basis
of the certain weighted matroid and output the optimal certain basis along with every blue
uncertain element. We summarize this result and discuss it in more detail in the full version.
We also use the previous theorem to characterize the matroid mat(M,A).

I Corollary 17. There is an algorithm that finds an A-basis or decides that none exists in
polynomial time.

I Corollary 18. If (M,A) admits an A-basis, then the matroid mat(M,A) of all A-bases is
a sum of minors ofM. In particular, ifM belongs to some minor closed class of matroids
(e.g., graphic, linear, gammoid) then so does mat(M,A).

4 Feasible Queries

I Definition 19. A set F ⊆ E is a feasible query (or simply feasible) if no matter its
revelation it guarantees the existence of a uniformly optimal basis. That is, ∀B ∈ R(F,A)
there exists some B-basis.

Any superset of a feasible query is also feasible. Using this, one can show that feasible
sets for a given uncertainty area function are also feasible for any revelation of a subset.
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I Lemma 20. Let F ⊆ E be feasible in (M,A) and X ⊆ E. If B ∈ R(X,A), then F is
feasible for (M,B).

Proof. Since F is feasible in (M,A), so is X ∪ F . Consider any revelation B′ ∈ R(X,B).
Since B′ ∈ R(X ∪ F,A) and X ∪ F is feasible, we conclude that there exists a B′-basis. J

Since revealing elements that are certain does not yield extra information, we also get
that all minimal (for inclusion) queries only contain uncertain elements. A simple, yet strong
result is that it never pays off to query a colored element. Due to space consideration, we
defer the proof of the next lemma to the full version.

I Lemma 21. Let X ⊆ E a feasible query. If e ∈ X is colored, then X − e is a feasible
query. In particular, if X is a feasible query minimal for inclusion then X consists only of
uncertain uncolored elements.

An exciting application of this lemma is that the set of all uncolored uncertain elements
is always a feasible query set. To see this, start with all the uncertain elements (which are a
feasible query) and repeatedly remove colored elements while applying Lemma 21.

By Theorem 12, a set F is feasible only if after its revelation all uncertain elements are
colored. So, consider any uncertain element e before any revelation. Intuitively, its color
depends on the possible relative position between its real weight we and the real weight of
elements that could potentially span it (or cospan it). In particular, it is not hard too see
that the color of e is unaffected if we reveal an element f whose uncertainty area is too
low (say Uf ≤ Le), because the real value of f will be in every case at most that of e. A
similar situation happens if the uncertainty area is too high (say Ue ≤ Lf ). A complicated
thing occurs if A(f) intersects (Le, Ue), because after revealing f we may still don’t know
the relative positions of we and wf until we reveal e. Finally, if f is in none of the previous
situation, then after revealing it we will know for sure the relative position of we, wf even
without revealing e. The previous discussion motivates the following definitions.

I Definition 22. For each e ∈ E define the sets low(e), mid(e), high(e) and both(e) by:

low(e) = {f ∈ E − e : Uf ≤ Le}, high(e) = {f ∈ E − e : Ue ≤ Lf},
mid(e) = {f ∈ E − e : A(f) ∩ (Le, Ue) 6= ∅},

both(e) = {f ∈ E \ mid(e)− e : A(f) ∩ (−∞, Le] 6= ∅ ∧ A(f) ∩ [Ue,∞) 6= ∅}.

Note that that for e ∈ E, F (e) = (E − e) \ high(e) and F ∗(e) = (E − e) \ low(e).
Furthermore if e is uncertain (i.e., Le < Ue) then E − e is partitioned into the sets
low(e), high(e), mid(e) and both(e).

I Definition 23. For each e ∈ E denoteM/low(e) \ high(e) byM′e

I Remark 24. In this section we talk about different revelations simultaneously (for instance,
A and B). We differentiate the objects that arise this way by using superscript denoting
these dependencies. For example FA(e) denotes F (e) with respect to the areas given by A.

The next technical lemma formalizes the idea that the elements that influence the color
of an uncertain element e are those in mid(e) and those in both(e) that are not queried.

I Lemma 25. Let X ⊆ E and B ∈ R(E \X,A) a revelation of its complement. If e ∈ X

is uncertain and uncolored in B, then there exists a circuit C in M′e such that e ∈ C and
(C − e) ∩ [midA(e) ∪ (X ∩ bothA(e))] 6= ∅.
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Proof. Consider the revelation B̃ ∈ R(both(e) \X,A) such that B̃(f) = B(f)(= {Bf}) if
f ∈ both(e) \X and B̃(f) = A(f) otherwise and note that B ∈ R(E \X, B̃). By Lemma
7, since e is uncolored in (M,B), we get that e is also uncolored in (M, B̃). Define the
auxiliary sets Y = {f ∈ bothA(e) \X : Bf ≤ Le} and Y = {f ∈ bothA(e) \X : Bf > Le}.
Note that lowB̃(e) = lowA(e) ∪ Y ; highB̃(e) = highA(e) ∪ Y ; midB̃(e) = midA(e); and
bothB̃(e) = X ∩ bothA(e). Since e is uncertain and it is not blue nor red in (M, B̃) we get:
e ∈ span[lowB̃(e)∪midB̃(e)∪bothB̃(e)] = span[lowA(e)∪midA(e)∪Y ∪(X∩bothA(e))], and
e ∈ cospan[highB̃(e)∪midB̃(e)∪bothB̃(e)] = cospan[highA(e)∪midA(e)∪Y ∪(X∩bothA(e))].
Using that e ∈ cospan[Q] implies e /∈ span[(E − e) \Q] for any Q ⊆ E, we conclude:

e ∈ span[lowA(e) ∪ midA(e) ∪ Y ∪ (X ∩ bothA(e))] \ span[lowA(e) ∪ Y ]. (1)

From (1), e ∈ span[lowA(e)∪midA(e)∪Y ∪(X∩bothA(e))]\lowA(e) = spanM ′
e
[midA(e)∪

Y ∪ (X ∩ bothA(e))], where the equality follows from properties of contraction and deletion.
Therefore there is a circuit C inM′e such that e ∈ C and C−e ⊆ midA(e)∪Y ∪X∩bothA(e).
If (C − e) ∩ [midA(e) ∪ (X ∩ bothA(e))] = ∅ , we would have that C − e ⊆ Y , implying that
e ∈ spanM′

e
Y = span[lowA(e) ∪ Y ] \ lowA(e) which contradicts (1). J

The previous lemma is useful to characterize the sets that intersect every feasible set.

I Definition 26. A set X ⊆ E is a witness set if it intersects every feasible set.

Witness sets have been studied before in the context of online adaptive algorithms for
MST and matroids. Since the definition of feasible is slightly different in that settings (they
are feasible for the verification problem, in which one knows the real values a priori), these
witness sets are also different from ours.

I Lemma 27. Let X ⊆ E. The following statements are equivalent:
(i) X is a witness set.
(ii) There exists an uncertain element e ∈ X and a circuit C inM′e such that e ∈ C and

C ∩ [mid(e) ∪ (X ∩ both(e))] 6= ∅.

Proof. Let X be a witness set. Since E \X isn’t feasible there is a revelation B ∈ R(E \X,A)
such that there is no (M,B)-basis and by Theorem 12 we must have an element e that is
uncertain and uncolored in (M,B). Note that e ∈ X as every element in E \X is certain in
(M,B). We conclude by using Lemma 25 on e.

For the converse, set Y = [both(e) \ X] ∩ C, Y = [both(e) \ X] \ C and note that
e ∈ spanM′

e
(C − e) = spanM′

e
[(C ∩ mid(e)) ∪ (C ∩ (both(e) \X)) ∪ (C ∩ both(e) ∩X)] ⊆

spanM′
e
[mid(e) ∪ Y ∪ (X ∩ both(e))].

If e ∈ spanM′
e
(Y ) there would be a circuit D inM′e such that D− e ⊆ Y ⊆ C, but since

C ∩ [mid(e) ∪ (X ∩ both(e))] 6= ∅ we get D ( C which contradicts the minimality of C as
circuit. Then, e ∈ spanM′

e
[mid(e) ∪ Y ∪ (X ∩ both(e))] \ spanM′

e
Y , which is included in

span[low(e) ∪ mid(e) ∪ Y ∪ (X ∩ both(e))] \ span[low(e) ∪ Y ].
As e /∈ high(e)∪ mid(e)∪Y ∪ (X ∩ both(e)) we conclude that e ∈ span[low(e)∪ mid(e)∪

Y ∪ (X ∩ both(e))] and e ∈ cospan[high(e) ∪ mid(e) ∪ Y ∪ (X ∩ both(e))].
Choose two revelations w+, w− ∈ R(E,A) as follows:

w+
f ∈



(Le, Ue) ∩ A(f) if f ∈ mid(e),
(−∞, Le] ∩ A(f) if f ∈ Y or

f ∈ X ∩ both(e),
[Ue,∞) ∩ A(f) if f ∈ Y ,

A(e) ∩ (Le, Ue] if f = e.

w−
f ∈


[Ue,∞) ∩ A(f) if f ∈ X ∩ both(e),
A(e) ∩ [Le, Ue) if f = e,

{w+
f } otherwise.
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Note that w+ and w− only differ on X ∩ both(e) and e. As e ∈ span[low(e) ∪ mid(e) ∪
Y ∪ (X ∩ both(e))] it is the unique heaviest element in a circuit in (M, w+), therefore it
is in no (M, w+)-basis. Similarly, since e ∈ cospan[high(e) ∪ mid(e) ∪ Y ∪ (X ∩ both(e))]
it is the unique lightest element in a cocircuit in (M, w−), hence it is in every (M, w−)-
basis. To conclude suppose that there is a feasible query set F such that X ∩ F = ∅,
we then pick the revelation B ∈ R(F,A) such that B(f) = {w+

f } = {w−f } if f ∈ F , and
B(f) = A(f) otherwise.

Select any B-basis T . As w+, w− ∈ R(E,B), T is both a w+-basis and a w−-basis. By
the previous paragraph, this implies that e 6∈ T and e ∈ T which is a contradiction. J

I Lemma 28.The minimal feasible queries are the sets intersecting every witness set.

Proof. Recall that a clutter is a family of sets such that no one is contained in another. The
blocker of a clutter is the clutter of all minimal sets that intersect the first one. Thus, the
minimal witness sets are the blocker of the minimal feasible queries. A basic result in packing
and covering theory (see e.g., [15, Theorem 77.1]) states that the blocker of the blocker of a
clutter is again the original clutter. The lemma follows from this fact. J

As we see below, minimal witness sets cannot be large: they can have at most 2 elements.

I Corollary 29. Let X be a witness set such that |X| ≥ 2. Then, there exists distinct e, f ∈ X

such that {e, f} is a witness set.

Proof. If X ∩ F 6= ∅ for every feasible query set F then, by Lemma 27, there exists an
uncertain e ∈ X, a circuit C inM′e such that e ∈ C and C ∩ [mid(e) ∪ (X ∩ both(e))] 6= ∅.

If C∩ (X ∩both(e)) = ∅, then C∩mid(e) 6= ∅ and by Lemma 27 we have that {e}∩F 6= ∅
for every F feasible query set. Picking any f ∈ X − e we conclude that {e, f} ∩ F 6= ∅ for
every feasible query set F . If C ∩ (X ∩ both(e)) 6= ∅, select any g ∈ C ∩ (X ∩ both(e)). Once
again, Lemma 27 lets us conclude that {e, g} ∩ F 6= ∅ for every F feasible query set. J

I Definition 30. Let core = {e ∈ E : {e} is a witness set} and core = E \ core. Define
the graph Gwit = (core, Ewit) where ef ∈ Ewit if {e, f} is a witness set.

By Lemma 28, minimal feasible sets are exactly those sets containing all elements in core
together with a vertex cover of Gwit. The following clean characterization of core follows
directly from Lemma 27.

I Lemma 31. Let e be an uncertain element. e ∈ core if and only if there is a circuit C in
M′e such that e ∈ C and C ∩ mid(e) 6= ∅.

We can turn the previous lemma into an algorithm that computes core. In order to
do this we compute the connected component4 ofM′e that contains e and check if it has
non-empty intersection with mid(e). We compute connected components with an algorithm
due to Krogdhal [12] that takes polynomial time. Therefore, the previous procedure also
takes polynomial time. In what follows we show that Gwit has a very nice structure.

I Lemma 32.
(i) Let e, f ∈ core distinct. ef ∈ Ewit if and only if A(e) = A(f) = {Le, Ue} with Le < Ue

and there is a circuit C ofM′e such that e, f ∈ C.
(ii) The connected components of the graph Gwit are cliques.

4 Recall that e is connected to f in a matroid if and only if there is a circuit that contains e and f . A
connected component is an equivalence class of this equivalence relation (see, eg. [14, Section 4.1]).
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Proof.
(i) Suppose ef ∈ Ewit. Since {e, f} is a witness set, E \ {e, f} is not feasible. Let
B ∈ R(E \ {e, f},A) be a revelation without B-basis. Since f /∈ core, we have that
E − f is feasible in (M,A) and by Lemma 20 it is also feasible in (M,B). If e was
colored in (M,B) then, by Lemma 21 we would conclude that (E − f)− e = E \ {e, f}
is feasible in (M,B). But all elements in E \ {e, f} are already certain in (M,B), from
which we deduce that ∅ is feasible in (M,B), which is a contradiction.
We conclude that e is uncolored in (M,B). From this, we can use Lemma 25 to obtain
a circuit C inM′e such that e ∈ C and C ∩ [midA(e) ∪ ({e, f} ∩ bothA(e))] 6= ∅. Since
e 6∈ core, we have by Lemma 31 that C ∩ mid(e) = ∅. Then C ∩ {e, f} ∩ both(e) 6= ∅,
consequently e, f ∈ C and f ∈ both(e). We can now use the same argument for f ,
concluding that e ∈ both(f). The only way for e ∈ both(f) and f ∈ both(e) to occur
at the same time is that A(e) = A(f) = {Le, Ue}. Finally, since witness sets do not
contain elements that are certain (this follows since minimal feasible sets only have
uncertain elements, hence by removing certain elements from a witness set it would
still intersect every feasible set) we must have Le < Ue.
We now prove the converse. As e is an uncertain element such that there is a circuit C

inM′e and f ∈ C ∩ {e, f} ∩ both(e) by Lemma 27 we conclude that ef ∈ Ewit.
(ii) We only need to show that whenever ef, fg ∈ Ewit we also have eg ∈ Ewit. Suppose

that ef, fg ∈ Ewit. By the previous item we have A(e) = A(f) = A(g) = {Le, Ue}, in
particularM′e =M′f =M′g

.=M′. The previous item also allows us to conclude that
there are two circuits C1, C2 inM′ such that e, f ∈ C1 and f, g ∈ C2. Then e, f and g

are in the same matroid connected component inM′. Therefore there is a circuit C3

inM′ such that e, g ∈ C3 and using the previous item we conclude that eg ∈ Ewit. J

We can test if ef ∈ Ewit similarly to how we computed core: we start by considering
elements with areas of size two (by checking if (Le, Ue) ∩ A(e) = ∅ for every element e). If
e and f have the same two-element uncertainty area, we check if they belong to the same
connected component inM′e =M′f using Krogdhal’s algorithm [12].

I Theorem 33. X ⊆ E is a minimal feasible query if and only if core ⊆ X and X intersects
all but one element in each connected component of Gwit.

Proof. By Lemma 28 and the definition of Gwit the minimal feasible queries X satisfies that
core ⊆ X and X ∩core is a minimal vertex cover of Gwit. Since every connected component
is a clique, the minimal vertex covers of Gwit are exactly those sets containing all but one
element in each connected component. J

I Corollary 34. Let c : E → R be any cost function. We can compute a minimum-cost
feasible query in polynomial time.

Proof. Computing core and Gwit can be done in polynomial time and polynomial number
of calls to the independence oracle ofM or to minors ofM (for example,M′e), since the
oracle of independence of any minor of M can also be implemented using a polynomial
number of calls to the oracle ofM. One can compute a minimum-cost minimal size feasible
query F by simply returning a set containing core and all but the most expensive element
from each connected component of Gwit. If we allow negative costs, then the minimum-cost
feasible query is F together with all the negative cost elements outside F . An efficient
implementation is discussed in the full version of this paper. J

We finish our study with two special cases of the last theorem.
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I Corollary 35. Suppose that A(e) is an interval (of any type: open, closed, semiopen,
trivial) for every element e ∈ E. Then the set S of all uncolored uncertain elements is the
only minimum-size feasible query.

I Corollary 36. Let G be a connected graph such that for every e ∈ E(G), A(e) = {0, 1}. A
set F ⊆ E(G) is a minimal feasible query for the MST problem if and only if F contains all
but one edge from each 2-connected component of G.
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Abstract
We obtain a streamlined proof of an important result by Alekhnovich and Razborov [2], showing that
it is hard to automatize both tree-like and general Resolution. Under a different assumption than
[2], our simplified proof gives improved bounds: we show under ETH that these proof systems are
not automatizable in time nf(n), whenever f(n) = o(log1/7−ε logn) for any ε > 0. Previously non-
automatizability was only known for f(n) = O(1). Our proof also extends fairly straightforwardly
to prove similar hardness results for PCR and Res(r).
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1 Introduction

Proof complexity first and foremost aims to understand, for a given propositional formula τ ,
how long of a proof is needed to verify that τ is unsatisfiable. To understand the expressiveness
of a proof system, we need to understand what formulas can and cannot be efficiently proven
in that system. However, for algorithmic applications where formulas often have fairly short
proofs, what is perhaps more important than knowing the worst-case proof length of a given
τ is actually finding proofs of τ . In particular, even if we’re promised that τ has proofs of
small size, say polynomial in the size of τ , can we hope to find one that’s not too much larger?

This question, of finding optimal proofs in a given system, is known as automatizability,
introduced by Bonet, Pitassi, and Raz [11]. A proof system Q is automatizable if there exists
an algorithm which, given an unsatisfiable formula τ on n variables, returns a Q-refutation of
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τ in time poly(n, |τ |, S) where S := SQ(τ) is the size of the shortest Q-refutation of τ . Twenty
years later no reasonable proof systems are known to be polynomially automatizable, and
little is known even for the more general notion of f -automatizability, where the algorithm
can run in time f(n, |τ |, S).

Understanding the automatizability of various proof systems is a major tool in algorithm
design; two well known examples are SAT solvers, where the best algorithms are highly
optimized version of the Resolution (Res) proof system (see e.g. [32]) and celebrated
algorithmic versions of the Sum-of-Squares (SoS) proof system for approximation [37] and
learning (see e.g. [38] for a survey on recent developments in this very active field of research).
We especially draw attention to the question of automatizing Res. Resolution is a simple and
fairly weak proof system, and yet Res proofs are the objects at the heart of the best known
SAT solvers, with a long line of research connecting Res size to notions such as conflict driven
clause learning and restarts [29, 30, 35, 42]. Automatizing Res is also key to the best known
automated theorem provers for propositional and first order logics [17, 16]. Therefore, the
tractability of finding short Res proofs lies at the heart of understanding the frontiers and
limitations of SAT solving algorithms and automated theorem proving.

Despite the importance of automatizability for Res and other proof systems, our under-
standing of this question is limited at best. In terms of upper bounds, the best automatizing
algorithm for Res runs in slightly subexponential time. In terms of lower bounds, until
recently the main hardness result was the landmark paper of Alekhnovich and Razborov
[2], who prove that under the assumption FPT 6= W[P],1 Res (as well as tree-like Res, de-
noted TreeRes) is not polynomially-automatizable. Using similar ideas, Galesi and Lauria
[20] adapted Alekhnovich and Razborov’s proof in order to obtain the same result for the
Polynomial Calculus (PC) system, an extension of Res which is the proof complexity model
for the Groebner basis algorithm [15].2

For all other well-studied practical systems almost nothing is known. To give a short list
of other well-known proof systems used in algorithm design, we have Cutting Planes (CP),
widely used for optimization algorithms (see e.g. [28]); Sherali-Adams (SA), which underlies a
general family of linear programming algorithms [41]; and the aforementioned Sum-of-Squares
(SoS)-based semi-definite programming algorithms. For these systems we have no extension
of the argument of [2], and therefore no notable lower bounds on automatizability.

1.1 Our Contributions
Our motivation for this work is to adapt the techniques of [2], first to move past polynomial
automatizability lower bounds for Res (and PC), and second to hopefully shed light on
the automatizability of proof systems such as CP, SA, and SoS. The starting point of our
contribution is in switching to the exponential time hypothesis (ETH) as opposed to the
FPT 6= W[P] assumption in [2, 20]. A central limitation in starting from the assumption that
some problem has no FPT algorithm is that FPT algorithms run in time f(k)nO(1), and so
the best lower bound one can get from such an assumption, without a careful analysis of f
and the range of k, is nω(1). In the past decade a line of work by Chen and Lin [14] showed
how to obtain fixed parameter lower bounds beyond f(k)nO(1) for gap versions of NP-hard

1 The original result of [2] uses FPR, a randomized version of FPT, in place of FPT in the assumption.
This was improved to the stated assumption by [19].

2 While the most well-studied and widely used SAT solvers are based on Res, there have been some
implementations that use the Groebner basis algorithm to utilize the more expressive power of PC, see
e.g. [12].
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problems, such as dominating set and hitting set, by starting not from an assumption about
FPT but from ETH. Analyzing these reductions we can derive a hardness result for a fixed
f and k, which allows us to go beyond the nω(1) barrier in [2, 20], albeit starting from the
slightly stronger ETH assumption. We state our main theorem precisely now.

I Theorem 1 (Main Theorem). Let Q ∈ {Res, TreeRes, Nullsatz, PC, PCR}. Assuming ETH
holds Q is not nf -automatizable for any f = o(log1/7−ε logn) (where ε > 0 is any constant).

Equally important as extending the results of [2, 20] is our second goal, namely simplifying
the presentation of the construction and proofs. Moving to the stronger ETH assumption
allows us to change the central formula in a way that, while still using the core machinery
of [2], leads to a conceptually simpler formula and proof. The basis of the formula in [2] is
the monotone minimum circuit satisfying assignment (MMCSA) problem, which takes as
input a poly-size monotone circuit. The natural encoding of their formula as a CNF formula
requires extra variables to represent the internal gates of the monotone circuit, leading to
many technicalities involved in proving a Res width lower bound, namely an indirect and
highly redundant encoding of the circuit. Our proof starts from the hitting set problem,
which is a special case of MMCSA where the circuit is a CNF. Since the formula is already a
CNF, the input can be encoded directly as the formula rather than indirectly having variables
for each of the gates, and as a result the upper and lower bound proofs in our paper are
highly streamlined.

While we do start from a stronger assumption than [2, 20], there are few additional
advantages to our new formula beyond presentation. First, going beyond superpolynomial
hardness for Res allows us to obtain hardness results on the automatizability of Res(r), a
proof system generalizing Res by allowing lines to be disjunctions of size r conjunctions.
Prior to our paper nothing was known for Res(r) for any r ≥ 2, and the formula from [2]
would not be able to go past Res(r) for constant r.

I Theorem 2 (Main Theorem for Res(r)). Let Q = Res(r). Assuming ETH holds then for
any ε > 0, Q is not nf/ exp(r2)-automatizable for any f = o(log

1
7−ε logn) if r ∈ O(

√
log f).

Second, our technique has a direct, and in our view achievable, path to further improve-
ment: if the reduction of [14] were to be improved to allow a lower bound against gap hitting
set for larger parameters, it would immediately translate to a stronger non-automatizability
result. We discuss this idea in detail in Section 6. Third, our results are also immediately
strengthened if, instead of using ETH, one uses a slightly stronger assumption known as the
gap exponential time hypothesis (GapETH), as introduced in [18, 27]. We formally define
GapETH along with ETH in Section 2, but these results require no change in our formula nor
our proofs. As with starting from [14] for our ETH results, the work required to use GapETH
is analyzing a reduction of Chalermsook et al. [13], so we defer the results and analysis to to
the full version of the paper.

1.2 Related Work
Table 1 lists the known results for Res and PC. An early result [1] shows that it is NP-hard
to find proofs whose size is a constant factor of optimal, and this holds for all standard
proof systems.

For stronger proof systems we have more lower bounds, although these bounds still only
rule out polynomial automatizability and require cryptographic assumptions. Krajíček and
Pudlák showed non-automatizability of the Extended Frege system under the hardness of
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Proof system Assumption Result Reference
all systems P 6= NP ω(1) · n [1]
Res, TreeRes W[P] 6= FPT nω(1) [2]
Nullsatz, PC, PCR W[P] 6= FPT nω(1) [20]
Res, TreeRes, Nullsatz, PC, PCR ETH nΩ(log1/7 logn) this work
Res(r) ETH nΩ(log1/7 logn/ exp(r2)) this work

Figure 1 Lower bounds on automatizabillity of weak proof systems.

discrete log [25], with subsequent works proving the same lower bounds for Frege and AC0-
Frege under similar assumptions [10, 11]. Conceptually these more expressive classes should
be harder to automatize because there exist many more short proofs than for say Res, but a
nice upshot of these results is that they hold for a much weaker notion of automatizability,
aptly named weak automatizability. Weak automatizability of a proof system Q only requires
that the automatizing algorithm return a proof of τ in some proof system, so long as it’s
close in length to the shortest Q-proof of τ .3 Clearly hardness of weak automatizability
implies hardness of automatizability, and hardness of weak automatizability is closely related
to feasible interpolation [36], which was the tool used in the results listed above.

Turning to upper bounds, there are a class of width/degree based automatizability
algorithms for Res, PC, SA, and SoS. The width of a Res refutation is the maximal number
of literals appearing in any line of the refutation, and the width of a CNF formula τ ,
denoted w(τ), is the minimum width of any Res refutation refuting τ . It is not hard to
see that exhaustive search allows us to find a Res refutation for τ in time nO(w(τ)) [8]. A
non-trivial fact is that the same upper bound holds for PC (due to the Groebner basis paper
of Clegg, Impagliazzo, and Edmonds [15]), SA [40], and SoS [34, 26], where the degree of the
polynomials appearing in the proofs is used in place of width. These algorithms are known
to be tight for width/degree based automatizability, as there exist tautologies τ with proof
size S(τ) = nΩ(d) for Res, PC, SA, and SoS4 [6].

A groundbreaking work of Ben-Sasson and Wigderson [9] showed that w(τ) ≤ logS(τ)
for the special case of TreeRes and w(τ) ≤

√
n logS(τ) for general Res. Combined with the

nO(w(τ)) upper bound for both systems gives automatizability for TreeRes and Res in time
nO(logS(τ)) and nO(

√
n logS(τ)), respectively. Perhaps even more surprisingly, a result of [15]

gives the same degree/size tradeoff for PC as [9] gave for Res; d(τ) ≤
√
n logS(τ) for the

case of PC, and d(τ) ≤ logS(τ) for a static version of PC called Nullstellensatz (Nullsatz).5
Combining these degree bounds with the degree based algorithms gives automatizability
for Nullsatz and PC in time nO(logS(τ)) and nO(

√
n logS(τ)), respectively. While these upper

bounds are very strong for TreeRes and Nullsatz, for Res and PC they are still weakly
exponential, and the results of [9, 15] are tight. Thus non-width/degree based techniques are
needed to improve these upper bounds.

3 This can be seen as analogous to the two notions of of learning, proper versus nonproper, where the
former is required to produce a hypothesis from the original concept class, whereas the latter may
produce any hypothesis.

4 The degree-automatizability of SoS is not established definitely due to the bit-complexity of the
underlying polynomials, which can be exponential [33].

5 This result of [15] actually preceded [9].
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1.2.1 Recent Developments
In a recent breakthrough paper, Atserias and Müller [4] resolve the automatizability of
(general) Resolution. In particular they show that it is NP-hard to distinguish whether τ has
Res refutations of size n1+ε or none of size 2n1/(2+ε) for any ε > 0, which implies that assuming
ETH, Res is not 2nδ automatizable for any δ < 1

2 . Because of the quasipolynomial upper
bounds on automatizability for the other systems that we study here (tree-like Resolution,
and the Polynomial Calculus) our results as well as [2] are incomparable with [4]. Thus our
results (and technique) are still at the frontier for all other systems discussed.

2 Preliminaries

Let τ = {C1, C2, . . . , Cm} be an unsatisfiable CNF formula over X = {x1 . . . xn}. We denote
by |τ | the size of τ , and likewise for a proof π refuting τ let |π| denote the size of π. For
a proof system Q let S := SQ(τ) be the size of the shortest Q-proof refuting τ . A proof
system Q is said to be f(n, |τ |, S)-automatizable if there exists an algorithm A such that for
every unsatisfiable τ A runs in time f(n, |τ |, S) and outputs a valid Q-proof refuting τ . A
proof system Q′ p-simulates Q if for every Q-proof π refuting τ there is a corresponding
Q′-proof π′ refuting τ such that |π′| = |π|O(1).

A Resolution (Res) refutation of τ is a sequence of clauses π = {D1, D2, . . . , DS} such
that DS = ∅, and each line Di is either some initial clause Cj ∈ τ or is derived from two
previous lines using the resolution rule: from (E ∨ x), (F ∨ x) we derive (E ∨ F ), where
x ∈ X, E and F are clauses, and E ∨ F is their disjunction with repeated literals removed.
We can view a Res proof π as a directed acyclic graph with a unique clause Di at every
vertex, with initial clauses Cj ∈ τ at the leaves, ∅ at the root, and having an edge from Di

to Dj if Di was used to derive Dj . With this view, a TreeRes refutation requires that all
non-leaf vertices of the underlying graph have outdegree 1 (so the underlying graph of any
TreeRes proof is tree-like).

Given a Res or TreeRes refutation π = {D1, D2, . . . , DS}, the size of π is the number of
lines in π, in this case S. The width of a clause Di is the number of literals in it, and the
width of π is the maximum width of a clause in the proof. We denote the width of a clause
Di or proof π by w(Di) and w(π), respectively. Clearly Res can p-simulate TreeRes with
respect to size and width, as every TreeRes-proof is also a Res-proof.

An r-Resolution (Res(r)) refutation6 is similar to a Res refutation, but each line Di is
an r-DNF instead of a clause, and the resolution rule is adapted as follows: from (E ∨
(∨j∈Jxj)), (F ∨ (∧j∈Jxj)) we derive (E ∨ F ), where J ⊆ [n] such that |J | ≤ r, E and F

are r-DNFs, and E ∨ F is their disjunction with repeated conjunctions removed (note that
∨j∈Jxj is a DNF with |J | terms while ∧j∈Jxj is a single term). Note that Res(1) = Res.
The size of a Res(r) proof is the number of r-disjunctions in it. (See [39] for more details.)

An algebraic proof system for refuting CNF τ = {C1 . . . Cm′} over variable set X is a proof
system where each of the clauses Ci is converted into a polynomial equality or inequality
Pi over X, such that any assignment of all xj to {0, 1}n satisfies Ci iff it satisfies Pi. For
this paper the conversion is done is by sending every positive literal xj to (1− xj) and every
negative literal xj to xj , and Pi is satisfied if the product of all converted literals in Ci is
0. For example, the clause Ci = x1 ∨ x2 ∨ x3 is converted to Pi = (1− x1)(x2)(1− x3) = 0.

6 This class is more commonly called k-Resolution, or Res(k), in proof complexity literature, but the
parameter k already plays a central role in our paper.
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In addition, we add the equations x2
j − xj = 0 for all j ≤ n. Let the resulting m = m′ + n

equations corresponding to τ be denoted by P = {P1, . . . , Pm}. Since every Pi is of the form
pi = 0 we use Pi to refer to pi.

The Nullstellensatz (Nullsatz) refutation system [7] is an algebraic proof system that uses
Hilbert’s Nullstellensatz as a certificate of unsatisfiablility. A Nullsatz proof (over a field F) of
τ is a set of polynomials Q1, . . . , Qm such that

∑
i PiQi is the formal polynomial “1”. Note

that this contradicts the statement that there exists an assignment such that Pi = 0 for all i.
The size of a Nullsatz refutation π is the sum over all i ∈ [m] of the number of monomials in
the expansion of the term PiQi, while the degree of the refutation is the maximum degree
deg(PiQi) over all i ∈ [m]. It is known that Nullsatz p-simulates TreeRes.

The Polynomial Calculus (PC) system is a dynamic version of Nullsatz [15], where the
lines of a PC proof π are all polynomials Q1, Q2, . . . , QS . The lines Qi can be any of the
initial polynomial equations P or can be derived from previous lines by the following rules:
(1) from Qi we can derive xjQi or (1 − xj)Qi for any variable xj ; (2) from Qi, Qj we can
derive aQi+ bQj for any a, b ∈ R. As with Nullsatz the final line QS is the formal polynomial
“1”. Similarly to Nullsatz the degree of a PC proof π is the maximal degree of any line Qi, and
the size of π is the total number of monomials in the refutation, where multiple occurrences
of the same monomial are counted for each occurrence. PC trivially p-simulates Nullsatz and
the simulation is degree-preserving.

The PCR system is a simple modification to the PC proof system so that it can p-simulate
Res proofs with respect to size. For PCR, polynomials are allowed to use additional variables
x1, . . . , xn and axioms of the form 1 − xj − xj = 0 for all j ∈ [n]. Furthermore all terms
(1− xj) in the input polynomials in P are replaced by the variables xj . Intuitively although
the variables xj and xj are distinct they stand for the negations of one another, which is
enforced by the new axiom corresponding to xj . It is not hard to see that PCR can now
p-simulate Res with respect to size.

Let S = {S1, . . . , Sn} be a collection of non-empty sets Sj over [n]. A hitting set H ⊆ [n]
is a set of elements such that H ∩ Sj 6= ∅ for all j ∈ [n]. Let γ(S) be the size of the smallest
hitting set for S. The gap hitting set problem is the task of distinguishing, on input (S, k, hk),
the following two cases: (1) γ(S) ≤ k; (2) γ(S) > hk.

I Definition 3. The Exponential Time Hypothesis (ETH) states [23] that for sufficiently large
m and n, no algorithm running in time 2o(n) can decide, for given CNF τ with m clauses
and n variables, whether all m clauses of τ are satisfiable or not. The Gap Exponential
Time Hypothesis (GapETH) states [18, 27] that for sufficiently large m and n, no algorithm
running in time 2o(n) can decide, for given CNF τ with m clauses and n variables and any
constant ε ∈ (0, 1), whether all m clauses of τ are satisfiable or if at most (1− ε)m of the
clauses are satisfiable.

We state the following hardness results for the hitting set problem under ETH, which can
be deduced from a construction by Chen and Lin [14]. The actual lemma we prove is slightly
more technical but actually slightly stronger than the one we state here. A full discussion
and proof of the lemma is included in the full version of the paper7.

I Lemma 4 (ETH-Hardness of Hitting Set). Assuming ETH, for sufficiently large n and
k=O(log1/7−ε logn) no algorithm can solve the gap hitting set problem (S, k, k2) in time no(k).

7 A similar result holds for GapETH, which can be deduced from recent work of Chalermsook et al [13].
See the full version for more details.
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Consider a set A ⊆ {0, 1}m of m-bit strings such that |A| = m. We say that A is
(m, k)-universal if for every subset J ⊆ [m] of up to k distinct positions in [m], the projection
A|J (restricting the strings in A to these positions) contains all possible 2|J| binary strings
of length |J |. Observe that we can take the dual of the set A in the following sense: if
A = {a1, . . . , am}, and let B ⊆ {0, 1}m be the set of all strings bj for j ∈ [m] such that the
ith bit of bj is the jth bit of ai. Another way to think about B is taking the strings of
A to be the columns of an m ×m matrix and letting B be the columns of that matrix’s
transpose. We say A is (m, k)-dual-universal if B is (m, k)-universal. Equivalently A is
(m, k)-dual-universal if for every ordered subset I ⊆ A of up to k distinct strings in A and
for every string s ∈ {0, 1}|I|, there exists some position j ∈ [m] such that s is the string
formed by concatenating the jth bit of all strings in I in order. The existence of efficiently
constructible (m, logm/4)-universal sets is known. It is also known that there exist efficiently
constructible sets that are both (m, logm/4)-universal and (m, logm/4)-dual-universal. For
a concrete example, [2] uses the Paley graph Gm on m vertices 8 For the rest of the paper
we will fix an arbitrary A that is efficiently computable and is both (m, logm/4)-universal
and (m, logm/4)-dual-universal.

3 Main reduction

We first state our main lemma from which Theorem 1 is easily proven.

I Lemma 5. Let Q ∈ {Res, TreeRes, Nullsatz, PC, PCR}. For sufficiently large n and
k = O(log1/3 n), let (S, k, k2) be an instance of the gap hitting set problem over [n]. Then
there exists an unsatisfiable CNF τS which can be computed in time nO(1) such that the
following two properties hold
(i) if γ(S) ≤ k then SQ(τS) ≤ nO(1);
(ii) if γ(S) > k2 then SQ(τS) ≥ nΩ(k).

Proof of Theorem 1. Assuming thatQ is nf automatizable for some f(n) = o(log1/7−ε logn)
for ε > 0, we describe an efficient algorithm for the gap hitting set problem. Given an
instance (S, k, k2) of the gap hitting set problem over [n], with n sufficiently large and
k = O(log1/7−ε logn), we generate the CNF τS , and simulate the automatizing algorithm
on τS for nO(f) timesteps. If the automatizing algorithm outputs a legal Q refutation of
τS within the allotted time, then we output “γ(S) ≤ k” and otherwise output “γ(S) > k2”.
Because f = o(k) the correctness is guaranteed by Lemma 5. Thus we can decide the gap
hitting set problem in time nO(f) = no(k), which by Lemma 4, contradicts ETH. J

The rest of the paper is devoted to the proof of Lemma 5. In this section we give the
reduction τS , and prove the upper and lower bounds needed for the case of Res in Sections 4
and 5. This also gives the upper bound for PC and Res(r); the lower bounds are deferred
to the full paper. We briefly note that the strength of the result in Theorem 1 relies solely
on the largest value we can set k to. We choose k = O(log1/7−ε logn) because this is the
largest value we can use and still get a contradiction with Lemma 4, but for Lemma 5 to
hold we can tolerate up to k = O(log1/3 logn), meaning that if the reduction in [14] were

8 Many examples of universal sets (including the Paley graph construction) are discussed in [24], as well as
[31, 3]. Alternate constructions use properties such as k-wise independent sample spaces and linear codes,
and counting arguments for different parameter regimes exist. Notably the Paley construction fulfills
our four essential properties of being small (of size m), polytime constructible, (m, logm/4)-universal,
and (m, logm/4)-dual-universal.
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improved, a stronger version of Theorem 1 would immediately follow. Likewise, starting from
the GapETH assumption we could use a stronger version of Lemma 4 and immediately get
the stronger result claimed in Section 1 (see the full version of the paper).

Hereafter, fix k = O(log1/7−ε logn) and define m := n1/k. Observe that k logm = logn
and k2 < logm for large enough n. In what follows we will abuse notation and xi, yj will
denote a tuple of Boolean variables (rather than a single Boolean variable). The tuple size of
xi, yj will be clear from context, but generally xi will be a O(logm)-tuple and yj will be a
O(logn)-tuple. Additionally ~x = x1, . . . , xn, ~y = y1, . . . , ym will denote vectors of the tuples
xi and yj . αi and βj will denote a 0/1 assignment to the tuples xi and yj respectively, and
~α, ~β will each denote a 0/1 assignment to the vector of tuples ~x, ~y respectively.

3.1 The Formula ψS

Given a hitting set instance S we will define an unsatisfiable formula ψS . Recall that A
is a set of m-bit strings such that |A| = m and A is both (m, (logm)/4)-universal and
(m, (logm)/4)-dual-universal. We also define the characteristic vector of a set S ⊆ [n] to be
the binary vector s ∈ {0, 1}n such that si = 0 for all i /∈ S and si = 1 for all i ∈ S.

The formula ψS will have variables ~x and ~y that will respectively encode n-by-m matrices
M and N . The variables of ~x will define M such that each of the n rows of M is some
vector in A, and the variables ~y will define N such that each of the m columns of N is the
characteristic vector for some set S from the hitting set instance S. In particular, xi will
indicate a vector in A to serve as the ith row of M , while yj will indicate a set in S whose
characteristic vector will serve as the jth column of N , with each xi and yj being chosen
separately. For the remainder of the section, we restrict our attention to matrices M and N
defined this way. We say that M and N intersect if M [i, j] = N [i, j] = 1 for some pair (i, j).
ψS will be defined so that it is falsified whenever M and N intersect and satisfied otherwise.

Notice that when some column of M is the characteristic vector of a hitting set, ψS is
falsified because there is no way to pick the corresponding column in N so that the two
columns do not intersect. Conversely, if none of the columns in M represent a hitting set,
then there is always a way to pick N so that ψS is satisfied (for each column we simply pick
the set that was not hit). Therefore proving that ψS is unsatisfiable boils down to proving
that for any choice of M , some column of M represents a hitting set.

B Claim 6. ψS is unsatisfiable when γ(S) ≤ logm
4 .

Proof sketch. Let H be any hitting set of size at most logm
4 , which we interpret of as a set

of row indices into M . By the (m, (logm)/4)-dual-universality of A, any set I of at most
(logm)/4 strings from A has a location such that all the strings in I contain a 1 at that
location.9 Since rows of M are strings in A, taking I = H there must exist a column j∗ such
that M [i, j∗] = 1 for every i ∈ H. Because H is a hitting set and the jth column of N is the
indicator vector of a set S ∈ S, there must be some i∗ ∈ H such that N [i∗, j∗] = 1, and so
M and N intersect at (i∗, j∗). C

Next, we define the formula more formally. The variables of ψS are ~x = {xi | i ∈ [n]}
where xi is a tuple of logm boolean variables, and ~y = {yj | j ∈ [m]} where yj is a tuple
of logn boolean variables. Given an assignment ~α = {αi | i ∈ [n]} to the ~x-variables, ~α

9 We do not require that the rows of M are distinct rows of A, but because we are only looking for a
location with a 1 for every row this does not pose an issue. In fact we only ever use the universal and
dual universal properties to search for a location with either all 0 or all 1, where repetition doesn’t
break the universal properties we need.
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encodes an n-by-m matrix M~α where the i-th row of M~α equals aαi ∈ A (interpreting αi
as an index in [m]). Similarly given an assignment ~β = {βj | j ∈ [m]} to the ~y-variables, ~β
encodes an n-by-m matrix N~β , where column j is the characteristic vector of the set Sβj ∈ S
(interpreting βj as an index in [n]). We will sometimes write M~α[i, j] as Mαi [i, j] to stress
that the ith row of M~α is determined by αi. Similarly, we will sometimes write N~β [i, j]
as Nβj [i, j].

Lastly, we formally define the clauses in ψS so that it is falsified whenever M~α and N~β

intersect and satisfied otherwise.

I Definition 7. For every i ∈ [n] and j ∈ [m], and for every pair of values αi ∈ {0, 1}logm,
βj ∈ {0, 1}logn such that Mαi [i, j] = 1 and Nβj [i, j] = 1, we have the clause xαii ∧ y

βj
j where

xαii = ∧t∈[n](xi)
(αi)t
t is the conjunction of all variables in xi, each of which occurs positively

when the corresponding bit of αi is 1 and negatively when the corresponding bit of αi is 0
(we define yβjj in the same way). This axiom is falsified iff xi is assigned value αi and yj is
assigned value βj.

This formula has the property we want because if M~α and N~β intersect at some location

i, j, then the axiom xαii ∧ y
βj
j exists in ψS and would be falsified. Conversely, if ψS is falsified,

then some axiom xαii ∧ y
βj
j is falsified, which means M~α[i, j] = N~β [i, j] = 1.

It is easy to check that the number of variables in ψS is n logm+m logn. The number
of clauses is at most n2m2, since for each i ∈ [n] and j ∈ [m], each of the mn possible
assignments to (xi, yj) adds at most one clause to ψS .

3.2 Redundantly Encoding ψS

In order to prove our result we will need a way of proving both upper and lower bounds
on SQ(ψS), but it turns out that the lower bounds are difficult to prove if we use ψS as is.
Thus, we will employ a standard trick in proof complexity, which is to redundantly encode
the variables in the formula; more specifically we follow [2] and redundantly code blocks of
variables, namely each row and column, using error-correcting codes. It is interesting to
note that for our formulas, we are unable to prove even width lower bounds without the
redundant encoding. In contrast, most proof complexity applications use this trick solely for
the purpose of reducing size lower bounds to width lower bounds.

I Definition 8. For q, r, s ∈ N, a (q, r, s)-code is a total function f from {0, 1}q to {0, 1}r
with the property that for any ρ ∈ {0, 1, ∗}q such that ρ fixes at most s values to {0, 1}, f |ρ
is surjective on {0, 1}r. Efficiently computable constructions using linear codes are known
for any r, q = 6r, s = 2r (see e.g. [2]). We say that f is r-surjective.

Let fx : {0, 1}6 logm → [m] be a (6 logm, logm, 2 logm)-code and let fy : {0, 1}6 logn → [n]
be a (6 logn, logn, 2 logn)-code. We will have a vector xi ∈ {0, 1}6 logm for each i ∈ [n] and
a vector yj ∈ {0, 1}6 logn for each j ∈ [m]. Given an assignment ~α to all of the ~x-variables,
we will associate with ~α an n-by-m matrix M~α, where the ith row of M~α will be the vector
afx(αi) ∈ A. Similarly given an assignment ~β to all of the ~y-variables, we will associate with
~β an n-by-m matrix N~β , where column j is the characteristic vector corresponding to the set
Sfy(βj) ∈ S In other words, N~β [i, j] is 1 if and only if set Sfy(βj) contains element i.

We now define our unsatisfiable CNF τS in the same way as ψS using these redundant
encodings. Note that it is unsatisfiable for exactly the same reason as stated before.

ICALP 2019



84:10 Short Proofs Are Hard to Find

I Definition 9. The clauses of τS are defined as follows. For every i ∈ [n], j ∈ [m] and for
every pair of assignments (αi, βj) to (xi, yj) such that Mαi [i, j] = 1 and Nβj [i, j] = 1, we
have the clause xαii ∧ y

βj
j .

In the redundant encoding we have n · 6 logm x-variables and m · 6 logn y-variables, for
a total of O(n logm) variables when m = n1/k � n. The number of clauses in τS is at most
n7m7, since for each i ∈ [n] and j ∈ [m], each of the m6n6 possible assignments to (xi, yj)
adds at most one clause to τS .

The following two lemmas, which will be the focus of the rest of the paper, give tight
upper and lower bounds on SQ(τS) as a function of γ(S). Since we can clearly construct τS
in time polynomial in n, proving these two lemmas is all we need to finish Lemma 5.

I Lemma 10. For sufficiently large n and k = O(log1/3 n), let (S, k, k2) be an instance
of the gap hitting set problem over [n] such that γ(S) ≤ k. Then SQ(τS) ≤ nO(1) for any
Q ∈ {Res, TreeRes, Nullsatz, PC, PCR}.

I Lemma 11. For sufficiently large n and k = O(log1/3 n), let (S, k, k2) be an instance of
the gap hitting set problem over [n] such that γ(S) > k2. Then SQ(τS) ≥ nΩ(k) for any
Q ∈ {Res, TreeRes, Nullsatz, PC, PCR}.

It may be instructive to note that both the upper and lower bounds are exactly
nΘ(γ(S)/k) = mΘ(γ(S)), which is polynomial in the number of distinct assignments to
α1 . . . αγ(S), assuming without loss of generality that the minimum hitting set of S is
the first γ(S) elements {1 . . . γ(S)} ⊆ [n]. In Sections 4 and 5 we show how these assignments
exactly characterize the shortest proof of τ .

4 Upper bound in TreeRes

In this section we prove Lemma 10. Note that it suffices to give an upper bound in TreeRes
since all of the other proof systems can p-simulate TreeRes.

Proof of Lemma 10. The proof is just a formalization of the argument given in the proof
of Claim 6. Using the well-known equivalence between TreeRes proofs and decision trees,
it suffices to give a decision tree solving the search problem for τS ; that is, a decision tree
(over the underlying variables of τS), where every leaf l is labelled with a clause of τS that is
falsified by the partial assignment that labels the path to l.

We will first show that if γ(S) ≤ k, then there is a height 2 logn decision tree (and
therefore size n2) for the unencoded formula ψS . Since γ(S) ≤ k, assume without loss of
generality that H = {1, . . . , k} is a valid hitting set for S. The decision tree for ψS consists of
two phases. First, the decision tree will branch on all of the Boolean variables in x1, . . . , xk.
This will result in a full binary tree, call it T , of depth k logm. In the second phase, at each
leaf vertex of T we will query all of the variables of some yj variable, where the choice of yj
will be a function of the path taken in T .

Consider some path in T leading to leaf l~α, corresponding to the assignment ~α = α1, . . . αk
for x1, . . . , xk. The assignment ~α corresponds to an ordered set of strings I ⊆ A, where
|I| ≤ k. Since k ∈ O(log1/3 n) and m = n1/k, k ≤ logm

4 for large n. By the (m, logm/4)-
dual-universal property of A there is some j ∈ [m] such that I restricted to position j is
all 1’s, and thus M~α[i, j] = 1 for all i ∈ [k]. In the second phase, at this leaf vertex l~α of T
we will then query all of the Boolean variables in yj . Let βj be one partial assignment to
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these variables and consider the path labelled by ~αβj leading to the leaf vertex l~αβj . Since
{1, . . . , k} is a hitting set for S we are guaranteed that N~βj

[i, j] = 1 for at least one i ∈ [k],
and since M~α[i, j] = 1 for all i ∈ [k], one of the clauses in τS must be violated by the partial
assignment ~α, βj , so we label l~αβj with any such clause. The resulting decision tree thus
solves the search problem associated with ψS and has height k logm+ logn = 2 logn.

The decision tree for the redundant version τS is essentially the same but instead we query
the redundant encodings of the variables. First, we query x1, . . . , xk, resulting in a full binary
tree of height k · 6 logm, and then, we query a particular yj (depending on the path taken in
T ), which is 6 logn variables, and thus the height is k · 6 logm+ 6 logn = 12 logn. J

5 Nonautomatizability of Res and TreeRes

In this section we prove Lemma 11 for the case of Q = Res, which implies the result for
TreeRes as well. We begin by proving a wide clause lemma for τS , which alone is enough
to prove lower bounds for TreeRes (using the size-width relationship for TreeRes due to
Ben-Sasson and Wigderson [9]); for general Res, we apply a standard application of random
restrictions to reduce to width.

Our notion of “wide” will be a bit richer than the usual definition. For a clause D, let
I0(D) be the set of all i ∈ [n] for which there are at least logm literals in D that correspond
to variables from xi. Likewise let J0(D) be the set of all j ∈ [m] for which there are at least
logn literals in D that correspond to variables from yj .

I Lemma 12 (Wide Clause Lemma). For sufficiently large n, if γ(S) > k2 and fx (fy) is
logm-surjective (logn-surjective, respectively), then for any Res refutation π refuting τS
there exists a clause D ∈ π such that |I0(D)| ≥ k2 or |J0(D)| ≥ k.

Proof. We follow the prover-delayer game of [36, 5] in the style of [6]. The width-w game
on an unsatisfiable formula τ is played between a Delayer, who is asserting that she has
a satisfying assignment for τ , and a Prover, who is trying to force the Delayer into a
contradiction by asking her values of the underlying variables. However, the Prover has
limited memory and can only remember the values of up to w of the variables at a time.

Both players know τ and the contents of the Prover’s memory, which is initially empty.
At the start of each round there are at most w − 1 values in memory. The Prover asks the
Delayer the value of some variable whose value is not currently in memory. The Delayer
responds with an answer (either 0 or 1), and upon receiving the answer, the Prover adds this
assignment to his memory (increasing the number of stored values by 1). He can then erase
(forget) any existing values from memory, possibly decreasing the number of stored values.
The Prover declares victory if at some point, the partial assignment written in his memory
falsifies one of the clauses of τ . The Delayer has a winning strategy for the width-w game
on τ if no matter how the Prover plays the game, he cannot win. It was shown [36, 5] that
the Delayer has a winning strategy for the width-w game if and only if the Res width of τ is
at least w − 1.

For our formula τS , the game proceeds as above, but now let D be the set of literals in
the Prover’s memory, and we demand instead of only holding w variables total in memory
that |I0(D)| ≤ k2 and |J0(D)| ≤ k. By the transformation from [36], the Prover has a
winning strategy for this game if there is a Res refutation such that |I0(D)| ≤ k2 − 1 and
|J0(D)| ≤ k − 1 for every clause D. Therefore the Delayer has a winning strategy for this
game if and only if the lemma holds. The Delayer’s winning strategy is as follows.
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If the Prover asks about a variable in xi:
If i /∈ I0(D) and after adding this bit there are still less than logm variables from xi
in memory, the Delayer can answer with either 0 or 1 arbitrarily.
If i /∈ I0(D) but after adding this bit to memory there are now logm variables from xi
in memory, the Delayer uses the fact that |J0(D)| ≤ k ≤ logm/4 and the (m, logm/4)-
universal property of A to find a string a0 ∈ A such that a0|J0(D) is the all-zeros string,
and uses the surjective property of fx to find an assignment αi consistent with the
assignment to the xi variables in memory such that fx(αi) = a0. The Delayer will
remember the assignment αi for xi from now on, and note that I0(D) now contains i.
Finally if i ∈ I0(D) then the Delayer is maintaining an assignment αi for xi, so she
answers according to αi.

If the Prover asks about a variable in yj :
If j /∈ J0(D) and after adding this bit there are still less than logn variables from yj
in memory, the Delayer can answer with either 0 or 1 arbitrarily.
If j /∈ J0(D) but there are now logn variables from yj in memory, the Delayer uses
the fact that |I0(D)| ≤ k2 < γ(S) and finds a set S0 that doesn’t contain any element
i ∈ I0(D), and uses the surjective property of fy to find an assignment βj consistent
with the assignment to the yj variables in memory such that fy(βj) = S0. The Delayer
will remember the assignment βj for xj , and note that J0(D) now contains j.
Finally if j ∈ J0(D) then the Delayer is already maintaining an assignment βj for yj ,
so she answers according to βj .

Whenever the Prover erases a variable from xi from his memory, if i ∈ I0 and now there
are less than logm variables from xi in memory, the Delayer forgets αi. (note that i is no
longer in I0) Similarly, whenever the Prover erases a variable from yj from his memory,
if j ∈ J0 and now there are less than logn variables from yj in memory, the Delayer
removes βj from J0. (note that j is no longer in J0)

Assume for contradiction the game ends with the Prover winning. Consider when the
game ends, and say the Prover claims the axiom xαii ∧ y

βj
j was falsified, and thus that

M~α[i, j] = N~β [i, j] = 1. First, consider the case when either i /∈ I0 or j /∈ J0. In either case
there are is at least one variable in the axiom that is not in memory, which means that it has
not been falsified, which is a contradiction. So assume that i ∈ I0 and j ∈ J0, and consider
the last time that i was added to I0 and the last time that j was added to J0. Assume that
i was added after j. Since j was in J0 at the time we defined αi, Mαi [i, j] = 0 by our choice
of αi, which is a contradiction. Finally assume that j was added after i. Then since i was in
I0 at the time we defined βj , fy(βj) does not contain i, and so Nβj [i, j] = 0, which is also
a contradiction. J

Before proceeding on to the proof of Lemma 11, we need to change Lemma 12 slightly,
in order to be able to apply a restriction argument to turn width lower bounds into size
lower bounds for τS . We use the notation f |ρ to denote the restriction of the function f
over x1 . . . xs by ρ ∈ {0, 1, ∗}s, which is the function f over the variables xi for all i ∈ ρ−1(∗)
obtained by setting all other variables xj to ρ(j). Likewise we use the notation τ |ρ to denote
the restriction of the tautology τ by ρ.

I Definition 13. Let ρxi ∈ {0, 1, ∗}xi and let ρyj ∈ {0, 1, ∗}yj . Furthermore, let R be the set
of all ~ρ = {ρx1 . . . ρxn , ρy1 . . . ρym}, such that for all i ∈ [n] and j ∈ [m], |ρ−1

xi (∗)| = 5 logm
and |ρ−1

yj (∗)| = 5 logn. Let f ix be the function fx on the variables ρ−1
xi (∗) after restricting all

other inputs to ρxi , and likewise for f jy .
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I Lemma 14 (Wide Clause Lemma under restrictions). For sufficiently large n and ρ ∈ R, if
γ(S) > k2 then for any Res refutation π refuting τS |~ρ there exists a clause D ∈ π such that
|I0(D)| ≥ k2 or |J0(D)| ≥ k.

We omit the proof of Lemma 14, as it is essentially identical to Lemma 12. The only difference
is that in each row i the Delayer chooses αi based on f ix instead of fx, and likewise for the
columns. Note that fx was 2 logm surjective before the restriction, and since only logm
variables are fixed in every row f ix is still logm surjective (and similarly for f jy ).

Proof of Lemma 11. Let π be a Res refutation of τS and assume for contradiction that
|π| < nk/16. First, consider a clause D ∈ π such that |I0(D)| ≥ k2. For each i ∈ I0(D),
the chance that a randomly chosen ~ρ ∈ R doesn’t set one of the xi literals in D to 1 is
less than (1− ( 1

6 ·
1
2 ))logm. Thus the probability that no i ∈ I0(D) sets D to 1 is at most

( 11
12 )k2 logm = ( 11

12 )k logn < 1
nk/8 . By a union bound the probability that some clause D in

π satisfying |I0(D)| ≥ k2 is not set to 1 is less than nk/16

nk/8 = 1
nk/16 , using the fact that

|π| < nk/16.
Similarly the probability that some clause D ∈ π satisfying |J0(D)| ≥ k is not set to 1 is

at most 1
nk/16 . Thus with probability at least 1− 2

nk/16 , all clauses D satisfying |I0(D)| ≥ k2

or |J0(D)| ≥ k are set to 1 by a random restriction, and thus there exists a restriction
~ρ = {ρx1 . . . ρxn , ρy1 . . . ρym} setting all such clauses to 1. However, this contradicts Lemma
14, as τS |~ρ must still have at least one such clause. Thus SQ(τS) ≥ nclk for cl = 1

16 . J

6 Conclusions

In terms of optimality of our results, the constructions in [14, 13] are not known to be optimal,
and any hardness results against approximating the gap hitting set problem in time no(k)

for a larger value of k immediately gives a lower bound of no(k) against automatizability.
While their results are “optimal” in terms of fixed-parameter tractability guarantees, there is
nothing limiting a different reduction from getting the same (or even a weaker) result that
works for larger values of the fixed parameter.10

On the flip side, all of our hardness results also work for TreeRes and Nullsatz, and
therefore this reduction is limited to quasipolynomial hardness. This is in line with the
details of the reduction; by the crucial fact that k2 ≤ logm

4 = logn
4k , this technique can’t be

strengthened past the k = o(log1/3 n) threshold.11 Thus, the upper limit of improving the
reductions of [14, 13] coincides almost exactly with the upper limit of our argument, and by
extension any argument using the machinery of [2].

A central motivation of this work was to make the techniques clear and simple in hopes
that they can be made to work for stronger systems such as SA and SoS, where no lower
bounds are known. A degree lower bound matching our results for Res and PC would shed
light on the limitations of our current approximation algorithms. Similarly it’s possible

10Classically the hitting set problem has no o(logn) approximations; the obstacle to using this classical
hardness is that it only rules out algorithms that get o(logn) approximation for all hitting set sizes,
whereas [14] rules out algorithms for any fixed hitting set size. Nevertheless it’s believed that Ω(logn)
hardness holds even for fixed hitting set sizes, and getting a reduction that achieves this result would
strengthen our argument.

11 If we allow the formula to be satisfiable in the case where γ(S) > k2 we only need k ≤ logm
4 since

we only ever allow the proof to query k columns. This can also be made to work in the base setting
where the formula must always be unsatisfiable by standard tricks. However this still yields a barrier of
k = o(log1/2 n).
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that this proof can be made to work for the case of TreeCP or CP, where instead of arguing
lower bounds directly we can hope to leverage the power of lifting theorems [22, 21]; in
particular a constant-sized lifting gadget would immediately give results for TreeCP matching
our other results.
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1 Introduction

The study of combinatorial optimization problems with a submodular objective has attracted
much attention in the last decade. A set function f : 2N → R+ over a ground set N is called
submodular if it has the diminishing returns property: f(A∪{i})−f(A) ≥ f(B∪{i})−f(B)
for every A ⊆ B ⊆ N and i ∈ N \ B.1 Submodular functions capture the principle of
economy of scale, prevalent in both theory and real world applications. Thus, it is no surprise
that combinatorial optimization problems with a submodular objective arise in numerous
disciplines, e.g., machine learning and data mining [4, 5], algorithmic game theory and
social networks [13, 22, 25, 27, 39], and economics [2]. Additionally, many classical problems
in combinatorial optimization are in fact submodular in nature, e.g., maximum cut and
maximum directed cut [20, 21, 24, 26, 28], maximum coverage [15, 29], generalized assignment
problem [8, 10, 14, 16], maximum bisection [3, 17], and facility location [1, 11, 12].

In this paper we consider the problem of maximizing a monotone2 submodular function
given mixed packing and covering constraints. In addition to being a natural problem in its
own right, it has further real world applications.

As a motivating example consider the subset selection task in machine learning [18, 19, 30]
(also refer to Kulesza and Taskar [31] for a thorough survey). In the subset selection task the
goal is to select a diverse subset of elements from a given collection. One of the prototypical
applications of this task is the document summarization problem [30, 34, 35]: given textual
units the objective is to construct a short summary by selecting a subset of the textual
units that is both representative and diverse. The former requirement, representativeness,
is commonly achieved by maximizing a submodular objective function, e.g., graph based
[34, 35] or log subdeterminant [30]. The latter requirement, diversity, is typically tackled by
penalizing the submodular objective for choosing similar textual units (this is the case for
both of the above two mentioned submodular objectives). However, such an approach results
in a submodular objective which is not necessarily non-negative thus making it extremely
hard to cope with. As opposed to penalizing the objective, a remarkably simple and natural
approach to tackle the diversity requirement is by the introduction of covering constraints.
For example, one can require that for each topic that needs to appear in the summary, a
sufficient number of textual units that refer to it are chosen. Unfortunately, to the best
of our knowledge there is no previous work in the area of submodular maximization that
incorporates general covering constraints.3

Let us now formally define the main problem considered in this paper. We are given
a monotone submodular function f : 2N → R+ over a ground set N = {1, 2, . . . , n}.
Additionally, there are p packing constraints given by P ∈ Rp×n+ , and c covering constraints
given by C ∈ Rc×n+ (all entries of P and C are non-negative). Our goal is to find a subset
S ⊆ N that satisfies all packing and covering constraints that maximizes the value of f :

max {f(S) : S ⊆ N ,P1S ≤ 1p,C1S ≥ 1c} . (1)

In the above 1S ∈ Rn is the indicator vector for S ⊆ N and 1k ∈ Rk is a vector of dimension k
whose coordinates are all 1. We denote this problem as Packing-Covering Submodular
Maximization (PCSM). It is assumed we are given a feasible instance, i.e., there exists
S ⊆ N such that P1S ≤ 1p and C1S ≥ 1c.

1 An equivalent definition is: f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) for every A, B ∈ N .
2 f is monotone if f(S) ≤ f(T ) for every S ⊆ T ⊆ N .
3 There are works on exact cardinality constraints for non-monotone submodular functions, which implies

a special, uniform covering constraint [6, 33, 41].
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As previously mentioned, (PCSM) captures several well known problems as a special case
when only a single packing constraint is present (p = 1 and c = 0): maximum coverage [29],
and maximization of a monotone submodular function given a knapsack constraint [40, 42]
or a cardinality constraint [37]. For all of these special cases an approximation of (1− 1/e) is
achievable and known to be tight [38] (even for the special case of a coverage function [15]).
When a constant number of knapsack constraints is given (p = O(1) and c = 0) Kulik et
al. [32] presented a tight (1− 1/e− ε)-approximation for any constant ε > 0. An alternative
algorithm with the same guarantee was given by Chekuri et al. [9].

Our Results. We present a tight approximation guarantee for (PCSM) when the number
of constraints is constant. Recall that we assume we are given a feasible instance, i.e., there
exists S ⊆ N such that P1S ≤ 1p and C1S ≥ 1c. The following theorem summarizes our
main result. From this point onwards we denote by O some fixed optimal solution to the
problem at hand.

I Theorem 1. For every constant ε > 0, assuming p and c are constants, there exists a
randomized polynomial time algorithm for (PCSM) running in time npoly(1/ε) that outputs
a solution S ⊆ N that satisfies: (1) f(S) ≥ (1− 1/e− ε) f(O); and (2) P1S ≤ 1p and
C1S ≥ (1− ε)1c.

We note four important remarks regarding the tightness of Theorem 1:
1. The loss of 1−1/e in the approximation cannot be avoided, implying that our approximation

guarantee is (virtually) tight. The reason is that no approximation better than 1− 1/e

can be achieved even for the case where only a single packing constraint is present [38].
2. The assumption that the number of constraints is constant is unavoidable. The reason

is that if the number of constraints is not assumed to be constant, then even with a
linear objective (PCSM) captures the maximum independent set problem. Hence, no
approximation better than n−(1−ε), for any constant ε > 0, is possible [23].4

3. No true approximation with a finite approximation guarantee is possible, i.e., finding a
solution S ⊆ N such that P1S ≤ 1p and C1S ≥ 1c with no violation of the constraints.
The reason is that one can easily encode the subset sum problem using a single packing
and a single covering constraint. Thus, just deciding whether a feasible solution exists,
regardless of its cost, is already NP-hard.

4. Guaranteeing one-sided feasibility, i.e., finding a solution which does not violate the
packing constraints and a violates the covering constraint only by a factor of 1 − ε,
cannot be achieved in time no(1/ε) unless the exponential time hypothesis fails (see [36]
for details).

Therefore, we can conclude that our main result (Theorem 1) provides the best possible
guarantee for the (PCSM) problem. We also note that all previous work on the special case
of only packing constraints [9, 32] have the same running time of npoly(1/ε).

We present additional extensions of the above main result. The first extension deals with
(PCSM) where we are also required that the output is an independent set in a given matroid
M = (N , I). We denote this problem by Matroid Packing-Covering Submodular
Maximization (MatroidPCSM), and it is defined as follows:

4 If the number of packing constraints p is super-constant then approximations are known only for special
cases with “loose” packing constraints, i.e., Pi,` ≤ O(ε2/ ln p) (see, e.g., [9]).
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max {f(S) : S ⊆ N ,P1S ≤ 1p,C1S ≥ 1c, S ∈ I} . As in (PCSM), we assume we are given
a feasible instance, i.e., there exists S ⊆ N such that P1S ≤ 1p, C1S ≥ 1c, and S ∈ I. Our
result is summarized in the following theorem.

I Theorem 2. For every constant ε > 0, assuming p and c are constants, there exists a
randomized polynomial time algorithm for (MatroidPCSM) that outputs a solution S ∈ I
that satisfies: (1) f(S) ≥ (1− 1/e− ε) f(O); and (2) P1S ≤ 1p and C1S ≥ (1− ε)1c.

The second extension deals with the multi-objective variant of (PCSM) where we wish to
optimize over several monotone submodular objectives. We denote this problem by Packing-
Covering Multiple Submodular Maximization (MultiPCSM). Its input is identical
to that of (PCSM) except that instead of a single objective f we are given t monotone
submodular functions f1, . . . , ft : 2N → R+. As before, we assume we are given a feasible
instance, i.e., there exists S ⊆ N such that P1S ≤ 1p and C1S ≥ 1c. Our goal is to find
pareto set solutions considering the t objectives. To this end we prove the following theorem.

I Theorem 3. For every constant ε > 0, assuming p, c and t are constants, there exists
a randomized polynomial time algorithm for (MultiPCSM) that for every target values
v1, . . . , vt either: (1) finds a solution S ⊆ N where P1S ≤ 1p and C1S ≥ (1 − ε)1c such
that for every 1 ≤ i ≤ t: fi(S) ≥ (1− 1/e− ε) vi; or (2) returns a certificate that there is no
solution S ⊆ N , where P1S ≤ 1p and C1S ≥ 1c such that for every 1 ≤ i ≤ t: fi(S) ≥ vi.

We also note that Theorems 2 and 3 can be combined such that we can handle (MultiPCSM)
where a matroid independence constraint is present, in addition to the given packing and
covering constraints, achieving the same guarantees as in Theorem 3.

All our previously mentioned results employ a continuous approach and are based on the
multilinear relaxation, and thus are inherently randomized.5 We present a new combinatorial
greedy-based dynamic programming approach for submodular maximization that enables us,
for several well studied special cases of (PCSM), to obtain deterministic and considerably
faster algorithms. Perhaps the most notable result is the first deterministic non-trivial
algorithm for maximizing a monotone submodular function subject to a constant number of
packing constraints (previous works [9, 32] are randomized).

I Theorem 4. For every constants ε > 0 and p ∈ N, there exists a deterministic algorithm
for maximizing a monotone submodular function subject to p packing constraints, that runs
in time O(npoly(1/ε)) and achieves an approximation of 1/e− ε.

The interesting special case of (PCSM) is when a single packing and a single covering
constraints are present (p = c = 1) is summarized in the following theorem.

I Theorem 5. For every constant ε > 0 and p = c = 1, there exists a deterministic algorithm
for (PCSM) running in time O(n1/ε) that outputs a solution S ⊆ N that satisfies: (1)
f(S) ≥ 0.353f(O); and (2) P1S ≤ (1 + ε)1p and C1S ≥ (1− ε)1c. For the case when the
packing constraint is a cardinality constraint, i.e., P = 1ᵀ

n/k, we can further guarantee that
P1S ≤ 1p and a running time of O(n4

/ε).

Our Techniques. Our main result is based on a continuous approach: first a continuous
relaxation is formulated, second it is (approximately) solved, and finally the fractional
solution is rounded into an integral solution. Similarly to the previous works of [9, 32], which

5 Known techniques to efficiently evaluate the multilinear extension are randomized, e.g., [7].
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focus on the special case of only packing constraints, the heart of the algorithm lies in an
enumeration preprocessing phase that chooses and discards some of the elements prior to
formulating the relaxation. The enumeration preprocessing step of [9, 32] is remarkably
simple and elegant. It enumerates over all possible collections of large elements the optimal
solution chooses, i.e., elements whose size exceeds some fixed constant in at least one of the
packing constraints and are chosen by the optimal solution.6 All remaining large elements
not in the guessed collection are discarded. This enumeration terminates in polynomial time
and ensures that no large elements are left in any of the packing constraints. Thus, once
no large elements remain concentration bounds can be applied. For the correct guess, any
of the several known randomized rounding techniques can be employed (alongside a simple
rescaling) to obtain an approximation of 1− 1/e− ε (here ε > 0 is a constant that is used to
determine which elements are considered large). Unfortunately, this approach fails in the
presence of covering constraints since an optimal solution can choose many large elements in
any given covering constraint. One can naturally adapt the above known preprocessing by
enumerating over all possible collections of covering constraints that the optimal solution
O covers using only large elements. However, this leads to an approximation of 1− 1/e− ε
while both packing and covering constraints are violated by a multiplicative factor of 1± ε.
We aim to obtain one sided violation of the constraints, i.e., only the covering constraints
are violated by a factor of 1− ε whereas the packing constraints are fully satisfied.

Avoiding constraint violation is possible in the presence of pure packing constraints [9, 32].
Known approaches for the latter are crucially based on removing elements in a pre-processing
and post-processing step in order to guarantee that concentration bounds hold. For mixed
constraints, these known removal operations may, however, arbitrarily violate the covering
constraints. Our approach aims at pre-processing the input instance via partial enumeration
so as to avoid discarding elements by ensuring that the remaining elements are “locally”
small relatively to the residual constraints. If this property would hold scaling down the
solution by a factor 1/(1 + ε) would be sufficient to avoid violation of the packing constraints.
Unfortunately, we cannot guarantee this to hold for all constraints. Rather, for some critical
constraints locally large elements may still be present. We introduce a novel enumeration
process that detects these critical constraints, i.e., constraints that are prone to violation.
Such constraints are given special attention as the randomized rounding might cause them
to significantly deviate from the target value. Unlike the previously known preprocessing
method, our enumeration process handles covering constraints with much care and it takes
into account the actual coverage of the optimal solution O of each of the covering constraints.
Combining the above, alongside a postprocessing phase that discards large elements from
critical packing constraints, suffices to yield the desired result.

We also independently present a novel purely combinatorial greedy-based dynamic
programming approach that yields deterministic and in some special cases considerably faster
algorithms. Previously, greedy algorithms were known for one cardinality constraint [37] and
one packing constraint [40]. But in the presence multiple constraints, it is not clear how
to design a rule to greedily pick the next element. In fact, we tried several natural greedy
strategies but all of them failed. This holds even when some oracle gives us the set of vectors
of packing and covering values from an optimum solution and the algorithm follows any fixed
sequence of these values.

6 An additional part of the preprocessing involves enumerating over collections of elements whose marginal
value is large with respect to the objective f , however this part of the enumeration is not affected by
the presence of covering constraints and thus is ignored in the current discussion.
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In our approach we maintain a table that contains greedy approximate solutions for all
possible packing and covering values. Using this table we extend the simple greedy process by
populating each table entry with the most profitable extension of the previous table entries.
In this way we are able to simulate (in a certain sense) all possible sequences of packing
and covering values for the greedy algorithm, ultimately leading to a good feasible solution.
Our result implies that there exists one sequence (depending on the instance) where greedy
performs well. To estimate the approximation factor we employ a factor-revealing linear
program. To the best of our knowledge, this is the first time a dynamic programming based
approach is used for submodular optimization. We believe our new combinatorial dynamic
programming approach is of independent interest.

2 Preliminaries

In this paper we assume the standard value oracle model, where the algorithm can only
access the given submodular function f with queries of the form: what is f(S) for a given S?
The running time of the algorithm is measured by the total number of value oracle queries
and arithmetic operations it performs. Additionally, let us define fA(S) , f(A ∪ S)− f(A)
for any subsets A,S ⊆ N . Furthermore, let fA(`) , fA({`}).

The multiliear extension F : [0, 1]N → R+ of a given set function f : 2N → R+ is:

F (x) ,
∑
R⊆N

f(R)
∏
`∈R

x`
∏
`/∈R

(1− x`) ∀x ∈ [0, 1]N .

Additionally, we make use of the following theorem that provides the guarantees of the
continuous greedy algorithm of [7].7

I Theorem 6 (Chekuri et al. [7]). We are given a ground set N , a monotone submodular
function f : 2N → R+, and a polytope P ⊆ [0, 1]N . If P 6= ∅ and one can solve in polynomial
time argmax

{
wTx : x ∈ P

}
for any w ∈ RN , then there exists a polynomial time algorithm

that finds x ∈ P where F (x) ≥ (1− 1/e)F (x∗). Here x∗ is an optimal solution to the problem:
max {F (y) : y ∈ P}.

3 Algorithms for the (PCSM) Problem

Preprocessing – Enumeration with Mixed Constraints. We define a guess D to be a triplet
(E0, E1, c′), where E0 ⊆ N denotes elements that are discarded, E1 ⊆ N denotes elements
that are chosen, and c′ ∈ Rc+ represents a rough estimate (up to a factor of 1 + ε) of how
much an optimal solution O covers each of the covering constraints, i.e., C1O. Let us denote
by Ñ , N \ (E0 ∪ E1) the remaining undetermined elements with respect to guess D.

We would like to define when a given fixed guess D = (E0, E1, c′) is consistent, and to
this end we introduce the notion of critical constraints. For the ith packing constraint the
residual value that can still be packed is: (rD)i , 1 −

∑
`∈E1

Pi,`, where rD ∈ Rp. For
the jth covering constraint the residual value that still needs to be covered is: (sD)j ,
max

{
0, c′j −

∑
`∈E1

Cj,`

}
, where sD ∈ Rc. A packing constraint i is called critical if

(rD)i ≤ δ, and a covering constraint j is called critical if (sD)j ≤ δc′j (δ ∈ (0, 1) is

7 We note that the actual guarantee of the continuous greedy algorithm is (1 − 1/e − o(1)). However,
for simplicity of presentation, we can ignore the o(1) term due to the existence of a loss of ε (for any
constant ε) in all of our theorems.
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a parameter to be chosen later). Thus, the collections of critical packing and covering
constraints, for a given guess D, are given by: YD , {i = 1, . . . , p : (rD)i ≤ δ} and
ZD , {j = 1, . . . , c : (sD)j ≤ δc′j}. Moreover, elements are considered large if their size
is at least some factor α of the residual value of some non-critical constraint (α ∈ (0, 1)
is a parameter to be chosen later). Formally, the collection of large elements with respect
to the packing constraints is defined as PD , {` ∈ Ñ : ∃i /∈ YD s.t. Pi,` ≥ α(rD)i},
and the collection of large elements with respect to the covering constraints is defined
as CD = {` ∈ Ñ : ∃j /∈ ZD s.t. Cj,` ≥ α(sD)j}. It is important to note, as previously
mentioned, that the notion of a large element is with respect to the residual constraint,
as opposed to previous works [9, 32] where the definition is with respect to the original
constraint. Let us now formally define when a guess D is called consistent.

I Definition 1. A guess D = (E0, E1, c′) is consistent if: (1) E0 ∩ E1 = ∅; (2) c′ ≥ 1c;
(3) P1E1 ≤ 1p; and (4) PD = CD = ∅.

Intuitively, requirement (1) states that a variable cannot be both chosen and discarded, (2)
states that the each covering constraint is satisfied by an optimal solution O, (3) states
the chosen elements E1 do not violate the packing constraints, and (4) states that no large
elements remain in any non-critical constraint.

Finally, we need to define when a consistent guess is correct. Assume without loss of gen-
erality that O = {o1, . . . , ok} and the elements of O are ordered greedily: f{o1,...,oi}(oi+1) ≤
f{o1,...,oi−1}(oi) for every i = 1, . . . , k − 1. In the following definition γ is a parameter to be
chosen later.

I Definition 2. A consistent guess D = (E0, E1, c′) is called correct with respect to O if:
(1) E1 ⊆ O; (2) E0 ⊆ Ō; (3) {o1, . . . , oγ} ⊆ E1; and (4) c′ ≤ C1O ≤ (1 + δ)c′.

Intuitively, requirement (1) states that the chosen elements E1 are indeed elements of O, (2)
states that no element of O is discarded, (3) states that the γ elements of largest marginal
value are all chosen, and (4) states that c′ represents (up to a factor of 1 + δ) how much O
actually covers each of the covering constraints.

We are now ready to present our preprocessing algorithm (Algorithm 1), which produces
a list L of consistent guesses that is guaranteed to contain at least one guess that is also
correct with respect to O. Lemma 7 summarizes this, its proof appears in [36].

Algorithm 1: Preprocessing.
1 L ← ∅
2 foreach j1, . . . , jc ∈ {0, 1, . . . , dlog1+δ ne} do
3 Let c′ = ((1 + δ)j1 , . . . , (1 + δ)jc)
4 foreach E1 ⊆ N such that |E1| ≤ γ + (p+c)/(αδ) do
5 Let H = (∅, E1, c′)
6 Let E0 = {` ∈ N \ E1 : fE1(`) > (γ−1)f(E1)} ∪ PH ∪ CH
7 Set D = (E0, E1, c′)
8 If D is consistent according to Definition 1 add it to L.

9 Output L.

I Lemma 7. The output L of Algorithm 1 contains at least one guess D that is correct with
respect to some optimal solution O.

ICALP 2019



85:8 Mixed Packing Covering Submodular Maximization

Proof. Fix any optimal solution O. At least one of the vectors c′ enumerated by Algorithm 1
satisfies property (4) in Definition 2 with respect to O. Let us fix an iteration in which such
a c′ is enumerated. Define the “large” elements O has with respect to this c′:

OL , {` ∈ O : ∃i s.t. Pi,` ≥ αδ} ∪
{
` ∈ O : ∃j s.t. Cj,` ≥ αδc′j

}
. (2)

Denote by Oγ , {o1, . . . , oγ} the γ elements of O with the largest marginal (recall the
ordering of O satisfies: f{o1,...,oi}(oi+1) ≤ f{o1,...,oi−1}(oi)). Let us fix E1 , Oγ ∪ OL and
choose H , (∅, E1, c′). Clearly, |E1| ≤ γ + (p+c)/(αδ) since |Oγ | = γ and |OL| ≤ (p+c)/(αδ).
Hence, we can conclude that H is considered by Algorithm 1.

We fix the iteration in which the above H is considered and show that the resulting
D = (E0, E1, c′) of this iteration is correct and consistent (recall that Algorithm 1 chooses
E0 = {` ∈ N \E1 : fE1(`) > (γ−1)f(E1)}∪PH ∪CH). The following two observations suffice
to complete the proof:
Observation 1: ∀` ∈ O ∪ (N \ E0): fE1(`) ≤ γ−1f(E1).
Observation 2: O ∩ PH = ∅ and O ∩ CH = ∅.
Clearly properties (1) and (3) of Definition 2 are satisfied by construction of E1, H, and
subsequently D. Property (2) of Definition 2 requires the above two observations, which
together imply that no element of O is added to E0 by Algorithm 1. Thus, all four properties
of Definition 2 are satisfied, and we focus on showing that the above D is consistent according
to Definition 1. Property (1) of Definition 1 follows from properties (1) and (2) of Definition 2.
Property (2) of Definition 1 follows from the choice of c′. Property (3) of Definition 1 follows
from the feasibility of O and property (1) of Definition 2. Lastly, property (4) of Definition 1
follows from the fact that PD ⊆ PH and that PH ⊆ E0, implying that PD = ∅ (the same
argument applies to CD). We are left with proving the above two observations.

We start with proving the first observation. Let ` ∈ O ∪ (N \E0). If ` ∈ N \E0 then the
observation follows by the construction of E0 in Algorithm 1. Otherwise, ` ∈ O. If ` ∈ Oγ
then we have that fE1(`) = 0 since Oγ ⊆ E1. Otherwise ` ∈ O \Oγ . Note:

fE1(`) ≤ fOγ (`) ≤ γ−1f(Oγ) ≤ γ−1f(E1).

The first inequality follows from diminishing returns and Oγ ⊆ E1. The third and last
inequality follows from the monotonicity of f and Oγ ⊆ E1. Let us focus on the second
inequality, and denote O = {o1, . . . , ok} and the sequence ai , f{o1,...,oi−1}(oi). The sequence
of ais is monotone non-increasing by the ordering of O and the monotonicity of f implies
that all ais are non-negative. Note that a1 + . . .+ aγ = f(Oγ), thus implying that fOγ (`) ≤
γ−1f(Oγ) for every ` ∈ {oγ+1, . . . , ok} (otherwise a1 + . . . + aγ > f(Oγ)). The second
inequality above, i.e., fOγ (`) ≤ γ−1f(Oγ), now follows since ` ∈ O \Oγ = {oγ+1, . . . , ok}.

Let us now focus on proving the second observation. Let us assume on the contrary
that there is an element ` such that ` ∈ O ∩ PH . Recall that PH = {` ∈ N \ E1 : ∃i /∈
YH s.t. Pi,` ≥ α(rH)i} where YH = {i : (rH)i ≤ δ}. This implies that ` ∈ O \ E1, namely
that ` /∈ OL, from which we derive that for all packing constraint i we have that Pi,` < αδ.
Since ` ∈ PH we conclude that there exists a packing constraint i for which (rH)i ≤ Pi,`/α.
Combining the last two bounds we conclude that (rH)i < δ, which implies that the ith
packing constraint is critical, i.e., i ∈ YH . This is a contradiction, and hence O ∩ PH = ∅. A
similar proof applies to CH and the covering constraints. � J

Randomized Rounding. Before presenting our main rounding algorithm, let us define the
residual problem we are required to solve given a consistent guess D. First, the residual
objective g : 2Ñ → R+ is defined as: g(S) , f(S ∪ E1)− f(E1) for every S ⊆ Ñ . Clearly, g
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is submodular, non-negative, and monotone. Second, let us focus on the feasible domain and
denote by P̃ (C̃) the submatrix of P (C) obtained by choosing all the columns in Ñ . Hence,
given D = (E0, E1, c′) the residual problem is:

max{g(S) + f(E1) : S ⊆ Ñ , P̃1S ≤ rD, C̃1S ≥ sD}. (3)

In order to formulate the multilinear relaxation of (3), consider the following two polytopes:
P , {x ∈ [0, 1]Ñ : P̃x ≤ rD} and C , {x ∈ [0, 1]Ñ : P̃x ≥ sD}. Let G : [0, 1]Ñ → R+ be the
multilinear extension of g. Thus, the continuous multilinear relaxation of (3) is:

max
{
f(E1) +G(x) : x ∈ [0, 1]Ñ ,x ∈ P ∩ C

}
. (4)

Our algorithm performs randomized rounding of a fractional solution to the above
relaxation (4). However, this is not enough to obtain our main result and an additional
post-processing step is required in which additional elements are discarded. Since covering
constraints are present, one needs to perform the post-processing step in great care. To this
end we denote by LD the collection of large elements with respect to some critical packing
constraint: LD , {` ∈ Ñ : ∃i ∈ YD s.t. Pi,` ≥ βrD} (β ∈ (0, 1) is a parameter to be chosen
later). Intuitively, we would like to discard elements in LD since choosing any one of those
will incur a violation of a packing constraint. We are now ready to present our rounding
algorithm (Algorithm 2).

Algorithm 2: (f,N ,P,C).
1 Use Algorithm 1 to obtain a list of guesses L.
2 foreach D = (E0, E1, c′) ∈ L do
3 Use Theorem 6 to compute an approximate solution x∗ to problem (4).
4 Scale down x∗ to x̄ = x∗/(1 + δ)
5 Let RD be such that for every ` ∈ Ñ independently: Pr [` ∈ RD] = x̄`.
6 Let R′D = RD \ LD.
7 SD ← E1 ∪R′D.
8 Salg ← argmax {f(SD) : D ∈ L,P · 1SD ≤ 1p,C · 1SD ≥ (1− ε)1c}

We note that Line 6 of Algorithm 2 is the post-processing step where all elements of LD
are discarded. Our analysis of Algorithm 2 shows that in an iteration a correct guess D
is examined, with a constant probability, SD satisfies the packing constraints, violates the
covering constraint by only a fraction of ε, and f(SD) is sufficiently high.

The following lemma gives a lower bound on the value of the fractional solution x̄
computed by Algorithm 2 (for a full proof refer [36]).

I Lemma 8. If D ∈ L is correct then in the iteration of Algorithm 2 it is examined the
resulting x̄ satisfies: G(x̄) ≥ (1− 1/e− δ)f(O)− f(E1).

Let us now fix an iteration of Algorithm 2 for which D is not only consistent but also
correct (the existence of such an iteration is guaranteed by Lemma 7). Intuitively, Algorithm 2
performs a straightforward randomized rounding where each element ` ∈ Ñ is independently
chosen with a probability that corresponds to its fractional value in the solution of the
multilinear relaxation (4). However, two key ingredients in Algorithm 2 are required in
order to achieve an ε violation of the covering constraints and no violation of the packing
constraints: (1) scaling: prior to the randomized rounding x∗ is scaled down by a factor
(1 + δ) (line 4 in Algorithm 2); and (2) post-processing: after the randomized rounding all
chosen large elements in a critical packing constraint are discarded (line 6 in Algorithm 2).
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The first ingredient above (scaling of x∗) allows us to prove using standard concentration
bounds that with good probability all non-critical packing constraints are not violated.
However, when considering critical packing constraints this does not suffice and the second
ingredient above (discarding LD) is required to show that with good probability even
the critical packing constraints are not violated. While discarding LD is beneficial when
considering packing constraints, it might have a destructive effect on both the covering
constraints and the value of the objective. To remedy this we argue that with high probability
only few elements in LD are actually discarded, i.e., |RD∩LD| is sufficiently small. Combining
the latter fact with the assumption that the current guess D is not only consistent but also
correct, according to Definition 2, allows us to prove the following lemma (for a full proof
refer to [36]).

I Lemma 9. For any constant ε > 0, choose constants α = δ3, β = δ2
/(3b), γ = 1/δ3, and

δ < min{1/(15(p+c)), ε/(2+30(p+c)2)}. With a probability of at least 1/2 Algorithm 2 outputs
a solution Salg satisfying: (1) P1Salg ≤ 1p; (2) C1Salg ≥ (1 − ε)1c; and (3) f(Salg) ≥
(1− 1/e− ε)f(O).

The above lemma suffices to prove Theorem 1, as it immediately implies it.

4 Greedy Dynamic Programming

In this section, we present a novel algorithmic approach for submodular maximization
that leads to deterministic and considerably faster approximation algorithms in several
settings. Perhaps the most notable application of our approach is Theorem 4. To the best of
our knowledge, it provides the first deterministic non-trivial approximation algorithm for
maximizing a monotone submodular function subject to packing constraints. To highlight
the core idea of our approach, we first present a vanilla version of the greedy dynamic
programming approach applied to (PCSM) that gives a constant-factor approximation and
satisfies the packing constraints, but violates the covering constraints by a factor of 2 and
works in pseudo-polynomial time.

Vanilla Greedy Dynamic Programming. Let us start with a sketch of the algorithm’s
definition and analysis. For simplicity of presentation, we assume in the current discussion
relating to pseudo-polynomial time algorithms that C ∈ Nc×n+ and P ∈ Np×n+ . Let p ∈ Np+
and c ∈ Nc+ be the packing and covering requirements, respectively. A solution S ⊆ N
is feasible if and only if C · 1S ≥ c and P · 1S ≤ p. We also use the following notations:
cmax = ‖c‖∞, pmax = ‖p‖∞, and [s]0 = {0, . . . , s} for every integer s.

We define our dynamic programming as follows: for every q ∈ [n]0, c′ ∈ [n·cmax]c0, and p′ ∈
[pmax]p0 a table entry T [q, c′,p′] is defined and it stores an approximate solution S of cardinality
q with C·1S = c′ and P·1S = p′. 8 For the base case, we set T [0,0c,0p]← ∅. For populating
T [q, c′,p′] when q > 0, we examine every set of the form T [q − 1, c′ − C`,p′ − P`] ∪ {`},
where ` satisfies ` ∈ N \ T [q − 1, c′ −C`,p′ −P`], c′ −C` ≥ 0, and p′ −P` ≥ 0. Out of all
these sets, we assign the most valuable one to T [q, c′,p′]. Note that this operation stores a
greedy approximate solution in the table entry T [q, c′,p′]. The output of our algorithm is the
best of the solutions T [q, c′,p′], for 1 ≤ q ≤ n, c′ ≥ c/2 and p′ ≤ p. See Algorithm 3 for
pseudo code.

8 We introduce a dummy solution ⊥ for denoting undefined table entries, and initialize the entire table
with ⊥. For the exact details we refer to [36].
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Algorithm 3: Vanilla Greedy Dynamic Program.
1 create a table T : [n]0 × [n · cmax]c0 × [pmax]p0 → 2N initialized with entries ⊥
2 T [0,0c,0p]← ∅
3 for q = 0 to n do
4 foreach c′ ∈ [n · cmax]c0 and p′ ∈ [pmax]p0 do
5 foreach ` ∈ N \ T [q, c′,p′] do
6 c′′ ← c′ + C`, p′′ ← p′ + P`

7 T [q + 1, c′′,p′′]← arg max{f(T [q + 1, c′′,p′′]), f(T [q, c′,p′] ∪ {`})}

8 Output argmax
q,c′≥c/2,p′≤p

f(T [q, c′,p′]).

Let us now sketch the analysis of the above algorithm. Let O be an optimal set solution.
We consider an arbitrary permutation of O, say {o1, o2, . . . , ok}. Let Oi = {o1, . . . , oi}
be the set of the first i elements in this permutation and let O0 = ∅. We introduce the
function g : O → R+ for denoting the marginal value of the elements in O. More precisely, let
g(oi) = fOi−1(oi). Note that f(O) =

∑
`∈O g(`). Let for any subset S ⊆ O, g(S) =

∑
`∈S g(`).

We then inductively construct an order o1, . . . , ok of O with the intention of upper bounding
for every prefix Oq = {o1, . . . , oq} the value g(Oq) in terms of the value f(Sq) of the table entry
Sq := T [q,C1Oq ,P1Oq ] corresponding to Oq. The construction of the sequence o1, . . . , ok
divides [k] into m phases where m is a positive integer parameter. A (possibly empty)
phase i ∈ [m] is characterized by the following property. Consider a prefix Oq and its
corresponding table entry Sq. If q is in phase i then there exists an element oq+1 ∈ O \Oq
such that adding oq+1 to Sq increases f by at least an amount of (1− i/m)g(oq+1). We set
Oq+1 = Oq ∪ {oq+1}. Thus, in earlier phases we make more progress in the corresponding
dynamic programming solution Sq relative to g(Oq) than in later phases. Additionally, we
can prove a complementing inequality. At the end of phase i ∈ [m] all elements in O \Oq
increase f by no more than (1 − i/m)g(oq+1). We prove that this implies that f(Sq) is
at least i/m · g(O \ Oq) and thus large relatively to the complement of Oq. We set up a
factor-revealing linear program that constructs the worst distribution of the marginal values
over the phases that satisfy the above inequalities. For the purpose of analysis, by scaling,
we assume that f(O) =

∑
o∈O g(o) = 1. The following lemma formalizes the above sketch. It

is also the basis for the factor-revealing LP below (for its proof refer to [36]).

I Lemma 10. Let m ≥ 1 be an integral parameter. We can pick for each i ∈ [m] a set
Oi = {oi1, oi2, . . . , oiqi} ⊆ O (possibly empty) such that the following holds. For i 6= j, we
have that Oi ∩ Oj = ∅. Let Li =

∑i
j=1 qj, Qi = ∪ij=1Oj, ci = C1Qi , pi = P1Qi and

let Ai := T [Li, ci,pi] be the corresponding DP cell. Then C1Am ≥ c/2 and the following
inequalities hold.

1. f(A0) = g(O0) where A0 = O0 = ∅,

2. f(Ai) ≥ f(Ai−1) + (1− i/m)g(Oi) ∀i ∈ [m] and

3. f(Ai) ≥ i
m

(
1−

∑
j≤i g(Oj)

)
∀i ∈ {0} ∪ [m].

Below we describe a factor-revealing LP that captures the above-described multi-phase
analysis for the greedy DP algorithm. The idea is to introduce variables for the quantities
in the inequalities in the previous lemma and determining the minimum ratio that can be
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guaranteed by these inequalities.

min am s.t. (LP)
a1 ≥

(
1− 1

m

)
o1; (5)

ai ≥ ai−1 +
(
1− i

m

)
oi ∀i ∈ [m] \ {1}; (6)

ai ≥ i
m

(
1−

∑
j≤i oj

)
∀i ∈ [m]; (7)

ai ≥ 0, oi ≥ 0 ∀i ∈ [m]. (8)

The variable oi corresponds to the marginal value g(Oi) for the set Oi in our analysis.
Variables ai correspond to the quantities f(Ai) for the approximate solution Ai for each
phase i = 1, 2, . . . ,m. We add all the inequalities we proved in Lemma 10 as the constraints
for this LP. Note that since f(O) = 1, the minimum possible value of am will correspond to
a lower bound on the approximation ratio of our algorithm.

The following is the dual for the above LP.

max
∑m
i=1

i
myi s.t. (DP)

xi + yi − xi+1 ≤ 0 ∀i ∈ [m− 1]; (9)
xm + ym ≤ 1; (10)∑

j≥i
j
myj − (1− i

m )xi ≤ 0 ∀i ∈ [m]; (11)

xi ≥ 0, yi ≥ 0 ∀i ∈ [m]. (12)

This linear program gives for every m a lower bound on the approximation ratio. Analyt-
ically, we can show that if m tends to infinity the optimum value of the LP converges to 1/e.
This leads to the following lemma (for its proof refer to [36]).

I Lemma 11. Assuming p and c are constants, the vanilla greedy dynamic programming
algorithm for (PCSM) runs in pseudo-polynomial time O(n2pmaxcmax) and outputs a solution
S ⊆ N that satisfies: (1) f(S) ≥ (1/e) · f(O), (2) P1S ≤ p and C1S ≥ 1/2 · c.

Applications and Extensions of Greedy Dynamic Programming Approach

We briefly explain the applications of the approach to the various specific settings and the
required tailored algorithmic extensions to the vanilla version of the algorithm.

Scaling, guessing and post-processing for packing constraints. An immediate consequence
of Lemma 11 is a deterministic (1/e)-approximation for the case of constantly many packing
constraints that runs in pseudo-polynomial time. We can apply standard scaling techniques
to achieve truly polynomial time. This may, however, introduce a violation of the constraints
within a factor of (1 + ε). To avoid this violation, we can apply a pre-processing and
post-processing by Kulik et al. [32] to achieve Theorem 4.

Forbidden sets for a single packing and a single covering constraints. In this setting we
are able to ensure a (1 − ε)-violation of the covering constraints by using the concept of
forbidden sets. Intuitively, we exclude the elements of these set from being included to the
dynamic programming table in order to be able to complete the table entries to solutions
with only small violation.
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Fix some ε > 0. By guessing we assume that we know the set G of all, at most 1/ε
elements ` from the optimum solution with P` > ε · p. We can guess G using brute force in
nO(1/ε) time. This allows us to remove all elements with P` ≥ ε · p from the instance. Let
N ′ be the rest of the elements. (For consistency reasons, we use bold-face vector notation
here also for dimension one.)

Fix an order of N ′ in which the elements are sorted in a non-increasing order of C`/P`

values, breaking ties arbitrarily. Let Ni be the set of the first i elements in this order. For
any p′ ≤ p, let Fp′ be the smallest set Ni with P1Ni ≥ p− p′. Note that the profit of Fp′

is at least the profit of any subset of N ′ with packing value at most p − p′ and that the
packing value of Fp′ is no larger than (1 + ε)p− p′. Also note that for any 0 ≤ p′ ≤ p′′ ≤ p,
it holds that Fp′′ ⊆ Fp′ .

Now we explain the modified Greedy-DP that incorporates the guessing and the forbidden
sets ideas. Let G be the set of the guessed big elements as described above. For the base case,
we set T [C1G,P1G] = G and T [c′,p′] = ⊥ for all table entries with c′ 6= C1G or p′ 6= P1G.

In order to compute T [c′,p′], we look at every set of the form T [c′ −C`,p′ −P`] ∪ {`},
where ` ∈ N \ (T [c′ −C`,p′ − P`] ∪ Fp′), c′ −C` ≥ 0, and p′ − P` ≥ 0. Notice that we
forbid elements belonging to Fp′ to be included in any table entry of the form T [c′,p′]. Now
out of all these sets, we assign the most valuable set to T [c′,p′]. The output of our algorithm
is the best of the solutions T [c′,p′] ∪ Fp′ , such that c′ + C1Fp′ ≥ c.

By means of a more sophisticated factor-revealing LP, we obtain Theorem 5. Finally, if
the packing constraint is actually a cardinality constraint we can assume that ε < 1/p. Hence,
there will be no violation of the cardinality constraint and also guessing can be avoided.

5 Extensions: Matroid Independence and Multi-Objective

Refer to [36] for the extensions that deal with a matroid independence constraint and with
multiple objectives.

References

1 A. A. Ageev and M. I. Sviridenko. An 0.828 Approximation Algorithm for the Uncapacitated
Facility Location Problem. Discrete Appl. Math., 93(2-3):149–156, July 1999.

2 Shabbir Ahmed and Alper Atamtürk. Maximizing a class of submodular utility functions.
Mathematical Programming, 128(1):149–169, June 2011.

3 Per Austrin, Siavosh Benabbas, and Konstantinos Georgiou. Better Balance by Being Biased:
A 0.8776-Approximation for Max Bisection. ACM Trans. Algorithms, 13(1):2:1–2:27, 2016.

4 Francis Bach. Learning with Submodular Functions: A Convex Optimization Perspective. Now
Publishers Inc., Hanover, MA, USA, 2013.

5 L. Bordeaux, Y. Hamadi, and P. Kohli. Tractability: Practical Approaches to Hard Problems.
Cambridge University Press, 2014.

6 Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular Maximization
with Cardinality Constraints. In Proc. 25th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’14), pages 1433–1452, 2014.

7 Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a Monotone
Submodular Function Subject to a Matroid Constraint. SIAM J. Comput., 40(6):1740–1766,
December 2011.

8 Chandra Chekuri and Sanjeev Khanna. A Polynomial Time Approximation Scheme for the
Multiple Knapsack Problem. SIAM Journal on Computing, 35(3):713–728, 2005.

ICALP 2019



85:14 Mixed Packing Covering Submodular Maximization

9 Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent Randomized Rounding via
Exchange Properties of Combinatorial Structures. In Proc. 51th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’10), pages 575–584, 2010.

10 Reuven Cohen, Liran Katzir, and Danny Raz. An Efficient Approximation for the Generalized
Assignment Problem. Inf. Process. Lett., 100(4):162–166, November 2006.

11 Gerard Cornuejols, Marshall Fisher, and George L. Nemhauser. On the Uncapacitated Location
Problem. In Studies in Integer Programming, volume 1 of Annals of Discrete Mathematics,
pages 163–177. Elsevier, 1977.

12 Gerard Cornuejols, Marshall L. Fisher, and George L. Nemhauser. Location of Bank Accounts
to Optimize Float: An Analytic Study of Exact and Approximate Algorithms. Management
Science, 23(8):789–810, 1977.

13 Shaddin Dughmi, Tim Roughgarden, and Mukund Sundararajan. Revenue Submodularity.
Theory of Computing, 8(1):95–119, 2012.

14 U. Feige and J. Vondrak. Approximation algorithms for allocation problems: Improving the
factor of 1 - 1/e. In 2006 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), pages 667–676, 2006.

15 Uriel Feige. A Threshold of Ln N for Approximating Set Cover. J. ACM, 45(4):634–652, July
1998.

16 Lisa Fleischer, Michel X Goemans, Vahab S Mirrokni, and Maxim Sviridenko. Tight approxim-
ation algorithms for maximum general assignment problems. In Proc. 17th annual ACM-SIAM
Symposium on Discrete Algorithm, (SODA’06), pages 611–620. SIAM, 2006.

17 Alan Frieze and Mark Jerrum. Improved approximation algorithms for MAX k-CUT and
MAX BISECTION. In Egon Balas and Jens Clausen, editors, Integer Programming and
Combinatorial Optimization, pages 1–13. Springer Berlin Heidelberg, 1995.

18 J. Gillenwater. Approximate Inference for Determinantal Point Processes. PhD thesis,
University of Pennsylvania, 2014.

19 Jennifer Gillenwater, Alex Kulesza, and Ben Taskar. Near-Optimal MAP Inference for
Determinantal Point Processes. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25, pages 2735–2743. Curran
Associates, Inc., 2012.

20 Michel X. Goemans and David P. Williamson. Improved Approximation Algorithms for Max-
imum Cut and Satisfiability Problems Using Semidefinite Programming. J. ACM, 42(6):1115–
1145, November 1995.

21 Eran Halperin and Uri Zwick. Combinatorial Approximation Algorithms for the Maximum
Directed Cut Problem. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’01, pages 1–7, 2001.

22 Jason Hartline, Vahab Mirrokni, and Mukund Sundararajan. Optimal Marketing Strategies
over Social Networks. In Proceedings of the 17th International Conference on World Wide
Web, WWW ’08, pages 189–198, 2008.

23 Johan Håstad. Clique is hard to approximate within n(1−ε). In Acta Mathematica, pages
627–636, 1996.

24 Johan Håstad. Some Optimal Inapproximability Results. J. ACM, 48(4):798–859, July 2001.
25 Xinran He and David Kempe. Stability of Influence Maximization. In Proceedings of the 20th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14,
pages 1256–1265, 2014.

26 Richard M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US,
1972.

27 David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the Spread of Influence through a
Social Network. Theory of Computing, 11(4):105–147, 2015.

28 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal Inapproximability
Results for MAX-CUT and Other 2-Variable CSPs? SIAM Journal on Computing, 37(1):319–
357, 2007.



E. Mizrachi, R. Schwartz, J. Spoerhase, and S. Uniyal 85:15

29 Samir Khuller, Anna Moss, and Joseph Seffi Naor. The budgeted maximum coverage problem.
Information Processing Letters, 70(1):39–45, 1999.

30 Alex Kulesza and Ben Taskar. Learning Determinantal Point Processes. In UAI 2011, Pro-
ceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence, Barcelona,
Spain, July 14-17, 2011, pages 419–427, 2011.

31 Alex Kulesza and Ben Taskar. Determinantal Point Processes for Machine Learning. Founda-
tions and Trends in Machine Learning, 5(2-3):123–286, 2012.

32 Ariel Kulik, Hadas Shachnai, and Tami Tamir. Approximations for Monotone and Non-
monotone Submodular Maximization with Knapsack Constraints. Mathematics of Operations
Research, 38(4):729–739, 2013. preliminary version appeared in SODA’09.

33 Jon Lee, Vahab S Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Non-monotone
submodular maximization under matroid and knapsack constraints. In Proc. 41st Annual
ACM Symposium on Theory Of Computing, (STOC’09), pages 323–332. ACM, 2009.

34 Hui Lin and Jeff Bilmes. Multi-document Summarization via Budgeted Maximization of
Submodular Functions. In Human Language Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for Computational Linguistics, HLT ’10, pages
912–920, 2010.

35 Hui Lin and Jeff Bilmes. A Class of Submodular Functions for Document Summarization.
In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies - Volume 1, HLT ’11, pages 510–520, 2011.

36 Eyal Mizrachi, Roy Schwartz, Joachim Spoerhase, and Sumedha Uniyal. A Tight Approxim-
ation for Submodular Maximization with Mixed Packing and Covering Constraints. CoRR,
abs/1804.10947, 2018. arXiv:1804.10947.

37 George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of ap-
proximations for maximizing submodular set functions - I. Math. Program., 14(1):265–294,
1978.

38 George L Nemhauser and Leonard A Wolsey. Best algorithms for approximating the maximum
of a submodular set function. Mathematics of operations research, 3(3):177–188, 1978.

39 Andreas S. Schulz and Nelson A. Uhan. Approximating the least core value and least core of
cooperative games with supermodular costs. Discrete Optimization, 10(2):163–180, 2013.

40 Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack
constraint. Oper. Res. Lett., 32(1):41–43, 2004.

41 Jan Vondrák. Symmetry and Approximability of Submodular Maximization Problems. In
Proc. 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS’09), pages
651–670. IEEE, 2009.

42 Laurence A. Wolsey. Maximising Real-Valued Submodular Functions: Primal and Dual
Heuristics for Location Problems. Mathematics of Operations Research, 7(3):410–425, 1982.

ICALP 2019

http://arxiv.org/abs/1804.10947




Scheduling to Approximate Minimization
Objectives on Identical Machines
Benjamin Moseley
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA
Relational AI, Berkeley, CA, USA
moseleyb@andrew.cmu.edu

Abstract
This paper considers scheduling on identical machines. The scheduling objective considered in
this paper generalizes most scheduling minimization problems. In the problem, there are n jobs
and each job j is associated with a monotonically increasing function gj . The goal is to design a
schedule that minimizes

∑
j∈[n] gj(Cj) where Cj is the completion time of job j in the schedule.

An O(1)-approximation is known for the single machine case. On multiple machines, this paper
shows that if the scheduler is required to be either non-migratory or non-preemptive then any
algorithm has an unbounded approximation ratio. Using preemption and migration, this paper gives
a O(log log nP )-approximation on multiple machines, the first result on multiple machines. These
results imply the first non-trivial positive results for several special cases of the problem considered,
such as throughput minimization and tardiness.

Natural linear programs known for the problem have a poor integrality gap. The results are
obtained by strengthening a natural linear program for the problem with a set of covering inequalities
we call job cover inequalities. This linear program is rounded to an integral solution by building on
quasi-uniform sampling and rounding techniques.
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1 Introduction

A common optimization challenge is scheduling a set of n jobs on m identical machines
to optimize the quality of service delivered to the jobs. The quality of service objective
could be: a delay based objective, such as minimizing the average waiting time; a fairness
objective ensuring resources are shared fairly between jobs, such as the `2-norm of the waiting
time; or a real-time objective such as ensuring a small number of jobs are not completed by
their deadline.

Scheduling Model. This paper develops an algorithm that has strong guarantees for most
reasonable objectives. This work considers the identical machines setting where all jobs are
available at the same time. Each job j has a processing time pj . The job can be processed
on m identical machines where the processing time of the job is the same on all machines.
This work assumes that preemption and migration are allowed. That is jobs can be stopped
and resumed at a later time, possibly on a different machine.
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86:2 Scheduling to Approximate Minimization Objectives

This paper initiates the study of the general scheduling problem (GSP) on identical
machines. In this problem, each job j has a function gj(t) : R+ → R+. The value of gj(t)
specifies the cost of completing job j at time t. The goal is to design an algorithm that
completes each job j at time Cj to minimize

∑
j∈[n] gj(Cj). No assumptions on the functions

are made except that they are positive and non-decreasing, so there never is an incentive
to have a job wait longer to be completed. Note that each job has its own, individual, cost
function. In several systems, it is the case that jobs can be associated with distinct cost
functions [15, 16, 17].

The problem generalizes many scheduling objectives. Examples include the following. In
the following descriptions, each job j has a positive weight wj denoting its priority.

Weighted Completion Time: A job’s cost is its weight multiplied by its completion
time. The completion time is how long the job waits in the system and this objective
focuses on minimizing the priority scaled average waiting time. This objective is captured
by setting gj(t) = wj · t.
Weighted kth Norm of Completion Time: This objective focuses on minimizing
k

√∑
j∈[n] wjC

k
j or, by removing the outer kth root,

∑
j∈[n] wjC

k
j . This objective is

captured by setting gj(t) = wj · tk. This is used to enforce fairness in the schedule and
typically k ∈ {2, 3}.
Weighted Throughput Minimization: The goal is to minimize the weighted number
of jobs that miss their deadline. Each job j has a deadline dj . Setting gj(t) = 0 for t ≤ dj
and wj otherwise gives this objective.
Weighted Tardiness: Each job has no cost if completed before its deadline and otherwise
the job pays its weighted waiting time after is deadline. Each job has a deadline dj and
weight wj . This objective is obtained by setting gj(t) = 0 for t ≤ dj and wj(t − dj)
otherwise.
Exponential Completion Time: In this objective a job’s cost grows exponentially
with its completion time. The objective is captured by setting gj(t) = wj · exp(t).

These problems have been challenging to understand. The problem considered is NP-Hard,
even on a single machine and the cost functions are piecewise linear [10]. It is known that
Smith’s rule is optimal for minimizing the total weighted completion time [21]. Bansal and
Pruhs in a breakthrough result introduced a O(1)-approximation algorithm for the general
scheduling problem on a single machine [2]. Cheung et al. improved this to show a (4 + ε)
approximation [6, 7, 18]. Antoniadis et al. gave a quasi-polynomial time approximation
scheme on a single machine [1, 11].

The next step in this line of work is to generalize these techniques to multiple machine
environments, but there is a clear barrier when generalizing past approaches to multiple
machines. Prior work introduced a strong linear program that uses a polynomial number of
knapsack cover inequalities. See [3] for details on knapsack cover inequalities. The inequalities
in [2, 7, 18] are weak in multiple machine environments and result in linear programs with
an unbounded integrality gap.

An open question is if there exists a linear program with a small integrality gap for
multiple machines. Further, are there good approximation algorithms for the GSP on
multiple machines.

Results. This paper studies the GSP in the identical machine environment. The paper
shows the following theorem. The technical contributions that result in this theorem are the
derivation of valid strong linear program inequalities that are used to strengthen a natural
linear program relaxation of the problem and an iterative rounding technique that builds on
quasi-uniform sampling [22].
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I Theorem 1. There is a randomized algorithm that achieves a O(log lognP ) approximation
in expectation and runs in expected polynomial time for the GSP on multiple identical
machines with preemption and migration where P is the ratio of the maximum to minimum
job size.

A natural question is if preemption and migration are necessary for an algorithm to
have a good approximation ratio. This paper shows that they are by establishing that any
scheduler required to be non-preemptive or non-migratory has an unbounded approximation
ratio unless P = NP . The proof is omitted

I Theorem 2. The approximation ratio of any algorithm for GSP is unbounded unless
P=NP if either the algorithm is required to be non-migratory or non-preemptive on m

identical machines.

Overview of Technical Contributions. The main result is enabled by a set of strengthening
inequalities added to a natural linear program (LP) for the problem. The paper calls these
inequalities, job cover inequalities. See Section 4. These inequalities are needed because
without them the LP introduced in this paper has an unbounded integrality gap even if all
jobs arrive at the same time on a single machine1. Other natural LP relaxations, such as a
time indexed LP, also have an unbounded gap even on a single machine [2, 7].

Prior work on a single machine also used a set of covering inequalities to strengthen a
linear program. These inequalities consider every interval I and the set of jobs that arrive
during the interval SI . A constraint states that the total processing time of jobs in SI that
are completed after I ends must be greater than the total processing time of jobs in SI minus
the length of I [2, 7]. This is a covering constraint ensuring that the jobs arriving during I
that complete during I have total size at most the length of I. These covering constraints
are strengthened using knapsack cover inequalities. If such constraints are satisfied integrally
then the Earliest-Deadline-First algorithm can be used to construct a schedule of the same
cost as the LP.

A natural idea to extend this to identical machines is to use the same constraint, but the
total work completed after I ends must be greater than the size of jobs in SI minus m times
the length of I. This generalization takes into account that each machine can be busy during
I. Then the natural next step is to use knapsack cover inequalities to strengthen this new set
of constraints. Unfortunately, it is easy to show such inequalities are insufficient and result
in an LP with a large integrality gap. There are several issues and they are all rooted in the
fact that this does not take into account that a job can only be processed on one machine at
any point in time. To overcome this shortcoming, this paper considers covering constraints
used to strengthen a minimum cut constraint arises from a natural bipartite flow problem.

This paper proceeds by first reducing the scheduling problem to the problem of finding
completion times for each of the jobs, without committing to a schedule. Once a feasible set
of completion times is discovered, the scheduling of jobs can easily be obtained by solving
a bipartite flow problem. See Section 3 for details. Feasible solutions to the bipartite flow
problem have a one-to-one correspondence to the original scheduling problem. We note that
the reduction to this flow problem is a well-known scheduling technique.

The bipartite graph in the flow problem is used to derive the job cover inequalities. First
an LP is written based on the flow problem. To ensure a feasible flow is possible, a set of
constraints is added that ensure the minimum cut in the graph is sufficiently large. Then this

1 Without strengthening inequalities and when jobs arrive at the same time on a single machine the LP
introduced in this paper can be reduced to an LP used in prior work where the gap is known [2, 7]
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86:4 Scheduling to Approximate Minimization Objectives

set of covering constraints are strengthened. While these inequalities are used to strengthen
constraints that arise from a flow graph, they are different than previously studied flow
cover inequalities [19, 20, 14]. The key to defining the improved constraints is leveraging the
structure of the minimum cuts in the bipartite graph resulting from the scheduling problem.

The algorithm solves the strong LP and rounds the solution. The idea is to use iterative
randomized rounding, but this results in a large approximation ratio. We remark that
standard randomized rounding techniques can be used to obtain a O(logn) approximation
by over sampling variables by a O(logn) factor and then union bounding over constraints to
show they are satisfied with high probability. However, there are issues with reducing the
approximation ratio below this factor; the most challenging is showing that the constraints
are satisfied if variables are sampled by a smaller factor, which is what would be needed to
reduce the approximation ratio.

Instead, the algorithm uses an iterative scheme to round the solution. In each iteration,
the algorithm over samples variables by a small factor and modifies the linear program. The
modification ensures that (1) in expectation no variable, over all iterations, is sampled by
more than a O(log lognP ) factor than how much it is selected by the optimal LP solution
and (2) the relaxation remains feasible. The scheme builds on techniques of quasi-uniform
sampling [4, 22] and quasi-uniform iterative rounding [12].

Other Related Work

Single Machine. It is known the Smith’s rule is optimal for minimizing the total weighted
completion time [21]. The tardiness problem has been challenging to understand. Lawer [13]
gave a polynomial approximation scheme if jobs have unit size. Before the work on the GSP
in the single machine environment, the previously best known approximation for arbitrary
sized jobs was a (n− 1)-approximation [5]. For the GSP a (4 + ε)-approximation is known
[6] and a quasi-polynomial time approximation scheme has been established [1].

Identical Machines. Smith’s rule is optimal for minimizing the total weighted completion
time [21]. It is not difficult to see that there is an optimal algorithm for makespan2 if jobs can
be preempted and migrated across machines. An PTAS is known if migration is disallowed
[9]. As far as the author is aware, there are no non-trivial results known for exponential
completion time and tardiness on multiple machines.

2 Preliminaries

In the general scheduling problem (GSP), there is a set J of n jobs. Each job i has integer
processing time pi. Let P denote the maximum job size and assume the minumum job size is
one. The jobs are to be scheduled on a set M of m identical machines that can schedule one
job at any point in time. It is assumed that time is slotted and job i must be scheduled for
pi time units over all machines. Jobs can be preempted and migrated across machines. Jobs
cannot be scheduled on more than one machine simultaneously. Every job i is associated
with a function gi : R+ → R+ where gi(t) specifies the cost of completing job i at time t.
Without loss of generality, assume that gi(0) = 0 for all jobs i. The only assumption on
gi(t) is that it is a non-negative non-decreasing function. Under a given schedule, job i is
completed at time Ci. The goal is for the scheduler to minimize

∑
i∈J gi(Ci). Note that it

can be assumed that all jobs are completed by time nP .

2 Makespan is equivalent to minimizing the maximum completion.
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Figure 1 The graph G. A job i needs to assign pi units of flow (processing time) to machines
before Ci. Machines can process up to m units at each time.

3 Scheduling Jobs with Deadlines

This section shows that if the completion times of the jobs are fixed then there is a method
to determine how to schedule the jobs at or before their completion times or determine if
such a schedule is not possible. Notice that if such a schedule is feasible then this ensures
the objective is either the same or smaller in the computed schedule than if all jobs are
completed at exactly their given completion times. Let job i have a given completion time
Ci. The completion time Ci is interpreted as job i’s deadline.

The method to construct a schedule for the jobs is to setup a flow problem. Setting up a
flow graph to determine if a set of jobs can be feasibly scheduled is a standard scheduling
technique (e.g. [8]), but is presented here so that later this graph can be used in a linear
program formulation. Consider creating a bipartite flow graph G = ({s, d}∪A∪B,E) where
A contains a node ai for every job i and B contains a node bt for every time step t. There is
additionally a source s with an outgoing edge to each node ai in A with capacity pi. There
is a sink node d that has an incoming edge from each node in B with capacity m. Finally
there is an edge from ai ∈ A to bt ∈ B of capacity 1 if and only if t ≤ Ci. See Figure 1.

A set of completion times are feasible if and only if there is a feasible flow in this network
of value

∑
i∈[n] pi. This is because a job can be scheduled for a unit at each time during

[0, Ci] and must be scheduled for pi units total. Further, every time step can schedule up
to m jobs.

There are two messages to takeaway from this. One is that the problem can be solved by
only knowing completion times for the jobs. The other is that this flow graph can be used
to determine if a set of completion times can be associated with a valid schedule. A set of
completion times are said to be valid if there is a schedule that completes each job only
earlier than the given completion time.

The following theorem follows from the construction of G.

I Theorem 3. A set of completion times is valid if and only if there is a feasible maximum
flow of value

∑n
i=1 pi in the flow graph G.

Given a set of valid completion times, one can construct a feasible schedule using the flow
graph. That is, an assignment of jobs to machine at each time step. Unfortunately, the graph
has size Ω(nP ) and could be exponential in size. Recall that P is the ratio of the maximum to
minimum job size. There is a polynomial time algorithm that constructs a feasible schedule
in time polynomial in n and logW given a set of valid completion times. Here W denotes
the maximum value of gj(t) for t ≤ nP . This algorithm is omitted due to space. It can be
obtained by rounding possible completion times to geometrically increasing times.
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4 Strengthened Linear Program with Job Cover Inequalities

Consider the following natural integer program. The constraints in the program come from
the flow graph of the prior section. Let xj,t be 1 if job j is not completed at time t and 0
otherwise.3 This implies that xj,t is continuously 1 for t less than j’s completion time and
then 0 for times t thereafter in an integer solution. Let T be the set of all time slots and J
the set of all jobs. By assuming gj(0) = 0 for all j, the objective function is a telescoping
summation for each job j whose value will be gj(t) if t is the last time j is not fully processed.
The first set of constraints says that if job j is completed at time t−1 then it is also completed
at time t. The second set of constraints are more involved. One can think of the latest time
t that xj,t = 1 as being the completion time of j. Given this, the constraint says that every
cut in the flow network from Section 3 has value at least

∑
i∈J pi. This is a valid constraint

by Theorem 3 and the maximum-flow minimum-cut theorem. Note that J ′ corresponds to
jobs whose nodes are on the side of the cut with the source s. Similarly, T ′ corresponds to
time steps whose nodes are on the side of the cut with the sink d.

min
∑
j∈J

∑
t∈T

xj,t(gj(t)− gj(t− 1)) (1)

s.t. xj,t ≤ xj,t−1 ∀j ∈ J, t ∈ T (2)∑
j∈J\J′

pj +
∑
j∈J′

∑
t∈T ′

xj,t +
∑

t∈T\T ′
m ≥

∑
j∈J

pj ∀J ′ ⊆ J, T ′ ⊆ T (3)

xj,t ∈ {0, 1} ∀j ∈ J, t ∈ T

The goal is to derive a set of valid strengthening inequalities for the IP (1). These
inequalities are used to strengthen the minimum cut constraints. These inequalities are
needed because without them the LP has an unbounded integrality gap even if all jobs arrive
at the same time on a single machine [7]. Other natural LP relaxations, such as a time
indexed LP also have an unbounded gap even on a single machine.

We can derive a set of strengthening inequalities for this linear program that replace the
set of constraints (3). The proof establishing validity of the following constraints is omitted
due to space. The strengthening focuses on the constraints in (3) for J ′ = J . In the end,
the derived constraints are strictly stronger than the above and one need not consider the
other sets J ′.

Fix J ′ = J and consider the constraints
∑
j∈J

∑
t∈T ′ xj,t +

∑
t∈T\T ′ m ≥

∑
j∈J pj for

all T ′ ⊆ T . For a job j and a collection of time steps T ′ let E(T ′, j) be the set of up to
min{pj ,

∑
i∈J pi −m|T \ T ′|} earliest time steps in T ′. The full analysis first shows that

we can strengthen this to∑
j∈J

∑
t∈E(j,T ′)

xj,t +
∑

t∈T\T ′
m ≥

∑
j∈J

pj for all T ′ ⊆ T.

Notice the first summation now only considers time steps in E(T ′, j) for each job j.
The proof further improves these inequalities by taking inspiration from knapsack cover

inequalities. Let D be a vector where Dj is a time corresponding to job j. Intuitively, Dj

is a lower bound on the completion time for job j. The constraints below say that even
if all jobs j are set to have completion times at least Dj then the constraints should still
be satisfied.

3 Note that this is not the standard time indexed LP where the variables represent the amount j is
processed at time t.
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Fix T ′ ⊆ T and a vector D of completion times for every job. Consider the constraint
for T ′ in the above set of inequalities. If job j is given a completion time of at least
Dj then j will contribute at least

∑
t∈[0,Dj ]∩E(T ′,j) 1 to the left side of the inequality. Let

V (T ′, D) =
∑
i∈J pi−

∑
t∈T\T ′ m−

∑
j∈J

∑
t∈[0,Dj ]∩E(T ′,j) 1. Let E(T ′, D, j) be the earliest

V (T ′, D) time steps in E(T ′, j) later than Dj . The new constraints are as follows. These are
the job cover inequalities.∑

j∈J

∑
t∈E(T ′,D,j)

xj,t ≥ V (T ′, D) ∀T ′ ⊆ T, ∀D,V (T ′, D) > 0 (4)

The validity of these inequalities is not difficult to show, but technical. Notice that the
number of inequalities is large. We can somewhat reduce the number of constraints as follows.
It can be established that any integer solution satisfies all the constraints in (4) if and only
if the following are satisfied. The proof is omitted.∑

j∈J

∑
t∈E(T ′,D,j)

xj,t ≥ V (T ′, D) ∀b ∈ [0,∞], T ′ = [b,∞],∀D,V (T ′, D) > 0 (5)

These constraints state that if the subset of constraints in (4) are satisfied for any D and
all sets T ′ that consist of a continuous set of time steps from some time b to time ∞ then all
of the constraints in (4) are satisfied (for any T ′). Due to this, we will only need to use the
constraints in (5) that restricts the sets T ′.

The constraints (3) in the IP are replaced by the constraints in (5). Throughout the
paper these constraints are discussed and it is said that a fixed constraint is defined by the
set T ′ = [b,∞] and a vector D.

Note on Solving the LP. The IP is relaxed to a LP. The LP is solved and then subsequently
rounded to an integer solution. There are an exponential number of constraints. To solve the
LP, the ellipsoid method is used. The author does not know of an efficient separation oracle
for the set of constraints in (4). The reduced set of constraints in (5) are the only constraints
needed for the analysis. For this set of constraints, an efficient dynamic programming
algorithm can be used as a separation oracle. The separation oracle has been omitted due to
space constraints.

5 The Rounding Algorithm

In this section the algorithm for rounding a fractional LP solution to an integral solution is
described. Recall in Section 3 it was shown how to assign jobs to machines and time slots if
a valid set of completion times have been established. The remaining goal is to design an
algorithm that rounds a fractional LP solution to an integral solution, giving the completion
times for the jobs.

The algorithm takes as input a fractional solution to the LP x′. The input solution
is for the LP given in the previous section with constraints (3) replaced with the derived
constraints (5). The algorithm rounds the x′ solution to an integral solution x∗. If this
solution is feasible, then the algorithm terminates. Otherwise x∗ is modified to obtain a new
feasible fractional solution x̃∗ that the algorithm recurses on.

Informal Algorithm Description and Intuition. The algorithm runs in phases. During a
phase the algorithm finds a completion time for each job. The completion times are pushed
back to later times in each phase. In a fixed phase the algorithm runs a randomized rounding
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procedure to sample completion times for the jobs. Roughly, each completion time will be
over sampled by a Θ(log lognP ) factor over the fractional part of the LP. After sampling an
integer solution x∗ is created and variables are set corresponding to the sampled completion
times of the jobs. Some of the constraints in the LP will be satisfied. These constraints
will always remain satisfied because each job’s completion time is only pushed back to a
later time in subsequent iterations. The algorithm needs to satisfy the remaining constraints,
which it does by recursing on a fractional LP solution x̃∗ to make completion times later.
The fractional solution x̃∗ is constructed by increasing variables in the integral solution x∗.

In each iteration, the cost of the sampling is bounded by a Θ(log lognP ) factor more
than the fractional portion of the linear program objective in expectation. Ideally, one can
use standard iterative rounding for the recursion. However, naive approaches could have
large cost as it is difficult to bound the number of times the algorithm recurses and therefore
difficult to bound how many times a variable in the LP is sampled. A standard approach
will result in a Θ(lognP ) approximation.

The idea is to only include some fractional variables in the linear program solution that
the algorithm recurses on. The variables that are included can be slightly larger than their
original value. The essential properties are that (1) the linear program is feasible and (2)
each fractional variable is set to 0 with constant probability. Using (2) it will be shown that
the expected value of each variable drops by a constant (e.g. 1

2 ) factor of its value at the
beginning of the iteration. If this is established, then the probability a completion time is
sampled decreases geometrically over the phases and we can bound the algorithm’s objective
by the cost of the sampling in the first phase, a Θ(log lognP ) factor within the original LP
object in expectation.

The recursion will determine fractional variables to set to satisfy all constraints. One
can think of the fractional variables as fractional completion times for the jobs. The
idea is to associate each constraint with a set of fractional completion times that are critical
for satisfying the constraint in the solution x′. This will not be all completion times used
to satisfy the constraint, but an essential subset of them. By slightly increasing the linear
program variables in the integral solution x∗ to get a solution x̃∗ it is the case that only the
critical completion times are needed to satisfy their corresponding unsatisfied constraints.

If a constraint is unsatisfied, then the solution x̃∗ will set positive fractional values for
all completion times critical for this constraint to satisfy it. The analysis will show that
each fractional completion time is 0 (not increased) in x̃∗ with constant probability. For a
completion time to be 0 in the recursion we need to ensure all constraints are satisfied where
the completion time is critical by the integer solution x∗. Unfortunately, a completion time
could be critical for many constraints. Due to this, it is insufficient to show each constraint
is satisfied with good probability and then union bound over all constraints.

Fix a fractional completion time. The proof establishes that with good probability every
constraint that the completion time is critical for is satisfied in x∗. This ensures that the the
completion is 0 with constant probability. This will be used to show that the expected value
of a fractional variable in the LP decreases geometrically over the iterations. A completion
time is over-sampled by at most a Θ(log lognP ) factor as compared to the original LP
solution in expectation over all iterations. The cost is as if only one iteration of uniform
sampling occurred. This is similar to the analysis approach used in quasi-uniform sampling
[22] and rounding [12].
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5.1 Formal Algorithm Description
The ith phase of the algorithm is the following. The algorithm recurses on the following
until all constraints are satisfied. Let the input to the first phase be x, the optimal fractional
solution to the LP. The algorithm utilizes randomized rounding parameterized by c ≤ 1. The
value of c will be set to be 1

Θ(log lognP ) .

Phase i of the Algorithm. The algorithm first uses randomized rounding. Let x′ be
a feasible fractional solution to the LP at ith phase of the algorithm. For each job j,
the algorithm chooses a value αj ∈ [0, 1] uniformly at random and independently. Let
Cj,α be the latest time t where x′j,t ≥ cαj . Let β′j be the latest time t where x′j,t = 1.
Let LP′int =

∑
j gj(β′j) be the total integral cost of the LP solution x′ and let LP′frac =∑

j∈J
∑
t>β′

j
x′j,t(gj(t)− gj(t− 1)) be the total fractional cost of the LP solution x′.

The algorithm modifies the LP solution x′ to get a new (possibly infeasible) solution x∗.
This is further modified to get a feasible solution x̃∗ that the algorithm recurses on. The
algorithm sets x∗j,t = 1 for all j and t where t ≤ Cj,α and 0 otherwise. If all constraints are
satisfied in the LP, then the algorithm sets C∗j = Cj,α and returns this set of completion
times as the final solution. If not, then the algorithm further modifies x∗ as described below
and recurses on phase i+ 1. Let x∗ denote the current integral solution and x̃∗ a fractional
solution resulting from the following modification to x∗.

Consider any constraint in (5) defined by a set of time steps T ′ and a vector of completion
times D′ that is not satisfied by x∗. Assume D′ is chosen so that D′j ≥ Cj,α for all j. We
only need to consider these constraints because xj,t = 1 for t ≤ Cj,α. Recall that we may
assume T ′ contains a continuous set of time steps beginning with some time tT ′ and going to
∞. The algorithm identifies a set of pairs of jobs and completion times that are fractionally
chosen in x′ that are “critical” for satisfying this constraint. Intuitively, we will need to
include these same fractional completion times in x̃∗.

Let JT ′,D′ be the set of jobs j where
∑
t∈E(T ′,D′,j) x

′
j,t > 0. These are jobs used to satisfy

the constraint in x′. The following two sets of jobs can be thought of as not critical for
the constraint.

1. Order the jobs j in JT ′,D′ as 1, 2, 3, . . . |JT ′,D′ | in decreasing order of D′j . Let
MT ′,D′ ⊆ JT ′,D′ be the smallest prefix of jobs 1, 2, . . . k from this order such that∑k
j=1

∑
t∈E(T ′,D′,j) x

′
j,t ≥ 1

10V (T ′, D′).
2. Order the jobs j in JT ′,D′ as 1, 2, 3, . . . , |JT ′,D′ | in increasing order of D′j . Let

LT ′,D′ ⊆ JT ′,D′ be the smallest prefix of jobs 1, 2, . . . k in this order such that∑k
j=1

∑
t∈E(T ′,D′,j) x

′
j,t ≥ 1

10V (T ′, D′).

We will say that the jobs in JT ′,D′ = JT ′,D′ \ (LT ′,D′ ∪MT ′,D′) are critical for satisfying
the constraint T ′, D′. Let J ∗ = {j | ∃T ′D′ s.t. the constraint for T ′ and D′ is unsatisfied in
x∗ and j ∈ JT ′,D′}. This is the set of all critical jobs for constraints that are not satisfied
by x∗.

For each job j ∈ J ∗ set x̃∗j,t′ to be 10x′j,t′ for all t′ ≥ Cj,α. Note that if c < 1
10 and

Cj,α ≤ t′ it is the case that x̃∗j,t′ ≤ c ≤ 1/10, so x̃∗ is in [0, 1] as desired. After performing all
updates, recurse.

Terminating Condition. The above description states that the algorithm terminates when
all constraints are satisfied by the integer solution x∗. The analysis will show that this occurs
in polynomial time in expectation.
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6 Bounding the Cost and Feasibility of the Algorithm

In this section, the correctness of the algorithm is established and the total cost of the
algorithm is bounded as well as the running time. The analysis has several intermediate
goals. One is to show that the resulting solution x̃∗ is feasible. Another is to show that
the increase in cost of the randomized rounding is bounded by the cost of the fractional
part of the LP in one iteration. The final goal is showing that the expected value of the
objective for the fractional part of the LP solution decreases significantly in each iteration.
After establishing these facts Theorem 3 will prove the main theorem.

Feasibility of the Algorithm. We now establish that x̃∗ is feasible for the LP. This ensures
the algorithm constructs a feasible solution. The proof is omitted due to space. The proof
follows by the fact that each unsatisfied constraint is associated with variables in the solution
x′ which are within a constraint multiplicative factor of satisfying the constraint. In the
recursion, these variables are included in x̃∗ with their fractional valuesincreased by a factor
10 over x′ ensuring their corresponding constraint is satisfied.

I Lemma 4. In any iteration of the algorithm, if x′ is a feasible LP solution then the
algorithm constructs a feasible solution x̃∗ at the end of the iteration for any c ≤ 1/10.

Bounding the Cost and Running Time of the Algorithm. This section bounds the cost of
the LP solution x̃∗ and the running time of the algorithm. First the cost of the randomized
rounding is bounded. This bounds the cost of the intermediate integral solution x∗. The
following lemma shows that the expected cost increase of the LP solution x∗ over x′ is bounded
by 1

cLP′frac. Recall that x∗ is the solution obtained by only the randomized rounding part of
the algorithm and it is a possibly infeasible integer solution. After this lemma, the cost of
the solution x̃∗ is bounded. This is the solution the algorithm recurses on. Combining the
cost over the entire algorithm is bounded.

The following lemma bounds the cost of the solution x∗. The proof is omitted. The proof
follows by a standard analysis of randomized rounding.

I Lemma 5. The total expected different in cost of x∗ and x′ is at most 1
cLP′frac. That is,

E[
∑
j∈J

∑
t(x∗j,t − x′j,t)(gj(t)− gj(t− 1))] ≤ 1

c

∑
j∈J

∑
t LP′frac.

Let LP∗frac :=
∑
j∈J

∑
t>Cj,α

x̃∗j,t(gj(t) − gj(t − 1)) be the fractional cost of x̃∗ and
LP∗int =

∑
j∈J g(Cj,α) be the integral cost. Note that LP∗int is precisely the objective of the

integral solution x∗. The key to bounding the cost of the algorithm is to show that the
fractional cost of the LP solution decreases by a constant factor in each iteration. This is
stated in the following lemma. The proof is deferred due to space. This lemma is the most
interesting part of the analysis and the proof is presented in Section 6.1.

I Lemma 6. In any iteration of the algorithm, E[LP∗frac] ≤ 1
4LP′frac.

Using this lemma, the total cost of the algorithm can be bounded.

I Lemma 7. Let OPT be the optimal feasible objective to the LP. It is the case that the
algorithm’s total cost is at most 2

cOPT in expectation.

Proof. Let LPi
frac denote the fractional part of the objective in the LP solution at the

beginning of the ith iteration of the algorithm. Note that LP1
frac ≤ OPT. Inductively,

Lemma 6 gives that E[LPi
frac] ≤ 1

4iOPT.
Lemma 5 ensures that the integral portion of the LP objective increases by at most 1

cLPi
frac

in each iteration. Thus the total cost can be bounded by 1
c

∑∞
i=1

1
4iOPT ≤ 2

cOPT. J
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The following proposition bounds the run time of the algorithm and the proof is omitted.
This follows because the previous lemma will ensure the variables in the LP converge to 0
after O(lognP ) iterations.

I Proposition 8. The algorithm runs in polynomial time in expectation.

Lemma 7 bounds the objective of the algorithm. Lemma 4 ensures that the algorithm
constructs a feasible solution. Finally, Propostion 8 shows the algorithm runs in polynomial
time. Together, this proves the main result, Theorem 1.

6.1 Proof of Lemma 6: Expected Decrease in the Fractional Objective
This section proves Lemma 6 for a fixed iteration of the algorithm. Fix a job j and the
fractional solution x′ that is input to the rounding algorithm in this iteration. The goal
is to show that the probability that j is in J ∗ is small and therefore the algorithm only
includes integral variables x̃∗j,t for job j when it recurses. In particular, the goal is to show
the following lemma. In the following, n and P are assumed to be sufficiently large.

I Lemma 9. Fix any job j∗. With probability at most 2
log2 nP

≤ 1/40 it is the case that there
is a constraint T ′, D′ unsatisfied by x∗ and j∗ ∈ JT ′,D′ when c ≤ 1

1000 log lognP .

This lemma implies Lemma 6.

Proof of Lemma 6. Fix any job j and an iteration of the algorithm. If there is a constraint
T ′, D′ unsatisfied, j ∈ JT ′,D′ , x′j,t is fractional, t ≥ Cj,α and t ∈ E(T ′, D′, j) then the
algorithm sets x̃∗j,t to be 10x′j,t.

This event increases the cost of x̃∗ by at most 10
∑
t>Cj,α

x′j,t(gj(t) − gj(t − 1)) and it
happens for some T ′, D′ with probability at most 1/40. The total expected cost LP∗frac is at
most the following.

10
∑
j∈J

∑
t>Cj,α

x′j,t(gj(t)− gj(t− 1)) Pr[∃T ′, D′| j ∈ JT ′,D′ and constraint T ′, D′ unsatisfied by x∗]

≤ 10
∑
j∈J

∑
t>Cj,α

x′j,t(gj(t)− gj(t− 1)) 1
40 ≤

1
4

∑
j∈J

∑
t>Cj,α

x′j,t(gj(t)− gj(t− 1)) [Lemma 9]

Thus, the expected cost of LP∗frac decreases by a factor 1/4 over LP′frac. J

The remaining goal of this section is to prove Lemma 9. The proof begins by observing
that since the solution x∗ is integral if a constraint T ′ and D′ is satisfied for a particular set
D′ then the constraints for T ′ and all sets D′′ are satisfied. This will allow us to focus on
constraints for one special set D′. The proof is omitted.

I Proposition 10. Let tT ′ be some time step and T ′ = [tT ′ ,∞]. Let D′ be set such that D′j
is the latest time t where x′j,t ≥ c for all jobs j. If the constraint for T ′ and D′ is satisfied in
the solution x∗ then all constraints for T ′ and any set D′′ are satisfied in the soultion x∗.

For the remainder of the proof, fix D′ to be as described in the prior lemma. Now we
establish some basic propositions on which jobs contribute to a constraint. This will be useful
for identifying critical jobs. Note that the two propositions below are different depending on
the ordering of the times considered. The proofs are omitted.
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I Proposition 11. Fix any job j and two sets T = [tT ,∞] and T ′ = [tT ′ ,∞] where D′j ≤
tT < tT ′ . For any fractional LP solution x satisfying constraints (2) if V (T,D′) ≥ 1

2V (T ′, D′)
then it is the case that

∑
t∈E(T ′,D′,j) xj,t ≤ 2

∑
t∈E(T,D′,j) xj,t.

I Proposition 12. Fix any job j and two sets T = [tT ,∞] and T ′ = [tT ′ ,∞] and D′j > tT >

tT ′ . For any fractional LP solution x satisfying constraints (2) if V (T,D′) ≥ 1
2V (T ′, D′)

then
∑
t∈E(T ′,D′,j) xj,t ≤ 2

∑
t∈E(T,D′,j) xj,t.

The next lemma establishes that for any fixed constraint T ′ and D′, it is the case that
the constraint is satisfied with good probability in the integral solution x∗. Further, the
constraint is satisfied if only the jobs in MT ′,D′ (or LT ′,D′) are considered in the summation
in the left hand side of the constraint. Due to space, the proof is ommited.

I Lemma 13. Fix any T ′ = [tT ′ ,∞] and let the vector D′ contain the time D′j that is the
latest time t where x′j,t ≥ c for all jobs j. With probability at least 1− 1

log10 nP
it is the case that∑

j∈LT ′,D”

∑
t∈E(T ′,D′,j) x

∗
j,t ≥ 10V (T ′, D′) and

∑
j∈MT ′,D′

∑
t∈E(T ′,D′,j) x

∗
j,t ≥ 10V (T ′, D′)

when c ≤ 1
1000 log lognP .

Fix any job j∗. Group constraints into two classes for job j∗. The first class are those
constraints T ′ = [tT ′ ,∞] where tT ′ > D′j∗ and the second class are the remaining constraints.
It will be shown separately for both groups of constraints that they are all unsatisfied with
small probability.

In the following lemma, the first class of constraints are considered. This lemma heavily
relies on Proposition 11.

I Lemma 14. Fix any job j∗. With probability at most 1/ log2 nP it is the case that
there exists a constraint T ′, D′′ unsatisfied by x∗, j∗ ∈ JT ′,D′′ and tT ′ > D′j∗ when c ≤

1
1000 log lognP .

Proof. Fix any job j∗. Let D′ be set such that D′j is the latest time t where x′j,t ≥ c for all
jobs j. The proof will establish that with probability greater 1− 1

log2 nP
it is the case that

the constraints for D′ and any T ′ = [tT ′ ,∞] with tT ′ > D′j∗ are satisfied by x∗. Applying
Proposition 10 this implies that x∗ satisfies the same allowing for any constraint D′′, proving
the lemma.

Geometrically group constraints based on the value of V (T ′, D′). Let Ck contain the
set T ′ = [tT ′ ,∞] if j∗ ∈ JT ′,D′ , 2k ≤ V (T ′, D′) < 2k+1 and tT ′ > D′j∗ for any integer
0 ≤ k ≤ lognP .

Fix k and the set T ′ ∈ Ck such that tT ′ is as late as possible. Let LT ′,D′ be as
described in the algorithm definition. We will establish that if

∑
j∈LT ′,D′

∑
t∈E(T ′,D′,j) x

∗
j,t ≥

10V (T ′, D′) then all constraints V (T ′′, D′) for any T ′′ ∈ Ck are satisfied. Once this is
established, this will complete the proof as follows. We apply Lemma 13 stating that∑
j∈LT ′,D′

∑
t∈E(T ′,D′,j) x

∗
j,t ≥ 10V (T ′, D′) occurs with probability at least 1− 1

log10 nP
. By

union bounding for all lognP values for k the lemma follows.
Say that

∑
j∈LT ′,D′

∑
t∈E(T ′,D′,j) x

∗
j,t ≥ 10V (T ′, D′). Consider any set T ′′ ∈ Ck. By

definition of the set LT ′,D′ it is the case that D′j ≤ D′j∗ for all j ∈ LT ′,D′ . Hence, D′j ≤
D′j∗ ≤ tT ′′ ≤ tT ′ . Thus, Proposition 11 and the geometric grouping of constraints gives that∑
j∈LT ′,D′

∑
t∈E(T ′′,D′,j) x

∗
j,t ≥ 1

2
∑
j∈LT ′,D′

∑
t∈E(T ′,D′,j) x

∗
j,t ≥ 5V (T ′, D′) ≥ V (T ′′, D′).

Thus the constraint for T ′′ and D′ is satisfied, proving the lemma. J

Similar to the previous lemma, in the following lemma it is shown that all of the
second class of constraints are satisfied with good probability. This lemma heavily relies on
Proposition 12. This proof is similar to the prior lemma and is omitted.
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I Lemma 15. Fix any job j∗. With probability at most 1/ log2 nP it is the case that there
exists a constraint T ′, D′′ unsatisfied by x∗, j∗ ∈ JT ′,D′ and tT ′ < D′j∗ when c ≤ 1

1000 log lognP .

For sufficiently large n and P , a union bound and Lemmas 14 and 15 prove Lemma 9.

7 Conclusion

This paper introduced a new set of strong inequalities for scheduling problems on multiple
identical machines. Using these inequalities, the paper showed an iterative algorithm that
rounds a fractional LP solution to an integral solution which achieves an O(log lognP )
approximation for most reasonable scheduling minimization problems.

An open question is if there are algorithms with an O(1) approximation ratio for GSP
on identical machines. It is also of interest to determine if the inequalities introduced can
be extended to other bipartite assignment problems. Can these inequalities be extended to
more general environments, such as the related machines or restricted assignment settings?
Could a similar analysis be used when jobs arrive over time? These cases introduce new
technical hurdles, but O(1) approximation algorithms could be possible by leveraging the
given constraints and assuming preemption and migration are allowed.4 For example, if
jobs arrive over time then a generalization of the LP with the strengthened constraints
can be derived. However, the rounding becomes challenging because there appears to be
no reduction showing only a polynomial number of time sets T ′ need to be considered in
the set of constraints, like was established in this paper. Due to this, it is challenging
to show all exponential number of constraints based on sets of times are satisfied by the
rounding algorithm.
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Computing Optimal Epsilon-Nets Is as Easy as
Finding an Unhit Set
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Abstract
Given a set system (X,R) with VC-dimension d, the celebrated result of Haussler and Welzl (1987)
showed that there exists an ε-net for (X,R) of size O

(
d
ε

log 1
ε

)
. Furthermore, the algorithm is

simple: just take a uniform random sample from X! However, for many geometric set systems this
bound is sub-optimal and since then, there has been much work presenting improved bounds and
algorithms tailored to specific geometric set systems.

In this paper, we consider the following natural algorithm to compute an ε-net: start with an
initial random sample N . Iteratively, as long as N is not an ε-net for R, pick any unhit set S ∈ R
(say, given by an Oracle), and add O(1) randomly chosen points from S to N .

We prove that the above algorithm computes, in expectation, ε-nets of asymptotically optimal
size for all known cases of geometric set systems. Furthermore, it makes O

(
1
ε

)
calls to the Oracle.

In particular, this implies that computing optimal-sized ε-nets are as easy as computing an unhit set
in the given set system.
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1 Introduction

Let X be a set of n base elements, and R a collection of m sets over X. Given a parameter
ε > 0, an ε-net for (X,R) is a set N ⊆ X such that for all S ∈ R with |S| ≥ εn, we have
N ∩ S 6= ∅.

The notion of ε-nets has been heavily studied across several disciplines, including discrete
and computational geometry, machine learning, statistics, convex geometry and randomized
algorithms. We refer the reader to the books [3, 7, 14, 16, 20] as well as recent surveys [19, 21].

For general set systems (X,R), it is easy to see that there exists an ε-net of size
O
( 1
ε log |R|

)
. For more constrained set systems – for example, those arising in geometric

configurations – one can show the existence of ε-nets of considerably smaller size. This was
realized in the 1980s with the seminal work of Clarkson [8] and Haussler-Welzl [11]. In
particular, when the VC-dimension of (X,R), denoted by VC-dim(R), is at most d, then there
exist ε-nets of size O

(
d
ε log 1

ε

)
– of size independent of |X| or |R|. Furthermore, to construct

a net of this expected size, the algorithm is simple: just take a uniform random sample.
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Haussler-Welzl Net-Finder Algorithm.

Input: base elements X, a set system R on X, a parameter ε > 0.

N : pick each x ∈ X independently with probability Θ
(

d
ε|X| log 1

ε

)
.

return N .

It has been observed over the past 30 years that improvements to the Clarkson and
Haussler-Welzl bounds are possible for a variety of geometric set systems – e.g., O( 1

ε )-sized
nets exist for subsets induced by disks in the plane, half-spaces in R2 and R3, subsets induced
by pseudo-disks, dual set systems of linear union complexity and so on. More recently, the
work of Varadarajan [23], Aronov et al. [4] and Chan et al. [6] has settled the question
on sizes of ε-nets for many basic geometric set systems precisely in terms of their so-called
shallow-cell complexity – in particular, there exist ε-nets of size O

( 1
ε logϕR

(
O
( 1
ε

)
, O (1)

))
.

A set system (X,R) has shallow-cell complexity ϕR(·, ·) if for any Y ⊆ X, the number
of subsets in R|Y of size at most l is |Y | · ϕR (|Y |, l) (here R|Y = {S ∩ Y : S ∈ R} is the
projection of the set system R on Y ). Bounds for ϕR (·, ·) has been well-studied and by now
we know asymptotically optimal bounds for the basic geometric set systems (see [19]).

However, all the above algorithms for constructing ε-nets either have efficient implement-
ations but then only work for very specific set systems (e.g., near-linear time algorithm for
disks in R2 [5], half-spaces in R3 [15]), or are inefficient if they work for general set systems.
Consider these algorithms from recent work:
1. Chan et al. [6] construction gives optimal-sized nets as a function of the shallow-cell

complexity of the set system; however the algorithm is inefficient. It has to enumerate
over each set of R – there can be Ω(nd) such sets for some constant d – to compute a
representative of each set of R. Furthermore, it needs to have access to all the sets of R
at the beginning to be able to compute these representatives.

2. Aronov et al. [4] and Varadarajan [23] algorithms can be implemented to work efficiently,
but they work for special cases of set systems (so-called dual set systems induced by
geometric objects in the plane) and further also need certain spatial decompositions (for
the complement of the union) which are specific to the types of geometric objects.

3. Mustafa et al. [18] also give general bounds in terms of the shallow-cell complexity of
a set system. However, the algorithm needs to first select a special maximal subset of
R called a packing. This packing can have large size, and furthermore, computing this
packing is inefficient, taking Ω(n2) time.

2 Our Result

Our main insight is that the cause of inefficiency – the careful construction of sets needed for
the “alterations” – can be avoided altogether. By extending the ideas present in the work in
1. and 3. above, we present a simple algorithm that
a) computes an ε-net of expected size matching the current-best bounds for known geometric

set systems, and
b) avoids any pre-computation, hierarchical subdivisions, representation-computation, or

partitioning.

Here is our algorithm – as it turns out, a slight addition of the Haussler-Welzl Net-
Finder Algorithm.
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General Net-Finder Algorithm.

Input: base elements X, a set system R on X, a parameter ε > 0.

N : pick each x ∈ X independently with probability p to be fixed later (Section 3).

while there exists a set S ∈ R, |S| ≥ ε|X|, not hit by N do
update N by adding O(1) uniformly chosen elements of S to N .

return N

Oracle. In order to separate the set system-specific implementation details from the net
algorithm, we will assume the existence of an Oracle that can return an unhit set in our
set system with respect to the current candidate net N . We refer the reader to Chazelle [7]
for details on oracle-based bounds for sampling in geometric set systems. For geometric set
systems, the existence of efficient implementation of such oracles follow from the extensive
work on range searching, reporting and emptiness data-structures (see [1]). For example, for
the case where X is a set of points in R2 and the sets are induced by disks, the oracle can be
implemented to run in overall time O(n · polylog(n)) using standard techniques (e.g., see [5]).

We refer the reader to Agarwal-Pan [2] for details on data-structures for several other
geometric set systems.

Our main theorem:

I Theorem 1. General Net-Finder Algorithm computes an ε-net of expected optimal
size for ε-nets for the following set systems:
1. O

( 1
ε logϕR

(
O
(
d
ε

)
, O(d)

)
+ d

ε

)
: abstract set systems as a function of their shallow-cell

complexity ϕR(·, ·) (we will assume that ϕR(·, ·) is non-decreasing in both arguments) and
VC-dimension d,

2. O
( 1
ε

)
: half-spaces in R2, half-spaces in R3, pseudo-disks and disks in R2, dual systems

of linear union complexity,
3. O

( 1
ε log log 1

ε

)
: axis-parallel rectangles in R2,

4. O
(

log(ε·κR(1/ε))
ε

)
: dual set systems as a function of their union complexity κR (·),

5. O
(
d
ε log 1

ε

)
: set systems of VC-dimension at most d, half-spaces in Rd.

See [19, Table 47.4.1] for the complete list of known bounds, all of which are produced by
our algorithm.

Furthermore, it makes expected O( 1
ε ) calls to the Oracle.

I Remark 1. For example, all the bounds presented in the work of Varadarajan [23], Clarkson
and Varadarajan [10], Pyrga-Ray [22], Chan et al. [6], Aronov et al. [4], Mustafa et al. [18]
are achieved by our General Net-Finder Algorithm.

I Remark 2. We note here that the unhit set S returned by the Oracle at each step need
not be random – it can be any unhit set. The expectation is over the choice of the initial
random sample as well as the O(1) random points picked from S. The specific choice of S is
irrelevant.

I Remark 3. In particular, Theorem 1 shows that computing an ε-net of optimal size is as
easy/hard – within a multiplicative factor of 1

ε – as computing one set unhit by N ⊆ X in a
set system (X,R).
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I Remark 4. This work is an example of the phenomenon where the “complexity” is moved
from the algorithm to its analysis. Thus while our analysis uses specific combinatorial
and geometric structures, the algorithm itself becomes very simple and oblivious to these
structures (e.g., see [24]).

Lastly, we observe that for the case of set systems with linear-sized ε-nets, it is not even
necessary to take an initial random sample. The algorithm simplifies even further to:

Special Net-Finder Algorithm.

Input: base elements X, a set system R on X, a parameter ε > 0.

N = ∅.
while there exists a set S ∈ R, |S| ≥ ε|X|, not hit by N do

update N by adding O(1) uniformly chosen elements of S to N .

return N .

Our second theorem is the following.

I Theorem 2. If the shallow-cell complexity of R satisfies ϕR(n, k) = O (kc), then Special
Net-Finder Algorithm computes an ε-net of expected size O

( 1
ε

)
. In particular, it computes

a O
( 1
ε

)
-sized net for the set systems induced by half-spaces in R2, half-spaces in R3, pseudo-

disks and disks in R2, and dual systems of linear union complexity.
Furthermore it makes expected O( 1

ε ) calls to the Oracle.

Organization. In Section 3 we prove some key structural lemmas about the random process
common to both the above algorithms. Then in Section 4 we give the proof of Theorem 1,
and in Section 5 the proof of Theorem 2.

3 Key Lemmas

We first re-state our main method, General Net-Finder Algorithm, more precisely by
filling in the exact constant values and probabilities that will be then used in the proofs.

Let (X,R) be the given set system with VC-dim(R) ≤ d, and shallow-cell complexity
ϕR(·, ·).

General Net-Finder Algorithm.

Input: (X,R) with VC-dim(R) ≤ d and shallow-cell complexity ϕR(·, ·), parameter
ε > 0.

β, γ, ca are absolute constants (explicitly fixed later).

N0 : pick x ∈ X i.i.d. with prob. ca·
(

1(
3
4−

β
2

)
ε|X|

log

(
d3ϕR

(
4d
βε
, 24d
β

)2
)

+ d(
3
4−

β
2

)
ε|X|

log 1(
3
4−

β
2

))
N = N0.
while there exists a set S ∈ R, |S| ≥ ε|X|, not hit by N do

NS : pick each x ∈ S independently with probability ca·
(

1
γ|S| log 2 + d

γ|S| log 1
γ

)
.

N = N ∪NS .

return N .
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For the Special Net-Finder Algorithm, simply omit the initial random sample, and
start with N = N0 = ∅.

The proof of our main result builds on the technique in [18]. There the packing lemma
was used to construct a maximal packing. The new insight in this paper is that through the
use of two-level packings, it is not necessary to even know or construct maximal packings (the
computational bottleneck earlier). The algorithm is blind to the specific packing; however
the analysis amortizes the cost of adding new points to a second-level packing constructed
from the sets of the first packing. This is the key new idea, enabling us to bound the total
number of points added after the initial random sample.

For the proof of our two main theorems, we will need the following results.

I Theorem A (Epsilon-net Theorem [11, 12]). Let (X,R) be a set system, d ∈ N+ a positive
integer such that VC-dim(R) ≤ d, and ε ∈ [0, 1] a given real parameter. Then there exists an
absolute constant ca > 0 such that a random sample N constructed by picking each point of
X independently with probability

ca ·

(
1

ε|X|
log 1

γ
+ d

ε|X|
log 1

ε

)
.

is an ε-net for R with probability at least 1− γ.

Given (X,R), a (k, δ)-packing of R is a subset P ⊆ R such that i) for all S ∈ P we have
|S| ≤ k, and ii) for all S, S′ ∈ P we have |∆(S, S′)| ≥ δ. Here ∆(A,B) = (A \B) ∪ (B \A)
is the symmetric difference of A and B.

I Theorem B (Shallow Packing Lemma [17]). Let (X,P) be a (k, δ)-packing on n elements,
for integers k, δ > 0. If VC-dim(P) ≤ d and P has shallow-cell complexity ϕ(·, ·), then
|P| ≤ 24dn

δ · ϕ
( 4dn
δ , 12dk

δ

)
.

In the proof below, we assume that each set S considered by the algorithm has size
[εn, 2εn]. Then we will show that, in expectation, O( 1

ε ) additional points are added after the
initial random sample N0. The general case – where the sets S considered by the algorithm
can have any size greater than εn – follows directly: we group the sets considered by the
algorithm by their sizes – all sets of size [2iεn, 2i+1εn] go into the same group i. So the
algorithm can be seen as constructing different nets, a ε′-net where ε′ = 2iε, for group
i, simultaneously. The proof below shows that for each group i, the expected number of
elements added is O

( 1
ε′

)
= O

( 1
2iε
)
. Then summing up gives a geometric series, with the

overall bound of O
( 1
ε

)
points added over all groups. The initial random sample N0 can be

thought of as a different sample for each group, with the total size over all groups again
forming a geometric series which sums up to the stated bound.

Let β, γ be two positive reals whose value will be fixed later, with the property that
γ ≤ 1

4 and 0 ≤ β + γ ≤ 1.
Fix any maximal (2εn, βεn)-packing P of R consisting of sets of size at least εn; say the

packing consists of the sets

P =
{
P 1, . . . , Pm

}
, where m ≤ 24dn

βεn
ϕR

(
4dn
βεn

,
24dεn
βεn

)
= O

(
d

βε
· ϕR

(
4d
βε
,

24d
β

))
(by Theorem B).

Say the Net-Finder Algorithm (both general and special) continues for t steps, and adds
additional points of X to N for each of the sets S1, . . . , St, namely the points NS1 , . . . , NSt .
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As P is a maximal (2εn, βεn)-packing of R and εn ≤ |Si| ≤ 2εn for each i = 1, . . . , t, it must
be that for each Si, there exists an index j ∈ [m] with |∆(Si, P j)| < βεn (note that it is
possible that P j = Si). Assign Si to the set P j (pick an arbitrary one if there are several
such possibilities).

For each j ∈ [m], let nj be the number of sets of {S1, . . . , St} assigned to P j ∈ P, and
denote them by

Sj = 〈Sj1, . . . , Sjnj 〉, listed in the order considered by the Net-Finder Algorithm.

Note that
∑m
j=1 nj = t, and furthermore,

for every j ∈ [m], i ∈ [nj ], we have |∆(Sji , P
j)| < βεn. (1)

B Claim 3. For each j ∈ [m] and i ∈ [nj ], we have

|P j ∩ Sji | >
|P j |+ |Sji | − βεn

2 .

Proof. For each i ∈ [nj ], we have

|P j |+ |Sji | = |P
j \ Sji |+ |S

j
i \ P

j |+ 2|P j ∩ Sji | < βεn+ 2|P j ∩ Sji |, (2)

where the last inequality follows from (1). Re-arranging the terms above gives the required
statement. C

For each j ∈ [m], define

S ′j =
{
S ∈ Sj : NS turns out to be a γ-net for the set system (S,R|S)

}
.

B Claim 4. For any j ∈ [m],

|S ′j | =

O
(

d
3
2−β−γ

· ϕR
(

4d
3
2−β−γ

, 12d
3
2−β−γ

))
if β + γ ≥ 1

2 ,

O(1) otherwise.

Proof. Let n′j = |S ′j |. By re-labeling the sets of Sj , we can assume that S ′j = 〈Sj1, . . . , S
j
n′
j
〉,

again listed here in the order that they were considered by the Net-Finder Algorithm.
Consider the set system T ′j = 〈T j1 , . . . , T

j
n′
j
〉 over the base set P j , where T ji = Sji ∩ P j .

Consider two distinct indices k, l ∈ [n′j ] with k < l. The set NSj
k
was added to N in the

algorithm before the set Sjl was considered. In particular, as NSj
k
is a γ-net for

(
Sjk,R|Sj

k

)
(by the definition of S ′j), it must be that the set Sjl was not hit by the γ-net for

(
Sjk,R|Sj

k

)
and so |Sjk ∩ S

j
l | < γ · |Sjk|. In particular, this implies that

|T jk ∩ T
j
l | = |S

j
k ∩ S

j
l ∩ P

j | ≤ |Sjk ∩ S
j
l | < γ · |Sjk|. (3)
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Thus we have

|∆(T jk , T
j
l )| = |T jk |+ |T

j
l | − 2|T jk ∩ T

j
l | (4)

= |Sjk ∩ P
j |+ |Sjl ∩ P

j | − 2|T jk ∩ T
j
l |

>
|P j |+ |Sjk| − βεn

2 +
|P j |+ |Sjl | − βεn

2 − 2|T jk ∩ T
j
l | (by Claim 3)

>
|P j |+ |Sjk| − βεn

2 +
|P j |+ |Sjl | − βεn

2 − 2 · γ · |Sjk| (by Inequality (3))

= |P j | − βεn+
|Sjl |

2 +
(1

2 − 2γ
)
|Sjk|

≥ |P j | − β|P j |+ |P
j |/2
2 +

(1
2 − 2γ

) |P j |
2 (as εn ≤ |P j |, |Sjk|, |S

j
l | ≤ 2εn, γ ≤ 1

4 )

=
(3

2 − β − γ
)
· |P j |. (5)

There are two cases to consider here:
β + γ < 1

2 . In this case, Inequality (5) implies that |∆(T jk , T
j
l )| > |P j |, which cannot

happen as both T jk and T jl are subsets of P j . Thus S ′j must consist of at most one set,
and we’re done.
β + γ ≥ 1

2 . In this case, the sets of T ′j form a
(
|P j |,

( 3
2 − β − γ

)
· |P j |

)
-packing over the

elements of P j . Thus by Theorem B, we have

|S ′j | = |T ′j | = O

(
d

3
2 − β − γ

· ϕR
(

4d
3
2 − β − γ

,
12d

3
2 − β − γ

))
. C

I Lemma 5.

E
[
|Sj |

]
=

O
(

d
3
2−β−γ

· ϕR
(

4d
3
2−β−γ

, 12d
3
2−β−γ

))
if β + γ ≥ 1

2 ,

O(1) otherwise.

Further, the above bound holds for any choice of N0.

Proof. We prove this bound for any choice of N0, relying, in the following analysis, only on
the sets NS that were added iteratively. Note that there may be complicated dependencies
among the sets of Sj . For example, a set Sjl may only exist in Sj because of the choice of the
random sample for some earlier set Sjk, k < l. However, for a fixed S ∈ R, the probability of
the random sample NS being a γ-net for the set system (S,R|S) is independent of earlier
iterations, and occurs with probability at least 1

2 by Theorem A. Recalling that |S ′j | is the
number of sets of Sj for which the random sample succeeds to be a γ-net, we have

E
[
|S ′j |

]
=
∑
S∈Sj

Pr [NS is a γ-net for (S,R|S)] ≥ |S
j |

2 .

On the other hand, Claim 4 upper-bounds |S ′j | and thus E[|S ′j |]. Putting them together
implies the lemma. J

4 Proof of Theorem 1

We first give the key theorem from which we will then derive all the bounds promised in
Theorem 1. We continue to use the notations and definitions defined earlier.

ICALP 2019



87:8 Computing Optimal Epsilon-Nets Is as Easy as Finding an Unhit Set

I Theorem 6. Let (X,R) be a set system with shallow-cell complexity ϕR(·, ·) and VC-
dimension at most d. Then the General Net-Finder Algorithm returns an ε-net of
expected size O

( 1
ε logϕR

(
O
(
d
ε

)
, O (d)

)
+ d

ε

)
. Furthermore, it makes expected O

( 1
ε

)
calls to

the Oracle.

Proof. Clearly the algorithm only stops when N is an ε-net. Thus it remains to bound the
expected size and the expected running time.

Consider an index j ∈ [m]. By Claim 3, we have that for any i ∈ [nj ],

|P j ∩ Sji | >
|P j |+ |Sji | − βεn

2 ≥ |P
j |+ |P j |/2− β|P j |

2 =
(

3
4 −

β

2

)
· |P j |,

recalling that β ≤ 1. Thus if N0 is a
(

3
4 −

β
2

)
-net for

(
P j ,R|P j

)
, then any S ∈ Sj would be

hit by N0 and so it must be that Sj = ∅. By Theorem A, for a fixed index j, N0 fails to be

a
(

3
4 −

β
2

)
-net for

(
P j ,R|P j

)
with probability O

(
1

d3ϕR( 4d
βε ,

24d
β )2

)
.

At each iteration, for a set S ∈ R not hit by N , we add

E [|NS |] = |S| · ca ·
(

1
γ|S|

log 2 + d

γ|S|
log 1

γ

)
= O

(
d

γ
log 1

γ

)
new points to N . Thus the points added to N over all iterations are

E

[
t∑
i=1

|NSi |

]
= O

(
d

γ
log 1

γ

)
·E[t] = O

(
d

γ
log 1

γ

)
·E

[
m∑
j=1

|Sj |

]

= O

(
d

γ
log 1

γ

)
·
m∑
j=1

Pr
[
N0 is not a

(3
4 −

β

2

)
-net for (P j ,R|P j )

]
·

E
[
|Sj |
∣∣N0 is not a

(3
4 −

β

2

)
-net for (P j ,R|P j )

]
= O

(
d

γ
log 1

γ

)
·m ·O

(
1

d3ϕR
(

4d
βε ,

12d
β/2

)2

)
·O
(

d
3
2 − β − γ

· ϕR

(
4d

3
2 − β − γ

,
12d

3
2 − β − γ

))
.

As 3
2 − β − γ ≥

1
2 ≥ max

{
βε, β2

}
for ε ≤ 0.5 and by the assumption that ϕR(·, ·) is non-decreasing in the

first and second arguments,

≤ O

(
1

γ
(

3
2 − β − γ

) log 1
γ

)
·m ·O

(
1

dϕR
(

4d
βε ,

24d
β

))

= O

(
1

γ
(

3
2 − β − γ

) log 1
γ

)
·O
(
d

βε
· ϕR

(4d
βε
,

24d
β

))
·O

(
1

dϕR
(

4d
βε ,

24d
β

))

= O

(
1

γ
(

3
2 − β − γ

) log 1
γ

)
·O
( 1
βε

)
.

For the initial set N0, we have

E [|N0|] = O

 1(
3
4 −

β
2

)
ε

log
(
dϕR

(
4d
βε
,

24d
β

))
+ d(

3
4 −

β
2

)
ε

log 1(
3
4 −

β
2

)
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Putting everything together, we get

E [|N |] = E [|N0|] + E
[

t∑
i=1
|NSt |

]

= O

 1(
3
4 −

β
2

)
ε

log
(
dϕR

(
4d
βε
,

24d
β

))
+ d(

3
4 −

β
2

)
ε

log 1(
3
4 −

β
2

)


+O

(
1

γ
( 3

2 − β − γ
) log 1

γ

)
·O
(

1
βε

)
.

We can set γ to be any small-enough constant, say γ = 1
100 , and set β = 3

4 . Thus we get

E [|N |] = O

(
1
ε

log
(
dϕR

(
4d
βε
,

24d
β

))
+ d

ε

)
= O

(
1
ε

logϕR
(
O

(
d

ε

)
, O (d)

)
+ d

ε

)
. J

I Theorem 1. General Net-Finder Algorithm computes an ε-net of expected optimal
size for ε-nets for the following set systems:
1. O

( 1
ε logϕR

(
O
(
d
ε

)
, O(d)

)
+ d

ε

)
: abstract set systems as a function of their shallow-cell

complexity ϕR(·, ·) (we will assume that ϕR(·, ·) is non-decreasing in both arguments) and
VC-dimension d,

2. O
( 1
ε

)
: half-spaces in R2, half-spaces in R3, pseudo-disks and disks in R2, dual systems

of linear union complexity,
3. O

( 1
ε log log 1

ε

)
: axis-parallel rectangles in R2,

4. O
(

log(ε·κR(1/ε))
ε

)
: dual set systems as a function of their union complexity κR (·),

5. O
(
d
ε log 1

ε

)
: set systems of VC-dimension at most d, half-spaces in Rd.

See [19, Table 47.4.1] for the complete list of known bounds, all of which are produced by
our algorithm.

Furthermore, it makes expected O( 1
ε ) calls to the Oracle.

Proof. All except one required bound follows directly from Theorem 6; we refer the reader
to the survey [19]. Briefly, for the case of halfspaces in R2, R3, disks and pseudo-disks in
R2, we have ϕ(n, k) = O (kc), for a constant c (by the bound on (≤ k)-sets [9]) and so
the algorithm returns ε-nets of size O( 1

ε ). For the case of half-spaces in Rd and balls in
Rd−1, d ≥ 4, we have ϕ(n, k) = nbd/2c−1kdd/2e and so the algorithm returns ε-nets of size
O
(
d
ε log 1

ε

)
. Similarly the bounds follow for the dual set systems as a function of their union

complexity.
The exception is the bound of O

( 1
ε log log 1

ε

)
for the primal system induced by axis-

parallel rectangles in the plane. Here we use a result of Aronov et al. [4] which shows that
given a set X of n points in the plane, and R the set system induced on X by all axis-parallel
rectangles, there exists another set system R′ on X with the following property:
1) For each set R ∈ R of size at least εn induced by an axis-parallel rectangle in the plane,

there exists a set f(R) ∈ R′ also induced by an axis-parallel rectangle in the plane, with
f(R) ⊆ R and further |f(R)| ≥ |R|2 .

2) The shallow-cell complexity of R′ is small – ϕR′(n, k) = O
(
logn · k3).

Now General Net-Finder Algorithm takes a O(1)-sized uniform random sample from a
currently unhit set ofR, say R. But then by property 1) above, it takes a O(1)/2-sized uniform
random sample from f(R). From property 2) above, we have ϕR′(n, k) = O

(
logn · k3) and

so Theorem 6 implies a bound of O
( 1
ε log log 1

ε

)
. J
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5 Proof of Theorem 2

All the known bounds of O
( 1
ε

)
for set systems follow because for such a system R, we

have ϕR(n, k) = kc for some constant c. Thus Theorem 2 can be deduced from the
following theorem.

I Theorem 7. Let (X,R) be a set system with shallow-cell complexity ϕ(n, k) = O (kc) for
some absolute constant c. Then the Special Net-Finder Algorithm returns an ε-net of
expected size O

( 1
ε

)
.

Proof. Clearly the algorithm only stops when N is an ε-net. Thus it remains to bound the
expected size and the expected running time.

At each iteration, for a set S ∈ R not hit by N , we add

E [|NS |] = |S| · ca ·
(

1
γ|S|

log 2 + d

γ|S|
log 1

γ

)
= O

(
d

γ
log 1

γ

)
new points to N . Thus the points added to N over all iterations are

E

[
t∑
i=1

|NSi |

]
= O

(
d

γ
log 1

γ

)
·E[t] = O

(
d

γ
log 1

γ

)
·E

[
m∑
j=1

|Sj |

]

= O

(
d

γ
log 1

γ

)
·m ·O

(
d

3
2 − β − γ

· ϕR

(
4d

3
2 − β − γ

,
12d

3
2 − β − γ

))
= O

(
d

γ
log 1

γ

)
·O
(
d

βε
· ϕR

(
4d
βε
,

24d
β

))
·O
(

d
3
2 − β − γ

· ϕR

(
4d

3
2 − β − γ

,
12d

3
2 − β − γ

))
Using γ = 1

100 , β = 3
4 , c is an absolute constant, and d = O (c) since ϕR(n, k) = O(kc),

= O (d) ·O
(
d

ε
· dc
)
·O (d · dc) = O

(1
ε

)
. J

I Theorem 2. If the shallow-cell complexity of R satisfies ϕR(n, k) = O (kc), then Special
Net-Finder Algorithm computes an ε-net of expected size O

( 1
ε

)
. In particular, it computes

a O
( 1
ε

)
-sized net for the set systems induced by half-spaces in R2, half-spaces in R3, pseudo-

disks and disks in R2, and dual systems of linear union complexity.
Furthermore it makes expected O( 1

ε ) calls to the Oracle.

Proof. For each of these specific cases, we have ϕR (n, k) = O(kc) for some constant c, and
thus Theorem 7 implies the bounds. J

6 Conclusion

Some final remarks:

The algorithms, as they are stated, need the bound on the shallow-cell complexity (in
fact, in the case of rectangles, even a finer decomposition bound) to set the initial sample
size. However, by a standard exponential search trick, one can start with an initial guess
of O(1) for N0, run the algorithm for O

( 1
ε

)
iterations and if the resulting set is not an

ε-net, re-run the algorithm with a doubled initial sample size. This incurs an additional
O
(
log 1

ε

)
penalty in the running time.
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Our algorithm, unlike earlier work, is adaptive: after the initial random sample, further
additional points are added incrementally, and each additional set of O(1) points that
are added takes into account the previously added points.
There has been recent work towards new algorithmic approaches for sketches and samples
that work well in practice [13]. We leave for future work the experimental evaluation of
our algorithm and comparison with earlier approaches, both in efficiency and whether
the adaptive nature of our algorithm leads to improved size bounds in practice.
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Abstract
The Weighted Tree Augmentation problem (WTAP) is a fundamental problem in network design. In
this paper, we consider this problem in the online setting. We are given an n-vertex spanning tree T

and an additional set L of edges (called links) with costs. Then, terminal pairs arrive one-by-one and
our task is to maintain a low-cost subset of links F such that every terminal pair that has arrived so
far is 2-edge-connected in T ∪ F . This online problem was first studied by Gupta, Krishnaswamy and
Ravi (SICOMP 2012) who used it as a subroutine for the online survivable network design problem.
They gave a deterministic O(log2 n)-competitive algorithm and showed an Ω(log n) lower bound on
the competitive ratio of randomized algorithms. The case when T is a path is also interesting: it
is exactly the online interval set cover problem, which also captures as a special case the parking
permit problem studied by Meyerson (FOCS 2005). The contribution of this paper is to give tight
results for online weighted tree and path augmentation problems. The main result of this work is a
deterministic O(log n)-competitive algorithm for online WTAP, which is tight up to constant factors.
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1 Introduction

In the weighted tree augmentation problem (WTAP), we are given an n-vertex spanning tree
T = (V,E) together with an additional set of edges L called links, where L ⊆

(
V
2
)
. Each link

` ∈ L has a cost c(`) ≥ 0. Terminal pairs (si, ti), i = {1, . . . , k}, are given and the goal is
to compute a minimum cost subset of links F ⊆ L such that each terminal pair is (edge)
2-connected in T ∪ F . In the unweighted version, the links have unit costs and the problem
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is known as the tree augmentation problem (TAP). If the spanning tree T is a path, then
the unweighted problem is called the path augmentation problem (PAP), while the weighted
version is called weighted path augmentation (WPAP).

TAP and WTAP are considered to be fundamental connectivity augmentation problems,
and have been studied extensively. TAP is already known to be APX-hard and the best
approximation algorithms for WTAP and TAP achieve approximation factors of 2 and 1.458
respectively [6, 7]. Improving these bounds is an important open problem.

We consider these problems in the online setting. In online WTAP, we are initially given
a spanning tree T = (V,E), and the set of links L together with their costs. The terminal
pairs (si, ti) arrive online one by one. Our goal is to maintain a low-cost subset of links
F ⊆ L such that each terminal pair seen so far is (edge) 2-connected in T ∪ F .

Online WTAP occurs as a subproblem in the online survivable network design algorithm
of Gupta, Krishnaswamy and Ravi [8]. They observed that the online tree augmentation
problem can be cast as an instance of the online set cover problem1 in which the elements
are the fundamental cuts defined by the terminal pairs and the sets are the links. Since
there are only n elements and O(n2) sets, applying the results of Alon et al. [1] yields a
fractional O(logn)-competitive algorithm. But, then, how does one round the fractional
solution online? Randomized rounding seems to be the only rounding technique we have for
this problem, and it yields a randomized O(log2 n)-competitive algorithm, as observed by [1].
This competitive factor can even be achieved deterministically at no further cost [1]. We
note that the loss of a logarithmic factor in the rounding step seems inherent. Interestingly,
Gupta, Krishnaswamy and Ravi [8] also showed for the rooted setting (si = r for some root
r) a lower bound of Ω(logn) against randomized algorithms. It is easy to observe that this
lower bound also holds against fractional online algorithms.

There has been a long line of work on maintaining connectivity online, starting in the
seminal paper of Imase and Waxman [11]. A Θ(logn)-competitive algorithm is given there
for the online Steiner problem in undirected graphs. In this problem the graph with a fixed
root vertex is known in advance and the terminals are given one by one, and one must ensure
that all terminals that have arrived so far are connected to the root. Other polylogarithmic
(in n) competitive algorithms have been given for more complex models of connectivity,
including those with node costs rather than edge costs and penalties for violating connectivity
constraints; see [2, 3, 13, 9, 10, 16, 14]. Gupta, Krishnaswamy, and Ravi [8] consider the
online survivable network design problem, which generalizes WTAP. In this problem, a graph
is fixed in advance and terminal pairs (si, ti) arrive with connectivity requirements ri; one
must ensure that there are at least ri edge-disjoint paths between si and ti for all pairs that
have arrived thus far. They give a randomized Õ(rmax log3 n)-competitive algorithm for the
problem, where rmax = maxi ri. Note that this problem with uniform requirements ri = 2
already generalizes WTAP.

The online WPAP, when T is a path, is an interesting problem in its own right. This
problem is equivalent to online interval set cover. It captures as a special case the parking
permit problem introduced by Meyerson [12]. In this problem, there is a sequence of days;
each day it is either sunny or it rains, and if it rains we must purchase a parking permit.
Permits have various durations and costs. We can model the parking permit problem by
online path augmentation by letting the edges of the path correspond to the sequence
of days, the links to the permits, and the rainy days to a terminal pair request for the

1 In the online set cover problem, elements arrive online and need to be covered upon arrival by sets from
a set system known in advance. (Note that not necessarily all elements will appear.)
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corresponding day. Meyerson [12] gives a deterministic O(logn)-competitive algorithm for
the problem and a randomized O(log logn)-competitive algorithm, and shows lower bounds
on the competitive ratio of Ω(logn/ log logn) for deterministic algorithms and Ω(log logn)
for randomized algorithms. Note that online WPAP is a strict generalization of the parking
permit problem because the parking permit problem assumes that permits of the same
duration have the same cost, whereas no such assumption is made of the links in WPAP.

1.1 Our Results
The contribution of this paper is to give tight results (within constant factors) for online tree
and path augmentation problems. Our main result is that weighted online tree augmentation
has a competitive ratio of Θ(logn).

I Theorem 1. There is a deterministic algorithm for online WTAP with competitive ratio
O(logn).

This result is tight up to constant factors because of the Ω(logn) lower bound on ran-
domized algorithms for WTAP given by [8]. As we mention above, [8] gives a randomized
Õ(rmax log3 n)-competitive algorithm for the online survivable network design problem. An in-
triguing open question is whether this competitive ratio can be improved, say to O(rmax logn)
or even O(logn). In fact, we are unaware of lower bounds that rule out the latter bound.
We view our main result as a necessary stepping stone towards obtaining an O(rmax logn) or
O(logn) bound. Indeed, for rmax = 2, plugging in our algorithm for online WTAP into the
algorithm of [8] improves their competitive ratio from Õ(log3 n) to Õ(log2 n).

I Corollary 2. For online survivable network design with rmax = 2, there is a randomized
algorithm with competitive ratio Õ(log2 n).

Our second result shows that the competitive ratio for deterministic algorithms for online
path augmentation is also Θ(logn). Meyerson [12] gives a lower bound of Ω(logn/ log logn)
for deterministic algorithms for the parking permit problem, and hence for online path
augmentation. We improve the analysis of his lower bound instance to show the following.

I Theorem 3. Every deterministic algorithm for online WPAP has competitive ratio Ω(logn).

Since we use a parking permit instance to show the lower bound, we have the same lower
bound for the parking permit problem.

Finally, we show that the fractional version of online path augmentation has compet-
itive ratio Θ(log logn) for deterministic algorithms. Meyerson [12] gives a lower bound
of Ω(log logn) for randomized algorithms for the parking permit problem, and hence for
online fractional path augmentation. Our algorithm implies an exponential gap between the
competitive ratios of fractional path augmentation and fractional tree augmentation. We
show the following.

I Theorem 4. There is a deterministic algorithm for online fractional WPAP with competitive
ratio O(log logn).

Recall that online WPAP is equivalent to online interval set cover. Thus, Theorems 1 and 4
imply that restricting online set cover to interval sets allows for improved competitive ratios.
Also, even though interval set cover and interval hitting set are equivalent in the offline case,
the latter turns out to be exponentially more difficult than the former in the online case; in
contrast to Theorem 4, Even and Smorodinsky [5] gave a lower bound of Ω(logn) for online
fractional hitting set.
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1.2 Our Techniques

We now outline some of the ideas behind our algorithms.

Online WTAP

As mentioned before, there is an online fractional O(logn)-competitive algorithm for WTAP
that follows from the work of [1] on the online set cover problem. However, it is unclear how
to exploit the special structure of the set system in hand in WTAP (as defined by the links)
to avoid the loss of another factor of O(logn) when rounding the fractional solution into an
integral one (either randomized or deterministic). Thus, our approach to proving Theorem 1
takes a completely different route. There are two key ingredients in our proof:
1. Low-width path decomposition. The first ingredient is a path decomposition of low

“width”: in particular, there is a decomposition of the tree into edge-disjoint paths such
that any path in the tree intersects at most O(logn) paths of the decomposition. Such
a decomposition can be obtained using the heavy-path decomposition of Sleator and
Tarjan [15]. This immediately implies an O(logn)-approximate black-box reduction from
online tree augmentation to online path augmentation. Unfortunately, Theorem 3 gives a
lower bound of Ω(logn) for the latter problem. Since a tree may have width Ω(logn) in
the worst case (e.g., a binary tree), the best we can achieve for WTAP using a black-box
reduction is a competitive ratio of O(log2 n).

2. Refined guarantee for path augmentation. The second ingredient is our main
technical contribution. We define a notion of projection for links onto paths in the path
decomposition, and call the projected link rooted if it has, as its endpoint, the node of
the path closest to the root of the tree. The key insight is that the path decomposition
has a special structure: for each link, its projection is rooted for all but at most one of
the paths in the decomposition. We then give a version of the path algorithm that treats
rooted links differently from non-rooted links; in particular, an online path augmentation
algorithm that finds a solution whose cost is within a constant factor of the rooted links of
the optimal solution plus an O(logn) factor of the cost of the non-rooted links. Intuitively,
then, summing the cost over all the paths in the decomposition, each link appears as a
rooted link in at most O(logn) paths in the decomposition and as a non-rooted link in at
most one path in the decomposition, yielding the O(logn) factor overall.

Online Fractional WPAP

Directly applying the online fractional set cover algorithm of [1] to online fractional WPAP
only yields a competitive ratio of O(logn). However, for online set cover instances in which
each element is covered by at most d sets, the algorithm of [1] is O(log d)-competitive. Thus,
to get a competitive ratio of O(log logn), the basic idea is to reduce to a restricted instance
in which each request can only be covered by O(logn) links. For such restricted instances,
applying the algorithm of [1] gives a competitive ratio of O(log logn).

1.3 Other Related Work

Recently, Dehghani et al. [4] studied online survivable network design, giving a bicriteria
approximation algorithm, and considering several stochastic settings.
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1.4 Organization of the Paper
We start with the preliminaries and describe the low-width path decomposition in Section 2.
In Section 3, we present the refined guarantee needed for online path augmentation. Then,
we show how to achieve the required refined guarantee in Section 4. Due to lack of space, we
defer the proofs of Theorems 3 and 4 to the full version.

2 Preliminaries

We restate the formal definition of the problem. In the online weighted tree augmentation
problem, we are initially given a spanning tree T = (V,E), and an additional set of edges
called links L ⊆

(
V
2
)
with costs c(`) ≥ 0. Then, terminal pairs (si, ti) arrive one by one. Our

goal is to maintain a low-cost subset of links F ⊆ L such that each terminal pair seen so far
is 2-connected in T ∪ F .

Notation

Denote by P (u, v) the path between u and v in T . For a link ` = (u, v), we write P (`) = P (u, v)
and for a set S of links, we write P (S) =

⋃
`∈S P (`). We say that a link ` ∈ L covers an

edge e ∈ E if e ∈ P (`). Define cov(e) = {` ∈ L : e ∈ P (`)} to be the set of links covering e.
Note that cov(e) is exactly the set of links crossing the cut induced by the tree edge e. Let
R ⊆ E be a set of requests. Then, a solution F is feasible if and only if for every edge e ∈ R,
we have F ∩ cov(e) 6= ∅; or equivalently, if P (F ) ⊇ R.

Simplifying assumptions

In the rest of this paper, we assume that link costs are powers of 2; this assumption is
without loss of generality since we can round up all edge costs and lose only a factor of 2 in
the competitive ratio. Given that link costs are powers of 2, we say that the class of a link `
is j if c(`) = 2j and we write class(`) = j.

Given an instance in which link costs are powers of 2, we also assume that requests are
elementary: each request (si, ti) is a tree edge e ∈ E. This is without loss of generality
because an adversary can simulate a non-elementary request (si, ti) by a sequence of requests,
where each request is an edge along the path between si and ti in T .

Path decomposition

We next define a rooted path decomposition, see Figure 1 for an example.

I Definition 5 (Rooted Path Decomposition). Let T be a tree. A path decomposition of T is
a partition P of its edge set into edge-disjoint paths. We say P is rooted if there is a vertex
r ∈ T such that if we root T at r, then for each path p ∈ P, the least common ancestor of
the vertices on p is an endpoint of the path (we call this endpoint the root of p). The width
of P is width(P) = maxu,v∈V (T ) |{p ∈ P : P (u, v) ∩ p 6= ∅}|, the maximum number of paths
p ∈ P that any path in T intersects.

I Lemma 6 (Existence of Low Width Rooted Path Decompositions). Every tree on n vertices
admits a rooted path decomposition of width O(logn).

An O(logn)-width rooted path decomposition can be obtained using the so-called heavy
path decomposition of Sleator and Tarjan [15]. For the sake of completeness, we give a proof
here. The following notion of a caterpillar decomposition will be convenient.
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Figure 1 Example of a graph and its rooted path decomposition. The edge colors reflect the
partition of the edges. The root of each path is the highest vertex of the path.
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Figure 2 Illustration of the projections of the link (u, v) onto the paths of the decompositon.
Only the projection onto the blue path is non-rooted.

I Definition 7 (Caterpillar Decomposition). Let T be a rooted tree on n vertices. A caterpillar
decomposition of T is a vertex-disjoint decomposition of T into a root-to-leaf path B (called
the backbone) and subtrees Ti that are connected to B. The decomposition is balanced if for
each subtree Ti, we have |V (Ti)| ≤ n/2.

I Lemma 8. Every tree admits a balanced caterpillar decomposition.

Proof. The existence of a balanced caterpillar decomposition is an easy consequence of the
fact that every tree T has a balanced vertex separator v, i.e. after removing v from T , each
of the remaining connected components has at most n/2 vertices. The following is a balanced
caterpillar decomposition of T : pick an arbitrary root-to-leaf path containing v to be the
backbone B, and the subtrees Ti to be the connected components of T after removing B. J

Proof of Lemma 6. The lemma easily follows by choosing an arbitrary root vertex of T and
recursively applying Lemma 8. J

3 Refined Guarantee for Online Path Augmentation

As already mentioned, Lemma 6 implies an O(logn)-approximate black-box reduction to
online path augmentation: given an α-competitive algorithm for online path augmentation, we
have an O(α logn)-competitive algorithm for online tree augmentation. However, Theorem 3
says that α = Ω(logn) for deterministic algorithms. To get around this lower bound, a more
refined guarantee for online path augmentation is needed.

We need some notation to describe this refined guarantee. Suppose P is a rooted path
decomposition of T and ` a link. For Q ∈ P, let πQ(`) be the link whose endpoints are
endpoints of the path P (`) ∩Q; we call πQ(`) the projection of ` onto Q. We say that ` is
Q-rooted if one of the endpoints of πQ(`) is the root of Q, and Q-non-rooted otherwise. (See
Fig. 2 for an illustration.) The main ingredient for the refined guarantee is the next lemma.

I Lemma 9. Consider a tree T and link ` = (u, v). Suppose P is a rooted path decomposition
of T . Then, there is at most one path Q ∈ P for which ` is Q-non-rooted.
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Proof. We claim that for any path Q ∈ P such that ` is a non-rooted link, the least common
ancestor a of u and v must lie in Q but is not an endpoint of Q, i.e. it lies strictly in the
middle of Q. Since P is an edge-disjoint decomposition of T , there can be at most one such
path and thus the claim implies the lemma.

We proceed to prove the claim. Let u′, v′ be the endpoints of πQ(`). Since P is a rooted
path decomposition, either u′ is an ancestor of v′ or vice versa; suppose the former. We now
argue that u′ is the least common ancestor of u and v. There are two cases: (1) either u′ is
an endpoint of `; (2) or there is a vertex z of P (u, v) adjacent to u′ but is not on Q. In case
(1), we are done. Consider case (2). Since u′ is not an endpoint of Q, its parent must be on
Q, and thus z is a child of u′. Therefore, u′ is the least common ancestor of u and v. J

Motivated by Lemma 9, we define the online rooted path augmentation problem. An
instance of online rooted path augmentation consists of a rooted path Q where the root r is
an endpoint of Q. For such an instance, we say that a link is rooted if one of its endpoints is
r. Lemma 9 suggests that we should devise an algorithm for online rooted path augmentation
with the following refined guarantee.

I Definition 10 (Nice Solution). A solution F for an instance of online rooted path aug-
mentation is nice if for any feasible solution F ∗, we have c(F ) ≤ O(1)c(R∗) +O(logn)c(S∗)
where R∗ is the set of rooted links and S∗ is the set of non-rooted links of F ∗, respectively.
An algorithm is nice if it always produces a nice solution.

I Lemma 11. Suppose that there exists a deterministic nice algorithm Path-ALG for online
rooted path augmentation. Then, there exists an O(logn)-competitive deterministic algorithm
for online tree augmentation.

Proof. Here is our algorithm for general instances. Consider a general instance of online
weighted tree augmentation with tree T = (V,E), requests e1, . . . , ek ⊆ E and links L =

(
V
2
)

with costs c(`). Our algorithm works as follows. By Lemma 6, there exists a rooted path
decomposition P of T with width w = O(logn). Now, each rooted path Q ∈ P defines an
instance of online rooted path augmentation: the links are LQ = {πQ(`) : ` ∈ L} where πQ(`)
has cost c(`), and the sequence of requests is exactly the subsequence of requests that lie on
Q. So, our algorithm runs in parallel |P| instantiations of Path-ALG, one per rooted path
Q ∈ P. When request ei arrives, if ei ∈ Q (since ei is an elementary request, it must lie
on some path of P), then our algorithm uses the instantiation of Path-ALG on Q to handle
that request; in particular, if Path-ALG buys the projected link πQ(`), then our algorithm
buys the link `.

Let us now analyze the competitive ratio of this algorithm. Let F ∗ be a feasible solution.
For Q ∈ P , we denote by R∗Q, and S∗Q the subset of F ∗ which is Q-rooted, and Q-non-rooted,
respectively. Since Path-ALG is nice, we have that our algorithm’s solution F has cost

c(F ) ≤
∑
Q∈P

[
O(1)c(R∗Q) +O(logn)c(S∗Q)

]
≤ O(logn)c(F ∗),

where the last inequality is because Lemma 9 implies that each link of F ∗ is in S∗Q for at
most one Q ∈ P and is in R∗Q for at most w = O(logn) paths Q ∈ P. J

In the next section, we construct a nice deterministic algorithm. Together with Lemma 11
this gives a deterministic O(logn)-competitive algorithm for online tree augmentation, thus
proving Theorem 1.
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4 A Nice Algorithm for Online Path Augmentation

In this section, we devise a nice algorithm for online rooted path augmentation. In the
following, we use the convention that the root of the path is the left endpoint of the path.

We begin by showing in Section 4.1 that it suffices to consider simpler instances that we
call minimal instances. Then, we describe in Section 4.2 how to prove niceness using an LP
for the problem. Finally, we describe and analyze the algorithm in Sections 4.3 and 4.4.

4.1 Minimal Instances

The first step is a preprocessing step that simplifies the structure of the link set. In particular,
we prune the instance so that it is of the following type.

I Definition 12 (Minimal Instances). A set of links L and its costs c are minimal if they
satisfy the following properties:

1. for each class j, there is at most one rooted link and for every edge e, there are at most
two links ` with e ∈ P (`);

2. for any two rooted links ` and `′, if class(`) > class(`′), then P (`) ) P (`′).
An instance is minimal if its links and costs are minimal.

Given a set of links L and its costs c, we prune L to get a minimal subset of links L′ ⊆ L
as follows. We begin by pruning the rooted links: while there exists a rooted link ` and a
rooted link `′ of the same or lower class such that P (`′) ⊇ P (`), remove `. Then we prune the
non-rooted links for each class j: let Lj be the set of class j links and L′j be a minimum-size
subset of Lj that covers Lj , i.e. P (L′j) ⊇ P (Lj); then, remove the links Lj \ L′j . Such a
minimum cover may be computed efficiently using an algorithm for minimum interval cover.
By minimality, we have that for any edge e, there are at most two links `, `′ ∈ L′j such that
e ∈ P (`) ∩ P (`′). The following claim shows that any link ` ∈ Lj that was pruned away can
be replaced with at most three links of L′j and so restricting to L′ only causes the value of the
optimal solution to increase by at most a factor of 3. We defer the proof to the full version.

B Claim 13. For every link ` ∈ Lj \L′j , there exists (at most) three links `1, `2, `3 ∈ L′j with
P (`) ⊆ P (`1) ∪ P (`2) ∪ P (`3).

Given a subset of links L′ ⊆ L, we say that a solution F ⊆ L′ is nice for L′ if for any
feasible solution F ′ ⊆ L′, we have c(F ) ≤ O(1)c(R′) +O(logn)c(S′) where R′ is the set of
rooted links and S′ is the set of non-rooted links of F ′, respectively. The following lemma
says that it suffices to have a solution that is nice for a pruning of L and thus it suffices to
devise a nice algorithm for minimal instances. We defer the proof of the lemma to the full
version.

I Lemma 14. Let L′ ⊆ L be a pruning of L. Then, a solution that is nice for L′ is also
nice for L.

Henceforth, we will focus on devising a nice algorithm for minimal instances.
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4.2 Proving Niceness via the Dual LP
Our algorithm uses the standard LP formulation of the problem. Let R be the set of requests.
The following are the primal and dual LPs, respectively.

minimize
∑
`∈L

x(`)c(`)

subject to
∑

`∈cov(e)

x(`) ≥ 1 ∀e ∈ R
(1)

maximize
∑
e∈R

y(e)

subject to
∑

e∈P (`)

y(e) ≤ c(`) ∀` ∈ L
(2)

We say that a link ` is tight with respect to a dual solution y if
∑

e∈P (`) y(e) = c(`).
The following lemma tells us how to use the dual to prove niceness.

I Lemma 15. Let F be a solution. Suppose y is a dual solution such that
1. c(F ) ≤ O(1)

∑
e y(e),

2.
∑

e∈P (`) y(e) ≤ O(logn)c(`) for every non-rooted link `, and
3.
∑

e∈P (`) y(e) ≤ O(1)c(`) for every rooted link `.
Then, F is a nice solution.

Proof. Let F ∗ be a feasible solution, R∗ be the subset of F ∗ that is rooted and S∗ the subset
that is non-rooted. We now show that

∑
e y(e) ≤ O(1)c(R∗) + O(logn)c(S∗), which then

implies that c(F ) ≤ O(1)c(R∗) +O(logn)c(S∗). Since we have a dual variable y(e) for each
request e and F ∗ is feasible, we have that∑

e

y(e) ≤
∑

e∈P (R∗)

y(e) +
∑

e∈P (S∗)

y(e).

Using the fact that
∑

e∈P (`) y(e) ≤ O(1)c(`) for every rooted link `, we also have∑
e∈P (R∗)

y(e) ≤
∑

`∈R∗

∑
e∈P (`)

y(e) ≤ O(1)c(R∗).

Similarly, we get that
∑

e∈P (S∗) y(e) ≤ O(logn)c(S∗). Putting all of these together, we
conclude that

∑
e y(e) ≤ O(1)c(R∗) +O(logn)c(S∗), as desired. J

4.3 Algorithm
We now give some of the ideas behind our algorithm.

An O(log n)-competitive algorithm

First, we describe a simple algorithm that constructs a solution F and a dual solution y
that satisfies c(F ) ≤ O(1)

∑
e y(e) and

∑
e∈P (`) y(e) ≤ O(logn)c(`) for every link `. The

algorithm maintains a maximal feasible dual solution y and is as follows: when a request
ei arrives, raise its dual variable y(ei) until some link ` with ei ∈ P (`) goes tight; add this
link to F . There are two parts to the analysis. First, let F̂ be the set of links in F that
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cost at least max`∈F c(`)/n2. Since |F | ≤ n2, we get that c(F ) ≤ 2c(F̂ ) so it suffices to
bound c(F̂ ). The second part of the analysis uses the following charging argument to bound
c(F̂ ): whenever we add a tight link ` to F̂ , we charge its cost to the dual variables y(e) for
e ∈ P (`). Let λ(e) be the total number of links charged to y(e) and ŷ be the dual solution
where ŷ(e) = λ(e)y(e). We have c(F̂ ) ≤ O(1)

∑
e λ(e)y(e). Now observe that λ(e) ≤ O(logn)

because Property 1 of minimal instance implies that there can be at most 2 links ` ∈ F̂ with
e ∈ P (`) for a single cost class, and, by definition, F̂ can have at most O(logn) cost classes.
So, for each link `, we have∑

e∈P (`)

λ(e)y(e) ≤ O(logn)
∑

e∈P (`)

y(e) ≤ O(logn)c(`)

where the last inequality follows from the fact that y is feasible.

Saving the rooted links

A natural idea to ensure that
∑

e∈P (`) λ(e)y(e) ≤ O(1)c(`) for each rooted link ` is to modify
the above algorithm to explicitly take into account the charging method as follows: after
buying the tight link (we call this a type-1 link), if there is a rooted link `′ such that∑

e∈P (`′) λ(e)y(e) > c(`′), buy the one of highest class among such links (we call this a type-2
link). Moreover, we also modify the charging method to only charge each type-1 link ` to
the dual variables y(e) for e /∈ P (`′) where `′ is the last type-2 link bought.

As we will see later, these modifications allow us to argue that
∑

e∈P (`) λ(e)y(e) ≤ O(1)c(`)
for each rooted link `. However, it also introduces a complication: it might be possible that
for some type-1 link `, most of the dual variables y(e) paying towards its cost have e ∈ P (`′)
where `′ is the last type-2 link bought. Since the charging method only charges to dual
variables y(e) for e /∈ P (`′), this would mean that it might charge an amount that is much
less than the cost of `′.

Fixing the complication

To fix the above issue, whenever we buy a type-2 link `′, we also buy all links `′′ of class at
most class(`′) that crosses `′, i.e. ∅ ( P (`′′) ∩ P (`′) ( P (`′). Property 1 implies that the
total cost of these links is at most O(1)c(`′). We call these links type-3 links. This ensures
that later on, when we buy a type-1 link `, if P (`)∩P (`′) 6= ∅, then ` must be of higher class
than `′ and thus most of its cost is paid for by dual variables y(e) for e /∈ P (`′).

We describe the complete algorithm formally in Algorithm 1. In Algorithm 1, we use
Z to keep track of P (`) where ` is the last type-2 link bought so far (Z = ∅ if no type-2
link is bought yet). The links bought in Step 4, 9, 11, are type-1, type-2, and type-3
links, respectively.

4.4 Analysis of Algorithm
We now prove that Algorithm 1 is nice. Let F1, F2, F3 ⊆ F be the sets of type-1, type-
2 and type-3 links, respectively. The proof consists of three steps. First, we show that
c(F ) ≤ O(1)c(F1) (Lemma 17) and thus it suffices to bound the cost of type-1 links. Then,
we construct a dual solution ŷ that accounts for the cost of type-1 links (Lemma 18). This
shows that ŷ satisfies the first condition of Lemma 15. Finally, Lemmas 20 and 19 show that
ŷ satisfies the remaining conditions of Lemma 15.

For each type-1 link ` ∈ F1, define C(`) to be the set of edges e such that λ(e) was
incremented during the iteration that ` was assigned to F1, i.e. each dual variable y(e)
for e ∈ C(`) contributes towards paying c(`). Observe that λ(e) = |{` : e ∈ C(`)}| and
C(`) ⊆ P (`).
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Algorithm 1 Nice algorithm for online rooted path augmentation.
1: F ← ∅; y ← 0;λ← 0;Z ← ∅
2: for each unsatisfied request ei do
3: Increase y(ei) until some link ` with ei ∈ P (`) goes tight
4: Add such a link ` to F
5: for each e ∈ P (`) \ Z such that y(e) > 0 do
6: λ(e)← λ(e) + 1
7: end for
8: if there exists a rooted link ` /∈ F such that

∑
e∈P (`) λ(e)y(e) ≥ c(`) then

9: Among such links, add to F the link ` of highest class
10: for j ≤ class(`) do
11: Add to F all class-j links `′ that cross `, i.e. ∅ ( P (`′) ∩ P (`) ( P (`)
12: end for
13: Z ← P (`)
14: end if
15: end for

I Proposition 16. Algorithm 1 satisfies the following properties. Let Zi and λi denote Z
and λ at the end of the i-th iteration. Then, for every iteration i, we have
1. Zi ⊇ Zi−1;
2. if y(ei) > 0, then λi(ei) > 0.

Proof. The first follows from Property 2 of minimal instances. The second follows from the
fact that in the iteration that ei arrives, since it is unsatisfied, it must not be contained in Z.
Let ` be the link added to F in that iteration. Since ei ∈ P (`) \ Z and y(ei) > 0, we have
that λ(ei) is increased by 1 during the iteration and thus λi(ei) > 0. J

I Lemma 17. c(F ) ≤ O(1)c(F1).

Proof. We will show that c(F3) ≤ O(1)c(F2), that c(F2) ≤ O(1)
∑

e λ(e)y(e) and that∑
e λ(e)y(e) ≤ c(F1). Let `r be the last type-2 link bought. We have that c(`r) ≤∑
e∈P (`r) λ(e)y(e) by construction. Moreover, since c(`r) ≥ c(`) for every ` ∈ F2 and

there is at most one rooted link of each class, we get that c(F2) ≤ 2c(`r). Thus, we get
that c(F2) ≤ 2

∑
e∈P (`r) λ(e)y(e). For each type-2 link ` bought, we buy at most two type-3

links per class j ≤ class(`) because of Property 1 of minimal instances. Therefore, we have
c(F3) ≤ 2c(F2) ≤ 4

∑
e∈P (`r) λ(e)y(e).

Finally, we show that
∑

e λ(e)y(e) ≤ c(F1). Since λ(e) = |{` : e ∈ C(`)}|, we have∑
e λ(e)y(e) =

∑
`∈F1

(∑
e∈C(`) y(e)

)
. Now, since C(`) ⊆ P (`) and y is feasible, we get∑

e∈C(`) y(e) ≤
∑

e∈P (`) y(e) ≤ c(`). Combining the previous two inequalities gives us that∑
e λ(e)y(e) ≤ c(F1). J

Let cmax = max`∈F1 c(`). Define F̂1 = {` ∈ F1 : c(`) ≥ cmax/n
2} and λ̂(e) = |{` ∈ F̂1 :

e ∈ C(`)}|. We now show that F and the dual solution ŷ where ŷ(e) = λ̂(e)y(e) satisfies the
conditions of Lemma 15.

I Lemma 18. c(F1) ≤ O(1)
∑

e λ̂(e)y(e).

Proof. Observe that c(F1) ≤ 2c(F̂1) so it suffices to prove that

c(F̂1) ≤ O(1)
∑

e

λ̂(e)y(e). (3)
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We now show that this inequality holds at the end of each iteration of the algorithm. Consider
an iteration in which the current request ei is not already covered and suppose ` ∈ F̂1 is
the type-1 link bought in this iteration. The LHS of Inequality (3) increases by c(`) in this
iteration. We now show that

∑
e λ̂(e)y(e) increases by at least c(`)/2. In this iteration, λ̂(e)

increases by 1 for every e ∈ P (`) \ Z and y(e) > 0, and so
∑

e λ̂(e)y(e) increases by exactly∑
e∈P (`)\Z y(e).
In the remainder of the proof, we show that

∑
e∈P (`)\Z y(e) ≥ c(`)/2. If P (`) ∩ Z = ∅,

then
∑

e∈P (`)\Z y(e) =
∑

e∈P (`) y(e) = c(`) since ` is tight. Now suppose P (`) ∩ Z 6= ∅. Let
`′ be the type-2 link such that Z = P (`′). Since P (`) ∩ P (`′) 6= ∅, it must be the case that `
is of type higher than class(`′). This is because otherwise, ` would have been bought earlier
as a type-3 link in the same iteration as `′. But then since ei ∈ P (`), it would contradict
the assumption that ei is not already covered at the start of the current iteration. Thus,
class(`) > class(`′) and so c(`) ≥ 2c(`′). So, we now have∑

e∈P (`)\Z

y(e) ≥
∑

e∈P (`)

y(e)−
∑

e∈P (`′)

y(e) ≥ c(`)− c(`′) ≥ c(`)/2,

where the second last inequality follows from the fact that y is a feasible dual and ` is tight.
Therefore, Inequality (3) holds at the end of each iteration, as desired. J

Lemmas 17 and 18 imply that c(F ) ≤ O(1)
∑

e ŷ(e).

I Lemma 19. For each non-rooted link `, we have
∑

e∈P (`) λ̂(e)y(e) ≤ O(logn)c(`).

Proof. Property 1 of minimal instances implies that for each j, there are at most two
links `′ ∈ F̂1 of class j with e ∈ C(`′). Since each link in F̂1 has cost between cmax/n

2

and cmax and link costs are powers of 2, we have that λ̂(e) ≤ O(logn). Thus we get that∑
e∈P (`) λ̂(e)y(e) ≤ O(logn)

∑
e∈P (`) y(e) ≤ O(logn)c(`), where the last inequality follows

from the fact that y is a feasible dual. J

I Lemma 20. For each rooted link `, we have
∑

e∈P (`) λ̂(e)y(e) ≤ O(1)c(`).

Proof. We will in fact show that
∑

e∈P (`) λ(e)y(e) ≤ O(1)c(`). Suppose, at the end of some
iteration, that we have

∑
e∈P (`) λ(e)y(e) > c(`). Consider the earliest iteration that this

happens. We now show that
∑

e∈P (`) λ(e)y(e) ≤ O(1)c(`) at the end of the iteration and
later show that the LHS cannot increase in future iterations.

Let λold(e) and yold(e) denote the values of λ(e) and y(e) at the start of the iteration and
λnew(e) and ynew(e) denote their values at the end. We have that

∑
e∈P (`) λ

old(e)yold(e) <
c(`). We now show that

∑
e∈P (`) λ

new(e)ynew(e) ≤ 3c(`). Let ei be the request of the current
iteration. During this iteration, we only increase y(e) for e = ei and we set λ(ei) = 1 so
λnew(ei)ynew(ei) = y(ei). So, we have∑

e∈P (`)

λnew(e)ynew(e) =
∑

e∈P (`)\{ei}

λnew(e)yold(e) + y(ei).

Since y is a feasible dual, we have that y(ei) ≤ c(`). Now, Proposition 16 implies that
λold(e) ≥ 1 if yold(e) > 0. Together with the fact that λnew(e) ≤ λold(e) + 1, we get that
λnew(e)yold(e) ≤ 2λold(e)yold(e) and so∑

e∈P (`)\{ei}

λnew(e)ynew(e) ≤ 2
∑

e∈P (`)\{ei}

λold(e)yold(e) < 2c(`).

Thus,
∑

e∈P (`) λ
new(e)ynew(e) ≤ 3c(`) at the end of the current iteration.
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Finally, we show that
∑

e∈P (`) λ(e)y(e) does not increase in future iterations. At the
end of the current iteration, ` is a candidate to be added to F . Among all candidates, the
one with highest class is added, so either ` is added to F or a rooted link `′ of higher class
is added to F . In the second case, by Proposition 16, we have P (`′) ⊇ P (`). Thus, in
either case, we have that Z ⊇ P (`) at the end of the current iteration. Moreover, in future
iterations, we still have Z ⊇ P (`) by Proposition 16. Therefore,

∑
e∈P (`) λ(e)y(e) does not

increase in future iterations. Thus, we conclude that
∑

e∈P (`) λ(e)y(e) ≤ 3c(`) at the end of
the algorithm. J

Therefore, we conclude that Algorithm 1 is nice. Together with Lemma 11, we get
Theorem 1.
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Abstract
Short cycle decomposition is an edge partitioning of an unweighted graph into edge-disjoint short
cycles, plus a small number of extra edges not in any cycle. This notion was introduced by Chu
et al. [FOCS’18] as a fundamental tool for graph sparsification and sketching. Clearly, it is most
desirable to have a fast algorithm for partitioning the edges into as short as possible cycles, while
omitting few edges.

The most naïve procedure for such decomposition runs in time O(m · n) and partitions the edges
into O(logn)-length edge-disjoint cycles plus at most 2n edges. Chu et al. improved the running
time considerably to m1+o(1), while increasing both the length of the cycles and the number of
omitted edges by a factor of no(1). Even more recently, Liu-Sachdeva-Yu [SODA’19] showed that for
every constant δ ∈ (0, 1] there is an O(m · nδ)-time algorithm that provides, w.h.p., cycles of length
O(logn)1/δ and O(n) extra edges.

In this paper, we significantly improve upon these bounds. We first show an m1+o(1)-time
deterministic algorithm for computing nearly optimal cycle decomposition, i.e., with cycle length
O(log2 n) and an extra subset of O(n logn) edges not in any cycle. This algorithm is based on a
reduction to low-congestion cycle covers, introduced by the authors in [SODA’19].

We also provide a simple deterministic algorithm that computes edge-disjoint cycles of length 21/ε

with n1+ε · 21/ε extra edges, for every ε ∈ (0, 1]. Combining this with Liu-Sachdeva-Yu [SODA’19]
gives a linear time randomized algorithm for computing cycles of length poly(logn) and O(n) extra
edges, for every n-vertex graphs with n1+1/δ edges for some constant δ.

These decomposition algorithms lead to improvements in all the algorithmic applications of Chu
et al. as well as to new distributed constructions.
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1 Introduction

Short cycle decomposition introduced by Chu et al. [3] is a partitioning of the graph edges
into edge-disjoint short cycles and a small subset of extra edges that are not in any cycle.

I Definition 1 (Short Cycle Decomposition). An (m̂, L)-short cycle decomposition of an
unweighted undirected graph G is a collection of edge-disjoint cycles in G, each of length at
most L, such that at most m̂ edges of G are not covered by these cycles.
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In their recent paper, Chu et al. [3] demonstrated the power of short cycle decomposition
as a fundamental tool for a number of problems in graph sparsification. This includes the
construction of degree preserving sparsifiers, resistance sparsifiers, graphical spectral sketches,
approximation of the Laplacian’s determinant and more. Chu et al. [3] showed that the
efficiency of this long list of problems is determined by the time complexity, the cycle length,
and the number of uncovered edges of the short cycle decomposition routine in hand. Clearly,
it is most desirable to compute fast a decomposition into the shortest possible edge-disjoint
cycles, while omitting as few as possible edges.

As they have observed, there is a naïve short cycle decomposition which runs in time
O(mn) (where n is the number of vertices in the graph, and m is the number of edges),
and outputs an optimal1 decomposition: cycle length of O(logn) and O(n) extra edges. In
their key algorithmic result, [3] significantly improved this time complexity by presenting an
almost-linear time algorithm2 which decomposes G into edge-disjoint cycles of length no(1),
and an extra number of n1+o(1) edges. Thus, the improvement in the time complexity came
with the cost of increasing both the cycle length as well as the number of left-over edges by
a multiplicative factor of no(1). Improving the efficiency of the short cycle decomposition
was stated in [3] as a highly motivated target, as it immediately leads to a large sequence of
algorithmic consequences:

“Critically, any improvement to our short-cycle decomposition algorithm will achieve
an improvement in all of our results.”

Very recently, Liu, Sachdeva and Yu [8] provided the first improvement for the problem,
by presenting an O(m · nδ)-time algorithm that decomposes G into edge-disjoint cycles of
length O(logn)1/δ and an extra subset of O(n) edges, for any constant δ ∈ (0, 1]. This
simplifies and improves the decomposition algorithm of [3] in terms of all parameters, but
still leaves the following fundamental question open:

Is there an optimal cycle decompositios in almost linear time?

In this paper, we answer this question in the affirmative and present an m1+o(1)-time
algorithm for decomposing the graph into edge-disjoint cycles of length O(log2 n), and an
extra number of O(n logn) edges.

I Theorem 2 (Nearly Optimal Decomposition in Almost-Linear Time). There is an almost-
linear time algorithm for computing a cycle decomposition with cycle length of O(log2 n), and
O(n logn) extra edges.

We also have a much simpler algorithm that achieves the same quality of cycle decom-
position3 as by [3], only in Õ(m) time. An additional benefit of this algorithm is that it is
deterministic.

I Theorem 3 (Longer Cycles in Linear Time). For every n-vertex graph G = (V,E) with m
edges, one can compute in Õ(m) time, a decomposition with cycle length no(1) and n1+o(1)

extra edges.

1 Optimality in this context is up to poly-logarithmic terms.
2 A graph algorithm is almost-linear if runs in time m1+o(1).
3 In fact, the quality here is slightly better, as the no(1) factor (in the cycle length and number of

uncovered edges) is 2
√

logn and in [3] et al. it is 2(logn)3/4
.
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The latter provides an improvement for approximating the determinant of the Laplacian.
We can also combine with the algorithm of [8] to obtain a randomized decomposition that is
optimal (up to log-n factors) in all three complexity measures: time, length and number of
leftover edges provided that the graph is sufficiently dense.

I Theorem 4 (Optimal Decomposition for Dense Graphs). For every constant δ ∈ (0, 1], there
exists a randomized algorithm that computes in time Õ(m) + n1+1.1δ a collection of edges
disjoint cycles of length O(logn)1/δ and at most O(n) leftover edges.

Table 1 provides a summary of our results in comparison to [3, 8]. Our algorithms
are based on independent ideas compared to [3, 8], which are related to the concept of
low-congestion cycle covers.

Table 1 Summary of our results.

Cycle Length #Uncovered Edges Time Type
Chu et al.

[3] no(1) n1+o(1) m1+o(1) Randomized

Liu-Sachdeva-Yu
[8]

O(logn)1/δ−1

for constant δ ≤ 1 O(n) O(mnδ) Randomized

This Work O(log2 n) O(n logn) m1+o(1) Deterministic

This Work O(logn)1/δ

for constant δ ≤ 1 O(n) m+ n1+1.1δ Randomized

This Work no(1) n1+o(1) m+ n1+o(1) Deterministic

1.1 Low-Congestion Cycle Covers
A cycle cover of a graph G is a collection of cycles such that each edge of G appears in at
least one of the cycles. Cycle covers were introduced by Itai and Rodeh [6] in 1978 with
the objective to cover all edges of a bridgeless4 graph with cycles of minimum total length.
Motivated by applications to distributed computation, [11] recently introduced5 the notion
of low-congestion cycle covers: a collection of cycles that are both short, nearly edge-disjoint
and covering all edges.

I Definition 5 (Low-Congestion Cycle Cover). A (d, c)-cycle cover of a graph G is a cycle
collection that covers all edges in G. Each cycle has length at most d, and each edge
participates in at least one cycle and at most c cycles.

Low-congestion cycle covers provide the basic communication backbone in different
settings of resilient distributed computation such as Byzantine fault model and secure
computation [11, 10]. Whereas a-priori it is not clear that cycles of short length and small
overlap exist, our main result in [11] shows that one can enjoy a dilation of O(D logn) while
incurring only a poly-logarithmic congestion, where D is the diameter of the graph.

Comparison to Short Cycle Decomposition. Low-congestion covers bare some similarity
to short cycle decomposition but differs from it in two main aspects. The first aspect
follows from the definition: Low-congestion covers allow a small overlap between the cycles,

4 A graph G is bridgeless, if any single edge removal keeps the graph connected.
5 In an independent manner to the notion of short cycle decomposition.
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but require covering all edges. On the other hand, short cycle decomposition insists on
edge-disjoint cycles, i.e., with no-overlap, but allows omitting a subset of leftover edges that
are not in any cycle. The second difference concerns the algorithmic focus. In low-congestion
covers, the main goal was in showing that optimal covers which are both short and with
small overlap exist. Computation time was not the primary concern, and in fact, the first
step in the construction in [11] used the naïve decomposition algorithm (that runs in time
O(m · n)) to reduce the number of uncovered edges into 2n. In contrast, for short cycle
decomposition, it is easy to obtain the optimal decomposition in O(m · n) time, and hence
the primary algorithmic focus is computation time.

1.2 Improved Graph Sparsification Algorithms via Short Cycles
Spectral sparsifiers introduced by Spielman and Teng [13] are sparse (weighted) subgraphs
that approximately preserve the Laplacian quadratic form of the graph. Recall that the
Laplacian, LG, of an undirected weighted graph G = (V,EG, wG) is the unique symmetric
V × V matrix such that for all x ∈ R|V |, it holds that

xTLGx =
∑

(u,v)∈EG

wG(u, v) · (xu − xv)2 .

For ε < 1, a graph H = (V,EH , wH) is an ε-sparsifier for G if

∀x ∈ Rn, xTLGx ∈ (1± ε)xTLHx .

Batson, Spielman and Srivastava [2] presented a construction of spectral sparsifiers with
O(n/ε2) edges, which is tight. In the last years, related graph structures have been defined,
which are weaker than spectral sparsifiers, and thus potentially sparser. The recent work
of Chu et al. [3] used short cycle decomposition to derive new existential results on the
sparsity of sparsifiers and spectral sketches. As the time complexity and the quality of their
algorithms depend on the efficiency of the decomposition, our decomposition algorithm leads
to immediate improvements for all the algorithmic results from [3].

Graphic ε-Spectral Sketch and Resistance Sparsifiers. A spectral sketch [1] is a data
structure for a graph G that given a query vector x ∈ Rn returns w.h.p. a (1+ε) approximation
for the quadratic form xTLGx. A data structure that works w.h.p. for all x ∈ {±1}n requires
n/ε2 space. However, Jambulapati and Sidford [7] showed that when requiring the high
probability guarantee for a fixed unknown vector, the size of the data structure can be
made Õ(n/ε). In the same manner, one can define the graphic spectral sketch of G to be a
sparse graph H satisfying xTLGx ∈ (1± ε)xTLHx for a fixed unknown vector x with high
probability. Chu et al. showed that graphical spectral sketches with Õ(n/ε) edges exist.

Resistance sparsifiers are sparse subgraphs that preserve the effective resistance6 of
all vertex pairs up to a multiplicative factor of (1 + ε). This notion was introduced by
Dinitz-Krauthgamer-Wagner [4] who conjectured that resistance sparsifiers with Õ(n/ε)
edges always exist. The conjecture was indeed resolved by [3] using the tool of short cycle
decomposition. By combining Theorem 2 with [3, Theorem 6.1] we get:

6 The effective resistance between a pair u, v is the difference in the voltage between u, v when the graph
is an electrical network, with every edge e of weight we has a resistor of resistance 1/we and 1 unit of
current is sent from u to v.
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I Theorem 6 (Graphic Spectral Sketches and Resistance Sparsifiers). One can compute an
ε-resistance sparsifier H and a graphical spectral sketch H ′ with Õ(n/ε) edges in time m1+o(1).
Alternatively, these algorithms can be tuned to run in Õ(m) time while producing such graphs
H,H ′ with n1+o(1)/ε edges.

These two results should be compared with (i) the O(m ·nΘ(1))-time algorithm of [8] that
gives sparsifiers with Õ(n/ε) edges; and (ii) the m1+o(1)-time algorithms of [3, 8] that give
sparsifiers with n1+o(1)/ε edges. Hence, we provide the first almost-linear time algorithm
for optimal size sparsifiers with Õ(n/ε) edges, and the first near linear time algorithm7 for
almost-linear size sparsifiers with Õ(n1+o(1)/ε) edges.

Degree Preserving Sparsifiers and Sparsifiers for Eulerian Directed Graphs. Short cycle
decompositions are useful for providing spectral sparsifiers that preserve additional key
properties in the original graphs. Degree preserving sparsifier is a spectral sparsifier H
for a graph G which preserves (exactly) the weighted degree of each vertex v ∈ V . To get
an intuition for the usefulness of edge-disjoint cycles in this context, imagine G to be an
unweighted union of edge-disjoint cycles of even length. A degree preserving sparsifier H that
contains half of the edges in G, can be obtained by the following correlated sampling: For
each cycle, with probability 1/2 add to H the odd edges with weight 2, and with probability
1/2 add to H the even edges with weight 2. It is easy to see that every vertex v has exactly
the same weighted degree in H as in G, and the number of edges in G was cut by half. By
combining Theorem 3.3 of Chu et al. [3] with Theorem 2, we get:

I Theorem 7 (Optimal Degree Preserving Sparsifiers in Almost Linear Time). There exists
an algorithm that runs in time m1+o(1) and constructs a degree-preserving ε-sparsifier of G
with Õ(n/ε2) edges, with high probability. Alternatively, an n1+o(1)/ε2-size degree-preserving
sparsifier can be computed in Õ(m) time.

A similar approach has been taken in Chu et al. [3] to construct a sparsification of Eulerian
directed graphs. By plugging Theorem 2 in Theorem 5.1 of [3], we get:

I Theorem 8 (Sparsification of Eulerian Directed Graphs). There exists an algorithm A that
given an Eulerian directed graph −→G with polynomial bounded edge weights returns an Eulerian
directed graph −→H such that either: (i) −→H has Õ(n/ε2) edges and A has time complexity
m1+o(1), or (ii) −→H has n1+o(1)/ε2 edges and A has time complexity Õ(m).

Estimation of the Effective Resistance and the Determinant of the Laplacian. Finally,
we show how incorporating our improved construction of resistance sparsifiers can yield a
faster approximation of the determinant of the graph Laplacian with the last row and column
removed. In particular, this yields the first linear time algorithm for sufficiently dense graphs.
Recall that by Theorem 6, given a graph G with m edges, we can compute in time Õ(m),
a resistance sparsifier H with n1+o(1)/ε edges, with high probability. By applying [3, Thm.
3.8] on H, we get:

I Theorem 9 (Faster Approximation of Effective Resistance). Given an undirected graph G
with m edges, one can compute with high probability an ε-approximations to the effective
resistances between a given set of t vertex pairs in time Õ(m) + (n+ t)no(1)ε−1.5.

7 A graph algorithm is near linear if it runs in O(m · poly(logn)) time.

ICALP 2019



89:6 Optimal Short Cycle Decomposition in Almost Linear Time

Hence, for t = o(m1−o(1) · ε1.5), we obtain a linear time algorithm for approximating
the effective resistance. As observed in [3], the running time bottleneck of the determinant
estimation algorithm for Laplacians by Durfee et al. [5] is the estimation of the effective
resistance of O(n1.5) pairs with an error of ε = n−0.25. Plugging our improved Theorem 9 in
Lemma B.1 of [3] yields:

I Corollary 10 (Faster Approx. of Laplacian’s Determinant). Given a graph Laplacian L
and any error 0 < ε < 1/2, one can compute an 1 ± ε estimate to det(L−n)8 in time
Õ(m) + n15/8+o(1) · ε−7/4, thus in linear time for sufficiently dense graphs.

1.3 Distributed Implementation
Our centralized construction has the benefit of naturally being implemented in the standard
CONGEST model of distributed computing. As in the centralized setting, the decomposition
is based on constructing low-congestion cycle covers. We show:

I Lemma 11 (Distributed Low-Congestion Covers). There exists a distributed algorithm that
given n-vertex graph G = (V,E) constructs a (d, c) cycle cover within O(d · c) rounds for
d, c = 2O(

√
logn).

The proof appears in the full version of the paper. This improves upon the linear time
algorithm of [11, 10]. By combining this algorithm with Luby-MIS algorithm [9], we get:

I Theorem 12 (Distributed Short Cycle Decomposition). There exists an 2O(
√

logn)-round
distributed algorithm that given n-vertex graph G = (V,E) decomposes G into edge-disjoint
cycles of length 2O(

√
logn) plus O(n logn) extra edges.

One might hope that using this distributed construction of cycle decomposition we would
get a distributed algorithm for all the above application. Unfortunately, in the distributed
setting, to this point, we do not have an efficient algorithm that approximates (even up to a
constant factor) the effective resistance of all edges9 in G. This is the only missing piece for
obtaining the above mentioned algorithmic applications of the short cycle decomposition in
a distributed setting.

Comparison to the work of Chu et al. [3] and Liu-Sachdeva-Yu [8]. We first observe
that in [8], the number of leftover edges is O(n), whereas in our case it is O(n logn). By
applying the algorithm of [8] on these last O(n logn) edges, for any constant δ ∈ (0, 1),
we can compute an O(n, (logn)1/δ−1)-decomposition in time O(n1+δ logn+m1+1/ log logn),
which considerably improves upon the time complexity of O(m · nδ) of [8]. Since we consider
log-n factors to be negligible in this work (i.e., the size of the sparsifiers is Ω(n logn) in any
case), we omit this step.

Fixing the number of leftover edges to Õ(n), then [8] computes cycles of length
O(logn)1/δ−1 in time 2O(1/δ) · nδ · m. In comparison, our algorithm computes cycles of
length 21/δ ·O(logn) in roughly the same time 2O(1/δ) · nδ ·m. For example, when taking
δ = 1/ log logn, both algorithms have roughly the same time complexity, but our algorithm
produces cycles of length O(poly logn) and their algorithm has cycle length O(logn)log logn.

From an algorithmic point of view, both our algorithm and the algorithm of [8] use low-
diameter decomposition10. This allows one to restrict attention to O(logn)-diameter graphs.

8 the determinant of L with the last row and column removed
9 In the output of such an algorithm we want each edge (u, v) to obtain a constant approximation for the
effective resistance between u and v in G.

10We use a neighborhood covers which are close variant of low-diameter decomposition.
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The approach of [8] contracts each of the components of the low-diameter decomposition
and recursively computes vertex-disjoint short cycles on the contracted graph. The diameter
of each super-node is O(logn), when lifting the contracted cycles back to edges in G the
length of the cycles increases exponentially with the number of recursive layers. In particular,
halving within 1/δ recursive calls the length of the cycles becomes O(logn)1/δ−1. Our
approach is quite different. We also decompose trees into smaller components, but instead of
contracting these components we use their internal edges carefully in our cycles. By enjoying
the internal edges inside each cycle, the length of the cycles increases by a factor of at most
2 in each level of the recursion, thus after 1/δ recursion levels, the length of the cycle is 21/δ.

2 Longer Edge-Disjoint Cycles in Nearly Linear Time

We begin by describing a deterministic algorithm for computing cycle decomposition of the
same quality as that of Chu et al. [3], but in nearly linear time Õ(m). In particular, the
cycle length will be bounded by 2

√
logn and at most 2

√
logn · n edges will be left uncovered.

Note that the recent randomized algorithm of [8] achieves such cycles in almost linear time
m · nO(log logn/

√
logn) · 2

√
logn/ log logn. We can also reduce the number of leftover edges to

O(n), by running the algorithm of [8] on the remaining subset of n1+o(1) leftover edges.
However, note that in any case, the efficiency of the algorithmic applications for these cycles
depends on m̂+nL where m̂ is the number of leftover edges and L is the largest cycle length.

I Theorem 13. For every ε ∈ (0, 1], there exists an Õ(m)-time algorithm that computes
an (m̂, L) short cycle decomposition with m̂ = 1/ε · 21/ε · n1+O(ε) and L = 2O(1/ε). Setting
ε = 1/

√
logn, gives m̂ = 2O(

√
logn) · n and L = 2O(

√
logn).

Thm. 4 follows immediately: Set ε = 1/ log logn in Theorem 13, yeilding cycles of length
O(logn) and n1+o(1) leftover edges. Then, using the randomized algorithm of [8] on this
remaining subgraph with some constant δ ∈ (0, 1], covers the remaining edges with cycles of
length O(logn)1/δ with time complexity of n1+1.1δ. In addition, Thm. 3 follows by plugging
ε = 1/

√
logn in Theorem 13.

Throughout, a block is a subset of vertices with a bounded size. The algorithm is recursive
and has ` = d1/εe levels of recursion. During each recursion level, some virtual edges Ẽ will
be added to the set of edges E′ that we wish to cover by cycles (initially E′ = E). Informally
speaking, whenever the algorithm adds a virtual edge between two nodes u and v, it implies
that the algorithm has already computed a u-v walk denoted by W ((u, v)), and the virtual
edge (u, v) indicates the need for computing another u-v walk so that we will end up with a
cycle. In other words, adding a virtual edge means that we defer the closure of the cycle to
future iterations. We also maintain a leftover subgraph H, and in certain cases, we give up
on completing the cycles of the virtual edges, and add their walk edges to this subgraph.

We now describe Alg. FasterLongerCycles. The algorithm is recursive and has O(1/ε) levels
of recursion. Initially, let E′ = E(G). The preliminary walk collection is W = {e | e ∈ G},
the cycle collection C′ is empty. In addition, we have a subgraph H ← ∅ that will contain
the edges that are not covered by cycles.

In each independent level i ≥ 1 of the recursion, we are given a block B, and a subset of
edges E′ with both endpoints in B. In addition, we are given a set of current walks W for
the edges in E′, a current cycle collection C′, and a leftover subgraph H.

Block Partitioning. First the algorithm partitions B into k = nε balanced blocks B1, . . . , Bk
each with Θ(|B|/nε) vertices.
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Taking care of edges between blocks. Our goal is to replace edges between blocks, to edges
inside blocks. For block Ba, we do as follows for every v ∈ Ba and every b ∈ {a+ 1, . . . , k}.
Define by Na,b(v) = {u ∈ Bb | (u, v) ∈ E′} to be the E′-neighbors of v in Bb. If Na,b(v) is
odd, we will omit from it at most one vertex u, in order to make it even. The edge (u, v)
of the omitted vertex u is omitted from E′, and its walk W ((u, v)) is added to the leftover
subgraph H.

From now on, we can assume that the set Na,b(v) is even. We then (arbitrarily) match
the vertices in Na,b(v) into pairs 〈x, y〉. Each matched pair 〈x, y〉 is handled as follows:
Case (1): The set E′ already contains an (x, y) edge. If E′ already contains an edge

(x, y) (this edge might be virtual), we define a cycle C = W ((v, x)) ◦W ((x, y)) ◦W ((y, v))
and add it to the cycle collection C′. In addition, we omit the edges (v, x), (x, y) and
(y, v) from E′, and omit their walks from W.

Case (2): The set E′ does not contain an (x, y) edge. In this case, we add a virtual edge
(x, y) to E′, as well as a walk W ((x, y)) = W ((x, v)) ◦W ((v, y)) to W. This completes
the description of the ith recursion level. The algorithm then recurses on each of the
blocks B1, . . . , Bk. See Fig. 1 for pseudocode. Finally, as in Alg. PartialCycleCover, the
cycles of C′ might re-visit the same vertex, and hence in the final cleanup phase, the
algorithm traverses each of the cycles in C′ and simplify them.

Algorithm FasterLongerCycles(B,E′,W, C′, H).
Level i of the Recursion (for non-singleton block B):
1. Decompose B into k = nε blocks B1, . . . , Bk each with |B|/k vertices.
2. For every block Ba and every vertex v ∈ Ba, do the following for every b > a:

a. Let Na,b(v) = {u ∈ Bb | (u, v) ∈ E′}
b. If |Na,b(v)| is odd:

Omit an arbitrary u from Na,b(v).
Omit the walk W ((u, v)) from W and the edge (u, v) from E′.
Add W ((u, v)) to H.

c. Match the vertices in Na,b(v) into pairs 〈x, y〉 (in an arbitrary manner).
d. For each matched pair 〈x, y〉 do:

If (x, y) ∈ E′:
Add the cycle W ((v, x)) ◦W ((x, y)) ◦W ((y, v)) to C′.
Remove the edges (v, x), (x, y), (y, v) from E′, and their walks from W.

Otherwise:
Add a virtual edge (x, y) to E′, and add to W the x-y walk:

W ((x, y)) = W ((x, v)) ◦W ((v, y)).

3. For every a ∈ {1, . . . , k} do:
Let E′a be the edges in E′ with both endpoints in Ba.
Let Wa = {W (e) ∈ W | e ∈ E′a}.
Apply FasterLongerCycles(Ba, E′a,Wa, C′, H).

Figure 1 Description of no(1)-length cycle decomposition in Õ(m) time.

Analysis. Let Ei,Wi be the union of the E′,W sets over all the recursion calls in level i.



M. Parter and E. Yogev 89:9

B Claim 14 (Cycle Length). (a) All walks added in level i have length ≤ 2i; (b) All cycles
added in level i have length ≤ 2i+1.

Proof. Consider the first level for the base of the induction. Let B1, . . . , Bk be the first level
blocks. Fix a pair of blocks Ba, Bb for a < b, and v ∈ Ba. Let 〈x, y〉 be a matched pair in
Na,b(v). First, assume that when considering 〈x, y〉, the current edge set E′ does not contain
(x, y). In such a case, we add an x-y walk W ((x, y)) = (x, v) ◦ (v, x) of length 2 as required.
Otherwise, E′ already contains the edge (x, y) and by the explanation above, |W ((x, y))| ≤ 2.
In such a case, we add a cycle C = (v, x) ◦W ((x, y)) ◦ (y, v) which has length at most 4
as required.

Assume that the claim holds up to level i− 1, and consider level i. Using the induction
assumption, we can apply the same argument for the induction base and get that either: (1)
we add an x-y walkW ((x, y)) = W ((x, v))◦W ((v, y)). Note that by definition (x, v) and (y, v)
are edges between blocks in level i+ 1. Thus if these edges are virtual, they must have been
added in level i−1 (since all virtual edges added in level i connect vertices in the same (i+1)-
level blocks). We have by induction assumption that |W ((x, v))|, |W ((v, y))| ≤ 2i−1. Thus
|(W ((x, y))| ≤ 2i. (2) Otherwise, if E′ already contained the edge (x, y) when considering
this matched pair, the algorithm adds a cycle C = W ((v, x)) ◦W ((x, y)) ◦W ((y, v)). Note
that the edge (x, y) could potentially be added in level-i (since it is inside an (i+ 1)-level
block). Thus |W ((x, y))| ≤ 2i (by the previous case), and |W ((x, v))|, |W ((v, y))| ≤ 2i−1.
Overall, |C| ≤ 2i+1. The claim follows. C

Since the algorithm has ` = O(1/ε) levels, overall all cycles have length 2O(1/ε) as required.
Missing proofs appear in the full version of the paper.

B Claim 15. [Number of Uncovered Edges] |E(H)| = 1/ε · 21/ε · n1+O(ε).

Proof. We bound the number of edges added to the leftover subgraph H due to a fixed vertex
v. Since the blocks are vertex-disjoint at every recursion level, a vertex belongs to at most
O(1/ε) blocks: at most one block, in each level in the recursion tree (once a vertex becomes
a singleton block, we stop sub-dividing it). Consider level i, and let Bv be the unique block
containing v. Recall that in this level, the input edge set Ei contains only edges whose both
endpoints are in the same i-level block.

Now, the algorithm subdivides Bv into nε disjoint blocks: B1, . . . , Bk. W.l.o.g., let B1
be the block containing the vertex v. For every other block Bj for j ∈ {2, . . . , k}, we omit
at most one edge ej ∈ Ei and add a walk W (ej) to H. By Claim 14, every walk W (ej)
is of length at most 2O(1/ε). Therefore, there is a total of k · 2O(1/ε) edges on the walks
W (e1), . . . ,W (ek) that are added to H when considering v. Summing over all the vertices,
and over all O(1/ε) recursion levels, we get that |H| = 1/ε · 21/ε · n1+O(ε). C

Finally, we show that all the edges that are not in H are covered by the cycles in C.

B Claim 16 (Cover). Every edge is either in H or covered by the cycles in C.

Proof. We claim by induction on i, that every edge e ∈ G \H, either has a walk W (e′) such
that e′ ∈ Ei and e ∈W (e′), or that e is covered by a cycle in C. The base of the induction
holds vacuously. Assume it holds for i− 1 and consider level i. It remains to take care for
edges e ∈ G such that (i) there exists e′ ∈ Ei−1 satisfying that e ∈W (e′) and (ii) e′ /∈ Ei. To
see this observe that if (i) does not hold, then the statement holds by induction assumption.
If (i) holds but (ii) does not hold, then e ∈W (e′) for an e′ ∈ Ei and the statement holds.

Consider then such an edge e that satisfies the above two conditions. Since e′ was omitted
from Ei in phase i− 1, it implies that e′ = (u, v) was an edge between two i-level (brother)
blocks Ba and Bb. W.l.o.g., u ∈ Ba and v ∈ Bb. We first observe that if u has an odd
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number of edges in Ei with a second endpoint of Bb, then the unique edges e′′ omitted from
consideration cannot be e′. This holds since when omitting e′′, we add W (e′′) to H. Since
e ∈W (e′) but e /∈ H, it must hold that e′ 6= e′′. From now on, we know that e′ was matched
to another u-edge (u, v′). In this case either an v-v′ walk W (ê) for ê = (v, v′) is added to
the walk collection, or that a cycle containing W (e′) is added to C. In either case, since
e ∈W (e′), it is indeed covered by either the walks or the cycles in level-i. C

Setting ε = 1/
√

logn, yields cycles of length 2
√

logn and at most |H| = 2O(
√

logn) · n edges.
All other edges not in H are covered by a cycle.

Edge-Disjoint Cycles. We prove (1) every edge belongs to at most one walk in Wi for
every i, and (2) cycles are made by gluing a disjoint set of walks. Claim (1) can be shown
by induction on the set of walks Wi. The base of the induction holds vacuously. Assume
that it holds up to i and consider the walks added in level i. The walks are formed one
by one, where walks of level i formed by gluing together walks in Wi. Whenever a walk
W (e) = W (e′)◦W (e′′) is formed, the walksW (e′),W (e′′) are omitted from the walk collection
and would not be considered again. The claim follows by combining with the induction
assumption. To see (2) observe that whenever we form a cycle, all its walks are omitted from
the walk collection. The proof follows from the fact that all walks are edge-disjoint.

Time Complexity. We claim that each all recursion calls of level i can be implemented in
O(m) time, for every i = 1, . . . , `. We claim that all operations are linear in m. We keep the
block ID of each vertex v (the maximum vertex ID in its block) in each level i ≥ 1. Then
by traversing over the edges in Ei, we can compute the edges Ea,b between each pair of
bothering blocks Ba, Bb in level i. We traverse the edges in Ea,b for each vertex v in Ba. All
operations of gluing walks due to an addition of virtual edges are linear in the length of the
walks. Since all walks are edge-disjoint, we touch each edge e ∈ E at most O(1) many times
in each phase.

3 Shorter Cycles in Almost Linear Time

We next turn to consider the high-level idea of our main algorithm which computes a decom-
position with almost optimal quality in almost-linear time. Thus establishing Theorem 2.
Specifically, here the cycle length will be bounded by O(log2 n), and we will omit at most
O(n logn) edges. Note that the simple algorithm described above omits 21/ε · n1+ε edges
which is at least 2

√
lognn for any value of ε.

One option to improve this bound is by setting ε = 1/ log logn to get cycles of length
O(logn), while omitting n1+o(1) edges. Then by applying the algorithm of [8] on the remaining
edges with δ = 1/c for some constant c we get an algorithm for covering all but O(n) edges
with polylog(n) length cycles in total time m+ n1+δ. Since δ is constant, this algorithm is
not an almost linear algorithm for graphs with m = n1+o(1) edges. Therefore, in order to
obtain a truely almost linear algorithm that that omits Õ(n) edges, runs in time m1+o(1)

and produces cycles of length polylog(n), we must come up with some new ideas.
Our alternative algorithm is recursive and has O(1/ε) recursion levels. It is also based on

a balanced partitioning into blocks, only that the blocks in this context are more involved.
Instead of computing edge-disjoint cycles directly, we compute short cycles that have a small
amount of overlap. This notion is captured by low-congestion cycle cover defined as follows.
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Key Task:

Input: Parameter ε ∈ (0, 1), an n-vertex graph G of diameter O(logn) with m edges,
and a BFS tree T ⊆ G.
Goal: Cover all non-tree edges with cycles of length at most d = O(21/ε · logn), such
that each edge appears on at most c = 1/ε · nO(ε) cycles. That is, compute a (d, c)
cycle cover for the non tree edges.

Figure 2 The key sub-problem for short cycle decomposition.

For a bridgeless graph G = (V,E), a (d, c) cycle cover is a collection of cycles of length
at most d, such that each edge in G appears on at least one cycle and on at most c
cycles11. Intuitively, if each edge appears on few cycles, then one can greedily pick a subset
of edge-disjoint cycles which covers a large enough fraction of the edges, and then repeat
again (after removing all edges that are currently covered). Moreover, we also show that
computing the decomposition boils down into an even easier variant of the low-congestion
cycle cover problem.

Note that the key task considers all graphs of diameter O(logn), whereas in our case
the input graph G might have a large diameter. To add more insult to the injury, the
low-congestion cover computation is computed repeatedly on the subset of yet uncovered
edges (i.e., by the current subset of edge-disjoint cycles). Thus, even if the original input
graph has a small diameter, already in its second application, the input graph to the algorithm
might not be even connected. In the full version, we show how to settle down this mystery
using the notion of neighborhood covers. From now on, we focus on the key task.

Solving the Key Task. Given a tree T and an ε ∈ (0, 1], our goal now is to cover all non-tree
edges E \ T with cycles of length at most d = 21/ε ·O(logn), such that each edge appears on
at most c = 1/ε · nε cycles.

The algorithm is recursive with ` = O(1/ε) recursion levels. In each independent level
i ∈ {1, . . . , `} of the recursion, we are given a subtree T ′ and a collection of at most m/nε·(i−1)

edges E′ with both endpoints in T ′ that should be covered. Some of the edges in E′ (in
level i ≥ 2) might be virtual, and in such a case it implies that the algorithm has already
computed a partial cycle (i.e., a walk) that covers them. We are also given a set of walks W
that contains a walk W (e) for each e ∈ E′. Initially, T ′ is simply T , E′ contains all edges
in E(G) \ T that we want to cover, and W = {e : e ∈ G} contains the trivial walks for
each edge.

Step (1): Balanced Block Partitioning. The first step of the algorithm is to partition
T ′ into k = Θ(nε) edge-disjoint subtrees T1, . . . , Tk that are balanced with respect to their
degrees in E′. We call such balanced subtrees blocks. Any vertex whose degree in E′ is too
high defines a singleton block.

As in the previous algorithm, we will distinguish between two types of E′-edges: edges
inside a block and edges between blocks. We next describe how to replace edges between
blocks with virtual edges that are inside a block, in a way that covering the virtual edges by

11Our constructions do not require the graph to be bridgeless, it covers edges by cycles provided that
such a cycle exists.
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cycles will, later on, be translated back to a covering of the original inter-block edges. Unlike
the previous algorithm, here we do not have the privilege to throw away edges to leftover
subgraphs. Thus, we will have to make sure that all virtual edges are eventually completed
into a cycle.

Step (2): Handling Edges Between Blocks. Let Ea,b be all the edges in E′ with one
endpoint in Ta and the other in Tb. Our goal now is the following: we want to find a matching
of the edges in Ea,b in a way such that if e = (x, y) and e′ = (x′, y′) where x, x′ ∈ Ta and
y, y′ ∈ Tb are matched then there is a path π(x, x′) in Ta such that these paths for all pairs
are edge disjoint. Then, we add the virtual edge (y, y′) ∈ Tb × Tb and remove e and e′.
Furthermore, we maintain the set of walks W connecting the endpoints of each virtual edge
ê = (y, y′) where W (ê) = e ◦ π(x, x′) ◦ e′.

Intuitively, the addition of a virtual edge (y, y′) indicates to the algorithm that a cycle
covering the edges e and e′ is “under construction”: there is currently an y-y′ walk which
will become a cycle when covering the virtual edge (y, y′). Importantly, all the virtual edges
are internal to Tb and thus will be covered recursively by a path inside Tb. This path, along
with W (e) will complete the cycle. This procedure is applied for each pair of subtrees Ta, Tb
separately, eventually converting all inter-block edges to internal block edges. Then, we apply
the algorithm recursively on each block.

Notice that when the algorithm is applied recursively, then the inter-block edges e, e′
might be virtual. Thus, we define the walks as follows. Initially, we set W (e) = e for all edges
of the graph and let W = {W (e), e ∈ E′}. Then, we update W (ê) = W (e) ◦ π(x, x′) ◦W (e′).
That is, if e is a virtual edge then instead of adding it to the path we added its path W (e)
that contain “real” edges of the graph. This, of course, makes the walk longer and we bound
their length later on.

We are left to describe how the matching is performed. As long as there is a vertex x in
either Ta or Tb that is adjacent to at least two edges Ea,b, then we can match these two edges.
That is, in this case, we have that x = x′ and thus the path π(x, x′) = x is the trivial path
and is, of course, edge-disjoint from any other path. Thus, we can now assume that each
vertex in Ta and Tb is adjacent to at most one edge in Ea,b. Note in the previous algorithm,
when we got to a point that a vertex in a block is incident to one vertex in another block, we
simply got rid of this edge by adding it to the leftover subgraph H. Here, we do not have
this option, as we really need to cover all non-tree edges. This is exactly the point where
congestion kicks in: covering all edges will come with the cost of producing cycles with some
overlap, rather than edge-disjoint cycles as in the previous algorithm.

Let Ma,b ⊂ Ta be all the vertices in Ti that are adjacent to an endpoint of an edge in
Ea,b. If |Ma,b| is odd, then we omit a single vertex y from this set, and cover the edge (x, y)
by adding the “fundamental” cycle C = W ((x, y)) ◦ π(x, y, T ) to the cycle collection12.

From now on, we assume that Ma,b is even, and each y ∈ Ma,b is incident to a unique
edge in Ea,b to be covered. The key tool used in this context is the following lemma:

B Fact 17. [12] Given a tree T and an even subset of marked vertices M ⊆ V (T ), one
can compute a matching the vertices of M into pairs such that the collection of tree paths
π(x, y, T ) over all the matched pairs are edge-disjoint.

We apply Algorithm DisjointMatching to the instance Ta,Ma,b. The output of this algorithm
is a matching of the marked vertices Ma,b into pairs 〈xi, yi〉, along with a collection of
edge-disjoint paths in Ta connecting the matched pairs. The matched vertices naturally

12 If e is an edge in G it is indeed a fundamental cycle.
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define the matching between the remaining edges, along with edge-disjoint paths. This
completes the high-level description of level i, while omitting some minor technical subtleties.

Why It Works. We give an overview of the analysis of this algorithm.

1. Cycle lengths: Let di be the maximum length of all walks at the beginning of level
i of the recursion. In level i, the walks W (ê) = W (e) ◦ π(x, x′) ◦W (e′) contain two
(i − 1)-level walks and a tree segment. Since the depth of the tree is O(logn), we
get di+1 ≤ 2di + O(logn). Solving for i = O(1/ε), gives the desired cycle length of
2O(1/ε) · logn.

2. Congestion: We first consider the congestion added when creating walks via the routing
edge-disjoint matching algorithm. We claim that in every recursion level, the congestion
on the tree edges is increased by (at most) an additive term of nε. The non-tree edges,
in contrast, will belong to exactly one cycle (using a similar argument to the previous
algorithm).
The congestion argument works by induction as well. Assume by induction that every
tree edge e appears at most ci−1 many times on all walks computed up to level i. In
level i, every walk is of the form: W (ê) = W (e) ◦ π(x, x′) ◦W (e′). That is, it has a tree
segment π(x, x′) and two segments of an (i− 1)-level walks. Since each (i− 1)-level walk
is added to at most one i-level walk (due to the matching step), the total congestion on
the non-tree part of the i-level walks is kept the same. The increase in the congestion is
then due to the tree segment π(x, x′). Recall that this tree segment is the outcome of
applying the routing disjoint algorithm in some block Ta. For each application of this
algorithm in Ta w.r.t to the edges of a fixed block Tb, the tree segments are disjoint.
However, since the algorithm is applied in Ta for nε many times – per other block Tb, the
total congestion on its tree edges is nε. Overall, we get that ci ≤ ci−1 + nε. Solving for
i = O(1/ε), gives the desired bound.
Finally, we bound the congestion due to the fundamental cycles. Recall that whenever
the number of edges between blocks Ta and Tb is odd, we cover a single edge with its
fundamental cycle. Let T ′ be an i-level block and T1, . . . , Tk be its children. The tree
segment of the fundamental cycle of each edge between Ta and Tb is contained in T ′.
Since T ′ has k = O(nε) children, the tree edge appears on n2ε cycles. Next, observe
that since the blocks of each level are edge-disjoint, an edge appears on O(1/ε) many
blocks over all, thus the total congestion added due to the fundamental cycles of the child
components is 1/εn2ε.

3. Time Complexity: In each phase, for each of the blocks Ta we have k = O(nε) applications
of the routing disjoint matching algorithm. This algorithm can be implemented in linear
time. Since the blocks are edge-disjoint, overall it takes k ·

∑
aO(|Ta|) = m·nε. Computing

the walks defined by these matching outcome can be done in linear time in the total
length of all i-level walks. Since each tree edge appears at most nε times on this walks
(in each recursion level), the total length of the walks is O(m+ nε · n). Summing overall
O(1/ε) recursion levels gives the desired bound. The pseudocode of the algorithm appears,
illustrations, the complete analysis and the distributed implementation all appear in the
full version of the paper.
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In the last two decades the study of random instances of constraint satisfaction problems (CSPs)
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to treat a variety of problems in several fields. To mention just a few, random graphs turned
out to be valuable in solving fundametal theoretical and practical problems, such as the
development of error correcting codes [34], the study of statistical inference through the
stochastic block model [1], and the establishment of lower bounds in complexity theory [27, 24].

The results of the past years of research suggest the existence of phase transitions in
many classes of random discrete structures, i.e. a specific value of a given model parameter at
which the properties of the system in question change dramatically. Constraint satisfaction
problems are one specific type of such structures that tend to exhibit this remarkable property
and that are of particular interest in too many areas to mention, covering complexity theory,
combinatorics, statistical mechanics, artificial intelligence, biology, engineering and economics.
An instance of a CSP is defined by a set of variables that take values in – typically finite –
domains and a set of constraints, where each constraint is satisfied for specific assignments of
the subset of variables it involves. A major computational challenge is to determine whether
such an instance is satisfiable, i.e. to determine if there is an assignment of all variables that
satisfies all constraints.

Since the 1980s non-rigorous methods have been introduced in statistical physics that are
targeted at the analysis of phase transitions in random CSPs [37, 36, 33]. Within this line of
research, a variety of exciting and unexpected phenomena were discovered, as for example
the existence of multiple phase transitions with respect to the structure of the solution
space in random CSPs; these transitions may have a significant impact on the hardness of
the underlying instances. Since then these methods and the description of the conjectured
regimes have been heavily supported by several findings, including the astounding empirical
success of randomized algorithms like belief and survey propagation [9], as well as rigorous
verifications, most prominently the phase transition in k-SAT [19] (for sufficiently large k)
and the condensation phase transition in many important models [14]. However, a complete
rigorous study is still a big challenge for computer science and mathematics.

Usually, the relevant model parameter of a random CSP is a certain problem specific
density as illustrated below. The main focus of research is to study the occurrence of
phase transitions in the solution space structure and in particular the existence of (sharp)
satisfiability thresholds, i.e. critical values of the density such that the probability that a
random CSP admits a solution tends to one as the number of variables tends to infinity for
densities below the threshold, while this limiting probability tends to zero for densities above
the threshold.

Random CSPs. The two most popular types of random CSPs are Erdős Rényi (ER) type
CSPs and random regular CSPs. In both cases the number n = |V | of variables and the
number k of variables involved in each constraint is fixed. In ER type CSPs we further fix the
number m = |F | of constraints and thereby the density α = m/n, i.e. the average number of
constraints that a variable is involved in. In random regular CSPs we only consider instances
where each variable is involved in the same number d of constraints, which fixes the density d
as well as the number m = dn/k of constraints. In a second step we randomly choose the sets
of satisfying assignments for each constraint depending on the problem. For example, in the
prominent k-SAT one forbidden assignment is chosen uniformly at random from all possible
assignments of the involved binary variables for each constraint independently. Another
famous example is the coloring of hypergraphs, where the constraints are attached to the
hyperedges and the variables to the vertices of the hypergraph, i.e. the variables involved in
a constraint correspond to the vertices incident to a hyperedge. In this case the satisfying
assignments are determined since each constraint is violated iff all involved vertices take the
same color.
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In our work we focus on the class of random regular CSPs where the choice of satisfying
assignments per constraint is determined, i.e. a class that covers the regular occupation
problems and the coloring of (d-regular k-uniform) hypergraphs amongst others, sparing
problems with random constraints like k-SAT and XORSAT. A unique feature of this class is,
intuitively speaking, that the local structure of almost all instances is fixed almost everywhere
for sufficiently large n. The lack of randomness makes this class particularly accessible for
an analysis of the asymptotic solution space structure and significantly simplifies simulations
based on the well-known population dynamics. Using such simulations, non-rigorous results
for this class have been mostly established for the case where the variables are binary valued,
so called occupation problems, or restricted to variants of hypergraph coloring for non-binary
variables. Besides the extensive studies on the coloring of simple graphs, i.e. k = 2, the
only rigorous results derived so far consider the arguably most simple type of occupation
problems where each constraint is satisfied if exactly one involved variable evaluates to true,
which we refer to as d-regular 1-in-k occupation problem. In our current work we strive to
extend these results to general d-regular r-in-k occupation problems, i.e. problems where
each constraint is satisfied if r out of the k involved variables evaluate to true.

1.1 Occupation Problems
We continue with the formal definition of the class of problems we consider. Let k, d ∈ Z>1
and r ∈ [k − 1] := {1, . . . , k − 1} be fixed. Additionally, we are given non-empty sets V
of variables and constraints F . We will use the convention to index elements of V with
the letter i and elements of F with the letter a (and subsequent letters) in the remainder.
Then an instance o of the d-regular r-in-k occupation problem is specified by a sequence
o = (v(a))a∈F of m = |F | subsets v(a) ⊆ V of size k such that each of the n = |V | variables
is contained in d of the subsets. In graph theory the instance o has a natural interpretation
as a (d, k)-biregular graph (or d-regular k-factor graph) with node sets V ∪̇F and edges
{i, a} ∈ E if i ∈ v(a).

Given an instance o as just described, we say that an assignment x ∈ {0, 1}V satisfies a
constraint a ∈ F if

∑
i∈v(a) xi = r, otherwise x violates a. If x satisfies all constraints a ∈ F ,

then x is a solution of o. We write z(o) for the number of solutions of o. An example of a
4-regular 2-in-3 occupation problem is shown in Figure 1a.

Further, for given m, n ∈ Z>0 let O = O(k, d, n,m) denote the set of all instances o with
variables V = [n] and constraints F = [m]. If O is not empty, then the random d-regular
r-in-k occupation problem O is the random variable O equipped with the uniform distribution
P = PO on O and Z = z(O) the number of solutions of O.

1.2 Examples and Related Problems
A problem that is closely related and can be reduced to the d-regular r-in-k occupation
problem is the d-regular positive r-in-k SAT problem, a variant of k-SAT introduced above.
In this case, we consider a boolean formula

f =
∧
a∈F

ca, ca =
∨

i∈v(a)

i, a ∈ F ,

in conjunctive normal form with m clauses over n variables i ∈ V , such that no literal
appears negated (hence positive r-in-k SAT), and where each clause ca is the disjunction
of k literals and each variable appears in exactly d clauses (hence d-regular). The decision
problem is to determine if there exists an assignment x such that exactly r literals in each
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(a) Solution of the 2-occupation problem.
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(b) A 2-factor in a hypergraph.

Figure 1 On the left we see a solution of the 4-regular 2-in-3 occupation problem on a 4-regular
3-factor graph, where the rectangles and circles depict the constraints (factors) and variables (filled
if they take the value one in the solution). The figure on the right shows a 2-factor in a 3-regular
4-uniform hypergraph, where the circles, solid and dashed shapes represent the vertices, hyperedges
in the 2-factor and the other hyperedges respectively.

clause evaluate to true (hence r-in-k SAT). In [39] the satisfiability threshold for this problem
was determined for r = 1, i.e. the case where exactly one literal in each clause evaluates to
true. One of our main results, Theorem 1.1, solves this problem when r = 2 and k = 4.

Our second example deals with a prominent problem related to graph theory. A k-regular
d-uniform hypergraph h is a pair h = (F,E) with m = |F | vertices and n = |E| (hyper-)edges
such that each edge contains d vertices and the degree of each vertex is k. An r-factor E′ is
a subset of the hyperedges such that each vertex a ∈ F is incident to r hyperedges ei ∈ E′.
In this case the problem is to determine if h has an r-factor. For example, the case r = 1
is the well-known perfect matching problem and the threshold was determined in [16]. An
example of a 2-factor in a hypergraph is shown in Figure 1b. Theorem 1.1 solves also this
problem for r = 2 and k = 4.

There are several other problems in complexity and graph theory that are closely related
to the examples above. The satisfiability threshold in Theorem 1.1 also applies to a variant
of the vertex cover problem (or hitting set problem from set theory perspective), where we
choose a subset of the vertices (variables with value one) in a d-regular 4-uniform hypergraph
such that each hyperedge is incident to exactly two vertices in the subset. Analogously,
Theorem 1.1 also establishes the threshold for a variant of the set cover problem in set theory
corresponding to 2-factors in hypergraphs, i.e. given a family of d-subsets (hyperedges) and
a universe (vertices) with each element contained in four subsets, the problem is to find
a subfamily of the subsets such that each element of the universe is contained in exactly
two subsets of the subfamily. Further, Theorem 1.1 can e.g. also be used to give sufficient
conditions for the (asymptotic) existence of Euler families in regular uniform hypergraphs as
discussed in [6].

1.3 Main Results

The d-regular 1-in-k occupation problem has been completely solved in [39, 16], which also
covers the d-regular 2-in-3 occupation problem due to color symmetry. Our first result
addresses the next non-trivial case, namely the location of the satisfiability threshold of the
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random d-regular 2-in-4 occupation problem. For k ∈ Z>3 let

w∗1 = w∗1(k) = 2
k
, w∗2 = w∗2(k) =

(
k

2

)−1
and d∗ = d∗(k) = kH(w∗1)

kH(w∗1) + ln(w∗2) , (1)

where H(p) = −p ln(p)− (1− p) ln(1− p) is the binary entropy of p ∈ [0, 1]. The following
theorem establishes the location of the threshold at d∗(4) ≈ 2.83 for k = 4.

I Theorem 1.1 (2-in-4 Occupation Satisfiability Threshold). Let k = 4, d ∈ Z>1, and
O = O(k, d, n,m), Z = Zk,d,n,m be as in Section 1.1.
(a) The set O is non-empty iff m = m(n) = dn

k . Then, the number Z of solutions is zero
almost surely if k does not divide 2n, i.e. P[Z = 0] = 1. Further, the threshold d∗ is not
an integer.

(b) There exists a sharp satisfiability threshold at d∗, i.e. for any increasing sequence
(ni)i∈Z>0 ⊆ N = {n : dk−1n, 2k−1n ∈ Z>0, } and mi = m(ni) we have

lim
i→∞

P[Z > 0] =
{

1 , d < d∗

0 , d > d∗
.

We prove Theorem 1.1 using the second moment method for Z and the small subgraph
conditioning method to boost the probability asymptotically to one below the threshold
d∗. However, an important question remains at this point, namely what happens when
k > 4 or r > 2.

Our second main result in this paper addresses the behavior for k > 4, which can
be directly extended to r > 2. In particular, a main technical contribution in proving
Theorem 1.1 is the optimization of a certain multivariate function that appears in the
computation of the second moment, which encodes the interplay between the “similarity” of
various assignments and the change in the corresponding probability of being satisfying that
they induce. A similar but more complex function appears in the computation of the second
moment for k > 4, but there we are unfortunately not able to pin down the maximizer.
However, apart from that, we discover a surprising connection between this optimization
problem and a seemingly unrelated fundamental problem in information theory. In particular,
we find that the optimization problem is equivalent to developing a so-called strong data
processing inequality (SDPI), which, roughly speaking, encodes the minimum amount of loss
in the process of communication through a noisy channel. Such inequalities are of particular
importance in the analysis of noisy channels.

We postpone the formal definitions and more relevant background to the next section.
Further, we show that our anticipated forms of the corresponding SDPIs directly yield the
locations of the global extrema required for our satisfiability threshold proof and thereby
imply the following theorem based on Conjecture 1.3.

I Theorem 1.2 (2-in-k Occupation Satisfiability Threshold). Assume that Conjecture 1.3 is
true. Then Theorem 1.1 holds for any k ∈ Z>3.

We are confident that this surprising connection does not only apply to 2-in-k occupation
problems, but to all r-in-k occupation problems and we believe that it also extends to other
classes of random CSPs. Hence, this bridge facilitates the combination of the methods that
have been devised in information theory and the study of random graphs, ultimately relating
the second moment method to the hypercontractivity ribbon.
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1.4 Contraction Coefficients
One central concept in information theory [28, 17] is the notion of a communication channel.
Let us assume for concreteness that we have sets [m] and [n] of input and output symbols
respectively. We consider the communication through a noisy channel, that is, for a given
input x ∈ [m] the output is y ∈ [n] with a certain fixed probability Wy,x. Thus, the
channel is completely characterized by its column stochastic transition probability matrix
W = (Wy,x)y∈[n],x∈[m] ∈ [0, 1]n×m.

In a second step, let us consider a distribution P on [m] with probability mass function
(pmf) p ∈ [0, 1]m, i.e. a distribution on the inputs. Then the corresponding distribution Q on
the received outputs is given by the pmf q = Wp ∈ [0, 1]n. The study of the properties of
such channels involves the quantification of the communicated information and further a
channel capacity, i.e. the maximum amount of transmittable information. The data processing
inequality (DPI) is a fundamental result stating that information can only decrease when
communicated through a noisy channel.

The version of the DPI, see e.g. Lemma 3.11 in [17], relevant here is as follows. Fix a
reference input distribution P ∗ with pmf p∗ ∈ Rm, i.e. the reference output distribution Q∗
has the pmf q∗ = Wp∗ ∈ Rn. If we then consider an input distribution P with pmf p and
the corresponding output distribution Q with pmf q = Wp, it is easier to distinguish the
distributions P and P ∗ before the transmission. This suggests a loss of information in the
process of communication; formally, this means that

DKL(P ‖ P ∗) ≥ DKL(Q ‖ Q∗), where DKL(P ‖ P ∗) =
∑
x∈[m]

px ln
(
px
p∗x

)
.

The quantity DKL(· ‖ ·) is the well-known K(ullback)–L(eibler) divergence and one of the
most important means of measuring the similarity between given distributions.

This fundamental DPI can be further improved by introducing the optimal ratio d∗ =
d∗(P ∗,W ) of DKL(Q ‖ Q∗) and DKL(P ‖ P ∗) and deriving the tight bound

d∗DKL(P ‖ P ∗) ≥ DKL(Q ‖ Q∗) with d∗ = sup
P 6=P∗

DKL(Q ‖ Q∗)
DKL(P ‖ P ∗) .

In particular d∗ is independent of the input distribution P and the output distribution
Q = Q(P ). A data processing inequality of this type is referred to as a strong data processing
inequality (SDPI) with contraction coefficient d∗ [2, 4, 3]. In this sense the contraction
coefficient d∗(P ∗,W ) = d∗(X;Y ) can be regarded as an alternative measure for the mutual
information I(X;Y ), i.e. the KL divergence of the distribution of (X,Y ) with respect to
the distribution of X and Y assuming independence, where the distribution of (X,Y ) has
the pmf (Wyxp

∗
x)x,y ∈ Rn×m. This quantity is of great importance in the analysis of noisy

channels and hence not only of interest in theory building, but also in many applications
covering image and audio processing, biology, economics and engineering.

1.5 The Conjecture

Let k ∈ Z>3, w∗1 = 2
k , w

∗
2 =

(
k
2
)−1 as defined in (1),

W = (W(s−1),(t−1))s,t∈[3] =

1− 2w∗1 1− 3
2w
∗
1 1− w∗1

2w∗1 w∗1 0
0 1

2w
∗
1 w∗1

 , (2)
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and for w ∈ W = {w ∈ [0, 1]2 : 2w1 − 1 ≤ w2 ≤ w1} let

p = (ps−1)s∈[3] =

1− 2w1 + w2
2(w1 − w2)

w2

 , q = Wp = (qs−1)s∈[3] =

1− 2w∗1 + w∗1w1
2w∗1(1− w1)

w∗1w1

 . (3)

Notice that W is the transition probability matrix of a (fixed) channel for fixed k, that p, q
are pmfs for all w ∈ W and further any pmf on {0, 1, 2} can be attained by p. As discussed in
Section 1.3, w ∈ W, p and q quantify the similarity of two random satisfying assignments in
the following sense. Intuitively and due to symmetry, a given variable i involved in any given
constraint takes the value one with probability w∗1 = P[Xi = 1], while two given variables i,
j involved in the constraint both take the value one with probability w∗2 = P[Xi +Xj = 2]
under a random satisfying assignment X. The parameter w1 = P[Yi = 1|Xi = 1] gives the
conditional probability that i takes the value one under a second satisfying assignment Y
given that i takes the value one under X, while w2 = P[Yi + Yj = 2|Xi + Xj = 2] gives
the conditional probability that both i, j take the value one under Y assuming that they
both take the value one under X. Further, p is the pmf of (Yi + Yj)|(Xi +Xj) = 2, i.e. of
the distribution of the number (Yi + Yj) of ones taken by i and j under Y given that i, j
take one under X, while q is the pmf of the distribution of the number (Xi + Yi) of ones
taken by i under X and Y . In this sense, w1 and w2 quantify the similarity of two satisfying
assignments X and Y . For example, the choice w1 = w2 = 1 of parameters implies that Y is
determined by X and hence, intuitively, corresponds to a minimum loss of information.

Let P ∗ be the reference input distribution with pmf p∗ = p(w∗), then by the discussion
above and in Section 1.4 we can employ the contraction coefficient d∗ = d∗(k) = d∗(P ∗,W )
to quantify the loss of information in a communication through the channel W , and further
expect that d∗ is attained at w = (1, 1).

I Conjecture 1.3 (Contraction Coefficient Conjecture). The contraction coefficient d∗ is
attained for the degenerate input pmf p at two, that is,

w1 = w2 = 1 and d∗ = H(w∗1)
− ln(w∗2) .

In our contribution, we do not only show that the computation of d∗ is equivalent to the
optimization problem in the second moment method, but that Conjecture 1.3 is actually
equivalent to the applicability of the second moment method.

1.6 Related Work
The regular version of the random 1-in-k occupation problem (and related problems) has
been completely solved in [16, 39] using the first and second moment method with small
subgraph conditioning. The paper [41] shows that d∗(k) ≥ 2 for k ∈ Z>1 in the d-regular
2-in-k occupation problem, i.e. the existence of 2-factors in k-regular simple graphs. A
recent discussion of 2-factors (and the related Euler families) that does not rely on the
probabilistic method is presented in [6]. Further, randomized polynomial time algorithms for
the generation and approximate counting of 2-factors in random regular simple graphs have
been introduced in [25].

The study of Erdős Rényi (hyper-)graphs was initiated by the ground breaking publication
[22] in 1960 and turned into a fruitful field of research with many applications, including early
results on 1-factors in simple graphs [23]. On the contrary, results for the random d-regular
k-uniform (hyper-)graph ensemble were rare before the introduction of the configuration
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(or pairing) model by Bollobás [8] and the development of the small subgraph conditioning
method [30, 31] thereafter, see also [44]. While the derived proof scheme facilitated rigorous
arguments to establish the existence and location of satisfiability thresholds of random regular
CSPs [38, 7, 32, 12, 15, 20, 21, 5], the problems are treated on a case by case basis, while
results on entire classes of random regular CSPs are still outstanding.

One of the main reasons responsible for the complexity of a rigorous analysis of random
(regular) CSPs seems to be a conjectured structural change of the solution space for increasing
densities. This hypothesis has been put forward by physicists, verified in parts and mostly for
ER ensembles, further led to new rigorous proof techniques [19, 15, 13] and to randomized
algorithms [9, 35] for NP-hard problems that are not only of great value in practice, but
can also be employed for precise numerical (though non-rigorous) estimates of satisfiability
thresholds An excellent introduction to this replica theory can be found in [36, 33, 43].
Specifically, numerical results indicating the satisfiability thresholds for d-regular r-in-k
occupation problems (more general variants, and for ER type hypergraphs) based on this
conjecture were discussed in various publications [10, 18, 42, 26, 29, 46, 45], where occupation
problems were introduced for the first time in [40].

Another fundamental obstacle in the rigorous analysis is of a very technical nature
and directly related to the second moment method as discussed in detail in our current
presentation. In the case of regular r-in-k occupation problems (amongst others) this
optimization problem is closely related to the computation of the contraction coefficient (for
fixed channels and reference distributions) known from information theory. For a general
introduction to information theory we recommend [17], while profound discussions and
applications of contraction coefficients can be found in [3, 4] and references therein.

1.7 Open Problems

As mentioned in Section 1.2, we focus on the analysis of random regular CSPs with determined
constraints. The starting point for this systematic study are r-in-k occupation problems,
where we rigorously established the threshold for r = 2 and k = 4. However, apart from
the optimization step in the second moment calculation our proof canonically extends
to the general case. A rigorous proof of this step for general r and k is involved, but
further assumptions may significantly simplify the analysis. For example, as an extension
of the current work one may focus on r-in-2r occupation problems, where the constraints
are symmetric in the colors. As can be seen from our proof, this yields useful symmetry
properties of the objective function DKL(Q ‖ Q∗)

DKL(P ‖ P∗) . Further, as suggested by the literature
[11, 13, 14] such balanced problems [45, 46] are usually more accessible to a rigorous study.
On the other hand, the optimization usually also significantly simplifies if only carried out
for k ≥ k0(r) for some large k0(r), as this pushes the minimum to the boundary of the
function domain.

Apart from the generalizations discussed above, results for the r-in-k occupation problems
are also still outstanding for Erdős-Rényi type CSPs. An analysis of this related problem
might allow to tackle the crucial optimization step from a different perspective and thereby
also help to establish the thresholds for the regular version.

From the algorithmic perspective, although some methods have been developed for simple
graphs [25], we are not aware of algorithms designed specifically to identify solutions of the
regular occupation problems (like WalkSAT for the k-SAT problem), only general methods
like belief propagation based decimiation. However, problem specific obstacles for the design
of such algorithms were discussed in [46].
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2 Proof Techniques

In this section we give a high-level overview of our proof, in particular we present the major
steps that lead to the main results. We make heavy use of the so-called configuration model
for the generation of random instances in the form used by Moore [39].

2.1 The Configuration Model
Working with the uniform distribution on d-regular k-uniform hypergraphs directly is chal-
lenging. Instead, we show Theorems 1.2 and 1.1 for occupation problems on configurations.
A d-regular k-configuration is simply a bijection g : [n]× [d]→ [m]× [k], where the v-edges
(i, h) ∈ dom(g) represent pairs of variables i ∈ [n] and i-edges, i.e. half-edge indices h ∈ [d].
The image (a, h′) = g(i, h) is an f-edge, i.e. a pair of a constraint (factor) a ∈ [m] and an
a-edge (or half-edge) h′ ∈ [k], indicating that the i-edge h of the variable i is wired to the
a-edge h′ of a and thereby suggesting that i is connected to a in the corresponding d-regular
k-factor graph. The number of such d-regular k-configurations on n variables can be easily
determined and is given by (dn)! = (km)!, hence the uniform distribution on configurations
is suitable for combinatorial arguments. Further, the occupation problem on factor graphs
directly translates to configurations, which allows to introduce the number Z of solutions
of the occupation problem on the random configuration G. In the following we discuss the
proof of the analogues to Theorems 1.2 and 1.1 for configurations and further the translation
of these results back to factor graphs and hypergraphs.

2.2 The First Moment Method
In the first step we apply the first moment method to the occupation problem on configurations,
yielding the following result.

I Lemma 2.1 (First Moment Method). Let k ∈ Z>3, d ∈ Z>1. For n ∈ N tending to infinity
we have

E[Z] ∼
√
denφ1 , where φ1 = d

k
(− ln(w∗2))− (d− 1)H(w∗1).

In particular this implies that E[Z] → ∞ for d < d∗ and E[Z] → 0 for d > d∗ with d∗ as
defined in (1). With an application of Markov’s inequality we see that P[Z > 0] → 0 for
d > d∗. The map φ1 is known as annealed free entropy density. While the domain of φ1 is
trivial in this case (and further in any r-in-k occupation problem), it is non-trivial for the
vast majority of CSPs, also covering the general occupation problem.

2.3 The Second Moment Method
Let k ∈ Z>3, d ∈ Z>1, further let p, q andW be the notions from Section 1.5, the distributions
P , Q be given by the pmfs p, q and let φ2 :W → R be given by

φ2(w) = d

k
DKL(P ‖ P ∗)− (d− 1)DKL(Q ‖ Q∗) for w ∈ W. (4)

Conjecture 1.3 can be used to show that φ2 attains its global minimum at zero iff w = w∗

and d < d∗. The proof for the specific case k = 4 will be presented later in this work. This
conclusion then allows to derive the following result using Laplace’s method for sums.
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(a) occupation problem on configurations.
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(b) 4-regular 2-in-3 vertex cover.

Figure 2 The figure on the left shows the solution on a configuration corresponding to the solution
in Figure 1. We only denoted a-edges (small boxes, filled if they the a-edge takes the value one)
and i-edges (small circles, filled if the i-edge takes the value one) instead of f-edges and v-edges for
brevity (e.g. ha1,1 instead of (a1, ha1,1)). The figure on the right illustrates the corresponding 2-in-3
vertex cover (given by the filled circles).

I Lemma 2.2 (Second Moment Method). Assume that Conjecture 1.3 holds. Then we have

E[Z2]
E[Z]2 ∼

√
2

(2π)2∏2
i=0 pi(w∗)

√√√√ (2π)2

det
(

k√
2dH

) =
√
k − 1
k − d

,

for n ∈ N tending to infinity and where H denotes the Hessian of φ2 at w = w∗.

Using Lemma 2.2 and Chebyshev’s inequality we see that P[Z = 0] ≤
√

k−1
k−d − 1. While this

bound suggests a threshold exists, we need to show that the threshold at d∗ is sharp.

2.4 Small Subgraph Conditioning
We conclude the proof of the theorem (for configurations) by applying the small subgraph
conditioning method to establish that the satisfiability threshold d∗ is sharp.

I Theorem 2.3 (Small Subgraph Conditioning). Let Z and X1, X2, . . . be non-negative integer-
valued random variables. Suppose that E[Z] > 0 and that for each ` ∈ Z>0 there are constants
λ` ∈ R>0, δ` ∈ R>−1 such that
(a) for any ¯̀ the variables X`, . . . , X¯̀ are asymptotically independent and Poisson distributed

with E[X`] ∼ λ`,
(b) for any sequence r1, . . . , r¯̀ of non-negative integers,

E
[
Z
∏¯̀
`=1 (X`)r`

]
E[Z] ∼

¯̀∏
`=1

µr`

` , µ` = λ`(1 + δ`),

(c) we explain the variance, i.e.

E[Z2]
E[Z]2 ∼ exp

( ∞∑
`=1

λ`δ
2
`

)
,

∣∣∣∣∣
∞∑
`=1

λ`δ
2
`

∣∣∣∣∣ <∞.

Then we have limn→∞ P[Z > 0] = 1.
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The discussion of the factorial moments in Theorem 2.3 (b) is performed in detail, which
requires additional concepts and complex combinatorial arguments. To facilitate the present-
ation we also give a self-contained proof of the following well-known theorem on the expected
number of small cycles (the variables X` in Theorem 2.3), which can then be extended to
a proof of Theorem 2.3 (b). In order to understand what a cycle in a configuration is, we
notice that we can represent a configuration g by an equivalent graph with (disjoint) vertex
sets given by the variables V = [n], constraints (factors) F = [m], v-edges H1 = [n]× [d] and
f-edges H2 = [m]× [k], where each variable i ∈ [n] connects to all its v-edges (i, h1) ∈ H1,
each constraint a ∈ [m] to all its f-edges (a, h2) ∈ H2 and a v-edge (i, h1) connects to
an f-edge (a, h2) if g(i, h1) = (a, h2). Since we are mostly interested in the factor graph
associated with a configuration we divide lengths of paths by three, e.g. a cycle of length four
in a configuration is actually a cycle of length twelve in its equivalent graph representation.
Figures 1a and 2a show an example of a factor graph and the corresponding configuration in
its graph representation.

I Theorem 2.4 (Number of Small Cycles). For ` ∈ Z>0 let X` be the number of 2`-cycles in
G, further

λ` = [(k − 1)(d− 1)]`

2` ,

and Z` ∼ Po(λ`) be independent Poisson distributed random variables. Then the random
variables X` converge in distribution to Z` for n→∞, jointly for all ` ∈ Z>0.

Using Theorem 2.4 we determine µ`, δ` for ` ∈ Z>0 and use these results to establish the
remaining parts of Theorem 2.3.

I Lemma 2.5. The constants µ` and δ` for ` ∈ Z>0 in Theorem 2.3 are given by

δ` =
(
− 1
k − 1

)`
.

2.5 Translation of the Results
We first translate the results for configurations to factor graphs using Theorem 2.4, i.e. the
contiguity of the factor graph model with respect to the configuration model. For completeness
we then also provide self-contained proofs to establish the application to hypergraphs with
labeled and unlabeled hyperedges (where the constraints may be attached to either the
vertices or to the hyperedges). This establishes our claims in Sections 1.2 and 1.3 except for
the verification of Conjecture 1.3 for k = 4.

2.6 Contraction Coefficient for k = 4
Finally, we prove Conjecture 1.3 for k = 4, i.e. we derive Theorem 1.1 from Theorem
1.2. Using a slightly different parametrization and simplifying the KL divergence in the
nominator yields

d∗(4) = sup
w∈W\{w∗}

R(w), R(w) = D2(w1)
D1(w) ,

D1(w) = (w1 − w2) ln(6(w1 − w2)) + 2w2 ln(3w2) + (1− w1 − w2) ln(6(1− w1 − w2)),
D2(w1) = w1 ln(2w1) + (1− w1) ln(2(1− w1)),

W = {w ∈ [0, 1]2 : w2 ≤ w1, w2 ≤ 1− w1}.
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We focus on suitable lower bounds for D1, therefore we minimize D1 with respect to
w2, yielding

Dmin(w1) = w1 ln(6(w1 − w2)) + (1− w1) ln(6(1− w1 − w2)),

w2 = w2(w1) = 1
3

2−

√
12
(
w1 −

1
2

)2
+ 1

 , w1 ∈ [0, 1].

Since R is symmetric to w1 = 1
2 , it is sufficient to show that R ≤ d∗ for w1 ≤ 1

2 . On this
interval we lower bound Dmin using the functions

D−(w1) = 2w1 ln
(

12
5 w1

)
+ (1− 2w1) ln(6(1− 2w1)), w1 ∈ [0, w̄1] , and

D+(w1) = 6
(

1
2 − w1

)2
, w1 ∈ [w̄1, 0.5],

where w̄1 ≈ 0.10831 is an intersection point of D− and D+ that we determined numerically.
Finally, we use monotonicity arguments for the corresponding upper bounds of R to derive
R ≤ d∗.
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Abstract
Given two (di)graphs G, H and a cost function c : V (G)×V (H)→ Q≥0∪{+∞}, in the minimum cost
homomorphism problem, MinHOM(H), we are interested in finding a homomorphism f : V (G)→
V (H) (a.k.a H-coloring) that minimizes

∑
v∈V (G)

c(v, f(v)). The complexity of exact minimization of

this problem is well understood [35], and the class of digraphs H, for which the MinHOM(H) is
polynomial time solvable is a small subset of all digraphs.

In this paper, we consider the approximation of MinHOM within a constant factor. In terms of
digraphs, MinHOM(H) is not approximable if H contains a digraph asteroidal triple (DAT). We
take a major step toward a dichotomy classification of approximable cases. We give a dichotomy
classification for approximating the MinHOM(H) when H is a graph (i.e. symmetric digraph). For
digraphs, we provide constant factor approximation algorithms for two important classes of digraphs,
namely bi-arc digraphs (digraphs with a conservative semi-lattice polymorphism or min-ordering),
and k-arc digraphs (digraphs with an extended min-ordering). Specifically, we show that:

Dichotomy for Graphs: MinHOM(H) has a 2|V (H)|-approximation algorithm if graph
H admits a conservative majority polymorphims (i.e. H is a bi-arc graph), otherwise, it is
inapproximable;
MinHOM(H) has a |V (H)|2-approximation algorithm if H is a bi-arc digraph;
MinHOM(H) has a |V (H)|2-approximation algorithm if H is a k-arc digraph.

In conclusion, we show the importance of these results and provide insights for achieving a
dichotomy classification of approximable cases. Our constant factors depend on the size of H.
However, the implementation of our algorithms provides a much better approximation ratio. It
leaves open to investigate a classification of digraphs H, where MinHOM(H) admits a constant
factor approximation algorithm that is independent of |V (H)|.
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1 Introduction

For a digraph D, let V (D) denote the vertex set of D, and let A(D) denote the arcs of D. We
denote the number of vertices of D by |D|. Instead of (u, v) ∈ A(D), we use the shorthand
uv ∈ A(D) or simply uv ∈ D. A graph G is a symmetric digraph, that is, xy ∈ A(G) if and
only if (iff) yx ∈ A(G). An edge is just a symmetric arc.

A homomorphism of a digraph D to a digraph H (a.k.a H-coloring) is a mapping
f : V (D)→ V (H) such that for each arc xy of D, f(x)f(y) is an arc of H. We say mapping
f does not satisfy arc xy, if f(x)f(y) is not an arc of H. The homomorphism problem for
a fixed target digraph H, HOM(H), takes a digraph D as input and asks whether there is
a homomorphism from D to H. Therefore, by fixing the digraph H we obtain a class of
problems, one problem for each digraph D. For example, HOM(H), when H is an edge,
is exactly the problem of determining whether the input graph G is bipartite (i.e., the
2-Coloring problem). Similarly, if V (H) = {u, v, x}, A(H) = {uv, vu, vx, xv, ux, xu}, then
HOM(H) is exactly the classical 3-Coloring problem. More generally, if H is a clique
on k vertices, then HOM(H) is the k-Coloring problem. The H-Coloring problem
can be considered within a more general framework, the constraint satisfaction problem
(CSP). In the CSP associated with a finite relational structure H, CSP(H), the question
is whether there exists a homomorphism of a given finite relational structure to H. Thus,
the H-Coloring problem is a particular case of the CSP in which the involved relational
structures are digraphs. A celebrated result due to Hell and Nesetril [31], states that, for
graph H, HOM(H) is in P if H is bipartite or contains a looped vertex, and that it is
NP-complete for all other graphs H. See [9] for an algebraic proof of the same result,
and [12, 55] for a dichotomy for CSP(H).

There are several natural optimization versions of the HOM(H) problem. One is to find
a mapping f : V (D)→ V (H) that maximizes (minimizes) number of satisfied (unsatisfied)
arcs in D. This problem is known under the name of Max 2-Csp (Min 2-Csp). For example,
the most basic Boolean Max 2-Csp problem is Max Cut where the target graph H is
an edge. This line of research has received a lot of attention in the literature and there
are very strong results concerning various aspects of approximability Max 2-Csp and Min
2-Csp [2, 22, 28, 41, 45]. See [47] for a recent survey on this and approximation of Max
k-Csp and Min k-Csp. We consider another natural optimization version of the HOM(H)
problem, i.e., we are not only interested in the existence of a homomorphism, but want to
find the “best homomorphism”. The minimum cost homomorphism problem to H, denoted
by MinHOM(H), for a given input digraph D, and a cost function c(x, i), x ∈ V (D), i ∈
V (H), seeks a homomorphism f of D to H that minimizes the total cost

∑
x∈V (D)

c(x, f(x)).

The cost function c can take non-negative rational values and positive infinity, that is
c : V (D) × V (H) → Q≥0 ∪ {+∞}. The MinHOM was introduced in [25], where it was
motivated by a real-world problem in defence logistics. The MinHOM problem offers a
natural and practical way to model and generalizes many optimization problems.

I Example 1 ((Weighted) Minimum Vertex Cover). This problem can be seen as
MinHOM(H) where V (H) = {0, 1}, E(H) = {11, 01} and c(u, 0) = 0, c(u, 1) > 0 for every
u ∈ V (G). Note that G and H are graphs.

I Example 2 (List Homomorphism (LHOM)). LHOM(H), seeks, for a given input
digraph D and lists L(x) ⊆ V (H), x ∈ V (D), a homomorphism f from D to H such that
f(x) ∈ L(x) for all x ∈ V (D). This is equivalent to MinHOM(H) with c(u, i) = 0 if i ∈ L(u),
otherwise c(u, i) = +∞. This problem is also known as List H-Coloring and its complexity
is fully understood due to series of results [5, 8, 10, 11, 18, 33].
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The MinHOM problem generalizes many other problems such as (Weighted) Min
Ones [1, 15, 40], Min Sol [39, 53], a large class of bounded integer linear programs,
retraction problems [19], Minimum Sum Coloring [4, 21, 44], and various optimum cost
chromatic partition problems [27, 37, 38, 43].

A special case of MinHOM problem is where the cost function c is choosen from a fixed
set ∆. This problem is denoted by MinHOM(H,∆) [14, 53, 54]. The Valued Constrained
Satisfaction Problems (VCSPs) is a generalization of this special case of the MinHOM
problem. An instance of the VCSP is given by a collection of variables that must be
assigned labels from a given domain with the goal to minimize the objective function that
is given by the sum of cost functions, each depending on some subset of the variables [13].
Interestingly, a recent work by Cohen et al. [14] proved that VCSPs over a fixed valued
constraint language are polynomial-time equivalent to MinHOM(H,∆) over a fixed digraph
and a proper choice of ∆.

Exact Minimization. The complexity of exact minimization of MinHOM(H) was studied
in a series of papers, and complete complexity classifications were given in [23] for undirected
graphs, in [35] for digraphs, and in [51] for more general structures. Certain minimum
cost homomorphism problems have polynomial time algorithms [23, 24, 25, 35], but most
are NP-hard. We remark that, the complexity of exact minimization of VCSPs is well
understood [42, 52].

Approximation. For a minimization problem, an α-approximation algorithm is a (ran-
domized) polynomial-time algorithm that finds an approximate solution of cost at most α
times the minimum cost. A constant ratio approximation algorithm is an α-approximation
algorithm for some constant α. We say a problem is not approximable if there is no poly-
nomial time approximation algorithm with a multiplicative guarantee unless P = NP. The
approximability of MinHOM is fairly understood when we restrict the cost function to a
fixed set ∆, and further, we restrict it to take only finite values (not ∞). This setting is a
special case of finite VCSPs, and there are strong approximation results on finite VCSPs.
For finite VCSPs, Raghavendra [50] showed how to use the basic SDP relaxation to obtain
a constant approximation. Moreover, he proved that the approximation ratio cannot be
improved under Unique Game Conjecture (UGC). This constant is not explicit, but
there is an algorithm that can compute it with any given accuracy in doubly exponential time.
In another line of research, the power of so-called basic linear program (BLP) concerning
constant factor approximation of finite VCSPs has been recently studied in [16, 17]. However,
the approximability of VCSPs for constraint languages that are not finite-valued remains
poorly understood, and [30, 39] are the only results on approximation of VCSP for languages
that have cost functions that can take infinite values.

Hell et al., [30] proved a dichotomy for approximating MinHOM(H) when H is a bipartite
graph by transforming the MinHOM(H) to a linear program, and rounding the fractional
values to get a homomorphism to H.

I Theorem 3 (Dichotomy for bipartite graphs [30]). For a fixed bipartite graph H,
MinHOM(H) admits a constant factor approximation algorithm if H admits a min-ordering
(complement of H is a circular arc graph), otherwise MinHOM(H) is not approximable
unless P = NP.

Beyond this, there is no result concerning the approximation of MinHOM(H). We go
beyond bipartite case and present a constant factor approximation algorithm for bi-arc
graphs (graphs with a conservative majority polymorphism). Designing an approximation
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algorithm for MinHOM(H) when H is a digraph is much more complex than when H is a
graph. We improve state-of-the-art by providing constant factor approximation algorithms
for MinHOM(H) where H belongs to these two important cases of digraphs, namely bi-arc
digraphs (digraphs with a conservative semi-lattice polymorphism a.k.a min-ordering), and
k-arc digraphs (digraphs with a k-min-ordering). To do so, we introduce new LPs that reflect
the structural properties of the target (di)graph H as well as new methods to round the
fractional solutions and obtain homomorphisms to H. We will show our randomized rounding
procedure can be de-randomized, and hence, we get a deterministic polynomial algorithm.
Furthermore, we argue that our techniques can be used towards finding a dichotomy for the
approximation of MinHOM(H).

1.1 Our Contributions
Most of the minimum cost homomorphism problems are NP-hard, therefore we investigate
the approximation of MinHoM(H).

Approximating Minimum Cost Homomorphism to Digraph H.
Input: A digraph D and a vertex-mapping costs c(x, u), x ∈ V (D), u ∈ V (H),
Output: A homomorphism f of D to H with the total cost of

∑
x∈V (D)

c(x, f(x)) ≤

α ·OPT , where α is a constant.

Here, OPT denotes the cost of a minimum cost homomorphism of D to H. Moreover, we
assume size of H is constant. Recall that we approximate the cost over real homomorphisms,
rather than approximating the maximum weight of satisfied constraints, as in, say, Max
Csp. One can show that if LHOM(H) is not polynomial time solvable then there is no
approximation algorithm for MinHOM(H) [30, 48].

I Observation 4. If LHOM(H) is not polynomial time solvable, then there is no approxima-
tion algorithm for MinHOM(H).

The complexity of the LHOM problems for graphs, digraphs, and relational structures (with
arity two and higher) have been classified in [18, 33, 10] respectively. LHOM(H) is polynomial
time solvable if the digraph H does not contain a digraph asteroidal triple (DAT)1 as an
induced sub-digraph, and NP-complete when H contains a DAT [33].

MinHOM(H) is polynomial time solvable when digraph H admits a k-min-max-ordering,
a subclass of DAT-free digraphs, and otherwise, NP-complete [35, 34]. Here, in this paper,
we take an important step towards closing the gap between DAT-free digraphs and the one
that admit a k-min-max-ordering. First, we consider digraphs that admit a min-ordering.
Digraphs that admit a min-ordering have been studied under the name of bi-arc digraphs [36]
and signed interval digraphs [29]. Deciding if digraph H has a min-ordering and finding a
min-ordering of H is in P [36]. We provide a constant factor approximation algorithm for
MinHOM(H) where H admits a min-ordering.

I Theorem 5 (Digraphs with a min-ordering). If digraph H admits a min-ordering, then
MinHOM(H) has a constant factor approximation algorithm.

Sections 4,5 are dedicated to the proof of Theorem 5. In section 6, we turn our attention
to digraphs with k-min-orderings, for integer k > 1. They are also called digraphs with
extended X-underbar [3, 26, 46]. It was shown in [26] that if H has the X-underbar property,

1 The definition of DAT is rather technical and it is not necessary to fully understand it in this paper.
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then the HOM(H) problem is polynomial time solvable. In Lemma 21, we show that if H
admits a k-min-ordering, then H is a DAT-free digraph, and provide a simple proof that
LHOM(H) is polynomial time solvable. Finally, we have the following theorem.

I Theorem 6 (Digraphs with a k-min-ordering). If digraph H admits a k-min-ordering for
some integer k > 1, then MinHOM(H) has a constant factor approximation algorithm.

Considering graphs, Feder et al., [18] proved that LHOM(H) is polynomial time solvable
if H is a bi-arc graph, and is NP-complete otherwise. In the same paper, they showed graph
H is a bi-arc graph iff it admits a conservative majority polymorphism. In Section 7, we
show that the same dichotomy classification holds in terms of approximation.

I Theorem 7 (Dichotomy for graphs). There exists a constant factor approximation algorithm
for MinHOM(H) if H is a bi-arc graph, otherwise MinHOM(H) is inapproximable.

In section 8, we give a concrete plan of how to solve the general case. By combining the
approach for obtaining the dichotomy in the graph case, together with the idea of getting an
approximation algorithm for digraphs admitting a min-ordering, we might be able to achieve
a constant factor approximation algorithm for MinHOM(H) when H is DAT-free.

Our constant factors depend on the size of H. However, the implementation of the LP and
the ILP would yield a small integrality gap (details in the full version [49]). This indicates
perhaps a better analysis of the performance of our algorithm is possible.

I Open Problem 8. For which digraphs MinHOM(H) is approximable within a constant
factor independent of size of H?

2 Preliminaries and Definitions

Complexity and approximation of the minimum cost homomorphism problems, and in general
the constraint satisfaction problems, are often studied under the existence of polymorph-
isms [6]. A polymorphism of H of arity k is a mapping f from the set of k-tuples over V (H)
to V (H) such that if xiyi ∈ A(H) for i = 1, 2, . . . , k, then f(x1, x2, . . . , xk)f(y1, y2, . . . , yk) ∈
A(H). If f is a polymorphism of H we also say that H admits f . A polymorphism f

is idempotent if it satisfies f(x, x, . . . , x) = x for all x ∈ V (H), and is conservative if
f(x1, x2, . . . , xk) ∈ {x1, x2, . . . , xk}. A conservative semi-lattice polymorphism is a con-
servative binary polymorphism that is associative, idempotent, commutative. A conser-
vative majority polymorphism µ of H is a conservative ternary polymorphism such that
µ(x, x, y) = µ(x, y, x) = µ(y, x, x) = x for all x, y ∈ V (H).

A conservative semi-lattice polymorphism of H naturally defines a binary relation x ≤ y
on the vertices of H by x ≤ y iff f(x, y) = x; by associative, the relation ≤ is a linear order
on V (H), which we call a min-ordering of H.

I Definition 9. The ordering v1 < v2 < · · · < vn of V (H) is a
min-ordering iff uv ∈ A(H), u′v′ ∈ A(H) and u < u′, v′ < v implies that uv′ ∈ A(H);
max-ordering iff uv ∈ A(H), u′v′ ∈ A(H) and u < u′, v′ < v implies that u′v ∈ A(H);
min-max-ordering iff uv ∈ A(H), u′v′ ∈ A(H) and u < u′, v′ < v implies that uv′, u′v ∈
A(H).

For bipartite graph H = (B,W ) let −→H be the digraph obtained by orienting all the edges
of H from B to W . If −→H admits a min-ordering then we say H admits a min-ordering. It
is worth mentioning that, a bipartite graph H admits a conservative majority, iff it admits
a min-ordering [30]. Moreover, the complement of H is a circular arc graphs with clique
cover two [18].
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I Definition 10. Let H = (V,E) be a digraph that admits a homomorphism f : V (H)→ −→Ck
(here −→Ck is the induced directed cycle on {0, 1, 2, . . . , k − 1}( i.e., arc set {(01, 12, 23, ..., (k −
2)(k − 1), (k − 1)0}). Let Vi = f−1(i), 0 ≤ i ≤ k − 1.

A k-min-ordering of H is a linear ordering < of the vertices of H, so that < is a min-
ordering on the subgraph induced by any two circularly consecutive Vi, Vi+1 (subscript
addition modulo k).
A k-min-max-ordering of H is a linear ordering < of the vertices of H, so that < is
a min-max-ordering on the subgraph induced by any two circularly consecutive Vi, Vi+1
(subscript addition modulo k).

3 LP for Digraphs with a min-max-ordering

Before presenting the LP, we give a procedure to modify lists associated to the vertices of D.
To each vertex x ∈ D, associate a list L(x) that initially contains V (H). Think of L(x) as
the set of possible images for x in a homomorphism from D to H. Apply the arc consistency
procedure as follows. Take an arbitrary arc xy ∈ A(D) (yx ∈ A(D)) and let a ∈ L(x). If
there is no out-neighbor (in-neighbor) of a in L(y) then remove a from L(x). Repeat this
until a list becomes empty or no more changes can be made. Note that if we end up with an
empty list after arc consistency then there is no homomorphism of D to H.

Let a1, a2, a3, . . . , ap be a min-max-ordering < of the target digraph H. Define `+(i) to
be the smallest subscript j such that aj is an out-neighbor of ai (and `−(i) to be the smallest
subscript j such that aj is an in-neighbor of ai).

Consider the following linear program. For every vertex v of D and every vertex ai of H
define variable vi. Moreover, define variable vp+1 for every v ∈ D whose value is set to zero.

min
∑
v,i

c(v, ai)(vi − vi+1)

subject to: vi ≥ 0 (C1)
v1 = 1 (C2)
vp+1 = 0 (C3)
vi+1 ≤ vi (C4)
vi+1 = vi if ai 6∈ L(v) (C5)
ui ≤ vl+(i) ∀uv ∈ A(D) (C6)
vi ≤ ul−(i) ∀uv ∈ A(D) (C7)

Let S denote the set of constraints of the above LP, then:

I Theorem 11. If digraph H admits a min-max-ordering, then there is a one-to-one corres-
pondence between homomorphisms of D to H and integer solutions of S.

Proof. For homomorphism f : D → H, if f(v) = at we set vi = 1 for all i ≤ t, otherwise
we set vi = 0. We set v1 = 1 and vp+1 = 0 for all v ∈ V (D). Now all the variables are
nonnegative and we have vi+1 ≤ vi. Note that if ai 6∈ L(v) then f(v) 6= ai and we have
vi − vi+1 = 0. It remains to show that ui ≤ vl+(i) for every uv arc in D. Suppose for
contradiction that ui = 1 and vl+(i) = 0 and let f(u) = ar and f(v) = as. This implies that
ur = 1, whence i ≤ r; and vs = 1, whence s < l+(i). Since aial+(i) and aras both are arcs of
H with i ≤ r and s < l+(i), the fact that H has a min-ordering implies that aias must also
be an arc of H, contradicting the definition of l+(i). The proof for vi ≤ ul−(i) is analogous.

Conversely, if there is an integer solution for S, we define a homomorphism f as follows:
we let f(v) = ai when i is the largest subscript with vi = 1. We prove that this is indeed a
homomorphism by showing that every arc of D is mapped to an arc of H. Let uv be an arc
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of D and assume f(u) = ar, f(v) = as. We show that aras is an arc in H. Observe that
1 = ur ≤ vl+(r) ≤ 1 and 1 = vs ≤ ul−(s) ≤ 1, therefore we must have vl+(r) = ul−(s) = 1.
Since r and s are the largest subscripts such that ur = vs = 1 then l+(r) ≤ s and l−(s) ≤ r.
Since aral+(r) and al−(s)as are arcs of H, we must have the arc aras, as H admits a max-
ordering. Furthermore, f(v) = ai iff vi = 1 and vi+1 = 0, so, c(v, ai) contributes to the sum
iff f(v) = ai. J

We have translated the minimum cost homomorphism problem to a linear program. In
fact, this linear program corresponds to a minimum cut problem in an auxiliary network,
and can be solved by network flow algorithms [23, 48]. In [30], a similar result to Theorem
11 was proved for the MinHOM(H) problem on undirected graphs when target graph H is
bipartite and admits a min-max-ordering. We shall enhance the above system S to obtain
an approximation algorithm for the case where H is only assumed to admit a min-ordering.

4 LP for Digraphs with a min-ordering

In the rest of the paper assume lists are not empty. Moreover, non-empty lists guarantee a
homomorphism when H admits a min-ordering.

I Lemma 12. [32] Let H be a digraph that admits a min-ordering. If all the lists are
non-empty after arc consistency, then there exists a homomorphism from D to H.

Suppose a1, a2, . . . , ap is a min-ordering of H. Let E′ denote the set of all the pairs
(ai, aj) such that aiaj is not an arc of H, but there is an arc aiaj′ of H with j′ < j and an
arc ai′aj of H with i′ < i. Let E = A(H) and define H ′ to be the digraph with vertex set
V (H) and arc set E ∪ E′. Note that E and E′ are disjoint sets.

I Observation 13. The ordering a1, a2, · · · , ap is a min-max-ordering of H ′.

I Observation 14. Let e = aiaj ∈ E′. Then ai does not have any out-neighbor in H after
aj, or aj does not have any in-neighbor in H after ai.

Observation 14 easily follows from the fact that H has a min-ordering. Since H ′ has a
min-max-ordering, we can form system of linear inequalities S, for H ′ as described in Section
3. Homomorphisms of D to H ′ are in a one-to-one correspondence with integer solutions of S,
by Theorem 11. However, we are interested in homomorphisms of D to H, not H ′. Therefore,
we shall add further inequalities to S to ensure that we only admit homomorphisms from D

to H, i.e., avoid mapping arcs of D to the arcs in E′.
For every arc e = aiaj ∈ E′ and every arc uv ∈ A(D), by Observation 14, two of the

following set of inequalities will be added to S (i.e. either (C8), (C11) or (C9), (C10) or
(C9), (C11)).

vj ≤ us +
∑

t<i,ataj∈E,at∈L(u)
(ut − ut+1) if as ∈ L(u) is the first in-neighbour of aj after ai (C8)

vj ≤ vj+1 +
∑

t<i,ataj∈E,at∈L(u)
(ut − ut+1) if aj has no in-neighbour after ai (C9)

ui ≤ vs +
∑

t<j,aiat∈E,at∈L(v)
(vt − vt+1) if as ∈ L(v) is the first out-neighbour of ai after aj (C10)

ui ≤ ui+1 +
∑

t<j,aiat∈E,at∈L(v)
(vt − vt+1) if ai has no out-neighbour after aj (C11)

Additionally, for every pair (x, y) ∈ V (D)× V (D) consider a list L(x, y) of possible pairs
(a, b), a ∈ L(x) and b ∈ L(y). Perform pair consistency procedure as follows. Consider three
vertices x, y, z ∈ V (D). For (a, b) ∈ L(x, y) if there is no c ∈ L(z) such that (a, c) ∈ L(x, z)
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and (c, b) ∈ L(z, y) then remove (a, b) from L(x, y). Repeat this until a pair list becomes
empty or no more changes can be made. Here, we assume that after pair consistency
procedure no pair list is empty, as otherwise there is no homomorphism of D to H. Therefore,
by pair consistency, add the following constraints for every u, v in V (D) and ai ∈ L(u):

ui − ui+1 ≤
∑
j:

(ai,aj )∈L(u,v)

(vj − vj+1) (C12)

I Lemma 15. If H admits a min-ordering, then there is a one-to-one correspondence between
homomorphisms of D to H and integer solutions of the extended system S.

5 Approximation for Digraphs with a min-ordering

In what follows, we describe an overview of our approximation algorithm for MinHOM(H)
where the fixed digraph H has a min-ordering. We encourage the reader to see Algorithm 1
while reading this section. An overview of the proofs of the correctness and approximation
bound are postponed for the later subsections (further details in the full version [49]).

Let D be the input digraph together with a cost function c. Let a1, . . . , ap be a min
ordering of the vertices ofH. The algorithm, first constructs digraphH ′ fromH as in Section 4.
By Observation 13, a1, . . . , ap is a min-max-ordering for H ′. By Lemma 15, the integral
solutions of the extended LP are in one-to-one correspondence to homomorphisms from D to
H. At this point, our algorithm will minimize the cost function over extended S in polynomial
time using a linear programming algorithm. This will generally result in a fractional solution
(Even though the original system S is known to be totally unimodular [23, 48] and hence
have integral optima, we have added inequalities, and hence lost this advantage). We will
obtain an integer solution by a randomized procedure called rounding. Choose, uniformly at
random, a random variable X ∈ [0, 1], and define the rounded values u′i = 1 when ui ≥ X (ui
is the returned value by the LP), and u′i = 0 otherwise. It is easy to check that the rounded
values satisfy the original inequalities, i.e., correspond to a homomorphism f of D to H ′.

Now the algorithm will once more modify the solution f to become a homomorphism from
D to H, i.e., to avoid mapping the arcs of D to the arcs in E′. This will be accomplished
by another randomized procedure, which we call Shift. We choose, uniformly at random,
another random variable Y ∈ [0, 1], which will guide the shifting. Let F denote the set of all
arcs in E′ to which some arcs of D are mapped by f . If F is empty, we need no shifting.
Otherwise, let aiaj be an arc of F . Since F ⊆ E′, Observation 14 implies that either aj has
no in-neighbor after ai or ai has no out-neighbor after aj . Suppose the first case happens
(the shifting process is similar in the other case).

Consider a vertex v in D such that f(v) = aj (i.e. v′j = 1 and v′j+1 = 0) and v has
an in-neighbor u in D with f(u) = ai (i.e. u′i = 1 and u′i+1 = 0). For such a vertex v,
let Sv = {at1 , at2 , . . . , atk} be the set of all vertices at with t < j such that aiat ∈ E and
at ∈ L(v). Suppose Sv consists of at with subscripts t ordered as t1 < t2 < · · · < tk.

I Lemma 16. During procedure Shift, the set of indices t1 < · · · < tk considered in Line 6
of the Algorithm 1 is non-empty.

By Lemma 16, Sv is not empty. The algorithm now selects one vertex from this set as follows.
Let Pv,t = vt−vt+1

Pv
, where Pv =

∑
t<j

aiat∈E,at∈L(v)

(vt − vt+1).

Note that Pv > 0 because of constraints (C9) and (C10). Then atq is selected if
q∑
p=1

Pv,tp < Y ≤
q+1∑
p=1

Pv,tp . Thus a concrete at is selected with probability Pv,t, which is
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proportional to the difference of the fractional values vt − vt+1. When the selected vertex is
at, we shift the image of the vertex v from aj to at, and set v′r = 1 if r ≤ t, else set v′r = 0.
Note that at is before aj in the min-ordering. Now we might need to shift images of the
neighbors of v. In this case, repeat the shifting procedure for neighbors of v. This processes
continues in a Breadth-first search (BFS) like manner, until no more shift is required (Figure
1 gives an illustration). Note that a vertex might be visited multiple times in procedure shift
while a pair (v, ai) ∈ V (D)× V (H) is considered at most one time.

1
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Figure 1 Two examples. In the right example, the target digraph is H1 and input is D1. Digraphs
D1 and H1 both can be view as bipartite graphs and 1, 2, 3, 4, 5, 6, 7 is a min-ordering of H. When
x, y are mapped to 3 and w is mapped to 6 then the algorithm should shift the image of w from 6
to 5 and since 35 is an arc there is no need to shift the image of y. In the left example, the target
digraph is H and the input is D. 1, 2, 3, 4, 5, 6, 7, 8 is a min-ordering of H and 24 is a missing arc.
Suppose x is mapped to 2, y to 4, w to 7, z to 8, u to 5 and v to 2. Then we should shift the image
of y to 3 and then w to 6 and z to 6 and then u to 3 and v to one of the 1, 2.

We remark that the images of vertices in D are always shifted towards smaller elements in
their lists. Lemma 17 shows that this shifting modifies the homomorphism f , and hence, the
corresponding values of the variables. Namely, v′t+1, . . . , v

′
j are reset to 0, keeping all other

values the same. Note that these modified values still satisfy the original set of constraints S,
i.e., the modified mapping is still a homomorphism.

I Lemma 17. Procedure shift, in polynomial time, returns a homomorphism of D to H ′.

We repeat the same process for the next v with these properties, until no edge of D is
mapped to an edge in E′. Each iteration involves at most |V (H)| · |V (D)| shifts. After at
most |E′| iterations, no edge of D is mapped to an edge in F and we no longer need to shift.
Next theorem follows from Lemma 16 and 17.

I Theorem 18. Our algorithm, in polynomial time, returns a homomorphism of D to H.

5.1 Analyzing the Approximation Ratio
We now claim that the cost of this homomorphism is at most |V (H)|2 times the minimum
cost of a homomorphism. Let w denote the value of the objective function with the fractional
optimum ui, vj , and w′ denote the value of the objective function with the final values u′i, v′j ,
after the rounding and all the shifting. Also, let w∗ be the minimum cost of a homomorphism
of D to H. Obviously, w ≤ w∗ ≤ w′.

We now show that the expected value of w′ is at most a constant times w. Let us focus
on the contribution of one summand, say v′t − v′t+1, to the calculation of the cost. In any
integer solution, v′t − v′t+1 is either 0 or 1. The probability that v′t − v′t+1 contributes to w′ is
the probability of the event that v′t = 1 and v′t+1 = 0. This can happen in the following:
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Algorithm 1 Approximation MinHOM(H).
1: procedure Approx–MinHOM(D,H)
2: Construct H ′ from H (as in Section 3)
3: Let uis be the (fractional) values returned by the extended LP
4: Choose a random variable X ∈ [0, 1], and ∀uis : if X ≤ ui let u′i = 1, else let u′i = 0
5: Let f(u) = ai where i is the largest subscript with u′i = 1 . f is a homomorphism

from D to H ′
6: Choose a random variable Y ∈ [0, 1]
7: while ∃uv ∈ A(D) such that f(u)f(v) ∈ A(H ′) \A(H) do
8: if f(v) does not have an in-neighbor after f(u) then Shift(f, v)
9: else if f(u) does not have an out-neighbor after f(v) then Shift(f, u)

10: return f . f is a homomorphism from D to H

Algorithm 2 The Shifting Procedure.
1: procedure Shift(f, x)
2: Let Q be a Queue, Q.enqueue(x)
3: while Q is not empty do
4: v ← Q.dequeue()
5: for uv ∈ A(D) with f(u)f(v) 6∈ A(H) or vu ∈ A(D) with f(v)f(u) 6∈ A(H) do

. Here we assume the first condition holds, the other case is similar
. Further, we assume f(v) does not have an in-neighbor after f(u)

6: Let t1 < · · · < tk be indices so that atj < f(v), atj ∈ L(v), f(u)atj ∈ A(H)

7: Let Pv ←
j=k∑
j=1

(vtj − vtj+1) and Pv,t ← (vt − vt+1) / Pv

8: if
q∑
p=1

Pv,tp < Y ≤
q+1∑
p=1

Pv,tp then

9: f(v)← atq , set v′i = 1 for 1 ≤ i ≤ tq, and set v′i = 0 for tp < i

10: for vz ∈ A(D) (zv ∈ A(D)) with f(v)f(z) 6∈ A(H) (f(z)f(v) 6∈ A(H)) do
11: Q.enqueue(z)
12: return f . f is a homomorphism from D to H ′

1. v is mapped to at by rounding, and is not shifted away. In other words, we have v′t = 1
and v′t+1 = 0 after rounding, and these values don’t change by procedure Shift.

2. v is first mapped to some aj , j > t, by rounding, and then re-mapped to at by procedure
Shift.

I Lemma 19. The expected contribution of one summand, say v′t − v′t+1, to the expected
cost of w′ is at most |V (H)|2c(v, at)(vt − vt+1).

I Theorem 20. Algorithm 1 returns a homomorphism with expected cost |V (H)|2 ·OPT . The
algorithm can be de-randomized to obtain a deterministic |V (H)|2-approximation algorithm.
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6 Approximation for Digraphs with a k-min-ordering

Digraphs admitting k-min-ordering (k > 1) do not admit a min-ordering or a conservative
majority polymorphism. However, this does not rule out the possibility of a constant factor
approximation algorithm. We show that they are in fact DAT-free digraphs, and they admit
a nice geometric representation (see the full version [49]).

I Lemma 21. Let H be a digraph that admits a k-min-ordering. Then H is DAT-free, and
LHOM(H) is polynomial time solvable.

Let H be a digraph with a k-min-ordering (k > 1) and partition V0, V1, . . . , Vk−1 of its
vertices, and let < be a k-min-ordering of V (H). It is easy to argue that the input digraph D
must be homomorphic to −→Ck otherwise there is no homomorphism from D to H. Therefore,
we assume (for some 0 ≤ ` ≤ k − 1), L(u) ⊆ Vi for every u ∈ Ui+`, 0 ≤ i ≤ k − 1. Now the
LP is designed according to the lists L. Since < is a min-ordering of Vi∪Vi+1, the constraints
are very similar to the ones in Section 3. The conclusion of this section is the following:

I Theorem 22. There is a (deterministic) |V (H)|2-approximation algorithm for
MinHOM(H) when the target digraph H admits a k-min-ordering, k > 1.

7 A Dichotomy for Graphs

Feder and Vardi [20] proved that if a graph H admits a conservative majority polymorphism,
then LHOM(H) is polynomial time solvable. Later, Feder et al., [18] showed that LHOM(H)
is polynomial time solvable iff H is a bi-arc graph. Hence, by Observation 4, the problem is
inapproximable beyond bi-arc graphs. A bi-arc graph is represented by a pair of families
of arcs on a circle with specific conditions (exact definition is given in the full version [49]).
Note that in a bi-arc graph a vertex may have a self-loop.

I Theorem 23 ([7, 18]). A graph admits a conservative majority polymorphism iff it is a
bi-arc graph.

I Definition 24 (G∗). Let G = (V,E) be a graph. Let G∗ be a bipartite graph with partite
sets V, V ′ where V ′ is a copy of V . Two vertices u ∈ V , and v′ ∈ V ′ of G∗ are adjacent in
G∗ iff uv is an edge of G.

A circular arc graph is a graph that is the intersection graph of a family of arcs on a
circle. A bipartite graph whose complement is a circular arc graph, is called a co-circular arc
graph. Note that co-circular arc graphs are irreflexive, meaning no vertex has a loop.

I Lemma 25. Let H∗ be the bipartite graph constructed from a bi-arc graph H. Then H∗ is
a co-circular arc graph and H∗ admits a min-ordering.

Let H be a bi-arc graph, with vertex set I, and let H∗ = (I, I ′) be the bipartite graph
constructed from H. Let a1, a2, . . . , ap be an ordering of the vertices in I and b1, b2, . . . , bp be
an ordering of the vertices of I ′. Note that each ai has a copy bπ(i) in {b1, b2, . . . , bn} where π
is a permutation on {1, 2, 3, . . . , p}. By Lemma 25, let us assume a1, a2, . . . , ap, b1, b2, . . . , bp
is a min-ordering for H∗.

Let G be the input graph with vertex set V and a cost function c. Construct G∗ from G

with vertex set V ∪ V ′ as in Definition 24. Now construct an instance of the MinHOM(H∗)
for the input graph G∗ and set c(v′, bπ(i)) = c(v, ai) for v ∈ V and v′ ∈ V ′. Further, make
H∗ a digraph by orienting all its edges from I to I ′, and similarly make G∗ a digraph by
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orienting all its edges from V to V ′. Note that, by construction of H∗ and G∗, there exists a
homomorphism f : G→ H with cost C iff there exists homomorphism f∗ : G∗ → H∗ with
cost 2C such that, if f∗(v) = ai then f∗(v′) = bj with j = π(i).

We first perform the arc consistency and pair consistency procedures for the vertices in
G∗. Note that if L(u) contains element ai then L(u′) contains bπ(i) and when L(u′) contains
some bj then L(u) contains aπ−1(j). Next, we define the system of linear equations Ŝ∗ with
the same construction as in Sections 3, 4. Further, we add the following constraint to Ŝ∗.
The full set of constraints in Ŝ∗ is presented in the extended version.

ui − ui+1 = u′π(i) − u′π(i)+1 ∀u, u′ ∈ G∗, ∀ai, bπ(i) ∈ H∗

I Lemma 26. If H is a bi-arc graph, then there is a one-to-one correspondence between
homomorphisms from G to H and integer solutions of Ŝ∗.

Once again we round an optimal fractional solution of Ŝ∗, using random variable X ∈ [0, 1].
Let F be a mapping form V (G∗) to V (H∗) obtained after rounding using X. We give an
algorithm that modifies F and achieves a homomorphism f : G→ H (i.e. an integral solution
that satisfies Ŝ∗). The algorithm deploys a shifting procedure that first uses a random variable
Y to shift the images of some of the vertices of V (G∗) to obtain a homomorphism f from
G∗ to H∗. Second, it applies a breadth-first search function to make f consistent on V and
V ′; meaning that f(u) = ai, u ∈ V iff f(u′) = bπ(i), u′ ∈ V ′. The proof of the following
theorems and de-randomization of the algorithm appear in the full version [49].

I Theorem 27. There exists a randomized algorithm that modifies F and obtain a homo-
morphism f : G→ H. Moreover, the expected cost of the homomorphism returned by this
algorithm is at most 2|V (H)| ·OPT .

I Theorem 28. If H admits a conservative majority polymorphism, then MinHOM(H) has
a (deterministic) 2|V (H)|-approximation algorithm, otherwise it is inapproximable.

8 Beyond majority and min-ordering (DAT-free cases)

This section offers a view of moving forward to get a dichotomy classification for constant
approximability of MinHOM(H). We believe the class of DAT-free digraphs is the right
boundary between the approximable cases, and the ones that do not admit any approximation.

I Conjecture 29. MinHOM(H) admits a constant approximation polynomial time algorithm
when H is a DAT-free digraph, otherwise, MinHOM(H) is not approximable.

For digraph D = (V,A), let D∗ be a bipartite digraph with partite sets V, V ′ where V ′
is a copy of V . There is an arc in D∗ from u ∈ V to v′ ∈ V ′ iff uv is an arc of D. In
what follows, we give a road map for solving the conjecture. Let us start off by making
a connection between homomorphisms from D to a DAT-free target digraph H, and the
homomorphisms from D∗ to H∗.

I Proposition 30. Let D,H be two digraphs and let D,H,L (here L are the lists) be an
instance of the LHOM(H). Suppose H is DAT-free. Then H∗ admits a min-ordering, and
LHOM(H∗) is polynomial time solvable for instance D∗, H∗ where L∗(v′) = {a′|a ∈ L(v)}
and L∗(v) = L(v) for every v ∈ V (D).

Similar to Lemmas 15 and 26, we can obtain set of constraints Ŝ∗ such that there is
a one-to-one correspondence between homomorphisms from D to H and integer solutions
of Ŝ∗ (details in the full version [49]). Our primary challenge would be finding a rounding
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procedure to obtain a homomorphism from D to H. We believe there is a need to deploy
the shift procedure in min-ordering case (Section 3), as well as, the shifting procedure in
the majority case (Section 7). This essentially means obtaining a new way of solving a list
homomorphism from D to H when H is a DAT-free, using the bi-partition method. The
calculation should work out; yielding a constant bound between the fractional value of the LP
and the integral value obtained by rounding. Notice that in the majority case the symmetry
of the arcs is heavily used in our argument, whereas in the digraph case we no longer have
this property in hand.
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Abstract
We say a subset C ⊆ {1, 2, . . . , k}n is a k-hash code (also called k-separated) if for every subset
of k codewords from C, there exists a coordinate where all these codewords have distinct values.
Understanding the largest possible rate (in bits), defined as (log2 |C|)/n, of a k-hash code is a
classical problem. It arises in two equivalent contexts: (i) the smallest size possible for a perfect
hash family that maps a universe of N elements into {1, 2, . . . , k}, and (ii) the zero-error capacity
for decoding with lists of size less than k for a certain combinatorial channel.

A general upper bound of k!/kk−1 on the rate of a k-hash code (in the limit of large n) was
obtained by Fredman and Komlós in 1984 for any k ≥ 4. While better bounds have been obtained
for k = 4, their original bound has remained the best known for each k ≥ 5. In this work, we present
a method to obtain the first improvement to the Fredman-Komlós bound for every k ≥ 5, and we
apply this method to give explicit numerical bounds for k = 5, 6.
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1 Introduction

A code of length n over an alphabet of size k is a subset C ⊆ {1, 2, . . . , k}n. We say such
a code C is a k-hash code (also called k-separated in the literature), if for every subset of
k distinct codewords {c(1), c(2), . . . , c(k)} from C, there exists a coordinate j such that all
these codewords differ in this coordinate, i.e. {c(1)

j , c
(2)
j , . . . , c

(k)
j } = {1, 2, . . . , k}. The rate

(in bits) of the code is defined as R = log2 |C|
n . Then for each fixed integer k, let Rk be the

limit superior (lim sup), as n→∞, of the rate of the largest k-hash code of length n.
The study of the quantity Rk is a fundamental problem in combinatorics, information

theory, and computer science. As the name suggests, k-hash codes have strong connections
to the hashing problem. A family of functions mapping a universe of size N to the set
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{1, 2, . . . , k} is called a perfect k-hash family if any k elements of the universe are mapped
in one-to-one fashion by at least one hash function from this family. If C is a k-hash code,
then a perfect k-hash family for universe C with n functions is just the family of coordinate
projections. Therefore, Rk gives the growth rate of the size of universes for which perfect
k-hash families of a given size exist. Equivalently, an upper bound on Rk is equivalent to a
lower bound on the size of a perfect k-hash family as a function of the universe size.

An equivalent information-theoretic context in which k-hash codes arise concerns zero-
error list decoding on certain channels. A channel can be thought of as a bipartite graph
(V,W,E), where V is the set of channel inputs, W is the set of channel outputs, and
(v, w) ∈ E if on input v the channel can output w. The k/(k− 1) channel then is the channel
with V = W = {1, 2, . . . , k}, and (v, w) ∈ E iff v 6= w. In this context, Rk is the largest
asymptotic rate at which one can communicate using n repeated uses of the channel (as n
grows), if we want to ensure that the receiver can identify a subset of at most k− 1 sequences
that is guaranteed to contain the transmitted sequence. See [4, 3] for more details.

Studying the rates of the codes and hashing family sizes in the above settings is a
longstanding problem. A probabilistic argument shows the existence of k-hash codes with
rate at least 1

k−1 log 1
1−k!/kk − o(1) [5, 10], and better bounds are known for some small

values of k. Our focus here is on upper bounds on Rk, that is limitations on the size of k-hash
codes. Here the best-known general upper bound on the rate Rk dates all the way back to
the 1984 paper of Fredman and Komlós [5]:

Rk ≤
k!
kk−1 =: αk . (1)

For large k the multiplicative discrepancy between the probabilistic lower bound on Rk
and the above Fredman-Komlós upper bound (1) grows approximately as k2, so the current
bounds on the rate require tightening to obtain better estimations of Rk. There is another
trivial upper bound, Rk ≤ log2

(
k
k−1

)
, that follows from a simple double-counting or first

moment method. The above bound (1) is much better than this bound for k ≥ 4. For
k = 3 (which is called the trifference problem by Körner), however, R3 ≤ log2(3/2) ≈ 0.585
remains the best upper bound, and improving it (or showing it can be achieved!) is a
major combinatorial challenge. For the case k = 4, the bound (1) which states R4 ≤ 0.375
has been improved, first by Arikan to 0.3512 [1], and recently by Dalai, Guruswami, and
Radhakrishnan [3] to 6/19 ≤ 0.3158.

However, the above quantity αk remained the best known upper bound on Rk for each
k > 4. Our main result gives the first improvement to the Fredman-Komlós bound (1) for
k ≥ 5, proving that Rk is strictly smaller than αk for every k.

I Theorem 1. For all k ≥ 4 there exists βk such that Rk ≤ βk < αk. For k = 5, 6, we have
the explicit upper bounds R5 < β5 = 0.190826 < 0.192 = α5, and R6 < β6 = 0.0922789 <
0.0925 = 5

54 = α6.

Our approach provides a method to compute the explicit bound βk for any k ≥ 5 by finding a
root of a degree-O(k) polynomial, which lies within a specific interval. Moreover, we present
a technical conjecture on the optimum values of certain polynomial optimization problems
over the simplex, assuming which even stronger upper bounds on Rk can be obtained. Using
the tools of numerical optimization in Mathematica, we verify this conjecture for the cases
k = 5, 6, which gives us better values of β5 and β6, claimed in the Theorem above.

Our approach is also applicable to the (b, k)-hashing problem for b ≥ k, where one
considers codes C ⊆ {1, 2, . . . , b}n with the property that for any k distinct codewords
{c(1), c(2), . . . , c(k)} from C there exists a coordinate j such that all these codewords differ
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in this coordinate. Using exactly the same arguments, we obtain an improvement on the
Körner-Marton upper bound [9] on the rate of such codes. When b = k, this latter bound is
identical to the Fredman-Komlós bound, but can be better than the corresponding bound in
[5] when b > k. For some small pairs of values (b, k) with b > k, the Körner-Marton bound
was further improved by Arikan [1]. In those cases, the bounds we get are probably weaker
than Arikan’s. For this reason and for the sake of simplicity, in this paper we analyze only the
case b = k, which corresponds to k-hashing, but all our proofs generalize in a straightforward
way for (b, k)-hashing as well.

2 Background and approach

The previous general upper bounds on the rates of k-hash codes by Fredman and Komlós [5],
Körner and Marton [9], and Arikan [1] are all based on information-theoretic inequalities for
graph covering, related to the Hansel lemma [6]. Körner [10] cast the Fredman-Komlós proof
in the language of graph entropy, which he had introduced in [8] (see [12] for a nice survey
on graph entropy). Körner and Marton [9] generalized this approach to the hypergraph case,
which led to improvements to the Fredman-Komlós bound for the (b, k)-hashing problem in
certain cases when b > k, but not for Rk. In this paper we use the following version of the
Hansel lemma, which is also proved in [11] via a simple probabilistic argument:

I Lemma 2 (Hansel). Let Km be a complete graph on m vertices. Let also G1, G2, . . . , Gt be

bipartite graphs, such that E (Km) =
t⋃
i=1

E(Gi). Denote by τ(Gi) the fraction of non-isolated

vertices in Gi. Then the following holds:

logm ≤
t∑
i=1

τ(Gi). (2)

To relate this lemma to the context of the paper, consider a k-hash code C ⊆ [k]n. Take
a subset of this code {x1, x2, . . . , xk−2} ⊆ C, and define bipartite graphs Gx1,...,xk−2

i , for
i ∈ [n], as follows:

V (Gx1,...,xk−2
i ) = C \ {x1, x2, . . . , xk−2},

E(Gx1,...,xk−2
i ) =

{
{y1, y2} : (y1)i, (y2)i, (x1)i, (x2)i, . . . , (xk−2)i are distinct

}
.

Note that since C is a k-hash code, for any pair {y1, y2} ⊆ C \ {x1, x2, . . . , xk−2},
there exists some coordinate i, such that all the k codewords y1, y2, x1, x2, . . . , xk−2 differ
in the ith coordinate. In other words, {y1, y2} ∈ E(Gx1,...,xk−2

i ) for this i. Therefore,

E
(
K|C|−(k−2)

)
=

n⋃
i=1

E(Gx1,...,xk−2
i ). Then Hansel lemma 2 applies directly, and denoting

τi(x1, x2, . . . , xk−2) = τ
(
G
x1,...,xk−2
i

)
, we obtain

log (|C| − k + 2) ≤
n∑
i=1

τi(x1, x2, . . . , xk−2). (3)

Taking the expectation over the choice of x1, x2, . . . , xk−2, we get

log (|C| − k + 2) ≤
n∑
i=1

E[τi(x1, x2, . . . , xk−2)]. (4)

ICALP 2019
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By bounding the RHS of the above inequality one might obtain an upper bound on log |C|,
and thus on the rate of this code. Different strategies to pick the codewords {x1, x2, . . . , xk−2}
from C lead to different approaches to bound the RHS of (4). Here we briefly present the
ideas underlying the previous works and then outline our approach.

In the original bound by Fredman and Komlós [5] the codewords x1, x2, . . . , xk−2 are
picked independently at random from the code C. Then one can use symmetry arguments
(or Muirhead’s inequality) to bound the RHS of (4), which leads to the inequality

Rk ≤
k!
kk−1 . (5)

Due to the symmetry arguments involved, this bound is actually tight only in the case when
the frequencies of the symbols of the code C in each coordinate are exactly uniform.

Arikan [1, 2] used rate versus distance results (the Plotkin bound) from coding theory to
ensure that it is possible to pick x1, x2, . . . , xk−2 which agree on many coordinates. Note
that this already guarantees that many terms in the RHS of (3) equal 0. Together with an
argument which allows to modify the code so that it doesn’t have any coordinate where the
symbols have an overly skewed (far from uniform) frequency, Arikan was able to improve the
bound (5) for k = 4. However, no improvement was gained for larger k.

Dalai, Guruswami, and Radhakrishnan [3] combine aspects of the above two approaches
for the case k = 4. As in Arikan’s work, they pick x1, x2 to agree on the first several
coordinates. However, instead of a fixed such choice, they pick such a pair at random from a
rich subcode of C with a common prefix. Considering such subcodes with common prefixes
is a standard approach that leads to the Plotkin bound. The technical crux of the argument
in [3] is a concavity claim for some quadratic form which says that despite conditioning
on a common prefix, which might greatly alter the frequency vector of symbols in any
coordinate in the suffix, the Fredman-Komlós bound for completely random x1, x2 is still
valid on those coordinates. (In some sense, only the average frequency vector over all prefixes
matters, not the individual ones.) Actually this holds modulo a technical condition that
there are no coordinates with very skewed symbol distribution, which can be ensured by
some pre-processing of the code similar to [2]. Thus some terms in (4) are equal to 0 and
the other are bounded by 3/8, and balancing these appropriately, a bound of R4 ≤ 6

19 is
obtained in [3].

In this work, we follow the strategy of [3] for general k by picking x1, x2, . . . , xk−2 randomly
so that they all lie in a rich subcode of C. However, rather than taking Plotkin-type subcode
with a common prefix, we consider a subcode C which takes at most (k − 3) values on each
coordinate from some large set T . This again implies that the coordinates from T contribute
0 to the RHS of (4). In this case, however, the analogous concavity claim seems out of reach,
as one has to argue about degree-(k−2) polynomials rather than quadratics. We instead take
a different approach that works directly with the arbitrary symbol frequencies that may arise
upon conditioning within a subcode, avoiding the averaging or concavity step. (This leads
to worse bounds, but still allows to beat the Fredman-Komlós bound for k > 4.) However,
another problem arises in that the constraint on the code to have non-skewed frequencies
in each coordinate cannot be dealt with using Arikan’s argument for large k. To cope with
this issue, we differentiate two separate cases: (i) where C has only a few coordinates with
skewed distributions of symbols, and (ii) where there are a lot of such coordinates.

In the first case, we pick the coordinates T (where x1, x2, . . . , xk−2 are chosen to collide)
to include all these skewed coordinates. Note that this is unlike [1, 3] where any choice of
T of prescribed size works. Our choice of T ensures that in the remaining coordinates
the frequency vector is not too far from uniform, and we apply the approach of [3] to get
an improvement upon the Fredman-Komlós bound.
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In the second case, we use the original random strategy of picking x1, x2, . . . , xk−2 as
in [5]. The idea here is that the bound (5) is tight only when all the frequencies of
symbols are exactly uniform. Then, in the case when there are a lot of far-from-uniform
frequencies, it is possible to improve the bound (5).

By picking the correct way to differentiate between skewed and non-skewed distributions, we
then obtain an improvement on the Fredman-Komlós bound (5) for every k ≥ 4 in section
3.3. As mentioned earlier, this is the first such improvement for k ≥ 5. For k = 5 and k = 6
we also use numerical optimization tools to provide slightly stronger explicit bounds on Rk.

3 Upper bound on the rate of k-hash codes

Let Σ = {1, 2, . . . , k} = [k], and let C ⊆ Σn be a k-hash code with rate R = log |C|
n (all

logarithm are to the base 2). Let fi ∈ Rk be the frequency vector of symbols of the code for
each coordinate i ∈ [n], namely:

fi[a] = 1
|C|
|{x ∈ C : xi = a}|.

Throughout the analysis, we will be interested in two cases: when for most of the
coordinates the distribution of codeword symbols is close to uniform (non-skewed), or when
this doesn’t hold. To define the term “close to uniform” formally, we consider a threshold γ,
that satisfies 1

2k−3 ≤ γ ≤ 1
k , and say that f ∈ Rk is close to uniform when f [a] ≥ γ for all

a ∈ [k]. Denote then Pγ = {i ∈ [n] : min
a∈Σ

fi[a] ≥ γ} – the set of all the coordinates for which

the distribution of codeword symbols is close to uniform. Denote also ` :=
⌊
nR−logn
log( k

k−3 )

⌋
. We

then consider two cases:
1. Unbalanced: |Pγ | < n−`, so there is a decent fraction of coordinates where the distribution

of codeword symbols is skewed. For this case, we apply a random strategy to pick
x1, x2, . . . , xk−2 in (4).

2. Almost balanced: |Pγ | ≥ n− `, so for almost all coordinates, the distribution of codeword
symbols is close to uniform. Then we follow the approach from [3] to pick x1, x2, . . . , xk−2
which collide on many coordinates.

For both of these cases, we will obtain some bounds on the rate of C, which depend on
the threshold γ. It then will remain to choose γ in a manner ensuring that both these bounds
beat (5). Then, since for any code C exactly one of the cases holds, we can obtain a general
upper bound on the rate.

Before we continue with studying the two cases separately, let’s look at how we can
estimate τi(x1, x2, . . . , xk−2). Clearly, the codeword y ∈ C appears non-isolated in the graph
G
x1,x2,...,xk−2
i only if all the codewords x1, x2, . . . , xk−2 and y differ in the ith coordinate.

Therefore, the fraction of non-isolated vertices in Gx1,x2,...,xk−2
i satisfies

τi(x1, . . . , xk−2) ≤
(

|C|
|C| − (k − 2)

)(
1− fi[(x1)i]− fi[(x2)i]− · · · − fi[(xk−2)i]

)
×

×1
[
(x1)i, (x2)i, . . . , (xk−2)i distinct

]
,

(6)

where 1[E] is the indicator variable for an event/condition E.

ICALP 2019
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3.1 Unbalanced case
We will pick x1, x2, . . . , xk−2 uniformly at random without replacement from C to obtain
an upper bound on the rate of C from (4). Taking the expectations of the both sides in (6)
gives

E[τi(x1, . . . , xk−2)]

≤ |C|
|C| − k + 2

∑
a1,...,ak−2 ∈ Σ
{as} distinct

(
1−

k−2∑
s=1

fi[as]
)
· P
[
(xs)i = as, s = 1, . . . , (k − 2)

]

= |C|
|C| − k + 2

k−3∏
j=0

|C|
|C| − j

∑
a1,a2,...,ak−2 ∈ Σ
{as} distinct

(
1−

k−2∑
s=1

fi[as]
)
· fi[a1]fi[a2] . . . fi[ak−2],

(7)

where the coefficients |C|
|C|−j , j = 0, 1, . . . , k − 3 appear because we pick elements from C

without replacement. Define the following function of two probability vectors g, f ∈ Rk:

φk(g, f) :=
∑

a1,a2,...,ak−2∈Σ
{as} distinct

k−2∏
s=1

g[as]
(

1−
k−2∑
s=1

f [as]
)
. (8)

Using this notation, we derive from (7):

E[τi(x1, x2, . . . , xk−2)] ≤ φk(fi, fi)
(
1 + o(1)

)
. (9)

Since
∑
a∈Σ fi[a] = 1, it is easy to see that φk(fi, fi) is a symmetric expression in fi[a] for

all a ∈ Σ. Denote by Sth(g) the h-th elementary symmetric sum of the first t coordinates of
the vector g ∈ Rk, i.e. the sum of all products of h distinct elements from {g[1], g[2], . . . , g[t]}.
Then we can write

φk(fi, fi) = (k − 2)! ·
(
k − 1
k − 2

)
Skk−1(fi) = (k − 1)! · Skk−1(fi)

It is not hard to show that Skh(g) for g being a probability vector in Rk is maximized when
g is uniform. Indeed, if there are two non-equal coordinates g[a] 6= g[b], then substituting
the values in these coordinates by their arithmetic average strictly increases the value of
Skh(g). Then let us denote by u the uniform distribution on k elements, i.e. u[a] = 1/k for
all a ∈ [k], and so Skh(g) ≤ Skh(u). Then in (9)

E[τi(x1, x2, . . . , xk−2)] ≤ (k − 1)! · Skk−1(fi) · (1 + o(1)
)
≤ (k − 1)! · Skk−1(u) ·

(
1 + o(1)

)
,

where we compute Skk−1(u) =
(
k
k−1
)
·
( 1
k

)k−1 =
( 1
k

)k−2. Therefore, we retrieve

E[τi(x1, x2, . . . , xk−2)] ≤ (k − 1)!
kk−2 ·

(
1 + o(1)

)
= k!
kk−1 ·

(
1 + o(1)

)
. (10)

Substituting this inequality into (4), notice that we derive exactly the Fredman-Komlós
bound (5). Denote then

αk := k!
kk−1 ,

the Fredman-Komlós upper bound on the rate Rk.
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Now recall that we are considering the unbalanced case, in which there are a lot of
coordinates with frequencies of codeword symbols being far from uniform. Take i to be any
of such coordinates, and let for convenience f = fi, so mina∈Σ f [a] < γ. Without loss of
generality, say f [k] < γ. Notice the following trivial property of symmetric sums:

φk(f, f) = (k − 1)! · Skk−1(f) = (k − 1)!
(
Sk−1
k−1(f) + f [k] · Sk−1

k−2(f)
)
.

The above expression is symmetric in the first (k − 1) coordinates of f . Let’s then fix
f [k], and do the same averaging operations with all the remaining coordinates of f , making
in the end f ′[1] = f ′[2] = · · · = f ′[k − 1] = 1−f [k]

k−1 . The value of φk(f, f) only increases after
such operations, so

φk(f, f) ≤ (k − 1)!
(
f ′[1]f ′[2] · · · f ′[k − 1] + f [k] · Sk−1

k−2(f ′)
)
.

Let y = 1−f [k]
k−1 , so f [k] = 1− (k − 1)y. Since 0 ≤ f [k] < γ by the assumption above, it

holds 1−γ
k−1 ≤ y ≤

1
k−1 . Recall that we took the threshold γ ≤ 1

k , thus y ≥
1−γ
k−1 ≥

1
k . Then

φk(f, f) ≤ (k−1)!
(
yk−1 +

(
1−(k−1)y

)
·(k−1)yk−2

)
= (k−1)!yk−2

(
(k−1)−(k2−2k)y

)
.

Denote Gk(y) = (k − 1)!yk−2
(

(k − 1)− (k2 − 2k)y
)
, so φk(f, f) ≤ Gk(y). We have

(Gk(y))′ = (k − 1)!(k − 1)(k − 2)yk−3(1− ky), (11)

so the derivative of Gk is negative on the interval 1
k ≤

1−γ
k−1 < y ≤ 1

k−1 , and it is zero at
y = 1

k . Therefore, we finally obtain for any such f :

φk(f, f) ≤ max
y∈[ 1−γ

k−1 ,
1
k−1 ]

Gk(y) = Gk

(
1− γ
k − 1

)
. (12)

Note that Gk
(

1−γ
k−1

)
≤ Gk

( 1
k

)
= αk for any γ ≤ 1

k , and the strict inequality Gk
(

1−γ
k−1

)
<

Gk
( 1
k

)
= αk holds when γ < 1

k .
So if mina∈[k] fi[a] < γ for some coordinate i, we retrieved the bound

E[τi(x1, x2, . . . , xk−2)] ≤ Gk
(

1− γ
k − 1

)(
1 + o(1)

)
. (13)

For now we obtained two bounds for the summands in the RHS of (4): (i) the bound
(10) holds for all the coordinates, and (ii) the bound (13) holds for the coordinates with
codeword symbol frequencies far from uniform. As we noted above, the second bound is
strictly stronger than the first bound when we take the threshold γ < 1

k . Also recall that
in the unbalanced case which we now consider, there are a lot of coordinates of the second
type, so essentially the bound (13) applies many times. Let’s now formalize this argument to
obtain an improvement on the Fredman-Komlós bound for the unbalanced case.

Denote ξk(γ) = Gk

(
1−γ
k−1

)
, then

ξk(γ) = (k−1)! (1− γ)k−2

(k − 1)k−2
(k − 1)2−(k2−2k)(1−γ)

k − 1 =
(k − 2)!(1− γ)k−2((k2 − 2k)γ + 1

)
(k − 1)k−2 ,

(14)

ICALP 2019



92:8 Beating Fredman-Komlós for Perfect k-Hashing

and note that ξk(γ) ≤ αk for γ ≤ 1
k . Recall that we denoted by Pγ the set of coordinates i

for which mina∈Σ fi[a] ≥ γ. For such i ∈ Pγ we directly apply the bound (10). For all the
other coordinates i ∈ [n] \Pγ we use the inequality (13). In the unbalanced case |Pγ | < n− `,
thus n− |Pγ | > `. Applying all these arguments to (4), we obtain

log(|C| − k + 2) ≤
(
|Pγ |αk +

(
n− |Pγ |

)
ξk(γ)

)
(1 + o(1))

<

(
nαk − ` (αk − ξk(γ))

)
(1 + o(1))

≤

nαk − nR

log
(

k
k−3

) (αk − ξk(γ)) + o(n)

 (1 + o(1)),

where ` =
⌊
nR−logn
log( k

k−3 )

⌋
. Since |C| = 2Rn, the above implies for n→∞:

R ≤ αk −
R (αk − ξk(γ))

log
(

k
k−3

) + o(1),

Runbal
k (γ) ≤ αk

1 + αk−ξk(γ)
log( k

k−3 )
. (15)

Note that for γ = 1
k the above bound becomes equal to αk, since ξk(1/k) = G

(
1−1/k
k−1

)
=

G
( 1
k

)
= αk. Moreover, the previous analysis (11) of the function Gk(·) implies that the RHS

of the above bound is strictly increasing as a function of γ. Thus the bound (15) is strictly
better than the Fredman-Komlós bound for the unbalanced case for any threshold γ < 1

k
.

3.2 Almost balanced case
For this case we extend the approach used in [3] for 4-hashing. Namely, in [3] the authors
considered a Plotkin-type subcode of C containing the words with the common prefix, and
then picked x1, x2 from this subcode. For our purposes, we will consider a rich subcode of
codewords which can take a restricted set of symbols on some fixed set of coordinates, and
choose x1, x2, . . . , xk−2 randomly from the subcode. In the almost balanced case, we are able
to ensure that the distributions of codeword symbols in all non-fixed coordinates are close to
uniform, which will allow us to use some continuity argument to bound the RHS of (4).

In the almost balanced case we assume |Pγ | ≥ n− `, so there are at most ` coordinates
where the distribution of codeword symbols is skewed. The set of such coordinates is
Pγ = [n] \ Pγ , |Pγ | ≤ `. Then take any subset T ⊂ [n], such that Pγ ⊆ T and |T | = `, and
denote S = [n] \ T .

Our goal is to find a subcode of C of sufficient size, such that any (k − 2) codewords
x1, x2, . . . , xk−2 from this subcode collide in all the coordinates from T . In other words, for
any coordinate t ∈ T there should exist i, j such that (xi)t = (xj)t. This will ensure that the
coordinates from T contribute 0 to the RHS of (4), which will allow us to prove a better
bound on the rate of the code C. We will now define the subcodes which satisfy this property.

First, denote by
(Σ
p

)
the family of p-element subsets of the alphabet Σ = {1, 2, . . . , k}.

Then define Ω :=
(

Σ
k − 3

)
×
(

Σ
k − 3

)
× · · · ×

(
Σ

k − 3

)
︸ ︷︷ ︸

`

.
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Now, for any ω ∈ Ω and any string s ∈ Σ`, denote s ` ω if s1 ∈ ω1, s2 ∈ ω2, . . . , s` ∈ ω`.
Then, for any ω ∈ Ω, we define:

Cω := {x ∈ C : x{T} ` ω},

where x{T} is the projection of the codeword x on the set of coordinates T . Notice that Cω has
the property we discussed above. Indeed, for any pick x1, x2, . . . , xk−2 ∈ Cω and any t ∈ T ,
it holds (x1)t, (x2)t, . . . , (xk−2)t ∈ ωt, but |ωt| = k− 3, and therefore (x1)t, (x2)t, . . . , (xk−2)t
are not all distinct.

Denote then Mω = |Cω|. Note that for each x ∈ C there are exactly
(
k−1
k−4
)` different

elements ω ∈ Ω such that x{T} ` ω. Therefore

∑
ω∈Ω

Mω = |C| ·
(
k − 1
k − 4

)`
.

It suffices to prove that there exists at least one ω ∈ Ω such that Mω ≥ n for our
arguments further. For the sake of contradiction, suppose Mω < n for all ω ∈ Ω. But then

2nR = |C| =
∑
ω∈Ω

Mω
1(

k−1
k−4
)` <

(
k
k−3
)`(

k−1
k−4
)` · n =

(
k

k − 3

)`
n = 2`·log k

k−3 +logn ≤ 2nR,

where `=
⌊
nR−logn
log( k

k−3 )

⌋
. The above is a contradiction, so there exists such ω ∈ Ω that Mω ≥ n.

We are finally ready to describe the strategy to pick the codewords x1, x2, . . . , xk−2 in the
almost balanced case. We do the following: first, deterministically choose some ω ∈ Ω such
that Mω ≥ n, and then pick x1, x2, . . . , xk−2 uniformly at random (without replacement)
from Cω. Since all the codewords collide on the coordinates from the set T , we obtain in (4):

log(|C| − k + 2) ≤
∑
m∈[n]

E[τm(x1, x2, . . . , xk−2)] =
∑
m∈S

E[τm(x1, x2, . . . , xk−2)]. (16)

Now fix some m ∈ S, and let fm|ω be the frequency vector of the mth coordinate in the
subcode Cω. Taking expectation over the choice of x1, x2, . . . , xk−2 in (6) with respect to
the the random strategy described above, we have

E[τm(x1, x2, . . . , xk−2)]

= |C|
|C| − k + 2

k−3∏
j=0

|Cω|
|Cω| − j

∑
a1,...,ak−2 ∈ Σ
{as} distinct

(
1−

k−2∑
s=1

fm[as]
)
· fm|ω[a1]fm|ω[a2] . . . fm|ω[ak−2],

where the coefficients |Cω|
|Cω|−j , j = 0, 1, . . . , (k−3) appear because we pick (k−2) elements from

Cω without replacement. Since we took ω such that |Cω| ≥ n, it follows that |Cω|
|Cω|−j ≤

n
n−j .

Using the function φk(g, f) which was defined in (8), we can rewrite the above as

E[τm(x1, x2, . . . , xk−2)] ≤
k−2∏
j=0

(
n

n− j

)
φk(fm|ω, fm) = φk(fm|ω, fm) ·

(
1 + o(1)

)
. (17)

Consider the following definition:

θk(γ) := max
g,f
{φk(g, f) : f, g ∈ Rk are probability vectors, min

a∈Σ
f [a] ≥ γ}. (18)
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Let’s first consider the bound we obtain using this definition, and then analyze θk(γ).
Since mina∈Σ fm[a] ≥ γ by construction of the set S, we have φk(fm|ω, fm) ≤ θk(γ) for

any m ∈ S, so substituting it into (17) gives

E[τm(x1, x2, . . . , xk−2)] ≤ θk(γ) ·
(
1 + o(1)

)
.

Therefore, in (16) we derive

log(|C| − k + 2) ≤ |S| · θk(γ)
(
1 + o(1)

)
= (n− `) · θk(γ)

(
1 + o(1)

)
≤

n− nR

log
(

k
k−3

) + logn
log
(

k
k−3

) + 1

 θk(γ)
(
1 + o(1)

)
.

Recall that |C| = 2nR, thus for n→∞

R ≤

1− R

log
(

k
k−3

)
 θk(γ) + o(1),

Rbal
k (γ) ≤ θk(γ)

1 + θk(γ)
log( k

k−3 )
. (19)

It now remains to understand how θk(γ), defined in (18), behaves as a function of γ.

Upper bound for θk(γ)
First, note that for γ = 1

k the only probability vector f with mina∈Σ f [a] ≥ γ is the uniform
vector u. Then φk(g, u) is an elementary symmetric sum of all the coordinates of g, and
therefore we obtain φk(g, u) ≤ φk(u, u) = αk, and so θk(1/k) = αk.

Now take any γ ≤ 1
k , and let g, f be probability vectors in Rk such that f [a] ≥ γ for

a ∈ Σ. We will further use “fa” to refer to the ath coordinate of vector f rather than “f [a]”.
Let t =

(
k
2
)

= k(k − 1)/2 and let P1, P2, . . . , Pt be an enumeration of all (k − 2)-element
subsets of Σ = {1, 2, . . . , k}. Then we have from (8)

φk(g, f) =
∑

a1,...,ak−2∈Σ
{ai} distinct

k−2∏
i=1

gai

(
1−

k−2∑
i=1

fai

)
= (k−2)!

t∑
j=1

∏
a∈Pj

ga ·
(

1−
∑
a∈Pj

fa

) . (20)
Denote dj :=

∏
a∈Pj ga, and let d(i) be the ith order statistic of the set {d1, d2, . . . , dt},

i.e. {d(1), d(2), . . . , d(t)} = {d1, d2, . . . , dt} and d(1) ≥ d(2) ≥ · · · ≥ d(t). The proof of the
following claim can be found in the full version of the paper.

B Claim 3.

φk(g, f) ≤ (k − 2)!
[

(1− kγ)
k−1∑
j=1

d(j) + 2γ
t∑

j=1
d(j)

]
. (21)

Now,
∑t
j=1 d(j) =

∑t
j=1 dj is just an elementary symmetric sum of degree k − 2 for the

probability vector g, so this expression is maximized for the uniform vector, and then we get∑t
j=1 d(j) ≤

(
k
2
) ( 1

k

)k−2.
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Finally, we use d(j) ≤
(

1
k−2

)k−2
, because each d(j) is a product of (k − 2) coordinates of

some probability vector. Thus we obtain

φk(g, f) ≤ (k− 2)!
[

(1−kγ) (k − 1)
(k − 2)k−2 +γ

(k − 1)
kk−3

]
= (k− 1)!

[
(1− kγ)

(k − 2)k−2 + γ

kk−3

]
. (22)

Since this holds for any g and any f such that mina∈Σ f [a] ≥ γ, we obtain an upper bound

θk(γ) ≤ (k − 1)!
[

(1− kγ)
(k − 2)k−2 + γ

kk−3

]
=: ρk(γ). (23)

Note that ρk(γ) is linear in γ for a fixed k, and that ρk(1/k) = αk = θk(1/k), so this upper
bound is tight for γ = 1

k .

3.2.1 Conjecture on the exact value of θk(γ)
We now describe the conjecture we make on the exact value of θk(γ). Consider the upper
bound (21) on φk(g, f). Even for some fixed ordering of the coordinates of g, say (without loss
of generality) g1 ≥ g2 ≥ · · · ≥ gk ≥ 0, there might be different cases of orderings within the set
{d1, d2, . . . , dt}. Say there are qk different ways to take the first (k−1) order statistics within
the set {d1, d2, . . . , dt} (with this fixed ordering), then there would be qk different functionals
of di’s, and thus of gi’s, in the RHS of (21), call them Θ(1)

k (g, γ),Θ(2)
k (g, γ), . . . ,Θ(qk)

k (g, γ).
Since exactly one ordering within {d1, . . . , dt} is correct for any particular vector g, we obtain

φk(g, f) ≤ max
i=1,2,...,qk

Θ(i)
k (g, γ).

Then define

θ
(i)
k (γ) := max

x

{
Θ(i)
k (x, γ) :

k∑
j=1

xj = 1, x ≥ 0
}
, for i = 1, 2, . . . , qk, (24)

and so the quantity θk(γ) defined in (18) satisfies

θk(γ) ≤ max
i=1,2,...,qk

θ
(i)
k (γ).

So to find an upper bound on θk(γ) it suffices to find the maximum among θ
(i)
k (γ) for

i = 1, 2, . . . , qk. Unfortunately, qk grows exponentially as k increases, so it is not clear how
to do this efficiently. We introduce a conjecture below, which suggests that we can determine
which of the values θ(i)

k (γ), i = 1, 2, . . . , qk, is the greatest for any k.

Specifically, the conjecture is stated as follows: we assume that the maximum among all
the values θ(i)

k (γ), i = 1, 2, . . . , qk, is the greatest for the functional Θ(i)
k (x, γ) corresponding

to the case, when the first (k − 1) order statistics of the set {d1, d2, . . . , dt} form the set{∏k−1
i=1

gi

ga

}
a∈[k−1]

. In other words, {d(1), d(2), . . . , d(k−1)} correspond to the sets Pj that

contain all their (k − 2) elements from {1, 2, . . . , k − 1} (recall dj =
∏
a∈Pj gj). So the first

(k − 1) order statistics are formed as the products of only the first (k − 1) coordinates of g,
ignoring the coordinate gk. Our intuition behind the assumption that this functional will
have the greatest maximum is based on symmetry arguments.

Recall that we denote by Sth(g) the h-th elementary symmetric sum of the first t coordinates
of g. Then the above conjecture can be formalized as follows:
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I Conjecture 4.

θk(γ) = max
x

{
(k−2)!

[(
1−(k−2)γ

)
Sk−1
k−2(x)+2γ·xk ·Sk−1

k−3(x)
]

:
k∑
i=1

xi = 1, x ≥ 0
}
. (25)

Indeed, the function Θγ
k(g) = (k − 2)!

[(
1 − (k − 2)γ

)
Sk−1
k−2(g) + 2γ · gk · Sk−1

k−3(g)
]
just

corresponds to the functional in the RHS of (21) in the case we discussed above.
Simple computation of the RHS of (25) gives us another formulation of this conjecture:

θk(γ) = (k − 1)!(k − 3)k−3γk−2(
(k2 − 2k)γ − 1

)k−3 . (26)

3.3 Improvement of the Fredman-Komlós bound
In this section we show that it is possible to choose such a threshold γ that both bounds
(15) and (19) are stronger than the Fredman-Komlós bound.

Using (23) in the bound (19), we obtain

Rbal
k (γ) ≤ θk(γ)

1 + θk(γ)
log( k

k−3 )
≤ ρk(γ)

1 + ρk(γ)
log( k

k−3 )
. (27)

Since for any k-hash code C either the unbalanced or the almost balanced case holds, and
we get to choose the threshold γ to differentiate between these cases, the above, combined
with (15), gives us the following upper bound for the rate in the general case:

Rk ≤ min
γ∈( 1

2k−3 ,
1
k )

max

 ρk(γ)
1 + ρk(γ)

log( k
k−3 )

,
αk

1 + αk−ξk(γ)
log( k

k−3 )

 . (28)

The optimal threshold γ is such that the bounds (27) and (15) are equal, since the first
bound becomes stronger as γ increases, while the second bound becomes weaker. Therefore,
the optimal threshold is the solution of the following equation:

ρk(γ)
1 + ρk(γ)

log( k
k−3 )

= αk

1 + αk−ξk(γ)
log( k

k−3 )
(29)

where αk = k!
kk−1 is the Fredman-Komlós bound, ρk(γ) can be found using expression (23),

and ξk(γ) is found via (14). Note that ρk(γ) is a linear function and ξk(γ) is a rational
functions with degree O(k), and therefore the above equation is equivalent to finding a root
of a polynomial of degree O(k) in variable γ, which lies in the interval

(
1

2k−3 ,
1
k

)
. Such

a solution certainly exists, because at γ = 1
k the LHS is less than αk, while the RHS is

equal to αk, however at γ = 1
2k−3 the LHS is greater than αk while the RHS is less than

αk. Therefore, there exists a point γ∗ ∈
(

1
2k−3 ,

1
k

)
where these bounds are equal, since

these functions are continuous. The values of the bounds for γ = 1
k guarantee that both

bounds will be less than αk when we take the optimal threshold γ∗. Therefore, for each k
this optimal threshold γ∗, substituted into (28), gives a new upper bound on the rate of
k-hash codes, which is stronger than the Fredman-Komlós bound (5).
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Assuming the conjecture 4 holds, we obtain a stronger bound by using the exact value of
θk(γ) instead of its upper bound ρk(γ). The optimal threshold in this case is the solution of

θk(γ)
1 + θk(γ)

log( k
k−3 )

= αk

1 + αk−ξk(γ)
log( k

k−3 )
, (30)

where the value for θk(γ) is taken from (26). The value attained by the above expressions at
the optimal threshold is the new upper bound on Rk.

New bounds for k = 5 and k = 6
Currently, the conjecture 4 is formulated in such a way that for any γ (from an appropriate
range) one particular functional, parametrized with γ, has a maximum value on a simplex
larger than some other set of functionals, also parametrized with γ. However, for our purposes
of obtaining an upper bound on Rk, we only need the conjecture to hold specifically for the
value of the optimal threshold γ = γ∗, found via (30). This is because if (26) holds for this
γ∗, we then know that the upper bounds (15) and (19) for unbalanced and balanced cases
are equal by the choice of γ∗ and thus give a general upper bound on the rate Rk.

So to use the conjecture for a given k it just suffices to solve all optimization problems
(24) for this value γ∗, and check if the conjecture indeed holds (namely, that the maximum
of Θ(i)

k (g, γ) is the greatest for the functional Θγ
k(g) described in the conjecture).

Applying (30) for k = 5 gives us the optimal threshold γ∗5 ≈ 0.136163. We then use the
numberical optimization tools in Wolfram Mathematica [7] to verify that the conjecture 4
indeed holds, which in this case reduces to optimizing two degree-3 multilinear polynomials
with 5 variables over the simplex. After verifying the conjecture, we obtain the new general
bound for 5-hashing:

R5 < 0.190826 < 0.192 = 24
125 = α5.

For k = 6, the above approach gives us:

R6 < 0.0922789 < 0.0925 = 5
54 = α6.
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Abstract
We establish and generalise several bounds for various random walk quantities including the mixing
time and the maximum hitting time. Unlike previous analyses, our derivations are based on rather
intuitive notions of local expansion properties which allow us to capture the progress the random
walk makes through t-step probabilities.

We apply our framework to dynamically changing graphs, where the set of vertices is fixed while
the set of edges changes in each round. For random walks on dynamic connected graphs for which
the stationary distribution does not change over time, we show that their behaviour is in a certain
sense similar to static graphs. For example, we show that the mixing and hitting times of any
sequence of d-regular connected graphs is O(n2), generalising a well-known result for static graphs.
We also provide refined bounds depending on the isoperimetric dimension of the graph, matching
again known results for static graphs. Finally, we investigate properties of random walks on dynamic
graphs that are not always connected: we relate their convergence to stationarity to the spectral
properties of an average of transition matrices and provide some examples that demonstrate strong
discrepancies between static and dynamic graphs.
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1 Introduction

Problem and Motivation. A random walk is a stochastic process on an undirected connected
graph G = (V,E). A particle starts on a specified vertex, and then at each time-step
t = 1, 2, . . . it moves to a neighbouring vertex chosen uniformly at random. Random walks
have proven to be extremely powerful in the design of various sampling schemes, exploration
strategies, and distributed algorithms [26]. They provide a simple yet robust way to explore
a large network. Most of the studies on random walks, however, assume the underlying graph
to be fixed. In contrast, many prevalent networks today (such as the Internet, social networks,
and wireless communication networks) are subject to dramatic changes in their topology
over time. Therefore, understanding the theoretical power and limitations of dynamic graphs
has been identified as one of the key challenges in computer science [28].
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93:2 Random Walks on Dynamic Graphs

Recently, several works have considered this problem and investigated the behaviour of
random walks [3, 4, 34, 12, 25, 32, 33] or similar processes [6, 9, 11, 18, 23] on such dynamic
graphs, and their applications to distributed networks [3, 34, 23]. Moreover, rather than a
property of the underlying network itself, dynamic graphs may naturally arise in distributed
algorithms when communication is performed on a changing, possibly disconnected, subgraph
like a spanning-tree or a matching (see, e.g., [7]).

One very popular model is that of an evolving graph, where we consider a sequence of
graphs G(1), G(2), . . . over the same set of vertices but with a varying set of edges. This model
has been the subject of the majority of previous studies of random walks on dynamic graphs
and will be the object of our study as well. Another important feature of dynamic networks
is that, with a changing set of edges, the resulting connectivity (i.e., expansion) changes.
This might be very common in communication networks, where nodes change their location
in space over time and can only communicate if they are within a certain distance of each
other. For example, [23] highlights the need to study such evolving graphs with relatively
poor connectivity and [28] emphasises the unpredictable nature of fast-changing dynamic
networks. To incorporate these features into our model, we will consider evolving graphs
with relatively mild assumptions on their connectivity and will not make any restriction on
how fast they are changing. Our quantitative analysis is focused on the mixing time, the
time to converge to the equilibrium distribution, and the hitting time, the expected number
of steps required by a random walk that starts in a vertex u to reach a vertex v. Analysing
the mixing time of dynamic graphs is also useful for load balancing applications, where
the mixing time represents the time it takes for all nodes to have (roughly) a load that is
proportional to their stationary distribution. Most theoretical studies of load balancing so
far assumed the graph to be fixed.

Our Results. The main motivation for our work comes from the results by Avin et al. [4],
which describe a remarkable dichotomy with respect to the behaviour of random walks
in evolving graphs: while sequences of connected graphs that share the same stationary
distribution are guaranteed to have mixing and hitting times polynomial in the size of the
graphs, even small incremental changes to the stationary distribution can cause hitting times
to become exponential in the worst case. We focus on the first case of this dichotomy and
prove that, at least regarding mixing and hitting times, there is essentially no difference
in the behaviour of random walks on static and evolving graphs with a time-independent
stationary distribution.

Recall that, for static graphs, it is well-known that the worst-case hitting time is O(n2)
for regular graphs and O(n3) for arbitrary graphs [14, 15]. Quite surprisingly, we can show
that something very similar holds in the setting of evolving graphs: our theorem below
proves an upper bound of O(n2) for the mixing and hitting times of regular evolving graphs,
which is optimal even for static graphs, an upper bound of O(n3) for the mixing time of
non-regular evolving graphs, which is again optimal even for static graphs, and an O(n3 logn)
upper bound for the maximum hitting time, which is only a factor of O(logn) short from the
optimal bound on static graphs (simply consider the Barbell graph, i.e., two cliques of size
n/3 connected by a path of length n/3, which has O(n3) mixing and maximum hitting time).
Below, we use p[0,t]

u,v for the probability that a random walk started in u is in v after t steps.

I Main Result 1 (restated, see Theorem 3.3 on page 9). Let G = {G(t)}∞t=1 be a sequence of
connected graphs with n vertices, the same stationary distribution π with π∗ = minu π(u),
and at most m∗ edges. Then:
1. tmix(G) = O(n/π∗),
2.
∣∣p[0,t]
u,v

πv
− 1
∣∣ . m∗

t + 1
π∗
√
t
, simplifying to

∣∣p[0,t]
u,v

πv
− 1
∣∣ . n√

t
if all graphs in G are d-regular,

3. thit(G) = O(n logn/π∗). Furthermore, if the graphs in G are d-regular, thit(G) = O(n2).
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We point out that the second statement in the above result is implied by [34, Lemma 4.6] for
the class of regular and bounded-degree graphs.
I Remark 1.1. In this work, we never explicitly derive upper bounds on the cover time (i.e.,
the expected time for a random walk to visit all vertices). However, analogous to Matthew’s
Bound for static graphs [26, Chapter 11.2], all the stated upper bounds on hitting times can
be converted into upper bounds on cover times at the cost of an additional O(logn)-factor.
I Remark 1.2. Unlike static graphs where the gap between cover and hitting time is O(logn)
(thanks to Matthew’s Bound), for evolving graphs the gap could be Ω(n) even if the sequence
consists of regular connected graphs. For example, for any t 6 cn lnn, let G(t) be a complete
graph with n vertices, while for any t > cn lnn, let G(t) be a cycle with n vertices. We can
choose the constant c so that, with probability 1 − Θ(n−1), every fixed vertex is visited
before cn lnn steps, but with constant nonzero probability, there is at least one unvisited
vertex which is at distance Ω(n) from the location of the walk at step cn lnn. This yields a
Θ(n) maximum hitting time, but a Θ(n2) cover time.
I Remark 1.3. Since the stationary distribution of a random walk depends only on the
degrees of the vertices, having the same stationary distribution means that the degrees in
each graph of the sequence are the same up to scaling.

A natural question is of course under which conditions the worst-case bound on the
hitting time can be improved. For static graphs, it has been observed that for many regular
networks, the hitting time is indeed optimal, i.e., O(n). One very general and unifying
condition is the conjecture of Aldous and Fill [1, Open Problem 6.20] stating that for any
bounded-degree, d-regular graph, an isoperimetric dimension of 2 + ε is enough for hitting
times to be linear (which is as good as possible). Since the isoperimetric dimension is equal
to the dimension of grids, it follows that grids of dimension 3 or higher have a linear hitting
time, while grids of dimension 2 have a hitting time of O(n logn).

For static graphs, a positive answer to the above conjecture by Aldous and Fill was first
given by [5], and another proof was found by [2]. Both these proofs, however, exploit the
connection between hitting times and electrical resistances [8], which is not known to exist
for general evolving graphs (however, for a special class of randomly evolving graphs such a
connection has been used in [4, Theorem 18]). Since our techniques for bounding hitting
times are more probabilistic in nature and avoid arguments based on electrical networks, we
are able to show that the conjecture by Aldous and Fill is true even in a dynamic setting.

I Main Result 2 (restated, see Theorem 4.2 on page 9). Let G = {G(t)}∞t=1 be a sequence of
n-vertex graphs such that each G(t) is regular, has bounded degree, and satisfies the following
isoperimetric condition: there exists ε ∈ [0, 1/4] such that, for any subset of vertices A with
1 6 |A| 6 n/2, |E(A, V \A)| = Ω(|A| 12 +ε). Then,
1. tmix(G) = O(n1−2ε),
2.
∣∣p[0,t]
u,v

n − 1
∣∣ = O

( 1
t1+2ε

)
,

3. thit(G) = O(n) if ε > 0, thit(G) = O(n logn) if ε = 0.

Note that the isoperimetric condition essentially says that each graph in the sequence
must be at least as well-connected as a (2 + ε)-dimensional grid. For ε = 0, we recover the
O(n logn) hitting time for static two-dimensional grids. Both of these cases might be relevant
in certain applications of moving wireless devices or robots performing terrain exploration.

The first two results apply to settings where there is a “stable connectivity”, but each
graph in the sequence may have a relatively poor expansion. The next result applies to
scenarios where connectivity is more intermittent, in fact some of the vertices may even be
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isolated at some time steps. However, “averaging” over a sufficiently long time window, the
graph will not only be connected but might also satisfy some reasonably strong expansion
guarantee. In this sense, this model is somewhat related to that of [22], which stipulates the
existence of a spanning subgraph over any time-interval of a certain length. More formally, in
the next theorem we assume that the random walk is on a sequence G of graphs with transition
matrices P (1), P (2), ... and there exists a time-independent distribution π which is stationary
for any P (i). We remark that we do not assume connectivity and, therefore, any individual
P (i) might have multiple stationary distributions. We assume, however, that there exists a
large enough time window t such that, for any i > 1, P [i,i+t] = 1

t (P
(i) +P (i+1) + · · ·+P (i+t))

is ergodic with a unique stationary distribution π and spectral gap λ(P [i,i+t]) > λ > 0. We
then can show that the distribution of a lazy random walk on G converges to π at a rate
that depends on t and the spectral gap λ. We refer to Section 5 for details on the set-up.

I Main Result 3 (restated, see Corollary 5.3 on page 11). Consider a dynamically evolving
sequence G = {G(t)}∞t=1 of graphs with transition matrices {P (i)}∞i=1 such that (1) there exists
π which is a stationary distribution for any P (i); and (2) there exists a time-window t > 0
such that, for any i > 0, P [i,i+t] = 1

t (P
(i) + P (i+1) + · · ·+ P (i+t)) is ergodic and has spectral

gap λ
(
P

[i,i+t])
> λ > 0. Then, tmix(G) = O

(
t2 log(1/π∗)λ−1), where π∗ = minu π(u).

This result is not only significant in the context of dynamically evolving graphs, but
also in settings of static graphs where communication is restricted to a bounded-degree
subgraph which potentially changes in each round. One prominent example are matching-
based communications, where in each round a random matching is generated and only those
edges can be used for averaging or exchanging information, e.g., [7].

Even when the assumptions of Main Theorem 3 are satisfied for a small time-window
t, we cannot always guarantee that hitting and mixing times will be polynomial in the size
of the graphs. Indeed, we exhibit examples of dynamic evolving graphs of n vertices that
satisfy such conditions but have mixing and/or hitting times that are exponential in n and
t. We show in Proposition 5.5 that, since graphs in the sequences need not be connected,
it is possible to construct examples where the stationary distribution π has exponentially
small probability mass on some vertices. This could result in exponential mixing and hitting
times, but somewhat surprisingly also possibly in polynomial mixing time and exponential
maximum hitting time. Both of the constructed graph sequences rely on the idea of simulating
a directed graph by a sequence of disconnected bipartite graphs. We note that the idea of
simulating directed graphs with a sequence of evolving graphs was introduced in [4], where it
is shown how to simulate a directed graph by a sequence of connected evolving graphs with
varying stationary distribution. In contrast, our result rely on simulating dynamic graphs
with a sequence of disconnected evolving graphs with the same stationary distribution.

A natural question is whether we can relax the assumptions on the regularity or existence
of a time-invariant stationary distribution. Unfortunately, we show that this is not always
possible. We exhibit in Proposition 5.4 a sequence of graphs which are connected, have
bounded-degree and constant spectral gap, but for which t-step probabilities are very far
from the uniform distribution even for a time t which is larger than the mixing time of a
random walk on any (static) graph in the sequence.

Going back to Main Result 2, the essence behind the proof is that, to achieve an optimal
O(n) hitting time, we do not need large sets to have high expansion. What we only need is
that small sets have a “sufficiently high” expansion. We derive another result in the same
spirit by upper bounding a variational characterisation of the commute time in terms of
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some version of the conductance profile [27]. However, since we need to exploit a variational
characterisation of the commute time, as opposed to the earlier results, this bound only holds
for static graphs. Let Cst be the commute time from s to t. Then, we have the following.

I Main Result 4 (restated, see Lemma 6.1 on page 12). For any static graph G = (V,E) and
s, t ∈ V , there exists a labelling of the vertices from 1 to n such that Cst 6 2m

∑n−1
j=1 |∂[j]|−1,

where ∂[j] is the set of edges with one endpoint in {1, . . . , j} and one in {j + 1, . . . , n}.

Note the relation between Main Theorem 4 and the well-known Nash-Williams’ inequality
[26, Proposition 9.15] which states that, for every set {E1, E2, . . . , Ek} of edge-disjoint cut-
sets separating s from t, Cst > 2m

∑k
j=1 |Ej |−1. Our upper bound, however, differs from the

Nash-Williams’ inequality in two ways: (1) the cut-sets ∂[j] are in general not edge-disjoint;
(2) we prove the existence of a “good” labelling, while Nash-Williams holds for any labelling.

As an application of this result, we consider the hitting time on d-regular graphs in terms
of the edge-connectivity (i.e., the smallest number of edges that would need to be removed
to make the graph disconnected), which does not impose any condition on the expansion of
large sets.

I Main Result 5 (restated, see Theorem 6.3 on page 13). Let G = (V,E) be any static d-
regular graph with edge-connectivity ρ. Then thit(G) 6 O(n2 · ( log d

d + 1
ρ )). In particular, since

ρ 6 d, we get the simpler (but potentially slightly weaker) upper bound thit(G) = O(n2 log d/ρ).

We remark that in Aldous and Fill [1, Proposition 6.22], it was shown that for any d-
regular graph G which is ρ-edge-connected, the maximum hitting time is O(n2d ·ρ−3/2). They
also mention that if the graph is Ω(d)-edge-connected, they obtain a bound of O(n2 · d−1/2).
For this case of maximal edge-connectivity, ρ = Θ(d), our bound is considerably better than
the one by Aldous and Fill, and, modulo the log d-factor, gives also the right dependency on
d. In particular, we demonstrate in Section 6 that the dependency on the edge-connectivity
ρ is as good as possible (neglecting logarithmic factors) in the sense that for any pair of
ρ and d, there exists a d-regular graph with edge-connectivity ρ which matches the upper
bound in Main Result 5 (Theorem 6.3) up to constant factors.

Further Related Work. While in this work we focus on standard (lazy) random walks on
graphs, we should point out that previous work has established an alternative in form of
the so-called max-degree walk [4, 12]. In this random walk variant, a large loop probability
depending on the degree of the current vertex and (an estimate of) the maximum degree
∆ is added. With this modification, the stationary distribution of each graph is identical
(and uniform), which makes the analysis of this walk easier. However, one downside of this
approach is that it either requires a good estimate of ∆ (or even n), or the random walk may
potentially be slowed down significantly. Also, studying standard random walks seems more
natural and, as we will see later, it also helps us to uncover some of the subtle boundaries
between fast mixing and polynomial hitting, and slow mixing and exponential hitting.

One of the earliest appearances of dynamic graphs is in the context of load balancing [17],
where the authors assumed a uniform (i.e., time-independent) lower bound on the edge
and vertex expansion. A refinement is to instead relate the balancing (mixing) time to
the geometric mean of the spectral gaps, which was used in [13]. A result of a similar
flavour for both the conductance and the vertex expansion was shown in [18] in the context
of randomised rumour spreading, and more recently a similar result was shown for the
voter model [6]. In [22], the authors analyse a sequence of graphs satisfying a T -interval
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93:6 Random Walks on Dynamic Graphs

connectivity property, which asserts that for every T consecutive rounds there exists a stable
connected spanning subgraph. The authors present upper bounds for several distributed
computational problems.

One specific graph model that has been very popular is the so-called Markovian evolving
graph. In this model every edge is associated to the same but independent two-state birth
and death chain which decides whether the edge is present or not in the next step. Many
aspects of this network have been studied, most notably the (dynamic) diameter [10] and
the time to spread a piece of information [11]. Recently, however, Lamprou et al. [25] also
considered the cover time of these graphs. In particular, suppose there exists an underlying
graph G with minimum degree δ such that at each time t the graph G(t) contains each edge
in G independently with probability p (i.e., the presence of an edge does not depend on the
past). They show the cover time of such dynamic graph is at most tcov(G)/(1− (1− p)δ),
where tcov(G) is the cover time of G. They also study random walks with a delay, where
at each step a particle chooses a random neighbour of the current vertex according to the
topology of the underlying graph G, and moves there if the corresponding edge is present,
otherwise waits till it becomes available. For this perhaps slightly less natural process, they
give bounds on the cover time also for the case where the probability of an edge being
available at time t depends on whether that edge was available at time t − 1. We also
highlight dynamical percolation, a particular type of Markovian evolving graphs that has
received recent attention (see, e.g., [20, 30, 36]). Here, an “open” edge becomes “close” with
probability p, while a close edge becomes open with probability 1 − p. In contrast to the
literature above, however, works on random walks on dynamical percolation usually refer to
continuous-time random walks.

Another class of dynamic graph models involves agents that move in some bounded space
and can interact only if they are close enough [24, 29, 31]. In contrast to these works, our
bounds are less tight but hold under much weaker assumptions on the graph and therefore
capture a more dynamic and less “regular” setting.

Finally, we mention that Saloff-Coste and Zuniga [32, 33] have generalised spectral and
geometric techniques, such as Nash and log-Sobolev inequalities, to time-inhomogeneous
Markov Chains (of which random walks on dynamic graphs are a subset). In particular, in
contrast to our results, they study chains where the individual transition matrices might
not have the same time-independent stationary distribution. For this reason, they focus
on merging properties of these chains, i.e., the ability of the chain to “forget” the initial
distribution. They obtain bounds on merging for chains that satisfy the c-stability property,
which implies (but it is not equivalent) that the stationary distributions of the individual
transition matrices do not change too much over time. Unfortunately, proving that a time-
inhomogeneous chain is c-stable is itself very difficult, and they are able to obtain concrete
bounds on merging only for very simple time-inhomogeneous Markov chains.

2 Notation and preliminaries

Let G = {G(t)}∞t=1 be an infinite sequence of undirected and unweighted graphs defined on
the same vertex set V , with |V | = n. We study (lazy) random walks on G: suppose that
at a time t > 0 a particle occupies a vertex u ∈ V . At step t + 1 the particle will remain
at the same vertex u with probability 1/2, or will move to a random neighbour of u in
G(t). In other words, it will perform a single random walk step according to a transition
matrix P (t), which is the transition matrix of a lazy random walk on G(t): P (t)(u, u) = 1/2,
P (t)(u, v) = 1/(2du) if there is an edge between u and v in G(t) (and in this case we write
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u ∼t v), or P (t)(u, v) = 0 otherwise. We denote with p[t1,t2]
u,v the probability that a random

walk that visits vertex u ∈ V at time t1 will visit v ∈ V at time t2 > t1. Notice that given
an initial probability distribution p(0) : V → [0, 1], p[0,t] = p(0)P [0,t] = p(0)P (1)P (2) · · ·P (t) is
the probability distribution after t steps.

Unless stated otherwise we assume that all the graphs in G are connected and have
the same stationary distribution π, i.e., πP (t) = π for any t > 0. We denote the smallest
value assumed by π as π∗ = minx∈V π(x). We define the `2(π)-inner product as 〈f, g〉π =∑

u∈V f(u)g(u)π(u) for any f, g : V → R. Analogously, we denote with ‖f‖2,π =
√
〈f, f〉π

the `2(π)-norm of f : V → R. Notice that since all the graphs in G are undirected, for
any t > 0, P (t) is reversible with respect to π, i.e., π(x)P (t)(x, y) = π(y)P (t)(y, x) for any
x, y ∈ V (this is also called the detailed balance condition). Moreover, P (t) is self-adjoint for
the `2(π)-inner product: for any f, g : V → R,

〈P (t)f, g〉π = 〈f, P (t)g〉π. (1)

We will often work with the likelihood ratio ρ[0,t]
u,· = p

[0,t]
u,· /π(·). When it is clear from the

context, we will drop the starting point u and use the shorthands p(t) and ρ(t) to indicate
(respectively) the probability distribution of the random walk at time t and its likelihood
ratio. We define the `2 mixing time as

tmix(G) = min{t : ‖ρ[0,t]
u,· − 1‖2,π 6 1/3 for any u ∈ V }.

Observe that, since Eπ ρ(t) = 1, we have that ‖ρ(t) − 1‖22,π = Varπ ρ(t) = Eπ
(
ρ(t))2 − 1.

Let p be a probability distribution with likelihood ratio ρ = p/π. For a reversible P ,

Pρ(u) =
∑
v∈V

P (u, v)ρ(v) =
∑
v∈V

P (u, v) p(v)
π(v) = 1

π(u)
∑
v∈V

P (v, u)p(v) = pP (u)
π(u) ,

from which it follows that P (t) · · ·P (1)ρ(0)(u) = ρ(t)(u).
Given a transition matrix P with stationary distribution π and a function f : V → R, we

define the Dirichlet form as

EP (f, f) = 1
2
∑
u,v∈V

(f(u)− f(v))2
π(u)P (u, v).

When P is a transition matrix of a lazy random walk on a graph G = (V,E) with |E| = m,
EP (f, f) = 1

4m
∑
u∼v (f(u)− f(v))2, where u ∼ v stands for {u, v} ∈ E. As long as P is

lazy (i.e., P (u, u) > 1/2 for any u ∈ V ), we can relate the `22 distance of a distribution from
stationary to its Dirichlet form [16, Proposition 2.5]:

Varπ ρ(t) > Varπ ρ(t+1) + EP (t+1)(ρ(t), ρ(t)). (2)

The spectral gap of P is defined as

λ(P ) = inf
f :V→R

Varπ f 6=0

EP (f, f)
Var f .

We denote with ΦP (A) the conductance of a subset of vertices A ⊂ V :

ΦP (A) =

∑
u∈A,v 6∈A

π(u)P (u, v)

min {π(A), π(V \A)} ,
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where π(A) =
∑
u∈A π(u). The conductance of P is then defined as Φ(P ) = minA⊂V ΦP (A).

Cheeger’s inequality [35] relates λ(P ) to the conductance Φ(P ) of a reversible P : 2Φ(P ) >
λ(P ) > Φ(P )2/2.

Given two vertices u and v, we denote with τu,v the hitting time of v from u, i.e.,
the expected time to reach v starting from u. The maximum hitting time is defined as
thit(G) = maxu,v τu,v. The commute time between u and v, denoted by Cu,v, is defined as
the expected time for a random walk starting from u, to reach v and then return to u.

Finally, we write A . B, respectively A & B, to mean that there exists some absolute
constant C > 0, independent of the parameters of the sequence of graphs G, such that
A 6 C ·B, respectively A > C ·B.

3 Worst-case bounds for mixing and hitting times

In this section we assume that a particle performs a random walk on a sequence of graphs
G = {G(t)}∞t=1 where all the G(t) share the same set of n vertices V , are connected, and have
a time-independent stationary distribution π with π∗ = minu π(u). In general, graphs in the
sequence might have a different number of edges, but the ratio degree of a node over total
number of edges remains the same. We denote with m∗ 6 n2 the maximum number of edges
a graph in the sequence can have.

Our goal is to bound mixing and maximum hitting times of a random walk on G. We
start by studying the rate of convergence to stationarity. By equation (2), our goal then
becomes to study Var ρ(t) 6 Var ρ(0) −

∑t−1
i=1 EP (i)(ρ(i−1), ρ(i−1)). The next lemma provides

a lower bound on the Dirichlet form of graphs in G. The main insight of this lemma is that
it shows a faster decrease of the `2-distance to stationarity when this distance is large, i.e.,
at the beginning of the walk. This is in the same vein as, for example, bounds on mixing
based on the spectral profile [19].

I Lemma 3.1. Let P be the transition matrix of a lazy random walk on a graph G ∈ G.
Given a probability distribution σ : V → [0, 1] with likelihood ratio f = σ/π such that
Varπ f = ε > 0,

EP (f, f) & max
{

ε2

m∗ + 1/(π2
∗(1 + ε)) ,

π∗ε
2

n

}
.

While the previous lemma will be directly used to derive bounds on mixing, to obtain a
bound on the hitting time we will need to study t-step probabilities. For this reason, we prove
a technical lemma that relates 2t-step probabilities to the variance of the likelihood ratio
of a t-step probability distribution, generalising a well-known result for time-homogeneous
reversible Markov chains (see, e.g., [1, Lemma 3.20]). We remark, however, that while in
time-homogeneous Markov chains 2t-step transition probabilities will be as small as the
variance of their t-step likelihood ratio, in our case, since the order in which transition
matrices are applied can matter significantly, this might not be necessarily true: we can only
relate these probabilities to the variance of the t-step likelihood ratio of a related but slightly
different Markov chain.

I Lemma 3.2. Let t1 < t2. Then, for any u, v ∈ V , it holds that∣∣∣ρ[t1,t2]
v,u − 1

∣∣∣ 6 max
{

Varπ
(
P (b t1+t2

2 c) · · ·P (t2)ρ
[t1,t1]
u,·

)
,Varπ

(
P (b t1+t2

2 −1c) · · ·P (1)ρ
[t1,t1]
v,·

)}
.

Using Lemma 3.1 and Lemma 3.2 we can obtain almost optimal worst case bounds on
mixing, hitting, and t-step probabilities of a random walk on G. In particular, when G
comprises only regular graphs, the next theorem implies a O(n2) bound on mixing and
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hitting times, which matches the well-known results for a random walk on a static undirected
graph. In the general non-regular case, we prove a O(n3) bound on mixing and a O(n3 logn)
bound on hitting, which almost matches the O(n3) bound for mixing and hitting in static
graphs. This improves upon [4], which presents a bound of O(n3 logn) for hitting on regular
graphs and a bound of O(n5 logn) for hitting in the general case.

I Theorem 3.3. Let G be a sequence of connected graphs with n vertices, the same stationary
distribution π, and at most m∗ edges in each graph. Then, for a lazy random walk on G:
1. tmix(G) = O(n/π∗),
2.
∣∣p[0,t]
u,v

πv
−1
∣∣ . m∗

t + 1
π∗
√
t
, simplifying to

∣∣p[0,t]
u,v

πv
−1
∣∣ . n√

t
if all the graphs in G are d-regular,

3. thit(G) = O(n logn/π∗). Furthermore, if the graphs in G are d-regular, thit(G) = O(n2).

The proof, which is omitted here, proceeds roughly as follows. First we establish the
bound on the mixing time based on Lemma 3.1, which readily implies that starting from a
distance to stationarity equal to ε, such distance is halved in O(n/(επ∗)) steps. We then
connect the distance to stationarity to t-step probabilities with Lemma 3.2, obtaining the
second result of Theorem 3.3. Finally, to bound the hitting time, we employ a probabilistic
argument already exploited in, e.g., [21], and which makes use of both our bounds on mixing
time and on t-step probabilities.

4 Bounds on hitting times based on the isoperimetric dimension

Aldous and Fill conjectured in their book [1, Open Problem 6.20] that whenever a regular
bounded-degree graph satisfies |E(A,Ac)| = Ω(|A| 12 +ε) for any small positive ε, the maximum
hitting time should be O(n). Observe that this isoperimetric condition is satisfied by the
torus in 3 or higher dimensions, which has indeed O(n) maximum hitting time. Furthermore,
to have O(n) maximum hitting time, ε needs to be strictly greater than zero: take for
example the 2-dimensional torus: there is a set A for which |E(A,Ac)| = Θ(|A|1/2) and,
indeed, the maximum hitting time is Θ(n logn).

The conjecture was first proved in [5], with a proof based on the relation between
commute times and effective resistances in a graph. Since a similar relation is not known for
time-inhomogeneous Markov chains, such a proof cannot be generalised to random walks on
dynamic graphs. In this section we present a new proof of this result based on the “conditional
expectation trick” already used in the proof of Theorem 3.3. We start by obtaining a bound
on the Dirichlet form of a graph satisfying the aforementioned isoperimetric condition.

I Lemma 4.1. Let G = (V,E) be a d-regular undirected graph with |V | = n and d = O(1)
such that, for any A ⊂ V with 1 6 |A| 6 n/2, |E(A, V \ A)| = Ω(|A| 12 +ε) for 1/4 > ε > 0.
Consider the transition matrix P of a lazy random walk in G. Let σ be any probability
distribution and f = σ/π, where π is the uniform distribution. If Eπ f2 = β > C for a large
enough constant C, then

EP (f, f) & β2−2ε

n1−2ε .

We now apply the previous lemma to prove the main result of this section in an analogous
way to the proof of Theorem 3.3.

I Theorem 4.2. Let G = {G(t)}∞t=1 be a sequence of n-vertex graphs such that each G(t) is
regular, has bounded degree, and satisfies the following isoperimetric condition: there exists
ε ∈ [0, 1/4] such that, for any subset of vertices A with 1 6 |A| 6 n/2, |E(A, V \ A)| =
Ω(|A| 12 +ε). Then,
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1. tmix(G) = O(n1−2ε),

2.
∣∣p[0,t]
u,v

n − 1
∣∣ = O

( 1
t1+2ε

)
,

3. thit(G) = O(n) if ε > 0, thit(G) = O(n logn) if ε = 0.

5 Bounds on mixing based on average transition probabilities

Unlike in the time-homogeneous case, eigenvalues of the individual transition matrices of a
time-inhomogenous Markov chain are not necessarily indicative of its mixing time, even when
there exists a unique time-independent stationary distribution. An emblematic example
is the following: consider a sequence of graphs G = {G(t)}∞t=1 defined over a vertex set
V = {1, . . . , 2n} such that, at odd t, G(t) is the union of two expanders (graphs with constant
spectral gap), one over {1, . . . , n}, the other over {n + 1, . . . , 2n}, while at even t, G(t)

is a perfect matching between {1, . . . , n} and {n + 1, . . . , 2n}. Since all the graphs are
disconnected, each transition matrix has spectral gap equals to 0, and eigenvalue bounds are,
in this case, useless to analyse convergence to stationarity. On the other hand, it is quite
clear that a lazy random walk on G mixes in Θ(logn) time.

A more precise way to study mixing in time-inhomogeneous random walks would be to
consider the spectral gap of the product of the transition matrices P (1) · · ·P (t). Unfortunately,
spectral bounds for the product of matrices are notoriously hard to come by. What is
significantly easier is to study the average transition matrix P = 1

t

(
P (1) + P (2) + · · ·+ P (t)),

which at least does not depend on the order in which the transition matrices appear. For this
reason, in this section we give bounds on mixing on G that depend on the Dirichlet form of
P . In particular, consider the aforementioned example where G(t) is two disjoint expanders
at odd times, and a perfect matching between the two sets at even times. Consider the
average transition matrix P = 1

2
(
P (`) + P (`+1)) for any two consecutive steps `, `+ 1: P is

just the transition matrix of a random walk on an expander graph defined over the entire set
of vertices. Our results, then, make us easily derive the correct bound tmix(G) = O(logn).

Throughout this section we assume that G = {G(t)}∞t=1 is a sequence of undirected graphs
over a vertex set V with |V | = n. The graphs are not necessarily connected, which means
they might have multiple stationary distributions. We require, however, that there exists a
time-independent distribution π which is a stationary distribution for all the graphs in G.
Fixing a time interval [t1, t2], we consider P = 1

t2−t1

(
P (t1) + · · ·+ P (t2)). We consider time

intervals for which P is irreducible. Note since the transition matrices {P (i)}i are strongly
aperiodic and reversible with respect to π, so is P . Therefore, we can always assume that P
is ergodic and has a unique stationary distribution π, unlike the individual matrices P (i).

For simplicity, we assume in our proofs that each graph in G has the same number of edges
m. Our results, however, also hold for sequences of graphs with different edges densities.

Notice that, by the detailed balance condition, if u ∼i v for some step i, π(u)/π(v) = du/dv,
where du and dv are, respectively, the (time-independent) degrees of u and v1. In particular,
this means there exists some αu > 0, which is independent from t, such that π(u) = αudu/2m
and π(v) = αudv/2m.

1 it may happen that u is isolated in some round i, leading to u having degree 0 in that round. However,
in that case, u can be safely ignored when computing EP (i) . Hence, because the stationary distribution
is always the same and so is the number of edges, we may assume that the degree of u is always du
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I Lemma 5.1. Let p(0) be an arbitrary initial probability distribution, and ρ(0) = p(0)/π.
Suppose that for some t > 1 and u ∈ V , |ρ(t)(u)− ρ(0)(u)| > ε > 0. Then,

Varπ ρ(0) −Varπ ρ(t) >
αu
4m

t∑
i=1

∑
v∼iu

(
ρ(i−1)(u)− ρ(i−1)(v)

)2
>

2ε2π(u)
t

.

We are now able to relate Varπ ρ(0) − Varπ ρ(t) to EP (ρ(0), ρ(0)). The proof of the next
theorem works roughly as follows. We divide the vertices in two classes: U contains all
the vertices for which there exists an 1 6 i 6 t − 1 such that ρ(i)(u) differs significantly
from ρ(0)(u), while V \ U contains the rest. We then use Lemma 5.1 to lower bound the
contribution given by vertices in U to Varπ ρ(0) − Varπ ρ(t). Since for u 6∈ U , ρ(i)(u) has
not changed much from ρ(0)(u), we can instead directly lower bound its contribution to
Varπ ρ(0) −Varπ ρ(t) just looking at its contribution to EP (ρ(0), ρ(0)).

I Theorem 5.2. Given a time interval of length t labelled [1, t], let P = 1
t (P

(1) +P (2) + · · ·+
P (t)) with spectral gap λ(P ). Then, for any initial probability distribution p(0) with likelihood
ρ(0) = p(0)/π, it holds that

Varπ ρ(0) −Varπ ρ(t) >
1

15tEP (ρ(0), ρ(0)) > λ(P )
15t .

We remark we do not know if the dependency of t in the bound of Theorem 5.2 (which
appears as a result of an application of the Cauchy-Schwarz inequality) is tight, or even if
any dependency on t is needed at all.

From Theorem 5.2 it is easy to derive the following corollary:

I Corollary 5.3. Given a lazy random walk on a sequence G of graphs with transition matrices
{P (i)}∞i=1 such that (1) there exists π which is a stationary distribution for any P (i); (2)
a time-window t > 0 such that, for any i > 0, P [i,i+t] = 1

t (P
(i) + P (i+1) + · · ·+ P (i+t)) is

ergodic and has spectral gap λ
(
P

[i,i+t])
> λ > 0. Then, tmix(G) = O

( t2 log(1/π∗)
λ

)
.

To highlight the applicability of Corollary 5.3, consider a sequence of connected graphs G
with time-independent stationary distribution π in which, for any interval of t consecutive
steps and subset of vertices A, there exists a transition matrix P (i) of a graph in the interval
such that ΦP (i)(A) > φ. Then, Φ

(
P
)
> φ/t and λ

(
P
)
> φ2/t2. Hence, Corollary 5.3 gives

us that tmix(G) = O(t3 logn/φ2).
Another natural question is whether our condition on the stationary distribution being

fixed could be relaxed. This question is answered negatively by the following result:

I Proposition 5.4. For any t = ω(logn), there is a sequence of connected n-vertex bounded-
degree expander graphs G = {G(i)}∞i=1 and a constant c > 0 so that p(t)

u,v > n−1+c for some
vertices u and v.

In Section 3 and Section 4 we have shown that the behaviour of a lazy random walk on
a sequence of connected graphs with the same stationary distribution is comparable to the
behaviour of random walks on static graphs, at least regarding mixing and hitting times.
When the graphs are disconnected, however, the behaviour of random walks on dynamic
graphs becomes more complicated. Theorem 5.2 shows that, if every t steps the average
of the transition matrices applied in those steps is irreducible and strongly aperiodic with
stationary distribution π, then the random walk will converge to π. However, π can be highly
imbalanced and, as a result, mixing and hitting can be exponential in t and the number of
vertices n. The next proposition shows an example of this behaviour.
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I Proposition 5.5. There is a sequence of n-vertex bounded-degree graphs G = {G(i)}∞i=1
with transition matrices {P (i)}∞i=1 and a probability distribution π such that (1) for any i,
π is stationary for P (i); (2) the average transition matrix P of any 4n consecutive steps is
ergodic; (3) for any t > 0 there are two vertices u, v such that p[0,t]

u,v 6 2−(n/4)−2. Moreover,
tmix(G) = O(poly(n)), while thit(G) = 2Ω(n). There is also a sequence G′ satisfying (1), (2),
and (3) such that tmix(G) = 2Ω(n).

6 Bounds in terms of average edge connectivity

Recall that in Section 4 we proved several bounds which hold for graphs with sufficient
expansion for small sets of vertices. Following a different direction, we now derive bounds on
commute times for random walks on d-regular static graphs based on average connectivity
measures (see the end of Section 2 for some basic relations between the commute time and
hitting time). We assume G = (V,E) is a connected, undirected and static graph with vertex
set V = {1, . . . , n} and m edges. We denote with P the transition matrix of a lazy random
walk on G and π its stationary distribution. Given A,B, the probability flow between A
and B is defined as

∑
u∈A

∑
v∈B π(u)P (u, v). The edge boundary of A, denoted with ∂A, is

the set of edges with one endpoint in A and one in V \ A. For ease of notation we define
[i] = {1, . . . , i}. Also recall that we denote with Cst the expected commute time between s
and t. We will use the following variational characterisation of the average commute time
(see Aldous and Fill, [1, Theorem 3.36]):

Cst = max
g : V→R

{1/EP (g, g) : 0 6 g 6 1, g(s) = 0, g(t) = 1}. (3)

I Lemma 6.1. For any graph G = (V,E) and s, t ∈ V , there exists a labelling of the vertices
from 1 to n such that

Cst 6 2m
n−1∑
j=1

1
|∂[j]| .

Furthermore, by considering the reversal of the labelling, we can also conclude that Cst 6
4m
∑n/2
j=1

1
|∂[j]| .

Note that the well-known Nash-Williams’s inequality [26, Proposition 9.15] gives a very
similar lower bound: it states that for every set of edge-disjoint cutsets separating s from t,
{E1, E2, . . . , Ek}, Cst > 2m

∑k
j=1

1
|Ej | . Note that in our upper bound however, the cutsets

∂[j] are in general not edge-disjoint.
Finally, it can be shown that the lemma above holds even for a labelling such that the

subgraph induced by [i] is connected for every 1 6 i 6 n.

6.1 Commute times and edge-connectivity
We now apply Lemma 6.1 to obtain a bound on commute times that depends on the
edge-connectivity of the graph, improving a result by Aldous and Fill [1, Proposition 6.22].

I Lemma 6.2. Let G = (V,E) be any graph with minimum degree δ so that any subset
S ⊆ V with 1 6 |S| 6 n− 1 satisfies |∂S| > ρ (in other words, G has edge-connectivity at
least ρ). Then we have

n−1∑
i=1

1
|∂[i]| = O(n/δ2 · log δ + n/(ρδ)).
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I Theorem 6.3. Let G = (V,E) be any graph with minimum degree δ, average degree d and
edge-connectivity ρ. Then any commute time is bounded by O(n2d · ( log δ

δ2 + 1
δρ )).

We remark that Aldous and Fill [16, Proposition 6.22] proved that for any graph G with
average degree d which is ρ-edge-connected, the maximum commute time is O(n2d · ρ−3/2).
They also mention that if the graph is Ω(d)-edge-connected, they obtain a bound of O(n2 ·
d−1/2). For this case of maximal edge-connectivity, ρ = Θ(d), our bound is considerably
better than the one by Aldous and Fill, and, modulo the log d-factor, gives also the correct
dependency on d. Furthermore, since the edge-connectivity ρ satisfies ρ 6 δ 6 d, it is easy to
verify that our bound is never worse than the bound in Aldous and Fill. In fact, as soon as
δ →∞, our upper bound will be asymptotically smaller than the bound by Aldous and Fill.
I Remark 6.4. For any pair of ρ and d there is a graph matching the upper bound in
Theorem 6.3 up to a factor of O(log d).
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Abstract
We consider algorithms with access to an unknown matrix M ∈ Fn×d via matrix-vector products,
namely, the algorithm chooses vectors v1, . . . ,vq, and observes Mv1, . . . ,Mvq. Here the vi can be
randomized as well as chosen adaptively as a function of Mv1, . . . ,Mvi−1. Motivated by applications
of sketching in distributed computation, linear algebra, and streaming models, as well as connections
to areas such as communication complexity and property testing, we initiate the study of the number
q of queries needed to solve various fundamental problems. We study problems in three broad
categories, including linear algebra, statistics problems, and graph problems. For example, we
consider the number of queries required to approximate the rank, trace, maximum eigenvalue, and
norms of a matrix M; to compute the AND/OR/Parity of each column or row of M, to decide
whether there are identical columns or rows in M or whether M is symmetric, diagonal, or unitary; or
to compute whether a graph defined by M is connected or triangle-free. We also show separations for
algorithms that are allowed to obtain matrix-vector products only by querying vectors on the right,
versus algorithms that can query vectors on both the left and the right. We also show separations
depending on the underlying field the matrix-vector product occurs in. For graph problems, we show
separations depending on the form of the matrix (bipartite adjacency versus signed edge-vertex
incidence matrix) to represent the graph.

Surprisingly, this fundamental model does not appear to have been studied on its own, and
we believe a thorough investigation of problems in this model would be beneficial to a number of
different application areas.
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1 Introduction

Suppose there is an unknown matrix M ∈ Fn×d that you can only access via a sequence
of matrix-vector products M · v1, . . . ,M · vq, where we call the vectors v1, . . . ,vq the query
vectors, which can be chosen in a randomized, possibly adaptive way. By adaptive, we mean
that vi can depend on v1, . . . ,vi−1 as well as Mv1, . . . ,Mvi−1. Here F is a field, and we
study different fields for different applications. Suppose our goal is to determine if M satisfies
a specific property P, such as having approximately full rank, or for example whether M
has two identical columns. A natural question is the following:

Question 1: How many queries q are necessary to determine if M has property P?

A number of well-studied problems are special cases of this question, i.e., compressed sensing
or sparse recovery, for which M ∈ R1×d is an approximately k-sparse vector, and one would
like a number q of queries close to k. It is known that if the query sequence is non-adaptive,
meaning v1, . . . ,vq are chosen before making any queries, then q = Θ(k log(n/k)) is necessary
and sufficient [10, 5] to recover an approximately k-sparse vector1. However, if the queries
can be adaptive, then q = O(k log logn) queries suffice [12], while there is a lower bound of
Ω(k + log logn) [24] (see also recent work [23, 13]).

The above problem is representative of an emerging field called linear sketching which is
the underlying technique behind a number of algorithmic advances the past two decades. In
this model one queries M · v1, . . . ,M · vr for non-adaptive queries v1, . . . ,vr. For brevity
we write this as M · V, where V ∈ Fd×r has i-th column equal to vi. Linear sketching
has played a central role in the development of streaming algorithms [2]. Perhaps more
surprisingly, linear sketches are also known to achieve the minimal space necessary of any,
possibly non-linear, algorithm for processing dynamic data streams under certain general
conditions [20, 1, 15], which is an essential result for proving a number of lower bounds for
approximating matchings in a stream [18, 4]. Linear sketching has also led to the fastest
known algorithms for problems in numerical linear algebra, such as least squares regression
and low rank approximation; for a survey see [29]. Note that given M ·V and M′ ·V, by
linearity one can compute (M + M′) ·V = M ·V + M′ ·V. This basic versatility property
allows for fast updates in a data stream and mergeability in environments such as MapReduce
and other distributed models of computation.

Given the applications above, we consider Question 1 an important question to understand
for many different properties P of interest, which we describe in more detail below. A central
goal of this work is to answer Question 1 for such properties and to propose this be a natural
model of study in its own right.

One notable difference with our model and a number of appications of linear sketching
is that we will allow for adaptive query sequences. In fact, our upper bounds will be non-
adaptive, and our nearly matching lower bounds for each problem we consider will hold even

1 Here the goal is to output a vector M′ for which ‖M−M′‖2 ≤ (1 + ε)‖M−Mk‖2, where Mk is the
best k-sparse approximation to M, and ε is a constant.
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for adaptive query sequences. Our model is also related to property testing, where one tries
to infer properties of a large unknown object by (possibly adaptively) sampling a sublinear
number of locations of that object. We argue that linear queries are a natural extension of
sampling locations of an object, and that this is a natural “sampling model” not only because
of the desired properties of the distributed, linear algebra, and streaming applications above,
but sometimes also for physical constraints, e.g., in compressed sensing, where optical devices
naturally capture linear measurements.

From a theoretical standpoint, any property testing algorithm, i.e., one that samples q
entries of M, can be implemented in our model with q linear queries. However, our model
gives the algorithm much more flexibility. From a lower bound perspective, as in the case of
property testing [8], some of our lower bounds will be derived from communication complexity.
However, not all of our bounds can be proved this way. For example, one notable result we
show is an optimal lower bound on the number of queries needed to approximate the rank
of M ∈ Rn×n up to a factor t by randomized, possibly adaptive algorithms; we show that
n
t + 1 queries are necessary and sufficient. A natural alternative way to prove this would be
to give part of the matrix to Alice, part of to Bob, and have the players exchange the MLvi

and MRvi, where M = ML + MR and ML is Alice’s part and MR is Bob’s part. Then,
if the 2-player randomized communication complexity of approximating the rank of M up
to a factor of t were known to be Ω(n2/t), we would obtain a nearly-matching query lower
bound of Ω(n/(t(b+ logn))), where b is the number of bits needed to specify the entries of
M and the queries. However, it is unknown what the 2-player communication complexity
of approximating the rank of M up to a factor t is over R! We are not aware of any lower
bound better than Ω(1) for constant t for this problem for adaptive queries. We note that
for non-adaptive queries, there is an Ω(n2) sketching lower bound over the reals given in [19],
and an Ω(n2/ log p) lower bound for finite fields (of size p) in [3]. There is also a property
testing lower bound in [6], though such a lower bound makes additional assumptions on the
input. Thus, our model gives a new lens to study this problem from, from which we are
able to derive strong lower bounds for adaptive queries. Our techniques could be helpful for
proving lower bounds in existing models, such as two-party communication complexity.

Our model is also related to linear decision tree complexity, see, e.g., [7, 14], though such
lower bounds typically involve just seeing a threshold applied to Mvi, and typically M is a
vector. In our case, we observe the entire output vector Mvi.

An interesting twist in our model is that in our formulation above, we only allowed
to query M via matrix-vector products on the right, i.e., of the form M · vi. One could
ask if there are natural properties P of M for which the number qL of queries one would
need to make if querying M via queries of the form (u1)T M, (u2)T M, . . . , (uqL)T M can be
significantly smaller than the number qR of queries one would need to make if querying M
via queries of the form Mu1,Mu2, . . . ,MuqR :

Question 2: Are there natural problems for which qL � qR?

We show that this is in fact the case, namely, if we can only multiply on the right, then
it takes Ω(n/ logn) queries to determine if there is a column of a matrix M ∈ {0, 1}n×n

which is all 1s. However, if we can multiply on the left, then the single query (1, 1, . . . , 1)
can determine this.

We study a few problems around Question 2, which is motivated from several perspectives.
First, matrices might be stored on computers in a specific encoding, e.g., a sparse row
format, from which it may be much easier to multiply on the right than on the left. Also, in
compressed sensing, it may be natural for physical reasons to obtain linear combinations of
columns rather than rows.
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Another important question is how the query complexity depends on the underlying field
for which matrix-vector products are performed. Might it be that for a natural problem the
query complexity if the matrix-vector products are performed modulo 2 is much higher than
if the matrix-vector products are performed over the reals?

Question 3: Is there a natural problem for which the query complexity in our model over
F[2] is much larger than that over the reals?

Yet another important application of this model is to querying graphs. A natural question
is which representation to use for the graph. For example, a natural representation of a graph
on n vertices is through its adjacency matrix A ∈ {0, 1}n×n, where Ai,j = 1 if and only if
{i, j} occurs as an edge. A natural representation for a bipartite graph with n vertices in
each part could be an n× n matrix A where Ai,j = 1 iff there is an edge from the i-th left
vertex to the j-th right vertex. Yet another representation could be the

(
n
2
)
× n edge-vertex

incidence matrix, where the {i, j}-th row is either 0, or has exactly two ones, one in location
i and one in location j. One often considers a signed edge-vertex incidence matrix, where
one first arbitrarily fixes an ordering on the vertices and then the {i, j}-th entry has a 1
in the i-th position and a −1 in the j-th position if i > j, otherwise positions i and j are
swapped. Yet another possible representation of a graph is through its Laplacian.

Question 4: Do some natural representations of graphs admit much more efficient query
algorithms for certain problems than other natural representations?

We note that in the data stream model, where one sees a long sequence of insertions and
deletions to the edges of a graph, each of the matrix representations above can be simulated
and so they lead to the same complexity. We will show, perhaps surprisingly, that in this
model there can be an exponential difference in the query complexity for two different natural
representations of a graph for the same problem.

We next get into the details of our results. We would like to stress that even basic
problems in this model are not immediately obvious how to tackle. As a puzzle for the reader,
what is the query complexity of determining if a matrix M ∈ Fn×n is symmetric if one can
only query vectors on the right? We will answer this later in the paper.

1.1 Formal Model and Our Results
We now describe our model and results formally in terms of an oracle. The oracle has a
matrix M ∈ Fm×n, for some underlying field F that we specify in each application. We can
only query this matrix via matrix-vector products, i.e., we pick an arbitrary vector x and
send it to the oracle, and the oracle will respond with a vector y = M · x. We focus our
attention when the queries only occur on the right. Our goal is to approximate or test a
number of properties of M with a minimal number of queries, i.e., to answer Question 1 for
a large number of different application areas.

We study a number of problems as summarized in the table. Due to the space limitation,
we leave some proofs in the full version. We assume M is an m× n matrix and ε > 0 is a
parameter of the problem. The bounds hold for constant probability algorithms. In some
problems, such as testing whether the matrix is a diagonal matrix, we always assume m = n,
and in the graph testing problems we explicitly describe how the graph is represented using
M. Interestingly, we are able to prove very strong lower bounds for approximating the rank,
which as described above, are unknown to hold for randomized communication complexity.
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Motivated be streaming and statistics questions, we next study the query complexity of
approximating the norm of each row of M. We also study the computation of the majority or
parity of each column or row of M, the AND/OR of each column or row of M, or equivalently,
whether M has an all ones column or row, whether M has two identical columns or rows,
and whether M contains an unusually large-normed row, i.e., a “heavy hitter”. Here we show
there are natural problems, such as computing the parity of all columns, which can be solved
with 1 query if sketching on the left, but require Ω (n) queries if sketching on the right, thus
answering Question 2. We also answer Question 3, observing for the natural problem of
testing if a row is all ones, a single deterministic query suffices over the reals but over F[2]
this deterministically requires Ω(n) queries.

For graph problems, we first argue if the graph is presented as an n×n bipartite adjacency
matrix M, then it requires Ω(n/ logn) possibly adaptive queries to determine if the graph is
connected. In contrast, if the graph is presented as an n×

(
n
2
)
signed vertex-edge incidence

matrix, then polylog (n) non-adaptive queries suffices. This answers Question 4, showing that
the type of representation of the graph is critical in this model. Motivated by a large body
of recent work on triangle counting (see, e.g., [11] and the references therein), we also give
strong negative results for this problem in our model, which as with all of our lower bounds
unless explicitly stated otherwise, hold even for algorithms which perform adaptive queries.

Table 1 Our Results.

Problem Query Complexity
Linear Algebra Problems

Approximate Rank (for any p′ > p p+ 1 (Section 3.1)
distinguishing Rank≤ p from Rank p′)
Trace Estimation Ω (n/logn) (Section 3.2)
Symmetric Matrix / Diagonal Matrix O (1) (Section 3.3 and full version)
Unitary Matrix 1 (full version)
Approximate Maximum Eigenvalue Θ(ε−0.5logn) for adaptive queries,

Θ(n) for non-adaptive queries (full version)
Streaming and Statistics Problems

All Ones Column Θ(n) over F[2],
Ω (n/logn) over R (Section 4.1)

Two Identical Columns Θ(n)
Two Identical Rows O (logm) (Section 4.2)
Approximate Row Norms / Heavy Hitters O

(
ε−2logm

)
(full version)

Majority of Columns Ω(n/ logn) over R
Majority of Rows O (1) over R (full version)
Parity of Columns Θ(n)
Parity of Rows O (1) (full version)

Graph Problems
Connectivity given Bipartite Adjacency Matrix Ω (n/ logn) (Section 5.1)
Connectivity given Signed Edge-Vertex Matrix O (polylog (n)) ([16], noted in Section 5.1)
Triangle Detection Ω (n/logn) (Section 5.2)
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2 Preliminaries

We use capital bold letters, e.g., A,B,M, to denote matrices, and use lowercase bold letters,
e.g., x,y, to denote column vectors. Sometimes we write a matrix as a list of column vectors
in square brackets, e.g., M = [m1, . . . ,mn]. We use calligraphic letters, e.g., D, to denote
probability distributions, and use M← D to denote that M is sampled from distribution
D. In particular, we use G to denote a Gaussian distribution and G for a matrix whose
entries are sampled from an independently and identically distributed (denoted as i.i.d. in
the following) Gaussian distribution.

We call a matrix M i.i.d. Gaussian if each element is i.i.d. Gaussian. It is easy to check
that if matrix G is a p× n i.i.d. Gaussian matrix, and R is an n× n rotation matrix, then
G×R is still i.i.d. Gaussian, and has the same probability distribution of G.

The total variation distance, sometimes called the statistical distance, between two
probability measures P and Q is defined as DTV (P,Q) def= supA |P (A)−Q(A)| .

Let X be an n×mmatrix with each row i.i.d. drawn from anm-variate normal distribution
N(0,Σ). Then the distribution of the m×m random matrix A = XT X is called the Wishart
distribution with n degrees of freedom and covariance matrix Σ, denoted by Wm(n,Σ). The
distribution of eigenvalues of A is characterized in the following lemma.

I Lemma 1 (Corollary 3.2.19 in [17]). If A is Wm(n, λIm), with n > m− 1, the joint density
function of the eigenvalues Λ = (λ1, . . . , λm) of A (in descending order) is

f(Λ) = πm2/2

(2λ)mn/2Γm(m/2)Γn(n/2)
exp

(
− 1

2λ

m∑
i=1

λi

)
m∏

i=1
λ

(n−m−1)/2
i

∏
1≤i<j≤m

(λi − λj)

In particular, for λ = 1 and n = m, ∃ a constant Zm independent from λ1, . . . , λm, such that

f(Λ) = 1
Zm

exp
(
−1

2

m∑
i=1

λi

)
m∏

i=1
λ
−1/2
i

∏
1≤i<j≤m

(λi − λj)

3 Linear Algebra Problems

In this section we present our lower bound for rank approximation in Section 3.1, trace
estimation in Section 3.2, and testing whether a matrix is symmetric. The results for testing
diagonal or unitary matrices, and approximating the maximum eigenvalue is contained in
the full version of our paper.

3.1 Lower Bound for Rank Approximation
In this section, we discuss how to approximate the rank of a given matrix M over the reals
when the queries consist of right multiplication by vectors. A naïve algorithm to learn the
rank is to pick random Gaussian query vectors non-adaptively. In order to approximate the
rank, that is, to distinguish whether rank (M) ≤ p or rank (M) ≥ p+ 1, this algorithm needs
at least p+ 1 queries, and it is not hard to see that the algorithm succeeds with probability
1. Indeed, if H ∈ Rn×(p+1) is the random Gaussian query matrix, and M the unknown n×n
matrix, then writing M in its thin singular value decomposition as M = UΣVT , where
U and V have orthonormal columns, and Σ has positive diagonal entries, we have that
rank(M ·H) = rank(VT H), which by rotational invariance of the Gaussian distribution is
the the same as the rank of a random Gaussian matrix, which will be the minimum of p+ 1
and the rank of M with probability 1.
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In the following, we will show that we cannot expect anything better. We will first
show for non-adaptive queries, at least p+ 1 queries are necessary to learn the approximate
rank. Then we generalize our results to adaptive queries. Our results hold for randomized
algorithms by applying Yao’s minimax principle.

3.1.1 Non-Adaptive Query Protocols
I Theorem 2. Let constant ε > 0 be the error tolerance and let M be an n×n oracle matrix
and suppose to start that we make non-adaptive queries. For integer p < p′ ≤ n, at least p+ 1
queries are necessary to distinguish rank (M) ≤ p from rank (M) ≥ p′ with advantage ≥ ε.

Proof. Given any algorithm distinguishing rank (M) ≤ p from rank (M) ≥ p′ for some p′ < n,
we can determine whether a p′ × p′ matrix M′ has full rank p′ or rank (M′) ≤ p, by padding
M′ to an n× n matrix M. Therefore in what follows it suffices to prove the lower bound for
two n× n matrices M1 and M2 where rank (M1) ≤ p and rank (M2) = n:
1. M1 = U×GT ;
2. M2 = U×GT + 1

Z(n) ·U
⊥ ×HT .

Here U has p columns and U⊥ has (n − p) columns such that
[
U,U⊥

]
forms an n × n

random orthonormal basis, GT and HT are p× n and (n− p)× n matrices whose entries
sampled i.i.d. from the standard Gaussian distribution, and Z(n) is a function in n which
will be specified later. It immediately follows that rank (M1) ≤ p and rank (M2) = n with
overwhelmingly high probability. Then we assume rank (M2) = n and discuss the query
lower bound for distinguishing M1 from M2.

Given M ∈ {M1,M2}, without loss of generality we denote the q non-adaptive queries
with an n × q orthonormal2 matrix V = [v1, . . . ,vq], where q ≤ p and each n × 1 column
vector vi is a query to the oracle of matrix M which gets response M · vi, for i ∈ [q]. Then,
it suffices to show that the following two distributions are hard to distinguish:
1. M1 ×V ≡ UW, where W = GT V;
2. M2 ×V ≡ UW + 1

Z(n) ·U
⊥W′, where W′ = HT V.

Note that
[
U,U⊥

]
is orthonormal, and hence UT U = Ip,

(
U⊥
)T U⊥ = In−p, UT U⊥ =

0p×(n−p). We introduce Lemma 3 to eliminate U,U⊥ in the representation of M×V.

I Lemma 3. For M1,M2 and V defined as above, there is

DTV (M1V,M2V) = DTV

(
(M1V)T M1V, (M2V)T M2V

)
Proof. The direction DTV (M1V,M2V) ≥ DTV

(
(M1V)T M1V, (M2V)T M2V

)
is trivial

following data processing inequality (i.e. for every X,Y and function f , DTV (X,Y) ≥
DTV (f(X), f(Y))). In what follows we only prove the other direction.

First we notice that for every fixed n×n orthonormal matrix R and for a random matrix
M sampled as M1 or M2, the product N def= RM follows exactly the same distribution of M.
Thus NV and MV are identically distributed.

Then, from a random sample VT MT MV we can find M′ such that VT MT MV =
(M′)T M′ and M′ = SMV for some orthonormal matrix S and orthonormal query matrix
V. Although M′ is not necessarily the same as MV because of S, we have RM′ ∼

2 Any non-orthonormal queries can be made orthonormal using a change of basis in post-processing.
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NV ∼MV for a uniformly random orthonormal matrix R. Thus we transform a random
sample from VT MT MV into a sample from MV via RM′, and hence DTV (M1V,M2V) ≤
DTV

(
(M1V)T M1V, (M2V)T M2V

)
. J

Using Lemma 3, it suffices to prove an upper bound for DTV (Λ,Λ′) as follows:

DTV

(
UW,UW + U⊥W′

Z(n)

)
= DTV

(
(UW)T (UW),

(
UW + U⊥W′

Z(n)

)T

(UW + U⊥W′

Z(n) )

)

= DTV

(
WT W,WT W + (W′)T W′

Z2(n)

)
≤ DTV

(
Λ,Λ′

)
where Λ = diag(λ1, . . . , λq),Λ′ = diag(λ′1, . . . , λ′q) are diagonal matrices such that WT W =

AT ΛA and WT W + (W′)T W′

Z2(n) = BT Λ′B for orthonormal matrices A and B. The inequality

follows because any algorithm separating WT W from WT W+ (W′)T W′

Z2(n) implies a separation
of Λ from Λ′ with the same advantage, by multiplying by random orthonormal matrices.

By Weyl’s inequality [28, 31], for every i ∈ [q], λ′i ∈ [λi − ‖Λ′ −Λ‖2, λi + ‖Λ′ −Λ‖2],
and hence λ′i ∈

[
λi −O

(
‖W′‖2
Z2(n)

)
, λi +O

(
‖W′‖2
Z2(n)

)]
. Notice that W′ is an (n − p) × q i.i.d.

Gaussian matrix, and hence ‖W′‖22 is a chi-squared variable with (n−p)q degrees of freedom,
which is bounded by O ((n− p)q) with high probability (c.f. Example 2.12 in [27]). Recalling
that q ≤ p, in what follows we condition on the event λ′i ∈

[
λi −O

(
np

Z2(n)

)
, λi +O

(
np

Z2(n)

)]
.

We then show the gaps between eigenvalues λi are sufficiently large. Note that since GT

is i.i.d Gaussian and V is an orthonormal matrix, each row in W = GT V is independently
drawn from an q-variate normal distribution, thus the probability distribution of WT W is
a Wishart distribution Wq(p, Iq). Let q = p and λ1, . . . , λp be sorted in descending order.
Then by Lemma 1 the density function of Λ is:

f(Λ) = 1
Zp

exp
(
−1

2

p∑
i=1

λi

)
p∏

i=1
λ
−1/2
i

∏
1≤i<j≤p

(λi − λj) (1)

Let E denote the event that λp ≥ 0.01√
n

and ∀1 ≤ i < j ≤ p, λi − λj ≥ γ = 2−Θ(p2 log p).

I Lemma 4. For WT W defined as above and sufficiently small γ = 2−Θ(p2 log n), Pr[E ] > 0.9.

Proof. By equation (2) in [25] we know that Pr[
√
nλp ≥ y] = exp

(
−(y2/2 + y)

)
. Thus for

y = 0.01 and E0
def= {λp ≥ 0.01/

√
n} we get:

Pr [E0] = Pr
[
λp ≥

0.01√
n

]
= exp (−0.01005) > 0.99000033

Also, we note that for every i, Pr [|λi| ≤ 100n] ≥ 1 − 2 exp(−32n), by setting t = 8
√
n in

Corollary 5.35 of [26]. In what follows we conditioned on E ′0 that |λi| ≤ 100n for every i ∈ [p].
Then we consider the joint distribution µ of λ1, . . . , λp in Λ. Let the Ei

def= {λi − λi+1 < γ}
be the event that λi and λi+1 has a gap smaller than γ. Thus E = E0 ∧

(
∧p−1

i=1 Ei

)
. To lower

bound Pr[E ], we need to upper bound the probability of Ei for 1 ≤ i ≤ p− 1.
Let f be the density function of µ as in (1), and let Leb(·) be the Lebesgue measure in n

dimensions. Then for every i,

Pr[Ei

∣∣ E ′0] = µ (λi − λi+1 < γ) ≤ Leb (λi − λi+1 < γ) · |f |∞ = O (γ/n) · |f |∞
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Note that conditioning on E0 such that λp ≥ 0.01/
√
n, the density function f is bounded as:

|f |∞ ≤ O
(

exp
(
−1

2λ1

)(
100
√
n
)p/2

λ
p2/2
1

)
= 2O(p2 log n)

As a result, we get Pr
[
Ei ∧ E0

∣∣ E ′0] ≤ γ · 2O(p2 log n).
Therefore, the probability of E is lower bounded for sufficiently small γ = 2−Θ(p2 log n),

Pr [E ] ≥Pr [E ′0] · Pr
[
E0 ∧

(
∧p−1

i=1 Ei

) ∣∣ E ′0]
≥Pr [E ′0] ·

(
Pr
[
E0
∣∣ E ′0]− p−1∑

i=1
Pr
[
Ei ∧ E0

∣∣ E ′0]
)

> (1− 2p exp(−32n)) ·
(

0.99000033− (p− 1)γ · 2O(p2 log n)
)
> 0.9 J

Conditioned on event E and recalling that λ′i ∈
[
λi −O

(
np

Z2(n)

)
, λi +O

(
np

Z2(n)

)]
, the

probability density of Λ′ has only a negligible difference from that of Λ, since the small
disturbance of eigenvalues is dominated by the corresponding terms in f(Λ).

f(Λ′)
f(Λ) =

exp
(
− 1

2
∑p

i=1 λ
′
i

)∏p

i=1 λ
′
i
−1/2∏

1≤i<j≤p
(λ′i − λ′j)

exp
(
− 1

2
∑p

i=1 λi

)∏p

i=1 λ
−1/2
i

∏
1≤i<j≤p

(λi − λj)

≤ exp
(
p · np
Z2(n)

)(
λp − np

Z2(n)

λp

)−p/2 ∏
1≤i<j≤p

λi − λj + 2np
Z2(n)

λi − λj

≤ exp
(

np2

Z2(n)

)
·
(

1 + np

λp · Z2(n)

)p(
1 + 2np

Z2(n) ·mini6=j |λi − λj |

)p(p−1)/2

≤ exp
(

np2

Z2(n)

)
·
(

1 + 100
√
n · np

Z2(n)

)p(
1 + 2np

Z2(n) · γ

)p(p−1)/2

= 1 +O

(
np3γ−1

Z2(n)

)
Similarly we can prove f(Λ′)/f(Λ) ≥ 1 − O

(
np3γ−1/Z2(n)

)
. Thus the total variation

distance between Λ and Λ′ conditioned on E is DTV
(
Λ,Λ′

∣∣ E) ≤ O
(
np3γ−1/Z2(n)

)
=

O
(
1/n2) for sufficiently large Z(n) ≥ (np)1.5γ−0.5 = 2Θ(p2 log n). Thus, for sufficiently large

n, we have:

DTV (Λ,Λ′) ≤ Pr[E ] + Pr[E ] · DTV
(
Λ,Λ′

∣∣ E) ≤ 0.1 +O
(
1/n2) < 0.11

Therefore, with as many as q = p non-adaptive queries to the oracle matrix M, the two
distributions M1 and M2 cannot be distinguished with advantage greater than 0.11. At least
p+ 1 queries are necessary to distinguish those two matrices M1 and M2 of rank ≤ p and
rank n, respectively.

Indeed, the above argument holds for every constant advantage ε if y = ε/3, t >
√

12n/ε,
and γ sufficiently small in the proof of Lemma 4, and let Z(n) be sufficiently large. J

3.1.2 Equivalence Between Adaptive and Non-Adaptive Protocols
Now, we consider the adaptive query matrix V = [v1, . . . ,vq] where vi is the i-th query
vector. Without loss of generality, we can assume that ∀i,vi is a unit vector and it is
orthogonal to query vectors v1, · · · ,vi−1. This gives us the following formal definition of an
adaptive query protocol.
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I Definition 5. For a target matrix M, an adaptive query protocol P will output a sequence
of query vectors v1,v2, · · · . It is called a normalized adaptive protocol if for any i, the query
vector vi output by P satisfies
1. vi is a unit vector;
2. vi is orthogonal to the vectors v1, · · · ,vi−1;
3. vi is deterministically determined by M× [v1, . . . ,vi−1].

Let P std be a standard protocol which outputs e1, e2, · · · where ei is the i-th standard
basis. We then show that adaptivity is unnecessary by proving that P std has the same power
as any normalized adaptive protocol.

More formally, we show the following lemma:

I Lemma 6. Fix any n × p matrix U and any normalized adaptive protocol P . Let GT

be a p × n i.i.d Gaussian matrix. Fix q ≤ n to be the number of queries. Let matrix
V = [v1, . . . ,vq] and Vstd = [e1, · · · , eq] be the query matrix outputed by protocol P and
P std, correspondingly. Then, the probability distribution of UGT V is the same as the
distribution of UGT Vstd.

Proof. Since GT Vstd is i.i.d Gaussian, it is enough to show GT V is also i.i.d Gaussian. We
will show it column-by-column.

Denote Vi = [v1, . . . ,vi] and Vstd
i = [e1, · · · , ei]. Note that v1, . . . ,vq are unit vectors

and orthogonal to each other. We first define unitary rotation matrices R1, R2, · · · recursively
as follows. The matrix R1 will take v1 to e1. The matrix Ri will take ej to ej for any j < i

and takes Ri−1 · · ·R1vi to ei. Note, Ri only depends on the first i query vectors. We have
Ri · · ·R1Vi = Vstd

i for any i ≤ q, and GT V = GT ·R−1
1 · · ·R−1

q ·Vstd. In the following, we
use induction to show GT ·R−1

1 · · ·R
−1
i ·Vstd

i is i.i.d Gaussian for any i ≤ q.
For i = 1, since R1 is determined by v1 which is independent of GT and R1 is a unitary

matrix, GTR−1
1 is i.i.d Gaussian. Thus, GTR−1

1 ×Vstd
1 is the first column which is also i.i.d

Gaussian.
Now, suppose GT ·R−1

1 · · ·R
−1
i ·Vstd

i is i.i.d Gaussian. We will prove GT ·R−1
1 · · ·R

−1
i+1 ·

Vstd
i+1 is also i.i.d Gaussian. Let G′ = GT · R−1

1 · · ·R
−1
i which is i.i.d Gaussian. Since

Ri+1 is determined by v1, · · · ,vi+1, it is determined by the response of the first i queries,
that is, determined by UGT Vi = UG′Vstd

i . It means Ri+1 is determined by the first i
columns of UG′. Therefore, it is dependent on the first i columns of G′. On the other

hand, Ri+1ej = ej for any j ≤ i, and thus R−1
i+1 =

[
Ii 0
0 R′

]
where Ii is the i × i identity

matrix, and R′ depends on the first i columns of G′. Consequently, in the multiplication of
G′ × R−1

i+1, the first i columns are the same as those in G′. In the (i + 1)-th column, the
a-th element is

∑
b≥i+1 g

′
abr
′
b,i+1 where g′ab, r

′
b,i+1 are the elements in G′, R′ correspondingly.

Since r′b,i+1 only depends on the first i columns of G′, it is independent of g′ab when b ≥ i+ 1.
Thus, the (i + 1)-th column is also i.i.d Gaussian and independent of the first i columns.
Therefore, we show GT ·R−1

1 · · ·R
−1
i+1 ·Vstd

i+1 is still i.i.d Gaussian.
By induction GT V is i.i.d Gaussian. This finishes our proof. J

We then show for M2 = U×GT + 1
poly(n) ·U

⊥ ×HT , adaptivity is also unnecessary by
a similar argument.

I Corollary 7. Consider M2 = U×GT + 1
poly(n) ·U

⊥ ×HT . For any fixed U,U⊥, and any
fixed normalized adaptive protocol P , M2V has the same distribution as M2Vstd.

Proof. It is enough to show both GT ·V and HT ·V are i.i.d Gaussian. J
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Combining these results and Theorem 2, together with Yao’s minimax principle [30],

I Theorem 8. Let constant ε > 0 be the error tolerance and let M be an n × n oracle
matrix with adaptive queries. For every integer p < n, at least p+ 1 queries are necessary
for any randomized algorithm to distinguish whether rank (M) ≤ p or rank (M) ≥ p+ 1 with
advantage ≥ ε.

3.2 Lower Bound for Trace Estimation
We lower bound the number of queries needed to approximate the trace tr (M) of a matrix M.
In particular we reduce this problem to triangle detection as will be proved in Theorem 14.

I Theorem 9. For any integer C > 0 and symmetric n × n matrix M with entries in{
0, 1, 2, . . . , n3}, the number of possibly adaptively chosen query vectors, with entries in{
0, 1, 2, . . . , nC

}
, needed to approximate tr (M) up to any relative error, is Ω (n/ logn).

Proof. Suppose we had a possibly adaptive query algorithm making q(n) queries which for
a symmetric matrix M, could approximate tr (M) up to any relative error. If M = A3

for a symmetric matrix A, we can run the trace esimation algorithm on M as follows: if
x1 is the first query, we compute Ax1, then A(Ax1), then A(A(Ax1)) = A3x1. This
then determines the second query x2, and we similarly compute Ax2, then A(Ax2), then
A(A(Ax2)) = A3x2, etc. Thus, given only query access to A, we can simulate the algorithm
on M = A3 with 3q(n) adaptive queries.

Now, it is well known that for an undirected graph G with adjacency matrix A, the
trace tr

(
A3) /6 is the number of triangles in G. By the argument above, it follows that with

3q(n) queries to A, we can determine if G has a triangle or has no triangles. On the other
hand, by Theorem 14 below, at least Ω (n/ logn) queries to A are necessary for any adaptive
algorithm to decide if there is a triangle in G. Therefore 3q(n) = Ω (n/ logn) and hence we
complete the proof with q(n) = Ω (n/ logn). J

3.3 Deciding if M is a Symmetric Matrix
I Theorem 10. Given an n × n matrix M over any finite field or over fields R or C,
O(log( 1

ε )) queries are enough to test whether M is symmetric or not with probability 1− ε.

Proof. We choose two random vectors u and v, where over a finite field we choose from a
uniform distribution and over fields R or C we choose the Gaussian distribution. We then
compute Mu and Mv. We declare M to be symmetric if and only if uT ·Mv = vT ·Mu.
It is easy to check that if M is symmetric, the test will succeed. We then show if M is not
symmetric, uT Mv 6= vT Mu with constant probability, so we obtain success probability 1− ε
by repeating the test O(log( 1

ε )) times.
Let A = M −MT . When M is not symmetric, A is not 0. Thus, uT Mv = vT Mu

means uT Av = 0. We can treat this as a degree-2 polynomial in the entries of vT and u,
i.e., this is

∑
i,j uivjAi,j =

∑
i ui

∑
j vjAi,j . Thus, this is a non-zero polynomial and has at

most constant probability of evaluating to 0 for any underlying field. To see this, for each
i, let ti =

∑
j vjAi,j . Then there will be at least one ti which is non-zero with probability

at least 1/2, for any underlying field. So now we get
∑

i uiti. Fix all the ui except ui for
a given ti that is non-zero. Then we obtain S + uiti. Then if ui has at least two possible
values, this is 0 in one case and non-zero in the other case. So we obtain a probability of at
least 1/4 of detection overall. J
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4 Streaming and Statistics Problems

In this section we discuss testing an all ones column/row and identical columns/rows. Our
results for row norms and majority/parity of columns/rows are in the full version.

4.1 Testing Existence of an All Ones Column/Row
Given a matrix M ∈ {0, 1}m×n, we want to test if M has a column (or row) with all 1 entries.
It is trivial to test whether M has an all 1 column (or row) using n queries, e.g. e1, . . . , en.
We consider this problem both over F[2] and R. Note in the case over R, if we allow an
arbitrary query vector, we can set one query v = {1, 2, 4, 8, ...2n}, and then reconstruct M
exactly. Thus, in order to avoid such trivial cases, we also restrict the entries in the query to
be in {0, 1, 2, . . . , nC}.

For testing the existence of an all ones column, we reduce the problem to the communica-
tion complexity of Disjointness. Disjointness requires Ω(n) bits of communication to
decide whether two sets with characteristic vectors x,y ∈ {0, 1}n are disjoint with constant
probability. Suppose the fist m− 1 rows in M equal xT while the last row equals yT . If we
can decide whether M has an all ones column with q non-adaptive queries v1, . . . ,vq, then
we obtain a protocol for Disjointness with communication q by letting Alice send a message(
xT v1, . . . ,xT vq

)
. Thus from the communication complexity lower bound of Disjointness,

q = Ω(n) queries over F[2] are necessary to test if there is an all ones column in M, which
shows that the naïve algorithm is already optimal. For queries over R, note that each entry
xT vj in the message is represented with logn bits, and as a result q ≥ Ω (n/logn).

Testing the existence of an all ones row with queries over R is trivial deterministically
by querying v = (1, 1, . . . , 1). Next we study the query complexity of testing an all 1s
row deterministically with queries over F[2]. With any q ≤ n− 1 queries V = [v1, . . . ,vq],
there is a non-zero vector z 6= 0 such that zT V = 0. Therefore the query matrix V cannot
distinguish whether a row is from xT or xT + zT . However, xT and xT + zT cannot be
both all 1 rows, and hence n queries are necessary. This result also shows that the query
complexity of the same problem over different fields might be quite different. We note for
randomized algorithms, O(log(1/ε)) queries suffice over F[2] since the inner product of a row
which is not all 1s disagrees with the parity of the query with probability 1/2.

Evaluating the OR/AND function of columns/rows of a Boolean matrix can be reduced
to testing existence of an all 1 or all 0 column/row, and hence the same bounds follow.

4.2 Identical Columns/Rows
Given an m× n matrix M, we want to test whether M has two identical columns or rows.
The trivial solution naively retrieves all information with n queries (column vectors).

Testing identical columns can be reduced to Disjointness. Suppose Alice and Bob have
x,y ∈ {0, 1}n. Let Alice expand her vector x to an m

2 × n matrix M1 as follows: the first
row is (1,xT ) = (1, x1, . . . , xn); for 2 ≤ i ≤ m

2 the i-th row is (1, z(i)
1 , . . . , z

(i)
n ) where z(i)

j = 1
if xj = 1, and z(i)

j is uniformly random over {0, 1} if xj = 0, for 1 ≤ j ≤ n. Bob expands

his vector y to M2 similarly. Putting M1,M2 together, we let M def=
[
M1
M2

]
. Then M is an

m× (n+ 1) matrix with the first column being all 1s. For j ≥ 2, the j-th column is all 1s if
and only if xj = yj = 1, in which case M has two identical rows of all 1 entries. For columns
where xj , yj are not both equal to 1, without loss of generality we may assume the j-th
and j′-th columns satisfy xj = xj′ = 0 and yj = yj′ . Then two columns are identical only
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if (z(2)
j , . . . , z

( m
2 )

j ) = (z(2)
j′ , . . . , z

( m
2 )

j′ ), which happens with probability ≤ 1/2 m
2 −1. Therefore

the overall probability of two not-all-ones columns in M being identical is bounded by
m2/2m/2 = 2−Ω(m).

That is, except for an exponentially small error 2−Ω(m), two identical columns in M are
both all ones columns, which turns out to be equivalent to the case that two vectors x,y
held by Alice and Bob are not disjoint. Then, because Disjointness requires Ω(n) bits of
communication, at least Ω (n) oracle queries to M are necessary. To test identical rows with
error ε, if suffices to make q = O (log (m/ε)) random queries with each entry uniform random
over {0, 1}. Since for every pair of distinct rows, a random query distinguishes them with
probability 1

2 , with
⌈
log
(
m2/ε

)⌉
queries each pair of distinct rows is miscounted as identical

with probability ≤ ε/m2. By a union bound, the overall false-positive error is bounded by
ε

m2 ·
(

m
2
)
< ε, while there is no false-negative error since for all queries, identical rows always

lead to identical outputs.

5 Graph Problems

5.1 Connectivity
I Theorem 11. Given the bipartite adjacency matrix A ∈ {0, 1}n×n of a graph, we need
Ω (n/ logn) queries to decide whether the graph is connected with constant probability

Proof. Consider two row vectors u,v ∈ {0, 1}n−1 and construct matrix A as follows. Firstly,
the first n/2 rows of A equals to u and the rest are equal to v, then add an all 1s column
to A. Now, matrix A can be treated as a bipartite adjacency matrix of a graph G with n
vertices in each part, where Ai,j = 1 iff there is an edge from the i-th left vertex to the j-th
right vertex. Then G is disconnected if and only if the two vectors u and v are 0 on the
same position. Thus any algorithm that uses q(n) non-adaptive queries on the right of A to
decide the connectivity of G immediately implies a protocol for set disjointness, provided we
replace 1s with 0s in the input characteristic vectors to the set disjointness problem. So the
communication is at most q(n) logn, thus q(n) = Ω (n/ logn). J

I Theorem 12. Given the signed edge-vertex incidence matrix M ∈ {0,±1}n×(n
2) of a graph

G with n vertices, the connectivity of G can be decided with polylog (n) non-adaptive queries.

This follows from the main theorem of [16]. By the following theorem, every cut of G is
multiplicatively approximated and hence G is connected iff H is connected, since a graph is
disconnected iff it has a zero cut.

I Theorem 13 ([16]). There is a distribution on
(

n
2
)
× polylog (n) matrices S such that from

MS, one can construct a (1 ± 0.1)-sparsifier H of the graph G with constant probability.
Here, xT LGx = (1± .1)xT LHx for all x, with constant probability, where LG and LH are
the corresponding graph Laplacians.

5.2 Triangle Detection
I Theorem 14. If an n×n matrix A is the adjacency matrix of a graph G, then determining
whether G contains a triangle or not requires Ω (n/ logn) queries, even for randomized
algorithms succeeding with constant probability.

See the full version for a proof using communication complexity.
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6 Conclusions

We initiated the study of querying a matrix through matrix-vector products. We illustrated
that for some quantities, if one can only query matrix-vector products on one side, the
problem becomes harder. We also illustrated the importance of the underlying field defining
the matrix-vector products, as well as the representation of the graph for graph problems.
Given connections to sketching algorithms, streaming, and compressed sensing, we believe
this area deserves its own study. Some interesting open questions are for computing matrix
norms, such as Schatten-p norms, for which tight bounds in streaming and communication
complexity models remain elusive; for recent work on this see [21, 22, 9]. Given the success
of our model in proving lower bounds for approximate rank, which we also do not have
streaming or communication lower bounds for, perhaps tight bounds in our query model are
possible for matrix norms. Such bounds may give insight for other models.
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Abstract
We consider word RAM data structures for maintaining ordered sets of integers whose select and
rank operations are allowed to return approximate results, i.e., ranks, or items whose rank, differ by
less than ∆ from the exact answer, where ∆ = ∆(n) is an error parameter. Related to approximate
select and rank is approximate (one-dimensional) nearest-neighbor. A special case of approxi-
mate select queries are approximate min queries. Data structures that support approximate min
operations are known as approximate heaps (priority queues). Related to approximate heaps are soft
heaps, which are approximate heaps with a different notion of approximation.

We prove the optimality of all the data structures presented, either through matching cell-probe
lower bounds, or through equivalences to well studied static problems. For approximate select,
rank, and nearest-neighbor operations we get matching cell-probe lower bounds. We prove an
equivalence between approximate min operations, i.e., approximate heaps, and the static partitioning
problem. Finally, we prove an equivalence between soft heaps and the classical sorting problem, on
a smaller number of items.

Our results have many interesting and unexpected consequences. It turns out that approximation
greatly speeds up some of these operations, while others are almost unaffected. In particular,
while select and rank have identical operation times, both in comparison-based and word RAM
implementations, an interesting separation emerges between the approximate versions of these
operations in the word RAM model. Approximate select is much faster than approximate rank.
It also turns out that approximate min is exponentially faster than the more general approximate
select. Next, we show that implementing soft heaps is harder than implementing approximate
heaps. The relation between them corresponds to the relation between sorting and partitioning.

Finally, as an interesting byproduct, we observe that a combination of known techniques yields
a deterministic word RAM algorithm for (exactly) sorting n items in O(n log logw n) time, where w

is the word length. Even for the easier problem of finding duplicates, the best previous deterministic
bound was O(min{n log log n, n logw n}). Our new unifying bound is an improvement when w is
sufficiently large compared with n.
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1 Introduction

A data structure for maintaining dynamic ordered sets supports the operations insert,
delete, and either, or both, of the operations select and rank. insert inserts an
item, with an associated key, into the set. We assume that the keys of all items are
distinct. delete receives a reference to an item in the set and deletes it from the set.
select receives an index i and returns the i-th item in the sorted order of the items
currently in the set. rank receives an item, not necessarily in the set, and returns its
rank, i.e., the number of items in the set whose keys are smaller than the key of the item.
If both select and rank operations are implemented, then it is easy to use them to
support other operations such as predecessor, successor and nearest-neighbor. More
specifically, predecessor(x) = select(rank(x)), successor(x) = select(rank(x) + 1),
and nearest-neighbor(x) is the closer of these two to x. (We assume here that x is not
in the set.)

In the comparison-based model, each operation can be implemented in O(log n) time, and
this is optimal. In this paper, however, our main focus is the word RAM model. Assuming
integer keys, it models what can be implemented in a programming language such as C [18]
which has been used for efficient portable code since 1978. Word operations take constant
time. The word size w, measured in bits, is a unifying parameter of the model. All integers
considered are assumed to fit in a word. If |S| = n, where S is the set of items in the data
structure, then we assume that w ≥ log n, so that we can at least index the items in S.
Integers can not only be compared. We can use all the standard arithmetic and bit-wise
operations. Moreover, the random access memory of the word RAM implies that we can
allocate tables or arrays of words, accessing entries in constant time using indices that may
be computed from keys. These word RAM features are used in many classic algorithms, e.g.,
radix sort from 1929 [7] and hash tables from 1956 [9]. We note that by handling integer
keys, we immediately handle floating point keys since their standard bit-representation
(sign,exponent,mantissa) is such that casting them as integers gives the right ordering.

In the word RAM model, a more diverse picture emerges than in the comparison-based
model. Pǎtraşcu and Thorup [20] obtained a data structure that supports all the above
operations in O(log n/ log w) time. For select and rank this matches a lower bound of
Fredman and Saks [12] which holds even if we only want to support select or only want
to support rank. However, if we only want to support predecessor, successor and/or
nearest-neighbor (plus insert and delete), then Andersson and Thorup [2] have shown
that this can done in O

√
log n/ log log n) time per operation. This is the best possible bound

in terms of n, matching a static lower bound of Beame and Fich [3].
In this paper, we consider word RAM data structures for maintaining ordered sets of

integers where select and rank are allowed to return approximate results, i.e., ranks, or
items whose rank, differ by less than ∆ from the exact answer, where ∆ = ∆(n) is an error
parameter. (When ∆ = 1, the data structure has to return exact results.) We use ∆-select
as a shorthand for ∆-approximate select, and similarly for the other operations.

A ∆-min operation is an operation that returns one of the ∆ smallest items in the ordered
set. This is clearly a special case of ∆-select operations. A data structure that supports
insert, delete and ∆-min operations is known as an approximate heap, or ∆-heap.

An extract-∆-min operation finds one of the smallest ∆ items, using a ∆-min operation,
returns it, and deletes it from the ∆-heap, using a delete operation. Our ∆-heap data
structure satisfies the following fairness condition: an item cannot be one of the ∆ smallest
items in the data structure for 2∆ consecutive extract-∆-min operations without being
returned, and deleted, by one of the these extract-∆-min operations.
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Related to approximate heaps are soft heaps, introduced by Chazelle [6], which are, in a
sense, approximate heaps with a different notion of approximation. Soft heaps were used by
Chazelle [5] to obtain the fastest deterministic algorithm for computing minimum spanning
trees in the comparison model. The implementation of soft heaps was simplified by Kaplan
et al. [17]. Soft heaps were also used recently by Kaplan et al. [16] to obtain simplified
optimal algorithms for some selection problems.

A soft heap is a heap data structure which is allowed to increase the keys of some of
the items stored in the heap. Each item has both an original key, and a current key, which
might be larger than its original key. An item whose current key is larger than its original
key is said to be corrupt. A min operation returns an item with the minimum current key.
(Once an item becomes corrupt, it remains corrupt, as its current key can only be increased.
The user can examine the original and current keys of all items, including those of the item
returned by a min operation.) A q-soft heap is a soft heap such that after any sequence that
includes n insert operations, at most n/q of the items in the heap are corrupt. Clearly, an
(n/∆)-soft heap is also a ∆-heap. We show, however, that implementing an (n/∆)-soft heap
in the word RAM model is, in general, harder than implementing a ∆-heap.

Motivation. In addition to being natural computational problems that lead to many
interesting, and perhaps unexpected, theoretical results, the problems we consider are also
well motivated in practice. In many real life applications, keys are obtained using inexact
measurements, or may change over time. We may be interested in ‘sampling’ items of given
ranks, e.g., for statistical purposes, but typically when we ask for an item of rank i, an item
whose rank is between i−∆ and i + ∆, for a small enough ∆, will serve just as well. It is
thus interesting to know whether allowing approximation can speed up such operations.

We note that the direct motivation for approximate versions of select, rank and min,
is very different from the motivation of soft heaps which at first may look a bit peculiar, but
which have proven to be useful data structure inside some important algorithms.

Our results
We show, among other things, that if ∆ = nε, for any ε > 0, then insert, delete and
∆-select can be implemented in constant time.

While select and rank operations have the same running times in the word RAM model
when exact results are required, an interesting separation emerges between the approximate
versions of these operations. Surprisingly, ∆-select is easier than ∆-rank. We also show
that ∆-min is “exponentially” faster than ∆-select. As mentioned, we also show that soft
heaps are harder to implement than approximate heaps.

Our results follow from a full characterization of the time needed for each subset of
dynamic operations via either a matching cell-probe lower bound, or via an equivalence to
the well-studied exact static problems of ordered partition and sorting.

More specifically, we obtain the following four main results:

(1) A data structure that supports insert, delete and ∆-select in O(log n/ log(w∆))
time, where n is the number of items in the set. We also obtain a matching lower bound
that shows that at least one of these operations must take Ω(log n/ log(w∆)) time. For
∆ = nε, for any ε > 0, we get O(1) time for each operations.

(2) An augmentation of the previous data structure that also supports ∆-rank operations.
insert, delete and ∆-select operations still take tu = O(log n/ log(w∆)) time, while
∆-rank takes O

(
log n/ log(w∆) + pred( n

∆ , tu∆, n, w)
)
time, where pred(n, t, s, w) is the
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time for dynamically answering exact predecessor queries on a set of n items when the
update time is O(t), the space of the data structure is O(s), and the word length is w. (It
is known, for example that pred(n, t, n, w) = O

(√
log n

log log n

)
, for every w ≥ log n, where

t = O
(√

log n
log log n

)
, and that this is the optimal bound in terms of n.) We also provide

a matching lower bound for the complexity of ∆-rank operations that shows that the
pred( n

∆ , tu∆, n, w) term in the upper bound cannot be removed. For ∆ = nε, for any
ε > 0, we get O(1) time for ∆-select, while ∆-rank operations still cost Ω

(√
log n

log log n

)
.

This exhibits a somewhat surprising separation between ∆-select and ∆-rank, given
that the exact versions of these operations have the same running times.

(3) A three-way equivalence between (i) approximate heaps, (ii) approximate sorting and (iii)
(exact) ordered partition: There is a ∆-heap with O(P∆(n, w)) time per operation, where
P∆(n, w) is non-decreasing in n, if and only if it is possible, for every n, to ∆-sort a set
of n items in O(nP∆(n, w)) time, if and only if it is possible, for every n, to partition n

items into n
∆ sets of size roughly ∆ in O(nP∆(n, w)) time, such that the items in each

set are smaller than the items in the next set. (A sequence is ∆-sorted if no item is at
distance greater than ∆ from its position in the sorted sequence.)

(4) A three-way equivalence between (i) soft heaps, (ii) exact heaps and (iii) exact sorting:
There is q-soft heap with O(t) time per operation, if and only if there is an exact heap
holding up to q items with O(t) time per operation, if and only if it is possible to sort
up to q items in O(t) time per item.

Han and Thorup [15] showed that n items can be ordered partitioned into
√

n sets of
size roughly

√
n in O(n) time. By iterating, if follows that n items can be partitioned into

sets of size roughly n2−k in O(kn) time. Thus, n items can be partitioned into subsets
of size ∆ in O(n log( log n

log ∆ )) time. If ∆ < w we can do even better. We only do log log n
log w

partitioning iterations after which we are left with sets of size roughly w. These sets can be
completely sorted in linear time using the dynamic fusion node of Pǎtraşcu and Thorup [20].
Combining these two results, we get that partitioning into sets of size ∆ can be done in
O(n log( log n

log(w∆) )) time. In particular, for ∆ = 1, we get exact sorting in O(n log logw n) time,
a bound that has not been observed before. By (3), there is a ∆-heap with O(log( log n

log(w∆) ))
time per operation. By the lower bound in (1), ∆-select requires Ω((log n)/ log(w∆)) time.
It follows that time(∆-min)) = O(log time(∆-select)), i.e., ∆-min is “exponentially” faster
than ∆-select. To get a constant time for ∆-min, we currently need ∆ = nε, for some
ε > 0, as for ∆-select. But, while the result for ∆-select is optimal, and hence cannot be
improved, improved partitioning algorithms could potentially yield O(1) time of ∆-min for
smaller values of ∆.

The bounds we give in this paper are amortized. However, all claimed time bounds can be
made worst-case using the techniques of Andersson and Thorup [2]. All our data structures
use linear space.

Dumitrescu [10] and Fredman [11] considered comparison-based data structures that
support ∆-select and ∆-min operations. The optimal time bounds for these operations are
Θ(log n

∆ ). ∆-rank operations can be easily supported within the same time bounds. Thus,
there is no separation between ∆-select and ∆-rank in this model, and to get a constant
time per operation, ∆ has to be linear in n.

A summary of our results for ∆-select, ∆-nearest-neighbor and ∆-rank are given in
Table 1. Update time refers to the time of insert and delete operations. The first row gives
the result of a general value of ∆. The query times are optimal given the update times and
assuming O(n) space. (We have no proof that the same query times cannot be obtained with
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Error Update time ∆-select ∆-nearest ∆-rank

∆ tu = Θ
(

log n
log(w∆)

)
Θ
(

log n
log(w∆)

)
Θ
(
pred( n

∆ , tu∆, n, w)
)

Θ
(

∆-select +
nearest

)
∆ = log n Θ

( log n
log log n

)
Θ
( log n

log log n

)
Θ
(√

log n
log log n

)
Θ
( log n

log log n

)
∆ =

√
n Θ(1) Θ(1) Θ

(√
log n

log log n

)
Θ
(√

log n
log log n

)
∆ = n

w
Θ(1) Θ(1) Θ(1) Θ(1)

Figure 1 Running times for ∆-rank, and ∆-select and ∆-nearest-neighbor queries.

smaller update times.) The second and third rows specialize the results for the representative
cases ∆ = log n and ∆ =

√
n, giving bounds that hold for all values of w ≥ log n. With

regard to the second row, we note that the time bounds obtained for ∆ = log n are identical
to the exact case, i.e., ∆ = 1. We also note that if only ∆-nearest-neighbor queries are
to be answered, then the same query time of Θ

(√
log n

log log n

)
can be obtained with a reduced

update time of Θ
(√

log n
log log n

)
. (See [2].) In the third row ∆ =

√
n can be replaced by ∆ = nε,

for every ε > 0. Finally, in the forth row, we consider the case ∆ = n
w (or equivalently

∆ = n
wk , for any k ≥ 1), where all update and query time drop down to a constant.

Chazelle [6], and Kaplan et al. [17], obtained (1/ε)-soft heaps with O(log 1
ε ) amortized

time per operation, which is optimal in the comparison-based model. In the word-RAM,
we obtain by (4) (1/ε)-soft heaps with O(log log 1

ε ) amortized time per operation, or even
O(
√

log log 1
ε ) amortized expected time per operation. We also obtain a w-soft heap with

O(1) time per operation.
The rest of the paper is organized as follows. In Section 2 we give a high-level description

of the data structures and the equivalences obtained in this paper. The full details are given
in the full version of the paper. In Section 3 we present our matching cell-probe lower bounds.
We end in Section 4 with some concluding remarks and open problems.

2 High-level description of data structures and equivalences

In this section we sketch the techniques we use and give high level descriptions of the data
structures and equivalences obtained in the paper.

2.1 Dynamic sets with approximate SELECT
Our goal is to obtain a data structure that supports insert, delete and ∆-select operations
in O(log n/ log(w∆)) time per operation, which we later show is optimal. As mentioned,
Pǎtraşcu and Thorup [20] obtained a data structure that supports insert, delete and
exact select operations in O(log n/ log w) time. Thus, we may assume that, say, ∆ > w3

and devise a data structure that supports each operation in O(log n/ log ∆) time.
Our data structure is built around a B-tree (see, e.g., [8]). The degree degree[v] of each

node v in the tree is in the range [ 1
4D, 4D], where D = ∆1/3. As with standard B-trees,

a node v of degree d contains an array child[v] of size d with pointers to its d children,
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a pointer parent[v] to its parent, and an array split[v] of d− 1 splitters, s1, s2, . . . , sd−1.
We also let s0 = −∞ and sd = ∞. The keys of all items in the subtree of the i-th child
child[v][i] of v are all in the range [si, si+1), for i = 0, 1, . . . , d − 1. A non-root node v

also contains its index index[v] such that v = child[parent[v]][index[v]], i.e., v is the
index[v]-th child of its parent. The leaves of a B-tree are all at the same depth.

The B-tree used differs from a standard B-tree in several important ways. The first
is that the leaves of the tree do not contain single items, but rather buckets that contain
between ∆ and 2∆ items. These buckets are referred to as leaf buckets. The items in each
leaf bucket are not sorted, but they all lie between the appropriate splitters in the non-leaf
nodes of the tree. Second, each internal node v of the tree has a buffer buffer[v] associated
with it. The size of each such buffer is at most B = ∆2/3. The operations on the B-tree are
done lazily. An inserted item is simply placed at the buffer of the root. When a buffer is
full, its items are partitioned according to the splitters stored in the node, and sent to the
appropriate children. We refer to this operation as flushing the buffer.

All the items in the data structure reside in leaf buckets and buffers. The splitters in the
internal nodes of the tree are copies of keys of items that belonged to the data structure at
some stage.

The partitioning of the items in a buffer is done using the fast partitioning algorithm
of Han and Thorup [15]. Their algorithm partitions q items according to O(√q) splitters
in O(q) time. The choice B = ∆2/3 and D = ∆1/3 ensures that a buffer can be flushed in
O(B) time. The use of this fast partitioning algorithm is the only place in which the data
structure relies on the power of the word RAM model.

Another difference between the B-tree used and a standard one is that we impose explicit
conditions on the size of each subtree. The size of a subtree is the total number of items in
the leaf buckets and the buffers that belong to the subtree. The size of a subtree of height i

(where the leaves are at height 0), is required to be in the range [ 1
2∆, 2∆]Di. To maintain

this condition, we store at each node v a size[v] field that holds its current size. (To achieve
that, size[v] is updated by relevant insert and delete operations.) A simple calculation
shows that the size condition implies that the degree of each node is in the range [ D

4 , 4D]. It
also implies that the height h of the tree is at most h ≤ logD

2n
∆ ≤

3 log n
log ∆ , as D = ∆1/3. We

thus need to show that the (amortized) cost of each insert, delete and ∆-select is of the
order of the depth of the tree.

To support approximate select operations, we augment the B-tree by several additional
components. To each non-leaf node v we add a (rough) locator array locate[v] of size
bsize0[v]/( 1

2∆Di−1)c ≤ 4D, where size0[v] is the size of v when it was last rebuilt (see
below). If v is at height i, where i > 0, then the j-entry of the array, for j = 0, 1, . . . , 4D− 1,
contains the index of the child of v that contained the item of rank 1

2∆Di−1·j in the subtree
rooted at v, i.e., the ( 1

2∆Di−1 ·j)-th item in the sorted order of all items in the subtree of v,
when this subtree was last rebuilt. insert and delete operations performed after the last
rebuilding of the subtree of v make the information in locate[v] slightly inaccurate, but to
an extent that can be tolerated, as we are only aiming for approximate results.

Finally, we also store at each non-leaf node v of degree d an array sum[v] of size d + 1
such that sum[v][i], for i = 0, 1, . . . , d, is the sum of sizes of the subtrees rooted at the first i

children of v at the time the subtree of v was last rebuilt.
Using this augmented B-tree we can implement insert, delete and ∆-select operations

in O(log n/ log ∆) amortized time. The challenge is to time the flushing of buffers and the
rebuilding of subtrees so that, on the one hand, we do not spend too much time, and, on the
other hand, the information in the B-tree is always sufficiently accurate so that the rank
error in each select operation is at most ∆.
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Essentially, to locate an item whose rank is close to k, we navigate the tree using the
locate and sum arrays. We start with v being the root and i being the height of the root.
To find the child we need to descend to, we let j ← locate[v][bk/( 1

2∆Di−1)c]. It is easy
to see that the k-th item in the subtree of v, at the time of the last rebuilding, is either
contained in the j-th child of v, if sum[v][j] ≤ i < sum[v][j + 1], or otherwise in the (j + 1)-st
child of v. (This follows as k ≤ ( 1

2∆Di−1)dk/( 1
2∆Di−1)e.) In the latter case, we increment j.

We now descend to the j-th child of v, letting v ← child[v][j], i← i− 1, k ← k − sum[r][j],
and repeat the process from there until we get to a leaf. We then return an arbitrary item
contained in the corresponding leaf bucket. In the full version of the paper we analyze this
process and show that the rank of the returned item is close enough to k.

To satisfy the fairness condition mentioned above, two minor changes are needed: (1) the
insertion buffer should be emptied once for every ∆ updates (not just every ∆ insertions);
(2) the base sets are maintained as queues (FIFO).

It is possible to convert the amortized time bounds into worst-case time bounds using
the techniques of Andersson and Thorup [2].

2.2 Dynamic sets with approximate SELECT and RANK
Pǎtraşcu and Thorup [20] devised a data structure that supports insert, delete and
exact select and rank operations in O(log n/ log w) time. An interesting separation
between select and rank operations emerges when approximate results are allowed.
In this section we explain how the data structure of Section 2.1 can be extended to
support ∆-rank operations. While the time of insert, delete and ∆-select op-
erations remains unchanged, i.e., O(log n/ log(w∆)), the time of ∆-rank operations is
O
(
log n/ log(w∆) + pred( n

∆ , tu∆, n, w)
)
time, where pred(n, t, s, w) is the time for dynami-

cally answering predecessor queries on a set of n items when the update is O(t), the space
used by the data structure is O(s), and the word length is w. We later give a lower bound
that shows that appearance of the pred( n

∆ , tu∆, n, w) term here cannot be avoided.
Quite a lot is known about pred(n, t, s, w), the time for answering exact predecessor

queries. Beame and Fich [3] gave Ω
(√

log n
log log n

)
and Ω

(
log w

log log w

)
lower bounds for the static

version of the problem, where polynomial time preprocessing and polynomial space are
allowed. (Static means no updates.) Pǎtraşcu and Thorup [19] obtained a complete query-
space tradeoff, when again no updates are allowed, i.e., they determined pred(n,∞, s, w)
asymptotically for all s and w. Pǎtraşcu and Thorup [19] showed that pred

(
n, log n

log w , n, w
)

=

Θ
(

log n
log w

)
and that pred(w, 1, w, w) = O(1). Further complications arise when deterministic

vs. randomized variants of the problem are considered. We refer the reader to [19, 20] for the
exact details. The picture simplifies considerably when pred(n, t, s) = maxw pred(n, t, s, w)
is considered. Here, it is known that pred(n,

√
log n

log log n , n, w) = pred(n, nO(1), nO(1)) =

Θ
(√

log n
log log n

)
.

As in Section 2.1, we may assume that ∆ > w3, as the case ∆ ≤ w3 is covered by
the exact algorithm of Pǎtraşcu and Thorup [20], and aim for tu = O(log n/ log ∆) and
O
(
log n/ log ∆ + pred( n

∆ , tu∆, n, w)
)
bounds, respectively.

It is not difficult to see that the rank of an item appearing in a leaf bucket or as a splitter
in the data structure of Section 2.1 can be easily approximated in O(log n/ log ∆) time. A
∆-rank operation, however, must also be able to return the (approximate) rank of an item
that does not appear in the data structure. To achieve that, we maintain an exact dynamic
predecessor data structure on the splitters. Given an item not in the data structure we
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do a predecessor query on the key of the item, and return the approximate rank of the
returned splitter. As there are only O( n

∆ ) splitters, the total time of a ∆-rank operation
is O

(
log n/ log ∆ + pred( n

∆ , tu∆, n, w)
)
, as required. As we need to update the predecessor

data structure, on average, only once in every ∆ operations, we can afford to spend tu∆
time on updates to the predecessor data structure. In Section 3, we show that the use of a
predecessor data structure is essential.

2.3 Equivalence between approximate heaps and partitioning

The min operation is a very special select operation in which the smallest, i.e., the item of
rank 0, is sought after. Thus, any data structure that supports approximate select operations
also support approximate min operations. However, min operations could potentially be
faster than general select operations. This is true, for example, for the exact versions of
these problems on the word RAM.

A data structure that supports insert, delete and min operations is a priority queue.
A ∆-heap is a data structure that supports ∆-MIN operations which return one of the
smallest ∆ items in the data structure. (For ∆ = 1 we get an exact priority queue.)

Thorup [21] obtained an equivalence between priority queues and sorting. Namely, there
is an (exact) priority queue that supports each operation in P (n) time, where P (n) is
non-decreasing in n, if and only if it is possible, for every n, to sort n items in O(n P (n))
time. Here we extend this result to obtain an equivalence between ∆-heaps and the ordered
∆-partition problem: Given n items, partition them into k ≈ n

∆ sets A1, A2, . . . , Ak, each of
size about ∆, such that Ai < Ai+1, i.e., all items in Ai are smaller than all items in Ai+1,
for i = 0, 1, . . . , k − 1. We show that there is a ∆-heap with O(P∆(n)) time per operation,
where P∆(n) is non-decreasing in n, if and only if it is possible to ∆-partition a set of n

items in O(nP∆(n)) time.
Han and Thorup [15] showed that the ordered ∆-partition problem is equivalent to the

problem of partitioning a set A of size n according to k ≈ n
∆ splitters s1 < s2 < . . . < sk,

producing sets A0, A1, . . . , Ak such that si ≤ Ai < si+1, for i = 0, 1, . . . , k, where s0 = −∞
and sk+1 = +∞. Note that in this variant the sets A0, A1, . . . , Ak are not necessarily of
(roughly) equal size. This is the version of the ordered ∆-partition problem that we use
in this section.

We sketch here the construction of a O(∆ log n)-approximate heap using an algorithm for
the ordered ∆-partition problem, which is the interesting direction of the equivalence. In the
full version of the paper we complete the details of this construction, remove the O(log n)
from the approximation factor, and prove the other direction of the equivalence.

Most of the items in the priority queue constructed are stored in buckets A0, A1, . . . , Ak

separated by k + 2 base splitters −∞ = s0 < s1 < s2 < . . . < sk < sk+1 = +∞. Thus,
s0 ≤ A0 < s1 ≤ A1 < . . . < sk ≤ Ak < sk+1. The splitters are copies of keys of items
that belong or belonged to the priority queue at some stage. The items within each bucket
are unsorted. We let Φ = ∆ log n and require that Φ

4 ≤ |Ai| ≤ Φ, for i = 0, 1, . . . , k − 1,
and |Ak| ≤ Φ.

A logarithmic number of splitters t0 < t1 < . . . < t`+1, where ` = Θ(log n), also serve
as level splitters. We have t0 = s0 = −∞ and t`+1 = sk+1 = +∞. Each level splitter tj

has a level buffer Bj associated with it that can hold up to 4j∆ items. We also maintain a
counter qj that provides an upper bound of the size of Bj . Finally, there is also an insertion
buffer B = B0 that can hold up to Φ items. We maintain the following invariants, for
j = 1, 2, . . . `:
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(i) There are more than 1
2 4j · Φ bucket items smaller than tj , if tj <∞.

(ii) There are less than 7
4 4j · Φ items smaller than tj .

(iii) The keys of all items in Bj are in [tj , tj+2). Here t`+1 = t`+2 =∞.

To insert an item, we simply add it to the insertion buffer. If the insertion buffer is not
full, this completes the operation. To delete an item, given a pointer to it, we simply delete
it from its bucket or buffer, and update some counters. A min operation returns an arbitrary
item from the bucket A0, referred to as the head. The rank of the returned item is at most
2Φ = 2∆ log n, as only items in the head and the insertion buffer may be smaller than the
returned item.

When the insertion buffer B is full, i.e., it contains Φ = ∆ log n items, we use the ordered
∆-partition algorithm to split the items in B according to the O(log n) level splitters. The
amortized cost per item is O(P∆(∆ log n)) = O(P∆(n)). Recall that O(P∆(n)) is the time,
per item, needed to order partition n items into sets of size roughly ∆, or equivalently, to
∆-sort n items. (We may assume that ∆ ≤ n1/2, as ∆ = n1/2 already yields a constant time
per operation, and hence ∆ log n ≤ n.) Let B1 < B2 < . . . < B` be the resulting partition.
The items in Bj are added, one by one, into the level buffer Bj .

When a level buffer Bj is full, or when we need to change the level splitter tj , we split
its items according to all base splitters that are smaller than tj+2. As the number of items
smaller than tj+2 is O(4jΦ), and as each bucket is of size Θ(Φ), the number of splitters
smaller than tj+2 is O(4j). The number of items in the buffer is at most 4j∆. Thus, the
splitting can be done in O(4j∆ ·P∆(n)) time. The items in each set of the partition generated
are added, one by one, to the appropriate buckets.

The above “idyllic” description ignored the fact that base buckets may get too large
or too small, and that the three invariants imposed on the level splitters may be violated.
However, as we allowed enough slack in the size of the base buckets and in the invariants, it
is not too difficult to fix these problems by merging and splitting adjacent base buckets, and
by periodically redefining the level splitters. The fairly technical details are given in the full
version of the paper. The amortized time per operation remains O(P∆(n)).

2.4 Equivalence between soft heaps and sorting
A q-soft heap is a heap which is allowed to corrupt, i.e., increase the keys, of a small fraction
of its items. More specifically, after n insert operations, at most n/q of the items in the
heap are allowed to be corrupt. The hope, of course, is that allowing corruptions leads to
a more efficient implementation of the heap operations. (It is important to note that the
number of corrupt items is related to the number of insertions, not to the number of items
currently in the heap.)

It follows easily from the definition that as long as less than q items are inserted into
a q-soft heap, the heap is not allowed to corrupt any item. Thus, a q-soft heap with O(t)
time per operation can be used to exactly sort q − 1 items in O(qt) time. By Thorup’s [21]
equivalence between sorting and priority queues, we get that if there is q-soft heap with O(t)
time per operation, then there is also an exact heap that can hold up to q items with O(t)
time per operation. It is also easy, to obtain this result directly. To implement an exact heap
on at most q items, we use a 2q-soft heap. After every 2q insertions we rebuild the 2q-soft
heap using at most q insertions. The amortized time per operation stays O(t).

More surprising is that we also have the opposite implication. If there is an exact heap
on at most q items with O(t) time per operation, then there is also a q-soft heap with O(t)
time per operation. (Note that the number of items in the q-soft heap is not bounded.) To
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prove this result we use the simplified construction of soft heaps by Kaplan et al. [17]. We
observe that certain components in this comparison-based implementation of soft heaps can
be replaced by exact heaps that hold up to q items. This also leads to a clearer understanding
of how soft heaps work.

2.5 Faster exact sorting
Han and Thorup [15] obtained a deterministic linear time algorithm for partitioning n items
into a sequence of

√
n sets, each of size roughly

√
n, such that the items in each set are

smaller than the items in the next set. This leads, by repeated partitioning, to a deterministic
O(n log log n)-time algorithm. A different deterministic O(n log log n)-time sorting algorithm
was earlier obtained by Han [14].

More recently, Pǎtraşcu and Thorup [20], improving results of Fredman and Willard
[13], implemented dynamic fusion trees, supporting insert, delete, rank and select in
O(logw n) time per operation, where n is the size of the set and w is the word length. This
leads immediately to an O(n logw n)-time sorting algorithm. This algorithm is faster than
the O(n log log n)-time algorithm for sufficiently large w, e.g., w = nω(1/ log log n).

A simple combination of these two algorithms gives rise to a deterministic O(n log logw n)-
time algorithm. This bound subsumes the two previous bounds. Perform log logw n par-
titioning steps of [15] that partition the n input items into sets of size w. These sets are
then sorted in linear time using the dynamic fusion trees of [20]. The O(n log logw n)-time
algorithm is asymptotically faster than the O(n log log n)-time algorithm for much smaller
values of w, namely w = n1/ logo(1) n.

Han and Thorup [15] obtain a faster randomized O(n
√

log log n)-time sorting algorithm.
Andersson et al. [1] and Belazzougui et al. [4] have shown that sorting can be done in linear
expected time when w = Ω(log2 n log log n).

It is an open problem whether randomization can speed up partitioning algorithms and
lead, in particular, to faster data structures for the various operations considered in this
paper, such as ∆-select.

3 Lower bounds

In this section we give cell-probe lower bounds that match the upper bounds obtained by
the data structures for approximate select and rank given in Sections 2.1 and 2.2.

3.1 Lower bound for approximate SELECT
Pǎtraşcu and Thorup [20], relying on previous results of Fredman and Sacks [12], proved the
following cell-probe lower bound.

I Theorem 3.1. For any cell-probe data structure that supports insert, delete and (exact)
select (or rank) operations, if both insert and delete require t = t(n) time per operation,
then select (or rank) operations must take Ω

(
log n

log(w·t(n))

)
time.

Relying on this result, using a simple reduction, we obtain our lower bound for ∆-select.

I Theorem 3.2. For any cell-probe data structure that supports insert, delete and ∆-
select (or ∆-rank) operations, if both insert and delete require at most O(log n) time
per operation, then select (or rank) operations must take Ω

(
log n

log(w∆)

)
time.
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Proof. Given a ∆-approximate data structure, we can construct an exact data structure by
duplicating each item 2∆ times. More specifically, when an item is to be inserted into the
exact data structure, we insert 2∆ copies of the item into the ∆-approximate data structure.
When an item is to be deleted from the exact data structure, we delete its 2∆ copies from
the ∆-approximate data structure. To select the item of rank i, we ∆-approximately select
an item of rank 2∆i + ∆. As the rank of the item returned differs from 2∆i + ∆ by less
than ∆, the item returned must be a copy of the item of rank i. To compute the rank of an
item, not necessarily in the data structure, we do a ∆-rank query on the approximate data
structure, divide the returned rank by 2∆ and round down. It is again easy to see that this
is the exact rank of the queried item.

If the times of insert and delete of the ∆-approximate data structures are t(n), then
the times of insert and delete in the exact data structure are ∆t(∆n). If s(n) is the time
of ∆-select (or rank), then the time for exact select (or rank) is s(∆n). If follows
from Theorem 3.1 that s(∆n) = Ω

(
log n

log(w·∆t(∆n))

)
, or equivalently s(n) = Ω

(
log n

∆
log(w·∆·t(n))

)
.

If t(n) = O(log n), then as w ≥ log n, we also get that t(n) = O(w). We may also assume
that ∆ < n1/2, as otherwise, the lower bound is a constant. Thus, s(n) = Ω

(
log n

log(w·∆)

)
,

as claimed. J

The lower bound for ∆-select is tight, as it matches the upper bound of the data
structure given in Section 2.2.

3.2 Lower bound for approximate RANK

The lower bound of Theorem 3.2 holds also for ∆-rank, but it is not tight for all values of ∆.
We provide here a tight lower bound that matches the performance of the data structure
given in Section 2.2. The lower bound relies on the fact an exact predecessor operation
can be performed using one select and one rank operations, namely, predecessor(k) =
select(rank(k)).

I Theorem 3.3. For any linear space cell-probe data structure that supports insert, delete
and ∆-rank operations, if insert and delete take at most tu = O (log n/ log(w∆)) time per
operation, then ∆-rank operations must take Ω

(
log n/ log(w∆) + pred( n

∆ , tu∆, n, w)
)
time.

Proof. Suppose that we are given a linear space data structure that supports insert and
delete operations in tu = O((log n/ log(w∆)) time, and ∆-rank operations in r(n) time.
We already known, by Theorem 3.2, that r(n) = Ω (log n/ log(w∆)) time. Thus, we only
need to show that r(n) = Ω

(
pred( n

∆ , tu∆, n, w)
)
. We show that we can use the approximate

data structure given to obtain a data structure that supports exact predecessor operations
in O(r(∆n)). It would then follow that r(n) = Ω(pred( n

∆ , tu∆, n, w)).
We first add to the data structure given to us the ability to support ∆-select operations.

This is easily done by using both the given data structure and our ∆-select data structure
of Section 2.1 to hold the same set of items. insert and delete operations still take
tu = O((log n/ log(w∆)) time, and ∆-select and rank operations still take r(n) time, as
we already know that r(n) = Ω (log n/ log(w∆)).

We now use the duplication technique used in the proof of Theorem 3.2. We get an exact
data structure in which insert and delete take ∆t(∆n) time, and exact select and rank,
and hence exact predecessor, take r(∆n) time. Thus, r(n) = Ω

(
pred( n

∆ , tu∆, n, w)
)
,

as claimed. J
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4 Concluding remarks and open problems

Data structures for supporting dynamic ordered sets, i.e., data structures that support
insert, delete, and either one or both of select and rank, and possibly some other
operations, are among the most basic and natural data structures. Pǎtraşcu and Thorup [20]
obtained essentially optimal implementation of such data structures in the word RAM model,
the model that most closely represents what can be done on a real computer.

Surprisingly, not much attention was paid before to data structures that support approxi-
mate versions of these operations. There are many conceivable applications in which, for
example, we do not insist on knowing the exact rank of an item in the set, a good enough
approximation might be enough.

We show that allowing approximation greatly speeds up some of these operations, while
the complexity of the other operations remains essentially unchanged. We obtain a full
characterization of the time needed to implement approximate versions of these operations.
A fairly interesting picture emerges. While the exact versions of select and rank have the
same complexity, a separation emerges between the approximate versions of these problems.

We also considered approximate min operations that correspond to the implementation
of approximate heaps (priority queues). It is known that exact min operations are easier
than the more general select operations. We show that the “exponential” gap between
these operations persists when approximation is allowed. We obtained a equivalence between
approximate heaps and approximate sorting, extending the equivalence of Thorup [21] for
the exact versions of these problems.

Closely related to approximate heaps are Chazelle’s [6] soft heaps that feature prominently
in his deterministic minimum spanning tree algorithm [5]. The exact relation between
approximate and soft heaps was not understood before. Looking at these two data structures
using the “word RAM lens” reveals an essential difference between these two data structures.
Approximate heaps correspond to approximate sorting, or partitioning, while q-soft heaps
actually correspond to the exact sorting of sets of size q. This might explain the additional
usefulness of soft heaps.

The closer look at ordered set data structures, partitioning algorithms and sorting
algorithms also revealed, as a byproduct, a new deterministic sorting algorithm that runs in
O(n log logw n) time. The new bound subsumes and improves on the two previously known
bounds of O(n log log n) and O(n logw n).

We focused in this paper on deterministic algorithm. Studying the effect of randomization
on the various problems considered is an interesting research topic. In particular, it would be
interesting to know whether randomization can speed up (ordered) partitioning algorithms.
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Abstract
We provide a complete picture of the extent to which amplification of success probability is possible
for randomized algorithms having access to one NP oracle query, in the settings of two-sided,
one-sided, and zero-sided error. We generalize this picture to amplifying one-query algorithms with
q-query algorithms, and we show our inclusions are tight for relativizing techniques.
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1 Introduction

Amplification of the success probability of randomized algorithms is a ubiquitous tool in
complexity theory. We investigate amplification for randomized reductions to NP-complete
problems, which can be modeled as randomized algorithms with the ability to make queries
to an NP oracle. The usual amplification strategy involves running multiple independent
trials, which would also increase the number of NP oracle queries, so this does not generally
work if we restrict the number of queries. We study, and essentially completely answer, the
following question:

If a language is solvable with success probability p by a randomized polynomial-time
algorithm with access to one NP oracle query, what is the highest success probability
achievable with one query (or q > 1 many queries) to an NP oracle?

The question makes sense for two-sided error (BPPNP[1]), one-sided error (RPNP[1]), and
zero-sided error (ZPPNP[1]), and it was mentioned in [2] as “an interesting problem worthy of
further investigation.” Partial results for zero-sided error were shown in [3]. The question is
also relevant to the extensive literature on bounded NP queries (the boolean hierarchy); e.g.,
ZPPNP[1] shows up frequently in the context of the “two queries problem” [4], which was the
main application area of the results from [3].

Our first contribution characterizes the best amplification achievable by relativizing
techniques in the two-sided error setting. In general, the best strategy for amplifying plain
randomized algorithms is to take the majority vote of q independent trials, which in our
setting would naively involve q NP oracle queries. One may suspect this majority vote
strategy is optimal for us. We show this intuition is a red herring; it is possible to do better
by “combining” NP oracle queries across different trials. As an extreme example, consider
the special case of randomized mapping reductions to NP problems. These are equivalent
to Arthur–Merlin games (AM), for which amplification is possible by running independent
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trials and simply having Merlin’s message consist of certificates for a majority of the trials.
However, if we allow one NP oracle query, but do not necessarily output the same bit the
oracle returns, then combining queries is less straightforward, and it turns out amplification
is only possible to a limited extent.

Our main take-home message is that starting with success probability greater than
1
2 + 1

2 ·
1
k+1 , where k is an integer, we can get arbitrarily close to 1

2 + 1
2 ·

1
k success probability

while still using one NP query; using q nonadaptive queries, roughly a factor q improvement
over this is possible.

We give precise definitions in Section 2, but we now clarify our notation before stating
the theorem. For ε ∈ (0, 1] (the advantage), BPPNP[1]

ε is the set of all languages solvable by
a randomized polynomial-time algorithm that may make one query to an NP oracle and
produces the correct output with probability ≥ 1

2 + 1
2ε on each input. For convenience, we

define BPPNP[1]
>ε by requiring that for some constant c there exists such an algorithm with

advantage ≥ ε+ n−c, and we define BPPNP[1]
ε> by requiring that for every constant d there

exists such an algorithm with advantage ≥ ε − 2−nd ; the reason for these conventions is
just that they naturally arise in the proofs (e.g., standard majority amplification implies
BPP>0 = BPP1>). We make similar definitions for BPPNP‖[q] but allowing q nonadaptive NP
oracle queries. Allowing q adaptive NP queries is equivalent to allowing 2q − 1 nonadaptive
NP queries [1].

I Theorem 1 (Two-sided error). For integers 1 ≤ q ≤ k:
If q is odd:

BPPNP[1]
>1/(k+1) ⊆ BPPNP‖[q]

q/k> and BPPNP[1]
1/k 6⊆ BPPNP‖[q]

>q/k relative to an oracle.

If q, k are even:

BPPNP[1]
>1/(k+1) ⊆ BPPNP‖[q]

q/k> and BPPNP[1]
1/(k−1) 6⊆ BPPNP‖[q]

>q/k relative to an oracle.

The word “oracle” has two meanings here. Besides the bounded NP oracle queries of
central interest, “relative to an oracle” means there exists a language such that the separation
holds when all computations (the randomized algorithm and the NP verifier) can make
polynomially many adaptive queries to an oracle for that language. In particular, in the
context of our relativized separations, randomized algorithms have access to two oracles.
The separations in Theorem 1 are tight since the inclusions relativize. This implies that
using “black-box simulation” techniques, it is not possible to significantly improve any of
our inclusions.

If we start with advantage > 1
k+1 where k is an integer, Theorem 1 tells us the best

advantage achievable with q nonadaptive NP queries using relativizing techniques: if k is
even we can amplify to essentially q

k ; if k is odd we can amplify to essentially q
k if q is odd,

and q
k+1 if q is even. (Theorem 1 does not explicitly mention the case where q is even and

k is odd, but in this case the best inclusion and separation are obtained by applying the
theorem to the even integer k + 1.)

A subtle issue is whether “q/k>” in the inclusion subscripts can be improved to “q/k”;
e.g., it remains open to show that BPPNP[1]

>1/3 ⊆ BPPNP[1]
1/2 or that BPPNP[1]

>1/3 6⊆ BPPNP[1]
1/2 relative

to an oracle.
The proof of Theorem 1 appears in Section 3. No such nontrivial inclusion was known

before; for relativized separations, the case q = 1, k = 2 was shown in [7].

Zero-sided error algorithms must output the correct bit with probability at least some
ε ∈ (0, 1] and output ⊥ (plead ignorance) with the remaining probability. We define the
advantage (the subscript of ZPPNP‖[q]) to be this ε.
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[3] proved that ZPPNP[1]
>0 ⊆ ZPPNP[1]

1/4 and ZPPNP[1]
>1/2 ⊆ ZPPNP[1]

1> ,1 and left it unresolved
what happens between advantages 1

4 and 1
2 . We settle this decade-old open problem:

amplification is possible between 1
4 and 1

3 and between 1
3 and 1

2 .

I Theorem 2 (Zero-sided error). For integers 1 ≤ q ≤ k ≤ 4:
If k = 4: ZPPNP[1]

>0 ⊆ ZPPNP‖[q]
q/k> .

If k ≤ 3: ZPPNP[1]
>1/(k+1) ⊆ ZPPNP‖[q]

q/k> .

If q = 1: ZPPNP[1]
1/k 6⊆ ZPPNP‖[q]

>q/k relative to an oracle.
Moreover, the “q/k>” in the inclusion subscripts can be improved to “q/k” if q < k ≥ 3.

The proof of Theorem 2 appears in Section 4. The “moreover” part uses a trick described in
[3] for getting a tiny boost in the advantage. Like the situation with BPPNP[1], it remains open
to show that ZPPNP[1]

>1/3 ⊆ ZPPNP[1]
1/2 or that ZPPNP[1]

>1/3 6⊆ ZPPNP[1]
1/2 relative to an oracle. There is

no reason to consider k > 4 in Theorem 2, since then ZPPNP[1]
>1/(k+1) ⊆ ZPPNP[1]

>0 ⊆ ZPPNP‖[q]
q/4> .

We conjecture that the third bullet in Theorem 2 also holds for q > 1 (i.e., the relativized
separations ZPPNP[1]

1/4 6⊆ ZPPNP‖[2]
>2/4 and ZPPNP[1]

1/4 6⊆ ZPPNP‖[3]
>3/4 and ZPPNP[1]

1/3 6⊆ ZPPNP‖[2]
>2/3 ).

This remains open, though we are aware of how to prove that ZPPNP[1]
1/4 6⊆ ZPPNP‖[2]

>3/4 . Anyway,
q = 1 is the most natural case, and we provide a complete proof for it.

One-sided error algorithms must always output 0 if the answer is 0, and must output
1 with probability at least some ε ∈ (0, 1] if the answer is 1. We define the advantage (the
subscript of RPNP‖[q]) to be this ε. The proof of Theorem 3 appears in the full version of this
paper [6] and is relatively straightforward.

I Theorem 3 (One-sided error).
RPNP[1]

>1/2 ⊆ RPNP[1]
1> .

RPNP[1]
>0 ⊆ RPNP[1]

1/2 ∩ RPNP‖[2]
1> and RPNP[1]

1/2 6⊆ RPNP[1]
>1/2 relative to an oracle.

Finally, we point out that none of the inclusions in this paper can be strengthened to
yield advantage exactly 1 via relativizing techniques, since BPP ⊆ ZPPNP[1]

>1/2 relativizes [2]
but BPP 6⊆ PNP relative to an oracle [folklore].

2 Definitions

We formally define the relevant complexity classes in Section 2.1 and their decision tree
analogues (which are used for relativized separations) in Section 2.2.

2.1 Time complexity
We think of a randomized algorithm M as taking a uniformly random string s ∈ {0, 1}r (for
some number of coins r that depends on the input length); we let Ms(x) denote M running
on input x with outcome s.

For ε ∈ (0, 1] (the advantage) and integer q ≥ 1, language L is in BPPNP‖[q]
ε iff there is a

polynomial-time randomized algorithm M (taking input x and coin tosses s ∈ {0, 1}r) and a
language L′ ∈ NP such that the following hold.

1 [7] gave an alternative proof of the latter but with only 1− 1
poly , rather than 1− 1

exp , success probability.
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Syntax: The computation ofMs(x) produces a tuple of query strings (z1, . . . , zq) and a truth
table out : {0, 1}q → {0, 1}; the output is then out(L′(z1), . . . , L′(zq)).

Correctness: The output is L(x) with probability ≥ 1
2 + 1

2ε.

RPNP‖[q]
ε is defined similarly except for correctness, we require the output is always 0 if

L(x) = 0, and is 1 with probability ≥ ε if L(x) = 1. ZPPNP‖[q]
ε is defined similarly except

out : {0, 1}q → {0, 1,⊥} and for correctness, we require the output is always L(x) or ⊥, and
is L(x) with probability ≥ ε.

For C ∈
{

BPPNP‖[q],RPNP‖[q],ZPPNP‖[q]}, we define

C>ε =
⋃

constants c
Cε+n−c and Cε> =

⋂
constants d

C
ε−2−nd .

When q = 1 we may drop the ‖ from the superscripts.

2.2 Decision tree complexity
We think of a randomized decision tree T as the uniform distribution over a multiset of
corresponding deterministic decision trees Ts indexed by s ∈ {0, 1}r; we denote this as
T ∼

{
Ts : s ∈ {0, 1}r

}
. In this setting, “query” actually has two meanings for us: a decision

tree makes queries to individual input bits, then it forms an NP-type (DNF) oracle query.
We define a BPPNP‖[q]

ε -type decision tree T for f : {0, 1}n → {0, 1} on input x as follows.
Syntax: T ∼

{
Ts : s ∈ {0, 1}r

}
where each Ts makes queries to the bits of x until

it reaches a leaf, which is labeled with a tuple of DNFs (ϕ1, . . . , ϕq) and a function
out : {0, 1}q → {0, 1}; the output is then out(ϕ1(x), . . . , ϕq(x)).

Correctness: The output is f(x) with probability ≥ 1
2 + 1

2ε.
Cost: The maximum height of any Ts, plus the maximum width of any DNF appearing at a

leaf.
An RPNP‖[q]

ε -type decision tree is defined similarly except for correctness we require the output
is always 0 if f(x) = 0, and is 1 with probability ≥ ε if f(x) = 1. A ZPPNP‖[q]

ε -type decision
tree is defined similarly except out : {0, 1}q → {0, 1,⊥} and for correctness, we require the
output is always f(x) or ⊥, and is f(x) with probability ≥ ε.

We follow the convention of overloading complexity class names as decision tree complexity
measures: for C ∈

{
BPPNP‖[q],RPNP‖[q],ZPPNP‖[q]}, Cdt

ε (f) denotes the minimum cost of any
Cε-type decision tree for a partial function f , and Cdt

ε also denotes the class of all families of
f ’s with Cdt

ε (f) ≤ polylog(n), and we define

Cdt
>ε =

⋃
constants c

Cdt
ε+log−c n and Cdt

ε> =
⋂

constants d
Cdt
ε−n−d .

3 Two-sided error

To prove Theorem 1, we first restate it in a more convenient form.
I Theorem 1 (Two-sided error, restated). For integers 1 ≤ q ≤ k:
(i) If k, q are odd: BPPNP[1]

>1/(k+1) ⊆ BPPNP‖[q]
q/k> .

(ii) If k is even: BPPNP[1]
>1/(k+1) ⊆ BPPNP‖[q]

q/k> .

(iii) If q, k are even: BPPNP[1]
1/(k−1) 6⊆ BPPNP‖[q]

>q/k relative to an oracle.

(iv) If q is odd: BPPNP[1]
1/k 6⊆ BPPNP‖[q]

>q/k relative to an oracle.
We prove the inclusions (i) and (ii) in Section 3.1 and the separations (iii) and (iv) in
Section 3.2.
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3.1 Inclusions

We prove the q = 1 case of (i) in Section 3.1.1 and the q = 1 case of (ii) in Section 3.1.2
(together these show that BPPNP[1]

>1/(k+1) ⊆ BPPNP[1]
1/k> for all integers k ≥ 1), then we generalize

to the q > 1 case of (i) in Section 3.1.3 and the q > 1 case of (ii) in the full version [6].
The techniques from [3] for the zero-sided error setting are not particularly helpful for the
two-sided error setting, so we develop the ideas from scratch.

We now describe the common setup. For some constant c we have L ∈ BPPNP[1]
1/(k+1)+n−c ,

witnessed by a polynomial-time randomized algorithm M (taking input x and coin tosses
s ∈ {0, 1}r) and a language L′ ∈ NP. For an arbitrary constant d, we wish to show
L ∈ BPPNP‖[q]

q/k−2−nd .

Fix an input x. The first step is to sample a sequence of m = O(n2c+d) many independent
strings s1, . . . , sm ∈ {0, 1}r, so with probability ≥ 1− 2−nd−1, the sequence is good in the
sense that on input x, M still has advantage strictly greater than 1

k+1 when its coin tosses
are chosen uniformly from the multiset {s1, . . . , sm}. Then we design a polynomial-time
randomized algorithm which, given a good sequence, outputs L(x) with advantage ≥ q

k after
making q nonadaptive NP oracle queries. Hence, over the random s1, . . . , sm and the other
randomness of our algorithm,

P[output is L(x)] ≥ P
[
output is L(x)

∣∣ s1, . . . , sm is good
]
− P[s1, . . . , sm is bad]

≥
( 1

2 + 1
2 ·

q
k

)
− 2−nd−1 = 1

2 + 1
2
(
q
k − 2−nd)

.

Henceforth fix a good sequence s1, . . . , sm, and let zh and outh : {0, 1} → {0, 1} be the
query string and truth table produced byMsh(x) (so the output is outh(L′(zh))). We assume
w.l.o.g. that each outh is nonconstant, and is hence either identity or negation. Henceforth
assume that identity is at least as common as negation among out 1, . . . , outm; the proof is
completely analogous if negation is more common.

Taking probabilities over a uniformly random h ∈ [m], we make the following definitions.

α = 1
2P[outh = id] β = 1

2P[outh = neg]
a = P

[
outh = id, L′(zh) = 1

]
− α b = P

[
outh = neg, L′(zh) = 1

]
− β

The key observation is now

(a+ α) + (β − b)
= P

[
outh = id, output = 1

]
+
(
P[outh = neg]− P

[
outh = neg, output = 0

])
= P

[
outh = id, output = 1

]
+ P

[
outh = neg, output = 1

]
= P[output = 1]

and thus, defining ∆ = 1
2 ·

1
k+1 , we have

a− b = (a+ α) + (β − b)− 1
2 = P[output = 1]− 1

2

{
> ∆ if L(x) = 1
< −∆ if L(x) = 0

because of M ’s advantage w.r.t. a good sequence s1, . . . , sm.
This figure shows an example of how these values may fall on the number line if L(x) = 1:
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96:6 Amplification with One NP Oracle Query

a

b0

>∆

P[outh = id, output = 1] P[outh = id, output = 0]

P[outh = neg, output = 0] P[outh = neg, output = 1]

−α

−β

α

β

The following summarizes the key properties so far.

α ≥ β a ∈ [−α, α] a− b > ∆ if L(x) = 1
α+ β = 1

2 b ∈ [−β, β] b− a > ∆ if L(x) = 0

Also, for any real p, testing whether a ≥ p can be expressed as an NP oracle query: a witness
consists of a list of witnesses for L′(zh) = 1 for at least (p+ α)m many h’s with outh = id.
Similarly, testing whether b ≥ p can be expressed as an NP oracle query.

3.1.1 Proof of (i): q = 1
For i ∈ [k] define γi = (i − k+1

2 )∆. We have β − γk ≤ ∆ and γ1 − (−β) ≤ ∆ since
β ≤ 1

4 =
(
(k + 1)− k+1

2
)
∆. This figure shows an example with k = 7:

γ1

γ2

γ3

γ4

γ5

γ6

γ7

≤∆ ≤∆
−α

−β

α

β

Our algorithm now picks one of these k possibilities uniformly at random:2

for some odd i ∈ [k]: output 1 iff a ≥ γi,
for some even i ∈ [k]: output 0 iff b ≥ γi.

First suppose L(x) = 1. We have a > γ1 since a− b > ∆ and b ≥ −β and γ1− (−β) ≤ ∆.
Consider the greatest odd j ∈ [k] such that a ≥ γj ; thus a ≥ γi for j+1

2 many odd i’s
(1, 3, . . . , j). If j < k then b < γj+1 since a − b > ∆ and a < γj+2; thus b < γi for at least
k−j

2 many even i’s (j + 1, j + 3, . . . , k − 1). Hence the probability of outputting 1 is at least
1
k

(
j+1

2 + k−j
2
)

= 1
2 + 1

2 ·
1
k .

Now suppose L(x) = 0. We have a < γk since b − a > ∆ and b ≤ β and β − γk ≤ ∆.
Consider the least odd j ∈ [k] such that a < γj ; thus a < γi for k−j+2

2 many odd i’s
(j, j + 2, . . . , k). If j > 1 then b > γj−1 since b − a > ∆ and a ≥ γj−2; thus b ≥ γi for at
least j−1

2 many even i’s (2, 4, . . . , j − 1). Hence the probability of outputting 0 is at least
1
k

(
k−j+2

2 + j−1
2
)

= 1
2 + 1

2 ·
1
k .

2 Of course, if k is not a power of 2 and we insist on using uniform coin flips as our only source of
randomness, then we must incur a tiny error since it is not possible to exactly sample i ∈ [k] uniformly.
We sweep this pedantic issue under the rug throughout the paper.
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That concludes the formal proof, but here is an intuitive way to visualize what is
happening: Call γi for odd i “upper marks,” and call γi for even i “lower marks,” and assume
for convenience all lower marks are in (−β, β). Suppose L(x) = 1 and b = −β so a > γ1;
then at least one upper mark is left of a and all k−1

2 lower marks are right of b, resulting
in k+1

2 of the algorithm’s possibilities outputting 1. Now as we continuously sweep a and
b to the right, keeping a− b fixed, a passes each upper mark before b passes the preceding
lower mark, so at all times at least k+1

2 of the possibilities output 1. Suppose L(x) = 0 and
b = β so a < γk; then at least one upper mark is right of a and all k−1

2 lower marks are left
of b, resulting in k+1

2 of the algorithm’s possibilities outputting 0. Now as we continuously
sweep a and b to the left, keeping b− a fixed, a passes each upper mark before b passes the
succeeding lower mark, so at all times at least k+1

2 of the possibilities output 0.

3.1.2 Proof of (ii): q = 1
For i ∈ [k] define ζi = −β + i∆ and ηi = −α + i∆. Note that α − ζk = ∆ (so ζ1, . . . , ζk
divide the interval [−β, α] into k + 1 subintervals each of length ∆) and β − ηk = ∆ (so
η1, . . . , ηk divide the interval [−α, β] into k + 1 subintervals each of length ∆). This figure
shows an example with k = 6:

ζ1

ζ2

ζ3

ζ4

ζ5

ζ6η1

η2

η3

η4

η5

η6−α

−β

α

β

Our algorithm now picks one of these 2k possibilities uniformly at random:
for some odd i ∈ [k]: output 1 iff a ≥ ζi,
for some even i ∈ [k]: output 0 iff b ≥ ζi,
for some even i ∈ [k]: output 1 iff a ≥ ηi,
for some odd i ∈ [k]: output 0 iff b ≥ ηi.

First suppose L(x) = 1. We have a > ζ1 since a − b > ∆ and b ≥ −β. Consider the
greatest odd j ∈ [k] such that a ≥ ζj ; thus a ≥ ζi for j+1

2 many odd i’s (1, 3, . . . , j). We
have b < ζj+1 since a− b > ∆ and either a < ζj+2 (if j < k − 1) or a ≤ α and α− ζk = ∆
(if j = k − 1); thus b < ζi for at least k−j+1

2 many even i’s (j + 1, j + 3, . . . , k). Consider
the greatest even j′ ∈ [k] such that a ≥ ηj′ , or let j′ = 0 if it does not exist; thus a ≥ ηi

for j′

2 many even i’s (2, 4, . . . , j′). If j′ < k then b < ηj′+1 since a − b > ∆ and a < ηj′+2;
thus b < ηi for at least k−j′

2 many odd i’s (j′ + 1, j′ + 3, . . . , k − 1). Hence the probability of
outputting 1 is at least 1

2k
(
j+1

2 + k−j+1
2 + j′

2 + k−j′
2
)

= 1
2 + 1

2 ·
1
k .

Now suppose L(x) = 0. Consider the least odd j ∈ [k] such that a < ζj , or let j = k + 1
if it does not exist; thus a < ζi for k−j+1

2 many odd i’s (j, j + 2, . . . , k − 1). If j > 1
then b > ζj−1 since b − a > ∆ and a ≥ ζj−2; thus b ≥ ζi for at least j−1

2 many even i’s
(2, 4, . . . , j − 1). We have a < ηk since b− a > ∆ and b ≤ β and β − ηk = ∆. Consider the
least even j′ ∈ [k] such that a < ηj′ ; thus a < ηi for k−j′+2

2 many even i’s (j′, j′ + 2, . . . , k).
We have b > ηj′−1 since b − a > ∆ and either a ≥ ηj′−2 (if j′ > 2) or a ≥ −α (if j′ = 2);
thus b ≥ ηi for at least j′

2 many odd i’s (1, 3, . . . , j′− 1). Hence the probability of outputting
0 is at least 1

2k
(
k−j+1

2 + j−1
2 + k−j′+2

2 + j′

2
)

= 1
2 + 1

2 ·
1
k .

ICALP 2019



96:8 Amplification with One NP Oracle Query

That concludes the formal proof, but here is an intuitive way to visualize what is
happening: Call ζi for odd i and ηi for even i “upper marks,” and call ζi for even i and ηi for
odd i “lower marks,” and assume for convenience all lower marks are in (−β, β). Suppose
L(x) = 1 and b = −β so a > ζ1; then at least one upper mark is left of a and all k lower
marks are right of b, resulting in k + 1 of the algorithm’s possibilities outputting 1. Now as
we continuously sweep a and b to the right, keeping a− b fixed, a passes each upper mark
(ζi or ηi) before b passes the corresponding preceding lower mark (ζi−1 or ηi−1 respectively),
so at all times at least k + 1 of the possibilities output 1. Suppose L(x) = 0 and b = β so
a < ηk; then at least one upper mark is right of a and all k lower marks are left of b, resulting
in k + 1 of the algorithm’s possibilities outputting 0. Now as we continuously sweep a and
b to the left, keeping b − a fixed, a passes each upper mark (ζi or ηi) before b passes the
corresponding succeeding lower mark (ζi+1 or ηi+1 respectively), so at all times at least k+ 1
of the possibilities output 0.

3.1.3 Proof of (i): q > 1

For i ∈ [k] define Ii as the set of q successive integers starting with i and wrapping
around to 1 when k is exceeded: Ii = {i, i + 1, . . . , i + q − 1} if i ≤ k − q + 1, and
Ii = {i, i+1, . . . , k, 1, 2, . . . , i+q−1−k} if i > k−q+1. Define i →= min(odd i′ ∈ Ii)−k−1
and i

→
= min(even i′ ∈ Ii)−k−1; the −k−1 is a simple way to ensure i →, i

→
< min(i′ ∈ Ii).

Since k, q are odd, the sorted order of Ii ∪{i →, i
→
} alternates between odd and even numbers.

Our algorithm picks i ∈ [k] uniformly at random and for each i′ ∈ Ii does an oracle query
to see whether a ≥ γi′ if i′ is odd, or whether b ≥ γi′ if i′ is even. Consider the greatest odd
i] ∈ Ii such that a ≥ γi] , or let i] = i →if it does not exist. Consider the greatest even i[ ∈ Ii
such that b ≥ γi[ , or let i[ = i

→
if it does not exist. Our algorithm outputs 1 if i] > i[, or 0

if i[ > i].
First suppose L(x) = 1. Consider the greatest odd j ∈ [k] such that a ≥ γj (which exists

since a > γ1). We have i] > i[ if one of the following mutually exclusive events holds:

(1) j ∈ Ii, since then i] = j and i[ ≤ j − 1 (since b < γj+1 if j < k);
(2) i is odd and i ≤ j − q − 1, since then i] = i+ q − 1 and trivially i[ ≤ i+ q − 2;
(3) i is even and j + 1 ≤ i ≤ j − q − 1 + k, since then either:

i ≤ k − q, in which case i] = i →> i
→
= i[, or

i = k − q + 2, in which case i] = 1 and i[ = i
→
< 1, or

i ≥ k − q + 4, in which case i] = i+ q − 1− k and i[ ≤ i+ q − 2− k.

There are q many type-(1) i’s. If j > q then there are j−q
2 many type-(2) i’s (1, 3, . . . , j−q−1)

and k−j
2 many type-(3) i’s (j+ 1, j+ 3, . . . , k− 1). If j ≤ q then there are k−q

2 many type-(3)
i’s (j + 1, j + 3, . . . , j − q− 1 + k). Either way, i] > i[ holds for at least q+ k−q

2 = k+q
2 many

i’s, and hence the probability of outputting 1 is at least 1
k ·

k+q
2 = 1

2 + 1
2 ·

q
k .

Now suppose L(x) = 0. Consider the least odd j ∈ [k] such that a < γj (which exists
since a < γk). As a special case, if j = 1 then i] = i →and so i[ > i] if i

→
> i →, which

happens for k+q
2 many i’s (1, 3, . . . , k − q + 1 and k − q + 2, k − q + 3, . . . , k). Now assume

j > 1. We have i[ > i] if one of the following mutually exclusive events holds:

(1) j − 1 ∈ Ii, since then i] ≤ j − 2 and i[ ≥ j − 1 (since b > γj−1 if j > 1);
(2) i is even and i ≤ j − q − 2, since then i] = i+ q − 2 and i[ = i+ q − 1;
(3) i is odd and j ≤ i ≤ j − q − 2 + k, since then either:

i ≤ k − q + 1, in which case i] = i →< i
→
≤ i[, or

i ≥ k − q + 3, in which case i] = i+ q − 2− k and i[ ≥ i+ q − 1− k.
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There are q many type-(1) i’s. If j > q then there are j−q−2
2 many type-(2) i’s (2, 4, . . . , j −

q−2) and k−j+2
2 many type-(3) i’s (j, j+2, . . . , k). If j ≤ q then there are k−q

2 many type-(3)
i’s (j, j + 2, . . . , j − q − 2 + k). Either way, i[ > i] holds for at least q + k−q

2 = k+q
2 many i’s,

and hence the probability of outputting 0 is at least 1
k ·

k+q
2 = 1

2 + 1
2 ·

q
k .

3.2 Separations
The relativized separations follow routinely [5] from the corresponding decision tree complexity
separations:
(iii) If q, k are even: BPPNP[1]dt

1/(k−1) 6⊆ BPPNP‖[q]dt
>q/k .

(iv) If q is odd: BPPNP[1]dt
1/k 6⊆ BPPNP‖[q]dt

>q/k .

We prove (iii) in Section 3.2.1 and (iv) in the full version [6]; the arguments are similar
in structure. Our proof of (iv) also works if q is even, but in that case the result is subsumed
by (iii). The case q = 1, k = 2 of (iii) was proven in [7], but our proof is somewhat different
even specialized to that case.

Let wt(·) refer to Hamming weight. Henceforth fix the constants q and k, and assume
q < k since otherwise there is nothing to prove.

3.2.1 Proof of (iii)
Define the partial function f : {0, 1}n → {0, 1} that interprets its input as (x, y) ∈ {0, 1}n/2×
{0, 1}n/2, such that

f(x, y) =
{

1 if wt(x) = wt(y) + 1 ≤ k
2

0 if wt(x) = wt(y) ≤ k
2 − 1

.

I Lemma 4. BPPNP[1]dt
1/(k−1)(f) ≤ k

2 .

I Lemma 5. BPPNP‖[q]dt
q/k+δ (f) ≥ Ω(δn) for every δ(n).

The separation follows by taking δ = log−c n for any constant c.

Proof of Lemma 4. Given (x, y), pick one of these k− 1 possibilities uniformly at random:
for some i ∈ [k2 ]: output 1 iff wt(x) ≥ i,
for some i ∈ [k2 − 1]: output 0 iff wt(y) ≥ i.

The decision tree does not directly query any bits of (x, y), and the DNF has width i ≤ k
2

(it is the or over all i-subsets of either x’s bits or y’s bits, of the and of those bits), so
the cost is k

2 . If f(x, y) = 1 with wt(x) = j and wt(y) = j − 1, then the probability of
outputting 1 is j+((k/2−1)−(j−1))

k−1 = 1
2 + 1

2 ·
1

k−1 since conditioned on picking x, the output is 1
iff i ≤ j, and conditioned on picking y, the output is 1 iff i ≥ j. Similarly, if f(x, y) = 0 with
wt(x) = wt(y) = j, then the probability of outputting 1 is j+((k/2−1)−j)

k−1 = 1
2 −

1
2 ·

1
k−1 . J

Proof of Lemma 5. It suffices to show that for some distribution on valid inputs (x, y) to f ,
every cost-o(δn) PNP‖[q]-type decision tree T has advantage < q

k +δ over a random input. Let
T (x, y) denote the output produced after T receives the answers to its DNF queries. Let u be
the leaf reached after seeing only 0’s, and say u is labeled with DNFs (ϕ1, . . . , ϕq) and function
out : {0, 1}q → {0, 1} (so if (x, y) leads to u then T (x, y) = out(ϕ1(x, y), . . . , ϕq(x, y))).

We generate the distribution on valid inputs (x, y) as follows. Let v0 = w0 ∈ {0, 1}n/2

be the all-0 string, and for i = 1, . . . , k2 obtain vi by flipping a uniformly random 0 of vi−1
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to a 1, and for i = 1, . . . , k2 − 1 obtain wi by flipping a uniformly random 0 of wi−1 to a 1.
Pick a uniformly random j ∈ [k2 ], and then let (x, y) be either the 1-input (vj , wj−1) or the
0-input (vj−1, wj−1) with probability 1

2 each.
Let v denote (v0, . . . , vk/2) and w denote (w0, . . . , wk/2−1), and call (v, w) good iff:
for each j ∈ [k2 ]: both inputs (vj , wj−1) and (vj−1, wj−1) lead to u, and
for each j ∈ [k2 ] and each i ∈ [q]: ϕi(vj , wj−1) ≥ ϕi(vj−1, wj−1) ≥ ϕi(vj−1, wj−2)

(the latter inequality is only required if j > 1).

We claim that
(1) P[(v, w) is bad] < δ

2 , and
(2) P

[
T (x, y) = f(x, y)

∣∣ (v, w) is good
]
≤ 1

2 + 1
2 ·

q
k ,

from which it follows that

P[T (x, y) = f(x, y)] ≤ P
[
T (x, y) = f(x, y)

∣∣ (v, w) is good
]
+P[(v, w) is bad] < 1

2 + 1
2 ( qk+δ).

We argue claim (1). Since the path to u queries o(δn) locations, with probability
≥ 1−o(kδ) > 1− δ

4 each of the 1’s placed throughout v and w avoids these locations, in which
case the first bullet holds in the definition of good. Fixing j and i in the second bullet, if we
condition on ϕi(vj−1, wj−1) = 1 and choose an arbitrary term of ϕi that accepts (vj−1, wj−1),
then since the term has width o(δn), with probability ≥ 1 − o(δ) the 1 that is placed to
obtain vj from vj−1 avoids this term, in which case the term continues to accept (vj , wj−1)
and so ϕi(vj , wj−1) = 1. Thus P

[
ϕi(vj , wj−1) ≥ ϕi(vj−1, wj−1)

]
≥ P

[
ϕi(vj , wj−1) =

1
∣∣ϕi(vj−1, wj−1) = 1

]
≥ 1− o(δ). Similarly, P

[
ϕi(vj−1, wj−1) ≥ ϕi(vj−1, wj−2)

]
≥ 1− o(δ).

A union bound over j and i shows that the second bullet holds with probability ≥ 1−o(kqδ) >
1− δ

4 , so finally the two bullets hold simultaneously with probability > 1− δ
2 .

We argue claim (2). Condition on any particular good (v, w). We abbreviate the q-tuple
(ϕ1(x, y), . . . , ϕq(x, y)) as ϕ(x, y) ∈ {0, 1}q. Consider the sequence of k inputs (v0, w0),
(v1, w0), (v1, w1), (v2, w1), . . . (like climbing a ladder but placing both feet on each rung).
Each of these possibilities for (x, y) leads to u and thus T (x, y) = out(ϕ(x, y)). Also,
the corresponding sequence of ϕ(x, y)’s is monotonically nondecreasing in each of the q
coordinates. Thus the sequence of inputs can be partitioned into segments of lengths say
`0, `1, . . . , `q (which sum to k) such that for the first `0 (x, y)’s in the sequence, ϕ(x, y) has
weight 0 (hence T (x, y) is the same), and for the next `1 (x, y)’s in the sequence, ϕ(x, y) is the
same weight-1 string (hence T (x, y) is the same), and so on. Since each segment alternates
between 0-inputs and 1-inputs of f , we have T (x, y) = f(x, y) for at most

⌈
`i

2
⌉
≤ `i+1

2 inputs
in the ith segment.

Thus, out of the k possibilities for (x, y) given (v, w), at most
∑q
i=0

`i+1
2 = k

2 + q+1
2 are such

that T (x, y) = f(x, y). This implies that P
[
T (x, y) = f(x, y)

∣∣ (v, w) is good
]
≤ 1

2 + 1
2 ·

q+1
k ,

which is almost what we want. This issue can be fixed by observing that since k is even and
q + 1 (the number of segments) is odd, at least one segment must have even length, in which
case

⌈
`i

2
⌉

= `i

2 . Thus, out of the k possibilities for (x, y) given (v, w), T (x, y) = f(x, y) holds
for at most k

2 + q
2 of them, which gives (2). J

4 Zero-sided error

We now prove Theorem 2, restated here for convenience.

I Theorem 2 (Zero-sided error, restated). For integers 1 ≤ q ≤ k ≤ 4:
(i) If k = 4: ZPPNP[1]

>0 ⊆ ZPPNP‖[q]
q/k> .
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(ii) If k ≤ 3: ZPPNP[1]
>1/(k+1) ⊆ ZPPNP‖[q]

q/k> .

(iii) ZPPNP[1]
1/k 6⊆ ZPPNP[1]

>1/k relative to an oracle.
Moreover, the “q/k>” in the inclusion subscripts can be improved to “q/k” if q < k ≥ 3.

We prove the inclusions (i) and (ii) in Section 4.1 and the separations (iii) in the full version
[6].

4.1 Inclusions
Straightforwardly generalizing the proof of ZPPNP[1]

>0 ⊆ ZPPNP[1]
1/4 in [3] yields (i), but we take

a different tack by showing in Section 4.1.1 that (i) follows directly from Theorem 3. We
prove (ii) from first principles in Section 4.1.2; our proof for the case k = 1 is equivalent to
the one in [3], but we include it for completeness.

4.1.1 Proof of (i)

Let L ∈ ZPPNP[1]
>0 ⊆ RPNP[1]

>0 . By Theorem 3 and closure of ZPPNP[1]
>0 under complement,

L ∈ RPNP[1]
1/2 by some algorithm M1, L ∈ RPNP‖[2]

1> by some algorithm M2,

L ∈ RPNP[1]
1/2 by some algorithm M 1, L ∈ RPNP‖[2]

1> by some algorithm M 2.

We let each of these four M -algorithms refer to the entire computation, including the NP
oracle queries, which we elide for convenience. (Note that M i does not mean “complement
of M i” – it is a different algorithm.) We assume M2 and M 2 have advantage ≥ 1− 2−nd for
an arbitrary constant d. Furthermore, we assume all four algorithms have been modified to
output ⊥ instead of 0, and M 1 and M 2 have been modified to output 0 instead of 1.
If q = 1: L ∈ ZPPNP[1]

1/4 by running M1 or M 1 with probability 1
2 each.

If q = 2: L ∈ ZPPNP‖[2]
1/2 by runningM1 andM 1, and if one of them outputs a bit, outputting

that bit or ⊥ otherwise.
If q = 4: L ∈ ZPPNP‖[4]

1> by runningM2 andM 2, and if one of them outputs a bit, outputting
that bit or ⊥ otherwise.

If q = 3: L ∈ ZPPNP‖[3]
3/4> by running M1 and M 2 with probability 1

2 , or M
2 and M 1 with

probability 1
2 , and if one of them outputs a bit, outputting that bit or ⊥ otherwise. This

falls slightly short of our promise of showing L ∈ ZPPNP‖[3]
3/4 , but that can be fixed by

noting that the proof of Theorem 3 actually shows that M1 and M 1 can have advantage
≥ 1

2 + 2−ne for some constant e depending on L. Then taking d ≥ e ensures we get
advantage ≥ 1

2
( 1

2 + 2−ne)+ 1
2
(
1− 2−nd) ≥ 3

4 .

4.1.2 Proof of (ii)

We just prove ZPPNP[1]
>1/(k+1) ⊆ ZPPNP‖[q]

q/k> ; the “moreover” part follows by exactly the same
trick (due to [3]) for strengthening RPNP[1]

>0 ⊆ RPNP[1]
1/2> to RPNP[1]

>0 ⊆ RPNP[1]
1/2 , which we describe

in the full version [6].
For some constant c we have L ∈ ZPPNP[1]

1/(k+1)+n−c , witnessed by a polynomial-time
randomized algorithm M (taking input x and coin tosses s ∈ {0, 1}r) and a language
L′ ∈ NP. For an arbitrary constant d, we wish to show L ∈ ZPPNP‖[q]

q/k−2−nd .
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Fix an input x. The first step is to sample a sequence of m = O(n2c+d) many independent
strings s1, . . . , sm ∈ {0, 1}r, so with probability ≥ 1− 2−nd , the sequence is good in the sense
that on input x,M still has advantage strictly greater than 1

k+1 when its coin tosses are chosen
uniformly from the multiset {s1, . . . , sm}. Then we design a polynomial-time randomized
algorithm which, given a good sequence, outputs L(x) with probability ≥ q

k after making q
nonadaptive NP oracle queries, and which has zero-sided error for all sequences (good and
bad). Hence, over the random s1, . . . , sm and the other randomness of our algorithm,

P[output is L(x)] ≥ P
[
output is L(x)

∣∣ s1, . . . , sm is good
]
− P[s1, . . . , sm is bad] ≥ q

k
− 2−nd

.

Henceforth fix a good sequence s1, . . . , sm, and let zh and outh : {0, 1} → {0, 1} be the query
string and truth table produced by Msh(x) (so the output is outh(L′(zh))). We assume
w.l.o.g. that outh is nonconstant. If there is an h such that outh ∈ {id, neg}, then our
algorithm simply uses the NP oracle to evaluate L′(zh) and then outputs outh(L′(zh)) = L(x).
Otherwise, each outh is one of the four functions outab (for ab ∈ {0, 1}2) that maps a to b
and 1− a to ⊥:

out00 out01 out10 out11

0 0 1 ⊥ ⊥
1 ⊥ ⊥ 0 1

For each ab ∈ {0, 1}2 consider the “ab” query:

∃h : outh = outab and L′(zh) = a ?

If a = 1 then the “ab” query can be expressed as an NP oracle query: a witness consists of
an h with outh = outab and a witness for L′(zh) = 1. If a = 0 then the “ab” query can be
expressed as a coNP oracle query: a nonexistence witness consists of a witness for L′(zh) = 1
for each h such that outh = outab. We say the “ab” query returns yes iff it indicates the
existence of such an h (i.e., the NP oracle returns the bit a). If the “ab” query returns yes,
we can safely output b since there exists an h such that outh(L′(zh)) = outab(a) = b = L(x).

Our algorithm is:
1. Identify a set P ⊆ {0, 1}2 of size k for which there is guaranteed to exist an ab ∈ P such

that the “ab” query would return yes.
2. Pick a uniformly random Q ⊆ P of size q.
3. For each ab ∈ Q do the “ab” query and output b if it returns yes.
4. Finally output ⊥ if all queries returned no.
This outputs L(x) with probability ≥ q

k . We just need to prove that we can indeed find such
a P in step 1. Let H = {h ∈ [m] : Msh outputs L(x)} (so by assumption, |H| > m

k+1 ) and
Hab = {h ∈ [m] : outh = outab}. Note that the “ab” query would return yes iff H ∩Hab 6= ∅,
and that H ⊆ H0b ∪H1b for b = L(x).
If k = 3: Let P contain all ab’s except the one with the smallest Hab (which has size ≤ m

4 ),
breaking ties arbitrarily. Then H ∩Hab 6= ∅ for at least one ab ∈ P assuming |H| > m

4 .
If k = 2: If |H00 ∪H10| ≤ m

3 then L(x) = 1 assuming |H| > m
3 , so we can let P = {01, 11}.

Similarly, if |H01 ∪H11| ≤ m
3 then we can let P = {00, 10}. Otherwise, the smaller of

H00, H10 has size ≤ m
3 , and the smaller of H01, H11 has size ≤ m

3 , so we can let P contain
the two ab’s corresponding to the larger of H00, H10 and the larger of H01, H11, breaking
ties arbitrarily.

If k = 1: If |H00 ∪H10| ≤ m
2 then L(x) = 1 assuming |H| > m

2 , and furthermore the smaller
of H01, H11 has size ≤ m

2 , so we can let P contain the ab corresponding to the larger of
H01, H11. Similarly, if |H01 ∪H11| < m

2 then we can let P contain the ab corresponding
to the larger of H00, H10.
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In a k-party communication problem, the k players with inputs x1, x2, . . . , xk, respectively, want
to evaluate a function f(x1, x2, . . . , xk) using as little communication as possible. We consider the
message-passing model, in which the inputs are partitioned in an arbitrary, possibly worst-case
manner, among a smaller number t of players (t < k). The t-player communication cost of computing
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problem of (1± ε)-approximating the number ‖x‖0 of non-zero entries of an n-dimensional vector
x after m updates each of magnitude M , and with success probability ≥ 2/3, in a strict turnstile
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approximating the p-norm Lp for p bounded away from 0, since the latter has an O(ε−2 log(mM))
bit upper bound.

2012 ACM Subject Classification Theory of computation → Streaming models; Theory of compu-
tation → Complexity classes; Theory of computation → Lower bounds and information complexity

Keywords and phrases Communication complexity, multi-player communication, one-way commu-
nication, streaming complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.97

Category Track A: Algorithms, Complexity and Games

Related Version The full version hosted on arXiv https://arxiv.org/abs/1905.07135.

Funding This work was supported in part by the National Natural Science Foundation of China
Grants No. 61433014, 61602440, 61761136014, 61872334, 61502449, and the 973 Program of China
Grant No. 2016YFB1000201.

Acknowledgements We would like to thank Yuval Ishai and Eyal Kushilevitz for initiating the
problem of separating worst-case partition communication complexity from streaming complexity,
which was our starting point. We also thank the ICALP referees for very helpful comments which
helped us revise our initial submission. D. Woodruff would also like to thank the Chinese Academy
of Sciences, as well as the Simons Institute for the Theory of Computing.

EA
T

C
S

© David P. Woodruff and Guang Yang;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 97; pp. 97:1–97:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dwoodruf@andrew.cmu.edu
mailto:guang.research@gmail.com
https://doi.org/10.4230/LIPIcs.ICALP.2019.97
https://arxiv.org/abs/1905.07135
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


97:2 Separating k-Player from t-Player One-Way Communication

1 Introduction

Consider a k-party communication problem, in which the players have inputs x1, x2, . . . , xk
respectively, and want to compute a function f(x1, x2, . . . , xk) of their inputs using as little
communication as possible. We consider the message-passing model, in which the inputs are
partitioned in an arbitrary, possibly worst-case manner among a smaller number t of players.
That is, we partition {1, 2, . . . , k} into t subsets S1, S2, . . . , St such that ∪ti=1Si = {1, 2, . . . , k}
and Si ∩Sj = ∅ for every 1 ≤ i < j ≤ t, and let the i-th player Pi hold the sequence of inputs
yi :=

(
xi1 , xi2 , . . . , xi|Si|

)
. We are still interested in computing the original function f . The

total communication required must be smaller than in the original k-player setting, since the
t players can simulate the protocol involving the original k players. A natural question is:
how much smaller can the communication be?

There are many communication models that are possible, but our main motivation for
looking at this question comes from applications to data streams, see below, and so we are
primarily interested in the one-way number-in-hand model. In this model, each of the t
players can only see its own input. The first player composes a message m1 based on its
input y1 and sends m1 to the second player. The second player takes m1 and its input y2
to compute a message m2 for the third player, and so on. The t-th (also the last) player,
upon receiving the message mt−1 from the (t − 1)-st player, computes the output of the
protocol based on mt−1 and its own input yt. We sometimes abuse notation and refer to
the output as mt. The total communication cost is the maximum of

∑t
i=1 |mi|, where |mi|

denotes the length of the i-th message and the maximum is taken over all possible inputs
y1, . . . , yt (which is a partition of {x1, . . . , xk}) and all random coin tosses of the players. For
streaming applications we are especially interested in maxi∈{1,...,t} |mi|.

To explain the connection to data streams, almost all known lower bound arguments on
the memory required of a data stream algorithm are proven via communication complexity, or
at least can be reformulated using communication complexity. The basic idea is to partition
the elements of an input stream contiguously, consisting of say k elements, into a possibly
smaller number t of players. Then one argues that if there is a data stream algorithm
solving the problem, then the communication problem can be solved by passing the memory
contents as messages from player to player. Note that this naturally gives rise to the one-way
number-in-hand model. Since the total communication cost is t · S, where S is the size of the
memory of the streaming algorithm, if the randomized t-player communication complexity of
the function f is CCt, we must have S ≥ CCt/t. Many lower bounds in data streams are
proven already with two players. However, it is known that for some functions more players
are needed to obtain stronger lower bounds, such as for estimating the frequency moments
in insertion only streams (see, e.g., [3, 17] and references therein).

One cannot help but ask how powerful is communication complexity for proving data
stream lower bounds? Another natural question is: for a given function f , which number t
of players should one partition the stream into? Yet another question is regarding the input
distribution – should it be a product distribution for which the inputs to the players are
chosen independently, or should the inputs be drawn from a non-product distribution to
obtain the best space lower bounds? Since we are interested in the limits of using t players
for establishing lower bounds for data stream algorithms, we allow the original k inputs
(which correspond to the k elements in a stream) to be partitioned in the worst possible way
for a t-player communication protocol, as this will give the strongest possible lower bound.
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1.1 Our Results
In this paper we study these communication questions and their connections to data streams.

We first make the simple observation that for non-product input distributions, the
communication complexity can be arbitrarily smaller if we partition the k inputs into t < k

players. Indeed, consider the k-player set disjointness problem in which the i-th player,
1 ≤ i ≤ k, has a set Si ⊆ [n], where for notational simplicity we define [n] := {1, 2, . . . , n}
for n ∈ N. The input distribution satisfies the promise that either (1) Si ∩ Sj = ∅ for every
1 ≤ i < j ≤ k, or (2) there is a unique item a ∈ [n] such that a ∈ Si for all i ∈ [k], and
for any other a′ 6= a, there is at most one i ∈ [k] for which a′ ∈ Si. It is well-known that
the randomized communication complexity of this problem is Ω (n/k) [3, 8, 10], and that
the bound holds even for multiple rounds of communication and players share a common
blackboard. However, if we look at t < k players and an arbitrary, even if the worst-case
mapping of the input sets S1, . . . , Sk to the t players, then by the pigeonhole principle
there exists a player who gets two input sets Si, Sj with i 6= j. Now this player can locally
determine the output of the function by checking if Si ∩ Sj = ∅. Thus with t < k players
the problem is solvable using O (1) bits per player. This simple argument shows that for
non-product distributions, there can be an arbitrarily large gap between the k-player and
the t-player worst-case-partitioned randomized communication complexities. Note that this
example applies to a symmetric problem, meaning that the k-player set disjointness problem
is invariant under any one-to-one assignment of x1, . . . , xk to the k players.

Perhaps surprisingly, and this is one of the main messages of our work: for symmetric
functions and product input distributions, we show that for any t < k, for deterministic
one-way communication complexity or randomized one-way communication complexity with
error probability 1/poly(k), there is no gap in maximum message length between the k-player
and t-player communication complexities. That is, the gap is at most a multiplicative O (1)
factor in message length and O(k) in total communication. Further, this gap is tight, as
there are problems for which the input distribution is a product distribution, and the t-player
communication with 1/poly(k) error probability is O (log k) for constant t = O (1), while the
k-player communication with 1/poly(k) error probability is Ω (k log k). Thus, the answer
for product input distributions is significantly different than what we saw for non-product
distributions, even for symmetric functions.

We also show that for constant error protocols and under product input distributions,
the gap is at most a multiplicative O(log k) factor in message length and O(k log k) in total
communication. Further, we show there exists a symmetric function and input distribution
which is product on any k − 1 out of k inputs, for which this gap is best possible. We leave
open the question of the existence of a symmetric function and product input distribution (on
all k inputs rather than k − 1 out of k) which realizes this gap for constant error protocols.

One takeaway message from our results is that when showing space lower bounds for
data stream algorithms computing symmetric functions on product distributions, by looking
at 2-player communication complexity (which is by far the most common communication
setup), there is only an O(1) factor loss for error probability 1/poly(k) protocols, and an
O (log k) factor loss for constant error protocols.

Data Stream Lower Bounds: As a key application of our lower bound techniques, we
provide a space lower bound for (1 ± ε)-approximating the Hamming norm in the strict
turnstile model. This problem, which is also known as the L0 norm estimation and denoted
by Tε, requires estimating ‖x‖0 := |{i | xi 6= 0}| of a vector x = (x1, . . . , xN ) and outputting
an estimate F̃ for which (1 − ε)‖x‖0 ≤ F̃ ≤ (1 + ε)‖x‖0 with constant probability. The
vector x is initialized to all zeros and undergoes a sequence of m updates each of the
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form (i, v) ∈ [N ] × [±M ], where [±M ] := {0,±1, . . . ,±M} and each update (i, v) causes
xi ← xi + v. In the strict turnstile model xi ≥ 0 holds for all i and at all points in the
stream. We obtain an Ω

(
ε−2 log(N) log log(mM)

)
bits of space lower bound for (1 ± ε)-

approximating the Hamming norm. This lower bound matches the best known upper
bound O

(
ε−2 log(N) (log(1/ε) + log log(mM))

)
[12] for any ε ≥ 1/polylog(mM). Note that

ε ≥ 1/polylog(mM) is required in order to obtain polylogarithmic space, and so is the
most common setting of parameters. Perhaps surprisingly, there is an upper bound of
O
(
ε−2 log(mM)

)
bits of space for (1 ± ε)-approximating Lp for p > 0 [13] (improving an

earlier O
(
log2N

)
bound of [9]; see also a time-efficient version in [11]), and thus we provide

a strict separation in the complexities for p = 0 and p > 0. The Hamming norm has many
applications, as it corresponds to estimating the number of distinct values, and can be used
to estimate set union and intersection sizes (see [7] where it was introduced).

Technical Overview: We first illustrate the idea behind showing there is no gap between
k-player and 2-player deterministic one-round communication complexity. The first player
P1 of the k-player protocol pretends to be Alice, the first player of the 2-player protocol, to
create the message m1 as Alice would do and sends it to the second player P2 of the k-player
protocol. Having received this message m1, P2 enumerates over all possible inputs of P1
until finding one which would cause P1 to send m1. Since the protocol is deterministic and
it evaluates a function defined on a product domain, meaning that it is a total function on
a domain of the form S1 × S2 × · · · × Sk, the function value must be the same as long as
P1’s input results in the same message m1 to be sent. So P2 can arbitrarily pick one of those
inputs as his guess for P1. Now P2 has a guess x for P1’s input together with his own input
y, and P2 can simulate Alice in the 2-player protocol. This is feasible because the 2-player
protocol works under any partitioning of the inputs. Then P2 sends to the third player P3
the message that Alice would send to Bob in the 2-player protocol, given that Alice had
input (x, y). In case when every player Pi cannot figure out how many input items have
been processed from his own input and the received message mi−1, which is important for
his simulation of the 2-player protocol, an additional logarithmic-many-bits index carrying
this piece of information should be passed together with the simulated messages. In this
way, the entire k-player protocol can be simulated and the per player communication equals
to the communication of the 2-player protocol between Alice and Bob, sometimes plus the
additional logarithmic many bits for the index. Moreover, both protocols are deterministic.

For the randomized case with a product input distribution, we first consider 2-player
protocols with error probability 1/poly(k). We would like to run the same simulation as for
deterministic protocols, except now it is unclear how the second player P2 can reconstruct a
valid input x for the first player P1 from the first message m1. A natural thing would be
for P2 to choose the input x1 to P1 for which the probability of sending m1, given that P1’s
input is x1, is greatest. This is not correct though, since the overall probability of P1 holding
x1 and sending m1 may be less than the 1/poly(k) error bound and the protocol could afford
to be always wrong on such a combination of x1 and m1. Thus we need some balancing
between two probabilities: i) the first player P1 sends m1 on input x1; and ii) the protocol
output is correct given that P1 has input x1 and sends m1.

The above naturally suggests that we should impose an input product distribution µ.
Then it must be that for a good fraction of x, weighted according to µ, the k-player protocol
is correct when the first player has input x1 and sends message m1. Thus we can sample x
from the conditional distribution on µ given that message m1 is sent. Here, for correctness,
it is crucial that µ is a product distribution; this ensures for most settings of remaining
player’s inputs (weighted according to µ), for most choices of x1 (weighted according to µ)
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giving rise to m1, the function evaluated on the inputs is the same, and x1 can be sampled
independently of remaining inputs. Once we have sampled x1, and given that the second
player has private input x2 in the k-player protocol, we can then have the second player
pretend to be Alice of a randomized 2-player protocol with input (x1, x2), similar to the
deterministic case. Ultimately, we will show that under distribution µ we obtain a protocol
with total communication at most O (k) times that of the 2-player protocol with error
probability 1/poly(k) (and an O (1) multiplicative blowup in maximum message length, times
that of the 2-player protocol), where the factor k comes from the number of invocations of
the 2-player protocol.

We illustrate the optimality of the randomized reduction above by looking at the Sum-
Equal problem studied by Viola [16]: in this problem each of k players holds an input xi
mod p, where p = Θ

(
k1/4) is a prime, and they wish to determine whether

∑
i xi = 0 or

1 mod p. Viola shows this problem has randomized communication complexity Θ (k log k),
for both randomized protocols with constant error probability as well as deterministic
protocols (and thus also randomized protocols with 1/poly(k) error probability). Moreover,
for randomized protocols with 1/poly(k) error probability, Viola’s Ω(k log k) lower bound
holds even for a product distribution on the inputs (where if

∑
i xi mod p /∈ {0, 1} the

output can be arbitrary). We observe that under any partition of the inputs into 2-players
Alice and Bob, the problem can be solved with O (log k) bits with probability 1− 1/poly(k)
just by running an equality test on the sum modulo p of Alice and the negated sum modulo
p of Bob. Thus, this illustrates that the factor O(k) gap for protocols for product input
distributions with 1/poly(k) error probability is optimal.

On the other hand, for constant error protocols and a product input distribution, there
is a 2-player O (1) bit upper bound in the public coin model which comes from running
an equality test with constant error probability (since we measure error with respect to an
input distribution, equality has an O(1) upper bound with constant error). We note that
the k-player protocol has communication Ω (k log k) for constant error protocols, which gives
the Ω (k log k) factor gap we claimed. The only downside is that the Ω (k log k) lower bound
holds for an input distribution which is product on k − 1 out of k players, rather than all k
players. We leave it as an open question to give an optimal separation for product input
distributions for constant error probability.

Given the importance of Viola’s problem in showing separations, we next show a direct
sum theorem for his problem, showing its communication complexity increases to Ω (kr log k)
for solving a constant fraction of r independent copies. To show the direct sum theorem for
Viola’s problem, one issue is that, unlike for two players where the technique of information
complexity often provides direct sum theorems, for k-players the analogues are much weaker.
A natural route would be to take Viola’s corruption bound, argue it implies a high information
bound, and then apply standard direct sum theorems for information. This approach does
not give an information cost lower bound on private coin protocols, though one can fix it for
two players using [5], which improves upon a bound in [6]. However, for k players similarly
strong bounds are unknown. Another natural approach is to use the fact that if a problem
has a corruption bound, then one immediately has a direct sum for it [4]. Again though, this
is only for two players or the number on forehead model, and not for our setting.

Instead, our proof is inspired by Viola’s rectangle argument for a single copy of the
Sum-Equal problem, where each rectangle, restricted to the first k − 1 players, is a product
distribution on which the protocol generates a message to the k-th player. We use a rectangle
argument on multiple copies where the output is now a binary vector instead of a single bit.
The main obstacle is that we must consider the Hamming distance between the protocol
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output and the correct answer in a vector space, which is much more involved than studying
the error probability for a single instance. The intuition of our proof is that for every large
rectangle, there must be linearly many copies that appear (almost) uniformly random in
the last player’s view. The above argument is fairly intricate, and involves several levels of
conversion: i) a large rectangle implies large conditional entropy in many players’ inputs;
ii) the large entropy of all copies implies we have min-entropy at least 1 on many copies;
iii) a random variable of min-entropy at least 1 can always be decomposed into a convex
combination of uniform distributions over two elements; iv) the summation of sufficiently
many independent random variables that are each drawn from a uniform-over-two-element
distribution turns out to be nearly uniform, and hence many Sum-Equal copies look uniform
to the last player.

Thus, the last player can hardly outperform a random guess. Note that it is insufficient
to prove uniformity for many copies individually (which is not too hard using the same
idea as in Viola’s proof), since such a situation could be simulated with a much smaller
rectangle with very small error. We instead perform our rectangle argument inductively to
show most copies appear almost uniform, even if conditioned on previous copies. For space
considerations this induction is mostly deferred to the full version.

This direct sum technique has further applications. One application is to proving a
lower bound for approximating the Hamming norm in a strict turnstile stream. Using a
result of [2], to show lower bounds for streaming algorithms in the strict turnstile model, it
suffices to show lower bounds in the simultaneous communication model, where each player
simultaneously sends a message to a referee who outputs the answer. While our direct sum
theorem holds in this more restrictive model, we also need to consider a composition of the
gap-Hamming problem on top of the Sum-Equal instances as well as an augmented index
version of the composed problem. In the augmented problem we additionally give a referee
an index i and the answers to all copies j, with j > i. Similar augmentation has been studied
for Lp-norms [13]. This allows us to reduce our communication problem to Hamming norm
approximation, and ultimately prove our data stream lower bound.

2 Preliminaries

A function f : Σk → Γ is called a k-party symmetric function if for every (x1, x2, . . . , xk) ∈ Σk
and for every permutation σ over {1, 2, . . . , k}, there is f(x1, . . . , xk) = f

(
xσ(1), . . . , xσ(k)

)
.

A k-dimensional vector space S is called a product space if it can be represented as S =
S1×S2× · · · ×Sk. A distribution µ is called a product distribution if it is obtained by taking
the product of k independent distributions, i.e., µ = µ1 × µ2 × · · · × µk.

In the t-player communication complexity model, there are t computationally unboun-
ded players, e.g., P1, . . . , Pt, required to compute a function f : X1 × · · · × Xt → Y ,
where f is usually a t-party symmetric function. Each player Pi is given a private input
xi ∈ Xi and follows a fixed protocol to exchange messages. For every input (x1, . . . , xt),
the message transcript is denoted by Πt(x1, . . . , xt) when all players follow the protocol
Πt (when Πt is randomized, Πt(x1, . . . , xt) is a random variable taking probabilities over
players’ random coins). A deterministic protocol Πt computes f if there is a function Πout

such that Πout

(
Π(t)
t (x1, . . . , xt), xt

)
≡ f , where Π(t)

t (x1, . . . , xt) denotes Pt’s view under
the execution of Πt on input (x1, . . . , xt) and for simplicity we let Πout (x1, . . . , xt) :=
Πout

(
Π(t)
t (x1, . . . , xt), xt

)
. A δ-error randomized protocol Πt for f requires the existence of

Πout such that for all inputs (x1, . . . , xt), Pr [Πout (x1, . . . , xt) = f(x1, . . . , xt)] ≥ 1− δ. The
communication cost of Πt is the maximum size of Πt(x1, . . . , xt) over all x1, . . . , xt and all
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random coins. The t-player deterministic communication complexity (resp. t-player δ-error
randomized communication complexity), denoted by DCCt(f) (resp. RCCt,δ(f)), is the cost
of the best t-player deterministic (resp. δ-error randomized) protocol Πt for f .

Given a k-party function f : X1 × · · · × Xk → Y and t < k, we define DCCt(f) and
RCCt,δ(f) under a worst-case partition of inputs. That is, let ft(z1, . . . , zt) = f(x1, . . . , xk)
be defined for every partition i0 = 0 ≤ i1 ≤ · · · ≤ it = k and zj := (xij−1+1, . . . , xij ), and
the t-player communication complexity of f is defined with respect to the worst choice of ft,
i.e., DCCt(f) := maxft DCCt(ft) and RCCt,δ(f) := maxft RCCt,δ(ft).

Given a t-party function f and its input distribution µ, we let DCCµ
t,δ(f) denote the

communication cost of the best t-player deterministic protocol Πt computing f such that
Prx∼µ [Πout(x) 6= f(x)] ≤ δ. Similarly we define RCCµ

t,δ(f) for randomized protocols.
In the restricted one-way communication model [15, 1, 14], the i-th player sends exactly

one message to the (i + 1)-st player for i ∈ [t − 1] following Πt, and then Pt announces
the output of Πt as specified by Πout. Note that in this setting there are only k − 1
messages sent by P1, . . . , Pk−1, and we do not count the final output announced by Pt
in the communication in order to best correspond to streaming algorithms. This is also
known as a sententious protocol in previous work, e.g., [16]. We denote the t-player one-way
communication complexities of f by −−−→DCCt(f) and −−−→RCCt,δ(f), respectively.

In the common reference string model (aka CRS model), there is a sequence of public
random coins, which is by default a uniformly random binary string, accessible to all players.
The obvious advantage of communication in the CRS model is that players have access to
the same random string and thus save the cost of synchronizing their private coins.

A streaming algorithm is an algorithm that scans the input (x1, . . . , xm) ∈ Σm as m
stream input items in sequence, updates its internal memory of size s = o (m log |Σ|) (i.e., a
streaming automaton with 2s states, where the space cost of updating the internal memory
is not accounted for), and finally outputs a function f(x1, . . . , xm) evaluated on all input
items. If the best deterministic (resp. δ-error randomized) streaming algorithm computes f
with s bits of memory and t passes over the data stream, then we say the deterministic (resp.
δ-error) streaming complexity of f is st, denoted by DSC(f) = st (resp. RSCδ(f) = st). In
a popular and standard setting, a streaming algorithm scans the input stream in a single pass
and only processes every input item once. The necessary amount of memory required by such
single-pass algorithms is called the single-pass deterministic/δ-error streaming complexity
and denoted by −−−→DSC(f) and −−−→RSCδ(f) respectively.

Note that every streaming algorithm can be naturally interpreted as a communication
protocol where each party holds some (possibly an empty set of) input items on the stream
and the messages capture the memory updates. The connection between streaming complexity
and communication complexity trivially follows in the following lemma.

I Lemma 1. For every function f and error tolerance δ, for every k ∈ N, it holds that:

DSC(f) ≥ 1
k
·DCCk(f), RSCδ(f) ≥ 1

k
·RCCk,δ(f)

Furthermore, similar relations hold for −−−→DSC, −−−→RSCδ and −−−→DCCk,
−−−→RCCk,δ.

3 Communication Complexity for Functions on Non-Product Spaces

I Theorem 2. For every t ≥ 2, there is a t-party symmetric function f defined on D ⊆
{0, 1}n =

(
{0, 1}n/t

)t such that for δ < 1/4, −−−→DCCt−1(f) ≤ t− 1 but RCCt,δ(f) = Ω (n/t).
If t = O (1), then −−−→DCCt−1(f) = O (1) and RSCδ(f) ≥ 1

t ·RCCt,δ(f) = Ω (n).
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Proof. Consider the t-party set disjointness problem Disjn/t,t defined as follows: there
are t players P1, . . . , Pt such that every player Pi holds a private indicator vector xi ∈
{0, 1}n/t which represents a subset of [n/t], i.e., Disjn/t,t(x1, . . . ,xt) = ∨n/tj=1 (∧ti=1xi,j),
where xi,j denotes the j-th coordinate of xi. We consider the domain D such that the
vectors x1, . . . ,xt ∈ {0, 1}n/t are either (1) pairwise disjoint, or (2) sharing a unique element
j ∈ [n/t]. Let f be the function that computes Disjn/t,t on domain D.

On the one hand, it is easy to verify that −−−→DCCt−1(f) ≤ t− 1. Indeed, at least one of the
t−1 players obtains two distinct indicator vectors and hence can itself decide the output of f .
The communication is 1 bit per player to pass the result, and hence the total communication
is bounded by t− 1 since there are t− 1 players.

On the other hand, the Ω(n/t) lower bound for RCCt,δ(f) follows from the known lower
bound for multi-player set disjointness (see [3], which was improved to optimal in [8, 10]).
The lower bound for RSCδ(f) immediately follows by Lemma 1. J

4 Deterministic Communication and Streaming Complexity

We first show that 2-player one-way communication complexity is equivalent to the streaming
complexity of single-pass streaming algorithms in the deterministic setting.

I Theorem 3. For every symmetric function f , −−−→DCC2(f) ≤ −−−→DSC(f) ≤ −−−→DCC2(f) + logn.

Proof. Obviously, −−−→DSC(f) ≥ −−−→DCC2(f) since a 2-player communication protocol simulates
a streaming algorithm. It remains to prove −−−→DSC(f) ≤ −−−→DCC2(f) + logn.

Suppose the input stream is (x1, . . . , xn) ∈ Σn, and for every partition into (x1, . . . , xi)
and (xi+1, . . . , xn) there is a deterministic 2-player one-way protocol Πi

2 computing f . We
design the deterministic single-pass streaming algorithm A for f by simulating 2-player
one-way communication protocols under different partitions. The memory usage of A is
therefore bounded by the maximum communication cost of the simulated 2-player protocols
plus an index in [n] recording the number of processed items. Notice that when processing
the item xi+1, A has already processed x1, . . . , xi and has (mi, i) in memory. A can thus
reconstruct a compatible guess of x′′1 , . . . , x′′i that would induce exactly the message mi as in
Πi

2, and then sets the memory to be (mi+1, i+ 1) where mi+1 is the message sent in Πi+1
2

when P1 has (x′′1 , . . . , x′′i , xi+1) and P2 has (xi+2, . . . , xn). A repeats this process for every
i = 1, . . . , n− 1 and at the end it outputs f(x1, . . . , xn).

Therefore, we complete the proof with −−−→DCC2(f) ≤ −−−→DSC(f) ≤ −−−→DCC2(f) + logn. J

I Corollary 4. For every k-party symmetric function f ,

(k − 1) · −−−→DCC2(f) ≤ −−−→DCCk(f) ≤ (k − 1) ·
(−−−→DCC2(f) + log k

)
Proof. Combining Lemma 1 and Theorem 3, it follows that
−−−→DCCk(f) ≤ (k − 1) · −−−→DSC(f) ≤ (k − 1) ·

(−−−→DCC2(f) + log k
)

The other direction −−−→DCCk(f) ≥ (k − 1) · −−−→DCC2(f) holds by giving zj = ∅ to every
player j ∈ {2, . . . , k − 1} in the k-player case, when the problem degenerates to 2-player
communication but the same message has to be passed k − 1 times. J

Such a linear separation naturally extends to the communication complexity of t-player
versus k-player protocols, as long as 2 ≤ t < k. Thus, the deterministic communication
complexity grows linearly in the number of parties.
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We remark that if every player must get a non-trivial input, i.e., at least one input element
to the function, the linear growth remains for some but not all problems. For example, the
communication complexity of the parity of k bits is linear in the number of players. However,
to decide whether k elements in [k] are distinct, the 2-player protocol requires communication
log
(
k
k/2
)
≈ k− log

√
k, whereas the k-player worst-case communication grows sublinearly, i.e.

for k players the communication is no more than
∑k−1
i=1 log

(
k
i

)
� (k − 1) · log

(
k
k/2
)
.

5 Communication Complexity for Functions on a Product Space

5.1 Separations for Randomized Communication Complexity
In this section, we consider the communication cost of randomized multi-player protocols
defined on product input distributions and present a k log k versus t log t separation between
k-player and t-player communication complexity.

First we introduce the Sum-Equal problem (as used in Viola’s work [16]).
The k-player Sum-Equal over integers, denoted by Sum-Equalk, requires deciding

whether
∑k
i=1 xi = 0, where each player Pi is given an integer xi as well as k. In the

CRS model, an additional public random string is also known to all players. The k-player
Sum-Equal over Zm, denoted by Sum-Equalk,m, is defined similarly as Sum-Equalk,
except that the input items are drawn from Zm and the summation is over Zm, for a publicly
known m.

I Lemma 5 ([16], Theorem 15 and Theorem 29). For every k ∈ N, 0 ≤ δ ≤ 1/3, and in the
CRS model, the k-player δ-error communication complexity of Sum-Equal satisfies:
(a) For every m ∈ N, −−−→RCCk,δ(Sum-Equalk,m) = O (k log(k/δ)).
(b) For every prime p ∈ (k1/4, 2k1/4), RCCk,δ(Sum-Equalk,p) = Ω (k log k).
In particular, RCCk,δ(Sum-Equalk,p) = Θ (k log k) in the CRS model if δ = Ω (1/poly(k)).

We remark that Viola’s lower bound for Sum-Equalk,p is proved for a non-product
distribution µH whose support covers exactly a 2/p fraction of the whole (product) input
space. Thus if a k-player protocol solves Sum-Equalk,p with error δ ≤ 1/k on a uniform
distribution µ over the whole input space, then its error with respect to µH is bounded by
1/k
2/p < k−3/4. By Lemma 5, the Ω (k) separation in Corollary 6 naturally follows.

I Corollary 6. For prime p ∈ (k1/4, 2k1/4) and δ ≤ 1/poly(k), there is a product distribution
µ such that RCCµ

k,δ(Sum-Equalk,p) = Ω (k log k), −−−→RCC2,δ(Sum-Equalk,p) = O (log k).

For a larger error tolerance, say δ is a constant, we have a stronger separation between
k-party communication and t-party communication. However, the hard distribution is slightly
non-product, that is, it is a product distribution on any k − 1 out of the k players.

I Corollary 7. For every k ∈ N, there is a k-party symmetric function f such that
(a) For any product distribution µ, for every 2 ≤ t ≤ k and 0 ≤ δ ≤ 1/3, −−−→RCCµ

t,δ(f) =
O (t log(t/δ)). In particular, −−−→RCCµ

2,δ(f) = O (log(1/δ)).
(b) There exists a distribution µH , which is product on any k− 1 out of k players, for which

RCCµ
k,δ(f) = Ω (k log k) as long as δ ≤ 1/3.

For δ ≥ 1/poly(t), the gap between RCCµ
k,δ(f) and −−−→RCCµ

t,δ(f) is bounded as below:

RCCµ
k,δ(f)

/ −−−→RCCµ
t,δ(f) = Ω

(
k log k
t log t

)
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The outline of the proof of Corollary 7 was given in Section 1. That is, the upper bound
in part (a) follows from applying k = t in the first part of Lemma 5, while the lower bound
in part (b) follows from the second part of Lemma 5. We defer the proofs to the full version.

5.2 Tightness of the Communication Complexity Separation
The following theorem and corollary show tightness of our separations.

I Theorem 8. For every k-party function f : Σk → Γ, product distribution µ over Σk, and
error tolerance δ < 1/3, if the optimal δ-error 2-player one-way protocol for f does not
degenerate to the deterministic case, then the following holds:

−−−→RCCµ
k,δ(f)

/ −−−→RCC2,δ(f) ≤O
(
k ·
(

1 + log k
log(1/δ)

))
=
{
O (k log k) if δ = Ω (1)
O (k) if δ = 1/kΩ(1)

Proof sketch. We present the major steps and leave the complete proof to the full version.
First we let Π0 be the optimal δ-error 2-player one-way protocol Π0 that computes f

with communication C = −−−→RCC2,δ(f), and construct a new protocol Π2 by taking M =
O
(

1 + log k
log(1/δ)

)
repetitions of Π0 such that the error probability of Π2 is reduced to δ2/(16k2).

Note that Π2 is still a 2-player one-way protocol but has communication O (CM).
Second we prove that for every product input distribution µ over Σk, the k-party function

f can be evaluated by a randomized k-player one-way protocol Πk with communication
O (k · CM) and error δ/2 with respect to µ. The idea is that given µ, each player Pi:
1) assumes that the received message mi−1 from Pi−1 will lead to a correct answer with
probability ≥ 1− δ

4k ; 2) samples a possible input x′1, . . . , x′i−1 of previous players P1, . . . , Pi−1
on which with probability ≥ 1 − δ

4k the protocol is correct conditioned on mi−1 being
sent and (x′1 . . . , x′i−1, xi, . . . , xk) being the actual input (here we use that µ is a product
distribution); 3) and finally sends a message mi of length O (CM) as in Π2 where Alice has
input (x′1, . . . , x′i−1, xi). By a union bound the error probability of Πk is bounded by δ/2
with respect to µ. The fact that µ is a product distribution is used in the second step where
the sampling process relies on that previous players’ inputs are independently distributed
from that of future players.

Thus we finish the proof and conclude that −−−→RCCµ
k,δ(f) ≤ O (kCM). J

Notice that in the proof of Theorem 8, every message in Πk has the length bounded by
O (CM), which gives an upper bound for the single-pass streaming complexity.

I Corollary 9. For every k-party function f and product input distribution µ, and for every
δ < 1/3, RSCµ

δ (f) ≤ −−−→RSCµ
δ (f) ≤ O

(
1 + log k

log(1/δ)

)
·
−−−→RCC2,δ(f).

6 A Direct Sum for Viola’s Problem

We next turn to our direct sum theorem for Viola’s problem, which is a crucial building
block for our streaming application.

I Theorem 10. Let F :
(
Zmp
)k → {0, 1}m be the k-party function computing m independent

copies of Sum-Equalk,p, where p is a prime between k1/4 and 2k1/4. For every error tolerance
δ ∈ (0, 1/9), we say a protocol Π is correct with probability 1− δ if there is a reconstruction
function G such that for every fixed i ∈ [m] and input x ∈

(
Zmp
)k, G(i,Πout(x)

)
equals the

output of the i-th instance of Sum-Equalk,p with probability at least 1− δ, over the internal
randomness of Π. Then the communication cost of any Π which is correct with probability
1− δ, is Ω (mk log k).
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We give a sketch of the proof of Theorem 10 here, and defer the full proof to the full version.

Proof sketch of Theorem 10. First we fix the randomness used in the protocol Π and
convert it into a deterministic protocol Π′ that has δ error with respect to a specific input
distribution H. Here H = (X1, . . . , Xk−1, Xk + v) for independent X1, . . . , Xk−1 uniformly
distributing over Zmp , Xk = −

∑k−1
j=1 Xj and v uniformly sampled from {0, 1}m. Note that

H−k := (X1, . . . , Xk−1) is uniform over
(
Zmp
)k−1.

We next recall the intuition behind rectangle arguments in multi-player number-in-hand
communication complexity: every k-player (number-in-hand) deterministic protocol with
communication at most c partitions the inputs into C = 2c sets R1, R2, . . . , RC , where each
Ri is a rectangle in the form of Ri = Ri1 ×Rt2 × . . .×Rik such that every input in Ri induces
exactly the same transcript πi. We will use the rectangle argument to show that Π′ uses
communication c ≥ Ω (1) ·mk log k.

The main step is the following claim (with proof sketched later in this subsection):

B Claim 11. If c < 1−9δ
135 ·mk log k, then for every rectangle R satisfying Pr[H−k ∈ R−k] ≥

1/(3C) = 1/(3× 2c), there must be L ⊆ [m] and ` := |L| ≥ 9δm such that conditioned on
X−k ∈ R−k, the distribution of X(L)

k , which is Xk restricted on L, is `/p-close to the uniform
distribution over Z`p.

Using Claim 11, it is easy to show Pr [Π′(H) errs on ≤ 3δm coordinates] ≤ 2/3, which
contradicts that Π′ has δ error with respect to H and δ < 1/9. Therefore, the communication
cost of Π′, and hence of Π, must be ≥ 1−9δ

135 ·mk log k = Ω (mk log k). J

Proof sketch of Claim 11. This claim is proved using induction on the size of L. Suppose
the claim is true for (w.l.o.g.) the first ≤ `− 1 indices, we prove it for the next one. More
specifically, we show that the last player Pk gets nearly no information about the `-th
copy when the input distribution follows H and X−k falls into a sufficiently large rectangle
R−k = R1 × · · · ×Rk−1. That is, for X−k ∼

(
Zmp
)k−1 and Xk = −

∑k−1
j=1 Xj , the marginal

distribution X(`)
k | X−k ∈ R−k is statistically close to uniform.

The proof outline is as follows: first, let Ex denote the event that the first k − 1 players
have x on their first ` − 1 coordinates, i.e. X

[`−1]
−k = x. Second, we consider frequently

appearing x conditioned on H−k ∈ R−k such that Pr [Ex | H−k ∈ R−k] ≥ 1
2p1+(`−1)(k−1) (the

missed probability measure is at most 1
2p since there are ≤ p(`−1)(k−1) different choices of

x), and let Jx ⊆ [k − 1] be the set of players whose input falls into R−k with “significant”
probability conditioned on Ex. Specifically, we prove that Jx must have size |Jx| ≥ 0.5k − 1
for Jx :=

{
j ∈ [k − 1]

∣∣∣ Pr
[
Xj ∈ Rj

∣∣ Ex] ≥ 2−1−2c/k
}
. Third, for every player j ∈ Jx, we

consider the set Ij,x of coordinates such that for every i ∈ Ij,x, the conditional min-entropy of
X

(i)
j is large given that player j’s input Xj is consistent with x and falls into Rj . In particular,

for Ij,x :=
{
i ∈ [m] | H∞

[
X

(i)
j | Xj ∈ Rj , Ex

]
≥ 1
}
, there is |Ij,x| > m− `− 2(1−9δ)

15 m+ 1.
Finally we apply Chebyshev’s inequality and a Chernoff bound together with a standard

averaging argument to conclude that there is a fixed coordinate, w.l.o.g. we call it `, such
that with probability ≥ 1−e−Ω(k), the conditional min-entropy H∞

[
X

(`)
j | Xj ∈ Rj , Ex

]
≥ 1

for ≥ k/30 players j ∈ [k − 1]. As a result, the last player Pk’s input X(`)
k = −

∑k−1
j=1 X

(`)
j is

a convex combination of random variables where each of them is the summation of ≥ k/30
uniform-over-two-elements variables. Repeating a very similar argument as in [16], we
conclude that X(`)

k is e−Ω(√k) close to uniform.
The overall error probability of above arguments is bounded by 1/p, which sums up to

≤ `/p for X(L)
k via a standard union bound. C
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7 Lower bound for Hamming Norm Estimation

In this section we present a space lower bound for single-pass streaming algorithms for (1±ε)-
approximating the Hamming norm L0, which is denoted by Tε as in Section 1.1. Recall that
the underlying vector is N -dimensional and there are m updates each of magnitude [±M ].

I Theorem 12. For error tolerance ε < 1/3 and ε = max
{

Ω
(√

log k
k

)
, 1
N0.49

}
, any single-

pass streaming algorithm solving Tε with probability ≥ 2/3 in the strict turnstile model must
use Ω

(
ε−2 log(N) log log(mM)

)
bits of space.

Proof sketch. We present a proof sketch here, with the detailed proof left to the full paper.
First we introduce the GHSEn,k problem, which is a composition of the n-dimensional
gap Hamming weight problem Gap-Hammingn over the results of n copies of k-player
Sum-Equalk instances, i.e., the result of GHSEn,k is 1 if there are ≥ (1 + ε)n/2 underlying
Sum-Equal instances outputting 1, and 0 if ≤ (1− ε)n/2 instances outputting 1.

The hard problem for our lower bound is the augmented index version of GHSEn,k, which
we denote by Aug-Index-GHSEt

n,k. In particular, Aug-Index-GHSEt
n,k has t = Θ (logn)

many GHSEn,k instances embedded, where the last player Pk is given an index i ∈ [t]
together with the results of GHSE(i+1)

n,k , . . . ,GHSE(t)
n,k, and Pk is required to output the

result of GHSE(i)
n,k. Following the reduction in Theorem 4.1 of [2] it suffices to prove our

space lower bound in the simultaneous communication model, where each of P1, . . . , Pk−1
sends a single message to the referee Pk.

In the reduction from Aug-Index-GHSEt
n,k to Tε, the input integers to underlying

Sum-Equalk instances are processed as updates to distinct elements. Furthermore, every
Sum-Equalk instance of GHSE(j)

n embedded in the Aug-Index-GHSEt
n,k problem is given

frequency 100j−1, i.e., is counted as 100j−1 distinct elements. Thus the universe has
N := n + 100 · n + · · · + 100t−1 · n ≤ 100tn/99 distinct elements in total, and the final
Hamming norm is a weighted sum F :=

∑t
j=1 100j−1fj , where fj is the Hamming weight of

Sum-Equalk instances of GHSE(j)
n for every j ∈ [t]. An algorithm solving Tε will give a

(1± ε)-estimate F̃ of F , such that (1− ε)F ≤ F̃ ≤ (1 + ε)F . From the estimate F̃ we need to
determine the result of GHSE(i)

n for the given index i. Since the referee can precisely remove
the influence of GHSE(i+1)

n,k , . . . ,GHSE(t)
n,k using the auxiliary input before computing F̃ ,

it suffices to consider the case i = t and the estimation of ft. Indeed we prove that F̃ is
also a good approximation to 100t−1ft with high probability, as long as the additive error∑t−1
j=1 100j−1fj is significantly less than the variance of 100t−1ft. More specifically,

RCCsim
k,1/3 (Tε) ≥ RCCsim

k,0.4
(
Aug-Index-GHSEt

n,k

)
(1)

for our specified input distribution, which induces variance O (n) on every fj while our gap
in advantage is Ω (n).

Then we prove that the communication cost of solving the augmented index version of t
copies of GHSEn,k is equal to simultaneously solving Ω (t) many copies.

RCCsim
k,0.4

(
Aug-Index-GHSEt

n,k

)
≥ Ω

(
t ·RCCsim

k,0.01 (GHSEn,k)
)

(2)

The proof relies on the direct sum property of one-way communication for the GHSE problem.
The intuition is that all necessary information for computing GHSE(1)

n,k, . . . ,GHSE(t)
n,k must

be included in the messages to the referee, since every instance GHSE(i)
n,k can be determined at

the referee’s position by changing the referee’s input alone (without tampering the messages).
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Next we prove an Ω
(
ε−2k log log k

)
lower bound for RCCsim

k,0.1 (GHSEn,k) and mM =
poly(k). Consider the input x = (x1, . . . ,xk) to the GHSEn,k problem, where each player Pj
gets xj =

(
x(1)
j , . . . ,x(n)

j

)
∈ Zn, and for every i ∈ [n], Z(i) := Sum-Equalk

(
x(i)

1 , . . . ,x(i)
k

)
denotes the result of the i-th Sum-Equal instance and the range is {±1}. Let HSE(x) :=∑k
i=1 Z

(i) denote the bias of the underlying vector for the Gap-Hammingn problem embed-
ded in GHSEn,k(x). Recall that GHSEn,k distinguishes HSE(x) ≥ εn and HSE(x) ≤ −εn,
where the gap becomes

√
n′ for GHSEn′,k and n′ = 1/ε2. With random universal hash

functions specified by the public randomness, we prove that

RCCsim
k,0.01 (GHSEn′,k) ≥ RCCsim

k,0.1

(
Aug-Index-Sum-Equaln

′′

k

)
(3)

where n′′ = Θ (n′) and Aug-Index-Sum-Equaln
′′

k is the augmented index version of n′′
instances of the Sum-Equalk problem.

Furthermore, the lower bound holds for a distribution µ over Zn′×k such that for x ∼ µ
the conditional expectation satisfies Var (HSE(x)) ≤ n′, E [HSE(x) | GHSEn′,k(x) = 1] =
10
√
n′ and E [HSE(x) | GHSEn′,k(x) = 0] = −10

√
n′. More specifically, let each player

specify independent hash functions for every Sum-Equalk instance, and send the majority
of those hash values to the referee. The referee can guess the input and corresponding hash
value of any specific Sum-Equalk instance, such that the conditional distribution of the
majority of hash values has a Θ

(
1/
√
n′′
)
bias under correct guesses. Therefore by taking

n′ = Θ (n′′) independent instances of the majority of hash values and conditioned on the
correctness of the guesses, the expected number of agreements of the majority and the
guessed hash value has a gap of Θ

(
n′/
√
n′′
)

= Θ
(√

n′
)
, while in both cases the variance is

linear in n′. For convenience we shift HSE(x) to ±10
√
n′ by padding and hence the vector

of majority instances becomes an input to Gap-Hammingn′ .
For RCCsim

k,0.1

(
Aug-Index-Sum-Equaln

′′

k

)
, i.e., k-player 0.1-error simultaneous com-

munication complexity of Aug-Index-Sum-Equaln
′′

k , the lower bound follows Theorem 13.

I Theorem 13. Let Π be an δ-error randomized simultaneous communication protocol for
Aug-Index-Sum-Equalm

′

k , where m′ ≤ k log log k
20 log k and the error tolerance δ < 1/6. Then

Π must have simultaneous communication cost RCCsim
k,δ (Π) = Ω (m′k log log k). Further-

more, the lower bound holds when the inputs to the Sum-Equalk problems are drawn from(
[a]m′

)k−1
× [±ka]m′ and the sum of inputs to each copy of Sum-Equalk is promised to be

0 or q, where a = O (log k) and q = 2O(a) ≤ k1/8 is a multiple of all integers in [a].

Here we present the proof intuition of Theorem 13, while the proof appears in the full paper.
Suppose that in a simultaneous communication protocol, a player P1 encodes multiple in-
stances of Sum-Equalk independently in a message, say t1 bits for Sum-Equal(1)

k , t2 bits for
Sum-Equal(2)

k , and so on. Then many Sum-Equalk instances will be irrecoverable if the mes-
sage length

∑m′

i=1 ti is significantly less than necessary for handlingm′ instances in parallel, say∑m′

i=1 ti ≤ 0.1·m′ ·RCCsim
k,δ (Sum-Equalk) /k, which means the Aug-Index-Sum-Equalm

′

k

cannot be solved with small error. Of course the full argument is much more involved, since
the information in different Sum-Equal instances can be combined in the message, which
we deal with via a dedicated rectangle argument for conditional distributions. Combining (1),
(2), (3), and Theorem 13, we get RCCsim

k,1/3 (Tε) ≥ Ω (tn′′k log log k). Recalling Theorem 4.1
of [2] and t = Θ (logn) = Ω (logN), n′′ = Θ (n′) = Θ

(
ε−2), mM = poly(k), we conclude

that −−−→RSCk,1/3 (Tε) = Ω
(
ε−2 log(N) log log(mM)

)
. J
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Abstract
Locally recoverable codes are a class of block codes with an additional property called locality. A
locally recoverable code with locality r can recover a symbol by reading at most r other symbols.
Recently, it was discovered by several authors that a q-ary optimal locally recoverable code, i.e., a
locally recoverable code achieving the Singleton-type bound, can have length much bigger than q + 1.
In this paper, we present both the upper bound and the lower bound on the length of optimal locally
recoverable codes. Our lower bound improves the best known result in [12] for all distance d ≥ 7.
This result is built on the observation of the parity-check matrix equipped with the Vandermonde
structure. It turns out that a parity-check matrix with the Vandermonde structure produces an
optimal locally recoverable code if it satisfies a certain expansion property for subsets of Fq. To
our surprise, this expansion property is then shown to be equivalent to a well-studied problem in
extremal graph theory. Our upper bound is derived by an refined analysis of the arguments of
Theorem 3.3 in [6].
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1 Introduction

Motivated by applications in distributed and cloud storage systems, locally recoverable codes
have been studied extensively in recent years. Informally speaking, a locally recoverable
code (LRC for short) is a block code with an additional property called locality. For a
locally recoverable code C of length n, dimension k and locality r, it was shown in [4] that
the minimum distance d(C) of C is upper bounded by

d(C) 6 n− k −
⌈
k

r

⌉
+ 2. (1)

The bound (1) is called the Singleton-type bound for locally recoverable codes. A code
achieving the above bound is usually called optimal.
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1.1 Known results
Construction of optimal locally recoverable codes, i.e., block codes achieving the bound (1)
is of both theoretical interest and practical importance. This is a challenging task and has
attracted great attention in the last few years. In the literature, there are a few constructions
available and some classes of optimal locally recoverable codes are known. A class of codes
constructed earlier and known as pyramid codes [8] are shown to be codes that are optimal.
In [14], Silberstein et al proposed a two-level construction based on the Gabidulin codes
combined with a single parity-check (r + 1, r) code. Another construction [16] used two
layers of MDS codes, a Reed-Solomon code and a special (r + 1, r) MDS code. A common
shortcoming of these constructions relates to the size of the code alphabet which in all the
papers is an exponential function of the code length, complicating the implementation. There
was an earlier construction of optimal locally recoverable codes given in [13] with alphabet
size comparable to code length. However, the construction in [13] only produces a specific
value of the length n, i.e., n =

⌈
k
r

⌉
(r+1). Thus, the rate of the code is very close to 1. There

are also some existence results given in [13] and [15] with less restrictions on the locality r.
But both results require large alphabet which is an exponential function of the code length.

A recent breakthrough construction was given in [15]. This construction naturally
generalizes Reed-Solomon construction which relies on the alphabet of cardinality comparable
to the code length n. The idea behind the construction is very nice. The only shortcoming
of this construction is restriction on the locality r. Namely, r + 1 must be a divisor of either
q − 1 or q, or r + 1 is equal to a product of a divisor of q − 1 and a divisor of q for certain
q, where q is the code alphabet. This construction was extended via automorphism group
of rational function fields by Jin, Ma and Xing [10] and it turns out that there is more
flexibility on the locality and the code length can be q + 1. For some particular locality
such as r = 2, 3, 5, 7, 11 or 23, it was shown that there exist q-ary optimal locally recoverable
codes with length up to q + 2√q via elliptic curves [11]. All these results are aimed at the
optimal LRC with large distance.

Unlike classical MDS codes, it is surprising to discover that the optimal LRCs can have
super-linear code length in alphabet size q. Barg et.al, [1] gave optimal LRCs by using
algebraic surfaces of length n ≈ q2 when the distance d = 3 and r 6 4. This inspired
the construction of the optimal LRC with unbounded length and distance d = 3, 4 [12].
Furthermore, it was shown in [6] that an optimal LRC with d ≥ 5 must have length upper
bounded in terms of alphabet size q. More precisely, they showed that the length of an
optimal q-ary linear LRC with distance d > 5 and locality r is upper bonded by O

(
dq3+ 4

d−4

)
.

As for the lower bound, they presented an explicit construction of optimal LRCs with code
length Ωr

(
q1+ 1

b(d−3)/2c

)
provided that d ≤ r + 2, where Ωr means that the implied constant

depends on r. One can see that there is still a huge gap between the lower bound and the
upper bound. Following this discovery, there are several works dedicated to constructing
the maximum length of optimal LRCs. The paper [9] aimed at the optimal LRC with small
distance d = 5 or 6. In particular, for d = 6, the results given in [9] are obtained subject to
the constraint that q is even.

1.2 Our results, comparisons and a conjecture
The main result of this paper can be summarized as follows.

I Theorem 1. Suppose that r > d− 2 and (r + 1)|n. Then
(i) there exists an explicit construction of optimal locally recoverable codes with length

n = q2−o(1), minimum distance d and locality r for d = 7, 8;
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(ii) there exists an explicit construction of optimal locally recoverable codes with length
n = q

3
2−o(1), minimum distance d and locality r for d = 9, 10;

(iii) there exist optimal locally recoverable codes with length n = Ωr,d

(
q(q log q)

1
b(d−3)/2c

)
,

minimum distance d and locality r for d ≥ 11; and
(iv) there exists an explicit construction of optimal locally recoverable code with length

n = Ωr,d

(
q1+ 1

b(d−3)/2c

)
, minimum distance d and locality r for a constant d ≥ 11.

Moreover, the complexity of this construction is upper bounded by O(nd).

The first three results are derived from extremal graph theory (see Section 5). The last
one is derived from the probabilistic arguments (see Section 4).

The first two results improve on the result in [6] which only achieves n = Ω(q3/2) for
d = 7, 8 and n = Ω(q4/3) for d = 9, 10. The third one outperforms the result in [6] by
a (log q)

1
b(d−3)/2c multiplicative factor. In addition, for d = 6, we are able to remove the

constraint required in [9] that q is even.
Although it was proved in [6] that the length of an optimal locally recoverable code

is upper bounded by q3+O( 1
d ), both the constructions in [6] and this paper show from

different angles that the length of an optimal locally recoverable code only achieve q1+O( 1
d ).

Furthermore, via an upper bound from extremal graph theory, our construction in this paper
can achieve at most O

(
q1+ 2

b(d−1)/2c

)
(see Section 5). Thus, we make the following conjecture.

I Conjecture 2. Every optimal locally recoverable code with minimum distance d and locality
r has length upper bounded by q1+O( 1

d ).

In addition to the above lower bound on length of optimal locally recoverable codes, we
also provide an improved upper bound by refining the analysis of the arguments of Theorem
3.3 in [6].

I Theorem 3 (Informal). Let C be an optimal [n, k, d]q-linear locally repairable code with the
locality r. If d > 5, then

n ≤
{
O(q3) if d mod r + 1 > 5 or d mod r + 1 < 2,
O(q2) if 2 ≤ d mod r + 1 ≤ 5. (2)

1.3 Our techniques
For minimum distance d ≥ 7, the only optimal locally recoverable code with super-linear
code length was given in [6]. In this paper, we present another construction for optimal LRCs
for d > 5. Our idea comes from generalized Reed-Solomon codes where parity-check matrices
have the Vandermonde structure. This idea was already employed in [9] for d = 5, 6. Similar
to [9], we divide a parity-check matrix into disjoint blocks, each block with r + 1 columns.
We require that each block of this matrix has a Vandermonde matrix structure. In order that
the parity-check matrix with this structure produces an optimal locally recoverable code,
elements in these blocks must satisfy certain expansion property. This property allows us to
relate optimality of a locally recoverable code to a well-studied problem in extremal graph
theory. With the help of extremal graph theory, we succeed to improve all of the best known
results in [6] for d ≥ 7.

Furthermore, by a random or probabilistic argument, we show an existence result.
Moreover, for constant d the probabilistic method for the existence result can be converted
into a deterministic algorithm via method of conditional probabilities. Thus, we obtain an
algorithmic construction in polynomial time, i.e., Theorem 1(iv). The result of Theorem
1(iv) matches the result given in [6]. However, our parity-check matrix is more structured
and this may lead to some other applications.

ICALP 2019
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1.4 Organization
The paper is organized as follows. In Section 2, we briefly introduce locally recoverable codes
and some basic notations on graph theory. Section 3 presents a necessary and sufficient
condition for which a Vandermonde-type parity-check matrix produces an optimal locally
recoverable code in terms of certain expansion property for subsets of Fq. In Section 4, we
first show an existence result via a probabilistic method. Then this probabilistic method is
converted into an algorithmic construction in polynomial time. In Section 5, we show that
the necessary and sufficient condition derived in Section 2 is equivalent to a central problem
in extremal graph theory. By applying the known results from extremal graph theory, we
obtain the desired results. Finally, in Section 6, we prove a general upper bound on the
optimal LRC.

2 Preliminaries

2.1 Locally recoverable codes
Let q be a prime power and Fq be the finite field with q elements and denote by [n] the set
{1, 2, . . . , n}. In this paper, we consider linear locally recoverable codes only. An [n, k, d]
linear code C is a k-dimensional subspace of Fn

q with minimum (Hamming) distance d. The
(Euclidean) dual code of C, denoted by C⊥, is defined by C⊥ = {b ∈ Fn

q : c ·b = 0 for all c ∈
C}, where c · b denotes the standard inner product of the two vectors b and c.

Informally speaking, a block code is said to have locality r if every coordinate of a given
codeword can be recovered by accessing at most r other coordinates of this codeword. There
are several equivalent definitions of locally recoverable codes. A formal definition of a locally
recoverable code with locality r is given as follows.

I Definition 4. A q-ary block code C of length n is called a locally recoverable code or
locally repairable code (LRC for short) with locality r if for any i ∈ [n], there exists a subset
Ri ⊆ [n]\{i} of size r such that for any c = (c1, . . . , cn) ∈ C, ci can be recovered by {cj}j∈Ri ,
i.e., for any i ∈ [n], there exists a subset Ri ⊆ [n] \ {i} of size r such that for any u,v ∈ C,
uRi∪{i} = vRi∪{i} if and only if uRi = vRi . The set Ri is called a recovering set of i.

In literature, there are various definitions for locally recoverable code and all of them
are equivalent. For example, we have the following two definitions that are equivalent to
Definition 4. For the sake of completeness, we give a proof.

I Lemma 5. A q-ary code C of length n is a locally recoverable code if and only if one of
the followings holds.
(i) For any i ∈ [n], there exists a subset Ri ⊆ [n] \ {i} of size r such that position i

of every codeword c ∈ C is determined by cRi
, i.e, there is a function fi(x1, . . . , xr)

(independent of c and only dependent on i) such that ci = fi(cRi), where cRi stands
for the projection of c at Ri.

(ii) For any i ∈ [n], there exists a subset Ri ⊆ [n] \ {i} of size r such that

CRi
(i, α) ∩ CRi

(i, β) = ∅

for any α 6= β ∈ Fq, where C(i, α) = {c ∈ C : ci = α} and CRi
(i, α) denotes the

projection of C(i, α) on Ri.

The Singleton (upper) bound in (1) is given in terms of minimum distance d. We can
also rewrite this bound in terms of dimension k.
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I Lemma 6. Let n, k, d, r be positive integers with (r + 1)|n. If the Singleton-type bound (1)
is achieved, then

n− k = n

r + 1 + d− 2−
⌊
d− 2
r + 1

⌋
. (3)

Conversely, if d− 2 6≡ r (mod r + 1) and the equlity (3) is satisfied, then the Singleton-type
bound (1) is achieved.

The proof is straightforward and can be found in [6].
I Remark 7. If d− 2 ≡ r (mod r + 1), one can verify that (3) implies that r|k. In this case,
by [4, Corollary 10] one cannot achieve the Singleton-type bound (1) with equality and one
must have d 6 n− k −

⌈
k
r

⌉
+ 1. Therefore in this case we say an LRC attaining this latter

bound as optimal.

I Corollary 8. If r > d−2, then an [n, k, d] locally recoverable code with locality r is optimal if

n− k − n

r + 1 = d− 2. (4)

Proof. As r > d− 2,
⌊

d−2
r+1

⌋
= 0. Hence, (3) and (4) are equivalent. J

The locality of a locally recoverable code C can be determined by a parity-check matrix of
C as follows. Assume that (r + 1)|n. Let m = n

r+1 and let Di be (n − k −m) × (r + 1)
matrices. Put

H =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
D1 D2 · · · Dm

 , (5)

where 1 and 0 stand for the all-one row vector and the zero row vector of length r + 1,
respectively. Let C be the code with H as a parity-check matrix. Then it is clear that the
dimension of C is at least k. Furthermore, we claim that the locality of C is r. Indeed,
let c = (c1, c2, . . . , cn) be a codeword of C, then

∑(r+1)(i+1)
j=1+(r+1)i cj = 0 for 0 6 i 6 m − 1

as HcT = 0. Hence, a coordinate cj with j ∈ {1 + (r + 1)i, . . . , (r + 1)(i + 1)} for some
0 6 i 6 m− 1 can be repaired by cRj with Rj = {1 + (r + 1)i, . . . , (r + 1)(i+ 1)} \ {j}.

In conclusion, to see if a linear code C with a parity-check matrix H of the form (5) is
an optimal locally recoverable code, it is sufficient to check if the minimum distance of C
satisfies (4) for r > d− 2.

2.2 Graphs
A undirected graph G is a pair G = (V,E), where V is a finite set and E is a set consisting of
some subsets of size 2 of V . An element of V is called a vertex and an element of E is called
an edge. A subgraph G′ of a graph G is a graph whose vertex set and edge set are subsets
of those of G. We say that G has a cycle (v1, . . . , vm) if {vi, vi+1} ∈ E for i = 1, . . . ,m− 1
and {vm, v1} ∈ E. The following Lemma 9 provides a simple but useful way to determine
if G contains a cycle. The proof can be found in any textbook about graph theory (see [3]
for instance).
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I Lemma 9. An undirected graph G contains a cycle if |E| ≥ |V |.

Apart from the above usual definition of graphs, we also require some results on hypergraph
in this paper. A hypergraph is a generalization of a graph in which an edge can join any
number of vertices. Formally, a hypergraph H is a pair H = (X,E) where X is a set of
elements called vertices, and E is a set of non-empty subsets of X called hyperedges or edges.
Therefore, E is a subset of 2X \ {∅}, where 2X stands for the power set of X.

I Definition 10 (r-uniform Hypergraph (or r-graph for short)). A hypergraph H = (X,E) is
called r-uniform if every hyperedge in E has size r. In other words, every hyperedge of an
r-uniform hypergraph connects exactly r vertices.

There are several ways to define cycles in a hypergraph that coincide with the definition
of cycles in the usual graph. In this paper, we use the Berge cycle as the generalization of
cycles in the usual graph.

I Definition 11 (Berge cycle). A r-uniform hypergraph H = (X,E) contains a Berge k-cycle
(v1, . . . , vk) if there exist k hyperedges e1, . . . , ek ∈ E such that {vi−1, vi} ⊆ ei for i = 2, . . . , k
and {v1, vk} ⊆ e1.

3 A criterion on minimum distance

It follows from Corollary 8 that for d ≤ r + 2, a locally recoverable code with parity-check
matrix H in (5) is optimal provided that any d− 1 columns of H are linearly independent
and each Di is a (d− 2)× (r + 1) matrix.

Let Fq be a finite field and put m = n
r+1 . Assume that A1, . . . , Am are subsets of Fq, each

of size r + 1. Let Ai = {ai,1, . . . , ai,r+1} for i = 1, . . . ,m. Let ai,j = (ai,j , a
2
i,j , . . . , a

d−2
i,j ) and

put Di = (aT
i,1,aT

i,2, . . . ,aT
i,r+1). Thus, Di is a Vandermonde-type matrix. Let e1, . . . , em be

the standard basis of vector space Fm
q , i.e., all components of ei are 0 except that the i-th

component is 1. Then, we can rewrite H as follow.

H =
(

eT
1 · · · eT

1 · · · eT
m · · · eT

m

aT
1,1 · · · aT

1,r+1 · · · aT
m,1 · · · aT

m,r+1

)
. (6)

We now present a sufficient and necessary condition under which any d− 1 columns of
the matrix H in (6) are linearly independent.

I Theorem 12. For d > 5, then any d−1 columns of H defined in (6) are linearly independent
if and only if |

⋃
i∈S Ai| ≥ r|S|+ 1 for any S ⊆ [m] of size no more than t = bd−1

2 c.

Proof. We first prove the “if” direction. Let hi,j be the (i, j)th column of H, i.e., hi,j =
(ei,ai,j)T for 1 6 i 6 m and 1 6 j 6 r+ 1. Choose any d− 1 columns {hi,j}16i6m;j∈Si of H,
where Si are subsets of [r+ 1] satisfying

∑m
i=1 |Si| = d− 1. Let A′i = {ai,j ∈ Ai : j ∈ Si}, i.e.,

A′i is the subset of Ai where each element is associated with one of the d− 1 columns. Let H ′
be the (n− k−m)× (d− 1) matrix consisting of these d− 1 columns. We are going to show
that H ′ has rank d− 1. We assume that Si is either empty or of size at least 2. Otherwise,
the unique column selected from Di with |Si| = 1 must be linearly independent from the rest
d− 2 columns. We can consider the linear independence of the rest d− 2 columns instead.
Now, we assume that there are at most t non-empty sets Si. Let A = {ai,j}16i6m;j∈Si .
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Assume that A = {a1, . . . , as} has s distinct elements. If s = d− 1, then by elementary row
operations, one can find a (d− 1)× (d− 1) Vandermonde submatrix of the form(

1 1 · · · 1
aT

1 aT
2 · · · aT

d−1

)
of H ′, where ai = (ai, a

2
i , . . . , a

d−2
i ). Thus, the rank of H ′ is d− 1.

We proceed to the case where s < d− 1. By permuting the columns of H ′, we obtain a
matrix of the following form:

H1 =
(

eT
i1

eT
i2
· · · eT

is
eT

is+1
· · · eT

id−1

aT
1 aT

2 · · · aT
s aT

s+1 · · · aT
d−1

)
,

where 1 6 i1 6 i2 6 · · · 6 id−1 6 m and {as+1, . . . , ad−1} is a subset of A. Thus, aj belongs
to Aij

for 1 6 j 6 d− 1. By elementary column operations, we can erase aT
s+i since it also

appears in one of the first s columns. Hence, H1 is equivalent to

H2 =
(

eT
i1

eT
i2
· · · eT

is
eT

is+1
− eT

ks+1
· · · eT

id−1
− eT

kd−1

aT
1 aT

2 · · · aT
s 0T · · · 0T

)
,

where {ks+1, . . . , kd−1} is a subset of {i1, . . . , is}. Since H2 is an upper left triangular block
matrix, showing that H2 is a full-rank matrix is equivalent to showing both (aT

1 ,aT
2 , . . . ,aT

s )
and (eT

is+1
− eT

ks+1
, · · · , eT

id−1
− eT

kd−1
) have full rank. Note that (aT

1 ,aT
2 , . . . ,aT

s ) is a (d −
2)× s Vandermonde matrix and hence it has full rank s. It remains to show that eis+1 −
eks+1 , . . . , eid−1 − ekd−1 are linearly independent. Suppose they were linearly dependent.
Then there exist elements λs+1, . . . , λd−1 ∈ Fq which are not all zero such that

d−1∑
j=s+1

λj(eij − ekj ) = 0.

Let P be the subset of {s+ 1, . . . , d− 1} such that λi 6= 0 if and only if i ∈ P . It follows that∑
i∈P

λi(eji
− eki

) = 0. (7)

Let U = {ji : i ∈ P}, V = {ki : i ∈ P} and W = U ∪ V . As both U and V are subsets of
{i ∈ [m] : |Si| > 2}, we have |W | 6 t =

⌊
d−1

2
⌋
. Since λi is nonzero for all i ∈ P , every ` ∈W

must appear at least twice in the multiset consisting of elements of U and V . Otherwise, e`

could not be cancelled in (7). This implies |W | ≤ |P |.
On the other hand, for each ai ∈ A, there is exactly one subset A′ki

containing ai since
the first s columns have s distinct ai. Furthermore, let ti = |{` ∈ U : ai ∈ A′`}|. It follows
that

∑
ai∈A ti = |P | and ai belongs to ti + 1 subsets in {A′` : ` ∈W}. This implies∣∣∣∣∣ ⋃

`∈W

A`

∣∣∣∣∣ ≤∑
`∈W

|A`| −
s∑

i=1
ti = (r + 1)|W | − |P |

since A′` ⊆ A`. Combining with the condition |
⋃

`∈W A`| ≥ r|W |+ 1 forces |W | ≥ |P |+ 1.
A contradiction occurs and we complete the proof of the “if” direction.

We proceed to the “only if” direction. First, we claim that |Ai ∩Aj | ≤ 1 for any i 6= j.
Otherwise, we may assume that Ai ∩Aj contains two distinct elements a1 and a2. Thus, H
contains the four linearly dependent columns (ei,a1)T , (ei,a2)T , (ej ,a1)T and (ej ,a2)T .
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We prove the “only if” part by contradiction. Without loss of generality, we assume
that the first s subsets A1, . . . , As do not satisfy the condition, i.e. |

⋃s
i=1 Ai| ≤ sr, where s

satisfies s 6 t. Define an undirected graph G = ([s], E) such that {i, j} ∈ E if and only if
Ai ∩Aj 6= ∅. By inclusion-exclusion principle, we have

rs >

∣∣∣∣∣
s⋃

i=1
Ai

∣∣∣∣∣ ≥
s∑

i=1
|Ai| −

∑
(i,j)∈E

1 = s(r + 1)− |E|.

This implies |E| ≥ s. By Lemma 9, there exists a cycle in this undirected graph. Without loss
of generality, we may assume that (1, . . . , `) is a cycle, i.e., {i, i+ 1} ∈ E for i = 1, . . . , `− 1
and {`, 1} ∈ E. By the definition of E, Ai and Ai+1 contains a common element {aji

}. Then,
we can pick two columns (ei,aji−1)T 1 and (ei,aji)T from the i-th block Di for i = 1, . . . , `.
These 2` columns are linearly dependent since

∑̀
i=1

(
(ei,aji−1)− (ei,aji

)
)

=
∑̀
i=1

(0,aji−1 − aji
) = 0.

The proof is completed. J

By Theorem 12, we immediately obtain the following result.

I Theorem 13. If t =
⌊

d−1
2
⌋
> 2 and (r + 1)|n, then there exists a q-ary optimal linear

LRC with length n, minimum distance d and locality r provided that there are m = n
r+1 sets

A1, . . . , Am ⊆ Fq such that

|Ai| = r + 1 for 1 ≤ i ≤ m,
|
⋃

i∈S Ai| ≥ |S|r + 1 for any S ⊆ [m] of size at most t. (8)

I Remark 14. We point out that there is another way to look at (8) as one reviewer suggests.
Define an unbalanced bipartite expander graph where the vertex ui on the left hand side are
associated with sets Ai and the vertex vj on the right hand side are associated with an element
aj in Fq. ui and vj are adjacent if and only if aj is contained in Ai. The expansion property
(8) is now equivalent to the existence of good unbalanced bipartite graph [5]. However, the
parameters discussed in this paper are not in the scope of explicit construction of good
unbalanced bipartite graph, i.e., the expansion property in (8) is too strong for all known
explicit constructions.

4 Random and algorithmic constructions

In the previous section, we converted the construction of optimal LRCs into a problem of
finding subsets of Fq satisfying (8). In this section, we first present a probabilistic construction
of subsets satisfying (8). In addition, we can derandomize this probabilistic construction into
a deterministic construction in polynomial time if d is constant. The case t = 2, i.e., d = 5
and 6, is equivalent to the design of constant weight codes [9]. In this section, we assume
t ≥ 3. Since the algebraic structure is not important for the union of set, we replace Fq with
[q] from now on.

I Theorem 15. There exist m =
⌈

q
1+ 1

t−1

2t2(r+1)2+ 2
t−1

⌉
sets A1, . . . , Am satisfying (8) provided q

is large enough.

1 Define aj0 = aj` for simplicity.
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Proof. Let Xi = {xi,1, . . . , xi,r+1}, i = 1, . . . , 2m be the set picked uniformly at random over
all (r + 1)-sized subsets of [q]. Define the binary random variable YS such that YS = 1 if
|
⋃

i∈S Xi| ≤ |S|r and 0 otherwise. Our goal is to bound the expectation E
[∑

S⊆[2m],|S|≤t YS

]
.

Without loss of generality, we may assume that S = {1, . . . , a} for some 1 < a ≤ t. We
order the random variables in Xi, i = 1, . . . , a, i.e., x1,1, . . . , x1,r+1, . . . , xa,1, . . . , xa,r+1. We
want to bound the probability of the event YS = 1, i.e., at least a elements repeated in this
sequence. Given an element xi,j , the probability that xi,j 6= xi′,j′ for some xi′,j′ prior to
xi,j is at least 1 − (i−1)(r+1)+j

q ≥ 1 − a(r+1)
q . Taking over all sets of size at least a in this

sequence, the probability of YS = 1 is at most

a(r+1)∑
i=a

(
a(r + 1)

i

)(
a(r + 1)

q

)i

≤
a(r+1)∑

i=a

(
a(r + 1)

)i

i!

(
a(r + 1)

q

)i

≤ 1.1
a!

(
a2(r + 1)2

q

)a

.

for q ≥ 10a2(r + 1)2. It follows that

E

 ∑
S⊂[2m],|S|≤t

YS

 =
t∑

i=2

∑
S⊂[2m],|S|=i

Pr[YS = 1] ≤
t∑

i=2

(
2m
i

)
1.1
i!

(
i2(r + 1)2

q

)i

≤
t∑

i=2
1.1( 1

i! )
2
(

2mi2(r + 1)2

q

)i

≤
t∑

i=2
1.1
(

1
i!

)2(
q

(r + 1)2

) i
t−1

≤ 1.1× 1.5
(

1
t!

)2(
q

(r + 1)2

) t
t−1

≤ 2
4t2

(
q

(r + 1)2

) t
t−1

≤ m.

for q ≥ t2t3t(r + 1) and t ≥ 3. The second inequality is due to
(2m

i

)
≤ (2m)i

i! and the third
inequality is due to(

1
i!

)2(
q

(r + 1)2

) i
t−1

≥ 3
(

1
(i− 1)!

)2(
q

(r + 1)2

) i−1
t−1

.

That means there exists 2m (r+ 1)-sized sets A1, . . . , A2m such that there are at most m
subsets S ⊆ [2m] with |

⋃
i∈S Ai| ≤ |S|r. For each of these m subsets S, remove one set from

Ai, i ∈ S. The desired result follows as we remove at most m sets. J

Theorem 15 is an existence proof. However, if t is a constant, it is possible to turn this
argument into an algorithm via the method of conditional probabilities.

I Theorem 16. There exists a polynomial-time deterministic algorithm to find m sets in
Theorem 15 provided that t is a constant.

Proof. We follow the same notation in Theorem 15. Let Xi = {xi,1, . . . , xi,r+1} be a random
set of size r + 1. Our goal is to minimize E[

∑
S⊂[2m],|S|≤t YS ] by fixing the set Xi one by

one. Since

E

 ∑
S⊆[2m],|S|≤t

YS

 =
∑

A⊂[q],|A|=r+1

E

 ∑
S⊆[2m],|S|≤t

YS |X1 = A

Pr[X1 = A]

= 1(
q

r+1
) ∑

A⊂[q],|A|=r+1

E

 ∑
S⊆[2m],|S|≤t

YS |X1 = A

 ,
there exists a set A such that E

[∑
S⊆[2m],|S|≤t YS |X1 = A

]
≤ E

[∑
S⊆[2m],|S|≤t YS

]
. If r+ 1

is a constant, we only need to enumerate all subsets of size r+1 in polynomial time. However,
if r + 1 is not a constant, we enumerate x1,1 ∈ X1 instead of the whole set, i.e., minimizing
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E
[∑

S⊆[2m],|S|≤t YS |x1,1 = a1,1

]
for a1,1 ∈ [q]. Given a subset S ⊆ [2m] of size t, let us show

how to compute E[YS |x1,1 = a1,1]. Without loss of generality, we assume S = {1, . . . , t}.
We list t(r + 1) random elements x1,1 = a1,1, x1,2, . . . , x1,r+1, . . . , xt,1, . . . , xt,r+1. For large
enough q, it suffices to approximate E[YS |x1,1 = a1,1] by counting the number of sequences
where there are exact t repetitions. There are

((r+1)t
t

)
combinations of these t positions. Let

R ⊆ [t] × [r + 1] be any set of size t representing the t positions. we first remove these t
positions from the sequence. The remaining tr positions in the sequence must have distinct
elements and there are

∏rt−1
i=0 (q − i) ways to pick these tr elements. Assume that we assign

1, . . . , rt to these rt positions. To obtain our final result, we multiply it by
∏rt−1

i=0 (q − i). It
remains to fill our sequence by adding back the t positions in R. For each (i, j) ∈ R, we
enumerate all possible choices of xi,j , (i, j) ∈ R and find out the number of combinations
that there are exact t repetitions in the resulting sequence. There are at most qt ways to do
the enumeration. Then, we obtain the exact value of E[YS |x1,1 = a1,1]. Observe that there
are at most

∑t
i=2
(

n
i

)
subsets S. Thus, this expectation can be computed in polynomial time

as t is a constant. We do it r + 1 times so as to fix all elements in X1. Given A1, . . . , Ak,
our goal is to find Xk+1 = Ak+1 to minimize the expectation

E

 ∑
S⊆[2m],|S|≤t

YS |X1 = A1, . . . , Xk = Ak

 ≤ E
 ∑

S⊆[2m],|S|≤t

YS

 .
It can be done in the same way as X1, . . . , Xk−1 are already fixed. After we fix all these 2m
sets, we will obtain A1, . . . , A2m with the same property as Theorem 15 claims. Then, we
enumerate all t-sized subsets S ⊆ [q] and do the same as Theorem 15 does. The resulting
subsets are the output of our algorithm. The number of these subsets is at least m. Since t
is constant, all this operation is done in polynomial time. The proof is completed. J

The following is a direct consequence of Theorem 12, Theorem 15 and Theorem 16.

I Theorem 17. For d > 5, put t =
⌊

d−1
2
⌋
. If r > d − 2, (r + 1)|n and q is sufficiently

large, then there exists a q-ary [n, k, d] optimal locally recoverable code with locality r and

n ≥ q
1+ 1

t−1

2t2(r+1)1+ 2
t−1

. The parity check matrix of this code has the form of (6). Moreover, if d
is a constant, there exists a deterministic algorithm running in polynomial time to construct
this code.

5 The connection with extremal graph theory

To our surprise, it turns out that finding a collection of sets satisfying (8) is equivalent to
constructing an (r + 1)-uniform hypergraph avoiding short Berge cycle. The latter is one of
the central problems in extremal graph theory and this problem is extremely difficult.

I Lemma 18. There exist m sets satisfying (8) if and only if there exists an (r+1)-hypergraph
H = ([q], E) with |E| = m that does not have any Berge `-cycles for all ` ≤ t.

Proof. To see the equivalence of these two problems, we define an (r + 1)-hypergraph as
follows: Let H = (V,E) with V = [q] and E = {A1, . . . , Am}. It is clear that H is an
(r + 1)-hypergraph. Assume that there exists k ≤ t subsets Ai1 , . . . , Aik

does not satisfy
the condition that |

⋃k
j=1 Aij

| ≥ rk + 1. The same argument in Theorem 12 implies that
there exists a cycle (1, 2, . . . , `) such that j ∈ Aij ∩ Aij+1 . That means {j − 1, j} ⊆ Aij

for j = 2, . . . , ` and {1, `} ⊆ Ai1 . By the definition of Berge cycle, the (r + 1)-hypergraph
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H contains this Berge `-cycle (1, 2, . . . , `). On the other hand, assume that there exists a
Berge `-cycle in H. Denote the ` edges of this cycle Ai1 , . . . , Ai`

. The results follows since
|Aij
∩Aij+1 | ≥ 1 for i = 1, . . . , `− 1 and |Ai1 ∩Ai`

| ≥ 1. J

The equivalence of both the problems allow us to make use of known results in this area.
Let F be a family of r + 1-graph. Denote by exr+1(n,F) the maximum number of edges
in an (r + 1)-hypergraph that does not contain any subgraphs in F . Denote by BCk the
set of k-cycles. Let Bk = {BC2, . . . , BCk}. One upper bound on exr+1(n,Bt) is obtained by
reducing this problem to an m× n bipartite graph with girth more than 2t and apply the
result in [7].

I Proposition 19 ([19]). exr+1(n,Bt) is upper bounded by
(i) n

r ( n
r+1 )

2
t−1 + n

r+1 if t is odd,
(ii) n

r(r+1)n
2
t + n

r+1 if t is even.

Since these two problems are equivalent, Proposition 19 gives an upper bound on the
number m of sets Ai. For t = 3, 4, the following two propositions show that this upper
bound is asymptotically tight. However, constructing such hypergraph requires sophisticated
knowledge in this area which is beyond the scope of this paper. We summarize the results
as follows.

I Proposition 20 ([18]). There exists explicit construction of (r+ 1)-hypergraph H = ([q], E)
with |E| = q2−o(1) that contains no subgraph in B3.

I Proposition 21 ([17]). There exists explicit construction of (r+ 1)-hypergraph H = ([q], E)
with |E| = Θ(q 3

2−o(1)) that contains no subgraph in B4.

Determining the exact value of exr+1(n,Bt) for r ≥ 2 and t ≥ 3 is extremely difficult. A
major open problem in this area is whether exr+1(n,Bt) = Ω(n1+ 2

t ). A tighter lower bound
for general t can be obtained from H-free random process [2]. The method in [2] can also be
applied to hypergraph and add a log factor above the probabilistic method in Theorem 15.
Again this technique is beyond our scope.

I Proposition 22 ([18]). exr+1(n,Bt) = Ωr,t(n(n logn)
1

t−1 ).

Theorem 1 summarizes all above results in the language of codes.

6 An upper bound on the length of optimal LRC

In this section, we derive an upper bound on the length of optimal LRC. Our upper bound
holds for all optimal LRC. The proof of our upper bound is a refined analysis of the argument
of Theorem 3.3 in [6]. Recall the following Lemma in [6].

I Lemma 23 (Lemma 3.1 [6]). Let C be an [n, k, d]q linear optimal LRC with locality r.
Then, there exist n

r+1 disjoint recovery sets, each of size r + 1 provided that

n

r + 1 ≥
(
d− 2−

⌊
d− 2
r + 1

⌋)
(3r + 2) +

⌊
d− 2
r + 1

⌋
+ 1. (9)

We use above lemma to force the optimal LRC to have disjoint recovery sets.

I Theorem 24. Let C be an optimal [n, k, d]q-linear locally repairable codes of locality r with
(r + 1)|n and n = Ω(dr2) satisfying (9) in Lemma 23. If d > 5, then

n ≤
{
O(q3) if d mod r + 1 > 5 or d mod r + 1 < 2,
O(q2) if 2 ≤ d mod r + 1 ≤ 5. (10)
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Proof. Put h = d − 2 − bd−2
r+1 c. Then n − k = n

r+1 + h and h ≤ d − 2. We first follow the
same line of proof in Theorem 3.3, [6]. It allows us to assume that the parity-check matrix of
optimal LRC C is as follows:

H =


1 0 · · · · · · · · · 0
0 1 · · · · · · · · · 0
...

...
. . . . . . . . .

...
0 0 · · · · · · · · · 1

A

 , (11)

where A is an h× n matrix over Fq. The submatrix consisting of the first ` rows of H is a
block diagonal matrix. Let hi,j be the ((i− 1)(r + 1) + j)-th column of H, i.e.,

hi,j = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
`−i

,vi,j)T (12)

for some vi,j ∈ Fh
q , where T stands for transpose. Define

h′i,j := hi,j − hi,r+1 = (0, . . . , 0︸ ︷︷ ︸
`

,vi,j − vi,r+1)T

for i ∈ [`] and j ∈ [r]. It is clear that there are only h = d− 2− bd−2
r+1 c nonzero components

in h′i,j . Assume that d− 6 = a(r + 1) + b for some 0 ≤ b ≤ r. Then, we claim that the first
ar+ b columns h′i,j are linearly independent. This is because the linear combination of these
ar + b columns leads to

a∑
i=1

r∑
j=1

λi,j(hi,j − hi,r+1) +
b∑

j=1
λa+1,j(ha+1,j − ha+1,r+1) 6= 0

as it is a linear combination of ar + b+ a+ 1 = d− 5 columns of H.
Since these ar + b columns h′i,j are linearly independent, there exist ar + b indices where

these ar + b vectors h′i,j span the whole space. Without loss of generality, we assume they
are the last ar + b indices. To simply our argument, we denote by S the index set of first
ar + b columns and S̄ the index set of the rest columns. For each (x, y) ∈ S̄, there exist
λxi,yj

∈ Fq such that h̄′x,y = h′x,y −
∑

(i,j)∈S λxi,yj
h′i,j gives a vector whose value on last

ar + b indices are all zero. The number of nonzero components of h′x,y is at most

h− (ar + b) = d− 2− bd− 2
r + 1 c − (d− 6) + bd− 6

r + 1 c = 4 + bd− 6
r + 1 c − b

d− 2
r + 1 c.

On the other hand, let h̄′x1,y1
and h̄′x2,y2

be any two vectors of h̄′x,y, (x, y) ∈ S̄. Ob-
serve that they lie in the space spanned by ar + b columns h′i,j and h′x1,y1

,h′x2,y2
which

in turn contained in the space spanned by the first d − 5 columns hi,j together with
hx1,y1 ,hx1,r+1,hx2,y2 ,hx2,r+1. This implies that h̄′x1,y1

and h̄′x2,y2
are linearly independent.

Let H1 be the matrix whose columns consist of h̄′x,y, (x, y) ∈ S̄. Remove all zero rows in
H1 and denote the resulting matrix H2. It is clear that any two columns of H2 are linearly
independent and H2 has at most 4 + bd−6

r+1 c − b
d−2
r+1 c rows. Let C1 be a linear code whose

parity-check matrix is H2. We divide our discussion into two cases.
1. bd−6

r+1 c − b
d−2
r+1 c = 0, i.e., d mod r + 1 > 5 or d mod r + 1 < 2 .

Then, C1 has length N ≥ rn
r+1 − d, dimension k ≥ N − 4 and distance d ≥ 3. In the worst

scenario, we assume that k = N − 4 and d = 3. Applying the Hamming bound on code
C1 gives qN−4 ≤ qN

N(q−1) . This implies N ≤ q3, i.e., n ≤ r+1
r (d+ q3).
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2. bd−6
r+1 c − b

d−2
r+1 c = −1 i.e., 2 ≤ d mod r + 1 ≤ 5.

Then, C1 has length N ≥ rn
r+1 − d, dimension k ≥ N − 3 and distance d ≥ 3. In the worst

scenario, we assume that k = N − 3 and d = 3. Applying the Hamming bound on code
C1 gives qN−3 ≤ qN

N(q−1) . This implies N ≤ q2, i.e., n ≤ r+1
r (d+ q2).

The proof is completed. J

References
1 Alexander Barg, Kathryn Haymaker, Everett W. Howe, Gretchen L. Matthews, and Anthony

Várilly-Alvarado. Locally recoverable codes from algebraic curves and surfaces. CoRR,
abs/1701.05212, 2017. arXiv:1701.05212.

2 Tom Bohman and Peter Keevash. The early evolution of the H-free process. Inventiones
mathematicae, 181(2):291–336, August 2010.

3 Belá Bollobás. Modern Graph Theory. Springer, New York, 1998.
4 Parikshit Gopalan, Cheng Huang, Huseyin Simitci, and Sergey Yekhanin. On the Locality of

Codeword Symbols. IEEE Trans. Information Theory, 58(11):6925–6934, 2012.
5 Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced Expanders and

Randomness Extractors from Parvaresh–Vardy Codes. J. ACM, 56(4):20:1–20:34, July 2009.
6 Venkatesan Guruswami, Chaoping Xing, and Chen Yuan. How Long Can Optimal Locally

Repairable Codes Be? In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2018, August 20-22, 2018 - Princeton, NJ,
USA, pages 41:1–41:11, 2018.

7 Shlomo Hoory. The Size of Bipartite Graphs with a Given Girth. J. Comb. Theory, Ser. B,
86(2):215–220, 2002.

8 Cheng Huang, Minghua Chen, and Jin Li. Pyramid Codes: Flexible Schemes to Trade Space for
Access Efficiency in Reliable Data Storage Systems. In Sixth IEEE International Symposium
on Network Computing and Applications (NCA 2007), 12 - 14 July 2007, Cambridge, MA,
USA, pages 79–86, 2007.

9 Lingfei Jin. Explicit construction of optimal locally recoverable codes of distance 5 and 6 via
binary constant weight codes. CoRR, abs/1808.04558, 2018. arXiv:1808.04558.

10 Lingfei Jin, Liming Ma, and Chaoping Xing. Construction of optimal locally repairable
codes via automorphism groups of rational function fields. CoRR, abs/1710.09638, 2017.
arXiv:1710.09638.

11 Xudong Li, Liming Ma, and Chaoping Xing. Optimal locally repairable codes via elliptic
curves. CoRR, abs/1712.03744, 2017. arXiv:1712.03744.

12 Yuan Luo, Chaoping Xing, and Chen Yuan. Optimal locally repairable codes of distance 3
and 4 via cyclic codes. CoRR, abs/1801.03623, 2018. arXiv:1801.03623.

13 N. Prakash, Govinda M. Kamath, V. Lalitha, and P. Vijay Kumar. Optimal linear codes with
a local-error-correction property. In Proceedings of the 2012 IEEE International Symposium
on Information Theory, ISIT 2012, Cambridge, MA, USA, July 1-6, 2012, pages 2776–2780,
2012.

14 Natalia Silberstein, Ankit Singh Rawat, Onur Ozan Koyluoglu, and Sriram Vishwanath.
Optimal locally repairable codes via rank-metric codes. In Proceedings of the 2013 IEEE
International Symposium on Information Theory, Istanbul, Turkey, July 7-12, 2013, pages
1819–1823, 2013.

15 Itzhak Tamo and Alexander Barg. A Family of Optimal Locally Recoverable Codes. IEEE
Trans. Information Theory, 60(8):4661–4676, 2014.

16 Itzhak Tamo, Dimitris S. Papailiopoulos, and Alexandros G. Dimakis. Optimal Locally
Repairable Codes and Connections to Matroid Theory. IEEE Trans. Information Theory,
62(12):6661–6671, 2016.

17 Craig Timmons and Jacques Verstraëte. A counterexample to sparse removal. European
Journal of Combinatorics, 44:77–86, 2015.

18 Jacques Verstraëte. Personal communication.
19 Jacques Verstraëte. Extremal problems for cycles in graphs, pages 83–116. Springer International

Publishing, Cham, 2016.

ICALP 2019

http://arxiv.org/abs/1701.05212
http://arxiv.org/abs/1808.04558
http://arxiv.org/abs/1710.09638
http://arxiv.org/abs/1712.03744
http://arxiv.org/abs/1801.03623




Improvements in Quantum SDP-Solving with
Applications
Joran van Apeldoorn
QuSoft, CWI, The Netherlands
apeldoor@cwi.nl

András Gilyén
QuSoft, CWI, The Netherlands
gilyen@cwi.nl

Abstract
Following the first paper on quantum algorithms for SDP-solving by Brandão and Svore [13] in
2016, rapid developments have been made on quantum optimization algorithms. In this paper
we improve and generalize all prior quantum algorithms for SDP-solving and give a simpler and
unified framework.

We take a new perspective on quantum SDP-solvers and introduce several new techniques.
One of these is the quantum operator input model, which generalizes the different input models
used in previous work, and essentially any other reasonable input model. This new model assumes
that the input matrices are embedded in a block of a unitary operator. In this model we give a
Õ
((√

m+
√
nγ
)
αγ4) algorithm, where n is the size of the matrices, m is the number of constraints,

γ is the reciprocal of the scale-invariant relative precision parameter, and α is a normalization factor
of the input matrices. In particular for the standard sparse-matrix access, the above result gives
a quantum algorithm where α = s. We also improve on recent results of Brandão et al. [12], who
consider the special case when the input matrices are proportional to mixed quantum states that
one can query. For this model Brandão et al. [12] showed that the dependence on n can be replaced
by a polynomial dependence on both the rank and the trace of the input matrices. We remove the
dependence on the rank and hence require only a dependence on the trace of the input matrices.

After we obtain these results we apply them to a few different problems. The most notable
of which is the problem of shadow tomography, recently introduced by Aaronson [2]. Here we
simultaneously improve both the sample and computational complexity of the previous best results.
Finally we prove a new Ω̃(

√
mαγ) lower bound for solving LPs and SDPs in the quantum operator

model, which also implies a lower bound for the model of Brandão et al. [12].
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99:2 Improvements in Quantum SDP-Solving with Applications

1 Semidefinite programs

In this paper we consider semidefinite programs (SDPs). SDPs have many applications in op-
timization, notable examples include approximation of NP-hard problems like MAXCUT [21]
and polynomial optimization through the Sum-Of-Squares hierarchy [24, 29]. SDPs have also
found applications in quantum information theory. Examples include POVM measurement
design [18] and finding the winning probability of non-local games [16].

We consider the basic (primal) form of an SDP as follows:

OPT = max Tr (CX) (1)
s.t. Tr (AjX) ≤ bj for all j ∈ [m],

X � 0,

where [m] := {1, . . . ,m}. The input to the problem consists of n× n Hermitian constraint
matrices A1, . . . , Am, an objective matrix C, and reals b1, . . . , bm. For normalization purposes
we assume ‖C‖ , ‖Aj‖ ≤ 1. The number of constraints is m (we do not count the standard
X � 0 constraint for this). The variable X of this SDP is an n × n positive semidefinite
(psd) matrix. We assume that A1 = I and b1 = R, giving a known bound on the trace of a
solution: Tr (X) ≤ R. A primal SDP also has a dual. For a primal SDP of the above form (1)
the dual SDP is

OPT = min bT y (2)

s.t.
m∑
j=1

yjAj − C � 0,

y ≥ 0.

We assume that the dual optimum is attained and that an explicit r ≥ 1 is known such that
at least one optimal dual solution y exists ‖y‖1 ≤ r. These assumptions imply that strong
duality holds, justifying the use of OPT for both optimal values. The parameters r and R
correspond to the scale of the SDP, without these bounds we could scale the SDP such that
a larger error can be allowed. In some cases r ·R may be quite large, but there are natural
problems, where it is constant, cf. zero-sum games [4]. Finally, note that linear programs
(LPs) correspond to the case where all constraint matrices are diagonal.

In this paper we build on the observation that a normalized psd matrix can be naturally
represented as a quantum state. Since operations on quantum states can sometimes be
cheaper to perform on a quantum computer than operations on classical descriptions of
matrices, this can give rise to faster algorithms for solving SDPs on a quantum computer [13].

We say an algorithm is an ε-approximate quantum SDP-solver if for all input numbers
g ∈ R and ζ ∈ (0, 1), with success probability 1− ζ, all of the following hold:

(i) The algorithm finds a vector y′∈Rm+1 and a number z∈R defining its output

X := z
e
−
∑m

j=1
y′

jAj+y′
0C

Tr
(
e
−
∑m

j=1
y′

j
Aj+y′

0C
) . (3)

The output X is an ε-feasible primal solution with objective value at least g − ε, i.e.,

∀j ∈ [m] : Tr (XAj) ≤ bj + ε,

and Tr (XC) ≥ g − ε. If the algorithm cannot find such an output X, then it correctly
concludes that no feasible solution exist (if we set ε = 0).
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(ii) The algorithm finds a y ∈ Rm+1 that is an ε-feasible solution to the dual problem with
objective value at most g + ε, i.e.,

m∑
j=1

yjAj − C � −εI, (4)

and bT y ≤ g + ε, or it correctly concludes that no feasible y exists (if we set ε = 0).
(iii) The algorithm determines whether OPT ≤ g−ε or OPT ≥ g+ε. If OPT ∈ (g−ε, g+ε)

then it may output either. (Note that this essentially follows from (i)-(ii).)
Notice that this solves a decision version of the problem. However, we can easily find an
approximation of OPT using binary search on g if we have an ε-approximate SDP-solver.
Since ε is scale depended we actually care about the dependence on the scale invariant
parameter γ := Rr/ε. An algorithm that only satisfies (i) will be called an ε-approximate
SDP primal oracle. For such an algorithm the relevant scale invariant parameter is γ := R/ε.
Due to the form of the objective value constraint in the first point, and to simplify statements
like (3), we write A0 := −C and b0 := −g.

Notation

We use the following definition for Õ:

Õd,e (f(a, b, c)) := O (f(a, b, c) · polylog(f(a, b, c), d, e)) .

We define Ω̃ in a similar way and Θ̃ as the intersection of the two. We write δij for the
Kronecker delta function and ej for the jth basis vector in the standard basis when the
dimension of the space is clear from context. For a Hermitian matrix H we write Spec(H)
for its spectrum (set of eigenvalues). For a function f : R→ R we write f(H) for the matrix
we get by applying f to the eigenvalues of H, i.e.,

f(H) = U

f(λ1)
. . .

f(λn)

U−1 where H = U

λ1
. . .

λn

U−1.

2 SDP-solving frameworks

In this section we present two frameworks for SDP-solving, providing the basis of our quantum
algorithms. First we present an algorithm to implement a primal oracle, and then the Arora-
Kale framework, which is used for finding a good approximation of the optimal value and an
almost feasible solution to the dual. These together implement a full SDP-solver.

Both frameworks have a very similar iterative structure, with iteration count Õn
(
γ2),

where 1/γ is the relevant scale-invariant precision parameter (as we will see the value of γ
differs by a factor r in the two cases). The main difference is that the iterative step of the
primal oracle framework requires only a simple search, whereas in the Arora-Kale framework
one needs to solve a slightly more complex task. Both algorithms start with y = 0, and in
each step only a constant number of indices of y are incremented, thus in both cases we will
work with a y vector that is non-negative and Õn

(
1/θ2)-sparse.
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2.1 An SDP primal oracle

For the primal oracle we use the same algorithm as Brandão et al. [12] following the proof of
Lemma 4.6 of Lee, Raghavendra and Steurer [25]. A few small reductions are required to
apply this technique. To be able to work with density operators instead of X, the bjs in the
constraints 1 . . .m are scaled down by a factor R, such that every solution X ′ to the new
SDP has trace at most 1. Then, we add one new variable denoted by ω such that

ρ :=
[
X ′ 0
0 ω

]
.

Now Tr (ρ) = 1 and ρ � 0 imply that Tr (X ′) ≤ 1, and we get a new SDP that is equivalent to
the previous one. It can be shown that in our input models this reduction does not introduce
more than a constant factor overhead in the complexity; note that this reduction also illustrates
that for an SDP primal oracle ε

R is the relevant scale-invariant precision parameter.
The following meta-algorithm for an SDP primal oracle assumes access to (some form

of) a description of the SDP after the above-discussed reduction, and provides an output as
in Eq. (3) of (i)
1. Let y = 0 ∈ Rm+1 and θ = ε

2R .

2. Repeat ln(n)
θ2 times the following:

a. Define ρ := e
−
∑m

j=0
yjAj/Tr

(
e
−
∑m

j=0
yjAj

)
.

b. Find an index j such that Tr (Ajρ) ≥ bj or conclude correctly that for all j, Tr (Ajρ) ≤
bj + θ.

c. If no j is found, then we are done and output y and z = RTr (X ′), where Tr (X ′) is
the probability1 of measuring ρ to be in the subspace corresponding to the variable X ′.

d. Otherwise update y ← y + θej .

3. Conclude that there is no solution for θ = 0.

2.2 The Arora-Kale framework

Similarly to previous work [13] we build our results on the Arora-Kale framework. For a
detailed description see the original paper by Arora and Kale [7]. For our application, the
following broad overview suffices.2

Now we describe the Arora-Kale meta-algorithm. This algorithm assumes access to (some
form of) a description of the SDP, such that the first constraint is Tr (X) ≤ R, i.e., A1 =I

and b1 =R. It provides an output as in Eq. (4) of (ii). (Remember that we set A0 = −C
and b0 = −g.)
1. Let y = 0 ∈ Rm+1 and set θ = ε

6Rr .

2. Repeat ln(n)
θ2 times the following:

(a) Define ρ := e
−
∑m

j=0
yjAj/Tr

(
e
−
∑m

j=0
yjAj

)
.

1 Note that a θ-approximation of Tr
(
X ′
)
is easy to compute by means of amplitude estimation if ρ can

be efficiently prepared as a quantum state – which is the case in our algorithms.
2 For more discussion on general (quantum) SDP-solvers along this line, see [5].
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(b) Find a ỹ in the polytope

Pδ(ρ) :=
{
ỹ ∈ Rm+1 : bT ỹ ≤ 0,

m∑
j=0

ỹjTr (Ajρ) ≥ −δ,

ỹ ≥ 0, ỹ0 = 1
2r , ‖ỹ‖1 ≤ 1

}
.

for δ=θ; if cannot find such a ỹ then conclude that none exists for δ=0.
(c) If no such ỹ exists, then conclude that OPT > g and stop.
(d) If such a ỹ exists, then update y ← y + θỹ.

3. Conclude OPT ≤ g + ε and output 2rθ
ln(n)y + ε

Re1 − e0 as a dual solution.

Note that in the above meta-algorithm, up to a constant factor, the θ parameter is
essentially γ−1= ε

rRs , illustrating that γ−1 is the relevant scale-invariant precision parameter
for SDP-solving, for a more detailed discussion see [5].

Brandão and Svore [13] observed that ρ := e
−
∑

j
yjAj/Tr

(
e
−
∑

j
yjAj

)
is a quantum

Gibbs state and this state can be prepared efficiently on a quantum computer, allowing
fast trace estimation, in particular resulting in a quadratic speedup in n compared to
classical methods.

A procedure that solves step (b) is called a θ-oracle, not to be confused with the input
oracles. In the rest of this paper we will assume that the cost of updating the y vector is
no more than the cost of a θ-oracle call. This is justified, because we use the geometric
approach of Apeldoorn et al. [5, Lemma 16] for implementing a 3-sparse γ−1-oracle. Their
oracle returns a 3-sparse vector, and thus requires updating only 3 entries of y, which can be
done efficiently using an efficient data structure.

3 Input models & Subroutines

We consider three input models: the sparse matrix model, the quantum state model, and the
quantum operator model. The first two models were already studied in previous work. The
quantum operator model is a common generalization of the other two models, and in fact
any other reasonable model for SDPs, as we show.

In all models we assume quantum oracle access to the numbers bj via the input oracle Ob
satisfying3 for all j ∈ [m] :

Ob|j〉|0〉 = |j〉|bj〉.

For all input oracles we assume we can apply both the oracle and its inverse4 in a controlled
fashion.

Sparse matrix model

In the sparse matrix model the input matrices are assumed to be s-row sparse for a known
bound s ∈ [n], meaning that there are at most s non-zero elements per row. The model is
close to the classical model for sparse matrices. Access to the Aj matrices is provided by

3 For simplicity we assume the bitstring representation has at most O (log(nmRr/ε)) bits.
4 When we talk about samples, e.g. in Section 4.1 of the full version of this paper [3], then we do not

assume we can apply the inverse operation.
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two oracles, similar to previous work on Hamiltonian simulation in [9]. The first of the two
oracles is a unitary Osparse, which serves the purpose of sparse access. This oracle calculates
the index : [m]× [n]× [s] → [n] function, which for input (j, k, `) gives the column index
of the `th non-zero element in the kth row of Aj . We assume this oracle computes the
index “in place”:

Osparse|j, k, `〉 = |j, k, index(j, k, `)〉. (5)

(In the degenerate case where the kth row has fewer than ` non-zero entries, index(j, k, `) is
defined to be ` together with some special symbol indicating this case.)

We also need another oracle OA, returning a bitstring3 representation of (Aj)ki for every
j ∈ [m] and k, i ∈ [n]:

OA|j, k, i, z〉 = |j, k, i, z ⊕ (Aj)ki〉. (6)

This model corresponds directly to a classical way of accessing sparse matrices.

Quantum state model

In contrast to the sparse matrix model, the quantum state model is inherently quantum and
has no classical counterpart for SDPs. In this model we assume that each Aj has a fixed
decomposition of the form

Aj = µ+
j %

+
j − µ

−
j %
−
j + µIjI

for (subnormalized) density operators %±j , non-negative reals µ±j and real number µIj ∈ R.

I Definition 1 (Subnormalized density operators & Purification). A subnormalized density
operator % is a psd matrix of trace at most 1. A purification of a subnormalized density
operator % is a 3-register pure state such that tracing out the third register5 and projecting on
the subspace where the second register is |0〉 yields %.

We write “%” and “ς” for subnormalized density operators to distinguish them from
normalized density operators, for which we write “ρ” and “σ”.

We assume access to an oracle Oµ that takes as input an index j and outputs binary
representations3 of µ+

j , µ
−
j and µIj .

Furthermore we assume access to a state-preparing oracle O|·〉 that prepares purifications5
|ψ±j 〉 of %

±
j :

O|·〉|j〉|±〉|0〉 = |j〉|±〉|ψ±j 〉.

Finally we assume that a bound B ∈ R+ is known such that

∀j : µ+
j + µ−j ≤ B.

Note that a tight upper bound B can easily be found using O (
√
m) quantum queries to Oµ

by means of maximum finding [17].

5 For simplicity we assume that for a d-dimensional density operator a purification has at most polylog(d)
qubits.
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Quantum operator model

Motivated by recent work [27, 20] we propose a new input model that we call the quantum
operator model. In this model the input matrices are given by a unitary that implements a
block-encoding:

I Definition 2 (Block encoding). Suppose that A is a w-qubit operator, α, ε ∈ R+ and k ∈ N,
then we say that the (a+ w)-qubit unitary U is an (α, a, ε)-block-encoding of A, if∥∥A− α(〈0|⊗a ⊗ I)U(|0〉⊗a ⊗ I)

∥∥ ≤ ε.
Roughly speaking this means that A is represented by a unitary

U ≈
(
A/α .

. .

)
.

In the quantum operator model we assume access to an oracle OU that acts as follows:

OU |j〉|ψ〉 = |j〉(Uj |ψ〉).

Where Uj is an (α, a, 0)-block-encoding6 of Aj , for some fixed7 α ∈ R and for a =
O (log(nmRr/ε)).

In Section 5 of the full version of this paper [3] we show that the sparse input model can
be reduced to the quantum operator model with α = s and that the quantum state model
can be reduced to it with α = B. We also argue that if we can perform a measurement
corresponding to Aj � 0 using a ancilla qubits, i.e., accept a state ρ with probability Tr (Ajρ),
then we can implement a (1, a+ 1, 0)-block-encoding of Aj . In this way this input model is a
common generalization of all reasonable input models for SDPs, since at the very least an
input model should allow you to calculate Tr (AjX).

Therefore if one can perform a POVM measurement on a quantum computer with a
measurement operator M , one can also implement a block-encoding of M , and use it as an
input matrix in our operator model. Similarly, being able to perform Hamiltonian simulation
with a Hermitian matrix H gives access to H as a block-encoding, as shown by [28, 20].
Recent work [22] introduced QROM data structures that allow the efficient creation of a
superposition over matrix elements of a matrix M . It turns out [15] that the corresponding
block-encoding can be implemented with Õn,γ (1) QROM calls, such that even for non-sparse
matrices one has α ≤

√
n.

Computational cost

We analyze the query complexity of algorithms and subroutines, i.e., the number of queries to
controlled versions of the input oracles and their inverses. We denote the optimal quantum
query complexity of an ε-approximate quantum SDP-solver with success probability 2/3
by TSDP (ε) (this is a “meta quantity”, which becomes concrete once the input model is
specified). We only consider success probability 2/3 to simplify the notation and proofs.
However in all cases an ε-approximate SDP-solver with success probability 1− ζ can easily
be constructed using O (log(1/ζ)TSDP (ε)) queries.

6 If n is not a power of 2, then we simply define Aj to be zero on the additional 2w − n dimensions.
7 Having a single normalization parameter α is not a serious restriction as it is easy to make a block-

encoding more subnormalized so that every Aj gets the same normalization, cf. Lemma 14 of the full
version of this paper [3].
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In our algorithms we assume access to a quantum-read/classical-write RAM (known as
QCRAM), and assume one read/write operation has a constant gate complexity8; the size
of the QCRAM that we use is typically Õn,m

((
Rr
ε

)2) bits. Most often in our results the
number of non-query elementary operations, i.e., two-qubit gates and QCRAM calls, matches
the query complexity up to polylog factors. In particular, if not otherwise stated, in our
results a T -query quantum algorithm uses at most Õn,m (T ) elementary operations.

Subroutines

We work with two major subroutines which need to be implemented according to the specific
input model. First, the algorithms require an implementation of a Gibbs-sampler.

I Definition 3 (Gibbs-sampler). A θ-precise Gibbs-sampler on bounded input vectors y ∈
Rm+1
≥0 is a quantum circuit that works under the promise that the support of y has size at

most d, and ‖y‖1 ≤ K. It takes as input a data structure storing the vector y, and for any
input satisfying the promise, it creates as output a purification of a θ-approximation of the
Gibbs state

e
−
∑m

j=0
yjAj/Tr

(
e
−
∑m

j=0
yjAj

)
.

The minimum cost of such a circuit is denoted by TGibbs(K, d, 4θ) (this is again a “meta
quantity”, which becomes concrete once the input model is specified).

For technical reasons we also allow Gibbs-samplers that require a random classical in-
put seed S ∈ {0, 1}a for some a = O (log(1/θ)). In this case the output should be a
θ-approximation of the Gibbs state with high probability (≥ 4/5) over a uniformly random
input seed S.

We use the approximate Gibbs states in order to estimate the quantity Tr (Ajρ).

I Definition 4 (Trace estimator). A (θ, σ)-trace estimator is a quantum circuit that as input
takes a quantum state ρ and index j. It outputs a sample from a random variable Zj ∈ R
which is an estimator of Tr (Ajρ) with bias at most θ:

|Tr (Ajρ)− E[Zj ]| ≤ θ,

and the standard deviation of Zj is at most σ. We write TσTr(θ) for the minimum cost of
such a circuit (this is again a “meta quantity” as in the above definition).

4 Prior work

Classical SDP-solvers roughly fall into two categories: those with logarithmic dependence
on R, r and 1/ε, and those with polynomial dependence on these parameters but better
dependence on m and n. In the first category the best known algorithm [26] at the time of
writing has complexity

ÕRr/ε
(
m(m2 + nω +mns)

)
.

where ω ∈ [2, 2.38] is the yet unknown exponent of matrix multiplication.

8 Note that read/write operations of a QRAM or QCRAM of size S can be implemented using Õ (S)
two-qubit gates, so this assumption could hide a factor in the gate complexity which is at most Õ (S).
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In the second category Arora and Kale [7] gave an alternative framework for solving SDPs,
using a matrix version of the “multiplicative weights update” method, see Section 2. Their
framework can be tuned for specific types of SDPs, allowing for near linear-time algorithms in
the case of for example the Goemans-Williamson SDP for the approximation of the maximum
cut in a graph [21].

In 2016 Brandão and Svore [13] used the Arora-Kale framework to implement a general
quantum SDP-solver in the sparse matrix model. They observed that the matrix

ρ := e
−
∑m

j=0
yjAj

Tr
(
e
−
∑m

j=0
yjAj

) ,
that is used for calculations in the Arora-Kale framework is in fact a log(n)-qubit Gibbs
state and can be efficiently prepared as a quantum state on a quantum computer. Using
this they achieved a quantum speedup in terms of n. Combining this with a Grover-like
speedup allowed for a speedup in terms of m as well, leading to an ε-approximate quantum
SDP solver with complexity

Õ

(
√
mns2

(
Rr

ε

)32
)
.

They also showed an Ω(
√
m+

√
n) quantum query lower bound for solving SDPs when all

other parameters are constant. This left as open question whether a better lower bound,
matching the

√
mn upper bound, could be found. The upper bound for the sparse input

model was subsequently improved by van Apeldoorn et al. [5] to

Õ

(
√
mns2

(
Rr

ε

)8
)
.

van Apeldoorn et al. also gave an Ω(
√

max(n,m) min(n,m)3/2) lower bound, albeit for
non-constant parameters R and r. This bound implies that there is no general quantum
SDP-solver that has a o(nm) dependence on n and m and logarithmic dependence on R, r
and 1/ε. They also showed that every SDP-solver whose efficiency relies on outputting sparse
dual solutions (including their algorithm and that of Brandão and Svore [13]) is limited, since
problems with a lot of symmetry (like maxflow-mincut) in general require non-sparse dual
solutions. Furthermore, they showed that for many combinatorial problems (like MAXCUT)
R and r increase linearly with n and m.

Very recently Brandão et al. [11] gave an improved SDP-solver for the quantum state
input model9 that has a complexity bound with logarithmic dependence on n:

TSDP (ε) = Õn
(√

m poly
(
Rr

ε
,B, max

j∈{0,...,m}
[rank(Aj)]

))
.

Brandão et al. also applied their algorithm to the problem of shadow tomography, giving the
first non-trivial application of a quantum SDP-solver.

Subsequently these results where further improved by the introduction of the Fast
Quantum OR lemma by the same authors [12]. Approaches prior to [12] searched for a
violated constraint in the SDP using Grover-like techniques, resulting in a multiplicative

9 This model was already introduced in the first version of [13] together with a similar complexity
statement, but there were some unresolved issues in the proof, that were only fixed by the contributions
of [11].
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complexity of Gibbs-sampling and searching. The Fast Quantum OR lemma can be used to
separate the search phase from the initial Gibbs-state preparation phase. This led to the
improved complexity bound [12] of

Õn
((√

m+ poly( max
j∈{0...m}

[rank(Aj)])
)

poly
(
Rr

ε
,B

))
.

We thank the authors of [12] for sending us an early draft of [12] introducing the Fast Quantum
OR Lemma, which enabled us to work on these improvements. During the correspondence the
application of the Fast OR lemma to the sparse matrix model was independently suggested
by Brandão et al. [30] and by us.

5 Our results

In this paper we present multiple results. The main contribution consists of multiple
improvements to the algorithms for SDP solving, based on combining various recent quantum
algorithmic developments. Although some of these improvements require quite technical
proofs, they come from simple new perspectives and ideas, often combining previous works in
new ways. We also apply the resulting algorithms to a few problems in convex optimization.
Finally, we prove a new lower bound that fits the novel input models that we work with.

5.1 Improvements to the quantum algorithms
In this paper we build on the Arora-Kale framework for SDP-solving in a similar fashion as
[5, 13] and also use results from [11, 25] to construct a primal oracle. We improve on the
previous results about quantum SDP-solving in three different ways:

Two-Phase Quantum Search and Minimum Finding

We give a computationally more efficient version of the Gentle Quantum Search Lemma [2]
using the Fast Quantum OR Lemma from [12]. We also extend this to minimum finding
to get our Two-Phase Quantum Minimum Finding (Lemma 7 of the full version of this
paper [3]). As independently observed by the authors of [12] the Fast Quantum OR Lemma
gives a speed-up for SDP primal oracles in general. Moreover, using Two-Phase Quantum
Minimum Finding, we show how to improve the upper bound on the complexity of general
SDP-solving from

TSDP (ε) = Õn
(√
mTσTr((4γ)−1)TGibbs(γ, γ2, γ−1)γ3σ

)
(7)

as implied in previous work [13, 5] to

TSDP (ε) = Õn
((√

mTσTr((4γ)−1) + TGibbs(γ, γ2, γ−1)
)
γ4σ2) , (8)

where γ = Θ(Rr/ε). For the complexity of SDP primal oracles, the same upper bounds hold.

Quantum operator model and efficient data structures

We introduce the quantum operator input model unifying prior approaches. We show that
both the sparse model and the quantum state model can be reduced to the quantum operator
model with a constant overhead and with the choices of α = s and α = B respectively.
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Moreover, we show that for σ = Θ(1), we have that

TσTr((4γ)−1) = Õγ (α) ,

in the quantum operator model.
The complexity of Gibbs-sampling in the sparse matrix input model previously was [5]:

TGibbs(K, d, θ) = Õθ
(√
nKs2d2) .

By considering the operator model, in which we can show how to simulate a linear combination
of Hamiltonians efficiently, we can improve this to

TGibbs(K, d, θ) = Õθ,d
(√
nKα

)
.

This result is based on the idea of gradually building up an efficient data structure for state
preparation, following ideas of [22]. This demonstrates that these data structures can be used
efficiently even if one does not assume preprocessed data. Moreover, it shows that working
in the operator model does not only unify prior approaches but also inspires more efficient
quantum algorithms due to its conceptual clarity.

Table 1 Summary of the role of our various improvements, the theorem numbers refer to
the numbers in the full version of the paper [3]. The main new results are on the bottom, the
other complexity statements represent partial results following from only applying some of the
improvements. We present the results for the sparse matrix and quantum state input models
for comparison to prior work. However, note that our results presented for sparse input hold
more generally for the quantum operator input model; to get the corresponding results one should
just replace s by α in the table. Thereby similar bounds hold in the case of the quantum state
input model too, after replacing s by B, which can be beneficial when B2.5γ2.5 ≥

√
n. Notation:

rk = maxj∈{0,...,m} rank(Aj) and γ = Rr
ε
.

Without OR lemma / Two-Phase Search

Sparse input Quantum state input

Previous Õ
(√

mns2γ8) Õn

(√
mpoly (γ,B, rk)

)
Gibbs-sampling [5] [11]

Improved Õ
(√

mnsγ4) Õn

(√
mB3.5γ6.5)

Gibbs-sampling Corollary 18 Corollary 25

With OR lemma / Two-Phase Search

Sparse input Quantum state input

Previous Õ
((√

m+
√
nsγ5) sγ4) Õn

((√
m+ poly(rk)

)
poly (γ,B)

)
Gibbs-sampling Theorem10 8 + [5] [12]

Improved Õ
((√

m+
√
nγ
)
sγ4) Õn

(
(
√
m+B2.5γ3.5)Bγ4)

Gibbs-sampling Theorem 17 Theorem 24

Gibbs sampling for the quantum state model

We develop a new method for Gibbs-sampling in the quantum state model. As noted in [12]
this model has the nice property that it is relatively easy to find the important eigenspaces
of the input matrices. We introduce a new technique for finding these important eigenspaces
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that, in contrast to the approach in [12], does not introduce a dependence on the rank of the
input matrices in the complexity. In particular we improve the complexity bound of [12]

TGibbs(K, d, θ) = O
(
poly(K,B, d, 1/θ, max

j∈{0...m}
[rank(Aj)])

)
,

to

TGibbs(K, d, θ) = Õd,θ,n
(
(KB)3.5) ,

both making the polynomial dependence explicit and improving it.
An important consequence of this improvement is that we do not get a dependence on

the rank of the input matrices in the complexity of SDP solving, unlike Brandão et al. [12].
Since the most natural use for the quantum state model is when the Aj matrices naturally
correspond to quantum states, B is often just 1. However, if the states are highly mixed,
then the rank is about n, eliminating the speedup over the sparse input model when a rank
dependence is present. Finally note that this Gibbs-sampling method is only beneficial
if
√
n ≤ (KB)2.5, otherwise the reduction to the quantum operator model with α = B gives

a better algorithm.

For the quantum operator input model the above improvements lead to the complexity bound

TSDP (ε) = Õ
((√

m+
√
nγ
)
αγ4) , (9)

where γ := Rr
ε . Note that the Ω(

√
n+
√
m) lower bound of [13] also applies to the quantum

operator model due to our reductions, matching the above upper bound (9) up to polylog
factors in n and m when γ and α are constant. For the quantum state input model our
improved Gibbs-sampler yields the complexity bound

TSDP (ε) = Õn
((√

m+B2.5γ3.5)Bγ4) .
In both cases, the same bound holds for an SDP primal oracle but with γ := R/ε.

5.2 Applications
In Section 4 of the full version of this paper [3] we give some applications of quantum
SDP-solvers. Due to the large error dependence the last two of these are not of practical
interest. However they do show that a theoretical improvement in one of the parameters is
possible over classical computers and more specified quantum algorithms might improve the
error dependence.

Shadow tomography of quantum states

We extend the idea of applying SDP-solving to the problem of shadow tomography: given an
unknown, n-dimensional quantum state ρ, find ε-additive approximations of the expectation
values Tr (E1ρ) , . . . ,Tr (Emρ) of several binary measurement operators. This problem was
introduced by Aaronson in [2], he gave an efficient algorithm in terms of the number of
samples from ρ. In particular he proved that Õ

(
log4(m) log(n)/ε5) samples suffice. Brandão

et al. [12] applied their SDP-solver to get a more efficient algorithm in terms of computation
time when the measurements Ei are given in the quantum state model, while keeping the
sample complexity as low as poly(log(m), log(n), 1/ε,B). We simultaneously improve on
both results, giving a sample bound of Õ

(
log4(m) log(n)/ε4) while also improving the best
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known time complexity [2, 12] of the implementation for all input models. Finally we show
that if we can efficiently implement the measurements Tr (E1ρ) , . . . ,Tr (Emρ) on a quantum
computer, then we can also efficiently represent E1, . . . , Em using the quantum operator
input model, hence the computational complexity can be stated in terms of the number of
measurements needed.

Quantum state discrimination

We apply the SDP-solvers to the problem of quantum state discrimination: given a set of
quantum states, what is the best POVM for discriminating between the states? We consider
the case of minimizing the total error in the measurements. In this case we get an algorithm
with running time Õ

(√
k poly(d, 1/ε)

)
in the sparse input model, where k is the number of

states and d is the dimension of the states. Due to the quantum state model for SDP-solving,
we can also solve the problem when the states that need to be discriminated are actually
given as quantum states, rather than classical descriptions of density operators.

Optimal design

We apply our sparse SDP-solver to the problem of E-optimal design: given a set of k
experiments, find the optimal distribution of the experiments that minimizes the variance in
our knowledge of a d-dimensional system. Our final bound is Õ

(
(
√
k +
√
d)poly(1/ε, P )

)
,

where P is a parameter that depends on the standard deviation of the experiments.

5.3 Lower bounds
We end the paper with proving new lower bounds. Lower bounds on the quantum query
complexity of SDP-solving for the sparse input model were presented in previous works [13, 5].
We add to this by giving Ω̃(

√
mB/ε) and Ω̃(

√
mα/ε) bounds for the quantum state model

and quantum operator model respectively. These lower bounds show that the
√
m factor

and the polynomial dependence on the parameters B,α, and 1/ε are necessary.
Compared to problems with a discrete input, proving lower bounds on continuous-input

quantum problems gives rise to extra challenges and often requires more involved techniques,
see for example the work of Belovs [8] on generalizations of the adversary method. Due to
these difficulties, fewer results are known in this regime. Examples of known continuous-input
lower-bound results include phase-estimation related problems (cf. Bessen [10]) and the
complexity-theoretic version of the no-cloning theorem due to Aaronson [1]. Recently, a
new hybrid-method based approach was developed by Gilyén et al. [19] in order to handle
continuous-input oracles, which they use for proving a lower bound for gradient computation.
We use their techniques to prove our lower bounds, combined with efficient reductions between
input models stemming from the smooth-functions of Hamitonians techniques developed in
the work of van Apeldoorn et al. [5].

6 Subsequent work

A few months after the first version of our paper was posted on the arXiv, Kerenidis and
Prakash [23] gave a quantum interior point algorithm for solving LPs and SDPs. They work
in an input model where the input matrices are stored in QROM, which input model is
also covered by our quantum operator input model. However, it is hard to compare their
complexities to ours, because their final complexity statement depends polynomially on the
condition number of the matrices that the interior point method encounters, and they do not
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give explicit bounds for these condition numbers. Also they have two accuracy parameters,
while one accuracy parameter only appears as a logarithmic factor, their complexity depends
polynomially on the other.

Very recently Apeldoorn et al. [6] and Chakrabarti et al. [14] developed improved quantum
algorithms for general black-box convex optimization. Since we work in a model where we are
given access directly to the constraints defining the problem, our results are incomparable.
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Abstract
While many applications of automata in formal methods can use nondeterministic automata, some
applications, most notably synthesis, need deterministic or good-for-games automata. The latter
are nondeterministic automata that can resolve their nondeterministic choices in a way that only
depends on the past. The minimization problem for nondeterministic and deterministic Büchi and
co-Büchi word automata are PSPACE-complete and NP-complete, respectively. We describe a
polynomial minimization algorithm for good-for-games co-Büchi word automata with transition-based
acceptance. Thus, a run is accepting if it traverses a set of designated transitions only finitely often.
Our algorithm is based on a sequence of transformations we apply to the automaton, on top of
which a minimal quotient automaton is defined.
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1 Introduction

Automata theory is one of the longest established areas in Computer Science. A classical
problem in automata theory is minimization: generation of an equivalent automaton with
a minimal number of states. For automata on finite words, the picture is well understood:
For nondeterministic automata, minimization is PSPACE-complete [16], whereas for determ-
inistic automata, a minimization algorithm, based on the Myhill-Nerode right congruence
[28, 29], generates in polynomial time a canonical minimal deterministic automaton [14].
Essentially, the canonical automaton, a.k.a. the quotient automaton, is obtained by merging
equivalent states.

A prime application of automata theory is specification, verification, and synthesis of
reactive systems [36, 8]. The automata-theoretic approach considers relationships between
systems and their specifications as relationships between languages. Since we care about the
on-going behavior of nonterminating systems, the automata run on infinite words. Acceptance
in such automata is determined according to the set of states that are visited infinitely
often along the run. In Büchi automata [5] (NBW and DBW, for nondeterministic and
deterministic Büchi word automata, respectively), the acceptance condition is a subset α of
states, and a run is accepting iff it visits α infinitely often. Dually, in co-Büchi automata
(NCW and DCW), a run is accepting iff it visits α only finitely often. In spite of the
extensive use of automata on infinite words in verification and synthesis algorithms and tools,
some fundamental problems around their minimization are still open. For nondeterministic
automata, minimization is PSPACE-complete, as it is for automata on finite words. Before
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100:2 Minimizing GFG Transition-Based Automata

we describe the situation for deterministic automata, let us elaborate some more on the
power of nondeterminism in the context of automata on infinite words, as this would be
relevant to our contribution.

For automata on finite words, nondeterminism does not increase the expressive power, yet
it leads to an exponential succinctness [31]. For automata on infinite words, nondeterminism
may increase the expressive power and also leads to an exponential succinctness. For ex-
ample, NBWs are strictly more expressive than DBWs [21]. In some applications of automata
on infinite words, such as model checking, algorithms can proceed with nondeterministic
automata, whereas in other applications, such as synthesis and control, they cannot. There,
the advantages of nondeterminism are lost, and the algorithms involve complicated determin-
ization constructions [32] or acrobatics for circumventing determinization [20]. Essentially,
the inherent difficulty of using nondeterminism in synthesis lies in the fact that each guess of
the nondeterministic automaton should accommodate all possible futures.

The study of nondeterministic automata that can resolve their nondeterministic choices
in a way that only depends on the past and still accept all words in the language started
already in 1996 [19], where the setting is modeled by means of tree automata for derived
languages. It then continued by means of good for games (GFG) automata, introduced in
[13].1 Formally, a nondeterministic automaton A over an alphabet Σ is GFG if there is a
strategy g that maps each finite word u ∈ Σ∗ to the transition to be taken after u is read;
and following g results in accepting all the words in the language of A. Note that a state q
of A may be reachable via different words, and g may suggest different transitions from q

after different words are read. Still, g depends only on the past, namely on the word read
so far. Obviously, there exist GFG automata: deterministic ones, or nondeterministic ones
that are determinizable by pruning (DBP); that is, ones that just add transitions on top of a
deterministic automaton. In fact, the GFG automata constructed in [13] are DBP.2

In terms of expressive power, it is shown in [19, 30] that GFG automata with an acceptance
condition γ (e.g., Büchi) are as expressive as deterministic γ automata. The picture in
terms of succinctness is diverse. For automata on finite words, GFG automata are always
DBP [19, 26]. For automata on infinite words, in particular NBWs and NCWs, GFG
automata need not be DBP [3]. Moreover, the best known determinization construction
for GFG-NBWs is quadratic, whereas determinization of GFG-NCWs has an exponential
blow-up lower bound [17]. Thus, in terms of succinctness, GFG automata on infinite words
are more succinct (possibly even exponentially) than deterministic ones. Further research
studies characterization, typeness, complementation, and further constructions and decision
procedures for GFG automata [17, 4, 2].

Back to the minimization problem. Recall that for finite words, an equivalent minimal
deterministic automaton can be obtained by merging equivalent states. A similar algorithm
is valid for determinisitic weak automata on infinite words: DBWs in which each strongly
connected component is either contained in α or is disjoint form α [27, 23]. For general
DBWs (and hence, also DCWs, as the two dualize each other), merging of equivalent states
fails, and minimization is NP-complete [33].

The intractability of the minimization problem has led to a development of numerous
heuristics. The heuristics either relax the minimality requirement, for example algorithms
based on fair bisimulation [10], which reduce the state space but need not return a minimal

1 GFGness is also used in [6] in the framework of cost functions under the name “history-determinism”.
2 As explained in [13], the fact that the GFG automata constructed there are DBP does not contradict their

usefulness in practice, as their transition relation is simpler than the one of the embodied deterministic
automaton and it can be defined symbolically.
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automaton, or relax the equivalence requirement, for example algorithms based on hyper-
minimization [1, 15] or almost-equivalence [33], which come with a guarantee about the
difference between the language of the original automaton and the ones generated by the
algorithm. In some cases, these algorithms do generate of a minimal equivalent automaton
(in particular, applying relative minimization based on almost equivalence on a deterministic
weak automaton results in an equivalent minimal weak automaton [33]), but in general, they
are only heuristics. In an orthogonal line of work, researchers have studied minimization in
richer settings of automata on finite words. One direction is to allow some nondeterminism.
As it turns out, however, even the slightest extension of the deterministic model towards
a nondeterministic one, for example by allowing at most one nondeterministic choice in
every accepting computation or allowing just two initial states instead of one, results in
NP-complete minimization problems [24]. Another direction is a study of quantitative
settings. Here, the picture is diverse. For example, minimization of deterministic lattice
automata [18] is polynomial for automata over linear lattices and is NP-complete for general
lattices [11], and minimization of deterministic weighted automata over the tropical semiring
is polynomial [25], yet the problem is open for general semirings.

Proving NP-hardness for DBW minimization, Schewe used a reduction from the vertex-
cover problem [33]. Essentially3, given a graph G = 〈V,E〉, we seek a minimal DBW for the
language LG of words of the form v+

i1
· v+
i2
· v+
i3
· · · ∈ V ω, where for all j ≥ 1, we have that

〈vij , vij+1〉 ∈ E. We can recognize LG by an automaton obtained from G by adding self loops
to all vertices, labelling each edge by its destination, and requiring a run to traverse infinitely
many original edges of G. Indeed, such runs correspond to words that traverse an infinite
path in G, possibly looping at vertices, but not getting trapped in a self loop, as required by
LG. When, however, the acceptance condition is defined by a set of vertices, rather than
edges, we need to duplicate some states, and a minimal duplication corresponds to a minimal
vertex cover. Thus, a natural question arises: Is there a polynomial minimization algorithms
for DBWs and DCWs whose acceptance condition is transition based? Beyond the theoretical
interest, there is recently growing use of transition-based automata in practical applications,
with evidences they offer a simpler translation of LTL formulas to automata and enable
simpler constructions and decision procedures [9, 7, 34, 22].

In this paper we present a significant step towards a positive answer to this question and
describe a polynomial-time algorithm for the minimization of GFG transition-based NCWs.
Consider a GFG-NCW A. Our algorithm is based on a chain of transformations we apply to
A. Some of the transformations are introduced in [17], in algorithms for deciding GFGness.
We add two more transformations and prove that they guarantee minimality. Our reasoning
is based on a careful analysis of the safe components of A, namely the components obtained
by removing transitions in α. We show that a minimal GFG-NCW equivalent to A can be
obtained by defining an order on the safe components, and applying the quotient construction
on a GFG-NCW obtained by restricting attention to states that belong to components that
form a frontier in this order.

The paper is organized as follows. In Section 2, we define GFG-NCWs and some properties
of GFG-NCWs that can be attained in polynomial time using existing results. In Section 3,
we describe two additional properties and prove that they guarantee minimality. Then, in
Sections 4 – 5, we show how the two properties can be attained in polynomial time, thus
concluding our minimization procedure. In Section 6, we discuss how our results contribute
to the quest for efficient DBW and DCW minimization.

3 The exact reduction is more complicated and involves an additional letter that is required for cases in
which vertices in the graph have similar neighbours.
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2 Preliminaries

For a finite nonempty alphabet Σ, an infinite word w = σ1 ·σ2 · · · ∈ Σω is an infinite sequence
of letters from Σ. A language L ⊆ Σω is a set of words. We denote the empty word by ε, the
set of finite words over Σ by Σ∗. For i ≥ 0, we use w[1, i] to denote the (possibly empty)
prefix σ1 · σ2 · · ·σi of w and use w[i+ 1,∞] to denote its suffix σi+1 · σi+2 · · · .

A nondeterministic automaton over infinite words is A = 〈Σ, Q, q0, δ, α〉, where Σ is an
alphabet, Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q×Σ→ 2Q \∅ is a transition
function, and α is an acceptance condition, to be defined below. For states q and s and a
letter σ ∈ Σ, we say that s is a σ-successor of q if s ∈ δ(q, σ). The size of A, denoted |A|, is
defined as its number of states, thus, |A| = |Q|. Note that A is total, in the sense that it has
at least one successor for each state and letter, and that A may be nondeterministic, as the
transition function may specify several successors for each state and letter. If |δ(q, σ)| = 1
for every state q ∈ Q and letter σ ∈ Σ, then A is deterministic.

When A runs on an input word, it starts in the initial state and proceeds according
to the transition function. Formally, a run of A on w = σ1 · σ2 · · · ∈ Σω is an infinite
sequence of states r = r0, r1, r2, . . . ∈ Qω, such that r0 = q0, and for all i ≥ 0, we have
that ri+1 ∈ δ(ri, σi+1). We sometimes extend δ to sets of states and finite words. Then,
δ : 2Q × Σ∗ → 2Q is such that for every S ∈ 2Q, finite word u ∈ Σ∗, and letter σ ∈ Σ, we
have that δ(S, ε) = S, δ(S, σ) =

⋃
s∈S δ(s, σ), and δ(S, u · σ) = δ(δ(S, u), σ). Thus, δ(S, u) is

the set of states that A may reach when it reads u from some state in S.
The transition function δ induces a transition relation ∆ ⊆ Q× Σ×Q, where for every

two states q, s ∈ Q and letter σ ∈ Σ, we have that 〈q, σ, s〉 ∈ ∆ iff s ∈ δ(q, σ). We sometimes
view the run r = r0, r1, r2, . . . on w = σ1 · σ2 · · · as an infinite sequence of successive
transitions 〈r0, σ1, r1〉, 〈r1, σ2, r2〉, . . . ∈ ∆ω. The acceptance condition α determines which
runs are “good”. We consider here transition-based automata, in which α refers to the set
of transitions that are traversed infinitely often during the run; specifically, α ⊆ ∆. We
use the terms α-transitions and ᾱ-transitions to refer to transitions in α and in ∆ \ α,
respectively. We also refer to restrictions δα and δᾱ of δ, where for all q, s ∈ Q and σ ∈ Σ,
we have that s ∈ δα(q, σ) iff 〈q, σ, s〉 ∈ α, and s ∈ δᾱ(q, σ) iff 〈q, σ, s〉 ∈ ∆ \ α. For a run
r ∈ ∆ω, let inf (r) ⊆ ∆ be the set of transitions that r traverses infinitely often. Thus,
inf (r) = {〈q, σ, s〉 ∈ ∆ : q = ri, σ = σi+1 and s = ri+1 for infinitely many i’s}. In co-Büchi
automata, a run r is accepting iff inf (r) ∩ α = ∅, thus if r traverses transitions in α only
finitely often. A run that is not accepting is rejecting. A word w is accepted by A if there is
an accepting run of A on w. The language of A, denoted L(A), is the set of words that A
accepts. Two automata are equivalent if their languages are equivalent. We use tNCW and
tDCW to abbreviate nondeterministic and deterministic transition-based co-Büchi automata
over infinite words, respectively.

For a state q ∈ Q of an automaton A = 〈Σ, Q, q0, δ, α〉, we define Aq to be the automaton
obtained from A by setting the initial state to be q. Thus, Aq = 〈Σ, Q, q, δ, α〉. We say that
two states q, s ∈ Q are equivalent, denoted q ∼A s, if L(Aq) = L(As). The automaton A
is semantically deterministic if different nondeterministic choices lead to equivalent states.
Thus, for every state q ∈ Q and letter σ ∈ Σ, all the σ-successors of q are equivalent: for
every two states s, s′ ∈ Q such that 〈q, σ, s〉 and 〈q, σ, s′〉 are in ∆, we have that s ∼A s′.
The following proposition follows immediately from the definitions.

I Proposition 1. Consider a semantically deterministic automaton A, states q, s ∈ Q, letter
σ ∈ Σ, and transitions 〈q, σ, q′〉, 〈s, σ, s′〉 ∈ ∆. If q ∼A s, then q′ ∼A s′.
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A tNCW A is safe deterministic if by removing its α-transitions, we get a (possibly not
total) deterministic automaton. Thus, A is safe deterministic if for every state q ∈ Q and
letter σ ∈ Σ, it holds that |δᾱ(q, σ)| ≤ 1. We refer to the components we get by removing A’s
α-transitions as the safe components of A, and we denote the set of safe components of A by
S(A). For a safe component S ∈ S(A), the size of S, denoted |S|, is the number of states in
S. Note that an accepting run of A eventually gets trapped in one of A’s safe components.

An automaton A is good for games (GFG, for short) if its nondeterminism can be resolved
based on the past, thus on the prefix of the input word read so far. Formally, A is GFG if
there exists a strategy f : Σ∗ → Q such that the following holds:
1. The strategy f is consistent with the transition function. That is, for every finite word

u ∈ Σ∗ and letter σ ∈ Σ, we have that 〈f(u), σ, f(u · σ)〉 ∈ ∆.
2. Following f causes A to accept all the words in its language. That is, for every infinite

word w = σ1 · σ2 · · · ∈ Σω, if w ∈ L(A), then the run f(w[1, 0]), f(w[1, 1]), f(w[1, 2]), . . .,
which we denote by f(w), is accepting.

We say that the strategy f witnesses A’s GFGness. For an automaton A, we say that a
state q of A is GFG if Aq is GFG. Finally, we say that a GFG-tNCW A is minimal if for
every equivalent GFG-tNCW B, it holds that |A| ≤ |B|.

Consider a directed graph G = 〈V,E〉. A strongly connected set in G (SCS, for short) is a
set C ⊆ V such that for every two vertices v, v′ ∈ C, there is a path from v to v′. A SCS is
maximal if it is maximal w.r.t containment, that is, for every non-empty set C ′ ⊆ V \ C, it
holds that C ∪C ′ is not a SCS. The maximal strongly connected sets are also termed strongly
connected components (SCCs, for short). The SCC graph of G is the graph defined over
the SCCs of G, where there is an edge from a SCC C to another SCC C ′ iff there are two
vertices v ∈ C and v′ ∈ C ′ with 〈v, v′〉 ∈ E. A SCC is ergodic iff it has no outgoing edges
in the SCC graph. The SCC graph of G can be computed in linear time by standard SCC
algorithms [35]. An automaton A = 〈Σ, Q, q0, δ, α〉 induces a directed graph GA = 〈Q,E〉,
where 〈q, q′〉 ∈ E iff there is a letter σ ∈ Σ such that 〈q, σ, q′〉 ∈ ∆. The SCSs and SCCs of
A are those of GA. We say that a tNCW A is normal if all the safe components of A are
SCSs. That is, for all states q and s of A, if there is a path of ᾱ-transition from q to s, then
there is also a path of ᾱ-transition from s to q.

We now combine several properties defined above and say that a GFG-tNCW A is nice
if all the states in A are reachable and GFG, and A is normal, safe deterministic, and
semantically deterministic. In the theorem below we combine arguments from [17] showing
that each of these properties can be obtained in at most polynomial time, and without the
properties being conflicting. For some properties, we give an alternative and simpler proof.

I Theorem 2. [17] Every GFG-tNCW A can be turned, in polynomial time, into an equivalent
nice GFG-tNCW B such that |B| ≤ |A|.

Proof. It is shown in [17] that one can decide the GFGness of a tNCW A in polynomial
time. The proof goes through an intermediate step where the authors construct a two-players
game such that if the first player does not win the game, then A is not GFG, and otherwise a
winning strategy for him induces a safe-deterministic GFG-tNCW B equivalent to A. As we
start with a GFG-tNCW A, such a winning strategy is guaranteed to exist, and we obtain
an equivalent safe-deterministic GFG-tNCW B in polynomial time. In fact, it can be shown
that B is also semantically deterministic. Yet, for completeness we give below a general
procedure for semantic determinization.

For a tNCW A, we say that a transition 〈q, σ, s〉 ∈ ∆ is covering if for every transition
〈q, σ, s′〉, it holds that L(As′) ⊆ L(As). If A is GFG and f is a strategy witnessing its
GFGness, we say that a state q of A is used by f if there is a finite word u with f(u) = q, and
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we say that a transition 〈q, σ, q′〉 of A is used by f if there is a finite word u with f(u) = q

and f(uσ) = q′. Since states that are not GFG can be detected in polynomial time, and as
all states that are used by a strategy that witnesses B’s GFGness are GFG, the removal of
non-GFG states does not affect B’s language. Note that removing the non-GFG states may
result in a non-total automaton, in which case we add a rejecting sink. Now, using the fact
that language containment of GFG-tNCWs can be checked in polynomial time [12, 17], and
transitions that are used by strategies are covering [17], one can semantically determinize B
by removing non-covering transitions.

States that are not reachable are easy to detect, and their removal does not affect B’s
language. Normalization is also easy to obtain and involves adding some existing transitions
to α [17]. Indeed, if the safe components of B are not SCSs, then every ᾱ-transition connecting
different SCCs of B’s safe components can be added to α without affecting the acceptance of
runs in B, as every accepting run traverses such transitions only finitely often. Thus, the
language and GFGness of all states are not affected. Finally, it is not hard to verify that
the properties, in the order we obtain them in the proof, are not conflicting, and thus the
described sequence of transformations results in a nice GFG-tNCW. J

3 A Sufficient Condition for GFG-tNCW Minimality

In this section, we define two additional properties for nice GFG-tNCWs, namely safe-
centralized and safe-minimal, and we prove that nice GFG-tNCWs that attain these properties
are minimal. In Sections 4 – 5, we are going to show that the two properties can be attained
in polynomial time. Before we start, let us note that a GFG-tNCW may be nice and still
not be minimal. A simple example is a GFG-tNCW Afm for the language (a+ b)∗ · aω that
has two states, both with a ᾱ-self-loop labeled a and an α-transition labeled b to the other
state. It is easy to see that Afm is nice but not minimal.

Consider a tNCW A = 〈Σ, Q, q0, δ, α〉. A run r of A is safe if it does not traverse
α-transitions. The safe language of A, denoted Lsafe(A), is the set of infinite words w, such
that there is a safe run of A on w. Recall that two states q, s ∈ Q are equivalent (q ∼A s)
if L(Aq) = L(As). Then, q and s are strongly-equivalent, denoted q ≈A s, if q ∼A s and
Lsafe(Aq) = Lsafe(As). Finally, q is subsafe-equivalent to s, denoted q -A s, if q ∼A s and
Lsafe(Aq) ⊆ Lsafe(As). Note that the three relations are transitive. When A is clear from
the context, we omit it from the notations, thus write Lsafe(q), q - s, etc. The tNCW A is
safe-minimal if it has no strongly-equivalent states. Then, A is safe-centralized if for every
two states q, s ∈ Q, if q - s, then q and s are in the same safe component of A.

I Example 3. The nice GFG-tNCW Afm described above is neither safe-minimal (its
two states are strongly-equivalent) nor safe-centralized (its two states are in different safe
components). As another example, consider the tDCW A appearing in Figure 1. The dashed
transitions are α-transitions. All the states of A are equivalent, yet they all differ in their
safe language. Accordingly, A is safe-minimal. Since aω = Lsafe(Aq2) ⊆ Lsafe(Aq0), we
have that q2 - q0. Hence, as q0 and q2 are in different safe components, the tDCW A is not
safe-centralized.

I Proposition 4. Consider a nice GFG-tNCW A and states q and s of A such that q ≈ s
(q - s). For every letter σ ∈ Σ and ᾱ-transition 〈q, σ, q′〉, there is an ᾱ-transition 〈s, σ, s′〉
such that q′ ≈ s′ (q′ - s′, respectively).
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Figure 1 The tDCW A.

Proof. We prove the proposition for the case q ≈ s. The case q - s is similar. Since A is
normal, the existence of the ᾱ-transition 〈q, σ, q′〉 implies that there is a safe run from q′ back
to q. Hence, there is a word z ∈ Lsafe(Aq

′). Clearly, σ · z is in Lsafe(Aq). Now, since q ≈ s,
we have that Lsafe(Aq) = Lsafe(As). In particular, σ · z ∈ Lsafe(As), and thus there is a
ᾱ-transition 〈s, σ, s′〉. We prove that q′ ≈ s′. Since L(Aq) = L(As) and A is semantically
deterministic, then, by Proposition 1, we have that L(Aq′) = L(As′). It is left to prove that
Lsafe(Aq

′) = Lsafe(As
′). We prove that Lsafe(Aq

′) ⊆ Lsafe(As
′). The second direction is

similar. Since A is safe deterministic, the transition 〈s, σ, s′〉 is the only σ-labeled ᾱ-transition
from s. Hence, if by contradiction there is a word z ∈ Lsafe(Aq

′) \ Lsafe(As
′), we get that

σ · z ∈ Lsafe(Aq) \ Lsafe(As), contradicting the fact that Lsafe(Aq) = Lsafe(As). J

We continue with propositions that relate two automata, A = 〈Σ, QA, q0
A, δA, αA〉 and

B = 〈Σ, QB, q0
B, δB, αB〉. We assume that QA and QB are disjoint, and extend the ∼, ≈, and

- relations to states in QA ∪QB in the expected way. For example, for q ∈ QA and s ∈ QB,
we use q ∼ s to indicate that L(Aq) = L(Bs).

I Proposition 5. Let A and B be equivalent nice GFG-tNCWs. For every state q ∈ QA,
there is a state s ∈ QB such that q - s.

Proof. Let g be a strategy witnessing B’s GFGness. Consider a state q ∈ QA. Let u ∈ Σ∗
be such that q ∈ δA(q0

A, u). Since A and B are equivalent and semantically deterministic, an
iterative application of Proposition 1 implies that for every state q′ ∈ δB(q0

B, u), we have q ∼ q′.
In particular, q ∼ g(u). If Lsafe(Aq) = ∅, then we are done, as Lsafe(Aq) ⊆ Lsafe(Bg(u)). If
Lsafe(Aq) 6= ∅, then the proof proceeds as follows. Assume by way of contradiction that for
every state s ∈ QB that is equivalent to q, it holds that Lsafe(Aq) 6⊆ Lsafe(Bs). We define
an infinite word z such that A accepts u · z, yet g(u · z) is a rejecting run of B. Since A and
B are equivalent, this contradicts the fact that g witnesses B’s GFGness.

We define z as follows. Let s0 = g(u). Since Lsafe(Aq) 6⊆ Lsafe(Bs0), there is a finite
nonempty word z1 such that there is a safe run of Aq on z1, but every run of Bs0 on z1 is
not safe. In particular, the run of Bs0 that is induced by g, namely g(u), g(u · z1[1, 1]), g(u ·
z1[1, 2]), . . . , g(u · z1), traverses an α-transition. Since A is normal, we can define z1 so the
safe run of Aq on z1 ends in q. Let s1 = g(u · z1). We have so far two finite runs: q z1−→ q and
s0

z1−→ s1, where the first run is safe, and the second is not. Now, since q ∼ s0, then again by
Proposition 1 we have that q ∼ s1, and by applying the same considerations, we can define a
finite nonempty word z2 and s2 = g(u · z1 · z2) such that q z2−→ q and s1

z2−→ s2, where the
first run is safe, and the second is not. After at most |QB| iterations, we get that there are
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0 ≤ j1 < j2 ≤ |QB| such that sj1 = sj2 , and define z = z1 · · · z2 · · · zj1 · (zj1+1 · · · zj2)ω. Since
j1 < j2, the extension zj1+1 · · · zj2 is nonempty and thus z is infinite. On the one hand, since
q ∈ δA(q0

A, u) and there is a safe run of Aq on z, we have that u · z ∈ L(A). On the other
hand, the run g(u · z) traverses an α-transitions infinitely often, and is thus rejecting. J

I Proposition 6. Let A and B be equivalent nice GFG-tNCWs. For every state p ∈ QA,
there are states q ∈ QA and s ∈ QB such that p - q and q ≈ s.

Proof. The proposition follows from the combination of Proposition 5 with the transitivity
of - and the fact QA and QB are finite. Formally, consider the directed bipartite graph
G = 〈QA ∪QB, E〉, where E ⊆ (QA ×QB)∪ (QB ×QA) is such that 〈p1, p2〉 ∈ E iff p1 - p2.
Proposition 5 implies that E is total. That is, from every state in QA there is an edge to
some state in QB, and from every state in QB there is an edge to some state in QA. Since
QA and QB are finite, this implies that for every p ∈ QA, there is a path in G that starts in
p and reaches a state q ∈ QA (possibly q = p) that belongs to a nonempty cycle. We take s
to be some state in QB in this cycle. By the transitivity of -, we have that p - q, q - s,
and s - q. The last two imply that q ≈ s, and we are done. J

I Lemma 7. Consider a nice GFG-tNCW A. If A is safe-centralized and safe-minimal,
then for every nice GFG-tNCW B equivalent to A, there is an injection η : S(A) → S(B)
such that for every safe component T ∈ S(A), it holds that |T | ≤ |η(T )|.

Proof. We define η as follows. Consider a safe component T ∈ S(A). Let pT be some state in
T . By Proposition 6, there are states qT ∈ QA and sT ∈ QB such that pT - qT and qT ≈ sT .
Since A is safe-centralized, the states pT and qT are in the same safe component, thus qT ∈ T .
We define η(T ) to be the safe component of sT in B. We show that η is an injection; that is,
for every two safe components T1 and T2 in S(A), it holds that η(T1) 6= η(T2). Assume by
way of contradiction that T1 and T2 are such that sT1 and sT2 , chosen as described above,
are in the same safe component of B. Then, there is a safe run from sT1 to sT2 . Since
sT1 ≈ qT1 , an iterative application of Proposition 4 implies that there is a safe run from qT1

to some state q such that q ≈ sT2 . Since the run from qT1 to q is safe, the states qT1 and q
are in the same safe component, and so q ∈ T1. Since qT2 ≈ sT2 , then q ≈ qT2 . Since A is
safe-centralized, the latter implies that q and qT2 are in the same safe component, and so
q ∈ T2, and we have reached a contradiction.

It is left to prove that for every safe component T ∈ S(A), it holds that |T | ≤ |η(T )|. Let
T ∈ S(A) be a safe component of A. By the definition of η, there are qT ∈ T and sT ∈ η(T )
such that qT ≈ sT . Since A is normal, there is a safe run q0, q1, . . . qm of A that starts in qT
and traverses all the states in T . Since A is safe-minimal, no two states in T are strongly
equivalent. Therefore, there is a subset I ⊆ {0, 1, . . . ,m} of indices, with |I| = |T |, such that
for every two different indices i1, i2 ∈ I, it holds that qi1 6≈ qi2 . By applying Proposition 4
iteratively, there is a safe run s0, s1, . . . sm of B that starts in sT and such that for every
0 ≤ i ≤ m, it holds that qi ≈ si. Since the run is safe, it stays in η(T ). Then, however,
for every two different indices i1, i2 ∈ I, we have that si1 6≈ si2 , and so si1 6= si2 . Hence,
|η(T )| ≥ |I| = |T |. J

We can now prove that the additional two properties imply the minimality of nice
GFG-tNCWs.

I Theorem 8. Consider a nice GFG-tNCW A. If A is safe-centralized and safe-minimal,
then A is a minimal GFG-tNCW for L(A).
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Proof. Let B be a GFG-tNCW equivalent to A. By Theorem 2, we can assume that B is nice.
Indeed, otherwise we can make it nice without increasing its state space. Then, by Lemma 7,
there is an injection η : S(A)→ S(B) such that for every safe component T ∈ S(A), it holds
that |T | ≤ |η(T )|. Hence,

|A| =
∑

T∈S(A)

|T | ≤
∑

T∈S(A)

|η(T )| ≤
∑

T ′∈S(B)

|T ′| = |B|.

Indeed, the first inequality follows from the fact |T | ≤ |η(T )|, and the second inequality
follows from the fact that η is injective. J

I Remark 9. Recall that we assume that the transition function of GFG-tNCWs is total.
Clearly, a non-total GFG-tNCW can be made total by adding a rejecting sink. One may
wonder whether the additional state that this process involves interferes with our minimality
proof. The answer is negative: if B in Theorem 8 is not total, then, by Proposition 5, A has
a state s such that qrej - s, where qrej is a rejecting sink we need to add to B if we want to
make it total. Thus, L(As) = ∅, and we may not count it if we allow GFG-tNCWs without a
total transition function.

4 Safe Centralization

Consider a nice GFG-tNCW A = 〈Σ, QA, q0
A, δA, αA〉. Recall that A is safe-centralized if

for every two states q, s ∈ QA, if q - s, then q and s are in the same safe component. In
this section we describe how to turn a given nice GFG-tNCW into a nice safe-centralized
GFG-tNCW. The resulted tNCW is also going to be α-homogenous: for every state q ∈ QA
and letter σ ∈ Σ, either δαA(q, σ) = ∅ or δᾱA(q, σ) = ∅.

Let H ⊆ S(A) × S(A) be such that for all safe components S, S′ ∈ S(A), we have
that H(S, S′) iff there exist states q ∈ S and q′ ∈ S′ such that q - q′. That is, when
S 6= S′, then the states q and q′ witness that A is not safe-centralized. Recall that q - q′ iff
L(Aq) = L(Aq′) and Lsafe(Aq) ⊆ Lsafe(Aq

′). Since language containment for GFG-tNCWs
can be checked in polynomial time [12, 17], the first condition can be checked in polynomial
time. Since A is safe deterministic, the second condition reduces to language containment
between deterministic automata and can also be checked in polynomial time. Hence, the
relation H can be computed in polynomial time.

I Lemma 10. Consider safe components S, S′ ∈ S(A) such that H(S, S′). Then, for every
p ∈ S there is p′ ∈ S′ such that p - p′.

Proof. Since H(S, S′), then, by definition, there are states q ∈ S and q′ ∈ S′ such that
q - q′. Let p be a state in S. Since A is normal, there is a safe run from q to p in S. Since
q - q′, an iterative application of Proposition 4 implies that there is a safe run from q′ to
some state p′ in S′ for which p - p′, and we are done. J

I Lemma 11. The relation H is transitive: for every safe components S, S′, S′′ ∈ S(A), if
H(S, S′) and H(S′, S′′), then H(S, S′′).

Proof. Let S, S′, S′′ ∈ S(A) be safe components of A such that H(S, S′) and H(S′, S′′).
Since, H(S, S′), there are states q ∈ S and q′ ∈ S′ such that q - q′. Now, since H(S′, S′′),
we get by Lemma 10 that that for all states in S′, in particular for q′, there is a state q′′ ∈ S′′
such that q′ - q′′. The transitivity of - then implies that q - q′′, and so H(S, S′′). J

ICALP 2019



100:10 Minimizing GFG Transition-Based Automata

We say that a set S ⊆ S(A) is a frontier of A if for every safe component S ∈ S(A),
there is a safe component S′ ∈ S with H(S, S′), and for all safe components S, S′ ∈ S such
that S 6= S′, we have that ¬H(S, S′) and ¬H(S′, S). Once H is calculated, a frontier of A
can be found in linear time. For example, as H is transitive, we can take one vertex from
each ergodic SCC in the graph 〈S(A), H〉. Note that all frontiers of A are of the same size,
namely the number of ergodic SCCs in this graph.

Given a frontier S of A, we define the automaton BS = 〈Σ, QS , q0
S , δS , αS〉, where

QS = {q ∈ QA : q ∈ S for some S ∈ S}, and the other components are defined as follows.
The initial state q0

S is chosen such that q0
S ∼A q0

A. Specifically, if q0
A ∈ QS , we take q0

S = q0
A.

Otherwise, by Lemma 10 and the definition of S, there is a state q′ ∈ QS such that q0
A - q′,

and we take q0
S = q′. The transitions in BS are either ᾱ-transitions of A, or α-transitions

that we add among the safe components in S in a way that preserves language equivalence.
Formally, consider a state q ∈ QS and a letter σ ∈ Σ. If δᾱA(q, σ) 6= ∅, then δᾱS (q, σ) = δᾱA(q, σ)
and δαS(q, σ) = ∅. If δᾱA(q, σ) = ∅, then δᾱS(q, σ) = ∅ and δαS(q, σ) = {q′ ∈ QS : there is q′′ ∈
δαA(q, σ) such that q′ ∼A q′′}. Note that BS is α-homogenous.

I Example 12. Consider the tDCW A appearing in Figure 1. Recall that the dashed
transitions are α-transitions. Since A is normal and deterministic, it is nice. By removing
the α-transitions of A, we get the safe components described in in Figure 2. Since q2 - q0,
we have that A has a single frontier S = {{q0, q1}}. The automaton BS appears in Figure 3.
As all the states of A are equivalent, we direct a σ-labeled α-transition to q0 and to q1, for
every state with no σ-labeled transition in S.

q0

q2

q1

c

b

a

a

Figure 2 The safe components of A.

q0 q1

c

a, b

b

ca

c

a, b

Figure 3 The tNCW B{{q0,q1}}.

We extend Proposition 1 to the setting of A and BS :

I Proposition 13. Consider states q and s of A and BS , respectively, a letter σ ∈ Σ, and
transitions 〈q, σ, q′〉 and 〈s, σ, s′〉 of A and BS , respectively. If q ∼A s, then q′ ∼A s′.

Proof. If 〈s, σ, s′〉 is an ᾱ-transition of BS , then, by the definition of ∆S , it is also an ᾱ-
transition of A. Hence, since q ∼A s and A is nice, in particular, semantically deterministic,
we get by Proposition 1 that q′ ∼A s′. If 〈s, σ, s′〉 is an α-transition of BS , then, by the
definition of ∆S , there is some s′′ ∈ δA(s, σ) with s′ ∼A s′′. Again, since q ∼A s and A is
semantically deterministic, we have by Proposition 1 that s′′ ∼A q′, and thus s′ ∼A q′. J

I Proposition 14. Let q and s be states of A and BS , respectively, with q ∼A s. It holds
that BsS is a GFG-tNCW equivalent to Aq.

Proof. We first prove that L(BsS) ⊆ L(Aq). Consider a word w = σ1σ2 . . . ∈ L(BsS). Let
s0, s1, s2, . . . be an accepting run of BsS on w. Then, there is i ≥ 0 such that si, si+1, . . . is a
safe run of Bsi

S on the suffix w[i+ 1,∞]. Let q0, q1, . . . qi be a run of Aq on the prefix w[1, i].
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Since q0 ∼A s0, we get, by an iterative application of Proposition 13, that qi ∼A si. In
addition, as the run of Bsi

S on the suffix w[i+ 1,∞] is safe, it is also a safe run of Asi . Hence,
w[i+ 1,∞] ∈ L(Aqi), and thus q0, q1, . . . , qi can be extended to an accepting run of Aq on w.

Next, we prove that L(Aq) ⊆ L(BsS) and that BsS is a GFG-tNCW. We do this by defining
a strategy g : Σ∗ → QS such that for all words w ∈ L(Aq), we have that g(w) is an accepting
run of BsS on w. First, g(ε) = s. Then, for u ∈ Σ∗ and σ ∈ Σ, we define g(u · σ) as follows.
Recall that A is nice. So, in particular, Aq is GFG. Let f be a strategy witnessing Aq’s
GFGness. If δᾱS (g(u), σ) 6= ∅, then g(u · σ) = q′ for some q′ ∈ δᾱS (g(u), σ). If δᾱS (g(u), σ) = ∅,
then g(u · σ) = q′ for some state q′ ∈ QS such that f(u · σ) -A q′. Note that since S
is a frontier, such a state q′ exists. We prove that g is consistent with ∆S . In fact, we
prove a stronger claim, namely for all u ∈ Σ∗ and σ ∈ Σ, we have that f(u) ∼A g(u) and
〈g(u), σ, g(u · σ)〉 ∈ ∆S .

The proof proceeds by an induction on |u|. For this induction base, as f(ε) = q, g(ε) = s,
and q ∼A s, we are done. Given u and σ, consider a transition 〈g(u), σ, s′〉 ∈ ∆S . Since BS
is total, such a transition exists. We distinguish between two cases. If δᾱS (g(u), σ) 6= ∅, then,
as BS is α-homogenous and safe deterministic, the state s′ is the only state in δᾱS(g(u), σ).
Hence, by the definition of g, we have that g(u · σ) = s′ and so 〈g(u), σ, g(u · σ)〉 ∈ ∆S . If
δᾱS (g(u), σ) = ∅, we claim that g(u · σ) ∼A s′ Then, as s′ ∈ δαS (g(u), σ), the definition of ∆S
for the case δᾱS (g(u), σ) = ∅ implies that 〈g(u), σ, g(u ·σ)〉 ∈ ∆S . By the induction hypothesis,
we have that f(u) ∼A g(u). Hence, as 〈f(u), σ, f(u ·σ))〉 ∈ δA and 〈g(u), σ, s′〉 ∈ ∆S , we have,
by Proposition 13, that f(u · σ) ∼A s′. Recall that g is defined so that f(u · σ) -A g(u · σ).
In particular, f(u · σ) ∼A g(u · σ). Hence, by transitivity of ∼A, we have that g(u · σ) ∼A s′.
In addition, by the induction hypothesis, we have that f(u) ∼A g(u), and so, in both cases,
Proposition 13 implies that f(u · σ) ∼A g(u · σ).

It is left to prove that for every infinite word w = σ1σ2 . . . ∈ Σω, if w ∈ L(Aq), then g(w)
is accepting. Assume that w ∈ L(Aq) and consider the run f(w) of Aq on w. Since f(w) is
accepting, there is i ≥ 0 such that f(w[1, i]), f(w[1, i+ 1]) . . . is a safe run of Af(w[1,i]) on the
suffix w[i+1,∞]. We prove that g(w) may traverse at most one α-transition when it reads the
suffix w[i+1,∞]. Assume that there is some j ≥ i such that 〈g(w[1, j]), σj+1, g(w[1, j+1])〉 ∈
αS . Then, by g’s definition, we have that f(w[1, j + 1]) -A g(w[1, j + 1]). Therefore, as BS
follows the safe components in S, we have that Lsafe(Af(w[1,j+1])) ⊆ Lsafe(Ag(w[1,j+1])) =
Lsafe(Bg(w[1,j+1])

S ), and thus w[j + 2,∞] ∈ Lsafe(Bg(w[1,j+1])
S ). Since BS is α-homogenous

and safe-deterministic, there is a single run of Bg(w[1,j+1])
S on w[j + 2,∞], and this is the run

that g follows. Therefore, g(w[1, j + 1]), g(w[1, j + 2]), . . . is a safe run, and we are done. J

I Proposition 15. For every frontier S, the GFG-tNCW BS is nice, safe-centralized, and
α-homogenous.

Proof. It is easy to see that the fact A is nice implies that BS is normal and safe deterministic.
It can be shown that all the states in BS are reachable, yet anyway states that are nonreachable
are easy to detect and their removal affects neither BS ’s language nor its other properties.
Finally, Proposition 14 implies that all its states are GFG. To conclude that BS is nice, we
prove below that it is semantically deterministic. Consider transitions 〈q, σ, s1〉 and 〈q, σ, s2〉
in ∆S . We need to show that s1 ∼BS s2. By the definition of ∆S , there are transitions
〈q, σ, s′1〉 and 〈q, σ, s′2〉 in ∆A for states s′1 and s′2 such that s1 ∼A s′1 and s2 ∼A s′2. As A is
semantically deterministic, we have that s′1 ∼A s′2, thus by transitivity of ∼A, we get that
s1 ∼A s2. Then, Proposition 14 implies that L(As1) = L(Bs1

S ) and L(As2) = L(Bs2
S ), and so

we get that s1 ∼BS s2. Thus, BS is semantically deterministic.
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As we noted in the definition of its transitions, BS is α-homogenous. It is thus left to
prove that BS is safe-centralized. Let q and s be states of BS such that q -BS s; that
is, L(BqS) = L(BsS) and Lsafe(BqS) ⊆ Lsafe(BsS). Let S, T ∈ S be the safe components of
q and s, respectively. We need to show that S = T . By Proposition 14, we have that
L(Aq) = L(BqS) and L(As) = L(BsS). As BS follows the safe components in S, we have
that Lsafe(Aq) = Lsafe(BqS) and Lsafe(As) = Lsafe(BsS). Hence, q -A s, implying H(S, T ).
Since S is a frontier, this is possible only when S = T . J

I Theorem 16. Every nice GFG-tNCW can be turned in polynomial time into an equivalent
nice, safe-centralized, and α-homogenous GFG-tNCW.

5 Safe Minimization

In the setting of finite words, a quotient automaton is obtained by merging equivalent states,
and is guaranteed to be minimal. In the setting of co-Büchi automata, it may not be possible
to define an equivalent language on top of the quotient automaton. For example, all the
states in the GFG-tNCW A in Figure 1 are equivalent, and still it is impossible to define
its language on top of a single-state tNCW. In this section we show that when we start
with a nice, safe-centralized, and α-homogenous GFG-tNCW B, the transition to a quotient
automaton, namely merging of strongly-equivalent states, is well defined and results in a
GFG-tNCW equivalent to B that attains all the helpful properties of B, and is also safe
minimal4. By Theorem 8, it is also minimal.

Consider a nice, safe-centralized, and α-homogenous GFG-tNCW B = 〈Σ, Q, q0, δ, α〉. For
a state q ∈ Q, define [q] = {q′ ∈ Q : q ≈B q′}. We define the tNCW C = 〈Σ, QC , [q0], δC , αC〉,
where QC = {[q] : q ∈ Q}, the transition function is such that 〈[q], σ, [p]〉 ∈ ∆C iff there are
q′ ∈ [q] and p′ ∈ [p] such that 〈q′, σ, p′〉 ∈ ∆, and 〈[q], σ, [p]〉 ∈ αC iff 〈q′, σ, p′〉 ∈ α. Note that
B being α-homogenous implies that αC is well defined; that is, independent of the choice of
q′ and p′. To see why, assume that 〈q′, σ, p′〉 ∈ ᾱ and let q′′ be a state in [q]. As q′ ≈B q′′,
we have by Proposition 4 that there is p′′ ∈ [p] such that 〈q′′, σ, p′′〉 ∈ ᾱ. Thus, as B is
α-homogenous, there is no σ-labeled α-transition from q′′ to a state in [p]. Note that we have
proved that if 〈[q], σ, [p]〉 is an ᾱ-transition of C, then for every q′ ∈ [q], there is p′ ∈ [p] such
that 〈q′, σ, p′〉 is an ᾱ-transition of B, and thus the ⊇-direction of the following proposition,
suggesting that a safe run in C induces a safe run in B, follows by a simple induction. The
⊆-direction follows immediately from the definition of C.

I Proposition 17. For every [p] ∈ QC and every s ∈ [p], it holds that Lsafe(Bs) = Lsafe(C[p]).

We extend Propositions 1 and 13 to the setting of B and C:

I Proposition 18. Consider states s ∈ Q and [p] ∈ QC, a letter σ ∈ Σ, and transitions
〈s, σ, s′〉 and 〈[p], σ, [p′]〉 of B and C, respectively. If s ∼ p, then s′ ∼ p′.

Proof. As 〈[p], σ, [p′]〉 is a transition of C, there are states t ∈ [p] and t′ ∈ [p′], such that
〈t, σ, t′〉 ∈ ∆. If s ∼ p, then s ∼ t. Since B is nice, in particular, semantically deterministic,
and 〈s, σ, s′〉 ∈ ∆, we get by Proposition 1 that s′ ∼ t′. Thus, as t′ ∼ p′, we are done. J

I Proposition 19. For every [p] ∈ QC and s ∈ [p], we have that C[p] is a GFG-tNCW
equivalent to Bs.

4 In fact, α-homogeneity is not required, but as the GFG-tNCW BS obtained in Section 4 is α-homogenous,
which simplifies the proof, we are going to rely on it.
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Proof. We first prove that L(C[p]) ⊆ L(Bs). Consider a word w = σ1σ2 . . . ∈ L(C[p]). Let
[p0], [p1], [p2], . . . be an accepting run of C[p] on w. Then, there is i ≥ 0 such that [pi], [pi+1], . . .
is a safe run of C[pi] on the suffix w[i+ 1,∞]. Let s0, s1, . . . si be a run of Bs on the prefix
w[1, i]. Note that s0 = s. Since s0 ∈ [p0], we have that s0 ∼ p0, and thus an iterative
application of Proposition 18 implies that si ∼ pi. In addition, as w[i+1,∞] is in Lsafe(C[pi]),
we get, by Proposition 17, that w[i + 1,∞] ∈ Lsafe(Bpi). Since Lsafe(Bpi) ⊆ L(Bpi) and
si ∼ pi, we have that w[i + 1,∞] ∈ L(Bsi). Hence, s0, s1, . . . si can be extended to an
accepting run of Bs on w.

Next, we prove that L(Bs) ⊆ L(C[p]) and that C[p] is a GFG-tNCW. We do this by
defining a strategy h : Σ∗ → QC such that for all words w ∈ L(Bs), we have that h(w) is an
accepting run of C[p] on w. We define h as follows. Recall that B is nice. So, in particular,
Bs is GFG. Let g be a strategy witnessing Bs’s GFGness. We define h(u) = [g(u)], for
every finite word u ∈ Σ∗. Consider a word w ∈ L(Bs), and consider the accepting run
g(w) = g(w[1, 0]), g(w[1, 1]), g(w[1, 2]), . . . of Bs on w. Note that by the definition of C, we
have that h(w) = [g(w[1, 0])], [g(w[1, 1])], [g(w[1, 2])], . . . is an accepting run of C[p] on w, and
so we are done. J

I Proposition 20. The GFG-tNCW C is nice, safe-centralized, and safe-minimal.

The proof of the proposition is in the full version. The considerations are similar to those
in the proof of Proposition 15. In particular, for safe minimality, note that for states q and s
of B, we have that [q] ≈ [s] iff [q] - [s] and [s] - [q]. Thus, it is sufficient to prove that if
[q] - [s] then q - s. Thus, we can now conclude the following:

I Theorem 21. Every nice, safe-centralized, and α-homogenous GFG-tNCW can be turned
in polynomial time into an equivalent nice, safe-centralized, and safe-minimal GFG-tNCW.

6 Discussion

We presented a polynomial minimization algorithm for GFG-tNCWs. In contrast, minim-
ization of DCWs is NP-complete [33]. This raises a natural question, as to whether both
relaxations of the problem, namely the consideration of GFG automata, rather than determin-
istic ones, and the consideration of transition-based acceptance, rather than state-based one,
are crucial for efficiency. Our conjecture is that minimization of transition-based DCWs (and
hence, also transition-based DBWs) can be solved in polynomial time. Thus, the relaxation
to GFG is not needed. Our conjecture is based on the understanding that the quotient
construction fails for automata on infinite words as it does not capture traversal of transitions.
Moreover, the study of GFG automata so far shows that their behavior is similar to that
of deterministic automata. In particular, it is not hard to see that the NP-hardness proof
of Schewe for DBWs minimization applies also to GFG-NBWs. The use of transition-based
acceptance is related to another open problem in the context of DBW minimization: is there
a 2-approximation polynomial algorithm for it, that is one that generates a DBW that is at
most twice as big as a minimal one. Note that a tight minimization for the transition-based
case would imply a positive answer here. Note also that the vertex-cover problem, used in
Schewe’s reduction has a polynomial 2-approximation. As described in Section 1, there is
recently growing use of automata with transition-based acceptance. Our work here is another
evidence to their usefulness.

We find the study of minimization of GFG automata of interest also beyond being an
intermediate result in the quest for efficient transition-based DBW minimization. Indeed,
GFG automata are important in practice, as they are used in synthesis and control, and in
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the case of the co-Büchi acceptance condition, they may be exponentially more succinct than
their deterministic equivalences. Another open problem, which is interesting from both the
theoretical and practical points of view, is minimization of GFG-tNBW. Note that unlike
the deterministic case, GFG-tNBW and GFG-tNCW are not dual. Also, experience shows
that algorithms for GFG-tNBW and GFG-tNCW are quite different [3, 17, 4, 2].

Finally, recall that there may be different minimal tDCWs for a given language of infinite
words. Our results show that the picture for minimal GFG-tNCWs is cleaner: Consider a
language L ⊆ Σω, and let A be a minimal GFG-tNCW for L obtained by safe-centralizing
and safe-minimizing a nice GFG-tNCW for it. Consider a nice minimal GFG-tNCW B for
L. Then, the injection η : S(A)→ S(B) from Lemma 7 is actually a bijection; that is, η is
one-to-one and onto. Indeed, for every safe component T ∈ S(A) it holds that |T | = |η(T )|.
Moreover, as both A and B are nice, related safe components are isomorphic, thus there
is an bijection κ : QA → QB such that for every q ∈ QA, we have that q ≈ κ(q), and for
every ᾱ-transition 〈q, σ, s〉 of A, we have that 〈κ(q), σ, κ(s)〉 is an ᾱ-transition of B. Thus, all
nice minimal GFG-tNCWs for L have the same set of safe components, and they differ only
in α-transitions among these safe components. An interesting research direction is a study
of these safe components and in particular a characterization of L by a congruence-based
relation on finite words that is induced by them.
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Abstract
In this paper we present the first JSON type system that provides the possibility of inferring a
schema by adopting different levels of precision/succinctness for different parts of the dataset, under
user control. This feature gives the data analyst the possibility to have detailed schemas for parts
of the data of greater interest, while more succinct schema is provided for other parts, and the
decision can be changed as many times as needed, in order to explore the schema in a gradual
fashion, moving the focus to different parts of the collection, without the need of reprocessing data
and by only performing type rewriting operations on the most precise schema.
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1 Introduction

When a data analyst, or a programmer, accesses a JSON data collection for the first time, it
is usually necessary to first have a look at its schema, as it is often the case that the data
collection is badly documented and that it requires some visual data navigation in order to be
fully understood. To this aim, some automated support can be quite useful, especially when
the collection is massive and one is interested in a complete description of the structure.

The problem is that the structure of a data collection can be described at many different
levels of abstraction: for example, when a semistructured collection of records is examined,
one may either just list which fields are present in at least one element, or one may list every
possible field combination. The choice of the abstraction level is extremely important, since
an abstract description may hide too much information while, in other cases, a detailed
description may be so big as to make the description unreadable. Unfortunately, there is

EA
T

C
S

© Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 101; pp. 101:1–101:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:baazizi@ia.lip6.fr
mailto:dario.colazzo@dauphine.fr
mailto:ghelli@di.unipi.it
mailto:sartiani@gmail.com
https://doi.org/10.4230/LIPIcs.ICALP.2019.101
https://hal.archives-ouvertes.fr/hal-02112560/file/icalp2019-full.pdf
https://hal.archives-ouvertes.fr/hal-02112560/file/icalp2019-full.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


101:2 A Type System for Interactive JSON Schema Inference (Extended Abstract)

no objective and absolute definition of an “optimal” abstraction level, since it depends on
the specific needs of the analyst, who may even need different abstraction levels in different
phases of her/his work.

In [4] we proposed a first approach to this problem: a schema inference technique that is
parametrized by an Equivalence Relation (ER); through this parameter, the user chooses one
specific trade-off between succinctness and precision. This is much better than having no
choice, but has important drawbacks. First of all, the choice of the value of the parameter is
difficult. Secondly, and more importantly, one is typically very interested in some parts of
the collection only, hence there is not a globally optimum trade-off: any intermediate choice
between maximal detail and maximal compactness will typically be too compact for the
interesting parts of the collection, but too detailed with respect to anywhere else. Hence,
we built an interactive workbench, where the analyst can start from an abstract description
of the collection, and then ask the system to selectively expand the structural description
of some specific parts. Of course, the process can be iterated back and forth across the
structural description of the data.

The analyst starts from an initial schema and interactively “expands” and “contracts”
different parts of it. The main problem in the design of our workbench was that of under-
standing the exact meaning of these local “expansion” and “contraction” steps, as well as
the lack of formal foundations for the optimization of these operations. In this paper we
fill these gaps, by giving the formal foundations of interactive schema inference for massive
JSON data. Our first contribution is a non-deterministic type system providing a formal
characterisation of schemas featuring different precision levels for different parts of the typed
dataset. We then define a deterministic version of this system, that is, a system where the
user can choose a precision level through the choice of a split criterion parameter, that we
will define. We then introduce an explicit representation of proof manipulations, in order
to formalize the re-typing process, that is, the process of expanding/contracting a specific
point of the schema. In principle, re-typing always involves to re-infer a schema from a
portion of the data, which is not feasible in a big data setting. In our implementation, that
we describe in [3], we exploit some properties of our split criteria in order to perform the
re-typing without accessing data for a second time. Hence, we conclude our work by proving
the soundness of this implementation technique, and studying the properties of our split
criteria that allow this optimization.

2 Overview

Consider a massive collection of records, not perfectly homogeneous and sampled by the tiny
collection below (left-hand side). The schema inference techniques described in [4] allows
one to infer a type for each of the records, so as to obtain the collection of types below
(right-hand side).

Data Types
{ a : {j : 0, k : 0}, b : {bb : 0} }
{ a : {j : 0}, c : {cc : 0} }
{ a : {y : 0, z : 0} c : {cd : 0} }
{ a : {j : 0}, b : 0 }

{a : {j : Num, k : Num}, b : {bb : Num} }
{a : {j : Num}, c : {cc : Num} }
{a : {y : Num, z : Num}, c : {cd : Num} }
{a : {j : Num}, b : Num }

The schema that is synthesized out of this collection of types depends on a parameter
that is set by the analyst, which is an equivalence relation (ER) E: the inferred schema is
obtained by merging any two types that are E-equivalent. For instance, we may use the
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K-equivalence, defined in [4] as the equivalence that equates all pairs of types of the same
kind (record, array, or base type). In this way, all record types are merged, thus obtaining
the following type, where a question mark indicates that the field is optional.

{a : {j : Num?, k : Num?, y : Num?, z : Num?}, b : +K({bb : Num}, Num)?, c : {cc : Num?, cd : Num?}?}

Observe that all outer record types are merged, and, inside the record types, the types
for the a and c keys are merged. The only two types that are kept distinct are those for
the b key, since {bb : Num} and Num have two different kinds, hence b has a union type
+K({bb : Num}, Num), where the K labels refers to the equivalence that guided the merging.

Before going on, we now rewrite this schema according to the syntax that we are using in
this paper, which is more verbose but a bit more natural for our task. In this syntax, we have
a union type in front of every record, array, or base type, so that the type above becomes:

+K( { a : +K({j : +K(Num)?, k : +K(Num)?, y : +K(Num)?, z : +K(Num)?}),
b : +K({bb : +K(Num)}, Num)?,
c : +K({cc : +K(Num)?, cd : +K(Num)?})?})

The more types are merged, the smaller is the resulting schema, and the less precise it results.
For example, the above schema is compact but is not very precise, since it does not specify
how the different fields are mutually related: it only specifies that a and bb are mandatory,
but, for the other fields, any combination is allowed. If the analyst wants more information
about field correlation, she/he may move to the L-equivalence, that specifies that two records
are equivalent iff the respective sets of top-level field labels are the same, hence merging
these equivalent types. In this way, we infer the following type (the L-type):

+L( { a : +L( {j : +L(Num), k : +L(Num)}, {j : +L(Num)} ),
b : +L( {bb : +L(Num)}, Num)

},
{ a : +L( {j : +L(Num)}, {y : +L(Num), z : +L(Num)} ),

c : +L( {cc : +L(Num)}, {cd : +L(Num)} )
})

This type is much bigger, and it gives a lot of information about label correlation: it shows
that b and c are mutually exclusive and one must always be present, and the same for cc
and cd. It also shows that j and k are exclusive with y, z, that the presence of y, z inside a
implies the presence of c, and so on.

The ability to start from a maximally compact type to get an overview of the schema, and
then to move to a schema that is extremely detailed is already interesting but, in practice,
the expanded schema may be overwhelming and may produce a lot of repetition. The analyst
is often interested in just a subset of the input data and would like to be able to study the
structure of that subset. For example, in this case the analyst may be mostly interested
in the a field, and would like to be able to drill down on its structure only. Hence, she/he
would like to start from the K-type and to expand the a field only:

+K( { a : +L( {j : +L(Num), k : +L(Num)}, {j : +L(Num)}, {y : +L(Num), z : +L(Num)} ),
b : +K( {bb : +K(Num)},+K(Num) )?,
c : +K( {cc : +K(Num)?, cd : +K(Num)?} )? } )

In this schema, we have full information about the type of the a field, while the outer
structure and the c field are still represented in the compact style of the K-types. Of course
the analyst should be free now to also expand the c field, obtaining the following type.

ICALP 2019
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+K( { a : +L( {j : +L(Num), k : +L(Num)}, {j : +L(Num)}, {y : +L(Num), z : +L(Num)} ),
b : +K( {bb : +K(Num)},+K(Num) )?,
c : +L( {cc : +L(Num)}, {cd : +L(Num)} )? } )

Finally, we may collapse the a field, getting the following type.

+K( { a : +K( {j : +K(Num)?, k : +K(Num)?, y : +K(Num)?, z : +K(Num)?}) ),
b : +K( {bb : +K(Num)},+K(Num) )?,
c : +L( {cc : +L(Num)}, {cd : +L(Num)} )? } )

The formal definition of this operation of local-equivalence-switch is less obvious than it may
appear. Essentially, the basic idea is that we apply different type-inference techniques to
different parts of the data, but these parts are scattered in the dataset: in our example, the
a fields are interleaved with the b and c fields. We would like to describe each step in the
expand/collapse structure as a rewrite operation in the typing proof-tree, but this rewrite is
non-local on the data, which is not trivial to formalize. Moreover, we would like that the
relationship between a schema and the described data were fully described by the type, with
its K and L annotations, and did not depend on the sequence of steps that has been used to
arrive to that type. This property is very important for the analyst, who will usually not
even remember the sequence of steps that she/he has used in order to arrive at the current
schema, but still would like to have an interpretation of the meaning of that schema. The
formalization of these properties is the theme of the paper.

3 Syntax and Semantics

We represent JSON values through the following grammar, that corresponds to actual JSON
syntax, with the only exception that we do not put quotes around the keys (the labels) of
the records. Following [6], we assume key uniqueness in records.

Syntax
J ::= B | R | A JSON expressions
B ::= null | true | false | n | s n ∈ Number, s ∈ String Basic values
R ::= {l1 : J1, . . . , ln : Jn} n ≥ 0, i 6= j ⇒ li 6= lj Records
A ::= [J1, . . . , Jn] n ≥ 0 Arrays

Basic values B include the null value, booleans, numbers n, and strings s. Records
represent sets of fields, each field being a key-value pair (l, J), and arrays represent sequences
of values. We will use J to range over JSON expressions and J to range over lists (or
collections) of JSON expressions.

I Notation 1. We use L1 ⊕ L2 for list concatenation and e.L to add e at the beginning of a
list L. We use collection as a synonym for list, in situations where the order is there for
technical reasons but is otherwise irrelevant.

In the full paper [3] we define a semantic function J J K that maps each JSON term J to
the corresponding mathematical entity, e.g. a number term into a number, a record into a
set of pairs, an array into a list. That semantics is standard. As an example, the semantics
of records is defined as J {l1 : J1, . . . , ln : Jn} K M= { (l1, J J1 K), . . . , (ln, J Jn K) }

Our JSON types obey the following grammar. Every union type T is a union
+C(S1, . . . ,Sn) of structural types S1, . . . ,Sn, where the optional C subscript on non zero-ary
union types can be ignored for the moment, and later will be used to indicate the “split
criterion” that has been used in order to infer that part of the type. Every structural type
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is either a base type B, a record type R or an array type A; record types and array types
are defined in terms of union types. Each record field in a record type is labeled with a
quantifier indicating whether the field is optional, noted as ?, or mandatory, noted as !. In
our examples we will often omit the “!” symbol and only keep “?” for optional fields.

Syntax
U ::= +(S1, . . . ,Sn) | +C(S1, . . . ,Sn+1) n ≥ 0 Union Types
S ::= B | R | A Struct. types
B ::= Null | Bool | Num | Str Basic types
R ::= {l1 : U1q1, . . . , ln : Unqn} n ≥ 0 , qi ∈ { ?, ! } Record types
A ::= [U ] Array types

The formal semantics of types is standard, and needs some explanation only in the records
case. A record is a set of pairs, hence the empty record type { } denotes a singleton that
only contains the empty record, that is, the empty set of pairs. A one-field record type is a
set of singletons when the field is mandatory, and it also contains the empty record when the
field is optional. Finally, a record that contains n fields is just a set that contains n pairs,
hence a record that belongs to {l1 : U1q1, . . . , ln : Unqn} is just the union of one record for
each field in the type. When a field Uiqi is optional, then the corresponding field in the value
may be missing, which is captured by the presence of the empty set in the semantics of that
field. In the semantics of +(S1, . . . ,Sn) we adopt the usual convention that ∪i∈1..0Si is the
empty set, hence J +( ) K = ∅. In this phase we just ignore the C annotation. The semantics
of base types is standard, and we omit it in this extended abstract.

Semantics
J { } K M= { ∅ }
J {l : U !} K M= { { (l, V ) } | V ∈ JU K }
J {l : U?} K M= J {l : U !} K ∪ J { } K
J {l1 : U1q1, . . . , ln : Unqn} K M= { R1 ∪ . . . ∪Rn | Ri ∈ J {li : Uiqi} K, i = 1, . . . , n }

J [U ] K M= { (V1, . . . , Vn) | n ≥ 0, Vi ∈ JU K }

J +[C](S1, . . . ,Sn) K M=
⋃
i∈1..nJSi K

We partition the structural types into six kinds { Null, Bool, Num, Str, { }, [ ] } by using
the following kind() function, that returns the kind of each structural type. kind(K) = K

for K ∈ { Null, Bool, Num, Str } while kind(A) = [ ] and kind(R) = { }. We also define a
kind() function that maps every JSON term to its kind – we omit the obvious definition.
We say that a collection J of JSON terms is kind-homogeneous if it is not empty and all its
elements have the same kind, in which case kind(J) denotes that kind; kind(J) is undefined
when J is empty or when J is not kind-homogeneous.

4 Type System

4.1 The non-deterministic type system
In [4] we introduced a parametric deterministic type system, that is, a function that, given a
JSON collection J and a parameter E, returns a type U for J. The user could influence the
type by choosing a specific equivalence relation for E: a finer equivalence results into a type
that is more informative but bigger, while a coarser equivalence yields a type that is more
compact but less informative. We focused our attention on two equivalence relations only,
which we called L and K, hence the analyst could choose, for each data collection, between
two types, the L-type, big and detailed, or the K-type, smaller but less informative.
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That approach is not flexible enough. The analyst may prefer to use a different size-
precision trade-off for different parts of the data, depending on her/his interests. Hence, we
need to formalize the notion that one term collection may have many different types, hence
we need a type system that is much more flexible than the one in [4].

This inference system is based on two judgments that are mutually recursive: ` J :u U
and ` J :s S. Type inference rules are shown in Figure 1. The judgment ` J :u U specifies
that the union type U describes the collection J. Rule (EMPTY) specifies that the empty
collection has the empty union type, while rule (+) splits J, non-deterministically, into n
kind-homogeneous subcollections ( J1, . . . , Jn ). The split criterion C describes how J has
been split. It is a partial function that describes how to split a collection of JSON terms.
In this type system it is chosen non-deterministically, it may be different in any instance
of the rule, can be optionally reported in the type, and it is only used to record how one
specific collection has been split. In the deterministic variant of the system, presented in
the next subsection, it will be chosen in a systematic way. The judgment ` J :s S assigns a
structural type S to the kind-homogeneous collection J, so that kind(J) = kind(S).

I Definition 2 (split(J), split criterion C). For any non-empty collection of JSON terms,
split(J) is the set of all partitionings of J into kind-homogeneous subcollections (abbreviated
k-hom). A split criterion C is a partial function such that, for any non-empty collection of
JSON terms J that belongs to its domain, C(J) ∈ split(J).

split(J) = { ( J1, . . . , Jn ) | J1 ⊕ . . .⊕ Jn = J, ∀i, j. i 6= j ⇒ Ji ∩ Jj = ∅,∀i ∈ 1..n. Ji is k-hom }

The three rules of Figure 1 for structural types can only be applied to kind-homogeneous
collections. The notations used in the structural rules are introduced below.

(empty)

` ∅ :u +( )

(+)
C is a split criterion
( J1, . . . , Jn ) = C(J) ∀i = 1, . . . , n. ` Ji :s Si
` J :u +(S1, . . . ,Sn) or +C (S1, . . . ,Sn)

(base)
kind(J) = B
` J :s B

(rec)
kind(J) = { } Let ( a1, . . . , an ) = keys(J)
∀i = 1, . . . , n. ` J/ai :u Ui qi = Q( |J/ai|

|J| )
` J :s {a1 : U1q1, . . . , an : Unqn}

(array)
kind(J) = [ ]
` J/[∗] :u U
` J :s [U ]

Figure 1 Type inference rules.

Rule (+) is the key rule. Consider again the collection of Section 2.

( { a : {j : 0, k : 0}, b : {bb : 0} }, { a : {j : 0}, c : {cc : 0} }
{ a : {y : 0, z : 0} c : {cd : 0} }, { a : {j : 0}, b : 0 } )

If we split it into two different subsets, one for each different choice of the top-level labels,
we will get a union type with two addends, similar to the L-type presented in Section 2.
However, if we consider the trivial split where all records are put together, we will have a
type with only one top level addend, such as the three types whose root is labeled with +K

in Section 2. We could also decide to split the collection in three subsets, in which case the
resulting type will be the union of three types, one for each subset. A finer split will result
into a union type that is bigger but where each addend is more precise. A coarser split will
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yield a union type with less addends, and where each addend will be less precise. Every
application of a union rule can use a different approach to splitting, and every application of
a union rule corresponds to a different + in the resulting type. Hence, this rule gives us the
flexibility that we need in order to model the process of interactive type modification.

For the rule (REC), we first introduce some notations.
I Notation 3 (J.a, J/a,Q(x), keys(J)).
{. . . , a : J, . . .}.a = ( J )
{a1 : J1, . . . , an : Jn}.a = ( ) if ∀i ∈ 1..n. ai 6= a

J/a =
⊕

J∈J J.a

Q(x) = ! if x = 1
Q(x) = ? if 0 < x < 1
keys(J) =

⋃
J∈J(keys(J))

The rule (REC) specifies that, in order to analyze a kind-homogeneous collection of
records, which may have different structures, we extract the collection of all keys that appear
in any of them. For each key ai, we collect the content of that key in all records and we infer
a union type Ui for the collection J/ai. Ui will be the type for ai in the result. Its qualifier
will depend on the fraction of records where the ai field is present, and will be ! if and only
if the fraction is 1. In Q( |J/ai| / |J| ), |C| denotes the cardinality of a collection C.

The rule (ARRAY) is based on the J/[∗] operator, that returns the content of all arrays in
J as defined below; observe that both ( )/[∗] and ( [ ], . . . , [ ] )/[∗] return the empty collection.
I Notation 4 ( J/[∗]). For any collection of arrays, the operator J/[∗] is defined as follows.

( [J1
1 , . . . , J

1
n1

], . . . , [Jm1 , . . . , Jmnm
] )/[∗] M= (J1

1 , . . . , J
1
n1
, . . . , Jm1 , . . . , J

m
nm

)

The use of the J/a and J/[∗] operators in the typing rules is a technical contribution of
this work and, in combination with the approach of typing a whole collection at the same
time, is the fundamental tool that allows us to express the fact that the same criterion will
be used for data that is not consecutive in the dataset but is related by the fact that it is
reached through the same path.

This type system enjoys soundness, in the following sense.
I Theorem 5 (Soundness). For any JSON collection J, union type U , structural type S:

` J :u U ⇒ J J K ⊆ JU K ` J :s S ⇒ J J K ⊆ JS K

I Example 6. Consider a collection J = ( 20, [1, 3, 5], [ ], [1, true], [2, 4] ). We want to find
a union type U such that ` J :u U . We start with the (+) rule, which divides J into
kind-homogeneous subsets to be separately analyzed. For example, it may be divided
into four homogeneous collections ( 20 ), ( [1, 3, 5], [2, 4] ), ( [ ] ), ( [1, true] ). The (BASE) rule
assigns Num to ( 20 ). The (ARRAY) rule reduces the problem ` ( [1, 3, 5], [2, 4] ) :s S1 to
` ( 1, 3, 5, 2, 4 ) :u U1. If the split criterion keeps all the integers together, the (BASE) rule as-
signs Num to the integers, hence we have ` ( 1, 3, 5, 2, 4 ) :u +(Num), hence ` ( [1, 3, 5], [2, 4] ) :s
[+(Num)].

In this way, starting from a four-way split of the original collection, we prove the following
judgment: ` J :u +(Num, [+(Num)], [+()], [+(Num, Bool)]).

By splitting J in different ways, we may prove the following judgments (among others),
all of them correct, each exhibiting a different trade-off of size and precision. For example,
the first type is the only one that fully describes all the possible different shapes of the arrays
in the data. The second type indicates the existence of some “pure integers” array, while the
third one indicates the presence of empty arrays. The fourth one is the less informative but
is still sound, since every array in the collection meets that description.

i) ` J :u + (Num, [+(Num)], [+()], [+(Num, Bool)] )
ii) ` J :u +( Num, [+(Num)], [+(Num, Bool)] )
iii) ` J :u +( Num, [+()], [+(Num, Bool)] )
iv) ` J :u +( Num, [+(Num, Bool)] )
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4.2 The deterministic type system
The non-deterministic type system is a general framework that will be used to prove that
every judgment that is generated by the process of interactive typing is sound. We formalize
now a deterministic subsystem, that models how the user guides the behaviour of the system.

While the non-deterministic type system takes a non-deterministic choice of a split
criterion for each instance of the (+) rule, our type checker splits the J collection according
to a criterion that is defined by the user, and this is modeled by the deterministic system.

Our split criteria will be based on equivalence relations defined on JSON terms, as follows.

I Definition 7 (C(E)). For a given equivalence relation E defined on JSON terms, the split
criterion C(E) maps a collection J to a partition of J according to E.

We can now define two important equivalence relations which will be used to define
two split criteria. They are kind equivalence K(J1, J2) and label equivalence L(J1, J2), and
correspond to the equivalences K(S1,S2) and L(S1,S2) defined in [4] for structural types.
Kind equivalence is the coarsest equivalence that can be used to define a split criterion,
since it keeps all kind-homogeneous terms together. Label equivalence is the same as kind
equivalence for base values and for arrays but, when records are compared, it only groups
those records that have exactly the same keys, hence it is much finer. The formal definition
of the two equivalences is obvious, and reported in the full version [3].

The simplest way to “determinize” the non-deterministic type system would be to choose
a split criterion to be adopted in every instance of the (+) rule. We need, however, some
more freedom than this, hence we adopt the notion of determinizer, which is a function from
integer sequences to split criteria (Definition 8), that we use to associate a split criterion to
each instance of the (+) rule in a proof.

Formally, we define the deterministic type system by adding aD parameter (a determinizer)
to the rules, and by specializing the (+) rule to the following (+D) rule, that specifies that
D(ε), where ε is the empty sequence, is used to split J, while the determinizers next(D, i), as
defined in Definition 8, will be used in the subproofs.

(+D)
( J1, . . . , Jn ) = D(ε)(J) `next(D,i) Ji :s Si i = 1, . . . , n
`D J :u +D(ε)(S1, . . . ,Sn)

I Definition 8 (Determinizer, next(D, i)). A determinizer D is a function that maps any
sequence, possibly empty, of positive integers ω = ( i1, . . . , in ) to a split criterion D(ω). For
any determinizer D, next(D, i) is the determinizer that maps ω to D(i.ω).

A determinizer is hence a function that determines the split criterion used at each node of
the type proof. By construction, every proof in the deterministic type system is also a proof
in the non-deterministic one. In the full paper we show that the converse also holds: for
every proof in the non-deterministic system a determinizer exists that generates that proof.

A determinizer may map any sequence to any split criterion, but, in practice, we will focus
on very simple split criteria and very simple determinizers. Our system currently supports
only three determinizers, L, K, LK, all of them employing equivalence-based criteria and a
constant or almost-constant function.

I Definition 9 (L, K, LK). L is the constant determinizer that maps every sequence ω to
the split criterion C(L). K maps every sequence to C(K). LK maps the empty sequence to
C(L) and any other sequence to C(K).
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Hereafter, we use the terms L-type and K-type, for a collection J, to refer to the type
that is inferred using, respectively, the L or the K determinizer. By Definition 9, L and K
use, respectively, C(L) and C(K) as split criteria, everywhere in the proof. LK uses C(L) at
the top level but C(K) everywhere else, that is, it expands like the L-type at the top level,
but computes a K-type everywhere else.

4.3 The proof validity system
The aim of this paper is to provide a formal specification of a system that dynamically
recomputes a type for a subset of the input data. We believe that the most direct approach
is to describe it as a system that manipulates typing proofs and, to this aim, we need a
notation to explicitly describe proofs and their manipulations. To this aim, we extend our
judgments with a proof term that describes the proof itself, so that, rather than judgments
` J : T , that specify that the collection J has type T , we will have ternary judgments with
the form π ` J : T , that specify that π is a proof tree that proves that J has type T .

More precisely, we first define a language of proof terms as follows.

πu ::= 〈+(πs1, . . . , πsn)〉 n ≥ 0
πs ::= 〈J,B〉 | 〈J, {l1 : πu1 q1, . . . , ln : πunqn}〉 | 〈J, [πu]〉

Then, we define an inference system, based on two judgments that are mutually recursive
πu ` J :u U and πs ` J :s S that specify when a proof term π is a proof (and not just a
proof term), and, in that case, the fact that π proves that J has type U . In the sequel we will
use the metavariable π to range over both structural type proofs πs and union type proofs
πu. The type inference rules are shown in Figure 2.

(empty)

〈+( )〉 ` ∅ :u +( )

(+)
C is a split criterion ( J1, . . . , Jn ) = C(J)
πi ` Ji :s Si i = 1, . . . , n
〈+(π1, . . . , πn)〉 ` J :u +[C](S1, . . . ,Sn)

(base)
kind(J) = B
〈J,B〉 ` J :s B

(rec)
kind(J) = { } Let ( a1, . . . , an ) = keys(J)
∀i = 1, . . . , n. πi ` J/ai :u Ui ∀i = 1, . . . , n. qi = Q( |J/ai|

|J| )
〈J, {a1 : π1q1, . . . , an : πnqn}〉 ` J :s {a1 : U1q1, . . . , an : Unqn}

(array)
kind(J) = [ ]
π ` J/[∗] :u U
〈J, [π]〉 ` J :s [U ]

Figure 2 Proof validity rules.

Given a proof π, in the full paper we define JJ(π) and U(π) as the unique collection
JJ(π) and type U(π) such that π ` JJ(π) : U(π). We then define a notion of path inside a
proof or a type, where the steps (i), [∗] and a traverse, respectively, the union, array, and
record constructors:

p ::= ε | (i)/p | [∗]/p | a/p

We then define a notion of subproof along a path π ↓ p, and a notion of substitution π[p← π1],
that is only well defined when JJ(π1) = JJ(π ↓ p), that is, a substitution will change the
type but not the term. In the full paper we prove the fundamental property of this operation:
if π and π1 are valid proofs, then π[p← π1] is a valid proof as well, where valid is defined
by the rules of Figure 2. This property is the foundation of the formalization that we are
going to present.
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5 The Local-Retype Operation

We are now ready to define the local-retype operation. In our tool, the analyst has a
collection J and a type T for J, she/he clicks on a union type U inside T and selects the new
determinizer D to use in order to re-type the subforest of J that corresponds to the type U .

In general, this subforest does not correspond to a subsequence of the JSON collection:
when the analyst selects the type of the authors field of a record type, the objects that
correspond to the authors key are scattered through all those records that actually contain
an authors field. However, if we consider a proof tree π such that π ` J : T , then these
objects are all collected in the only premise of the (REC) rule that infers a type for J/authors.
Hence, we may formalize this action as follows: the analyst chooses a path p inside the type
T and a new determinizer D, and the system computes a new proof π′ for the collection that
corresponds to π ↓ p, substitutes π′ to π ↓ p, and visualizes the type that corresponds to the
new proof. The analysts operate on types, but the system is manipulating the corresponding
proofs. We formalize this through the retype operation, as follows.

I Definition 10 (retype(π, p,D)). For any proof π such that π ` J : T , for any p such that
T ↓ p is defined, for any determinizer D, retype(π, p,D) is defined as follows , where πD is
uniquely determined by D, π and p :

(∃T ′. πD `D JJ(π ↓ p) : T ′) ⇒ retype(π, p,D) M= π[p← πD]

In other terms, the analyst indicates a path p, the system retrieves the corresponding
collection JJ(π ↓ p) inside the current proof π, computes a D-proof πD for that collection,
and substitutes π ↓ p with πD. From the analyst’s viewpoint, the type at T ↓ p has been
substituted with a D-type for the corresponding collection.

In the full paper, we extend this definition to a retype∗(π, σ) operation that executes
a sequence σ = ( (p1,D1), . . . , (pn,Dn) ) of retyping steps, and we prove that, for any such
sequence, the resulting type is always a correct description of the input collection and a
tight description, where every path in the type actually corresponds to some piece of data.
Moreover, we prove that the split criteria that are present in the type actually correspond to
how the collections have been split in the proof. In other terms, we prove that the specific
sequence of steps is irrelevant, hence the final type that is displayed to the analyst only
depends on the terms in the collection. For space reason, we only present here the most
important results, but leave the discussion and the proofs to the full paper.

I Theorem 11 (Type soundness of retype∗()). For any proof π such that π ` JJ(π) : U(π),
for any sequence σ of retyping steps, the proof retype∗(π, σ) is still a proof for JJ(π):

retype∗(π, σ) = πn ⇒ πn ` JJ(π) : U(πn)

I Corollary 12. For any π such that π ` JJ(π) : U(π), for any sequence σ of retyping steps
such that retype∗(π, σ) = πr, for any path p:
1. J JJ(πr ↓ p) K ⊆ J U(πr ↓ p) K Soundness of retype∗()
2. if π ↓ p is not +(): J JJ(πr ↓ p) K 6= ∅ Tightness of retype∗()
3. if πr ↓ p = +C(π1, . . . , πm): ( JJ(π1), . . . , JJ(πm) ) = C(JJ(πr ↓ p))

some text Soundness of the split criterion

6 Implementation

According to our definition, any time the analyst expands or contracts a node in the type,
all data associated to that node are type-checked again. Since we are dealing with massive
data collections, and we aim for a very fast response, this approach is not acceptable.
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In our implementation, we do a different thing. We currently support the three determiniz-
ers K, L, and LK of Definition 9, and the L-type contains enough information to rebuild the
K-type and the LK-type. Hence, we first compute and store the L-type UL of the dataset
J, and we compute the K-type UK , which is the first one to be visualized, starting from
UL. Then, rather than keeping track of a proof π ` J : UK , we store a type-level abstract
proof πLK ` UL : UK , formalized in a type-to-type inference system specified below. When
we need to recompute the type of a subcollection JJ(π ↓ p), rather than type-checking the
subcollection, which may be extremely big, we compute its type starting from the collection
of types U(πLK ↓ p), which is a subforest of UL, and is an abstract description of JJ(π ↓ p).

In the full paper, in this section we present this approach, which is crucial for the
applicability of our tool, and prove its correctness. We recap here the contents of the section.

We want to specify a set of conditions that make it possible to compute an abstract type
from a detailed type without accessing the data. We focus our attention to a specific class
of determinizers, those whose split condition is defined in terms of an equivalence, and, for
the detailed type, we also ask that the split condition is constant, as it happens for the L
determinizer, which constantly uses the C(L) split criterion. We then define a judgment
`D J :: S that specifies that a collection of terms J is “described” by a collection of structural
types S. We can now define a notion of refinement, that specifies a condition that is sufficient
in order to compute an abstract type starting from the detailed type.

The notion is based on the existence of a Type-level split criterion for D and C tsplitCD(S),
that is, a function that splits the collection S describing J in the “same way” as C would have
split J. If, for a determinizer E , for any ω, we have a type-level split criterion tsplitE(ω)

D (S),
then D refines E , and we prove that this is sufficient to compute the E-type from the D-type.

To this aim, we present a set of rules to compute an E-type from a D-type if D refines E ,
and the corresponding proof of correctness. This set of rules, reported in Figure 3, defines
a type-to-type system, where the type collections at the left hand side substitute the terms
that they represent, and the operators S/a, qual(S, a), keys(S), S/[∗] represent the type-level
lifting of the corresponding term operators.

(empty)

`E
D +C( ) :u +E(ε)( )

(base)
kind(S) = B
`E

D S :s B

(array)
kind(S) = [ ] `E

D S/[∗] :u U
`E

D S :s [U ]

(+D)
( S1, . . . , Sn ) = tsplitE(ε)

D (S)

`next(E,i)
D Si :s S ′

i i = 1, . . . , n
`E

D S :u +E(ε)(S ′
1, . . . ,S ′

n)

(rec)
kind(S) = { } Let ( a1, . . . , an ) = keys(S)
∀i = 1, . . . , n. `E

D S/ai :u Ui qi = qual(S, ai)
`E

D S :s {a1 : U1q1, . . . , an : Unqn}

Figure 3 The t2t system: rules to infer an E-type from a D-type.

We then prove that the type-to-type system can be used to correctly compute the E-type
of any collection starting from its D-type.

I Property 13 (Soundness and completeness of `ED UD :u UE). For any J, S, D, E, Jc, UE,
SE, where Jc is kind-homogeneous, if D refines E, then:

`D J :: S ⇒ ( `ED S :u UE ⇔ `E J :u UE )
`D Jc :: S ⇒ ( `ED S :s SE ⇔ `E Jc :s SE )
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7 Related Work

While the problem of inferring structural information from JSON collections has recently
gained a momentum [8, 1, 2, 13, 9, 14], we are not aware of any approach that is interactive.
In the XML realm, among the plethora of schema inference approaches [5, 10, 7, 11, 15, 12],
only the one presented [15] is interactive since it relies on user intervention for recognizing
regular expressions that are similar enough to be merged and for guiding the system to derive
sophisticated schema expressing inheritance and restrictions, two constructs that are difficult
to infer in a purely automatic fashion. While this approach bears some resemblance with
our work in that both give the user some form of freedom to decide when two types are
similar, the interaction presented in [15] is only meant to guide the system during the schema
inference and does not allow for exploring different parts of an already existing schema with
different precision lenses. Another notable difference with our approach is the lack of a
mechanism for reasoning about type “similarity” like an equivalence class.

8 Conclusions

When semistructured JSON data are retrieved from the web, the presence of an automatic
tool that can infer a schema is very useful, but the same data can be described with schemas
with different size-precision trade offs, and no trade-off is optimal in general. Moreover, it is
often the case that one is mostly interested in a specific part of the data, hence we designed
and implemented a system where the analyst can interactively decide which parts of the
data should be described with a greater or lower level of detail.

In this paper we have studied the formal foundations of this approach. The main novelty
of this formal study is the use of specific precision criteria on specific parts of the data,
that are identified by acting on a node of the syntax tree of a type. This aspect has been
formalized through the use of some technical tools such as the use of selectors such as J/a
and J/[∗] inside the type proofs, and the notion of proof terms. With these tools we have
proved the soundness of the local retype operation that we implemented.

The basic ideas that we presented here admit many extensions. First of all, while
we designed the foundations of an interactive tool for an elementary type system, all the
extensions of that elementary type system that we briefly presented in [4] – such as type
constraints, enumeration types, variant types, tuple types, keyset equivalence – can be easily
added. In the same way, the approach that we defined here can be easily applied to the
counting type system that we defined in [2], hence combining the interactivity that we
presented here with the quantitative information that was presented in that paper. We are
currently exploring these possibilities.

Finally, while in [4] and [2] we studied the use of equivalence relations in order to split
collection, here we allow any criterion to be used. This opens the way to some new possibilities,
such as a top-n split, where one separates and groups the n shapes that are most important
and collapses the others, or even forms of value-based grouping, where different records are
grouped in a way that depends on the values of the fields and not just on the types.
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Abstract
Value iteration is a fundamental algorithm for solving Markov Decision Processes (MDPs). It
computes the maximal n-step payoff by iterating n times a recurrence equation which is naturally
associated to the MDP. At the same time, value iteration provides a policy for the MDP that is
optimal on a given finite horizon n. In this paper, we settle the computational complexity of value
iteration. We show that, given a horizon n in binary and an MDP, computing an optimal policy is
EXPTIME-complete, thus resolving an open problem that goes back to the seminal 1987 paper on
the complexity of MDPs by Papadimitriou and Tsitsiklis. To obtain this main result, we develop
several stepping stones that yield results of an independent interest. For instance, we show that
it is EXPTIME-complete to compute the n-fold iteration (with n in binary) of a function given
by a straight-line program over the integers with max and + as operators. We also provide new
complexity results for the bounded halting problem in linear-update counter machines.
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1 Introduction

Markov decision processes (MDP) are a fundamental formalism of decision making under
probabilistic uncertainty [29, 9]. As such, they play a prominent role in numerous domains,
including artificial intelligence and machine learning [34, 33], control theory [10, 1], operations
research and finance [11, 31], as well as formal verification [12, 5], to name a few. Informally,
an MDP represents a system which is, at every time step, in one of the states from a finite
set S. The system evolves in steps: in each step, we can perform an action (or decision) from
a finite set A. When using an action a ∈ A in state s ∈ S, we collect an immediate reward
R(s, a) and then transition stochastically to a successor state according to a rational-valued
distribution P (s, a), which is given as a part of the MDP. This interaction with an MDP
proceeds over either a finite or infinite horizon. In the finite-horizon case, we are given a
bound H ∈ N (a horizon) such that the interaction stops after H steps; in the infinite horizon
case the process goes on forever. To solve an MDP means to find an optimal policy; that is,
a blueprint for selecting actions that maximizes the expected reward accumulated over a
finite or infinite horizon. The accumulated rewards are typically discounted by some factor
0 < γ ≤ 1; for infinite horizon, we need γ < 1 to ensure that the infinite sum is well defined.

Value iteration. Given the importance of MDPs, it is hardly surprising that they have
attracted significant interest in the theory community. Past research on MDPs included the
study of complexity issues [27] as well as the design and analysis of algorithms for solving
MDPs [22, 24, 38, 39]. In this paper, we provide a fresh look on one of the most familiar
algorithms for MDPs: value iteration (VI). Introduced by Bellman in the 1950s [6], VI makes
use of the optimality principle: the maximal n-step reward achievable from a state s, which
we denote by ~vn(s), satisfies the recurrence

~vn(s) = max
a∈A

{
R(s, a) + γ ·

∑
s′∈S

P (s, a)(s′) · ~vn−1(s′)
}

, (1)

with ~v0(s) = 0. Consequently, a finite-horizon policy is optimal if and only if it chooses, in
a situation when the current state is s and n steps are remaining, an action maximizing
the right-hand side (RHS) of (1). Thus, to solve an MDP with a finite horizon H, the VI
algorithm computes the values ~vn(s) for all 0 ≤ n ≤ H and all states s, by iterating the
recurrence (1). Using these values, VI then outputs (using some tie-breaking rule) some
policy satisfying the aforementioned optimality characterization. VI can be deployed also
for infinite-horizon MDPs: one can effectively compute a horizon H such that action a is
optimal in state s for an infinite horizon1 if it maximizes the RHS of (1) for n = H [8]. This
H has a bit-size which is polynomial in the size of the original MDP, but the magnitude of
H can be exponential in the size of the MDP if the discount factor is given in binary [22].

VI is one of the most popular MDP-solving algorithms due to its versatility (as shown
above, it can be used for several MDP-related problems) and conceptual simplicity, which
makes it easy to implement within different programming paradigms [30, 37], including
implementation via neural nets [35]. Several variants of VI with improved performance were
developed [36, 14]. For instance, the recent paper by Sidford et al. [32] presented a new class
of randomized VI techniques with the best theoretical runtime bounds (for certain values

1 In infinite-horizon MDPs, there is always an optimal stationary policy, which makes decisions based
only on the current state. [29]



N. Balaji, S. Kiefer, P. Novotný, G. A. Pérez, and M. Shirmohammadi 102:3

of parameters) among all known MDP solvers. The paper also expresses hope that their
techniques “will be useful in the development of even faster MDP algorithms.” To get insight
into the underlying structure of VI, which might enable or limit further such accelerations, we
take a complexity-theoretic vantage point and study the theoretical complexity of computing
an outcome of a VI execution. That is, we consider the following decision problem ValIt:
given an MDP with a finite horizon H (encoded as a binary number), does a given action
a maximize the RHS of (1) for n = H? This problem is inspired by the paper of Fearnley
and Savani [16], where they show PSPACE-hardness (and thus also completeness) for the
problem of determining an outcome of policy iteration, another well-known algorithm for
MDP solving. To the best of our knowledge, VI has not yet been explicitly subjected to this
type of analysis. However, questions about the complexity of ValIt were implicitly raised by
previous work on the complexity of finite-horizon MDPs, as discussed in the next paragraph.

Finite-horizon MDPs. The complexity of finite-horizon MDPs is a long-standing open
problem. Since “finding an optimal policy” is a function problem, we can instead consider
the decision variant: “In a given finite-horizon MDP, is it optimal to use a given action in
the first step?” As discussed above, this is exactly the ValIt problem in disguise.

In the seminal 1987 paper on the complexity of MDPs [27], Papadimitriou and Tsitsiklis
showed P-completeness of a special case of finite-horizon optimization where the horizon H
has magnitude polynomial in the size of the MDP. At the same time, they noted that in the
general case of binary-encoded H, VI can be executed on an EXPTIME-bounded Turing
machine (since H is represented using log(H) bits, the number of iterations is exponential in
the size of the input). Hence ValIt is in EXPTIME. However, the exact complexity of
the general finite-horizon optimization remained open ever since, with the best lower bound
being the P-hardness inherited from the “polynomial H” sub-problem. Tseng [36] presented
a more efficient (though still exponential) algorithm for finite-horizon MDPs satisfying a
certain stability condition; in the same paper, he comments that “in view of the stability
assumptions needed to obtain an exact solution and the absence of negative results, we are
still far from a complete complexity theory for this problem.”

In this paper, we address this issue, provide the missing negative results, and provide
tight bounds on the computational complexity of ValIt and finite-horizon MDP optimization.

Our Results
The main result of the paper is that ValIt is EXPTIME-complete (Theorem 1). In the
rest of this section, we first explain some challenges we needed to overcome to obtain the
result. Then we sketch our main techniques and conclude with discussing the significance of
our results, which extends beyond MDPs to several areas of independent interest.

Challenges
Bitsize of numbers. One might be tempted to believe that ValIt is in PSPACE, since
the algorithm needs to store only polynomially many values at a time. However, the bitsize
of these values may become exponentially large during the computation (e.g., the quantity
~vn(s) may halve in every step). Hence, the algorithm cannot be directly implemented by
a polynomial-space Turing machine (TM). One could try to adapt the method of Allender
et al. [20, 2] based on an intricate use of the Chinese remainder representation (CRR) of
integers. However, there is no known way of computing the max operation directly and
efficiently on numbers in CRR.

ICALP 2019
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Figure 1 Chain of reductions.

Complex optimal policies. Another hope for PSPACE membership would be a possibly
special structure of optimal policies. Fixing any concrete policy turns an MDP into a
Markov chain, whose H-step behavior can be evaluated in polynomial space (using, e.g., the
aforementioned CRR technique of Allender et al.). If we could prove that (A) an optimal
policy can be represented in polynomial space and (B) that the Markov chain induced by
such a policy is polynomially large in the size of the MDP, we would get the following
PSPACE algorithm: cycle through all policies that satisfy (A) and (B), evaluate each of
them, and keep track of the best one found so far. Tseng [36] commented that optimal
policies in finite-horizon MDPs are “poorly understood”. Hence, there was still hope that
optimal Markovian deterministic policies may have a shape that satisfies both (A) and (B).
Unless PSPACE = EXPTIME, our results put such hopes to rest.

No hardness by succinctness. One might try to prove EXPTIME-hardness using a
succinctness argument. The results of [27] show that ValIt is P-hard when the horizon
is written in unary, and many optimization problems over discrete structures incur an
exponential blow-up in complexity when the discrete structure is encoded succinctly, e.g., by
a circuit [28]. Giving a horizonH in binary amounts to a succinct encoding of an exponentially
large MDP obtained by “unfolding” the original MDP into a DAG-like MDP of depth H.
This unfolded MDP is “narrow” in the sense that it consists of many polynomial-sized layers,
while standard EXPTIME-hardness-by-succinctness proofs, use succinct structures of an
exponential “width” and “depth”, accommodating the tape contents of an EXPTIME-
bounded TM. Hence, straightforward succinctness proofs do not apply here; e.g., there does
not seem to be a direct reduction from the succinct circuit value problem.

Our Techniques
To obtain EXPTIME-hardness of ValIt, we proceed by a sequence of non-trivial reductions.
Below we outline these reductions in the order in which they appear in the sequence, see
Figure 1. In the main text, we present the reductions in a different order (indicated by
the numbering of propositions and theorems), so that we start with MDPs and gradually
introduce more technical notions.

We start from a canonical EXPTIME-complete problem: the halting problem for an
exponential-time TM. We then present a reduction to a halting problem for a class of counter
programs (CPs; simple imperative programs with integer variables) that allow for linear
variable updates. In this way, we encode the tape contents into numerical values (6). The
crucial feature of this reduction is that the produced CP possesses a special simplicity
property, which imposes certain restrictions on the use of tests during the computation.

Next, we introduce straight-line programs (SLPs) with max, +, and − operations. SLPs
are a standard model of arithmetic computation [3] and they can be equivalently viewed



N. Balaji, S. Kiefer, P. Novotný, G. A. Pérez, and M. Shirmohammadi 102:5

as arithmetic circuits consisting (in our case) of max, +, and − gates. We also consider
a sub-class of SLPs with only max,+ operations, so called monotone SLPs. We define
the following powering problem: given a function f : Qn → Qn represented as an SLP, a
horizon H, an initial argument ~x ∈ {0, 1}n, and two indices 1 ≤ i, j ≤ n, is it true that the
i-component of fH(~x), i.e. the image of ~x with respect to the H-fold composition of f , is
greater than the j-component of fH(~x)? Although VI in MDPs does not necessarily involve
integers, the powering problem for monotone SLPs captures the complexity inherent in
iterating the recurrence (1). To obtain a reduction from CPs to SLP powering, we construct
SLP gadgets with max, + and − (minus) operations to simulate the tests in CPs; the
simplicity of the input CP is crucial for this reduction to work (Theorem 7). To get rid of
the minus operation, we adapt a technique by Allender et al. [4], which introduces a new
“offset” counter and models subtraction by increasing the value of the offset (Theorem 5).

A final step is to show a reduction from monotone SLP powering to ValIt. The reduction
proceeds via an intermediate problem of synchronizing reachability in MDPs (maximize the
probability of being in a target set of states T after exactly H steps [15]). This divides a
rather technical reduction into more comprehensible parts. We present novel reductions
from monotone SLP powering to synchronizing reachability (Theorem 4), and from the
latter problem to ValIt (Theorem 2). As a by-product, we present a reduction proving
EXPTIME-hardness of finite-horizon reachability in MDPs, arguably the conceptually
simplest objective in probabilistic decision-making (Theorem 3).

Significance

As our main result, we characterize the complexity of computing an outcome of VI, one of the
fundamental algorithms for solving both finite- and infinite-horizon MDPs. As a consequence,
we resolve a long-standing complexity issue [27] of solving finite-horizon MDPs.

On our way to proving this result, we encounter non-trivial stepping stones which are of
an independent interest. First, we shed light on the complexity of succinctly represented
arithmetic circuits, showing that comparing two output wires of a given (max,+)-circuit
incurs an exponential blow-up in complexity already when employing a very rudimental form
of succinctness: composing a single (max,+)-circuit with H copies of itself, yielding a circuit
of exponential “height” but only polynomial “width.” Second, we obtain new hardness results
for the bounded reachability problem in linear-update counter programs. CPs are related
to several classical abstractions of computational machines, such as Minsky machines and
Petri nets [25], see [13] for a recent breakthrough in this area. Our work establishes a novel
connection between counter programs and MDPs.

Further Related Work

Our work is also related to a series of papers on finite-horizon planning [21, 17, 18, 23].
The survey paper [26] provides a comprehensive overview of these results. These papers
consider either MDPs with a polynomially large horizon, or succinctly represented MDPs
of possibly exponential “width” (the succinctness was achieved by circuit-encoding). The
aforementioned hardness-by-succinctness proofs are often used here. The arbitrary horizon
problem for standard MDPs, which we study, is left open in these papers, and our work
employs substantially different techniques. The complexity of finite-horizon decentralized
MDPs was studied in [7].

ICALP 2019
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2 Markov Decision Processes and Finite-Horizon Problems

We start with some preliminaries. A probability distribution d : S → [0, 1] over a finite set S is
a function such that

∑
s∈S d(s) = 1. We denote by D(S) the set of all (rational) probability

distributions over S. The Dirac distribution on s ∈ S assigns probability 1 to s.
A Markov decision process (MDP) M = (S,A, P,R, γ) consists of a finite set S of

states, a finite set A of actions, a transition function P : S ×A→ D(S), a reward function
R : S ×A→ Q, and a discount factor γ ∈ (0, 1]. The transition function P assigns to each
state s and action a a distribution over the successor states, while the reward function assigns
to s and a a rational reward.

A path % is an alternating sequence s0a1s1 · · · ansn of visited states and played actions
inM (that starts and ends in a state); write |%| = n for the length of %. We may use s0

%→ sn
to denote that path % goes from s0 to sn. We extend the reward function R from single
state-action pairs to paths by R(%) =

∑
1≤i≤nR(si−1, ai)γi−1.

A policy for the controller is a function σ that assigns to each path a distribution over
actions. Let PM,s,σ(%) denote the probability of a path % starting in s when the controller
follows the policy σ. This probability is defined inductively by setting PM,s,σ(s0) = 1 if
s = s0, and PM,s,σ(s0) = 0 otherwise. For a path % = s0a1s1 · · · sn−1ansn, we set

PM,s,σ(%) = PM,s,σ(s0 · · · sn−1) · σ(s0 · · · sn−1)(an) · P (sn−1, an)(sn) .

We omit the subscripts from PM,s,σ(·) if they are clear from the context. Additionally, we
extend PM,s,σ(·) to sets of paths of the same length by summing the probabilities of all the
paths in the set.

In this paper, we focus on a special class of policies: A (deterministic) Markov policy is
a function σ : N× S → A. Intuitively, a controller following a Markov policy plays σ(n, s)
from s if it is the n-th visited state, irrespective of the other states in the path. Markov
policies suffice for the problems we consider.

2.1 Finite-Horizon Problems
Given an MDPM, the core problem of MDPs is computing the values of states with respect
to the maximum expected reward. Let ~vn ∈ QS denote the vector of n-step maximum expected
rewards obtainable from each state of the MDP. That is, for all s ∈ S we have that

~vn(s) = max
σ

∑
|%|=n

Ps,σ(%) ·R(%)

 .

Note that ~v0 = ~0 by this definition. The vector ~vn can be computed by value iteration, i.e.
by iterating the recurrence stated in Equation (1). From that recurrence, for each n ∈ N and
state s0, one can extract an (optimal) Markov policy σ that achieves the maximum value
~vn(s0) after n steps: for each s ∈ S and for 1 ≤ i ≤ n we have

σ(i− 1, s) = argmax
a∈A

{
R(s, a) + γ ·

∑
s′∈S

P (s, a)(s′) · ~vn−i(s′)
}

.

Papadimitriou and Tsitsiklis posed the finite-horizon reward problem which asks to
compute such an optimal policy for the controller [27]. Formally, given an MDP M, an
initial state s0 ∈ S, a distinguished action a ∈ A, and a horizon H ∈ N encoded in binary,
the finite-horizon reward problem asks whether there exists a policy achieving ~vH(s0) by
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MDP N

s

s1

s2

ts3

a, 0 : 1
2

b, 0 : 1
a, b, 2 : 1

a, 0 : 1
2 a, b, 2 : 1

a, b, 1 : 1a, b, 0 : 1

~vn(s) = max
(

1
4~vn−1(s1) + 1

4~vn−1(s2), 1
2~vn−1(s1)

)
~vn(s1) =2 + 1

2~vn−1(s)

~vn(s2) =2 + 1
2~vn−1(t)

~vn(t) =1 + 1
2~vn−1(s3)

~vn(s3) =1
2~vn−1(s)

Figure 2 The transitions are labelled with actions, rewards and their probabilities. For example,
the reward of the transition from s to s1 on action a is 0, and its probability is 1

2 .

choosing a as the first action from s0. Note that this problem is equivalent to the ValIt
problem defined in the introduction.

Consider the MDP N depicted in Figure 2 with γ = 1
2 . By iterating the indicated

recurrence, we have that ~v5(s) = max( 1
4~v4(s1) + 1

4~v4(s2), 1
2~v4(s1)) = 41

32 . The value of
~v5(s) is due to the second argument of max (corresponding to action b), hence a policy to
maximize ~v5(s) starts with b in s.

The finite-horizon reward problem can be decided by value iteration in exponential
time by unfolding recurrence (1) for H steps [29], while the best known lower bound is
P-hardness [27]. Our main result closes this long-standing complexity gap:

I Theorem 1. The finite-horizon reward problem (and thus also the ValIt problem) is
EXPTIME-complete.

To prove EXPTIME-completeness of the finite-horizon reward problem, we introduce a
variant of reachability, which we call synchronized reachability [15]. Let t ∈ S be a target
state. For reachability, the objective is to maximize the probability of taking a path from s

to t, whereas in synchronized reachability only a subset of such paths with the same length
are considered.

LetM be an MDP, s0 an initial state, and a an action. Define ~p≤n ∈ QS as the vector of
maximum probabilities of taking a path to t within n steps. Similarly, define ~p=n ∈ QS to be
the vector of maximum probabilities of taking such a path with length exactly n. Formally,
for all s ∈ S we have that

~p≤n(s) = max
σ

(
Ps,σ({s %→ t : |%| ≤ n})

)
and ~p=n(s) = max

σ

(
Ps,σ({s %→ t : |%| = n})

)
.

Given a horizon H, encoded in binary, the finite-horizon reachability problem asks
whether an optimal policy achieving ~p≤H(s0) chooses action a as the first action from s0;
the finite-horizon synchronized-reachability problem asks whether an optimal policy
achieving ~p=H(s0) chooses action a as the first action from s0.

2.2 Connections Among Finite-Horizon Problems
We now prove the following theorem.

I Theorem 2. The finite-horizon synchronized-reachability problem reduces, in polynomial
time, to the finite-horizon reward problem.

Consider an MDPM, an initial state s0, an action a and a target state t. The following
recurrence can be used to compute ~p=n(s):

~p=n(s) = max
a∈A

{∑
s′∈S

P (s, a)(s′) · ~p=n−1(s′)
}

, (2)

ICALP 2019
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where ~p0(t) = 1 and ~p0(s) = 0 for all s 6= t. We construct a new MDP N obtained fromM
by replacing all transitions by two consecutive transitions. The construction is such that
the probability of going from s to t with a path of length n inM is equal to the probability
of going from s to t with a path of length 2n in N . More formally, for all s, s′ and a with
P (s, a)(s′) = p, the transition s s′

− : p is replaced with s s′
1 : p 0 : 1 if

s = t and with s s′
0 : p 1

γ : 1
otherwise; where 0 < γ ≤ 1 is an arbitrary chosen

discount factor for N , and the intermediate state in both cases is a new state. The MDP N
in Figure 2 is the result of applying the construction toM in Figure 3 with γ = 1

2 .
For the constructed MDP N , one can show that for all states s, an action is optimal to

maximize ~p=2H(s) if and only if it is optimal to maximize ~v2H+1(s). Consider the MDPs
from Figure 2 as an example. We have previously argued that a policy maximizing ~v5(s)
in N starts with action b. Observe that the optimal first choice to maximize ~p4(s) is also b.
This implies that an optimal policy ofM for synchronized-reachability with H = 2 starts
with b, too. By the above argument, the finite-horizon synchronized-reachability problem
reduces to the finite-horizon reward problem.

Hence, to obtain Theorem 1, it remains to determine the complexity of the finite-horizon
synchronized-reachability problem. To this aim, we show a close connection between MDPs
and a class of piecewise-affine functions represented by straight line programs (SLPs). Section 3
provides the details.

Finite-horizon reachability. We also show the finite-horizon synchronized-reachability prob-
lem reduces to the finite-horizon reachability problem. We remark that the natural probability-
1 variants of these problems have different complexities: specifically, the problem of reaching t
from s within H steps with probability 1 is in P; however, the analogous problem of reaching
t from s in exactly H steps with probability 1 is PSPACE-complete [15].

I Theorem 3. The finite-horizon synchronized reachability problem reduces, in polynomial
time, to the finite-horizon reachability problem.

3 Straight-Line Programs and The Powering Problem

We now establish the connection between MDPs and SLP powering. We start with prelimin-
aries.

For all n ∈ N, define the set varn := {x1, . . . , xn} of variables and the collection of terms

Tn := {a1xj1 + · · ·+ anxjn + b | ai, b ∈ {−1, 0, 1} and 1 ≤ ji ≤ n, for all 1 ≤ i ≤ n}.

A straight-line program (SLP) of order n is a sequence c1, . . . , cm of commands of the form
x ← max(T ), where x ∈ varn and T ⊆ Tn is non-empty. We refer to commands x ← b as
initializations. Recall that min(x, y) = −max(−x,−y).

For complexity analyses we shall assume that T , for every command, is given explicitly
as a list of terms. Each term is also assumed to be explicitly represented as a constant, a
list of coefficients ai, and a list of indices ji, both lists having length n (i.e. the number of
variables). The size of T , and also that of the command, corresponds to the length of its list
of terms; the size of the SLP, the sum of the sizes of its commands.

A valuation ν is a vector in Zn, where the i-th coordinate gives the value of xi. The
semantics of a command c is a function JcK : Zn → Zn, transforming a valuation into another.
An SLP S = c1, . . . , cm defines the function JSK : Zn → Zn obtained by composing the
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constituent commands: JSK = JcmK ◦ · · · ◦ Jc1K. Clearly this is a piecewise-affine function.
Given a function f : Zn → Zn, we define its m-th power as fm : Zn → Zn where

fm = f ◦ · · · ◦ f︸ ︷︷ ︸
m times

is the m-fold composition of f .
We denote by T +

n the set of terms a1xj1 +· · ·+anxjn +b where the coefficients a1, · · · , an, b
are in {0, 1}. An SLP that only uses terms in T +

n is called monotone. Note that monotone
SLPs induce monotone functions from Zn to Zn (subtraction and min are not allowed).

3.1 The Powering Problem
For an SLP S of order n, a valuation ν ∈ Nn and m ∈ N (encoded in binary), let ν′ =
JSKm(ν). Given two variables x, y ∈ varn of the SLP, the powering problem asks whether
ν′(x) ≥ ν′(y). Since the initial valuations ν are always non-negative, all valuations obtained
by powering monotone SLPs are non-negative. The above problem is P-complete if the
exponent m is written in unary [19].

Observe that all numbers generated by powering an SLP can be represented using
exponentially-many bits in the bitsize of the exponent. It follows that the powered SLP can
be explicitly evaluated in exponential time. We provide a matching lower bound in Section 4.
Before that, we show the connection of SLP powering to MDPs.

3.2 Synchronized Reachability and SLP Powering
The connection is stated in the following Theorem.

I Theorem 4. The powering problem for monotone SLPs reduces, in polynomial time, to
the finite-horizon synchronized reachability problem in MDPs.

To illustrate this reduction, let us consider the SLP S of order 2:

x1 ← max(x1 + x2, x2 + x2); x2 ← max(x1 + x1, x1 + x1).

This SLP is normalized, that is to say all its max commands have exactly two arguments
t1, t2 ∈ T +

n and furthermore t1, t2 have exactly two summands. (Note that focusing on
normalized SLPs is no loss of generality.) We are interested in the 2-nd power of S with
initial valuation ν(x1) = 0 and ν(x2) = 1. In Figure 3, two copies of S are shown on the
right to visualize the concept of powering it. To obtain an MDP, we consider a set of actions
A = {a, b} and have each variable xi become a state. In the example, s and t are the
corresponding states for x1 and x2. The t1, t2 arguments of max commands determine the
successors of actions a, b, respectively, where each successor has probability 1

2 . The command
x1 ← max(x1 + x2, x2 + x2) translates to P (s, a)(s) = P (s, a)(t) = 1

2 and P (s, b)(s) = 1, as
shown in the MDP in Figure 3. Since ν(x2) = 1, we make t a target state. Now the i-th
iteration of value iteration of (2) (corresponding to the i-th step before the horizon) is tightly
connected to the i-th power of the SLP. Indeed, letting νi = JSKi(ν), one can prove that
~p=i(s) = 1

2i νi(s) and ~p=i(t) = 1
2i νi(t).

SLP vs. monotone SLP powering. It thus remains to provide a lower bound for the
Monotone SLP powering problem. The crucial step, which we cover in Section 4, is providing
lower bounds for the non-monotone variant. The remaining step from non-monotone to
monotone powering can be made by adapting the techniques of Allender et al. [4].
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initialization
x1 : 0 x2 : 1

max max
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1-st power
x1 x2

max max

++

2-nd power
x1 x2

2-nd step
s t

? ?

a b a, b

1-st step
s t

? ?

a b a, b

starting step
s t

1
2

1
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2

b : 1
a : 1

2

Figure 3 An example for the translation from SLPs to MDPs.

I Theorem 5. The powering problem for arbitrary SLPs reduces, in polynomial time, to the
powering problem for monotone SLPs.

4 Main Reductions

To show EXPTIME-hardness of all the problems introduced so far, we introduce a class of
counter programs that allow linear updates on counters and show that a (time-)bounded
version of the termination problem for these programs is EXPTIME-complete. Finally, we
reduce this bounded termination problem to the powering problem.

A deterministic linear-update counter program (CP) consists of n counters {ci | 1 ≤ i ≤ n},
ranging over Z, and a sequence of m instructions. We consider instructions of the form

p : c1 ← c2 + c3 p : if c1 ≥ c2 goto t p : c1 ← c2 − c3

where 1 ≤ p < m and 1 ≤ t ≤ m, and the final instruction is always m : halt. More precisely,
the instructions allow
(i) adding or subtracting two counters, assigning the result to a third one, and continuing

to the next instruction;
(ii) testing two counters against each other, and jumping to some given instruction if the

result of the test is positive, continuing to the next instruction otherwise.
The halt instruction only loops to itself.

A configuration of a CP is a tuple (p, v1, . . . , vn) ∈ {1, . . . ,m} × Zn consisting of an
instruction p and values of the counters (e.g., v1 is the value for the counter c1). We equip
CPs with a fixed initial configuration lying in {1}×Nn. Given a CP, the termination prob-
lem asks whether the halt instruction is reached. The bounded termination problem
additionally takes as input an integer N ∈ N, encoded in binary, and asks whether the halt
instruction is reached within N steps.

The bounded termination problem is in EXPTIME: in a computation with N steps,
the magnitude of the counters is bounded by 2N , so each step can be simulated in time
exponential in the bitsize of N . We will now show that the problem is EXPTIME-hard
already for a certain subclass of CPs which facilitates the reductions to the powering problem.

Simple counter programs. A CP is simple if it satisfies the following conditions. First,
all values in all reachable configurations (p, v1, . . . , vn) are non-negative: vi ∈ N for all
1 ≤ i ≤ n (one may “guard” subtractions by test instructions to achieve this). Second, all test
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instructions q : if ci ≥ cj goto r use counters c1 and c2 exclusively. Moreover, for each such
instruction q, there are counters cq̄1 , cq̄2 such that in all reachable configurations (q, v1, . . . , vn)
we have that
1. v1 = a1vq̄1 and v2 = a2vq̄2 with a1, a2 ∈ {64, 64 · 10, 64 · 12}. That is, the values of tested

counters are “scaled-up” versions of the values of other counters.
2. Additionally, the absolute difference of the values of the tested counters is larger than the

values of all other counters, in symbols |v1 − v2| ≥ max{vk | 3 ≤ k ≤ n}.
Note that the class of simple CPs is a semantically defined subclass of all CPs. Further
observe that for every test instruction we necessarily have that q̄1, q̄2 ≥ 3.

The following proposition kick-starts our sequence of reductions.

I Proposition 6. The bounded termination problem for simple CPs is EXPTIME-complete.

To prove the proposition, we follow the classical recipe of first simulating a Turing machine
using a machine with two stacks, and then simulating the two-stack machine by a CP. We
note two key differences between our construction and the classical reduction: (1) We use
the expressiveness of linear updates in CPs to simulate pushing and popping on the stack in
a linear number of steps of the CP. (2) We instrument the two-stack machine to ensure that
the height of the two stacks differs by at most 1 along any computation. This is crucial to
allow us to simulate the two-stack machine by a simple linear-update counter program.

4.1 From the Termination Problem to the Powering Problem
We now sketch the main ideas behind the last (and most technically involved) missing link
in our sequence of reductions.

I Theorem 7. The bounded termination problem for simple CPs reduces, in polynomial
time, to the powering problem for SLPs.

The encoding. Given a CP C we construct an SLP S of order ≥ 2n with variables including
{x1, . . . , x2n}. Let us denote xn+i by Qi for 1 ≤ i ≤ n. The reduction is such that a
configuration (p, v1, . . . , vn) of C is encoded as a valuation ν : var2n → Z of the SLP with
the property that ν(xi) = vi and ν(Qi) = pν(xi) = pvi for all 1 ≤ i ≤ n. In this way, the
instruction p of the CP is encoded in the variables of the SLP (recall that SLPs are stateless).

Given this encoding, the main challenge is to realize the transition function of the CP
as a function computed by an SLP. Once this is accomplished, for every m ∈ N, the m-th
power of the SLP S represents the m-step transition function of the CP.

Conditional commands. Intuitively, to encode the transition function we would like to equip
the SLP with conditional commands, whose execution depends on a conditional. Specifically,
we want to implement the following two kinds of conditional updates

(y ← y ± xk if Qk = pxk) and (Qk ← p · xk if xi ≥ xj)

in terms of primitive commands of an SLP. In both commands, if the condition is not satisfied,
the command is not executed, and the value of y or Qk remains unchanged. For example,
one can simulate the first type of conditional commands by executing y ← y±max(0, xk + t),
where t is an expression that is 0 if the test is passed and less than −xk otherwise. Intuitively,
we think of t as “masking” the assignment if the test fails.

For the following result, which formalizes how we implement conditional commands, we
call a valuation ν valid if there exists q ∈ {1, . . . ,m} with ν(xi) ≥ 0 and ν(Qi) = qν(xi) for
all 1 ≤ i ≤ n.
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I Lemma 8. Let p ∈ {1, . . . ,m} and i, j, k ∈ {1, . . . , n} be distinct. The following equation
holds for all valid valuations ν:

max(0, ν(xk) + min(ν(Qk)− pν(xk), pν(xk)− ν(Qk))) =
{
ν(xk) if ν(Qk) = pν(xk)
0 otherwise.

(3)

Moreover, if |ν(xi)− ν(xj)| ≥ ν(xk), then the following holds:

max(0, ν(xk) + min(0, ν(xi)− ν(xj))) =
{
ν(xk) if ν(xi) ≥ ν(xj)
0 otherwise.

(4)

Proof. The equations follow directly from the assumption that ν is valid, since if ν(Qj) 6=
pν(xj) then we also have |ν(Qj) − pν(xj)| ≥ ν(xj). In addition, if |ν(xi) − ν(xj)| ≥ ν(xk)
and ν(xi) < ν(xj), we will have ν(xk) + ν(xi)− ν(xj) ≤ 0. J

Using the property that the simulated program is simple, Equation (3) can be used to
simulate the conditional update (y ← y±xk if Qk = pxk) where t = min(Qk−pxk, pxk−Qk)
masks the update. Likewise, Equation (4) can be used to simulate the second type of
conditional update (Qk ← p·xk if xi ≥ xj) where the masking expression is t = min(0, xi−xj).
Finally, the multiplication-by-a-constant required for the second type of the conditional
update is achieved via repeated addition.

Encoding the instructions. We recall that we encode being at the instruction p of the CP
by a valuation ν such that ν(Qi) = pν(xi) for all 1 ≤ i ≤ n.

Using the aforementioned conditional commands, we can construct the SLP S as the
composition of m smaller SLPs. Each sub-SLP πp simulates an instruction p from the given
CP C. Hence S, when applied upon a valid valuation ν (i.e., a properly-encoded configuration
of C), simulates all of its instructions at once. By using conditional commands, we make
sure that only one sub-SLP results in a non-zero update: executing πp has no effect on the
valuation unless pν(xi) = ν(Qi) for all 1 ≤ i ≤ n.

In this way, powering S allows us to simulate consecutive steps of C. In particular, for all
N ∈ N we have that JSKN (ν)(Q1) ≥ m · JSKN (ν)(x1), where m is the halt instruction, holds
if and only if C halts after at most N steps.

5 Conclusion

By the virtue of our chain of reductions (see Figure 1), we get the following theorem.

I Theorem 9. All the following problems are EXPTIME-complete:
The finite-horizon reward problem for MDPs, and thus also the ValIt problem.
The finite-horizon reachability and synchronized reachability problems for MDPs.
The powering problem for SLPs and for monotone SLPs.
The bounded termination problem for simple counter programs.

The exact complexity of the following variant of the problem remains open: given an
MDP and a horizon encoded in binary, determine whether there exists a policy achieving
some given expected-reward threshold (with no restriction on the actions used to do so).
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Abstract
Monadic decomposibility – the ability to determine whether a formula in a given logical theory can
be decomposed into a boolean combination of monadic formulas – is a powerful tool for devising a
decision procedure for a given logical theory. In this paper, we revisit a classical decision problem in
automata theory: given a regular (a.k.a. synchronized rational) relation, determine whether it is
recognizable, i.e., it has a monadic decomposition (that is, a representation as a boolean combination
of cartesian products of regular languages). Regular relations are expressive formalisms which,
using an appropriate string encoding, can capture relations definable in Presburger Arithmetic. In
fact, their expressive power coincide with relations definable in a universal automatic structure;
equivalently, those definable by finite set interpretations in WS1S (Weak Second Order Theory of
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be decidable (and in exponential time for binary relations), but its precise complexity still hitherto
remains open. Our main contribution is to fully settle the complexity of this decision problem by
developing new techniques employing infinite Ramsey theory. The complexity for DFA (resp. NFA)
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1 Introduction

Monadic decompositions for computable relations have been studied in many different guises,
and applied to many different problem domains, e.g., see [17, 25, 38, 12, 27, 28, 37]. The notion
of “monadic decomposability” essentially captures the intuitive notion that the components in
a given n-ary relation R ⊆ Un are sufficiently independent from (i.e. not tightly coupled, or
interdependent, with) each other. Some examples are in order. Given two subsets X,Y ⊆ U ,
then X × Y is an instance of relations whose two components are completely independent
from each other. On the other hand, the equality relation {(x, x) : x ∈ U} is an example
of relations whose two components are tightly coupled. In this paper, we will adopt the
commonly studied notion of component-independence1 (e.g. [25, 38, 7, 37]) in a relation
R ⊆ Un that lies between the extremes as exemplified in the above examples, i.e., that R is
expressible as a finite union

⋃r
i=1 Xi,1×· · ·×Xi,n of products, where each Xi,j is expressible

in the same language L (e.g. a logic or a machine model) wherein R is expressed.
Why should one care about monadic decomposable relations? The main reason is that

applying appropriate monadic restrictions could make an undecidable problem decidable,
and in general turn a difficult problem into one more amenable to analysis. Several examples
are in order. Firstly, the well-known cartesian abstractions in abstract interpretation [17]
overapproximate the set R ⊆ Un of reachable states at a certain program point by a relation
R′ ⊆ X1 × · · · ×Xm such that R ⊆ R′. Having R′ instead of R sometimes allows a static
analysis tool to prove correctness properties about a program that is otherwise difficult to do
with only R. Another example includes restrictions to monadic predicates in undecidable
logics that result in decidability, e.g., monadic first-order logic and extensions ([9, 10, 4]), as
well as monadic second-order theory of successors [10]. Monadic decomposability also found
applications in more efficient variable elimination in constraint logic programming (e.g. [23]),
as well as constraint processing algorithms for constraint database queries (e.g. [25, 24]).
Finally, monadic decompositions in the context of SMT (Satisfiability Modulo Theories),
whose study was recently initiated in [38], have numerous applications, including constraint
solving over strings [38, 14].

The focus of this paper is to revisit a classical problem of determining monadic decompos-
ability of regular relations, which are also known as synchronized rational relations [20, 6, 8].
The study of classes of relations over words definable by different classes of multi-tape (finite)
automata is by now a well-established subfield of formal language theory. This study was
initiated by Elgot, Mezei, and Nivat in the 1960s [18, 30]; also see the surveys [7, 15]. In
particular, we have a strict hierarchy of classes of relations as follows: recognizable relations,
synchronized rational relations, deterministic rational relations, and rational relations. All
these classes over unary relations (i.e. languages) coincide with the class of regular languages.
Rational relations are relations R ⊆ (Σ∗)n definable by multi-tape automata, where the tape
heads move from left to right (in the usual way for finite automata) but possibly at different
speeds (e.g. in a transition, the first head could stay at the same position, whereas the
second head moves to the right by one position). Deterministic rational relations are simply
those rational relations that can be described by deterministic multi-tape automata. So far,
the heads of the tapes can move at different speeds. Regular relations (a.k.a. synchronized
rational relations) are those relations that are definable by multi-tape automata, all of whose
heads move to the right in each transition. Unlike (non)deterministic rational relations,
regular relations are extremely well-behaved, e.g., they are closed under first-order operations

1 Also called variable-independence.
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and, therefore, have decidable first-order theories [22]. Regular relations are also known
to coincide with those relations that are first-order definable over a universal automatic
structure [6, 8]; equivalently, those relations that are definable by finite-set interpretations in
the weak-monadic theory of one successor (WS1S) [16]. Finally, the weakest class of relations
in the hierarchy are recognizable relations: those relations that are definable as a finite union
of products of regular languages or, equivalently, relations that can be defined as a boolean
combination of regular constraints (i.e. atomic formulas of the form x ∈ L, where L is a
regular language, asserting that the word x is in L). Recognizable relations are, therefore,
those relations definable by multi-tape automata that exhibit monadic decomposability.

One of the earliest results on deciding whether a relation is monadic decomposable
follows from Stearns in 1967 [33] and the characterization of a binary relation R ⊆ A∗ ×B∗
by LR = {rev(u)#v | (u, v) ∈ R}, where rev(u) is the mirror image of u. In [12] it was
proven that LR is a regular language if and only if R has a monadic decomposition and
if R is a deterministic rational relation, then LR is a deterministic context-free language.
Due to this characterization, Stearns’s result implies that whether a deterministic n-ary
rational relation is monadic decomposable (i.e. recognizable) is decidable in the case when
n = 2. Shortly thereafter, Fischer and Rosenberg [19] showed that the same problem is
unfortunately undecidable for the full class of binary rational relations. A few years later
Valiant [37] improved the upper bound complexity for the case solved by Stearns to double
exponential-time. This is still the best known upper bound for the monadic decomposability
problem for deterministic binary rational relations to date and, furthermore, no specific lower
bounds are known. More recently Carton et al. [12] adapted the techniques from [33, 37]
to show that this decidability extends to general n-ary relations, though no complexity
analysis was provided. The problem of monadic decomposability for regular relations has
also been studied in the literature. Of course decidability with a double exponential-time
upper bound for the binary case follows from [37]. In 2000 Libkin [25] gave general conditions
for monadic decomposability for first-order theories, which easily implies decidability for
monadic decomposability for general k-ary regular relations. This is because regular relations
are simply those relations that are definable in a universal automatic structures [6, 8]. The
result of Libkin was not widely known in the automata theory community and in fact the
problem was posed as an open problem in French version of [31] in 2003 and later on, Carton
et al. [12] provided a double-exponential-time algorithm for deciding whether an n-ary
regular relation is monadic decomposable. More precisely, even though it was claimed in the
paper that the algorithm runs in single-exponential time, it was noted in a recent paper by
Löding and Spinrath [27, 28] (with which the authors of [12] also agreed, as claimed in [28])
that the algorithm actually runs in double-exponential time. Löding and Spinrath [27, 28]
gave a single-exponential-time algorithm (inspired by techniques from [37]) for monadic
decomposability of binary regular relations.

Contributions

In this paper we provide the precise complexity of monadic decomposability of regular
relations, closing the open questions left by Carton et al. [12] and Löding and Spinrath
[27, 28]. In particular, we show the following.

I Theorem 1. Deciding whether a given regular relation R is monadic decomposable is
NLOGSPACE-complete (resp. PSPACE-complete), if R is given by a DFA (resp. an NFA).

The lower bounds hold already for binary relations (Lemma 5 and Lemma 6 in Section 3).
To prove the upper bounds, we first prove the upper bounds for binary relations (Lemma 10
in Section 4) and then extend them to n-ary relations for any given n > 2 (Lemma 11
in Section 5).
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The existing proof techniques (e.g. in [12, 28, 25]) for deciding monadic decomposability
typically aim for finding proofs that the relations are monadic decomposable. In contrast,
our proof technique relies on finding a proof that a relation is not monadic decomposable. As
a brief illustration, suppose we want to show that the regular relation R = {(v, v) : v ∈ Σ∗}
is not monadic decomposable. We define an equivalence relation ∼ ⊆ Σ∗ × Σ∗ as

x ∼ y := ∀z([R(x, z)↔ R(y, z)] ∧ [R(z, x)↔ R(z, y)]).

This relation is regular since regular relations are closed under first-order operations [31] (a
fact that was also used in [12]), but the size of the automaton for this relation is unfortunately
quite large; see [27] for detailed discussion. Therefore, we will only use the complement 6∼,
which has a substantially smaller representation: polynomial (resp. exponential) size if R is
given as a DFA (resp. an NFA). Now, that R is not monadic decomposable amounts to the
existence of an ω-sequence σ = {vi}i∈N of words such that vi 6∼ vj for each pair i, j ∈ N. By
applying the pigeonhole principle and König’s lemma, we will first construct a nicer sequence
α (see the top half of Figure 2) and then by exploiting Ramsey Theorem over infinite graphs,
we will show that there is an even nicer sequence α′ (see the bottom half of Figure 2), where
the automaton for 6∼ synchronizes its states in particular points of the computation, no
matter which pair of words from the sequence is being read. Moreover, we prove that one of
the synchronizing states has a pumping property. This leads to our NLOGSPACE algorithm
as we can guess the synchronizing states and verify that there is an accepting run that can
be pumped. This technique was inspired by a technique for proving recurrent reachability in
regular model checking [34, 35].

The exponential-time upper bound for the binary case from Löding and Spinrath [28]
(which is inspired by the techniques used by Stearns [33] and Valiant [37]) relied on char-
acterization of a relation R using the language LR = {rev(u)#v | (u, v) ∈ R} and used
a suitable machinery that is able to decide whether LR is regular or not. Their result is
not easily extensible to n-ary relations as the encoding of a binary rational relation as a
context-free language LR does not generalize to n-ary relations. In Section 5, we show that
proving monadic decomposability for an n-ary regular relation is LOGSPACE-reducible to
testing whether linearly many induced binary relations are monadic decomposable.

We conclude in Section 6 with some perspectives from formal verification and a future
research direction. The proofs omitted due to length constraints can be found in [5].

2 Preliminaries

A finite alphabet is denoted by Σ and the free monoid it generates by Σ∗. That is, Σ∗
consists of all finite words over Σ. The empty word is ε. We denote by |w| the length of
word w ∈ Σ∗. We have that |ε| = 0. The word u ∈ Σ∗ is a prefix of w ∈ Σ∗ if w = uv for
some v ∈ Σ∗. We denote this by u ≤ w. We also write v = u−1w, when u is a prefix of w, to
state that v is the suffix of w that is obtained after prefix u is removed. Sometimes we want
to consider a suffix of w after a prefix of particular length is removed without specifying
the actual prefix as defined above. To this end, we define partial function σ : Σ∗ × N→ Σ∗
such that σ(w, i) = v, where w = uv for some u ∈ Σ∗ such that |u| = i. In particular, for
u ≤ w, σ(w, |u|) = u−1w. Similarly, we define partial function τ : Σ∗ × N → Σ∗ such that
τ(w, i) = u, where |u| = i and u ≤ w.

In this paper we study relations R ⊆ Σ∗ × · · · × Σ∗ with particular structural properties.
Namely, monadic decomposable relations that are a finite union of direct products of regular
languages, and regular relations defined by n-tape finite automata, where the heads move in
synchronized manner. See, for example, [31] for more details on such relations.
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I Definition 2. An n-ary relation R ⊆ Σ∗ × · · · × Σ∗ is a monadic decomposable relation
iff it is of the form

⋃m
i=1(X1,i × · · · × Xn,i), where m is finite and each Xj,i ⊆ Σ∗ is a

regular language.

As mentioned earlier, this can be intuitively seen as the components of R being independent
in some sense. Note that in the literature, monadic decomposable relations are sometimes
called recognizable. The monadic decomposable relations can be defined using multi-tape
automata as is done, e.g., in [12]. The above definition is more suitable for our considerations.

Let ⊥ be a fresh symbol not found in Σ. We use it to pad words in a relation R ⊆
Σ∗ × · · · × Σ∗ in order for each component to be of the same length. Formally, a tuple
(w1, . . . , wn) is transformed into (w1⊥`1 , . . . , wn⊥`n), where `i = −|wi| + max1≤j≤n |wj |
for each i = 1, . . . , n. We extend this to the relation R⊥ in the expected way. We also
denote Σ ∪ {⊥} by Σ⊥. An n-tape automaton over alphabet Σ⊥ is a tuple (Q,→A, q0, F ),
where Q is the finite set of states, q0 is the initial state, F is the set of final states, and
→A ⊆ Q× (Σ⊥)n × P(Q).

I Definition 3. An n-ary relation R ⊆ Σ∗ × · · · ×Σ∗ is regular iff R⊥ is recognized by some
n-tape automaton A⊥ over alphabet Σ⊥.

That is, in a regular relation the n heads of the automaton are moving in synchronized
manner and the n-tuple of symbols seen determines the state transition. Naturally, the state
transition can be deterministic or non-deterministic. We say that a regular relation is defined
by an NFA if the underlying n-tape automaton is non-deterministic, otherwise we say that
the relation is defined by a DFA. Note that in the literature, regular relations are sometimes
called synchronous rational or automatic relations.

We recall a useful characterization from [12]. Consider an n-ary regular relation R ⊆
Σ∗× · · · ×Σ∗. For each j = 1, . . . , n− 1, let ∼j be the following induced equivalence relation:

(u1, . . . , uj) ∼j (v1, . . . , vj) := ∀(wj+1, . . . , wn) ∈ Σ∗ × · · · × Σ∗ we have that
(u1, . . . , uj , wj+1, . . . , wn) ∈ R ⇐⇒ (v1, . . . , vj , wj+1, . . . , wn) ∈ R and

(wj+1, . . . , wn, u1, . . . , uj) ∈ R ⇐⇒ (wj+1, . . . , wn, v1, . . . , vj) ∈ R.

I Lemma 4 ([12]). The n-ary regular relation R is monadic decomposable iff ∼j has finite
index for each j = 1, . . . , n− 1. That is, there are finitely many equivalence classes over ∼j.

In other words, R is not monadic decomposable iff for some j = 1, . . . , n− 1, there is an
infinite sequence {ui}i≥0, where each ui is a j-tuple of words, such that for each 0 ≤ i < ` it
is the case that ui 6= u` and ui 6∼j u`.

In Section 4, we focus on binary relations for which we simplify the notation as there is
only one possible value of j. We write ∼ instead of ∼j and R 6∼ for the binary regular relation

R 6∼(w,w′) := ∃u
(
(R(w, u) ∧ ¬R(w′, u)) ∨ (¬R(w, u) ∧R(w′, u))∨

(R(u,w) ∧ ¬R(u,w′)) ∨ (¬R(u,w) ∧ R(u,w′))
)
.

That is, R 6∼ consists of all words w,w′ ∈ Σ∗ for which there exists a word u ∈ Σ∗ such that
one of R(w, u) and R(w′, u) is accepted while the other is not, or one of R(u,w) and R(u,w′)
is accepted while the other is not.

We assume that the reader is familiar with complexity classes and logarithmic space
reductions via logarithmic space transducers; see for example [32].
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3 Hardness of deciding monadic decomposability of regular relations

In this section, we consider binary regular relations given by NFA and provide a PSPACE
lower bound for deciding if such a relation is monadic decomposable. Then, we prove that
the same problem for DFA is NLOGSPACE-hard.

I Lemma 5. The problem of deciding whether a binary regular relation given by an NFA is
monadic decomposable is PSPACE-hard.

Proof. We give a logarithmic space reduction from the universality problem for NFA, which
is PSPACE-hard [29]. Recall that in this problem, we are asked to decide whether L(A) = Σ∗
given an NFA A over Σ.

Let A be an NFA over alphabet Σ, and let {#} be a fresh symbol that we will use as a
separator symbol. We assume that # 6= ⊥. We construct relation R = R1 ∪ R2 using the
language L of A, where

R1 = {(u, u) | u ∈ (Σ ∪ {#})∗} and R2 = (L · {#})∗ × (Σ∗ · {#})∗.

Intuitively, R1 contains all pairs (w1, w2) such that w1 = w2 = u0#u1# · · ·#un#, where
ui ∈ Σ∗, and R2 contains all pairs (w1, w2) such that w1 = v0#v1# · · ·#vm#, where vi ∈ L,
and w2 = u′0#u′1# · · ·#u′n#, where u′i ∈ Σ∗. It is easy to construct an NFA that recognizes
R in LOGSPACE. Next we show that L = Σ∗ iff R is monadic decomposable.

Assume first that L = Σ∗. Then R1 ⊆ R2, and thus R = (Σ∗ · {#})∗ × (Σ∗ · {#})∗ which
has a trivial monadic decomposition.

For the other direction, assume that R is monadic decomposable, i.e., R =
⋃n
i=1(Ai×Bi)

for some regular languages Ai, Bi. Let w ∈ Σ∗. We show that w ∈ L as well. Consider
a set {((w#)i, (w#)i) | i = 1, . . . , n + 1} ⊆ R1 ⊆ R. By the pigeonhole principle, there
are two elements ((w#)j , (w#)j) and ((w#)k, (w#)k) that belong to the same compon-
ent of

⋃n
i=1(Ai × Bi), say to A1 × B1. Therefore, (w#)j ∈ A1 and (w#)k ∈ B1, and

hence their direct product, ((w#)j , (w#)k), is in A1 × B1 ⊆ R. Recall that R = R1 ∪ R2.
Clearly, ((w#)j , (w#)k) /∈ R1 as the lengths of the two words are different. It follows that
((w#)j , (w#)k) ∈ R2 and hence (w#)j ∈ (L · {#})∗. This implies that w ∈ L. J

I Lemma 6. The problem of deciding whether a binary regular relation given by a DFA is
monadic decomposable is NLOGSPACE-hard.

The proof is straightforward by a reduction from reachability problem for directed acyclic
graphs.

4 Deciding monadic decomposability of binary regular relations

In this section we prove our main technical result.

I Lemma 7. There is an NLOGSPACE algorithm that takes as input an NFA for R 6∼, where
R is a binary regular relation, and decides whether R is monadic decomposable.

We start by defining some notation. We assume any binary regular relation R 6∼ to be
given as an NFA with set of states Q. The R 6∼-type of a pair (w1, w2) of words over Σ is an
element of the transition monoid. Recall that the transition monoid transforms any given
state q ∈ Q to a set Q′ ⊆ Q of states when reading (w1, w2). We denote this by R 6∼w1,w2

(q)
for each q ∈ Q. We write types(R 6∼) for the set of all R 6∼-types.
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Consider an infinite sequence {wi}i≥0 of words over Σ as defined in Lemma 4. Additionally,
we assume that the words in the sequence are of strictly increasing length and that for each
i > 0 the words wi and wi+1 have a common prefix of length |wi−1|. That is, wi can be
written as β0 · · ·βi−1αi, where each βj and αi is a non-empty word. To simplify notation,
we denote ρ(wi) = β0 · · ·βi. That is, ρ(wi) is of length |wi| and is a prefix of wj , for each
0 ≤ i < j. We will show how to construct such sequence in Proposition 8. The words wi, wj
and wk are illustrated in the top of Figure 1.

With each pair (i, j), where i < j, we associate the following quinary tuple over types(R 6∼):

Ci,j =
(
R 6∼wi,ρ(wi), R

6∼
ρ(wi),ρ(wi), R

6∼
σ(wj ,|wi|),σ(ρ(wj),|wi|), R

6∼
ε,σ(wj ,|wi|), R

6∼
ε,σ(ρ(wj),|wi|)

)
.

Intuitively, the first component corresponds to the computation of (β0 · · ·βi−1αi, β0 · · ·βi−1βi),
the second to (β0 · · ·βi−1βi, β0 · · ·βi−1βi) needed in order to compute the third compon-
ent, (βi+1 · · ·βj−1αj , βi+1 · · ·βj−1βj). The final two components are used to compute the
set of states reachable after the whole word in the first component is read. That is
(⊥|βi+1···βj−1αj |, βi+1 · · ·βj−1αj) and (⊥|βi+1···βj−1βj |, βi+1 · · ·βj−1βj). See Figure 1 for a
pictorial depiction.

wi

wj

wk

β0 · · · βi−1αi

β0 · · · βi−1βiβi+1 · · · βj−1αj

β0 · · · βi−1βiβi+1 · · · βj−1βj · · ·

β0 · · · βi−1αi

β0 · · · βi−1βi

1st component

β0 · · · βi−1βi

β0 · · · βi−1βi

2nd component

βi+1 · · · βj−1αj

βi+1 · · · βj−1βj

3rd component

⊥ · · · ⊥
βi+1 · · · βj−1αj

4th component

⊥ · · · ⊥
βi+1 · · · βj−1βj

5th component

Figure 1 Correspondence between components of Ci,j and parts of computation on wi, wj and
wk, where i < j < k.

We can then establish the following important proposition. Consider an infinite sequence
of words that are pairwise from different equivalence classes as in Lemma 4. We show next
that we can extract an infinite subsequence with additional structural properties. Perhaps
the most important property is that Ci,j is the same for all i, j. This subsequence will allow
us to prove the main lemma.

I Proposition 8. A binary regular relation R over Σ∗ × Σ∗ is not monadic decomposable
iff there are infinite sequences {ui}i≥0, {γi}i≥0, and {δi}i≥0 of words over Σ and a quinary
tuple C over types(R 6∼) such that for each i ≥ 0 it is the case that
1. |γi| = |δi| > 0,
2. ui = δ0 · · · δi−1γi,
3. (ui, uj) ∈ R 6∼, for each j > i, and
4. Ci,j = C, for each j > i.

Proof. By Lemma 4, the existence of such sequences directly implies that the relation is not
monadic decomposable. Assume then that R is not monadic decomposable. By Lemma 4,
there exists a sequence {vi}i≥0 such that R 6∼(vj , v`) for all j 6= `. It remains to show how to
construct the three sequences satisfying the additional properties from {vi}i≥0. First, we
construct an auxiliary sequence {wi}i≥0 in the following way. Let vj be the first non-empty
word of {vi}i≥0. Denote vj = w′0 = α0. Consider prefixes of vi of length |α0|. Since |α0|
is finite and the sequence is infinite, there exists a prefix that appears infinitely often by
the pigeonhole principle. Denote this prefix by β0. Now we consider an infinite subsequence
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{w′i}i≥0 of {vi}i≥0 where w′0 = vj and w′i, where i > 0, has β0 as the proper prefix. We can
write w′1 = β0α1 and repeat the procedure. By König’s Lemma, we can always repeat the
procedure and obtain the desired auxiliary sequence {wi}i≥0 in the limit.

From Infinite Ramsey’s Theorem, there is an infinite sequence 0 ≤ `0 < `1 < · · · and a
tuple C ∈ types(R 6∼)5 such that for each 0 ≤ i < j we have C`i,`j

= C. Namely, we consider a
complete infinite graph with natural numbers as vertices. An edge between vertices i and j
is coloured with Ci,j ∈ types(R 6∼)5. Now there is an infinite clique coloured with C which
gives us our infinite sequence 0 ≤ `0 < `1 < · · · .

We then define the uis, γis, and δis, for i ≥ 0, as follows.
γ0 = w`0 and γi+1, for i > 0, is the word σ(w`i+1 , |w`i

|).
δi is defined as ρ(γi).
ui = δ0 · · · δi−1γi, for each i ≥ 0.

It is easy to see then that ui = w`i and ρ(ui) = δ0 · · · δi−1δi = ρ(w`i), for each i ≥ 0.
Therefore, {ui}i≥0, {γi}i≥0, {δi}i≥0, and C satisfy the conditions in the statement of the
proposition. See Figure 2 for a pictorial depiction of the construction. J

In other words, by Proposition 8, there is a sequence {ui}i≥0 and a C such that for each
i, j, the runs on R 6∼ are synchronized after (γi, δi), (δi, δi), (δ−1

i γj , δ
−1
i δj), (ε, δ−1

i γj) and
(ε, δ−1

i δj) have been read. In particular, the runs are synchronized in states of R 6∼γi,δi
, R 6∼δi,δi

,
R 6∼
δ−1

i
γj ,δ

−1
i
δj
, R 6∼

ε,δ−1
i
γj

and R 6∼
ε,δ−1

i
δj
, respectively.

u0
u1
u2
u3
u4
u5
u6
...

...

α0

By the
pigeonhole
principle−−−−−−→

u′0
u′1
u′2
u′3...

...

α0
β0
β0
β0

α1

→ · · · →
By König’s
Lemma

w0
w1
w2
w3
w4
w5
w6
...

...

α0
β0
β0
β0
β0
β0
β0

α1
β1
β1
β1
β1
β1

α2
β2
β2
β2
β2

α3
β3
β3
β3

α4
β4
β4

α5
β5 α6

By Infinite
Ramsey’s Theorem−−−−−−−−−−−−→

w`0
w`1
w`2
w`3
w`4
w`5
w`6

...
...

β0
β0
β0
β0
β0
β0
β0

β1
β1
β1
β1
β1
β1
β1

α2
β2
β2
β2
β2
β2
β2

α3
β3
β3
β3
β3
β3

β4
β4
β4
β4
β4

α5
β5
β5
β5
β5

β6
β6
β6
β6

α7
β7
β7
β7

β8
β8
β8

α9
β9
β9

β10
β10

β11
β11

α12
β12 α13

δ0

γ0

δ1

γ1

δ2

γ2

δ2

γ2

δ3

γ3

δ4

γ4
γ5

Figure 2 An illustration of construction of sequence {ui}i≥0 of Proposition 8 in two steps. Here
R 6∼(ui, uj), R 6∼(u′i, u′j) and R 6∼(wi, wj) for every i 6= j. Moreover as C = Ci,j , the sets of states
reachable after each δi and γi are the same (indicated by thick lines).

We can then prove the following crucial result. We assume here that R is a binary regular
relation over Σ× Σ such that R 6∼ is given as an NFA over Σ× Σ whose set of states is Q.
We further assume that q0 is the initial state of R 6∼ and F its set of final states.

I Lemma 9. Relation R is not monadic decomposable iff there are an infinite sequence
{(xi, yi)}i≥0 of pairs of words over Σ and states q, q′, p, r ∈ Q, such that p ∈ F , it is the case
that q ∈ R 6∼x0,y0

(q0), and the following statements hold for each i ≥ 0.
1. |xi| = |yi| and yi is a prefix of both xi+1 and yi+1.
2. q′ ∈ R 6∼yi,yi

(q0); q ∈ R 6∼
y−1

i
xi+1,y

−1
i
yi+1

(q′); p ∈ R 6∼
ε,y−1

i
xi+1

(q); r ∈ R 6∼
ε,y−1

i
yi+1

(q).

3. If i > 0, we also have that p ∈ R 6∼
ε,y−1

i
xi+1

(r) and r ∈ R 6∼
ε,y−1

i
yi+1

(r).
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Proof. Assume first that R is not monadic decomposable. By Proposition 8, there are
infinite sequences {ui}i≥0, {γi}i≥0, and {δi}i≥0 of words over Σ and a quinary tuple C over
types(R 6∼) such that for each i ≥ 0 it is the case that
1. |γi| = |δi| > 0,
2. ui = δ0 · · · δi−1γi,
3. (ui, uj) ∈ R 6∼, for each j > i, and
4. Ci,j = C, for each j > i.
We then define a sequence {(xi, yi)}i≥0 such that xi := ui, for each i ≥ 0, and yi is the
prefix of xi+1 = ui+1 that has the same length as xi = ui, i.e., yi = τ(xi+1, |xi|). Hence,
yi = ρ(ui) = δ0 · · · δi. Clearly, |xi| = |yi| ≥ 0 and yi is a prefix of both xi+1 and yi+1, for each
i ≥ 0. We prove next that the sequence {(xi, yi)}i≥0 also satisfies the remaining conditions.

Before defining q, q′, p, r ∈ Q, let us highlight the intuition why such states exist for
every i. We can find such states because by our assumption Ci,j = C for each i < j. Further,
whether q is reachable from q0 is stored in the first component of C. Similarly, the second
and third components of C allow us to find q′ that is reachable from q0 and such that q is
reachable from q′. Finally, the fourth component is for checking whether p is reachable from
q and r, while the fifth component for checking that r is reachable from both q and r.

Let us define q, q′, p, r ∈ Q as follows.
q and p are states such that p ∈ F and it is the case that q ∈ R 6∼x0,y0

(q0) and p ∈ R 6∼
ε,y−1

0 x1
(q).

Notice that such q and p must exist as (x0, x1) ∈ R 6∼, i.e., it holds that R 6∼x0,x1
(q0)∩F 6= ∅,

and R 6∼x0,x1
(q0) = R 6∼x0,y0

(q0) ◦R 6∼
ε,y−1

0 x1
.

q′ is a state such that q′ ∈ R 6∼y0,y0
(q0) and q ∈ R 6∼

y−1
0 x1,y

−1
0 y1

(q′). Notice that such a q′ must

exist. Indeed, since C0,1 = C1,2 = C, we have R 6∼u0,ρ(u0) = R 6∼x0,y0
= R 6∼u1,ρ(u1) = R 6∼x1,y1

.
This implies that q ∈ R 6∼x1,y1

(q0) = R 6∼y0,y0
(q0)◦R 6∼

y−1
0 x1,y

−1
0 y1

, as we know that q ∈ R 6∼x0,y0
(q0)

and there must be an intermediate state q′ that is reached after reading (y0, y0).
We have that r is a state such that

r ∈ R 6∼
ε,y−1

0 y1
(q); p ∈ R 6∼

ε,y−1
1 x2

(r); and r ∈ R 6∼
ε,y−1

1 y2
(r).

The existence of such state r is not obvious but straightforward; see [5].

We now prove that q, q′, p, r satisfy all the requirements in the statement of the Lemma.
By definition, q ∈ R 6∼x0,y0

(q0) and p ∈ F . We can then prove by induction that for each i ≥ 0
it is the case that

q′ ∈ R 6∼yi,yi
(q0); q ∈ R 6∼

y−1
i
xi+1,y

−1
i
yi+1

(q′); p ∈ R 6∼
ε,y−1

i
xi+1

(q); r ∈ R 6∼
ε,y−1

i
yi+1

(q);

and, in addition, that for each i > 0 it is the case that p ∈ R 6∼
ε,y−1

i
xi+1

(r) and r ∈ R 6∼
ε,y−1

i
yi+1

(r).
The base case i = 0 holds by definition. The inductive case is straightforward.

Let us assume now that there are an infinite sequence {(xi, yi)}i≥0 of pairs of words
over Σ and states q, q′, p, r ∈ Q that satisfy the conditions stated in the statement of the
lemma. We prove next that R is not monadic decomposable by showing that there are
infinite sequences {wi}i≥0, {αi}i≥0 and {βi}i≥0 of words over Σ such that {wi}i≥0, {αi}i≥0,
and {βi}i≥0 satisfy the conditions stated in Lemma 4.

We define wi := xi for each i ≥ 0. Furthermore, α0 := x0, β0 := y0, and for each i > 0
we set αi := y−1

i−1xi and βi := y−1
i−1yi. Clearly |αi| = |βi| > 0 and wi = xi = β0 · · ·βi−1αi,

for each i ≥ 0. We prove next that (wi, wj) ∈ R 6∼ for each 0 ≤ i < j. Actually, we prove a
stronger claim: p ∈ R 6∼wi,wj

(q0) and r ∈ R 6∼wi,ρ(wj)(q0), for each 0 ≤ i < j, where as before
ρ(wj) = τ(wj+1, |wj |) = β0β1 · · ·βj . The claim can be proved by induction. J
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q0 q′ q p

r

(yi, yi) (y−1
i xi+1, y

−1
i yi+1) (ε, y−1

i xi+1)

(ε, y −
1i
y
i+

1 ) (ε
, y
−

1
i+

1
x i

+
2)

(ε, y−1
i+1yi+2)

Figure 3 Runs in R 6∼ on states q, q′, p and r as defined in Lemma 9. The runs exist for every i ≥ 0.

The runs as extracted from the sequence {(xi, yi})i≥0 satisfying the conditions of Lemma 9
are depicted in Figure 3.

Lemma 9 allows us to reduce the monadic decomposability problem to a set of reachability
checks on types. With the help of this property, we can then prove Lemma 7.

Proof of Lemma 7. For each (q, q′, p, r) ∈ Q×Q×Q×Q with p ∈ F do the following.
Check if there are words w0, v0, w1, v1 such that |w0| = |v0| > 0, |w1| = |v1| > 0, and it
holds that (i) q ∈ R 6∼w0,v0

(q0), (ii) q′ ∈ R 6∼v0,v0
(q0), (iii) q ∈ R 6∼w1,v1

(q′), (iv) q′ ∈ R 6∼v1,v1
(q′),

(v) p ∈ R 6∼ε,w1
(q), and (vi) r ∈ R 6∼ε,v1

(q).
Check if there are words w, v such that |w| = |v| > 0, and it holds that (i) q ∈ R 6∼w,v(q′),
(ii) q′ ∈ R 6∼v,v(q′), (iii) p ∈ R 6∼ε,w(q), (vi) r ∈ R 6∼ε,v(q), (v) p ∈ R 6∼ε,w(r), and (vi) r ∈ R 6∼ε,v(r).

If this holds for any such a tuple, then R is not monadic decomposable. Else, R is monadic
decomposable. It is easy to see that this algorithm can be implemented in NLOGSPACE. J

We have the necessary ingredients to prove a part of Theorem 1.

I Lemma 10. Deciding whether a given binary regular relation R is monadic decomposable
is in NLOGSPACE (resp. in PSPACE), if R is given by a DFA (resp. an NFA).

Proof. The claim follows from Lemma 7. Namely, from the definition of R 6∼, it follows that,
if R is given by a DFA, then R 6∼ can be constructed in LOGSPACE. Indeed, this can be done
as disjunctions, conjunctions and projections can all be done in LOGSPACE and then via
composability of LOGSPACE transducers we can construct R 6∼ of logarithmic size. (Note that
the output of a LOGSPACE transducer is of at most polynomial size.) Then by Lemma 7, we
obtain the decidability of monadic decomposability in NLOGSPACE for R given by a DFA.

Similarly, if R is given by an NFA, we construct R 6∼ of polynomial size since an NFA
can be transformed into a DFA using a PSPACE transducer. (Again, the output of a PSPACE
transducer is of at most exponential size.) Thus monadic decomposability is in PSPACE. J

5 Deciding monadic decomposability of regular relations

In this section, we finish the proof of Theorem 1. The remaining component is showing that
monadic decomposability of n-ary regular relations is decidable in NLOGSPACE for DFA and
PSPACE for NFA.

I Lemma 11. Deciding whether a given n-ary regular relation R is monadic decomposable
is in NLOGSPACE (resp. in PSPACE), if R is given by a DFA (resp. an NFA).

Proof of Theorem 1. The upper bounds follow from Lemma 11 and the lower bound follows
from Lemma 5 for NFA and from Lemma 6 for DFA. J
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In order to prove Lemma 11, we extend Lemma 10 to n-ary relations. Let us first define
some helpful notation used throughout the section.

Recall that words of regular relations are padded to be of the same length using ⊥.
We denote this function by PAD⊥. For example, PAD⊥((a, ε, ab)) = (a⊥,⊥⊥, ab). Let
us now define a padding function δn that acts slightly differently. Instead of padding the
words in a tuple to make them of the same length, the new function pads a sequence of
tuples with tuples where some elements are ⊥. Let us describe δn in more details. Define
Σn = (Σ⊥)n \ {⊥n}, i.e., an alphabet consisting of n-tuples of letters from Σ⊥, excluding
(⊥, . . . ,⊥). Now δn : (Σ∗)n → Σ∗n is an injective mapping that uses ⊥ to extend the shorter
words to the same length as the longest word. For example, δ3 maps (a, ε, ab) ∈ (Σ∗)3 to
(a,⊥, a)(⊥,⊥, b) ∈ Σ∗3 as follows:

(a, ε, ab) −→

 a

ε

ab

 −→
a⊥⊥⊥
ab

 −→
a⊥
a

⊥⊥
b

 −→ (a,⊥, a)(⊥,⊥, b).

I Lemma 12. For n ≥ 1, {(x1, . . . , xn, y) | δn(x1, . . . , xn) = y} ⊆ (Σ∗)n × Σ∗n is regular.

Given an n-ary relation R ⊆ (Σ∗)n and positive integers x1, . . . , xm such that
∑m
i=1 xi = n,

an m-ary relation Rx1,...,xm ⊆ Σ∗x1
× · · · ×Σ∗xm

can be uniquely determined via the mappings
δx1 , . . . , δxm

. More precisely, there exists a one-to-one correspondence ∆x1,...,xm
between

relations R and Rx1,...,xm that maps each (w1, . . . , wn) ∈ R to

(δx1(w1, . . . , wx1), δx2(wx1+1, . . . , wx1+x2), . . . , δxm(wx1+···+xm−1+1, . . . , wn))∈Rx1,...,xm .

For example, a ternary relation R = {(a, ε, ab)} over (Σ∗)3 uniquely determines a binary
relation R1,2 = {(a, (⊥, a)(⊥, b))} over Σ∗1 × Σ∗2 through the correspondence ∆1,2. For the
sake of readability, if the integers x1, . . . , xm have a constant subsequence of length k, i.e.,
xi = xi+1 = · · · = xi+k−1 for some i, we write the relation as Rx1,...,xi−1,xk

i
,xi+k,...,xm

.
In the following, we shall use Rk to denote the binary relation Rk,n−k induced by R. It

turns out that being able to check monadic decomposability for binary relations is sufficient
to check monadic decomposability for general n-ary relations.

I Lemma 13. Let R be an n-ary regular relation and let R1, . . . , Rn−1 be the induced binary
relations. Then R is monadic decomposable iff R1, . . . , Rn−1 are monadic decomposable.

Proof. Define δi(S) = {δi(s1, . . . , si) | (s1, . . . , si) ∈ S}. The only-if part of the lemma is
immediate, since R =

⋃
iXi,1 × · · · × Xi,n implies that Rk =

⋃
i δk(Xi,1 × · · · × Xi,k) ×

δn−k(Xi,k+1×· · ·×Xi,n) for 1 ≤ k ≤ n−1, namely, R1, . . . , Rn−1 are monadic decomposable.
To see the other direction, we say that an n-ary relation R is k-decomposable if the

induced k-ary relation R1k−1,n−k+1 of R is monadic decomposable. Now it suffices to
show that R is n-decomposable since R = R1n . We shall prove this by induction on
k ∈ {2, . . . , n}. Note that R is 2-decomposable by the assumption that R1 is monadic
decomposable. For 2 ≤ k ≤ n− 1, suppose that Rk =

⋃
j Aj ×Bj and R is k-decomposable,

say R1k−1,n−k+1 =
⋃
iXi,1 × · · · ×Xi,k−1 × Yi. Then R is (k + 1)-decomposable as we have

R1k,n−k =
⋃

i

⋃
j
Xi,1 × · · · ×Xi,k−1 ×Ai,j ×Bj ,

where Ai,j = {x ∈ Σ∗ | ∃x1 ∈ Xi,1 · · · ∃xk−1 ∈ Xi,k−1. δk(x1, . . . , xk−1, x) ∈ Aj}, i.e., Ai,j is
the projection of δ−1

k (Aj) ∩ (Xi,1 × · · · ×Xi,k−1 × Σ∗) on the k-th component. Note that
δ−1
k (Aj) is regular since Aj and {(x1, . . . , xk, y) | δk(x1, . . . , xk) = y} are regular (cf. [8]).
Hence Ai,j is also regular. The claim that R is n-decomposable then follows by induction. J
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Proof (sketch) of Lemma 11. To prove the lemma, we show that if R is regular, then so
are the induced relations R1, . . . , Rn−1. Moreover, given the automaton of R, one can
construct the automaton for each Ri in logarithmic space from R. We then check if each Ri
is monadic decomposable for i = 1, . . . , n− 1. From Lemma 10 the latter is in NLOGSPACE
(resp. PSPACE), and thus the whole procedure is in NLOGSPACE (resp. PSPACE) if R is given
by a DFA (resp. an NFA). J

6 Concluding Remarks

Monadic decomposability for rational relations (and subclasses thereof) is a classical problem
in automata theory that dates back to the late 1960s (the work of Stearns [33] and Fischer and
Rosenberg [19]). While the general problem is undecidable, the subcase of regular relations
(i.e. those recognized by synchronized multi-tape automata) provides a good balance between
decidability [25, 12] and expressiveness. The complexity of this subcase remained open for over
a decade (exponential-time upper bound for the binary case [27, 28], double exponential-time
upper bound in the general case [12], and no specific lower bounds). This paper closes this
question by providing the precise complexity for the problem: NLOGSPACE (resp. PSPACE)
for DFA (resp. NFA) representations.

Some perspectives from formal verification and future work. Researchers from the area
of formal verification have increasingly understood the importance of the monadic decompos-
itions techniques, e.g., see [38]. Directly pertinent to monadic decomposability of regular
relations is the line of work of constraint solving over strings, wherein increasingly more
complex string operations are needed and thus added to solvers [36, 3, 26, 1, 13, 2, 14]. As
an example, let us take a look at the recent work of Chen et al. [14], which spells out a string
constraint language with semantic conditions for decidability that directly use the notion of
monadic decomposability of relations over strings. Loosely speaking, a constraint is simply a
sequence of program statements, each being either an assignment or a conditional:

S ::= y := f(x1, . . . , xr) | assert(g(x1, . . . , xr)) | S;S

where f : (Σ∗)r → Σ∗ is a partial string function and g ⊆ (Σ∗)r is a string relation. The
meaning of a constraint is what one would expect in a program written in a standard
imperative programming language, which should support assignments and assertions. Note
that loops are not allowed in the language since their target application is symbolic executions
(e.g. see [11]). They provided two semantic conditions for ensuring decidability, one of which
requires that each conditional g is effectively monadic decomposable. There is evidence
(e.g. [21, 14]) that some form of length reasoning in g is indeed required for many applications
of symbolic executions of string-manipulating programs, but much of the length constraints
could be (not yet fully automatically) translated to regular constraints. A potential application
for our results is therefore to provide support for complex string relations for g in the form
of regular relations, which permit a rather expressive class of conditionals (e.g. some form of
length reasoning, etc.). Despite this, this application also highlights what is currently missing
in the entire literature of monadic decomposability of rational relations: a study of the
problem of outputting the monadic decompositions of the relations, if monadic decomposable.
(In fact, this is also true of other logical theories before the recent work of Veanes et al. [38].)
What is the complexity of this problem with various representations of recognizable relations
(e.g. finite unions of products, boolean combinations of regular constraints, etc.)? Although
our results provide a first step towards solving this function problem, we strongly believe
this to be a highly challenging open problem in its own right that deserves more attention.
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Abstract
We study the boundedness problem for unions of conjunctive regular path queries with inverses
(UC2RPQs). This is the problem of, given a UC2RPQ, checking whether it is equivalent to a union
of conjunctive queries (UCQ). We show the problem to be ExpSpace-complete, thus coinciding with
the complexity of containment for UC2RPQs. As a corollary, when a UC2RPQ is bounded, it is
equivalent to a UCQ of at most triple-exponential size, and in fact we show that this bound is optimal.
We also study better behaved classes of UC2RPQs, namely acyclic UC2RPQs of bounded thickness,
and strongly connected UCRPQs, whose boundedness problem is, respectively, PSpace-complete and
ΠP

2 -complete. Most upper bounds exploit results on limitedness for distance automata, in particular
extending the model with alternation and two-wayness, which may be of independent interest.
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1 Introduction

Boundedness is an important property of formulas in logics with fixed-point features. At
the intuitive level, a formula ϕ in any such logic is bounded if its fixed-point depth, i.e., the
number of iterations that are needed to evaluate ϕ on a structure A, is fixed (and thus it is
independent of A). In databases and knowledge representation, boundedness is regarded
as an interesting theoretical phenomenon with relevant practical implications [25, 8]. In
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104:2 Boundedness of Conjunctive Regular Path Queries

fact, while several applications in these areas require the use of recursive features, actual
real-world systems are either not designed or not optimized to cope with the computational
demands that such features impose. Bounded formulas, in turn, can be reformulated in
non-recursive logics, such as FO, or even as a union of conjunctive queries (UCQ) when ϕ
itself is positive. UCQs form the core of most systems for data management and ontological
query answering, and, in addition, are the focus of advanced optimization techniques. It has
also been experimentally verified in some contexts that recursive features encountered in
practice are often used in a somewhat “harmless” way, and that many of such queries are
in fact bounded [23]. Thus, checking if a recursive formula ϕ is bounded, and building an
equivalent non-recursive formula ϕ′ when the latter holds, are important optimization tasks.

The study of boundedness for Datalog programs, i.e., the least fixed-point extension of
the class of UCQs, received a lot of attention during the late 80s and early 90s. Two seminal
results established that checking boundedness is undecidable in general for Datalog [22],
but becomes decidable for monadic Datalog, i.e., those programs in which each intensional
predicate is monadic [19]. The past few years have seen a resurgence of interest in boundedness
problems. This is due, in part, to the development of the theory of cost automata over trees
(both finite and infinite) in a series of landmark results, in particular relating to its limitedness
problem. In a few words, cost automata are generalizations of finite automata associating
a cost from N ∪ {∞} to every input tree (instead of simply accepting or rejecting). The
limitedness problem asks, given a cost automata, whether there is a uniform bound on the
cost over all (accepting) input trees. Some deep results establish that checking limitedness is
decidable for well-behaved classes of cost automata over trees [18, 35, 36, 7]. Remarkably, for
several logics of interest the boundedness problem can be reduced to the limitedness for cost
automata in such well-behaved classes. Those reductions have enabled powerful decidability
results for the boundedness problem. As an example, it has been shown in this way that
boundedness is decidable for monadic second-order logic (MSO) over structures of bounded
treewidth [11], which corresponds to an extension of Courcelle’s Theorem, and also for the
guarded negation fragment of least fixed-point logic (LFP), even in the presence of unguarded
parameters [6]. Cost automata have also been used to study the complexity of boundedness
for guarded Datalog programs [7, 3].

Graph databases is a prominent area of study within database theory, in which the use
of recursive queries is crucial [2, 1]. A graph database is a finite edge-labeled directed
graph. The most basic navigational querying mechanism for graph databases corresponds
to the class of regular path queries (RPQs), which check whether two nodes of the graph
are connected by a path whose label belongs to a given regular language. RPQs are often
extended with the ability to traverse edges in both directions, giving rise to the class of
two-way RPQs, or 2RPQs [15]. The core of the most popular recursive query languages
for graph databases is defined by conjunctive 2RPQs, or C2RPQs, which are the closure of
2RPQs under conjunction and existential quantifications [14]. We also consider unions of
C2RPQs, or UC2RPQs. It can be shown that a UC2RPQ is bounded iff it is equivalent to
some UCQ. In spite of the inherent recursive nature of UC2RPQs, their boundedness problem
has not been studied in depth. Here we develop such a study by showing the following:

The boundedness problem for UC2RPQs is ExpSpace-complete. The lower bound holds
even for CRPQs. This implies that boundedness is not more difficult than containment
for UC2RPQs, which was shown to be ExpSpace-complete in [14].
From our upper bound construction it follows that if a UC2RPQ is bounded, then it is
equivalent to a UCQ of triple exponential size. We show that this bound is optimal.
Finally, we obtain better complexity bounds for some subclasses of UC2RPQs; namely,
for acyclic UC2RPQs of bounded thickness, in which case boundedness becomes PSpace-
complete, and for strongly connected UCRPQs, for which it is ΠP

2 -complete.
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It is important to stress that UC2RPQs can be easily translated into guarded LFP
with unguarded parameters, for which boundedness was shown to be decidable by applying
sophisticated cost automata techniques as mentioned above. However, the complexity of
the boundedness problem for such a logic is currently not well-understood – and it is at
least 2Exptime-hard [7] – and hence this translation does not yield, in principle, optimal
complexity bounds for our problem. To study the boundedness for UC2RPQs, we develop
instead techniques especially tailored to UC2RPQs. In fact, since the recursive structure of
UC2RPQs is quite tame, their boundedness problem can be translated into the limitedness
problem for a much simpler automata model than cost automata on trees; namely, distance
automata on finite words. Distance automata are nothing more than usual NFAs with two
sorts of transitions: costly and non-costly. Such an automaton is limited if there is an integer
k ≥ 1 such that every word accepted by the NFA has an accepting run with at most k
costly transitions. A beautiful result in automata theory established the decidability of the
limitedness problem for distance automata [24], which is actually in PSpace [29]. While
being a difficult result, by now we have quite transparent proofs of this fact (see, e.g., [26]).
We exploit our translation to obtain tight complexity upper bounds for boundedness of
UC2RPQs. Some of the proofs in the paper require extending the study of limitedness to
alternating and two-way distance automata, while preserving the PSpace bound for the
limitedness problem. We believe these results to be of independent interest.

Organization of the paper. Section 2 contains preliminaries. We present characterizations
of boundedness for UC2RPQs in Section 3 and an application of those to pinpoint the
complexity of Boundedness for RPQs in Section 4. Distance automata and results about
them are given in Section 5. We analyze the complexity of Boundedness for general
UC2RPQs in Section 6 and present some classes of UC2RPQs with better complexity of
Boundedness in Section 7. We finish with a discussion in Section 8.

2 Preliminaries

We assume familiarity with non-deterministic finite automata (NFA), two-way NFA (2NFA),
and alternating finite automata (AFA) over finite words. We often blur the distinction
between an NFA A and the language L(A) it defines; similarly for regular expressions.

Graph databases and conjunctive regular path queries. A graph database over a finite
alphabet A is a finite edge-labelled graph G = (V,E) over A, where V is a finite set of
vertices and E ⊆ V × A × V is the set of labelled edges. We write u a−→ v to denote
an edge (u, a, v) ∈ E. We define the alphabet A± := A ∪̇A−1 that extends A with the
set A−1 := {a−1 | a ∈ A} of “inverses” of symbols in A. An oriented path from u to v
in a graph database G = (V,E) over alphabet A is a pair π = (σ, `) where σ and ` are
(possibly empty) sequences σ = (v0, a1, v1), (v1, a2, v2), . . . , (vk−1, ak, vk) ∈ V × A× V , and
` = `1, . . . , `k ∈ {−1, 1}, for k ≥ 0, such that u = v0, v = vk, and for each 1 ≤ i ≤ k, we have
that `i = 1 implies (vi−1, ai, vi) ∈ E; and `i = −1 implies (vi, ai, vi−1) ∈ E. The label of π
is the word b1 . . . bk ∈ (A±)∗, where bi = ai if `i = 1; otherwise bi = a−1

i . When k = 0 the
label of π is the empty word ε. If `i = 1 for every 1 ≤ i ≤ k, we say that π is a directed path.
Note that in this case, the label of π belongs to A∗.

A regular path query (RPQ) over A is a regular language L ⊆ A∗, which we assume to
be given as an NFA. The evaluation of L on a graph database G = (V,E) over A, written
L(G), is the set of pairs (u, v) ∈ V × V such that there is a directed path from u to v in G
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whose label belongs to L. 2RPQs extend RPQs with the ability to traverse edges in both
directions. Formally, a 2RPQ L over A is simply an RPQ over A±. The evaluation L(G) of
L over a graph database G = (V,E) over A is the set of pairs (u, v) ∈ V × V such that there
is an oriented path from u to v in G whose label belongs to L.

Conjunctive 2RPQs (C2RPQs) are obtained by taking the closure of 2RPQs under
conjunction and existential quantification, i.e., a C2RPQ over A is an expression γ :=
∃z̄
(
(x1

L1−−→ y1) ∧ · · · ∧ (xm
Lm−−→ ym)

)
, where each Li is a 2RPQ over A and z̄ is a tuple

of variables among those in {x1, y1, . . . , xm, ym}. We say that γ is a CRPQ if each Li is
an RPQ. If x̄ = (x1, . . . , xn) is the tuple of free variables of γ, i.e., those that are not
existentially quantified in z̄, then the evaluation γ(G) of the C2RPQ γ over a graph database
G is the set of all tuples h(x̄) = (h(x1) . . . , h(xn)), where h ranges over all mappings
h : {x1, y1, . . . , xm, ym} → V such that (h(xi), h(yi)) ∈ Li(G) for each 1 ≤ i ≤ m.

A union of C2RPQs (UC2RPQ) is an expression of the form Γ :=
∨

1≤i≤n γi, where the
γi’s are C2RPQ, all of which have exactly the same free variables. The evaluation Γ(G) of Γ
over a graph database G is

⋃
1≤i≤n γi(G). We often write Γ(x̄) to denote that x̄ is the tuple

of free variables of Γ. A UC2RPQ Γ is Boolean if it contains no free variables.
Given UC2RPQs Γ and Γ′, we write Γ ⊆ Γ′ if Γ(G) ⊆ Γ′(G) for each graph database G.

Hence, Γ and Γ′ are equivalent if Γ ⊆ Γ′ and Γ′ ⊆ Γ, i.e., Γ(G) = Γ′(G) for every G.

Boundedness of UC2RPQs. CRPQs, and even UC2RPQs, can easily be expressed in
Datalog, the least fixed-point extension of the class of union of conjunctive queries (UCQs).
Hence, we can directly define the boundedness of a UC2RPQ in terms of the boundedness of
its equivalent Datalog program, which is a well-studied problem [25]. The latter, however,
coincides with being equivalent to some UCQ [31]. In the setting of graph databases, a
conjunctive query (CQ) over A is simply a CRPQ over A of the form ∃z̄

∧
1≤i≤m(xi

ai−→ yi)
where the ais range over A ∪ {ε}. Notice that atoms of the form x

ε−→ y correspond to
equality atoms x = y. Analogously, one can define unions of CQs (UCQs). Note that, modulo
equality atoms, a CQ over A can be seen as a graph database over A. Hence, we shall slightly
abuse notation and, in the setting of CQs, use notions defined for graph databases (such as
oriented paths).

A UC2RPQ Γ is bounded if it is equivalent to some UCQ Φ. In this article we study
the complexity of the problem Boundedness, which takes as input a UC2RPQ Γ and asks
whether Γ is bounded.

I Example 1. Consider the Boolean UCRPQ Γ = γ1 ∨ γ2 over the alphabet A = {a, b, c, d}
such that γ1 = ∃x, y (x Lb−→ y ∧ x Lb,d−−−→ y) and γ2 = ∃x, y (x Ld−−→ y ∧ x Lb,d−−−→ y), where
Lb := a+b+c, Ld := ad+c+, and Lb,d := a+(b+ d)c+. For e ∈ A, recall that e+ denotes the
language e(e∗). As we shall explain in Example 4, we have that γ1 and γ2 are unbounded.
However, Γ is bounded, and in particular, it is equivalent to the UCQ Φ = ϕ1 ∨ ϕ2, where
ϕ1 and ϕ2 correspond to ∃x, y (x abc−−→ y) and ∃x, y (x adc−−→ y), respectively. J

3 Characterizations of Boundedness for UC2RPQs

In this section we provide two simple characterizations of when a UC2RPQ is bounded that
will be useful to analyze the complexity of Boundedness. Let ϕ(x̄) and ϕ′(x̄) be CQs
over A with variable sets V and V ′, respectively. Let =ϕ and =ϕ′ be the binary relations
induced on V and V ′ by the equality atoms of ϕ and ϕ′, respectively, and =∗ϕ and =∗ϕ′ be
their reflexive-transitive closure. A homomorphism from ϕ to ϕ′ is a mapping h : V → V ′



P. Barceló, D. Figueira, and M. Romero 104:5

such that: (i) x =∗ϕ y implies h(x) =∗ϕ′ h(y); (ii) h(x̄) = x̄; and (iii) for each atom x
a−→ y

in ϕ with a ∈ A, there is an atom x′
a−→ y′ in ϕ′ such that h(x) =∗ϕ′ x′ and h(y) =∗ϕ′ y′. We

write ϕ→ ϕ′ if such a homomorphism exists. It is known that ϕ→ ϕ′ iff ϕ′ ⊆ ϕ [16].
An expansion of a C2RPQ γ(x̄) over A is a CQ λ(x̄) over A with minimal number of

variables and atoms such that (i) λ contains each variable of γ, (ii) for each atom A = x
L−→ y

of γ, there is an oriented path πA in λ from x to y with label wA ∈ L whose intermediate
variables (i.e., those not in {x, y}) are distinct from one another, and (iii) intermediate
variables of different oriented paths πA and πA′ are disjoint. Note that the free variables of
λ and γ coincide. Intuitively, the expansion λ is obtained from γ by choosing for each atom
A = x

L−→ y a word wA ∈ L, and “expanding” x L−→ y into the “fresh oriented path” πA from
x to y with label wA. When wA = ε then λ contains the equality atom x = y. An expansion
of a UC2RPQ Γ is an expansion of some C2RPQ in Γ. Observe that a (U)C2RPQ is always
equivalent to the (potentially infinite) UCQ given by its set of expansions. Even more, it is
equivalent to the UCQ defined by its minimal expansions, as introduced below.

If λ is an expansion of a UC2RPQ Γ, we define the size of λ, denoted by ‖λ‖, to be the
number of (non-equality) atoms in λ. We say that λ is minimal, if there is no expansion λ′
such that λ′ → λ and ‖λ′‖ < ‖λ‖. Intuitively, an expansion is minimal if its answers cannot
be covered by a smaller expansion. We can then establish the following.

I Lemma 2. Every UC2RPQ Γ is equivalent to the (potentially infinite) UCQ given by its
set of minimal expansions.

We can now provide our basic characterizations of boundedness.

I Proposition 3. The following conditions are equivalent for each UC2RPQ Γ.
1. Γ is bounded.
2. There is k ≥ 1 such that for every expansion λ of Γ there exists an expansion λ′ of Γ

with ‖λ′‖ ≤ k such that λ ⊆ λ′ (i.e., such that λ′ → λ).
3. Γ has finitely many minimal expansions.

I Example 4. Consider the Boolean UCRPQ Γ = γ1∨γ2 over A = {a, b, c, d} from Example 1.
To see that γ1 is unbounded (the case of γ2 is similar) we can apply Proposition 3. Indeed, the
expansions of γ1 corresponding to {∃x, y (x abnc−−−→ y ∧ x adc−−→ y) : n ≥ 1} are all minimal. On
the other hand, Γ is bounded as its minimal expansions correspond to ∃x, y (x abc−−→ y∧x abc−−→ y)
and ∃x, y (x adc−−→ y ∧ x adc−−→ y). J

4 Boundedness for Existentially Quantified RPQs

As a first application of Proposition 3, we study Boundedness for CRPQs consisting of
a single RPQ; that is, RPQs or existentially quantified RPQs. Let v, w be words over A.
Recall that a word v is a prefix [resp. suffix and factor ] of w if w ∈ v · A∗ [resp. w ∈ A∗ · v
and w ∈ A∗ · v ·A∗]. If in addition we have v 6= w, then we say that v is a proper prefix [resp.
suffix and factor] of w. For a language L ⊆ A∗, we define its prefix-free sub-language Lpf to
be the set of words w ∈ L such that w has no proper prefix in L. Similarly, we define Lsf
and Lff with respect to the suffix and factor relation. We have the following:

I Proposition 5. The following statements hold.
1. An RPQ L is bounded iff L is finite.
2. A CRPQ ∃y(x L−→ y) [resp. ∃x(x L−→ y)] with x 6= y is bounded iff Lpf [resp. Lsf] is finite.
3. A Boolean CRPQ ∃x, y(x L−→ y) with x 6= y is bounded iff Lff is finite.
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104:6 Boundedness of Conjunctive Regular Path Queries

I Theorem 6. The problem of, given an NFA accepting the language L, checking whether
Lpf is finite is PSpace-complete. The same holds if we replace Lpf by Lsf or Lff.

Proof. We focus on upper bounds, the lower bounds are in the appendix. Given an NFA A
accepting the language L, we can construct an NFA B of polynomial size in A that accepts
precisely those words that have a proper prefix in L. By complementing and intersecting
with A, we obtain an NFA B′ of exponential size in A that accepts the language Lpf. Hence,
we only need to check whether the language accepted by B′ is finite, which can be done
on-the-fly in NL w.r.t. B′, and hence in PSpace. The other two cases are analogous. J

By applying Theorem 6 and Proposition 5, we can now pinpoint the complexity of
Boundedness for CRPQs with a single RPQ.

I Corollary 7. The following statements hold.
1. Boundedness for RPQs is NL-complete.
2. Boundedness for CRPQs of the form ∃y(x L−→ y), with x 6= y, is PSpace-complete.

The same holds for CRPQs ∃x(x L−→ y) and Boolean CRPQs ∃x, y(x L−→ y), where x 6= y.

It is not clear, though, how usual automata techniques, as the ones applied in the proof
of Theorem 6, can be used to solve Boundedness for more complex CRPQs. To solve
this problem we develop an approach based on distance automata, as introduced next. Our
approach also handles inverses and unions, thus dealing with arbitrary UC2RPQs.

5 Distance Automata

Distance automata [24] (equivalent to weighted automata over the (min,+)-semiring [21],
min-automata [12], or {ε, ic}-B-automata [17]) are an extension of finite automata which
associate to each word in the language a natural number or “cost”. They can be represented
as non-deterministic finite automata with two sorts of transitions: costly and non-costly. For
a given distance automaton, the cost of a run on a word is the number of costly transitions,
and the cost of a word w ∈ A∗ is the minimum cost of an accepting run on w. We will use
this automaton model to encode boundedness as the problem of whether there is a uniform
bound on the cost of words, known as the limitedness problem.

Formally, a distance automaton (henceforth DA) is a tuple A = (A, Q, q0, F, δ), where
A is a finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the
set of finals states and δ ⊆ Q× A× {0, 1} ×Q is the transition relation. A word w ∈ A∗ is
accepted by A if there is an accepting run of A on w, i.e., a (possibly empty) sequence of
transitions ρ = (p1, a1, c1, r1) · · · (pn, an, cn, rn) ∈ δ∗ with the usual properties: (1) if ρ = ε

then q0 ∈ F and w = ε, (2) p1 = q0 and rn ∈ F , (3) for every 1 ≤ i < n we have ri = pi+1,
and (4) w = a1 · · · an. The cost of the run ρ is cost(ρ) = c1 + · · ·+ cn (or 0 if ρ = ε); and the
cost costA(w) of a word w accepted by A is the minimum cost of an accepting run of A on
w. For convenience, we assume the cost of words not accepted by A to be 0.

The limitedness problem for DA is defined as follows: given a DA A, determine whether
supw∈A∗ costA(w) <∞. This problem is known to be PSpace-complete.

I Theorem 8 ([28, 29]). The following statements hold:
1. The limitedness problem for DA is PSpace-complete.
2. If a DA with n states is limited, then supw∈A∗ costA(w) ≤ 2O(n3).

We use two extensions of DA: alternating and two-way. Two-way DA is defined as for
NFA, extending the cost function accordingly. The cost of a word is still the minimum over
the cost of all (potentially infinitely many) runs. Alternating DA is defined as usual by having
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two sorts of states: universal and existential. Existential states can be seen as computing
the minimum among the cost of all possible continuations of the run, and universal states as
computing the maximum (or supremum if the automaton is also two-way). As we will see,
these extensions preserve the above PSpace upper bound for the limitedness problem.

Formally, an alternating two-way DA with epsilon transitions (A2DAε) over A is a tuple
A = (A, Q∃, Q∀, q0, F, δ) is an A2DAε if q0 ∈ Q∃, F ⊆ Q∃ and

δ ⊆ (Q∃ ∪Q∀)× (A± ∪ {ε})× {end, end} × {0, 1} × (Q∃ ∪Q∀);

where end indicates that after reading the letter we arrive at the end of the word (i.e., either
the leftmost or the rightmost end) and end indicates that we do not. When the automaton
A is two-way, it is convenient to think of its head as being between the letter positions of the
word, so an end-flagged transition can be applied only if it moves the head to be right before
the first letter of the word, or right after the last one.

For any given word w ∈ A∗, consider the edge-labelled graph GA,w = (V,E) over δ,
where V = Q × {0, . . . , |w|}, with Q = Q∃ ∪ Q∀, and E ⊆ V × δ × V consists of all edges
(q, i) (q,a,e,c,p)−−−−−−→ (p, j) such that e = end iff j = 0 or j = |w| and either (a) i < |w|, a = w[i+1],
and j = i+ 1; (b) i > 0, a = (w[i])−1, and j = i− 1; or (c) a = ε and j = i.

An accepting run of A on w from (q, i) ∈ Q × {0, . . . , |w|} is a finite (possibly empty)
edge-labelled directed rooted tree1 t over δ and a labelling h from the nodes of t to the nodes
of GA,w, such that if t is empty then q ∈ F , and otherwise h maps the root of t to (q, i),
every leaf of t to F × {0, . . . , |w|}, and for every node x of t:

if (x, α, y) is an (labeled) edge in t for some y, then (h(x), α, h(y)) is an edge in GA,w;
if h(x) ∈ Q∀ × {0, . . . , |w|}, then for every edge (h(x), α, c) in GA,w, there is an edge
(x, α, y) in t so that h(y) = c;
if h(x) ∈ Q∃ × {0, . . . , |w|}, then x has at most one child.

Each branch of t with label (q1, a1, e1, c1, p1), . . . , (qn, an, en, cn, pn) has an associated
cost of c1 + · · ·+ cn; and the cost associated with t is the maximum among the costs of its
branches, or 0 if t is empty. The cost costA(w, q, i) is the minimum cost of an accepting run
on w from (q, i), or 0 if none exists; costA(w) is defined as costA(w, q0, 0).

An A2DAε with δ ⊆ Q× (A∪ {ε})× {end, end} × {0, 1} ×Q is an alternating DA with ε
transitions (ADAε). An A2DAε with Q∀ = ∅ is a two-way DA with ε transitions (2DAε). An
A2DA with both the aforementioned conditions is (equivalent to) a DA with ε transitions
(DAε). Notice that in the last two cases, accepting runs can be represented as words from δ∗

rather than trees. By A2DA (resp., ADA, 2DA, DA) we denote an A2DAε (resp., ADAε,
2DAε, DAε) with no ε-transitions. Note that DA as just defined is in every sense equivalent
to the distance automata model we have defined at the beginning of this section – this is
why we overload the same “DA” name.

We first observe that 2DA can be transformed into DA while preserving both the language
and limitedness problems by adapting the standard “crossing sequence” construction for
translating 2NFA into NFA [34]. This fact will be useful for proving the ExpSpace upper
bound for Boundedness of general UC2RPQs in Section 6.

I Proposition 9. There is an exponential time procedure which for every 2DA A over A
produces a DA B over A such that the languages accepted by A and B are the same, and
costB(w) ≤ costA(w) ≤ f(costB(w)) for every w ∈ A∗, where f is a polynomial function that
depends on the number of states of A.

1 That is, a tree-shaped finite edge-labelled graph over δ with edges directed in the root-to-leaf sense.
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Recall that the universality problem for NFAs is known to be PSpace-complete [27];
and that this bound actually extends to two-way and even alternating automata. We show
that, likewise, the limitedness problem remains in PSpace for A2DAε. This result will be
useful to show in Section 7 that Boundedness for the class of acyclic UC2RPQs of bounded
thickness is in PSpace.

I Theorem 10. The limitedness problem for A2DAε is PSpace-complete.

The novelty of this result is the PSpace upper bound. In fact, decidability follows from
known results, and in particular [7, Theorem 14] claims ExpTime-membership in the more
challenging setup of infinite trees. However, this is obtained via an involved construction
spanning through several papers. The proof of Theorem 10, instead, is obtained by the
composition of the following reductions:

lim. A2DAε (1)−−→ lim. A2DA (2)−−→ lim. 2DA (3)−−→ lim. ADAε (4)−−→ lim. ADA (5)−−→ lim. DA.

Reductions (1), (3) and (4) are in polynomial time, while reductions (2) and (5), which are
basically the same, are in exponential time. Specifically, reductions (2) and (5) preserve
the statespace but the size of the alphabet grows exponentially in the number of states and
linearly in the size of the source alphabet. However, the alphabet and transition set resulting
from these reductions can be succinctly described: letters are encoded in polynomial space,
and checking for membership in the transition set is polynomial time computable.

In summary, the composition (1)+(2)+(3)+(4)+(5) yields a DA with the following
characteristics: (i) it has a polynomial number of states Q; (ii) it runs on an exponential
alphabet A –and every letter is encoded in polynomial space–; and (iii) one can check in
polynomial time whether a tuple t ∈ Q × A × {end, end} × {0, 1} × Q is in its transition
relation. This, coupled with Theorem 8, item (2) (which offers a bound depending only on
the number of states), provides a polynomial space algorithm for the limitedness of A2DAε:
We can non-deterministically check the existence of a word with cost greater than the single
exponential bound N using only polynomial space, by guessing one letter at a time and
keeping the set of reachable states together with the associated costs, where each cost is
encoded in binary using polynomial space if it is smaller than N , or with a “∞” flag otherwise.
The algorithm accepts if at least one final state is reached and the costs of all reachable final
states are marked ∞. Since NPSpace =PSpace (Savitch’s Theorem), Theorem 10 follows.

We now provide a brief description of the reductions used in the proof of Theorem 10.
(1) From A2DAε to A2DA. This is a trivial reduction obtained by simulating ε-transitions

by reading a · a−1 for some a ∈ A.
(2) From A2DA to 2DA. Given an A2DA A = (A, Q∀, Q∃, q0, F, δ), we build a 2DA B over

a larger alphabet B, where we trade alternation for extra alphabet letters. The alphabet
B consists of triples (f→, a, f←), where a ∈ A and f→, f← : Q∀ → δ. The idea is that
f→, f← are “choice functions” for the alternation: whenever we are to the left (resp.,
right) of a position of the word labelled (f→, a, f←) in state q ∈ Q∀, instead of exploring
all transitions departing from q and taking the maximum cost over all such runs (this is
what alternation does in A), B chooses to just take the transition f→(q) (resp., f←(q)).
Note that B is exponential in the number of states but not in the size of A. In this way,
we build a 2DA B having the same set of states as A but with a transition function which
is essentially deterministic on the states of Q∀. In the end we obtain that

for every w ∈ B∗, costB(w) ≤ costA(wA); and
for every w ∈ A∗ there is w̃ ∈ B∗ so that w̃A = w and costA(w) = costB(w̃),

where wA and w̃A denote the projections onto the alphabet A. This implies that the
limitedness problem is preserved.
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(3) From 2DA to ADAε. We show a polynomial-time translation from 2DA to ADAε which
preserves limitedness. In the case of finite automata, there are language-preserving
reductions from 2NFA to AFA with a quadratic blowup in the statespace [9, 32]. However,
these translations, when applied blindly to reduce from 2DA to ADAε, preserve neither
the cost semantics nor the limitedness of languages. On the other hand, [10] shows an
involved construction that results in a reduction from 2DA to ADAε on infinite trees,
which preserves limitedness but it is not polynomial in the number of states. We show a
translation from 2DA to ADAε which serves our purpose: it preserves limitedness and
it is polynomial time computable. The translation is close to the language-preserving
reduction from 2NFA to AFA of [32], upgraded to take into account the cost of different
alternation branches, somewhat in the same spirit as the history summaries from [10].

(4) From ADAε to ADA. This is a straightforward polynomial time reduction which pre-
serves limitedness but – as opposed to (1) – does not preserve the language: we need to
add an extra letter to the alphabet in order to make the reduction work in polynomial
time.

(5) From ADA to DA. This is exactly the same reduction as (2), noticing that the alphabet
will still be single exponential in the original A2DAε.

6 Complexity of Boundedness for UC2RPQs

Here we show that Boundedness for UC2RPQs is ExpSpace-complete. We do so by
applying distance automata results presented in the previous section on top of the semantic
characterizations presented in Section 3. The lower bound applies even for CRPQs. We
further show that there is a triple exponential tight bound for the size of the equivalent UCQ
of a UC2RPQ (and even CRPQ), whenever this exists. This is summarized in the following
theorem. If Γ is a UC2RPQ, we write ‖Γ‖ for the length of an arbitrary reasonable encoding
of Γ – in particular, encodings in which regular languages are described through NFA or
regular expressions.

I Theorem 11. The following statements hold.
1. Boundedness for UC2RPQs is ExpSpace-complete. The problem remains ExpSpace-

hard even for Boolean CRPQs.
2. If a UC2RPQ Γ is bounded, there is a UCQ Φ that is equivalent to Γ and such that Φ has

at most triple-exponentially many CQs, each one of which is at most of double exponential
size with respect to ‖Γ‖.

3. There is a family {Γn}n≥1 of Boolean CRPQs such that for each n ≥ 1 it is the case that:
(1) ‖Γn‖ = O(n), (2) Γn is bounded, and (3) every UCQ that is equivalent to Γn has at
least triple-exponentially many CQs with respect to n.

6.1 Upper bounds
Our upper bound proof builds on top of techniques developed by Calvanese et al. [14] for
studying the containment problem for UC2RPQs: Given UC2RPQs Γ,Γ′, is it the case
that Γ ⊆ Γ′? It is shown in [14] that from Γ,Γ′ it is possible to construct exponentially
sized NFAs AΓ,Γ′ and A′Γ,Γ′ , such that Γ ⊆ Γ′ iff there is a word in AΓ,Γ′ ∩ A′Γ,Γ′ . It is a
well-known result that the latter is solvable in NL in the combined size of (AΓ,Γ′ ,A′Γ,Γ′), i.e.,
in ExpSpace. We modify this construction to study the boundedness of a given UC2RPQ Γ.
In particular, we construct from Γ in exponential time a DA DΓ such that Γ is bounded iff
DΓ is limited. The result then follows from Theorem 8, which establishes that limitedness for
DΓ can be solved in polynomial space on the number of its states, and thus in ExpSpace.
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I Proposition 12. There is a single exponential time procedure that takes as input a UC2RPQ
Γ and constructs a DA DΓ such that Γ is bounded iff DΓ is limited.

Proof. Similarly as done in [14], the DA DΓ will run over encodings of expansions of the
UC2RPQ Γ, i.e., words over the alphabet A1 := A± ∪ V ∪ {$}, where A is the alphabet of
Γ, V is the set of variables of Γ, and $ is a fresh symbol. If γ = ∃z̄

∧
1≤i≤m(xi

Li−→ yi) is
a C2RPQ in Γ and λ is the expansion of γ obtained by expanding each xi

Li−→ yi into an
oriented path πi from xi to yi with label wi ∈ Li, then we encode λ as the word

wλ = $x1w1y1$x2w2y2$ · · · $xmwmym$ ∈ A∗1

Note how the subword xiwiyi encodes the oriented path πi. Every position j ∈ {1, . . . , |wλ|}
with wλ[j] 6= $ represents a variable in λ: either xi or yi if wλ[j] = xi or wλ[j] = yi,
respectively; or the (`+ 1)-th variable in the oriented path πi if wλ[j] is the `-th symbol in
the subword wi. Hence different positions in wλ could represent the same variable in λ, e.g.,
in the encoding $xabcy$, the 5th position containing a “c” and the 6th position containing
a “y”, represent the same variable, namely, the last vertex y of the oriented path. It is
then easy to build, in polynomial time, an NFA A1 over A1 recognizing the language of all
such encodings of expansions of Γ. Our automaton DΓ is the product of A1 and the DA CΓ
defined below. In particular, DΓ is limited iff CΓ is limited over words of the form wλ, for λ
an expansion of Γ.

Fix a disjunct γ of Γ. As in [14], we consider words over the alphabet A2 := A1×(2V∪{#})
of the form (`1, α1) · · · (`n, αn), such that wλ = `1 · · · `n, for some expansion λ of Γ, and the
αi’s are valid γ-annotations, i.e., (1) αi = # if `i = $, (2) α1, . . . , αn ∈ 2V induce a partition
of the variable set Vγ of γ, and (3) for each free variable x ∈ Vγ there is some (`i, αi) such
that `i = x and x ∈ αi. It is easy to construct an NFA Bγ1 of exponential size that given
w = (`1, α1) · · · (`n, αn) with wλ = `1 · · · `n, checks if the αi’s are valid γ-annotations. Note
that if the latter holds, then the annotations encode a mapping hw from Vγ to the variables
of λ such that hw(x̄) = x̄, where x̄ are the free variables of γ.

Now, given w = (`1, α1)(`2, α2) · · · (`n, αn) with wλ = `1 · · · `n and the αi’s being valid
γ-annotations, it is shown in [14] that one can construct in polynomial time a 2NFA Bγ2 that
checks the existence of an expansion λ′ of γ and a homomorphism h from λ′ to λ consistent
with hw. For each atom x

L−→ y of γ, the automaton Bγ2 guesses an oriented path π in λ

from hw(x) to hw(y) with label w′ ∈ L, directly over the encoding wλ starting at a position
jx and ending at a position jy in {0, . . . , n} (recall that the head moves in {0, . . . , n}) with
jx, jy > 0, w[jx] = (`, α), w[jy] = (`′, α′), x ∈ α and y ∈ α′. Note that we have two types of
transitions: (1) transitions that consume a ∈ A± and actually guess an atom of π, and (2)
transitions to “jump” from position j to j′ in {0, . . . , n} representing equivalent variables of
λ. The latter means that j, j′ > 0 and either wλ[j] and wλ[j′] represents exactly the same
variable of λ, or wλ[j] and wλ[j′] represent variables z, z′ of λ such that z =∗λ z′, where =∗λ
is the reflexive-transitive closure of the relation induced by the equality atoms in λ.

Let Dγ2 be the 2DA obtained from the 2NFA Bγ2 by setting to 0 and 1 the cost of transitions
of type (2) and (1), respectively. Hence, for a word w such that the projection of w to A1 is
wλ, and the one to (2V ∪{#}) is a valid γ-annotation, we have that costDγ2 (w) is precisely the
minimum size of an expansion λ′ that can be mapped to λ via a homomorphism compatible
with hw. By Proposition 9, we can construct in exponential time in Dγ2 a DA Cγ2 accepting the
same language as Dγ2 and having an exponential number of states, so that for every word w′,
we have costCγ2 (w′) ≤ costDγ2 (w′) ≤ f(costCγ2 (w′)) for some polynomial function f . Let ∃Cγ
be the result of taking the product of Bγ1 and Cγ2 and then projecting over the alphabet A1.
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For every expansion λ of Γ, if λ′ is a minimal size expansion of γ such that λ′ → λ, then we
obtain that cost∃Cγ (wλ) ≤ ‖λ′‖ ≤ f(cost∃Cγ (wλ)). We define our desired CΓ to be the union
of ∃Cγ over all γ in Γ. We have that for every expansion λ, if λmin is a minimal size expansion
of Γ such that λmin → λ, then costCΓ(wλ) ≤ ‖λmin‖ ≤ f(costCΓ(wλ)). By Proposition 3,
item (2), Γ is bounded iff ‖λmin‖ is bounded over all λ. The latter condition holds iff CΓ
is limited over words wλ, for all expansion λ. By definition, the latter is equivalent to DΓ
being limited. Summing up, we obtain that Γ is bounded iff DΓ is limited, as required. Note
that the whole construction can be done in exponential time. J

As a corollary to Proposition 12 and Theorem 8 we obtain the desired upper bound for
part (1) of Theorem 11.

I Corollary 13. Boundedness for UC2RPQs is in ExpSpace.

Size of equivalent UCQs. Here we prove part (2) of Theorem 11. Since Γ is bounded
we have from Proposition 12 that DΓ is limited. Then, from Theorem 8 we obtain that
the maximum cost that it takes DΓ over a word is N , where N is exponential in the
number of states of DΓ, and thus double exponential in ‖Γ‖ by construction. Therefore, for
every expansion λ of Γ, if λmin is a minimal size expansion Γ such that λmin → λ, then
‖λmin‖ ≤ f(N), where f is the polynomial function of the proof of Proposition 12. In
particular, all minimal expansions of Γ are of size ≤ f(N). By Lemma 2, the UC2RPQ
Γ is equivalent to the union of all its minimal expansions. The number of such minimal
expansions is thus at most exponential in f(N), and hence triple exponential in ‖Γ‖.

6.2 Lower bounds

We reduce from the 2n-tiling problem, that is, a tiling problem restricted to 2n many columns,
which is ExpSpace-complete (see, e.g., [14]). We show that for every 2n-tiling problem
T there is a CRPQ γ, computable in polynomial time from T , whose number of minimal
expansions is essentially the number of solutions to T in the following sense.

I Lemma 14. For every 2n-tiling problem T with m solutions there is a Boolean CRPQ
γ, computable in polynomial time from T , such that the number of minimal expansions of
γ is O((g(|T |) + m)n+1) and Ω(m), for some double exponential function g. Further, γ
consists of a Boolean CRPQ of the form ∃x, y

∧
0≤i≤n(x Li−→ y), where each Li is given as a

regular expression.

As a corollary, this yields an ExpSpace lower bound for the boundedness problem (part
(1) of Theorem 11), as well as a triple exponential lower bound for the size of the UCQ
equivalent to any bounded CRPQ (part (3) of Theorem 11), since one can produce 2n-tiling
problems having triple-exponentially many solutions.

7 Better-behaved Classes of UC2RPQs

Here we present two restrictions of UC2RPQs that exhibit a better behavior in terms of the
complexity of Boundedness than the general case, namely, acyclic UC2RPQs of bounded
thickness and strongly connected UCRPQs. The improved bounds are PSpace and ΠP

2 ,
respectively, which turn out to be optimal.

ICALP 2019



104:12 Boundedness of Conjunctive Regular Path Queries

Acyclic UC2RPQs of Bounded Thickness. For any two distinct variables x, y of a C2RPQ
γ, we denote by Atomsγ(x, y) the set of atoms in γ of the form x

L−→ y or y L−→ x. The
thickness of a C2RPQ γ is the maximum cardinality of a set of the form Atomsγ(x, y), for
x, y variables of γ with x 6= y. The thickness of a UC2RPQ Γ is the maximum thickness
over all the C2RPQs in Γ. The underlying undirected graph of γ has as vertex set the set of
variables of γ and contains an edge {x, y} iff x 6= y and Atomsγ(x, y) 6= ∅. A C2RPQ γ is
acyclic if its underlying undirected graph is an acyclic graph (i.e., a forest). A UC2RPQ Γ is
acyclic if each C2RPQ in Γ is.

We show next that Boundedness for acyclic UC2RPQs of bounded thickness is PSpace-
complete. These classes of UC2RPQs have been previously studied in the literature [4, 5].
In particular, it follows from [5, Theorem 4.2] that the containment problem for the acyclic
UC2RPQs of bounded thickness is PSpace-complete, and hence Theorem 15 below shows
that Boundedness is not more costly than containment for these classes.

I Theorem 15. Fix k ≥ 1. The problem Boundedness is PSpace-complete for acyclic
UC2RPQs of thickness at most k.

Proof (sketch). The lower bound follows directly from PSpace-hardness of Boundedness
for RPQs (see Corollary 7). For the PSpace upper bound, we follow a similar strategy as
in the case of arbitrary UC2RPQs (Section 6.1), i.e., we reduce boundedness of Γ to DA
limitedness. The main difference is that, since Γ is acyclic, we can exploit the power of
alternation and construct an A2DAε B (instead of a 2DA, as in the proof of Proposition 12),
such that Γ is bounded iff B is limited. The constant upper bound on the thickness of Γ
implies that B is actually of polynomial size. The result follows then as limitedness of an
A2DAε can be decided in PSpace in virtue of Theorem 10. J

Both conditions in Theorem 15, i.e., acyclicity and bounded thickness, are necessary.
Indeed, it follows from Lemma 14 that Boundedness is ExpSpace-hard even for:

Boolean acyclic CRPQs.
Boolean CRPQs of thickness one, whose underlying undirected graph is of treewidth two.
Recall that the treewidth is a measure of how much a graph resembles a tree (cf., [20]) –
acyclic graphs are precisely the graphs of treewidth one.

Indeed, the CRPQs of the form ∃x, y
∧
i(x

Li−→ y) used in Lemma 14 are Boolean and acyclic
(but have unbounded thickness). Replacing each (x Li−→ y) with (x ε−→ zi) ∧ (zi

Li−→ y), yields
an equivalent CRPQ of thickness one whose underlying undirected graph has treewidth two.

Strongly Connected UCRPQs. We conclude this section with an even better behaved class
of CRPQs in terms of Boundedness. Unlike the previous case, the definition of this class
depends on the underlying directed graph of a CRPQ γ. This contains a directed edge from
variable x to y iff there is an atom in γ of the form x

L−→ y. A CRPQ γ is strongly connected
if its underlying directed graph is strongly connected, i.e., every pair of variables is connected
by some directed path. A UCRPQ Γ is strongly connected if every CRPQ in Γ is. We can
then establish the following.

I Theorem 16. Boundedness is ΠP
2 -complete for strongly connected UCRPQs.
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8 Discussion and Future Work

The main conclusion of our work is that techniques previously used in the study of containment
of UC2RPQs can be naturally leveraged to pinpoint the complexity of Boundedness by using
DA instead of NFA. This, however, requires extending results on limitedness to alternating
and two-way DA. For all the classes of UC2RPQs studied in the paper we show in fact that
the complexity of Boundedness coincides with that of the containment problem. We leave
open what is the exact size of UCQ rewritings for the classes of acyclic UC2RPQs of bounded
thickness and the strongly connected UCRPQs that are bounded.

The most natural next step is to study Boundedness for the class of regular queries
(RQs), which are the closure of UC2RPQs under binary transitive closure. RQs are one of
the most powerful recursive languages for which containment is decidable in elementary time.
In fact, containment of RQs has been proved to be 2EXPSPACE-complete by applying
sophisticated techniques based on NFA [33]. We will study if it is possible to settle the
complexity of Boundedness for RQs with the help of DA techniques.

Another interesting future line of work is the study of Boundedness for UC2RPQs
based on the restricted classes of regular expressions often found in practical applications [13].
As it has been shown lately, the complexity of some query evaluation problems is alleviated
under this restriction [30], and it would be nice to see if the same holds for the boundedness
problem. This would be good news for the applicability of boundedness techniques in
practical applications. In fact, it would be an indication that the high complexity lower
bounds obtained in this paper are mostly witnessed by complicated interactions between
regular expressions not commonly arising in practice.
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Abstract
We consider the computability and complexity of decision questions for Probabilistic Finite Automata
(PFA) with sub-exponential ambiguity. We show that the emptiness problem for non-strict cut-points
of polynomially ambiguous PFA remains undecidable even when the input word is over a bounded
language and all PFA transition matrices are commutative. In doing so, we introduce a new technique
based upon the Turakainen construction of a PFA from a Weighted Finite Automata which can
be used to generate PFA of lower dimensions and of subexponential ambiguity. We also study
freeness/injectivity problems for polynomially ambiguous PFA and study the border of decidability
and tractability for various cases.
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1 Introduction

Probabilistic finite automata (PFA) are a simple yet expressive model of computation,
obtained by extending nondeterministic finite automata so that transitions from each state
(and for each input letter) form probability distributions. As input letters are read from some
alphabet Σ, the automaton transitions among states according to these probabilities. The
probability of accepting a word w ∈ Σ∗ is given by the probability of the automaton being in
one of its final states, denoted fP(w) = xTMw1Mw2 · · ·Mwk

y, where x represents the initial
state, y represents the final state and each Mwi is a row stochastic matrix representing the
transition probabilities for letter wi ∈ Σ.

The PFA model has been studied extensively over the years, ever since its introduction
by Rabin [27]; for example see [10] for a survey of 416 research papers related to PFA
in the eleven years since their introduction to just 1974. They have been used to study
Arthur-Merlin games [2], space bounded interactive proofs [15], quantum complexity theory
[33], the joint spectral radius and semigroup boundedness [8], Markov decision processes and
planning questions [9], and text and speech processing [24] among many others.

There are a variety of interesting questions that one may ask about PFA. A central
question is the emptiness problem for cut-point languages; given some probability λ ∈ [0, 1],
does there exist a finite input word whose probability of acceptance is greater than λ (i.e.
does there exist w ∈ Σ∗ such that fP(w) > λ, see Section 2.2). This problem is known to be
undecidable [26], even for a fixed number of dimensions and for two input matrices [7, 19].

EA
T

C
S

© Paul Charles Bell;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 105; pp. 105:1–105:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

 https://orcid.org/0000-0003-2620-635X
mailto:p.c.bell@ljmu.ac.uk
https://doi.org/10.4230/LIPIcs.ICALP.2019.105
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


105:2 Polynomially Ambiguous Probabilistic Automata on Restricted Languages

A second natural question is the freeness problem (or injectivity problem) for PFA, studied
in [3] – given a PFA P over alphabet Σ determine whether the acceptance function fP(w) is
injective (i.e. do there exist two distinct words with the same acceptance probability).

When studying the frontiers of decidability of a problem, there are two competing
objectives, namely, determine the most general version of the problem which is decidable,
and the most restricted specialization which is undecidable; the latter being the focus of
this paper.

Various classes of restrictions may be studied for PFA depending upon the structure of
the PFA or on possible input words. Some restrictions relate to the number of states of
the automaton, the alphabet size and whether one defined the PFA over the algebraic real
numbers or the rationals. One may also study PFA with finite, polynomial or exponential
ambiguity (in terms of the underlying NFA), PFA defined for restricted input words (for
example those coming from regular, bounded or letter monotonic languages), PFA with
isolated thresholds (a probability threshold is isolated if it cannot be approached arbitrarily
closely) and PFA where all matrices commute, for which cut-point languages and non-free
languages generated by such automata necessarily become commutative.

The cut-point emptiness problem for PFA is known to be undecidable for rational matrices
[26], even over a binary alphabet when the PFA has dimension 46 in [7]; later improved to
dimension 25 [19]. The authors of [6] show that the problem of determining if a threshold is
isolated (resp. if a PFA has any isolated threshold) is undecidable and this was shown to
hold even for PFA with 420 (resp. 2354) states over a binary alphabet [7].

A natural restriction on PFA was studied in [4], where possible input words of the PFA
are restricted to be from some letter monotonic language of the form L = a∗1a

∗
2 · · · a∗k with

each ai ∈ Σ (analogous to a 1.5 way PFA, whose read head may “stay put” on an input
word letter but never moves left), then the problem remains undecidable. In other words,
does there exist w ∈ L such that fP(w) > λ? This restriction is inspired by the well-
known property that many language-theoretic problems become decidable or tractable when
restricted to bounded languages, and especially letter-monotonic languages [13]. Nevertheless,
the emptiness problem for PFA on letter-monotonic languages was shown to be undecidable
for high (but finite) dimensional matrices over the rationals via an encoding of Hilbert’s
tenth problem on the solvability of Diophantine equations and the utilization of Turakainen’s
method to transform weighted integer automata to a PFA [4].

The authors of [17] recently studied decision problems for PFA of various degrees of
ambiguity in order to map the frontier of decidability for restricted classes of PFA. The
degree of ambiguity of a PFA is defined as the maximum number of accepting runs over
all possible words and can be used to give various classifications of ambiguity including
finite, polynomial and exponential ambiguity. The ambiguity of a PFA is a property of the
underlying NFA and is independent of the transition probabilities in so much as we only
need care if the probability is zero or positive. The degree of ambiguity of automata is a
well-known and well-studied property in automata theory [31]. The authors of [17] show
that the emptiness problem for PFA remains undecidable even for polynomially ambiguous
automata (quadratic ambiguity), before going on to show PSPACE-hardness results for
finitely ambiguous PFA and that emptiness is in NP for the class of k-ambiguous PFA for
every k > 0. The emptiness problem for PFA was later shown to also be undecidable even
for linearly ambiguous automata in [16].

1.1 Our Contributions
In this paper, we show that the emptiness problem is undecidable even for polynomially
ambiguous PFA defined over letter monotonic languages when all matrices are rational
and commutative. This combination of restrictions on the PFA significantly increases the
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difficulty of proving undecidability. The study of PFA over letter monotonic languages is a
particularly interesting intermediate model, lying somewhere between single letter alphabets,
for which we have decidability results, and PFA defined with multi-letter alphabets, for
which most decision problems are undecidable.

I Theorem 1. The emptiness problem for polynomially ambiguous probabilistic finite auto-
mata on letter monotonic languages is undecidable for non-strict cut-points, even when all
matrices are commutative.

We note a few difficulties with proving this result. Firstly, Post’s correspondence problem,
whose variants are often used for showing undecidability results in such settings, is actu-
ally decidable over letter monotonic languages [18]1. Secondly, although other reductions
of undecidable computational problems to matrices are possible, the standard technique
of Turakainen (shown in [30]) to modify such matrices to stochastic matrices introduces
exponential ambiguity (indeed all such matrices are strictly positive, and thus we might
think of such matrices as being maximally exponentially ambiguous)2. Finally, we note that
matrix problems for commutative matrices are often decidable; indeed there are polynomial
time algorithms for solving the orbit problem [22, 14] and the vector reachability problem
for commutative matrices [1]. Since the matrices commute, it is the Parikh vector of letters
of the input word which is important.

We use a reduction of Hilbert’s tenth problem and various new encoding techniques to
avoid the use of Turakainen’s method for converting from weighted to probabilistic automata,
so as to retain polynomial ambiguity. We then move on to the freeness/injectivity problem
to show the following two results.

I Theorem 2. The injectivity problem for linearly ambiguous four state probabilistic finite
automata is undecidable.

I Theorem 3. The injectivity problem for linearly ambiguous three-state probabilistic finite
automata over letter-monotonic languages is NP-hard.

These results are proven via an encoding of the mixed modification PCP and our new
encoding technique and the injectivity problem for three state PFA over letter monotonic
languages is NP-hard via an encoding of the variant of the subset sum problem and a novel
encoding technique. We conclude with some open problems.

2 Preliminaries

2.1 Linear Algebra
Given A = (aij) ∈ Fm×m and B ∈ Fn×n, we define the direct sum A ⊕ B and Kronecker
product A⊗B of A and B by:

A⊕B =
[
A 0m,n

0n,m B

]
, A⊗B =


a11B a12B · · · a1mB

a21B a22B · · · a2mB
...

...
...

am1B am2B · · · ammB

 ,

1 Although it is undecidable in general (i.e. not over a letter monotonic language) with an alphabet with
at least five letters [25].

2 This is due to an essential step of the Turakainen procedure that adds a positive constant offset to each
element of every generator matrix, thus making all matrices strictly positive [30].

ICALP 2019
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where 0i,j denotes the zero matrix of dimension i × j. Note that neither ⊕ nor ⊗ are
commutative in general. Given a finite set of matrices G = {G1, G2, . . . , Gm} ⊆ Fn×n, 〈G〉 is
the semigroup generated by G. We will use the following notations:

m⊕
j=1

Gj = G1 ⊕G2 ⊕ · · · ⊕Gm,
m⊗
j=1

Gj = G1 ⊗G2 ⊗ · · · ⊗Gm

Given a single matrix G ∈ Fn×n, we inductively define G⊗k = G⊗G⊗(k−1) ∈ Fnk×nk for
k > 0 with G⊗0 = 1 as the k-fold Kronecker power of G. Similarly, G⊕k = G⊕G⊕(k−1) ∈
Fnk×nk for k > 0 with G⊕0 being a zero dimensional matrix. The rationalle for the base
cases is that G⊗G⊗0 = 1⊗G = G and that G⊕G⊕0 = G as expected.

The following properties of ⊕ and ⊗ are well known, see [20] for proofs.

I Lemma 4. Let A,B,C,D ∈ Fn×n. We note that:
Associativity - (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C) and (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C), thus
A⊗B ⊗ C and A⊕B ⊕ C are unambiguous.
Mixed product properties: (A⊗B)(C⊗D) = (AC⊗BD) and (A⊕B)(C⊕D) = (AC⊕BD).
If A and B are stochastic matrices, then so are A⊕B and A⊗B.

It is trivial to prove that if A,B ∈ Fn×n are both upper-triangular then so are A ⊕ B
and A⊗B. This follows directly from the definition of the Kronecker sum and product.

2.2 Probabilistic Finite Automata (PFA)
Probabilistic Finite Automata (PFA) with n states over an alphabet Σ are defined as
P = (x, {Ma|a ∈ Σ},y) where x ∈ Rn is the initial probability distribution; y ∈ {0, 1}n
is the final state vector and each Ma ∈ Rn×n is a (row) stochastic matrix. For a word
w = w1w2 · · ·wk ∈ Σ∗, we define the acceptance probability fP : Σ∗ → R of P as:

fP(w) = xTMw1Mw2 · · ·Mwk
y,

which denotes the acceptance probability of w.
For any λ ∈ [0, 1] and PFA A over alphabet Σ, we define a cut-point language to be:

L≥λ(A) = {w ∈ Σ∗|fA(w) ≥ λ}, and a strict cut-point language L≥λ(A) by replacing ≥ with
>. The (strict) emptiness problem for a cut-point language is to determine if L≥λ(A) = ∅
(resp. L>λ(A) = ∅).

Let Σ` = {x1, x2, . . . , x`} be an `-letter alphabet for some ` > 0. A language L ⊆ Σ∗`
is called a bounded language if and only if there exist words w1, w2, . . . , wm ∈ Σ+

` such
that L ⊆ w∗1w

∗
2 · · ·w∗m. A language L is called letter-monotonic if there exists letters

u1, u2, . . . , um ∈ Σ` such that L ⊆ u∗1u∗2 · · ·u∗m. One thus sees that letter monotonic languages
are more restricted than bounded languages. We will be interested in PFA which are defined
over a bounded language or a letter monotonic language L, whereby all input words necessarily
come from L. In this case a cut-point language for a PFA P over bounded/letter monotonic
language L and a probability λ ∈ [0, 1] is defined as L≥λ(A) = {w ∈ L|fA(w) ≥ λ}; similarly
for nonstrict cut point languages. We may then ask similar emptiness questions for such
languages, as before.

We also study the freeness/injectivity problem for PFA. Given a PFA P over alphabet Σ
determine whether the acceptance function fP(w) is injective (i.e. do there exist two distinct
words with the same acceptance probability). Such problems can readily be studied when
the input words are necessarily derived from a bounded or letter-monotonic language.
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2.3 PFA Ambiguity
The degree of ambiguity of a finite automaton is a structural parameter, roughly indicating
the number of accepting runs for a given input word [31]. We here define only those notions
required for our later proofs, see [31] for full details of these notions and a thorough discussion.

Let w ∈ Σ∗ be an input word of an NFA N = (Q,Σ, δ, QI , QF ). For each (p, w, q) ∈
Q× Σ∗ ×Q, let daN (p, w, q) be defined as the number of all paths for w in N leading from
state p to state q. The degree of ambiguity of w in N , denoted daN (w), is defined as the
number of all accepting paths for w. The degree of ambiguity of N , denoted da(N ) is the
supremum of the set {daN (w)|w ∈ Σ∗}. N is called infinitely ambiguous if da(N ) = ∞,
finitely ambiguous if da(N ) < ∞, and unambiguous if da(N ) ≤ 1. The degree of growth
of the ambiguity of N , denoted deg(M) is defined as the minimum degree of a univariate
polynomial h with positive integral coefficients such that for all w ∈ Σ∗, daN (w) ≤ h(|w|) if
such a polynomial exists, or infinity otherwise.

The above notions relate to NFA. We may derive an analogous notation of ambiguity
for PFA by considering an embedding of a PFA P to an NFA N with the property that for
each letter a ∈ Σ, if the probability of transitioning from a state i to state j is nonzero under
P, then there is an edge from state i to j under N for letter a. The degree of (growth of)
ambiguity of P is then defined as the degree of (growth of) ambiguity of N .

We may use the following notions to determine the degree of ambiguity of a given NFA
(and thus a PFA) A as is shown in the theorem which follows. A state q ∈ Q is called useful
if there exists an accepting path which visits q.
EDA. There is a useful state q ∈ Q such that, for some word v ∈ Σ∗, daA(q, v, q) ≥ 2.
IDAd. There are useful states r1, s1, . . . , rd, sd ∈ Q and words v1, u2, v2, . . . , ud, vd ∈ Σ∗ such

that for all 1 ≤ λ ≤ d, rλ and sλ are distinct and (rλ, vλ, rλ), (rλ, vλ, sλ), (sλ, vλ, sλ) ∈ δ
and for all 2 ≤ λ ≤ d, (sλ−1, uλ, rλ) ∈ δ.

I Theorem 5 ([21, 28, 31]). An NFA (or PFA) A having the EDA property is equivalent to
it being exponentially ambiguous. For any d ∈ N, an NFA (or PFA) A having property IDAd
is equivalent to deg(A) ≥ d.

Clearly, if N agrees with IDAd for some d > 0, then it also agrees with IDA1, . . . , IDAd−1.
One must be careful with these notions of ambiguity when considering NFA/PFA A, where
inputs are necessarily from a bounded language L. In such cases, the above criteria do not
suffice to determine the ambiguity of A, since the number of paths must be determined not
over Σ∗, but over all paths from L. Of course, the degree of ambiguity of A cannot increase
by restricting to a bounded input language, but it may decrease.

As an example, if an NFA has property EDA, then there exists three words w1, w2 and w3
such that w1w2w3 is an accepting word and daA(q, w2, q) ≥ 2, thus w1w2w3 has at least two
distinct accepting runs. However, this implies that daA(w1w

k
2w3) ≥ 2k and thus w1w

k
2w3

has at least 2k accepting runs. Now, if we are given some bounded language L such that
w1w2w3 ∈ L and daA(q, w2, q) ≥ 2 then the same implication is not possible, unless w2 ∈ Σ
is a single letter, otherwise there is no guarantee that w1w

k
2w3 ∈ L. Nevertheless, in the

results of this paper we will use the standard definitions of ambiguity since the distinction is
not relevant in our results as will become clear.

We note the following trivial lemma, which will be useful later.

I Lemma 6. Probabilistic finite automata defined over upper-triangular matrices are polyno-
mially ambiguous.

ICALP 2019
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Proof. This lemma is immediate from Theorem 5 and property (EDA), since a PFA defined
over upper-triangular matrices clearly does not have property (EDA). This is since a transition
matrix (for a letter “a”) which is upper-triangular only defines transitions of the form δ(i, a) =
j where i ≤ j and thus the states entered for any run are monotonically nondecreasing. J

2.4 Reducible Undecidable Problems

We will require the following undecidable problems for proving later results. The first is a
variant of the famous Post’s Correspondence Problem (PCP).

I Problem 7 (Mixed Modification PCP (MMPCP)). Given a binary alphabet Σ2, a finite set
of letters Σ = {s1, s2, . . . , s|Σ|}, and a pair of homomorphisms h, g : Σ∗ → Σ∗2, the MMPCP
asks to decide whether there exists a word w = x1 . . . xk ∈ Σ+, xi ∈ Σ such that

h1(x1)h2(x2) . . . hk(xk) = g1(x1)g2(x2) . . . gk(xk),

where hi, gi ∈ {h, g}, and there exists at least one j such that hj 6= gj .

I Theorem 8 ([12]). The Mixed Modification PCP is undecidable for |Σ| ≥ 9.

A second useful undecidable problem is Hilbert’s tenth problem: Let P (n1, n2, . . . , nk)
be an integer polynomial with k variables - determine if there exists a procedure to find if
there exist x1, x2, . . . , xk ∈ Z such that: P (x1, x2, . . . , xk) = 0. It is well known that this
may be reduced to a problem in formal power series. It was shown in [29, p.73] that the
above problem can be reduced to that of determining for a Z-rational formal power series
S ∈ Z〈〈A〉〉, whether there exists any word w ∈ A∗ such that (S,w) = 0. The undecidability
of this problem was shown in 1970 by Y. Matiyasevich (building upon work of Davis, Putman,
Robinson and others). For more details, see the excellent reference [23]. We may, without
loss of generality, restrict the variables to be natural numbers [23, p.6].

3 Cut-point languages for polynomially ambiguous PFA over letter
monotonic languages

It was proven in [4] that the emptiness problem is undecidable for probabilistic finite
automata even when input words are given over a letter-monotonic language, i.e., given
a letter-monotonic language L, it is undecidable to determine if {w ∈ L|fP(w)∆λ} is
empty for ∆ ∈ {≤, <,>,≥}. The constructed PFA P of [4] has exponential ambiguity,
due to the well-known Turakainen conversion of arbitrary integer matrices into stochastic
matrices. Here, we show that the emptiness problem for PFA over letter-monotonic languages
can also be achieved even when all matrices have polynomial ambiguity by a modified
Turakainen procedure.

The following property of the Kronecker product will also be required for the proof of
Theorem 1.

I Lemma 9. Let A1, . . . , A` ∈ Fn×n. Then for any index sequence (i1, j1), . . . , (i`, j`) with
each (is, js) ∈ [1, n]× [1, n] then there exists 1 ≤ i, j ≤ n` such that

∏̀
m=1

(Am)im,jm
=
(⊗̀
m=1

Am

)
i,j
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Proof. The proof proceeds by induction. For the base case when ` = 1, we just set
(i, j) = (i1, j1) and we are done. Assume then that the result holds for some `− 1, then for
sequence (i1, j1), (i2, j2), . . . , (i`−1, j`−1) there exists 1 ≤ i′, j′ ≤ n`−1 such that:

`−1∏
m=1

(Am)im,jm =
(
`−1⊗
m=1

Am

)
i′,j′

By the definition of Kronecker product,((
`−1⊗
m=1

Am

)
⊗A`

)
ni′+i`,nj′+j`

=
`−1∏
m=1

(Am)im,jm
× (A`)i`,j`

as required. J

Note that we can of course work out the particular value of i and j, but in general the
formula for i, j does not have a nice form when ` > 2, and anyway will not be necessary for
us, so we settle for an existential proof of such i and j.

3.1 Proof of Theorem 1
Proof. We will construct a polynomially ambiguous probabilistic finite automaton P, a
cut-point λ ∈ [0, 1] and a letter monotonic language L.

We begin by encoding an instance of Hilbert’s tenth problem into a set of integer matrices.
Let P (x1, x2, . . . , xt) = 0 be a Diophantine equation. Homogenenization of polynomials is
a well known technique, as is used for example in the study of Gröbner bases [11], which
allows us to convert such a Diophantine equation to Ph(x0, x1, x2, . . . , xt) = 0 with a new
dummy variable x0 such that Ph is a homogeneous polynomial (each term having the same
degree d) and for which Ph(x0, x1, . . . , xt) = P (x1, x2, . . . , xt) when x0 = 1. We thus assume
a homogeneous Diophantine equation Ph(x0, x1, . . . , xt) = 0 with implied constraint x0 = 1
which will be dealt with later. Furthermore, we assume that Ph gives nonnegative values,
which may be assumed by redefining Ph = (Ph)2, which clearly does not affect whether a
zero exists for such a polynomial.

Notice that given A =
(

1 1
0 1

)
, then Ak =

(
1 k

0 1

)
. We will generalise this property to a

set of t+ 1 matrices A0, A1, . . . , At ∈ Z(t+3)×(t+3) so that given any tuple (x0, x1, x2, . . . , xt),
then xi appears as an element on the superdiagonal of Ax0

0 Ax1
1 · · ·A

xt
t for each 0 ≤ i ≤ t. We

will also have the property that each Ai has the same row sum of 2 for every row, which will
be useful when we later convert to stochastic matrices.

We define each matrix Ai for 0 ≤ i ≤ t+ 1 in the following way:

Ai =



1 δ0,i 0 · · · 0 0 1− δ0,i
0 1 δ1,i · · · 0 0 1− δ1,i
0 0 1 · · · 0 0 1− δ2,i
...

...
...

. . .
...

...
...

0 0 0 · · · 1 δt,i 1− δt,i
0 0 0 · · · 0 1 1
0 0 0 · · · 0 0 2


∈ N(t+3)×(t+3), (1)

where 0 ≤ j 6= i ≤ t and δ`,i ∈ {0, 1} is the Kronecker delta (thus δi,i = 1 and δ`,i = 0 for
` 6= i). We also denote J = At+1, noting that this is the matrix (1) when all δ`,i have the

ICALP 2019
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value 0. Notice then that every row sum of Ai and J is 2. This structure is retained under
matrix powers and it is easy to see that:

Aki =



1 kδ0,i 0 · · · 0 0 2k − kδ0,i − 1
0 1 kδ1,i · · · 0 0 2k − kδ1,i − 1
0 0 1 · · · 0 0 2k − kδ2,i − 1
...

...
...

. . .
...

...
...

0 0 0 · · · 1 kδt,i 2k − kδt,i − 1
0 0 0 · · · 0 1 2k − 1
0 0 0 · · · 0 0 2k


∈ N(t+3)×(t+3) (2)

All row sums of Aki are 2k and exactly one element of the superdiagonal is equal to k,
with all other elements on the superdiagonal (excluding that on row t + 2) zero. Taking
powers of Ai will allow us to choose any positive value of variable xi. Note that Jk has the
same form as the matrix of (2) with all δ`,i = 0 and acts as a kind of identity matrix, (in its
upperleft block) while retaining the 2k row sum. Indeed, one sees that for all 0 ≤ i, j ≤ t+ 1,
then AiAj = AjAi, i.e. these matrices commute (as does J since J = At+1). We now show
how to compute terms of Ph.

We may write Ph(x0, x1, . . . , xt) =
∑r
j=1 Tj(x0, x1, . . . , xt), where Tj denotes the j’th

term of Ph, with Ph having r terms. Since Ph is a homogeneous polynomial, each term has
the same degree d. We may thus write each term as:

Tj(x0, x1, . . . , xt) = cjRj(x0, x1, . . . , xt), (3)

with cj ∈ Z and Rj(x0, x1, . . . , xt) =
∏t
`=0 x

rj,`

` with rj,` ≥ 0 and
∑t
`=0 rj,` = d. For

convenience, we define a d-dimensional vector sj =
⊗t

`=0 `
⊗rj,` ∈ [0, t]d. For example, if

t = 4, d = 8 and Tj(x0, x1, x2, x3, x4) = 6x2
1x

5
3x4, then Rj(x0, x1, x2, x3, x4) = x0

0x
2
1x

0
2x

5
3x

1
4

and thus sj = (1, 1, 3, 3, 3, 3, 3, 4)T ∈ [0, 4]8. By sj [i] we denote the i’th element of vector sj .
We now define t+ 1 matrices corresponding to term Tj :

Xj,i =
i−1⊗
`=0

J⊗rj,` ⊗A⊗rj,i

i ⊗
d⊗

`=i+1
J⊗rj,` ,

where 0 ≤ i ≤ t. The dimension of such matrices is (t+ 3)d × (t+ 3)d since each submatrix
has dimension (t+ 3)× (t+ 3) and we take the d-fold Kronecker product. Similarly, we see
that the row sum of each Xj,i is 2d since the row sum of each Ai and J is 2 and we take a
d-fold Kronecker product. Clearly then, by the mixed product property (see Lemma 4):

Xk
j,i =

i−1⊗
`=0

(Jk)⊗rj,` ⊗ (Aki )⊗rj,i ⊗
d⊗

`=i+1
(Jk)⊗rj,` ,

for any k ≥ 0. In the example when rj,0 = 0, rj,1 = 2, rj,2 = 0, rj,3 = 5 and rj,4 = 1,
then Xj,3 = J⊗0 ⊗ J⊗2 ⊗ J⊗0 ⊗ A⊗5

i ⊗ J⊗1 = J⊗2 ⊗ A⊗5
i ⊗ J . We then see that Xk

j,3 =
(Jk)⊗2 ⊗ (Ak3)⊗5 ⊗ Jk.

Now, we see that:

Xx0
j,0X

x1
j,1 · · ·X

xt
j,t =

t∏
i=0

(
i−1⊗
`=0

(Jxi)⊗rj,` ⊗ (Axi
i )⊗rj,i ⊗

d⊗
`=i+1

(Jxi)⊗rj,`

)
(4)

=
d⊗
`=0

(
Dx0
`,0D

x1
`,1 · · ·D

xt

`,t

)
, (5)
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where D`,i ∈ {J,Ai} for 0 ≤ i ≤ t. The derivation of Eqn (5) from Eqn (4) follows
by the mixed product property of the Kronecker product (Lemma 4). For each product
Dx0
`,0D

x1
`,1 · · ·D

xt

`,t, we see that D`,sj [`] = Asj [`] and D`,j = J for all 0 ≤ j ≤ d with j 6= sj [`].
As discussed earlier, matrices Ai and J commute, for any 0 ≤ i ≤ t and thus we may
rewrite (5) as:

Xx0
j,0X

x1
j,1 · · ·X

xt
j,t =

d⊗
`=0

(
A
xsj [`]

sj [`] ⊗ J
xsj [`]

)
, where xsj [`] =

∑
0≤q≤d
q 6=sj [l]

xq (6)

By Lemma 9, we see that some element of Xx0
j,0X

x1
j,1 · · ·X

kt
j,t is thus equal to Rj(x0, x1, . . . , xt)

as required, since there is an element on the superdiagonal of A
xsj [`]

sj [`] equal to xsj [`] for each
0 ≤ ` ≤ d. Let us assume that Rj(x0, x1, . . . , xt) appears at row i1 and column i2. Now,
we may define a vector u′j = cjei1 and v′j = ei2 where cj is the coefficient of term Tj as in
Eqn (3) and ei1 , ei2 ∈ Z(t+3)d are basis vectors. We may now see that

(u′j)TX
x0
j,0X

x1
j,1 · · ·X

xt
j,tv
′
j = cjRj(x0, x1, . . . , xt) = Tj(x0, x1, . . . , xt) (7)

In order to derive the sum of the r such terms
∑r
j=1 Tj(x0, x1, . . . , xt), we will utilise the

direct sum. For 0 ≤ ` ≤ d, we define Y ′` by:

Y ′` =
r⊕
j=1

Xj,` ∈ Nr(t+3)d×r(t+3)d

We shall now modify each Y ′` so that they are row stochastic. We recall that the row sum of
each A` and J is 2. Therefore, the row sum of each Xj,` is 2d, since Xj,` is a d-fold Kronecker
product of Ai and J matrices. Then the row sum of each Y ′` is also 2d since direct sums do
not modify the row sum. We thus see that Y` = 1

2dY
′
` is row stochastic.

We now consider the coefficients of each term. We previously multiplied each initial
vector uj by cj and we may consider taking the Kronecker sum of each uj before normalising
the resulting vector (normalising according to L1 norm). We face an issue however, since
some coefficients cj may be negative and thus the resulting vector is not stochastic (it must
be nonnegative). Fortunately we may modify a technique utilised by Bertoni [5] to solve this
issue. Given a PFA for which uTXv = λ ∈ [0, 1], then by defining v′ = 1− v where 1 is the
all-one vector of appropriate dimension (i.e. swapping between final and non final states),
then uTXv = 1− λ ∈ [0, 1].

Now, since each Xj,` has a row sum of 2d and u′j is of unit length (L1 norm), then Eqn. (7)
can be adapted to the following:

(u′j)TX
x0
j,0X

x1
j,1 · · ·X

xt
j,t(1− v

′
j) = 2d(x0+x1+...+xt) − cjRj(x0, x1, . . . , xt)

= 2d(x0+x1+...+xt) − Tj(x0, x1, . . . , xt) (8)

Let us assume, without loss of generality, that we have arranged the terms of Ph such
that those terms with a positive coefficient (positive terms) appear first, followed by those
with a negative coefficient (negative terms). Since we have r terms in Ph, there exists
some 1 ≤ r′ < r such that we have r′ postive and r − r′ negative terms. Let us define
uj = |cj |ei1 , which is similar to u′j defined previously, but using the absolute value of the
corresponding coefficient.

We define v =
⊕r′

j=1 vj ⊕
⊕r

j=r′+1(1− vj) ∈ {0, 1}r(t+3)d as the final vector, so that we
take the Kronecker sum of all final vectors, but we swap final and non-final states for the
negative terms.

ICALP 2019
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We now define the initial vector u, which must be a probability distribution. Let g =∑r
j=1 |cj | be the sum of absolute values of coefficients and define u = 1

g

⊕r
j=1 uj ∈ [0, 1]r(t+3)d .

Note that u is stochastic (a probability distribution).
We now see that:

uTY0Y
a1
1 · · ·Y

at
t v (9)

=

∑r′

j=1 uj

(⊗d
`=0A

xsj [`]

sj [`] ⊗ J
xsj [`]

)
vj +

∑r
j=r′+1 uj

(⊗d
`=0A

xsj [`]

sj [`] ⊗ J
xsj [`]

)
(1− vj)

g2d(1+a1+···+at)

Here we used the definition of matrices Yi and Eqn. (6) to rewrite the expressions for
Xj,0 · · ·Xj,t. Notice that the power of Y0 is set at 1, since that constraint is required by
the conversion from a standard Diophantine polynomial to a homogeneous one as explained
previously. Now, using Eqn. (7) and Eqn. (8), we can rewrite Eqn. (9) as:∑r′

j=1 Tj(x0, . . . , xt) +
∑r
j=r′+1

(
2d(1+a1+...+at) − |Tj(x0, . . . , xt)|

)
g2d(1+a1+···+at) (10)

= (r − r′ + 1)
g

+
∑r′

j=1 Tj(x0, . . . , xt) +
∑r
j=r′ Tj(x0, . . . , xt)

g2d(1+a1+···+at) (11)

= (r − r′ + 1)
g

+ Ph(x0, x1, . . . , xt)
g2d(1+a1+···+at) (12)

We therefore define P = (u, {Ya|a ∈ Σt}, v) and Σt = {0, 1, . . . , t} as our PFA, with letter
monotonic language L = 01∗2∗ · · · t∗ and λ = r−r′+1

g ∈ [0, 1]∩Q as the cut-point. There exists
some word w = 01x12x2 · · · txt ∈ L such that fP(w) ≤ λ if and only if Ph(1, x1, x2, . . . , xt) = 0.
Therefore the strict emptiness problem for P is undecidable on letter monotonic languages.
Since P is upper-triangular, then it is polynomially ambiguous. We note the surprising fact
that all generator matrices are in fact commutative (each Xj,i is commutative and direct
sums do not affect commutativity), which leads to the undecidability of non-strict cut-points
for polynomially ambiguous PFA defined over commutative matrices. In this case, the order
of the input word in irrelevant, only the Parikh vector of alphabet letters is important. In
fact we may redefine u = uY0 and L = 1∗2∗ · · · t∗ to remove Y0 and all constraints on L. J

4 Injectivity problems for polynomially ambiguous PFA

We now study the injectivity of acceptance probabilities of polynomially ambiguous PFA. The
next result begins with a proof technique from [4], where the undecidability of the injectivity
problem (called the freeness problem in [4], although we here rename it injectivity) was shown
for exponentially ambiguous PFA over five states. We show that the injectivity problem
remains undecidable even when the PFA is polynomially ambiguous and over four states by
using our new encoding technique (avoiding the Turakainen procedure which increases the
matrix dimensions by two and generates an exponentially ambiguous PFA).

4.1 Proof of Theorem 2
Proof. Let Σ = {x1, x2, . . . , xn−2} and ∆ = {xn−1, xn} be distinct alphabets and h, g :
Σ∗ → ∆∗ be an instance of the mixed modification PCP. The naming convention will become
apparent below. We define two injective mappings α, β : (Σ ∪∆)∗ → Q by:

α(xi1xi2 · · ·xim) = Σmj=1ij(n+ 1)j−1,

β(xi1xi2 · · ·xim) = Σmj=1ij(n+ 1)−j ,
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and α(ε) = β(ε) = 0. Thus α represents xi1xi2 · · ·xim as a reverse (n + 1)-adic number
and β represents xi1xi2 · · ·xim as a fractional number (0.xi1xi2 · · ·xim)(n+1) (e.g. if n = 9,
then x1x2x3 is represented as α(x1x2x3) = 32110 and β(x1x2x3) = 0.12310, where subscript
10 denotes base 10). Note that ∀w ∈ (Σ ∪ ∆)∗, α(w) ∈ N and β(w) ∈ [0, 1) ∩ Q. It is
not difficult to see that ∀w1, w2 ∈ (Σ ∪ ∆)∗, (n + 1)|w1|α(w2) + α(w1) = α(w1w2) and
(n+ 1)−|w1|β(w2) + β(w1) = β(w1w2).

Define γ′′ : (Σ ∪∆)∗ × (Σ ∪∆)∗ → Q3×3 by

γ′′(u, v) =

(n+ 1)|u| 0 α(u)
0 (n+ 1)−|v| β(v)
0 0 1

 .

It is easy to verify that γ′′(u1, v1)γ′′(u2, v2) = γ′′(u1u2, v1v2), i.e., γ′′ is a homomorphism.
Let G′′ = {γ′′(xi, g(xi)), γ′′(xi, h(xi))|xi ∈ Σ, 1 ≤ i ≤ n− 2}, S ′′ = 〈G′′〉, ρ′′ = (1, 1, 0)T

and τ ′′ = (0, 0, 1)T . Assume that there exist M1 = Gi1Gi2 · · ·Git ∈ 〈G′′〉 and M2 =
Gj1Gj2 · · ·Gjt′ ∈ 〈G′′〉 such that t 6= t′ or else at least one Gip 6= Gjp where 1 ≤ p ≤ t and
λ = ρ′′TM1τ

′′ = ρ′′TM2τ
′′. We see that:

λ = ρ′′TM1τ
′′ = α(xi1xi2 · · ·xit) + β(f1(xi1)f2(xi2) · · · ft(xit)),

λ = ρ′′TM2τ
′′ = α(xj1xj2 · · ·xjt′ ) + β(f ′1(xj1)f ′2(xj2) · · · f ′t′(xjt′ )),

where each fi, f
′
i ∈ {g, h}. Since α(w) ∈ N and β(w) ∈ (0, 1) ∩ Q, ∀w ∈ (Σ ∪ ∆)∗,

injectivity of α and β implies that if ρ′′TM1τ
′′ = ρ′′TM2τ

′′, then t = t′ and ik = jk for
1 ≤ k ≤ t. Furthermore, if ρTM1τ = ρTM2τ , we have that β(f1(xi1)f2(xi2) · · · ft(xit)) =
β(f ′1(xi1)f ′2(xi2) · · · f ′t(xit)) and since at least one fp 6= f ′p for 1 ≤ p ≤ t by our above
assumption, then this corresponds to a correct solution to the MMPCP instance (h, g). On
the other hand, if there does not exist a solution to (h, g), then β(f1(xi1)f2(xi2) · · · ft(xit)) 6=
β(f ′1(xi1)f ′2(xi2) · · · f ′t(xit)), and injectivity of β implies that ρ′′TM1τ

′′ 6= ρ′′TM2τ
′′.

We now use our new technique to encode such matrices and vectors to a linearly ambiguous
four state PFA. We first define a mapping γ′ : (Σ ∪∆)∗ × (Σ ∪∆)∗ → N3×3 to make all
matrices be nonnegative integral:

γ′(u, v) = (n+ 1)|v|γ′′(u, v) =

(n+ 1)|u|+|v| 0 (n+ 1)|v|α(u)
0 1 (n+ 1)|v|β(v)
0 0 (n+ 1)|v|

 ∈ N3×3

We next define the following morphism γ : (Σ ∪∆)∗ × (Σ ∪∆)∗ → Q4×4 to make all such
matrices be row stochastic:

γ(u, v) = (n+ 1)−k


(n+ 1)|u|+|v| 0 (n+ 1)|v|α(u) δ1

0 1 (n+ 1)|v|β(v) δ2
0 0 (n+ 1)|v| δ3
0 0 0 δ4

 ,

where δj ∈ N are chosen so that the row sum of each row of γ(u, v) is (n+ 1)k for some k.
Any sufficiently large k can be used so long as each row has the same sum (n + 1)k and
thus γ(u, v) becomes row stochastic. We use the same k value for all matrices of G which we
define as G = {γ(xi, g(xi)), γ(xi, h(xi))|xi ∈ Σ, 1 ≤ i ≤ n− 2}, so that S = 〈G〉, and finally
ρ = (1, 1, 0, 0)T and τ = (0, 0, 1, 0)T are the initial and final state vectors respectively.
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Assume that there exist M1 = Gi1 · · ·Git ∈ 〈G〉 and M2 = Gj1 · · ·Gjt′ ∈ 〈G〉 such that
t 6= t′ or else at least one Gip 6= Gjp

for 1 ≤ p ≤ t and λ = ρTM1τ = ρTM2τ . We see that:

λ = ρTM1τ = (n+ 1)−kt (α(xi1xi2 · · ·xit) + β(f1(xi1)f2(xi2) · · · ft(xit))) ,
λ = ρTM2τ = (n+ 1)−kt′

(
α(xj1xj2 · · ·xjt′ ) + β(f ′1(xj1)f ′2(xj2) · · · f ′t′(xjt′ ))

)
,

where each fi, f ′i ∈ {g, h}. If t = t′, then the same argument as previously shows that ik = jk
for 1 ≤ k ≤ t. If t 6= t′, assume without loss of generality that t′ < t. In this case we see that:

(n+1)−kt
′′

(α(xi1 · · ·xit) + β(f1(xi1) · · · ft(xit))) = α(xj1 · · ·xjt′ )+β(f ′1(xj1) · · · f ′t′(xjt′ )),

where t′′ = t− t′. This is a contradiction however since the number of nonzero digits (where
a digit is understood base (n+ 1) here) in the left hand side of this expression is exactly 2t,
and the number of digits in the right expression is 2t′ < 2t. Note that the multiplication by
(n+ 1)−kt′′ does not alter the number of nonzero digits, it is only a right shift of all digits,
kt′′ times. Thus, since the left and right sides have a different number of nonzero digits they
cannot be equal and thus t = t′ as required. J

4.2 Proof of Theorem 3
Proof. We use a reduction from the equal subset sum problem, defined thus: given a set
of positive integers S = {x1, x2, . . . , xk} ⊆ N, do there exist two disjoint nonempty subsets
S1, S2 ⊆ S such that

∑
`∈S1

` =
∑
m∈S2

m? This problem is known to be NP-complete [32].
Note that although there is a requirement that the sets S1 and S2 be disjoint, this is not
crucial so long as S1 6= S2 (since if some element xj is in both S1, S2, then the equality also
holds when xj is removed from both sets). We may therefore require that S1 6= S2, with
both nonempty such that the sum of elements of each set is identical. We define the set of
matrices M = {Ai, Bi|1 ≤ i ≤ k} ⊆ Q3×3 in the following way:

Ai = 1
xi + 1

1 xi 0
0 1 xi
0 0 xi + 1

 , Bi = 1
xi + 1

1 0 xi
0 1 xi
0 0 xi + 1


Note that Ai and Bi are thus row stochastic. Let u = (1, 0, 0)T be the initial probability
distribution, v = (0, 1, 0)T be the final state vector and let P = (u, {Ai, Bi}, v) be our PFA.
Define letter monotonic language L = (a1|b1)(a2|b2) · · · (ak|bk) ⊆ a∗1b∗1a∗2b∗2 · · · a∗kb∗k and define
a morphism ϕ : {ai, bi|1 ≤ i ≤ k}∗ → {Ai, Bi|1 ≤ i ≤ k}∗ in the natural way (e.g. the
morphism induced by ϕ(ai) = Ai and ϕ(bi) = Bi). Now, for a word w = w1w2 · · ·wk ∈ L,
note that wj ∈ {aj , bj} for 1 ≤ j ≤ k. Define that v(ai) = xi and v(bi) = 0. In this case, we
see that (due to the structure of Ai and Bi)

uTϕ(w1w2 · · ·wk)v = 1∑k
j=1(xj + 1)

k∑
`=1

v(w`)

Note of course that the factor 1∑k

j=1
(xj+1)

is the same for any w ∈ L.

Assume then that there exists two words α, β ∈ L with α 6= β such that uTϕ(α)v =
uTϕ(β)v (i.e. assume that P is not free). Then

∑k
`=1 v(α`) =

∑k
i∈S1

xi =
∑k
i∈S2

xi =∑k
`=1 v(β`), where S1 = {xi; |α|ai

> 0} and S2 = {xi; |β|ai
> 0}. This is true if and only if

the instance S of the equal subset sum problem has a solution as required (note that only
the empty set has a sum of zero which has unique representation b1 · · · bk). Since Ai and Bi
are upper-triangular, with initial state 1 and final state 2, then P is linearly ambiguous. J
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5 Conclusion

There are a variety of open problems remaining. For example, does Theorem 1 still hold for
quadratic ambiguity, when taken alongside the other constraints (letter monotonic language
and commutative matrices). Another direction is to improve the complexity lower bound of
Theorem 3 to show it is either PSPACE-hard, EXPSPACE-hard or undecidable, under the
same constraints as in the theorem statement.
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Abstract
String-to-string mso interpretations are like Courcelle’s mso transductions, except that a single
output position can be represented using a tuple of input positions instead of just a single input
position. In particular, the output length is polynomial in the input length, as opposed to mso
transductions, which have output of linear length. We show that string-to-string mso interpretations
are exactly the polyregular functions. The latter class has various characterisations, one of which is
that it consists of the string-to-string functions recognised by pebble transducers.

Our main result implies the surprising fact that string-to-string mso interpretations are closed
under composition.
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1 Introduction

A string-to-string function is called regular if it is computed by a deterministic two-way
automaton with output. There are many equivalent models for the same class of functions:
string-to-string mso transductions [11], streaming string transducers [1], and various kinds
of combinator-based formalisms [2, 5, 9].

A deterministic two-way automaton can visit each input position at most once in each
state, otherwise it would loop forever. This means that the length of the run – and also the
size of the output word – is linear in the input string. One way to go beyond linear-sized
outputs was proposed by Milo, Suciu and Vianu [17], following earlier work by Globerman
and Harel [12]: equip the automaton with k pebbles which can be used to mark positions in
the input word. To avoid making the model Turing-powerful, the pebbles are required to
observe a so-called stack discipline: they are organised in a stack, and only the top-most
pebble can be moved. In [3], it is shown that pebble transducers are equivalent to multiple
other models: a higher-order functional programming language [3, Section 4], an imperative
programming language with for-loops [3, Section 3], combinators [3, end of Section 4], and
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compositions of certain simple atomic functions [3, Section 1]. Because of the multitude of
models and their polynomial-size outputs, the class of functions recognised by these models
is called polyregular functions.

The list of models for polyregular functions described in [3] does not include any logical
model. In this paper, we fix that omission. As mentioned above, for the regular functions,
which have linear-size output, the logical model consists in string-to-string mso transductions.
In an mso transduction, each position of the output string is interpreted as a single position
of the input string. A natural idea to capture polyregular functions is to consider what we
call string-to-string mso interpretations, where a position of the output string is represented
by a k-tuple of positions in the input string. At first glance, this idea looks suspicious:
if string-to-string mso interpretations were equivalent to polyregular functions, then they
would be closed under composition, because the class of polyregular functions is. However,
composing two string-to-string mso interpretations

Σ∗ f // Γ∗ g // ∆∗

raises the following issue. Suppose that positions of the intermediate word in Γ∗ are
represented by k-tuples of positions in the input word from Σ∗. If an mso formula defining g
quantifies over a set of positions in the intermediate word to define a property of the output
word in ∆∗, then this corresponds to quantifying over a set of k-tuples of positions in the
input word. If we assume dimension k = 1, then the problem dissolves, and this is why mso
transductions have dimension k = 1, whereas dimension k > 1 is never used in the context
of mso (as opposed to first-order logic, where the standard notion of transformation, i.e.
first-order interpretation, uses higher dimensions).

As our main result, we show that the problems discussed above only invalidate the natural
construction for composing mso interpretations, which uses substitutions of formulas. Still,
and surprisingly, for structures that represent strings there exists a (less natural) construction.
This follows from our main result, which states that polyregular functions are exactly the
string-to-string mso interpretations. Indeed, corollaries of the main result are that (a)
string-to-string mso interpretations are closed under composition; and (b) for every regular
string language, its inverse image under a string-to-string mso interpretation is also regular.
This is because (a) and (b) are true for polyregular functions. Proving (a) and (b) directly
for string-to-string mso interpretations seems hard; in fact an understandable (but wrong)
first reaction to the claims (a) and (b) would be that they are false, for the reasons discussed
in the previous paragraph.

It is easy to see that every polyregular function is a special case of a string-to-string
mso interpretation. One argument is that a k-pebble automaton can be simulated using a
string-to-string mso interpretation, by representing configurations of the pebble automaton
using k-tuples of positions in the input word. The difficulty lies in proving the opposite
direction and it comes from the stack discipline required in a pebble automaton. A k-tuple
of positions used by an mso interpretation can of course be viewed as a configuration of
a pebble automaton, but there does not seem to be any reason why the resulting pebble
automaton should observe stack discipline. It turns out – and this is the main technical
insight of this paper – that any mso formula which defines a linear ordering on k-tuples
of positions in strings must necessarily observe an implicit stack discipline, which makes it
possible to translate a string-to-string mso interpretation into a pebble automaton.

Outline. After describing string-to-string mso interpretations in Section 2, we revise poly-
regular functions via the formalism of for-programs in Section 3. In Section 4, we show that
the models are equivalent.
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Due to space limits, we omit some of the technical details and proofs in this article. For
a full version, we defer the reader to [6]

2 Interpretations

In this section, we revise first-order and mso interpretations, which are transformations of
relational structures using formulas.

2.1 Logic and interpretations
Relational vocabularies and logic. A (relational) vocabulary is a set of relation names,
each one associated with a natural number called its arity. For short, we refer to relational
vocabularies simply as vocabularies. A structure over a vocabulary σ consists of a set called
the universe and for each relation name of σ a corresponding relation of the same arity over
the universe. To define properties of relational structures, we use monadic second-order logic
and its first-order fragment with the usual syntax and semantics [19]. We use the convention
that lower-case variables x, y, z range over elements and upper-case variables X,Y, Z range
over sets of elements.

Interpretations. Intuitively speaking, an interpretation is a function from relational struc-
tures to relational structures where each element of the universe of the output structure is a
tuple of elements of the input structure, and the relations of the output structure are defined
using formulas evaluated over the input structure.

I Definition 1 (Interpretations over general structures). For k ≥ 1, the syntax of a k-
dimensional first-order interpretation consists of:
1. two vocabularies, called the input vocabulary and the output vocabulary
2. an fo formula over the input vocabulary with k free variables, called the universe formula.
3. for each n and each n-ary relation name R of the output vocabulary, an associated fo

formula ϕR over the input vocabulary, with k · n free variables.
mso interpretations are defined analogously, except that formulas of mso are used, but the
free variables still range over elements and not over sets.

The semantics of an interpretation is a function from structures over the input vocabulary
to structures over the output vocabulary, defined as follows.

The universe of the output structure is the set of k-tuples of elements in the universe of
the input structure which satisfy the universe formula from item 2 in Definition 1.
An n-ary relation name R of the output vocabulary is interpreted as the set of n-tuples
of k-tuples from the input structure for which (a) each k-tuple is in the output universe,
and (b) the entire (n · k)-tuple satisfies the formula ϕR in item 3 in Definition 1.

Composition. First-order interpretations are closed under composition [14, p. 218]. Let us
recall the proof. Suppose that we want to compose interpretations

structures over σ1
I1 // structures over σ2

I2 // structures over σ3

of dimensions k1 and k2, respectively. The (k1 · k2)-dimensional composition is obtained
from I2 as follows: (a) quantification over elements of I2 is replaced by a quantification over
k1-tuples of elements; and (b) relation names from σ2 that appear in the input of I2 are
replaced by the corresponding formulas from I1. This idea does not work for mso in general,
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since set quantification in I2 would need to be replaced by quantification over sets of k1-tuples.
It does work when k1 = 1. This essentially corresponds to Courcelle’s transductions, for
which closure under composition follows naturally [8, Theorem 7.14]. To recover closure
under composition for k1 ≥ 2, one can use (not necessarily monadic) second-order logic,
which by Fagin’s Theorem [16, Corollary 9.9] corresponds to the polynomial hierarchy of
computational complexity and is outside the scope of this paper.

2.2 String-to-string interpretations
In this paper we are interested in interpretations that transform structures which represent
strings. While there are two natural ways to model strings as relational structures, namely
with an order relation or with a successor relation, only the order relation is useful in
our context.

I Definition 2 (String-to-string interpretations). For a string w ∈ Σ∗, its ordered model is
defined to be the following relational structure, denoted by w:

the universe consists of the positions in the string, i.e., natural numbers;
there is a binary relation for the natural order on positions;
for each a ∈ Σ there is a unary relation which is satisfied by every position with label a.

For alphabets Σ and Γ, a function f : Σ∗ → Γ∗ is called first-order string-to-string interpreta-
tion if the corresponding transformation on ordered models is a first-order interpretation for
strings with length at least two1. Likewise we define mso string-to-string interpretations.

I Example 3. Consider the function f : {a, b}∗ → {a, b}∗ which maps a word to the
concatenation of all of its reversed prefixes, as in the following example (with prefixes
grouped for better readability):

abbb 7→ a︸︷︷︸ ba︸︷︷︸ bba︸︷︷︸ bbba︸︷︷︸ .
This transformation is the running example in [3]. We show that f can be seen as a string-
to-string first-order interpretation. The dimension is 2, i.e. positions in the output word
represent pairs of positions in the input word. A pair (x1, x2) of positions in the input word
is used in the output word if it satisfies the universe formula x2 ≤ x1. The idea is that
x1 represents the length of the prefix, while x2 is the position in that prefix. The label of
a position (x1, x2) is inherited from the second coordinate, as expressed by the formulas
corresponding to labels on the output structure:

ϕa(x1, x2) = a(x2) ϕb(x1, x2) = b(x2)

The order on the positions of the output word is defined by the formula

ϕ≤( x1, x2︸ ︷︷ ︸
a position of

the output word

, x′1, x
′
2︸ ︷︷ ︸

another position of
the output word

) = (x1 < x′1) ∨ (x1 = x′1 ∧ x2 ≥ x′2).

1 A typical operation we want to model is string duplication. When the input length is at least two, one
can represent additional copies of the input string using a higher dimension. For input length n ≤ 1,
the output length will be nk ≤ 1 regardless of the dimension k. Another solution to this issue would be
to have duplication built into the definition of interpretations.
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Note that the above formula defines the lexicographic ordering on pairs of positions, with
the first coordinate being used in increasing order, and the second coordinate being used in
decreasing order. This, as it will turn out, is not a coincidence, since our main technical result
says that it is impossible to define a linear order on tuples of positions without implicitly
using some kind of lexicographic ordering.

Successor instead of order. When modelling a string as a relational structure, we use the
order on positions. An alternative solution would be to use just the successor relation. The
difference between the two solutions is that it is harder to define an order on k-tuples of
positions than it is to define a successor relation. It turns out that the difference is crucial,
and functions that output strings with successor can be ill-behaved. Note that whether or
not the input string is equipped with an order or a successor relation makes no difference,
since the order on the positions of the input string can be recovered in mso, which can
compute the transitive closure of binary relations on positions.

Define the successor model of a string in the same way as the ordered model from
Definition 2, except that a binary relation for successor is used instead of the order. Define
a successor-mso string-to-string interpretation to be a string-to-string function which is
computed by an mso interpretation, assuming that strings are represented by their successor
models. Likewise, we define successor-first-order string-to-string interpretations. These are
closed under composition, because first-order interpretations are closed under composition.
On the other hand, successor-mso string-to-string interpretations are not closed under
composition and lead to undecidability, as summarised in the following theorem.

I Theorem 4.
1. The class of successor-mso string-to-string interpretations is not closed under composition,

and strictly contains the class of (order-)mso string-to-string interpretations.
2. The following is undecidable: given a successor-first-order string-to-string interpretation

f and a regular language L over the output alphabet, decide if f−1(L) is nonempty.

3 Polyregular functions

Here we describe the class of polyregular functions. It has several equivalent characterisations,
see [3, Theorem 4.4], one of which consists in the afore-mentioned pebble transducers. For
the purposes of this paper, it will be most convenient to use a slightly more abstract
characterisation in terms of for-programs, a machine model for string-to-string functions. We
just explain the formalism on short examples, for a more detailed description see [3].

for x in first..last
  for y in last..first
    if y≤x and a(y) then
      output a
    if y≤x and b(y) then
      output b
      

(a) A for-program for the
function in Example 3.

for x in first..last
  var P : Bool
  for y in last..first
    if y≥x then
      P := not P
  if P and a(x) then
    output a
  if P and b(x) then     
    output b

(b) A for-program with a
Boolean variable P.

for y in first..last
  if x1≤y and y≤x2 and a(y)
      P := true

(c) A for-program which checks if
there is an a between the
positions x1 and x2.

Figure 1 Example for-programs.
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Most of the syntactic constructions that can be used in a for-program are illustrated in
Figure 1a: (1) variables that range over positions in the input word; (2) for-loops in which a
variable iterates over all positions in the input word in increasing or decreasing order; (3)
if-statements which depend on the order/labels of variables; (4) instructions which output
letters. Position variables cannot be declared or written to, they are implicitly declared by
for-loops and their only updates are the iterations performed by the for-loops.

The only feature of for-programs that is not used in Figure 1a is (5) Boolean variables.
Figure 1b shows a program that outputs only those letters in the input word which have
even distance to the last position. In the program, the Boolean variable P is declared in the
scope of a for-loop. On each iteration of the loop, the variable is reinitialised to false.

A for-program is called first-order definable if Boolean variables can only be updated from
false, which is their initial value upon declaration, to true. In other words, the only allowed
update for Boolean variables is P := true. For the first-order restriction, it is important
that Boolean variables can be declared inside for-loops, and that they are reinitialised to
false at each iteration of the loop that they are declared in. The reason for the name
“first-order definable” is that one can define in first-order logic the reachability relation on
program states of the for-program, see [3, Lemma 5.3].

I Definition 5. A string-to-string function is called polyregular if it is computed by a
for-program. It is called first-order polyregular if it is computed by a first-order definable
for-program.

The class of polyregular functions has other characterisations, including the string-to-
string pebble transducers introduced by Milo, Suciu and Vianu [17], as well as a higher-order
functional programming language [3, Section 4]. The main result of this paper, Theorem 7 in
the next section, adds a logical characterisation, namely string-to-string mso interpretations.

Evaluating first-order formulas. The for-programs described above take as input strings
and also output strings. One can also consider for-programs which input a string with
distinguished positions and which output a Boolean value, as in Figure 1c. The distinguished
positions are represented by free variables (here x1 and x2), while the output value is taken
from some distinguished Boolean variable, here P.

I Lemma 6. Let ϕ(x1, . . . , xk) be an fo formula over strings. There is a first-order for-
program which computes the following.

Input. A word w ∈ Σ∗ and positions x1, . . . , xk in w;
Output. Yes or No, depending on whether w satisfies ϕ(x1, . . . , xk).

Proof. The for-program implements the semantics of an fo formula. For each quantifier, it
loops over all possible values for the quantified position, and a Boolean variable is used to
remember if some value has already been found which renders the formula true. J

A similar result is true for mso formulas, but the proof for that statement uses automata.

4 Equivalence

We show that the models defined in Sections 2 and 3 are equivalent.

I Theorem 7.
1. String-to-string mso interpretations are exactly the polyregular functions.
2. First-order string-to-string interpretations are exactly the first-order polyregular functions.
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Since the class of polyregular functions is closed under composition2, we obtain:

I Corollary 8. String-to-string mso interpretations are closed under composition.

By using Theorem 7, the proof of the corollary passes through for-programs. We are not
aware of any direct proof that does not exploit the equivalence to polyregular functions.

The rest of this paper is dedicated to the proof of Theorem 7. We begin with a reduction
of the first to the second item. This reduction illustrates a general phenomenon, namely that
results about first-order polyregular functions often imply results about general polyregular
functions, despite the latter class being larger. The reason behind this phenomenon is the
following lemma, which says that for every polyregular function, all of the behaviour that is
not first-order definable can be pushed into a simple preprocessing step. Define a rational
function, see [4, Section 13.2], to be a string-to-string function which is recognised by a
nondeterministic automaton, where every transition is labelled by a pair consisting of a letter
from the input alphabet and a string over the output alphabet, and which is unambiguous in
the sense that every input string admits exactly one accepting run.

I Lemma 9.
1. A function is polyregular if and only if it is a composition consisting of:

a. a (letter-to-letter) rational function; followed by
b. a first-order polyregular function.

2. A function is an mso string-to-string interpretation if and only if it is a composition
consisting of:
a. a (letter-to-letter) rational function; followed by
b. a first-order string-to-string interpretation.

The proof of Lemma 9 can be found in [6]. It is based on ideas from [7, 15, 3] and uses
factorisation forests. With the lemma, we show that item 2 in Theorem 7 implies item 1, i.e. if
first-order string-to-string interpretations are exactly the first-order polyregular functions,
then mso interpretations are exactly the polyregular functions:

polyregular = by item 1 of Lemma 9

(first-order polyregular) ◦ rational = by item 2 of Theorem 7
(first-order interpretations) ◦ rational = by item 2 of Lemma 9

mso interpretations

It remains to prove item 2 in Theorem 7, i.e. that first-order string-to-string interpret-
ations are exactly the first-order polyregular functions. The right-to-left inclusion follows
immediately from [3, Lemma 5.3], which says that a formula in first-order logic can define
the reachability relation on program states in first-order for-programs. We are left with the
left-to-right-inclusion:

first-order string-to-string interpretations ⊆ first-order definable for-programs (1)

The rest of the paper is devoted to showing the above inclusion. When simulating a
first-order interpretation by a for-program, we will mainly be concerned with the universe of
the output string (which is a set of k-tuples of positions in the input string) and its ordering.
The labelling of the k-tuples can then be recovered using the for-program from Lemma 6.

2 Closure under composition was proved for pebble transducers in [10, Theorem 11] and for the class of
for-programs in [3, Section 8.1] as a step in proving equivalence with the other models of polyregular
functions.
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The main result is that every first-order definable linear ordering on tuples of positions can
be implemented by a for-program. To be able to speak about this result, we introduce some
notation for devices that produce lists of tuples of positions.

Enumerators. Let k ∈ N. A k-enumerator over an alphabet Σ is a function of the following
form:

Input. A string w ∈ Σ∗;
Output. A list of k-tuples of positions in w, that is nonrepeating3.

We compare the following two ways of implementing k-enumerators:
1. A k-enumerator is called definable if there are two fo formulas: one with k variables,

which says when a tuple is part of the output list, and one with 2k variables, which
defines a total order on the tuples selected by the first formula.

2. A k-enumerator is called programmable if its output can be computed by a first-order
for-program that instead of outputting letters uses instructions of the form output
(x1,...,xk) where x1, . . . ,xk are position variables.

For definable k-enumerators, the order on tuples in the output list is given explicitly by the
formula ϕ, while in programmable ones, the order is implicit from the order in which the
output instructions are executed during the computation.

I Example 10. We present an enumerator based on Example 3. Consider the 2-enumerator
which outputs all pairs of positions (x1, x2) with x2 ≤ x1, listed in lexicographic order, where
x1 is ordered in increasing order and x2 is ordered in decreasing order. Here is an example:

abbb 7→ (1, 1), (2, 2), (2, 1), (3, 3), (3, 2), (3, 1), (4, 4), (4, 3), (4, 2), (4, 1)

This enumerator is definable, as witnessed by the formula ϕ≤ in Example 3. The formula ϕ≤
is quantifier-free, but in general, quantifiers are allowed. Here is a for-program that computes
the same function:

for x1 in first..last
  for x2 in last..first
    if x2 ≤ x1 then 
      output (x1,x2)

The following lemma is the main technical result of this paper.

I Lemma 11. Every definable k-enumerator is also programmable.

Our proof of Lemma 11 uses two fundamental ingredients. The first is by now standard:
this is Simon’s factorisation forest theorem [18], which roughly says that every string can be
cut into pieces that are similar to each other. The second ingredient is new: the Domination
Lemma, presented in Section 4.1, roughly says that if a string is cut into pieces that are
similar to each other, then any first-order definable linear order on tuples of positions must
observe an implicit stack discipline. These two results are combined in Section 4.2 to prove
Lemma 11. Before we proceed with the proof of Lemma 11, we use it to complete the proof
of Theorem 7.

3 Every tuple appears at most once, but positions can appear in multiple tuples. We need this for the
existence of the formulas stated in the following definitions.
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Proof of Theorem 7, second part. The only part of Theorem 7 that has not been proved
yet is that every first-order string-to-string interpretation is polyregular. Suppose that f
is a k-dimensional first-order string-to-string interpretation. Consider the k-enumerator
that inputs a string w and outputs the list of k-tuples of positions in w used to represent
output positions of f(w), in the appropriate order. Apply Lemma 11 to obtain a first-order
for-program g which computes the same list. To compute the original function f , we use a
for-program which behaves as g, except that instead of outputting a k-tuple of positions like
g, it uses the program described in Lemma 6 as a subroutine to check what is the output
letter that should be produced for this tuple, and outputs that letter. J

4.1 The Domination Lemma
In this section we present the Domination Lemma, which says that if ≺ is a first-order
definable linear order on k-tuples of positions in a string, then there is an implicit stack
discipline in the following sense. For every type (see below) t of tuples of positions there is a
coordinate d ∈ {1, . . . , k} such that for the subset of k-tuples of positions formed by all of
type t, the order ≺ is uniquely determined by the order of the d-th coordinates in the string.

We begin by explaining the notions of types. For r ∈ {0, 1, . . .}, the rank r type of
a structure A with k distinguished positions x̄ := (x1, . . . , xk) is defined to be the set of
first-order formulas of quantifier rank at most r and with k free variables that are true in
A, x̄. The number k is the arity of the type. For arity 0, we talk about the rank r type of
the structure A. If the structure A is implicit from the context, then we talk about the rank
r type of the tuple x̄. For every finite vocabulary, there are finitely many types of given
arity and rank. We write ≡r for the equivalence relation on structures with distinguished
elements of having the same rank r type. For a binary relation R, its inverse is the set
{(v, u) | (u, v) ∈ R}. For p ∈ {1,−1}, define Rp to be either R or its inverse, depending on
the value of p.

I Lemma 12 (Domination Lemma). For all k,m, r ∈ {1, 2, . . .}, there is an ω ∈ {1, 2, . . .}
with the following property. Let n ∈ {1, 2, . . .}, let w1, . . . , wn be strings over some alphabet
Σ and let A be the ordered structure of the concatenation w1 · · ·wn extended with the block
order defined by

x @ y if x is a position in wi and y is a position in wj for some i < j.

Let ≺ be a linear order on k-tuples in A defined by a first-order formula of quantifier rank r,
and let t be a k-ary rank ω type over the vocabulary of A. If

wi ≡ω wi+1 holds for all i ∈ {1, . . . , n− 1} with at most m exceptions,

then there is a d ∈ {1, . . . , k}, called the dominating coordinate, and a p ∈ {−1, 1}, called
the polarity, such that

xd @p yd implies (x1, . . . , xk) ≺ (y1, . . . , yk) for all x1, . . . , xk︸ ︷︷ ︸
of type t

, y1, . . . , yk︸ ︷︷ ︸
of type t

in A.

The Domination Lemma is the technical heart of this paper. The full proof can be found
in [6]. To explain some of the ideas that we use, we treat a special case in detail. In the
Domination Lemma, the structure A consists of blocks organised in a linear way. A very
simple linear order – although infinite – is the natural one on the rational numbers; one
reason for its simplicity is that quantifiers can be eliminated (see [13, Section 5.6.2]). Because
of this, it is quite easy to prove a version of the Domination Lemma for the rational numbers
and still its proof bears some similarity to the proof of the general case.
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I Lemma 13 (Rational Domination Lemma). Let ≺ be a linear ordering on k-tuples of rational
numbers defined by a quantifier-free (equivalently, first-order) formula using only the usual
ordering < on rational numbers. Then there is a coordinate d ∈ {1, . . . , k} and a polarity
p ∈ {−1, 1} such that

xd <
p yd implies (x1, . . . , xk) ≺ (y1, . . . , yk)

for all tuples of rational numbers satisfying x1 < · · · < xk and y1 < · · · < yk.

Proof. We first prove the statement for k = 1 and k = 2 and then we deduce the general case.

1. When k = 1, then the formula defining ≺ must be either x < y or x > y.

2. For k = 2, we do a case analysis. Note that whether x̄ ≺ ȳ or ȳ ≺ x̄ holds depends only
on the order relationship of the positions in x̄ and ȳ in the rational numbers and not on
the precise values in x̄ and ȳ.
The following picture shows the two possible relationships for two pairs x̄ and ȳ when
they are “consecutive” and the two possible relationships when they are “nested”:

Suppose we are given a pair x̄ and without loss of generality, assume the “consecutive
growing” case for some second pair ȳ. We only show the proof for the case that there is a
pair ȳ′ such that x̄ and ȳ are “nested growing” (“nested decreasing” works analogously).
We prove that d = 1 is dominating for ≺ with polarity p = 1. Consider all three remaining
configurations of pairs x̄ and ȳ with x1 < y1. In all cases, x̄ ≺ ȳ is proved by finding an
intermediate pair (drawn in yellow), whose order with respect to x̄ and ȳ follows from
the assumptions “consecutive/nested growing” (in the pictures below, we assume that
lower lines represent bigger tuples in the ordering ≺):

3. Consider the case k > 2. Fix a “growing” tuple of k rational numbers, i.e. a tuple z̄
such that for 1 ≤ i < j ≤ k, it holds that z1 ≤ zi < zj ≤ zk. Define ≺z̄

ij to be the
restriction of ≺ to tuples that agree with z̄ on coordinates from {1, . . . , k} \ {i, j}. Using
the reasoning from the previous item, the ordering ≺z̄

ij must admit some dominating
coordinate d ∈ {i, j} and one of the cases “growing” or “decreasing”. This must hold for
every choice of z̄ and i, j. Furthermore, the dominating coordinate d depends only on i
and j and not on z̄, likewise for the choice of “growing” or “decreasing”. Let us write
i→ j if j dominates, otherwise we write j → i. The reasoning in the following picture
shows that → is transitive, i.e. i→ j and j → m implies i→ m:
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Therefore, → is in fact a total order on {1, . . . , k}. Let d be the maximum with respect
to this order. The following picture explains why d is the dominating coordinate d from
the statement of Lemma 12.

Suppose without loss of generality that we are in the “growing” case for each pair of
coordinates. Then we can first move all coordinates apart from d to positions smaller than
min{x1, y1} or bigger than max{xk, yk} and then use the dominations i→ d to move them,
one by one, to their final positions (always increasing the d-th coordinate slightly to a value
in the open interval (xd, yd)). J

4.2 Proof of Lemma 11
We now return to Lemma 11, i.e., we prove that every definable k-enumerator is also
programmable. In the proof, we use the following version of the Factorisation Forest
Theorem. We use the term interval for a connected set of positions in a string.

I Theorem 14 (Factorisation Forest Theorem, aperiodic variant). Let h : Σ+ → S be a
semigroup homomorphism, where S is finite and aperiodic. Then there exists a function
which assigns to each string in Σ+ a partition of the positions into intervals (so-called blocks)
such that:
1. All blocks are nonempty, and for each string in Σ+ of length at least 2, there are at least

two blocks.
2. If a string has at least three blocks, then all of the blocks have the same value under h.
3. There exists M ∈ N such that all strings have height at most M , where the height of

a string is defined as follows: letters have height 1, for other strings the height is the
maximum of the heights of its blocks + 1.

4. There is a first-order formula ϕ such that for every string w, the positions satisfying ϕ(x)
are exactly the first positions of the blocks of w.

Apart from the Factorisation Forest Theorem and the Domination Lemma, our proof
uses the following straightforward result on combining outputs of two for-programs. As a
convention, if ψ is a first-order formula with k free variables and f is a k-enumerator, then
f |ψ denotes the k-enumerator where the output list of f is filtered so that it contains only
tuples satisfying ψ.

I Lemma 15 (Merging Lemma). Let f be a definable k-enumerator. Let Φ be a finite set of
fo formulas ψ, each one with k free variables, such that every k-tuple of positions satisfies at
least one formula from Φ. Then f is programmable if and only if every f |ψ is programmable.
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We are now ready to prove Lemma 11. Let f be a definable k-enumerator. We need
to describe a for-program that outputs the same list of tuples as f . Let r be the maximal
quantifier rank of the first-order formulas used in the definition of f . Apply the Domination
Lemma to k, m := 5k, and r, yielding a constant ω. Define h to be the function which maps a
string w ∈ Σ+ to the rank ω type of the corresponding ordered model of w. Compositionality
of first-order logic (see [16, Section 3.4]) on strings says that the image of h, the set of rank
ω types of strings, is a finite aperiodic semigroup and h is a semigroup homomorphism.
Apply the Factorisation Forest Theorem to h, yielding a function that partitions each string
into blocks and an upper bound M on heights of strings. By abuse of notation, we lift
notions about strings to intervals inside strings: the height of an interval X in a string w is
defined to be the height (in the sense of item 3 in Theorem 14) of the infix of w induced by
X. Likewise, we define the blocks of X as the blocks of the infix induced by X, viewed as
intervals contained in X.

To show that f is also programmable, we use an induction over heights in factorisation
forests. More precisely, we prove that for every i ∈ N there is a for-program which computes
the following:

Input. A string w ∈ Σ+ with distinguished nonempty intervals X1, . . . , Xk that are
pairwise equal or disjoint, and such that the sum of their heights (in the sense of
Theorem 14) is at most i. Each interval is represented by its first and its last position.
Output. The list f(w) restricted to tuples in X1 × · · · ×Xk.

By item 3 in Theorem 14, the for-program with parameter i := kM will work for every
choice of pairwise equal or disjoint intervals, in particular when all of the intervals are
the entire string. The induction base i = k (where every interval has the height 1) is
straightforward: each interval is a singleton, and the for-program simply checks if the unique
tuple in X1 × · · · ×Xk belongs to the output of f by using the subroutines from Lemma 6.
The rest of the proof is devoted to the induction step, more specifically, to producing the
correct order of the tuples: whether a tuple belongs to the output or not can again be checked
using the subroutines from Lemma 6.

Let X1, . . . , Xk be intervals in an input string w that are pairwise disjoint or equal. Define
X to be the coarsest partition of the positions in the input string into intervals that satisfies
X1, . . . , Xk ∈ X . This partition uses at most 2k + 1 intervals. Consider a factorisation

w = w1 · · ·wn

where each wj is a block of one of the elements of X . Define A as in the Domination Lemma,
i.e. as the ordered structure of w extended with an extra order @ that describes the partition
into factors w1, . . . , wn. By item 4 of the Factorisation Forest Theorem, the order @ can be
defined by a first-order formula which uses the input string and the endpoints of the intervals
X1, . . . , Xk. It follows that for every k-ary rank ω type t over the vocabulary of A, there is a
corresponding first-order formula that selects the k-tuples of positions in w that have type t
in A. Since there are finitely many choices of t, it follows from the Merging Lemma that it is
enough to show that for every t, there is a for-program which outputs the tuples of type t.

Let t be a k-ary rank ω type over the vocabulary of A. We show a for-program which
outputs all tuples in

T := {x̄ ∈ X1 × · · · ×Xk : x̄ has type t and is in the output of f(w)}

according to their order given by f(w), call this order ≺.
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If an interval from X has more than two blocks, then, by item 2 of the Factorisation Forest
Theorem, all of these blocks have the same image under h, i.e., the same rank ω type. Since
there are at most 2k + 1 intervals, it follows that with at most 2(2k + 1)− 1 = 4k + 1 < 5k
exceptions, consecutive strings wj and wj+1 have the same rank ω type. Hence, for the order
≺ defined by f(w), the Domination Lemma yields d ∈ {1, . . . , k} and p ∈ {−1, 1} such that

xd @p yd implies (x1, . . . , xk) ≺ (y1, . . . , yk) for all x1, . . . , xk︸ ︷︷ ︸
of type t

, y1, . . . , yk︸ ︷︷ ︸
of type t

in A.

This means that the tuples in T are ≺-ordered as T1 ≺p T2 ≺p · · · ≺p Ts, where s is the
number of blocks in Xd and Tj consists of the tuples from T where the coordinate xd is
in the j-th block of Xd. Our for-program can simply loop over all the blocks of Xd – in
increasing or decreasing order depending on the choice of p – because the endpoints of each
block can be identified in first-order logic due to item 4 of the Factorisation Forest Theorem.
In each iteration of the loop, the for-program outputs the tuples in the corresponding Tj

using the following claim, thus completing the proof of the lemma.

B Claim 16. There is a for-program which inputs the i-th block of Xd, given by its endpoints,
and outputs the tuples from Tj ordered according to ≺.

Proof of the claim. The general idea is to replace Xd with its j-th block (call this block X)
and use the induction assumption. However, if there is some j 6= d such that Xj = Xd, then
replacing Xd with X would violate the assumption that the intervals are pairwise disjoint or
equal (since X ( Xj). To overcome this issue, we use the following simple case disjunction.
For each of the 3k possible values of

v ∈ {positions before X, X, positions after X}k

construct a for-program that outputs all tuples from Y1×· · ·×Yk, where Yj is the intersection
of Xj with the j-th entry of v. Since each Yj is a union of blocks of Xj , it is empty or its
height is at most the height of Xj . Furthermore, if Yd is nonempty, then it is X, which is a
block of Xd, and therefore its height is strictly smaller than the height of Xd. It follows that
the induction assumption can be applied to produce all tuples in Y1 × · · · × Yk, for any given
choice of v. These choices can be combined using the Merging Lemma. C
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Abstract
Nominal automata are a widely studied class of automata designed to recognise languages over
infinite alphabets. In this paper, we present a Kleene theorem for nominal automata by providing a
syntax to denote regular nominal languages. We use regular expressions with explicit binders for
creation and destruction of names and pinpoint an exact property of these expressions – namely
memory-finiteness – identifying a subclass of expressions denoting exactly regular nominal languages.
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1 Introduction

Languages over infinite alphabets have been studied in a variety of contexts: query-based
languages [8], XML processing [19], URLs [1], process calculi [5], etc. Accordingly, a number
of automata models have been introduced for these languages, either register-based, where the
state space is finite but registers are available for storing data, or based on nominal sets, where
the state space is infinite but can be represented finitely due to symmetries. The most general
classes of such automata are Kaminski and Francez’s finite-memory automata (FMA) [8],
in the register-based style, and Bojańczyk, Klin and Lasota’s nondeterministic orbit-finite
automata (NOFA) [4], in the nominal style. These two kinds of automata have been shown
to have the same expressivity [4], and equivalence is known to be undecidable [8, 16].

While automata are useful to process and compare languages, to specify languages it
is often more natural to use regular expressions; this is for instance the standard way of
denoting a path in an XML tree. To that effect, many classes of expressions have been
proposed [9, 12, 11, 18, 14]. The expressions from [14] capture the full class of languages
recognised by either FMA of NOFA, but having been developed for FMAs they are not
straightforwardly suitable to describe NOFA languages. Some of the other formalisms are
more natural in the context of nominal automata, but all fail to capture the full class, and
instead coincide with some (usually decidable) sub-classes.
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We define in this paper a new class of regular expressions for data languages, originally
motivated by applications to program verification, as part of larger framework called bracket
algebra. These expressions feature explicit allocation 〈a and deallocation 〉a binders, and
may be used to generate nominal languages. We prove in this paper that they are in fact
able to describe every language recognisable by a NOFA.

Let us illustrate our syntax on simple examples. To make this discussion simpler, we
assume for now that our alphabet is an infinite set of names A. The first notion we present
is that of α-equivalence of words with binders. Here we choose to define α-equivalence as
the smallest congruence stable by permutation of bound or fresh names. For instance the
following pair of words is equivalent: 〈a a〈b b 〉a 〈a a 〉b 〈b b 〉a 〉b =α 〈b b〈c c 〉b 〈d d 〉c 〈a a 〉d 〉a .
Indeed, we may derive this as follows (we underline the redex at each step):

〈a a〈b b 〉a 〈a a 〉b 〈b b 〉a 〉b =α〈a a〈c c 〉a 〈a a 〉c 〈b b 〉a 〉b
=α〈a a〈c c 〉a 〈d d 〉c 〈b b 〉d 〉b =α 〈b b〈c c 〉b 〈d d 〉c 〈a a 〉d 〉a .

We then define well-formed words to be those without name capture, i.e. for every prefix
u〈a , every 〈a in u must be matched with a corresponding 〉a . For instance 〈a a〈b b 〉b 〉a is
well-formed, but 〈a a〈a a 〉a 〉a is not, even though the two are equivalent. Now, consider
regular expressions over an alphabet composed of names from A and binders 〈a and 〉a . We
associate to such an expression e a nominal language LβeM in several steps:
1) take the regular language JeK denoted by e;
2) compute its closure by α-equivalence JeKα, adding every word that is equivalent to some

word in the initial language;
3) restrict this language to its well-formed members;
4) erase the brackets.
Here are some examples:
L1 := Lβ〈a a 〉a M = A: the set of all atoms;
L2 := Lβ〈a 〈b ab 〉b 〉a M = {ab | a 6= b}: two letter words made of different letters;
L3 := Lβ〈a a 〉a ?M = A?: the set of all words;
L4 := Lβ〈a a〈a a 〉a ? 〉a M = {a1 . . . an | n > 0,∀1 < i, ai 6= a1}: the set of words such that the

first letter is different from all others;
L5 := Lβ〈a 〈a a 〉a ?a 〉a M = {a1 . . . an | n > 0,∀i < n, ai 6= an}: the set of words such that the

last letter is different from all others;
L6 := Lβ〈a a (〈b b 〉a 〈a a 〉b )? (1 + 〈b b 〉b ) 〉a M = {a1a2 . . . an | n > 0,∀i, ai 6= ai+1}: the set of

non-empty words such that two consecutive letters are different;
L7 := Lβ(〈a x)? (y 〉a )?M = {x} ∪ {xnym | n 6 m}.
As one can see, this technique allows for the definition of a large class of nominal languages.
In fact this class is in some sense “too large” and contains languages that are not regular, like
for instance L7. To get a Kleene theorem, we therefore introduce a tractability condition: we
ask regular expressions to have a memory-finite language. Intuitively this means there should
be a number N such that any prefix of a word in the language has less than N unmatched
brackets. This condition is decidable by induction on expressions, and such expressions
generate exactly the class of languages recognisable by NOFAs. The main result of the paper
is an exact correspondence between memory-finite nominal languages and NOFA:

I Theorem 1 (Kleene Theorem). Let L be a nominal language. The following are equivalent:
(i) L is rational, that is L = LβeM for some memory-finite regular expression e.
(ii) L is regular nominal, that is recognisable by a NOFA.



P. Brunet and A. Silva 107:3

The paper is structured as follows. In Section 2, we define our notations, and recall
some elements of nominal automata theory. We introduce in Section 3 words with explicit
binders and define an α-equivalence relation for these words. To recognise this relation we
construct in Section 4 a nominal transducer. We then present in Section 5 our syntax for
regular expressions with binders, and prove in Section 6 our main result, a Kleene theorem
for NOFA. We briefly discuss related work in Section 7. We omit some proofs in this paper,
but a longer version is available on HAL.

This paper is part of a larger research program developing a framework to reason about
programs with explicit resource (de)allocation. A companion paper describing the algebraic
framework of bracket algebra and a hierarchy of nominal languages can be found online, as
well as a Coq formalisation of the framework.

2 Preliminaries

The set of finite subsets of a set A is denoted by Pf (A). If A is finite, its cardinal is denoted
by #A ∈ N. The set of words over an alphabet Σ is written Σ?. The empty word is denoted
by ε, concatenation of words u and v is written uv, and |u| is the length of word u. For
w ∈ Σ? and x ∈ Σ, |w|x is the number of occurrences of x in w. We write bwc for the
set of letters appearing in the word w, i.e. bwc := {x ∈ Σ | |w|x > 0}. We denote the ith
letter of a word u by ui, for 0 < i 6 |u|. The set of prefixes of a language is defined as:
pref (L) := {u ∈ Σ? | ∃v : uv ∈ L}.

Given a set A, and B ⊆ A, the set B./ of shuffles of B consists of the lists without
repetitions of elements from B: B./ := {l ∈ B? | |l| = #B ∧ (∀0 < i < j 6 |l| , li 6= lj)} .
Observe that if w ∈ B./, then {a | ∃0 < i 6 |w| : wi = a} = B. We say that a list l ∈ A? is
duplication-free, written l ∈ A(?) when l ∈ {a | ∃0 < i 6 |l| : li = a}./.

Rational expressions over an alphabet Σ are terms generated by the following grammar:
e, f ∈ Rat 〈Σ〉F 0 | 1 | l | e+ f | e · f | e?, where l ranges over the alphabet Σ. Such
a term e denotes a language JeK, defined in the usual way:

J0K := ∅, J1K := {ε} , Je · fK := {uv | u ∈ JeK ∧ v ∈ JfK} ,
Je+ fK := JeK ∪ JfK , JlK := {l} , Je?K := JeK? = {u1 . . . un | n ∈ N ∧ ∀i, ui ∈ JeK} .

2.1 Nominal sets
We fix an infinite set A of atoms (also called names), and write SA the set of finitely supported
permutations over A. These are bijections π such that there is a finite set ā ⊆ A such that
a /∈ ā⇒ π(a) = a. In the following we let a, b, . . . range over A and ā, b̄, . . . range over finite
sets of atoms. The inverse of a permutation π is written π−1 . The permutation exchanging a
and b, and leaving every other name unchanged, is written (a b). We say that a permutation
π fixes a finite set ā ⊆ A, written π ⊥ ā, when ∀a ∈ ā, π(a) = a.

A set X is called nominal if it can be equipped with two functions, respectively action
− ·− : SA ×X → X and support supp (−) : X → Pf (A), satisfying ∀x ∈ X, ∀π, π′ ∈ SA,:

π ⊥ supp (x)⇒ π · x = x. (†1)
supp (π · x) =

{
a ∈ A

∣∣ π−1(a) ∈ supp (x)
}
. (†2)

π · (π′ · x) = (π ◦ π′) · x. (†3)
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Intuitively, this means that we may replace a name by another in any element of X, and
that each element of X only depends on a finite number of names. We say that a permutation
π fixes a subset Y ⊆ X, also written π ⊥ Y if ∀y ∈ Y, π · y = y. This enables use to state (†1)
as π ⊥ supp (x)⇒ π ⊥ x. We say that the name a is fresh for x, and write a # x, whenever
a /∈ supp (x). We will also use the notation X �ā to mean {x ∈ X | supp (x) ⊆ ā}.

I Remark 2. In Pitts’ book [17] a nominal set is defined as a SA-action such that every
element has some finite support. From conditions (†1) and (†3) we infer that X is a nominal
set as in [17]. Furthermore, condition (†2) enforces that supp (x) is the least finite set that
supports x, so our notion of support coincides with the one introduced in [17]. For Coq
implementation considerations, we chose to include the support function in the definition.

For the rest of this section, we fix a nominal set X. Given x, y ∈ X, we say that x and y
are in the same orbit, written x ∼O y, if there exists π ∈ SA such that x = π · y. This is an
equivalence relation, and its equivalence classes are called orbits. A subset Y ⊆ X is called:

strict if it has no symmetries, i.e. (†1) holds as an equivalence: π ⊥ supp (y)⇔ π ⊥ y;
equivariant if for every permutation π ∈ SA, we have π · Y = Y , meaning

∀π ∈ SA,∀y ∈ X, y ∈ Y ⇔ π · y ∈ Y ;

finitely supported if there is a finite ā ⊆ A such that π ⊥ ā entails π · Y = Y ;
orbit-finite if Y only intersects finitely many orbits;
tractable if it is both orbit-finite and finitely supported.

I Remark 3. In Bojańczyk [2, 3] terminology, what we call tractable sets are simply called
orbit-finite, even though these are sets that are both orbit-finite and finitely supported.
We chose a different name to avoid confusion as in other papers orbit-finite sets are not
necessarily finitely supported.

In the following, we will use the following results adapted from [3]:

I Lemma 4 (Simple extension of Lemma 3.5 in [3]). Every tractable set can be expressed as
the image of a tractable set of words from A? by some equivariant function.

I Lemma 5 (Fact 3.6 in [3]). Tractable sets are closed under finite unions and products, and
under finitely supported subsets.

2.2 Nominal automata
Let Σ be an orbit-finite nominal alphabet. A nominal automaton (NOFA) over Σ is a
structure A = 〈Q,Σ,∆, I, F 〉 where Q is a tractable state space, I, F ⊆ Q are finitely
supported sets of respectively initial and final states, and ∆ ⊆ Q × Σ × Q is a finitely
supported transition relation. This definition corresponds to Bojańczyk, Klin, and Lasota’s
“orbit-finite automata” [4]. We define the automaton’s path relation in the usual way, by
saying that p ε−→A p and whenever p w−→A q′ and 〈q′, x, q〉 ∈ ∆ then we also have p wx−−→A q.
Notice that since ∆ is finitely supported, so is the path relation. The language recognised by
such an automaton is defined as usual as the set of traces leading from an initial state to a
final state:

LA :=
{
w ∈ Σ?

∣∣∣ ∃ 〈qi, qf 〉 ∈ I × F : qi
w−→A qf

}
.

Nominal regular languages are those recognised by nominal automata.
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I Remark 6. In the literature, the name “Nominal automaton” is sometimes used to refer to
a different class of automata, where the tractability requirement is replaced by orbit-finite
and equivariant. These two classes define the same languages: an equivariant automaton is a
particular case of a tractable one, and any tractable automaton with support ā might be seen
as an equivariant automaton by replacing the set of atoms A with the set A \ ā. However, we
feel that our approach leads to more intuitive encoding of some natural languages. Consider
for instance the language a · A? of words over A starting with the letter a ∈ A. This language
is not equivariant, therefore to represent it with an equivariant automaton one needs to
remove the name a from the set of names, considering instead the alphabet A as a nominal
set over the set of names A \ {a}. We feel this is a bit counter-intuitive. However, it may be
represented by a simple tractable automaton with two states p and q, with p initial, q final,
a transition p a−→ q, and transitions q b−→ q for every name b ∈ A.

We will later on rely on the following properties of nominal automata.

I Lemma 7. Every nominal automaton is language equivalent to a nominal automaton
whose state space is strict.

I Lemma 8. Nominal automata enjoy ε-elimination.

A nominal automaton is called deterministic (DOFA) if it has a single initial state and
its transition relation is a deterministic function, i.e. if we have two transitions 〈p, x, q〉 ∈
∆ ∧ 〈p, x, q′〉 ∈ ∆, then q = q′. Languages recognised by DOFA form a strict subclass of the
regular nominal languages. E.g. the language over A of words with the last letter distinct
from all others is regular nominal but cannot be recognised by a DOFA: intuitively to check
for membership one needs to guess what will be the last letter before reading the word. There
is also a significant complexity difference: equivalence of DOFA is decidable in polynomial
time [15], the corresponding problem for NOFA is undecidable [16].

I Lemma 9. Regular languages can be recognised by deterministic nominal automata.

Proof. Regular languages can be recognised by deterministic finite state automata. Being
finite, such automata are also tractable, thus deterministic nominal automata. J

2.3 Nominal transductions
We will make intensive use of transductions in this paper. A nominal transducer is a nominal
automaton over an alphabet of the shape (Σ ∪ {ε})× (Γ ∪ {ε}). For a nominal transducer T,
we may define its path relation −[−/−]→T and the binary relation RT it recognises:

p −[ε/ε]→T p

p −[w/w′]→T q
′ 〈q′, 〈x, x′〉 , q〉 ∈ ∆

p −[wx/w′x′]→T q

RT := {〈u, v〉 ∈ Σ? × Γ? | ∃ 〈qi, qf 〉 ∈ I × F : qi −[u/v]→T qf} .

A binary relation R ⊆ Σ? × Γ? is called a nominal transduction if it is recognised by some
nominal transducer. For a transduction R, we will sometimes see R as either a function
Σ? → P (Γ?) or a function P (Σ?)→ P (Γ?), writing:

u ∈ Σ?, R(u) := {v ∈ Γ? | u R v} L ⊆ Σ?, R(L) := {v ∈ Γ? | ∃u ∈ L : u R v} .

This should not introduce any ambiguity, thanks to typing considerations.

I Lemma 10. Nominal regular languages are stable under nominal transductions.
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Proof. Let Σ,∆ be two tractable alphabets, and Σ′ := (Σ ∪ {ε}) × (Γ ∪ {ε}). Consider a
nominal automaton A = 〈Q1,Σ,∆1, I1, F1〉 and a nominal transducer T = 〈Q2,Σ′,∆2, I2, F2〉.
We want to show that the language RT (LA) is regular nominal, by building a nominal
automaton T (A) with ε-transitions. Its states are in Q1 ×Q2, with initial and final states
respectively I1 × I2 and F1 × F2. Its transition relation is given by:

∆ := {〈〈p1, p2〉 , x, 〈q1, q2〉〉 | ∃y : 〈p1, y, q1〉 ∈ ∆1 ∧ 〈p2, 〈y, x〉 , q2〉 ∈ ∆2}
∪ {〈〈p1, p2〉 , x, 〈p1, q2〉〉 | 〈p2, 〈ε, x〉 , q2〉 ∈ ∆2} . J

3 Words over an alphabet with binders

For the rest of the paper, we fix an orbit-finite nominal set X of variables, to represent our
alphabet. We consider words built out of variables, left and right binders, respectively written
〈a and 〉a . These binders are meant to represent the creation and destruction of names.

We now introduce a notion of α-equivalence for these words. This relation will be a
congruence stable under substitution of “local” names: for instance the words 〈a 〉a and 〈b 〉b
are equivalent. The definitions in this section are straightforward adaptations from [7].

Formally, we define our alphabet by � := X ∪ {〈a | a ∈ A} ∪ { 〉a | a ∈ A}. This alphabet
can be endowed with a nominal structure in the obvious way, by setting π · 〈a = 〈π(a) ,
π · 〉a = 〉π(a) , and supp (〈a ) = supp ( 〉a ) = {a}. In the following, a word with binders
will be an element of �?, that is a finite sequence of letters from the alphabet �. Words
with binders come with a natural nominal structure: the action is defined by applying the
alphabet action letter by letter, and the support of a word is the union of the supports
of its letters.

Before we define α-equivalence, we need to introduce the notion of binding power of a
word with binders. The purpose of this notion is to keep track of the occurrences of each name
along a word, and enable us to decide whether a particular name is local to the word, and
more generally to get a precise account of the way the name is used in the word, from the point
of view of the context. The binding monoid B is defined as the free monoid over the three
element set {c, f ,d}, quotiented by the identities: f · f = f , c · f = c, f ·d = d, and c ·d = ε.

The letters c, f , d are meant to represent that a name might be created, free or destroyed.
An important property of this monoid is the following, as noticed in [7]: every element of B
can be uniquely represented in the form dmfncp, with 〈m,n, p〉 ∈ N× {0, 1} × N. We use
this remark to define the size1 of a binding element b ∈ B as |dmfncp| = m+ p.

The binding power of a letter l ∈ � with respect to a name a ∈ A, written Fa (l), is
computed as follows:

Fa (〈b ) :=
{

c (a = b)
ε (a 6= b) Fa ( 〉b ) :=

{
d (a = b)
ε (a 6= b) Fa (x) :=

{
f (a ∈ supp (x))
ε (a # x)

The function F may be extended to words naturally as a monoid homomorphism, by setting
Fa (ε) = ε and Fa (lw) = Fa (l) · Fa (w). If Fa (u) = dmfncp with n ∈ {0, 1}, we define
da (u) := m, fa (u) := n, and ca (u) := p. This is well defined thanks to the uniqueness of
such representations. This function is equivariant, in the sense that Fπ(a) (π · u) = Fa (u).

The weight of a word u is the sum of the sizes of its binding powers: ‖u‖ :=
∑
a∈A |Fa (u)| .

This sum is finite, since for every name a outside the finite set supp (u) we know that the
binding power of u with respect to a is ε, so |Fa (u)| = 0. The memory of a word u is the
maximum weight of a prefix of u, i.e. m (u) := max {‖v‖ | ∃w ∈ �? : vw = u}.

1 Since the size of a Boolean is constant, we do not count n in the size of dmfncp. This simplifies a
number of computations.
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Table 1 Alpha-equivalence.

ε =α ε
(αε) u =α v v =α w

u =α w
(αt)

w1 =α w2
w1l =α w2l

(αr) w1 =α w2
lw1 =α lw2

(αl)

a � u b #α u

〈a u 〉a =α 〈b (a b) · u 〉b
(αα)

.

(a) Definition of Alpha-equivalence.

u =α v ⇒ v =α u (1)
u =α v ∧ u′ =α v

′ ⇒ uu′ =α vv
′ (2)

u =α v ⇒ ∀a, Fa (u) = Fa (v) (3)

u =α v ⇒ ∀π, π · u =α π · v (4)
u =α v ⇒ |u| = |v| (5)

(b) Properties of Alpha-equivalence.

We use the binding power to define the following: a is balanced in the word w, written
a � w, if Fa (w) ∈ {f , ε}; a is α-fresh in w, written a #α w, if Fa (w) = ε; the α-support of
w, written suppα (w), is the set of names a such that Fa (w) 6= ε. Notice that suppα (w) ⊆
supp (w). Therefore, we get that π(a) #α π · u if and only if a #α u, and similarly for
π(a) ∈ suppα (π · u) and π(a) � π · u.

We may now define the α-equivalence relation over words. It is the smallest congruence
such that applying the transposition (a b) to a word where a and b are α-fresh yields an
equivalent word. We give the formal definition of =α in Table 1a and list some of its
properties in Table 1b. The propositions (1) and (2) state that =α is symmetric and that
concatenation is compatible with =α, which together with (αε)and (αt)establishes =α as a
congruence, while (3), (4), and (5) are necessary preservation properties of =α. The proofs
of these results follow a simple induction of proof trees.

Note that the deduction system we provided for =α is not a priori equivalent to the
informal description we gave before. However, the correspondence can be proved in the sense
that the same relation is obtained if we replace rule (αα) with the following rule:

a #α u b #α u

u =α (a b) · u
(αα′)

However, this proof is not straightforward: (αα′) obviously implies (αα) (as the latter may be
seen as an instance of the former), but the converse direction is more subtle. Unfortunately,
this is the most interesting direction, as it is necessary to show that words quotiented by
=α form a nominal set, with the support function suppα (). This property may however be
established using the transducer presented in the next section.

We say that a word u is well-formed when for every decomposition u = u1〈a u2, we have
ca (u1) = 0. Intuitively, this means that there is no name capture for bound variables. The
set of well-formed words is written WF , and we define wf (u) := {v | u =α v ∧ v ∈ WF}.

4 A transducer for α-equivalence-checking

The problem that arises when trying to prove statements like (αα)is that α-equivalence is
not preserved in the inductive calls: the property ux =α vy does not entail u =α v. In this
section we introduce a nominal transducer recognising the relation =α. The reachability
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relation in this transducer will give us more powerful proof techniques, allowing us to perform
proofs by induction. This transducer serves several purposes: it provides us with a decision
procedure for =α, enables us to show that (αα′) is admissible, and will be used here as a
bridge between nominal automata and rational expressions over �.

4.1 Stacks
The states of this transducer will consist of lists of pairs of atoms, called stacks in the
following. Before we define the transducer, we introduce some useful notations. Stacks are
generated by the following grammar: s ∈ S F [] | s :: 〈a, b〉, where a, b range over names.
Hence S is isomorphic to (A× A)?. We will also use the notation s :: t for the concatenation
of the two stacks s, t ∈ S. We write p1 (s) for the word over A obtained by erasing the second
components of every pair in s, and symmetrically p2 (s) when we erase the first components.
For instance p1 ([] :: 〈a, b〉 :: 〈c, d〉) = ac, and p2 ([] :: 〈a, b〉 :: 〈c, d〉) = bd.

Stacks can be endowed with a canonical nominal structure defined by:

π · [] := [] π · (s :: 〈a, b〉) := π · s :: 〈π(a), π(b)〉
supp ([]) := ∅ supp (s :: 〈a, b〉) := supp (s) ∪ {a, b} .

Note that supp (s) = supp (p1 (s)) ∪ supp (p2 (s)) = bp1 (s)c ∪ bp2 (s)c.
The pivotal notions for stacks are the validates predicate and the pop function. We say

that a stack s validates the pair 〈a, b〉, written s |= 〈a, b〉, when either a = b and a # s, or s
can be decomposed as s = s′ :: 〈a, b〉 :: s′′ in such a way that a /∈ bp1 (s′′)c and b /∈ bp2 (s′′)c.
When s validates 〈a, b〉, we may pop the pair from s, yielding the stack s� 〈a, b〉 defined by:

a /∈ supp (s)
s� 〈a, a〉 := s

a /∈ bp1 (s′)c b /∈ bp2 (s′)c
(s :: 〈a, b〉 :: s′)� 〈a, b〉 := s :: s′.

4.2 Equivalence transducer
We now define the equivalence transducer Tα, recognising =α. Strictly speaking, this will
not be a nominal transducer, as we will discuss later on. Its state space is S, with initial
state [], and the set of accepting states Sacc consists of all stacks s containing only reflexive
pairs, i.e. such that p1 (s) = p2 (s). The transition relation −[−/−]→Tα is defined by:

s −[〈a /〈b ]→Tα s :: 〈a, b〉
s |= 〈a, b〉 ⇒ s −[ 〉a / 〉b ]→Tα s� 〈a, b〉

∀a ∈ supp (x) , s |= 〈a, π(a)〉 ⇒ s −[x/π · x]→Tα s

Note that this relation is functional, in the sense that for every triple 〈s, l, l′〉 ∈ S× �× �
there exists at most one stack s′ such that s −[l/l′]→Tα s′. This transducer over an
infinite state space is equivariant, as one can easily check that s −[u/v]→Tα s′ entails
π · s −[π · u/π · v]→Tα π · s′. However, it is not orbit finite. This seems to be unavoidable
since there are infinitely many α-equivalence classes (in particular, words of different length
cannot be equivalent).

I Theorem 11. The relation RTα is exactly =α.

The full proof has been done in Coq. The following technical lemma allows one to relate the
binding power of a word with the stack contents:
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I Lemma 12. Whenever s −[u/v]→Tα s
′ the following identities hold:

|p1 (s′)|a = (|p1 (s)|a ´ da (u)) + ca (u) |p2 (s′)|a = (|p2 (s)|a ´ da (v)) + ca (v) .

(Where ´ is the truncated subtraction.)

This lemma has the following corollaries:

I Corollary 13. If [] −[u/v]→Tα s −[u′/v′]→Tα s
′ then |s| 6m (uu′).

Proof. By Lemma 12, and since [] −[u/v]→Tα s, we have |s| =
∑
a ca (u) 6 ‖u‖. Since

‖u‖ 6m (uu′), the result follows. J

I Corollary 14. For any words u, v of length n, the following are equivalent:
(i) u =α v and v ∈ WF ;
(ii) there are stacks s0 . . . sn such that s0 = [], sn ∈ Sacc, for every index 0 6 i < n we

have si −[ui+1/vi+1]→Tα si+1, and for any index 0 6 i 6 n and name a we have
|p2 (si)|a 6 1.

These results allow us to show that the following are nominal transductions:
=6nα := {〈u, v〉 | u =α v ∧m (u) 6 n}
wfn := {〈u, v〉 | u =α v ∧m (u) 6 n ∧ v ∈ WF} .

I Theorem 15. For any n ∈ N, both =6nα and wfn are nominal transductions.

Proof. Thanks to Corollary 13, we know that =6nα is recognised by Tα restricted to states
S6n, made up of stacks of length less that n. This is a tractable set, by Lemma 5. Combined
with Corollary 14, this proves that wfn is recognised by Tα restricted to stacks such that
|s| 6 n and ∀a, |p2 (s)|a 6 1. This set of stacks being an equivariant subset of S6n, by
Lemma 5 it is also tractable. J

5 Memory-finite rational languages

In this section we consider regular languages over �, i.e. languages JeK for some e ∈ Rat 〈�〉.
We may lift α-equivalence to languages by first defining the α-closure of a language L as:

Lα := {u ∈ �? | ∃v ∈ L, u =α v} .

Now we say that two languages are equivalent if their α-closures are equal.
We lift the support function from � to Rat 〈�〉 in the canonical way: for letters in � we

use the supp (−) function from the nominal structure of the alphabet, the support of 0 and
1 is the empty set, the support of e? is that of e and the support of both e + f and e · f
is supp (e) ∪ supp (f). This definition is an over approximation of the pointwise lifting of
the support function on words: indeed

⋃
u∈JeK supp (u) ⊆ supp (e). Note that supp (e) is

always finite, and supports JeK in the sense that whenever π ⊥ supp (e), we have π · JeK = JeK.
A language L ⊆ �? is called memory-finite if there exists a bound N such that ∀u ∈

L,m (u) 6 N . A rational expression is memory-finite if its language is memory-finite.

I Lemma 16. For any rational expression e, the following are equivalent:
(i) e is memory-finite;
(ii) the set {Fa (u) | u ∈ JeK , a ∈ A} is finite;
(iii) ∀u ∈ JeK, m (u) 6 2× |e|.
(Where |e| is the number of occurrences of letters in e.)

ICALP 2019



107:10 A Kleene Theorem for Nominal Automata

This lemma was proved in Coq. The following result is of independent interest:

I Theorem 17. If e is memory-finite, then JeKα is recognisable by DOFA.

Proof. Let N be the memory of JeK. By definition, this means that JeKα is equal to
the language =6Nα (JeK). However, the automaton built by applying the construction
from Lemma 10 does not yield a deterministic automaton, even if the input automaton is
deterministic. Fortunately, in the present case we can determinise the resulting automaton.
To do so, we will rely on the following technical result about Tα, which was established using
Coq: for every word u ∈ �?, there is a word tr (u) ∈ A? such that for any stack s and word v:

[] −[u/v]→T s⇒ p1 (s) = tr (u) [] −[v/u]→T s⇒ p2 (s) = tr (u) .

Notice that this implies that supp (tr (u)) ⊆ supp (u): indeed since u =α u there is a stack s
such that [] −[u/u]→Tα s, so tr (u) = p1 (s), and according to Lemma 12 whenever a ∈ p1 (s)
we have ca (u) 6= 0 which implies a ∈ supp (u).

Let A = 〈Q,Σ, δ, q0, F 〉 be some deterministic finite-state automaton for JeK, with Σ ∈
Pf (�). We write ā for the finite set of names mentioned in the finite alphabet Σ: ā :=⋃
l∈Σ supp (l) ⊆ supp (e). Notice that this means that π ⊥ ā ⇒ π ⊥ Σ?. Without loss of

generality, we assume that δ is a partial function Q× Σ→ Q and that A has no sink-state:
for any state q ∈ Q, there exists a word u ∈ Σ? such that δ (q, u) ∈ F . If we look back at the
proof of Lemma 10, we see that the states in the automaton we get for =6Nα (A) are pairs
of a state from Q and a stack from S6N :=

(
A2)6N . Now, let us do the standard powerset

construction on this automaton: we get an automaton A′ := 〈Q′,�, δ′, q′0, F ′〉 where:

Q′ = P
(
Q× S6N

)
; q′0 = {〈q0, []〉} ; F ′ = {q̄ ∈ Q′ | q̄ ∩ (F × Sacc) 6= ∅} ;

δ′(q̄, l) = {〈q′, s′〉 | ∃ 〈q, s〉 ∈ q̄,∃l′ ∈ Σ : q′ = δ(q, l) ∧ s −[l′/l]→Tα s
′} .

Unfortunately, the state space Q′ is not tractable, since it is not orbit-finite. However, as
we will now prove, the subset of reachable states is tractable. Therefore if we restrict A′ to
its reachable part we get a language-equivalent DOFA. A state q̄ ∈ Q′ is reachable if there
exists a word v such that δ′(q′0, v) = q̄. By unfolding the definitions, we can see that q̄ is
reachable by the word v when the following equivalence is satisfied:

∀q, s : 〈q, s〉 ∈ q̄ ⇔ ∃u : q = δ(q0, u) ∧ [] −[u/v]→Tα s.

This implies that ∀ 〈q, s〉 ∈ q̄, p2 (s) = tr (v), and p1 (s) = tr (u) for some u ∈ pref (JeK). This
second condition tells us that p1 (s) ∈ ā6N which is a finite set. Hence the set of reachable
states is contained (modulo isomorphism) in the set: Q := P

(
Q× ā6N

)
× A6N . This set

being the product of a finite set with a tractable one, it is tractable. Notice that the set of
reachable states is supported by the finite set ā: indeed if π ⊥ ā, then we already know that
π ⊥ Σ? so if q̄ is reachable by the word v, then π · q̄ is reachable by π · v since:

〈q, s〉 ∈ π · q̄ ⇔
〈
q, π−1 · s

〉
∈ q̄ ⇔ ∃u : q = δ(q0, u) ∧ [] −[u/v]→Tα π

−1 · s
⇔ ∃u : q = δ(q0, u) ∧ π · [] −[π · u/π · v]→Tα s

⇔ ∃u : q = δ(q0, u) ∧ [] −[u/π · v]→Tα s.

We conclude that the set of reachable states is tractable by applying Lemma 5, which tells
us that a finitely supported subset of a tractable set is tractable. J

We may use expressions over � to generate languages over X as follows: the language
generated by a term e ∈ Rat 〈�〉, written LβeM, is the set of words obtained by erasing the
brackets from the well-formed words from JeKα. In other words, if we denote by η the monoid
homomorphism defined by η (〈a ) = η ( 〉a ) = ε and η (x) = x, we have LβeM := η (wf (JeK)).
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6 Kleene Theorem

In this section, we show that regular nominal languages over X are exactly those generated
by memory-finite rational expressions. To that end, we call a language L rational if there is
some memory-finite expression e such that L = LβeM. One direction is immediate:

I Lemma 18. For any memory-finite expression e, LβeM is regular nominal.

Proof. Since e is memory-finite, according to Lemma 16, every word in e has memory less
than 2×|e|. Therefore, wf (JeK) = wf2×|e| (JeK). By the classic Kleene theorem JeK is regular
and thanks to Theorem 15 we know that wf2×|e| is a nominal transduction. Since we may
also see easily that η is a nominal transduction, the statement follows from Lemma 10. J

We now show that nominal regular languages are rational. We fix a nominal automaton
A = 〈Q,X,∆, I, F 〉, and assume without loss of generality that its state space is strict,
equivariant and orbit-finite. We also fix a finite set ā0 ⊆ A that supports I, F and ∆. As a
first step, we will find a finite sub-automaton of A that is “large enough” to describe the
language of A. We do this by picking a finite set ā ⊆ A such that:

∀α ∈ I ∪ F ∪∆,∃β ∈ I ∪ F ∪∆ : supp (β) ⊆ ā ∧ ∃π : π ⊥ ā0 ∧ π · β = α.

Such a set always exists: we just need to pick a representative per orbit, and take the union
of their supports. As a shorthand, we write S0 for the set of permutations over A \ ā0,
i.e. the permutations π ∈ SA such that π fixes ā0. We then define the finite automaton
A �ā:= 〈Q �ā,X �ā,∆ �ā, I �ā, F �ā〉. We can relate the runs of A �ā to those in A as follows.

I Lemma 19. For any letters (xi)1,...,n and any states (qi)0,...,n, t.f.a.e.:
(i) there is a run p0

x1−→A p1 . . .
xn−−→A pn

(ii) there is a run q0
y1−→A�ā q1 · · ·

yn−→A�ā qn and a sequence (πi)0,...,n from S0 such that
π0 · q0 = p0 and ∀i > 0 we have πi · 〈qi−1, yi, qi〉 = 〈pi−1, xi, pi〉.

We now define a finite automaton A′ over the alphabet � �ā?. The state space of this
automaton will be Q′ := Q �ā ∪{q0, qf}, with q0 and qf fresh states, respectively the initial
and final states. We build its transitions as follows:
1. we have q0

〈a1 ...〈an−−−−−−→ q ∈ ∆′ for any q ∈ I �ā, and any word a1 . . . an ∈ (ā0 ∪ supp (q))./;

2. we have q
〉a1 ... 〉an−−−−−−→ qf ∈ ∆′ for any q ∈ F �ā, and any word a1 . . . an ∈ (supp (q) \ ā0)./;

3. we have p
〈a1 ...〈an x 〉b1 ... 〉bm−−−−−−−−−−−−−→ q ∈ ∆′ for every transition p x−→A�ā q and any pair of words:

a1 . . . an ∈ ((supp (q) ∪ supp (x)) \ (supp (p) ∪ ā0))./

b1 . . . bm ∈ ((supp (p) ∪ supp (x)) \ (supp (q) ∪ ā0))./.

Since we have only a finite number of transitions, we know that this automaton may be
transformed into a finite state automaton over � �ā, therefore thanks to Kleene’s theorem
there is a rational expression e ∈ Rat 〈�〉 such that JeK = LA′ . We now need to check that e
is memory-finite and that LβeM = LA . For the first property, we show the following lemma:

I Lemma 20. For every run q0
w−→A′ q ∈ Q �ā, the word w ∈ WF , m (w) 6 #ā and either

a ∈ supp (q) ∪ ā0 and Fa (w) = c, or a 6∈ supp (q) ∪ ā0 and Fa (w) = ε.

This entails that JeK ⊆ WF and m (e) 6 #ā. Lemma 20 will also serve in the next proof.
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I Lemma 21. For any w ∈ �?, the word w belongs to wf
(
LA′

)
if and only if there

is a sequence of permutations π0 . . . πn+1 ∈ S0 and a run q0
u0−→A′ q1

u1−→A′ · · · un−−→A′

qn+1
un+1−−−→A′ qf such that w = (π0 · u0) . . . (πn+1 · un+1) and ∀0 < i 6 n, πi−1 · qi = πi · qi.

From Lemmas 19 and 21 it is not hard to see that our construction is correct, thus proving
that every regular nominal language is rational.

I Theorem 1 (Kleene Theorem). Let L be a nominal language. The following are equivalent:
(i) L is rational, that is L = LβeM for some memory-finite regular expression e.
(ii) L is regular nominal, that is recognisable by a NOFA.

7 Related work

Schröder at al.’s regular bar-expressions [18] enjoy a Kleene-like theorem. Regular bar-
expressions add an operator |a to the alphabet, intuitively writing an a on the right-hand
side of the bar, and hiding it from the left-hand side. These expressions are equipped
with two semantics, called “local” and “global” freshness. Under “local” freshness, the
class of automata represented by these expressions is a strict subset of the class of nominal
automata, where no name may be guessed (i.e. for every transition p x−→ q we have supp (q) ⊆
supp (p)∪ supp (x)), and where a policy of “name dropping” is enforced: a name may be in
the support of a state only if it will appear later. For instance, this precludes recognising the
languages L2 and L5 from the introduction. Under “global” freshness however the situation is
more contrasted. With this semantics, the expressive power of bar-expressions is incomparable
with that of memory-finite expressions. Indeed, they can denote the language of words
where all the letters are different by |a?, but cannot denote L3 := Lβ〈a a 〉a ?M = A?. However
if we drop the memory-finite requirement, one can translate bar-expressions into regular
expressions over � by replacing every occurrence of |a with 〈a a and suffixing the expression
with

(∑
a∈supp(e) 〉a

)?
. For instance the term |a? is sent to the expression (〈a a)? 〉a ?. In

this case, our well-formed predicate corresponds to the clean predicate used to define the
global freshness semantics, and this transformation preserves languages. This means that
unrestricted expressions with brackets are strictly more expressive than bar-expressions.

In a study of Nominal Kleene Algebra [11, 10, 6], NKA expressions were introduced,
and half a Kleene theorem for NOFA was proved. These expressions feature a unary νa(e)
operator to make a name a local to an expression e. These expressions do not allow the
interleaving of scopes, thus failing to capture languages such as 5 from the introduction.

Kurz et al. [13] considered regular expressions with binders. However, their framework
only accounts for well nested brackets, thus not covering many of the languages we consider.
They present a Kleene theorem for history-dependent automata that incorporates a bound on
the nesting depth of binding, rejecting words that exceed this depth, which is the analogue
restriction at the automaton level of our memory-finiteness property at the language level. It
is unclear whether HD-automata could be generalised to accommodate interleaving of scopes.

On the other hand Libkin and Vrgoč’s regular expressions with memory [14] enjoy a full
Kleene theorem with register automata. Since register automata and nominal automata are
equi-expressive, this means that regular expressions with memory are as expressive as our
memory-finite expressions. They are however quite different in style. The point of view they
choose is that of data words: they assume a finite alphabet Σ and an infinite set of data
values D, and consider languages over the alphabet Σ × D, i.e. each letter carries a data
value. The key feature of their syntax is to use annotation on letters. They fix a number
of variables x1 . . . xk, and use regular expressions over an alphabet made of elements of the
shape a[c]↓I where a is a letter from Σ, I is a subset of the variables, and c is a boolean
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formula that may use atomic predicates x=
i and x 6=i . These expressions are then interpreted

as ternary relations, linking two k-tuples of data values with data words. In effect, this
amounts to simulating the run of a register automaton where the k-tuples of data values
represent the content of the registers.
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Abstract
There exist several graphical languages for quantum information processing, like quantum circuits,
ZX-Calculus, ZW-Calculus, etc. Each of these languages forms a †-symmetric monoidal category
(†-SMC) and comes with an interpretation functor to the †-SMC of (finite dimension) Hilbert spaces.
In the recent years, one of the main achievements of the categorical approach to quantum mechanics
has been to provide several equational theories for most of these graphical languages, making them
complete for various fragments of pure quantum mechanics.

We address the question of the extension of these languages beyond pure quantum mechanics,
in order to reason on mixed states and general quantum operations, i.e. completely positive maps.
Intuitively, such an extension relies on the axiomatisation of a discard map which allows one to get
rid of a quantum system, operation which is not allowed in pure quantum mechanics.

We introduce a new construction, the discard construction, which transforms any †-symmetric
monoidal category into a symmetric monoidal category equipped with a discard map. Roughly
speaking this construction consists in making any isometry causal.

Using this construction we provide an extension for several graphical languages that we prove to
be complete for general quantum operations. However this construction fails for some fringe cases
like the Clifford+T quantum mechanics, as the category does not have enough isometries.
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1 Introduction

Graphical languages that speak of quantum information can be formalised through the notion
of symmetric monoidal categories. Hence, it has a nice graphical representation using string
diagrams [41]. Qubits are represented by wires, and morphisms by graphical elements where
some wires go in, and some others go out, just as in quantum circuits (which is actually a
particular case of symmetric monoidal category), and where these graphical elements can
be composed either in sequence (usual composition) or in parallel (tensor product). They
usually come with an additional structure, a contravariant functor called dagger.

Examples of graphical languages for quantum mechanics and quantum computing are
the quantum circuits and the ZX-Calculus [11]. Some variants of the ZX-calculus have
been introduced more recently like the ZW-calculus [26] and the ZH-calculus [6]. All these
languages are defined using generators (elementary gates) and come with an interpretation
functor which associates to any diagram a pure quantum evolution, i.e. a morphism in the
category of Hilbert spaces. Given a graphical language, there are generally several ways to
represent a quantum evolution, thus a graphical language is also equipped with an equational
theory which allows to transform a diagram into another equivalent diagram. A fundamental
property, generally hard to prove, is the completeness of the language: given two diagrams
representing the same quantum evolution, one can be turned into the other using only the
transformation rules in the theory.

The languages considered have usually been built so as to be able to represent any
pure quantum evolution, i.e. any perfectly isolated quantum system which hence does not
interact with the environment. In this case, the language is called universal for pure quantum
mechanics. The hardness of the completeness problem, as well as constraints given by the
complexity to physically achieve some gates, focused the research on some restrictions of the
languages. On the one hand, finite presentations for the quantum circuits were shown to be
complete for some restrictions – namely Clifford [42], one-qubit Clifford+T [37], two-qubit
Clifford+T [43], CNot-dihedral [1] –, however none of these restrictions is universal, nor
approximately universal. Regarding the ZX-calculus, completeness results exist for non-
universal restrictions of the ZX-Calculus [3, 4, 16, 24], but also for the many-qubit Clifford+T
ZX-Calculus [31], which was the first completeness result for an approximately universal
fragment of the language. Then complete theories have been introduced for the universal
ZX-Calculus [28, 33, 32, 44] and ZW-Calculus [27, 28]. The completeness of the graphical
languages for pure quantum mechanics is one of the main achievements of the categorical
approach to quantum mechanics, and is the cornerstone for the application of this formalism
in many areas of quantum information processing. The ZX-Calculus already proved to be
useful for quantum information processing [14] (e.g. measurement-based quantum computing
[18, 23, 29], quantum codes [17, 9, 20, 22], circuit optimisation [21], foundations [5, 19] ...).
Moreover the ZX-calculus can be concretely used through two softwares: Quantomatic [36]
and PyZX [34].

The existence of complete graphical languages beyond pure quantum mechanics for more
general, not necessarily pure, quantum evolutions is an open question that we address in the
present paper.

While pure quantum evolutions correspond to linear maps over Hilbert spaces, probability
distributions over quantum states as well as some quantum evolutions like discarding a
quantum system can be represented, following the von Neumann approach, by means of
density matrices and completely positive maps. The category of completely positive maps
has been already studied [39], and in particular the connections between the pure and the
van Neumann approaches is a central question in categorical quantum mechanics. Selinger
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introduced a construction called CPM to turn a category for pure quantum mechanics into a
category for density matrices and completely positive maps [40]. Another approach to relate
pure quantum mechanics to the general one is the notion of environment structure [10, 12, 15].
The notion of purification is central in the definition of environment structure. The CPM-
construction and the environment structure approaches have been proved to be equivalent [12].

In terms of graphical languages, the environment structure approach cannot be used
in a straightforward way to extend a graphical language beyond pure quantum mechanics.
Roughly speaking the environment structure approach provides second order axioms which
associates with any equation on arbitrary (non necessarily pure) evolutions an equivalent
equation on pure evolutions. Such a second order axiom cannot be easily handled by a
equational theory on diagrams. Regarding the CPM-construction, the main property which
has been exploited in [14] is that CPM(C) is essentially a subcategory of C, thus one can
use a graphical language which has been designed for C in order to represent morphisms
in CPM(C): Given a complete graphical language for C, we can use a subset of the pure
diagrams to represent the evolutions in CPM(C). The main caveat of this approach is that
this subset is not necessarily closed under the equational theory on pure diagrams, and as a
consequence does not provide a complete graphical language for CPM(C).

Our contributions. In [30] was shown that the category CPTPM of completely posit-
ive trace-preserving maps is the universal monoidal category with a terminal unit and a
functor from the category of isometries. We build upon this result by introducing a new
construction, the discard construction, which transforms any †-symmetric monoidal category
into a symmetric monoidal category equipped with a discard map. Roughly speaking this
construction consists in making any isometry causal. Indeed, in quantum mechanics, the
isometries (linear maps U such U† ◦ U = I) are known to be causal, i.e. applying U and
then discarding the subsystem on which it has been applied is equivalent to discarding the
subsystem straightaway. Specifically, the discard construction proceeds as follows: first the
discard is added to the subcategory of isometries, making the unit of the tensor a terminal
object in this sub-category , as pointed out in [30]. Then the discard construction is obtained
as the pushout of the resulting category and the initial one.

We show that the discard construction does not always produce an environment structure
for the original category, and thus is not equivalent to the CPM construction. We show that
a necessary and sufficient condition for the two constructions to be equivalent is that the
initial category has enough isometries. We show that most of the categories usually used in
the context of the categorical quantum mechanics, like FHilb and Stab, do have enough
isometries, however Clifford+T does not.

Finally, we show that the discard construction provides a simple recipe to extend graphical
languages beyond pure quantum mechanics. We provide an extension for several graphical
languages that we prove to be complete for general quantum operations.

Structure of the paper. In section 2, we review some categorical notions used in categorical
quantum mechanics. Section 3 is dedicated to the definition of the discard construction and
the relation with the CPM construction. Finally, in section 4 we use the discard construction
to extend the ZX-calculus to make it complete for general (not necessarily pure) quantum
evolutions. The construction is also applied to other graphical languages.
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2 Background

2.1 Dagger symmetric monoidal categories
To avoid any size issue, all our categories are small, the homset of a category C will be
denoted C[A,B]. For simplicity, all the monoidal categories considered in the following will
be strict. Recall that a strict symmetric monoidal category (SMC) C is a category together
with a tensor product bifunctor ⊗ : C×C→ C, a unit object I such that A⊗ I = I⊗A = A

and A⊗(B⊗C) = (A⊗B)⊗C, and a symmetry natural isomorphism: σA,B : A⊗B → B⊗A
satisfying σA,I = 1A, σA,B⊗C = (1B⊗σA,C)◦(σA,B⊗1C), and σA,B ◦σB,A = 1B⊗A. A prop is
an SMC whose set of objects is freely spanned by one object. There is an associated notion of
strict symmetric monoidal functor F : C→ D which preserves unit, tensors and symmetries.
We will use string diagram notations for SMC where morphisms are described as boxes and

g ◦ f :=
f

g
f ⊗ g := gf 1A := A 1I := σA,B :=

A †-SMC C, is an SMC with an i.o.o. (identity on object) involutive and contravariant
SMC-functor (.)† : C→ C. That is, every morphism f : A→ B has a dagger f† : B → A

such that f†† = f , moreover the dagger respects the symmetries σ†A,B = σB,A. The dagger
is a central notion in categorical quantum computing and can be used to define specific
properties of morphisms:

I Definition 1. f : A→ B is an isometry if f† ◦ f = 1A, i.e.
f

f† = .

In this paper most of the categories considered are furthermore compact closed: A dagger
compact category (†-CC) is a †-SMC where every object A has a dual object A∗ such that
for all objects A, there are two morphisms A A∗ : A⊗A∗ → I and AA∗ : I → A∗⊗A

satisfying = A
A

A
A∗ , = A∗

A∗

A∗

A and
(
A A∗

)† =
A∗

A∗

A

A
.

2.2 Examples
We will consider two kinds of SMCs in this paper: the categories of quantum evolutions and
the graphical languages.

Quantum evolutions. Pure quantum evolutions correspond the category of Hilbert spaces.
We will consider several of its subcategories: FHilb is the category of finite dimensional
Hilbert spaces whose objects are Cn and morphisms are linear maps. Its tensor is the usual
tensor product of vector spaces and its dagger is the adjoint with respect to the usual scalar
product. It is the mathematical model for pure quantum mechanics. In quantum information
processing, quantum data is usually carried by qubits, hence Qubit is the full subcategory
of FHilb with objects of the form C2n . Stab is the sub-category of Qubit which is finitely
generated by the Clifford operators: H, S, CNot, the state |0〉, the projector 〈0|, and the
scalar 2 where:

H = 1√
2

(1 1
1 −1

)
S =

(1 0
0 i

)
CNot =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 |0〉 =
(1

0

)
〈0| = (1 0)
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Those are amongst the most commonly used gates in quantum computation (see [38] for
details). Clifford+T is the same as Stab but with the additional generator T =

( 1 0
0 ei

π
4

)
,

the morphisms of Clifford+T are exactly the matrices with entries in the ring Z[i, 1√
2 ]

[31]. Contrary to Stab, Clifford+T is approximately universal in the sense that ∀n,m∈N,
∀f∈Qubit[C2n ,C2m ] and ∀ε>0, there exists g ∈ Clifford+T[C2n ,C2m ] such that ||f−g||<ε.
FHilb, Qubit, Clifford+T, and Stab are all †-CC. Notice that Qubit, Clifford+T, and
Stab are props, but FHilb is not.

Probability distributions over pure quantum states as well as some quantum evolutions like
discarding a quantum system are not pure but can be represented, following the von Neumann
approach, by means of density matrices and completely positive maps. Let CPM be
the category of completely positive maps of finite dimension whose objects are Cn and
CPM[Cn,Cm] = {U : Cn×n → Cm×m | U is a completely positive linear map}. Similarly to
the pure case, one can define various subcategories of CPM. Notice that it can be achieved
by the CPM construction described in the next section.

Graphical languages. The second kind of categories we are considering in this paper are
graphical languages. They are props which come with interpretation functors defining their
semantics. A prop is in fact the equivalent of Lawvere theories for symmetric monoidal
theories. They can be presented by generators and relations as one would do for usual
theories, see [45] and [7] for a detailed discussion.

I Definition 2. A graphical language G is a prop presented by a set of generators Σ and a
set of equations E together with a function J.K : Σ→ hom(S) called the interpretation of G
in S. G is said to be sound if J.K defines an interpretation functor J.K : G → S, and universal
(resp. complete) when this functor is surjective (resp. faithful).

The ZX-, ZW- and ZH-calculi or the quantum circuits are examples of such categories
with semantics in Qubit.

2.3 Environment structures and CPM-construction
Connecting the Hilbert approach – for pure quantum mechanics – and the von Neumann
approach – for open systems – is a central question in categorical quantum mechanics. Selinger
pointed out that any †-CC for pure quantum mechanics can be turned into a category for
density matrices and completely positive maps via the CPM construction [40]:

I Definition 3. Given a †-CC C, let CPM(C) be the †-CC with the same objects as C such

that CPM(C)[A,B] =

 f

A

B

f∗
A∗

B∗C C∗

, f ∈ C[A,B ⊗ C]

, where g∗
A∗

B∗

g†
B

A

:= A∗

B∗
.

Applying it to FHilb one obtains the category CPM of completely positives maps. The
CPM construction can also be applied to Qubit, Clifford+T, and Stab. Notice that the
CPM-construction has been then extended to the non necessarily compact categories [12].

Another approach to relate pure quantum mechanics to the general one is the notion of
environment structure [10, 12, 15]. The notion of purification is central in the definition of
environment structure. Intuitively, it means that (1) there is a discard morphism for every
object; (2) any morphism can be purified, i.e. decomposed into a pure morphism followed by
a discarding map, and (3) this purification is essentially unique. More formally:
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I Definition 4. An environment structure for a †-CC C is a CC C with the same objects
as C, an i.o.o SMC-functor ι : C → C and for each object A a morphism A : A → I

such that:
(1)

I
= 1I , and for all A,B : C,

A
⊗

B
=
A⊗B

.

(2) For all f : A→ B in C, there is an f ′ : A→ B ⊗X in C such that: f = ι(f ′)

(3) For any f : A→ B ⊗X and g : A→ B ⊗ Y in C: f ∼cp g ⇔ ι(f) = ι(g)

where the relation ∼cp is defined as: f ∼cp g ⇔
f

f†
=

g

g†

Notice that ∼cp is technically not a relation on morphisms but on tuples (A,B,X, f) with
f ∈ C[A,B⊗X]: (A,B,X, f) ∼cp (C,D, Y, g) if A = C,B = D and f, g satisfy the graphical
condition represented above. By abuse of notation, we write f ∼cp g, as the other components
of the tuple will be usually obvious from context. We will do the same for our relation
∼iso below.

CPM is actually an environment structure for the category FHilb, and more generally
for any †-CC C, CPM(C) is an environment structure for C and conversely any environment
structure for C is equivalent to CPM(C) [12]. Actually one can notice that CPM(C)[A,B]
is nothing but the set of equivalent classes of ∼cp.

The notion of environment structures has also been generalised to the non compact case
[12]. We chose here to focus on the compact case.

3 The Discard Construction

We introduce a new construction, the discard construction, which consists in adding a discard
map for every object of a †-SMC, and thus intuitively transforming a category for pure
quantum mechanics into a category for general quantum evolutions.

Causality is a central notion in quantum mechanics which has been axiomatised using a
discard map as follows [35]: f : A→ B is causal if and only if f = . Amongst the pure

quantum evolutions, the isometries are causal evolutions. The discard construction essentially
consists in making any isometry causal. Thus, whereas the CPM construction relies on
completely positive maps and the environment structures on the concept of purification, the
discard construction relies on causality.

3.1 Definition
We introduce the new construction in three steps. First, given a †-SMC, one can consider its
subcategory of isometries:

I Definition 5. Given a †-SMC C, Ciso is the subcategory with the same objects as C and
isometries as morphisms, i.e. for all A,B : C, Ciso[A,B] = {f : C[A,B], f† ◦ f = 1A}.

Notice that Ciso is an SMC but usually not a †-SMC. Any †-SMC-functor F : C→ D
between two †-SMC can be restricted to their subcategories of isometries leading to an
SMC-functor Fiso : Ciso → Diso. Thus there is a restriction functor iso : †-SMC→ SMC.
Remark that this functor preserves fullness and faithfulness. One always has an inclusion
i.o.o. faithful SMC-functor: iiso : Ciso → C.
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In quantum mechanics, isometries are causal evolutions, i.e. applying an isometry and
then discarding all outputs is equivalent to discarding the inputs straight away. As pointed
out in [30], adding discard maps to the category of isometries would make I a terminal object.
Such a category is said to be affine symmetric monoidal category (ASMC). We define the
affine completion of an SMC:

IDefinition 6. Given an SMC C, we define C! as C with an additional morphism !A : A→ I

for each object A : C. We denote the inclusion functor i! : C→ C! which is strict monoidal
and i.o.o. We further impose that 1I = !I , and that for all f : C[A,B], !B ◦ i!(f) = !A.
This makes I a terminal object in C!, and thus C! is an ASMC.

Notice by the way that !A⊗ !B = 1I ◦ ( !A⊗ !B) = !I ◦ ( !A⊗ !B) = !A⊗B . Again given
a functor F : C → D, one can define a functor F ! : C! → D! by F !( !A) = !i!(F (A)) and
F !(f) = i!(F (f)) for the other morphisms. In [30], Huot and Staton show that CPTPM,
the category of completely positive trace preserving maps, is equivalent to FHilb !

iso, thus
giving a caracterisation of it via a universal property. We extend this idea to non-trace
preserving maps by proceeding to a local affine completion of the subcategory of isometries.

We define the category C as the pushout of C and C !
iso:

I Definition 7. Given a †-SMC C, C is defined as the pushout in the category of symmetric
monoidal categories:

Ciso

C !
iso

C

C

iiso

i!

ιC !
iso

ιC

The existence of this pushout follows from the fact that the forgetful functor from
strict symmetric monoidal categories to categories StrictSymMonCat → Cat preserves
coequalizers, and from [8, Theorem 9.3.9]. As all our functors are i.o.o., we can also describe
it simply combinatorially. The objects of C are the same as C. Its morphisms are
equivalence classes generated by formal composition and tensoring of morphisms in C !

iso and
C. The equivalence relation is generated by the equations of both categories augmented
with equations i!(f) = iiso(f) for all f in Ciso. The functors ιC and ιC !

iso
are the natural

ways to embed C and C !
iso. We will see those formal compositions as string diagrams whose

components are morphisms of C and C !
iso wired to each others. Two diagrams represent the

same morphism if we can rewrite one into the other applying the equations of both categories
and i!(f) = iiso(f) for all f in Ciso. This forms a well defined SMC.

Since the only morphisms in Ciso which are not identified with the morphisms of C
are those that contain !A, we can see C as C augmented with discard maps which
delete isometries.

I Definition 8. The discard map on an object A is defined in C by
A

:= ιC !
iso

( !A).

Notice, that for any isometry f : A→ B in C , f = , thus any isometry is causal.

3.2 Relation to environment structures and CPM
In order to compare the C construction with environment structures and the CPM con-
struction we need to study in details the purification process in C . First notice that any
morphism of C admits a purification:
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I Lemma 9. Let C be a †-SMC. For all f : C [A,B], there is an X : C and an f ′ :

C[A,B ⊗X] such that f = ιC(f ′) .

The purification needs not be unique, however it satisfies an essential uniqueness condition.
To state it we define the relation ∼iso.:

I Definition 10. Let C be a †-SMC, and two morphisms f : A→ B ⊗X, g : A→ B ⊗ Y .

f ∼iso g if there are two isometries u : X → Z and v : Y → Z, such that
f

u =
g

v .

Notice that the relation ∼iso is not transitive, thus we consider ∼+
iso its transitive closure

to make it an equivalence relation. It is easy to show that if f ∼+
iso g then f and g purify the

same morphism of C . The converse is also true:

I Lemma 11. For all f : A→ B ⊗X and g : A→ B ⊗ Y : f ∼+
iso g ⇔ ιC(f) = ιC(g)

So the purification is unique up to ∼+
iso. Lemma 11 also gives an alternative definition of

C which relates more easily to the CPM construction. It is the same construction as CPM
with ∼cp replaced by ∼+

iso. In other words C [A,B] is the set of equivalent classes of ∼+
iso.

As we have introduced a new discard construction, a natural question is whether C
is an environment structure for C. To be an environment structure, three conditions are
required. The first two are satisfied: C has a discard morphism for every object, and every
morphism can be purified. The third one is the uniqueness of the purification: according to
the definition of the environment structures, f and g purify the same morphism if and only
if f ∼cp g whereas according to Lemma 11, f and g purify the same morphism if and only if
f ∼+

iso g. As a consequence C is an environment structure for C if and only if ∼cp=∼+
iso.

It turns out that one of the inclusions is always true:

I Lemma 12. For any †-SMC category C, we have ∼+
iso⊆∼cp.

As a consequence, if ∼cp 6=∼+
iso, it means that there are some morphisms f, g that are

equal in ∼cp but cannot be proved equal in ∼+
iso. Intuitively it means the category has not

enough isometries to prove those terms equal, which leads to the following definition:

I Definition 13. A †-SMC category C has enough isometries if the equivalences relations
∼cp and ∼+

iso of C are equal.

I Lemma 14. Given a †-SMC C, the following properties are equivalent:
1. C has enough isometries;
2. C is an environment structure for C;
3. C ' CPM(C).

Notice that if C has enough isometries, the discard construction provides a definition of
CPM(C) via a universal property. This gives a more direct way to build the environment,
avoiding to deal with the equivalence classes of the CPM construction.
I Remark 15. Let’s focus for a moment on the category Causal CPM(C) of causal maps,
that is the subcategory of maps cancelled by the discards in CPM(C). We have that:
∼cp⊆∼+

iso⇒ C !
iso ' Causal CPM(C). In fact by Lemma 14, CPM(C) ' C , and then

the subcategory Causal CPM(C) is equivalent to the subcategory of maps cancelled by the
discards in C which is equivalent to C !

iso. Causal CPM(FHilb) being exactly CPTPM,
we have recovered the result of [30].
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3.3 Examples
We consider the usual subcategories of FHilb used for pure quantum mechnanics and show
in each case whether the discard construction produces an environment structure or not.
First of all, thanks to the Stinespring dilation theorem, FHilb is not only an environment
structure for FHilb, but the relation ∼iso is also transitive in this case:

I Proposition 16. FHilb is an environment structure for FHilb. Furthermore ∼+
iso=∼iso.

When dealing with graphical languages we will be more interested in the full subcategory
Qubit of FHilb:

I Proposition 17. Qubit is an environment structure for Qubit.

Notice that in general, the property of having enough isometries does not transfer to full
subcategories: If D is a full subcategory of C, we might have f ∼+

iso g on C but f 6∼+
iso g on

D. This could happen for two reasons: First the chain of intermediate morphisms that prove
that f ∼+

iso g might live outside of D. Second, the isometries that “prove” that f ∼+
iso g on

C might have codomain outside of D.
If our category is not a full subcategory, then everything falls apart, and finding conditions

that guarantee that C is an environment structure for C is not easy.
For subcategories of Qubit, necessary conditions can be given. This category has the

peculiarity that ·∗ is the identity on objects and that f∗∗ = f for all morphisms (·∗ maps a
matrix to its conjugate matrix). In particular, for any state φ : I → I ⊗X, we have φ∗ ∼cp φ.
Indeed φ φ∗ = φ∗ φ .

So a necessary condition for a subcategory of Qubit to behave nicely is that for all states
φ, we have φ∗ ∼+

iso φ. This is the case in Stab: Given a stabilizer state φ, there always exists
a stabilizable unitary U s.t. Uφ = φ∗. In fact:

I Proposition 18. Stab is an environment structure for Stab.

The main idea of the proof is to use the map/state duality, and structural results about
bipartite stabilizer states [2].

No such unitary exists in general in Clifford+T: For almost all states φ, there is no
unitary U (and actually no morphism at all) s.t. Uφ = φ∗. Clifford+T therefore has not
got enough isometries:

I Proposition 19. (Clifford+T) is not an environment structure for Clifford+T. More
precisely, there exists a state φ s.t. φ ∼cp φ∗ but φ 6∼+

iso φ
∗. One can take for example

φ = 1 + 2i (in this case φ is a state with no input and outputs, hence a scalar).

Note that for all categories above, we have ∼+
iso=∼iso. That it holds in Qubit and FHilb

is a consequence of the Witt extension theorem: Every isometry f : A → B is equal to a
unitary g : B → B precomposed with a canonical embedding from A to B. It it well known
in Stab and it is true in Clifford + T by [25, Lemma 5].

4 Application to the ZX-Calculus and other graphical languages

We now focus on the behavior of interpretation functors with respect to the discard construc-
tion. The discard construction defines a functor (_) : †−SMC→ SMC. Indeed, given a
†-SMC functor F , Fiso and F !

iso uniquely define a functor F by pushout.
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Diso

D !
iso

D

D

Ciso

C !
iso

C

C

F is
o

F
!
iso

F

F

The following lemma and theorem are the main tools to apply the discard construction to
graphical languages:

I Lemma 20. If F is faithful and if Fiso : Ciso → Diso is surjective, then F (f) ∼+
iso F (g)⇒

f ∼+
iso g.

I Theorem 21. Let C and D be two †-SMCs and F : C → D a †-SMC-functor. If F is
faithful and if Fiso : Ciso → Diso is surjective, then F : C → D is faithful. If furthermore
F is surjective then F is surjective and faithful.

Notice that the hypothesis on Fiso is very strong, as it makes it an isomorphism: We
want it to be surjective as we do not want to lose even one isometry. In particular we do not
know if the theorem still applies if F is merely an equivalence of categories.

Reformulating for graphical languages this gives:

I Corollary 22 (of Theorem 21). Given a †-CC C with enough isometries, if G is a †-
CC universal complete graphical language for C then G is a universal complete language
for CPM(C).

This provides a general recipe. We start with a universal complete graphical language
G. We build G , by Theorem 21, J.K : G → C is full and faithful. Furthermore
C ' CPM(C). G as a prop can be presented by adding one new generator to the
signature Σ and one equation for each isometry of G. In general, if one is provided with
a spanning set of the isometries, the number of equations can be drastically reduced. We
just need one equation for each element of this set. We then obtain a universal complete
graphical language.

We will now briefly review the ZX-calculus and some of its twin languages. They are
all universal and complete for subcategories of Qubit. Each time we will apply the recipe
with a well chosen spanning set and provide the additional axioms involving . We will not
discuss minimality, i.e. if adding these new axioms can help to simplify others.

4.1 The ZX-calculus
The ZX-Calculus was introduced in [11] by Coecke and Duncan for pure quantum evolutions.
It is a †-compact prop generated by:

R
(n,m)
Z (α) : n→ m :: α

...

...

n

m

R
(n,m)
X (α) : n→ m :: α

...

...

n

m

H : 1→ 1 ::

and the two compositions: spacial (.⊗ .) and sequential (. ◦ .). The symmetric and compact
structure are provided by σ : 2→ 2 :: , ε : 2→ 0 :: and η : 0→ 2 :: .

To simplify, the red and green nodes are represented empty when holding a 0 angle:
...

0:=... ...
...

and 0:=... ...
... ...
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The language is universal [11]. So far, it has two complete axiomatisations [28, 33]. Some
of the main axioms are:

... = α+β
β

...
α
...

......

...

...
= α

...
= α

...

...

...

ZX-diagrams represent quantum evolutions, so there exists a functor J.K : ZX→ Qubit,
called the standard interpretation, which associates to any diagram D : n→ m a linear map
JDK : C2n → C2m inductively defined as follows:

J.K

JD1 ⊗D2K := JD1K⊗ JD2K JD2 ◦D1K := JD2K ◦ JD1K
r z

:= (1)
r z

:=
(1 0

0 1
) r z

:= 1√
2

(1 1
1 −1

)

J K := (1 0 0 1)
r z

:=

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 q y
:=

1
0
0
1



Jα K := (1 + eiα)
t

α
...

...

n

m

|

:= 2m



2n︷ ︸︸ ︷
1 0 · · · 0 0
0 0 · · · 0 0
...
...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 eiα

 (n+m > 0)

For any n,m ≥ 0 and α ∈ R:
t

α
...

...

n

m

|

=
r z⊗m

◦

t

α
...

...

n

m

|

◦
r z⊗n

(
where M⊗0 = (1) and M⊗k = M ⊗M⊗k−1 for k ∈ N∗

)
.

Theorem 21 provides a recipe for transforming the language for mixed states and CPMs.
The resulting language ZX can be seen as a prop with the generators of the ZX-Calculus,
augmented with and with the axiomatisation enriched with { ◦D = | D† ◦D = I}.
We actually do not need an infinite axiomatisation. Indeed, the set of isometries of the
ZX-Calculus can be finitely generated.

Using (eiα, |0〉, H, RZ(α), CNot) as spanning set of the isometries [38], we obtain only
five axioms:

α
=

π
= =

=α =

4.2 The π
2 fragment of ZX-calculus

The ZXπ
2
is obtained from ZX by restricting phases α to {0, π2 , π,

3π
2 }. It is universal and

complete for Stab [3] with the adequate axiomatisation. Moreover according to Lemma 18
Stab is an environment structure for Stab.
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The set (eiπ4 , |0〉, H, RZ(α), CNot), with α restricted to multiples of π2 , is a spanning
set of isometries in Stab (notice that eiπ4 = 2 〈0|HSH |0〉〈0|H |0〉 is in Stab), so adding
the same set of equations than in ZX with additional rule π

2 = will provide a

complete axiomatisation for ZXπ
2
.

4.3 The Clifford+T fragment of ZX-calculus

Restricting ZX to angles multiples of π/4, we obtain a language which is known to be
universal and complete for Clifford+T [31]. However, as shown by Lemma 19, the semantic
category Clifford+T does not have enough isometries. The discard construction is strictly
coarser than CPM for this fragment. So we leave open the complete axiomatisation of
quantum operations for this fragment.

4.4 The ZW-calculus

The ZW-Calculus was introduced in [26], deriving from the GHZ/W-Calculus [13], where the
main two generators are two non-equivalent ways to entangle three qubits, the so-called GHZ
and W states. The language was made complete for pure quantum mechanics in [28]. Since
CNot is hard to express in this calculus, we choose another set of universal diagrams, more
suited to ZW, namely (eiα, |1〉, RZ(α), H, CZ ◦ SWAP). The resulting rules for ZW are:

eiα = = =eiα

=
1√
2 =

4.5 The ZH-Calculus

The ZH-Calculus was introduced and proved to be complete in [6]. The point of this language
is to easily represent hypergraph-states, a generalisation of graph-states, a useful resource
for quantum computing. This language has been specifically designed to easily represent
the multi-controlled Z (which constitute the hyperedges in the hypergraph-states). So in
particular, CZ and RZ(α) are easily representable. Up to a scalar, H is also easily doable,
and

q
X(0,1)y = |0〉. Hence, choosing (eiα, |0〉, H, RZ(α), CZ) as spanning set, we only need

the axioms:

=eiα = =
1√
2

=eiα =
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1 Introduction

Graphs, on the one hand, and strings, on the other, are two different types of data objects
and they have certain particularities. Graphs seem to be more popular in fields like classical
and parameterised algorithms and complexity (due to the fact that many natural graph
problems are intractable), while fields like formal languages, pattern matching, verification or
compression are more concerned with strings. Moreover, both the field of graph algorithms
as well as string algorithms are well established and provide rich toolboxes of algorithmic
techniques, but they differ in that the former is tailored to computationally hard problems
(e.g., the approach of treewidth and related parameters), while the latter focuses on providing
efficient data-structures for near-linear-time algorithms. Nevertheless, it is sometimes possible
to bridge this divide, i.e., by “flattening” a graph into a sequential form, or by “inflating” a
string into a graph, to make use of respective algorithmic techniques otherwise not applicable.
This paradigm shift may provide the necessary leverage for new algorithmic approaches.

In this paper, we are concerned with certain structural parameters (and the problems
of computing them) for graphs and strings: the cutwidth cw(G) of a graph G (i.e., the
maximum number of “stacked” edges if the vertices of a graph are drawn on a straight line),
the pathwidth pw(G) of a graph G (i.e., the minimum width of a tree decomposition the
tree structure of which is a path), and the locality number loc(α) of a string α (explained
in more detail in the next paragraph). By Cutwidth, Pathwidth and Loc, we denote
the corresponding decision problems and with the prefix Min, we refer to the minimisation
variants. The two former graph-parameters are very classical. Pathwidth is a simple (yet
still hard to compute) subvariant of treewidth, which measures how much a graph resembles
a path. The problems Pathwidth and MinPathwidth are intensively studied (in terms of
exact, parameterised and approximation algorithms) and have numerous applications (see
the surveys and textbook [10, 34, 8]). Cutwidth is the best-known example of a whole class
of so-called graph layout problems (see the survey [17, 39] for detailed information), which
are studied since the 1970s and were originally motivated by questions of circuit layouts.

The locality number is rather new and we shall discuss it in more detail. A word is k-local
if there exists an order of its symbols such that, if we mark the symbols in the respective
order (which is called a marking sequence), at each stage there are at most k contiguous
blocks of marked symbols in the word. This k is called the marking number of that marking
sequence. The locality number of a word is the smallest k for which that word is k-local, or,
in other words, the minimum marking number over all marking sequences. For example, the
marking sequence σ = (x, y, z) marks α = xyxyzxz as follows (marked blocks are illustrated
by overlines): xyxyzxz, xyxyzxz, xyxyzxz, xyxyzxz; thus, the marking number of σ is 3. In
fact, all marking sequences for α have a marking number of 3, except (y, x, z), for which it is
2: xyxyzxz, xyxyzxz, xyxyzxz. Thus, the locality number of α, denoted by loc(α), is 2.

The locality number has applications in pattern matching with variables [14]. A pattern
is a word that consists of terminal symbols (e.g., a, b, c), treated as constants, and variables
(e.g., x1, x2, x3, . . .). A pattern is mapped to a word by substituting the variables by strings
of terminals. For example, x1x1babx2x2 can be mapped to acacbabcc by the substitution
(x1 → ac, x2 → c). Deciding whether a given pattern matches (i.e., can be mapped to) a given
word is one of the most important problems that arise in the study of patterns with variables
(note that the concept of patterns with variables arises in several different domains like
combinatorics on words (word equations [30], unavoidable patterns [36]), pattern matching [1],
language theory [2], learning theory [2, 19, 38, 42, 31, 22], database theory [7], as well as
in practice, e.g., extended regular expressions with backreferences [26, 27, 44, 28], used in
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programming languages like Perl, Java, Python, etc.). Unfortunately, the matching problem is
NP-complete [2] in general (it is also NP-complete for strongly restricted variants [23, 21] and
also intractable in the parameterised setting [24]). As demonstrated in [43], for the matching
problem a paradigm shift as sketched in the first paragraph above yields a very promising
algorithmic approach. More precisely, any class of patterns with bounded treewidth (for
suitable graph representations) can be matched in polynomial-time. However, computing
(and therefore algorithmically exploiting) the treewidth of a pattern is difficult (see the
discussion in [21, 43]), which motivates more direct string-parameters that bound the
treewidth and are simple to compute (virtually all known structural parameters that lead
to tractability [14, 21, 43, 45] are of this kind (the efficiently matchable classes investigated
in [15] are one of the rare exceptions)). This also establishes an interesting connection between
ad-hoc string parameters and the more general (and much better studied) graph parameter
treewidth. The locality number is a simple parameter directly defined on strings, it bounds the
treewidth and the corresponding marking sequences can be seen as instructions for a dynamic
programming algorithm. However, compared to other “tractability-parameters”, it seems to
cover best the treewidth of a string, but whether it can be efficiently computed is unclear.

In this paper, we investigate the problem of computing the locality number and, by doing
so, we establish an interesting connection to the graph parameters cutwidth and pathwidth
with algorithmic implications for approximating cutwidth. In the following, we first discuss
related results in more detail and then outline our respective contributions.

Known Results and Open Questions. For Loc, only exact exponential-time algorithms
are known and whether it can be solved in polynomial-time, or whether it is at least fixed-
parameter tractable is mentioned as open problems in [14]. Approximation algorithms have
not yet been considered. Addressing these questions is the main purpose of this paper.

Pathwidth and Cutwidth are NP-complete, but fixed-parameter tractable with respect
to parameter pw(G) or cw(G), respectively (even with “linear” fpt-time g(k) O(n) [9, 11, 47]).
With respect to approximation, their minimisation variants have received a lot of attention,
mainly because they yield (like many other graph parameters) general algorithmic approaches
for numerous graph problems, i.e., a good linear arrangement or path-decomposition can
often be used for a dynamic programming (or even divide and conquer) algorithm. More
generally speaking, pathwidth and cutwidth are related to the more fundamental concepts of
small balanced vertex or edge separators for graphs (i.e., a small set of vertices (or edges,
respectively) that, if removed, divides the graph into two parts of roughly the same size.
More precisely, pw(G) and cw(G) are upper bounds for the smallest balanced vertex separator
of G and the smallest balanced edge separator of G, respectively (see [20] for further details
and explanations of the algorithmic relevance of balanced separators). The best known
approximation algorithms for MinPathwidth and MinCutwidth (with approximations
ratios of O(

√
log(opt) log(n)) and O(log2(n)), respectively) follow from approximations of

vertex separators (see [20]) and edge separators (see [35]), respectively.

Our Contributions. There are two natural approaches to represent a word α over alphabet
Σ as a graph Gα = (Vα, Eα): (1) Vα = {1, 2, . . . , |α|} and the edges are somehow used to
represent the actual symbols, or (2) Vα = Σ and the edges are somehow used to represent the
positions of α. We present a reduction of type (2) such that |Eα| = O(|α|) and cw(Gα) =
2 loc(α), and a reduction of type (1) such that |Eα| = O(|α|2) and loc(α) ≤ pw(Gα) ≤ 2 loc(α).
Since these reductions are parameterised reductions and also allow transferring approximation
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results, we conclude that Loc is fixed-parameter tractable if parameterised by |Σ| or by the
locality number (answering the respective open problem from [14]), and also that there is a
polynomial-time O(

√
log(opt) log(n))-approximation algorithm for MinLoc.

In addition, we also show a way to represent an arbitrary multi-graph G = (V,E) by a
word αG over alphabet V , of length |E| and with cw(G) = loc(α). This describes a Turing-
reduction from Cutwidth to Loc which also allows to transfer approximation results between
the minimisation variants. As a result, we can conclude that Loc is NP-complete (which
solves the other open problem from [14]). Finally, by plugging together the reductions from
MinCutwidth to MinLoc and from MinLoc to MinPathwidth, we obtain a reduction
which transfers approximation results from MinPathwidth to MinCutwidth, which yields
an O(

√
log(opt) log(n))-approximation algorithm for MinCutwidth. This improves, to our

knowledge for the first time since 1999, the best approximation for Cutwidth from [35].
To our knowledge, this connection between cutwidth and pathwidth has not yet been

reported in the literature so far. This is rather surprising since Cutwidth and Pathwidth
have been jointly investigated in the context of exact and approximation algorithms, especially
in terms of balanced vertex and edge separators. More precisely, the approximation of
pathwidth and cutwidth follows from the approximation of vertex and edge separators,
respectively, and the approximation of vertex separators usually relies on edge separators:
the edge separator approximation from [35] can be used as a black-box for vertex separator
approximation, and the best vertex separator algorithm from [20] uses a technique for
computing edge separators from [4] as component. Our improvement, on the other hand,
is achieved by going in the opposite direction: we use pathwidth approximation (following
from [20]) in order to improve the currently best cutwidth approximation (from [35]). This
might be why the reduction from cutwidth to pathwidth has been overlooked in the literature.
Another reason might be that this relation is less obvious on the graph level and becomes more
apparent if linked via the string parameter of locality, as in our considerations. Nevertheless,
since pathwidth and cutwidth are such crucial parameters for graph algorithms, we also
translate our locality based reduction into one from graphs to graphs directly.

2 Preliminaries

Basic Definitions. The set of strings (or words) over an alphabet X is denoted by X∗, by
|α| we denote the length of a word α, alph(α) is the smallest alphabet X with α ∈ X∗. A
string β is called a factor of α if α = α′βα′′; if α′ = ε or α′′ = ε, where ε is the empty string,
β is a prefix or a suffix, respectively. For a position j, 1 ≤ j ≤ |α|, we refer to the symbol at
position j of α by the expression α[j], and α[j..j′] = α[j]α[j + 1] . . . α[j′], 1 ≤ j ≤ j′ ≤ |α|.
For a word α and x ∈ alph(α), let psx(α) = {i | 1 ≤ i ≤ |α|, α[i] = x} be the set of all
positions where x occurs in α. For a word α, let α0 = ε and αi+1 = ααi for i ≥ 0.

Let α be a word and let X = alph(α) = {x1, x2, . . . , xn}. A marking sequence is an
enumeration, or ordering on the letters, and hence may be represented either as an ordered
list of the letters or, equivalently, as a bijection σ : {1, 2, . . . , |X|} → X. Given a word α and
a marking sequence σ, the marking number πσ(α) (of σ with respect to α) is the maximum
number of marked blocks obtained while marking α according to σ. We say that α is k-local
if and only if, for some marking sequence σ, we have πσ(α) ≤ k, and the smallest k such
that α is k-local is the locality number of α, denoted by loc(α). A marking sequence σ with
πσ(α) = loc(α) is optimal (for α). For a marking sequence σ = (xσ(1), xσ(2), . . . , xσ(m)) and a
word α, by stage i of σ we denote the word α with exactly positions

⋃i
j=1 psxσ(j)

(α) marked.
For a word α, the condensed form of α, denoted by cond(α), is obtained by replacing every

maximal factor xk with x ∈ alph(α) by x. For example, cond(x1x1x2x2x2x1x2x2) = x1x2x1x2.
A word α is condensed if α = cond(α).
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I Remark 1. For a word α, we have loc(cond(α)) = loc(α) [14]. Hence, by computing cond(α)
in time O(|α|), algorithms for computing the locality number (and the respective marking
sequences) for condensed words extend to algorithms for general words.

Examples and Word Combinatorial Considerations. The structure of 1-local and 2-local
words is characterised in [14]. The simplest 1-local words are repetitions xk for some k ≥ 0.
Furthermore, if α is 1-local, then y`αyr is 1-local, where y /∈ alph(α), `, r ≥ 0. Marking
sequences for 1-local words can be obtained by going from the “inner-most” letters to the
“outer-most” ones. The English words radar, refer, blender, and rotator are all 1-local.

Generally, in order to have a high locality number, a word needs to contain many
alternating occurrences of (at least) two letters. For instance, (x1x2)n is n-local. In general,
one can show that if loc(w) = k, then loc(wi) ∈ {ik − i+ 1, ik}.

The well-known Zimin words [36] also have high locality numbers compared to their
lengths. These words are important in the domain of avoidability, as it was shown that a
terminal-free pattern is unavoidable (i.e., it occurs in every infinite word over a large enough
finite alphabet) if and only if it occurs in a Zimin word. The Zimin words Zi, for i ∈ N, are
inductively defined by Z1 = x1 and Zi+1 = Zixi+1Zi. Clearly, |Zi| = 2i − 1 for all i ∈ N.
Regarding the locality of Zi, note that marking x2 leads to 2i−2 marked blocks; further,
marking x1 first and then the remaining symbols in an arbitrary order only extends or joins
marked blocks. Thus, we obtain a sequence with marking number 2i−2. In fact, it can be
shown that loc(Zi) = |Zi|+1

4 = 2i−2 for i ∈ N≥2. Notice that both Zimin words and 1-local
words have an obvious palindromic structure. However, in the Zimin words, the letters occur
multiple times, but not in large blocks, while in 1-local words there are at most 2 blocks
of each letter. One can show that if w is a palindrome, with w = uauR or w = uuR, and
loc(u) = k, then loc(w) ∈ {2k − 1, 2k, 2k + 1} (uR denotes the reversal of u).

The number of occurrences of a letter alone is not always a good indicator of the locality
of a word. The German word Einzelelement (a basic component of a construction) has
5 occurrences of e, but is only 3-local, as witnessed by marking sequence (l,m,e,i,n,z,t).
Nevertheless, a repetitive structure often leads to high locality. The Finnish word tu-
tustuttu (perfect passive of tutustua – to meet) is nearly a repetition and 4-local, while
pneumonoultramicroscopicsilicovolcanoconiosis is an (English) 8-local word, and lentokone-
suihkuturbiinimoottoriapumekaanikkoaliupseerioppilas is a 10-local (Finnish) word.

Complexity and Approximation. We briefly summarise the fundamentals of parameterised
complexity [25, 18] and approximation [5].

A parameterised problem is a decision problem with instances (x, k), where x is the actual
input and k ∈ N is the parameter. A parameterised problem P is fixed-parameter tractable if
there is an fpt-algorithm for it, i.e., one that solves P on input (x, k) in time f(k) ·p(|x|) for a
recursive function f and a polynomial p. We use the O∗(·) notation which hides multiplicative
factors polynomial in |x|.

A minimisation problem P is a triple (I, S,m), where I is the set of instances, S is a
function that maps instances x ∈ I to the set of feasible solutions for x, and m is the objective
function that maps pairs (x, y) with x ∈ I and y ∈ S(x) to a positive rational number. For
every x ∈ I, we denote m∗(x) = min{m(x, y) : y ∈ S(x)}. For x ∈ I and y ∈ S(x), the
value R(x, y) = m(x,y)

m∗(x) is the performance ratio of y with respect to x. An algorithm A is
an approximation algorithm for P with ratio r : N→ Q (or an r-approximation algorithm,
for short) if, for every x ∈ I, A(x) = y ∈ S(x), and R(x, y) ≤ r(|x|). We also let r be of
the form Q × N → Q when the ratio r depends on m∗(x) and |x|; in this case, we write
r(opt, |x|). We further assume that the function r is monotonically non-decreasing. Unless
stated otherwise, all approximation algorithms run in polynomial time with respect to |x|.
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Pathwidth, Cutwidth and Problem Definitions. Let G = (V,E) be a (multi)graph with
the vertices V = {v1, . . . , vn}. A cut of G is a partition (V1, V2) of V into two disjoint subsets
V1, V2, V1∪V2 = V ; the (multi)set of edges C(V1, V2) = {{x, y} ∈ E | x ∈ V1, y ∈ V2} is called
the cut-set or the (multi)set of edges crossing the cut, while V1 and V2 are called the sides of the
cut. The size of this cut is the number of crossing edges, i.e., | C(V1, V2)|. A linear arrangement
of the (multi)graph G is a sequence (vj1 , vj2 , . . . , vjn), where (j1, j2, . . . , jn) is a permutation
of (1, 2, . . . , n). For a linear arrangement L = (vj1 , vj2 , . . . , vjn), let L(i) = {vj1 , vj2 , . . . , vji}.
For every i, 1 ≤ i < n, we consider the cut (L(i), V \ L(i)) of G, and denote the cut-set
CL(i) = C(L(i), V \ L(i)) (for technical reasons, we also set CL(0) = CL(n) = ∅). We define
the cutwidth of L by cw(L) = max{| CL(i)| | 0 ≤ i ≤ n}. Finally, the cutwidth of G is
the minimum over all cutwidths of linear arrangements of G, i.e., cw(G) = min{cw(L) |
L is a linear arrangement for G}.

A path decomposition (see [11]) of a connected graph G = (V,E) is a tree decomposition
whose underlying tree is a path, i.e., a sequence Q = (B0, B1, . . . , Bm) (of bags) with Bi ⊆ V ,
0 ≤ i ≤ m, satisfying the following two properties:

Cover property: for every {u, v} ∈ E, there is an index i, 0 ≤ i ≤ m, with {u, v} ⊆ Bi.

Connectivity property: for every v ∈ V , there exist indices iv and jv, 0 ≤ iv ≤ jv ≤ m,
such that {j | v ∈ Bj} = {i | iv ≤ i ≤ jv}. In other words, the bags that contain v occur
on consecutive positions in (B0, . . . , Bm).

The width of a path decomposition Q is w(Q) = max{|Bi| | 0 ≤ i ≤ m} − 1, and the
pathwidth of a graph G is pw(G) = min{w(Q) | Q is a path decomposition of G}. A path
decomposition is nice if B0 = Bm = ∅ and, for every i, 1 ≤ i ≤ m, either Bi = Bi−1 ∪ {v} or
Bi = Bi−1 \ {v}, for some v ∈ V .

It is convenient to treat a path decomposition Q as a scheme marking the vertices of
the graph based on the order in which the bags occur in the bag sequence. More precisely,
all vertices are initially marked as open. Then we process the bags one by one, as they
occur in Q. When we process the first bag that contains a vertex v, then v becomes active.
When we process the last bag that contains v, it becomes closed. The connectivity property
enforces that vertices that are closed cannot be marked as active again, while the cover
property enforces that adjacent vertices must be both active at some point. The width is
the maximum number of vertices which are marked active at the same time minus one. If
the path decomposition is nice, then whenever a bag is processed as described above, we
change the marking of exactly one vertex.

We next formally define the computational problems of computing the parameters defined
above. By Loc, Cutwidth and Pathwidth, we denote the problems to check for a given
word α or graph G and integer k ∈ N, whether loc(α) ≤ k, cw(G) ≤ k, and pw(G) ≤ k,
respectively. Note that since we can assume that k ≤ |α| and k ≤ |G|, whether k is given
in binary or unary has no impact on the complexity. With the prefix Min, we refer to
the minimisation variants. More precisely, MinLoc = (I, S,m), where I is the set of
words, S(α) is the set of all marking sequences for α and m(α, σ) = πσ(α) (note that
m∗(α) = loc(α)); MinCutwidth = (I, S,m), where I are all multigraphs, S(G) is the set
of linear arrangements of G, and m(G,L) = cw(L) (note that m∗(G) = cw(G)); finally,
MinPathwidth = (I, S,m), where I are all graphs, S(G) is the set of path decompositions
of G, and m(G,Q) = w(Q) (note that m∗(G) = pw(G)).
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Figure 1 The graph Hα,k for α = abcbcdbada and k = 2; an optimal linear arrangement of Hα,k
with cutwidth 4 induces the optimal marking sequence (c, b, d, a) for α with marking number 2.

3 Locality and Cutwidth

In this section, we introduce polynomial-time reductions from Loc to Cutwidth and
vice versa. The established close relationship between these two problems lets us derive
several complexity-theoretic and algorithmic results for Loc. We also discuss approximation-
preserving properties of our reductions.

First, we show a reduction from Loc to Cutwidth. For a word α and an integer k ∈ N,
we build a multigraph Hα,k = (V,E) whose set of nodes V = alph(α) ∪ {$,#} consists of
symbols occurring in α and two additional characters $,# /∈ alph(α). The multiset of edges
E contains an edge between nodes x, y ∈ alph(α) for each occurrence of the factors xy and
yx in α, as well as 2k edges between $ and #, one edge between $ and the first letter of α,
and one edge between $ and the last letter of α. An example is given in Figure 1.

I Lemma 2. The graph Hα,k satisfies cw(Hα,k) = 2k if and only if loc(α) ≤ k.

Proof. Suppose firstly that α is k-local, and let σ = (x1, x2, . . . , xn) be an optimal mark-
ing sequence of α. Consider the linear arrangement L = (x1, x2, . . . , xn, $,#). Clearly,
| C({x1, x2, . . . , xn, $}, {#})| = 2k and | C({x1, x2, . . . , xn}, {$,#})| = 2. Now consider a cut
(K1,K2) = ({x1, x2, . . . , xi}, {xi+1, . . . , xn, $,#}) for 1 ≤ i < n. Every edge e ∈ C(K1,K2)
is of the form {xj , xh} with j ≤ i < h, or of the form {α[1], $} or {$, α[|α|]}. Consequently,
every edge e ∈ C(K1,K2) corresponds to a unique factor xjxh or xhxj of α with j ≤ i < h

and, after exactly the symbols x1, x2, . . . , xi are marked, xj is marked and xh is not, or to
a unique factor α[1] or α[|α|] and, after exactly the symbols x1, x2, . . . , xi are marked, α[1]
or α[|α|] is marked. Since there can be at most k marked blocks in α after marking the
symbols x1, . . . , xi, there are at most 2k such factors, which means that | C(K1,K2)| ≤ 2k.
Thus cw(Hα,k) ≤ 2k. Note that any linear arrangement must at some point separate the
nodes $ and #, meaning cw(Hα,k) ≥ 2k, so we get that cw(Hα,k) = 2k.

Now suppose that the cutwidth of Hα,k is 2k and let L be an optimal linear arrange-
ment witnessing this fact. Firstly, we note that L must either start with # followed
by $ (i.e., have the form (#, $, . . .)) or end with # preceded by $ (i.e., have the form
(. . . , $,#). Otherwise, since Hα,k is connected, every cut separating $ and # would be
of size strictly greater than 2k. Because a linear ordering and its mirror image have
the same cutwidth, we may assume that the optimal linear arrangement has the form
L = (xτ(1), xτ(2), . . . , xτ(n), $,#) for some permutation τ of {1, . . . , n}. Let σ be the marking
sequence (xτ(1), xτ(2), . . . , xτ(n)) of α induced by τ . Suppose, for contradiction, that for
some i, with 1 ≤ i < n, after marking xτ(1), . . . , xτ(i), we have k′ > k marked blocks.
Furthermore, let K1 = {xτ(1), . . . , xτ(i)} and K2 = {xτ(i+1), . . . , xτ(n), $,#}. For every
marked block α[s..t] that is not a prefix or a suffix of α, we have α[s], α[t] ∈ K1 and
α[s− 1], α[t+ 1] ∈ K2 and therefore {α[s− 1], α[s]}, {α[t], α[t+ 1]} ∈ C(K1,K2). Moreover,
for a marked prefix α[1..s], we have α[1], α[s] ∈ K1 and $, α[s + 1] ∈ K2 and therefore
{α[1], $}, {α[s], α[s+ 1]} ∈ C(K1,K2). Analogously, the existence of a marked suffix α[t..|α|]
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leads to {α[|α|], $}, {α[t − 1], α[t]} ∈ C(K1,K2). Consequently, for each marked block, we
have two unique edges in C(K1,K2), which implies | C(K1,K2)| ≥ 2k′ > 2k. This contradicts
the assumption that L is a witness that Hα,k has cutwidth 2k. Thus, α must be k-local. J

In the following, we briefly discuss the complexity of this reduction. Suppose we are given
a word α and an integer k ≤ |α|. It is usual in string algorithmics to assume that α is over
an integer alphabet, i.e., alph(α) ⊆ {1, . . . , |α|}. In this framework, the multigraph Hα,k can
be constructed in O(|α|) time (e.g., represented as a list of vertices and a list of edges).

I Lemma 3. If there is an r(opt, h)-approximation algorithm for MinCutwidth running
in O(f(h)) time for an input multigraph with h edges, then there is an (r(2 opt, |α|) + 1

opt )-
approximation algorithm for MinLoc running in O(f(|α|) + |α|) time on an input word α.

Proof. As already indicated in the proof of Lemma 2, for k = loc(α), every linear arrangement
for Hα,k naturally translates to a marking sequence for α. However, in an approximate linear
arrangement, the vertices # and $ do not have to be at the first (or last) position. Still, the
marking sequence corresponding to the linear arrangement L can have not more than cw(L)

2 +1
blocks, since only suffix and prefix can be marked blocks which correspond to only one instead
of two edges in a cut in Hα,k. This observation remains valid if we do not include the extra
vertices # and $ in Hα,k in the reduction. Let Hα be the graph obtained from Hα,k (for some
k) by removing the extra vertices # and $ (observe that this also removes the dependence on k).
Removing vertices only decreases the cutwidth, so Lemma 2 implies that cw(Hα) ≤ 2m∗(α).
Let α be an instance of MinLoc and A an r(opt, h)-approximation for MinCutwidth
on multigraphs. The approximation algorithm A run on Hα returns a linear arrangement
L = A(Hα) with cw(L) ≤ r(opt, h) cw(Hα). Let σ be the marking sequence corresponding
to L, then R(α, σ) = πσ(α)

m∗(α) ≤
2

cw(Hα) ( cw(L)
2 + 1) = cw(L)

cw(Hα) + 1
m∗(α) = R(Hα, L) + 1

m∗(α) . The
performance ratio R(Hα, L) is at most r(opt, h), where h = |α| is the number of edges in
Hα. For the optimum value k = m∗(α), the cutwidth of Hα,k is at least 2k − 2 and σ has
performance ratio at most r(2 opt, |α|) (with respect to the optimum value k for MinLoc).
The approximation procedure builds the graph Hα in O(|Σ|), runs A on Hα in O(f(|α|))
and translates the linear arrangement into a marking sequence σ in O(|Σ|). This gives an
(r(2 opt, |α|) + 1

opt )-approximation for MinLoc running time in O(f(|α|) + |α|) time. J

For a reduction from Cutwidth to Loc, let H = (V,E) be a connected multigraph,
where V is the set of nodes and E the multiset of edges (for technical reasons, we assume
|V | ≥ 2). Let H ′ = (V,E′) be the multigraph obtained by duplicating every edge in H. As
such, each node in H ′ has even degree, so there exists an Eulerian cycle C (i.e., a cycle
visiting each edge exactly once) in H ′, and, moreover, cw(H ′) = 2 cw(H). For each edge
e ∈ E′, let αe be the word over V that corresponds to an arbitrary traversal of the Eulerian
path P obtained from C by deleting e; see Figure 2 for an example.

I Lemma 4. For any edge e in E′, the word αe satisfies cw(H) ≤ loc(αe) ≤ cw(H) + 1.
Moreover, there is a vertex v ∈ V such that loc(αe) = cw(H) for every edge e incident to v.

Consequences. In the following, we overview a series of complexity-theoretic and algorithmic
consequences of the reductions provided above. We first discuss negative results and note
that we can close one of the main problems left open in [14].

I Theorem 5. The Loc problem is NP-complete.
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Figure 2 A graph H and its multigraph H ′ obtained by doubling the edges; the edge labels
describe a Eulerian cycle that starts and ends in x. Deleting the edge (v, x) in this cycle yields the
word α(v,x) = xwuxwuxvuvyzvyzv, which has an optimal marking sequence (w, u, x, v, y, z) with
marking number 3, and, thus, induces an optimal linear arrangement of H with cutwidth 3.

Theorem 5 follows from the Turing reduction from Cutwidth to Loc, but it can also
be proved using a polynomial-time one-to-many reduction from the well known NP-complete
problem Clique. This alternative approach is more technically involved but has the merit of
emphasising how the combinatorial properties of the locality number can be used to construct
computationally hard instances of Loc. Moreover, by the word-combinatorial observations
about locality made in Section 2, it is clear that Loc is NP-complete also for words with
special structure, e.g., palindromes and repetitions.

With respect to approximation, it is known that, assuming the Small Set Expansion Conjec-
ture (denoted SSE; see [40]), there exists no constant-ratio approximation for MinCutwidth
(see [48]). Consequently, approximating MinLoc within any constant factor is also SSE-hard.
In particular, we point out that stronger inapproximability results for MinCutwidth are
not known. Positive approximation results for MinLoc will be discussed in Section 4.

On certain graph classes, the SSE conjecture is equivalent to the Unique Games Conjecture
[32] (see [40, 41]), which, at its turn, was used to show that many approximation algorithms
are tight [33] and is considered a major conjecture in inapproximability. However, some
works seem to provide evidence that could lead to a refutation of SSE; see [3, 6, 29]. In
this context, we show in Section 4 a series of unconditional results which state that multiple
natural greedy strategies do not provide low-ratio approximations of MinLoc.

As formally stated next, Lemma 2 extends algorithmic results for computing cutwidth to
determining the locality number (we formulate this result so that it also covers fpt-algorithms
with respect to the standard parameters cw(G) and loc(α)). Note that the maximum degree
in a multigraph G is bounded from above by 2 cw(G), so the number of nodes n and the
number of edges h satisfy h ≤ n · cw(G). Hence, we state the complexity in terms of n and
cw(G) rather than with respect to h, which is the actual input size.

I Lemma 6. If MinCutwidth (resp. Cutwidth) can be solved in O(f(cw(G), n)) time
for a multigraph G with n vertices, then the MinLoc (resp., Loc) problem can be solved in
O(f(2 loc(α), |Σ|+ 2) + |α|) time for a word α over an alphabet Σ.

In particular, we can draw the following corollaries using Lemma 6 and known results from
the literature. Due to the algorithms of [12], which also work for multigraphs1, MinLoc
can be solved in O∗(2|Σ|) time and space, or in O∗(4|Σ|) time and polynomial space. In

1 These algorithms actually support weighted graphs without any major modification and in the same
complexity. In this setting, parallel edges connecting two vertices are replaced by a single “super-edge”
whose weight is the number of parallel edges.
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particular, this also implies that Loc is fixed-parameter tractable with respect to the alphabet
size. Moreover, the fpt-algorithm from [47] directly implies that MinLoc is fixed-parameter
tractable for parameter loc(α) with linear fpt-running-time g(loc(α)) O(n). Since Cutwidth
is NP-complete already for graphs with maximum degree 3 (see [37]), we also derive a stronger
statement compared to Theorem 5: Loc is NP-complete even if every symbol has at most 3
occurrences; if every symbol has at most 2 occurrences, the complexity of Loc is open, while
the case where every symbol has only one occurrence is trivial. If, on the other hand, the
symbols have many occurrences in comparison to |α|, i.e., |Σ| = O(log(|α|)), then Loc can
be solved in polynomial time, e.g., using the O∗(2|Σ|)-time algorithm mentioned above.

4 Locality and Pathwidth

In this section, we consider the approximability of the minimisation problem MinLoc. Since
a marking sequence is just a linear arrangement of the symbols of the input word, this problem
seems to be well tailored to greedy algorithms: until all symbols are marked, we choose an
unmarked symbol according to some greedy strategy and mark it. There are two aspects
that motivate the investigation of such approaches. Firstly, ruling out simple strategies is a
natural initial step in the search for approximation algorithms for a new problem. Secondly,
due to the results of Section 3, the obvious greedy approaches for computing the locality
number may also provide a new angle to approximating the cutwidth of a graph, i.e., some
greedy strategies may only become apparent in the locality number point of view and hard
to see in the graph formulation of the problem. Given the fact that, as formally stated later
as Theorem 10, approximating the cutwidth via approximation of the locality number does,
in fact, improve the best currently known cutwidth approximation ratio, this seems to be a
rather important aspect.

Unfortunately, we can formally show that many natural candidates for greedy strategies
fail to yield promising approximation algorithms (and are therefore also not helpful for
cutwidth approximation). We just briefly mention these negative results. The four considered
basic strategies are the following: (1) prefer symbols with few occurrences, (2) symbols
with many occurrences, (3) symbols leading to fewer blocks after marking, (4) symbols with
earlier leftmost occurrence. All these strategies fail in a sense that there are arbitrarily long
(condensed) words α with constant locality numbers for which these strategies yield marking
sequences with marking numbers Ω(|α|).

A more promising approach is to choose among symbols that extend at least one already
marked block (except when marking the first symbol). We denote this strategy by BlockExt
and marking sequences that can be obtained by it are called BlockExt-marking sequences.
Intuitively, marking a symbol that has only isolated occurrences, and therefore will increase
the current number of marked blocks by the number of its occurrences, seems a bad choice.
This raises a general question of whether every word has a BlockExt-marking sequence that
is also optimal for this word. We answer this question negatively: all BlockExt-marking
sequences for words like x1yx2yx3y . . . x2ky achieve a marking number of at least 2k − 1,
while first marking x2, x3, . . . , xk+1 in this order (which all have only isolated occurrences),
then y, and then the rest of the symbols in some order, yields at most k marked blocks.
However, this only shows a lower bound of roughly 2 for the approximation ratio of algorithms
based on BlockExt, so BlockExt might still be a promising candidate. However, in order to
devise a BlockExt-based approximation algorithm, we still face the problem of deciding which
of the extending symbols should be chosen; trying out all of them is obviously too costly.
Unfortunately, if we handle this decision by one of the basic strategies (1)–(4) from above,
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Figure 3 The graph Gα for α = cabacabac; the three cliques are drawn with different edge-types.

e.g., choosing among all extending symbols one that leads to fewer new blocks, we again
end up with poor approximation ratios. More precisely, we can again find arbitrarily long
words α with constant locality numbers for which these algorithms yield marking numbers
Ω(|α|). Moreover, this is also true if we choose among all extending symbols one that has a
maximum number of extending occurrences or one that maximises the ratio #extending occ.

#occ. .
While we obviously have not investigated all reasonable greedy strategies, we consider

our negative results as sufficient evidence that a worthwhile approximation algorithm for
computing the locality number most likely does not follow from such simple greedy strategies.

In the following, we adopt a more sophisticated approach of approximating the locality
number: we devise a reduction to the problem of computing the pathwidth of a graph. To
this end, we first have to describe how a (condensed) word can be represented as a graph:
For a condensed word α, the graph Gα = (Vα, Eα) is defined by Vα = {1, 2, . . . , |α|} and
Eα = {{i, i+1} | 1 ≤ i ≤ |α|−1}∪{{i, j} | {i, j} ⊆ psx(α) for some x ∈ alph(α)}. Intuitively,
Gα is obtained by interpreting every position of α as a vertex, connecting neighbouring
positions by edges, and turning every set psx(α), x ∈ alph(α), into a clique (see Figure 3).

We use Gα as a unique graph representation for condensed words and whenever we talk
about a path decomposition for α, we actually refer to a path decomposition of Gα and, since
Gα has the positions of α as its vertices, the marking scheme behind a path decomposition
(and its respective terminology) directly translates to a marking scheme of the positions of α.

I Lemma 7. Let α be a condensed word with |α| ≥ 2. Then loc(α) ≤ pw(Gα) ≤ 2 loc(α).

Proof Sketch. We only sketch how a marking sequence translates into a path decomposition
and vice versa. Let σ = (x1, x2, . . . , xm) be a marking sequence for a condensed word α with
πσ(α) = k. We describe a path decomposition Q of Gα as a marking scheme. First, for every
i, 1 ≤ i ≤ m, let pi be a step of Q (corresponding to one of the bags of Q) that represents
stage i of σ: every position that is a border position of a marked block is active, every
other marked position is closed, and all other positions are open. The path decomposition
produces these steps in the order p1, p2, . . . , pm and such a step pi is reached from the
predecessor step pi−1 by a sequence of intermediate steps as follows. Step p1 is obtained
from the initial one by setting all positions in psx1(α) to active, the final step of Q, where
all positions are closed, is obtained from step pm by setting the only active positions 1 and
|α| to closed. In order to produce step pi+1 from step pi, we do the following. For every
j ∈ psxi+1(α) that does not create a new marked block of size 1, we set position j to active
and immediately after that, we set all active neighbours of j to closed if they do not have
open neighbours anymore. Next, we set all remaining positions from psxi+1(α) to active
and, finally, we set all positions from psxi+1(α) that have no open neighbours to closed. It
can be verified with a moderate effort that we have now obtained step pi+1 and also that
Q is, in fact, a valid path decomposition of Gα. In order to see that pw(Q) ≤ 2k, we first
note that the number of active positions in each step pi is clearly bounded by 2k. In going
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from pi to pi+1, we necessarily reach a step where all positions of psxi+1(α) are now active,
while some of the previous border positions might also still be active. It requires a more
involved and careful counting argument to see that the total number of active positions in
these intermediate steps never exceeds 2k + 1.

For the other direction, let Q = (B0, B1, B2, . . . , B2|α|) be an arbitrary nice path decom-
position of Gα. For every i, 1 ≤ i ≤ m, let pi be the first step of Q where all positions
of psxi(α) are active. We order the characters xi so that p1 < p2 < . . . < pm and define
a marking sequence for α by setting σ = (x1, x2, . . . , xm). It is comparatively easy to
show that at every step pi of Q there is at least one active position per marked block
of stage i of σ. However, this only shows that πσ(α) − 1 ≤ pw(Q) and in order to prove
that, in fact, πσ(α) ≤ pw(Q) holds, we show that either there is a step of Q with at least
πσ(α) + 1 active positions or, if this is not the case, then there must be a marking sequence
σ′ with πσ′(α) = πσ(α) − 1. This implies that, for every path decomposition Q of Gα,
loc(α) ≤ pw(Q) and therefore also loc(α) ≤ pw(Gα). Proving this claim requires a long and
technically involved case analysis. J

Note that Lemma 7 is not true for condensed words α of size 1, since then loc(α) = 1 and
pw(Gα) = 0. The reason why pw(Gα) can range between loc(α) and 2 loc(α) (rather than
pw(Gα) = 2 loc(α)) is that in a marking sequence, every marked block accounts for one unit
of the quantity loc(α), while in the path decomposition, a marked block is represented either
by two active vertices or by only one (if the block has size one). There are (condensed)
examples that reach the extremes loc(α) and 2 loc(α), i.e., the bounds of Lemma 7 are tight.

I Proposition 8. Let α = (x1x2 . . . xnxn−1 . . . x2)kx1 with n ≥ 3, and let β = (x1x2)k. Then
we have loc(α) = k and pw(Gα) = 2k, and loc(β) = pw(Gβ) = k.

Note that the construction of a graph Gα from a word α does not technically provide
a reduction from the decision problem Loc to Pathwidth (due to the fact that pw(Gα)
lies between loc(α) and 2 loc(α)) and therefore cannot be used to solve MinLoc exactly.
Its main purpose is to carry over approximation results from MinPathwidth to MinLoc,
which is formally stated by the next lemma (in this regard, note that exact algorithms for
MinLoc are obtained in Section 3 via a reduction to MinCutwidth instead).

I Lemma 9. If MinPathwidth admits an O(f(n))-time r(opt, n)-approximation algorithm,
then MinLoc admits an O(f(|α|) + |α|2)-time 2r(2 opt, |α|)-approximation algorithm.

Consequently, approximation algorithms for MinPathwidth carry over to MinLoc. To
the knowledge of the authors, the currently best approximation algorithm for MinPathwidth
is due to [20], with an approximation ratio of O(

√
log(opt) log(n)). This implies the following.

I Theorem 10. There is an O(
√

log(opt) log(n))-approximation algorithm for MinLoc.

Another consequence that is worth mentioning is due to the fact that an optimal path
decomposition can be computed faster than O∗(2n). More precisely, it is shown in [46] that for
computing path decompositions, there is an exact algorithm with running time O∗((1.9657)n),
and even an additive approximation algorithm with running time O∗((1.89)n). Consequently,
there is a 2-approximation algorithm for MinLoc with running time O∗((1.9657)n) and an
asymptotic 2-approximation algorithm with running time O∗((1.89)n) for MinLoc.

By combining the reduction from MinCutwidth to MinLoc from Section 3 with the
reduction from MinLoc to MinPathwidth defined above, we obtain a reduction from
MinCutwidth to MinPathwidth that carries over the pathwidth-approximation from [20]
to MinCutwidth as follows (in particular, this improves the state-of-the-art approximation
algorithm for MinCutwidth from [35]).
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Figure 4 A graph G and the corresponding graph G′ obtained by the reduction.

I Theorem 11. There is a O(
√

log(opt) log(n))-approximation for MinCutwidth.

Note that Theorem 11 only applies to simple graphs; see Section 5 for the case of multigraphs.
Many existing algorithms constructing path decompositions are of theoretical interest only,

and this disadvantage carries over to the possible algorithms computing the locality number
or cutwidth based on them. However, the reduction of Lemma 7 is also applicable in a purely
practical scenario, since any kind of practical algorithm constructing path decompositions can
be used in order to compute marking sequences (the additional tasks of building Gα and the
translation of a path decomposition for it back to a marking sequence are computationally
simple). This observation is particularly interesting since developing practical algorithms
constructing tree and path decompositions of small width is a vibrant research area.2

5 Pathwidth and Cutwidth

Since pathwidth and cutwidth are classical graph parameters that play an important role for
graph algorithms, independent from our application for computing the locality number, we
also present a direct reduction from MinCutwidth to MinPathwidth.

For a graph G = (V,E), we construct the graph G′ = (V ′, E′) with V ′ = {vu | {u, v} ∈ E}
and E′ = {{uv, vu} | {u, v} ∈ E} ∪ {{vu, vw} | {u, v}, {w, v} ∈ E, u 6= w}; see Figure 4.

I Lemma 12. Let G be a graph with at least one edge. Then cw(G) ≤ pw(G′) ≤ 2 cw(G).

Lemma 12 does not only prove that cw(G) ≤ pw(G′) ≤ 2 cw(G), but also yields a
constructive way to compute a linear arrangement for G of cut at most k from a path
decomposition of width k for G′. Further, Lemma 12 remains true if G is a multigraph;
observe that the reduction still constructs a simple graph G′. This gives the following result.

I Lemma 13. If there is an r(opt, |V |)-approximation algorithm for MinPathwidth with
running-time O(f(|V |)), then there is also an 2r(2 opt, h)-approximation algorithm for
MinCutwidth on multigraphs with running time O(f(h) + h2 + n), where n is the number
of vertices and h is the number of edges.

With the O(
√

log(opt) log(n))-approximation for MinPathwidth from [20], Lemma 13
gives the following approximation for MinCutwidth on multigraphs.

I Theorem 14. There is a (polynomial-time) O(
√

log(opt) log(h))-approximation algorithm
for MinCutwidth on multigraphs with h edges.

In accordance with Theorem 11, Theorem 14 yields an O(
√

log(opt) log(n))-approximation
algorithm for simple graphs. Analogously, Theorem 11 could be formulated for multigraphs,
which would also change the approximation-ratio to O(

√
log(opt) log(h)).

2 See, e.g., the work [13] and the references therein for practical algorithms constructing path decomposi-
tions; also note that designing exact and heuristic algorithms for constructing tree decompositions was
part of the “PACE 2017 Parameterized Algorithms and Computational Experiments Challenge” [16].
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Abstract
We show that the full set of solutions to systems of equations and inequations in a hyperbolic group,
with or without torsion, as shortlex geodesic words, is an EDT0L language whose specification can be
computed in NSPACE(n2 log n) for the torsion-free case and NSPACE(n4 log n) for the torsion case.
Our work combines deep geometric results by Rips, Sela, Dahmani and Guirardel on decidability
of existential theories of hyperbolic groups, work of computer scientists including Plandowski, Jeż,
Diekert and others on PSPACE algorithms to solve equations in free monoids and groups using
compression, and an intricate language-theoretic analysis.

The present work gives an essentially optimal formal language description for all solutions in all
hyperbolic groups, and an explicit and surprising low space complexity to compute them.
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1 Introduction

Hyperbolic groups were introduced by Gromov in 1987 [25], and play a significant role in
group theory and geometry [12, 33, 40]. Virtually free groups, small cancellation groups, and
the fundamental groups of extensive classes of negative curvature manifolds are important
examples (see [1] for background). In a certain probabilistic sense made precise in [26, 37, 41],
almost all finitely generated groups are hyperbolic. They admit very efficient solutions to the
word and conjugacy problems [21, 27, 28], and extremely nice language-theoretic properties,
for example the set of all geodesics over any generating set is regular (see Lemma 16), and
forms a biautomatic structure [22]. They are exactly the groups which admit context-free
multiplication tables [23], and have a particularly simple characterisation in terms of rewriting
systems [6, 35] (see Lemma 13).
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110:2 Solutions to Equations in Hyperbolic Groups

In this paper we consider systems of equations and inequations in hyperbolic groups,
building on and generalising work done in the area of solving equations over various groups
and monoids in PSPACE. Starting with work of Plandowski [38], many prominent researchers
have given PSPACE algorithms [7, 14, 16, 17, 18, 30, 31] to find (all) solutions to systems of
equations over free monoids, free groups, partially commutative monoids and groups, and
virtually free groups (that is, groups which have a free subgroup of finite index).

The satisfiability of equations over torsion-free hyperbolic groups is decidable by the work
of Rips and Sela [39], who reduced the problem in hyperbolic groups to solving equations in
free groups, and then calling on Makanin’s algorithm [36]. Kufleitner proved PSPACE for
decidability in the torsion-free case [34], without an explicit complexity bound, by following
Rips-Sela and then using Plandowski’s result [38]. Dahmani and Guirardel radically extended
Rips and Sela’s work to all hyperbolic groups (with torsion), by reducing systems of equations
to systems over virtually free groups, which they then reduced to systems of twisted equations
over free groups [11]. In terms of describing solution sets, Grigorchuck and Lysionok gave
efficient algorithms for the special case of quadratic equations [24].

Here we combine Rips, Sela, Dahmani and Guirardel’s approach with recent work of the
authors with Diekert [7, 14, 15] to obtain the following results.

I Theorem 1 (Torsion-free). Let G be a torsion-free hyperbolic group with finite symmetric
generating set S. Let Φ be a system of equations and inequations of size n (see Section 2 for
a precise definition of input size). Then the set of all solutions, as tuples of shortlex geodesic
words over S, is EDT0L. Moreover there is an NSPACE(n2 logn) algorithm which on input
Φ prints a description for the EDT0L grammar.

I Theorem 2 (Torsion). Let G be a hyperbolic group with torsion with finite symmetric
generating set S. Let Φ be a system of equations and inequations of size n (see Section 2 for
a precise definition of input size). Then the set of all solutions, as tuples of shortlex geodesic
words over S, is EDT0L. Moreover there is an NSPACE(n4 logn) algorithm which on input
Φ prints a description for the EDT0L grammar.

A corollary of Theorems 1 and 2 is that the existential theory for hyperbolic groups can be
decided in NSPACE(n2 logn) for torsion-free and NSPACE(n4 logn) for groups with torsion.
Another consequence of our work is that we can decide in the same space complexity as
above whether or not the solution set is empty, finite or infinite (see [8]).

EDT0L is a surprisingly low language complexity for this problem. EDT0L languages are
playing an increasingly useful role in group theory, not only in describing solution sets to
equations in groups [7, 14, 17], but more generally [4, 5, 9].

The paper is organised as follows. We briefly set up some notation for solution sets and
input size in Section 2. We then give an informal description of the entire argument for the
torsion-free case in Section 3. This overview uses various concepts which are defined more
carefully afterwards, but we hope that having the entire argument in one place is useful
for the reader to understand the “big picture” before descending into the details. Section 4
develops necessary material on EDT0L and space complexity. Section 5 covers the necessary
background on hyperbolic groups, including the key step to obtain a full solution set (as tuples
of shortlex geodesics) from a covering solution set (see Definition 3(iii)). In Section 6 we use
Rips and Sela’s canonical representatives (see [8, Appendix A]) in torsion-free hyperbolic
groups, to reduce the problem of finding solutions in a torsion-free hyperbolic group to
finding solutions in the free group on the same generators as the hyperbolic one. We show
that if the input system has size n then the resulting system in the free group has size O(n2).
Applying [7] produces a covering solution set in O(n2 logn) nondeterministic space, from
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which we obtain the full set of solutions as shortlex geodesics in the original group, as an
EDT0L language, in the same space complexity. In Section 7 we prove the general case for
hyperbolic groups with torsion, following Dahmani and Guirardel who construct canonical
representatives in a graph containing the Cayley graph of the hyperbolic group, and working
in an associated virtually-free group.

2 Notations for equations and solution sets

Let G be a fixed group with finite symmetric generating set S. Let π : S∗ → G be the
natural projection map. Let {X1, . . . , Xm}, m > 1, be a set of variables to which we
adjoin their formal inverses X−1

i and denote by X the union {Xi, X
−1
i | 1 6 i 6 m}. Let

C = {a1, . . . , ak} ⊆ G be a set of constants and

Φ = {ϕj(X , C) = 1}hj=1 ∪ {ϕj(X , C) 6= 1}sj=h+1 (1)

be a set of s equations and inequations in G, where the length of each (in)equation is li.
Then the total length of the equations is n =

∑s
i=1 li, and we take |Φ| = n as the input size

in the remainder of the paper.
A tuple (g1, . . . , gm) ∈ Gm solves an equation [resp. inequation] ϕj in Φ if replacing

each variable Xi by gi (and X−1
i by g−1

i ) produces an identity [resp. inequality] in the
group as follows:

ϕj(g1, . . . , gm, a1, . . . , ak) = 1 [resp. ϕj(g1, . . . , gm, a1, . . . , ak) 6= 1].

A tuple (g1, . . . , gm) ∈ Gm solves Φ if it simultaneously solves ϕj for all 1 6 j 6 s.

I Definition 3.
(i) The group element solution set to Φ is the set

SolG(Φ) = {(g1, . . . , gm) ∈ Gm | (g1, . . . , gm) solves Φ}.

(ii) Let T ⊆ S∗ and # a symbol not in S. The full set of T -solutions is the set

SolT,G(Φ) = {w1# . . .#wm | wi ∈ T, (π(w1), . . . , π(wm)) solves Φ}.

(iii) A set L ⊆ {w1# . . .#wm | wi ∈ S∗, 1 6 i 6 m} is a covering solution set to Φ if

{(π(w1), . . . , π(wk)) | w1# . . .#wm ∈ L} = SolG(Φ).

3 Overview of the proof

In a free group, the equation xy = z has a solution in reduced words (that is, words which
do not contain factors aa−1 for any a ∈ S) if and only if there exist words P,Q,R with
x = PQ, y = Q−1R, z = PR in the free monoid with involution over S ([7, Lemma 4.1]). In
a hyperbolic group this direct reduction to cancellation-free equations is no longer true: a
triangle xy = z where x, y, z are replaced by geodesics looks as in Figure 1a.

Rips and Sela [39] proved that in a torsion-free hyperbolic group one can define certain
special words called canonical representatives so that a system of equations of the form
XjYj = Zj , 1 6 j 6 O(n) has solutions which are canonical representatives with the
properties that their prefixes and suffixes coincide, as shown in Figure 1b, and the inner
circle is the concatenation of three words with lengths in O(n). Moreover, these canonical
representatives are (λ, µ)-quasigeodesics (Definition 15) where the constants λ, µ depend only
on the group.
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(a) Using geodesics.

y1 y3

y2

c1 c2

c3

4

(b) Using canonical representatives.

Figure 1 Solutions to xy = z in the Cayley graph of a hyperbolic group.

We use these facts to devise the following algorithm, presented here for the torsion-free
case. We treat the hyperbolic group G with finite generating set S as a constant. On input
a system of equations and inequations as in (1) of size n:
1. Replace inequations by equations (by using a new variable and requiring that this variable

is not trivial in the group, as explained in Section 6.3).
2. Triangulate the system, so that all equations have the form XjYj = Zj . The size of the

resulting system is still in O(n). Suppose there are q ∈ O(n) such equations.
3. Enumerate, one at a time, all possible tuples c = (c11, c12, c13, . . . , cq1, cq2, cq3) of words

(say, in lex order) so that the length `(cji) with respect to S is bounded by a constant in
O(n). Note that the size of each tuple (the sum of the lengths of the cij) is in O(n2).

4. For each tuple c, run Dehn’s algorithm to check cj1cj2cj3 =G 1 for 1 6 j 6 q. If this
holds for all j, write down a system of 3q equations

Xj = Pjcj1Qj , Yj = Q−1
j cj2Rj , Zj = Pjcj3Rj .

Note that the resulting system, Φc, has size in O(n2).
5. We now call the algorithm of the authors and Diekert [7] to find all solutions to Φc

in the free group generated by S. This algorithm, on input of size O(n2), runs in
NSPACE(n2 logn), and prints a description of the EDT0L grammar which generates all
tuples of solutions as reduced words in S∗. Specifically it prints nodes and edges of a
trim NFA which is the rational control for the EDT0L grammar (see Definition 4 below).
Modify the algorithm so that the nodes printed include the label c which has length
O(n2) (so does not affect the complexity).

6. Delete the current system stored, and move to the next tuple c.
7. At the end, print out a new start node and ε edges to the start node of the NFA for the

system Φc for all c already printed.

The NFA that is printed gives an EDT0L grammar that generates a language of tuples
which is a covering solution to the original system in the hyperbolic group. To obtain the
full set of solutions as shortlex geodesic words we need to perform further steps. Using the
facts that canonical representatives are (λ, µ)-quasigeodesics, and

the full set of (λ, µ)-quasigeodesics, QS,λ,µ
the set of all pairs {(u, v) ∈ QS,λ,µ | u =G v}
the set of all shortlex geodesics in G

are all regular, we can obtain from the covering solution an ET0L language, in the same space
complexity (by Proposition 9 below), which represents the full set of solutions in shortlex
geodesic words. Then finally, because of the special form of our solutions, we can apply a
version of the Copying Lemma of Ehrenfeucht and Rozenberg [19] to show that in fact the
resulting language of shortlex representatives is EDT0L in NSPACE(n2 logn).



L. Ciobanu and M. Elder 110:5

Details for handling the case of hyperbolic groups with torsion also follows this general
scheme, however finding the analogue of canonical representatives is harder in this case, so
further work is required, and we describe this in Section 7.

4 E(D)T0L in PSPACE

4.1 ET0L and EDT0L languages
Let C be an alphabet. A table for C is a finite subset of C × C∗. If (c, v) is in some table t,
we say that (c, v) is a rule for c. A table t is deterministic if for each c ∈ C there is exactly
one v ∈ C∗ with (c, v) ∈ t.

If t is a table and u ∈ C∗ then we write u −→t v to mean that v is obtained by applying
rules from t to each letter of u. That is, u = a1 . . . an, ai ∈ C, v = v1 . . . vn, vi ∈ C∗, and
(ai, vi) ∈ t for 1 6 i 6 n. If H is a set of tables and r ∈ H∗ then we write u −→r v to mean
that there is a sequence of words u = v0, v1, . . . , vn = v ∈ C∗ such that vi−1 −→ti vi for
1 6 i 6 n where r = t1 . . . tn. If R ⊆ H∗ we write u −→R v if u −→r v for some r ∈ R.

I Definition 4 ([2]). Let Σ be an alphabet. We say that L ⊆ Σ∗ is an ET0L language if
there is an alphabet C with Σ ⊆ C, a finite set H ⊂ P(C × C∗) of tables, a regular language
R ⊆ H∗ and a letter c0 ∈ C such that

L = {w ∈ Σ∗ | c0 −→R w}.

In the case when every table h ∈ R is deterministic, i.e. each h ∈ R is in fact a homomorphism,
we write L = {r(c0) ∈ Σ∗ | r ∈ R} and say that L is EDT0L. The set R is called the rational
control, the symbol c0 the start symbol and C the extended alphabet.

4.2 Space complexity for E(D)T0L
Let f : N→ N be a function. Recall an algorithm is said to run in NSPACE(f(n)) if it can be
performed by a non-deterministic Turing machine with a read-only input tape, a write-only
output tape, and a read-write work tape, with the work tape restricted to using O(f(n))
squares on input of size n. The following definition formalises the idea of producing some
E(D)T0L language (such as the solution set of some system of equations) in NSPACE(f(n)),
where the language is the output of a computation with input (such as a system of equations)
of size n. We use the notation L(A) to denote the language accepted by an automaton A.

I Definition 5. Let Σ be a (fixed) alphabet and f : N → N a function. If there is an
NSPACE(f(n)) algorithm that on input Ω of size n outputs the specification of an ET0L
language LΩ ⊆ Σ∗, then we say that LΩ is ET0L in NSPACE(f(n)).

Here the specification of LΩ consists of:
an extended alphabet C ⊇ Σ,
a start symbol c0 ∈ C,
a finite list of nodes of a (trim) NFA A, labeled by some data, some possibly marked as
initial and/or final,
a finite list {(u, v, h)} of edges of A where u, v are nodes and h ∈ P(C × C∗) is a table

such that LΩ = {w ∈ Σ∗ | c0 →L(A) w}.
A language LΩ is EDT0L in NSPACE(f(n)) if, in addition, every table h labelling an

edge of A is deterministic.

Note that the entire print-out is not required to be in O(f(n)) space. Previous results of
the authors with Diekert can now be restated as follows.
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I Theorem 6 ([7, Theorem 2.1]). The set of all solutions to a system of size n of equations
(with rational constraints), as reduced words, in a free group is EDT0L in NSPACE(n logn).

I Theorem 7 ([15, Theorem 45]). The set of all solutions to a system of size n of equations
(with rational constraints), as words in a particular quasigeodesic normal form over a certain
finite generating set, in a virtually free group is EDT0L in NSPACE(n2 logn).

I Remark 8. In our applications below we have Ω representing some system of equations
and inequations, with |Ω| = n, and we construct algorithms where the extended alphabet
C has size |C| ∈ O(n) in the torsion-free case and |C| ∈ O(n2) in the torsion case. This
means we can write down the entire alphabet C as binary strings within our space bounds.
Moreover, each element (c, v) of any table we construct has v of (fixed) bounded length, so
we can write down entire tables within our space bounds.

4.3 Closure properties
It is well known [32, Theorem 2.8] that ET0L is a full AFL (closed under homomorphism,
inverse homomorphism, finite union, intersection with regular languages). Here we show the
space complexity of an ET0L language is not affected by these operations.

I Proposition 9. Let Σ,Γ be finite alphabets of fixed size, M an NFA of constant size with
L(M) ⊆ Σ∗, and ϕ : Γ∗ → Σ∗, ψ : Σ∗ → Γ∗ homomorphisms. If LΩ1 , LΩ2 ⊆ Σ∗ are E(D)T0L
in NSPACE(f(n)) (on inputs Ω1,Ω2, respectively, with |Ω1|, |Ω2| ∈ O(n)) then

(homomorphism) ψ(LΩ1) is E(D)T0L in NSPACE(f(n)),
(intersection with regular) LΩ1 ∩ L(M) is E(D)T0L in NSPACE(f(n)),
(union) LΩ1 ∪ LΩ2 is E(D)T0L in NSPACE(f(n)),
(inverse homomorphism) ϕ−1(LΩ1) is ET0L in NSPACE(f(n)).

The proof is straightforward keeping track of complexity in the standard proofs [3, 10].
Note EDT0L is not closed under inverse homomorphism [20].

I Proposition 10 (Projection onto a factor). If LΩ ⊆ Σ∗ is E(D)T0L in NSPACE(f(n)) on
an input Ω of size n, and for some fixed integer s all words in LΩ have the form u1# . . .#us
with ui ∈ (Σ \ {#})∗, and 1 6 i 6 j 6 s, then

L = {ui# . . .#uj | u1# . . .#ui# . . .#uj# . . .#us ∈ LΩ}

is E(D)T0L in NSPACE(f(n)).

4.4 From ET0L to EDT0L
In computing the full solution set to equations as shortlex geodesic words, we will need to take
inverse homomorphism. Even though in general the image under an inverse homomorphism
of an EDT0L language is just ET0L, because of the special structure of solution sets we can
apply the Copying Lemma of Ehrenfeucht and Rozenberg [19] to show the following.

I Proposition 11. Let S be an alphabet and h : S → S′ be a homomorphism of from S to a
disjoint alphabet S′ = {s′ | s ∈ S} defined by h(s) = s′. Let o be a symbol not in S ∪ S′ and
define h(o) = o. Let L1 be a set of words of the form w o h(w) where w ∈ S∗. If L1 is ET0L
in NSPACE(f(n)), then L2 = {w | w o h(w) ∈ L1} is EDT0L in NSPACE(f(n)).
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Proof. By [19], any nondeterministic table in the grammar for L1 can be replaced by a finite
number of deterministic tables (essentially, if nondeterminism allowed some letter c ∈ C to
produce two different results, then some word in L1 would not have the form w o h(w)). So
without loss of generality we can replace a table f containing (c, v1), . . . , (c, vk) by k tables
fi containing (c, vi) only). This modification is clearly in the same space bound. Project
onto the prefix using Proposition 10. J

5 Hyperbolic groups

5.1 Definitions
Recall the Cayley graph for a group G with respect to a finite symmetric generating set S is
a directed graph Γ(G,S) with vertices labeled by g ∈ G and a directed edge (g, h) labeled by
s ∈ S whenever h =G gs. Let `(p), i(p) and f(p) resp. be the length, initial and terminal
vertices of a path p in the Cayley graph. A path p is geodesic if `(p) is minimal among the
lengths of all paths q with the same endpoints. If x, y are two points in Γ(G,S), we define
d(x, y) to be the length of a shortest path from x to y in Γ(G,S).

I Definition 12 (δ-hyperbolic group (Gromov)). Let G be a group with finite symmetric
generating set S, and let δ > 0 be a fixed real number. If p, q, r are geodesic paths in Γ(G,S)
with f(p) = i(q), f(q) = i(r), f(r) = i(p), we call [p, q, r] a geodesic triangle. A geodesic
triangle is δ-slim if p is contained in a δ-neighbourhood of q ∪ r, that is, every point on one
side of the triangle is within δ of some point on one of the other sides. (See for example
Figure 1a.) We say (G,S) is δ-hyperbolic if every geodesic triangle in Γ(G,S) is δ-slim. We
say (G,S) is hyperbolic if it is δ-hyperbolic for some δ > 0.

It is a straightforward to show that being hyperbolic is independent of choice of finite
generating set. Thus we say G is hyperbolic if (G,S) is for some finite generating set S.

I Lemma 13 (Dehn presentation). G is hyperbolic if and only if there is a finite list of pairs
of words (ui, vi) ∈ S∗ × S∗ with |ui| > |vi| and ui =G vi such that the following holds: if
w ∈ S∗ is equal to the identity of G then it contains some ui as a factor.

This gives an algorithm to decide whether or not a word w ∈ S∗ is equal to the identity:
while `(w) > 0, look for some ui factor. If there is none, then w 6=G 1. Else replace ui by vi
(which is shorter). This procedure is called Dehn’s algorithm.

I Lemma 14. Dehn’s algorithm runs in (linear time and) linear space.

I Definition 15 (Quasigeodesic). For λ > 1, µ > 0 real numbers, a path p in Γ(G,S) is a
(λ, µ)-quasigeodesic if for any subpath q of p we have `(q) 6 λd(i(q), f(q)) + µ.

Throughout this article, we assume G is a fixed hyperbolic group which we treat as a
constant for complexity purposes. We assume we are given (G,S), the constant δ, the finite
list of pairs for Dehn’s algorithm, and any other constants depending only on the group.

5.2 Languages in hyperbolic groups
I Proposition 16. Let G be a fixed hyperbolic group with finite generating set S, λ > 1, µ > 0
constants with λ ∈ Q and µ sufficiently large. Then the following sets are regular languages.
1. The set of all geodesics over S.
2. The set of all shortlex geodesics over S.
3. The set of all (λ, µ)-quasigeodesics, QS,λ,µ ⊆ S∗.
Furthermore, the set of all pairs of words (u, v) ∈ Q2

S,λ,µ such that u =G v is accepted by an
asynchronous 2-tape automaton.

See [22, 29].
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5.3 Main reduction result
Here is our key technical result.

I Proposition 17 (Covering to full solution sets). Let G be a hyperbolic group with finite
symmetric generating set S. Let h : S → S′ and QS,λ,µ be as defined above, #, o symbols
not in S ∪ S′, h(#) = #, h(o) = o, and T ⊆ QS,λ,µ a regular set of quasigeodesic words in
bijection with G. Suppose L1 ⊆ (S ∪ S′ ∪ {#, o})∗ consists of words of the form

u1# . . .#ur o h(v1)# . . .#h(vr), ui, vi ∈ QS,λ,µ, ui =G vi, 1 6 i 6 r.

If L1 is ET0L in NSPACE(f(n)), then
1. LQ = {w1# . . .#wr o h(z1)# . . .#h(zr) | ∃u1# . . .#ur o h(v1)# . . .#h(vr) ∈ L1, wi =G

zi =G ui, wi, zi ∈ QS,λ,µ} is ET0L in NSPACE(f(n)).
2. LT = {w1# . . .#wr | ∃u1# . . .#ur o h(v1)# . . .#h(vr) ∈ L1, wi =G ui, wi ∈ T } is

EDT0L in NSPACE(f(n)).
The proof involves a series of operations as in Proposition 9–11, see [8] for further details.
Note that the set of all shortlex geodesics is a suitable choice for T in the proposition.

6 Reduction from torsion-free hyperbolic to free groups

Section 3 contains an overview of the general algorithm for solving equations in torsion-free
hyperbolic groups. Here we provide further details, and give a proof of the soundness and
completeness of our algorithm. The algorithm relies on the existence and special properties
of canonical representatives, whose construction is very technical (details are provided in [8]).
Their existence guarantees that the solutions of a system in a torsion-free hyperbolic group
generated by S can be found by solving an associated system in the free group on S, while
the fact that they are quasigeodesics (see [8, Prop. 30]) allows us to apply the results of the
previous sections to obtain the EDT0L characterisation of solutions in shortlex normal form.

I Proposition 18. Let G be a torsion-free hyperbolic group, with finite symmetric generating
set S. Let Φ be a system of equations and inequations of input size n as in Section 2. Let
h : S → S′,#, o be as in Proposition 17. Then there exist λ > 1, µ > 0 and

L = {w1# . . .#wm o h(w1)# . . .#h(wm) | wi ∈ QS,λ,µ, 1 6 i 6 m}

such that {w | woh(w) ∈ L} is a covering solution for Φ, and L is EDT0L in NSPACE(n2 logn).

Applying Proposition 17 immediately gives Theorem 1.

Proof. We produce a language L of quasigeodesic words over S such that the projection
of any tuple in L is in the group element solution set SolG(Φ) (soundness). We then prove
(using [39, Corollary 4.4]) that any solution in SolG(Φ) is the projection of some tuple in L
(completeness). Our proof follows the outline presented in Section 3.

1. Preprocessing.
(Remove inequations) We first transform Φ into a system consisting entirely of equations
by adding a variable xD to X and replacing any inequation ϕj(X ,A) 6= 1 by ϕj(X ,A) =
xD, with the constraint xD 6=G 1.
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(Triangulation) We transform each equation into several equations of length 3, by
introducing new variables. This can always be done (see the discussion in [7, Section
4]), and it produces approximately

∑s
i=1 li ∈ O(n) triangular equations with set of

variables Z where m 6 |Z| ∈ O(n) and X ⊂ Z. From now on assume that the system
Φ consists of q ∈ O(n) equations of the form XjYj = Zj where 1 6 j 6 q.

2. Lifting Φ to the free group on S. In [39, Theorem 4.2] Rips and Sela define a constant,
which they call “bp”, that roughly bounds the circumference of the “centres” of the
triangles whose edges are canonical representatives. We denote here bp by ρ, and note
that ρ ∈ O(q) = O(n) depends on δ and linearly on q. As described in Section 3 we
run in lex order through all possible tuples of words c = (c11, c12, c13, . . . , cq1, cq2, cq3)
with cji ∈ S∗, `(cji) 6 ρ ∈ O(n). For each tuple c we use Dehn’s algorithm to check
cj1cj2cj3 =G 1, and if this holds for all 1 6 j 6 q we then construct a system Φc of
equations of the form

Xj = Pjcj1Qj , Yj = Q−1
j cj2Rj , Zj = Pjcj3Rj , 1 6 j 6 q, (2)

which has size O(n2). In order to avoid an exponential size complexity we write down each
system Φc one at a time, so the space required for this step is O(n2). Let Y ⊃ Z ⊃ X be
the new set of variables.

3. Some observations. We pause to make the following observations. Any solution to Φc in
the free group F (S) is guaranteed to be a solution to Φ in the original hyperbolic group
G. Thus if S1 ⊆ F (S)m is a group element solution to Φc then π(S1) is a group element
solution to Φ in G. This will show soundness below.
Secondly, if (g1, . . . , gm) ∈ Gm is a solution to Φ in the original hyperbolic group, [39,
Theorem 4.2 and Corollary 4.4] (see Theorem 31 in [8]) guarantees that there exist
canonical representatives wi ∈ QS,λ,µ with wi =G gi for 1 6 i 6 m, which have reduced
forms ui =G wi for 1 6 i 6 m, and our construction is guaranteed to capture any such
collection of words. This will show completeness below.
Thirdly, note that the constraint that a word w ∈ S∗ must be a (λ, µ)-quasigeodesic
and satisfy w =G 1 implies that `(w) 6 µ. Therefore we can construct a DFA D which
accepts all words in S∗ equal to 1 in the hyperbolic group G of length at most µ in
constant space (using for example Dehn’s algorithm). In our next step, we will use this
rational constraint to handle the variable xD added in the first step above (to remove
inequalities).
Now let us complete the construction by finding the covering solution required.

4. Covering solution set. We now run the algorithm from [7] (which we will refer to as
the CDE algorithm) which takes input Φc, which has size in O(n2), plus the rational
constraint xD 6∈ L(D), plus for each y ∈ Y the rational constraint that the solution for y
is a word in QS,λ,µ. Since these constraints have constant size (depending only on the
group G, not the system Φ), they do not contribute to the O(n2) size of the input to the
CDE algorithm.
We make two modifications to the details of the CDE algorithm. First, every node printed
by the algorithm should include the additional label c. (This ensures the NFA we print
for each system Φc is distinct.) This does not affect the complexity since c has size in
O(n2).
Second, so that we can apply Proposition 11 later, we modify the form of “extended
equations” in [7] by inserting the factor oh(W ) in the appropriate position(s). This simply
increases the size of the nodes by a factor (of two).
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We run the CDE algorithm to print an NFA (possibly empty) for each Φc, which is the
rational control for an EDT0L grammar that produces all solutions as freely reduced
words for elements of F (S) which correspond to solutions as (λ, µ)-quasigeodesics to
the same system Φc in the hyperbolic group. If (w1, . . . , wm) is a solution in canonical
representatives to Φ then (u1, . . . , um, . . . u|Y|) will be included in the solution to Φc
output by the CDE algorithm, with ui the reduced forms of wi for 1 6 i 6 m. This
shows completeness once we union the grammars from all systems Φc together.
Adding a new start node with edges to each of the start nodes of the NFA’s with label
c, we obtain a rational control for the EDT0L grammar generating L as required. The
space required is exactly that required by the CDE algorithm on input O(n2), which is
NSPACE(n2 logn). J

7 Reduction from hyperbolic with torsion to virtually free groups

In the case of a hyperbolic group G with torsion, the general approach of Rips and Sela
can still be applied, but the existence of canonical representatives is not always guaranteed
(see Delzant [13, Rem.III.1]). To get around this, Dahmani and Guirardel “fatten” the
Cayley graph Γ(G,S) of G to a larger graph K which contains Γ(G,S) (in fact Γ(G,S) with
midpoints of edges included), and solve equations in G by considering equalities of paths in
K. More precisely, K is the 1-skeleton of the barycentric subdivision of a Rips complex of G
(see [8] for definitions).

I Definition 19. Let γ, γ′ be paths in K.
(i) We denote by i(γ) the initial vertex of γ, by f(γ) the final vertex of γ, and by γ the

reverse of γ starting at f(γ) and ending at i(γ).
(ii) We say that γ is reduced if it contains no backtracking, that is, no subpath of length 2

of the form ee.
(iii) We write γγ′ for the concatenation of γ, γ′ if i(γ′) = f(γ).
(iv) Two paths in K are homotopic if one can obtain a path from the other by adding or

deleting backtracking subpaths. Each homotopy class has a unique reduced representative.

Let V be the set of all homotopy classes [γ] of paths γ in K with i(γ) = 1G, and f(γ) ∈ G.
For [γ], [γ′] ∈ V define their product [γ][γ′] = [γvγ′], where γvγ′ denotes the concatenation
of γ and the translate vγ′ of γ′ by v = f(γ), and let [γ]−1 be the homotopy class of v−1

γ.
Then V is a group that projects onto G by the final vertex map f , that is, f : V � G is a
surjective homomorphism. Moreover, since G has an action on K induced by the natural
action on its Rips complex, V will act on K as well. This gives rise to an action of V onto
the universal cover T (which is a tree) of K, and [11, Lemma 9.9] shows that the quotient
T/V is a finite graph (isomorphic to K/G) of finite groups, and so V is virtually free.

We assume that the algorithmic construction (see [11, Lemma 9.9]) of a presentation for
V is part of the preprocessing of the algorithm, will be treated as a constant, and will not be
included in the complexity discussion.

The first step in solving a system Φ of equations in G is to translate Φ into identities
between quasigeodesic paths (with start and end point in G) in K, defined as QGλ1,µ1(V ) in
(5) in [8], paths which can be seen as the analogues of the canonical representatives from the
torsion-free case. This can be done by Proposition 9.8 [11]. The second step in solving Φ is
to express the equalities of quasigeodesic paths in K in terms of equations in the virtually
free group V based on K. Finally, Proposition 9.10 [11] shows it is sufficient to solve the
systems of equations in V in order to obtain the solutions of the system Φ in G.
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In the virtually free group V we will use the results from [15]. Let Y be the generating
set of V and T ⊆ Y ∗ the set of normal forms for V over Y as in [15, Remark 44, page 50],
and let

SolT,V (Ψ) = {w1# . . .#wm) ∈ Tn | (π(w1), . . . , π(wm)) solves Ψ in V }

be the language of T -solutions in V of a system Ψ of size |Ψ| = O(k); by [15] the language
SolT,V (Ψ) consists of (λY , µY )-quasigeodesics and is EDT0L in NSPACE(k2 log k) over Y .

I Proposition 20. Let G be a hyperbolic group with torsion, with finite symmetric generating
set S. Let Φ be a system of equations and inequations with |Φ| = n as in Section 2. Let
h : S → S′,#, o be as in Proposition 17. Then there exist λ > 1, µ > 0 and

L = {w1# . . .#wm o h(v1)# . . .#h(vm) | wi, vi ∈ QS,λ,µ, wi =G vi, 1 6 i 6 m}

such that {w | w oh(v) ∈ L} is a covering solution for Φ, and L is ET0L in NSPACE(n4 logn).

Again applying Proposition 17 immediately gives Theorem 2.
Before proving Proposition 20 we need to show how one can translate between elements

and words in V over the generating set Y , and elements and words in G over S via the graph
K, so that the EDT0L characterisation of languages is preserved.

I Notation. Let Z be some generating set of V and let π : Z∗ → V be the standard projection
map from words to group elements in V .
(i) For each zi ∈ Z there exists a unique reduced path pi in K with i(pi) = 1G and

f(pi) ∈ G; by concatenation for each word w = zi1 . . . zik over Z there is then a unique
path denoted

pw = pi1 . . . pik (3)

with i(pw) = 1K = 1G and f(pw) ∈ G.
(ii) For each zi ∈ Z, assign a geodesic path γi in the Cayley graph Γ(G,S) such that

i(γi) = 1G and f(γi) = f(pi) ∈ G, where pi as in (i). Let σ : Z∗ → S∗ be the
map/substitution given by σ(zi) = γi; by concatenation one can associate to each word
w = zi1 . . . zik over Z a path in Γ(G,S) denoted

γw = γi1 . . . γik = σ(w) (4)

with i(pw) = 1G and f(γw) = f(w) ∈ G.
(iii) There exists a unique reduced path, denoted pπ(w), which is homotopic to pw.

Proof of Proposition 20. The algorithm to produce the language of solutions for Φ is similar
to that outlined in Section 3 and detailed in the proof of Proposition 18, but it applies
to different groups. The triangulation of Φ and introduction of a variable with rational
constraint to deal with the inequations proceeds in the same manner. Again, we suppose
after preprocessing we have q ∈ O(n) triangular equations.

Then for κ ∈ O(n) as in [8, Prop 36] define V6κ = {[γ] ∈ V | γ reduced and `K(γ) 6 κ}.
One lifts the system Φ in G to a finite set of systems Ψc in the virtually free group V , one
system for each q-tuple c of triples (c1, c2, c3) with ci ∈ V6κ and such that f(c1c2c3) = 1G,
as in [8, Prop 36]. We enumerate these tuples by enumerating triples of words (v1, v2, v3)
over the generating set Y of V with `Y (vi) 6 κY , where κY ∈ O(q) is a constant depending
on κ, as in Lemma 21(ii). By Lemma 21(ii) the tuples of path triples (pv1 , pv2 , pv3) (see (3))
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in K contain all q-tuples of triples (c1, c2, c3) with ci ∈ V6κY
, up to homotopy. Then for each

triple (v1, v2, v3) we check whether f(v1v2v3) = 1G, and this is done by checking whether
σ(v1)σ(v2)σ(v3) =G 1 using the Dehn algorithm in G.

Then each system Ψc is obtained as in (2) in the proof of Proposition 18 and has input size
O(q2) ∈ O(n2) since it has O(q) equations, each of length in O(q), and the factors ci inserted
also have length in O(q). For each system Ψc over V we apply the algorithm in [15] and obtain
the set of solutions SolT,V (Ψc) as an EDT0L in NSPACE((q2)2 log(q2)) = NSPACE(n4 logn)
of (λY , µY )-quasigeodesics over Y .

Now let QSolT,V (Ψc) be the set of all (λ′1, µ′1)-quasigeodesics which represent solutions
of Ψc in V over Y . By Proposition 17 this language is ET0L and by Corollary 22 it contains
at least one word over Y for each solution in QGλ1,µ1(V ).

Then σ(QSolT,V (Ψc)) is ET0L since ET0L languages are preserved by substitutions, and
by [8, Prop 36] S = ∪cσ(QSolT,V (Ψc)) contains SolG(Φ), so it is a covering solution set of
Φ. By Lemma 23 the set S consists of at least one (λG, µG)-quasigeodesic over S for each
solution, and then by intersection with the regular set QS,λG,µG

of quasigeodesics in G over
S we obtain a set of solutions for Φ consisting of (λG, µG)-quasigeodesics.

Finally, we run the modified DE algorithm (inserting the additional oh(W ) and label c
for each node printed) to print an NFA for each Φc for the EDT0L grammar for SolT,V (Ψc),
which we union using an extra start node as before. From the above work this grammar
generates the language L as required. J

I Lemma 21.
(i) If c ∈ V and the reduced path representing c in K is an (a, b)-quasigeodesic, then there

exists a word w on Y representing c such that w is an (a′, b′)-quasigeodesic, where a′, b′
depend on a, b and Y .

(ii) If c ∈ V and the length of the reduced path representing c in K is 6 L, then there exists
a word w on Y representing c such that `Y (w) 6 LY , where LY depends on L and Y .

I Corollary 22. For any element v ∈ QGλ1,µ1(V ) there is a (λ′1, µ′1)-quasigeodesic word over
Y representing v, where λ′1, µ′1 depend on λ1, µ1 and Y .

I Lemma 23. Let w be a (λ′1, µ′1)-quasigeodesic word over Y . Then if the reduced path pπ(w)
is (a, b)-quasigeodesic in K the (unreduced) path pw is (aK, bK)-quasigeodesic in K, where
(aK, bK) depend on a, b, λ′1, µ′1 and Y .

Moreover, σ(w) is a (λG, λG)-quasigeodesic over S in the hyperbolic group G, where
λG, λG depend on λ1, µ1 and Y .

Proof. Consider the generating set Z = Y ∪V63 for V and let λZ , µZ be such that any (λ′1, µ′1)-
quasigeodesic over Y is (λZ , µZ)-quasigeodesic over Z. Let M = max{lK(py) | y ∈ Y }. That
is, M is the maximal length of a generator in Y with respect to the associated reduced path
length in K. We will show the statement in the lemma holds for (aK, bK) = (a, b+MµZ).

We say that a subpath sw of pw is a maximal backtrack if pw = pswp
′, sw is homotopic

to an empty path (via the elimination of backtrackings), and sw is not contained in a longer
subpath of pw with the same property. This implies there is a point A on pw such that
sw starts and ends at A, and such a maximal backtrack traces a tree in K. We can then
write pw = a1s1a2 . . . sn−1an, where ai are (possibly empty) subpaths of pw and si are
maximal backtracks; thus pπ(w) = a1a2 . . . an. If lK(si) 6 MµZ for all i, then the result
follows immediately. Otherwise there exists an si with lK(si) > MµZ , and we claim that we
can write si in terms of a word over Z that is not a quasigeodesic, which contradicts the
assumption that w is quasigeodesic.
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To prove the claim, suppose i(si) = f(si) = A. We have two cases: in the first case A ∈ G
then π(si) =V 1 and si corresponds to a subword v of w for which lK(pv) > MµZ . But v
represents a word over Z, so lK(pv) 6 lZ(v)M , and altogether MµZ 6 lK(pv) 6 lZ(v)M.

Since |v|Z = 0 and v is a (λZ , µZ)-quasigeodesic word over Z∗, lZ(v) 6 µZ , which contradicts
lZ(v) > µZ from above.

In the second case A /∈ G, so take a point B ∈ G at distance 1 from A in K (this can
always be done), and modify the word w to get w′ over Z so that pw′ in K includes the
backtrack [AB,BA] off the path pw. Also modify si to obtain a new backtrack s′i. Clearly
π(pw) = π(pw′) and π(si) = π(s′i), and s′i becomes a maximal backtrack of pw′ which can be
written as a word over the generators Z that represents the trivial element in V . We can the
apply the argument from the first case.

The fact that σ(w) is a (λG, µG)-quasigeodesic over S in the hyperbolic group G follows
from the fact that K and Γ(G,S) are quasi-isometric. J
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Abstract
We introduce a new form of logical relation which, in the spirit of metric relations, allows us to assign
each pair of programs a quantity measuring their distance, rather than a boolean value standing
for their being equivalent. The novelty of differential logical relations consists in measuring the
distance between terms not (necessarily) by a numerical value, but by a mathematical object which
somehow reflects the interactive complexity, i.e. the type, of the compared terms. We exemplify this
concept in the simply-typed lambda-calculus, and show a form of soundness theorem. We also see
how ordinary logical relations and metric relations can be seen as instances of differential logical
relations. Finally, we show that differential logical relations can be organised in a cartesian closed
category, contrarily to metric relations, which are well-known not to have such a structure, but only
that of a monoidal closed category.
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1 Introduction

Modern software systems tend to be heterogeneous and complex, and this is reflected in
the analysis methodologies we use to tame their complexity. Indeed, in many cases the
only way to go is to make use of compositional kinds of analysis, in which parts of a large
system can be analysed in isolation, without having to care about the rest of the system, the
environment. As an example, one could consider a component A and replace it with another
(e.g. more efficient) component B without looking at the context C in which A and B are
supposed to operate, see Figure 1. Of course, for this program transformation to be safe, A
should be equivalent to B or, at least, B should be a refinement of A.

Program equivalences and refinements, indeed, are the cruxes of program semantics, and
have been investigated in many different programming paradigms. When programs have an
interactive behaviour, like in concurrent or higher-order languages, even defining a notion of
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B

C A
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C

Figure 1 Replacing A with B.

program equivalence is not trivial, while coming out with handy methodologies for proving
concrete programs to be equivalent can be quite challenging, and has been one of the major
research topics in programming language theory, stimulating the development of techniques
like logical relations [23, 20], applicative bisimilarity [1], and to some extent denotational
semantics [26, 27] itself.

Coming back to our example, may we say anything about the case in which A and B
are not equivalent, although behaving very similarly? Is there anything classic program
semantics can say about this situation? Actually, the answer is negative: the program
transformation turning such an A into B cannot be justified, simply because there is no
guarantee about what the possible negative effects that turning A into B could have on
the overall system formed by C and A. There are, however, many cases in which program
transformations like the one we just described are indeed of interest, and thus desirable.
Many examples can be, for instance, drawn from the field of approximate computing [21], in
which equivalence-breaking program transformations are considered as beneficial provided
the overall behaviour of the program is not affected too much by the transformation, while
its intensional behaviour, e.g. its performance, is significantly improved.

One partial solution to the problem above consists in considering program metrics rather
than program equivalences. This way, any pair of programs are dubbed being at a certain
numerical distance rather than being merely equivalent (or not). This, for example, can
be useful in the context of differential privacy [24, 6, 32] and has also been studied in the
realms of domain theory [13, 5, 14, 16, 4] (see also [28] for an introduction to the subject)
and coinduction [30, 29, 15, 9]. The common denominator among all these approaches is that
on the one hand, the notion of a congruence, crucial for compositional reasoning, is replaced
by the one of a Lipschitz-continuous map: any context should not amplify (too much) the
distance between any pair of terms, when it is fed with either the former or the latter:

δ(C[M ], C[N ]) ≤ c · δ(M,N).

This enforces compositionality, and naturally leads us to consider metric spaces and Lipschitz
functions as the underlying category. As is well known, this is not a cartesian closed category,
and thus does not form a model of typed λ-calculi, unless one adopts linear type systems, or
type systems in which the number of uses of each variable is kept track of, like FUZZ [24].
This somehow limits the compositionality of the metric approach [13, 17].
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Even if one considers affine calculi, there are program transformations which are intrins-
ically unjustifiable in the metric approach. Consider the following two programs of type
REAL → REAL

MSIN := λx.sin(x) MID := λx.x.

The two terms compute two very different functions on the real numbers, namely the sine
trigonometric function and the identity on R, respectively. The euclidean distance | sin x−x |
is unbounded when x ranges over R. As a consequence, comparing MSIN and MID using the
so-called sup metric1 as it is usually done in metric logical relations [24, 13] and applicative
distances [17, 10], we see that their distance is infinite, and that the program transformation
turning MSIN into MID cannot be justified this way, for very good reasons. As highlighted
by Westbrook and Chaudhuri [31], this is not the end of the story, at least if the environment
in which MSIN and MID operate feed either of them only with real numbers close to 0. If
this is the case, MSIN can be substituted with MID without affecting too much the overall
behaviour of the system.

The key insight by Westbrook and Chaudhuri is that justifying program transformations
like the one above requires taking the difference δ(MSIN ,MID) between MSIN and MID
not merely as a number, but as a more structured object. What they suggest is to take
δ(MSIN ,MID) as yet another program, which however describes the difference between
MSIN and MID:

δ(MSIN ,MID) := λx.λε.| sin x− x|+ ε.

This reflects the fact that the distance between MSIN and MID, namely the discrepancy
between their output, depends not only on the discrepancy on the input, namely on ε,
but also on the input itself, namely on x. It both x and ε are close to 0, δ(MSIN ,MID) is
itself close to 0.

In this paper, we develop Westbrook and Chaudhuri’s ideas, and turn them into a
framework of differential logical relations. We will do all this in a simply-typed λ-calculus
with real numbers as the only base type. Starting from such a minimal calculus has at
least two advantages: on the one hand one can talk about meaningful examples like the
one above, and on the other hand the induced metatheory is simple enough to highlight
the key concepts.

The contributions of this paper can be summarised as follows:
After introducing our calculus STλ

R, we define differential logical relations inductively
on types, as ternary relations between pairs of programs and differences. The latter are
mere set theoretic entities here, and the nature of differences between terms depends on
terms’ types.
We prove a soundness theorem for differential logical relations, which allows us to justify
compositional reasoning about terms’ differences. We also prove a finite difference theorem,
which stipulates that the distance between two simply-typed λ-terms is finite if mild
conditions hold on the underlying set of function symbols.
We give embeddings of logical and metric relations into differential logical relations. This
witnesses that the latter are a generalisation of the former two.

1 Recall that given (pseudo)metric spaces (X, dX), (Y, dY ) we can give the set Y X of non-expansive maps
between X and Y a (pseudo)metric space structure setting dY X (f, g) = supx∈X dY (f(x), g(x))
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x : τ ∈ Γ
Γ ` x : τ Γ ` r : REAL

fn ∈ Fn
Γ ` fn : REALn → REAL

Γ, x : τ `M : ρ
Γ ` λx.M : τ → ρ

Γ `M : τ → ρ Γ ` N : τ
Γ `MN : ρ

Γ `M : τ Γ ` N : ρ
Γ ` 〈M,N〉 : τ × ρ Γ ` π1 : τ × ρ→ τ Γ ` π2 : τ × ρ→ ρ

Γ `M : τ Γ ` N : τ
Γ ` iflz M else N : REAL → τ

Γ `M : τ → τ Γ ` N : τ
Γ ` iter M base N : REAL → τ

Figure 2 Typing rules for STλ
R.

Finally, we show that generalised metric domains, the mathematical structure underlying
differential logical relations, form a cartesian closed category, contrarily to the category
of metric spaces, which is well known not to have the same property.

Due to space constraints, many details have to be omitted, but can be found in an Extended
Version of this work [12].

2 A Simply-Typed λ-Calculus with Real Numbers

In this section, we introduce a simply-typed λ-calculus in which the only base type is the
one of real numbers, and constructs for iteration and conditional are natively available.
The choice of this language as the reference calculus in this paper has been made for the
sake of simplicity, allowing us to concentrate on the most crucial aspects, at the same time
guaranteeing a minimal expressive power.

Terms and Types

STλ
R is a typed λ-calculus, so its definition starts by giving the language of types, which is

defined as follows:

τ, ρ ::= REAL
∣∣ τ → ρ

∣∣ τ × ρ.
The expression τn stands for τ × · · · × τ︸ ︷︷ ︸

n times
. The set of terms is defined as follows:

M,N ::= x
∣∣ r ∣∣ fn ∣∣ λx.M ∣∣MN

∣∣ 〈M,N〉
∣∣ π1 | π2

∣∣ iflz M else N
∣∣ iter M base N

where x ranges over a set V of variables, r ranges over the set R of real numbers, n is a natural
number, and fn ranges over a set Fn of total real functions of arity n. We do not make any
assumption on {Fn}n∈N, apart from the predecessor pred1 being part of F1. The family, in
particular, could in principle contain non-continuous functions. The expression 〈M1, . . . ,Mn〉
is simply a shortcut for 〈. . . 〈〈M1,M2〉,M3〉 . . . ,Mn〉. All constructs are self-explanatory,
except for the iflz and iter operators, which are conditional and iterator combinators,
respectively. An environment Γ is a set of assignments of types to variables in V where
each variable occurs at most once. A type judgment has the form Γ `M : τ where Γ is an
environment, M is a term, and τ is a type. Rules for deriving correct typing judgments
are in Figure 2, and are standard. The set of terms M for which · ` M : τ is derivable is
indicated as CT (τ).
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V ⇓ V
M ⇓ fn N ⇓ 〈L1, . . . , Ln〉 Li ⇓ ri

MN ⇓ f(r1, . . . , rn)
M ⇓ λx.L N ⇓ V L{V/x} ⇓W

MN ⇓W

M ⇓ π1 N ⇓ 〈L,P 〉 L ⇓ V
MN ⇓ V

M ⇓ π2 N ⇓ 〈L,P 〉 P ⇓ V
MN ⇓ V

M ⇓ iflz L else P N ⇓ r r < 0 L ⇓ V
MN ⇓ V

M ⇓ iflz L else P N ⇓ r r ≥ 0 P ⇓ V
MN ⇓ V

M ⇓ iter L base P N ⇓ r r < 0 P ⇓ V
MN ⇓ V

M ⇓ iter L base P N ⇓ r r ≥ 0 L((iter L base P )(pred1(r)) ⇓ V
MN ⇓ V

Figure 3 Operational semantics for STλ
R.

Call-by-Value Operational Semantics

A static semantics is of course not enough to give meaning to a paradigmatic programming
language, the dynamic aspects being captured only once an operational semantics is defined.
The latter turns out to be very natural. Values are defined as follows:

V,W ::= r
∣∣ fn ∣∣ λx.M ∣∣ 〈M,N〉

∣∣ π1
∣∣ π2

∣∣ iflz M else N
∣∣ iter M base N

The set of closed values of type τ is CV (τ) ⊆ CT(τ), and the evaluation of M ∈ CT(τ)
produces a value V ∈ CV (τ), as formalised by the rules in Figure 3, through the judgment
M ⇓ V . We write M ⇓ if M ⇓ V is derivable for some V . The absence of full recursion has
the nice consequence of guaranteeing a form of termination:

I Theorem 1. The calculus STλ
R is terminating: if · `M : τ then M ⇓.

Theorem 1 can be proved by way of a standard reducibility argument. Termination implies
the following.

I Corollary 2. If · `M : REAL then there exists a unique r ∈ R satisfying M ⇓ r, which
we indicate as NF(M).

Context Equivalence

A context C is nothing more than a term containing a single occurrence of a placeholder [·].
Given a context C, C[M ] indicates the term one obtains by substitutingM for the occurrence
of [·] in C. Typing rules in Figure 2 can be lifted to contexts by generalising judgments to
the form Γ ` C[∆ ` · : τ ] : ρ, by which one captures that whenever ∆ `M : τ , it holds that
Γ ` C[M ] : ρ. Two terms M and N such that Γ `M,N : τ are said to be context equivalent
[22] if for every C such that ∅ ` C[Γ ` · : τ ] : REAL it holds that NF(C[M ]) = NF(C[N ]).
Context equivalence is the largest adequate congruence, and is thus considered as the coarsest
“reasonable” equivalence between terms. It can also be turned into a pseudometric [11, 10] –
called context distance – by stipulating that

δ(M,N) = sup
∅`C[Γ`·:τ ]:REAL

|NF(C[M ])−NF(C[M ])|.

The obtained notion of distance, however, is bound to trivialise [11], given that STλ
R is not

affine. Trivialisation of context distance highlights an important limit of the metric approach
to program difference which, ultimately, can be identified with the fact that program distances
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are sensitive to interactions with the environment. Our notion of a differential logical relation
tackles such a problem from a different perspective, namely refining the concept of program
distance to something which is not just a number, but is now able to take into account
interactions with the environment.

Set-Theoretic Semantics

Before introducing differential logical relations, it is useful to remark that we can give STλ
R a

standard set-theoretic semantics. To any type τ we associate the set JτK, the latter being
defined by induction on the structure of τ as follows:

JREALK = R; Jτ → ρK = JτK→ JρK; Jτ × ρK = JτK× JρK.

This way, any closed term M ∈ CT (τ) is interpreted as an element JMK of JτK in a natural
way (see, e.g. [20]). Up to now, everything we have said about STλ

R is absolutely standard,
and only serves to set the stage for the next sections.

3 Making Logical Relations Differential

Logical relations can be seen as one of the many ways of defining when two programs are to
be considered equivalent. Their definition is type driven, i.e., they can be seen as a family
{δτ}τ of binary relations indexed by types such that δτ ⊆ CT (τ)× CT (τ). This section is
devoted to showing how all this can be made into differential logical relations.

The first thing that needs to be discussed is how to define the space of differences between
programs. These are just boolean values in logical relations, become real numbers in ordinary
metrics, and is type-dependent itself. A function L·M that assigns a set to each type is
defined as follows:

LREALM = R∞≥0; Lτ → ρM = JτK× LτM→ LρM; Lτ × ρM = LτM× LρM;

where R∞≥0 = R≥0 ∪ {∞}. The set LτM is said to be the difference space for the type τ and
is meant to model the outcome of comparisons between closed programs of type τ . As an
example, when τ is REAL → REAL, we have that LτM = R× R∞≥0 → R∞≥0. This is the type
of the function δ(M,N) we used to compare the two programs described in the Introduction.

Now, which structure could we endow LτM with? First of all, we can define a partial order
≤τ over LτM for each type τ as follows:

r ≤REAL s if r ≤ s as the usual order over R∞≥0;
f ≤τ→ρ g if ∀x ∈ JτK.∀t ∈ LτM.f(x, t) ≤ρ g(x, t);

(t, u) ≤τ×ρ (s, r) if t ≤τ s and u ≤ρ r.

This order has least upper bounds and greater lower bounds, thanks to the nice structure
of R∞≥0:

I Proposition 3. For each type τ , (LτM,≤τ ) forms a complete lattice.

The fact that LτM has a nice order-theoretic structure is not the end of the story. For
every type τ , we define a binary operation ∗τ as follows:

r ∗REAL s = r + s if r, s ∈ R≥0; (f ∗τ→ρ g)(V, t) = f(V, t) ∗ρ g(V, t);
r ∗REAL s =∞ if r =∞∨ s =∞; (t, s) ∗τ×ρ (u, r) = (t ∗τ u, s ∗ρ r).
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This is precisely what it is needed to turn LτM into a quantale2 [25].

I Proposition 4. For each type τ , LτM forms a commutative unital non-idempotent quantale.

The fact that LτM is a quantale means that it has, e.g., the right structure to be the
codomain of generalised metrics [19, 18]. Actually, a more general structure is needed for our
purposes, namely the one of a generalised metric domain, which will be thoroughly discussed
in Section 6 below. For the moment, let us concentrate our attention to programs:

I Definition 5 (Differential Logical Relations). We define a differential logical relation {δτ ⊆
Λτ × LτM× Λτ}τ as a set of ternary relations indexed by types satisfying

δREAL(M, r,N)⇔ |NF(M)−NF(N)| ≤ r;
δτ×ρ(M, (d1, d2), N)⇔ δτ (π1M,d1, π1N) ∧ δρ(π2M,d2, π2N)

δτ→ρ(M,d,N)⇔ (∀V ∈ CV (τ). ∀x ∈ LτM. ∀W ∈ CV (τ).
δτ (V, x,W )⇒ δρ(MV , d(JV K, x), NW ) ∧ δρ(MW,d(JV K, x), NV )).

An intuition behind the condition required for δτ→ρ(M,d,N) is that d(JV K, x) overapprox-
imates both the “distance” between MV and NW and the one between MW and NV , this
whenever W is within the error x from V .

3.1 A Fundamental Lemma
Usually, the main result about any system of logical relations is the so-called Fundamental
Lemma, which states that any typable term is in relation with itself. But how would the
Fundamental Lemma look like here? Should any term be at somehow minimal distance to
itself, in the spirit of what happens, e.g. with metrics [24, 13]? Actually, there is no hope to
prove anything like that for differential logical relations, as the following example shows.

I Example 6. Consider again the term MID = λx.x, which can be given type τ = REAL →
REAL in the empty context. Please recall that LτM = R× R∞≥0 → R∞≥0. Could we prove that
δτ (MID, 0τ ,MID), where 0τ is the constant-0 function? The answer is negative: given two
real numbers r and s at distance ε, the terms MIDr and MIDs are themselves ε apart, thus
at nonnull distance. The best one can say, then, is that δτ (MID, f,MID), where f(x, ε) = ε.

As the previous example suggests, a term M being at self-distance d is a witness of M being
sensitive to changes to the environment according to d. Indeed, the only terms which are at
self-distance 0 are the constant functions. This makes the underlying theory more general
than the one of logical or metric relations, although the latter can be proved to be captured
by differential logical relations, as we will see in the next section.

Coming back to the question with which we opened the section, we can formulate a
suitable fundamental lemma for differential logical relations.

I Theorem 7 (Fundamental Lemma, Version I). For every · `M : τ there is a d ∈ LτM such
that (M,d,M) ∈ δτ .

Proof sketch. The proof proceeds, as usual, by induction on the derivation of · ` M : τ .
In order to deal with e.g. λ-abstractions we have to strengthen our statement taking into
account open terms. This turns out to be non-trivial and requires to extend our notion of

2 Recall that a quantale Q = (Q,≤Q, 0Q, ∗Q) consists of a complete lattice (Q,≤Q) and a monoid
(Q, 0Q, ∗Q) such that the lattice and monoid structures properly interact (meaning that monoid
multiplication distributes over joins). We refer to [25, 18] for details.
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a differential logical relation to arbitrary terms. First of all, we need to generalise L·M and
J·K to environments. For instance, LΓM is the set of families in the form α = {αx}(x:ρ)∈Γ,
where αx ∈ LρM. Similarly for JΓK. This way, a natural space for differences between terms
Γ ` M,N : τ can be taken as LτMJΓK×LΓM, namely the set of maps from JΓK × LΓM to LτM.
Given an environment Γ, a family V = {Vx}(x:ρx)∈Γ such that Vx ∈ CV (ρx) is said to be
a Γ-family of values. Such a Γ-family of values can naturally be seen as a substitution V
mapping each variable (x : ρ) ∈ Γ to Vx ∈ CV (ρx). As it is customary, for a term Γ `M : τ
we write MV for the closed term of type τ obtained applying the substitution V to M . We
denote by CV (Γ) the set of all Γ-family of values. Given a set Z, an environment Γ, and
two Γ-indexed families α = {αx}(x:ρ)∈Γ, β = {βx}(x:ρ)∈Γ over Z (meaning that e.g. αx ∈ Z,
for each (x : ρ) ∈ Γ), we introduce the following notational convention. For a Γ-indexed
family B = {bx}(x:ρ)∈Γ such that bx ∈ {0, 1}, we can construct a “choice” Γ-indexed family
Bαβ as follows:

(Bαβ )x =
{
αx if bx = 0
βx if bx = 1.

Moreover, given a family B as above, we can construct the inverse family B as the family
{1− bx}(x:ρ)∈Γ. We can now talk about open terms, and from a differential logical relation
{δτ ⊆ Λτ × LτM × Λτ}τ construct a family of relations {δΓ

τ ⊆ ΛΓ
τ × LτMJΓK×LΓM × ΛΓ

τ }τ,Γ by
stipulating that δΓ

τ (M,d,N) iff

δΓ(V, Y,W) =⇒ ∀B ∈ {0, 1}Γ.δτ (MBV
W, d(JVK, Y ), NBV

W).

We now prove the following strengthening of our main thesis: for any term Γ `M : τ , there
is a d ∈ LτMJΓK×LΓM such that δΓ

τ (M,d,M). At this point the proof is rather standard, and
proceeds by induction on the derivation of Γ `M : τ . J

But what do we gain from Theorem 7? In the classic theory of logical relations, the
Fundamental Lemma has, as an easy corollary, that logical relations are compatible: it suffices
to invoke the theorem with any context C seen as a term C[x], such that x : τ,Γ ` C[x] : ρ.
Thus, ultimately, logical relations are proved to be a compositional methodology for program
equivalence, in the following sense: if M and N are equivalent, then C[M ] and C[N ] are
equivalent, too.

In the realm of differential logical relations, the Fundamental Lemma plays a similar role,
although with a different, quantitative flavor: once C has been proved sensitive to changes
according to d, and V,W are proved to be at distance e, then, e.g., the impact of substituting
V with W in C can be measured by composing d and e (and JV K), i.e. by computing
d(JV K, e). Notice that the sensitivity analysis on C and the relational analysis on V and W
are decoupled. What the Fundamental Lemma tells you is that d can always be found.

3.2 Our Running Example, Revisited
It is now time to revisit the example we talked about in the Introduction. Consider the
following two programs, both closed and of type REAL → REAL:

MSIN = λx.sin1(x); MID = λx.x.

First of all, let us observe that, as already remarked, comparing MSIN and MID using the
sup metric on R → R, as it is done in metric logical relations and applicative distances,
naturally assigns them distance ∞, the euclidean distance |x − sin(x)| being unbounded
when x ranges over R.
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Let us now prove that (MSIN , f,MID) ∈ δREAL→REAL, where f(x, y) = y + |x− sin x|.
Consider any pair of real numbers r, s ∈ R such that |r − s| ≤ ε, where ε ∈ R∞≥0. We
have that:

|sin r − s| = |sin r − r + r − s| ≤ |sin r − r|+ |r − s| ≤ |sin r − r|+ ε = f(r, ε)
|sin s− r| = |sin s− sin r + sin r − r| ≤ |sin s− sin r|+ |sin r − r| ≤ |s− r|+ |sin r − r|

≤ ε+ |sin r − r| = f(r, ε).

The fact that |sin s− sin r| ≤ |s− r| is a consequence of sin being 1-Lipschitz continuous
(see, e.g., [12] for a simple proof).

Now, consider a context C which makes use of either MSIN or MID by feeding them with
a value close to 0, call it θ. Such a context could be, e.g., C = (λx.x(xθ))[·]. C can be seen
as a term having type τ = (REAL → REAL)→ REAL. A self-distance d for C can thus be
defined as an element of

LτM = JREAL → REALK× LREAL → REALM→ R∞≥0.

namely F = λλ〈g, h〉.h(g(θ), h(θ, 0)). This allows for compositional reasoning about program
distances: the overall impact of replacing MSIN by MID can be evaluated by computing
F (JMSIN K, f). Of course the context C needs to be taken into account, but once and for all:
the functional F can be built without knowing with which term(s) it will be fed with.

4 Logical and Metric Relations as DLRs

The previous section should have convinced the reader about the peculiar characteristics
of differential logical relations compared to (standard) metric and logical relations. In
this section we show that despite the apparent differences, logical and metric relations can
somehow be retrieved as specific kinds of program differences. This is, however, bound to
be nontrivial. The naïve attempt, namely seeing program equivalence as being captured
by minimal distances in logical relations, fails: the distance between a program and itself
can be nonnull.

How should we proceed, then? Isolating those distances which witness program equivalence
is indeed possible, but requires a bit of an effort. In particular, the sets of those distances
can be, again, defined by induction on τ . For every τ , we give LτM0 ⊆ LτM by induction on
the structure of τ :

LREALM0 = {0}; Lτ × ρM0 = LτM0 × LρM0;

Lτ → ρM0 = {f ∈ Lτ → ρM | ∀x ∈ JτK.∀y ∈ LτM0.f(x, y) ∈ LρM0}.

Notice that Lτ → ρM0 is not defined as JτK× LτM0 → LρM0 (doing so would violate Lτ → ρM0 ⊆
Lτ → ρM). The following requires some effort, and testifies that, indeed, program equivalence
in the sense of logical relations precisely corresponds to being at a distance in LτM0:

I Theorem 8. Let {Lτ}τ be a logical relation. There exists a differential logical relation
{δτ}τ satisfying Lτ (M,N)⇐⇒ ∃d ∈ LτM0.δτ (M,d,N).

What if we want to generalise the argument above to metric relations, as introduced, e.g.,
by Reed and Pierce [24]? The set LτM0 becomes a set of distances parametrised by a single
real number:

LREALMr = {r}; Lτ × ρMr = LτMr × LρMr;
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Figure 4 A total, but highly discontinuous, function.

Lτ → ρMr = {f ∈ Lτ → ρM | ∀x ∈ JτK.∀y ∈ LτMs.f(x, y) ∈ LρMr+s}.

A result similar to Theorem 8 is unfortunately outside the scope of this paper, but can be
found in the Extended Version [12]. In particular, metric relations are only available in
calculi, like FUZZ [24], which rely on linear type systems, thus more refined than the one we
endow STλ

R with.

5 Strengthening the Fundamental Theorem through Finite Distances

Let us now ask ourselves the following question: given any term M ∈ CT(τ), what can
we say about its sensitivity, i.e., about the values d ∈ LτM such that δτ (M,d,M)? Two of
the results we have proved about STλ

R indeed give partial answers to the aforementioned
question. On the one hand, Theorem 7 states that such a d can always be found. On the
other hand, Theorem 8 tells us that such a d can be taken in LτM0. Both these answers are
not particularly informative, however. The mere existence of such a d ∈ LτM, for example, is
trivial since d can always be taken as d∞, the maximal element of the underlying quantale.
The fact that such a d can be taken from LτM0 tells us that, e.g. when τ = ρ→ ξ, M returns
equivalent terms when fed with equivalent arguments: there is no quantitative guarantee
about the behaviour of the term when fed with non-equivalent arguments.

Is this the best one can get about the sensitivity of STλ
R terms? The absence of full

recursion suggests that we could hope to prove that infinite distances, although part of the
underlying quantale, can in fact be useless. In other words, we are implicitly suggesting that
self-distances could be elements of LτM<∞ ⊂ LτM, defined as follows:

LREALM<∞ = R≥0; Lτ × ρM<∞ = LτM<∞ × LρM<∞;

Lτ → ρM<∞ = {f ∈ Lτ → ρM | ∀x ∈ JτK.∀t ∈ LτM<∞.f(x, t) ∈ LρM<∞}.

Please observe that LτM<∞ is in general a much larger set of differences than
⋃
r∈R∞≥0

LτMr:
the former equals the latter only when τ is REAL. Already when τ is REAL → REAL, the
former includes, say, functions like f(r, ε) = (r + ε)2, while the latter does not.

Unfortunately, there are terms in STλ
R which cannot be proved to be at self-distance

in LτM<∞, and, surprisingly, this is not due to the higher-order features of STλ
R, but to

{Fn}n∈N being arbitrary, and containing functions which do not map finite distances to finite
distances, like

h(r) =
{

0 if r = 0
1
r otherwise
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(see Figure 4). Is this phenomenon solely responsible for the necessity of finite self-distances
in STλ

R? The answer is positive, and the rest of this section is devoted precisely to formalising
and proving the aforementioned conjecture.

First of all, we need to appropriately axiomatise the absence of unbounded discontinuities
from {Fn}n∈N. A not-so-restrictive but sufficient axiom turns out to be weak boundedness: a
function fn : Rn → R is said to be weakly bounded if and only if it maps bounded subsets of
Rn into bounded subsets of R. As an example, the function h above is not weakly bounded,
because h([−ε, ε]) is(

−∞,−1
ε

]
∪ {0} ∪

[
1
ε
,∞
)

which is unbounded for any as ε > 0. Any term M is said to be weakly bounded iff any
function symbol fn occurring in M is itself weakly bounded. Actually, this is precisely what
one needs to get the strengthening of the Fundamental Theorem we are looking for.

I Theorem 9 (Fundamental Theorem, Version II). For any weakly bounded term · `M : τ ,
there is d ∈ LτM<∞ such that (M,d,M) ∈ δτ .

The reader may have wondered about how restrictive a condition weak boundedness really
is. In particular, whether it corresponds to some form of continuity. In fact, the introduced
condition only rules out unbounded discontinuities. In other words, weak boundedness can
be equivalently defined by imposing local boundedness at any point in the domain R. This is
weaker than asking for boundedness, which requires the existence of a global bound.

6 A Categorical Perspective

Up to now, differential logical relations have been treated very concretely, without looking at
them through the lens of category theory. This is in contrast to, e.g., the treatment of metric
relations from [13], in which soundness of metric relations for FUZZ is obtained as a byproduct
of a proof of symmetric monoidal closedness for the category MET of pseudometric spaces
and Lipschitz functions.

But what could take the place of pseudometric spaces in a categorical framework capturing
differential logical relations? The notion of a metric needs to be relaxed along at least two
axes. On the one hand, the codomain of the “metric” δ is not necessarily the set of real
numbers, but a more general structure, namely a quantale. On the other, as we already
noticed, it is not necessarily true that equality implies indistancy, but rather than indistancy
implies inequality. What comes out of these observations is, quite naturally, the notion
of a generalized metric domain, itself a generalisation of partial metrics [7]. The rest of
this section is devoted to proving that the category of generalised metric domains is indeed
cartesian closed, thus forming a model of simply typed λ-calculi.

Formally, given a quantale Q = (Q,≤Q, 0Q, ∗Q)3, a generalised metric domain on Q is a
pair (A, δA), where A is a set and δA is a subset of A×Q×A satisfying some axioms akin
to those of a metric domain:

δA(x, 0Q, y)⇒ x = y; (Indistancy Implies Equality)
δA(x, d, y)⇒ δA(y, d, x); (Symmetry)

δA(x, d, y) ∧ δA(y, e, y) ∧ δA(y, f, z)⇒ δA(x, d ∗ e ∗ f, z). (Triangularity)

3 When unambiguous, we will omit subscripts in ≤Q, 0Q, and ∗Q.
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Please observe that δA is a relation rather than a function. Moreover, the first axiom is dual to
the one typically found in, say, pseudometrics. The third axiom, instead, resembles the usual
triangle inequality for pseudometrics, but with the crucial difference that since objects can
have non-null self-distance, such a distance has to be taken into account. Requiring equality
to imply indistancy (and thus δA(x, 0Q, y)⇔ x = y), we see that (Triangularity) gives exactly
the usual triangle inequality (properly generalised to quantale and relations [18, 19]).

In this section we show that generalised metric domains form a cartesian closed category,
unlike that of metric spaces (which is known to be non-cartesian closed). As a consequence,
we obtain a firm categorical basis of differential logical relations. The category of generalised
metric domain, denoted by GMD, is defined as follows.

I Definition 10. The category GMD has the following data.
An object A is a triple (A,Q, δ) where Q is a quantale and (A, δ) is a generalized metric
domain on Q.
An arrow (A,Q, δ) → (B, S, ρ) is a pair (f, ζ) consisting of a function f : A → B and
another function ζ : Q×A→ S satisfying ∀a, a′ ∈ A.∀q ∈ Q.δ(a, q, a′)⇒ ρ(f(a), ζ(q, a),
f(a′)) and ρ(f(a), ζ(q, a′), f(a′)).

We can indeed give GMD the structure of a category. In fact, the identity on the object
A = (A,Q, δ) in GMD is given by (idA, id′A) where idA : A → A is the set-theoretic
identity on A and id′A : Q × A → Q is defined by id′A(q, a) = q. The composition of two
arrows (f, ζ) : (A,Q, δ) → (B, S, ρ) and (g, η) : (B, S, ρ) → (C,T, ν) is the pair (h, θ) where
h : A→ C is given by the function composition g ◦ f : A→ C and h : Q×A→ T is given by
θ(q, a) = η(ζ(q, a), f(a)). Straightforward calculations show that composition is associative,
and that the identity arrow behaves as its neutral element.

Most importantly, we can give GMD a cartesian closed structure, as shown by the
following result4.

I Theorem 11. GMD is a cartesian closed category.

Proof sketch. Before entering details, it is useful to remark that the cartesian product of two
quantales is itself a quantale (with lattice and monoid structure defined pointwise). Similarly,
for any quantale Q and set X, the function space QX inherits a quantale structure from Q
pointwise. Let us now show that GMD is cartesian closed. We begin showing that GMD
has a terminal object and binary products. The former is defined as ({∗},O, δ0), where O
is the one-element quantale {0}, and δ0 = {(∗, 0, ∗)} (notice that ({∗}, δ0) is a generalized
metric domain on O), whereas the binary product A× B of two objects A and B in GMD
is given by a triple (A×B,Q× S, δ × ρ). Finally, we define exponentials in GMD. Given
C, B in GMD, their exponential CB is the triple (CB ,TS×B , νρ), where CB is the function
space {f | f : B → C}, TS×B is the exponential quantale, and νρ is a ternary relation over
CB×TS×B×CB defined by: if ρ(b, s, b′) then ν(f(b), d(s, b), f ′(b′)) and ν(f(b), d(s, b′), ζ(b′)).
Please notice that the relation νρ is indeed a differential logical relation. J

Interestingly, the constructions of product and exponential objects in the proof of The-
orem 11 closely match the definition of a differential logical relation. In other words,
differential logical relations as given in Definition 5 can be seen as providing a denota-
tional model of STλ

R in which base types are interpreted by the generalised metric domain
corresponding to the Euclidean distance.

4 See [12] for a detailed proof.
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7 Conclusion

In this paper, we introduced differential logical relations as a novel methodology to evaluate
the “distance” between programs of higher-order calculi akin to the λ-calculus. We have been
strongly inspired by some unpublished work by Westbrook and Chaudhuri [31], who were the
first to realise that evaluating differences between interactive programs requires going beyond
mere real numbers. We indeed borrowed our running example from the aforementioned work.

This paper’s contribution, then consists in giving a simple definition of differential logical
relations, together with some results about their underlying metatheory: two formulations of
the Fundamental Lemma, a result relating differential logical relations and ordinary logical
relations, and a proof that generalised metric domains – the metric structure corresponding
to differential logical relations – form a cartesian closed category. Such results give evidence
that, besides being more expressive than metric relations, differential logical relations are
somehow more canonical, naturally forming a model of simply-typed λ-calculi.

As the title of this paper suggests, we see the contributions above just as a very first step
towards understanding the nature of differences in a logical environment. In particular, at
least two directions deserve to be further explored.

The first one concerns language features: admittedly, the calculus STλ
R we consider here

is very poor in terms of its expressive power, lacking full higher-order recursion and
thus not being universal. Moreover, STλ

R does not feature any form of effect, including
probabilistic choices, in which evaluating differences between programs would be very
helpful. Addressing such issues seems to require to impose a domain structure on
generalised metric domains, on one hand, and to look at monads on GMD, on the other
hand (for the latter, the literature on monadic lifting for quantale-valued relations might
serve as a guide [18]).
The second one is about abstract differences: defining differences as functions with the
same rank as that of the compared programs implies that reasoning about them is complex.
Abstracting differences so as to facilitate differential reasoning could be the way out,
given that deep connections exist between logical relations and abstract interpretation [2].
Another way to understand program difference better is to investigate whether differential
logical relations can be related to abstract structures for differentiation, as in [3]. Indeed,
Example 6 suggests that an interesting distance between a program and itself can be
taken as its derivative, the latter being defined as in [8].

References
1 S. Abramsky. The Lazy Lambda Calculus. In D. Turner, editor, Research Topics in Functional

Programming, pages 65–117. Addison Wesley, 1990.
2 Samson Abramsky. Abstract Interpretation, Logical Relations and Kan Extensions. J. Log.

Comput., 1(1):5–40, 1990.
3 Mario Alvarez-Picallo and C.-H. Luke Ong. Change Actions: Models of Generalised Differenti-

ation. In Proc. of FOSSACS 2019, pages 45–61, 2019.
4 A. Arnold and M. Nivat. Metric Interpretations of Infinite Trees and Semantics of non

Deterministic Recursive Programs. Theor. Comput. Sci., 11:181–205, 1980.
5 C. Baier and M.E. Majster-Cederbaum. Denotational Semantics in the CPO and Metric

Approach. Theor. Comput. Sci., 135(2):171–220, 1994.
6 Gilles Barthe, Marco Gaboardi, Justin Hsu, and Benjamin C. Pierce. Programming language

techniques for differential privacy. SIGLOG News, 3(1):34–53, 2016.
7 Michael A. Bukatin, Ralph Kopperman, Steve Matthews, and Homeira Pajoohesh. Partial

Metric Spaces. The American Mathematical Monthly, 116(8):708–718, 2009.

ICALP 2019



111:14 Differential Logical Relations

8 Yufei Cai, Paolo G. Giarrusso, Tillmann Rendel, and Klaus Ostermann. A theory of changes
for higher-order languages: incrementalizing λ-calculi by static differentiation. In Proc. of
PLDI, pages 145–155, 2014.

9 Konstantinos Chatzikokolakis, Daniel Gebler, Catuscia Palamidessi, and Lili Xu. Generalized
Bisimulation Metrics. In CONCUR 2014 - Concurrency Theory - 25th International Conference,
CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceedings, pages 32–46, 2014.

10 Raphaëlle Crubillé and Ugo Dal Lago. Metric Reasoning about λ-Terms: The Affine Case. In
Proc. of LICS 2015, pages 633–644, 2015.

11 Raphaëlle Crubillé and Ugo Dal Lago. Metric Reasoning About λ-Terms: The General Case.
In Proc. of ESOP 2017, pages 341–367, 2017.

12 Ugo Dal Lago, Francesco Gavazzo, and Akira Yoshimizu. Differential Logical Relations, Part
I: The Simply-Typed Case (Extended Version), 2018. arXiv:1904.12137.

13 A.A. de Amorim, M. Gaboardi, J. Hsu, S. Katsumata, and I. Cherigui. A semantic account of
metric preservation. In Proc. of POPL 2017, pages 545–556, 2017.

14 J.W. de Bakker and J.I. Zucker. Denotational Semantics of Concurrency. In STOC, pages
153–158, 1982.

15 Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics for
labelled Markov processes. Theor. Comput. Sci., 318(3):323–354, 2004.

16 M.H. Escardo. A metric model of PCF. In Workshop on Realizability Semantics and Applica-
tions, 1999.

17 Francesco Gavazzo. Quantitative Behavioural Reasoning for Higher-order Effectful Programs:
Applicative Distances. In Proc. of LICS 2018, pages 452–461, 2018.

18 D. Hofmann, G.J. Seal, and W. Tholen, editors. Monoidal Topology. A Categorical Approach to
Order, Metric, and Topology. Number 153 in Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2014.

19 F.W. Lawvere. Metric spaces, generalized logic, and closed categories. Rend. Sem. Mat. Fis.
Milano, 43:135–166, 1973.

20 John C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.
21 Sparsh Mittal. A Survey of Techniques for Approximate Computing. ACM Comput. Surv.,

48(4), 2016.
22 J. Morris. Lambda Calculus Models of Programming Languages. PhD thesis, MIT, 1969.
23 Gordon D. Plotkin. Lambda-Definability and Logical Relations. Memorandum SAI-RM-4,

University of Edinburgh, 1973.
24 J. Reed and B.C. Pierce. Distance makes the types grow stronger: a calculus for differential

privacy. In Proc. of ICFP 2010, pages 157–168, 2010.
25 K.I. Rosenthal. Quantales and their applications. Pitman research notes in mathematics series.

Longman Scientific & Technical, 1990.
26 Dana Scott. Outline of a mathematical theory of computation. Technical Report PRG02,

OUCL, November 1970.
27 Dana Scott and Christopher Strachey. Toward a mathematical semantics for computer

languages. Technical Report PRG06, OUCL, August 1971.
28 F. Van Breugel. An introduction to metric semantics: operational and denotational models

for programming and specification languages. Theor. Comput. Sci., 258(1-2):1–98, 2001.
29 F. Van Breugel and J. Worrell. A behavioural pseudometric for probabilistic transition systems.

Theor. Comput. Sci., 331(1):115–142, 2005.
30 Franck van Breugel and James Worrell. Towards Quantitative Verification of Probabilistic

Transition Systems. In Proc. of ICALP 2001, pages 421–432, 2001.
31 Edwin M. Westbrook and Swarat Chaudhuri. A Semantics for Approximate Program Trans-

formations. CoRR, abs/1304.5531, 2013. arXiv:1304.5531.
32 Lili Xu, Konstantinos Chatzikokolakis, and Huimin Lin. Metrics for Differential Privacy in

Concurrent Systems. In Proc. of FORTE 2014, pages 199–215, 2014.

http://arxiv.org/abs/1904.12137
http://arxiv.org/abs/1304.5531


Approximations of Isomorphism and Logics with
Linear-Algebraic Operators
Anuj Dawar
University of Cambridge, UK
anuj.dawar@cl.cam.ac.uk

Erich Grädel
RWTH Aachen University, Germany
graedel@logic.rwth-aachen.de

Wied Pakusa
RWTH Aachen University, Germany
pakusa@logic.rwth-aachen.de

Abstract
Invertible map equivalences are approximations of graph isomorphism that refine the well-known
Weisfeiler-Leman method. They are parameterized by a number k and a set Q of primes. The
intuition is that two equivalent graphs G ≡IM

k,Q H cannot be distinguished by means of partitioning
the set of k-tuples in both graphs with respect to any linear-algebraic operator acting on vector spaces
over fields of characteristic p, for any p ∈ Q. These equivalences have first appeared in the study of
rank logic, but in fact they can be used to delimit the expressive power of any extension of fixed-point
logic with linear-algebraic operators. We define LAk(Q), an infinitary logic with k variables and all
linear-algebraic operators over finite vector spaces of characteristic p ∈ Q and show that ≡IM

k,Q is the
natural notion of elementary equivalence for this logic. The logic LAω(Q) =

⋃
k∈ω

LAk(Q) is then
a natural upper bound on the expressive power of any extension of fixed-point logics by means of
Q-linear-algebraic operators.

By means of a new and much deeper algebraic analysis of a generalized variant, for any prime p,
of the CFI-structures due to Cai, Fürer, and Immerman, we prove that, as long as Q is not the set
of all primes, there is no k such that ≡IM

k,Q is the same as isomorphism. It follows that there are
polynomial-time properties of graphs which are not definable in LAω(Q), which implies that no
extension of fixed-point logic with linear-algebraic operators can capture PTIME, unless it includes
such operators for all prime characteristics. Our analysis requires substantial algebraic machinery,
including a homogeneity property of CFI-structures and Maschke’s Theorem, an important result
from the representation theory of finite groups.

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases Finite Model Theory, Graph Isomorphism, Descriptive Complexity, Algebra

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.112

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version A full version of this paper is available at https://arxiv.org/abs/1902.06648.

1 Introduction

The graph isomorphism problem (or more generally, the structure isomorphism problem) is
an important computational problem which is also very interesting from the point of view of
complexity theory. It is not known to be in P nor known to be NP-complete. It is known to
be solvable in quasi-polynomial time by Babai’s algorithm [3].

An important theoretical approach to understanding the nature of the graph isomorphism
problem is the Weisfeiler-Leman method. For each positive integer k, the k-dimensional
Weisfeiler-Leman method (k-WL method for short) defines an equivalence relation ≡k which
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over-approximates isomorphism in the sense that if G ∼= H for a pair of graphs G and H,
then G ≡k H for any k. The relations form a refining family in the sense that if G 6≡k H
then G 6≡k′

H for all k′ > k. Thus, the equivalence relation gets finer with increasing k
and approaches isomorphism in the limit. Moreover, if G and H are n-vertex graphs then
G ≡n H if, and only if, G ∼= H. For each fixed k, the equivalence relation ≡k is decidable in
polynomial time, indeed in time nO(k). Thus, if there were a fixed k such that ≡k were the
same as isomorphism, we would have a polynomial-time algorithm for graph isomorphism.
However, we know this is not the case. Cai, Fürer and Immerman [6] showed that there are
pairs of non-isomorphic graphs G and H with O(k) vertices such that G ≡k H. We call the
construction of such graphs the CFI construction.

The Weisfeiler-Leman equivalences arise naturally in the study of graphs in many different
guises. We have definitions based on combinatorics (such as Babai’s original definition,
see [6]); in logic as the equivalences induced by bounded variable fragments of first-order logic
with counting; linear programming (see [2, 21]); and algebra (as in the original definition of
Weisfeiler and Leman, extended to dimension k in [13]). The equivalences have proved to
be of central importance in the area of descriptive complexity theory. In particular, they
delimit the power of fixed-point logic with counting (FPC), an important logic in the study of
symmetric polynomial-time computation (see [9]). On many important classes of structures,
it turns out that there is a fixed k for which k-WL suffices to distinguish all non-isomorphic
graphs. Most significantly, Grohe [20] has shown that for any proper minor-closed class C of
graphs, there is a k such that ≡k coincides with isomorphism on graphs in C.

Despite its importance in the interplay of graph structure theory and logic, and its
theoretical significance in understanding the graph isomorphism problem, the Weisfeiler-
Leman method does not give the most efficient algorithms for solving the isomorphism problem.
The CFI construction demonstrates that using the WL method to decide isomorphism would
yield an algorithm of complexity nΩ(n) which is asymptotically no better than trying all
permutations and far removed from the quasi-polynomial time algorithms known. This has
inspired the search for other structured families of equivalences (see for example [4, 16]).
One particularly interesting such family are the invertible-map equivalences defined in [14].
This gives, for each k and each set Q of prime numbers, an equivalence relation ≡IM

k,Q. The
precise definition is given in Section 2 but the intuition is that if G ≡IM

k,Q H, then G and
H are not distinguishable by a refinement of k-tuples given by linear operators acting on
vector spaces over fields of characteristic p, for any p ∈ Q. The reason for considering such
equivalences stems from the realisation that the CFI-construction codes in graph form the
problem of solving equations over F2 – the 2-element field (see [1]). It can then be shown
that the family of equivalences ≡IM

k,{2} properly refine the Weisfeiler-Leman equivalences in
that G ≡IM

k′,{2} H for sufficiently large k′ implies G ≡k H for all k, yet G 6≡IM
3,{2} H for the

pairs G,H obtained in the CFI construction.
Furthermore, for any finite Q, the relation ≡IM

k,Q is decidable in time nO(k). We can
also vary Q with n. For instance, we could let Qs be the collection of all primes up to
s(n) for some growing function s. In this case ≡IM

k,Qs
is decidable in time s(n)nO(k). It is

therefore an interesting question whether the family of equivalence relations is (like the
Weisfeiler-Leman equivalences) infinitely refining. Do increasing values of k yield ever finer
equivalence relations? The rôle of the parameter Q is also worth investigating. If there were
a fixed polynomial s and constant k for which ≡IM

k,Qs
was the same as isomorphism, we would

have a polynomial-time test for isomorphism. Even if we could prove this for k growing
poly-logarithmically, and s quasi-polynomial, this would yield a new (and more systematic)
quasi-polynomial algorithm for isomorphism. We have no reason to conjecture that either of
these upper bounds holds, but they have not been ruled out.
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One reason for the interest in the invertible-map equivalences is the connection with logic.
In the long-running quest for a logic for PTIME (see [19]), an important direction is the study
of extensions of fixed-point logic with rank operators (FPR) [12] or other algebraic operators
(see [10]). The relations ≡IM

k,Q were introduced first as a tool to study the expressive power of
FPR. It was shown in [14] that for every formula ϕ of FPR (as originally defined in [12])
there is a k and a finite Q such that the class of models of ϕ is closed under ≡IM

k,Q. For the
more powerful rank logic FPR∗ defined in [18], we can show that for any formula ϕ, there is
a k and a polynomial s such that ϕ is invariant under ≡IM

k,Qs
. This implies, in particular that,

if we could show that there is no fixed k such that ≡IM
k,Q is the same as isomorphism when Q

is the set of all primes, we could, by means of padding and results from [14], separate FPR∗

from PTIME. In short, any advance in understanding the structure of these equivalence
relations is a significant step for resolving important questions.

The equivalence relations tell us about more than just rank logic. They can be used
to delimit the expressive power of any extension of fixed-point logic with linear-algebraic
operators. In this paper we introduce LAk(Q), an infinitary logic with k variables and
all linear-algebraic operators (which we define formally below) over finite vector spaces of
characteristic p ∈ Q. This is the logic for which ≡IM

k,Q is the natural notion of elementary
equivalence. Then, LAω(Q) =

⋃
k∈ω LAk(Q) is a natural upper bound on the expressive

power of any extension of fixed-point logics by means of Q-linear-algebraic operators.
Our main results can now be stated as follows. As long as Q is not the set of all primes,

there is no k such that ≡IM
k,Q is the same as isomorphism. From this, it follows that there are

classes of graphs which are not definable in LAω(Q). Moreover, we can construct polynomial-
time decidable such classes. This implies that any logic with linear-algebraic operators, unless
it includes such operators for all prime characteristics, does not capture PTIME. Note, this
does not separate FPR∗ from PTIME, due to the restriction on Q, but it shows that if FPR∗

is to capture PTIME, we need to use the set of all primes.
Establishing the result requires significant technical innovation. In particular, we develop

novel algebraic machinery that has not previously been deployed in the field of finite model
theory. As noted above, the CFI construction codes, in graph form, the problem of solving
systems of linear equations over F2. We can give a similar construction that codes linear
equations over Fp for any prime p. Such a construction was given in [22], where it was used
to establish that the resulting non-isomorphic graphs were not distinguished by a variant
of ≡IM

k,{q} for any q 6= p, where the matrix operations are restricted to a particularly simple
form. A more refined analysis of the construction was used in [18] to separate the expressive
power of FPR from that of FPR∗. To be precise, they showed that the formulas of FPR
that do not use an operator with the prime p are no more expressive than formulas of FPC
over these graphs. Our result uses the same graph construction but brings significant new
algebraic machinery to its analysis.

We are able to show, in this paper, that, on graphs obtained by the CFI construction for
Fp, the distinguishing power of ≡IM

k,Q, where p 6∈ Q, is no greater than ≡k′ for some fixed k′.
Note that the graphs are definitely distinguished in ≡IM

k,Q when p ∈ Q. We establish the result
by showing that on these graphs, the equivalence relation ≡IM

k,{q} is itself definable in FPC
when q 6= p. This is done by implementing a matrix similarity test in FPC, based on the
module isomorphism algorithm of Chistov et al. [8]. There are two key ingredients by which
this yields an FPC definition. The first is that, on the graphs obtained in the construction,
the equivalence relation ≡k (now understood as an equivalence relation on k-tuples of vertices
rather than on graphs) coincides with the partition into automorphism orbits, for sufficiently
large but constantly bounded k. We say that the graphs are Ck-homogeneous for large
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enough k. The second ingredient is that, because the automorphism groups of the graphs
are Abelian p-groups, this partition induces a matrix algebra over Fq, when q 6= p, which is
semisimple and so admits a nice decomposition by Maschke’s theorem. Maschke’s theorem
is a central result in the representation theory of finite groups, which states conditions
under which a linear-algebraic representation of a finite group admits a decomposition into
irreducible representations. It is a powerful tool and we hope that its use opens the door to
further applications of representation theory in the context of finite model theory. Indeed, we
see a major contribution of the present work as being the introduction of Maschke’s theorem
and related tools into the subject.

Much technical detail is omitted due to space reasons. Full proofs, and more detailed
background on the algebra we use, can be found in the full version of the paper that
is available [11].

2 The Invertible Map Equivalence and Linear-Algebraic Logics

The invertible map equivalence relation was introduced in [14, 22] as a family of approxima-
tions of isomorphism. It was shown that it is at least as fine an approximation as that induced
by the infinitary logic with rank quantifiers, introduced in [12]. Dawar and Holm posed the
question whether there is a logic which corresponds to the invertible map equivalences. Here
we answer the question by showing that these equivalence relations are the right notions of
elementary equivalence for an infinitary logic extended with all linear algebraic operations.

We begin by defining the equivalence relations ≡IM
k,Q for k ∈ N and Q a set of prime

numbers. It is worth reviewing the definition of the counting-logic equivalence ≡k first. This
is not only an equivalence relation among finite structures, it also induces an equivalence on
the set of Ak (the set k-tuples over A) inside (any) structure A that yields an approximation
to the partition of Ak into orbits.

On a structure A, the relation ≡k can be obtained by an iterative refinement process.
Suppose we are given a partition P = {Pi}i∈I of Ak indexed by a set I. Now, we say that a
pair of tuples ā1 and ā2 are P-similar if they are in the same part of P and for each i ∈ I
and each j ∈ [k] the sets {b ∈ A | ā1[b/j] ∈ Pi} and {b ∈ A | ā2[b/j] ∈ Pi} have the same
number of elements. The equivalence relation ≡k can then be characterised as the coarsest
partition P of Ak that refines the partition into atomic types, such that any two tuples in
the same part of P are P-similar. This means that we can arrive at this partition by starting
with the partition of Ak into atomic types and repeatedly refine it until we get a partition P
for which the notions of P-equivalence and P-similarity are the same.

We now modify this in two ways to obtain the definition of ≡IM
k,Q. First we define similarity

not in terms of the substitution of a single element b into a tuple ā ∈ Ak but of an `-tuple
b̄ ∈ A` for some ` < k. So, for each injective function γ : [`] → [k], let ā[b̄/γ] denote the
tuple in Ak obtained from ā by simultaneously substituting bi in position γ(i) for all i ∈ [`].
If Γ denotes the set of all injective functions from [`] to [k], we say tuples ā1 and ā2 are
P-similar if they are in the same part of P and for each γ ∈ Γ and each i ∈ I, the sets
{b̄ ∈ A` | ā1[b̄/γ] ∈ Pi} and {b̄ ∈ A` | ā2[b̄/γ] ∈ Pi} have the same size. Taking the coarsest
relation that is stable in this sense still gives us ≡k (though see [15] for some nuances when
comparing with the Weisfeiler-Leman equivalences).

For our purposes, we want a different notion of similarity. Assume that ` = 2m for
some m. We can view any set C ⊆ A` as giving us an Am × Am 0-1 matrix, which we
denote M . So the entry in row b̄1 ∈ Am and column b̄2 ∈ Am of M is 1 if, and only if,
the `-tuple b̄1b̄2 is in C. Hence, given, as before, a partition P = {Pi}i∈I of Ak, and an
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injective function γ : [`]→ [k], each tuple ā induces a partition of tuples b̄ in A` according
to which part Pi contains ā[b̄/γ]. We think of this partition as a collection (M ā

i )i∈I of 0-1
matrices. For a prime number p, we say that two tuples ā1 and ā2 are P-p-m-similar if they
are in the same part of P and for every γ there is an invertible matrix S ∈ FAm×Am

p such
that for each i ∈ I we have SM ā1

i S−1 = M ā2
i . In other words, the sequences (M ā1

i )i∈I and
(M ā2

i )i∈I are simultaneously similar, witnessed by S. We say the tuples are P-p-similar if
they are P-p-m-similar for all m ≤ k/2. The equivalence relation ≡IM

k,p is then the coarsest
partition P that refines the partition into atomic types and such that any two tuples in
the same part of P are P-p-similar. Finally, for a set Q of prime numbers, ā1 ≡IM

k,Q ā2 if,
and only if, ā1 ≡IM

k,p ā2 for each p ∈ Q. So, ≡IM
k,Q is the coarsest common refinement of the

relations (≡IM
k,p)p∈Q.

Given a fixed set Q of primes with |Q| = s, it is possible to compute, for a structure
A with n elements, the partition of Ak into ≡IM

k,Q equivalence classes in time snO(k). To
see this, we note that the equivalence relation can be obtained by an iterated refinement
process. First, let P0 be the partition of Ak into atomic types. Then, for each i, let Pi+1 be
the partition which places two tuples in the same class if, and only if, they are Pi-p-similar
for all p ∈ Q. This refinement process converges in at most nk steps to the partition into
≡IM
k,Q-equivalence classes. At each stage we compute, for each tuple ā ∈ Ak and each injective

function γ : [2m] → [k], the partition of A2m into types, where m = bk/2c. This suffices
because P-p-m-similarity implies P-p-m′-similarity for all m′ < m. Having computed the
partition, we need to check for each pair of tuples and for each p in Q, whether the induced
partitions are simultaneously similar. For this, we use the simultaneous matrix similarity test
of Chistov et al. [8]. Since this runs in polynomial time, it follows that the whole procedure
can be completed in time snO(k).

Linear-Algebraic Logic. The study of logics with linear-algebraic operators over finite
fields was initiated in [12], where FPR, the fixed-point logic with rank operators, was first
introduced. As with fixed-point logics generally, the expressive power of FPR is naturally
analysed by seeing it as a fragment of an infinitary logic, in this case with rank quantifiers.
The notion of elementary equivalence that corresponds to this logic was given in terms of a
game characterisation in [14], where the invertible map equivalences were also introduced.
Here, we define, for any set Q of primes, an infinitary logic LAω(Q) with quantifiers for all
linear-algebraic operators over finite fields of characteristics in Q. This logic is not really
intended for practical use. Instead it is designed to be strong enough so that inexpressibility
results for LAω(Q) carry over to any well-defined logic that extends first-order or fixed-point
logic by any kind of linear-algebraic operators over Q.

We begin with a definition of linear-algebraic operators. Let F be a field and let B be a
(non-empty, finite) set that serves as a supply of abstract basis elements. We consider the
F-vector space FB. For each subset K ⊆ B we identify the vector space FK with a subspace
of FB in the natural way: since FB = FK ⊕ FB\K we can (implicitly) set FK = FK ⊕ {0}.

Letm ≥ 1. Generally speaking, anm-ary linear-algebraic operator is just a function f that
defines a linear-algebraic property f(M1, . . . ,Mm) of m-tuples of F-linear transformations
Mi on (subspaces of) FB. To make things more precise, let Ki, Li ⊆ B, for i ∈ [m], denote
pairs of (non-empty) subsets of basis elements. We set Vi = FKi and Wi = FLi . We consider
m-tuples (M1, . . . ,Mm) consisting of F-linear mappings Mi : Vi →Wi which are represented
succinctly in terms of m-tuples (M1, . . . ,Mm) of Li×Ki-matrices with entries in F. Then an
m-ary linear-algebraic operator over F is a function f that takes such sequences (M1, . . . ,Mm)
to some kind of linear-algebraic information f(M1, . . . ,Mm) about the sequence.
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Now, to say that f outputs a “linear-algebraic information” means that the output of f
is invariant under F-vector space isomorphisms. Formally, let C be another (abstract) set of
basis elements, where |B| = |C|, let K ′i, L′i ⊆ C where |Ki| = |K ′i| and |Li| = |L′i| for i ∈ [m],
and let (N1, . . . , Nm) be a sequence of matrices Ni : L′i×K ′i → F, i ∈ [m], analogously to the
above. Moreover, let V ′i = FK′

i and W ′i = FL′
i for i ∈ [m]. Then we say that (N1, . . . , Nm)

results from (M1, . . . ,Mm) by means of an F-vector space isomorphism if we can find an
invertible F-linear mapping S : FB → FC such that the following holds:

For all i ∈ [m], S maps each of the subspaces Vi and Wi in FB to the respective subspaces
V ′i and W ′i in FC. That is, if we represent S in terms of a C × B-matrix with entries
in F, then we have that for each of the subblocks K ′i × Ki, i ∈ [m], the restriction
S �(K′

i
×Ki): K ′i ×Ki → F of the matrix S to this block is invertible and we have that

S(a, b) = 0 for all a ∈ C \ K ′i and b ∈ Ki (and the analogous holds for all subblocks
L′i × Li and the corresponding restrictions S �(L′

i
×Li): L′i × Li → F of S to the subblocks

L′i × Li).
For each i ∈ [m], the F-vector space isomorphism S simultaneously transforms all linear
operators Mi : Vi → Wi to the corresponding operators Ni : V ′i → W ′i , that is for all
i ∈ [m] we have: Ni · S = S ·Mi. Note that if we want to read this as a matrix equation,
then we formally have to replace the matrix S by its restrictions to the subblocks K ′i×Ki

and L′i × Li as we described above, that is S �(L′
i
×Li) ·Mi = Ni · S �(K′

i
×Ki).

We require that a linear algebraic operator f outputs the same result for all pairs of matrix
sequences (M1, . . . ,Mm) and (N1, . . . , Nm) that are related via an F-vector space isomorphism
S (as above), that is f(M1, . . . ,Mm) = f(N1, . . . , Nm). This condition guarantees that f is
not able to distinguish between isomorphic objects and here, in the realm of linear algebra,
isomorphisms are F-vector space isomorphisms. Besides this we do not put any kind of
additional restrictions on f . For instance, f may not even be a computable function. Note
that, though in introducing the function f , we considered a fixed set B, really f defines, for
any B, a function on m-tuples of linear operators over subspaces of FB. Without this, the
notion of invariance would not make sense.

Now, we can associate with f a family of Lindström quantifiers. For simplicity, we restrict
our attention to operators of a specific form without loss of generality. For an explanation of
why no generality is lost, we refer the reader to the full paper [11]. Specifically, we assume
that Ki = Li = B for all i in the above definition, and we assume that the matrices are all
0-1 matrices. In other words, f is defined for a tuple of square 0-1 matrices all with the
same index set.

Let τm denote a vocabulary with m distinct binary relations. Given an operator that
defines such an f for each finite B, for each t ∈ N we define a class of structures Ktf in the
vocabulary τm. We can think of an index set B with a collection M1, . . . ,Mm of 0-1 B × B
matrices as a τm-structure (B,M1, . . . ,Mm). The class Ktf is then the collection of those
τm-structures where f(M1, . . . ,Mm) ≥ t. For each ` ≥ 1 we then have a quantifier Qt,`f such
that if I(x̄) is an L[σ, τm]-interpretation of dimension `, then Qt,`f I(x̄) is a formula true in a
σ structure A if I(A) ∈ Ktf .

The infinitary logic LA is defined as the closure of first-order logic under infinitary
disjunction and conjunction, along with quantification Qt,`f for any linear algebraic operator
f over any finite field. That is, if Φ is any set of formulas of LA, then

∨
Φ and

∧
Φ are both

formulas of LA. And, if f is an m-ary linear algebraic operator over a finite field, and Θ(x̄) is
an `-ary LA-interpretation of σm in τ , then Qt,`f x̄Θ is an LA τ -formula. We are interested in
various fragments of the logic LA for which we introduce notation in the following definition.
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I Definition 1. LAk is the collection of formulas of LA that contain at most k distinct
variables, and LAω =

⋃
k∈ω LAk. For any set Q of primes, we write LA(Q), LAk(Q) and

LAω(Q) to denote the restrictions of these logics to using only linear-algebraic operators over
fields of characteristic p ∈ Q.

If L is any of the logics LA, LAω, LAk, LA(Q), LAω(Q) or LAk(Q), and ` ∈ N we write
`-L to denote the fragment of L where all algebraic quantifiers are Qt,`f for some t and f . In
other words, interpretations are restricted to be of dimension `.

As pointed out above, the LA-logics are merely interesting from a theoretical point of
view: in a precise sense they form a maximal extension of infinitary logics by linear-algebraic
operators. On the other hand, we do not know of any (non-trivial) property that has a
natural definition in the LA-logic, but not already in (infinitary) rank logic for instance
(and it is open whether such example exists at all). Having introduced the linear-algebraic
logic LAω and the invertible-map equivalences ≡IM

k,Q, we are in a position to formulate their
tight relationship.

I Theorem 2. Let k ≥ 2 be a positive integer and Q a set of prime numbers. For any finite
structure A and ā, b̄ ∈ Ak, the following are equivalent:
1. ā ≡IM

k,Q b̄; and
2. for every formula ϕ of LAk(Q), A |= ϕ[ā] if, and only if, A |= ϕ[b̄].

3 Cai-Fürer-Immerman Structures and Logic

In this section we describe a generalised variant of the CFI-construction due to Cai, Fürer,
and Immerman [6]. It associates with each

connected, 3-regular, and ordered (undirected) graph G = (V,E,≤),
every prime field Fp, p ∈ P (in this article, P denotes the set of all primes), and
every vector λ ∈ FVp

a structure we call the CFI-structure CFI [G; p;λ]. Its signature is τCFI = {�, R, C, I} where
R is a ternary relation symbol and where �, I, C are binary relation symbols. The universe
A of CFI [G; p;λ] is A = E × Fp. The linear order ≤ on the vertex set V extends to a linear
order on the edge set E (as the lexicographic order, for example). We use this linear order
on E to define the following total preorder � on A: (e, x) � (f, y) if e ≤ f . Note that �
induces a linear order on the corresponding equivalence classes ep = e× Fp. Clearly, each of
these classes ep is of size p. Since G is undirected every edge e = (v, w) ∈ E comes with its
corresponding dual edge f = (w, v) ∈ E. In what follows, we use the notation e−1 = f to
denote the dual of the edge e ∈ E. The relations I and C are defined as follows.

The cycle relation C defines the cyclic structure of the additive group of Fp on each of
the edge classes ep. More precisely,

C =
⋃
e∈E
{((e, x), (e, x+ 1 mod p)) : x ∈ Fp}.

The inverse relation I relates additive inverses for dual edges. Formally,

I =
⋃
e∈E
{((e, x), (e−1,−x) : x ∈ Fp}.

Note that while the cycle relation C defines a directed graph, the inverse relation I is
symmetric. Furthermore, observe that the relations �, C and I are defined independently of
the load vector λ and so only depend on the underlying graph G and the prime field Fp. In

ICALP 2019



112:8 Approximations of Isomorphism and Logics with Linear-Algebraic Operators

contrast, the CFI-relation R = Rλ is defined using the load vector λ as follows. For each
v ∈ V , we let vE ⊆ V denote the set of neighbours of v in G, that is E(v) = {v} × vE ⊆ E
is the set of edges outgoing from v. Since G is 3-regular we have that |vE| = 3 for each
v ∈ V . For v ∈ V let vE = {w1, w2, w3} where w1 < w2 < w3. The CFI-relation Rλ(v) at
vertex v is defined as follows:

Rλ(v) = {((w1, x1), (w2, x2), (w3, x3)) : x1 + x2 + x3 = λ(v) mod p}.

The full CFI-relation Rλ of CFI [G; p;λ] is given as Rλ =
⋃
v∈V R

λ(v).

I Theorem 3. Two CFI-structures CFI [G; p;λ],CFI [G; p;σ] over the same graph G are
isomorphic if, and only if,∑

λ :=
∑
v∈V

λ(v) =
∑
v∈V

σ(v) =:
∑

σ.

The CFI-construction unfolds its full power when it is based on a family of underlying
graphs that is highly connected. A good choice is to take 3-regular expander graphs with
O(n) vertices, as such graphs have a linear lower bound on the size of their separators (which
means that we cannot disconnect the graphs into components of size ≤ n/2 by removing
fewer than Ω(n) vertices).

I Theorem 4 (see e.g. Example 2.2 in [23]). There exists a family of 3-regular, connected
expander graphs F = {Gn : n ∈ N} such that each graph Gn, n ∈ N, has O(n) vertices.

Of course, we can also assume that the graphs in F are ordered just by adding to each
graph Gn = (Vn, En) ∈ F an arbitrary linear order on Vn. From this family F of 3-regular,
connected, ordered expander graphs Gn with O(n) many vertices we construct, for every
p ∈ P, the CFI-class CFI [F ; p] consisting of all CFI-structures over graphs from F that is

CFI [F ; p] =
⋃
n,λ

CFI [Gn; p;λ].

The CFI-problem (over F and p ∈ P) is to decide, given a structure CFI [G; p;λ] ∈ CFI [F ; p]
whether

∑
λ = 0. For the original form of the CFI-construction, it was shown in [6] that

this problem is undefinable in counting logic with sublinearly many variables. Also the
generalization to more powerful variants, and in particular to our class CFI [F ; p] is well-known.

I Theorem 5. For any two structures CFI [Gn; p;λ],CFI [Gn; p;σ] ∈ CFI [F ; p] we have

CFI [Gn; p;λ] ≡Ω(n) CFI [Gn; p;σ].

Thus, from the perspective of counting logic (with Ω(n) many variables) CFI-structures
over the same underlying graph Gn look the same although, for load vectors λ and σ with∑
λ 6=

∑
σ, we know that CFI [Gn; p;λ] and CFI [Gn; p;σ] are not isomorphic.

I Definition 6. Let ` ≥ 1. We say that a structure A with automorphism group Γ is
`-homogeneous if for all k ≥ 1 and all k-tuples ā, b̄ ∈ Ak we have that

(A, ā) ≡`·k (A, b̄) if, and only if, Γ(ā) = Γ(b̄).

In other words, the equivalence relation ≡`·k refines k-tuples in A up to orbits. Moreover, we
say that a class K of structures is homogeneous if for some constant ` ≥ 1 each structure
A ∈ K is `-homogeneous.
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I Theorem 7. For every prime p, the class CFI [F ; p] is homogeneous.

This theorem has been established in [17]. Homogeneity of CFI-structures is very useful
because it implies that counting logic (indeed, FPC) can order k-tuples up to orbits. There
are counting-type formulae ct`·k(x̄, ȳ) ∈ FPC (see [24]) that define a linear preorder on
k-tuples which distinguishes between all pairs of k-tuples in different orbits, and these
formulae use only O(` · k) many variables. One key consequence of homogeneity is that on
the class of CFI structures, the relations ≡k and ≡IM

k,Q coincide for k above some constant
threshold. Indeed, ≡IM

k,Q is always at least as fine as ≡k and no finer than the equivalence
given by the partition into automorphism orbits. When the former and the latter are the
same, ≡IM

k,Q must be the same. In particular, this means that the counting-type formulas
ct`·k(x̄, ȳ) define a pre-order on the ≡IM

k,Q equivalence classes.

4 Indistinguishability of CFI-structures using Linear-Algebraic
Operators

In this section, we state our main technical result, that CFI-structures over a prime field
Fp cannot be distinguished by means of any linear-algebraic operator over a field F with
char(F) 6= p if we apply such linear-algebraic operators to CΩ(n)-definable matrices. For
what follows, recall that we consider CFI-structures over a fixed class of expander graphs
F = {Gn : n ∈ N} where each graph Gn has O(n) vertices and is ordered, connected,
and three-regular.

The exact formulation of the results requires some background from associative algebra.
This can be found in the monograph [26], for example. The definitions and results we use
are also summarized in the full version of this paper [11, Sec. 5].

The partition of 2`-tuples in a structure A into ≡k-classes (when k ≥ 3`) induces a
coherent configuration in the sense of [7, Chap. 3]. This implies, in particular, that if we
think of this partition as a collection M1, . . . ,Ms of 0-1 matrices with rows and columns
indexed by A` then, for any field F, they form the basis of an F-algebra. That is to say,
they are the basis of an F-vector space that is also closed under matrix multiplication. We
denote this algebra Alg [A; `;Ck;F] and the ordered collection of matrices that forms its basis
Basis[A; `;Ck]. Note that the latter does not depend on the choice of F.

We say that two structures A and B are (F; `;Ck)-isomorphic if A ≡k B and, if
M = Basis[A; `;Ck] = (M1, . . . ,Ms) and N = Basis[B; `;Ck] = (N1, . . . , Ns), then there
is an invertible map S : FA` → FB` such that for each i ∈ [s], SMiS

−1 = Ni. In short,
the two sequences of matrices Basis[A; `;Ck] and Basis[B; `;Ck] are simultaneously sim-
ilar as witnessed by S. In particular, the F-algebras Alg [A; `;Ck;F] and Alg [B; `;Ck;F]
are isomorphic.

For CFI-structures, A = CFI [Gn; p;λ] and B = CFI [Gn; p;σ], by the homogeneity prop-
erty, we know that the partition into ≡k-classes is the same as the partition into automorphism
orbits. This allows us to show that when such structures are (F; `;Ck)-isomorphic, they
cannot be distinguished by any F-linear-algebraic operators. Hence, the key technical theorem
we prove is the following.

I Theorem 8. There is ε > 0 s.t. for large enough n > 0 the following holds. Let A =
CFI [Gn; p;λ] and B = CFI [Gn; p;σ] denote CFI-structures over Gn and let F be a field such
that char(F) 6= p. Then A and B are (F; `;Ck)-isomorphic where ` = bεnc and k = 3`.

Theorem 8 is a consequence of Theorem 9 where we show that, for the above scenario,
the simultaneous similarity of the counting-logic bases is definable in counting logic. To
state Theorem 9, we introduce some terminology. Consider two sequences of matrices
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M = (Mi)i∈[s] and N = (Ni)i∈[s], where each Mi is an I × I matrix over F and each Ni is a
J × J matrix over F. Here I and J are two arbitrary index sets of the same size. We define
the set HM,N of I × J-matrices X over F which satisfy MiX = XNi for all i ∈ [s]. Note
that the two sequencesM = (Mi)i∈[s] and N = (Ni)i∈[s] are simultaneously similar if, and
only if, HM,N contains an invertible matrix.

Note that HM,N is an F-vector space. Next, consider the set CM of I× I-square matrices
Z over F such that MkZ = ZMk for all k ∈ K. The set CM is called the centraliser of the
matrix familyM. It is easy to verify that CM forms an F-algebra. Moreover, by considering
matrix multiplication (from the left) by elements from CM, the F-vector space HM,N turns
into a CM-module. With this, we can state the technical result.

I Theorem 9. Let t ≥ 3 be a constant such that all CFI-structures in CFI [F ; p] are t-
homogeneous for all p ∈ P. Then there exists a constant c ≥ 1 such that the following holds.
Let ` ≥ 1 and let k ≥ t`. Then for each p ∈ P there exists a Cck-sentence ϕ such that for all
pairs of CFI-structures A = CFI [Gn; p;λ] and B = CFI [Gn; p;σ] over the same underlying
graph Gn ∈ F we have that (A,B) |= ϕ if, and only if, over every field F with char(F) 6= p,
the CM-module HM,N contains an invertible matrix S ∈ HM,N where M = Basis[A, `, k]
and N = Basis[B, `, k].

We can derive Theorem 8 from Theorem 9 as follows. First of all, let c ≥ 1 and t ≥ 3
be the constants according to Theorem 9. Let p ∈ P. Then, by Theorem 5, we can find
δ > 0 such that for all large enough n > 1 we have A ≡bδnc B where A = CFI [Gn; p;λ] and
B = CFI [Gn; p;σ] are two CFI-structures over Fp and the same underlying expander graph
Gn ∈ F with O(n) many vertices. Let ε = 1

tcδ. Then (A,A) ≡btcεnc (A,B). Let F be a
field such that char(F) 6= p. Let ` = bεnc and k = btεnc. We considerM = Basis[A, `;Ck]
and N = Basis[B, `;Ck]. Since the formula ϕ according to Theorem 9 contains at most
ck = c · btεnc ≤ bδnc many variables, this formula cannot distinguish between the ordered
pairs of CFI-structures (A,A) and (A,B). On the other hand, by its properties stated
in Theorem 9, ϕ would need to distinguish between (A,A) and (A,B) if no invertible
matrix S ∈ HM,N would exist. Indeed, note that the CM-module HM,M contains an
invertible matrix S ∈ HM,M over every field F for trivial reasons; for instance it contains
the permutation matrix that corresponds to the identity automorphism of A. Hence, we
can conclude that HM,N contains an invertible matrix which shows that A and B are
(F; `;Ck)-isomorphic, and thus Theorem 8 follows, because (F; `;Ck)-isomorphic structures
are also (F; `;C3`)-isomorphic since k ≥ 3`.

We now outline a proof strategy for Theorem 9. The full proof is rather long, and is
presented in detail in the full paper [11]. First, we fix a prime field F with char(F) 6= p. We
construct a sentence ϕF ∈ Cω, with at most c · k many variables, which holds in the ordered
pair (A,B) of CFI-structures A and B if, and only if, HM,N (considered as a CM-module
over the F-algebra CM) contains an invertible matrix S. The desired sentence ϕ according to
Theorem 9 is then the conjunction over all sentences ϕF for prime fields F with char(F) 6= p.

Step (I). As a first step we show that it suffices to restrict our considerations to prime
fields. This is because the matrix familiesM and N we are interested in only contain 0-1
matrices. Such families are simultaneously similar over a field F if, and only if, they are
simultaneously similar over the prime subfield of F. The restriction is important because
we need to use the result (originally proved in [18]) about defining solutions to system of
linear equations. The result is that if a system of linear equations over a prime field F is
represented by a homogeneous structure A with Abelian automorphism group, and such that
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the order of the automorphism group of A is co-prime with char(F), then a solution to the
system can be defined by a formula of counting logic. This is because we can show that in
this case, there must exist a solution that is symmetric, i.e. invariant under the action of
the automorphism group. In fact, we need here a stronger result saying that not only single
solutions, but whole solution spaces are definable in counting logic. This was recently shown
in [17] and our full paper [11] also contains a proof sketch.

Now, the CFI structures in CFI [F ; p] have Abelian automorphism groups of order a power
of p, so systems of linear equations suitably defined from them will have the required property.
Our aim is to reduce the problem of deciding whether HM,N contains an invertible matrix
to solving a system of linear equations over F. The condition MiX = XNi for all i easily
yields a system of such equations with unknowns for the enrtries of X. The question is how
to enforce that X is invertible.

Step (II). To carry out the reduction, we use the result from [8] that if HM,N contains an
invertible matrix, then it is cyclic as a CM-module. This means that HM,N is generated by
a single element: there is a matrix X ∈ HM,N such that CMX = {ZX : Z ∈ CM} = HM,N .
This gives a necessary but not sufficient condition for the existence of an invertible matrix
in HM,N . To obtain a necessary and sufficient condition, we use the particular structure
of the matrix families M and N that follow from the fact that they are generated by
the ≡k-equivalence classes. Roughly speaking, the equivalence relation ≡k partitions the
row-column index sets of these matrices into classes, and we can think of the matrices as
linear combinations of “small” matrices, which are over these individual blocks. This means
that the invertible S we are looking for can also be decomposed into the sum of smaller block
matrices. Our families M and N have the property that they are locally simultaneously
similar, i.e. we can find similarity transformations for each small block. With this, it becomes
possible to prove that the cyclicity of HM,N is both necessary and sufficient for the existence
of an invertible matrix. It also means that we can restrict ourselves to a certain substructure
of this module. To be precise, we let CD

M be the subalgebra of CM consisting of those
matrices that are zero outside the relevant blocks. Then, HD

M,N is similarly the collection
of matrices in HM,N that are zero outside the relevant blocks and this can be seen as a
CD
M-module. For the particular matrix familiesM = Basis[A, `, k] and N = Basis[B, `, k],

we are able to show that they are simultaneously similar if, and only if, HD
M,N is cyclic

as a CD
M-module.

As a consequence, to check whether HM,N contains an invertible matrix, it suffices to
check whether the CD

M-module HD
M,N is cyclic.

Step (III). The third step is the core of our whole argument. We combine results on the
FPC-definability of the automorphism groups and orbits of CFI-structures with Maschke’s
Theorem, an important result from the representation theory of finite groups, to show that
the F-algebra CD

M is semisimple.
Recall that for a finite group G and a field F, the group algebra F[G] is the F-algebra

whose elements are formal sums of the form
∑
g∈G rgg with coefficients rg ∈ F. Addition and

scalar multiplication are defined component-wise and multiplication is defined by convolution
on the group elements. Maschke’s theorem tells us that F[G] is semisimple if, and only if,
char(F) does not divide the order of G.

For an algebra A, an A-module M is called simple if every submodule of M is trivial
(either 0 or M itself) and semisimple if it is the direct sum of simple modules. From the
semi-simplicity of CD

M we are able to show that the CD
M-module HD

M,N is semisimple.
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Step (IV). The key property of semisimple modules is that they have an essentially canonical
decomposition as the sum of simple modules. So, HD

M,N can be decomposed as the sum of
simple modules, and the isomorphism types of modules that occur in that decomposition
and their respective multiplicities completely determine the isomorphism type of HD

M,N .
Moreover, we show that we can define generating sets for the respective submodules in
counting logic by using at most c · k many variables. This is because, essentially, these
generating sets can be obtained as the solution sets of a system of linear equations, and we
are able to use the results mentioned in Step (I) above.

Step (V). Finally, we construct the formula ϕF. By (II), the formula ϕF needs to verify
that the semisimple CD

M-module HD
M,N is cyclic. We approach this problem by expressing a

more general query, namely we determine the full isomorphism type of the module HD
M,N by

means of a formula of counting logic. First of all, we start by determining the isomorphism
types of all simple subalgebras of CD

M. This we can easily do in counting logic because CD
M

has an (FPC-definable) ordered basis. This implies that the isomorphism type of HD
M,N is

(uniquely) determined by the multiplicities of the simple subalgebras of CD
M as they occur in a

decomposition of HD
M,N into a direct sum of simple submodules. By using our decomposition

from Step (IV), we can easily determine those multiplicities componentwise, since we can
linearly order (again in an FPC-definable way) each of the “small” submodules that occur
in the decomposition of HD

M,N . In this way we can determine the multiplicities for each
individual component which add up to the total multiplicities for the whole module HD

M,N .
Since the isomorphism type determines the cyclicity of the module, we can obtain our desired
formula ϕF by selecting modules with appropriate isomorphism types.

5 Main results

In this section we spell out the consequences of the main technical result, Theorem 8, for
approximations of isomorphism and for logics with linear-algebraic operators.

With regard to the relations ≡IM
k,Q as approximations of isomorphism, it follows immedi-

ately that as long as Q 6= P, i.e. Q is not the set of all primes, there is no k for which ≡IM
k,Q

coincides with isomorphism on all structures.

I Corollary 10. If Q 6= P, there is no fixed k such that ≡IM
k,Q coincides with isomorphism on

all structures.

Proof. Fix a prime p 6∈ Q. Then, for each k, we have, by Theorem 8 a pair of structures
A = CFI [Gn; p;λ] and B = CFI [Gn; p;σ] that are (Fq; `;Ck)-isomorphic, for all q 6= p, though∑
λ 6=

∑
σ. It follows that A ≡IM

k,Q B, but A 6∼= B, by Theorem 3. J

The consequences for the expressive power of the logic LAω are also immediate.

I Corollary 11. If Q 6= P, there is a class of structures that is not definable in LAω(Q).

Proof. Fix a prime p 6∈ Q and consider the class C of structures of the form CFI [Gn; p;λ]
where

∑
λ = 0. This is an isomorphism-closed class of structures by Theorem 3. Suppose it

were defined by a sentence ϕ of LAω(Q). Let ` be the maximum dimension of an interpretation
used with any quantifier in ϕ and choose k such that k ≥ 3` and k is greater than the number
of variables in ϕ. Then, by Theorem 8, we have a structure A = CFI [Gn; p;λ] ∈ C which is
(Fq; `;Ck)-isomorphic to every structure CFI [Gn; p;σ]. Letting B be such a structure where
σ 6= 0, we have that B |= ϕ, contradicting the assumption that ϕ defines C. J
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It should be noted that the class of structures C defined in the proof of Corollary 11
is decidable in polynomial time. This is because the class can be decided by solving
systems of linear equations, for example by Gaussian elimination. Thus, we know that there
exists a PTIME property that LAω(Q) cannot express as long as Q 6= P. Since this logic
subsumes any extension of fixed-point logic with Q-linear algebraic operators, we also have
the following conclusion.

I Corollary 12. If Q 6= P, no extension of fixed-point logic with Q-linear algebraic operators
captures PTIME.

We can say more. The class C is not just decidable in PTIME, but also definable in
choiceless polynomial time (CPT) (see [25]). We do not define the class CPT here but details
may be found in [5]. Thus, the following corollary is immediate.

I Corollary 13. If Q 6= P, no extension of fixed-point logic with Q-linear algebraic operators
captures CPT.

On the other hand it remains an intriguing open question whether CPT captures all of rank
logic, for example.
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Abstract
Conjunctive queries select and are expected to return certain tuples from a relational database. We
study the potentially easier problem of counting all selected tuples, rather than enumerating them.
In particular, we are interested in the problem’s parameterized and data complexity, where the
query is considered to be small or even fixed, and the database is considered to be large. We identify
two structural parameters for conjunctive queries that capture their inherent complexity: The
dominating star size and the linked matching number. If the dominating star size of a conjunctive
query is large, then we show that counting solution tuples to the query is at least as hard as counting
dominating sets, which yields a fine-grained complexity lower bound under the Strong Exponential
Time Hypothesis (SETH) as well as a #W[2]-hardness result in parameterized complexity. Moreover,
if the linked matching number of a conjunctive query is large, then we show that the structure of the
query is so rich that arbitrary queries up to a certain size can be encoded into it; in the language of
parameterized complexity, this essentially establishes a #A[2]-completeness result.

Using ideas stemming from Lovász (1967), we lift complexity results from the class of conjunctive
queries to arbitrary existential or universal formulas that might contain inequalities and negations
on constraints over the free variables. As a consequence, we obtain a complexity classification that
refines and generalizes previous results of Chen, Durand, and Mengel (ToCS 2015; ICDT 2015;
PODS 2016) for conjunctive queries and of Curticapean and Marx (FOCS 2014) for the subgraph
counting problem. Our proof also relies on graph minors, and we show a strengthening of the
Excluded-Grid-Theorem which might be of independent interest: If the linked matching number (and
thus the treewidth) is large, then not only can we find a large grid somewhere in the graph, but we
can find a large grid whose diagonal has disjoint paths leading into an assumed node-well-linked set.
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1 Introduction

Conjunctive query evaluation is a core problem in database theory. Using first-order logic,
conjunctive queries can be expressed by formulas of the form

x1 . . . xk∃y1 . . . ∃y`(a1 ∧ · · · ∧ am) , (1)

where the xi are the free variables, the yi are the (existentially) quantified variables, and the
ai are atomic formulas (such as edge E(x1, y4) or relational R(x7, y3, y6) constraints on the
variables). Conjunctive queries exactly correspond to select-project-join queries; a detailed
introduction can be found in the textbook of Abiteboul, Hull, and Vianu [1]. The conjunctive
query evaluation problem is given a conjunctive query and a relational database, and is tasked
to compute the set of all assignments to the free variables such that the formula is satisfied.
Since enumerating all solution tuples s1 . . . sk can be costly for reasons not inherent to the
problem’s complexity, it is more meaningful to consider the decision problem (Does there
exist a solution tuple?) or the more general counting problem (How many solution tuples
exist?). The decision problem is equivalent to setting k = 0 and also called the constraint
satisfaction problem (CSP). In this paper, we study the problem of counting the number of
all solution tuples for conjunctive and more general queries.

Perhaps the most naïve way to study the complexity of this problem is via its combined
complexity, in which both the query and the database are considered to be worst-case inputs.
Since conjunctive queries generalize the clique problem on graphs, the problem is clearly
NP-hard in this setting [2]. In the real world, however, the database is much larger than
the query, and thus the combined complexity may fixate on instances that we do not care
about. Instead, we consider two other models in this paper: the data complexity and the
parameterized complexity of conjunctive query evaluation.

The data complexity considers the query to be completely fixed and only the database to
be worst-case input. If the query is fixed, the number of variables k + ` is a constant, and so
the problem is polynomial-time solvable: even the exhaustive search algorithm just needs
to try out and check all nk+` possible assignments to the variables, where n is the size of
the universe. Unsurprisingly, exhaustive search is not the best strategy for every query. For
example, Chekuri and Rajaraman [3] showed that the decision and counting problems can be
solved in time O(nt+1) where t is the treewidth of the query’s Gaifman graph, that is, the
graph containing a vertex for every variable and an edge between two vertices whenever the
corresponding variables are contained in a common constraint. Since t+ 1 is typically much
smaller than k + `, this algorithm is better than exhaustive search. For each fixed query Q,
the guiding question for a fine-grained understanding of data complexity is this: What is the
smallest constant cQ such that the query evaluation problem can be solved in time O(ncQ)?

Parameterized complexity offers a third vantage point from which conjunctive query
evaluation can be studied. Here the query isn’t completely fixed, but it’s also not completely
free either. Instead, it is assumed that only certain types of queries will be used, meaning
that the class of queries that are allowed as input is restricted. As a hybrid between data
complexity and combined complexity, the parameterized complexity of query evaluation is
more difficult to study than the combined complexity, but easier than the data complexity,
while still offering some insight. For example, Grohe, Schwentick, and Segoufin [18] show
that the conjunctive query evaluation problem is W[1]-hard if the class of allowed input
queries has Gaifman graphs of unbounded treewidth.
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1.1 Context and Previous Work

When only one constraint type E of arity two is allowed, the conjunctive query evaluation
problem specializes to the graph homomorphism problem: The decision problem (where k = 0)
is given two graphs H,G to decide whether there is a homomorphism from H to G. Dalmau
et al. [9] prove that this problem can be solved in polynomial time if the homomorphic core
of H has bounded treewidth, and conversely, Grohe [17] shows that the graph homomorphism
problem is W[1]-complete even if H is restricted to be from an arbitrary class of graphs
whose homomorphic cores have unbounded treewidth. Taken together, these two results yield
a dichotomy theorem for the complexity of detecting graph homomorphisms: Depending on
the class of allowed graphs H, the problem is either polynomial-time computable or W[1]-
complete, and in particular there are not infinitely many cases of intermediate complexity.
For the counting problem without quantified variables (where ` = 0), such a dichotomy is
also known: Dalmau and Jonsson [8] show that the number of homomorphisms from H to G
is polynomial-time computable if H itself has bounded treewidth, and it is #W[1]-complete
if H comes from any class of unbounded treewidth. In the mixed situation when both free
and quantified variables may exist (and thus k, ` > 0), then the resulting counting problem
actually counts partial homomorphisms, that is, homomorphisms from k vertices of H that
can be extended to a homomorphism on all k + ` vertices of H. A line of work [27, 25],
culminating in Durand and Mengel [12] and Chen and Mengel [4], studies the parameterized
complexity of this mixed problem, and depending on the class of graphs H that are allowed,
they classify the complexity either as polynomial-time, W[1]-equivalent, or #W[1]-hard. A
corollary to the present work is a finer classification that splits up the #W[1]-hard cases
into three classes.

One way to go beyond homomorphisms is to consider injective homomorphisms, which
leads to the corresponding decision problem that is given H,G to decide whether H is
a subgraph of G – this problem can be solved in time f(H)nO(t) if t is the treewidth
of H (e.g., [15]), that is, it is fixed-parameter tractable when parameterized by |H| and
if the treewidth is bounded. However, it is an important open problem [24] whether the
subgraph detection problem is W[1]-hard when H is restricted to be from an arbitrary class
of unbounded treewidth. The counting problem is better understood: Vassilevska Williams
and Williams [33] (also cf. [21, 7]) show that the number of times H occurs as a subgraph
in G can be computed in time f(H)nvc(H)+O(1) where vc(H) is the size of the smallest vertex
cover, but Curticapean and Marx [7] (also cf. [6]) show that the problem is #W[1]-complete
if H is from any class of graphs whose minimum vertex cover is not bounded. Now, what
do injective homomorphisms have to do with conjunctive queries? As it turns out, what
we are doing is to add inequalities as an additional, but very restricted constraint type:
Injective homomorphisms correspond to queries without quantified variables that have edge
constraints and are augmented with inequalities (xi 6= xj) for all distinct i, j. If some, but
not all, inequality constraints are present, we obtain partially injective homomorphisms, the
complexity of which has a known dichotomy theorem for the counting version [30], and has
been studied to some extent for the decision version [20]. As part of the present work, we
are able to classify the mixed situation with free and quantified variables (k, ` > 0) as well
as some inequalities on the free variables.

The mentioned complexity classification for counting partial homomorphisms into three
cases [12, 4] was actually proved in the more general setting of conjunctive queries. Chen
and Mengel [5] extended their classification to queries that are monotone, but not neces-
sarily conjunctive. That is, the corresponding formula is supposed to be an existential
positive formula, which may contain existential quantifiers ∃, logical ands ∧, and ors ∨.
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In the present work, we are able to further extend (our finer version of) the classification to
existential formulas that may have negations on constraints involving only free variables; we
truly study the complexity of counting answers to existential questions.

1.2 Our Contributions
As already indicated in Section 1.1, we make simultaneous progress on two fronts: Our
complexity classifications are finer than previous work, and we can prove the classification
for more general classes of queries. An important feature of our work is that the proofs
are modular and largely self-contained: We first prove the complexity results for counting
partial homomorphisms, then lift them to conjunctive queries, and then further to a more
general class of queries. So what is the most general class of queries that we study? We allow
queries ϕ of the form

x1 . . . xk∃y1 . . . ∃y` : ψ , (2)

where ψ is a quantifier-free formula in first-order logic and all negations in ψ must be
directly applied to constraints that only involve free variables (e.g. E(x1, x7)∨ (R(x7, y7, y9)∧
¬R(x1, x4, x9))). Constraints of the form ¬R(x1, x4, x9) are referred to as non-monotone
constraints in the remainder of the paper. Furthermore ϕ may be equipped with a set of
inequalities over the free variables (eg. x3 6= x5).

All of our theorems also apply to the corresponding universal queries, where each ∃ in (2)
is replaced with ∀, but for the sake of readability we will often omit this fact. We are able to
generalize from conjunctive queries to queries of the form (2) by using ideas that go back
to Lovász’s work from 1967 [22] (also cf. [23]): We prove that queries ϕ of the form (2) can
be expressed in a meaningful way as an abstract linear combination of conjunctive queries
(which are of the form (1)); positive results (algorithms) as well as negative results (hardness)
for each “summand” translate to the abstract linear combination and thus to ϕ.

Data Complexity

To study the data complexity of the problem, we employ the Strong Exponential Time
Hypothesis (SETH) by Impagliazzo and Paturi [19], which was developed in the context
of fine-grained complexity. The k-dominating set problem can be easily expressed as a
(universal) conjunctive query, and Williams and Pătraşcu [28] show that this problem cannot
be solved in time O(nk−ε) unless SETH is false. We are able to lift this hardness result
to all queries ϕ that have the k-dominating set query as a query minor, a notion that we
translate from graphs and formalize later. The dominating star size dss(ϕ) of a conjunctive
query ϕ is the maximum number k such that the k-dominating set query is a query minor.
Equivalently, this means that some connected component in the quantified variables of ϕ
has k neighbors in the free variables.1 We obtain the following result:

I Theorem 1. Let ϕ be a fixed query of the form (2). Given a logical structure B with a
domain of size n, we wish to compute the number of solutions of ϕ in B. If SETH holds,
this problem cannot be solved in time O(ndss(ϕ)−ε) for any ε > 0.

In the full version, we also obtain an algorithm for the problem in Theorem 1, with a
running time of O(ndss(ϕ)+t+1 + nt

′+1), where t and t′ are treewidths related to the query ϕ.
Neglecting many technical details, the proof of Theorem 1 reduces the k-dominating set

1 The dominating star size coincides with the strict star size from [4].
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problem to the model counting problem for ϕ by following operations of the query minor. If
ϕ is a query of the form (2), then it can be represented by an abstract linear combination
of conjunctive queries ϕ′; in this case, we define dss(ϕ) as the maximum dss(ϕ′) over all
constituents ϕ′ that occur in this abstract linear combination.

Theorem 1 is similar in spirit to other known conditional lower bounds for first-order
model checking, such as the one of Williams [32] and Gao et al. [16]. One of their results is
that first-order sentences with k + 1 variables cannot be decided in time O(mk−ε), where m
is the size of the structure, unless SETH fails. However, these results are incomparable
to Theorem 1 for several reasons: The results in [32, 16] allow negations and consider the
decision problem, while we allow only limited negations and consider the counting problem.
More fundamentally, however, Theorem 1 gives a hardness result for every fixed query ϕ,
while the results in [32, 16] show that there exists a query ϕ that is hard. Moreover, the
lower bounds in [32, 16] are in terms of the size m of the structure, not merely the size n of
the domain.

Parameterized Complexity

We refine the classification of Chen and Mengel [4] for counting answers to conjunctive
queries. For every class of allowed queries they show the problem to be either fixed-parameter
tractable, W[1]-equivalent or #W[1]-hard. Here, W[1]-equivalent means that there are
parameterized Turing reductions from and to the decision version of the k-Clique problem.
Understanding the parameterized complexity of problems even beyond the usual classes W[1]
and #W[1] is interesting from a structural complexity point of view, and it also provides
meaningful information about the studied problem. Indeed we show that the dominating star
size, i.e., the parameter considered in Theorem 1, is a structural parameter for conjunctive
queries that, if unbounded, makes the problem #W[2]-hard and that, if bounded, keeps the
problem #W[1]-easy.

This extension to #W[2]-hard cases only partially resolves the parameterized complexity
of the problem of counting answers to conjunctive queries. It is known that the general
problem of counting answers to formulas of the form

x1 . . . xk∃y1 . . . ∃y` : ψ , where ψ is a quantifier-free first-order formula, (3)

is #A[2]-equivalent.2 For which families of conjunctive queries is the counting problem
as hard as for unrestricted queries as in (3)? Such families have the hardest counting
problems, even harder than the #W[2]-hard cases unless #A[2] = #W[2] holds, which
seems unlikely.3 We prove that families of conjunctive queries are #A[2]-hard if their linked
matching number is unbounded. Intuitively a conjunctive query ϕ with free variables X and
quantified variables Y has a large linked matching if there is a large well-linked set in Y
that cannot be separated from X by removing a small number of variables. We obtain the
following refined complexity classification.

2 Due to a technicality in the original definition of #A[2], we cannot establish #A[2]-completeness and
will instead only talk about equivalence to a #A[2]-complete problem under parameterized Turing
reductions.

3 See Chapt. 8 and 14 in [14] for a discussion.
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I Theorem 2. Let Φ be a family of conjunctive queries. Given a formula ϕ from Φ and a
logical structure B, we wish to compute the number of solutions of ϕ in B. When parameterized
by |ϕ| this problem is
1. #W[1]-easy if the dominating star size of Φ is bounded,
2. #W[2]-hard if the dominating star size of Φ is unbounded, and
3. #A[2]-equivalent if the linked matching number of Φ is unbounded.

It is instructive to provide examples for the application of the above theorem. First
consider the problem of, given a graph G without self-loops and a natural number k,
computing the number of cliques of size k that are not maximal. While the problem of
counting cliques of size k is #W[1]-complete, adding the non-maximality constraint makes
the problem hard for #W[2]. To see this, we will express the problem as a conjunctive query

ϕk := x1 . . . xk∃y :
∧

1≤i<j≤k
E(xi, xj) ∧

∧
1≤i≤k

E(xi, y) . (4)

Note that the number of solutions to ϕk in G is precisely k! times the number of non-maximal
cliques of size k in G. Furthermore, it holds that ϕk has dominating star size k and hence
that Φ = {ϕk | k ∈ N} has unbounded dominating star size. By Theorem 2 the problem
of counting answers to queries in Φ is #W[2]-hard. Furthermore, invoking Theorem 1, we
obtain that counting non-maximal cliques of size k cannot be done in time O(nk−ε) for any
ε > 0. Note that this is also in sharp contrast to the problem of counting (not necessarily
non-maximal) cliques of size k which can be done in time O(nωk/3) [26]. Furthermore deciding
the existence of a non-maximal clique of size k is equivalent to deciding the existence of a
clique of size k + 1 and hence the lower bound under SETH crucially depends on the fact
that we count the solutions.

On the other hand, counting non-maximal cliques of size k is most likely not #A[2]-hard
as it is #W[2]-easy4. An example for a #A[2]-hard problem would be the following. Assume
a graph G and a natural number k are given. Then the goal is to compute the number of
k-vertex sets that can be (perfectly) matched to a k-clique. Let us express the problem as a
conjunctive query

ψk := x1 . . . xk∃y1 . . . ∃yk :
∧

1≤i<j≤k
E(yi, yj) ∧

∧
1≤i≤k

E(xi, yi) . (5)

We point out that ψk does not correspond directly to the vertex sets we would like to count
as xi and xj could be the same vertex in G. However, it can be shown that an oracle for
counting answers to ψk allows us to compute the desired number efficiently and vice versa.
Finally, as the linked matching number of ψk is not bounded for k → ∞, #A[2]-hardness
follows from Theorem 2.

Building up on Theorem 2 and using the framework of linear combinations, we obtain
the following, extensive classification result.

4 If there is a constant bound on the number of quantified variables then the problem of counting answers
to conjunctive queries is reducible to a #W[2]-complete problem w.r.t. parameterized Turing reductions.
We omit a proof of this statement but point out that it can be done by lifting the results of Chapt. 7.4
in [14] to the realm of counting problems.
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I Theorem 3. Let Φ be a family of existential or universal positive formulas with inequalities
and non-monotone constraints, both over the free variables. Given a formula ϕ from Φ and a
logical structure B, we wish to compute the number of solutions of ϕ in B.

When parameterized by |ϕ|, this problem is either fixed parameter tractable, W[1]-equiva-
lent, #W[1]-equivalent, #W[2]-hard or #A[2]-equivalent.

Note that allowing the inequalities and non-monotone constraints over all variables, not
just the free ones, would in particular include the subgraph decision problem. However, the
parameterized complexity of finding a subgraph in G that is isomorphic to a small pattern
graph P is a long-standing open question in parameterized complexity [11, Chapt. 33.1].

1.3 Techniques and Overview
Our paper brings together questions and techniques from a wide variety of areas, such as
parameterized and fine-grained complexity, logics, database theory, matroid theory, lattice
theory, graph minor theory, and the theory of graph limits. The interested reader should
not be alarmed, however, as we put considerable effort into making the presentation as
self-contained and smooth as possible, introducing the required background material carefully
and only once needed in both, the extended abstract as well as in the full version this
paper: After reviewing some basic preliminaries (Section 2), we formally present our refined
complexity classifications in Section 3 for the special case of partial graph homomorphisms,
rather than the full query evaluation problem. Due to the incompatibility of the space
constraints and the amount of results and techniques required, we deferred all proofs as well
as the treatment of the full query evaluation problem over arbitrary signatures of bounded
arity to the full version of this paper.

Colors and Query Minors

We will mainly work with a color-prescribed variant of the problem of counting answers to
conjunctive queries. Here we assume that the elements of a given database B are colored
according to the variables of the given conjunctive query ϕ and the goal is to compute the
number of solutions that are additionally color-preserving. For this variant we will show and
heavily exploit that the problem of counting answers to a conjunctive query ϕ is at least as
hard as counting answers to any query that is a minor of ϕ. Minors of a query are defined
via the (graph theoretic) minors of its Gaifman graph. It is then required to show that the
color-prescribed variant and the uncolored variant are interreducible for all minimal queries.
Intuitively, a query is minimal if it does not contain a proper subquery that produces the
same set of solutions for each database. The proof of the interreducibility relies on the theory
of homomorphic equivalence.

For Theorem 1 and the second case of Theorem 2 we construct a tight reduction from
the problem of counting dominating sets of size k which cannot be solved in time O(nk−ε)
for any ε > 0 unless SETH fails [28] and which is hard for #W[2] [13].

Minor Theory

For #A[2]-hardness in Theorem 2 we take a detour to graph minor theory: Given a graph G,
we call a set S ⊆ V (G) node-well-linked if, for every pair of disjoint, equal-sized subsets A,B
of S, there are |A| = |B| vertex disjoint paths in G that connect the vertices in A with the
vertices in B. Now, we obtain the following strengthening of the Excluded-Grid-Theorem,
which might be of independent interest.
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Y X

M

(a) A query (H,X) with a large linked matching
number (lmn(H,X) = 6): There is a large match-
ing M (gold-colored) connecting vertices in X with
a node-well-linked set in Y (enclosed within the
dashed line).

Y X

M

(b) A query (H,X) with a small linked matching
number (lmn(H,X) = 3): While there may be larger
matchings between vertices of X and Y , a largest
matching M into a node-well-linked set in Y has
size 3.

Figure 1 Examples for queries with large and small linked matching number.

I Theorem 4 (Intuitive version). There exists an unbounded function f such that every graph
with a node-well-linked set S of k vertices has an (f(k)× f(k))-grid minor with the property
that there are f(k) vertex-disjoint paths leading from S to the f(k) vertices of the first column
of the grid and without touching the grid minor elsewhere.

If we drop the requirement that the minor model can be reached by disjoint paths from S,
then this theorem is well-known and due to Diestel et al. [10].

Intuitively, we use Theorem 4 in the following way: If the quantified variables of a query
contain a node-well-linked set S, we obtain a large grid-like structure that is connected to S
by many vertex-disjoint paths. Next, we show that if that set S also has a large matching to
a subset of the free variables of the query, then the query becomes #A[2]-hard. For this last
step, we use an #A[2]-normalization theorem, which we will provide at the end of the paper.

Formally, we define the linked matching number of a query and prove #A[2]-hardness if
this parameter is unbounded. Consider Figure 1 for examples for the linked matching number.

I Definition 5 (Linked matching number). Let (H,X) be graphical conjunctive query, let
Y = V (H) \X be the set of quantified variables, and let M be a matching from X to Y . We
call the matching M linked if the set V (M) ∩ Y is node-well-linked in H[Y ]. The linked
matching number lmn of (H,X) is defined as the size of the largest linked matching of H.

Abstract Linear Combinations

To prove Theorem 3, we use abstract linear combinations that are called quantum graphs (or
rather, quantum queries in our setting) and were developed in the theory of graph limits [23].
For our computational questions, the complexity monotonicity property [6] is the useful
phenomenon that the quantum graph and its constituents (i.e., its abstract summands) often
lead to computational problems that have precisely the same complexity. Using elementary
linear-algebraic and polynomial interpolation arguments, we prove that this property holds,
and we use Rota’s NBC Theorem from lattice theory [29] to determine which graphs
are constituents of the relevant quantum graphs. The complexity monotonicity property
has been used (implicitly) by Chen and Mengel [5] for their extension from conjunctive
queries to monotone queries; and the extension from homomorphisms to partially injective
homomorphism [30] used Rota’s Theorem in a similar fashion as we do in the present work.
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2 Preliminaries

We use the notation [n] = {1, . . . , n} and [m,n] = {m, . . . , n} for natural numbers with
m < n. We write #M for the cardinality of a finite set M . We write f |M for the restriction
of a function f to elements of M . For a function f : A×B → C and a ∈ A, we write f(a, ?)
for the function b 7→ f(a, b).

Graphs, Homomorphisms, and Formulas

Graphs in this paper are unlabeled, undirected, simple and without self-loops, unless stated
otherwise. Let V (G) denote the set of vertices and E(G) denote the set of edges of G. We
define the size of a graph G to be the number of vertices. Given a subset Y of V (G), we
write G[Y ] for the subgraph induced by the vertices of Y . The complement graph G has
the same vertices as G and contains an edge uv if and only if u 6= v and uv /∈ E(G). A
homomorphism h from a graph F to a graph G is a mapping from V (F ) to V (G) that is
edge-preserving, that is, all uv ∈ E(F ) satisfy h(u)h(v) ∈ E(G). We write Hom(F → G) for
the set of all homomorphisms from F to G. A bijective homomorphism whose inverse is also
a homomorphism is called an isomorphism, and a homomorphism from F to F itself is called
endomorphism. An endomorphism that is also an isomorphism is called an automorphism.
We write Aut(F ) for the set of all automorphisms of F .

Parameterized Counting Complexity

A counting problem is a function P : {0, 1}∗ → N, and a parameterized counting problem is
a pair (P, π) where π : {0, 1}∗ → N is computable and called a parameterization. Param-
eterized decision problems are defined likewise for decision problems P : {0, 1}∗ → {0, 1}.
A parameterized (decision or counting) problem is fixed-parameter tractable if there is a
computable function t : N→ N such that, for every input x ∈ {0, 1}∗, the function P can be
computed in time t(π(x)) · poly(|x|). We denote the class of all fixed-parameter tractable
problems as FPT.

A parameterized Turing-reduction from (P, π) to (P ′, π′) is an algorithm A with oracle
access to P ′ that solves P , such that A runs in fixed-parameter tractable time when pa-
rameterized by π and there exists a computable function r such that, for every input x,
the parameter π′(y) of every query y is bounded by r(π(x)). A parameterized parsimonious
reduction is a parameterized Turing-reduction with the additional requirement that A is
only allowed to query the oracle a single time at the very end of the computation and then
outputs the result of the query without further modification.

Clique is the parameterized (decision) problem to decide whether a given graph G contains
a k-clique. Similarly, DomSet is to decide whether G has a dominating set of size k. The
parameterized counting problems #Clique and #DomSet count the number of the respective
objects. We define the parameterized complexity classes that appear in this paper by their
well-known complete problems: W[1] contains all parameterized problems that are reducible
to Clique with respect to parameterized parsimonious reductions. Similarly, #W[1], W[2],
and #W[2] contain all problems reducible to #Clique, DomSet, and #DomSet, respectively.
Furthermore #A[2] is the class of all parameterized counting problems that are expressible
as model counting problem with one quantifier alternation. It is known that

FPT ≤T W[1] ≤T #W[1] ⊆ #W[2] ⊆ #A[2] ,

where C ≤T D denotes that every problem in C can be reduced to a problem in D with
respect to parameterized Turing-reductions.
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y

x1

xk

(a)

y

ỹ

x1

xk

(b)

Figure 2 (a) Graphical representation of the conjunctive query in (6). (b) A graphical conjunctive
query that is “equivalent” to the example on the left in the sense that an assignment a : {x1, . . . , xk} →
V (G) is a partial homomorphism from the left graph to G if and only if it is a partial homomorphism
from the right graph to G.

For further background on parameterized counting complexity, see [14, Chapter 14]. While
the parameterized complexity classes are defined via parsimonious reductions, we will rely
on Turing reductions. Hence we cannot speak of completeness but instead of equivalence.

I Definition 6. Let C be a parameterized complexity class. A parameterized counting problem
(P, π) is C-easy if it can be reduced to a problem in C and it is C-hard if every problem
in C reduces to (P, π), both with respect to parameterized Turing-reductions. A problem is
C-equivalent if it is C-easy and C-hard.

Exponential-Time Hypotheses

The strong exponential time hypothesis (SETH) asserts that for all δ > 0 there is some k ∈ N
such that k-SAT cannot be computed in time O(2(1−δ)n), where n is the number of variables
of the input formula [19]. A dominating set of size k in an n-vertex graph cannot be computed
in time O(nk−ε) for any ε > 0 unless SETH is false [28]. The exponential time hypothesis
(ETH) asserts that 3-SAT cannot be computed in time exp(o(m)), where m is the number of
clauses of the input formula [19].

3 Formal Statements of Our Results

It is instructive to first focus on conjunctive queries with one relation symbol E of arity two.
An example of such a query is the following formula:

x1 . . . xk∃y : Ex1y ∧ · · · ∧ Exky . (6)

The relation E corresponds to a graph G and the free and quantified variables will be assigned
vertices of G. In this example, an assignment a1, . . . , ak ∈ V (G) to the free variables satisfies
the formula if and only if the vertices a1, . . . , ak have a common neighbor in G. It will be
convenient for us to view the formula as a graph H as depicted in Figure 2. The vertices of H
are partitioned into a set X = {x1, . . . , xk} of free variables and a set Y = {y} of quantified
variables. An assignment to the free variables corresponds to a function a : X → V (G), and
such an assignment satisfies the formula if it can be consistently extended to a homomorphism
from H to G. This motivates the following definition, where we only consider simple graphs
without loops, so we do not allow atomic subformulas of the form Ezz.

I Definition 7. A graphical conjunctive query (H,X) consists of a graph H and a set
X of vertices of H. We let Hom(H,X → G) be the set of all mappings from X to V (G)
that can be extended to a homomorphism from H to G, and we call these mappings partial
homomorphisms. Formally, the set of partial homomorphisms is defined via

Hom(H,X → G) =
{
a : X → V (G)

∣∣∣ ∃h ∈ Hom(H → G) : h|X = a
}
. (7)
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Given two different graphical conjunctive queries (H,X) and (Ĥ, X̂) it might be the case
that #Hom(H,X → ?) and #Hom(Ĥ, X̂ → ?) are the same functions. An example for this
is given in Figure 2. In this case, we say that (H,X) and (Ĥ, X̂) are equivalent, denoted
as (H,X) ∼ (Ĥ, X̂), and the subgraph-minimal elements of the induced equivalence classes
are called minimal. In what follows, we classify the complexity of counting homomorphisms
for classes of graphical conjunctive queries. More precisely, we consider the parameterized
counting problem #Hom(∆) for each fixed class ∆ of graphical conjunctive queries. This
problem is given as input a query (H,X) ∈ ∆ and a graph G and the task is to compute the
number #Hom(H,X → G). The problem is parameterized by the size of H. We start with
the formal definitions of the different structural parameters of graphical conjunctive queries
and present the classification theorem thereafter. All parameters, along with five example
classes, are depicted in Figure 3.

I Definition 8 (Contract). The contract of a graphical conjunctive query (H,X) is a graph
on the vertex set X, obtained by adding an edge between two vertices u and v in X if uv is
an edge of H or if there exists a connected component C in H \X that is adjacent to both u
and v. Given a class ∆ of conjunctive queries, we write contract(∆) for the set of all of its
contracts.

I Definition 9 (Dominating star size). Let (H,X) be graphical conjunctive query and let
Y1, . . . , Y` be the connected components of the subgraph H[V (H)\X] induced by the quantified
variables. Further, let ki be the number of vertices x ∈ X for which there exists a vertex
y ∈ Yi that is adjacent to x. The dominating star size of (H,X) is defined via

dss(H,X) = max
{
ki | i ∈ `

}
.

We are now in position to state our main result, the full classification for counting answers
to conjunctive queries. Note that Theorem 2 is subsumed by the full classification in the case
of graphs. The general version, that is, the case of arbitrary logical signatures with bounded
arity, is stated and proved in the full version.

I Theorem 10. Let ∆ be a recursively enumerable class of minimal conjunctive queries.
1. If the treewidth of ∆ and contract(∆) is bounded, then #Hom(∆) can be computed in

polynomial time.
2. If the treewidth of ∆ is unbounded and the treewidth of contract(∆) is bounded, then

#Hom(∆) is W[1]-equivalent.
3. If the treewidth of contract(∆) is unbounded and the dominating star size of ∆ is bounded,

then #Hom(∆) is #W[1]-equivalent.
4. If the dominating star size of ∆ is unbounded, then #Hom(∆) is #W[2]-hard. Moreover,

for any fixed query δ with dss(δ) ≥ 3, the problem #Hom(δ → ?) cannot be computed in
time O(ndss(δ)−ε) for any ε > 0 unless SETH fails.

5. If the linked matching number of ∆ is unbounded, then #Hom(∆) is #A[2]-equivalent.

In proving the last case of Theorem 10, we establish the following generalization of the
Excluded-Grid-Theorem which applies for conjunctive queries with a large linked matching
number and is essentially equivalent to Theorem 4; consult Figure 3 for the notion of a grate.

I Theorem 11. Let ∆ be a class of graphical conjunctive queries. If the linked matching
number of ∆ is unbounded, then ∆ contains arbitrarily large grates as minors.
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Query Classes ∆poly ∆W[1] ∆#W[1] ∆#W[2] ∆#A[2]

Query
for k = 4

contract
for k = 4 ∅

tw O(1) ∞ ∞ O(1) ∞
tw(contract) O(1) O(1) ∞ ∞ ∞
dss O(1) O(1) O(1) ∞ ∞
lmn O(1) O(1) O(1) O(1) ∞
Complexity P W[1]-eq. #W[1]-eq. #W[2]-hard #A[2]-eq.(∗)

Figure 3 Example problems for each case of the complexity classification (Theorem 10):

∆poly = {ϕk | k ∈ N } , where ϕk := x1 . . . xk ∃y1 . . .∃yk−1 :
∧

1≤i<k

Exiyi ∧ Eyixi+1

∆W[1] = {ψk | k ∈ N }, where ψk := ∃y1 . . .∃yk :
∧

1≤i<j≤k

Eyiyj

∆#W[1] = { υk | k ∈ N }, where υk := x1 . . . xk :
∧

1≤i<j≤k

∃yij : Exiyij ∧ Eyijxj

∆#W[2] = { δk | k ∈ N } , where δk := x1 . . . xk∃y :
∧

1≤i≤k

Exiy

Furthermore, ∆#A[2] is the set of all grates. Here, a k-grate is the conjunctive query whose
quantified variables constitute half of a k × k grid whose diagonal is connected to k free variables by
a matching of size k. The formal definition is given in the full version.
Depicted is the query (H,X) for k = 4, where free variables (i.e., vertices in X) are drawn as solid
discs and quantified variables (i.e., vertices in V (G) \ X) are drawn as hollow squares. We also
display the contract (see Definition 8) of each query. We write O(1) whenever a parameter is
bounded by a constant in the entire query class, and ∞ whenever it is unbounded. Finally, we
show the complexity of counting answers to conjunctive queries in each of the classes in terms of
polynomial-time tractability (P) and equivalence (-eq.) or hardness for one of the parameterized
complexity classes.

(∗) The observant reader might have noticed that a k-grate is not a minimal conjunctive query.
For this reason, #A[2]-equivalence in the last column refers to minimal conjunctive queries that contain
arbitrary large grates as minors. Alternatively, #A[2]-equivalence is shown to hold for k-grates in the
color-prescribed case. Details are given in the full version.
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Building upon Theorem 10, we invoke the complexity monotonicity property of linear
combinations of conjunctive queries to classify the complexity of counting answers to queries
of the form (2), that is, existential or universal first-order queries for which we allow
inequalities and non-monotone constraints, both over the free variables. Specifically, we
prove the classification as given by Theorem 3. Again, we refer to the full version for the
general case of arbitrary logical structures of bounded arity. We also discuss conjunctive
queries that may contain inequalities over the free variables. Note that in that case, we are
able to give explicit criteria for the five different cases in Theorem 3.

4 Conclusions

We established a comprehensive classification of the complexity of counting answers to
conjunctive queries and linear combinations thereof. Depending on the structural parameters
of the class of allowed queries, the problem is either polynomial-time solvable, W[1]-equivalent,
#W[1]-equivalent, #W[2]-hard or #A[2]-equivalent. This classification, however, leaves out
a gap between the latter two cases. More precisely, the following question remains open:

Does a class of conjunctive queries ∆ exist for which #Hom(∆) is #W[2]-hard
but neither equivalent for #W[2] nor for #A[2]?

We conjecture a positive answer; the interested reader is encouraged to make themself familiar
with the parameterized complexity class Wfunc[2] (see e.g. [14, Chapter 8.8]). This class has
a canonical counting version which we call #Wfunc[2] and which interpolates between #W[2]
and #A[2]. In particular, we conjecture that there exists a class of conjunctive queries ∆ for
which #Hom(∆) is #Wfunc[2]-equivalent. Consequently, a negative answer to the previous
question would imply that either #Wfunc[2] = #W[2] or #Wfunc[2] = #A[2], which seems to
be very unlikely (see e.g. the discussion of Wfunc[2] in [14, Chapter 8.8]).

A further question that remains open, and which should be considered a stronger version
of the previous question, reads as follows:

Does a class of conjunctive queries ∆ exist such that ∆ has bounded linked matching number
and the problem #Hom(∆) is #A[2]-equivalent?

In other words, the above question asks whether the absence of a bound on the linked
matching number is not only sufficient, but also necessary for #A[2]-equivalence. In contrast
to the previous question, we conjecture a negative answer. Let us provide some intuition for
the latter conjecture: It seems that a constant bound on the linked matching number of a
class of conjunctive queries ∆ yields a separator decomposition of the quantified variables of
queries in ∆ in components that have either small treewidth or a small matching number to
the free variables. We conjecture that such a decomposition implies the existence of what is
called a κ-restricted nondeterministic Turing machine M such that the number of accepting
paths of M on input (H,X) ∈ ∆ and a graph G is precisely #Hom(H,X → G) (see e.g. [14,
Definition 14.15]). If additionally #Hom(∆) is #A[2]-equivalent, this would imply that the
set of #A[2]-equivalent problems is a subset of the set of #W[P]-equivalent problems; consult
e.g. [14, Chapter 3 and 14.2] for a treatment of the class #W[P]. However, the latter inclusion
seems to be unlikely and we refer the interested reader to [14, Chapter 8] for a detailed
treatment of the corresponding question whether A[2] ⊆ W[P] in the decision world. We
conclude with the remark that even a proof of A[2] ⊆ #W[P] would be a major breakthrough
as it constitutes the first step of a parameterized analogue of Toda’s theorem [31], which is
one of the fundamental open problems in (structural) parameterized counting complexity.
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Abstract
We present an improved exponential time algorithm for Energy Games, and hence also for Mean
Payoff Games. The running time of the new algorithm is O

(
min

(
mnW,mn2n/2 logW

))
, where n

is the number of vertices, m is the number of edges, and when the edge weights are integers of
absolute value at most W . For small values of W , the algorithm matches the performance of the
pseudopolynomial time algorithm of Brim et al. on which it is based. For W ≥ n2n/2, the new
algorithm is faster than the algorithm of Brim et al. and is currently the fastest deterministic
algorithm for Energy Games and Mean Payoff Games. The new algorithm is obtained by introducing
a technique of forecasting repetitive actions performed by the algorithm of Brim et al., along with
the use of an edge-weight scaling technique.
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1 Introduction

Energy Games (EGs) and Mean Payoff Games (MPGs) are simple and natural infinite-
duration games played on graphs that can be used to model quantitative properties of
interactive systems. They are also interesting as they are perhaps the most natural com-
binatorial problems that are in NP ∩ co-NP and yet not known to be in P or in BPP .
Mean Payoff Games (MPGs) were introduced by Ehrenfeucht and Mycielski [9]. Energy
Games (EGs) were introduced by Chakrabarti et al. [7] and later by Bouyer et al. [4] who
also showed their equivalence to MPGs.

Energy Games are games played by two players, player 0 and player 1, on a weighted
directed graph whose vertices are partitioned among the two players. The two players
construct an infinite path, that starts at a designated start vertex, in the following way.
The player controlling the end-point u of the path constructed so far extends the path by
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114:2 Energy Games

choosing an edge emanating from u. Let w1, w2, . . . be the weights of the edges on the
path constructed. Player 0 wins this play if lim infn→∞

∑n
i=1 wi > −∞, i.e., if there exists

an initial finite energy level c such that c +
∑n

i=1 wi ≥ 0, for every n ≥ 1. Player 1 wins
otherwise. Player 0 wins the game from an initial vertex u if she can ensure a winning play
from u, no matter what player 1 does. It is known that if player 0 can win from a certain
vertex, then she can also do it using a positional strategy, i.e., a deterministic strategy in
which the edge chosen depends only on the current vertex. Furthermore, she has a single
positional strategy using which she wins from all the vertices from which she can win. Solving
an EGs amounts to finding the winner from each vertex, and possibly an optimal positional
strategy and the minimal energy level required from every winning vertex.

Parity Games (PGs) form a very special sub-class of MPGs. In a recent breakthrough,
Calude et al. [6] obtained a deterministic quasipolynomial nO(log n)-time algorithm for
PGs, where n is the number of vertices. (Variants of their algorithm were obtained by
[3, 10, 13, 18, 21].) Unfortunately, these techniques do not seem applicable to MPGs and
EGs. (See [11].) The currently fastest algorithm for these games, as well as the more
general (turn-based) Stochastic Games (SGs), is a sub-exponential 2Õ(

√
n) ([1, 2, 16, 17, 23]).

These sub-exponential algorithms are based on randomized pivoting rules for the simplex
algorithm devised by Kalai [19, 20] and Matoušek, Sharir and Welzl [24]. The fastest
known deterministic algorithms for EGs and MPGs are the exponential O(mn2n logW )-time
algorithm of Lifshits and Pavlov [22],1 and a pseudo-polynomial O(mnW )-time algorithm of
Brim et al. [5].2 Polynomial time algorithms for EGs with very special weight structures
were obtained by Chatterjee et al. [8].

The simple and elegant O(mnW )-time algorithm of Brim et al. [5], henceforth referred
to as the BCDGR algorithm, is a progress measure lifting algorithm for solving EGs. MPGs
are essentially equivalent to EGs ([4]), hence the algorithm can also be used to solve MPGs.
The lifting technique used by Brim et al. is similar to the value iteration technique used by
Zwick and Paterson [26] on MPGs.

We present an improvement of the BCDGR algorithm that runs in O(min{mnW,
mn2n/2 logW})-time. The new algorithm is always as fast as the BCDGR algorithm and
strictly faster when W = ω(n2n/2). The running time of the new algorithm can be made to
be O(poly(n)2n/2), without any dependence on W , assuming that arithmetic operations on
integers of absolute value O(nW ) take constant time. (Details will appear in the full version
of the paper.) The new algorithm is currently the fastest deterministic algorithm for EGs
and MPGs when W ≥ n2n/2.

The new algorithm uses two new ideas. The first is a technique for predicting sequences
of update steps that are performed repetitively by the BCDGR algorithm, and achieving
the net effect of these repetitions much more quickly. To make this approach work, a
second idea, that of scaling, needs to be used. Scaling is a well-known technique used in
various combinatorial optimization problems such as shortest paths, flow problems, matching
problems etc. (See, e.g., [12, 14, 15].) A scaling algorithm first divides all edge weights by 2,
rounds them up so that they remain integers, solves the reduced problem recursively, and
then converts the solution of the reduced problem to a solution of the original algorithm.
It is quite natural to try to use the scaling technique on EGs or MPGs. However, naïve or

1 For solving EGs, and for deciding whether the values of a MPG are non-negative, the logW factor in
the running time of [22] is not needed.

2 Recently, Fijalkow et al. [11] gave an O(mn(nW )1−1/n)-time algorithm for solving MPGs. This, however,
is never asymptotically better than O(min{mnW,mn2n}), as W 1−1/n < 1

2W only if W ≥ 2n.
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direct approaches do not seem to give any improvement. To the best of our knowledge, the
algorithm presented here is the first algorithm that successfully uses scaling for speeding up
the solution of EGs and MPGs.

An EG, MPG or SG is said to be binary if the outdegree of each vertex is 2. It is known
that binary EGs, MPGs and SGs can be modeled as Acyclic Unique Sink Orientations
(AUSOs) (see, e.g., [23, 25]). Solving a game is then equivalent to finding the sink of the
associated AUSO. The fastest deterministic sink-finding algorithm runs in O(1.606n)-time.
Our new algorithm is faster than this algorithm and works for all games, not only binary.

The rest of the paper is organized as follows. In the next section we provide some
definitions and basic results and briefly review the algorithm of Brim et al. [5] on which
our new algorithm is based. In Section 3 we present our new algorithm. In the full version
of the paper we describe energy games on which the new algorithm requires Ω(2n/2) time,
showing that our analysis is essentially tight. We end in Section 4 with concluding remarks
and open problems.

2 Preliminaries

A game graph is a tuple Γ = (V0, V1, E, w), where V = V0 ∪ V1 is the set of vertices,
E ⊆ V × V is the set of edges, and w : E → Z is a weight function. We assume that
V0 ∩ V1 = ∅ and that each vertex has at least one outgoing edge. The sets V0 and V1 are the
sets of vertices controlled by player 0 and player 1. A positional strategy of player i is a mapping
σ : Vi → E such that for every v ∈ Vi we have (v, σ(v)) ∈ E. Given positional strategies
σ0, σ1 of player 0 and player 1 and an initial vertex v0, play(v0, σ0, σ1) = v0, v1, . . . , vi, . . . is
the infinite walk resulting from σ0 and σ1 starting at v0.

An Energy-Game is an infinite game on a game graph Γ. Player 0 wins from an
initial vertex v0 ∈ V if and only if there exists a positional strategy σ0, and a finite
energy level c = c(v0), such that for every positional strategy σ1 of player 1, we have
c+

∑n−1
i=0 w(vi, vi+1) ≥ 0, for every n ≥ 1, where play(v, σ0, σ1) = v0, v1, . . . .

We shall refer to a function f : V → N ∪ {∞} as a potential function.

I Definition 2.1. Let Γ = (V0, V1, E, w) be an energy-game. A function f : V → N ∪ {∞}
is a feasible potential iff for every v ∈ V :

if v ∈ V0, then f(v) + w(v, v′) ≥ f(v′) for some (v, v′) ∈ E.
if v ∈ V1, then f(v) + w(v, v′) ≥ f(v′) for all (v, v′) ∈ E.

We call the potential function g(v) = min{f(v) | f feasible potential} the solution of Γ.

Brim et al. [5] proved that g is a feasible potential and that player 0 wins from v if and
only if g(v) <∞, in which case g(v) is the minimal required initial energy.

Let Γ = (V0, V1, E, w) be an energy-game and let f : V → N∪{∞} be a potential function.
We denote by wf (u, v) = w(u, v) + f(u)− f(v) the modified weight of (u, v). An edge (u, v)
is valid with respect to f if wf (u, v) ≥ 0. A vertex v ∈ V0 (V1) is valid with respect to f if
(v, v′) is valid with respect to f for some (all) (v, v′) ∈ E, otherwise we say that v is invalid
with respect to f (we say just valid when f is clear from the context). An edge (v, v′) is
tight if wf (v, v′) = 0. A path p is tight if all its edges are tight. A vertex v ∈ V0 is tight if
it is valid and wf (v, v′) ≤ 0 for all (v, v′) ∈ E. A vertex v ∈ V1 is tight if it is valid and
wf (v, v′) = 0 for some (v, v′) ∈ E. We denote by in(u) and out(u) the sets of incoming and
outgoing edges from u, respectively.
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2.1 The algorithm of Brim et al.
Brim et al. [5] suggested the following algorithm: maintain f : V → N ∪ {∞}, starting with
f ≡ 0. As long as there are invalid vertices, pick some invalid vertex v and increase f(v)
to the minimal value that would make v valid. It is known that if player 0 can win from a
certain vertex, then she can win with an initial energy of at most nW . Thus, if f(v) reaches
nW , we know that v is a losing vertex for player 0, and we can let f(v)←∞.

To efficiently find an invalid vertex, the algorithm maintains a list L of invalid vertices.
When f(v) of some invalid vertex v ∈ V is updated, the algorithm checks for every edge
(v′, v) ∈ in(v) that became invalid whether v′ is now also invalid. If v′ ∈ V1, then this is
the case, and v′ is added to L, if it is not already there. If v′ ∈ V0, then increasing f(v)
does not necessarily make v′ invalid, as v′ may have had other valid edges. The algorithm
maintains count[v′], the number of valid edges in out(v′). If (v′, v) was valid, then count[v′]
is decremented. If count[v′] becomes 0, then v′ is now invalid and it is added to L. It is not
hard to check that the running time of the resulting algorithm is O(mnW ), which is also
known to be tight.

2.2 A reduction to games with finite values
The description and the correctness proof of algorithms for solving EGs are often simplified if
it assumed that all vertices have finite values, i.e., are all winning for player 0. (This does not
trivialize the problem, as we still want to find the minimum energy level needed from each
vertex, and corresponding optimal positional strategies for the two players.) We describe a
simple reduction, inspired by a reduction of Björklund et al. [2], that shows that the solution
of a general EG can be reduced to the solution of an EG with finite values.

Let Γ = (V0, V1, E, w) be an EG, and let n = |V | and W = maxe∈E |w(e)|. Let f be the
solution of Γ. For every v ∈ V , we know that either 0 ≤ f(v) < nW , or f(v) = ∞. To
convert Γ into a game Γ′ in which all values are finite, we add a sink vertex s, with a self-loop
of weight 0, and add an edge (v, s) of weight −2nW for every v ∈ V0. This ensures that the
values of all vertices in V0 are finite. (In particular, their value is at most 2nW .)

To ensure that the values of all vertices in V1 are also finite, we need to perform a simple
preprocessing step. If u ∈ V1 and player 0 has a strategy for reaching a vertex of V0, starting
at u, then the value of u is also finite. We are thus left with vertices of V1 from which player 1
can win the game, i.e., reach a negative cycle, without leaving V1. It is easy to identify these
vertices and remove them from the game. The value of all remaining vertices is now finite.

If it is to player 0’s advantage to escape to the sink, she might as well do it without
closing any cycles. Player 0 can therefore gain at most (n− 1)W units of energy by following
original edges before deciding to take an edge to the sink. The energy needed in such a case
is therefore at least nW . We thus have:

I Lemma 2.2. Let Γ = (V0, V1, E, w) be an EG and let Γ′ be the EG obtained by the reduction
above. Let f and f ′ be the solutions of Γ and Γ′. Then, for every u ∈ V = V0 ∪ V1, we have

f(u) =
{
f ′(u) if f ′(u) < nW,

∞ otherwise.

Note that the reduction introduces only one new vertex which is important if we want to
use it in conjunction with exponential time algorithms. The maximal edge weight is increased
from W to 2nW , but this is not an issue if the running time of the algorithm depends only
logarithmically on W .
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Compute-Energy (V0, V1, E, w).
1 if w ≥ 0 then
2 return f ≡ 0
3 w′ ← dw

2 e
4 f ← Compute-Energy(V0, V1, E, w

′)
5 f, w′ ← 2f, 2w′
6 foreach v ∈ V do
7 foreach e ∈ out(v) do
8 if w′(e) > w(e) then w′(e)← w′(e)− 1
9 Update-Energy (V0, V1, E, w

′, f, v)
10 return f

Update-Energy (V0, V1, E, w, f, v).
1 if v ∈ V0 and ∀(v, u) ∈ E : wf (v, u) < 0 then L← {v}
2 if v ∈ V1 and ∃(v, u) ∈ E : wf (v, u) < 0 then L← {v}
3 foreach u ∈ V0 do
4 count[u]← |{u′ | (u, u′) ∈ E, wf (u, u′) ≥ 0}|
5 while L = {v} do
6 B ← {v}
7 Update(v, L,B)
8 while L \ {v} 6= ∅ do
9 pick u ∈ L \ {v}

10 Update(u, L,B)
11 ∆← Delta(B)
12 foreach u ∈ B do f(u)← f(u) + ∆

Figure 1 The main two functions of the new O
(
min

(
mnW,mn2n/2 logW

))
-time algorithm.

3 The new algorithm

We now describe our new algorithm. For simplicity, we assume that all the values in the
input game are finite. This can be achieved, for example, using the simple reduction above.
In the full version we show that the algorithm presented actually works, as is, even if some
values are infinite, but the correctness proof becomes slightly more complicated.

Given an EG Γ = (V0, V1, E, w), we construct a scaled down version Γ′ = (V0, V1, E, w
′ =

dw
2 e), where dw

2 e(e) = dw(e)
2 e, for every e ∈ E, and solve it recursively, obtaining the

solution f ′ of Γ′. (Note that Γ′ is “easier” for player 0 because of the rounding up. In
particular, if all values in Γ are finite, so are all the values in Γ′.) We now scale Γ′ back
up to Γ′′ = (V0, V1, E, 2dw

2 e). Note that f ′′ ≡ 2f ′ is the solution of Γ′′ and that Γ′′ is very
close to Γ: 2dw

2 e and w only differ, by 1, on edges e for which w(e) is odd. To convert f ′′
into a solution of Γ, we consider each vertex v ∈ V with odd outgoing edges, decrease the
corresponding edge weights in 2dw

2 e by 1, and update the solution f ′′ accordingly. (This is,
of course, the hardest part of the algorithm.) These operations are carried out by algorithms
Compute-Energy and Update-Energy given in Figure 1.
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Update(u, L,B).
1 L← L \ {u}
2 f(u)← f(u) + 1
3 if u ∈ V0 then count[u]← |{(u, u′) ∈ E | wf (u, u′) ≥ 0}|
4 foreach u′ ∈ in(u) such that wf (u′, u) < 0 do
5 if u′ ∈ V0 then
6 if wf (u′, u) = −1 then count[u′]← count[u′]− 1
7 if count[u′] = 0 then L← L ∪ {u′}, B ← B ∪ {u′}
8 if u′ ∈ V1 then L← L ∪ {u′}, B ← B ∪ {u′}

Delta(B).
1 p1 ← min

{
−wf (u, u′) | (u, u′) ∈ E(B ∩ V0, B̄)

}
2 p2 ← min

{
γ(u) | u ∈ B̄ ∩ V0,∀u′ ∈ B̄ wf (u, u′) < 0

}
3 p3 ← min

{
wf (u, u′) | (u, u′) ∈ E(B̄ ∩ V1, B)

}
4 return min {p1, p2, p3}

Figure 2 The remaining two function of the new O
(
min

(
mnW,mn2n/2 logW

))
-time algorithm.

Update-Energy updates the solution f after the decrease of the weights of some of the
edges emanating from v by 1. As in [5], Update-Energy maintains a list L of all vertices
that are currently invalid. Initially only v may be invalid. To quickly determine whether a
vertex u ∈ V0 becomes invalid, we maintain in count[u] the number of valid edges from u. A
vertex u ∈ V0 is thus invalid iff count[u] = 0.

Lines 1–2 of Update-Energy determine whether v is invalid. If v is valid, we are done.
Otherwise, we add v to L and fix v by increasing f(v) by 1. This makes v valid, but vertices u
with edges (u, v) may become invalid and need to be added to L. Updating v’s potential
and checking for new invalid vertices is carried out by Update given in Figure 2. If we fix
invalid vertices from L in an arbitrary order, as done by [5], we get the running time of [5].

The main point in which our algorithm differs from the algorithm of [5], in addition to
the use of scaling, is that we fix at first only invalid vertices different from v, delaying an
additional fixing of v, if required, by as much as possible. Lemma 3.2 below shows that no
vertex needs to be fixed twice, before v is fixed again.

If v does not become invalid again, then Update-Energy is done. Otherwise, let B be
the set of vertices, including v, updated until v is the only invalid vertex. (Lemma 3.2 shows
that this must eventually happen.) When we update v again, it could be that the same set
of vertices B will eventually become invalid, and hence updated, again. Furthermore, in
worst-case examples of [5], the same sequences of update operations may be repeated many
times. Instead of carrying out these updates again and again, we predict how many times
the same sequence of updates will be repeated and perform all these updates at once. This
approach seems to work only when the weights of edges are decreased by 1, which is why the
scaling idea needs to be used.

The computation of ∆, the number of repetitions of the current sequence, carried out by
Delta(B) in Figure 2, is based on the following observation. Let B be the set of vertices
that became invalid after updating v and let B′ be the set of vertices that became invalid
after updating v again. Assume B′ 6= B. If B′ \B 6= ∅, let u ∈ B′ \B be the first vertex in
B′ \ B that became invalid. It must be the case that at least one of u’s valid edges to B
became invalid. If u ∈ V1 this could be any edge from u, and if u ∈ V0 this edge is the edge
with maximal modified weight from u and u had no valid edges to B̄ ≡ V \B.
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Figure 3 Calculating Delta(B): Vertices in V0 are red squares; Vertices in V1 are blue circles.

If B \B′ 6= ∅, then (B \B′) ∩ V0 6= ∅. To see this, let v0 = v, v1, . . . be the vertices of B
in the order in which they were updated. Let vj be the first vertex in this order which is
not in B′. Vertex vj must have an invalid edge (vj , v`) such that ` < j. This edge became
invalid when we updated v` and caused the addition of vj to B. Since vj is the first vertex
which is not in B′, v` ∈ B′ and therefore the edge (vj , v`) becomes invalid when we collect B′
following the second update of v. So vj ∈ V0, as otherwise it should have been added to B′.
Vertex vj is not added to L since it has an edge (vj , w), w /∈ B that had a modified weight
of −1 that became 0 (i.e., valid) following the update of vj .

Therefore, to compute ∆, we must consider all valid edges from B̄ to B (to detect new
vertices that might become invalid) and all invalid edges from vertices in V0 ∩B to B̄, see
Figure 3. We refer to minimum and maximum of an empty set as ∞ and −∞, respectively.
We let ∆ = min{p1, p2, p3} were p1, p2 and p3 are defined as follows. The value p1 is minus
the maximum modified edge weight of an edge from B ∩ V0 to B̄. Note that p1 ≥ 0. To
define p2 consider every vertex u ∈ V0 ∩ B̄ that does not have a valid edge (u,w) to w ∈ B̄.
For every such u let γ(u) be the maximum modified weight of an edge (u,w), w ∈ B. Note
that γ(u) ≥ 0. We define p2 to be the minimum value of γ(u) over all such vertices u. The
value p3 is the minimum modified edge weight of an edge from V1 ∩ B̄ to B. Note that p2
and p3 are nonnegative. Pseudo-code of Delta(B) is given in Figure 2.

3.1 Correctness
As explained, we assume for simplicity that all values are finite. This assumption is removed
in the full version of the paper. The correctness of the new algorithm follows from the fact
that the potential function kept by the algorithm is always a lower bound on the values of
the vertices, and hence the updates performed are justified, as in the correctness proof of the
BCDGR algorithm. As the new algorithm predicts sequence of updates that are going to be
performed repeatedly, and performs all these repetitions at once, what remains to be shown
is that the predictions of the algorithm are correct.

I Lemma 3.1. Let Γ1 =
(
V0, V1, E, w

1), Γ2 =
(
V0, V1, E, w

2) be two games graphs with
solutions f1 and f2, respectively. If w1 ≤ w2 then f1 ≥ f2 (coordinate-wise).

It follows Lemma 3.1 that the solution of Γ′′ is a lower bound on the solution of the
original game Γ. All that remains, therefore, is to show that the updates performed by
Update-Energy are justified.

Let Update(v1≡v),Update(v2), . . . ,Update(vk) be the sequence of vertex updates
performed by Update-Energy(. . . , f, v). A round is one iteration of the outer while loop of
Update-Energy, i.e., all vertex updates starting with Update(v) until and not including
the next Update(v). We number the rounds starting from 1 and let fr be f at the end
of round r. For convenience, we define f0 ≡ f . We let Br be the set of vertices that were
updated during round r (“bad” vertices). Thus, Br is B at the end of round r of the outer
while loop of Update-Energy. Let Gr = Br = V \Br be the set of “good” vertices.
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I Lemma 3.2. In each round, each vertex is updated at most once.

Proof. By contradiction, let u be the first vertex that joined L for the second time during a
round. We have that u 6= v by the definition of a round. Assume u ∈ V0. Since u 6= v (i.e., u
is valid at the beginning of the round), wf (u, u′) ≥ 0 for some vertex u′ at the beginning of
the round. From the beginning of the round until u’s second update, u′ is updated at most
once and u is updated exactly once so we have that wf (u, u′) ≥ 0 right before u’s second
update which is a contradiction (u is valid). A similar argument works when u ∈ V1. J

I Lemma 3.3. During Update-Energy, u ∈ L if and only if u is invalid.

Proof. By induction on the iterations of the algorithm. J

Note that vertices u that were never updated (in any call to Update-Energy) are those
with f(u) = 0. Also, note that every tight vertex u has at least one tight edge.

I Lemma 3.4. During Update-Energy, if u /∈ L and f(u) > 0, then u is tight.

Proof. Following an update, u becomes tight and it remains tight as long as it is valid. Since
f(u) > 0, u was updated and since u /∈ L, u is valid (Lemma 3.3). J

I Lemma 3.5. At the end of round r, every u ∈ (Gr \ {v | f(v) = 0}) ∩ V0 is tight and for
every tight edge (u, u′) it holds that u′ ∈ Gr. Also, there exists u′ ∈ Gr such that (u, u′) ∈ E
is tight during round r.

Proof. We prove the first part by contradiction. Let (u, u′) be a tight edge at the end of
round r such that u′ ∈ Br. Since u′ ∈ Br, u′ was updated during round r and therefore at
the beginning of round r it holds that wf (u, u′) > 0, so u was not tight at the beginning of
the round. This contradicts Lemma 3.4 that implies that u is always tight during round r.

We now prove the second part. Since u is tight during the round and in particular at
the end of the round, (u, u′) ∈ E is tight for some u′ at the end of the round. By the first
part of the Lemma u′ ∈ Gr. Thus, (u, u′) is tight during the entire round (since both f(u)
and f(u′) remain unchanged during the round). J

I Lemma 3.6. At the end of round r, if u ∈ (Br \ {v}) ∩ V1 and (u, u′) ∈ E is tight,
then u′ ∈ Br.

Proof. If u′ ∈ Gr then (u, u′) was invalid at the beginning of round r (since f(u) but not
f(u′) was increased during the round), and therefore u was invalid at the beginning of
round r, but only v is invalid at the beginning of each round, a contradiction. J

I Remark. Note that we cannot guarantee that u has a tight edge during the round (as in
Lemma 3.5). This is because when u becomes invalid, it might be the case that all of its
edges became invalid (u is ensured to have a tight edge only when it is valid).

The proof of the following lemma is given in the full version of the paper.

I Lemma 3.7. Consider round r. If we would have performed Update-Energy without
lines 11–12, then in the following ∆ rounds r + 1, ..., r + ∆ we would have Br = Br+i, for
1 ≤ i ≤ ∆, where ∆ is the value returned by Delta(B). Furthermore, if r + ∆ is not the
last round then Br+∆+1 6= Br.

As a consequence we get:

I Theorem 3.8. Update-Energy (V0, V1, E, w, f, v) updates f correctly.
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The rest of the lemmas in this section are used in the next section to bound the complexity
of the algorithm.

Let u be a valid vertex such that fr(u) > f0(u) (i.e., the potential of u was changed
at least once before the end of round r). We let tr(u) be the time right after the last
Update(u) that occurred before the end of round r. We remove the subscript r when it is
clear from the context.

I Lemma 3.9. At the end of round r, for any u ∈ Gr with fr(u) > f0(u):
1. If u ∈ V0 then for any tight edge (u, u′) with u′ ∈ Gr, either fr(u′) = f0(u′) or

tr(u′) < tr(u).
2. If u ∈ V1 then there exists a tight edge (u, u′) such that u′ ∈ Gr and tr(u′) < tr(u).

Proof. Note that since u ∈ Gr, tr(u) is before round r begins. We begin with the first part.
Let (u, u′) be such an edge. If fr(u′) = f0(u′) then we are done. Otherwise, u′ must have
been updated at least once (and therefore t(u′) is defined). Assume by contradiction that
t(u′) > t(u). Since (u, u′) is tight at the end of round r then wf (u, u′) > 0 at tr(u). This
contradicts Lemma 3.4 since at tr(u) it holds that u is valid and not tight.

We now prove the second part. Since u must be tight at t(u) there exists u′ ∈ V such
that (u, u′) is tight at t(u). Note that u′ must be valid from t(u) until the end of round r,
since otherwise u will become invalid after t(u′) which is a contradiction. Thus, u′ ∈ Gr and
t(u′) < t(u). Since u and u′ remain valid from t(u) until the end of round r, (u, u′) is tight
at the end of round r. J

I Lemma 3.10. At the end of round r the following holds for all u ∈ V :
1. If u ∈ Br then u has a tight path of vertices in Br to v.
2. If u ∈ Gr then u has a tight path of vertices in Gr to a vertex u′ with fr(u′) = f0(u′).

Proof. We begin by proving the first claim. Every vertex u ∈ Br, u 6= v joins L because of
some edge (u, u′) which is invalid after we update u′. This edge must be tight at the end
of the round. So each vertex u has a tight edge to a vertex u′ which was updated before u
during round r. This implies the first part.

We now prove the second claim. If fr(u) = f0(u) then we are done. Otherwise, assume
fr(u) > f0(u). We continue the proof by induction on t(u). Base case, t(u) is minimal
(i.e., u was updated first). By Lemma 3.9, u has a tight edge (u, u′) with u′ ∈ Gr such that
fr(u′) = f0(u′) (since t(u) is minimal) and we are done. Assume that the claim follows for
all vertices u′ with t(u′) < t(u). By Lemma 3.9, u has a tight edge (u, u′) with u′ ∈ Gr such
that either fr(u′) = f0(u′) or t(u′) < t(u). If fr(u′) = f0(u′) then we are done. Otherwise,
t(u′) < t(u) and therefore by the induction hypothesis, u′ has a tight path to some vertex u′′
with fr(u′′) = f0(u′′). J

3.2 Complexity
Recall that |V | = n, |E| = m and W is the maximal absolute value weight.

I Theorem 3.11. The running time of compute–energy is O
(
min

(
mnW,mn · 2n/2logW

))
.

The O (mnW ) bound follows immediately since each vertex u is updated at most O(|V |·W )
times and each such update takes O(|in(u)|+ |out(u)|) time, where in(u) and out(u) are the
sets of ingoing and outgoing edges of u, respectively. To prove the latter bound we must
have a better understanding of the relation between Br and Gr. In the rest of this section
we prove the O

(
mn · 2n/2 logW

)
bound.
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For this we define a potential function that maps rounds (as defined in Section 3.1)
into integers. The good anchor of round r is defined as the set GAr = V \

⋃r
i=1B

i, i.e.,
vertices whose potential was not changed yet (fr(u) = f0(u)). Following each round
the good anchor can only lose vertices. The bad anchor of round r is defined as the set
BAr = {u ∈ Br | ∃tight path of vertices in V0 ∩Br from u to v}, i.e., BAr contains v and
all vertices in V0∩Br that have a tight path of vertices in V0∩Br to v. Note that if GAr = ∅,
then no vertex is winning for player 0: To see this, note that in this case f(u) > 0 for all
u ∈ V . Therefore, the potential f ′(v) ≡ f(v)− 1, for all v ∈ V is feasible, a contradiction
(since f is the solution).

We partition Br and Gr into layers BLr
i , GL

r
i , i = 0, 1 . . . , respectively, see Figure 4.

The layer BLr
i /GLr

i is called the i’th layer of Br/Gr, respectively. The 0’th layers are the
anchors, i.e., BLr

0 = BAr, GLr
0 = GAr. The layers are defined inductively as follows.

BLr
i = {u ∈ Br ∩ Vp | u has a tight path of vertices in u ∈ Br ∩ Vp to BLr

i−1}
GLr

i = {u ∈ Gr ∩ V1−p | u has a tight path of vertices in u ∈ Gr ∩ V1−p to GLr
i−1}.

(1)

where p = i (mod 2).
The following lemmas prove that only the first layers have tight edges to the anchors.

I Lemma 3.12. At the end of round r, if (u, u′) ∈ E is a tight edge s.t u ∈ Gr \GAr and
u′ ∈ GAr, then u ∈ GLr

1.

Proof. It suffices to show that u ∈ V0. By contradiction, assume that u ∈ V1. Since
u /∈ GAr, u was in Br′ at some round r′ < r. Let Update(z) be the update that added
u into L in round r′ and let f1 be f right before this Update(z). Clearly, z 6= u′ (since
u′ ∈ GAr). Since u is was valid before Update(z) in round r′, and u ∈ V1, we have that
f1(u) + w(u, u′) ≥ f1(u′). Therefore, since f(u′) did not change until the end of round r
and u must have been updated following the update of z and before the end of round r,
we have that f(u) + w(u, u′) > f1(u) + w(u, u′) ≥ f1(u′) = f(u′) at the end of round r, a
contradiction to the assumption that (u, u′) is tight at the end of round r. J

I Lemma 3.13. At the end of round r, if (u, u′) ∈ E is a tight edge s.t u ∈ Br \BAr and
u′ ∈ BAr, then u ∈ BLr

1.

Proof. Immediate from the definition of BAr. J

The following lemma, which follows immediately from Lemma 3.10, shows that every
vertex belongs either to an anchor or to some layer of Br or Gr.

I Lemma 3.14. For any round r, Br =
n⋃

i=0
BLr

i , G
r =

n⋃
i=0

GLr
i .

We associate with Br and Gr binary numbers br and gr, respectively of length n + 1
defined as follows. Let k be maximal such that |BLr

k| > 0. Then, br is:

br =


1.....1︸ ︷︷ ︸
|BLr

1|

0.....0︸ ︷︷ ︸
|BLr

2|

..... 1.....1︸ ︷︷ ︸
|BLr

k
|

10..........0︸ ︷︷ ︸
n+1−|

⋃
i

BLr
i |

if k is odd

1.....1︸ ︷︷ ︸
|BLr

1|

0.....0︸ ︷︷ ︸
|BLr

2|

..... 0.....0︸ ︷︷ ︸
|BLr

k
|

10..........0︸ ︷︷ ︸
n+1−|

⋃
i

BLr
i |

if k is even.
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𝐺𝐴𝑟 𝐺𝐿1
𝑟

𝐵𝐴𝑟 𝐵𝐿1
𝑟

𝐺𝐿2
𝑟

𝐵𝐿2
𝑟

𝐺𝐿3
𝑟

𝐵𝐿3
𝑟

𝐺𝐿4
𝑟

𝐵𝐿4
𝑟

𝑣

Figure 4 The layer graph of round r. Red vertices refer to V0 and blue vertices refer to V1. All
drawn edges are tight at the end of round r. By Definition (1), each layer is either contained in V0

or in V1.

That is, for an odd layer we add a sequence of 1’s whose length is the size of the layer.
Similarly, for even layers we add sequences of 0’s. At the end we pad the number with a
single 1 followed by zeros. The number gr is defined similarly with respect to the layers of Gr.
Finally, the potential φr of round r is defined as φr = br + gr. Clearly φr ≤ 2 · 2n+1. In
Lemma 3.18 we prove that for every round r, under certain conditions (that can be violated
in at most |V |2 rounds), φr+1 ≥ φr + 2n/2, yielding the desired runtime.

The following lemmas consider Update-Energy at the end of round r.

I Lemma 3.15. For every r, GAr+1 ⊆ GAr and if GAr+1 = GAr, then BAr+1 ⊆ BAr.

Proof. Since f only grows the first claim follows directly from the definition of the algorithm.
We prove the second claim by contradiction. Assume GAr+1 = GAr and let u ∈ BAr+1\BAr.
By definition of bad anchor u ∈ V0 and at the end of round r + 1 there exists a tight path
p = v0v1...vk from u = v0 to v = vk such that vi ∈ V0 ∩ Br+1 for all i < k. Let j be
maximal such that vj ∈ BAr+1 \BAr (therefore vj+1 ∈ BAr+1 ∩BAr, j is well defined since
u ∈ BAr+1 \ BAr). If vj ∈ Br then (vj , vj+1) was tight also at the end of round r (since
both vj , vj+1 ∈ Br ∩ Br+1) and thus vj ∈ BAr, a contradiction. So we have that vj ∈ Gr.
Therefore, at the beginning of round r it must hold that f(vj) + w(vj , vj+1) > f(vj+1) (i.e.,
vj is not tight at the beginning of round r). By Lemma 3.3, vj ∈ GAr, a contradiction to
the assumption that GAr = GAr+1. J

The following lemma is similar to Lemma 3.7. Its proof is given in the full version of
the paper.

I Lemma 3.16. For every r, Br+1 6= Br.

I Lemma 3.17. Suppose that GAr+1 = GAr and BAr+1 = BAr.
1. Let i be the smallest such that GLr+1

i 6= GLr
i . Then, if i is odd then GLr

i ⊂ GL
r+1
i , and

if i is even then GLr+1
i ⊂ GLr

i .
2. Let i be the smallest such that BLr+1

i 6= BLr
i . Then, if i is odd then BLr

i ⊂ BL
r+1
i , and

if i is even then BLr+1
i ⊂ BLr

i .

Proof. We prove only the first claim as the latter is similar. We divide the proof into cases
according to the parity of i.

i is odd : We show that GLr
i ⊂ GL

r+1
i . By contradiction, assume that ∃u ∈ GLr

i \GL
r+1
i . By

Definition (1), u ∈ V0 and at the end of round r there exists a tight path p = u0, u1, ...uk

from u0 = u ∈ GLr
i to uk ∈ GAr = GLr

0 that traverses the “good” layers in non-increasing
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order. Let j be the maximal such that uj ∈ GLr
i \GL

r+1
i . Thus, either uj+1 ∈ GLr

i−1 or
uj+1 ∈ GLr

i ∩GL
r+1
i . Note that in both cases uj+1 ∈ Gr+1 and therefore we have that

also uj ∈ Gr+1 (since (uj , uj+1) was tight at the end of round r and remains tight during
round r + 1). Assume uj+1 ∈ GLr

i−1. Since GLr
i−1 = GLr+1

i−1 and since (uj , uj+1) is tight
at the end of round r + 1, we have that uj ∈ GLr+1

` for some ` ≤ i, a contradiction
(since uj /∈ GLr+1

i and because lower layers are equal in both rounds by our assumption).
Assume now that uj+1 ∈ GLr

i ∩ GL
r+1
i . We get a contradiction since uj ∈ GLr+1

` for
some ` ≤ i.

i is even: We that show GLr+1
i ⊂ GLr

i . By contradiction, assume that ∃u ∈ GLr+1
i \GLr

i .
By Definition (1), u ∈ V1 and at the end of round r + 1 there exists a tight path
p = u0, u1, ...uk from u0 = u ∈ GLr+1

i to uk ∈ GAr+1 = GLr+1
0 that traverses the “good”

layers in non-increasing order. Assume u ∈ Br. By Lemma 3.6, at the end of round r,
all of u’s tight edges are directed to Br. Let ` be minimal such that u` ∈ V0. Hence,
by Lemma 3.6 u` ∈ Br. Therefore u` ∈ GLr+1

m for some m < i (since u` ∈ V0 and
GLr+1

i ⊂ V1), this contradicts our assumption GLr+1
m = GLr

m. Thus, u ∈ Gr.

Let j be maximal such that uj ∈ GLr+1
i \GLr

i . Hence, either uj+1 ∈ GLr
i−1 or uj+1 ∈

GLr
i ∩GL

r+1
i . In both cases uj , uj+1 ∈ Gr ∩Gr+1 and thus (uj , uj+1) is tight in both rounds.

Therefore uj ∈ GLr
` for some ` ≤ i. Note that ` > i − 1 since otherwise GLr

` 6= GLr+1
`

which contradicts our assumption. Therefore ` = i and this contradict the assumption
uj ∈ GLr+1

i \GLr
i . J

Note that if the conditions of Lemma 3.17 are satisfied, then by Lemma 3.17 and by the
definition of br and gr we have that br+1 ≥ br and gr+1 ≥ gr.

I Lemma 3.18. For every r, If GAr+1 = GAr and BAr+1 = BAr, then φr+1 ≥ φr+2(n+k)/2,
where k = |GAr|+ |BAr|.

Proof. Assume |Br \BAr| ≥ |Gr \GAr|, so |Gr \GAr| ≤ (n−k)/2 and therefore gr contains
at least (n+ k)/2 “padding bits”. Hence, by Lemma 3.17 we have that gr+1 ≥ gr + 2(n+k)/2

and br+1 ≥ br. Thus, φr+1 ≥ φr + 2(n+k)/2 and we are done.
The case |Br \BAr| < |Gr \GAr| is identical. J

We are now ready to present the proof of our main result.

Proof of Theorem 3.11. By Lemma 3.18, there can be at most 2(n−k)/2 consecutive rounds
satisfying GAr+1 = GAr and BAr+1 = BAr, where k = |GAr|+|BAr|. Thus, by Lemma 3.15
we get that the following bounds the number of rounds during Update-Energy

n∑
i1=1

n−i1∑
i1=1

2(n−(i1+i2))/2 = O(2n/2) ,

where i1 and i2 represent |GAr| and |BAr|, respectively. Hence, since a round takes O(m)
time and Compute-Energy calls Update-Energy at most n · logW times, we get that
Compute-Energy terminates in O

(
mn · 2n/2 logW

)
time. J

4 Concluding remarks and open problems

We presented an O
(
min

(
mnW,mn2n/2 logW

))
-time algorithm for solving EGs and MPGs.

The algorithm is always at least as fast as the algorithm of Brim et al. [5], and is the
fastest known deterministic algorithm when W ≥ n2n/2. (As mentioned the logW factor
can be replaced by a poly(n) factor.) The exponential running time of the new algorithm is
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still far from what we would wish for. We hope, however, that the techniques used in our
paper may lead to further improvements. The ultimate goal of using scaling is to obtain
an algorithm whose running time is O(poly(n) logW ). We are, of course, still extremely far
from achieving this goal.

Many open problems remain: (1) Improve the pseudopolynomial running time to
O(mnf(W )), where f(W ) = o(W ). A more ambitious open problem is: (2) Obtain a
deterministic sub-exponential time algorithm for solving EGs and MPGs, matching the
running time of the fastest randomized algorithms. Even more ambitious open problem is:
(3) obtain a quasipolynomial time algorithm for EGs and MPGs, matching the running time
of the fastest algorithm for solving PGs. The most ambitious problem, of course, is: (4)
obtain a polynomial time algorithm for PGs, EGs and MPGs.
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Abstract
We give polynomial time algorithms for deciding almost-sure and limit-sure reachability in Branching
Concurrent Stochastic Games (BCSGs). These are a class of infinite-state imperfect-information
stochastic games that generalize both finite-state concurrent stochastic reachability games ([8]) and
branching simple stochastic reachability games ([13]).
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1 Introduction

Branching Processes (BP) are infinite-state stochastic processes that model the stochastic
evolution of a population of entities of distinct types. In each generation, every entity of
each type t produces, as offsprings, a set of entities of various types in the next generation,
according to a given probability distribution on offsprings associated with type t. BPs are
fundamental stochastic models that have been used to model phenomena in many fields,
including biology (see, e.g., [24]), population genetics ([20]), physics and chemistry (e.g.,
particle systems, chemical chain reactions), medicine (e.g. cancer growth [2, 28]), marketing,
and others. In many cases, the process is not purely stochastic but there is the possibility of
taking actions (for example, adjusting the conditions of reactions, applying drug treatments
in medicine, advertising in marketing, etc.) which can influence the probabilistic evolution of
the process to bias it towards achieving desirable objectives. Some of the factors that affect
the reproduction may be controllable (to some extent) while others are not and also may not
be sufficiently well-understood to be modeled accurately by specific probability distributions,
and thus it may be more appropriate to consider their effect in an adversarial (worst-case)
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sense. Branching Concurrent Stochastic Games (BCSG) are a natural model to represent
such settings. There are two players and, for each type t, each player has a set of available
actions, which can affect the reproduction of entities of type t. The evolution of the process
starts with some initial population of entities. For each entity of type t, the two players
each select (concurrently and independently) an action from their available set (possibly in a
randomized manner) and their join choices of actions determine the probability distribution
for the offsprings of that entity. The first player represents a controller who can control some
of the parameters of the reproduction and the second player represents other parameters that
are not controlled and are treated adversarially. The first player wants to select a strategy
that optimizes some objective. In this paper we focus on reachability objectives, a basic and
natural class of objectives. Some types are designated as undesirable (for example, malignant
cells), in which case we want to minimize the probability of ever reaching any entity of such
a type. Or conversely, some types may be designated as desirable, in which case we want to
maximize the probability of reaching an entity of such a type.

BCSGs generalize purely stochastic multi-type BPs as well as Branching Markov Decision
Processes (BMDP) and Branching Simple Stochastic Games (BSSG) which were studied for
reachability objectives in [13]. In BMDPs there is only one player who aims to maximize
or minimize a reachability objective. In BSSGs there are two opposing players, but they
control different types. These models were studied previously also under another basic
objective, namely optimization of extinction probability, i.e., the probability that the process
will eventually become extinct, that is, that the population will become empty [11, 15]. We
will later discuss in detail the prior results and compare them with the results in this paper.

BCSGs can also be seen as a generalization of finite-state concurrent (stochastic) games
[8] (see also [18]); namely they extend such finite-state games with branching. Concurrent
games have been used in the verification area to model the dynamics of open systems, where
one player represents the system and the other player the environment. Such a system
moves sequentially from state to state depending on the actions of the two players (the
system and the environment). Branching concurrent games model the more general setting
in which processes can spawn new processes that then proceed independently in parallel (e.g.,
new threads are created and terminated). We note incidentally that even if there are no
probabilities in the system itself, in the case of concurrent games, probabilities arise naturally
from the fact that the optimal strategies are in general randomized; as a consequence it can
be shown that branching concurrent stochastic games are expressively and computationally
equivalent to the non-stochastic version (see [15]).

We now summarize our main results and compare and contrast them with previous
results on related models. First, we show that a Branching concurrent stochastic game
(BCSG), G, with a reachability objective has a well-defined value, i.e., given an initial (finite)
population µ of entities of various types and a target type t∗, if the sets of all possible (mixed)
strategies of the two players are respectively Ψ1, Ψ2, and if Υσ,τ (µ, t∗) denotes the probability
of eventually reaching an entity of type t∗ when starting from initial population µ under
strategy σ ∈ Ψ1 for player 1 and strategy τ ∈ Ψ2 for player 2, then infσ∈Ψ1 supτ∈Ψ2 Υσ,τ (µ, t∗)
= supτ∈Ψ2 infσ∈Ψ1 Υσ,τ (µ, t∗), which is the value, v∗, of the game. Furthermore, we show
that the player who wants to minimize the reachability probability always has an optimal
(mixed) static strategy that achieves the value, i.e., a strategy σ∗ which uses, for all entities of
each type t generated over the entire history of the game, the same probability distribution
on the available actions for type t, independent of the past history, and which has the
property that v∗ = supτ∈Ψ2 Υσ∗,τ (µ, t∗). The optimal strategy in general has to be mixed
(randomized); this is the case even for finite-state concurrent games [8]. On the other hand,
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the player that wants to maximize the reachability probability of a BCSG need not have any
optimal strategy (whether static or not), and it was known that this holds even for BMDPs,
i.e., even when there is only one player [13]. The same holds for finite-state CSGs: the player
maximizing reachability probability need not have any optimal strategy [8].

To analyze BCSGs reachability games, we model them by a system of equations x = P (x),
called a minimax Probabilistic Polynomial System (minimax-PPS for short), where x is a
tuple of variables corresponding to the types of the BCSG. There is one equation xi = Pi(x)
for each type ti, where Pi(x) is the value of a (one-shot) two-player zero-sum matrix game,
whose payoff for every pair of actions is given by a polynomial in x whose coefficients are
positive and sum to at most 1 (a probabilistic polynomial). The function P (x) defines
a monotone operator from [0, 1]n to itself, and thus it has, in particular, a greatest fixed
point (GFP) g∗ in [0, 1]n. We show that the coordinates g∗i of the GFP give the optimal
non-reachability probabilities for the BCSG game when started with a population that
consists of a single entity of type ti. The value of the game for any initial population µ can
be derived easily from the GFP g∗ of the minimax-PPS. This generalizes a result in [13],
which established an analogous result for the special case of BSSGs. It also follows from our
minimax-PPS equational characterization that quantitative decision problems for BCSGs,
such as deciding whether the reachability game value is ≥ p for a given p ∈ (0, 1) are all
solvable in PSPACE.

Our main algorithmic results concern the qualitative analysis of the reachability problem,
that is, the problem of determining whether one of the players can win the game with
probability 1, i.e., if the value of the game is 0 or 1. We provide the first polynomial-time
algorithms for qualitative reachability analysis for branching concurrent stochastic games.
For the value=0 problem, the algorithm and its analysis are very simple. If the value is
0, the algorithm computes an optimal strategy σ∗ for the player that wants to minimize
the reachability probability, where σ∗ is in fact static and deterministic, i.e., it selects for
each type, deterministically, a single available action, and guarantees Υσ∗,τ (µ, t∗) = 0 for all
τ ∈ Ψ2. If the value is positive then the algorithm computes a static mixed strategy τ for
the player maximizing reachability probability that guarantees infσ∈Ψ1 Υσ,τ (µ, t∗) > 0.

The value=1 problem is much more complicated. There are two versions of it, because it
is possible that the game value is 1 but no strategy for the maximizing player guarantees
reachability with probability 1. Thus, we have two versions of the problem. In the first
version, called the almost-sure problem, we want to decide whether there exists a strategy τ∗
for player 2 that guarantees that the target type t∗ is reached with probability 1 regardless of
the strategy of player 1, i.e., such that Υσ,τ∗(µ, t∗) = 1 for all σ ∈ Ψ1. In the second version,
called the limit-sure problem, we want to decide if the value v∗ = supτ∈Ψ2 infσ∈Ψ1 Υσ,τ (µ, t∗)
is 1, i.e., if for every ε > 0 there is a strategy τε of player 2 that guarantees that the probability
of reaching the target type is at least 1− ε regardless of the strategy σ of player 1; such a
strategy τε is called ε-optimal. We provide polynomial-time algorithms for both versions of
the problem. The algorithms non-trivially generalize the algorithms of both [8] and [13], both
of which address different special subcases of qualitative BCSG reachability. Our positive
results on qualitative reachability for BCSG are surprising especially in view of the known
major obstacles in resolving the analogous questions for the extinction problem for BCSG,
as explained below in the review of related work.

In the almost-sure problem, if the answer is positive, our algorithm constructs (a compact
description of) a strategy τ∗ of player 2 that achieves value 1; the strategy is a randomized
non-static strategy, and this is inherent (i.e., there may not exist a static strategy that achieves
value 1). If the answer is negative, our algorithm constructs a (non-static, randomized)
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strategy σ for the opposing player 1 such that Υσ,τ (µ, t∗) < 1 for all strategies τ of player
2. In the limit-sure problem, if the answer is positive, i.e., the value is 1, our algorithm
constructs for any given ε > 0, a static, randomized ε-optimal strategy, i.e., a strategy τε such
that Υσ,τε(µ, t∗) ≥ 1− ε for all σ ∈ Ψ1. If the answer is negative, i.e., the value is < 1, our
algorithm constructs a static randomized strategy σ′ for player 1 such that supτ∈Ψ2 Υσ′,τ < 1.
Due to space limits, most proofs are omitted; see the full version.

Related Work. As mentioned, the two works most closely related to ours are [8] and [13].
Our results generalize both. de Alfaro, Henzinger, and Kupferman [8] studied finite-state
concurrent (stochastic) games (CSGs) with reachability objectives and provided polynomial
time algorithms for their qualitative analysis, both for the almost-sure and the limit-sure
reachability problem. See also [22, 19, 21, 5] for more recent results on finite-state CSG
reachability; in particular, there are finite-state CSGs with value= 1 for which (near-)optimal
strategies need to have some action probabilities that are doubly-exponentially small [22, 5]
(unlike simple, turned-based stochastic games), and thus must be represented succinctly to
ensure polynomial space. This is of course the case also for branching CSGs, and the optimal
or ε-optimal strategies constructed by our algorithms are represented compactly so that the
algorithms run in polynomial time.

BMDPs and BSSGs with reachability objectives were studied in [13], which provided
polynomial-time algorithms for their qualitative analysis, and also gave polynomial time
algorithms for approximate quantitative analysis of BMDPs, i.e., approximate computation
of the optimal reachability probability for maximizing and minimizing BMDPs, and it showed
that this problem for BSSGs is in TFNP. Note that even for finite-state simple stochastic
games the question of whether the value of the game can be computed in polynomial time
is a well-known long-standing open problem [7]. It was also shown in [13] that the optimal
non-reachability probabilities of maximizing or minimizing BMDPs and BSSGs are captured
by the GFP of a system of min/max-PPS equations, x = P (x), where each right-hand side
Pi(x) is the maximum or minimum of a set of probabilistic polynomials in x; note that these
types of equation systems are special cases of minimax-PPSs and are much simpler.

Another important objective, the probability of extinction, has been studied previously
for Branching Concurrent Stochastic Games, as well as BMDPs and BSSGs, and the purely
stochastic model of Branching Processes (BPs). These branching models under the extinction
objective are equivalent to corresponding subclasses of recursive Markov models, called
respectively, 1-exit Recursive Concurrent Stochastic Games (1-RCSG), Markov Decision
Processes (1-RMDP), and Markov Chains (1-RMC), and related subclasses of probabilistic
pushdown processes under a termination objective [16, 12, 17, 11, 15, 10]. The extinction
probabilities for these models are captured by the least fixed point (LFP) solutions of
similar systems of probabilistic polynomial equations; for example, the optimal extinction
probabilities of a BCSG are given by the LFP of a minimax-PPS. Polynomial time-algorithms
for qualitative analysis, as well as for the approximate computation of the optimal extinction
probabilities of Branching MDPs (and 1-RMDPs) were given in [17, 11]. However, negative
results were shown also which indicate that the problem is much harder for branching
concurrent (or even simple) stochastic games, even for the qualitative extinction problem.
Specifically, it was shown in [17] that the qualitative extinction (termination) problem for
BSSG (equivalently, 1-RSSG) is at least as hard as the well-known open problem of computing
the value of a finite-state simple stochastic game [7]. Furthermore, it was shown in [15] that
(both the almost-sure and limit-sure) qualitative extinction problems for BCSGs (equivalently
1-RCSGs) are at least as hard as the square-root sum problem, which is not even known to be
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in NP. Thus, the qualitative reachability problem for BCSGs seems to be very different than
the extinction problem for BCSGs: obtaining analogous results for the qualitative extinction
to those of the present paper for qualitative reachability would resolve two major open
problems. This is despite the fact that there is a natural “duality” between the extinction
and reachability objectives (see [13]).

The equivalence between branching models (like BMDPs, BCSGs) and recursive Markov
models (like 1-RMDPs, 1-RCSGs) with respect to extinction does not hold for the reachability
objective. For example, almost-sure and limit-sure reachability coincide for a BMDP, i.e., if
the supremum probability of reaching the target is 1 then there exists a strategy that ensures
reachability with probability 1. However, this is not the case for 1-RMDPs. Furthermore,
almost-sure reachability for 1-RMDPs can be decided in polynomial time [3, 4], but limit-sure
reachability for 1-RMDPs is not even known to be decidable. The qualitative reachability
problem for 1-RMDPs and 1-RSSGs (and equivalent probabilistic pushdown models) was
studied in [4, 1]. These results do not apply to the corresponding branching models (BMDP,
BSSG). Another objective considered in prior work is the expected total reward objective for
1-RSSGs ([14]) and 1-RCSGs ([31]) with positive rewards. None of these prior results have
any implications for BCSGs with reachability objectives.

For richer objectives beyond reachability or extinction, Chen et. al. [6] studied model
checking of purely stochastic branching processes (BPs) with respect to properties expressed
by deterministic parity tree automata, and showed that the qualitative problem is in P-time
(hence this holds in particular for reachability probability in BPs), and that the quantitative
problem of comparing the probability with a rational is in PSPACE. Michalevski and Mio [25]
extended this to properties of BPs expressed by “game automata”, a subclass of alternating
parity tree automata. More recently, Przybyłko and Skrzypczak [27] considered existence
and complexity of game values of Branching turn-based (i.e., simple) stochastic games, with
regular objectives, where the two players aim to maximize/minimize the probability that
the generated labeled tree belongs to a regular language (given by a tree automaton). They
showed that (unlike our case of simpler reachability games) already for some basic regular
properties these games are not even determined, meaning they do not have a value. They
furthermore showed that for a probabilistic turn-based branching game, with a regular
tree objective, it is undecidable to compare the value that a given player can force to
1/2; whereas for deterministic turn-based branching games they showed it is decidable and
2-EXPTIME-complete (respectively, EXPTIME-complete), to determine whether the player
aiming to satisfy (respectively, falsify) a given regular tree objective has a pure winning
strategy. Other past research includes work in operations research on (one-player) Branching
MDPs [26, 29, 9]. None of these prior works bear on any of the results on BCSG reachability
problems established in this paper.

2 Background

A Branching Concurrent Stochastic Game (BCSG) consists of a finite set V = {T1, . . . Tn} of
types, two finite non-empty sets Γimax,Γimin ⊆ Σ of actions (one for each player) for each
type Ti (Σ is a finite action alphabet), and a finite set R(Ti, amax, amin) of probabilistic rules
associated with each tuple (Ti, amax, amin), where i ∈ [n], amax ∈ Γimax, & amin ∈ Γimin.
Each rule r ∈ R(Ti, amax, amin) is a triple (Ti, pr, αr), which we can denote by Ti

pr−→ αr,
where αr ∈ Nn is a n-vector of natural numbers that denotes a finite multi-set over the
set V , and where pr ∈ (0, 1] ∩ Q is the probability of the rule r (which we assume to
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be a rational number, for computational purposes), where we assume that for all Ti ∈ V
and amax ∈ Γimax, amin ∈ Γimin, the rule probabilities in R(Ti, amax, amin) sum to 1, i.e.,∑
r∈R(Ti,amax,amin) pr = 1.
If for all types Ti ∈ V , either |Γimax| = 1 or |Γimin| = 1, then the model is a “turn-

based” perfect-information game and is called a Branching Simple Stochastic Game (BSSG).
If for all Ti ∈ V , |Γimax| = 1 (respectively, |Γimin| = 1), then it is called a minimizing
Branching Markov Decision Process (BMDP) (respectively, a maximizing BMDP). If both
|Γimin| = 1 = |Γimax| for all i ∈ [n], then the process is a classic, purely stochastic, multi-type
Branching Process (BP) ([23]).

A play of a BCSG defines a (possibly infinite) node-labeled forest, whose nodes are
labeled by the type of the object they represent. A play contains a sequence of “generations”,
X0, X1, X2, . . . (one for each integer time t ≥ 0, corresponding to nodes at depth/level t in
the forest). For each t ∈ N, Xt consists of the population (set of objects of given types), at
time t. X0 is the initial population at generation 0 (these are the roots of the forest). Xk+1
is obtained from Xk in the following way: for each object e in the set Xk, assuming e has
type Ti, both players select simultaneously and independently actions amax ∈ Γimax, and
amin ∈ Γimin (or distributions on such actions), according to their strategies; thereafter a rule
r ∈ R(Ti, amax, amin) is chosen randomly and independently (for object e) with probability
pr; each such object e in Xk is then replaced by the set of objects specified by the multi-set αr
associated with the corresponding randomly chosen rule r. This process is repeated in each
generation, as long as the current generation is not empty, and if for some k ≥ 0, Xk = ∅
then we say the process terminates or becomes extinct.

The strategies of players can in general be arbitrary functions from any finite history
tree, to (distributions on) actions, for each object in the current population. The history
of the process up to time k is a forest of depth k that includes not only the populations
X0, X1, . . . , Xk, but also all the information regarding past actions and rules applied at each
object, and all the parent-child relationships between objects up to generation k. The history
can be represented by a forest of depth k, with internal nodes labeled by rules and actions,
and whose leaves at level k form the current population Xk. Thus, formally, a strategy of
player 1 (player 2, respectively) is a function that maps every finite history (i.e., a labelled
forest of some finite depth, k, as above) and each object e in the current population Xk

(leaf at depth k) to a probability distribution on the actions Γimax (to the actions Γimin,
respectively), assuming that object e has type Ti.1

Let Ψ1,Ψ2 be the set of all strategies of players 1, 2. We say that a strategy is deterministic
if for every history it maps each object e in the current population to a single action with
probability 1 (in other words, it does not randomize on actions). We say that a strategy is
static if for each type Ti ∈ V , and for any object e of type Ti, the player always chooses the
same distribution on actions, irrespective of the history.

Different objectives can be considered for BCSGs. This paper considers (existential)
reachability, where the aim of the players is to maximize/minimize the probability of reaching
a generation that contains at least one object of a given target type Tf∗ . The BCSG
reachability game can of course also be viewed as a “non-reachability” (“safety”) game,
by just reversing the role of the players. We will exploit this alternative view in crucial
ways (and this was also exploited in [13] for BSSGs). Given an initial population µ ∈ Nn,

1 Note: this very general notion of a “strategy” permits the action (or distribution on actions) chosen for
a given object e to depend not only on e’s “ancestors” in the history forest, but also on siblings, cousins,
etc., in the entire forest, up to and including the generation of the population that e belongs to.
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with µf∗ = 0, and given strategies σ ∈ Ψ1, τ ∈ Ψ2, let g∗σ,τ (µ) denote the probability that
(Xl)f∗ = 0 for all l ≥ 0. Let g∗σ,∗(µ) = infτ∈Ψ2 g

∗
σ,τ (µ), let g∗∗,τ (µ) = supσ∈Ψ1 g

∗
σ,τ (µ), and

let g∗(µ) = supσ∈Ψ1 infτ∈Ψ2 g
∗
σ,τ (µ) denote the value of the game under the non-reachability

objective and for the initial population µ. We will show that these games do have a value,
meaning g∗(µ) = supσ∈Ψ1 infτ∈Ψ2 g

∗
σ,τ (µ) = infτ∈Ψ2 supσ∈Ψ1 g

∗
σ,τ (µ).

In the case where the initial population µ is a single object of some type Ti, then for the
value of the game we write g∗i , and similarly, when one or both of the strategies σ, τ are
fixed, we write (g∗σ,∗)i, (g∗∗,τ )i, or (g∗σ,τ )i. The vector g∗ of g∗i ’s, is called the vector of the
non-reachability values of the game. We will see that, having the vector of g∗i ’s, the non-
reachability value for any starting population µ can be computed simply as g∗(µ) =

∏
i(g∗i )µi .

So given a BCSG, the goal is to compute the vector g∗ of non-reachability values. As
our original objective is reachability, we point out that the vector of reachability values is
r∗ = 1− g∗ (where 1 is the all-1 vector), and hence the reachability value r∗(µ) of the game
starting with population µ is r∗(µ) = 1− g∗(µ).

We will associate with any given BCSG a system of minimax probabilistic polynomial
equations (minimax-PPS), x = P (x), for the non-reachability objective. This system will
have one variable xi, and one equation xi = Pi(x), for each type Ti other than the target type
Tf∗ . We will show that the vector of non-reachability values g∗ for different starting types is
precisely the Greatest Fixed Point (GFP) solution of the system x = P (x) in [0, 1]n. To define
these equations, some shorthand notation will be useful. We use xv to denote the monomial
xv1

1 x
v2
2 · · ·xvnn for an n-vector of variables x = (x1, · · · , xn) and a vector v ∈ Nn. Considering

a multi-variate polynomial Pi(x) =
∑
r∈R prx

αr for some rational coefficients pr, r ∈ R, we
will call Pi(x) a probabilistic polynomial, if pr ≥ 0 for all r ∈ R and

∑
r∈R pr ≤ 1. A minimax

probabilistic polynomial system of equations (minimax-PPS), x = P (x), is a system of n
equations in n variables x = (x1, . . . , xn), where for each i ∈ {1, . . . , n}, Pi(x) := V al(Ai(x)),
where Ai(x) is a matrix whose entries are probabilistic polynomials, and V al(Ai(x)) is the
minimax value of the finite two-player zero-sum game with payoff matrix Ai(x) for each
x ∈ Rn. Note that as special cases, when Ai(x) has only one row or only one column, then
V al(Ai(x)) is the maximum or minimum of a set of probabilistic polynomials, and when it
has only one row and column, then V al(Ai(x)) is simply a probabilistic polynomial.

For computational purposes, we assume that all coefficients are rational and that there are
no zero terms in the probabilistic polynomials, and we assume the coefficients and non-zero
exponents of each term are given in binary. We denote by |P | the total bit encoding length
of a system x = P (x) under this representation. Since P (x) defines a monotone function
P : [0, 1]n → [0, 1]n, it follows from Tarski’s theorem ([30])) that any such system has both a
Least Fixed Point (LFP) solution q∗ ∈ [0, 1]n, and a Greatest Fixed Point (GFP) solution,
g∗ ∈ [0, 1]n. In other words, q∗ = P (q∗) and g∗ = P (g∗) and moreover, for all s∗ ∈ [0, 1]n
such that s∗ = P (s∗), we have q∗ ≤ s∗ ≤ g∗ (coordinate-wise inequality).

For convenience in proofs and algorithms throughout the paper and to simplify the
structure of the matrices involved, we shall observe that minimax-PPSs can always be cast
in the following normal form. A minimax-PPS in simple normal form (SNF), x = P (x), is a
system of n equations in n variables {x1, · · · , xn}, where each Pi(x) for i = 1, 2, . . . , n is one
of three forms:

Form L: Pi(x) = ai,0 +
∑n
j=1 ai,jxj , where for all j, ai,j ≥ 0, and

∑n
j=0 ai,j ≤ 1

Form Q: Pi(x) = xjxk for some j, k
Form M: Pi(x) = V al(Ai(x)), where Ai(x) is a (ni × mi) matrix, such that for all
j ∈ [ni] and k ∈ [mi], the entry (Ai(x))j,k ∈ {x1, . . . , xn} ∪ {1}.

We shall often assume a minimax-PPS in its SNF form, and say that a variable xi is “of
form/type” L, Q, or M, meaning that Pi(x) has the corresponding form.
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I Proposition 1 (informal statement; see full version for formal statement and proof). Every
minimax-PPS, x = P (x), can be transformed in P-time to an “equivalent” minimax-PPS,
y = Q(y) in SNF form, such that |Q| ∈ O(|P |).

Thus, for the rest of this paper we may assume, without loss of generality, that all
minimax-PPSs are in SNF normal form.

3 Non-reachability values for BCSGs and the Greatest Fixed Point

We show that for a given BCSG with a target type Tf∗ , a minimax-PPS, x = P (x), can be
constructed such that its greatest fixed point (GFP) g∗ ∈ [0, 1]n is precisely the vector g∗ of
non-reachability values for the BCSG. For simplicity, from now on let us call a maximizer
(respectively, a minimizer) the player that aims to maximize (respectively, minimize) the
probability of not reaching the target type. That is, we swap the roles of the players for
the benefit of less confusion in analysing the minimax-PPS which captures non-reachability
values in its GFP.

For each type Ti 6= Tf∗ , the minimax-PPS will have an associated variable xi and an
equation xi = Pi(x), and the Pi(x) is defined as follows. For each action amax ∈ Γimax
of the maximizer (i.e., the player aiming to maximize the probability of not reaching the
target) and action amin ∈ Γimin of the minimizer, in Ti, let R′(Ti, amax, amin) = {r ∈
R(Ti, amax, amin) | (αr)f∗ = 0} be the set of probabilistic rules r for type Ti and players’
action pair (amax, amin) that generate a multi-set αr which does not contain an object of the
target type. For each action pair for Ti, there is a probabilistic polynomial qi,amax,amin(x) :=∑
r∈R′(Ti,amax,amin) prx

αr . Now we let Pi(x) ≡ V al(Ai(x)) be the value of a finite zero-sum
game with matrix Ai(x), where the matrix is constructed as follows: (1) rows belong to the
max player in the minimax-PPS (i.e., the player trying to maximize the non-reachability
probability), and columns belong to the min player; (2) for each row and column (i.e., pair
of actions (amax, amin)) the matrix entry Ai(x)amax,amin is the corresponding probabilistic
polynomial qi,amax,amin(x).

The following theorem captures the fact that the optimal non-reachability values g∗ in
the BCSG game exist (meaning these game do have a value) and correspond to the GFP of
the minimax-PPS x = P (x) that was just defined.

I Theorem 2. The non-reachability game values g∗ ∈ [0, 1]n of a BCSG reachability game
exist, and correspond to the GFP of the minimax-PPS, x = P (x), in [0, 1]n. That is,
g∗ = P (g∗), and for all other fixed points g′ = P (g′) in [0, 1]n, it holds that g′ ≤ g∗.
Moreover, for an initial population µ, the optimal non-reachability value is g∗(µ) =

∏
i(g∗i )µi

and the game is determined, i.e., g∗(µ) = supσ∈Ψ1 infτ∈Ψ2 g
∗
σ,τ (µ) = infτ∈Ψ2 supσ∈Ψ1 g

∗
σ,τ (µ).

Finally, the player maximizing non-reachability probability in the BCSG has a (mixed) static
optimal strategy.

I Corollary 3. Given a BCSG reachability game, and a probability p ∈ (0, 1), deciding
whether the game value is ≥ p is in PSPACE.

The PSPACE upper bound follows from Theorem 2, by appealing to decision procedures
for the (existential) theory of reals to answer quantitative questions about the GFP of the
corresponding minimax-PPS equations. This is entirely analogous to very similar arguments
in [15, 13, 16], so we do not elaborate. Any substantial improvement on PSPACE for such
quantitative decision problems would require a major breakthrough on exact numerical
computation, even for BPs or BMDPs (see [16, 13, 15]).
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4 P-time algorithm for almost-sure reachability for BCSGs

Before considering almost-sure reachability, we first show there is a simple P-time algorithm
for computing the variables xi with value g∗i = 1 for the GFP in a given minimax-PPS,
x = P (x), or in other words, for a given BCSG, deciding whether the reachability value,
starting with an object of a given type Ti, is 0. The algorithm is easy, amounts to an AND-OR
graph reachability analysis, and is very similar to the algorithm given for deciding g∗i = 1 for
BSSGs in [13]. Let W = {x1, . . . , xn} denote the set of all variables of the minimax-PPS.
The algorithm is given in Figure 1.

1. Initialize S := {xi ∈W | Pi(1) < 1}.
2. Repeat until no change has occurred:

a. if there is a variable xi 6∈ S of form L or Q such that Pi(x) contains a variable already
in S, then add xi to S.

b. if there is a variable xi 6∈ S of form M such that for every action amax ∈ Γimax, there
exists an action amin ∈ Γimin, such that Ai(x)(amax,amin) ∈ S, then add xi to S.

3. Output the set S̄ := W − S.

Figure 1 Simple P-time algorithm for computing the set of types with reachability value 0 in a
given BCSG, or equivalently the set of variables {xi | g∗

i = 1} of the associated minimax-PPS.

I Proposition 4. There is a P-time algorithm that, given a BCSG or equivalently a corres-
ponding minimax-PPS, x = P (x), with n variables and with GFP g∗ ∈ [0, 1]n, and given
i ∈ [n], determines whether g∗i = 1 or g∗i < 1. In case g∗i = 1, the algorithm can produce a
deterministic static strategy σ for the max player (maximizing non-reachability) that forces
g∗i = 1. Otherwise, if g∗i < 1, the algorithm can produce a mixed static strategy τ for the min
player (minimizing non-reachability) that guarantees g∗i < 1.

We are now ready to present a P-time algorithm for almost-sure reachability for BCSGs.
First, as a preprocessing step, we apply the algorithm of Proposition 4, which identifies in
P-time all the variables xi where g∗i = 1. We then remove these variables from the system,
substituting the value 1 in their place. We then simplify and reduce the resulting SNF-form
minimax-PPS into a reduced form, with GFP g∗ < 1. Note that the resulting reduced
SNF-form minimax-PPS may contain some variables xj of form M, whose corresponding
matrix Aj(x) has some entries that contain the value 1 rather than a variable (because
we substituted 1 for removed variables xj , where g∗j = 1). Note also that in the reduced
SNF-form minimax-PPS each variable xi of form Q has an associated quadratic equation
xi = xjxk, because if one of the variables (say xk) on the right-hand side was set to 1
during preprocessing, the resulting equation (xi = xj) would have been declared to have
form L in the reduced minimax-PPS. We henceforth assume that the minimax-PPS is in
SNF-form, with g∗ < 1, and we let X be its set of (remaining) variables. We now apply the
algorithm of Figure 2 to the minimax-PPS with g∗ < 1, which identifies the variables xi in
the minimax-PPS (equivalently, the types in the BCSG), from which we can almost-surely
reach the target type Tf∗ (i.e., g∗i = 0 and there is a strategy τ∗ for the player minimizing
non-reachability probability that achieves this value, no matter what the other player does).

I Theorem 5. Given a BCSG with minimax-PPS, x = P (x), such that the GFP g∗ < 1,
the algorithm in Figure 2 terminates in polynomial time and returns the set of variables
{xi ∈ X | ∃τ ∈ Ψ2 (g∗∗,τ )i = 0}.
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1. Initialize S := {xi ∈ X | Pi(0) > 0, that is Pi(x) has a constant term }.
Let γi0 := Γimin for every variable xi ∈ X − S. Let t := 1.

2. Repeat until no change has occurred to S:
a. if there is a variable xi ∈ X − S of form L where Pi(x) contains a variable already in

S, then add xi to S.
b. if there is a variable xi ∈ X − S of form Q where both variables in Pi(x) are already

in S, then add xi to S.
c. if there is a variable xi ∈ X − S of form M and if for all amin ∈ Γimin, there exists a
amax ∈ Γimax such that Ai(x)(amax,amin) ∈ S ∪ {1}, then add xi to S.

3. For each xi ∈ X − S of form M, let:
γit := {amin ∈ γit−1 | ∀amax ∈ Γimax, Ai(x)(amax,amin) 6∈ S ∪{1}}. (Note that γit ⊆ γit−1.)

4. Let F := {xi ∈ X − S | Pi(1) < 1, or Pi(x) is of form Q }
5. Repeat until no change has occurred to F :

a. if there is a variable xi ∈ X− (S∪F ) of form L where Pi(x) contains a variable already
in F , then add xi to F .

b. if there is a variable xi ∈ X − (S ∪ F ) of form M such that for ∀amax ∈ Γimax, there is
a min player’s action amin ∈ γit such that Ai(x)(amax,amin) ∈ F , then add xi to F .

6. If X = S ∪ F , return F , and halt.
7. Else, let S := X − F , t := t+ 1, and go to step 2.

Figure 2 P-time algorithm for computing almost-sure reachability types {xi | ∃τ ∈ Ψ2 (g∗
∗,τ )i = 0}

for a minimax-PPS (in SNF), associated with a given BCSG.

The proof is in the full version. Here we give very brief intuition for why the algorithm
works. The set S will accumulate variables xi ∈ X, such that regardless of the strategy τ ∈ Ψ2
of the player minimizing non-reachability (i.e., maximizing reachability), the probability of
reaching the target type is < 1. The loop in Step (2.) is a basic “attractor set” construction
that adds to S any variable xi that should be in S by virtue of prior membership in S of
variables (types) occurring in Pi(x). In step (3.), for each variable xi ∈ X − S we maintain
the remaining “useful” set of actions γit ⊆ Γimin that can avoid the set S (or extinction).
The loop in Step (5.) accumulates a set F ⊆ X − S, such that for every xi ∈ F there is a
strategy τ ∈ Ψ2 to either reach the target or a branching (quadratic) type in F , with positive
probability, regardless of the opponent’s strategy. The key assertion is this: if in step (6.) we
find all variables are already either in S or in F , we are done; F must be the set of types
from which we can force almost-sure reachability of the target type; otherwise, all variables
in X − (F ∪ S) can be added to S. The reason this assertion holds is not obvious (see the
detailed proof). The proof of the theorem also yields the following:

I Corollary 6. Let F be the set of variables output by the algorithm in Figure 2.
1. Let S = X − F . There is a randomized non-static strategy σ̂ for the max player

(maximizing non-reachability) such that for all xi ∈ S, and for all strategies τ of the min
player (minimizing non-reachability), starting with one object of type Ti the probability of
reaching the target type is < 1.

2. There is a randomized non-static strategy τ̂ for the min player (minimizing non-reach-
ability) such that for all strategies σ of the max player (maximizing non-reachability),
and for all xi ∈ F , starting at one object of type Ti the probability of reaching the
target type is 1.
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The non-static strategies σ̂ and τ̂ mentioned above both have suitably compact descriptions
(as functions that map finite histories to distributions over actions for entities in the current
population) and can be described in such a compact form in polynomial time, as a function
of the encoding size of the input BCSG.

The strategies need to be represented compactly because some of the actions probabilities
may be doubly-exponentially small (or doubly-exponentially close to 1), and this is inherent.

5 P-time algorithm for limit-sure reachability for BCSGs

In this section we focus on the limit-sure reachability problem, i.e., starting with one object
of a type Ti, decide whether the reachability value is 1. Since we translate reachability into
non-reachability when analysing the corresponding minimax-PPS, we are asking whether
there exists a sequence of strategies 〈τ∗εj | j ∈ N〉 for the min player, such that ∀j ∈ N,
εj > εj+1 > 0, and where limj→∞ εj = 0, such that the strategy τ∗εj forces non-reachability
probability to be at most εj , regardless of the strategy σ used by the max player. In other
words, for a given starting object of type Ti, we ask whether infτ∈Ψ2(g∗∗,τ )i = 0.

1. Initialize S := {xi ∈ X | Pi(0) > 0, that is Pi(x) has a constant term }.
2. Repeat until no change has occurred to S:

a. if there is a variable xi ∈ X − S of form L where Pi(x) contains a variable already in
S, then add xi to S.

b. if there is a variable xi ∈ X − S of form Q where both variables in Pi(x) are already
in S, then add xi to S.

c. if there is a variable xi ∈ X − S of form M and if for all amin ∈ Γimin, there exists
amax ∈ Γimax such that Ai(x)(amax,amin) ∈ S ∪ {1}, then add xi to S.

3. Let F := {xi ∈ X − S | Pi(1) < 1, or Pi(x) is of form Q }
4. Repeat until no change has occurred to F :

a. if there is a variable xi ∈ X− (S∪F ) of form L where Pi(x) contains a variable already
in F , then add xi to F .

b. if there is a variable xi ∈ X − (S ∪F ) of form M and if the following procedure returns
“Yes”, then add xi to F .
i. Set L0 := ∅, B0 := ∅, k := 0. Let O := X − (S ∪ F ).
ii. Repeat:

k := k + 1.
Lk := {amin ∈ Γimin −

⋃k−1
j=0 Lj | ∀amax ∈ Γimax − Bk−1, Ai(x)(amax,amin) ∈

F ∪O}.
Bk := Bk−1 ∪ {amax ∈ Γimax −Bk−1 | ∃amin ∈ Lk s.t. Ai(x)(amax,amin) ∈ F}.

Until Bk = Bk−1.
iii. Return: “Yes” if Bk = Γimax, and “No” otherwise.

5. If X = S ∪ F , return F , and halt.
6. Else, let S := X − F , and go to step 2.

Figure 3 P-time algorithm for computing the set of types that satisfy limit-sure reachability in a
given BCSG, i.e., the set of variables {xi | g∗

i = 0} in the associated minimax-PPS.

Again, as in the almost-sure case, we first, as a preprocessing step, use the P-time
algorithm from Proposition 4 to remove all variables xi such that g∗i = 1, and we substitute
1 for these variables in the remaining equations. We hence obtain a reduced SNF-form
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minimax-PPS, for which we can assume g∗ < 1. The set of all remaining variables in the
SNF-form minimax-PPS is again denoted by X. Thereafter, we apply the algorithm in
Figure 3, which computes the set of variables, xi, such that g∗i = 0. In other words, we
compute the set of types, such that starting from one object of that type the value of the
reachability game is 1.

I Theorem 7. Given a BCSG with minimax-PPS, x = P (x), with GFP g∗ < 1, the algorithm
in Figure 3 terminates in polynomial time, and returns the set of variables {xi ∈ X | g∗i = 0}.

The proof is in the full version. We again give very brief intuition for why the algorithm
works. The algorithm is similar in structure to that of almost-sure reachability, but differs
in crucial aspects. Firstly, step (2.) now accumulates the variables xi for which we know
g∗i > 0. In step (3.), as before, the set F is initialized to variables xi ∈ X − S (types) where
either Pi(x) is quadratic, or the target type is generated with positive probability in the next
step, i.e., (Pi(1) < 1). In step (4.) the algorithm makes crucial use of a “limit-escape” set
construction (inside inner loop 4.(b)), a variant of which was used by de Alfaro, Henzinger,
and Kupferman in [8], in the context of finite-state CSGs, but which has been adapted here
to the context of BCSGs. This loop adds a variable xi to the set F whenever it is the case
that, for any ε > 0, the player minimizing non-reachability can play a distribution on actions
(depending on ε) at any object e of type Ti such that (regardless of the action distribution
of the other player) the probability that e produces an offspring in the next generation
whose type is in S is at most ε times the probability that it produces an offspring that is
already in F . Unlike the almost-sure case (where we maintain remaining sets of “useful”
actions γit ⊂ Γimin that can avoid the set S), in the limit-sure case the player minimizing
non-reachability may not have any (distribution on) actions that entirely avoid the set S,
but it nevertheless may have a series of distributions on actions that make the ratio of the
probability of the “bad” event of generating an offspring in S, compared to the probability
of the “good” event of generating an offspring in F , arbitrarily small. Similar to the case of
almost-sure reachability, a key assertion is that if in step (5.) all variables in X are already in
S ∪F then we are done: F consists of precisely those variables (types) that satisfy limit-sure
reachability; otherwise, we can add X − (S ∪ F ) to the set S. The reason why this holds is
again subtle (see the detailed proof in the full version).

The proof of the theorem also yields the following corollary:

I Corollary 8. Suppose the algorithm in Figure 3 outputs the set F when it terminates. Let
S := X − F .

1. There is a randomized static strategy σ̂ for the max player (maximizing non-reachability)
such that for all variables xi ∈ S, we have (g∗σ̂,∗)i > 0.

2. For all ε > 0, there is a randomized static strategy τε, for the min player (minimizing
non-reachability), such that for all variables xi ∈ F , (g∗∗,τε)i ≤ ε.

The static strategies σ̂ and τε mentioned above can both be described, in a suitably compact
form, in polynomial time, as a function of the encoding size of the input BCSG. However,
these static strategies, specifically in the case of τε, involve probabilities that are double-
exponentially small (and double-exponentially close to 1), as a function of the encoding size
of the BCSG, so these probabilities have to be encoded in a suitable succinct notation in order
for the output to have polynomial encoding size.
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Abstract
We show that over the class of linear orders with additional binary relations satisfying some
monotonicity conditions, monadic first-order logic has the three-variable property. This generalizes
(and gives a new proof of) several known results, including the fact that monadic first-order logic
has the three-variable property over linear orders, as well as over (R, <,+1), and answers some open
questions mentioned in a paper from Antonopoulos, Hunter, Raza and Worrell [FoSSaCS 2015]. Our
proof is based on a translation of monadic first-order logic formulas into formulas of a star-free
variant of Propositional Dynamic Logic, which are in turn easily expressible in monadic first-order
logic with three variables.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases first-order logic, three-variable property, propositional dynamic logic

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.116

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version https://arxiv.org/abs/1904.00189

1 Introduction

Logics with a bounded number of variables have been extensively studied, in particular
in the context of descriptive complexity [17, 18, 10, 21] and temporal logics [20, 7, 14, 16].
One recurring question of interest [7, 25, 19, 4, 26, 1] is to determine, in a given class C
of structures, whether all properties expressible in monadic first-order logic (FO) can be
defined in the fragment FOk consisting of formulas which use at most k variables. (A same
variable may be quantified over several times in a formula.) In fact, several non-equivalent
versions of this question appear in the literature, many of which are compared in [15]. We
say that C has the k-variable property if every formula of FO with at most k free variables is
equivalent over C to a formula of FOk. Note that this is strictly stronger than requiring that
all sentences (without free variables) of FO are equivalent to some FOk formulas. Indeed,
Hodkinson and Simon gave an example of a class of structures where no sentence requires
more than 3 variables, but which does not have the k-variable property for any k [15].

The problem of whether a given class of structures has the k-variable property is closely
related to the question of the existence of an expressively complete temporal logic (with a
finite set of FO-definable modalities). A temporal logic is called expressively complete if any
first-order formula with a single free variable can be expressed in it. For instance, it is well-
known that linear temporal logic (LTL) over Dedekind-complete time flows, or its extension
with Stavi connectives over all time flows, are expressively complete for first-order logic [20, 8].
More recently, it was shown that over the real numbers equipped with binary relations +q for
all q ∈ Q, metric temporal logic (MTL) is expressively complete [16]. However, the questions
of having the k-variable property for some k or admitting an expressively complete temporal
logic are incomparable in general: there exists a class of structures which admits a finite
expressively complete set of temporal connectives but which does not have the k-variable
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property for any k [15], and there exists one which has the 3-variable property but for which
no temporal logic is expressively complete [14]. However, Gabbay established that having
the k-variable property implies the existence of a multi-dimensional expressively complete
temporal logic, with multiple reference points [7].

Another classical approach to proving or disproving that a class of structures has the
k-variable property is through Ehrenfeucht-Fraïssé games, with a bounded number of pebbles
[12, 25, 19, 1]. Immerman and Kozen applied this to linear orders and bounded-degree trees
[19], and Antonopoulos et al. to real-time signals [1].

Natural candidates for classes C which might have the k-variable property are classes
of linearly ordered structures. Indeed, a typical counter-example to unrestricted structures
having the k-variable property is a formula such as “there exists k + 1 distinct elements
which satisfy some predicate P”. It is in general not expressible in FOk, but it is easily
expressible in FO2 if all models are equipped with a linear order <. For instance for k = 2,
we take the formula ∃x. P (x)∧ ∃y.(x < y ∧ P (y)∧ ∃x.(y < x∧ P (x))). As mentioned before,
Immerman and Kozen showed that the class of linear orders has the 3-variable property
[19]. However, adding a single binary relation suffices to obtain a class of linearly ordered
structures which does not have the k-variable property for any k. Venema gave an example
of a dense linear order with a single equivalence relation which does not have the k-variable
property for any k [29]; this was adapted in [1] to give another example where the equivalence
relation is replaced with a bijection. In fact, even for finite linear orders, Rossman [26]
proved that the class of linearly ordered graphs does not have the k-variable property for
any k, resolving a problem which had been open for more than 25 years [17]. Therefore,
adding binary relations to linear orders while keeping the k-variable property requires some
restrictions on the interpretation of the relation symbols.

On the positive side, Antonopoulos et al. proved that the class of structures over (R, <,+1)
(or signals) has the 3-variable property [1]. Such structures have been studied in the context
of real-time verification. As a corollary, they also showed that (R, <, f) has the 3-variable
property for any linear function f : x 7→ ax+ b.

Contribution. We consider the class of linearly ordered structures with an additional (finite
or infinite) number of binary interval-preserving relations. These are binary relations R
such that, for all intervals I, any point which is in between two points of R(I) and has a
preimage by R must have one in I. (We also require a symmetric condition of the converse
relation R−1.) We show that FO over this class of structures also has the 3-variable property.

This generalizes results from [19] and [1] described above. Moreover, this answers some
open questions mentioned in the conclusion of [1], which asked if the result could be extended
from linear functions to polynomials over the reals, or other linear orders and families of
monotone functions. In fact, all increasing or decreasing partial functions (over arbitrary
linear orders) are special cases of interval-preserving relations, and thus covered by our result.

Our proof relies on different techniques than [19, 1], which were based on Ehrenfeucht-
Fraïssé games. We give an effective translation from FO to FO3 which goes through
a star-free variant of Propositional Dynamic Logic (PDL) with converse. Propositional
dynamic logic was introduced by Fischer and Ladner [6] to reason about program schemes,
and has now found a large range of applications in artificial intelligence and verification
[11, 5, 23, 22, 9]. It combines local formulas containing modal operators, and path formulas
using the concatenation, union and Kleene star operations. Several extensions have been
studied, including PDL with converse [27], intersection [3], or negation of atomic programs
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[24]. The particular star-free variant of PDL we use here is in fact very similar to Tarski’s
relation algebras [28], which was used as a basis for formalizing set theory. It also corresponds
to a two-dimensional temporal logic in the sense of Gabbay [7].

We applied similar proof techniques in [2], where we introduced a star-free variant of
PDL and proved that it is equivalent to FO over message sequence charts (MSCs) (and thus
obtained a 3-variable property result for MSCs as a corollary). MSCs are discrete partial
orders which represent behaviors of concurrent message passing systems. They consist of a
fixed, finite number of linear orders called process orders (one for each process in the system),
together with FIFO binary message relations connecting matching send and receive actions.
Having a (fixed) finite number of total orders instead of a single one is not an important
difference, as we could always put them one after the other to extend them into a single linear
order. FIFO relations are a special case of interval-preserving relations, thus the result of the
present paper can in fact be seen as a strict generalization of our previous result in [2]. More
importantly, a major difference between MSCs studied in [2] and the setting we consider here
is that MSCs are discrete structures, whereas here we allow arbitrary linear orders. In fact,
[2] relied on the definition of formulas describing the minimum or the maximum of some
binary relations. As such, it is interesting to see that the same kind of techniques can still
be applied to a priori very different linear orders.

Outline. In Section 2, we introduce interval-preserving relations and monadic first-order
logic. In Section 3, we define star-free PDL, and prove some properties of its formulas.
In Section 4, we give an effective translation from FO to star-free PDL, and explain its
consequences. We conclude in Section 5.

2 Interval-preserving relations and first-order logic

In this section, we define the class of structures covered by our results, and recall the syntax
of first-order logic.

Interval-preserving binary relations. Let R ⊆ A × B be a binary relation between sets
A and B. We write a R b if (a, b) ∈ R, and R(a) = {b ∈ B | a R b}. For a subset
A′ ⊆ A, we also write R(A′) =

⋃
a∈A′ R(a). We define the converse of a relation R as

R−1 = {(b, a) ∈ B×A | (a, b) ∈ R}, and the composition of two binary relations R1 ⊆ A×B
and R2 ⊆ B×C as R1 ·R2 = {(a, c) ∈ A×C | ∃b ∈ B. (a, b) ∈ R1∧ (b, c) ∈ R2}. Finally, we
write Rc = (A×B) \R for the complement of R. Note that we have the following identities:

(R1 · R2)−1 = R2
−1 · R1

−1 (Rc)−1 =
(
R−1)c (R1 ∩R2)−1 = R−1

1 ∩R
−1
2 .

A linear order ≤ over a set A is a reflexive, transitive and antisymmetric relation ≤ ⊆ A×A
such that for all a, b ∈ A, we have a ≤ b or b ≤ a. Let (A,≤) be a linearly ordered set. For
A′ ⊆ A, we also denote by ≤ the restriction of ≤ to A′, so that (A′,≤) is still a linearly
ordered set. Moreover, for a ∈ A, we write a < A′ if for all a′ ∈ A′, a < a′, and A′ < a if for
all a′ ∈ A′, a′ < a.

An interval of (A,≤) is a set I ⊆ A such that for all a ≤ b ≤ c with a, c ∈ I, we have
b ∈ I. For a, b ∈ A, we denote by [a, b) the interval {c ∈ A | a ≤ c < b}, and similarly for the
intervals [a, b], (a, b], (a, b). We call a relation R ⊆ A×B between two linearly ordered sets
(A,≤A) and (B,≤B) interval-preserving if:

For all intervals I of (A,≤A), R(I) is an interval of (R(A),≤B).
For all intervals J of (B,≤B), R−1(J) is an interval of (R−1(B),≤A).
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Ia1 a2

b1 b2

a

b

a′

≤ ≤

∃

J

a1 a2

b1 b2b

a

b′

≤ ≤

∃

Figure 1 Definition of interval-preserving relations.

In other terms, for all a1 R b1 and a2 R b2 with a1, a2 ∈ I, for all b1 ≤B b ≤B b2, if there
exists some a ∈ A such that a R b, then there exists one in I (cf. Figure 1). Note that we do
not require that all elements between b1 and b2 are in R(I), but only those which are in the
image of R. The second condition is symmetric: for all a1 R b1 and a2 R b2 with b1, b2 ∈ J ,
for all a1 ≤A a ≤A a2, if there exists some b ∈ B such that a R b, then there exists one in J .

I Example 1. For any linear order (A,≤) and partial function f : A→ A, if f is increasing
or decreasing then the relation {(a, f(a)) | a ∈ dom(f)} is interval-preserving.

As another example, consider a temporal structure (A,≤, λ) over a set of atomic proposi-
tions AP, where λ : A→ 2AP indicates the set of propositions which are true at a given point.
For P,Q ∈ AP, we let untilP,Q = {(a, b) ∈ A×A | a < b ∧Q ∈ λ(b) ∧ ∀a < c < b, P ∈ λ(c)}.
Then untilP,Q is interval-preserving.

The following lemma states some simple closure properties of interval-preserving relations.

I Lemma 2. Let (A,≤A), (B,≤B), (C,≤C) be linearly ordered sets.
1. For all interval-preserving relation R ⊆ A×B, R−1 is interval-preserving.
2. For all interval-preserving relations R1,R2 ⊆ A×B, R1 ∩R2 is interval-preserving.
3. For all interval-preserving relations R1 ⊆ A×B and R2 ⊆ B × C, R1 · R2 is interval-

preserving.

Proof. Part 1 follows from the fact that (R−1)−1 = R.
Let us prove 2. Since (R1 ∩R2)−1 = R−1

1 ∩R
−1
2 , by symmetry, it suffices to prove that

for all interval I of (A,≤), (R1 ∩R2)(I) is an interval of ((R1 ∩R2)(A),≤). Let a1, a2 ∈ I
and b1 ≤ b ≤ b2 such that (a1, b1), (a2, b2) ∈ (R1 ∩ R2) and (a, b) ∈ (R1 ∩ R2) for some
a ∈ A. If a ∈ I, then we are done. Otherwise, suppose for instance that a < a1 ≤ a2 (the
other cases are similar). Since R1 is interval-preserving, there exists a1 ≤ a′ ≤ a2 such that
a′ R1 b. Then, since a < a1 ≤ a′ and R−1

1 (b) is an interval of (R−1
1 (B),≤A), we obtain

a1 R1 b. Similarly, a1 R2 b. Hence a1 (R1 ∩ R2) b.
Let us show that 2 implies 3. Again, by symmetry, it suffices to prove that for all interval

I of (A,≤A), (R1 · R2)(I) is an interval of ((R1 · R2)(A),≤C). Let R3 ⊆ B × C denote
the relation R1(A)× C. It is an interval-preserving relation between (B,≤B) and (C,≤C).
Moreover, we have (R1 · R2)(A) = (R2 ∩ R3)(B). Now, let I be some interval of (A,≤A),
and J = {b ∈ B | ∃b1, b2 ∈ R1(I), b1 ≤ b ≤ b2}. Then J is an interval of (B,≤B). Moreover,
since R1 is interval-preserving, we have R1(I) = J ∩R1(A), hence

(R1 · R2)(I) = R2(R1(I)) = R2(J ∩R1(A)) = (R2 ∩R3)(J) .

Then, according to 2, (R1 · R2)(I) is an interval of ((R2 ∩R3)(B),≤C), i.e., an interval of
((R1 · R2)(A),≤C). J

Models. Let P = {P,Q, . . .} be an infinite set of monadic predicates, and Γ = {α, β, . . .}
be a finite or infinite set of binary relation symbols. Throughout the paper,M will denote a
structureM = (A,≤, (αM)α∈Γ, (PM)P∈P) where ≤ is a linear order over A, αM ⊆ A×A
is an interval-preserving relation for all α ∈ Γ, and PM ⊆ A for all P ∈ P.
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Monadic first-order logic. We assume an infinite supply of variables X = {x, y, . . .}. The
set FO[Γ,≤] of monadic first-order logic formulas over Γ is defined as follows:

Φ ::= P (x) | x ≤ y | x = y | α(x, y) | Φ∨Φ | ¬Φ | ∃x.Φ , where x, y ∈ X , P ∈ P, α ∈ Γ .

We assume that all formulas are interpreted over structures M defined as above. Given
an FO[Γ,≤] formula Φ, we denote by Free(Φ) its set of free variables. We define the
satisfaction relation M, ν |= Φ as usual, where M = (A,≤, (αM)α∈Γ, (PM)P∈P) and
ν : Free(Φ) → A is an interpretation of the free variables of Φ. We say that two formulas
Φ,Ψ ∈ FO[Γ,≤] are equivalent, written Φ ≡ Ψ, if for allM = (A,≤, (αM)α∈Γ, (PM)P∈P)
and ν : Free(Φ) ∪ Free(Ψ)→ A, we haveM, ν|Free(Φ) |= Φ if and only ifM, ν|Free(Ψ) |= Ψ.

For k ∈ N, we denote by FOk[Γ,≤] the set of first-order formulas with at most k variables.
Note that a same variable may be quantified over several times in the formula.

I Example 3. Let p : R→ R be a polynomial function, and m1 < · · · < mn its local extrema
(we suppose that n ≥ 1). Fix Γ = {p}. For convenience, we write p(x) = y instead of p(x, y)
in FO[Γ,≤] formulas. We focus on models of the formM = (R,≤, pM, (PM)P∈P) where ≤
is the usual ordering of the reals, and pM = {(x, p(x)) | x ∈ R}. Let us describe an FO3[Γ,≤]
formula mi ≤ x such that for allM and r ∈ R, we haveM, [x 7→ r] |= mi ≤ x if and only if
mi ≤ r. First, we write p(x) ≤ p(y) for the FO3[Γ,≤] formula

∃z. p(x) = z ∧ ∃x. (p(y) = x ∧ z ≤ x) .

We can then define formulas min(x) ∈ FO3[Γ,≤] and max(x) ∈ FO3[Γ,≤] which state that
x is a local minimum (resp. maximum) of p, for instance:

min(x) = (∃z. z < x ∧ ∀y. (z < y ≤ x =⇒ p(x) ≤ p(y))) ∧
(∃z. x < z ∧ ∀y. (x ≤ y < z =⇒ p(x) ≤ p(y))) .

The formula mi ≤ x then states that there exist at least i local extrema before x, alternating
existential quantifications over y and z to identify them; for instance, m3 ≤ x is the formula

∃y. y ≤ x∧(min(y)∨max(y))∧∃z. z < y∧(min(z)∨max(z))∧∃y. y < z∧(min(y)∨max(y)) .

3 Star-free Propositional Dynamic Logic

Star-free Propositional Dynamic Logic. Propositional dynamic logic (PDL) [6] consists
of two sorts of formulas: state formulas which are evaluated at single elements, and path
formulas which are evaluated at pairs of elements and allow to navigate inside the model. Here
we consider a star-free variant of PDL (with converse). The syntax of star-free propositional
dynamic logic over Γ, written PDLsf [Γ,≤], is given below:

ϕ ::= P | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ (state formulas)
π ::= α | ≤ | {ϕ}? | π−1 | π · π | π ∪ π | π ∩ π | πc (path formulas)

where P ∈ P and α ∈ Γ.
Compared to classical PDL, star-free PDL uses the operators (·,∪,∩, c) of star-free

expressions, instead of the rational operators (·,∪, ∗).
LetM = (A,≤, (αM)α∈Γ, (PM)P∈P). The semantics JϕKM ⊆ A or JπKM ⊆ A×A of a

state or path formula in PDLsf [Γ,≤] is defined below. The state formula 〈π〉ϕ is true at a
point a ∈ A inM (that is, a ∈ J〈π〉ϕKM) if there exists some b ∈ A such that (a, b) satisfies
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π and ϕ is true at b. The path formula {ϕ}? is stationary and tests if the state formula ϕ is
true. The semantics of other formulas is straightforward:

JP KM := PM Jϕ1 ∨ ϕ2K
M := Jϕ1K

M ∪ Jϕ2K
M

J¬ϕKM := A \ JϕKM J〈π〉ϕKM := {a ∈ A | ∃b ∈ JϕKM, (a, b) ∈ JπKM}

JαKM := αM J{ϕ}?KM := {(a, a) | a ∈ JϕKM}

J≤KM := ≤ Jπ−1KM := (JπKM)
−1

Jπ1 ∪ π2K
M := Jπ1K

M ∪ Jπ2K
M Jπ1 ∩ π2K

M := Jπ1K
M ∩ Jπ2K

M

JπcKM := (A×A) \ JπKM Jπ1 · π2K
M := Jπ1K

M · Jπ2K
M
.

For simplicity, we often write JϕK or JπK instead of JϕKM and JπKM. We also writeM, a |= ϕ

if a ∈ JϕKM, andM, a, b |= π if (a, b) ∈ JπKM.
We use the abbreviations true := P ∨ ¬P , false := ¬true, ≥ := (≤)−1, < := ≥c,

> := ≤c and 〈π〉 := 〈π〉 true. For all PDLsf [Γ,≤] formulas π, we also define a state formula
loop(π) := 〈π ∩ {true}?〉 which holds at a if and only if (a, a) ∈ JπK.

I Example 4. Suppose that Γ = {+q | q ∈ Q}, and that we consider only models over R
and with J+qK = {(r, r + q) | r ∈ R}. Let q, r ∈ Q≥0 and P,Q ∈ P. The formula P U(q,r) Q

of metric temporal logic, which holds at time t ∈ R if there exists t+ q < t′ < t+ r such that
t′ ∈ JQK and for all t < t′′ < t′, t′′ ∈ JP K, can be expressed in PDLsf [Γ,≤] as follows:

P U(q,r) Q ≡
〈
(+q ·<) ∩ (+r ·>) ∩ (< · {¬P}? ·<)c〉

Q .

An interval-preserving fragment of star-free PDL. We say that a path formula π ∈
PDLsf [Γ,≤] is interval-preserving if for all M, JπKM is interval-preserving. Notice that
≤ and {ϕ}? (for all ϕ) are interval-preserving. By Lemma 2 (and assumption on JαK),
all PDLsf [Γ,≤] formulas constructed without the boolean operators ∪ and c are interval-
preserving. However, the complement or the union of interval-preserving relations are not
in general interval-preserving. We define below a fragment of PDLsf [Γ,≤] where all path
formulas are interval-preserving, and which will turn out to be as expressive as PDLsf [Γ,≤]
(and in fact, FO[Γ,≤]) when it comes to state formulas. To do so, we introduce several
restrictions of πc which are interval-preserving, and which suffice to characterize πc.

Let us first look at the different reasons for which we may have (a, b) ∈ JπcK, assuming that
π is interval-preserving. To begin with, we focus on a. One first sufficient condition for having
b /∈ JπK(a) is that JπK(a) = ∅. Now, suppose JπK(a) 6= ∅. If π is interval-preserving, there are
only three possible cases in which b /∈ JπK(a): b < JπK(a), or JπK(a) < b, or Jπ−1K(b) = ∅. We
define formulas left π and right π corresponding respectively to the first two cases. We let

left π = {〈π〉}? · (π · ≤)c
, i.e. (a, b) ∈ Jleft πK iff b < JπK(a) 6= ∅

right π = {〈π〉}? · (π · ≥)c
, i.e. (a, b) ∈ Jright πK iff b > JπK(a) 6= ∅ .

Now, if we look at Jπ−1K(b) instead of JπK(a), we can make the same observations, by
symmetry: we have (a, b) ∈ JπcK if and only if a /∈ Jπ−1K(b), and if π is interval-preserving,
there are again only four possible cases: Jπ−1K(b) = ∅, or a < Jπ−1K(b), or a > Jπ−1K(b), or
JπK(a) = ∅.

Unfortunately, the formulas left π and right π are still not interval-preserving in general.
However, if we take a more symmetric restriction of πc, where we look at all the possible
positions of b and a relatively to JπK(a) and Jπ−1K(b), we obtain four cases, illustrated in
Figure 2, which we will later show correspond to interval-preserving restrictions of πc.
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a

b JπK(a)

Jπ−1K(b)

πc1

<

< a

b JπK(a)

Jπ−1K(b)

πc2

<

< a

bJπK(a)

Jπ−1K(b)

πc3

<

< a

bJπK(a)

Jπ−1K(b)

πc4

<

<

Figure 2 Definition of πc1, πc2, πc3 and πc4, from left to right.

More precisely, let

πc1 := left π ∩
(
left

(
π−1))−1

, i.e. (a, b) ∈
q
πc1y iff

{
b < JπK (a) 6= ∅ and
a <

q
π−1y (b) 6= ∅

πc2 := left π ∩
(
right

(
π−1))−1

, i.e. (a, b) ∈
q
πc2y iff

{
b < JπK (a) 6= ∅ and
a >

q
π−1y (b) 6= ∅

πc3 := right π ∩
(
left

(
π−1))−1

, i.e. (a, b) ∈
q
πc3y iff

{
b > JπK (a) 6= ∅ and
a <

q
π−1y (b) 6= ∅

πc4 := right π ∩
(
right

(
π−1))−1

, i.e. (a, b) ∈
q
πc4y iff

{
b > JπK (a) 6= ∅ and
a >

q
π−1y (b) 6= ∅ .

Notice that πc3 ≡ ((π−1)c2)
−1

.
Let PDLsf [Γ,≤,∩, c1, c2, c3, c4] be the following restriction of PDLsf [Γ,≤]:

ϕ ::= P | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ
π ::= α | ≤ | {ϕ}? | π−1 | π · π | π ∩ π | πc1 | πc2 | πc3 | πc4 .

I Lemma 5. All PDLsf [Γ,≤,∩, c1, c2, c3, c4] formulas are interval-preserving.

Proof. We proceed by induction on the formula. By assumption, α is interval-preserving for
all α ∈ Γ. Moreover, ≤ and {ϕ}? are interval-preserving. For π−1, π1 · π2 and π1 ∩ π2, we
apply Lemma 2.

Suppose that π is interval-preserving. Let us show that πc1 is interval-preserving. Notice
that (πc1)−1 ≡ (π−1)c1. So we only need to show that for all intervals I, for all b1, b2 ∈ Jπc1K(I)
and b1 ≤ b ≤ b2 such that J(πc1)−1K(b) 6= ∅, there exists a ∈ I such that (a, b) ∈ Jπc1K. Let
a2 ∈ I such that (a2, b2) ∈ Jπc1K. Let us show that we can in fact take a = a2. The proof is
illustrated in the picture below.

a2

b2bb1 JπK(a2)<

c c2

π−1 π−1

≤≤

≤ <

First, we have b ≤ b2 < JπK(a2) 6= ∅. Moreover, Jπ−1K(b) 6= ∅ (since J(πc1)−1K(b) 6= ∅). Now,
suppose towards a contradiction that a2 6< Jπ−1K(b). Let c ∈ Jπ−1K(b) such that c ≤ a2. Since
(a2, b2) ∈ Jπc1K, there exists c2 > a2 such that (b2, c2) ∈ Jπ−1K. We then have c ≤ a2 < c2
and JπK(a2) 6= ∅. Since π is interval-preserving, we obtain a2 ∈ Jπ−1K([b, b2]), a contradiction
with the fact that b2 < JπK(a2). Thus, (a2, b) ∈ Jπc1K.
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Let us show that πc2 is also interval-preserving. Similarly to the previous case, we show
that for all (a2, b2) ∈ Jπc2K and b ≤ b2 such that J(πc2)−1K(b) 6= ∅, we have (a2, b) ∈ Jπc2K.

a2

b2bb1 JπK(a2)<

c2 c

≤≤

≤<

First, b ≤ b2 < JπK(a2) 6= ∅, and Jπ−1K(b) 6= ∅. Suppose towards a contradiction that
Jπ−1K(b) 6< a2. Let c ∈ Jπ−1K(b) such that a2 ≤ c, and c2 ∈ Jπ−1K(b2). We have c2 < a2 ≤ c,
and JπK(a2) 6= ∅. Since π is interval-preserving, we obtain a2 ∈ Jπ−1K([b, b2]), a contradiction
with the fact that b2 < JπK(a2). Symmetrically, let J be an interval, a1, a2 ∈ J(πc2)−1K(J),
and a1 ≤ a ≤ a2 such that Jπc2K(a) 6= ∅. Then for any b1 ∈ J such that (a1, b1) ∈ Jπc2K, we
also have (a, b1) ∈ Jπc2K, hence a ∈ J(πc2)−1K(J).

Since πc3 ≡ ((π−1)c2)
−1

, this also implies that πc3 is interval-preserving.
Finally, the case of πc4 is symmetric to the case of πc1: for all (a1, b1) ∈ Jπc4K and b1 ≤ b

such that J(πc4)−1K(b) 6= ∅, we have (a1, b) ∈ Jπc4K. J

4 Star-free PDL is expressively equivalent to FO

Let ϕ be a state formula in PDLsf [Γ,≤], and Φ(x) an FO[Γ,≤] formula with a single free
variable x. We say that ϕ and Φ are equivalent, written ϕ ≡ Φ(x), if for allM and elements
a inM, we haveM, a |= ϕ if and only ifM, [x 7→ a] |= Φ(x). Similarly, for a path formula
π ∈ PDLsf [Γ,≤] and an FO[Γ,≤] formula Φ(x, y) with exactly two free variables x and y, we
write π ≡ Φ(x, y) if for allM and elements a, b inM, we haveM, a, b |= π if and only if
M, [x 7→ a, y 7→ b] |= Φ(x, y).

From PDLsf [Γ, ≤] to FO3[Γ, ≤]. An easy induction shows that any formula in PDLsf [Γ,≤]
can be translated into an FO[Γ,≤] formula which uses at most three distinct variables:

I Lemma 6. For every state formula ϕ ∈ PDLsf [Γ,≤], there exists a formula ϕ̃(x) ∈
FO3[Γ,≤] such that ϕ ≡ ϕ̃(x). For every path formula π ∈ PDLsf [Γ,≤], there exists a
formula π̃(x, y) ∈ FO3[Γ,≤] such that π ≡ π̃(x, y).

For the other direction, we will see that the fragment PDLsf [Γ,≤, loop, c1, c2, c3, c4] of
PDLsf [Γ,≤] defined below is sufficient:

ϕ ::= P | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ | loop(π)
π ::= α | ≤ | {ϕ}? | π−1 | π · π | πc1 | πc2 | πc3 | πc4 .

This fragment is a restriction of PDLsf [Γ,≤,∩, c1, c2, c3, c4], where the intersection is only
used for loop(π) formulas.

From FO[Γ, ≤] to PDLsf [Γ, ≤, loop, c1, c2, c3, c4]. The main result of the paper is an
effective translation of FO[Γ,≤] formulas into positive boolean combinations of formulas in
PDLsf [Γ,≤, loop, c1, c2, c3, c4]:

I Theorem 7. Every formula Φ ∈ FO[Γ,≤] with at least one free variable is equivalent to
a positive boolean combination of formulas of the form π̃(x, y), where x, y ∈ Free(Φ) and
π ∈ PDLsf [Γ,≤, loop, c1, c2, c3, c4].
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Note that the equivalent formula may also contain subformulas of the form π̃(x, x).
Before proving Theorem 7, we state some of its consequences.

I Corollary 8. Every formula Φ ∈ FO[Γ,≤] with a single free variable is equivalent to some
PDLsf [Γ,≤, loop, c1, c2, c3, c4] state formula. Every formula Φ ∈ FO[Γ,≤] with two free
variables is equivalent to some PDLsf [Γ,≤] path formula.

Proof. If Φ has a single free variable x, it is equivalent to a positive boolean combination of
formulas of the form π̃(x, x), which are themselves equivalent to the formulas loop(π). The
combination of these loop(π) formulas is then a state formula of PDLsf [Γ,≤, loop, c1, c2, c3, c4].

If Φ has two free variables x and y, we obtain an equivalent positive boolean combination of
formulas of the form π̃(x, y), π̃(y, x), π̃(x, x), or π̃(y, y). We can replace any subformula π̃(y, x)
with π̃−1(x, y), and any subformula π̃(x, x) with π̃1(x, y)∨π̃2(x, y), where π1 = ({loop(π)}?·≤)
and π2 = ({loop(π)}? ·≥), and similarly for formulas π̃(y, y). We obtain an equivalent positive
boolean combination of formulas of the form π̃(x, y). Since PDLsf [Γ,≤] allows union and
intersection of path formulas, this is equivalent to a PDLsf [Γ,≤] formula. J

Another consequence is that FO[Γ,≤] over linear orders with interval-preserving relations
has the three-variable property. More precisely:

I Theorem 9. Any FO[Γ,≤] formula is equivalent to a boolean combination of formulas
in FO3[Γ,≤].

This also allows us to answer an open question from [1], namely, whether structures
over the real numbers with polynomial functions have the 3-variable property. Suppose
that Γ is a set of polynomials p : R → R. Let MΓ = (R,≤, (pMΓ)p∈Γ), where ≤ is the
usual ordering of the real numbers, and pMΓ = {(x, p(x)) | x ∈ R} for all p ∈ Γ. Given an
interpretation h : P → 2R of the monadic predicates, we denote by (MΓ, h) the structure
(R,≤, (pMΓ)p∈Γ, (h(P ))P∈P). We say that two formulas Φ,Ψ ∈ FO[Γ,≤] are equivalent over
MΓ, written Φ ≡MΓ Ψ, if for all h : P → 2R and ν : Free(Φ) ∪ Free(Ψ) → R, we have
(MΓ, h), ν|Free(Φ) |= Φ if and only if (MΓ, h), ν|Free(Ψ) |= Ψ.

I Theorem 10. For all Φ ∈ FO[Γ,≤], there exists a boolean combination Ψ of formulas in
FO3[Γ,≤] such that Φ ≡MΓ Ψ.

Proof. Let p ∈ Γ, and m1 < · · · < mn its local extrema. We denote by p(−∞,m1),
p[m1,m2), . . . , p[mn,+∞) the (monotone) restrictions of p to intervals delimitated by its local
extrema, and ∆p the set of these partial functions. Let ∆ =

⋃
p∈Γ ∆p. As above, we

let M∆ = (R,≤, (pIM∆)pI∈∆), where ≤ is the usual ordering of the real numbers, and
pI
M∆ = {(x, p(x)) | x ∈ I}. Note that pIM∆ is interval-preserving (cf. Example 1). We say

that two formulas Φ ∈ FO[Γ,≤] and Ψ ∈ FO[∆,≤] are equivalent, written Φ ≡ Ψ, when for
all h : P → 2R and ν : Free(Φ) ∪ Free(Ψ)→ R, we have (MΓ, h), ν|Free(Φ) |= Φ if and only if
(M∆, h), ν|Free(Ψ) |= Ψ.

Let Φ ∈ FO[Γ,≤]. The formula Ψ ∈ FO[∆,≤] obtained by replacing each atomic formula
p(x, y) by

∨
pI∈∆p

pI(x, y) is equivalent to Φ. Applying Theorem 9 to Ψ, we obtain another
formula Ψ′ ∈ FO[∆,≤] such that Ψ′ ≡ Ψ and Ψ′ is a boolean combination of formulas in
FO3[∆,≤].

Following Example 3, one can construct for each pI ∈ ∆ a formula “x ∈ I” of FO3[Γ,≤]
such that (MΓ, h), ν |= x ∈ I if and only if ν(x) ∈ I. Consider now the formula Φ′ ∈ FO[Γ,≤]
obtained by replacing each atomic formula pI(x, y) in Ψ′ by x ∈ I ∧ p(x, y). Then Φ′ ≡ Ψ′,
hence Φ ≡MΓ Φ′. Moreover, Φ′ is a boolean combination of formulas in FO3[Γ,≤]. J

The remainder of the section is devoted to the proof of Theorem 7.
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Eliminating negations. The fact that all PDLsf [Γ,≤, loop, c1, c2, c3, c4] path formulas are
interval-preserving gives us a simple characterization of the complement of a path formula:
we show below that an element b is in JπcK(a) if it is to the left or to the right of all elements
of JπK(a), or if it does not satisfy 〈π−1〉. We can then show that the complement of a
path formula in PDLsf [Γ,≤, loop, c1, c2, c3, c4] is equivalent to a union of path formulas in
PDLsf [Γ,≤, loop, c1, c2, c3, c4]. This will allow us to deal with negation in the translation
from FO[Γ,≤] to PDLsf [Γ,≤, loop, c1, c2, c3, c4].

I Lemma 11. For all path formulas π ∈ PDLsf [Γ,≤, loop, c1, c2, c3, c4], πc is equivalent to
a union of PDLsf [Γ,≤, loop, c1, c2, c3, c4] formulas.

Proof. We show that

πc ≡ ({¬ 〈π〉}? · ≤) ∪ ({¬ 〈π〉}? · ≥) ∪
(≤ · {¬ 〈π−1〉}?) ∪ (≥ · {¬ 〈π−1〉}?) ∪
(πc1) ∪ (πc2) ∪ (πc3) ∪ (πc4) .

We denote by π′ the right-hand-side formula. First, for all a, b such that JπK(a) = ∅ or
Jπ−1K(b) = ∅, we have (a, b) ∈ JπcK and (a, b) ∈ Jπ′K. Now, suppose that JπK(a) 6= ∅
and Jπ−1K(b) 6= ∅. We have (a, b) ∈ Jπ′K if and only if (a, b) ∈ Jπc1 ∪ πc2 ∪ πc3 ∪ πc4K.
Clearly, if (a, b) ∈ Jπc1 ∪ πc2 ∪ πc3 ∪ πc4K, then (a, b) ∈ JπcK. Conversely, let us show that if
(a, b) /∈ Jπc1 ∪ πc2 ∪ πc3 ∪ πc4K then (a, b) ∈ JπK. In that case, we have either a1 ≤ a ≤ a2 for
some a1, a2 ∈ Jπ−1K(b), or b1 ≤ b ≤ b2 for some b1, b2 ∈ JπK(a). Since π is interval-preserving,
we obtain (a, b) ∈ JπK. J

Existential quantification. The elimination of existential quantifiers relies on the simple
lemma below:

I Lemma 12. Let (A,≤) be a linearly ordered set, and I1, . . . , In intervals of (A,≤). Then⋂
1≤i≤n Ii 6= ∅ if and only if for all 1 ≤ i, j ≤ n, Ii ∩ Ij 6= ∅.

Proof. We show that there exists k and ` such that
⋂

1≤i≤n Ii = Ik ∩ I`, which implies the
result. We define relations vleft and vright over {I1, . . . , In} which, intuitively, compare
respectively the left and right bounds of the intervals:

I vleft J if ∀a ∈ J, ∃b ∈ I, b ≤ a
I vright J if ∀a ∈ I, ∃b ∈ J, a ≤ b .

It is easy to check that vleft and vright are transitive, an that for all I and J , we have
I vleft J or J vleft I (or both), and similarly for vright. Thus, there exists k such that
Ii vleft Ik for all i, and ` such that I` vright Ii for all i. Then for all a ∈ Ik ∩ I`, for all i,
there exists b, b′ ∈ Ii such that b ≤ a ≤ b′. Since Ii is an interval, we obtain a ∈ Ii. Hence
Ik ∩ I` =

⋂
1≤i≤n Ii. J

The next lemma follows from an application of Lemma 12 to intervals of the form JπiK(ai).

I Lemma 13. Let n ≥ 1. For all path formulas π1, . . . , πn and all state formulas ϕ in
PDLsf [Γ,≤, loop, c1, c2, c3, c4], the FO[Γ,≤] formula

Φ(x1, . . . , xn) = ∃x.

ϕ̃(x) ∧
∧

1≤i≤n
π̃i(xi, x)

 (xi 6= x for all i)

is equivalent to a positive boolean combination of formulas of the form π̃(xj , xk), with
1 ≤ j, k ≤ n and π ∈ PDLsf [Γ,≤, loop, c1, c2, c3, c4].
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Proof. Let ψ = ϕ ∧
∧

1≤i≤n 〈π
−1
i 〉, and

Ψ(x1, . . . , xn) =
∧

1≤i,j≤n

˜(πi · {ψ}? · π−1
j )(xi, xj) .

Let us show that Φ(x1, . . . , xn) ≡ Ψ(x1, . . . , xn). LetM = (A,≤, (αM )α∈Γ, (PM )P∈P),
and ν : {x1, . . . , xn} → A. For all 1 ≤ i ≤ n, let Ii = JπiK(ν(xi)) ∩ JψK. Let us show that Ii
is an interval of (JψK,≤). First, since πi is interval-preserving, JπiK(ν(xi)) is an interval of
(J〈π−1

i 〉K,≤). Thus, Ii is an interval of (J〈π−1
i 〉K ∩ JψK,≤). But since J〈π−1

i 〉K ⊆ JψK, this is
simply (JψK,≤). Besides, it is easy to verify that

M, ν |= Φ(x1, . . . , xn) ⇐⇒
⋂

1≤i≤n
Ii 6= ∅ .

Applying Lemma 12, we obtain

M, ν |= Φ(x1, . . . , xn) ⇐⇒ for all 1 ≤ i, j ≤ n, Ii ∩ Ij 6= ∅
⇐⇒ for all 1 ≤ i, j ≤ n, (ν(xi), ν(xj)) ∈ Jπi · {ψ}? · π−1

j K

⇐⇒ M, ν |= Ψ(x1, . . . , xn) . J

Translation from FO[Γ, ≤] to PDLsf [Γ, ≤, loop, c1, c2, c3, c4]. We are now ready to give
the proof of Theorem 7.

Proof of Theorem 7. We assume that Φ is in prenex normal form, and prove the result by
induction. The translation of atomic formulas x ≤ y or α(x, y) is straightforward; moreover,
P (x) ≡ {̃P}?(x, x), and (x = y) ≡ ˜{true}?(x, y). Using Lemma 11 to eliminate negations,
we obtain the result for all quantifier-free formulas.

The case Φ = ∀x.Ψ ≡ ¬∃x.¬Ψ reduces to the case of existential quantification, applying
again Lemma 11 to eliminate negations.

We are left with the case Φ = ∃x.Ψ. If x is not free in Ψ, then Φ ≡ Ψ (since Ψ
has at least one free variable) and we are done by induction. Otherwise, assume that
Free(Ψ) = {x1, . . . , xn} with n > 1 and x = xn. By induction, Ψ is equivalent to a positive
boolean combination of formulas of the form π̃(xi, xj) with π ∈ PDLsf [Γ,≤, loop, c1, c2, c3, c4].
We replace π̃(xi, xj) with π̃−1(xj , xi) whenever j < i, and bring the resulting formula into
disjunctive normal form. Each conjunct is then of the form Υ = Υ1 ∧Υ2 ∧Υ3, where Υ1 uses
only variables from {x1, . . . , xn−1}, Υ2 =

∧
i π̃i(yi, x) with yi = xj for some 1 ≤ j < n, and

Υ3 =
∧
j π̃j(x, x). Note that Υ3 ≡ ϕ̃(x), where ϕ =

∧
j loop(πj). Then ∃x.Ψ is equivalent to

a finite disjunction of formulas

∃x.Υ ≡ Υ1 ∧ ∃x. (Υ2 ∧ ϕ̃(x))

with Υ1 and Υ2 as above. If Υ2 is empty, then we replace ∃x.ϕ̃(x) with the formula

(≤ · {ϕ}? · ≥)(x1, x1) ∨ (≥ · {ϕ}? · ≤)(x1, x1) .

Otherwise, we apply Lemma 13 to ∃x. (Υ2 ∧ ϕ̃(x)). In all cases, we obtain an equivalent
formula which is a positive boolean combination of formulas π̃(xi, xj) with 1 ≤ i, j < n and
π ∈ PDLsf [Γ,≤, loop, c1, c2, c3, c4]. J
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I Remark 14. Without the assumption that all atomic binary relations are interval-preserving,
PDLsf [Γ,≤] is still equivalent to FO3[Γ,≤]. Indeed, in the proof of Theorem 7, the assumption
that all atomic binary relations are interval-preserving is only used in Lemmas 11 and 13.
But if Φ uses only three variables x, y and z, this assumption is not needed in the proof of
Lemma 13. Indeed, we then have Φ(y, z) ≡ ˜(π · {ϕ}? · π′−1)(y, z), where π is the intersection
of all πi such that xi = y, and π′ is the intersection of all πi such that xi = z. Moreover,
Lemma 11 is no longer needed if we translate an FO3[Γ,≤] formula into a positive boolean
combination of PDLsf [Γ,≤] formulas, since PDLsf [Γ,≤] allows to take the complement of a
path formula. Note that the equivalence with FO3[Γ,≤] is already proven in [28] (for the
calculus of relations).

5 Conclusion

We proved that every FO[Γ,≤] formula over linear orders with interval-preserving binary
relations can be translated into an equivalent positive boolean combination of path formulas in
PDLsf [Γ,≤, loop, c1, c2, c3, c4]. In particular, any FO[Γ,≤] formula is equivalent to a boolean
combination of formulas in FO3[Γ,≤], which shows that FO[Γ,≤] has the three-variable
property. This generalizes several known results.

It would be interesting to see if the equivalence between FO[Γ,≤] and PDLsf [Γ,≤] can
be used as an intermediate step to prove that a temporal logic is expressively complete. It
is not the case in general, since [13] provides an example of a class of structures which fits
our assumptions but does not admit any expressively complete temporal logic. However, the
equivalence could still be useful in more restricted settings.
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Abstract
The Weisfeiler-Leman (WL) dimension of a graph is a measure for the inherent descriptive complexity
of the graph. While originally derived from a combinatorial graph isomorphism test called the
Weisfeiler-Leman algorithm, the WL dimension can also be characterised in terms of the number
of variables that is required to describe the graph up to isomorphism in first-order logic with
counting quantifiers.

It is known that the WL dimension is upper-bounded for all graphs that exclude some fixed graph
as a minor [17]. However, the bounds that can be derived from this general result are astronomic.
Only recently, it was proved that the WL dimension of planar graphs is at most 3 [26].

In this paper, we prove that the WL dimension of graphs embeddable in a surface of Euler genus
g is at most 4g + 3. For the WL dimension of graphs embeddable in an orientable surface of Euler
genus g, our approach yields an upper bound of 2g + 3.
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1 Introduction

The Weisfeiler-Leman (WL) algorithm is a simple combinatorial graph isomorphism test.
The 1-dimensional version of the algorithm, also known as colour refinement and naive
vertex classification, is known since at least the mid 1960s, and it is used as a subroutine
in almost all practical graph isomorphism tools (see, for instance, [9, 25, 34, 35]), but also
in machine learning (see, for instance, [1, 22, 29, 37, 40]). The 2-dimensional version can
be traced back to an article by Weisfeiler and Leman that appeared 50 years ago [41]. It
is closely related to the algebraic theory of coherent configurations. The generalisation to
higher dimensions is due to Babai (see [6, 8]), and again it plays an important role as a
subroutine in graph isomorphism algorithms, albeit more on the theoretical side. Notably,
Babai uses the (logn)-dimensional version in his quasipolynomial isomorphism test [6].

The connection between the WL algorithm and logic was made by Immerman and
Lander [24] and Cai, Fürer, and Immerman [8]. They showed that two graphs are distinguished
by the k-dimensional WL algorithm if and only if they can be distinguished in the logic
Ck+1, the (k + 1)-variable fragment of first-order logic using counting quantifiers of the
form ∃≥mx. The connection between the WL algorithm and logical definability is at the
core of some of the most interesting developments in descriptive complexity theory (see, for
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example, [17, 23, 39]). Only recently, it has been noted that the WL algorithm (and thus
the finite-variable counting logic) has further surprising characterisations. In a breakthrough
paper, Atserias and Maneva [4] showed that the dimension k of the WL algorithm required to
distinguish two graphs corresponds to the level of the Sherali-Adams relaxation of the natural
integer linear program for graph isomorphism testing (also see [21, 33]). This spawned a lot of
work relating the WL algorithm to semidefinite programming [5, 38] and algebraic (Gröbner
basis) approaches [7, 13] to graph isomorphism testing. These results can also be phrased in
terms of propositional proof complexity. The latest facet of the theory is a characterisation
in terms of homomorphism counts of graphs of tree width k [10]. Various aspects of the
WL algorithm and its relation to logic have been studied in detail in recent years (see, for
instance, [2, 3, 12, 27, 28, 31]).

Cai, Fürer, and Immerman [8] proved that for every k there are non-isomorphic (3-
regular) graphs Gk, Hk of size O(k) that are not distinguished by the k-dimensional WL
algorithm. Thus, as an isomorphism test, the k-dimensional WL algorithm is incomplete.
But, in view of the wide variety of seemingly unrelated combinatorial, logical, and algebraic
characterisations of the algorithm, we are convinced that the structural information the
algorithm does detect is of fundamental importance. The basic parameter of the algorithm
is the dimension, corresponding to the number of variables in logical and the degree of
polynomials in algebraic characterisations. It yields a structural invariant called the WL
dimension of a graph G [17], defined to be the least k such that the k-dimensional WL
algorithm distinguishes G from every graph H not isomorphic to G (we say that k-WL
identifies G), or equivalently, the least k such that G can be characterised up to isomorphism
(or identified) in the logic Ck+1. It is also convenient to define the WL dimension of a class C
of graphs to be the maximum of the WL dimensions of all graphs in C if this maximum exists,
and ∞ otherwise. We see the WL dimension as a measure for the inherent combinatorial
or descriptive complexity of a graph or a class of graphs. We are mostly interested in the
relation between the WL dimension and other graph invariants.

Work in descriptive complexity shows that the WL dimension is bounded for many natural
graph classes, among them trees [24], graphs of bounded tree width [19], planar graphs [14],
graphs of bounded genus [15, 16], all graph classes that exclude some fixed graph as a minor
[17], interval graphs [30, 32], and graphs of bounded rank width [20]. However, most of these
results do not give explicit bounds on the WL dimension, and the bounds that can be derived
from the proofs are usually bad. Only recently, the second author of this paper, jointly with
Ponomarenko and Schweitzer, established an almost tight bound for planar graphs [26]: the
WL dimension of planar graphs is at most 3, and there are planar graphs of WL dimension 2.

In this paper, we establish bounds for graphs that can be embedded into an arbitrary
surface, for example, a torus or a projective plane. By the classification theorem for surfaces
(see [36, Theorem 3.1.3]), up to homeomorphism (that is, topological equivalence), all surfaces
fall into only two countably infinite families, the family (Sk)k≥0 of orientable surfaces and the
family (N `)`≥1 of non-orientable surfaces. For example, the sphere S0, the torus S1, and the
double torus S2 are the first three orientable surfaces, and the projective plane N1 and the
Klein bottle N2 are the first two non-orientable surfaces. The Euler genus eg(S) of a surface
S is 2k if S is homeomorphic to the orientable surface Sk, and ` if S is homeomorphic to
the non-orientable surface N `. We define the Euler genus of a graph G to be the least g such
that G is embeddable (that is, can be drawn without edge crossings) in a surface of Euler
genus g. Ssee Figure 1 for an example.

I Theorem 1. The WL dimension of the class of graphs of Euler genus g is at most 4g + 3.

For graphs embeddable in orientable surfaces, we can improve the bound further.
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Figure 1 Embedding of K5 into the torus.

I Corollary 2. The WL dimension of the class of graphs embeddable in an orientable surface
of Euler genus g is at most 2g + 3.

As mentioned above, it was first proved in [15] that the WL dimension of graphs of
bounded genus is bounded. A more detailed proof of the same result can be found in the
journal paper [16]. The proof of [16] only yields an asymptotically quadratic bound (in terms
of the genus) on the dimension, but neither of the two papers gives an explicit bound. It
seems that the proof of [15] gives a linear bound, albeit with a large constant factor of at least
80 (not all details are worked out there, so it is difficult to determine the exact bound). The
proof in both of these papers is based on the fact that sufficiently large graphs of minimum
degree at least 3, embedded in a surface, will have a facial cycle of length at most 6. The
proof we give here is completely different. It is based on the straightforward idea of removing
a non-contractible cycle to reduce the Euler genus and then using induction. The problem
with this idea is that we cannot define non-contractible cycles, but rather only families of
such cycles that may intersect in complicated patterns. Understanding these families leads to
significant technical complications, but in the end enables us to obtain a much better bound
than the simpler proofs of [15, 16]. Our proof is based on a simplified version of a construction
from [17, Chapter 15], applied there to graphs “almost embeddable” in a surface.

Outline of the Paper

In Section 2, we present the conventions as well as some topological notions and facts that we
use throughout the paper. In Section 3, we introduce the WL dimension and relate it to logic.
In Section 4, we present the graph-theoretic machinery that we need in the proof of our main
theorem. The proof is outlined in Section 5. The detailed proof is long and complicated and
can be found in [18], which also contains further material with respect to all other sections.

2 Preliminaries

2.1 Graphs

We use a standard graph terminology and notation. The only slightly unusual object is
our version of coloured graphs. In an arc-coloured graph, we colour both vertices and
orientations of edges. Formally, an arc-coloured graph is a graph G together with a function
χ : {(u, u) | u ∈ V (G)} ∪ {(u, v) | {u, v} ∈ E(G)} → C, where C is some set of colours. We
interpret χ(u, u) as the colour of the vertex u. Whenever we refer to coloured graphs in this
paper, we mean arc-coloured graphs.
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2.2 Topology

We have already discussed surfaces and their Euler genus in the introduction. In our pre-
sentation and notation, we follow [17, Chapter 9]. As an important notational convention,
we always use bold face letters to denote topological spaces. Many more details on surface
topology can be found in [17, 36], and in [11, Appendix B].

For a topological space X and a subset Y ⊆X, we define the boundary of Y in X to be
the set bdX(Y ) of all points x ∈ X such that every neighbourhood of x has a nonempty
intersection with both Y and X \Y . We omit the subscript X if the space, usually a surface,
is clear from the context.

A closed disk is a homeomorphic image of {x ∈ R2 | ‖x‖ ≤ 1} equipped with the usual
topology, and an open disk is a subspace of R2 homeomorphic to R2 (viewed as a topological
space). Let g be a simple closed curve in a surface S. Then g is contractible if it is the
boundary of a closed disk in S, otherwise g is non-contractible. If g is non-contractible, we
can obtain one or two surfaces of strictly smaller Euler genus by the following construction:
we cut the surface along g; what remains is a surface with one or two holes in it. Then we
glue a disk onto each hole and obtain one or two simpler surfaces.

It will be important for us to distinguish between graphs in their standard combinatorial
form – we refer to them as abstract graphs – and embedded graphs. The vertices of a graph
embedded in a surface S are points in S, and the edges are simple curves connecting the
vertices in such a way that they do not cross. If G is a graph embedded in S, we denote by
G the subset of S consisting of all points that are either vertices of G or contained in an
edge of G. The faces of G are the arcwise connected components of S \G.

We say that an abstract graph G is embeddable into a surface S if it is isomorphic to (the
underlying graph of) a graph embedded in S. The Euler genus eg(G) of a graph G is the
smallest g such that G is embeddable into a surface of Euler genus g. The graphs of Euler
genus 0 are precisely the planar graphs, because a graph is embeddable into the 2-sphere S0
if and only if it is embeddable into the plane R2. The class of all graphs of Euler genus at
most g is denoted by Eg.

A graph G is polyhedrally embedded in a surface S if G is embedded in S, 3-connected,
and every non-contractible simple closed curve g ⊆ S intersects G in at least three points.
Just like 3-connected graphs embedded in a plane, polyhedrally embedded graphs have many
nice properties that we will exploit here.

2.3 Logic

C is the extension of first-order logic FO by counting quantifiers ∃≥mx with the obvi-
ous meaning. C is only a syntactical extension of FO, because ∃≥mxϕ(x) is equivalent to
∃x1 . . . ∃xm

(∧
i 6=j xi 6= xj ∧

∧
i ϕ(xi)

)
. However, we are mainly interested in the fragments

Ck of C consisting of all formulae with at most k variables. If m > k, then ∃≥mx cannot be
expressed in the k-variable fragment of FO, this is why we add the counting quantifiers. The
logics Ck have played an important role in finite-model theory since the 1980s.

We often write ϕ(x1, . . . , x`) to indicate that the free variables of ϕ are among x1, . . . , x`.
(Not all of these variables are required to appear in ϕ.) Then for a graph G and vertices
u1, . . . , u` ∈ V (G), we write G |= ϕ(u1, . . . , u`) to denote that G satisfies ϕ if for all i the
variable xi is interpreted by ui. Moreover, we write ϕ[G, u1, . . . , ui, xi+1, . . . , x`] to denote
the set of all (`− i)-tuples (ui+1, . . . , u`) such that G |= ϕ(u1, . . . , u`).
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The width of a formula ϕ ∈ C is the maximum number of free variables of a subformula of
ϕ. Clearly, every formula in Ck has width at most k. An important observation that we often
use is that every C-formula of width at most k is equivalent to a Ck-formula. We denote the
set of all C-formulae of width at most k by Ck

w.

3 The WL Dimension

We start by reviewing the k-dimensional WL algorithm (for short: k-WL) for k ≥ 1.
The atomic type atp(G, ū) of a k-tuple ū = (u1, . . . , uk) of vertices of a (possibly coloured)

graph G is the set of all atomic formulae satisfied by these vertices. The exact encoding is not
important for us, the relevant property is that tuples ū = (u1, . . . , uk) and v̄ = (v1, . . . , vk)
of vertices of graphs G and H, respectively, have the same atomic type if and only if the
mapping ui 7→ vi is an isomorphism from the induced subgraph G[{u1, . . . , uk}] to the
induced subgraph H[{v1, . . . , vk}].

Now k-WL is the algorithm that, given a graph G, computes the following sequence of
“colourings” Ck

i of
(
V (G)

)k for i ≥ 0 until it returns Ck
∞ = Ck

i for the smallest i such that
for all ū, v̄ it holds that Ck

i (ū) = Ck
i (v̄) ⇐⇒ Ck

i+1(ū) = Ck
i+1(v̄). The initial colouring Ck

0
assigns to each tuple its atomic type: Ck

0 (ū) := atp(G, ū). In the (i+ 1)-st refinement round,
the colouring Ck

i+1 is defined by Ck
i+1(ū) :=

(
Ck

i (ū),Mi(ū)
)
, where, for ū = (u1, . . . , uk),

Mi(ū) is the multiset{{(
atp

(
G, (u1, . . . , uk, v)

)
, Ck

i (u1, . . . , uk−1, v),

Ck
i (u1, . . . , uk−2, v, uk), . . . , Ck

i (v, u2, . . . , uk)
) ∣∣∣ v ∈ V}}

We say that k-WL distinguishes two graphs G and H if there is some colour c in the range of
Ck
∞ such that the number of tuples ū ∈

(
V (G)

)k with Ck
∞(ū) = c is different from the number

of tuples v̄ ∈
(
V (H)

)k with Ck
∞(v̄) = c. We say that k-WL identifies G if it distinguishes G

from all graphs H not isomorphic to G. The WL dimension of G is the smallest k such that
k-WL identifies G.

In this paper, we reason about the WL dimension in terms of logic, using the following
theorem.

I Theorem 3 ([8, 24]). Let k ≥ 1. Let G and H be graphs, possibly coloured, and ū =
(u1, . . . , uk) ∈

(
V (G)

)k and v̄ = (v1, . . . , vk) ∈
(
V (H)

)k. Then the following are equivalent:
1. Ck

∞(ū) = Ck
∞(v̄);

2. G |= ϕ(u1, . . . , uk) ⇐⇒ H |= ϕ(v1, . . . , vk) for all Ck+1-formulae ϕ(x1, . . . , xk).

We say that a graph G is identified by the logic Ck if there is a sentence isoG ∈ Ck such
that for all graphs H we have H |= isoG if and only if H is isomorphic to G.

I Corollary 4. A graph has WL dimension k if and only if it is identified by Ck+1.

The WL dimension of the class of planar graphs is at most 3 [26]. Using the previous
corollary, we can re-phrase this as follows.

I Theorem 5 ([26]). For every planar graph G there is a C4-sentence isoG that identifies G.
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4 Shortest Path Systems, Patches and Necklaces

Here we introduce the graph-theoretic machinery necessary to prove our main theorem.
Essentially, the definitions and results of this section are from [17, Chapter 15]. In fact,
things are simpler here because [17, Chapter 15] deals with graphs almost embedded in a
surface, whereas we only need to consider embedded graphs. Sometimes, we need to change
the definitions in order to improve the resulting bounds on the WL dimension later. Notably,
our necklaces play the role of the belts in [17], but the definition is slightly different. This
also requires an adaptation of the proof that reducing necklaces exist.

I Definition 6. Let G be a graph and u, u′ ∈ V (G). A shortest path system (sps) from u to
u′ is a family Q of shortest paths in G from u to u′ such that every shortest path from u to
u′ in the subgraph

⋃
Q∈QQ is contained in Q.

We let V (Q) :=
⋃

Q∈Q V (Q) and E(Q) :=
⋃

Q∈QE(Q) and G(Q) :=
(
V (Q), E(Q)

)
=⋃

Q∈QQ. We call Q trivial if |V (Q)| ≤ 2, that is, if G(Q) consists of a single vertex or a
single edge.

The height htQ(v) of v ∈ V (Q) is the distance from u to v. The vertices in
⋂

Q∈Q V (Q)
are the articulation vertices of Q. An articulation vertex v is proper if v 6= u and v 6= u′. We
denote the set of all articulation vertices of Q by art(Q).

For all u, u′ ∈ V (G) such that there is a path from u to u′ in G, the canonical sps from
u to u′ in G is the set QG(u, u′) of all shortest paths from u to u′ in G.

While shortest paths systems are defined with respect to abstract graphs, the following
notions are defined with respect to embedded graphs. For the rest of the section, we make
the following assumption.

I Assumption 7. G is a graph polyhedrally embedded in a surface S of Euler genus g ≥ 1.

I Definition 8. A patch in G is an sps Q in G such that:
(i) Q has no proper articulation vertices.
(ii) There is a closed disk D ⊆ S such that G(Q) ⊆D. y

It can be shown that if Q is a non-trivial patch (i.e., a patch that does not consist of just
a single vertex or a single edge), then there is a unique disk D(Q) such that G(Q) ⊆D(Q)
and there is a cycle C(Q) ⊆ G(Q) such that bd

(
D(Q)

)
= C(Q). Furthermore, there are two

paths Q,Q′ ∈ Q such that C(Q) = Q ∪Q′.
We call a subgraph H ⊆ G simplifying if every connected component of G\H is contained

in Eg−1. Otherwise, H is non-simplifying.

I Lemma 9 ([17], Corollary 15.3.5). For every non-simplifying subgraph H ⊆ G, there is
exactly one connected component A∗ of G \ H with A∗ /∈ Eg−1, and all other connected
components are planar.

A patch Q is simplifying if the graph G(Q) is. It turns out that non-simplifying patches
form the basic building blocks of our theory. Let Q be a non-trivial non-simplifying patch.
Let A∗ be the unique connected component of G \V (Q) that is not planar (the existence and
uniqueness of A∗ follows from Lemma 9). Then we define G/A∗ to be the graph obtained
from G by contracting the subgraph A∗ to a single vertex a∗. By [17, Corollary 15.4.5], G/A∗
is a 3-connected planar graph. Figure 2 displays a schematic view of a patch Q with some
attached (planar) connected components as well as the non-planar component A∗, the disk
D(Q), and the boundary cycle C(Q).
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u′

u

A∗
C(Q)

u′

u

a∗
C(Q)

Figure 2 Left: A patch Q with non-planar component A∗ and boundary cycle C(Q). The curve
C(Q) is the boundary of the disk D(Q), which consists of the light gray and medium gray areas.
Right: the (planar) factor graph G/A∗.

We define the internal graph of a non-trivial non-simplifying patch Q to be the graph
I := I(Q) with vertex set V (I) := V (G)∩D(Q) and edge set E(I) := {e ∈ E(G) | e ⊆D(Q)}.
Note that C(Q) ⊆ I. The definitions of the graphs C(Q) and I(Q) do not only depend on
the abstract graph G and the sps Q, but on the embedding of G in S. However, it can be
proved that actually the graphs are invariant under embeddings.

I Lemma 10 ([17]). Let Q be a non-trivial non-simplifying patch in G. Let G′ be a graph
embedded in a surface S′ of Euler genus g such that G and G′ are isomorphic (as abstract
graphs), and let f be an isomorphism from G to G′. Then Q′ := f(Q) is a non-simplifying
patch in G′, and it holds that f

(
C(Q)

)
= C(Q′) and f

(
I(Q)

)
= I(Q′).

This follows from [17, Lemma 15.4.10]. Intuitively, the reason why this holds is that the
3-connected planar graph G/A∗ has a “unique” embedding.

I Corollary 11. Let u, u′ ∈ V (G) and Q := QG(u, u′) such that Q is a non-trivial non-
simplifying patch. Let f be an automorphism of G such that f(u) = u and f(u′) = u′. Then
f
(
C(Q)

)
= C(Q) and f

(
I(Q)

)
= I(Q).

We remark that the analogue of Corollary 11 for simplifying patches does not hold (see
[18, Figure 4]). The analysis of simplifying patches is much more involved, and we defer the
reader to [18].

The final objects we define in this section are necklaces.

I Definition 12. A necklace in G is a tuple B := (u0,Q0, u1,Q1, u2,Q2), where u0, u1, u2 ∈
V (G) and Qi = QG(ui, ui+1) (indices taken modulo 3) is the canonical sps from ui to ui+1,
such that the following conditions are satisfied for every i ∈ {0, 1, 2}:

u0, u1, u2 are pairwise distinct.
V (Qi) ∩ V (Qi+1) = {ui+1} (indices modulo 3).
There is a disk Di ⊆ S such that G(Qi) ⊆Di. y

For a necklace B := (u0,Q0, u1,Q1, u2,Q2) we write V (B) for the set
⋃2

i=0
⋃

Q∈Qi V (Q)
and E(B) for

⋃2
i=0
⋃

Q∈Qi E(Q), and we let G(B) :=
(
V (B), E(B)

)
. Moreover, we define the

set of articulation vertices of B to be art(B) :=
⋃2

i=0 art(Qi).

I Definition 13. A necklace B := (u0,Q1, u1,Q2, u2,Q3) is reducing if there are paths
Qi ∈ Qi such that B := Q1 ∪Q2 ∪Q3 is a non-contractible cycle. y
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u1

u0

u2

u0
1

Figure 3 A necklace on a torus section.

We can think of a reducing necklace as a necklace around a handle of our surface (or a
crosscap of the surface in the non-orientable case). The beads of the necklace are the disks of
the patches that form the necklace. Figure 3 shows a necklace on a torus with articulation
vertices u0, u0

1, u1, u2.

I Lemma 14 (Necklace Lemma). G has a reducing necklace.

Essentially, this is [17, Lemma 15.5.8], with the necklaces corresponding to the belts there.
But since apart from a renaming, we have also slightly changed the content of the definition
of a necklace/belt, the proof needs to be adapted, too. Again, we defer the reader to [18].

5 Upper Bound on the WL Dimension

In this section, we give an outline of the proof of our main theorem (Theorem 1). The full
proof can be found in [18].

By the correspondence between k-WL and the logic Ck+1 stated in Corollary 4, we need
to prove that every graph of Euler genus at most g can be identified by a C4g+4-sentence.
The proof is by induction on g. The base step g = 0 is Theorem 5.

For the inductive step, we make the following assumption.

I Assumption 15. g ≥ 1, and there is a natural number s ≥ 4 such that every graph in Eg−1
can be identified by a Cs-sentence.

We shall prove that every graph in Eg can be defined by a Cs+4-sentence. Then Theorem
1 follows by induction. After some fairly straightforward reduction steps, which include the
reduction to arc-coloured 3-connected graphs from [26], we find that it suffices to prove the
following lemma.

I Lemma 16. Let G be a coloured graph polyhedrally embedded in a surface S of Euler
genus g. Then there is a sentence isoG ∈ Cs+3 that identifies G.

For the rest of the section, we fix a positive integer n. The intended meaning of n is that
it is the size of the target graph G. At this point, we have fixed three numerical parameters:
the Euler genus g, the number s of variables required to identify graphs of smaller Euler
genus, and the order n.
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We start the proof by showing that basic objects such as shortest path systems, (pseudo-)
patches and (pseudo-)necklaces are definable in the logic Cs+3. The following lemma illustrates
the type of definability result we can expect, more of the same kind can be found in the full
version [18]. Instead of definability in Ck, we actually always study definability in Ck

w (see
Section 2.3) and exploit the fact that every Ck

w-formula is equivalent to a Ck-formula.

I Lemma 17. There are formulae csps-vert(x, x′, y) ∈ C3
w and csps-edge(x, x′, y1, y2) ∈ C4

w,
such that for all connected graphs G of order |G| ≤ n and all vertices u, u′ ∈ V (G),

csps-vert[G, u, u′, y] = V
(
QG(u, u′)

)
,

csps-edge[G, u, u′, y1, y2] = E
(
QG(u, u′)

)
.

Recall that QG(u, u′) is the canonical sps from u to u′, that is, the set of all shortest
paths from u to u′.

Proof. It is straightforward to define, for every k ≥ 0, a C3
w-formula dist=k(x, y) stating

that the distance between the vertices x and y is exactly k. Then we let csps-vert(x, x′, y) :=
n∨

k=0

(
dist=k(x, x′) ∧

k∨
i=0

(dist=i(x, y) ∧ dist=k−i(y, x′))
)
.

The formula csps-edge(x, x′, y1, y2) can be defined similarly. J

With a little more effort, we can prove the following lemma.

I Lemma 18. Let h < g. Then there is a formula csps-comp-genush(x, x′, y) ∈ Cs+2
w such

that for all connected graphs G of order |G| ≤ n and all u, u′, v ∈ V (G) the following holds.
Let Q := QG(u, u′), and let A be the connected component of v in G \ G(Q) (assuming
v 6∈ V (Q)). Then

G |= csps-comp-genush(u, u′, v) ⇐⇒ v 6∈ V (Q) and eg(A) ≤ h.

Proof. It follows from Assumption 15 that for every h < g, there is a sentence genush such
that for all graphs G of order |G| ≤ n, it holds that G |= genush ⇐⇒ eg(G) ≤ h. Indeed,
we can simply let genush be the disjunction of all sentences isoH identifying the graphs H
with eg(H) ≤ h and |H| ≤ n.

Using careful bookkeeping and some tricks to reduce the number of variables. we can
combine genush with the formulae defined in Lemma 17 to obtain the desired formula. J

I Corollary 19. There is a formula csps-simplifying(x, x′) ∈ Cs+2
w such that for all connected

graphs G ∈ Eg of order |G| ≤ n and all u, u′ ∈ V (G),

G |= csps-simplifying(u, u′) ⇐⇒ QG(u, u′) is simplifying.

The formulae we have defined so far make no reference to an embedding of the input graph.
However, if we want to talk about patches and necklaces, we need to take the embedding
into account. For the rest of the section, we fix a specific embedded graph G.

I Assumption 20. G is a coloured graph of order |G| = n that is polyhedrally embedded in a
surface S of Euler genus g.

It is our goal to construct a Cs+3
w -sentence that identifies G. The following lemma is a key

step towards this goal, and we find it worthwhile to go into some of the details of its proof.
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I Lemma 21. There are C7
w-formulae int-vert(x, x′, y) and int-edge(x, x′, y1, y2) such that

for all vertices u, u′ ∈ V (G) for which Q := QG(u, u′) is a non-trivial non-simplifying patch,
the following holds:

int-vert[G, u, u′, y] = V
(
I(Q)

)
,

int-edge[G, u, u′, y1, y2] = E
(
I(Q)

)
.

Intuitively, the lemma says that even though the logical formulae only have access to the
abstract graph and the disk of a patch and the internal graph depend on the embedding, we
can still define the internal graph. This is non-trivial and somewhat surprising.

Proof. Let u, u′ ∈ V (G) such that Q := QG(u, u′) is a non-trivial non-simplifying patch. Let
D := D(Q), C := C(Q), and I := I(Q) (see Section 4).

By Lemma 9, the graph G \ G(Q) has a unique non-planar connected component A∗.
Since we can detect the planar connected components using the fact that we can identify all
planar graphs in C4, we can also detect A∗ as the only non-planar component. This allows
us to construct a C7

w-formula astar(x, x′, y) such that astar[G, u, u′, y] = V (A∗).
Let v1 be a vertex in V (Q) that is adjacent to A∗ and among all such vertices has minimal

height in the sps Q, and let h be this height. Since A∗ is embedded outside of the disk D, the
vertex v1 must be on the boundary cycle C of D. There is at most one other vertex of height
h on this cycle. Thus, even though v1 is not unique, there are at most two choices. If there is a
second vertex of height h adjacent to A∗, let us call it v′1. Using the formula astar(x, x′, y) and
the fact that vertices of a certain height are definable in C3

w, we can construct a C7
w-formula

ϕ1(x, x′, y1) such that v1 and possibly v′1 are the only vertices in ϕ1[G, u, u′, y1].
Recall that G/A∗ denotes the graph obtained from G by contracting the connected

subgraph A∗ to a single vertex, which we call a∗, and that the graph G/A∗ is a 3-connected
planar graph. By Whitney’s Theorem, the facial subgraphs (i.e., the subgraphs induced by
the boundaries of the faces of an embedding) of a 3-connected plane graph are precisely
the chordless non-separating cycles. In particular, they are independent of the embedding.
Furthermore, every edge is contained in exactly two of these facial cycles. Let us consider
the edge v1a

∗ in the graph G/A∗. Let F and F ′ be the two facial cycles that contain this
edge. Both F and F ′ contain exactly one neighbour of a∗ distinct from v1. Let v2, v

′
2 be

these neighbours.
By [26, Lemma 22], if we have a 3-connected planar graph H and three vertices w1, w2, w3

on a common facial cycle, then after individualising these three vertices, the 1-dimensional
WL algorithm computes a discrete colouring, i.e., a colouring in which every vertex has its
own unique colour. By Theorem 3, this implies that for every vertex w of H there is a formula
ψH,w(z1, z2, z3, y) ∈ C5

w such that ψH,w[H,w1, w2, w3, y] = {w}. We apply this to the graph
G/A∗ and the three vertices a∗, v1, v2 and obtain, for every vertex w ∈ V (G/A∗) = (V (G) \
V (A∗))∪{a∗}, a formula ψw(z∗, y1, y2, y) ∈ C5

w such that ψw[G/A∗, a∗, v1, v2, y] = {w}. From
this formula and the formula astar(x, x′, y) we can construct a C7

w-formula ψ̃w(x, x′, y1, y2, z)
such that ψ̃w[G, u, u′, v1, v2, z] = {w}. (Unfortunately, this construction is quite tedious;
details can be found in [18].)

Since A∗ ∩D = ∅, we have V (I) = V (G) ∩D ⊆ V (G \A∗). We let

δ(x, x′, y1, y2, z) :=
∨

w∈V (I)

ψ̃w(x, x′, y1, y2, z).

Then δ[G, u, u′, v1, v2, z] = V (I). Thus δ(x, x′, y1, y2, z) is almost the formula int-vert(x, x′, y)
we want, except that it has two additional parameters v1, v2, which we have to get rid of.
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We apply [26, Corollary 27], which says that the 3-dimensional WL algorithm determines
orbits in coloured 3-connected graphs. This means that it distinguishes two vertices if and
only if they belong to different orbits of the automorphism group of the given graph. It
follows that for every 3-connected planar graph H and for every orbit O of the automorphism
group of H, there is a formula ξH,O(y2) ∈ C4

w such that ξH,O[H, y2] = O.
To eliminate the parameter v2, we apply the corollary to the graph G/A∗, but only after

individualising the vertices a∗ and v1. That is, we modify the colouring such that each of
the two vertices gets its own colour and is thus fixed by all automorphisms. Let O2 be the
orbit of v2 in this coloured graph. By the definition of v2, either O2 = {v2, v

′
2} or O2 = {v2}.

Since the graph G/A∗ is 3-connected, by eliminating the colour relations for a∗ and v1
at the cost of new free variables z∗ and y1, we obtain a new formula ψ2(z∗, y1, y2) ∈ C6

w
such that ψ2[G/A∗, a∗, v1, y2] = O2. We can transform this formula ψ2 into a C7

w-formula
ψ̃2(x, x′, y1, y2) such that ψ̃2[G, u, u′, v1, y2] = O2. We let

δ′(x, x′, y1, z) := ∃y2
(
ψ̃2(x, x′, y1, y2) ∧ δ(x, x′, y1, y2, z)

)
.

If O2 = {v2}, then clearly δ′[G, u, u′, v1, z] = δ[G, u, u′, v1, v2, z] = V (I). So suppose that
O2 = {v2, v

′
2}, and let f be an automorphism of G with f(u) = u, f(u′) = u′, f(v1) = v1,

and f(v2) = v′2. By Corollary 11, we have f
(
V (I)

)
= V (I) and thus

δ[G, u, u′, v1, v
′
2, z] = δ[f(G), f(u), f(u′), f(v1), f(v2), z]

= f
(
δ[G, u, u′, v1, v2, z]

)
= f

(
V (I)

)
= V (I).

It follows that

δ′[G, u, u′, v1, z] = δ[G, u, u′, v1, v2, z] ∪ δ[G, u, u′, v1, v
′
2, z] = V (I).

So we have eliminated the parameter v2. To eliminate v1, we use a similar argument, which
gives us the formula int-vert(x, x′, y). The formula int-edge(x, x′, y1, y2) can be constructed
similarly. J

At this point, the proof of Lemma 16 branches into two cases.

Case 1: G does not contain any simplifying patches
By Lemma 14, the graph G contains a reducing necklace. We fix such a necklace B =
(u0,Q1, u1,Q2, u2,Q3). For this, it is sufficient to fix the three vertices u0, u1, u2, because
the Qi are canonical shortest path systems. We are going to define a subgraph Cut(B) of G
obtained from G by “cutting through the beads”. Since the necklace is reducing, the Euler
genus of every connected component of Cut(B) is at most g − 1 and we can identify it via a
Cs-sentence using Assumption 15. We colour Cut(B) in such a way that we can reconstruct
G and identify it.

Since in this case, there are no simplifying patches, we can define the internal graphs of
all patches that form the necklace using Lemma 21. The cut graph Cut(B) is obtained from
G by removing all trivial patches contained in B, all articulation vertices and the internal
graphs of all non-trivial patches contained in B. Since the necklace is reducing, there is a
non-contractible simple closed curve through the necklace, and we can choose this curve
such that it is disjoint from the cut graph. Thus, the cut graph is embeddable in the surface
obtained by cutting S along this non-contractible closed curve and therefore has smaller
Euler genus.

To prove that G is identified in the logic Cs+3
w , we need to show that for every graph Ĝ

that is not isomorphic to G, there is a Cs+3
w -sentence that distinguishes G and Ĝ. To prove
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this, we show that if G and Ĝ satisfy the same Cs+3
w -sentences, then they are isomorphic. We

use the fact that the necklace B is definable in G by C7
w-formulae using the three parameters

u0, u1, u2. The same formulae define some object B̂ in Ĝ. We call B̂ a “pseudo-necklace”. It is
not necessarily a necklace, because Ĝ is not necessarily an embedded graph and objects like
patches and necklaces, which depend on an embedding, do not exist in Ĝ. Nevertheless, from
the pseudo-necklace we can define a pseudo-cut graph Cut(B̂). Since Cut(B) is identified in
the logic Cs

w, we can show that Cut(B) and Cut(B̂) are isomorphic. Since we can reconstruct
G and Ĝ from the respective (pseudo-)cut graphs, we conclude that G and Ĝ are isomorphic.

Case 2: G contains a simplifying patch

This case sounds simpler than the first one: instead of a complicated necklace, here we
only need to remove a simplifying patch from our graph. The remaining pieces have smaller
Euler genus and thus can be identified in the logic Cs

w. Hence, all we need to do is colour
the pieces in such a way that we can reconstruct the original graph. The problem with
this line of reasoning is that simplifying patches have a much more complicated structure
than non-simplifying patches. For example, we cannot define the interior of a simplifying
patch in the same way as we did for non-simplifying patches in Lemma 21 since there is
not necessarily a non-planar connected component which marks the “outside region” of the
patch. Therefore, the idea of the proof is to remove the canonical sps and some interior parts
of the corresponding patch, which are actually interiors of non-simplifying subpatches and
thus definable by Lemma 21.

More precisely, we fix two vertices u and u′ such that Q := QG(u, u′) is a minimal simpli-
fying canonical patch in G, that is, a simplifying canonical patch all of whose proper canonical
subpatches are non-simplifying. We extend Q by the internal graphs of all proper subpatches
and obtain a graph J , which is actually embedded in the disk of Q and therefore planar.

Now we distinguish between two cases. If J \ {u, u′} is connected, the patch Q behaves
almost like a non-simplifying patch, and we can argue similarly as in Case 1. If J \ {u, u′}
is disconnected, the patch Q can be split into several so-called fibres. The subgraph J

contained in the fibres is definable in our logic when we fix one more particular vertex. In
fact, the subgraph contained in every single fibre is definable. We exploit this in order to
encode in the boundary vertices of the fibres the way in which the remainder of the graph is
attached to them, similarly as in Case 1, but due to the possibly complex structure of J a
lot more involved.

An improved bound in case the surface is orientable

The combination of Case 1 and Case 2 yields Theorem 1. Exploiting our inductive approach
further, we can deduce a better bound in case we know that the given graph is embeddable
in an orientable surface of Euler genus at most g, as stated in Corollary 2.

Proof of Corollary 2. The Euler genus of an orientable surface is always even. Suppose G is
a graph embeddable in an orientable surface of Euler genus g. Since the subgraphs obtained
by cutting through the beads are also embeddable in orientable surfaces of smaller Euler
genus, their Euler genus is at least 2 smaller than the Euler genus of G. Therefore, proceeding
inductively and redefining s to be the number of variables needed for graphs embeddable in
orientable surfaces of Euler genus at most g − 2, we can improve our bound from Theorem 1
to 2g + 3. J
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6 Concluding Remarks

The WL dimension is a measure for the combinatorial and descriptive complexity of a graph.
In view of its numerous, seemingly unrelated characterisations in terms of logic, algebra,
mathematical programming, and homomorphisms, we can arguably regard the WL dimension
as a natural and robust graph invariant.

We have proved an upper bound of 4g+ 3 for the WL dimension of graphs of Euler genus
g and showed that if G is known to be embeddable in an orientable surface of Euler genus g,
the bound improves to 2g + 3. The immediate remaining question is how tight our bound is.

We believe that by refining our arguments in some places it might be possible to reduce
the bound from Theorem 1 to 3g + 3 or even 2g + 3; any further improvement seems to
require substantial additional ideas. It is conceivable that the WL dimension of planar graphs
is 2. If this is the case, the additive term in our bound would automatically drop to 2.

In terms of lower bounds, using the so-called CFI construction [8], it is easy to prove a
linear lower bound of ε · g for the WL dimension of graphs of Euler genus g, albeit with a
rather small constant ε > 0. To close the gap between upper and lower bound, it may be
worthwhile to spend some effort on improving the lower bound.

Beyond graphs of bounded genus, we can try to determine the WL dimension of other
graph classes and tie the WL dimension to other graph invariants. A natural target would
be the class of all graphs that exclude the complete graph K` as a minor. We know that
the WL dimension of this class is bounded [17]. But even an exponential bound on the WL
dimension in terms of ` would be major progress.
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Abstract
We consider the problem of deciding termination of single-path while loops with integer variables,
affine updates, and affine guard conditions. The question is whether such a loop terminates on
all integer initial values. This problem is known to be decidable for the subclass of loops whose
update matrices are diagonalisable, but the general case has remained open since being conjectured
decidable by Tiwari in 2004. In this paper we show decidability of determining termination for
arbitrary update matrices, confirming Tiwari’s conjecture. For the class of loops considered in this
paper, the question of deciding termination on a specific initial value is a longstanding open problem
in number theory. The key to our decision procedure is in showing how to circumvent the difficulties
inherent in deciding termination on a fixed initial value.
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1 Introduction

Termination is a central problem in program verification. In this paper we study termination
of single-path linear loops, i.e., programs of the form

while (g1(x) > 0 ∧ . . . ∧ gm(x) > 0) do x := f(x) ,

where g1, . . . , gm : Rd → R and f : Rd → Rd are affine maps with integer coefficients. Here
the loop body has a single control path that performs a simultaneous affine update of the
program variables. Analysis of loops of this form, including acceleration and termination, is
an important part of analysing more complex programs (see, e.g., [7, 14, 16]).

For a set S ⊆ Rd, we say that the above loop terminates on S if it terminates on all initial
vectors x ∈ S. Despite the simplicity of single-path linear loops, the question of deciding
termination has proven challenging (and termination already becomes undecidable if the loop
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body consists of a nondeterministic choice between two different linear updates). Tiwari [25]
showed that termination of single-path linear loops is decidable over Rd. Subsequently,
Braverman [9], using a more refined analysis of the loop components, showed that termination
is decidable over Qd and noted that termination on Zd can be reduced to termination on Qd
in the homogeneous case, i.e., when the update map f and guards g1, . . . , gm are linear. More
recently, Ouaknine, Sousa-Pinto, and Worrell [18] have proven that termination over Zd is
decidable in the non-homogeneous case under the assumption that the update function f has
the form f(x) = Ax+ a for A a diagonalisable integer matrix. Decidability of termination
for non-homogeneous linear loops over Zd was conjectured by Tiwari [25, Conjecture 1], but
has remained open until now.

In this paper we give a procedure for deciding termination of the general class of single-path
linear loops over the integers, i.e., we generalise the result of [18] by lifting the assumption
of diagonalisability. Note that for this class of programs, the question of termination on
a given initial value in Zd (as opposed to termination over all of Zd) is equivalent to the
Positivity Problem for linear recurrence sequences, i.e., the problem of whether all terms
in a given integer linear recurrence sequence are positive. Decidability of the Positivity
Problem is a longstanding open problem (going back at least as far as the 1970s [22, 24]), and
results in [19] suggest that a solution to the problem will require significant breakthroughs
in number theory. However, in considering termination over Zd one can benefit from the
freedom to choose the initial values of the loop variables. In the present paper we exploit this
freedom in order to circumvent the need to solve “hard instances” of the Positivity Problem
when deciding termination of linear loops. In particular, we avoid the use of sophisticated
Diophantine-approximation techniques, such as the S-units theorem, that were employed
in [19]. By eschewing such tools we lose all hope of obtaining an effective characterisation
of the set of non-terminating points, as was done in the diagonalisable case in [19], but our
methods nevertheless manage to solve the decision problem in the general case.

Among the tools we use are a circle of closely related results in the geometry of numbers,
including Khinchine’s flatness theorem, Kronecker’s theorem on simultaneous Diophantine
approximation, and the result of Khachiyan and Porkolab that it is decidable whether a
convex semi-algebraic set contains an integer point. In tandem with these, from algebraic
number theory, we use a result of Masser that allows to compute all algebraic relations among
the eigenvalues of the update matrix of a given loop. Using this last result, we define a
semi-algebraic subset of “non-termination candidates” such that the loop is non-terminating
if and only if this set contains an integer point.

In this paper we focus on the foundational problem of providing complete methods to
solve termination. Much effort has been devoted to scalable and pragmatic methods to prove
termination for classes of programs that subsume linear loops. In particular, techniques
to prove termination via synthesis of linear ranking functions [4, 5, 8, 10, 11, 20, 21] and
their extension, multiphase linear ranking functions [6, 3], have been developed. Many of
these techniques have been implemented in software verification tools, such as Microsoft’s
Terminator [12]. Although these methods are capable of handling non-deterministic linear
loops, they can only guarantee termination whenever ranking functions of a certain form exist.
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2 Background

2.1 Convexity
The affine hull of S ⊆ Rd is the smallest affine set that contains S, where an affine set is the
translation of a vector subspace of Rd. The affine hull of S can be characterised as follows:

aff(S) :=
{

k∑
i=1

αixi | k > 0,xi ∈ S, αi ∈ R,
k∑
i=1

αi = 1
}
.

The convex hull of S ⊆ Rd is the smallest convex set that contains S. The convex hull of S
can be characterised as follows:

conv(S) :=
{

k∑
i=1

αixi | k > 0,xi ∈ S, αi ∈ R≥0,

k∑
i=1

αi = 1
}
.

Clearly conv(S) ⊆ aff(S). The relative interior of a convex set S ⊆ Rd is its interior with
respect to the restriction of the Euclidean topology to aff(S). We have the following easy
proposition, characterising the relative interior.

I Proposition 1. Let S = {a1, . . . ,an} ⊆ Rd. If u lies in the relative interior of conv(S)
then there exist α1, . . . , αn > 0 such that u =

∑n
i=1 αiai and

∑n
i=1 αi = 1.

Proof. Since u lies in the relative interior of conv(S), for ε > 0 sufficiently small we have
that

(1 + nε)u−
n∑
i=1

εai ∈ conv(S) .

For such an ε there exist β1, . . . , βn ≥ 0 such that (1 + nε)u−
∑n
i=1 εai =

∑n
i=1 βiai and∑n

i=1 βi = 1. But then u =
∑n
i=1

βi+ε
1+nεai. Defining αi := βi+ε

1+nε for i ∈ {1, . . . , n}, the
proposition is proved. J

A lattice of rank r in Rd is a set

Λ := {z1v1 + · · ·+ zrvr : z1, . . . , zr ∈ Z} ,

where v1, . . . ,vr are linearly independent vectors in Rd. Given a convex set C ⊆ Rd, define
the width of C along a vector u ∈ Rd to be

sup{u>(x− y) : x,y ∈ C} .

Furthermore the lattice width of C is the infimum over all non-zero vectors u ∈ Λ of the
width of C along u.

The following result (see [2, Theorem 7.2.1]) captures the intuition that a convex set that
contains no lattice point in its interior must be “thin” in some direction.

I Theorem 2 (Flatness Theorem). Given a full-rank lattice Λ in Rd there exists W such that
any convex set C ⊆ Rd of lattice width at least W contains a lattice point.

Recall that C ⊆ Rd is said to be semi-algebraic if it is definable by a boolean combination
of polynomial constraints p(x1, . . . , xd) > 0, where p ∈ Z[x1, . . . , xd].

I Theorem 3 (Khachiyan and Porkolab [15]). It is decidable whether a given convex semi-
algebraic set C ⊆ Rd contains an integer point, that is, whether C ∩ Zd 6= ∅.
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2.2 Groups of Multiplicative Relations
In this subsection we will introduce some concepts concerning groups of multiplicative
relations among algebraic numbers.

Let T = {z ∈ C : |z| = 1}. We define the s-dimensional torus to be Ts, considered
as a group under component-wise multiplication. Given a tuple of algebraic numbers
γ = (γ1, · · · , γs) ∈ Ts, the orbit {γn : n ∈ N} is a subset of Ts. In the following we
characterise the topological closure of the orbit as an algebraic subset of Ts.

The group of multiplicative relations of γ ∈ Ts is defined as the following additive
subgroup of Zs:

L(γ) = {v ∈ Zs : γv = 1} ,

where γv is defined to be γv1
1 · · · γvs

s for v ∈ Zs, that is, exponentiation acts coordinate-wise.
Since L(γ) is a subgroup of Zs, it is a free Abelian group and hence has a finite basis. The
following powerful theorem of Masser [17] gives bounds on the magnitude of the components
of such a basis.

I Theorem 4 (Masser). The free Abelian group L(γ) has a basis v1, · · · , vl ∈ Zs for which

max
1≤i≤l,1≤j≤s

|vi,j | ≤ (D logH)O(s2),

where H and D bound respectively the heights and degrees of all the γi.

Membership of a tuple v ∈ Zs in L(γ) can be computed in polynomial space, using a
decision procedure for the existential theory of the reals. In combination with Theorem 4, it
follows that we can compute a basis for L(γ) in polynomial space by brute-force search.

Corresponding to L(γ), we consider the following multiplicative subgroup of Ts:

T (γ) = {µ ∈ Ts : ∀v ∈ L(γ),µv = 1} .

If B is a basis of L(γ), we can equivalently characterise T (γ) as {µ ∈ Ts : ∀v ∈ B,µv = 1}.
Crucially, this finitary characterisation allows us to represent T (γ) as an algebraic set in Ts.

We will use the following classical lemma of Kronecker on simultaneous Diophantine
approximation to show that the orbit {γn : n ∈ N} is a dense subset of T (γ).

I Lemma 5. Let θ,ψ ∈ Rs. Suppose that for all v ∈ Zs, if vTθ ∈ Z then also vTψ ∈ Z,
i.e., all integer relations among the coordinates of θ also hold among those of ψ (modulo Z).
Then, for each ε > 0, there exist p ∈ Zs and a non-negative integer n such that

‖nθ − p−ψ‖∞ ≤ ε.

We now arrive at the main result of the section:

I Theorem 6. Let γ ∈ Ts. Then the orbit
{
γk : k ∈ N

}
is a dense subset of T (γ).

Proof. Let θ ∈ Rs be such that γ = e2πiθ (with exponentiation operating coordinate-wise).
Notice that γv = 1 if and only if vTθ ∈ Z. If µ ∈ T (γ), we can likewise define ψ ∈ Rs to be
such that µ = e2πiψ . Then the premises of Kronecker’s lemma apply to θ and ψ. Thus,
given ε > 0, there exist a non-negative integer k and p ∈ Zs such that ‖kθ − p−ψ‖∞ ≤ ε.
Whence

‖γk − µ‖∞ = ‖e2πi(kθ−p) − e2πiψ‖∞ ≤ ‖2π(kθ − p−ψ)‖∞ ≤ 2πε. J
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3 Termination Analysis via Spectral Theory

The general form of a simple linear loop in dimension d is as follows:

while (g1(x) > 0 ∧ . . . ∧ gm(x) > 0) do x := f(x) ,

where g1, . . . , gm : Rd → R and f : Rd → Rd are affine functions. We assume that f and
g1, . . . , gm have integer coefficients, that is, f(x) = Ax+ a for A ∈ Zd×d and a ∈ Zd, and
gi(x) = b>i x+ ci for bi ∈ Zd, ci ∈ Z and i = 1, . . . ,m.

Note that(
f(x)

1

)
=
(
A a

0 1

)(
x

1

)
and gi(x) = (b>i ci)

(
x

1

)
. (1)

for all x ∈ Rd. We say that f is non-degenerate if no quotient of two distinct eigenvalues of

the update matrix
(
A a

0 1

)
is a root of unity.

I Proposition 7. The termination problem for simple linear loops on integers is reducible to
the special case of the problem for non-degenerate update functions.

Proof. Consider a simple linear loop, as described above, whose update matrix has distinct
eigenvalues λ1, . . . , λs. Let L be the least common multiple of the orders of the roots of
unity appearing among the quotients λi/λj for i 6= j. It is known that L = 2O(d

√
log d) [13,

Subsection 1.1.9]. The update matrix corresponding to the affine map fL = f ◦ · · · ◦ f︸ ︷︷ ︸
L

has

eigenvalues λL1 , . . . , λLs and hence is non-degenerate. Moreover the original loop terminates if
and only if the following loop terminates:

while
L−1∧
i=0

(
g1(f i(x)) > 0 ∧ . . . ∧ gm(f i(x)) > 0

)
do x := fL(x) ,

This concludes the proof. J

In the rest of this section and in the next section we focus on the case of a loop

P : while (g(x) > 0) do x← f(x) end (2)

with a single guard function g(x) = b>x + c and with non-degenerate update function
f(x) = Ax+a, with both maps having integer coefficients. We show that a spectral analysis
of the matrix underlying the loop update function suffices to classify almost all initial values
of the loop as either terminating or eventually non-terminating. Towards the end of the
section we isolate a class of so-called critical initial values that are not amenable to this
analysis. We show how to deal with such points in Section 4.

With respect to the loop P we say that x ∈ Rd is terminating if there exists n such that
g(fn(x)) ≤ 0. We say that x is eventually non-terminating if the sequence 〈g(fn(x)) : n ∈ N〉
is ultimately positive, i.e., there exists N such that for all n ≥ N g(fn(x)) > 0. Clearly there
exists z ∈ Zd that is non-terminating if and only if there exists z ∈ Zd that is eventually
non-terminating. Thus we can regard the problem of deciding termination on Zd as that of
searching for an eventually non-terminating point.

Let λ1, . . . , λs be the non-zero eigenvalues of
(
A a

0 1

)
and let kmax be the maximum

multiplicity over all these eigenvalues.
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118:6 Termination of Linear Loops over the Integers

Define a linear preorder on I := {0, . . . , kmax−1}×{1, . . . , s} by (i1, j1) 4 (i2, j2) if either
(i) |λj1 | < |λj2 | or (ii) |λj1 | = |λj2 | and i1 ≤ i2. Write (i1, j1) ≺ (i2, j2) if (i1, j1) 4 (i2, j2)
and (i2, j2) 64 (i1, j1). Then we have

(i1, j1) ≺ (i2, j2) iff lim
n→∞

(
n
i1

)
|λj1 |n(

n
i2

)
|λj2 |n

= 0 ,

that is, the preorder 4 characterises the asymptotic order of growth in absolute value of the
terms

(
n
i

)
λnj for (i, j) ∈ I. This preorder moreover induces an equivalence relation ≈ on I

where (i1, j1) ≈ (i2, j2) iff (i1, i1) 4 (i2, j2) and (i2, i2) 4 (i1, j1).
The following closed-form expression for g(fn(x)) will be the focus of the subsequent

development.

I Proposition 8. There is a set of affine functions hi,j : Rd → C such that for all x ∈ Rd
and all n ≥ d we have

g(fn(x)) =
∑

(i,j)∈I

(
n

i

)
λnj hi,j(x) .

Proof. By the Jordan-Chevalley decomposition we can write
(
A a

0 1

)
= P−1DP +N , where

D is diagonal, N is nilpotent, P is invertible, P−1DP and N commute, and all matrices
have algebraic coefficients. Moreover we can write D = λ1D1 + · · ·+ λsDs for appropriate
idempotent diagonal matrices D1, . . . , Ds. Then for all n ∈ N with n ≥ d we have

g(fn(x)) = (b> c)
(
A a

0 1

)n(
x

1

)
= (b> c)(P−1DP +N)n

(
x

1

)
= (b> c)

n∑
i=0

(
n

i

)
P−1Dn−iPN i

(
x

1

)

= (b> c)
d∑
i=0

(
n

i

)
P−1(λn−i1 D1 + · · ·+ λn−is Ds)PN i

(
x

1

)
(since Nd+1 = 0)

=
s∑
j=1

λnj

d∑
i=0

(
n

i

)
λ−ij (b> c)P−1DjPN

i

(
x

1

)
︸ ︷︷ ︸

hi,j(x)

(3)

=
s∑
j=1

d∑
i=0

(
n

i

)
λnj hi,j(x) ,

where for (i, j) ∈ I the affine function hi,j is defined in Line (3). Clearly each function hi,j is
a complex-valued affine function on Rd with algebraic coefficients. J

Define γi = λi

|λi| for i = 1, . . . , s, that is, we obtain the γi by normalising the eigenvalues
to have length 1. Recall from Section 2.2 the definition of the group L(γ) of multiplicative
relations that hold among γ1, . . . , γs, viz.,

L(γ) = {(n1, . . . , ns) ∈ Zs : γn1
1 · · · γns

s = 1} .
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Recall also that we have T (γ) ⊆ Ts, given by

T (γ) = {(µ1, . . . , µs) ∈ Ts : µn1
1 · · ·µns

s = 1 for all (n1, . . . , ns) ∈ L(γ)} .

Given an ≈-equivalence class E ⊆ I, note that for all (i1, j1), (i2, j2) ∈ E we have i1 = i2
and |λj1 | = |λj2 |. Thus E is determines a common multiplicity, which we denote iE , and a
set of eigenvalues that all have the same absolute value, which we denote ρE .

Given an ≈-equivalence class E, define ΦE : Rd × T (γ)→ R by1

ΦE(x,µ) =
∑

(i,j)∈E

hi,j(x)µj . (4)

From the above definition of ΦE we have∑
(i,j)∈E

(
n

i

)
λnj hi,j(x) =

(
n

iE

)
ρnEΦE(x,γn) . (5)

for all x ∈ Rd and all n ∈ N.
We say that an equivalence class E of I is dominant for x ∈ Rd if E is the equivalence

class of the maximal indices (i, j) for which hi,j(x) is non-zero. Equivalently, E is dominant
for x if E is the maximal equivalence class such that ΦE(x, ·) is not identically zero on T (γ).
(The equivalence of these two characterisations follows from the linear independence of the
functions

(
n
i

)
λnj for (i, j) ∈ E.)

The following proposition shows how information about termination of the loop P on an
initial value x ∈ Rd can be derived from properties of ΦE(x, ·).

I Proposition 9. Consider the loop P in (2). Let x ∈ Rd and let E be an ≈-equivalence
class that is dominant for x. Then
1. If inf

µ∈T (γ)
ΦE(x,µ) > 0 then x is eventually non-terminating for P.

2. If inf
µ∈T (γ)

ΦE(x,µ) < 0 then x is terminating for P.

Proof. By Proposition 8 and Equation (5) we have that for all n ≥ d,

g(fn(x)) =
∑

(i,j)∈I

(
n

i

)
λnj hi,j(x)

=
(
n

iE

)
ρnEΦE(x,γn) +

∑
(i,j)∈I\E

(
n

i

)
λnj hi,j(x) . (6)

Moreover by the dominance of E we have that

lim
n→∞

(
n
i

)
|λj |n(
n
iE

)
ρnE

= 0 (7)

for all (i, j) ∈ I \ E such that hi,j(x) 6= 0.
We first prove Item 1. By assumption, in this case there exists ε > 0 such that ΦE(x,µ) ≥

ε for all µ ∈ T (γ). Together with Equation (7), this shows that the asymptotically dominant
term in Equation (6) has positive sign. It follows that g(fn(x)) is positive for n sufficiently
large and hence x is eventually non-terminating.

1 That the function ΦE is real-valued follows from the fact that if eigenvalues λj1 and λj2 are complex
conjugates then γj1 and γj2 are also complex conjugates, as are hi,j1 (z) and hi,j2 (z) (see the proof of
Proposition 8).
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118:8 Termination of Linear Loops over the Integers

We turn now to Item 2. By assumption there exists ε > 0 and an open subset U of
T (γ) such that ΦE(x,µ) < −ε for all µ ∈ U . Moreover by density of {γn : n ∈ N} in T (γ)
there exist infinitely many n such that γn ∈ U . Exactly as in Case 1 we can now use the
dominance of E to conclude that g(fn(x)) < 0 for sufficiently large n such that γn ∈ U and
hence x is terminating. J

Given z ∈ Zd, since T (γ) is an algebraic subset of Ts, the number inf
µ∈T (γ)

ΦE(z,µ) is

algebraic and its sign can be decided. Note however that Proposition 9 does not completely
resolve the question of termination with respect to guard g from a given initial value z.
Indeed, let us define z ∈ Rd to be critical if inf

µ∈E
ΦE(z,µ) = 0, where E is the dominant

equivalence class for z. Then neither clause in the above proposition suffices to resolve
termination of the loop P in (2) on such a z. Indeed the question of whether such a point
is eventually non-terminating is equivalent to the Ultimate Positivity Problem for linear
recurrence sequences: a longstanding and notoriously difficult open problem in number theory,
only known to be decidable up to order 4 [1, 19]. Fortunately in the setting of deciding
loop termination we can sidestep such difficult questions. The following section is devoted
to handling critical points. The idea is to show that if there is a critical initial value then
there is another initial value that is eventually non-terminating and moreover whose eventual
non-termination can be established by Proposition 9.

4 Analysis of Critical Points

In this section we continue to analyse termination of the loop P, as given in (2) in the
previous section, and refer to the notation established therein.

4.1 Transition Invariance of Critical Points
Intuitively critical points are those for which it is difficult to determine eventual non-
termination. One should therefore expect that if x ∈ Rd is critical then f(x) should also be
critical. This, and more, follows from the following proposition.

I Proposition 10. Let x ∈ Rd and let E ⊆ I be an equivalence class that is dominant for x.
Then E is also dominant for f(x) and for all µ ∈ T (γ) we have ΦE(f(x),µ) = ρE ΦE(x,γµ),
where the product γµ is defined pointwise.

Proof. By definition we have ΦE(x,µ) =
∑

(i,j)∈E hi,j(x)µj , where the hi,j satisfy

(b> c)
(
A a

0 1

)n(
x

1

)
=
∑

(i,j)∈I

hi,j(x)
(
n

i

)
λnj (8)

for all n ≥ d. Likewise we have ΦE(f(x),µ) =
∑

(i,j)∈S h̃i,j(x)µj , where the h̃i,j satisfy

(b> c)
(
A a

0 1

)n+1(
x

1

)
=
∑

(i,j)∈I

h̃i,j(x)
(
n

i

)
λnj . (9)

Combining Equations (8) and (9) we have the for all n ≥ d,∑
(i,j)∈I

h̃i,j(x)
(
n

i

)
λnj =

∑
(i,j)∈I

hi,j(x)
(
n+ 1
i

)
λn+1
j

=
∑

(i,j)∈I

hi,j(x)
[(
n

i

)
+
(

n

i− 1

)]
λjλ

n
j .
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Now the collection of functions n 7→
(
n
i

)
λnj for (i, j) ∈ I is linearly independent in the

vector space CN (see, e.g., [23, Lemma 9.6]). Equating the coefficients of the functions
(
n
i

)
λnj

for (i, j) ∈ E in the above equation we have h̃i,j = λjhi,j = ρEγjhi,j for all (i, j) ∈ E;
likewise we have that E is dominant for f(x). The proposition follows. J

The next lemma shows that the existence of a critical point entails the existence of an
eventually non-terminating point.

I Lemma 11. If z ∈ Rd is critical then there exists a positive integer M such that for all
n ≥M , all points in the relative interior of conv({fd(z), fd+1(z), . . . , fn(z)}) are eventually
non-terminating.

Proof. Given an arbitrary µ ∈ T (γ) we claim that there exists n ≥ d for which we
have ΦE(fn(z),µ) > 0. If this were not the case then for all n ≥ d we would have
ΦE(fn(z),µ) = ΦE(z, ξnµ) = 0. But by Theorem 6, the set {ξnµ : n ≥ d} is dense in
T (γ) and hence we would have that ΦE(z, ·) is identically 0 on T (γ), contradicting the
dominance of E.

For each n ∈ N, the set Cn = {µ ∈ T (γ) : ΦE(fn(z),µ) > 0} is an open subset of
T (γ). Moreover, by the analysis above, the collection {Cn : n ≥ d} is an open cover of T (γ).
Thus by compactness of T (γ) there exists M ∈ N such that Cd, Cd+1, · · · , CM is a finite
cover of T (γ).

By Proposition 1, for all n ≥ M and all points x lying in the relative interior of
conv({fd(z), fd+1(z), . . . , fn(z)}), there exist αd, . . . , αn > 0 such that

∑n
i=d αi = 1 and

x =
∑n
i=d αif

i(z). Since ΦE is an affine map in its first variable, it follows that ΦE(x, ·) =∑n
i=d αiΦE(f i(z), ·) is strictly positive on T (γ). Hence x is eventually non-terminating by

Proposition 9. J

4.2 Integer Non-Terminating Points from Critical Points

Lemma 11 shows how to derive the existence of non-terminating points from the existence of
a critical point. In this subsection we refine this analysis to derive the existence of integer
non-terminating points. In particular, fixing an initial value z∗ ∈ Zd, we show that for n
sufficiently large, the set

conv({fd(z∗), fd+1(z∗), . . . , fn(z∗)})

contains an integer point in its relative interior.
Define V := Aff({fn(z∗) : n ≥ d}) and let the vector subspace V0 ⊆ Rd be the unique

translate of V containing the origin. Write d0 for the dimension of V0 (equivalently the
dimension of V ).

I Proposition 12. For all non-zero integer vectors v ∈ V0 the set {|v>fn(z∗)| : n ≥ d} is
unbounded.

Proof. Consider the sequence xn := v>fn(z∗) =
(
A a

0 1

)n(
z∗
1

)
. If this sequence were

constant then v would be orthogonal to V0, contradicting the fact that v is non-zero. Since
the sequence is non-constant, integer-valued, and satisfies a non-degenerate linear recurrence
of order at most d+1 (see, e.g., [13, Subsection 1.1.12]), by the Skolem-Mahler-Lech Theorem
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we have that {|v>fn(z∗)| : n ≥ d} is unbounded (see the discussion of growth of linear
recurrence in [13, Section 2.2]).2 J

I Proposition 13. There exists M such that for all n ≥M the set

conv({fd(z∗), fd+1(z∗), . . . , fn(z∗)})

contains an integer point in its relative interior.

Proof. Since V0 is spanned by integer vectors, Λ := V0 ∩ Zd is a lattice of rank d0 in Rd.
Define C := conv({fn(z∗) : n ≥ d}) ⊆ V and C0 := C − fd(z∗) ⊆ V0.

Let θ : Rd → Rd0 be a linear map that takes V0 bijectively onto Rd0 and whose kernel is
the orthogonal complement of V0. Then θ(Λ) is a lattice in Rd0 of full rank. We claim that
the lattice width of θ(C0) with respect to θ(Λ) is infinite. Indeed for any non-zero vector
v ∈ θ(Λ) we have

v>(θ(fn(z∗))− θ(fd(z∗))) = (θ∗v)>(fn(z∗)− fd(z∗)) , (10)

where θ∗ : Rd0 → Rd is the adjoint map of θ. But θ∗v is a non-zero rational vector in V0 and
hence Proposition 12 entails that the absolute value of (10) is unbounded as n runs over N.
This proves the claim.

By Theorem 2 we have that θ(C0) contains a point of θ(Λ) in its relative interior and
hence C0 contains a point of Λ (necessarily an integer point) in its relative interior. We
conclude that C also contains an integer point in its relative interior. J

We summarise Sections 3 and 4 with a theorem characterising when a loop with a single
guard is terminating.

I Theorem 14. The loop P, given in (2), is non-terminating on Zd if and only if there
exists z ∈ Zd and an ≈-equivalence class E such that (i) E is dominating for z and
(ii) inf

µ∈T (γ)
ΦE(z,µ) ≥ 0.

Proof. If no such z exists then the loop is terminating by Proposition 9(2). Conversely,
if such a z exists then by Lemma 11 and Proposition 13 there exists z′ ∈ Zd such that

inf
µ∈T (γ)

ΦE(z′,µ) > 0 (and with E still dominating for z′.) Such a point is eventually

non-terminating by Proposition 9(1). J

We postpone the question of the effectiveness of the above characterisation until we
handle loops with multiple guards, in Section 5.

2 The above argument actually establishes that 〈xn : n ∈ N〉 diverges to infinity in absolute value. We
briefly sketch a more elementary proof of mere unboundedness. If the sequence 〈xn : n ∈ N〉 were
bounded then by van der Waerden’s Theorem, for all m it would contain a constant subsequence of the
form x`, x`+p, . . . , x`+mp for some `, p ≥ 1. In particular, if m = d then since every infinite subsequence
yn := x`+pn satisfies a linear recurrence of order at most d + 1, 〈xn : n ∈ N〉 would have an infinite
constant subsequence 〈x`+pn : n ∈ N〉. If p = 1 then 〈xn : n ∈ N〉 is constant and if p > 1 then by [23,
Lemma 9.11] 〈xn : n ∈ N〉 is degenerate.
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5 Multiple Guards

Now we are ready to present our decision procedure for a general linear loop program

Q : while (g1(x) > 0 ∧ . . . ∧ gm(x) > 0) do x := f(x) , (11)

with multiple guards. Associated to the loop Q we consider m single-guard loops with a
common update function:

Qi : while (gi(x) > 0) do x := f(x) ,

for i = 1, . . . ,m. Clearly Q is non-terminating if and only if there exists z ∈ Zd such that
each loop Qi is non-terminating on z. As we now explain, we can decide the existence of
such a point following the proof of Theorem 14.

Let λ1, . . . , λs be the distinct non-zero eigenvalues of the matrix corresponding to the
update function f in the loop Q. As before, write γj = λj

|λj | for j = 1, . . . , s. For i = 1, . . . ,m,
denote by Φ(i)

E : Rd × T (γ)→ R the function associated to loop Qi and ≈-equivalence class
E as defined by (4). Given ≈-equivalence classes E1, . . . , Em, we define WE1,...,Em

⊆ Rd to
be the set of γ ∈ Rd such that the following hold for i = 1, . . . ,m:

Ei is dominant for x in loop Qi, that is, Φ(i)
Ei

(x, ·) 6≡ 0 and Φ(i)
E (x, ·) ≡ 0 for all Ei ≺ E.

inf
µ∈T (γ)

Φ(i)
Ei

(x,µ) ≥ 0.

I Proposition 15. Loop Q is non-terminating if and only if there exist ≈-equivalence classes
E1, . . . , Em such that WE1,...,Em

contains an integer point.

Proof. Suppose that Q fails to terminate on z ∈ Zd. Then each loop Qi also fails to terminate
on z ∈ Zd. Thus if Ei is the dominant equivalence class for z in program Qi, for i = 1, . . . ,m,
applying Proposition 9(2) we get that z ∈WE1,...,Em

.
Conversely, suppose z ∈WE1,...,Em

for some ≈-equivalence classes E1, . . . , Em. Then, by
Lemma 11 and Proposition 13, there is an integer point z′ ∈ conv({fn(z) : n ≥ d}) such that

inf
µ∈T (γ)

Φ(i)
Ei

(z′,µ) > 0 for i = 1, . . . ,m. By Proposition 9(1), each loop Qi fails to terminate

on z′ and hence also Q is non-terminating on z′. J

Proposition 15 leads to the following procedure for deciding termination of a given linear
loop Q, as shown in (11).
1. Compute the eigenvalues of the matrix corresponding to the loop update function, as

given in (1).
2. Compute the dominance preorder 4 among eigenvalues.
3. Compute a basis of the group of multiplicative relations L(γ).
4. Return “non-terminating” if some set WE1,...,Em

contains an integer point and otherwise
return “terminating”.

In terms of effectiveness, Steps 1 and 2 can be accomplished via standard symbolic
computations with algebraic numbers. (We refer to [18] for a detailed treatment in a very
similar setting.) By Theorem 4, computing a basis of L(γ) reduces to checking a finite
collection of multiplicative relations among algebraic numbers. Given a basis of L(γ) we
can directly obtain representations of each set WE1,...,Em

as semi-algebraic subsets of Rd.
Finally, since WE1,...,Em

is convex, we can decide the existence of an integer point in each
set WE1,...,Em

using Theorem 3.
We have thus established the main result of the paper:

I Theorem 16. There is a procedure to decide termination of single-path linear loops (of
the form specified in (11)) over the integers.
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Abstract
We study countably infinite Markov decision processes with Büchi objectives, which ask to visit a
given subset F of states infinitely often. A question left open by T.P. Hill in 1979 [10] is whether
there always exist ε-optimal Markov strategies, i.e., strategies that base decisions only on the current
state and the number of steps taken so far. We provide a negative answer to this question by
constructing a non-trivial counterexample. On the other hand, we show that Markov strategies with
only 1 bit of extra memory are sufficient.
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1 Introduction

Background. Markov decision processes (MDPs) are a standard model for dynamic systems
that exhibit both stochastic and controlled behavior [16]. MDPs play a prominent role in
numerous domains, including artificial intelligence and machine learning [19, 18], control
theory [4, 1], operations research and finance [5, 17], and formal verification [9, 2]. In an
MDP, the system starts in the initial state and makes a sequence of transitions between
states. Depending on the type of the current state, either the controller gets to choose
an enabled transition (or a distribution over transitions), or the next transition is chosen
randomly according to a defined distribution. By fixing a strategy for the controller, one
obtains a probability space of runs of the MDP. The goal of the controller is to optimize the
expected value of some objective function on the runs.

The type of strategy needed for an optimal (resp. ε-optimal) strategy for some objective
is also called the strategy complexity of the objective. There are different types of strategies,
depending on whether one can take the whole history of the run into account (history-
dependent; (H)), or whether one is limited to a finite amount of memory (finite memory;
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(F)) or whether decisions are based only on the current state (memoryless; (M)). Moreover,
the strategy type depends on whether the controller can randomize (R) or is limited to
deterministic choices (D). The simplest type MD refers to memoryless deterministic strategies.
Markov strategies are strategies that base their decisions only on the current state and the
number of steps in the history or the run. Thus they do use infinite memory, but only in
a very restricted form by maintaining an unbounded step-counter. For finite MDPs, there
exist optimal MD-strategies for many (but not all) objectives [6, 7, 8, 16], but the picture is
more complex for countably infinite MDPs [13, 15, 16].

We study here so-called Goal objectives defined via a subset of goal states F : In the basic
Goal objective (also called the Reachability objective) one simply wants to reach the set F .
In the Büchi objective one wants to visit the set F infinitely often. For finite MDPs there
exist optimal MD-strategies for both these objectives [7, 16]. For countably infinite MDPs,
optimal strategies (where they exist) and ε-optimal strategies for Reachability can be chosen
MD [15, 16]. Similarly, optimal strategies for Büchi (where they exist) can be chosen MD
[13]. However, ε-optimal strategies for Büchi require infinite memory (cannot be chosen FR);
cf. [13, 14].

s0 s1 · · · si · · ·

r0 r1 · · · ri · · ·

⊥

1 1
2

1
2i

1
2

1− 1
2i

1

(a) Finitely branching, but infinitely many controlled
states.

s0

r0 r1 · · · ri · · ·

⊥

1 1
2

1
2i

1
2

1− 1
2i

1

(b) Infinitely branching, but just one con-
trolled state.

Figure 1 Two MDPs where ε-optimal strategies for Büchi require infinite memory. Let F = {s0}
be the set of goal states. Here and throughout the paper we indicate goal states by double borders,
and controlled states as rectangles.

I Example 1. Consider the MDPs in Figure 1. Every finite memory (FR) strategy will only
attain probability 0 for Büchi in these examples [13]. However, there exists an ε-optimal
Markov strategy for every ε > 0: At the i-th time that state s0 is visited, pick the successor
state ri+k where k is some sufficiently large number depending on ε, e.g., k = dlog2(1/ε)e.
For example (b) this can easily be done with a step-counter since s0 is visited for the i-th
time in step 2(i− 1) unless the system has reached the state ⊥. For example (a), under this
strategy, state s0 is visited for the i-th time in step

∑i−1
j=1(k + j + 1) unless the system has

reached the state ⊥. J

I Example 2. Consider the MDP from Figure 2, taken from [11, Example 4.2]. Every
FR-strategy attains only probability 0 of Büchi. Moreover, the strategy that, in state s0,
subsequently picks r1, r2, . . . also attains probability 0, unlike in Example 1. But a different
infinite-memory strategy achieves a positive probability. Indeed, let σ be the strategy that,
in s0, picks 21 times r1 and then 22 times r2 and . . . 2i times ri etc. This strategy σ achieves
a positive probability of Büchi. (In more detail, σ achieves a positive probability of not falling
in a losing sink ⊥, and in almost all of the remaining runs it visits a goal state infinitely
often.) Note that σ is a Markov strategy. J
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s0

r1 r2 · · · ri · · ·

g1 g2 gi⊥ ⊥ ⊥

2−1 2−2 2−i3−1 3−2 3−i

1 1 1

p1 p2 pi

Figure 2 An MDP where ε-optimal strategies for Büchi require infinite memory. The transition
probability pi stands for 1− 2−i − 3−i. The state s0 is the only controlled state.

The open problem. While the MDPs in Examples 1 and 2 require infinite memory, Markov
strategies suffice for them. Such examples led to the question whether there always exists a
family of ε-optimal Markov strategies for Büchi in all countably infinite MDPs.

A partial answer was given by Hill [10] (Proposition 5.1), who showed that ε-optimal
Markov strategies for Büchi exist in the special case where the MDP contains only a finite
number of controlled states. This result applies to the MDPs from Example 2 and Figure 1b),
but not directly to the one in Figure 1a).

The question for general MDPs was stated as an open problem in [10] (p.158, l.4) and
mentioned again in [11] (Q1 in Section 5).

Our contributions. We provide a negative answer to the open problem. We construct a
non-trivial example of a countable acyclic and finitely branching MDP and prove that no
ε-optimal Markov strategies for Büchi exist for it (for any ε < 1). In combination with the
example from Figure 1, this shows that for general MDPs neither finite memory (FR) nor
Markov strategies are sufficient.

Secondly, we provide an upper bound on the strategy complexity of Büchi. We show that
for acyclic countable MDPs there always exist ε-optimal strategies that are deterministic
and use only one bit of memory. Since every MDP can be transformed into an acyclic one
by encoding a step-counter into the states, it follows that general countable MDPs have
ε-optimal strategies for Büchi that are deterministic and use only a step-counter plus one
extra bit of memory. Thus Markov strategies are almost, but not quite, sufficient. Table 1
summarizes these results.

Table 1 Existence of various types of ε-optimal strategies for the Büchi objective, for several
classes of MDPs. New results are in boldface.

ε-optimal strategy for Büchi MD 1-bit D FR Markov Markov+1 bit D
Finite MDP X X X X X

MDP w. finitely many controlled states × × × X X

Acyclic MDP × X X × X

General MDP × × × × X
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2 Preliminaries

A probability distribution over a countable set S is a function f : S → [0, 1] with
∑
s∈S f(s) = 1.

We write D(S) for the set of all probability distributions over S.
For a set S we write S∗ (resp. Sω) for the set of all finite (resp. infinite) sequences of

elements in S. We use slightly generalized regular expressions for sets of sequences, e.g., if
s0 ∈ S we may write s0S

ω for the set of infinite sequences starting with s0.

Markov decision processes. A Markov decision process (MDP) M = (S, S2, S#,−→, P )
consists of a countable set S of states, which is partitioned into a set S2 of controlled
states and a set S# of random states, a transition relation −→ ⊆ S × S, and a probability
function P : S# → D(S). We write s−→s′ if (s, s′) ∈ −→, and refer to s′ as a successor
of s. We assume that every state has at least one successor. The probability function P
assigns to each random state s ∈ S# a probability distribution P (s) over its (non-empty) set
of successor states. A sink in M is a subset T ⊆ S closed under the −→ relation, that is,
s ∈ T and s−→s′ implies that s′ ∈ T .

An MDP is acyclic if the underlying directed graph (S,−→) is acyclic, i.e., there is no
directed cycle. It is finitely branching if every state has finitely many successors and infinitely
branching otherwise. An MDP without controlled states (S2 = ∅) is called a Markov chain.

Strategies and Probability Measures. A run ρ is an infinite sequence s0s1 · · · of states
such that si−→si+1 for all i ∈ N; write ρ(i) def= si for the i-th state along ρ. A partial run is
a finite prefix of a run. We say that (partial) run ρ visits s if s = ρ(i) for some i, and that ρ
starts in s if s = ρ(0).

A strategy is a function σ : S∗S2 → D(S) that assigns to partial runs ρs ∈ S∗S2 a
distribution over the successors {s′ ∈ S | s−→s′}. The set of all strategies inM is denoted
by ΣM (we omit the subscript and write Σ if M is clear from the context). A (partial)
run s0s1 · · · is induced by strategy σ if for all i either si ∈ S2 and σ(s0s1 · · · si)(si+1) > 0,
or si ∈ S# and P (si)(si+1) > 0.

An MDP M = (S, S2, S#,−→, P ), an initial state s0 ∈ S, and a strategy σ induce a
probability space in which the outcomes are runs starting in s0 and with measure PM,s0,σ

defined as follows. It is first defined on cylinders s0s1 . . . snS
ω, where s1, . . . , sn ∈ S: if

s0s1 . . . sn is not a partial run induced by σ then PM,s0,σ(s0s1 . . . snS
ω) def= 0. Otherwise,

PM,s0,σ(s0s1 . . . snS
ω) def=

∏n−1
i=0 σ̄(s0s1 . . . si)(si+1), where σ̄ is the map that extends σ by

σ̄(ws) = P (s) for all ws ∈ S∗S#. By Carathéodory’s theorem [3], this extends uniquely to a
probability measure PM,s0,σ on the Borel σ-algebra F of subsets of s0S

ω. Elements of F ,
i.e., measurable sets of runs, are called events or objectives here. For X ∈ F we will write
X

def= s0S
ω \X ∈ F for its complement and EM,s0,σ for the expectation w.r.t. PM,s0,σ. We

drop the indices wherever possible without introducing ambiguity.

Strategy Classes. Strategies are in general randomized (R) in the sense that they take
values in D(S). A strategy σ is deterministic (D) if σ(ρ) is a Dirac distribution for all
runs ρ ∈ S∗S2.

We formalize the amount of memory needed to implement strategies. Let M be a countable
set of memory modes, and let τ : M× S → D(M× S) be a function that meets the following
two conditions: for all modes m ∈ M,

for all controlled states s ∈ S2, the distribution τ(m, s) is over M× {s′ | s−→s′}.
for all random states s ∈ S#, we have

∑
m′∈M τ(m, s)(m′, s′) = P (s)(s′).
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The function τ together with an initial memory mode m0 induce a strategy στ : S∗S2 →
D(S) as follows. Consider the Markov chain with the set M× S of states and the probability
function τ . A sequence ρ = s0 · · · si corresponds to a set H(ρ) = {(m0, s0) · · · (mi, si) |
m0, . . . ,mi ∈ M} of runs in this Markov chain. Each ρs ∈ s0S

∗S2 induces a probability distri-
bution µρs ∈ D(M), the probability of being in state (m, s) conditioned on having taken some
partial run from H(ρs). We define στ such that στ (ρs)(s′) =

∑
m,m′∈M µρs(m)τ(m, s)(m′, s′)

for all ρs ∈ S∗S2 and all s′ ∈ S.
We say that a strategy σ can be implemented with memory M if there exist m0 ∈ M and

τ such that στ = σ. We define certain classes of strategies:
A strategy σ is finite memory (F) if there exists a finite memory M implementing σ.
A strategy σ is memoryless (M) (also called positional) if it can be implemented with a
memory of size 1. We may view M-strategies as functions σ : S2 → D(S).
A strategy σ is 1-bit if it can be implemented with a memory of size 2. Such a strategy is
then determined by a function τ : {0, 1} × S → D({0, 1} × S). Intuitively τ uses one bit
of memory to capture two different modes.
A strategy σ is Markov if it can be implemented with the natural numbers N as the
memory, and a function τ such that the distribution τ(m, s) is over {m + 1} × S for all
m ∈ M and s ∈ S. Intuitively, such a strategy depends only on the the current state and
the number of steps taken so far, i.e., it has access to a step-counter. We view Markov
strategies as functions σ : N × S2 → D(S). Note that such a strategy is generally not
finite memory.
A strategy σ is 1-bit Markov if it can be implemented with N×{0, 1} as the memory, and a
function τ such that the distribution τ(n, b, s) is over {n+1}×{0, 1}×S for all (n, b) ∈ M
and s ∈ S. We view such strategies as functions σ : N× {0, 1} × S2 → D({0, 1} × S).

Payoffs, Values, Optimality. We are interested in strategies to maximize the expectation
of a given measurable payoff function f : Sω → R, a random variable that assigns a real
value to every run. The value of state s (w.r.t. f) is the supremum of expected values of f
over all strategies:

valM,f (s) def= sup
σ∈Σ
EM,s,σ(f),

For ε ≥ 0 and s ∈ S, we say that a strategy σ is ε-optimal iff EM,s,σ(f) ≥ valM,f (s) − ε
and uniformly ε-optimal iff this holds for every s ∈ S. A (uniformly) 0-optimal strategy is
simply called (uniformly) optimal.

In this paper, we will need two types of payoff functions. The first is the total reward,
a random variable given as f(ρ) def=

∑∞
t=0 r(ρ(t)), where r : S → R is some given reward

function. A useful fact [16, Theorem 7.1.9] is that if S is finite and the range of r is bounded
then there exist optimal strategies (for total reward) which are memoryless and deterministic.

The second type of payoff functions we consider are those with range {0, 1}. Each
such payoff function f uniquely identifies an objective (set of runs) ϕ by viewing f as the
characteristic function of ϕ, i.e., f(ρ) = 1 if ρ ∈ ϕ and 0 otherwise. Then EM,s,σ(f) =
PM,s,σ(ϕ). We call this the probability of achieving ϕ (using strategy σ starting from the
state s) and simply write valM,ϕ(s) = valM,f (s) = supσ∈Σ PM,s,σ(ϕ).

Our main focus are reachability (sometimes also called goal) and Büchi objectives, which
are determined by a set of states F ⊆ S and defined as follows. Let us slightly abuse notation
and identify F with its characteristic function, i.e., F (s) = 1 if s ∈ F .

The reachability objective is to visit F at least once during a run. The corresponding
payoff is f(ρ) def= maxt∈N ρ(t), and we define Goal(F ) def= {ρ ∈ Sω | maxt∈N F (ρ(t)) = 1};
The Büchi objective is to visit F infinitely often. The corresponding payoff function is
f(ρ) def= lim supt→∞ F (ρ(t)), and we let Büchi(F ) def= {ρ ∈ Sω | lim supt→∞ F (ρ(t)) = 1}.

ICALP 2019
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3 The Lower Bound

In this section we solve Hill’s problem ([10] and [11, Q1]) by exhibiting an MDP where the
initial state has value 1 w.r.t. the Büchi objective, but every Markov strategy achieves this
objective with probability 0. As explained in the introduction, it follows that in acyclic
MDPs, ε-optimal MR-strategies are not guaranteed to exist. In fact, in the following theorem
we prove the latter fact first, and subsequently generalize it to solve Hill’s problem.

I Theorem 3. There exists an acyclic MDPM, a state s0 and a set of states F such that
1. for every Markov strategy σ, we have PM,s0,σ(Büchi(F )) = 0, and
2. valBüchi(F )(s0) = 1 and for every ε > 0 there exists a deterministic 1-bit strategy σε s.t.
PM,s0,σε

(Büchi(F )) ≥ 1− ε.

In the remainder of this section we provide a proof sketch. The full proof is in [12].

Proof sketch for Theorem 3. Our construction is based on an infinite MDPM that consists
of a chain of height-n trees, Tn, for n ∈ N = {1, 2, . . .}. Figure 3 depicts its initial segment
T 1, T 2, T 3. Each such tree is “rooted” at a brown state on the top level, with a transition
incoming from a blue state. We make use of some conventions that simplify the presentation
and the analysis. In Figure 3, the different colors of the states highlight the structure of the
MDP; the colors are also indicated by letters in the states: blue (L), brown (B), yellow (Y),
red (R), green (G), white (W). The start state, s0, is the blue state in the top-left corner.
The controlled states are exactly the yellow states. The goal set F consists of the green
states at the bottom. Two transitions emanate from each red state: a black (right) transition
and a red (left) transition, both leading to the same (brown or green) state.

We consider the strengthened Büchi objective that asks to see F infinitely often and
moreover that no red transition is taken. This corresponds exactly to the normal Büchi
objective if we redirect every red transition to an infinite (losing) chain of non-green states
(not depicted in Figure 3).

We first argue that no MR-strategy achieves a positive probability of that objective.
Then we show that the MDP M can be modified so that no Markov strategy achieves a
positive probability.

Intuition behind the construction of M. The objective, say ϕ, of visiting infinitely many
green states and no red transition creates tension between trying to visit green states and
avoiding too many red states (the latter states incur a risk of taking a red transition). In the
proof we need to show that no memoryless strategy strikes a good balance between these
competing goals. On the one end of the spectrum, an MR-strategy might always choose
the upward transition in the yellow states (which are the only controlled states). But such
a strategy never visits any green state, thus clearly violates ϕ. On the other end of the
spectrum lies the “greedy” MR-strategy, which always chooses the downward transition in
the yellow states, in order to visit as many green states as possible. Indeed, under this
strategy, let un denote the probability that, starting in the top-left brown state of Tn, no
green state is visited in Tn. By induction (given in [12]) one can show that there is u < 1
such that un ≤ u holds for all n. Considering the probability of the transitions emanating
from the blue states (at the top), the expected overall number of visited green states is at
least

∑∞
n=1

1
n (1− un) ≥ (1− u)

∑∞
n=1

1
n =∞. It is not hard to strengthen this statement

so that the greedy strategy almost surely visits infinitely many green states. So the greedy
strategy satisfies one part of ϕ, but it does so at the expense of visiting many red states.
Red states though are associated with a risk of taking a red transition, and it follows from
the proof in [12] that the greedy strategy almost surely ends up taking at least one (and
indeed infinitely many) red transition(s).
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Good 1-bit strategies. The two competing goals discussed in the previous paragraph can
be balanced using a deterministic 1-bit strategy, which we describe in the following. This
strategy, σ1, sets its bit to 0 whenever a blue state (at the top) is entered. While the bit
is 0, in each tree Tn it maximizes the probability of visiting a green state by choosing
the downward transition in the yellow states, thus accepting a certain risk of taking a red
transition. However, if and when a green state in Tn is visited, the bit is set to 1, and for the
remaining sojourn in Tn the strategy σ1 chooses the upward transitions in the yellow states,
thus avoiding any risk of a red transition in the remainder of Tn. Although σ1 appears
to visit fewer green states than the aforementioned “greedy” MR-strategy, σ1 still visits
infinitely many green states almost surely. This is because for each tree Tn, the two strategies
have the same probability of visiting at least one green state in Tn. The strategy σ1 can be
improved, for each ε > 0, to achieve ϕ with probability at least 1− ε, by fixing the bit to 1
in the first k trees T 1, . . . , T k, for a k that depends on ε. Thus the first k trees are virtually
skipped, eliminating the risk of taking any red transition there. In this way one can make
the risk of taking a red transition arbitrarily small, while still visiting infinitely many green
states with probability 1.

No good MR-strategies. We need to show that not only the extreme MR-strategies
described above are inadequate but that every MR-strategy achieves ϕ with probability 0.
To this end, for each tree Tn, define two probabilities:

tn (for “total success”): the probability that, starting in the top-left brown state of Tn,
at least one green state but no red transition is visited in Tn;
dn (for “death”): the probability that, starting in the top-left brown state of Tn, a red
transition is visited in Tn.

A very technical proof shows that dn ≥ 0.008 · tn holds for all n, and this key inequality
captures the inability of any MR-strategy to strike an adequate balance between the mentioned
competing goals. Indeed, one can show that for an MR-strategy to have a positive probability
of not visiting any red transition, the series

∑∞
n=1

1
n · dn needs to converge; but to have a

positive probability of visiting infinitely many green states, the series
∑∞
n=1

1
n · tn needs to

diverge (in both cases, the factor 1
n is the probability of visiting the top-left brown node

of Tn). By the inequality above, this is impossible.

No good Markov strategies. For the proof of Theorem 3, we also need to show that all
Markov strategies achieve probability 0. To this end, we modify the MDPM so that for
each state, all paths from the initial state s0 to s have the same length. This can be achieved
by replacing some transitions inM by longer chains consisting of non-green states. This
modification does not change the fact that MR-strategies achieve probability 0. But since in
the new MDP each state can only be visited at a certain time, which is known a priori, a
step-counter does not help. Hence all Markov strategies, like MR-strategies, achieve ϕ with
probability 0. J

Theorem 3 answers Hill’s question negatively. By combining the MDP from Theorem 3
with one of the MDPs from Figure 1 (by adding a new initial random state that branches
to the MDPs with probability 1

2 each), one can even construct a single MDP whose value
w.r.t. Büchi(F ) is 1, but every FR- and every Markov strategy achieves probability 0.

A slight modification of the example above yields a lower bound on the memory require-
ments for the almost-sure parity objective. Recall that the parity objective is defined on
systems whose states are labeled by a finite set of colors C def= {1, 2, . . . ,max} ⊆ N, where a
run is in Parity(C) iff the highest color that is seen infinitely often in the run is even.



S. Kiefer, R. Mayr, M. Shirmohammadi, and P. Totzke 119:9

I Corollary 4. There exist an acyclic MDPM′ with colors {1, 2, 3} and a state s0 such that
1. for every Markov strategy σ, we have PM′,s0,σ(Parity({1, 2, 3})) = 0, and
2. there exists a deterministic 1-bit strategy σ′ such that PM′,s0,σ′(Parity({1, 2, 3})) = 1.

Proof. We obtainM′ by modifying the MDPM from Theorem 3 as follows. Label all green
states in F by color 2 and the rest by color 1. Then modify each red transition to go to its
target via a fresh state labeled by color 3. ClearlyM′ is still acyclic and labeled by colors
{1, 2, 3}.

From the proof of Theorem 3 (1), under every Markov strategy inM a.s. seeing infinitely
many green states (in F ) implies seeing infinitely many red transitions. So in M′ every
Markov strategy σ a.s. either sees color 2 only finitely often or color 3 infinitely often, thus
PM′,s0,σ(Parity({1, 2, 3})) = 0.

From the proof of Theorem 3 (2), there is a deterministic 1-bit strategy σ in M that
attains probability ≥ 1/2 for Büchi(F ) without taking any red transition and otherwise
a.s. takes a red transition. This property of σ holds not only when starting from s0 but
from every other state as well. We obtain σ′ inM′ by continuing to play σ even after red
transitions have been taken. Under σ′ the probability of going through infinitely many red
transitions (and seeing color 3) is ≤ (1/2)∞ = 0, and the probability of seeing infinitely many
states in F (with color 2) is 1. Thus PM′,s0,σ′(Parity({1, 2, 3})) = 1. J

4 The Upper Bound

We show that acyclic MDPs admit ε-optimal deterministic 1-bit strategies for Büchi.
We start by giving some intuition why 1 bit of memory is needed and how it is used. A

step s′−→s′′ from some controlled state s′ is value-decreasing iff val(s′′) < val(s′). While
an optimal strategy can never tolerate any value-decreasing step, an ε-optimal strategy
might have to take value-decreasing steps infinitely often. The trick is to keep the collective
value-loss sufficiently small (≤ ε), while satisfying the other requirements of the objective.
So the strategy needs to play “ever better” (i.e., tolerate only smaller and smaller value
decreases) along a run. In general this requires infinite memory, since one might re-visit
the same state infinitely often and needs to choose a different transition from it every time;
cf. Figure 1. However, in an acyclic MDP, with high probability, the distance to the initial
state increases with the number of steps taken. Thus one can partition the state space into
separate regions, depending on the distance from the initial state, and fix an acceptable rate
of value-decrease for each region. Just limiting the collective value-loss is not sufficient for
Büchi, one also needs to make progress and visit the set of goal states F at least once in
each region. The problem is that some runs might linger in some region too long, and visit
F many times, but see too many value-decreasing steps at the rate of this region. Therefore,
as soon as one has visited F in some region, one should try to get to the next outer region
(further away from the initial state) where the rate of value-loss is smaller. Thus one needs 1
bit of memory to record whether one has already seen F in this region. (Remember that
the same state can be reached by different runs with different histories.) Just 1 bit suffices,
because the probability of returning to a previous inner region (and misinterpreting the bit)
can be made arbitrarily small, since the MDP is acyclic.

I Theorem 5. For every acyclic countable MDP M, finite set of initial states I, set of
states F and ε > 0, there exists a deterministic 1-bit strategy for Büchi(F ) that is ε-optimal
from every s ∈ I.

ICALP 2019



119:10 Büchi Objectives in Countable MDPs

Proof. LetM = (S, S2, S#,−→, P ) be an acyclic MDP, I ⊆ S a finite set of initial states
and F ⊆ S a set of goal states and ϕ def= Büchi(F ) denote the Büchi objective w.r.t. F . We
prove the claim for finitely branchingM first and transfer the result to general MDPs at the
end. For every ε > 0 and every s ∈ I there exists an ε-optimal strategy σs such that

PM,s,σs
(ϕ) ≥ valM,ϕ(s)− ε. (1)

However, the strategies σs might differ from each other and might use randomization and a
large (or even infinite) amount of memory. We will construct a single deterministic strategy
σ′ that uses only 1 bit of memory such that ∀s∈I PM,s,σ′(ϕ) ≥ valM,ϕ(s)− 2ε. This proves
the claim as ε can be chosen arbitrarily small.

In order to construct σ′, we first observe the behavior of the finitely many σs for s ∈ I
on an infinite, increasing sequence of finite subsets of S. Based on this, we define a second
stronger objective ϕ′ with

ϕ′ ⊆ ϕ, (2)

and show that all σs attain at least valM,ϕ(s)− 2ε w.r.t. ϕ′, i.e.,

∀s∈I PM,s,σs(ϕ′) ≥ valM,ϕ(s)− 2ε. (3)

We construct σ′ as a deterministic 1-bit optimal strategy w.r.t. ϕ′ from all s ∈ I and obtain

PM,s,σ′(ϕ) ≥ PM,s,σ′(ϕ′) by (2)
≥ PM,s,σs

(ϕ′) by optimality of σ′ for ϕ′

≥ valM,ϕ(s)− 2ε by (3).

Informal outline: Behavior of σs, objective ϕ′ and properties (2) and (3). For the formal
proof see [12].

Let bubblek(I) be the set of states that can be reached from some initial state in I within
at most k steps. Since I is finite andM is finitely branching, bubblek(I) is finite for every k.

We define a sequence of sufficiently large and increasing numbers ki and li with ki <
li < ki+1 for i ∈ N and finite sets Ki

def= bubbleki
(I) and Li

def= bubbleli(I). Every run from a
s ∈ I according to σs must eventually leave each of these finite sets, becauseM is acyclic.
Moreover, we choose these numbers so that once a run has left Li it is very unlikely to return
to Ki. Let Fi

def= F ∩Ki \ Li−1. Runs according to σs are very likely to follow a particular
pattern. Let R1

def= (K1 \F1)∗F1, R2
def= (K2 \F2)∗F2 and Ri+1

def= (Ki+1 \(Fi+1∪Ki−1))∗Fi+1
for i ≥ 2. We show that

∀s∈I PM,s,σs(ϕ ∩R1R2 . . . Ri+1(S \Ki)ω) ≤ ε (4)

We now define the Borel objectives R≤i
def= R1R2 . . . RiS

ω and ϕ′
def=

⋂
i∈NR≤i. Since

Fi ∩ Fk = ∅ for i 6= k and ϕ′ implies a visit to the set Fi for all i ∈ N, we have ϕ′ ⊆ ϕ and
obtain (2). Using (4), we show that ∀s∈I PM,s,σs

(ϕ′) ≥ valM,ϕ(s)− 2ε and thus obtain (3).

Definition of the 1-bit strategy σ′. We now define a deterministic 1-bit strategy σ′ that
is optimal for objective ϕ′ from every s ∈ I. First we define certain “suffix” objectives of ϕ′.
Recall that Ri = (Ki \ (Fi ∪Ki−2))∗Fi. Let Ri,j

def= RiRi+1 . . . RjS
ω and R≥i

def=
⋂
j≥iRi,j .

Consider the objectives R≥i+1 for runs that start in states s′ ∈ Fi. For every state s′ ∈ Fi
we consider its value w.r.t. the objective R≥i+1, i.e., valM,R≥i+1(s′) def= supσ̂ PM,s′,σ̂(R≥i+1).
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For every i ≥ 1 we consider the finite subspace Ki \ Ki−2. In particular, it contains the
sets Fi−1 and Fi. We define a bounded total reward objective Bi for runs starting in Fi−1
as follows. Runs that exit the subspace (either by leaving Ki or by visiting Ki−2) before
visiting Fi get reward 0. All other runs must visit Fi eventually (sinceM is acyclic and the
subspace is finite). When some run reaches the set Fi for the first time in some state s′ then
this run gets the reward of valM,R≥i+1(s′). Using [16, Theorem 7.1.9], we show that there
exists a uniform optimal MD-strategy σi for Bi on Ki \Ki−2 inM.

We now define σ′ by combining different MD-strategies σi, depending on the current
state and on the value of the 1-bit memory. The intuition is that the strategy σ′ has two
modes: normal-mode and next-mode. In a state s′ ∈ Ki \Ki−1, if the memory is i (mod 2)
then the strategy is in normal-mode and plays towards reaching Fi. Otherwise, the strategy
is in next-mode and plays towards reaching Fi+1.

Initially σ′ starts in a state s ∈ I with the 1-bit memory set to 1. We define the behavior
of σ′ in a state s′ ∈ Ki \Ki−1 for every i ≥ 1. If the 1-bit memory is i (mod 2) and s′ /∈ Fi
then σ′ plays like σi. (Intuitively, one plays towards Fi, since one has not yet visited it.) If
the 1-bit memory is i (mod 2) and s′ ∈ Fi then the 1-bit memory is set to (i+ 1) (mod 2),
and σ′ plays like σi+1. (Intuitively, one records the fact that one has already seen Fi and
then targets the next set Fi+1.) If the 1-bit memory is (i + 1) (mod 2) then σ′ plays like
σi+1. (Intuitively, one plays towards Fi+1, since one has already visited Fi.)

· · ·
K1 L1 K2 L2 K3

π3

π2

π1

I

Figure 4 Memory updates along runs π1, π2, π3, drawn in blue while the memory-bit is one and
in red while the bit is zero. The green region in K1 is F1, and for all i ≥ 2, the green region in
Ki \ Li−1 is Fi. Both π1 and π3 violate ϕ′ and are drawn as dotted lines once they do.

Observe that if a run according to σ′ exits some set Ki (and thus enters Ki+1 \Ki) with
the bit still set to i (mod 2) (normal-mode) then this run has not visited Fi and thus does
not satisfy the objective ϕ′. (Or the same has happened earlier for some j < i, in which
case also the objective ϕ′ is violated.) An example is the run π1 in Figure 4. However, if a
run according to σ′ exits some set Ki (and thus enters Ki+1 \Ki) with the bit set to (i+ 1)
(mod 2) (thus σi+1 in next-mode) then in the new set Ki′ \Ki′−1 with i′ = i + 1 the bit
is set to i′ (mod 2) and σ′ continues to play like σi+1 in normal-mode. Even if this run
returns (temporarily) to Ki (but not to Ki−1) the strategy σ′ continues to play like σi+1 in
next-mode. An example is the run π2 in Figure 4. Finally, if a run returns to Ki−1 after
having visited Fi then it fails the objective ϕ′, e.g., run π3 in Figure 4.
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The 1-bit strategy σ′ is optimal for ϕ′ from every s ∈ I. Let s ∈ I be arbitrary. For a
given run from s, let firstin(Fi) be the first state s′ in Fi that is visited (if any). We define a
bounded reward objective B′i for runs starting at s as follows. Every run that does not satisfy
the objective R≤i gets assigned reward 0. Otherwise, consider a run from s that satisfies
R≤i. When this run reaches the set Fi for the first time in some state s′ then this run gets a
reward of valM,R≥i+1(s′). Note that this reward is ≤ 1.

We show that for all i ∈ N

valM,ϕ′(s) = valM,B′
i
(s) (5)

Towards the ≥ inequality, let σ̂ be an ε̂-optimal strategy for B′i from s. We define the strategy
σ̂′ to play like σ̂ until a state s′ ∈ Fi is reached and then to switch to some ε̂-optimal strategy
for objective R≥i+1 from s′. Every run from s that satisfies ϕ′ can be split into parts, before
and after the first visit to the set Fi, i.e., ϕ′ = {w1s

′w2 | w1s
′ ∈ R≤i, s′ ∈ Fi, s′w2 ∈ R≥i+1}.

Therefore we obtain that PM,s,σ̂′(ϕ′) ≥ EM,s,σ̂(B′i)− ε̂ ≥ valM,B′
i
(s)− 2ε̂. Since this holds

for every ε̂ > 0, we obtain valM,ϕ′(s) ≥ valM,B′
i
(s).

Towards the ≤ inequality, let σ̂ be any strategy for ϕ′ from s. We have PM,s,σ̂(ϕ′) ≤∑
s′∈Fi

PM,s,σ̂(R≤i ∩ firstin(Fi) = s′) · valM,R≥i+1(s′) = EM,s,σ̂(B′i). Thus valM,ϕ′(s) ≤
valM,B′

i
(s). Together we obtain (5).

For all i ∈ N and every state s′ ∈ Fi we show that

valM,R≥i+1(s′) = valM,Bi+1(s′) (6)

Towards the ≥ inequality, let σ̂ be an ε̂-optimal strategy for Bi+1 from s′ ∈ Fi. We define
the strategy σ̂′ to play like σ̂ until a state s′′ ∈ Fi+1 is reached and then to switch to
some ε̂-optimal strategy for objective R≥i+2 from s′′. We have that PM,s′,σ̂′(R≥i+1) ≥
EM,s′,σ̂(Bi+1) − ε̂ ≥ valM,Bi+1(s) − 2ε̂. Since this holds for every ε̂ > 0, we obtain
valM,R≥i+1(s′) ≥ valM,Bi+1(s′).

Towards the ≤ inequality, let σ̂ be any strategy for R≥i+1 from s′ ∈ Fi. We have

PM,s′,σ̂(R≥i+1) ≤
∑

s′′∈Fi+1

PM,s′,σ̂(Ri+1S
ω ∩ firstin(Fi+1) = s′′) · valM,R≥i+2(s′′)

= EM,s′,σ̂(Bi+1).

Thus valM,R≥i+1(s′) ≤ valM,Bi+1(s′). Together we obtain (6).
We show, by induction on i, that σ′ is optimal for B′i for all i ∈ N from start state s, i.e.,

EM,s,σ′(B′i) = valM,B′
i
(s) (7)

In the base case of i = 1 we have that B′1 = B1. The strategy σ′ plays σ1 until reaching F1,
which is optimal for objective B1 and thus optimal for B′1. For the induction step we assume
(IH) that σ′ is optimal for B′i.

valM,B′
i+1

(s) = valM,B′
i
(s) by (5)

= EM,s,σ′(B′i) by (IH)

=
∑
s′∈Fi

PM,s,σ′(R≤i ∩ firstin(Fi) = s′) · valM,R≥i+1 (s′) by def. of B′i

=
∑
s′∈Fi

PM,s,σ′(R≤i ∩ firstin(Fi) = s′) · valM,Bi+1 (s′) by (6)

=
∑
s′∈Fi

PM,s,σ′(R≤i ∩ firstin(Fi) = s′) · EM,s′,σi+1 (Bi+1) opt. of σi+1 for Bi+1

= EM,s,σ′(B′i+1) by def. of σ′ and B′i+1
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So σ′ attains the value valM,B′
i+1

(s) of the objective B′i+1 from s and is optimal. Thus (7).
Now we show that σ′ performs well on the objectives R≤i for all i ∈ N.

PM,s,σ′(R≤i) ≥ valM,ϕ′(s) (8)

We have

PM,s,σ′(R≤i) ≥ EM,s,σ′(B′i) since B′i gives rewards 0 for runs /∈ R≤i and ≤ 1 otherwise
= valM,B′

i
(s) by (7)

= valM,ϕ′(s) by (5)

So we get (8). Now we are ready to prove the optimality of σ′ for ϕ′ from s.

PM,s,σ′(ϕ′) = PM,s,σ′(∩i∈NR≤i) by def. of ϕ′

= lim
i→∞

PM,s,σ′(R≤i) by continuity of measures from above

≥ lim
i→∞

valM,ϕ′(s) by (8)

= valM,ϕ′(s)

From finitely to infinitely branching MDPs. Encode infinite branching into finite branching
like in Figure 1, apply the above result to obtain a 1-bit strategy for the finitely branching
version, and then transform this strategy back into a 1-bit strategy for the original MDP. J

Now we show our upper bound on the strategy complexity of Büchi for general MDPs.

I Theorem 6. For every countable MDP M, finite set of initial states I, set of states F
and ε > 0, there exists a deterministic 1-bit Markov strategy for Büchi(F ) that is ε-optimal
from every s ∈ I.

Proof. Encode a step-counter into the states to obtain an acyclic MDP, apply Theorem 5 to
obtain an ε-optimal deterministic 1-bit strategy for it, and then transform this strategy back
into an ε-optimal deterministic 1-bit Markov strategy in the original MDP. J
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Abstract
Determinization of Büchi automata is a long-known difficult problem, and after the seminal result of
Safra, who developed the first asymptotically optimal construction from Büchi into Rabin automata,
much work went into improving, simplifying, or avoiding Safra’s construction. A different, less known
determinization construction was proposed by Muller and Schupp. The two types of constructions
share some similarities but their precise relationship was still unclear. In this paper, we shed some
light on this relationship by proposing a construction from nondeterministic Büchi to deterministic
parity automata that subsumes both constructions: Our construction leaves some freedom in the
choice of the successor states of the deterministic automaton, and by instantiating these choices in
different ways, one obtains as particular cases the construction of Safra and the construction of Muller
and Schupp. The basis is a correspondence between structures that are encoded in the macrostates
of the determinization procedures – Safra trees on one hand, and levels of the split-tree, which
underlies the Muller and Schupp construction, on the other hand. Our construction also allows for
mixing the mentioned constructions, and opens up new directions for the development of heuristics.
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1 Introduction

Büchi automata are finite automata for infinite words, and were initially introduced to show
decidability of the logic S1S [2]. Infinite words can be used to model infinite execution
traces of reactive, non-terminating systems, and serve as a translation target from logics
like LTL (see, e.g., [15, 5]), which is a popular and well-understood specification formalism.
For this reason, Büchi automata nowadays play a central role in formal methods like model-
checking [1] and runtime-verification [6], because they can represent all ω-regular languages
and are suitable for efficient algorithmic treatment. Unfortunately, the simplicity of the
Büchi acceptance condition makes it crucially dependent on nondeterminism, i.e., not every
ω-regular language (or LTL formula) can be accepted by a deterministic Büchi automaton
(see, e.g., [16]). In some settings, this nondeterminism causes difficulties, such that algorithms
require a representation of the property by a deterministic automaton, like in probabilistic
model-checking (see, e.g., [1, Section 10.3]), or in synthesis (see [17] for an overview of the
theory, and [9] for recent developments in practice).
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120:2 Determinization of Büchi Automata

A first determinization procedure that translates nondeterministic Büchi automata into
deterministic automata was presented in [8]. The first asymptotically optimal and most
well-known determinization construction for Büchi automata is the construction of Safra
[13]. It translates a nondeterministic Büchi automaton with n states into a deterministic
Rabin automaton with at most 2O(n logn) states and O(n) sets in the acceptance condition.
In applications like synthesis, the deterministic automaton is used to build a game that
inherits as winning condition the acceptance condition of the automaton. In the theory of
infinite duration games, the parity condition plays a central role (see, e.g., the survey [18]).
For this reason, Piterman modified Safra’s construction in order to directly obtain a parity
automaton [11]. This construction was reformulated in [14], where also a tighter analysis
of its state complexity is given with an upper bound of O(n!2) for the number of states. A
similar construction is presented in [12], adapted to the translation of ω-regular expressions
directly into parity automata.

It is known that the Safra construction is essentially optimal [3], so there is no hope of
significantly improving the worst-case upper bounds of the known constructions. However, the
data structure of Safra trees (or history trees) that is used for the states of the deterministic
automata, is challenging to deal with in implementations. Therefore, alternative approaches
for determinization have been studied, leading to a family of constructions that are based
on a construction by Muller and Schupp, which appeared in [10] as a by-product of a
translation from alternating to non-deterministic tree automata. An explicit description of
the construction specifically for determinization of Büchi automata is presented in [7]. A
refinement of that construction is presented in [4], in which the states of the deterministic
automaton are no longer represented as trees but as ordered and labelled tuples of sets.

The two approaches of Safra and Muller-Schupp show some similarities, as pointed out in
the conclusion of [4], but from the existing formulations of the constructions, their precise
relationship is not clear.

In this paper, we provide a construction for transforming nondeterministic Büchi auto-
mata into deterministic parity automata that cleanly explains the connections between the
approaches of Safra and Muller-Schupp. It turns out that both types of constructions can be
formulated on the same data structure, which can either be understood as ordered tuples of
sets in which each set has an additional rank (a natural number), or as Safra trees in which
each node has an additional rank (the same structure is essentially used in the constructions
from [11] and [14]). The transitions are defined in terms of a sequence of simple operations,
and it turns out that the two constructions only differ in one of these operations. In summary,
our contributions are the following:

We provide a new and relatively simple formulation of a Muller-Schupp style determin-
ization construction that yields deterministic parity automata. Compared to previous
constructions from [7] and [4], we encode less information in the states, and obtain a
construction that has the same worst-case upper bound as the Safra style constructions.
We extend our Muller-Schupp style construction by introducing a degree of freedom in
the choice of the successor states. This freedom can be used to make the construction
correspond to Safra’s construction as presented in [11] and [14]. We therefore obtain
a construction that unifies the approaches of Safra and Muller-Schupp in one general
construction. Furthermore, the freedom in the choice of the successors of transitions
also yields new ways of obtaining deterministic parity automata, and can be used in
implementations as a heuristic to reduce the state space of the resulting automaton.

This work is organized as follows. After introducing the basic notations in Section 2, we
present the new variant of the Muller-Schupp construction in Section 3, and then briefly
review Safra’s construction in Section 4. We explain the structural relationship between
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those two constructions in Section 5, and finally introduce our generalized construction as a
simple extension of the presented Muller-Schupp construction in Section 6. In Section 7 we
discuss and conclude.

2 Preliminaries

First we briefly review basic definitions concerning ω-automata and ω-languages. If Σ is
a finite alphabet, then Σω is the set of all infinite words w = w0w1 . . . with wi ∈ Σ. For
w ∈ Σω we denote by w(i) the i-th symbol wi. For convenience, we write [n] for the set
of natural numbers {1, . . . , n}. A Büchi automaton A is a tuple (Q,Σ,∆, Q0, F ), where Q
is a finite set of states, Σ a finite alphabet, ∆ ⊆ Q × Σ ×Q is the transition relation and
Q0, F ⊆ Q are the sets of initial and accepting states, respectively. When Q is understood
and X ⊆ Q, then X := Q \ X. We write ∆(p, x) := {q | (p, x, q) ∈ ∆} to denote the set
of successors of p on symbol x and ∆(P, x) for

⋃
p∈P ∆(p, x). A run of an automaton on a

word w ∈ Σω is an infinite sequence of states q0, q1, . . . starting in some q0 ∈ Q0 such that
(qi, w(i), qi+1) ∈ ∆ for all i ≥ 0. An automaton is deterministic if |Q0| = 1 and |∆(p, x)| ≤ 1
for all p ∈ Q, x ∈ Σ, and non-deterministic otherwise. In this work, we assume Büchi
automata to be non-deterministic and refer to them as NBA. A transition-based deterministic
parity automaton (TDPA) is a deterministic automaton (Q,Σ,∆, Q0, c) where instead of
F ⊆ Q there is a priority function c : ∆→ N assigning a natural number to each transition.

A run of an NBA is accepting if it contains infinitely many accepting states. A run of a
TDPA is accepting if the smallest priority that appears infinitely often on transitions along
the run is even. An automaton A accepts w ∈ Σω if there exists an accepting run on w, and
the language L(A) ⊆ Σω recognized by A is the set of all accepted words. To avoid confusion,
we sometimes refer to states of TDPA that we construct as macrostates to distinguish them
from the states of the underlying Büchi automaton.

3 A Simplified Muller-Schupp Construction

The essential idea for determinization using the Muller-Schupp construction is the following:
given some Büchi automaton A and input word w, the resulting deterministic automaton
conceptually traverses a specific run-tree of A on w, called reduced split-tree in [7], and tracks
enough information to decide whether an infinite path with a specific shape exists in this tree.
Such a path is known to exist if and only if w is accepted by A. The construction presented
in [7] uses a structure called contraction trees in order to track the relevant information.
This has been simplified in [4] to macrostates that consist of an ordered tuple of disjoint sets
of Büchi states, and two preorders over the states appearing in the tuple.

In this section, we further simplify the structure of the macrostates for the deterministic
automaton to ordered tuples of disjoint sets of Büchi states, and a single additional linear
order on these sets (formally expressed as a ranking function that assigns to each set a natural
number). This also results in a relatively simple transition function on the macrostates.

The reduced split-tree trs(A, w) for NBA A and word w ∈ Σω is an ordered infinite tree
in which the nodes are labelled by state-sets, and each node has at most two successors.
Formally, it is constructed as follows. The first level of the tree consists of the root node
labelled by the initial states Q0. To construct level i+ 1 from level i, for each node at level
i labelled by set S of states, let the left child of S be labelled by ∆(S,w(i)) ∩ F and the
right child by ∆(S,w(i))∩F , i.e., accepting and non-accepting successor states are separated.
Then keep only the leftmost (wrt. the natural ordering of neighbors) occurrence of each state
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A :=
q0 q1

q2
a

aa
a a trs(A, aω) :=

{q0}
{q1} {q0}

{q1} {q2} {q0}
{q1} {q2} {q0}

. . .

Figure 1 Example of a reduced split-tree trs(A, aω) of an NBA A. It has an infinite path
representing the run qω

0 and a left-path representing the run q0q
ω
1 , from which finite paths q0q

∗
1q2

branch off.

in the level and finally remove nodes labelled by ∅. Clearly, because of the normalization,
the number of nodes on each level can be at most |Q|. An example of a reduced split-tree is
shown in Figure 1. We call an infinite path in the tree that takes the left branch infinitely
often a left-path. Reduced split-trees have the following useful property:

I Lemma 1 ([7], Lemma 2). A accepts w ⇐⇒ trs(A, w) has a left-path.

In the following, we identify nodes in the same level with their label sets. To obtain a
deterministic automaton, we augment the nodes of the reduced split-tree with number tokens
that we call (age-)ranks, which are used to infer a left-path.

The new macrostates in the deterministic automaton represent levels of reduced split-
trees and consist of a tuple of disjoint non-empty sets t := (S1, S2, . . . , Sn) equipped with a
bijection α : [n]→ [n] satisfying α(n) = 1, which assigns to each set Si the rank α(i). We call
a pair (α, t) that satisfies these constraints ranked slice and we call it pre-slice, if t contains
empty sets or α is not a bijection. Notice that all macrostates are ranked slices, whereas
pre-slices occur only during intermediate steps. We introduce the following useful notations
to work with ranked slices. Let |t| := n and Qt :=

⋃|t|
i=1 Si. The function idx : Qt → [|t|]

maps each state q ∈ Qt to the tuple index i such that q ∈ Si, and by α(q) we denote
α(idx(q)) for q ∈ Qt.

When reading symbol x ∈ Σ in macrostate (α, t), the successor macrostate (α′, t′) is
obtained by a sequence of successive operations step, prune and normalize, where, roughly,

step interprets t as nodes on a reduced split-tree level and calculates the next level sets,
prune removes the empty sets produced by step, reassigning ranks in a specific way, and
normalize just turns the ranking function obtained after prune into a bijection again.

Below, we formally define these operations (step and prune are illustrated in Figure 2).
First we describe step, which constructs the next level of the reduced split-tree and passes

each existing rank on to the respective right child. Let

∆t(q, x) := ∆(q, x) \∆(
idx(q)−1⋃
i=1

Si, x),

restricting for each state q ∈ Qt the successors to only those which are not reached by some
other state located in a set to the left of q. Then, for each node Si let Ŝ2i−1 := ∆t(Si, x)∩F
be the left child and Ŝ2i := ∆t(Si, x) ∩ F the right child, containing the accepting and
non-accepting normalized successors, respectively. Let α̂(2i) := α(i) and α̂(2i− 1) := n+ 1,
i.e., the right children inherit the rank of the parent and the left children all get the same
new maximal rank n+ 1, resulting in a pre-slice (α̂, t̂).
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(α, t) = ( S1
α(1)

∆t(S1,x)

S2
α(2)

∆t(S2,x)

S3
α(3)

∆t(S3,x)

. . . Sn
α(n)

∆t(Sn,x)

)

(α̂, t̂) = ( Ŝ1
n+1

Ŝ2
α(1)

Ŝ3
n+1

Ŝ4
α(2)

Ŝ5
n+1

Ŝ6
α(3) . . . Ŝ2n−1

n+1
Ŝ2n

α(n) )

(α̃, t̃) = ( S̃1
α̃(1)

min

S̃2
α̃(2)

min

S̃ñ
α̃(ñ)

min

)

step

prune 6=∅ 6=∅ 6=∅

∩F ∩F ∩F ∩F ∩F ∩F ∩F ∩F

Figure 2 Abstract illustration of step and prune in a Muller-Schupp transition on some x ∈ Σ. The
superscripts represent the assigned ranks. First, step calculates the normalized successors, separating
accepting from non-accepting states and passing the parent rank on to the right child. In the
illustration, we assume that the sets Ŝi 6= ∅ for i ∈ {2, 5, 2n−1}, i.e., x1 = 2, x2 = 5, xñ = x3 = 2n−1.
Then prune keeps sets at these positions for the resulting tuple t̃, and α̃ is obtained by taking the
minimum of the ranks given by α̂ in the ranges spanning from one xi up to the position before xi+1.
Finally t′ := t̃ and α̃ is normalized to α′, while preserving strict ordering between positions wrt. α̃.
The dotted edges connect parent sets (in the top row) and resulting left/right children sets (bottom
row) in the conceptual reduced split-tree, the solid edges show the movements of the rank values
assigned to the sets.

Intuitively, in the prune operation, all ranks that mark empty sets after step are relocated
onto the closest non-empty set to the left (or removed, if no such set exists). When multiple
ranks occupy the same set, then the smallest one is preserved. Ranks that moved to the left
in this way and are not removed, indicate a good (green) event, whereas ranks which were
removed indicate a bad (red) event.

Formally, let x1 < x2 < . . . < xñ be the increasing sequence of all indices such that
Ŝxj
6= ∅. Then prune returns (α̃, t̃) with the tuple t̃ := (Ŝx1 , . . . , Ŝxñ

) without empty sets,
where α̃ is defined as α̃(i) := min{α̂(j) | xi ≤ j < xi+1} with xñ+1 := |t̂|+ 1.

The set of green ranks is given by G := img(α̃) ∩ {α̂(j) | Ŝj = ∅}, where img(α̃) denotes
the image of α̃. These are the ranks that mark empty sets after step and are not removed
by prune. The set of red ranks given by R := img(α̂) \ img(α̃) contains the ranks that were
not preserved during prune. The set of active ranks is A := G ·∪ R. Let k := minA (or
k := |Q|+ 1 if A = ∅) denote the dominating rank of the transition, i.e., the smallest active
rank. We define the priority p of the transition as 2k if k ∈ G and 2k − 1 otherwise.

The function α̃ might assign the same rank to several sets, and it might have gaps (unused
rank values between used ones). So finally, normalize returns (α′, t′) with t′ := t̃ and a final
bijective ranking function α′ : [|t′|] → [|t′|] such that α̃(j) < α̃(k) ⇒ α′(j) < α′(k) for all
j, k ∈ {1, . . . , |t′|}, i.e., a total order which is compatible with the preorder induced by α̃. If
there are several such ranking functions α′, then any of these works.

A TDPA B is obtained by taking the initial state (α0, t0) with t0 := (Q0), α0(1) := 1 and
a transition function that picks for each state a valid successor that satisfies the description
above, and assigns the corresponding priority p to the edge. Observe that by construction,
the sequence of states visited along some word w ∈ Σω from the initial state represents
exactly the levels of trs(A, w), marked with ranks.

I Theorem 2. For a given NBA with n states, the TDPA obtained by the Muller-Schupp
construction accepts the same language as the NBA, and its number of states is in O(n!2).

The correctness follows from the correctness of the generalized construction presented in
Section 6. The claim on the state complexity directly follows from the upper bound given in
[14, Proposition 2], and the bijection between the set of ranked slices and the set of ranked
Safra trees presented in Section 5.
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A :=
q0

q2

q1

q3

a

a

a a a
{q0, q1, q2}1

{q1}2 {q2}3
a→

{q0}1

∅2 ∅3 {q3}

∅ {q2}

→
{q0, q2, q3}1

{q2}2 {q3}3

Figure 3 Example of a Safra-tree transition on letter a, based on NBA A. The LIR position
of nodes is depicted as superscript of the sets. The “redundant” states that are implicit in our
definition are depicted in gray in the initial and resulting tree. In the intermediate step, the tree is
depicted after calculating and pruning successor state sets. In the final tree the remaining actions
are performed and LIR positions are updated. The transition has a red event for LIR position 2 and
a green event for position 3. Because of the removal of the node at position 2 in the LIR, the node
that originally was at position 3 moved up, whereas the fresh node labelled by {q3} comes last.

4 Sketch of the Safra Construction

In this section, we roughly illustrate the used structures and operations of the Safra con-
struction along the lines of [11, 14], so that we can demonstrate its relationship with the
Muller-Schupp construction in the next section. As before, A is an NBA with the usual
components.

A Safra tree is a finite ordered tree with non-empty state-sets as labels. Usually, it is
required that a parent is labelled by a strict superset of all states in its subtree and siblings
are labelled by pairwise disjoint sets. We use the equivalent requirement that all labels in the
tree are pairwise disjoint, i.e., refrain from listing states in the parent label which are already
present in some descendant. One can easily reconstruct the “full” label set of a node wrt.
the classical definition by taking the union of all the labels in its subtree. To obtain parity
automata, each node of the Safra tree is associated with a number from {1, . . . , n}, where
n is the number of nodes in the Safra tree [11]. These numbers satisfy the property that
parent nodes have smaller numbers than their children, and a node has a smaller number
than its right sibling. The numbers correspond to the ranks that we use in Section 3, and we
therefore refer to Safra trees in combination with these numbers as ranked Safra trees. Two
ranked Safra trees are shown in Figure 3 (and an intermediate tree in the middle).

In [14], a slightly different representation is used based on a later introduction record
(LIR), which just lists the tree nodes in their introduction order, i.e., nodes appear in this
list after parents and older siblings (in this representation, nodes have canonical names
depending only on their position in the tree). Safra trees with LIR directly correspond to
ranked Safra trees by annotating each tree node with its position in the LIR.

A transition on symbol x ∈ Σ is constructed as follows (see Figure 3 for an example).
First, for each label set S, the set S′ := ∆(S, x) of successor states is calculated. After this,
each node gets a fresh right-most child, and the accepting states in S′, that is S′ ∩ F , are
moved into the label of this child. Then, disjointness is ensured by keeping of each state
only the copy which is located at the deepest node along the leftmost branch where that
state occurs (this stage is represented by the middle tree in Figure 3). If now some internal
node has an empty label, but a non-empty subtree (a good event for the node), its subtree
is collapsed into a single node by removing all descendants and moving the states in their
labels into the parent label. Finally, all remaining sets that are labelled by ∅ are removed
(being removed is a bad event for a node). In the following, we refer to good and bad events
as green and red, respectively. The priority for the transition is derived from the green and
red events, which are associated with the relative position of the corresponding nodes in the
LIR. The LIR for the new tree is obtained by deleting removed nodes from the LIR and
appending fresh nodes that remain in the resulting tree in arbitrary order.
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5 From Safra-trees to ranked slices and back

In this section we state the key observation that was the starting point of this work: there
is a bijection between the set of ranked slices and the set of ranked Safra trees. From a
ranked Safra tree, one obtains the ranked slice by simply listing the nodes of the Safra
tree by a depth-first post-order traversal (i.e., a parent processed after all its children).
We formalize this relationship below, and then explain that the transitions defined in the
Muller-Schupp construction and in the Safra construction are very similar, which then leads
to the unified construction.

Let (α, t) be a ranked slice with t = (S1, . . . , Sn). The tuple index of the parent of Si
is the closest index to the right of i that has a smaller rank and is formally defined as
↑(i) := mini<k≤n{k | α(k) < α(i)}. As we require by definition of ranked slices that the right-
most position in the tuple always has rank 1, this is the only position in the tuple for which
the parent is undefined. The ordered tree induced by ↑, with siblings in tuple index order, is
called the rank tree of (α, t). The tuple index of the left subtree boundary of Si is the closest
index to the left with a smaller rank, and is denoted by ←(i) := max1≤k<i{k | α(k) < α(i)}
or 0 if no such index exists. It points to either the direct left sibling of i, or the left sibling of
the closest ancestor, if one exists. Effectively, ←(i) is the closest neighbor to the left which is
not a descendant of i. As children by definition are always to the left of their parents, every
node at indices ←(i) + 1, . . . , i is in the subtree of i.

For an example, consider the tuple ({q3}4, {q1}2, {q2}3, {q0}1), where the superscripts
denote the assigned rank (e.g., α(1) = 4). The rightmost position 4 of the tuple is the root of
the tree. For the positions 2 and 3, which have rank 2 and 3 respectively, the next position
to the right with a smaller rank is in both cases position 4, i.e., ↑(2) = ↑(3) = 4. Finally,
position 1 in the tuple has position 2 as parent, i.e., ↑(1) = 2. The discussed tuple is depicted
with the parent edges at the bottom right of Figure 4. There is also one non-trivial left
subtree boundary in this tuple, assigned by ←(3) = 2, i.e. index 2 is not in the subtree of
index 3, and in this case is an actual left sibling of index 3.

We use the notation ↑α := α ◦ ↑ ◦ α−1 to denote the parent rank of another rank directly,
without mentioning the indices in the tuple. In the previous example, we have ↑α(4) = 2,
and ↑α(2) = ↑α(3) = 1. We identify the age-ranks α(i) as nodes of the tree, while each set
Si determines the label of the node α(i), called hosted set. We write S↓i :=

⋃i
k=←(i)+1 Sk for

the subtree set of node α(i).

I Definition 3. Let safra2slice be the mapping which takes a ranked Safra tree and returns
(α, t), with t := (S1, . . . , Sn) being the label sets of the nodes in depth-first post-order (i.e., a
parent processed after all its children) traversal order and ranking α defined by the ranks of
the corresponding Safra tree nodes.

Let slice2safra be the mapping which takes a ranked slice (α, t) and returns the ranked
Safra tree given by the rank tree of (α, t), i.e. the tree structure defined by ↑ and the ordering
of siblings given by the order of the corresponding sets in t.

It is easy to see from the definitions that safra2slice and slice2safra are injective and return
a valid ranked slice and ranked Safra tree, respectively. This implies that there exists a
bijection between the sets of ranked Safra trees and ranked slices. It is also not very hard to
see that the following holds:

I Lemma 4. safra2slice and slice2safra are inverses of each other and provide a bijection
between ranked Safra trees and ranked slices.
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q0 q1

q2 q3

q4

A :
a, b, c

b

a
b, c

c

c

b
a, b

a, c

c

ranked Safra tree sequence:

{q0}1◦
{q2}24 {q4}3�

{q3}49

a→ {q4}2�

{q0}1◦
{q2}4♥

{q3}39

c→ {q4}2�

{q0}1◦
{q2}3♥

{q3}4♦

b→{q1, q3}2�

{q0}1◦
{q2}3♥

{q0}1◦{q4}3�{q3}49{q2}24

Muller-Schupp sequence of ranked slices:

{q0}1◦{q2}4♥{q4}2�{q3}39

{q0}1◦{q2}3♥{q4}2�{q3}4♦

{q0}1◦{q2}3♥{q1}2�{q3}4♦

↓ a

↓ c

↓ b

/∈ F∈ F ∈ F /∈ F

/∈ F∈ F∈ F /∈ F

/∈ F∈ F∈ F ∈ F

{q0}1∅5∅3{q2}5∅2{q1}5∅4{q3}5

During last transition, after step:

( )

({q1, q3}2 {q2}3 {q0}1) ){q0}1{q2}3{q1}2{q3}4(

Safra Muller-Schupp

Figure 4 Transitions based on NBA A using both constructions. The superscripts denote the
ranks of tree nodes / sets in the slice tuple. The subscripts are added for illustration purposes
and conceptually track nodes throughout time, i.e., the same symbol marks the “same” node at
different times. The algorithms agree on all but the last transition, where they differ due to different
handling of green nodes/ranks, in this case rank 2 that marks an empty set after calculating and
splitting the successors (illustrated on the bottom right). In the Muller-Schupp case, the rank is
moved left during prune, resulting in a child being pulled into the parent in the rank tree, whereas
in the Safra construction the whole subtree is collapsed. The solid edges between sets depict the
rank tree induced by ↑, dotted edges depict the edges in the conceptual split-tree. In the bottom
right the slices are shown together with their tree interpretation.

As we have established that both constructions, Muller-Schupp and Safra, operate
on essentially the same structures, from now on we talk about ranked slices and trees
interchangeably. Using this relationship, one can take the same tree/slice and apply both
the successor calculation of the Safra construction and of the Muller-Schupp construction to
it. What one first notices, is that the resulting tree/slice is very similar or equal in many
cases. This is owed to the fact that most operations in one construction have an equivalent
operation in the other, just formulated for the other representation.

For example, moving accepting successor states into a fresh child node in Safra’s con-
struction corresponds to splitting accepting successors from non-accepting ones during step
in the Muller-Schupp construction, as in the successor tuple the new child (in the conceptual
split-tree) gets a fresh, larger rank and by definition becomes the rightmost child in the
rank tree of the resulting new slice. The normalization steps that make the successor sets
pairwise disjoint also yield the same results. The ranks of nodes with green events in the
Safra construction coincide with ranks of sets that signal green in the ranked slices, and
ranks of Safra nodes with red events with ranks of sets that signal red. The removal of empty
sets by prune and renumbering the ranks with normalize is the same as the removal of the
corresponding nodes in the Safra tree and updating the LIR, i.e., the ranks of Safra nodes.

In fact, the only difference between the constructions is what happens with a tree node
in case of a green event. Recall that in Safra’s construction, the whole subtree of a green
node is collapsed to a single node. In the Muller-Schupp construction, the green ranks are
those that end up on an empty set after step, and that survive the prune operation, in which
the ranks are moved to the next non-empty set to the left, and only the minimal ones are
kept on each non-empty set. In the view of ranked trees, this corresponds to a green node
absorbing its rightmost, uppermost child node into it, while keeping the rest of the subtree
unchanged. See Figure 4 for an illustration.
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After observing that both constructions differ in only a minor step and noticing that
both yield correct (but possibly different) automata, it becomes apparent that the exact step
performed for green events is not essential and there must be a more general mechanism to
uncover. The construction we present in Section 6 results from this line of thought.

On the practical side, it is worth mentioning that the cost of switching between the
representations using the presented bijection is negligible – the traversal of a ranked Safra
tree to obtain a ranked slice is obviously possible in linear time. For the other direction
there also exists a simple linear time algorithm that calculates the parent and left subtree
boundary relation from the ranking α.

6 The unified construction

In this section, we present a construction that builds on the Muller-Schupp construction from
Section 3, and unifies it with Safra’s construction by adding another operation, called merge,
between prune and normalize: (α, t) step−−→ (α̂, t̂) prune−−−→ (α̃, t̃) merge−−−→ (α̌, ť) normalize−−−−−→ (α′, t′).

This new operation is nondeterministic, and can be instantiated in different ways. In
particular, it can be instantiated trivially and thus corresponds to the Muller-Schupp
construction, and it can be used to emulate the Safra construction.

We first describe the idea of merge, and then give a formal definition. Assume that, after
step and prune have been applied to some ranked slice (α, t), we have the pre-slice (α̃, t̃), and
the dominating (minimal active) rank k (determined by prune, see Section 3). Then merge
can collapse groups of neighbouring sets in the tuple, and preserves the minimum rank from
each collapsed range, similar to prune. In contrast to prune, which “merges” one non-empty
set with multiple empty sets in a deterministic manner, merge may actually take the union
of multiple adjacent non-empty sets, depending on the ranks currently assigned to them.

The non-overlapping intervals of sets that are collapsed together are not uniquely determ-
ined in general. They only have to satisfy the constraints that no sets with rank smaller than
the dominating rank k are merged with anything else, and that the set with rank k is not
merged with anything to the right of it. These constraints are important for the correctness,
and ensure that in the ranked Safra tree perspective, the nodes with rank smaller than k do
not change, and that the node with the dominating rank k is not merged with sets outside
of its subtree.

Formally, merge returns a pre-slice (α̌, ť) obtained in the following way (see Figure 5
for an illustration). Let I1, I2, . . . , In′ be a sequence of sets partitioning the set of indices
{1, . . . , ñ} in t̃ into adjacent groups, i.e., min I1 = 1, max In′ = ñ and for all j > 1 we have
min Ij = max Ij−1 + 1. This grouping should satisfy the following property for all 1 ≤ j ≤ n′
and l ∈ Ij : if α̃(l) < k, then |Ij | = 1, and if α̃(l) = k, then max Ij = l. Then the pre-slice (α̌, ť)
is defined by the sets Ši :=

⋃
j∈Ii

S̃j and the ranking function α̌(i) := min{α̃(j) | j ∈ Ii} for
all i ∈ {1, . . . , n′}, i.e., for each interval, the union of the sets and the smallest rank is taken.

As in the Muller-Schupp construction, normalize is applied to (α̌, ť) to obtain the successor
macrostate (α′, t′). This extended transition relation is used to obtain the transition-based
deterministic parity automaton, as before.

An example showing how the choice of different merge strategies leads to different successor
states is illustrated in Figure 6. Observe that we can recover the Muller-Schupp construction
by using the identity function for merge, or in other words, putting each index into its own
interval, which is the finest partitioning of indices that satisfies the requirements on merge.
On the other hand, we can also take the coarsest compatible partitioning, i.e., minimize the
number of intervals. We call this kind of update maximal collapse.
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(α̃, t̃) = ( S̃1
>k S̃2

>k S̃3
<k S̃4

>k S̃5
>k S̃6

k S̃7
>k S̃8

<k )

(α̌, ť) = ( )

⋃
min

⋃
min

Š1 Š2 Š3 Š4 Š5
α̌(1) α̌(2) α̌(3) α̌(4) α̌(5)

merge

I1={1,2} I2={3} I3={4,5,6} I4={7} I5={8}

Figure 5 Illustration of the general merge operation that comes after prune and before normalize,
with the minimal active rank k and ranks depicted as set superscripts. The illustrated intervals are
the coarsest partitioning of indices in t̃ satisfying the constraints.

We can emulate a Safra-update by imposing some additional constraints on the intervals,
ensuring that only the complete subtrees of nodes with green ranks are merged. More
concretely, we require that intervals that are not singletons span exactly the nodes of the
complete subtree that is rooted in a green rank in the view of the slice as ranked Safra tree.
Note that for an index ` in the tuple, the subtree of the corresponding node in the ranked
Safra tree corresponds to the interval that starts one step right of the left subtree boundary
of `, and ends in `, that is, the interval ←(l) + 1, . . . , `. Thus, for imitating the Safra merge
rule, the intervals I1, I2, . . . , In′ from merge are the unique smallest intervals satisfying

∀i ∈ [n′], l ∈ Ii : α̃(l) ∈ G =⇒ ←(l) + 1 ∈ Ii (complete subtrees collapsed).

I Proposition 5. The operation merge can be instantiated such that the transitions of the
constructed TDPA correspond to the transitions of the Muller-Schupp construction or to the
transitions of the Safra construction.

Notice that for all merge rules except for the Muller-Schupp update, the relationship of
ranked slices and consecutive levels of the reduced split-tree (see Section 3) breaks down.
One can, however, reflect the merges also in the reduced split-tree by doing the merges of
the corresponding sets on each level, which leads to an acyclic graph instead of a tree. This
view is helpful in the correctness proof of the construction.

I Theorem 6. Let A be an NBA. Then a deterministic parity automaton B, obtained by the
described determinization construction, has at most O(n!2) states and recognizes the same
language as A.

The upper bound holds because the same macrostates are used as in the presented
Muller-Schupp construction in Section 3. The correctness can be shown by a refinement of
the original correctness proof of the Safra construction [13].

7 Discussion and Conclusion

We have presented a new variant of the Muller-Schupp construction for determinization of
Büchi automata into parity automata, reducing the information stored in the macrostates to
ordered tuples of disjoint sets annotated with ranks. These ranked slices are in bijection with
ranked Safra trees, which leads to a general construction that can emulate the Muller-Schupp
construction and the Safra-construction. This answers, in some sense, the question from [4]
on the relation between the two types of constructions.
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A :

q0

q1q5

q3

q2q4

(α, t) =

{q0}1

{q1}2 {q4}4

{q5}5{q2}3 {q3}6

(α, t) = ( {q2}3 {q3}5 {q1}2 {q5}6 {q4}4 {q0}1 )

(α̃, t̃) = ( {q2}7 {q1}3 {q3}2 {q5}6 {q4}4 {q0}1 )

step;
prune ∈F

∈F ∈F
∈F ∈F ∈F

G={2,6} R={5} =⇒ A={2,5,6} =⇒ k=2

M.-S.:

(α̃, t̃) = ({q2}7 {q3}3 {q1}2 {q5}6 {q4}4 {q0}1 )

(α′, t′) = ({q2}6 {q1}3 {q3}2 {q5}5 {q4}4 {q0}1 )

merge;
norm.

{q0}1

{q3}2 {q4}4

{q5}5{q1}3

{q2}6

Safra:

(α̃, t̃) = ({q2}7 {q3}3 {q1}2 {q5}6 {q4}4 {q0}1 )

(α′, t′) = ( { q1, q2, q3 }2 {q5}4 {q4}3 {q0}1 )

merge;
norm.

{q0}1

{q1, q2, q3}2 {q4}3

{q5}4

Max.:

(α̃, t̃) = ({q2}7 {q3}3 {q1}2 {q5}6 {q4}4 {q0}1 )

(α′, t′) = ( { q1, q2, q3 }2 {q4, q5}3 {q0}1 )

merge;
norm.

{q0}1

{q1, q2, q3}2 {q4, q5}3

{q0}1

{q3}2 {q4, q5}4

{q1}3

{q2}5

{q0}1

{q3}2 {q4, q5}4

{q1, q2}3

{q0}1

{q1, q3}2 {q4, q5}3

{q2}4

{q0}1

{q3}2 {q4}4

{q5}5{q1, q2}3

{q0}1

{q1, q3}2 {q4}3

{q5}4{q2}5

Figure 6 A illustrates the relevant part of an NBA during a transition on some symbol x ∈ Σ,
that is, the arrows correspond to the x-transitions of A. The gray edges are the ones pruned in the
reduced transition relation ∆t. The current macrostate (α, t) is represented as the rank tree to the
right of A, and as ranked slice below A. The step and prune operations (see Fig. 2 for details) result
in ranks 1,3 and 4 being passed down along the right child. Ranks 2 and 6 are moved to the left and
hence are green. Rank 5 is overwritten by 2 and hence is red. Rank 7 is a fresh rank which is larger
than the others. The dominating rank k is 2. The choice of different merge intervals (as shown in
Fig. 5) results in different successors. The successors for the three discussed variants, Muller-Schupp,
Safra, and maximal collapse, are shown as rank trees on the right. The 5 other permitted successors
are depicted at the bottom.
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In general, one can obtain many different valid deterministic automata by choosing
different deterministic transition functions that are compatible with the described successor
relation. One can also imagine this as constructing a non-deterministic automaton with all
permitted successors, and then pruning the edges arbitrarily, while preserving for each state
only one outgoing transition for each symbol, to “carve” out a valid deterministic automaton.

This non-determinism comes from two sources. One degree of freedom in our construction
comes from the different ways of assigning ranks (to new nodes, and when closing gaps
resulting from deleted ranks). This freedom is already mentioned in [14]. But here the
flexibility is just in the choice of the specific permutation, which still describes structurally
the same tree in any case. The novel and in our opinion powerful degree of freedom in our
construction is the possibility for different valid merge operations, which allows for a vastly
larger pool of possible successors, as the results may describe structurally different trees.
Furthermore, the smaller the smallest active rank, the more different a permitted successor
may look like.

We have explicitly mentioned the merge strategies that lead to the Muller-Schupp and
Safra constructions, and also have mentioned a third strategy, the maximal collapse rule that
merges as many sets as possible (as shown in e.g. Figure 6). We also want to point out that,
while fixing one such merge-rule for the whole construction is the simplest implementation,
the construction permits using any valid successor without the need to disambiguate the
merge operation beforehand, i.e., picking the successor of a state from the set of permitted
ones is a local choice. One may think of schemes where the successor is chosen dynamically,
depending on the input or already computed information. For example, one can check
whether a valid successor has already been constructed, and only add a new state according
to a fixed policy if this is not the case. We have already implemented a prototype making
use of such an optimization (among others) with encouraging results.

We also want to point out that the presented construction works equally well with
transition-based Büchi automata as input, in which case the step operation separates states
which are reached by at least one accepting transition from those that are not. One can
easily verify that this does not impact the reasoning in the proofs.

It is also possible to adapt the construction to yield Rabin automata, such that the
corresponding Safra construction as presented in [14] is subsumed. In this setting, however,
the presentation of macrostates as ordered tuples of sets is less natural. Furthermore, in this
setting the merges of sets needs to be restricted to subtrees of green nodes, because there is
no total order of importance of nodes as provided by the ranks.
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Abstract
The permutation language Pn consists of all words that are permutations of a fixed alphabet of size
n. Using divide-and-conquer, we construct a regular expression Rn that specifies Pn. We then give
explicit bounds for the length of Rn, which we find to be 4nn−(lg n)/4+Θ(1), and use these bounds to
show that Rn has minimum size over all regular expressions specifying Pn.
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1 Introduction

Given a regular language L defined in some way, it is a challenging problem to find good
upper and lower bounds on the size of the smallest regular expression specifying L. (In
this paper, by a regular expression, we always mean one using the operations of union,
concatenation, and Kleene closure only.) Indeed, as a computational problem, it is known
that determining the shortest regular expression corresponding to an NFA is PSPACE-
hard [12]. Jiang and Ravikumar proved the analogous result for DFAs [11]. For more recent
results on inapproximability, see [9].

For nontrivial families of languages, only a handful of results are already known. For
example, Ellul et al. [7] showed that the shortest regular expression for the language {w ∈
{0, 1}n : |w|1 is even} is of length Ω(n2). Here |w|1 denotes the number of occurrences of
the symbol 1 in the word w. (A simple divide-and-conquer strategy provides a matching
upper bound.) Chistikov et al. [4] showed that the regular language

{ij : 1 ≤ i < j ≤ n}

can be specified by a regular expression of size exactly n(blog2 nc + 2) − 2blog2 nc+1, and
furthermore this bound is optimal. Mousavi [13] developed a general program for computing
lower bounds on regular expression size for the binomial languages

B(n, k) = {w ∈ {0, 1}n : |w|1 = k}.

Let n be a positive integer, and define Σn = {1, 2, . . . , n}. In this paper we study the
finite language Pn consisting of all permutations of Σn. Thus, for example,

P3 = {123, 132, 213, 231, 312, 321}.
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We are interested in regular expressions that specify Pn. In counting the length of regular
expressions, we adopt the conventional measure of alphabetic length (see, for example, [6]):
the length of a regular expression is the number of occurrences of symbols of the alphabet
Σn. Thus, other symbols, such as parentheses and +, are ignored.

A brute-force solution, which consists of listing all the members of Pn and separating them
by the union symbol +, evidently gives a regular expression for Pn of alphabetic length n · n!.
This can be improved to n!

∑
0≤i<n 1/i! ∼ e · n! by tail recursion, where E(S) represents a

regular expression for all permutations of the symbols of S:

E(S) =
∑
i∈S

i(E(S − {i})); E(i) = i.

For example, for P4 this gives
1(2(34+43)+3(24+42)+4(23+32))+2(1(34+43)+3(14+41)+4(13+31))+

3(1(24+42)+2(14+41)+4(12+21))+4(1(23+32)+2(13+31)+3(12+21)).
Can we do better?

Ellul et al. [7] proved the following weak lower bound: every regular expression for Pn
has alphabetic length at least 2n−1. A slightly stronger bound of n2n−1 was also shown by
Agrawal et al. [1]. In this note we derive an upper bound through divide-and-conquer. We
then show that the regular expression this strategy produces is, in fact, actually optimal.
This improves the results from [7, 1].

The language Pn is of particular interest because its complement has short regular
expressions, as shown in [7]. For other results concerning context-free grammars for Pn,
see [7, 2, 3, 8]. Cho et al. [5] considered the related problem of determining the size of the
minimal DFA recognizing all permutations of a given finite language.

2 Divide-and-conquer

Consider the following divide-and-conquer strategy, as given by Agrawal et al. [1]. Let S be
an alphabet of cardinality n. We consider all subsets T ⊆ S of cardinality bn/2c. For each
subset we recursively determine a regular expression for the permutations of T , a regular
expression for the permutations of S − T , and concatenate them together. This gives

E(S) =
∑
T⊆S

|T |=bn/2c

(E(T ))(E(S − T )); E(i) = i. (1)

Finally, we define Rn = E(Σn).
Thus, for example, we get

R4 = (12+21)(34+43)+(13+31)(24+42)+(23+32)(14+41)+
(14+41)(23+32)+(24+42)(13+31)+(34+43)(12+21)

for P4.
The alphabetic length of the resulting regular expression Rn for all permutations of Σn is

then f(n), where

f(n) =


1, if n = 1;(

n

bn/2c

)(
f(bn/2c) + f(dn/2e)

)
, if n > 1.

The first few values of f(n) are given in the table below.
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n f(n)
1 1
2 4
3 15
4 48
5 190
6 600
7 2205
8 6720
9 29988
10 95760

It is sequence A320460 in the On-Line Encyclopedia of Integer Sequences [15].
It seems hard to determine a simple closed-form expression for f(n). Agrawal et al. [1]

show that f(n) ≤ 8 · 4n. We can roughly estimate f(n) as follows, at least when n = 2m is a
power of 2:

f(2m) = 2
(

2m

2m−1

)
f(2m−1)

= 2m
(

2m

2m−1

)(
2m−1

2m−2

)
· · ·
(

2
1

)
= 2m (2m)!

(2m−1)! (2m−2)! · · · 2! 1! .

Substituting the Stirling approximation n! ∼
√

2πn(n/e)n and simplifying, we get that f(2m)
is roughly equal to

42m

e−1π(1−m)/22−(m2−5m+6)/4.

To make this precise, and make it work when n is not a power of 2, however, takes more work.
The rest of the paper is organized as follows: in Section 3, we prove that our regular

expression is in fact optimal, assuming one result that is proven at the end of the paper.
In Section 4, we establish some inequalities related to Stirling’s formula. In Section 5,
we connect these inequalities to f(n) and obtain the estimate mentioned in the abstract.
Finally, in Section 6 we use our obtained bounds on f(n) to provide the missing piece in our
optimality proof.

3 Optimality

In order to show that our regular expression has minimum possible length, we use the
following property of f(n) that we prove in Section 6:

I Lemma 1. If n ≥ 1, then every integer 0 < k < n satisfies
(
n
k

)
(f(k) + f(n− k)) ≥ f(n).

Equality occurs if and only if k = bn/2c or k = dn/2e.

For n ≥ 1 and 1 ≤ k ≤ n!, define `(n, k) to be the minimum alphabetic length of a regular
expression specifying a subset of Pn, where the subset has cardinality at least k.

I Lemma 2. If n ≥ 1 and 1 ≤ k ≤ n!, then `(n, k)/k ≥ `(n, n!)/n! ≥ f(n)/n!.
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Proof. We prove this by induction over the lexicographical ordering of pairs (n, k). This is
easy for our base case n = k = 1, as the best regular expression is a single character. We
thus suppose n ≥ 2.

Consider a regular expression for a subset of Pn of cardinality at least k ≥ 1 that has
minimum alphabetic length. Clearly no such expression will involve ε or ∅. We now consider
the possibilities for the last (outermost) operation in the regular expression. Clearly the only
relevant possibilities are union and concatenation.

If the last operation is a union, then it is the union of two subsets of Pn of cardinalities
k1, k2 ≥ 1 where k1 + k2 ≥ k, and k1, k2 < k by minimality. Then we get

`(n, k)
k

≥ `(n, k1) + `(n, k2)
k1 + k2

≥ min
{
`(n, k1)
k1

,
`(n, k2)
k2

}
≥ `(n, n!)

n! ≥ f(n)
n! .

If the last operation is a concatenation, then it is the concatenation of two regular
expressions for subsets of Pn1 and Pn2 of cardinalities k1 and k2 respectively (possibly after
changing alphabets) where n1 + n2 = n and k1k2 ≥ k. By minimality, we have n1, n2, k1, k2
all positive, so n1, n2 < n. We now obtain

`(n, k)
k

≥ `(n1, k1) + `(n2, k2)
k1k2

≥ `(n1, n1!) + `(n2, k2)
n1! k2

≥ `(n1, n1!) + `(n2, n2!)
n1! n2!

≥ f(n1) + f(n2)
n1! n2!

= 1
n!

(
n

n1

)
(f(n1) + f(n− n1))

≥ 1
n!

(
n

bn/2c

)
(f(bn/2c) + f(dn/2e)) (by Lemma 1)

= f(n)
n! .

In both cases, we get the desired inequalities for these choices of n and k, completing
our induction. J

I Theorem 3. Let n ≥ 1. Over all regular expressions for the permutation language Pn,
the regular expression Rn given by our divide-and-conquer strategy achieves the minimum
alphabetic length.

Proof. By our construction from Section 2, the regular expression Rn specifies the entirety
of Pn and has alphabetic length f(n). We thus get the upper bound `(n, n!) ≤ f(n). By
Lemma 2, we have the matching lower bound `(n, n!) ≥ f(n). Thus, Rn has minimum
possible alphabetic length for a regular expression specifying Pn. J
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4 Analysis

In what follows we use ln to denote the natural logarithm, and lg to denote logarithms to
the base 2.

Define S : R>0 → R>0 to be the usual Stirling approximation [14]:

S(x) =
√

2πx(x/e)x.

I Lemma 4. For every x ≥ 1, we have the bounds

S
(
x+ 1

2
)2 ≤ S(x)S(x+ 1) ≤ e1/(2x)S

(
x+ 1

2
)2
.

Proof. The first two derivatives of lnS(x) are

d

dx
lnS(x) = 1

2x + ln x

d2

dx2 lnS(x) = − 1
2x2 + 1

x
,

and so we see that lnS(x) is convex (that is, its derivative is increasing) for all x > 1/2.
Thus, by Jensen’s inequality [10] and exponentiating, we obtain the lower bound

S(x)S(x+ 1) ≥ S
(
x+ 1

2
)2

for all x ≥ 1.
Now, using the mean value theorem twice, we get that

(lnS(x)) + 1
2µ ≤ lnS(x+ 1

2) (2)

lnS(x+ 1) ≤ (lnS(x+ 1
2)) + 1

2M, (3)

where

µ = inf
z∈[x,x+ 1

2 ]
(lnS(z))′ = 1

2x + ln x

M = sup
z∈[x+ 1

2 ,x+1]
(lnS(z))′ = 1

2(x+ 1) + ln(x+ 1).

Adding the inequalities (2) and (3), we get

(lnS(x)) + (lnS(x+ 1)) ≤ (2 lnS(x+ 1/2))− µ/2 +M/2

≤ (2 lnS(x+ 1/2)) + 1
2 ln(x+ 1

x
)

≤ (2 lnS(x+ 1/2)) + 1
2x.

This gives us the inequality

S(x)S(x+ 1) ≤ e1/(2x)S(x+ 1/2)2

for all x ≥ 1. J
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Next, for α ∈ R, define the function gα : R>0 → R>0 by

gα(x) = 4x

x(lg x)/4x
α.

Our goal is to show that f can be approximated by gα for some choice of α.

I Lemma 5. Let α > 0. Then for every x ≥ 4α we have

e−1/(2
√
x) 5

2gα(x+ 1
2) ≤ gα(x) + gα(x+ 1) ≤ e1/(2

√
x) 5

2gα(x+ 1
2).

Proof. We again compute the logarithmic derivative:

d

dx
ln gα(x) = α− (lg x)/2

x
+ ln 4.

For x ≥ 4α, this derivative is at most ln 4, so by the mean value theorem,

ln gα(x+ 1)− ln 2 ≤ ln gα(x+ 1
2) ≤ ln gα(x) + ln 2.

Exponentiating, we get

1
2gα(x+ 1) ≤ gα(x+ 1

2) ≤ 2gα(x). (4)

Next, we note that the derivative of ln x exceeds that of
√
x for 0 < x < 4 and is less for

x > 4. So, since ln 4 <
√

4, we have ln x <
√
x for all x > 0. Hence

d

dx
ln gα(x) = α

x
− ln x

2x ln 2 + ln 4

≥ ln 4−
√
x

(2 ln 2)x
≥ ln 4− 1/

√
x

for all x > 0. Thus, by the mean value theorem and exponentiating again, we get

1
2e

1/(2
√
x)gα(x+ 1) ≥ gα(x+ 1

2) ≥ 2e−1/(2
√
x)gα(x). (5)

We can now combine the inequalities (4) and (5) for x ≥ 4α to get

e−1/(2
√
x) 5

2gα(x+ 1
2) ≤ 1

2gα(x+ 1
2) + 2e−1/(2

√
x)gα(x+ 1

2)

≤ gα(x) + gα(x+ 1)

≤ 1
2e

1/(2
√
x)gα(x+ 1

2) + 2gα(x+ 1
2)

≤ e1/(2
√
x) 5

2gα(x+ 1
2),

which gives us both desired bounds. J

We now show an identity relating gα and S.

I Lemma 6. Suppose x > 0 and β > 0. If α = lg β + 1/4− (lg π)/2, then

β
S(2x)
S(x)2 gα(x) = gα(2x).
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Proof. We have

β
S(2x)
S(x)2 gα(x) = β

√
4πx(2x/e)2x

(
√

2πx(x/e)x)2
4x

xlg x/4x
α

= β
4x√
πx

4x

xlg x/4x
α

= 2lg β+1/4

π1/2x1/4x1/421/4
42x

xlg x/4x
α

= 2lg β+1/4−lgπ/2 42x

2(1+lg x)/4x(1+lg x)/4x
α

= 42x

(2x)(lg 2x)/4 (2x)α

= gα(2x). J

5 Bounds on f(n)

In this section we obtain an estimate for f(n), the size of the optimal regular expression
for Pn.

I Theorem 7. For all n ≥ 1 we have

0.195 4n

n(lgn)/4n
5/4−(lgπ)/2 ≤ f(n) ≤ 1

4
4n

n(lgn)/4n
(lg 5)−3/4−(lgπ)/2.

Further, when n is a power of two, we get the following upper bound, matching the general
lower bound.

f(n) ≤ 1
4

4n

nlgn/4n
5/4−(lgπ)/2.

Proof. Recall the Stirling approximation

e1/(12n+1)S(n) ≤ n! ≤ e1/12nS(n); (6)

see [14]. Now suppose that f(n) ≤ rngα(n) and f(n + 1) ≤ rn+1gα(n + 1), where n ≥
max{1, 4α}, for some non-decreasing function r : N→ R>0. Then by combining Lemma 4,
Lemma 5, and equation (6), we get

f(2n+ 1) =
(

2n+ 1
n

)
(f(n) + f(n+ 1))

≤ e
1

12(2n+1)−
1

12n+1−
1

12(n+1)+1
S(2n+ 1)

S(n)S(n+ 1)(rngα(n) + rn+1gα(n+ 1))

≤ 5
2rn+1e

1/(2
√
n) S(2n+ 1)
S(n+ 1/2)2 gα(n+ 1/2)

and

f(2n) =
(

2n
n

)
(f(n) + f(n))

≤ 2rne
1

12(2n)−2 1
12n+1

S(2n)
S(n)2 gα(n)

≤ 2rn
S(2n)
S(n)2 gα(n).

ICALP 2019
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For the case where n is a power of two only, we use β = 2 and rn = C, we set

α = lg β + 1/4− (lg π)/2 = 5/4− (lg π)/2,

so α > 0 and 4α < 2. Now Lemma 6 gives us the identity 2S(2x)
S(x)2 gα(x) = gα(2x). Then by

induction we have f(n) ≤ Cgα(n) for all n ≥ 1, where C is any constant that satisfies this
bound for n < 4. In particular, C = 1

4 works, so we have f(n) ≤ 1
4g5/4−lgπ/2(n) for all n ≥ 1

that are powers of two.
Next, for general n, we use β = 5/2 and rn = Ce

−
√

5
(4−
√

10)
√

n , we set

α = lg β + 1/4− lg π/2 = lg 5− 3/4− lg π/2,

so α > 0 and 4α < 4. Now Lemma 6 gives us the identity 5
2
S(2x)
S(x)2 gα(x) = gα(2x). For

n ≥ 4, we get

rn+1e
1/(2
√
n) = Ce

1
2
√

n
−

√
5

(4−
√

10)
√

n+1

≤ C(e
1√
n )

1
2−

√
5

4−
√

10

√
4√
5

= C(e
1√
n )−

√
10

2(4−
√

10)

= Ce
−

√
5

(4−
√

10)
√

2n

≤ r2n+1.

Easily, we also get 2rn ≤ 5
2r2n. Thus, by induction we have f(n) ≤ rngα(n) for all n ≥ 12,

where C is chosen to make this work for 12 ≤ n < 24. In particular, C = 1
4 works again.

Further, since we have rn < C for all n ≥ 1, we also have f(n) ≤ 1
4glg 5−3/4−lgπ/2(n) for all

n ≥ 12. Finally, we check manually that this last inequality holds for 1 ≤ n < 12 too, and
thus for all n ≥ 1.

All that remains is the lower bound. We get similar recurrences, supposing f(n) ≥ rngα(n)
and f(n+ 1) ≥ rn+1gα(n+ 1), where n ≥ max{1, 4α} for some non-increasing r : N→ R>0.
Then by a similar argument as for the upper bounds, we have

f(2n+ 1) =
(

2n+ 1
n

)
(f(n) + f(n+ 1))

≥ 5
2rn+1e

1
12(2n+1)+1−

1
12n−

1
12(n+1) e−1/(2

√
n)e−1/(2n) S(2n+ 1)

S(n+ 1/2)2 gα(n+ 1/2)

≥ 5
2rn+1e

−1/(2
√
n)−2/(3n) S(2n+ 1)

S(n+ 1/2)2 gα(n+ 1/2)

and

f(2n) =
(

2n
n

)
(f(n) + f(n))

≥ 2rne
1

24n+1−
2

12n
S(2n)
S(n)2 gα(n)

≥ 2rne−1/(6n)S(2n)
S(n)2 gα(n).

This time, we set β = 2 with rn = Ce1/3n (indeed non-increasing), and α = 5/4 − lg π/2,
noting 4α < 4. Now for n = 16, we have ln 5

4 ≥
17
96 = 1

2
√
n

+ 5
6n . Since this right-hand side is

non-increasing in n, we in fact have ln 5
4 ≥

1
2
√
n

+ 5
6n for all n ≥ 17 too. This implies

5
2rn+1e

−1/(2
√
n)−2/(3n) = 2Celn 5

4 + 1
3(n+1)−

1
2
√

n
− 5

6n + 1
6n

≥ 2Ce
1

3(n+1) + 1
6n

≥ 2r2n+1.



A. Molina Lovett and J. Shallit 121:9

Further, 2rne−1/6n = 2r2n, so by induction we have f(n) ≥ rngα(n) for all n ≥ 17, where
C is chosen to satisfy this bound for 17 ≤ n < 34. In particular, C = 0.195 works. Since
rn > C for all n ≥ 17, we also have f(n) ≥ 0.195g5/4−lgπ/2(n) for all n ≥ 17. Finally, we
check manually that this works for all 1 ≤ n < 17 too, and thus for all n ≥ 1. J

6 Optimality revisited

We now give a simple lower bound on the growth of f .

I Lemma 8. We have f(n+ 1) ≥ 3f(n) for all n ≥ 1.

Proof. We prove this by induction on n. It is easy to verify the base case f(2) = 4 ≥ 3 = 3f(1).
Otherwise n > 1. Suppose the desired inequality holds for all smaller values of n. If n ≥ 2 is
odd, then let 1 ≤ m < n satisfy 2m+ 1 = n. Then

f(n+ 1) = f(2m+ 2)

= 2
(

2m+ 2
m+ 1

)
f(m+ 1)

= 22m+ 2
m+ 1

(
2m+ 1
m

)
f(m+ 1)

=
(

2m+ 1
m

)
(f(m+ 1) + 3f(m+ 1))

≥
(

2m+ 1
m

)
(3f(m) + 3f(m+ 1))

= 3f(2m+ 1)
= 3f(n).

Otherwise, if n ≥ 2 is even, then let 1 ≤ m < n satisfy 2m = n. We note that 4m+2 ≥ 3m+3,
so 2 2m+1

m+1 ≥ 3. We then have

f(n+ 1) = f(2m+ 1)

=
(

2m+ 1
m

)
(f(m) + f(m+ 1))

= 2m+ 1
m+ 1

(
2m
m

)
(f(m) + f(m+ 1))

≥ 2m+ 1
m+ 1

(
2m
m

)
(f(m) + 3f(m))

= 22m+ 1
m+ 1 f(2m)

≥ 3f(2m)
= 3f(n). J

Armed with this inequality and the bounds given by Theorem 7 of Section 5, we are
ready to complete our proof of the optimality of Rn. We recall Lemma 1, which is what we
have left to show:

I Lemma 1. If n ≥ 1, then every integer 0 < k < n satisfies
(
n
k

)
(f(k) + f(n− k)) ≥ f(n).

Equality occurs if and only if k = bn/2c or k = dn/2e.

ICALP 2019
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Proof. We easily check the cases n < 12 by hand. Let n ≥ 12 be arbitrary. It suffices to
consider the cases where k ≤ bn/2c, as those where k ≥ dn/2e are symmetric. Equality for
the case k = bn/2c is given by the definition of f(n).

Suppose that n/6 ≤ k < bn/2c. Then n > 9, so 3n− 3 > 2n+ 6. Hence we get
n/2− 1/2
n/2 + 3/2 > 2/3

and so
bn/2c
dn/2e+ 1 > 2/3. (7)

Also, from k ≥ n/6 we get 3k + 3 ≥ dn/2e+ 2, and so
k + 1
dn/2e+ 2 ≥ 1/3. (8)

Then(
n

k

)
(f(k) + f(n− k))

≥
(
n

k

)
f(n− k)

≥
(
n

k

)
3bn/2c−k f(dn/2e) (by Lemma 8)

≥ 3bn/2c−k
(
n

k

)
f(bn/2c) + f(dn/2e)

2

= 3bn/2c−k

2
∏

k≤j<bn/2c

j + 1
n− j

(
n

bn/2c

)
(f(bn/2c) + f(dn/2e))

= 3bn/2c−k

2

∏
k<j≤bn/2c j∏
dn/2e<j≤n−k j

f(n)

= 3bn/2c−k

2
bn/2c
dn/2e+ 1

∏
k+1≤j≤bn/2c−1 j∏
dn/2e+2≤j≤n−k j

f(n)

>
3bn/2c−k

2 (2/3)
∏

1≤j≤bn/2c−k−1

k + j

dn/2e+ 1 + j
f(n) (by (7))

≥ 3bn/2c−k−1
(

k + 1
dn/2e+ 2

)bn/2c−k−1
f(n)

≥ 3bn/2c−k−1 (1/3)bn/2c−k−1 f(n) (by (8))
= f(n).

Next, suppose 1 ≤ k < n/6. Then 4k < n− n/3 and so 4 < n−1
k . Then if k > 1,(

n

k

)
= n

∏
2≤j≤k

n− 1− k + j

j

≥ n
(
n− 1
k

)k−1

≥ n4k−1.
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We note also that
(
n
1
)

= n40, so we have
(
n
k

)
≥ n4k−1 for all 1 ≤ k < n/6. We note from our

proof of Lemma 5 that the derivative of ln gα(x) is at most ln 4 for x ≥ 4α. In particular, for
α = 5/4 − lg π/2, this derivative is at most ln 4 for all x ≥ 2, and so 4kgα(n − k) ≥ gα(n)
here (as n− k > 5n/6 ≥ 10). Thus(

n

k

)
(f(k) + f(n− k))

≥
(
n

k

)
f(n− k)

≥ n4k−1 (0.195g5/4−lgπ/2(n− k)
)

(by Theorem 7)

≥ n4k−1
(

0.195
g5/4−lgπ/2(n)

4k

)
= 0.195n1

4g5/4−lgπ/2(n)

= 0.195n1
4n

2−lg 5glg 5−3/4−lgπ/2(n)

≥ 0.195n3−lg 5f(n) (by Theorem 7)

> f(n) (since n ≥ 12 > 0.195−
1

3−lg 5 ). J
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Abstract
In this paper we provide a positive answer to a question left open by Alur and and Deshmukh in
2011 by showing that equivalence of finite-valued copyless streaming string transducers is decidable.
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1 Introduction

Finite transducers are simple devices that allow to reason about data transformations in
an effective, and even efficient way. In their most basic form they transform strings using
finite control. Unlike automata, their power heavily depends on various parameters, like
non-determinism, the capability of scanning the input several times, or the kind of storage
they may use. The oldest transducer model, known as generalized sequential machine, extends
finite automata by outputs. Inspired by an approach that applies to arbitrary relational
structures [9], logic-based transformations (also called transductions) were considered by
Engelfriet and Hoogeboom [12]. They showed that two-way transducers and monadic-second
order (MSO) definable transductions are equivalent in the deterministic case (and even if the
transduction is single-valued, which is more general than determinism). This equivalence
supports thus the notion of “regular” functions, in the spirit of classical results on regular
word languages from automata theory and logics due to Büchi, Elgot, Trakhtenbrot, Rabin,
and others. A one-way transducer model that uses write-only registers as additional storage
was proposed a few years ago by Alur and Cerný [2], and called streaming string transducer
(SST). SST were shown equivalent to two-way transducers and MSO definable transductions
in the deterministic setting, and again, even in the single-valued case.

In the relational case the picture is less satisfactory, as expressive equivalence is only
preserved for SST and non-deterministic MSO transductions [5], which extend the original
MSO transductions by existentially quantified monadic parameters. On the other hand,
two-way transducers and SST are incomparable in the relational case. Between functions
and relations there is however one class of transductions that exhibits a better behavior, and
this is the class of finite-valued transductions. Being finite-valued means that there exists
some constant k such that every input belonging to the domain has at most k outputs.

Finite-valued transductions were intensively studied in the setting of one-way and two-
way transducers. For one-way transducers, k-valuedness can be checked in Ptime [17]. In
addition, every k-valued one-way transducer can be effectively decomposed into a union of k
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unambiguous one-way transducers of exponential size [24, 23]. For both two-way transducers
and SST, checking k-valuedness is in Pspace.

Besides expressiveness, another fundamental question concerning transducers is the
equivalence problem, that is, the problem of deciding whether two transducers define the same
relation (or the same partial function if we consider the single-valued case). The equivalence
problem turns out to be Pspace-complete for deterministic two-way transducers [16], single-
valued two-way transducers, as well as for single-valued SST [5]. For deterministic SST,
equivalence is in Pspace [3], but it is open whether this complexity upper bound is optimal.
For arbitrary SST, and in fact even for non-deterministic one-way transducers over a unary
output alphabet, equivalence is undecidable [13, 18]. The equivalence problem for k-valued
one-way transducers was shown to be decidable by Culik and Karhumäki using an elegant
argument based on Ehrenfeucht’s conjecture [10], and the authors noted that the same proof
goes through for two-way transducers as well. The decidability status for the equivalence
problem for k-valued SST was first stated as an open problem in [5]. Another open problem
is whether SST and two-way transducers are equivalent in the finite-valued case, like in
the single-valued case. It is worth noting, however, that in the full relational case SST and
two-way transducers are incomparable. Concerning this last open question, a partial positive
answer was given in [14], by decomposing any finite-valued SST with only one register into a
finite union of unambiguous SST. This decomposition result also entails the decidability of
the equivalence problem for the considered class.

The main result of this paper is a positive answer to the first question left open in [5]:

I Theorem 1. The equivalence problem for finite-valued SST is decidable.

We show the above result with a proof idea due to Culik and Karhumäki [10], based on
the Ehrenfeucht conjecture. Our proof is much more involved, because SST produce their
outputs piece-wise, in contrast to one-way and two-way transducers, that produce output
linearly while reading the input. We manage to overcome this obstacle using some (mild)
word combinatorics and word equations, by introducing a suitable normalization procedure
for SST. We believe that our technique will also allow to solve the second problem left open
in [5], which is the expressive equivalence between finite-valued SST and two-way transducers.

Related work

The equivalence problem for transducers has recently raised interest for more complex types
of transducers in the single-valued case: Filiot and Reynier showed that equivalence of
copyful, deterministic SST is decidable by showing them equivalent to HDT0L systems and
applying [10], which contains the above-mentioned result as a special case. Subsequently, Be-
nedikt et al. showed that equivalence of copyful, deterministic SST has Ackerman complexity,
with a proof based on polynomial automata and ultimately on Hilbert’s basis theorem [6].
Interestingly, the use of Hilbert’s basis theorem goes back to the proof of Ehrenfeucht’s
conjecture [1, 15]. A similar approach was used by Boiret et al. in [7] to show that bottom-up
register automata over unordered forests have a decidable equivalence problem, see also the
nice survey [8].

Overview

Section 2 introduces the transducer model, then Section 3 sets up the technical machinery
that allows to normalize finite-valued SST. Section 4 shows the major normalization result,
which holds for left quotients of SST. Finally Section 5 recalls the Ehrenfeucht-based proof for
equivalence and the application to finite-valued SST. A full version of the paper is available
at https://arxiv.org/abs/1902.06973.

https://arxiv.org/abs/1902.06973
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2 Streaming string transducers

A streaming string transducer (SST) is a tuple T = (Σ,Γ,X,Q,U, I,E,F, xout), where Σ
and Γ are finite input and output alphabets, X is a finite set of registers (usually denoted
x,x′, x1, x2, etc.), Q is a finite set of states, U is a finite set of register updates, that is,
functions from X to (X ⊎ Γ)∗, I,F ⊆ Q are subsets of states, defining the initial and final
states, E ⊆ Q×Σ×U ×Q is a transition relation, describing, for each state and input symbol,
the possible register updates and target states, and finally xout ∈ X is a register for the
output. Note that, compared to the original definition from [2], here we forbid for simplicity
the use of final production rules, that perform ad additional register update after the end of
the input. This simplification is immaterial with respect to the decidability of the equivalence
problem. For example, it can be enforced, without loss of generality, by assuming that all
well-formed inputs are terminated by a special marker, say ⊣, on which the transducer can
apply a specific transition. We assume here that all inputs of a transducer are non-empty
and of the form u ⊣, with ⊣ not occurring in u.

Copyless restriction and capacity

An SST as above is copyless if for all register updates f ∈ U , every register x ∈X appears at
most once in the word f(x1) . . . f(xm), where X = {x1, . . . , xm}. For a copyless SST, every
output has length at most linear in the length of the input. More precisely, every output
associated with an input u has length at most c∣u∣, where c = maxf∈U ∑x∈X ∣f(x)∣Γ is the
maximum number of letters that the SST can add to its registers along a single transition
(this number c is called capacity of the SST).

Hereafter, we assume that all SST are copyless.

Register updates and flows

Every register update, and in general every function f ∶X → (X ⊎ Γ)∗ is naturally extended
to a morphism on (X ⊎ Γ)∗, by defining it as identity over Γ. When reasoning with register
updates, it is sometimes possible to abstract away the specific words over Γ, and only consider
how the contents of the registers flows into other registers. Formally, the flow of an update
f ∶X → (X ⊎ Γ)∗ is the bipartite graph that consists of two ordered sequences of nodes, one
on the left and one on the right, with each node in a sequence corresponding to a specific
register, and arrows that go from the node corresponding to register x to a right node
corresponding to register x whenever x occurs in f(x). For example, the flow of the update
f defined by f(x1) = ax1 aax3, f(x2) = b a, and f(x3) = x2 b is the second bipartite graph in
the figure on page 5.

Note that there are finitely many flows on a fixed number of registers. Moreover, flows
can be equipped with a natural composition operation: given two flows F1 and F2, F1 ⋅ F2 is
the bipartite graph obtained by glueing the right nodes of F1 with the left nodes of F2, and
by shortcutting pairs of consecutive arrows. We call flow monoid of an SST T the monoid of
flows generated by the updates of T , with the composition operation as associative product.

Transitions, runs, and loops

A transition (q, a, f, q′) of an SST T is conveniently denoted by the arrow q a/fÐÐ→
T

q′, and
the subscript T is often omitted when clear from the context. A run on w = a1 . . . an is a
sequence of transitions of the form q0

a1/f1ÐÐÐÐ→ q1
a2/f2ÐÐÐÐ→ . . . an/fnÐÐÐÐ→ qn. Sometimes, a run as
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above is equally denoted by q0
w/fÐÐ→ qn, so as to highlight the underlying input w and the

induced register update f = f1 ○ ⋅ ⋅ ⋅ ○ fn. A run is initial (resp. final) if it begins with an
initial (resp. final) state; it is successful if it is both initial and final.

Given two registers x,x′ and a run ρ ∶ q w/fÐÐ→ q′, we say that x flows into x′ along ρ if x
occurs in f(x′). Note that this property depends only on the flow of the induced update f .

An SST is said to be trimmed is every state occurs in at least one successful run, so every
state is reachable from the initial states and co-reachable from the final states. This property
can be easily enforced with a polynomial-time preprocessing.

When reasoning with automata, it is common practice to use pumping arguments.
Pumping will also be used here, but the notion of loop needs to be refined as to take into
account the effect of register updates. Formally, a loop of a run ρ of an SST is any non-empty
factor of ρ of the form γ ∶ q w/fÐÐ→ q, that starts and ends in the same state q, and induces a
flow-idempotent update, namely, an update f such that f and f ○ f have the same flow.

Outputs and finite-valuedness

The output of a successful run ρ ∶ q0
w/fÐÐ→ qn is defined as out(ρ) = (f0 ○ f)(xout), where

f0(x) = ε for all x ∈X. Sometimes, we write out(f) in place of out(ρ). The relation realized
by an SST is the set of pairs (u, v) ∈ Σ∗ × Γ∗, where u is a well-formed input (namely,
terminating with ⊣) and v is the output associated with some successful run on u. An SST
is k-valued if for every input u, there are at most k different outputs associated with u. It
is single-valued (resp. finite-valued) if it is k-valued for k = 1 (resp. for some k ∈ N). The
domain an SST T , denoted Dom(T ), is the set of input words that have some successful run
in T . Two SST T1, T2 are equivalent, denoted as T1 ≡ T2, if they realize the same relation
over Σ∗ × Γ∗.

Register valuations

A register valuation is a function from X to Γ∗. Given a successful run ρ ∶ q0
a1/f1ÐÐ→ q1

a2/f2ÐÐ→
. . . an/fnÐÐ→ qn and a position i ∈ {0, . . . , n} in it, the register valuation at position i in ρ is the
function valρ,i that is defined inductively on i as follows: valρ,0(x) = ε, for all x ∈ X, and
valρ,i+1 = valρ,i ○ fi. Note that valρ,n(xout) coincides with the final output out(f1 ○ ⋅ ⋅ ⋅ ○ fn)
produced by ρ.

3 Normalizations

A major stumbling block in deciding equivalence of SST, as well as other crucial problems, lies
in the fact that the same output can be produced by very different runs. This phenomenon
already appears with much simpler transducers, e.g. with one-way transducers, where runs
may produce the same output, but at different speeds. However, the phenomenon is more
subtle for SST, as the output is produced piece-wise, and not sequentially: runs with same
output may appear to be different in many ways, e.g. in terms of the flows of the register
updates, or in terms of shifts of portions of the output. The goal of this section is to provide
suitable normalization steps that remove, one at a time, the above mentioned degrees of
freedom in producing the same output.

Another issue that we will be concerned with is the compatibility of the normalization
steps with constructions on transducers that shortcut arbitrary long runs into a single
transition. Essentially, we aim at having an effective notion of equivalence w.r.t. final outputs
that works not only for transitions but also for runs.
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Normalization of flows

In this section, m will always denote the number of registers of an SST and X = {x1, . . . , xm}
the set of registers. It is convenient to equip X with a total order, say x1 < ⋅ ⋅ ⋅ < xm.
Accordingly, we let χ = x1 . . . xm be the juxtaposition of all register names, and f(χ) =
f(x1) . . . f(xm) for every register update f .

We say that a register update f is non-erasing if for every register x, f(χ) contains at
least an occurrence of x (in fact, exactly one, since T is copyless). This can be rephrased as
a property of the flow of f , where every node on the left must have an outgoing arrow. In a
similar way, we say that f is non-permuting if registers appear in f(χ) with their natural
order and without jumps, that is, f(χ) ∈ Γ∗x1Γ∗ . . . Γ∗xkΓ∗, for some k ≤m. As before, this
can be rephrased by saying that the arrows in the flow of f must not be crossing, and the
target nodes to the right must form a prefix of χ. Below are some examples of updates with
their flows: the first update f is erasing, the second update g is non-erasing but permuting,
and the third update h is non-erasing and non-permuting.

f ∶ x1 ↦ _x1 _x3 _
x2 ↦ _
x3 ↦ _

g∶ x1 ↦ _x1 _x3 _
x2 ↦ _
x3 ↦ _x2 _

h∶ x1 ↦ _x1 _x2 _
x2 ↦ _x3 _
x3 ↦ _

We say that T is flow-normalized if all its register updates are non-erasing and non-permuting.
Note that a flow-normalized SST with m registers can have at most 2m different flows.

I Proposition 2. One can transform any SST into an equivalent flow-normalized one.

Recall that a register valuation is a function from X to Γ∗. With a flow-normalized SST,
one can also define a dual notion of valuation, representing “gaps” between registers that
shrink along the run. For this we introduce m + 1 fresh variables y0, y1, . . . , ym, called gaps.
Hereafter, Y = {y0, y1, . . . , ym} will always denote the set of gaps. We use the term valuation
to generically denote a register/gap valuation, that is, a function from X ⊎ Y to Γ∗.

The idea is that a gap yj represents a word that is inserted between register xj (if
j > 0) and register xj+1 (if j < n) so as to form the final output. Formally, given a word
w ∈ Γ∗x1Γ∗ . . .Γ∗xkΓ∗, with k ≤m, and given two registers xi, xj , with i < j, we denote by
w⟨xi, xj⟩ the maximal factor of w strictly between the unique occurrence of xi and the unique
occurrence of xj , using the following conventions for the degenerate cases: if i = 0, then
w⟨xi, xj⟩ is a maximal prefix of w; if i > 0 but there is no occurrence of xi, then w⟨xi, xj⟩ = ε;
finally, if there is an occurrence of xi but no occurrence of xj in w, then w⟨xi, xj⟩ is a maximal
suffix. Given a run ρ ∶ q0

a1/f1ÐÐ→ q1
a2/f2ÐÐ→ . . . an/fnÐÐ→ qn and a position i in it, the valuation at

position i of ρ is the function valρ,i ∶X ⊎ Y → Γ∗ such that
valρ,i restricted to X is the register valuation at position i of ρ,
valρ,i maps every gap yj to the word (fi+1 ○ ⋅ ⋅ ⋅ ○ fn)(χ)⟨xj , xj+1⟩.

By definition, the image of the word ζ = y0 x1 y1 . . . xm ym via the valuation valρ,i is
always equal to the final output out(ρ), for all positions i. In this sense, the sequence of
valuations valρ,0,valρ,1, . . . ,valρ,n can be identified with a sequence of factorizations of out(ρ).
For example, below are the factorizations of the output before and after a transition with
register update f such that f(x1) = sx1 ux2 t and f(x2) = v, for s, u, t, v ∈ Γ∗:
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y0 x1 y1 x2 y2

s u t v

y′0 x′1 y′1 x′2 y′2

This also suggests the principle that gaps, like registers, are updated along transitions via
suitable morphisms, but in a symmetric way, that is, from right to left. For instance, in the
above picture, the gaps y0, y1, y2 are updated by the function f⋆ such that f⋆(y0) = y0 s,
f⋆(y1) = u, and f⋆(y2) = t y1 v y2. In general, the function f⋆, called gap update, is uniquely
determined by the register update f , and vice versa, f is uniquely determined by the gap
update f⋆. Another perhaps interesting phenomenon is that the gap update f⋆ is also
non-erasing and non-permuting (the notion of non-permuting gap assignment is defined
w.r.t. the reverse order ym < ⋅ ⋅ ⋅ < y0).

Normalization of states

The next normalization step splits the states of an SST in such a way that it becomes possible
to associate with each state an over-approximation of the possible register/gap valuations
witnessed when the state is visited along a successful run. These over-approximations are
very simple languages over the output alphabet Γ, e.g. singleton languages like {aba} and
periodic languages like {ab}∗{a} (often denoted (ab)∗a to improve readability). Basically
our over-approximations refer to length and period constraints. The period of a word w is
the least number 0 < p ≤ ∣w∣ such that w is a prefix of (w[1, p])ω. For example, the period of
w = abcab is 3.

For a given parameter α ∈ N we define the family Lα that contains:
the empty language ∅,
the singleton languages {u}, with u ∈ Γ∗ and ∣u∣ ≤ α,
the periodic languages u∗v, with u ∈ Γ+ primitive (i.e. u = wk only if k = 1),
∣u∣ ≤ α, and v ∈ Γ∗ strict prefix of u,
the universal language Γ∗.

The languages in Lα, partially ordered by containment, form a finite meet semi-lattice, where
the meet is the intersection ∩. We depict here part of the lattice Lα for a parameter α ≥ 3:

∅

ab ε a aba . . .

(ab)∗ a∗ (ab)∗a . . .

Γ∗

The semi-lattice structure allows to derive a best over-approximation in Lα of any language
L ⊆ Γ∗, that is: L↑α = ⋂{L′ ∈ Lα ∶ L′ ⊇ L}. We will mostly use the approximation operator ↑α
on singleton languages. For example, for α = 3, we have {aba}↑α = {aba}, {ababa}↑α = (ab)∗a,
and {abbb}↑α = Γ∗. Note also that if ∣w∣ ≤ α then w↑α = {w}. A useful property is the
compatibility of ↑α with concatenation, which immediately extends to compatibility with
word morphisms:

I Lemma 3. (L1 ⋅L2)↑α = (L1
↑α ⋅L2

↑α)↑α for every α ∈ N and L1, L2 ⊆ Γ∗.
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Recall that X,Y denote, respectively, the sets of registers and gaps of a flow-normalized
SST. Given a valuation ν ∶X ⊎ Y → Γ∗, its α-approximant is the function ν↑α ∶X ⊎ Y → Lα
that maps any z ∈ X ⊎ Y to the language {ν(z)}↑α. The set of α-approximants is denoted
LX⊎Y
α , and consists of all maps from X ⊎ Y to Lα. Further let

Valq = {valρ,i ∶ ρ successful run visiting q at any position i}

be the set of possible valuations induced by an arbitrary successful run when visiting state q.
A first desirable property is that all valuations in Valq have the same α-approximant,

which is thus determined by the state q. Formally, given a flow-normalized SST T with
trimmed state space Q, we say that T admits α-approximants if every state q ∈ Q can be
effectively annotated with an α-approximant Aq ∈ LX⊎Y

α in such a way that

∀ν ∈ Valq ∶ ν↑α = Aq. (1)

This condition is best understood as an invariant on lengths and periods that can be enforced
on valuations of registers and gaps when visiting a particular state. For instance, when
the approximant Aq guarantees a certain period, then this period will be the same for all
valuations occurring at q, independently of the specific initial run that may lead to q (for
registers), and of the run that may lead from q to an accepting state (for gaps).

The proposition below shows that it is always possible to refine any SST T so as to admit
α-approximants, for any parameter α. The proof for α-approximants that concern only
registers could be understood as unfolding the SST T , and merging nodes corresponding to
any two inputs u and v, with u prefix of v, whenever the induced α-approximants at u and v
are the same for every register x. In general, the resulting SST can be seen a covering of the
original SST T , in the sense formalized by Sakarovitch and de Souza in [22]: T ′ is a covering
of T if the states of T ′ can be mapped homomorphically to states of T , while preserving
transitions and the distinction into initial and final states, and, moreover, the outgoing
transitions of every state of T ′ map one-to-one to outgoing transitions of a corresponding
state of T . This implies that the successful runs of T and those of T ′ are in one-to-one
correspondence.

I Proposition 4. Let T be a flow-normalized SST, and let α ∈ N. One can construct an
equivalent flow-normalized SST T ′ that admits α-approximants and that is a covering of T .

Notation. Whenever an SST admits α-approximants Aq as above, it is convenient to denote
its states by triples of the form (q,AX ,AY ), where AX (resp. AY ) is the restriction of the
α-approximant Aq of state q to registers (resp. gaps).

Note that the smaller the parameter α, the weaker is the property required for α-
approximants (in particular, for α = 0 the lattice Lα collapses to ∅ and Γ∗). Choosing
α to be at least the capacity of the SST is already a reasonable choice, as it gives a nice
characterization of equivalence of transitions w.r.t. the produced outputs (cf. Lemma 5
below). However, we will see that it is desirable to have even finer approximants, in such a
way that our results will be compatible with left quotients of SST, that shortcut arbitrary
long runs into single transitions. We postpone the technical details to Section 4, and only
provide a rough intuition underlying the choice of the appropriate parameter α. We will
choose α much larger than the capacity of the SST, so that, by pumping arguments, one
can show that, for every state q and every parameter β ≥ α, the β-approximant cannot be
strictly smaller than the α-approximant on all valuations from Valq.
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Normalization of transitions

We finally turn to studying a notion of equivalence on transitions that is similar to the two-
sided Myhill-Nerode equivalence on words. We will only compare transitions that consume
the same input letter and link the same pair of states. Instead of using words as two-sided
contexts, we will use initial and final runs that can be attached to the considered transitions
in order to form successful runs, and instead of comparing membership in a language, we
will compare the effect on the produced outputs.

Consider two transitions τ1 ∶ q a/f1ÐÐ→ q′ and τ2 ∶ q a/f2ÐÐ→ q′. We say that τ1 and τ2 are
equivalent if for every initial run ρ leading to q and every final run σ starting in q′, the
outputs out(ρ τ1 σ) and out(ρ τ2 σ) are equal. We often refer to (ρ, σ) as a context for τ1, τ2.

In general, two transitions of an SST having the same source, target and Σ-label might turn
out to be non-equivalent, and still produce the same output within specific contexts. However,
Lemma 5 below shows that this is not the case with α-approximants at hand, provided that
α is at least the capacity of the SST. More precisely, we will show that the equivalence of two
transitions τ1 ∶ (q,AX ,AY ) a/f1ÐÐ→ (q′,A′

X ,A
′
Y ) and τ2 ∶ (q,AX ,AY ) a/f2ÐÐ→ (q′,A′

X ,A
′
Y ), where

f1, f2 have the same flow, only depends on the α-approximants AX ,A′
Y that annotate the

source and target states. This will imply that τ1, τ2 either always produce the same output
or always produce different outputs, independently of the surrounding contexts. To prove the
statement, we have to consider register valuations induced by initial runs, and symmetrically
gap valuations induced by final runs. It helps to introduce the following:

Notation. Given an initial run ρ, valρ● is the register valuation induced at the end of ρ;
symmetrically, val●σ is the gap valuation induced at the beginning of a final run σ.

We also recall a consequence of the flow normalization: the effect on the final output
of an update f that occurs in a successful run can be described by a word Effect(f) over
the alphabet X ⊎ Y ⊎ Γ, defined as Effect(f) = y0 f(x1) y1 . . . f(xm) ym+1. Note that in
Effect(f) each register (resp. gap) occurs exactly once, according to the order x1 < ⋅ ⋅ ⋅ < xm
(resp. y0 < ⋅ ⋅ ⋅ < ym) – the occurrences of registers and gaps, however, may not be strictly
interleaved. In Effect(f), an occurrence of xi ∈ X represents an abstract valuation for
register xi before applying the update f , while an occurrence of yj ∈ Y represents an abstract
valuation for the gap yj after applying f . In particular, note that the x’s and the y’s refer
to valuations induced at different positions of a run. The maximal factors of Effect(f) that
are entirely over Γ represent the words that need to be added in order to get the register
valuation after f , or equally the gap valuation before f . For instance, by reusing the example
update f from page 5, where f(x1) = sx1 ux2 t and f(x2) = v, the effect of f is described by
the word Effect(f) = y0 sx1 ux2 t y1 v y2, suggestively depicted as

Effect(f) = y0
s x1

u y1
tx2

v y2

(here the lengths of the blocks labeled with variables are immaterial). Note that the yj above
are in fact the y′j from the picture at page 5. In the above figure we have also highlighted
with dotted rectangles the factors that represent gap valuations before the update (e.g. y0 s),
and register valuations after the update (e.g. sx1 ux2 t).

Given a valuation ν and two approximants A ∈ LXα and A′ ∈ LYα , one for register
valuations and the other for gap valuations, we write ν ∈ A ⊎A′ to mean that ν(x) ∈ A(x)
and ν(y) ∈ A′(y) for all x ∈X and y ∈ Y .
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I Lemma 5. Let T be a trimmed flow-normalized SST. Given two transitions τi ∶ q a/fiÐÐ→ q′,
with i ∈ {1,2}, a context (ρ, σ) for them, and the α-approximants A = ((valρ●)↑α)∣X and
A′ = ((val●σ)↑α)∣Y , with α ∈ N, the following holds:
1. If Effect(f1) = Effect(f2) holds on all valuations ν ∈ A⊎A′, then out(ρ τ1 σ) = out(ρ τ2 σ).
2. If τ1, τ2 have the same flow, out(ρ τ1 σ) = out(ρ τ2 σ), and α ≥ c, where c is the capacity

of T , then Effect(f1) = Effect(f2) holds on all valuations ν ∈ A ⊎A′.

Recall that in an SST that admits α-approximants, states are of the form (q,AX ,AY ),
and we have ((valρ●)↑α)∣X = AX (resp. ((val●σ)↑α)∣Y = AY ) for every initial run ρ that ends
in (q,AX ,AY ) (resp. for every final run σ that starts in (q,AX ,AY )). By pairing this with
Lemma 5, we immediately obtain the following corollary:

I Corollary 6. Let T be a trimmed flow-normalized SST. One can decide in polynomial time
whether two given transitions τ1, τ2 of T with the same flow are equivalent. Moreover, if T
has capacity c and admits α-approximants for some α ≥ c, then only two cases can happen:
1. either out(ρ τ1 σ) = out(ρ τ2 σ) for every context (ρ, σ) (so τ1, τ2 are equivalent),
2. or out(ρ τ1 σ) ≠ out(ρ τ2 σ) for every context (ρ, σ) (so τ1, τ2 are not equivalent).

Another important consequence is the following theorem, that normalizes finite-valued
SST in order to bound the maximum number of transitions linking the same pair of states
and consuming the same input letter. This number is called edge ambiguity for short.

I Theorem 7. Let T be a k-valued, flow-normalized SST that has m registers, capacity c,
and that admits α-approximants, for some α ≥ c. One can construct an equivalent SST T ′,
with the same states and the same registers as T , that has edge ambiguity at most k ⋅ 2m.

Proof. By Corollary 6, T has at most k pairwise non-equivalent transitions with the same
input letter, the same source and target states, and the same flow. Moreover equivalence of
such transitions can be decided. We can then normalize T by removing in each equivalence
class all but one transitions with the same flow. Since T has at most 2m flows, the
normalization results in an equivalent SST T ′ with edge ambiguity at most k ⋅ 2m. J

The next section is devoted to prove a very similar result as above, but for all SST that
can be obtained by shortcutting runs into single transitions, and that thus have arbitrary
large capacity. This will be the main technical ingredient for establishing the decidability of
the equivalence problem for k-valued SST.

4 Shortcut construction

Here we focus on a transformation of relations that absorbs the first input letter when this
is equal to a specific element, say a ∈ Σ ∖ {⊣}. Such a transformation maps any relation
R to the relation Ra = {(u, v) ∶ (au, v) ∈ R}. Observe that R = Rε ∪ ⋃a∈ΣRa, where
Rε = R ∩ ({⊣} × Γ∗).

It is easy to see that the class of relations realized by SST is effectively closed under the
transformation R ↦ Ra. To prove this closure property, it is convenient to restrict, without
loss of generality, to SST with transient initial states, namely, SST where no transition
reaches an initial state. Under this assumption, the closure property also preserves the state
space (though some states may become useless), the set of registers, the property of being
k-valued, as well as the α-approximants, if they are admitted by the original SST. However,
the transformation does not preserves the capacity, which may increase.
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I Lemma 8. Given a flow-normalized SST T with transient initial states, and given a letter
a ∈ Σ ∖ {⊣}, one can construct an SST Ta with transient initial states such that

Dom(Ta) = {u ∈ Σ∗ ∶ au ∈ Dom(T )},
Ta on input u produces the same outputs as T on input au.

Moreover, Ta has the same states and the same registers as T ; if T has capacity c, then Ta
has capacity 2c; if T admits α-approximants, then so does Ta (via the same annotation).

The above construction can be applied inductively to compute an SST for any left quotient
Ru = {(v,w) ∶ (uv,w) ∈ R} of R. For u = a1 . . . an ∈ (Σ∖{⊣})∗, we let Tu = (. . . (Ta1)a2 . . . )an .

The last and most technical step consists in proving that edge ambiguity can be uniformly
bounded in every SST Tu, provided that the initial SST T is finite-valued, flow-normalized,
and admits α-approximants for a large enough α. More precisely, we aim at establishing that,
for α much larger than the capacity of T , the notion of α-approximant, besides satisfying
Equation (1), also satisfies the following property:

∀β ≥ α ∃ρ ∶ (valρ●)↑β = (valρ●)↑α

∀β ≥ α ∃σ ∶ (val●σ)↑β = (val●σ)↑α.
(2)

In this case we say that the α-approximants are tight.
Intuitively, the above property can be explained as follows. When considering an SST

with states annotated with α-approximants, it may happen that for some larger parameter β
some initial runs induce register valuations at a state (q,AX ,AY ) whose β-approximants
are strictly included in AX (e.g. possibly entailing new periodicities). These runs should be
thought of as exceptional cases, and there is a way of pumping them so as to restore the
equality between AX and the induced β-approximant.

Let us first see how tight approximants are used. The theorem below assumes that there
is an SST T ′ with tight approximants (later we will show how to compute such an SST),
and bounds the edge ambiguity of the SST T ′u that realizes a left quotient of T ′.

I Theorem 9. Let T ′ be a k-valued, flow-normalized SST realizing R, with transient initial
states and tight α-approximants. For every u ∈ Σ∗, one can construct an SST T ′u realizing Ru,
with the same states and the same registers as T ′, and with edge ambiguity at most k ⋅ 2m.

Proof. The crux is to show that the SST T ′u obtained from Lemma 8 has at most k pairwise
non-equivalent transitions with the same flow (for any given source/target state and label).
Once this is proven, one can proceed as in the proof of Theorem 7, by removing all but
one transition with the same flow in each equivalence class. By way of contradiction,
assume that T ′u has k + 1 pairwise non-equivalent transitions τ1, . . . , τk+1 with the same flow.
Since T ′ admits tight α-approximants, by Lemma 8 we know that the source and target
state, respectively, of the previous transitions are annotated with tight α-approximants, say
(AX ,AY ) and (A′

X ,A
′
Y ), respectively.

We begin by applying the first claim of Lemma 5, implying that the equation Effect(fi) =
Effect(fj) is violated for some valuation ν ∈ AX ⊎A′

Y . Then, we let β = max(α, ∣u∣c) and use
Equations (1) and (2) to get a context (ρ, σ) such that (valρ●)↑β = AX and (val●σ)↑β = A′

Y .
Finally, knowing that β is at least the capacity of T ′u, we apply the second claim of Lemma 5
to get out(ρ τi σ) ≠ out(ρ τj σ), thus witnessing non-equivalence of all pairs of transitions τi, τj
at the same time. This contradicts the assumption that T ′u (and hence T ′) is k-valued. J

Now, let T be a flow-normalized SST with m registers, capacity c, and trimmed state
space Q. Below, we show how to compute, with the help of Proposition 4, an SST T ′

equivalent to T that admits tight approximants. For simplicity, we will mostly focus on
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register valuations induced by initial runs, even though similar results can be also stated for
gap valuations induced by final runs. We begin by giving a few technical results based on
pumping arguments. We say that register x is productive along ρ if the update induced by ρ
maps x to a word that contains at least one letter from Γ. We also recall that a loop of a
run needs to induce a flow-idempotent update.

I Lemma 10. If ρ = ρ1 γ ρ2 is an initial run of T , with γ loop, then for every n > 0 the
pumped run ρ(n) = ρ1 γ

n ρ2 induces valuations valρ(n)● mapping any register x to a word of
the form u0 v

n−1
1 u1 . . . v

n−1
2m u2m, where u0, . . . , u2m, v1, . . . , v2m ∈ Γ∗ depend on ρ and x, but

not on n. Moreover, we have vi ≠ ε for some i if there is a register x′ that is productive along
γ and that flows into x along ρ2.

Given a tuple of pairwise disjoint loops γ = γ1, . . . , γ` in a run ρ, we write ρ′ ⊵γ ρ when ρ′
is obtained from ρ by simultaneously pumping n times every loop γi, for some n > 0. When
using this notation, we often omit the subscript γ; in this case we tacitly assume that γ is
uniquely determined from ρ. In this way, when writing, for instance, ρ′, ρ′′ ⊵ ρ, we will know
that ρ′, ρ′′ are obtained by pumping the same loops of ρ. We also say that a property on
runs holds for all but finitely many ρ′ ⊵ ρ if it holds on runs ρ′ that are obtained from ρ by
pumping n times the loops in a fixed tuple γ, for all n > n0 and for a sufficiently large n0.

I Lemma 11. Let ρ be an initial run and x a register. If valρ●(x) has length (resp. period)
larger than α = mc ∣Q∣23⋅2m

, then for every β ≥ α and for all but finitely many ρ′ ⊵ ρ,
valρ′●(x) has length (resp. period) larger than β.

Using the previous lemmas and the fact that the type of quantification “for all but finitely
many runs” commutes with conjunctions (e.g. those used to enforce properties on each
register x ∈X), we obtain that α-approximants are tight for sufficiently large α:

I Proposition 12. Let T ′ be the SST admitting α-approximants that is obtained from T using
Proposition 4, for any α ≥mc ∣Q∣ 23⋅2m

, where Q is the set of states of T . The α-approximants
of T ′ are tight.

5 Equivalence algorithm

The equivalence algorithm for k-valued SST follows a classical approach of Culik and
Karhumäki [10] that is based on so-called test sets. A test set for two SST T1, T2 over input
alphabet Σ is a set F ⊆ Σ∗ such that T1, T2 are equivalent if and only if they are equivalent
over F . The main contribution of [10] is to show that finite test sets exist and be computed
effectively for k-valued one-way transducers.The key ingredient of their proof is to show the
existence of a test set that works for all transducers with fixed number of states. An essential
observation is that for k-valued one-way, or even two-way, transducers one can assume that
the edge ambiguity is at most k. The reason for this is simply that the output is generated
sequentially. For SST the situation is far more complex because the output is generated
piecewise. The purpose of the normalizations performed in Section 3 was precisely to restore
the property of bounded edge ambiguity.

In a nutshell, the existence of a test set for transducers is a consequence of Ehrenfeucht’s
conjecture, whereas the effectiveness is based on the resolution of word equations due to
Makanin (see e.g. the survey [11]).

Ehrenfeucht’s conjecture was originally stated as a conjecture about formal languages:
for every language L ⊆ Σ∗, there is a finite subset F ⊆ L such that for all morphisms
f, g ∶ Σ∗ → ∆∗, f(w) = g(w) for every w ∈ L if and only if f(w) = g(w) for every w ∈ F . Such
a set F is called a test set for L.
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There is an equivalent formulation of Ehrenfeucht’s conjecture in terms of a compactness
property of word equations [20]. Let Σ and Ω be two alphabets, where the elements in Ω are
called unknowns. A word equation is a pair (u, v) ∈ Ω∗ ×Ω∗, and a solution is a morphism
σ ∶ Ω∗ → Σ∗ such that σ(u) = σ(v). Ehrenfeucht’s conjecture is equivalent to saying that any
system of equations over a finite set Ω of unknowns has a finite, equivalent subsystem, where
equivalence means that the solution sets are the same. The latter compactness property was
proved in [1, 15] by encoding words by polynomials and using Hilbert’s basis theorem.

In view of Propositions 2, 4, and 12, we can restrict without loss of generality to SST that
are flow-normalized and that admit tight approximants. Hereafter, we shall tacitly assume
that all transducers are of this form. Given some integers k, n, m, and e, let Ck(n,m, e) be
the class of k-valued SST with at most n states, m registers, and edge-ambiguity at most e.
Note that if T is k-valued, then by Theorem 7 it belongs to Ck(n,m, e), where n,m are the
number of states and registers of T and e = k ⋅ 2m. Similarly, by Lemma 8 and Theorem 9,
every left quotient Tu also belongs to Ck(n,m, e).

Now, let us fix k,n,m, e and consider an arbitrary SST T from Ck(n,m, e). Following
[10] we first build an abstraction of T by replacing each maximal factor from Γ∗ occurring in
some update function of T , by a distinct unknown from Ω. The SST ∆(T ) obtained in this
way is called a schema; its outputs are words over Ω. Note that the assumption of bounded
edge ambiguity is essential here to get a uniform bound on the number of unknowns required
for a schema. Clearly, there are only finitely many schemas of SST in Ck(n,m, e). We denote
by φT ∶ Ω⇀ Γ∗ the partial mapping (concretization) that associates with each unknown the
corresponding word from Γ∗ as specified by the updates of T .

We can rephrase the equivalence T1 ≡ T2 of two arbitrary SST from Ck(n,m, e) as an
infinite “system” of word equations1 S = ⋀u∈Σ∗ ⋁π Sπ over set of unknowns Ω ⊎ Ω′. The
unknowns from Ω are used for the schema ∆(T1), whereas those from Ω′ are used for ∆(T2);
in particular, φT1 ∶ Ω→ Γ∗ and φT2 ∶ Ω′ → Γ∗. The disjunctions in S are finite, with π ranging
over the possible schemas ∆1,∆2 (for T1 and T2, respectively) and the possible partitions of
the set of runs of ∆1 and ∆2 over the input u, into at most k groups (one for each possible
output). Finally, Sπ is a (finite) system of word equations, stating the equality of the words
from Ω∗ ∪Ω′∗ that belong to the same group according to π.

The following lemma was stated in [10] for k-valued one-way transducers, but it holds
as well for two-way transducers and for SST (even copyful, with a proper definition for
Ck(n,m, e)):

I Lemma 13. Given two SST T1, T2 from Ck(n,m, e), the system S = ⋀u∈Σ∗ ⋁π Sπ has
φT1 ⊎ φT2 as solution if and only if T1 ≡ T2.

As shown in [10], the Ehrenfeucht conjecture can be used to show that any infinite system
S as in Lemma 13 is equivalent to some finite sub-system SN = ⋀u∈Σ≤N ⋁π Sπ. This gives:

I Lemma 14. Given n,m, e ∈ N, there is N ∈ N such that Σ≤N is a test set for every pair of
SST T1, T2 from Ck(n,m, e).

Using Theorem 7 and Lemma 14 we can derive immediately the existence of a finite test
set for any two k-valued SST. The last question is how to compute such a test set effectively.
For this we will use the shortcut construction provided in Section 4.

1 Formally, S depends on n and k, but for simplicity we leave out the indices.
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I Lemma 15. Assume that the formulas SN and SN+1 are equivalent, i.e., they have the
same solutions. Then Σ≤N is a test set for any pair of SST from Ck(n,m, e).

Proof. Let T1 ≡r T2 denote equivalence of T1 and T2 relativized to Σ≤r. The goal is to prove
that Σ≤N is a test set, namely, for all r > N and all T1, T2 ∈ Ck(n,m, e), T1 ≡r T2 holds if
and only if T1 ≡N T2. Clearly, for any r ≥ 0, T1 ≡r+1 T2 is equivalent to T1,a ≡r T2,a for every
a ∈ Σ, and T1 ≡0 T2 (the latter being abbreviated as (∗) below). Moreover, by Theorem 9, we
have T1,a, T2,a ∈ Ck(n,m, e). This enables the following proof by induction on r:

T1 ≡r+1 T2 ⇔ T1,a ≡r T2,a (∀a ∈ Σ) and (∗) T1 ≡N T2.

⇕ (ind. hyp.) ⇕

T1,a ≡N T2,a (∀a ∈ Σ) and (∗) ⇔ T1 ≡N+1 T2 J

Using Makanin’s algorithm for solving word equations (and even for deciding the existential
theory of word equations, see e.g. [11] for a modern presentation) we obtain:

I Proposition 16. Given n,m, e ∈ N, there is N ∈ N such that Σ≤N is a test set for every
pair of SST from Ck(n,m, e), and such an N can be effectively computed.

Proof. By Lemma 14 we know that N exists, and Makanin’s algorithm allows to determine
whether SN ,SN+1 are equivalent, so to determine N by Lemma 15. J

We finally obtain the main result:

I Theorem 1. The equivalence problem for finite-valued SST is decidable.

Of course, Theorem 1 does not come with any complexity upper bound, mainly because
of the Ehrenfeucht conjecture. The only known lower bound is Pspace-hardness, which
holds even for single-valued SST over unary output alphabets, and follows from a simple
reduction from universality of NFA.

Quite surprisingly, the exact complexity of equivalence is not known even for deterministic
SST, where the problem is known to be between Nlogspace and Pspace [3]. We also
recall that equivalence of deterministic SST with unary output can be checked in Ptime
using invariants [4]. Finally, we recall that the currently best upper bound for solving word
equations is Pspace [21] (with even linear space requirement, as shown in [19]).

6 Conclusions

Our paper answers to a question left open in [5], showing that the equivalence problem for
finite-valued SST is decidable. We followed a proof for one-way transducers due to Culik and
Karhumäki [10], that is based on the Ehrenfeucht conjecture. The main contribution of the
paper is to provide the technical development that allows to follow the proof scheme of [10].
We believe that this development will also allow to obtain stronger results. We conjecture
that finite-valued SST can be effectively decomposed into finite unions of unambiguous SST.
This would entail that in the finite-valued setting, two-way transducers and SST have the
same expressive power, as is it the case for single-valued transducers. If this holds with
elementary complexity, then the equivalence of single-valued SST (or two-way transducers)
could also be solved with elementary complexity. We believe that the complexity is indeed
elementary, and leave this for future work.
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Abstract
We introduce a new approach to implicit complexity in linear logic, inspired by functional database
query languages and using recent developments in effective denotational semantics of polymorphism.
We give the first sub-polynomial upper bound in a type system with impredicative polymorphism;
adding restrictions on quantifiers yields a characterization of logarithmic space, for which extensional
completeness is established via descriptive complexity.
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Funding Lê Thành Dũng Nguyễn: Partially supported by the Elica project (ANR-14-CE25-0005).
Pierre Pradic: Partially supported by the the RAPIDO project (ANR-14-CE25-0007).
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1 Introduction

Machine-free complexity. We pursue here a research theme advocated by Leivant [26]:
using type systems and the proofs-as-programs correspondence to define functional languages
whose expressible functions are exactly those of a given complexity. This usually consists
of two independent parts: soundness – all those functions admit such complexity bounds
– and extensional completeness – for every algorithm with this complexity, there is an
expressible program computing the same function. This is part of the general area of implicit
computational complexity (ICC), whose goal is to obtain characterizations of complexity
classes by programming languages, without explicit resource bounds on a machine model
(other methods in ICC include, for instance, recursive function algebras).

On the other hand, descriptive complexity is closer to a declarative programming paradigm:
it consists in characterizing complexity classes as sets of queries – predicates over finite
first-order relational structures – written in some logic. (Such structures often go by the
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name of finite models; see Definition 3.) The field was launched by Fagin’s result that NP
queries correspond to existential second-order logic [11]. For our purposes, an useful example
is Immerman’s characterization of deterministic logarithmic space (L) (Theorem 13).

This idea of representing inputs as finite first-order structures also appeared in the early
history of ICC: Gurevich [17] showed in 1983 that in this setting, a form of primitive recursion
captures L. But unlike in descriptive complexity, Gurevich considers endofunctions instead
of relations and queries.

Queries in the λ-calculus. Hillebrand’s PhD thesis [18] is a junction point between implicit
and descriptive complexity. The idea was to represent finite models inside the simply typed
λ-calculus (STλ), using them to represent the inputs to programs. By doing so, Hillebrand
et al. managed to characterize P [19], PSPACE [1] and k-EXPTIME/k-EXPSPACE1 [20] – the
extensional completeness for the first two being established through descriptive complexity.

Keeping in mind the connections between finite model theory and relational databases,
this can also be seen as using STλ as a functional language for database queries, expressive
enough to admit translations from other languages such as Datalog, as is done in [21].

The present paper could then be motivated as looking for a sub-polynomial2 functional
query language, filling a gap in the aforementioned work.

Linear logic for ICC. Here it is natural to turn to linear logic, a constructive logic born from
the proofs-as-programs correspondence, in which several characterizations of sub-polynomial
complexity classes have already been devised [38, 36, 7, 28, 29]. From its inception, linear
logic has indeed had the ambition to “help us improve the efficiency of programs” [13, p. 3],
and a landmark result in that direction was characterizing P through Light Linear Logic [16].

In this paper, we will use Elementary Linear Logic (ELL) [16, 8], which was originally
introduced to capture the class ELEMENTARY3. A recent line of work by Baillot et al. [2, 3, 4]
shows that one can define, inside variants of ELL, types of programs which compute smaller
complexity classes, such as P. We follow this approach, by introducing a type Inp which is
essentially an abstract data type4 for finite models. Our main result is (writing Bool = 1⊕1):

I Theorem 1. The class of queries computed by the proofs of Inp ( !!Bool in second-order
Elementary Linear Logic (ELL2) is between L and NL. Furthermore, a suitable restriction
on the existential witnesses in the proof gives an exact characterization of L.

Here NL stands for non-deterministic logarithmic space. Actually, we obtain a better upper
bound than NL in the unrestricted case, namely the class LUL which will be defined later.
But we believe that this is still not optimal:

I Conjecture 1. Even without the restriction, the class of queries obtained is exactly L.

1 k-EXPTIME(resp. k-EXPSPACE) is the class of functions which can be computed in time (resp. space)
2 ↑k (p(n)), where p is a polynomial and n is the size of the input. (We use Knuth’s up-arrow
notation [24] for iterated exponentials: 2 ↑k+1 (n) = 22↑k(n), and 2 ↑0 (n) = n.)

2 That is, capturing a complexity class below P. To be fair, Hillebrand’s thesis does define a characterization
of the sub-polynomial class of first-order queries (FO) in STλ, but this class has very little expressivity,
and our work captures a class still well above FO.

3 This is the class of elementary recursive functions, i.e. the union over k ∈ N of the classes k-EXPTIME.
4 This term is the programming language counterpart of existential formulas in logic, cf. infra.
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Our characterization has a few distinctive features with respect to the previous variants
of linear logic capturing logarithmic space [36, 7, 28]: it takes place in a simple pre-existing
logical system, which contains only usual logical connectives, and no primitive datatypes5; at
the price of a more involved encoding of inputs, the Inp type. But a main novelty, in our
opinion, is the unrestricted case: to our knowledge, it is the first6 sub-polynomial bound in a
type system with impredicative polymorphism.

This forces our approach to be significantly different to these previous works: they all
exploit some form of the Geometry of Interaction (GoI) [14, 9] as a space-efficient evaluator,
whereas in our case this does not work7 because of impredicative quantication. In the
predicative case, there is still an obstruction to the GoI: the additive connectives of linear
logic. Instead, our tool of choice will be denotational semantics.

Semantic evaluation and polymorphism. This is indeed the sequel to a previous paper [32]
which studied the semantics of second-order Multiplicative-Additive Linear Logic (MALL2)
with applications in mind; in particular it proved that Girard’s model of MALL2 in coherence
spaces [12, 13] is finite and effective. In order to establish our upper complexity bounds, we
will compute the denotation of a program applied to its input in the coherence space model.

This semantic evaluation technique has been very successful before for establishing
complexity bounds in STλ: it is how soundness is established in the aforementioned works
of Hillebrand et al., and also underlies Terui’s more recent result on the complexity of
β-reduction in STλ at fixed order [39]. Beyond STλ, it has been applied to System T and
PCF, see [25] and references therein. However, these applications had been confined to
monomorphic type systems8 until the prequel showed:

I Theorem 2 ([32]). The languages decided by proofs of !Str ( !!Bool in ELL2, where Str
is the type of ELL Church encodings of strings, are exactly the regular languages.

An analysis of the proof also suggested that to increase the expressivity9 while keeping !!Bool
as output, one should replace Str by an existential input type. Hence the Inp type.

To perform semantic evaluation in a polymorphic language, one needs an effective model
of polymorphism, and such models are not easy to build. First, one must first restrict to a
purely linear language10 such as MALL2 to make a non-trivial finitary semantics possible.
Even then, obstacles remain: for instance, the prequel [32] proved that no degenerate model
of MALL2 (in which ⊗ and ` are identified) can satisfy a desirable “constancy property”,
so this excludes the Scott model of linear logic used by [39]. Girard managed to build a

5 Given the special status granted to unary Church integers by the “skewed iteration” rule in Schöpp’s
SBAL [36], it is fair to consider them to be primitive datatypes.

6 Excluding the characterization of regular languages in ELL2, cf. infra, but regular languages do not
form a well-behaved complexity class (for instance they are not closed under uniform AC0 reductions).

7 We will not enter into details here, but essentially, the GoI works by “following paths” inside a proof,
and in our case, the length of these paths would be super-polynomial.

8 That said, there have been some uses of rather different semantic techniques for implicit complexity in
presence of polymorphism, e.g. realizability [6].

9 This was also a major motivation in the work of Hillebrand et al.: they wanted to overcome limits in
STλ such as Statman’s classical result that equality cannot be defined on STλ Church integers (see
the introduction to [21]). Hillebrand and Kanellakis [20] later proved that the languages decided by
STλ predicates over Church-encoded strings are regular (this inspired the analogous result on ELL2).
Such restrictions seem drastic since the β-equivalence problem for STλ is not in ELEMENTARY [37, 27],
hinting that its computational power should be much greater. By using finite models as inputs,
Hillebrand, Kanellakis and Mairson [21] manage to express all ELEMENTARY queries.

10The type ∀X. X → (X → X)→ X of polymorphic Church integers – more generally, any infinite data
type whose destructors are definable – has an inifinite denotation in any semantics of System F.
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semantics for System F [12] which later turned out to be finite and effective for MALL2 by
representing types depending on type parameters as normal functors11. Although we will not
have to study the properties of normal functors here – the semantic groundwork has been
laid in the prequel – we consider that this ingredient is crucial enough to deserve inclusion
in the title.

New complexity phenomena in MALL. The bottleneck for this LUL bound is the complexity
of an iterated composition problem: given a MALL2 type A and k proofs f1, . . . , fk of A ` A,
compute their composition f1◦ . . .◦fk. To illustrate the kind of complexity constraint induced
by the linearity of the fi, consider the types Bool⊗ . . .⊗Bool (n times) and Bool& . . .&Bool
(n times). A non-linear function does not distinguish them, whereas for linear functions:

an iteration over Bool⊗ . . .⊗ Bool can simulate a Turing machine running in space n
(minus O(1) bits for the control state);
an iteration over Bool & . . .& Bool can be computed in space O(log(nk)).

This kind of phenomenon surfaced when we tried to obtain bounds on our ELL2 queries;
we are not aware of a previous mention in the literature. Coherence spaces are sensitive to
this (e.g. the interpretation of ⊗ and & bit vectors have respective sizes 2n and 2n) and thus
manage to give a systematic sub-polynomial (but not L) bound on iterations.

For now, we have only managed to find a logarithmic space algorithm for those iterations
in very specific cases of A, subsuming the above example. These cases still leave enough
room for an extensional completeness result, leading to our exact characterization of L. But
even in propositional MALL, the complexity of iterations remains mysterious.

Plan of the paper. In Section 2 we introduce the necessary definitions and state the main
theorems. The lower bound on expressivity is established using descriptive complexity in
Section 3, while our upper bounds are both proved in Section 4 via semantic evaluation.

2 Elementary Linear Logic as a query language

2.1 Linear Logic
In this paper, we assume some familiarity with the basic ideas of the proofs-as-programs
paradigm and more specifically of linear logic. The formulas and the sequent calculus of
second-order Multiplicative-Additive Linear Logic (MALL2) are recalled in the full paper,
in Appendix A. Recall that MALL2 forbids using the structural rules of contraction and
weakening, enforcing linearity whose computational meaning is that data cannot be duplicated
or erased.

In order to allow the use of the structural rules in a controlled manner, the grammar of
full Linear Logic extends the syntax of MALL2 with exponential modalities !F and ?F which
allow to tag duplicable assumptions and conclusions. (Second-order) Elementary Linear Logic
(ELL2) corresponds to the subsystem whose rules governing the exponential connectives are
given in Figure 1; this makes the principles of digging (!A( !!A) and dereliction (!A( A)
invalid in ELL2 while they are provable in full Linear Logic.

11A remark: the fact that our LUL upper bound involves unambiguous nondeterminism, as we shall see,
is related to the stability of linear maps in coherence spaces; stable maps are the “lower-dimensional
analogue” of normal functors, and interestingly, it seems that stability is required for the construction
of models of polymorphism based on normal functors.
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(functorial promotion) ` Γ, A
` ?Γ, !A (weakening) ` Γ

` Γ, ?A (contraction)` Γ, ?A, ?A
` Γ, ?A

Figure 1 Exponential rules for the ELL2 sequent calculus. In the functorial promotion rule, when
Γ = B1, . . . , Bk, ?Γ stands for ?B1, . . . , ?Bk.

ELL2 thus satisfies a stratification property: the depth of a given connective – i.e. the
number of !/? modalities it is in the scope of – does not change during cut-elimination (key
cut-elimination rules are also recalled in Appendix A). As a consequence, this notion of depth
is of the utmost relevance for the computational complexity properties of ELL2.

LL notations. When π and ρ have respective conclusions ` Γ, A and ` A⊥,∆, we write
cut(π, ρ) for the proof of ` Γ,∆ consisting of a cut-rule with premises π and ρ. Given a
proof π : A, !π denotes the proof of !A obtained by applying the promotion rule to π. As we
formally use one-sided sequents, A1, . . . , An ` B is a notation for ` A⊥1 , . . . , A⊥n , B.

2.2 Finite models
I Definition 3. Let Σ be a first-order relational signature, i.e. a list of relation symbols
{R0, . . . ,Rk} with their respective arities r0, . . . , rk.

A finite model D over Σ consists of a finite set D and an interpretation RD
i ⊆ Dri for

each relation symbol. It is totally ordered when R0 = ≤, r0 = 2 and RD
0 is a total order.

We write FinMod(Σ) for the set of totally ordered finite models over Σ.

As an example, a possible signature for binary strings is {≤, S} with arities 2 and 1.
Finite models consist of a totally ordered set (D,≤D) with a unary predicate SD; we interpret
(D,≤D) as the indices of the string, and SD(d) as “the dth bit is set to 1”.
I Remark 4. The “totally ordered” assumption is common in descriptive complexity (see e.g.
Theorem 13) and will be often kept implicit in the paper. Indeed, there are order-independent
queries requiring a total order to be expressed.

To use finite models as inputs for ELL2 programs, we represent the elements of FinMod(Σ)
as proofs of an ELL2 formula InpΣ.

I Definition 5. We define the types with a free variable δ:

List[δ] = ∀X. !(δ ( X ( X) ( !(X ( X) C[δ] = δ ( δ ⊗ δ W[δ] = δ ( 1

Ctx[δ] = !List[δ]⊗ !!C[δ]⊗ !!W[δ] Bool = 1⊕ 1 Relr[δ] = δr ( Bool

Given a signature Σ = {≤,R1, . . . ,Rk} with arities r0 = 2, r1, . . . , rk, we also define:

InpΣ[δ] = Ctx[δ]⊗
⊗

0≤i≤k
!!Relri

[δ] InpΣ = ∃δ. InpΣ[δ]

We now define the encoding D of any totally ordered finite model D over Σ as a proof of
InpΣ[Fin(n)], where Fin(n) = 1⊕ . . .⊕ 1 with n summands, n being the domain size.

Let D = (D,≤D,RD
1 , . . . ,RD

k ) ∈ FinMod(Σ) with Card(D) = n. Choose a bijection
between D and the n proofs of Fin(n).
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We represent D as a Church-encoded list of type List[Fin(n)] enumerating the n elements
of Fin(n).
Each relation RD

i can be represented by an element of Relri
[Fin(n)].

Finally, since Fin(n) is a positive type, there are canonical elements of type C[Fin(n)]
and W[Fin(n)] implementing the structural rules.

I Definition 6. A proof π of InpΣ ( !!Bool defines the query which evaluates to true on
D ∈ FinMod(Σ) iff the application of π to the encoding D reduces to !!true (where true is
the proof of Bool = 1⊕ 1 proving the left occurrence of 1).

2.3 Complexity classes and the main theorems
For the rest of the paper, we fix a signature Σ = {R0 = ≤,R1, . . . ,RN} with arities
r0 = 2, r1 . . . , rN .

As we said in the introduction, we write L (resp. NL) for the class of decision problems
solvable in deterministic (resp. non-deterministic) logarithmic space. The unambiguous
logarithmic space class UL [33] consists of the problems which can be solved by a NL Turing
machine whose accepting runs are guaranteed to be unique: for each input, if the machine
accepts, there is a single sequence of non-deterministic choices leading to the accepting state.
(So UL ⊆ NL.) LUL denotes L with an UL oracle; as usual we use the Ruzzo–Simon–Tompa
definition12 of space-bounded oracle machines [35, §4].

We can now state our result in the unrestricted case.

I Theorem 7. The class of queries computed by the proofs of InpΣ ( !!Bool in ELL2 is
between L and LUL.

It is known that NLNL = NL (as noted in [23, Corollary 2], it follows from NL = coNL),
so LUL ⊆ NL, hence the statement in the introduction. Furthermore, while NL ⊂ P, it is
commonly believed that NL 6= P, so our class of queries is presumably strictly sub-polynomial.

To state the second main theorem, we now introduce a fragment of ELL2 with an ad-hoc
restriction on existential witnesses.

I Definition 8. The set of positive polynomial formulas PP is the subset of MALL2 formulas
generated by the grammar P,Q, . . . ::= 0 | 1 | X | P ⊗Q | P ⊕Q.

We define PP3 to be the set of formulas of the form P ⊗ (Q( R), where P,Q,R ∈ PP.
The logic ELLPP3

2 is defined by the same rules as ELL2 except that we exclude the cut
rule, and restrict the ∃-rule as follows: the witness must belong to PP3.

The “cut-free” part is necessary because a cut between two ELLPP3
2 proofs does not

necessarily normalize into a ELLPP3
2 proof. However, we do have:

I Proposition 9. Let π and ρ be ELLPP3
2 proofs with respective conclusions ` Γ, A and

` A⊥,∆. If A is quantifier-free, then cut(π, ρ) is in ELLPP3
2 .

With ELLPP3
2 , we obtain an exact characterization of L:

I Theorem 10. The class of queries computed by proofs of InpΣ ( !!Bool in ELLPP3
2 is L.

12A remark on notation: they would write L〈UL〉 instead of LUL and use the latter to denote a naive notion
of oracle machine. See [35, Example 1] for an example of the subtleties involved: without a careful
definition, NLNL would include NP.
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3 The lower bound: encoding logarithmic space queries

In this section, we use descriptive complexity to get the lower bound in both theorems above
(so, for the second one, this is an extensional completeness proof).

3.1 Reminder: Immerman’s characterization of L
Descriptive complexity considers queries given by formulas in extensions of classical first-
order logic. The first-order formulas over Σ are generated by the grammar φ, ψ, . . . ::=
Ri(x1, . . . , xri

) | ¬φ | φ ∨ ψ | ∃x.φ, where the xj are variables.
As usual, the semantics of these formulas is specified by a “satisfaction” relation D |= φ[σ]

for D ∈ FinMod(Σ), defined by induction over φ, where σ assigns elements of the domain D
of D to the free variables of φ: e.g. D |= (∃x.φ)[σ] iff D |= φ[σ + (x 7→ d)] for some d ∈ D.
Thus, when such a formula φ is closed, it defines the query D 7→ (D |= φ).

To express all logarithmic space queries, we need to extend our language of formulas with
a deterministic transitive closure operator.

I Definition 11. The formulas of first-order logic with deterministic transitive closure
(FO+DTC) are generated by the above grammar extended with a new clause:

φ, ψ, . . . ::= . . . | DTC~x,~y(φ) (~x and ~y are lists of variables of same length)

The definition of the satisfaction relation is extended with the following induction case:
D |= DTC~x,~y(φ)[σ] ⇐⇒ σ(~x) R∗ σ(~y) where

R∗ is the reflexive transitive closure of the binary relation R ⊆ Dk ×Dk;
D is the domain of D and ~x, ~y have length k;
~a R ~b ⇐⇒ D |= φd[σ+ (~x 7→ ~a) + (~y 7→ ~b)]13 with φd defined as φ∧ (∀~z. φ[~z/~y]⇒ ~z = ~y).

I Remark 12. In the above definition, the relation R defined by φd is deterministic, i.e. it is
the graph of a partial function Dk ⇀ Dk, hence the name. Indeed, it is a “determinization”
of the relation defined by φ.

I Theorem 13 (Immerman [22]). The L queries over totally ordered finite models are exactly
those expressible in FO+DTC.

3.2 An encoding of FO+DTC
Thus, it suffices to compile FO+DTC formulas, by induction, to ELLPP3

2 proofs. For this
purpose, it is convenient to interpret formulas with free variables as relation-valued queries:

I Theorem 14. Let φ(~x) be an FO+DTC formula with k free variables. Then there exists
an ELLPP3

2 proof πφ of Inp[δ] ` !!Relk[δ] such that, for all D ∈ FinMod(Σ) with a domain D
of size n, cut(D, πφ[Fin(n)/δ]) reduces to the encoding of {~a ∈ Dk | D |= φ[~x 7→ ~a]}.

I Corollary 15 (Lower bound for Theorem 7 and Theorem 10). All FO+DTC queries – and
therefore all L queries – over FinMod(Σ) can be computed by ELLPP3

2 proofs of InpΣ ( Bool.

Proof. Note that Rel0[δ] ∼= Bool, and apply a `-rule and a ∀-rule to the ELLPP3
2 proof

given by the previous theorem. J

13The new assignments for ~x and ~y override the pre-existing ones in σ.
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The detailed proof of Theorem 14 is given in the full paper, in Appendix B. As stated
before, it works by induction on the FO+DTC formula, the bulk of the work for the induction
being the case φ = DTC~x,~y(ψ). The remainder of the section gives a rough summary of the
ideas involved.

Let R ⊆ Dk ×Dk, and define ψR : Q 7→ {(x, z) | x = z ∨ (∃y : xR y ∧ y Q z)}. Then ψR
is a monotone function over P(Dk ×Dk), a lattice of height n2k + 1 (n = Card(D)). Its least
fixpoint ψn

2k+1
R (∅) is exactly the reflexive transitive closure of R. To compute ψn

2k+1
R , we

use an iterator of type Nat = ∀X. !(X ( X) ( !(X ( X) derived from the List[δ].
But this only allows us to iterate linear functions. This is where we use the assumption

that R is deterministic: if fR : Dk ⇀ Dk is the partial function associated to R, then
ψR(Q) = {(x, z) | x = z ∨ (fR(x) defined ∧ fR(x)Qz)}. In this reformulation, the existential
quantifier, which was a source of non-linearity, has disappeared: now, for each (x, z), the
evaluation of (x, z) ∈ ψR(Q) uses Q at most once, on (fR(x), z). In the end, we manage to
write a function of type Rel2k[δ] ( Rel2k[δ] representing ψR, which we feed to the Nat.

A not-quite-trivial step is to define a proof of Ctx[δ], !!Rel2k[δ] ` !!(δk ( 1⊕δk) sending a
relation φ to the partial function associated to its determinization φd. To do so, at one point,
we need to instantiate the input List[δ] at the type δk−1 ⊗ (δk ( 1⊕ δk ⊕ 1); this is our
most complicated existential witness, and it is in PP3. We refer the reader to Appendix B of
the full paper again for details.

4 The upper bounds: semantic evaluation

We now give space-efficient algorithms for queries defined by proofs of InpΣ ( !!Bool in
ELL2 (resp. ELLPP3

2 ). First, we analyse the shape of such a proof, to obtain alternative
definitions of the same predicates involving only MALL2 types and proofs. This puts us in
a position to evaluate our queries in a finite, effective semantics of MALL2: the model of
coherence spaces and normal functors which we recall next. Then, we quickly derive the
unrestricted LUL bound for Theorem 7, and finally prove L soundness for Theorem 10 thanks
to a tricky combinatorial algorithm on coherence spaces.

4.1 Syntactic analysis
Purely syntactic arguments suffice to show that our ELL2 queries can be captured by a
kind of function algebra, defined below. Though it bears some similarities with Gurevich’s
characterization of L [17] by primitive recursion on finite models, a major difference is that
our functions may take arguments which are not just domain elements (that can be coded on
O(logn) bits) but also higher-order data of polynomial size in n, such as relations. Indeed,
linearity serves mainly to tame the complexity in presence of higher-order features, while it
is mostly meaningless on first-order data.

I Definition 16. We define inductively, simultaneously for all (k + 1)-tuples (A1, . . . , Ak, B)
of MALL2 types with at most one free type variable δ, the classes of functions C(A1, . . . , Ak;B)
taking as input:

a closed MALL2 type T (i.e. without free variables)
a list L = [τ1, . . . , τn] of proofs of T
a k-tuple of proofs (ρ1, . . . , ρk) with ρi : Ai[T/δ]

and returning a proof of B[T/δ] as follows:
if π is a proof of A1, . . . , Ak ` B, then
[(T ;L; ρ1, . . . , ρk) 7→ cut(ρ1, . . . cut(ρk, π[T/δ]) . . .)] ∈ C(A1, . . . , Ak;B)
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(projection) Πk
i = [(T ;L; ρ1, . . . , ρk) 7→ ρi] ∈ C(A1, . . . , Ak;Ai)

(composition) if fi ∈ C(A1, . . . , Ak;Bi) for i ∈ {1, . . . , l} and g ∈ C(B1, . . . , Bl;C), then
[(T ;L; ~ρ) 7→ g(T ;L; f1(T ;L; ~ρ), . . . , fl(T ;L; ~ρ))] ∈ C(A1, . . . , Ak;C)
(iteration) if f ∈ C(A1, . . . , Ak; δ ( B ( B), then
[(T ;L = [τ1, . . . , τn]; ~ρ) 7→ f(T ;L; ~ρ)〈τ1〉 ◦ . . . ◦ f(T ;L; ~ρ)〈τn〉] ∈ C(A1, . . . , Ak;B ( B)
where
π〈τ〉 is the partial application of π : T ( B[T/δ] ( B[T/δ] to τ : T , to produce a
proof of B[T/δ] ( B[T/δ];
◦ is the composition of proofs of B[T/δ] ( B[T/δ] seen as endomorphisms of B[T/δ].

I Proposition 17. Let (A1, . . . , Ak, B) be a (k + 1)-tuple of MALL2 types and π be an
ELL2 proof of ∀δ.((!List[δ] ⊗ !!A1 ⊗ . . . ⊗ !!Ak) ( !!B). Then there exists a function
f ∈ C(A1, . . . , Ak;B) such that for all ρi : Ai[T/δ] (i ∈ {1, . . . ,m}) and τ1, . . . , τn : T ,
cut(![τ1, . . . , τn]⊗ !!ρ1 ⊗ . . .⊗ !!ρk, π) = !!f(T ; [τ1, . . . , τn]; ρ1, . . . , ρk) (where the [τ1, . . . , τn]
on the left is a Church-encoded list in ELL2 of type List[T ]).

Moreover, if π is in ELLPP3
2 , then there is an inductive derivation for f in which all

instances of the iteration scheme use a type of accumulators in PP3: that is, they are applied
to functions in C(. . . ; δ ( P ( P ) with P ∈ PP3.

Though the proof of this proposition presents no conceptual difficulty, it is cumbersome
and so is relegated to the full paper, in Appendix C. Importantly, it is thanks to the
stratification property of ELL2 that the types involved in the function algebra can be taken in
MALL2: the argument uses the “truncation at depth 2” operation introduced in the prequel
to prove Theorem 2. Note that they may still contain impredicative quantifications, making
its finite interpretation essential to our approach.
I Remark 18. The converse also holds: one can map functions in our algebra to ELL2 proofs.

This can now be specialized to the case π : InpΣ ( !!Bool; indeed,

InpΣ ( !!Bool ∼= ∀δ. !List[δ]⊗ !!C[δ]⊗ !!W[δ]⊗
⊗

0≤i≤N
!!Relri

[δ] ( !!Bool

Our ELL2-definable (resp. ELLPP3
2 -definable) queries can therefore be specified, equival-

ently, by functions in C(C[δ], W[δ], Relr0 [δ], . . . , RelrN
[δ]; Bool). The next step is to evaluate

these functions in the coherence space model.

4.2 The finite semantics of second-order MALL in coherence spaces
We recall key facts about the denotational model of MALL2 in which we will carry out our
semantic evaluation. A comprehensive introduction to this model for propositional MALL
may be found in [15], and the extension to MALL2 is taken from the prequel [32].

In this semantics, a formula/type is interpreted as a coherence space: an undirected
reflexive graph, i.e. a pair X = (|X|,¨X) of a set |X| – customarily called the web of X –
and a symmetric and reflexive relation ¨X ⊆ |X| × |X| – its coherence relation. Elements
x, y ∈ |X| are called coherent when x ¨X y. A clique is a subset of pairwise coherent elements
of |X|; we write c @ X when c is a clique of X. The denotation of a closed type A is a
coherence space, and a proof/program π : A is interpreted as a clique JπK @ JAK.

JAK is defined by induction on A, the connectives ⊗,`,&,⊕, (−)⊥ being mapped to
operations on coherence spaces. The base case depends on an assignment of type variables.
So, if A has n type variables, JAK is actually a map from n-tuples of coherence spaces
to coherence spaces. Similarly, JπK also depends on such an assignment, and one should
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write JπK(X1, . . . , Xn) @ JAK(X1, . . . , Xn). To extend the semantics to MALL2, we interpret
quantifiers as sending such “(n+1)-parameter spaces” to “n-parameter spaces”. The following
proposition sums up the properties that will be necessary for our purposes.

I Proposition 19 ([32]). Let A be a MALL2 type with a single free type variable.
JAK(X) is finite, with size polynomial in the size of X when A is fixed.
JπK(X) can be computed in logarithmic space when π : A is fixed.

Finally, we need to recall the semantic counterpart of cut-elimination, that is, composition
of morphisms. A first remark is that |X ( Y | = |X| × |Y |. So a clique c @ X ( Y can in
fact be seen as a binary relation c ⊆ |X| × |Y |. The composition of c with some c′ @ Y ( Z,
seen as morphisms of coherence spaces, is then none other than their relational composition.
Additionally, the coherence relation ensures the well-known fact that:

I Proposition 20. Let c @ X ( Y , c′ @ Y ( Z, x ∈ |X| and z ∈ |Z|. Then there exists at
most one y ∈ |Y | such that (x, y) ∈ c and (y, z) ∈ c′.

4.3 The unrestricted case: an unambiguous logarithmic space bound
In this subsection and in the next one, we abbreviate for convenience JFin(n)K, i.e. the
n-vertex coherence space with no edges, as Fin(n). So, if A is a MALL2 type with a single
variable δ, then JA[Fin(n)/δ]K = JAK(Fin(n)). Our main theorem here is:

I Theorem 21. Let f ∈ C(A1, . . . , Ak;B). Then Jf(T ;L; ρ1, . . . , ρk)K is determined by JT K,
JLK = [Jτ1K, . . . , JτnK] (where L = [τ1, . . . , τn]) and Jρ1K, . . . , JρkK. Furthermore, when f is
fixed, Jf(T ;L; ρ1, . . . , ρk)K can be computed from these denotations in LUL.

Proof. By structural induction on Definition 16; the first part is an immediate consequence of
the functoriality/compositionality of J−K, so we focus on the complexity. We take care of the
base case, where the function comes from a proof π : (A1, . . . , Ak ` B), with Proposition 19
and the fact that relational composition is in L. For the composition scheme, we use the
closure of14 LUL under composition. The iteration scheme is handled by Lemma 22 below. J

I Lemma 22. Let A be a MALL2 type with a single type variable. Given n, k ∈ N,
f1, . . . , fk @ JA ( AK(Fin(n)) and (u, v) ∈ |JAK(Fin(n))|2, whether (u, v) ∈ (fk ◦ . . . ◦ f1)
can be decided in UL (in the size of the input, which is polynomial15 in n and k).

Proof. Thanks to Proposition 20, if v ∈ (fk ◦ . . . ◦ f1)({u}) then there is a unique sequence
u0 = u, u1, . . . uk = v such that ui+1 ∈ f({ui}). We successively guess the ui; at each
point, we need only store (ui, ui+1) to check its presence in fi. This can be done by a UL
Turing machine because each ui can be stored in space O(logn): indeed, |JAK(Fin(n))| has
cardinality polynomial in n (Proposition 19) and there is a natural representation of its
points of using O(1) variables in |Fin(n)| = {1, . . . , n}, see [32, Section IV.D]. (Notice that
we do not even make use of the coherence relation of JAK(Fin(n)); its mere existence ensures
that the naive NL algorithm is actually UL.) J

The upper bound of Theorem 7 follows immediately from Theorem 21 together with:

14Strictly speaking, LUL denotes a class of decision problems, and it is the associated class of function
problems FLUL which is closed under composition (the usual proof for FL relativizes).

15The fi are cliques in the graph JA( AK(Fin(n)), which has a polynomial size in n by virtue of Propos-
ition 19. Note that we always have k ≥ 1.
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I Lemma 23. Let D ∈ FinMod(Σ). Its ELL2 encoding D : InpΣ[Fin(n)] (n is the domain
size of D) contains MALL2 proofs of C[Fin(n)], W[Fin(n)] and Relri

[Fin(n)] (i ∈ {1, . . . , N}).
The denotations of these proofs in the coherence space model can all be computed in L.

4.4 Iterations in deterministic log space for low-complexity types
As can be seen in the proof of Theorem 21, the single crucial point where the complexity
of evaluating a query does not seem to fall squarely in L is Lemma 22. By putting the
complexity of this iterated composition problem in L when A ∈ PP3, we will get the L
soundness result for Theorem 10.

A first remark is that for A ∈ PP3, A[Fin(n)/δ] ∼= Fin(P (n))⊗(Fin(Q(n)) ( Fin(R(n)))
where P,Q,R are polynomials with integer coefficients. The goal becomes to show:

I Theorem 24. Let A ∼= Fin(m) ⊗ (Fin(n) ( Fin(p)) for some m,n, p ∈ N. Given
f1, . . . , fk @ JA( AK and (u, v) ∈ |JAK|2, whether (u, v) ∈ (fk ◦ . . . ◦ f1) can be decided in L.

At this point, the proofs start to involve tricky combinatorics on coherence spaces, so
this final section of the paper is written for readers familiar with the coherence space model
of MALL (but not necessarily its extension to MALL2). For instance we will often identify
cliques f @ A( B with linear maps from the cliques of A to the cliques of B.

We start with a lemma solving the case m = 1, generalizing the example given at the end
of the introduction.

I Lemma 25. Let A = Fin(n) ( Fin(p), f1, . . . , fk @ A ( A, ν, ν′ ∈ |Fin(n)| and
π ∈ |Fin(p)|. There exists at most one π′ such that (ν′, π′) ∈ (fk ◦ . . . ◦ f1)({(ν, π)}).

Furthermore, there is a logarithmic space algorithm taking n, p, f1, . . . , fk, ν, ν
′, π as inputs

which decides whether π′ exists and, if so, finds it.

Proof. Consider the adjoint maps f⊥i @ (Fin(n) ⊗ Fin(p)⊥ ( Fin(n) ⊗ Fin(p)⊥). The
graph Fin(n)⊗ Fin(p)⊥ has n connected components, which are all cliques (of size p). These
f⊥i send cliques to (possibly empty) cliques, so for j ∈ |Fin(n)|, f⊥i ({j} × |Fin(p)|) is either
(1) empty or (2) included in some {l}× |Fin(p)|, for l uniquely determined by j. This defines
partial maps f̂⊥i : |Fin(n)|⇀ |Fin(n)|: in case (1) f̂⊥i (j) is undefined, in case (2) f̂⊥i (j) = l.

This allows us to perform a backwards iteration: we define νk = ν′ and, for i = k, . . . , 1,
νi−1 = f̂⊥i (νi); ν0 can be computed in logarithmic space. If ν0 is undefined or ν0 6= ν, then
π′ does not exist: we return false.

Otherwise, let us restrict each i-th intermediate Fin(n) ( Fin(p) to the connected
component corresponding to νi, and take the corresponding sub-cliques: for i = 1, . . . , k,
f ′i = fi ∩ (({νi−1} × |Fin(p)|)× ({νi} × |Fin(p)|)). Then either (f ′k ◦ . . . ◦ f ′1)({π}) is empty,
and π′ does not exist; or it contains a single element, which is then π′.

Each νi is computable in logarithmic space, so (f ′1, . . . , f ′k) also is; additionally, the
computation of (f ′k ◦ . . . ◦ f ′1)({π}) from (f ′1, . . . , f ′k) and π only needs to store a single point
of Fin(p) in working memory, because the cliques of the latter are subsingletons. Since L is
closed under L-reductions, we are done. (Making the interactive composition explicit results
in a quadratic time algorithm.) J

We would like to L-reduce the problem to the case m = 1, by determining the projection
to |Fin(m)| of the unique “path” of k + 1 points corresponding to a point of the clique
fk ◦ . . . ◦ f1. This would involve an iteration analogous to the previous proof, but forwards
instead of backwards.
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But the image fi({j} × |Fin(n) ( Fin(p)|) is not necessarily connected, because {j} ×
|Fin(n) ( Fin(p)| is not a clique (though Fin(n) ( Fin(p) is a connected graph, it is not
complete). So one cannot guarantee that this image is included in some {l} × |Fin(n) (
Fin(p)|. An explicit counter-example is the interpretation of the term λ(x⊗ g). ((g x)⊗ . . .)
when m = n: in some sense, the first component of the output depends on both x and g
being known, not only x. However, knowing x is enough to determine what argument will be
fed to g (x itself, in this example). The intuitive idea is to propagate this backwards.

The following lemma ensures that we can always either carry on with the forwards
iteration or start the backwards propagation (Π1 (resp. Π2) is the projection on the first
(resp. second) component):

I Lemma 26. Let c @ A`B be a non-empty clique. Then Π1(c) is included in a connected
component of A, or (non-exclusively) Π2(c) is included in a connected component of B.

Proof sketch. If Π1(u) and Π1(v) are in different connected components for u, v ∈ c, then
Π2(u) and Π2(v) are coherent or equal, and all other Π2(w) are coherent or equal to at least
one of them: Π2(c) is connected with diameter ≤ 3. J

Proof of Theorem 24. We write A = Fin(m) ⊗ B and B = Fin(n) ( Fin(p). If n = 0,
A ∼= 0 and the problem is trivial and if n = 1, A ∼= Fin(m) ⊗ Fin(p), so a simple forward
propagation solves the problem. From now on, we thus assume that n > 1, which makes B
connected. Let f1, . . . , fk @ A( A, (µ, (ν, π)) ∈ |A| and (µ′, (ν′, π′)) ∈ |A|. The goal is to
decide, in logarithmic space, whether (µ′, (ν′, π′)) ∈ (fk ◦ . . . ◦ f1)({(µ, (ν, π))}).

Let µ0 = µ. If the clique f1({(µ, (ν, π))}) is empty, then the answer is negative; else, let
{µ1} × |B| be the connected component containing it. For 1 ≤ i < k, assuming that µi is
defined, then fi+1({µi} × |B|) is either:

empty, and the answer is negative;
non-empty and contained in some {µi+1} × |B| – this defines µi+1 ∈ |Fin(m)| uniquely;
non-empty and disconnected.

Let f‡i = fi ∩ (({µi−1} × |B|) × ({µi} × |B|)) for all i ≥ 1 for which µi is defined. If the
iteration reaches i = k, this means that (f‡1 , . . . , f

‡
k) can be computed in logarithmic space,

and as in Lemma 25 we can use this to L-reduce the problem to the case m = 1, so we are
done. If it aborts because of emptiness, then the algorithm can immediately return false.

The remaining case is the last item above. Suppose that µi+1 is undefined because
of disconnectedness. Let f†i+1 = fi+1 ∩ (({µi} × |B|) × |A|); it can be seen as a clique
f†i+1 @ B ( A = B⊥ `A, with B⊥ = Fin(n)⊗ Fin(p)⊥. The assumption that Π2(f†i+1) =
fi+1({µi} × |B|) is non-empty and disconnected entails, by Lemma 26, that Π1(f†i+1) is
connected. In other words Π1(f†i+1) ⊆ {ν′′} × |Fin(p)| for some ν′′.

Let us apply the algorithm of Lemma 25 to the inputs n, p, f‡1 , . . . , f
‡
i , ν, ν

′′, π. This
can be done in logarithmic space, and the subroutine either raises a failure or gives us
some π′′ ∈ |Fin(p)|. In the former case, we can return false; in the latter, we know that
(fk ◦ . . . ◦ f1)({(µ, (ν, π))}) = (fk ◦ . . . ◦ fi+1)({(µi, (ν′′, π′′))}). So all we have to do is to
tail-recurse on a suffix of the original input; to implement this in L, it suffices to keep a
counter indicating what the current suffix is. This is a strict suffix, because µ1 is always
defined by construction (see above); therefore, our algorithm terminates, while maintaining a
logarithmic working space. J

I Remark 27. Fin(m)⊗ (Fin(n) ( Fin(p)) ∼=
⊕m

i=1
˘n
j=1

⊕p
k=1 1, and such a bicartesian

MALL formula can be seen as a game where Player and Opponents alternate choices of
branches. Linear implication consists in playing two games in parallel. Morally, Lemma 26
says: if it is your turn to play on both boards, then you must make a choice; and our L
algorithm is mostly about scheduling a set of strategies interacting together.
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5 Perspective: unrestricted L upper bound through game semantics?

In the extensional completeness proof, strikingly, the determinism of a relation corresponds
exactly to the linearity of its pre-composition operator. This is one reason for which we believe
that our class of queries in ELL2 is exactly L (Conjecture 1) – or at least, that it is strictly
containted in NL which corresponds to first-order logic with general transitive closure [22].
Thus, our LUL bound is likely not optimal: it is widely believed that UL = NL [34, 33].

To bring down the complexity of the bottleneck – namely the iterated composition – from
UL to L, bridging the intuitions of Remark 27 with a proper game semantics of full MALL2
might be key. In this direction, it is known that the points of the web of a (hyper)coherence
space can be seen as external positions of a game [10, 5, 30, 31]. With this point of view, the
uniqueness of the intermediate points in the iteration of Lemma 22 reflects the determinism
of an underlying interaction which reaches those final positions.
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Abstract
We develop an effective and natural approach to interpret any semigroup admitting a special language
of greedy normal forms as an automaton semigroup, namely the semigroup generated by a Mealy
automaton encoding the behaviour of such a language of greedy normal forms under one-sided
multiplication. The framework embraces many of the well-known classes of (automatic) semigroups:
free semigroups, free commutative semigroups, trace or divisibility monoids, braid or Artin–Tits or
Krammer or Garside monoids, Baumslag–Solitar semigroups, etc. Like plactic monoids or Chinese
monoids, some neither left- nor right-cancellative automatic semigroups are also investigated, as
well as some residually finite variations of the bicyclic monoid. It provides what appears to be the
first known connection from a class of automatic semigroups to a class of automaton semigroups. It
is worthwhile noting that, “being an automatic semigroup” and “being an automaton semigroup”
become dual properties in a very automata-theoretical sense. Quadratic rewriting systems and
associated tilings appear as the cornerstone of our construction.
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1 Introduction

The half century long history of the interactions between (semi)group theory and automata
theory went through a pivotal decade from the mid-eighties to the mid-nineties. Contempor-
aneously but independently, two new theories truly started to develop and thrive: automaton
(semi)groups on the one hand with the works of Aleshin [2, 3] and Grigorchuk [27, 28] and
the book [47], and automatic (semi)groups on the other hand with the work of Cannon
and Thurston and the book [24]. We refer to [55] for a clear and short survey on the known
interactions between groups and automata. A deeper and more extended survey by Bartholdi
and Silva can be found out in two chapters [7, 8] of the forthcoming AutoMathA handbook.
We can refer to [14, 45] for automaton semigroups and to [17, 33] for automatic semigroups.

Remote siblings. As their very name indicates, automaton (semi)groups and automatic
(semi)groups share a same defining object: the automaton or the letter-to-letter transducer
in this case. Beyond this common origin, these two topics until now happened to remain
largely distant both in terms of community and in terms of tools or results. Typically, any
paper on one or the other topic used to contain a sentence like “it should be emphasised that,
despite their similar names, the notions of automaton (semi)groups are entirely separate from

EA
T

C
S

© Matthieu Picantin;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 124; pp. 124:1–124:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7149-1770
mailto:picantin@irif.fr
https://doi.org/10.4230/LIPIcs.ICALP.2019.124
https://arxiv.org/abs/1609.09364
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


124:2 Automatic Semigroups vs Automaton Semigroups

groups
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automatic automaton
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AIM Self-similar groups
& conformal dynamics [13] finite groups
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?
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Kourovka notebook [44]

〈 a, b : abm = bma 〉
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Artin–Krammer monoids
plactic or Chinese monoids

via Theorem 12

Figure 1 The big picture: comparing the classes of automatic vs automaton (semi)groups.

the notions of automatic (semi)groups”. This was best evidenced by the above-mentioned
valuable handbook chapter [7] which splits into exactly two sections (automatic groups and
automaton groups) without any reference between one and the other appearing explicitly.

Related open problems. A significant problem is to recognise whether a given (semi)group
is self-similar, that is, an automaton (semi)group, see Figure 1. Amongst the thirty-odd
listed problems from [13], we can pick the one with the number 1.1:

Problem A. It seems quite difficult to show whether a given group is self-similar. Are
Gromov hyperbolic groups self-similar? Find obstructions to self-similarity.

Amongst the unsolved problems in group theory from the Kourovka Notebook [44], the one
(with number 16.84) asked by Sushchanskii (see also [40, 51]) can be formulated as follows:

Problem B. Is the n-strand braid group Bn a subgroup of some automaton group?

All these questions can be meaningfully rephrased in terms of semigroups or monoids.

Our contributions. The aim here is to establish a possible connection between being an
automatic semigroup and being an automaton semigroup. Preliminary observations are that
these classes intersect non trivially and that neither is included in the other (see Figure 1).
Like the Grigorchuk group for instance, many automaton groups are infinite torsion groups,
hence cannot be automatic groups. By contrast, it is an open question whether every
automatic group is an automaton group. The latter is related to the question whether every
automatic group is residually finite, which remains open despite the works by Wise [58]
and Elder [23]. Like the bicyclic monoid, some automatic semigroups are not residually finite,
hence cannot be automaton semigroups (see [14] for instance). As for the intersection, we
know that at least finite semigroups, free semigroups (of rank at least 2, see [11, 12]), free
abelian semigroups happen to be both automatic semigroups and automaton semigroups.
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We propose here a new and natural way to interpret algorithmically each semigroup from
a wide class of automatic semigroups – encompassing all the above-mentioned classes – as an
automaton semigroup (Theorem 12). Furthermore, it is worthwhile noting that, in all these
cases, “being an automatic semigroup” and “being an automaton semigroup” become dual
properties in a very automata-theoretical sense (Corollary 15).

Occurring as the very first bridge between two hitherto irreconcilable research areas,
Theorem 12 allows us to also provide a (more than) positive answer to the monoidal version
of Problem B. While the n-strand braid monoid B1

n+ is the paradigmatic example of an
automatic monoid from [24, Chapter 9], Theorem 12 implies that B1

n+ is (not only a
submonoid of) an automaton monoid as well, see Example 23. From this significant milestone
arise various new questions and perspectives, that will hopefully pervade both research fields.

Organisation. The structure of the paper is as follows. As a simple preliminary, Section 2
illustrates in a deliberately informal manner how a single Mealy automaton can be used
in order to define both self-similar structures and automatic structures (via a principle of
duality). In Section 3, we set up the notations for Mealy automata and recall necessary
notions of dual automata, cross-diagrams, and self-similar structures. In Section 4, we
recall basics about normal forms and automatic structures, and we give necessary notions
of quadratic normalisations and square-diagrams. Section 5 is devoted to our main results
(Theorem 12 and Corollary 15), while Section 6 finally gathers several carefully selected
examples, counterexamples, and open problems.

2 A preliminary example

As their very name indicates, automaton (semi)groups and automatic (semi)groups share a
same defining object. In both cases, a Mealy automaton (see Definition 1) basically transforms
words into words.

0

11

1|0

1|1

0|1

0|1
1|0

1|1

0|0

1|01|0

0 11

1|1

0|1
1|1

1|1

0|1
1|1 0|0

1|01|0

Figure 2 Two (dual) Mealy automata: the left-hand one computing the division by 3 in base 2
(most significant digit first) vs the right-hand one computing the multiplication by 2 in base 3 (least
significant digit first).

The Mealy automaton displayed on Figure 2 (left) is some signed-digit version of one of
the most classical examples of a transducer (see [53, Prologue] for a delightfully alternate
history). Signed-digit numeration systems [4, 18] are not the topic, now they provide a special
opportunity to illustrate our purpose. When starting from the state 0 and reading any binary
word or any {1, 0, 1}-word u (most significant digit first), it computes the division by 3 in
base 2 by outputting the (quotient) {1, 0, 1}-word v (most significant digit first) satisfying

(u)2 = 3× (v)2 + f (%)
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where the (remainder) f ∈ {1, 0, 1} corresponds to the arrival state of the run, and where
(w)b denotes by convention the number that is represented by w in base b.

For the current preliminary section, let us now focus on this basic example and consider
the two different viewpoints described as follows.

On the one hand, it seems natural to consider the set of those functions (from {1, 0, 1}-
words to {1, 0, 1}-words) thus associated with each state, then to compose them with each
other, and finally to study the (semi)group which is generated by such functions.

For instance, the function u 7→ v associated with the state 0 (satisfying Equation (%))
can be squared, cubed, and so on, to obtain functions, which can be again interpreted as the
division by 9, 27, . . . (in base 2 with most significant digit first), or can be composed with
the functions induced by the other two states. The generated semigroup happens to be the
rank 3 free semigroup {1, 0, 1}+ (provided that the three states and their induced functions
are identified). This simple idea coincides with the notion of automaton (semi)groups or
self-similar structures (see Definition 2). With this crucial standpoint, we can compute
(semi)group operations by manipulating the corresponding Mealy automaton (see [5, 7, 35,
46]), and hopefully foresee some combinatorial and dynamical properties by examining its
shape (see [6, 9, 10, 19, 25, 26, 34, 36, 37, 38, 51, 56] for instance).

On the other hand, it may be also natural to simply iterate the runs. The starting
language is again over the (input/output) alphabet, now the images of the transformations
are some languages over the stateset.

For instance, restarting again from the state 0, the previously output word v (satisfying
Equation (%)) can be read in turn, and so on. The successive arrival states can be then
collected and concatenated in order to obtain here the decomposition of (u)2 in base 3 (least
significant digit first). The whole process has thus inherently a quadratic time complexity.

This second idea coincides with the fundamental notion of automatic (semi)groups (see
Definition 3 and [7, 17, 24, 33, 51]), for which Mealy automata can compute normal forms.

To conclude this preliminary section, let us mention that states and letters of any Mealy
automaton play a symmetric role, and that several properties can be beneficially derived
from the so-called dual (Mealy) automaton, obtained by exchanging the stateset and the
alphabet (see [36] for an overview).

For instance, Figure 2 displays a pair of dual automata. While the left-hand automaton
allows to compute the division by 3 in base 2 (most significant digit first) as we have seen
just above, its dual automaton (right) essentially computes the multiplication by 2 in base 3
(least significant digit first). More precisely, its state 0 induces the function x 7→ 2 × x
on Z, while its states 1 and 1 induce the functions x 7→ 2 × x − 1 and x 7→ 2 × x + 1
respectively: they together generate the semigroup 〈 1, 0, 1 : 01 = 11, 01 = 11 〉+. Let us also
mention that the induced functions happen to be invertible and to generate a group which
is isomorphic with the so-called Baumslag–Solitar group BS(2, 1) = 〈 a, b : ab2 = ba 〉 (see
Figure 1, Example 20, and [51]).

Besides, such a Mealy automaton (right) can be used to compute the base 2 from the base 3
representation of the fractional part of any rational number, by iterating runs as explained
above. For instance, finitely iterated runs from the state 0 and the initial word 00011 produce
the infinite word (010010)ω, both words representing (the fractional part of) the rational − 2

9
in base 3 (least significant digit first) and in base 2 (most significant digit first) respectively.
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This innocuous example allows to illustrate the quite simple machineries associated
both with automaton semigroups and with automatic semigroups. It also aims to give
an informal glimpse of their behaviours through the duality principle: for instance, divi-
sion vs multiplication, factor vs base, least vs most significant digit first, integer part vs
fractional part.

3 Mealy automata and self-similar structures

We first recall the formal definition of an automaton. Possible references are [7, 14, 45, 47].

I Definition 1. A (finite, deterministic, and complete) automaton is a triple
(
Q,Σ, τ =

(τi : Q→ Q)i∈Σ
)
, where the stateset Q and the alphabet Σ are non-empty finite sets, and

where the τi’s are functions.
A Mealy automaton is a quadruple

(
Q,Σ, τ = (τi : Q → Q)i∈Σ, σ = (σx : Σ → Σ)x∈Q

)
such that both (Q,Σ, τ) and (Σ, Q, σ) are automata.

In other terms, a Mealy automaton is a complete, deterministic, letter-to-letter transducer
with the same input and output alphabet.

The graphical representation of a Mealy automaton is standard, see Figures 2 and 7.
In a Mealy automaton A = (Q,Σ, τ, σ), the sets Q and Σ play dual roles. So we may

consider the dual (Mealy) automaton defined by d(A) = (Σ, Q, σ, τ):

x y

i | j

∈ A ⇐⇒ ∈ d(A).i j

x | y

We view A = (Q,Σ, τ, σ) as an automaton with an input and an output tape, thus defining
mappings from input words over Σ to output words over Σ. Formally, for x ∈ Q, the
map σx : Σ∗ → Σ∗, extending σx : Σ→ Σ, is defined recursively by:

∀i ∈ Σ, ∀s ∈ Σ∗, σx(is) = σx(i)στi(x)(s) .

The above equation can be easier to understood when depicted by a cross-diagram
(see [1]):

i s

x τi(x) τs(τi(x))

σx(i) στi(x)(s)

By convention, the image of the empty word is itself. The mapping σx for each x ∈ Q is
length-preserving and prefix-preserving. We say that σx is the production function associated
with (A, x). For x = x1 · · ·xn ∈ Qn with n > 0, set σx : Σ∗ → Σ∗, σx = σxn ◦ · · · ◦ σx1 .
Denote dually by τi : Q∗ → Q∗, i ∈ Σ, the production functions associated with the dual
automaton d(A). For s = s1 · · · sn ∈ Σn with n > 0, set τs : Q∗ → Q∗, τs = τsn ◦ · · · ◦ τs1 .

I Definition 2. The semigroup of mappings from Σ∗ to Σ∗ generated by {σx, x ∈ Q} is
called the semigroup generated by A and is denoted by 〈 A 〉+. When A is invertible, its
production functions are permutations on words of the same length and thus we may consider
the corresponding group instead; this group is the group generated by A and is denoted
by 〈 A 〉. A (semi)group is called an automaton (semi)group whenever it can be generated
by some Mealy automaton. The term self-similar is used as a synonym.
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4 Quadratic normalisations and automatic structures

This section gathers the definitions of some classical notions like normal form or automatic
structure (see [24, 17, 33]), together with the slighly more specific notion of a quadratic
normalisation (see [20, 22]).

For any set Q, we denote by Q+ the free semigroup over Q (resp. by Q∗ the free monoid
and by 1 its unit element) and call its elements Q-words. We write |w| for the length of a
Q-word w, and ww′ for the product of two Q-words w and w′.

I Definition 3. Let S be a semigroup with a generating set Q. A normal form for (S,Q) is
a (set-theoretic) section of the canonical projection ev from the language of Q-words onto S,
that is, a map nf that assigns to each element of S a distinguished representative Q-word
with ev ◦ nf = idS:

ev : Q+ S

nf

Whenever nf(S) is regular, it provides a right-automatic structure for S if the language
Lq = { ( nf(a)#|nf(aq)|, nf(aq)#|nf(a)| ) : a ∈ S } over the alphabet (Qt{#})2 is regular for
each q ∈ Q, where the normal forms of a pair are right-padded with an extra symbol # 6∈ Q
to equalise the lengths. The semigroup S can then be called a (right-)automatic semigroup.

We mention here the thorough and precious study in [32] of the different notions (right- or
left-reading-padding vs right- or left-multiplication) of automaticity for semigroups.
I Remark 4. In his seminal work [24, Chapter 9], Thurston shows how the whole set of these
different automata recognizing the multiplication – that is, recognizing the languages Lq – in
Definition 3 can be replaced with advantage by a single letter-to-letter transducer over the
alphabet Q (see Definition 14) that computes the normal forms via iterated runs: each run
both provides one symbol of the final normal form and outputs a word still to be normalised.

One will often consider the associated normalisation n = nf ◦ ev over Q.

I Definition 5. A normalisation is a pair (Q,n), where Q is a set and n is a map from Q+

to itself satisfying, for all Q-words u,v,w:
|n(w)| = |w|,
|w| = 1⇒ n(w) = w,
n(u n(w) v) = n(uwv).

A Q-word w satisfying n(w) = w is called n-normal. If S is a semigroup, we say that (Q,n)
is a normalisation for S if S admits the presentation

〈 Q : {w = n(w) | w ∈ Q+ } 〉+.

We associate with every element q ∈ Q a q-labeled edge and with a product the concat-
enation of the associated edges, and represent equalities in the ambient semigroup using
commutative diagrams, that we shall often organise as tilings and that we call here square-
diagram. For instance, the following square illustrates an equality q1q2 = q′1q

′
2.

q1

q2 q′1

q′2
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· · ·

· · ·

· · ·

· · ·

· · ·

n212···(q1q2q3)

· · ·

n121···(q1q2q3)

q1

q2

q3

n
n

n
n

n

n

n
n

n
n

n

n

Figure 3 From an initial Q-word q1q2q3, one applies normalisations on the first and the second 2-
factors alternatively up to stabilisation, beginning either on the first 2-factor q1q2 (right-hand side
here) or on the second q2q3. The gray zone corresponds to Condition ( ) as defined in Definition 7.

For a normalisation (Q,n), we denote by n the restriction of n to Q2 and, for i ≥ 1, by ni
the (partial) map from Q+ to itself that consists in applying n to the entries in position i
and i + 1. For any finite sequence i = i1 · · · in of positive integers, we write ni for the
composite map nin ◦ · · · ◦ ni1 (so ni1 is applied first).

I Definition 6. A normalisation (Q,n) is quadratic if the two following conditions hold:
a Q-word w is n-normal if, and only if, every length-two factor of w is;
for every Q-word w, there exists a finite sequence i of positions, depending on w, such
that n(w) is equal to ni(w).

I Definition 7. As illustrated in Figure 3, with any quadratic normalisation (Q,n) is
associated its breadth (d, p) (called minimal left and right classes in [20, 22]) defined as:

d = max
(q1,q2,q3)∈Q3

min{ ` : n(q1q2q3) = n 212···︸︷︷︸
length `

(q1q2q3)}, and

p = max
(q1,q2,q3)∈Q3

min{ ` : n(q1q2q3) = n 121···︸︷︷︸
length `

(q1q2q3)}.

Such a breadth need to be finite provided that Q is finite, and then satisfies |d − p| ≤ 1.
For p ≤ 3 (and d ≤ 4), the quadratic normalisation (Q,n) is said to satisfy Condition ( )
(its corresponds with the so-called domino rule in [21] but with a different reading direction).

The first main result of [22] is an axiomatisation of these quadratic normalisations
satisfying Condition ( ) in terms of their restrictions to length-two words: any idempotent
map n on Q2 that satisfies n2121 = n121 = n1212 extends into a quadratic normalisation (Q,n)
satisfying Condition ( ). For larger breadths, a map on length-two words normalising
length-three words needs not normalise words of greater length.

The second main result of [22] involves termination. Every quadratic normalisation (Q,n)
gives rise to a quadratic rewriting system, namely the one with rules w −→ n(w) for w ∈ Q2.
By Definition 6, such a rewriting system is confluent and normalising, meaning that, for every
initial word, there exists a finite sequence of rewriting steps leading to a unique n-normal
word, but its convergence, meaning that any sequence of rewriting steps is finite, is a quite
different problem.

I Theorem 8 ([22]). If (Q,n) is a quadratic normalisation satisfying Condition ( ), then
the associated rewriting system is convergent.
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More precisely, every rewriting sequence starting from a word of Qp has length at
most p(p−1)

2 (resp. 2p − p − 1) in the case of a breadth (3, 3) (resp. either (3, 4) or (4, 3)).
Theorem 8 is essentially optimal since there exist nonconvergent rewriting systems with
breadth (4, 4).

The results of Section 5 rely on the special Condition ( ). As mentioned, this condition
was already outlined by Dehornoy and Guiraud (see [22]). However, none of their results
(in particular Theorem 8 given above for the sake of completeness) is either applied or
needed to establish ours. The current work and its exposition are thus self-contained and
our constructions never require any of their stronger hypotheses (neither cancellativity nor
absence of nontrivial invertible elements). We want here to emphasise that Condition ( )
happens to appear as a common denominator from different approaches (see also [29]).

5 From an automatic structure to a self-similar structure

All the ingredients are now in place to effectively and naturally interpret as an automaton
monoid any automatic monoid admitting a special language of normal forms – namely, a quad-
ratic normalisation satisfying Condition ( ). The point is to construct a Mealy automaton
encoding the behaviour of its language of normal forms under one-sided multiplication.

I Definition 9. Assume that S is a semigroup admitting a quadratic normalisation (Q,n).
We define the Mealy automatonMQ,n = (Q,Q, τ, σ) such that, for every (a, b) ∈ Q2, σb(a)
is the rightmost element of Q in the normal form n(ab) of ab and τa(b) is the left one:

n(ab) = τa(b)σb(a).

The latter correspondence can be simply interpreted via square-diagram vs cross-diagram:

a

b τa(b)

σb(a)

n

a

b τa(b)

σb(a)

For s = sn · · · s1, t = tn · · · t1, σq(s) = t, and τs(q) = r, we obtain diagrammatically:

s1 s2 sn

q n nq1 q2 qn−1 r

t1 t2 tn

s1 s2 sn

q q1 q2 qn−1 r

t1 t2 tn

We choose on purpose to always draw a normalisation square-diagram backward, such
that it coincides with the associated cross-diagram. The function σq induced by the state q
should map any word s (read backward) to some word t (read backward) with n(sq) = n(rt).

We now aim to strike reasonable (most often optimal) hypotheses for a quadratic normal-
isation (Q,n) associated with an original semigroup S to generate a semigroup 〈MQ,n 〉+ that
approximates S as sharply as possible. Since the generating sets coincide by Definition 9, we
shall address the case when S is a quotient of 〈MQ,n 〉+ (top-approximation, Lemma 10), and
next, the case when 〈MQ,n 〉+ is a quotient of S (bottom-approximation, Proposition 11).
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Before establishing our top-approximation statement (Lemma 10), we could stress how
semigroups might appear much more difficult to handle than monoids, especially when it
comes to automaticity (see [32]) or self-similarity (see [11, 12]). For a semigroup S with a
quadratic normalisation on Q, two situations occur. First, if S is a monoid with unit 1, it
admits a quadratic normalisation satisfying n(1) = 1 and

n(1q) = n(q1) = 1q ( 1 )

for each q ∈ Q. Second, if S does not admit a unit, one can adjoin a unit 1 to obtain a
monoid (if needed) with a quadratic normalisation satisfying Condition ( 1 ). The choice
made for such a condition becomes natural whenever we think of the (adjoined or not)
unit 1 as some dummy element that escapes from the normalisation and simply ensures its
length-preserving property.

I Lemma 10. If S is a monoid with a quadratic normalisation (Q,n) satisfying Condi-
tion ( 1 ), then the Mealy automatonMQ,n generates a monoid of which S is a quotient.

Although specific to a monoidal framework and then requiring the innocuous Condi-
tion ( 1 ), the previous straightforward result relies only on the definition of a quadratic
normalisation and on the well-fitted associated Mealy automaton (Definition 9). For the
bottom-approximation statement, we consider an extra assumption, which happens to be
necessary and sufficient.

I Proposition 11. Assume that S is a semigroup with a quadratic normalisation (Q,n). If
Condition ( ) is satisfied, then the Mealy automatonMQ,n generates a semigroup quotient
of S. The converse holds provided that Condition ( 1 ) is satisfied.

Sketch proof. Let S = Q+/≡n andMQ,n = (Q,Q, τ, σ) as in Definition 9.
(⇐) Assume that Condition ( ) is satisfied and that there exists (a, b, c, d) ∈ Q4

with ab ≡n cd. We have to prove σab = σcd. Without loss of generality, the word ab can be
supposed to be n-normal, that is, n(ab) = n(cd) = ab holds.

Let u = qv ∈ Qn for some n > 0 and q ∈ Q. We shall prove both σab(u) = σcd(u)
(letterwise) and τu(ab) ≡n τu(cd) by induction on n > 0. For n = 1, we obtain the
two square-diagrams on Figure 4 (left). With these notations, we have to prove q′′0 = q′′1
and a′b′ ≡n c′d′, the latter meaning n(a′b′) = n(c′d′), that is, with the notations from
Figure 4, the conjunction of a′′ = c′′ and b′′ = d′′. Now these three equalities hold whenever
(Q,n) satisfies Condition ( ), as shown on Figure 4 (right).

This allows to proceed the induction and to prove the implication (⇐).
(⇒) Consider an arbitrary length 3 word over Q, say qcd. Let a, b denote the elements

in Q satisfying n(cd) = ab. By definition, we deduce ab ≡n cd. This implies σab = σcd
by hypothesis. In particular, the images of any word qv under σab and σcd coincide. Now
σab(qv) = σcd(qv) decomposes into

σab(q) = q′′0 = q′′1 = σcd(q) and στq(ab)(v) = σa′b′(v) = σc′d′(v) = στq(cd)(v)

(with notations of Figure 4). The last equality holds for any original word v ∈ Q∗ and
implies σa′b′ = σc′d′ . Whenever, Condition ( 1 ) is satisfied, we deduce n(a′b′) = n(c′d′)
according to Lemma 10. For any such arbitrary word qcd ∈ Q3, we obtain n121(qcd) =
n2121(qcd). Therefore (Q,n) satisfies Condition ( ). J

Gathering Lemma 10 and Proposition 11, we obtain the following main result.

I Theorem 12. Assume that S is a monoid with a quadratic normalisation (Q,n) satisfying
Conditions ( 1 ) and ( ). The Mealy automatonMQ,n generates a monoid isomorphic to S.
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Figure 4 Proof of Proposition 11: initial data (left) can be pasted into Condition ( ) (right).

Proof. By construction, S and 〈 MQ,n 〉1+ share a same generating subset Q. Now, any
defining relation for S maps to a defining relation for 〈 MQ,n 〉1+ by Proposition 11, and
conversely by Lemma 10. J

I Corollary 13. Any monoid with a quadratic normalisation satisfying Conditions ( 1 )
and ( ) is residually finite.

To conclude this main section, we come back to that remark (following Definition 3)
about the transducer approach by Thurston.

I Definition 14. With any quadratic normalisation (Q,n) is associated its Thurston trans-
ducer defined as the Mealy automaton TQ,n with stateset Q, alphabet Q, and transitions as
follows:

a

b d

c

n a c

b | d

I Corollary 15. Assume that S is a monoid with a quadratic normalisation (Q,n) satisfying
Conditions ( 1 ) and ( ). The Thurston transducer TQ,n and the Mealy automatonMQ,n
being dual automaton, S possesses both the explicitly dual properties of automaticity and
self-similarity.

These rather unexpected results provide the very first bridge between two fundamental
areas that have always been widely seen as irreconcilable: automatic semigroups vs auto-
maton semigroups. We choose to conclude by gathering several carefully selected examples,
counterexamples, and open problems.

6 Examples and counterexamples

Our very first example is straightforward, but enlightening.

I Example 16. Every finite monoid J (in particular every finite group) is an automaticon
monoid, that is, both an automatic and an automaton monoid. Consider its quadratic
normalisation (J ,n) with n(ab) = 1(ab) for every (a, b) ∈ J 2. Figure 5 shows how to
compute its breadth (3, 2), witness of Condition ( ) for applying Theorem 12.

As mentioned in Section 1 and appearing on Figure 1, there exist automatic semigroups
that cannot be automaton semigroups.
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Figure 5 Computing the breadth (3, 2) for
any finite monoid J as in Example 16.
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Figure 6 Computing the breadth (3, 4) for
the bicylic monoid B from Example 17.

I Example 17. The bicyclic monoid B = 〈 a, b : ab = 1 〉1+ is known to be automatic and
not residually finite, hence cannot be an automaton monoid. Choose for B the quadratic
normalisation ({a, b, 1},n) with n(ab) = 11, n(x1) = 1x for x ∈ {a, b}, and n(xy) = xy

otherwise. Figure 6 illustrates the computation (on the witness word xab with x ∈ {a, b}) of
its breadth (3, 4). The Condition ( ) is hence not satisfied and Theorem 12 cannot apply.
Precisely, according to the proof of Proposition 11 and Figure 4, we have σab(x) = 1 6= x =
σ11(x) for x ∈ {a, b}, hence σab 6= σ1 = σ11.

By contrast, one of the simplest nontrivial examples could be the following.

I Example 18. The automatic monoid 〈 a, b : ab = a 〉1+ admits the quadratic normalisa-
tion ({a, b, 1},n) with n(ab) = 1a, n(x1) = 1x for x ∈ {a, b}, and n(xy) = xy otherwise.
Condition ( 1 ) is satisfied, and the breadth is (3,3) according to the graph on Figure 7.
By Theorem 12, it is therefore an automaton monoid, generated by the Mealy automaton
displayed on Figure 7.

The latter happens to be the common smallest nontrivial member of the family of
Baumslag–Solitar monoids (see [32] for instance), namely BS1

+(1, 0), and of a wide family of
right-cancellative semigroups, that we readily call Artin–Krammer monoids and that have
been introduced and studied in [39] (see also [30, 31, 48]), namely AK1

+(Γ) associated with
the Coxeter-like matrix Γ =

[
1 1
2 1

]
.

1a1

1aa 1ab

a1aaba abba1b

a11ab1 bb1

1b1

b11

1ba 1bb

b1bb1a

11a

11b

ba1aab aa1 bab

b

a

1

a|b

b|a 1|a

b|b
1|b
a|a

1|1
a|a
b|b

Figure 7 The n-graph for the quadratic normalisation associated with 〈 a, b : ab = a 〉1
+ from Ex-

ample 18: simple arrows correspond to n1 and double arrows to n2, while loops are simply omitted
for better readability. The breadth is (3, 3) as well. On the right is the associated Mealy automaton.

Examples 19 and 20 describe important members from both these families.
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Figure 8 The minimal Garside family of
the monoid AK1

+

( 1 3 2
4 1 3
2 4 1

) from Example 19.

1

a

b

ab

b2

ab2

b3

ba

b4

bab

ab3

ab4

Figure 9 The minimal Garside family of
the monoid BS1

+(3, 2) from Example 20.

I Example 19. The following Artin–Krammer monoid is emblematic:

AK1
+

( 1 3 2
4 1 3
2 4 1

) =
〈

a, b, c :
abab = aba

ac = ca
bcbc = bcb

〉1

+

.

As displayed on Figure 8, its minimal so-called Garside family forms like a flint which encodes
its whole combinatorics and, according to Theorem 12, makes it an automaticon monoid.

I Example 20. Consider the Baumslag–Solitar monoid BS1
+(3, 2) = 〈 a, b : ab3 = b2a 〉1+.

Displayed on Figure 9, its minimal Garside family contains eight elements (orange vertices)
and makes it an automaticon monoid. This is an example of a group-embeddable automaton
monoid whose enveloping group is not an automaton group. Indeed, the Baumslag–Solitar
group BS(3, 2) is precisely known as an example of non-residually finite group, hence cannot
be an automaton group. The question remains open for those automaton semigroups whose
enveloping group is a group of fractions, see Problem C below.

Concerning again group-embeddability, the following gives now an example of a cancellat-
ive automaton semigroup which is not group-embeddable.

I Example 21. The monoid T = 〈 a, b, c, d, a′, b′, c′, d′ : ab = cd, a′b′ = c′d′, a′d = c′b 〉1+ is
known (by Malcev work [41, 42, 43]) to be cancellative but not group-embeddable: from
these three relations, we cannot deduce the relation ad′ = cb′ that holds in the enveloping
group. The quadratic normalisation ({a, b, c, d, a′, b′, c′, d′},n) defined by n(ab) = cd,
n(a′b′) = c′d′, and n(a′d) = c′b for instance has breadth (3, 3), hence satisfies Condition ( )
and Theorem 12 applies. This answers in particular a question by Cain [15].

Some classes of neither left- nor right-cancellative monoids have been studied and shown
to admit nice normal forms yielding biautomatic structures (see [16]):

I Example 22. According to Schützenberger [54], plactic monoids are among the most
fundamental monoids. The rank 2 plactic monoid is P2 = 〈 a, b : aba = baa, bab = bba 〉1+.
As noted in [20, 22], P2 admits the quadratic normalisation (Q,n) with Q = {1, a, b, ba},
n(ba) = 1(ba), n((ba)a) = a(ba), n((ba)b) = b(ba), n(1x) = x1 for x ∈ Q, and n(xy) = xy

otherwise. The latter has a breadth (3, 3), hence satisfies Condition ( ) and Theorem 12
ensures that P2 is an automaton monoid. Note that, for a higher rank plactic monoid PX , it
suffices to take again for Q the set of columns, that is, the strictly decreasing products of
elements of X. Chinese monoids admit quadratic normalisations with breadth (4, 3), hence
satisfy Condition ( ), and Theorem 12 ensures that they are automaticon monoids [16, 51].

To conclude, we would like to illustrate the duality between “being an automatic semi-
group” and “being an automaton semigroup” by highlighting a paradigmatic example.
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I Example 23. The braid monoids were used by Thurston [24, Chapter 9] to describe his
idea to build a single transducer that computes the so-called Adjan–Garside–Thurston normal
form via iterated runs. The n-strand braid monoid is

B1
n+ =

〈
σ1, . . . , σn−1 : σiσjσi = σjσiσj for |i− j| ≤ 1

σiσj = σjσi for |i− j| > 1

〉1

+

.

Garside theory allows to build a suitable generating set Q of size n! and a corresponding
quadratic normalisation with breadth (3, 3). According to Corollary 15, its Thurston trans-
ducer and its Mealy automaton make therefore B1

n+ both an automatic and an automaton
monoid. Such an approach may hopefully shed some light on the question of whether or
not the braid groups are self-similar (Problem B). In particular, a positive answer to our
following Problem C would imply a positive answer to Problem B.

Problem C. Is the group of fractions of an automaton monoid an automaton group?
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9 Laurent Bartholdi and Zoran Šuniḱ. Some solvable automaton groups. In Topological and
asymptotic aspects of group theory, volume 394 of Contemp. Math., pages 11–29. Amer. Math.
Soc., Providence, RI, 2006.

10 Ievgen V. Bondarenko, Natalia V. Bondarenko, Saïd N. Sidki, and Flavia R. Zapata. On the
conjugacy problem for finite-state automorphisms of regular rooted trees. Groups Geom. Dyn.,
7(2):323–355, 2013. With an appendix by Raphaël M. Jungers.

11 Tara Brough and Alan J. Cain. Automaton semigroup constructions. Semigroup Forum,
90(3):763–774, 2015.

12 Tara Brough and Alan J. Cain. Automaton semigroups: new constructions results and
examples of non-automaton semigroups. Theoret. Comput. Sci., 674:1–15, 2017.

13 Kai-Uwe Bux et al. Selfsimilar groups and conformal dynamics - Problem List. AIM workshop
2006. URL: http://www.aimath.org/WWN/selfsimgroups/selfsimgroups.pdf.

14 Alan J. Cain. Automaton semigroups. Theoret. Comput. Sci., 410(47-49):5022–5038, 2009.
15 Alan J. Cain. Personal communication, 2016.
16 Alan J. Cain, Robert D. Gray, and António Malheiro. Rewriting systems and biautomatic

structures for Chinese, hypoplactic, and Sylvester monoids. Internat. J. Algebra Comput.,
25(1-2):51–80, 2015.

ICALP 2019

http://www.gap-system.org/Packages/fr.html
https:arxiv.org/abs/1012.1531
https:arxiv.org/abs/1012.1532
http://www.aimath.org/WWN/selfsimgroups/selfsimgroups.pdf


124:14 Automatic Semigroups vs Automaton Semigroups

17 Colin M. Campbell, Edmund F. Robertson, Nikola Ruškuc, and Richard M. Thomas. Automatic
semigroups. Theoret. Comput. Sci., 250(1-2):365–391, 2001.

18 Augustin-Louis Cauchy. Sur les moyens d’éviter les erreurs dans les calculs numériques,
volume 5 of Cambridge Library Collection - Mathematics, pages 431–442. Cambridge University
Press, 2009.

19 Daniele D’Angeli, Thibault Godin, Ines Klimann, Matthieu Picantin, and Emanuele Rodaro.
Boundary action of automaton groups without singular points and Wang tilings. Submitted,
2016. arXiv:1604.07736.

20 Patrick Dehornoy. Garside and quadratic normalisation: a survey. In 19th International
Conference on Developments in Language Theory (DLT 2015), volume 9168 of LNCS, pages
14–45, 2015.

21 Patrick Dehornoy et al. Foundations of Garside theory. Europ. Math. Soc. Tracts in Mathem-
atics, volume 22, 2015. URL: http://www.math.unicaen.fr/~garside/Garside.pdf.

22 Patrick Dehornoy and Yves Guiraud. Quadratic normalization in monoids. Internat. J. Algebra
Comput., 26(5):935–972, 2016.

23 Murray Elder. Automaticity, almost convexity and falsification by fellow traveler properties of
some finitely presented groups. PhD thesis, Univ Melbourne, 2000.

24 David B. A. Epstein, James W. Cannon, Derek F. Holt, Silvio V. F. Levy, Michael S. Paterson,
and William P. Thurston. Word processing in groups. Jones and Bartlett Publishers, Boston,
MA, 1992.

25 Pierre Gillibert. The finiteness problem for automaton semigroups is undecidable. Internat. J.
Algebra Comput., 24(1):1–9, 2014.

26 Thibault Godin, Ines Klimann, and Matthieu Picantin. On torsion-free semigroups generated
by invertible reversible Mealy automata. In 9th International Conference on Language and
Automata Theory and Applications (LATA 2015), pages 328–339, 2015.

27 Rostislav I. Grigorchuk. On Burnside’s problem on periodic groups. Funktsional. Anal. i
Prilozhen., 14(1):53–54, 1980.

28 Rostislav I. Grigorchuk. Degrees of growth of finitely generated groups and the theory of
invariant means. Izv. Akad. Nauk SSSR Ser. Mat., 48(5):939–985, 1984.

29 Yves Guiraud and Matthieu Picantin. Resolutions by differential graded polygraphs. In
preparation, 2019.

30 Alexander Hess. Factorable monoids: resolutions and homology via discrete Morse theory.
PhD thesis, Univ Bonn, 2012. URL: http://hss.ulb.uni-bonn.de/2012/2932/2932.pdf.

31 Alexander Hess and Viktoriya Ozornova. Factorability, string rewriting and discrete Morse
theory. Submitted. arXiv:1412.3025.

32 Michael Hoffmann. Automatic Semigroups. PhD thesis, Univ Leicester, 2001.
33 Michael Hoffmann and Richard M. Thomas. Biautomatic semigroups. In 15th International

Symposium on Fundamentals of Computation Theory (FCT 2005), volume 3623 of LNCS,
pages 56–67, 2005.

34 Ines Klimann. The finiteness of a group generated by a 2-letter invertible-reversible Mealy
automaton is decidable. In 30th International Symposium on Theoretical Aspects of Computer
Science (STACS 2013), volume 20 of LIPIcs, pages 502–513, 2013.

35 Ines Klimann, Jean Mairesse, and Matthieu Picantin. Implementing Computations in Auto-
maton (Semi)groups. In 17th International Conference on Implementation and Applications
of Automata (CIAA 2012), volume 7381 of LNCS, pages 240–252, 2012.

36 Ines Klimann and Matthieu Picantin. Automaton (semi)groups: Wang tilings and Schreier
tries. In Valérie Berthé and Michel Rigo, editors, Sequences, Groups, and Number Theory.
Trends in Mathematics, 2018.

37 Ines Klimann, Matthieu Picantin, and Dmytro Savchuk. A Connected 3-State Reversible Mealy
Automaton Cannot Generate an Infinite Burnside Group. In 19th International Conference on
Developments in Language Theory (DLT 2015), volume 9168 of LNCS, pages 313–325, 2015.

http://arxiv.org/abs/1604.07736
http://www.math.unicaen.fr/~garside/Garside.pdf
http://hss.ulb.uni-bonn.de/2012/2932/2932.pdf
http://arxiv.org/abs/1412.3025


M. Picantin 124:15

38 Ines Klimann, Matthieu Picantin, and Dmytro Savchuk. Orbit automata as a new tool to
attack the order problem in automaton groups. J. Algebra, 445:433–457, 2016.

39 Daan Krammer. An asymmetric generalisation of Artin monoids. Groups Complex. Cryptol.,
5:141–168, 2013.

40 Yaroslav Lavrenyuk, Volodymyr Mazorchuk, Andriy Oliynyk, and Vitaliy Sushchansky. Faithful
group actions on rooted trees induced by actions of quotients. Comm. Algebra, 35(11):3759–
3775, 2007.

41 Anatoly I. Malcev. On the immersion of an algebraic ring into a field. Math. Ann., 113(1):686–
691, 1937.

42 Anatoly I. Malcev. Über die Einbettung von assoziativen Systemen in Gruppen. Rec. Math.
[Mat. Sbornik] N.S., 6 (48):331–336, 1939.

43 Anatoly I. Malcev. Über die Einbettung von assoziativen Systemen in Gruppen. II. Rec. Math.
[Mat. Sbornik] N.S., 8 (50):251–264, 1940.

44 Victor D. Mazurov and Evgeny I. Khukhro. Unsolved problems in group theory. The Kourovka
Notebook. No 19. URL: https://kourovka-notebook.org/.

45 David McCune. Groups and Semigroups Generated by Automata. PhD thesis, Univ Nebraska-
Lincoln, 2011.

46 Yevgen Muntyan and Dmytro Savchuk. AutomGrp – GAP package for computations in
self-similar groups and semigroups, Version 1.3, 2016. URL: http://www.gap-system.org/
Packages/automgrp.html.

47 Volodymyr V. Nekrashevych. Self-similar groups, volume 117 of Mathematical Surveys and
Monographs. American Mathematical Society, Providence, RI, 2005.

48 Viktoriya Ozornova. Factorability, discrete Morse theory, and a reformularion of K(π, 1)-
conjecture. PhD thesis, Univ Bonn, 2013. URL: http://hss.ulb.uni-bonn.de/2013/3117/
3117.pdf.

49 Matthieu Picantin. Finite transducers for divisibility monoids. Theoret. Comput. Sci., 362(1-
3):207–221, 2006.

50 Matthieu Picantin. Tree products of cyclic groups and HNN extensions. Preprint, 2015.
arXiv:1306.5724v4.

51 Matthieu Picantin. Automates, (semi)groupes, dualités. Habilitation à diriger des recherches,
Univ Paris Diderot, 2017. URL: https://www.irif.fr/~picantin/papers/hdr_memoire.pdf
and https://www.irif.fr/~picantin/papers/hdr_soutenance.pdf.

52 Matthieu Picantin. Automatic semigroups vs automaton semigroups. Full version of the
current paper, 2019. arXiv:1609.09364v5.

53 Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, New York,
NY, USA, 2009.

54 Marcel-Paul Schützenberger. Pour le monoïde plaxique. Math. Inform. Sci. Humaines, 140:5–10,
1997.

55 Pedro V. Silva. Groups and Automata: A Perfect Match. In 14th International Workshop
on Descriptional Complexity of Formal Systems (DCFS 2012), volume 7386 of LNCS, pages
50–63, 2012.

56 Pedro V. Silva and Benjamin Steinberg. On a class of automata groups generalizing lamplighter
groups. Internat. J. Algebra Comput., 15(5-6):1213–1234, 2005.

57 Bartosz Tarnawski. Automatic groups as groups defined by transducers. Master’s thesis, Univ
Warsaw, Faculty of Mathematics, Informatics and Mechanics, Poland, 2017.

58 Daniel T. Wise. A non-Hopfian automatic group. J. Algebra, 180(3):845–847, 1996.

ICALP 2019

https://kourovka-notebook.org/
http://www.gap-system.org/Packages/automgrp.html
http://www.gap-system.org/Packages/automgrp.html
http://hss.ulb.uni-bonn.de/2013/3117/3117.pdf
http://hss.ulb.uni-bonn.de/2013/3117/3117.pdf
http://arxiv.org/abs/1306.5724v4
https://www.irif.fr/~picantin/papers/hdr_memoire.pdf
https://www.irif.fr/~picantin/papers/hdr_soutenance.pdf
http://arxiv.org/abs/1609.09364v5




A Mahler’s Theorem for Word Functions
Jean-Éric Pin1

IRIF, Université Paris Denis Diderot, CNRS - Case 7014 - F-75205 Paris Cedex 13, France
Jean-Eric.Pin@irif.fr

Christophe Reutenauer
Mathématiques, Université du Québec à Montréal, CP 8888, succ. Centre Ville, Canada H3C 3P8
reutenauer.christophe@uqam.ca

Abstract
Let p be a prime number and let Gp be the variety of all languages recognised by a finite p-group.
We give a construction process of all Gp-preserving functions from a free monoid to a free group.
Our result follows from a new noncommutative generalization of Mahler’s theorem on interpolation
series, a celebrated result of p-adic analysis.
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1 Introduction

Throughout this paper, p denotes a prime number. A finite p-group is a group whose order
is a power of p. Let Gp denote the variety of all languages recognised by a finite p-group.
This variety, first studied over fourty years ago [2, p. 238] is generated by the p-binomial
languages, as explained in Section 4.

A function f from A∗ to B∗ is regularity-preserving if, for each regular language L of
B∗, the language f−1(L) is also regular. In a series of papers [8, 9, 10], Silva and the first
author considered a more general situation: given a variety V of regular languages, a function
f from A∗ to B∗ is V-preserving if L ∈ V implies f−1(L) ∈ V. These functions admit a
simple topological characterization. Indeed, one can attach to each variety V a metric2 dV ,
called the pro-V metric, for which the following property holds: a function is V-preserving if
and only if it is uniformly continuous with respect to dV [10, Theorem 4.1]. However, this
characterization does not solve the following more difficult question:

Synthesis problem for V. Provide a construction process of all V-preserving functions.
For instance, although several families of regularity-preserving functions have been identified,
the synthesis problem for these functions is still a major open problem.

The aim of this paper is to solve the synthesis problem for the variety Gp. We actually
solve this problem for all functions from A∗ to the free group F (B), a slightly more general
setting, since the free monoid B∗ embeds in F (B). In a free group, the class Gp is defined in
the same way: a subset of F (B) is in Gp if it is recognized by a finite p-group.

1 Corresponding author.
2 Actually, it is only a pseudometric in the general case, but a metric in the case considered in this paper.
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One-letter case. If A and B are one-letter alphabets, then A∗ is isomorphic to N, F (B)
is isomorphic to Z and dp is the p-adic metric. The p-adic distance between two distinct
integers r and s is the real p−n, where n is the exponent of p in the prime factorization
of |r − s|. It turns out that Mahler’s theorem on interpolation series, a celebrated result
in p-adic analysis [4, 5] stated below, leads to a construction process of the Gp-preserving
functions from N to Z.

Mahler’s theorem is based on another result of independent interest. Newton’s forward
difference formula states that for each function f : N → Z, there is a unique sequence of
integers δkf such that, for all n ∈ N, f(n) =

∑∞
k=0

(
n
k

)
δkf . The value of these coefficients

δkf is given by the formula δkf = (∆kf)(0), where ∆k is the k-th iteration of the difference
operator ∆, defined by (∆f)(n) = f(n+ 1)− f(n). A remarkable consequence of Newton’s
forward difference formula is that the map f → (δkf)k>0 defines a bijection between functions
from N to Z and integer sequences. We call this bijection Newton’s bijection.

Mahler’s theorem states that the integer sequences that give rise to Gp-preserving functions
are precisely those converging to 0 in the p-adic metric. More precisely:

I Theorem 1.1 (Mahler). The following conditions are equivalent:
(1) f : N→ Z is a Gp-preserving function,
(2) f is uniformly continuous for the p-adic metric,
(3) the functions ∆nf tend uniformly to the constant function 0 when n tends to ∞,
(4) the p-adic norm of δnf tends to 0 when n tends to ∞,
(5) f is the uniform limit of the polynomial functions fr(n) =

∑r
k=0

(
n
k

)
δkf .

This leads to a simple construction process of all Gp-preserving functions from N to Z: take
a sequence (δk)k>0 of integers converging to 0 and set f(n) =

∑∞
k=0

(
n
k

)
δk.

Functions from A∗ to F (B). When B is a one-letter alphabet, a construction process of
all Gp-preserving functions was obtained by Silva and the first author in [10, 11]. We rely on
this result to treat the general case where B is any finite alphabet.

We first equip both A∗ and F (B) with the pro-p metric, a natural extension of the p-adic
metric, fully defined in Section 4.1. We follow [7] to extend the difference operators. Let f be
a function from A∗ to a group G. For each letter a, the difference operator ∆a associates to
f the function ∆af : A∗ → G defined by ∆af(u) = f(u)−1f(ua). Next we attach a difference
operator ∆w to each word w = a1 · · · an of A∗ by setting ∆wf = ∆a1(∆a2(· · ·∆anf) · · · )).
Finally, we set δwf = ∆wf(1), where 1 is the empty word.

A noncommutative version of Newton’s forward difference formula and of Newton’s
bijection was given by the first author in [7]. We give a simpler proof of these results
in Section 2.5. In this noncommutative setting, Newton’s bijection is now the map f →
(δwf)w∈A∗ . If we just keep the elements δwf such that |w| 6 n and replace every other δwf
by the identity of the free group, the inverse of Newton’s bijection gives back a function fn,
called the n-th Newton polynomial function associated to f .

Our main result now offers a noticeable analogy with Mahler’s theorem:

I Theorem 1.2. Let f : A∗ → F (B) be a function. The following conditions are equivalent:
(1) f is a Gp-preserving function,
(2) f is uniformly continuous for the pro-p metric,
(3) the functions ∆wf tend uniformly to the constant function 1 when |w| tends to ∞,
(4) the elements δwf , where w ∈ A∗, tend to 1 when |w| tends to ∞,
(5) f is the uniform limit of its Newton polynomial functions.
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Sequential products. A new operation on functions plays a key role in our proof of The-
orem 1.2. Given an element g of a group G and a family (fa)a∈A of functions from A∗ to G,
the sequential product of g and (fa)a∈A is the function f : A∗ → G, defined, for each word
a1 · · · an ∈ A∗, by f(a1 · · · an) = g

∏
16i6n fai(a1 · · · ai−1).

A function f from A∗ to a group G is a Newton polynomial function if δwf = 1 for
almost all words w. We prove that the set of Newton polynomial functions from A∗ to G is
the smallest set of functions containing the constant functions and closed under sequential
product. Moreover, if G is a finite p-group equipped with the discrete metric, then the
Newton polynomial functions are exactly the uniformly continuous functions from A∗ to G.

Two solutions of the synthesis problem. Theorem 1.2 now leads to two construction
processes to obtain all Gp-preserving functions from A∗ to F (B). The first one consists in
taking any family (δw)w∈A∗ of elements of the free group converging to 1 when |w| tends to
∞ and to use the inverse of Newton’s bijection to get in return a Gp-preserving function from
A∗ to F (B). The second method is to start with the constant functions, use the sequential
product to generate all Newton polynomial functions and finally take the uniform closure.

Related work. Another characterization of Gp-preserving functions using profinite equa-
tions was obtained in [1, Lemma 3.3], but it only holds for regular-preserving functions. In
the case of sequential and rational functions, V-preserving functions were first investigated
by Schützenberger and the second author [12]. For instance, they proved that a sequential
function is Gp-preserving if and only if the syntactic semigroup of its minimal sequential
transducer is a finite p-group. Our results are of a different nature, since they concern all
Gp-preserving functions.

Organization. Difference operators and Newton’s forward difference formula are introduced
in Section 2. Section 3 is devoted to Newton polynomial functions and Section 4 to topological
issues. The proof of our main result is presented in Section 5. Due to space constraints,
missing proofs are given in the Appendix.

2 Difference operators and Newton’s forward difference formula

Newton’s forward difference formula gives an expression of a function from N to Z in terms
of the initial value of the function and the powers of the forward difference operator. A
noncommutative extension of this formula for functions from A∗ to F (B) was given in [7]. In
this section, we give a new proof of these results. We first need to introduce a noncommutative
version of the Magnus transformation.

2.1 Noncommutative Magnus transformation

Let A∗∗ denote the free monoid freely generated by A∗. An element of A∗∗ is a finite sequence
(w1, . . . , wn) of elements of A∗. However, to avoid any confusion between the product in A∗
and the product in A∗∗, we adopt an additive notation for A∗∗. This means that we replace
the notation (w1, . . . , wn) by w1 + · · ·+ wn. The addition of two elements (u1 + · · ·+ um)
and (v1 + · · ·+ vn) of A∗∗ is also denoted additively, which is coherent, since

(u1 + · · ·+ um) + (v1 + · · ·+ vn) = u1 + · · ·+ um + v1 + · · ·+ vn.

ICALP 2019



125:4 A Mahler’s Theorem for Word Functions

Accordingly, the neutral element of the monoid A∗∗ is denoted 0. Note however that the
addition is in general noncommutative. For each w ∈ A∗ and x = x1 + · · ·+ xn ∈ A∗∗, let
x ·w = x1w+ · · ·+ xnw. This defines a monoid right action of A∗ on A∗∗, which means that
the following formulas hold for all w,w1, w2 ∈ A∗, and for all x, x1, x2 ∈ A∗∗,

0 ·w = 0 (x1 + x2) ·w = x1 ·w + x2 ·w x · (w1w2) = (x ·w1) ·w2.

The noncommutative Magnus transformation is the mapping µ from A∗ into A∗∗ defined
recursively by setting µ(1) = 1 and, for any w ∈ A∗ and a ∈ A,

µ(wa) = µ(w) + µ(w) · a. (2.1)

For instance, µ(a) = 1 + a, µ(ab) = 1 + a+ b+ ab, µ(abc) = 1 + a+ b+ ab+ c+ ac+ bc+ abc

and µ(abcd) = 1 + a+ b+ ab+ c+ ac+ bc+ abc+ d+ ad+ bd+ abd+ cd+ acd+ bcd+ abcd.

2.2 Difference operators
Let G be a group and let f : A∗ → G be a function. Following [7], we define the difference
operators as follows. For each letter a ∈ A, ∆af is the function A∗ → G defined by
∆af(w) = f(w)−1f(wa) for any word w in A∗. We obtain in this way a function a 7→ ∆a

from A into the setM of all mappings from GA
∗ into itself. We viewM as a monoid under

the composition of mappings. Since A∗ is the free monoid on A, this function from A toM
extends uniquely to a monoid morphism from A∗ intoM. Denoting w 7→ ∆w this extension,
we get ∆1f = f and, for all words u, v in A∗,

∆uvf = ∆u∆vf. (2.2)

For instance, one gets, for any a, b, c ∈ A and u ∈ A∗,

(∆1f)(u) = f(u) (∆af)(u) = f(u)−1f(ua) (∆abf)(u) = f(ub)−1f(u)f(ua)−1f(uab)

(∆abcf)(u) = f(ubc)−1f(ub)f(u)−1f(uc)f(uac)−1f(ua)f(uab)−1f(uabc)

Here are two examples of differential operators. First, let us take A∗ = N and G = Z.
Switching to additive notation, we find that ∆1f(n) = −f(n) + f(n+ 1), the usual difference
operator, and more generally ∆kf(n) = f(n+ k)−

(
n
1
)
f(n+ k− 1) +

(
n
2
)
f(n+ k− 2)− · · ·+

(−1)k
(
n
k

)
f(n).

The next example requires an auxiliary definition. The iterated commutator [x1, x2, . . . , xn]
of n elements x1, x2, . . . , xn of a group is defined by induction by setting [x1] = x1 and
for n > 2, [x1, x2, . . . , xn] = x1[x2, x3, . . . , xn]x−1

1 [x2, x3, . . . , xn]−1. In particular, since
[x1, x2] = x1x2x

−1
1 x−1

2 , one gets [x1, x2, . . . , xn] = [x1, [x2, x3, . . . , xn]].

I Proposition 2.1. Let f : A∗ → F (A) be the function defined by f(x) = x−1. Then for
every n > 0 and for all a1, . . . , an ∈ A, ∆a1a2···anf(x) = x[a1, a2, . . . , an]−1x−1.

Difference operators commute with group morphisms:

I Proposition 2.2. Let f : A∗ → G be a function, let ϕ : G→ H be a group morphism and
let w be a word. Then ∆w(ϕ ◦ f) = ϕ ◦ (∆wf).

2.3 The integration problem
Let G be a group and let f : A∗ → G be a function. Then f and the functions ∆af , for
a ∈ A, are related by a functional equation.
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I Proposition 2.3. Let a1 · · · an be a word of A∗. Then the following formula holds:

f(a1 · · · an) = f(1)
∏

16i6n
∆aif(a1 · · · ai−1). (2.3)

The functional equation (2.3) gives an expression of f in terms of f(1) and of the family
(∆af)a∈A. We now address the opposite question, which is somewhat similar to the problem
of integrating a function from its derivative.

Integration problem. Given an element g of G and a family (fa)a∈A of functions from A∗

to G, is there a function f such that f(1) = g and fa = ∆af for all a ∈ A?

To solve the integration problem, it is convenient to introduce a new definition. Given an
element g of G and a family (fa)a∈A of functions from A∗ to G, the sequential product
Seq(g, (fa)a∈A) is the function f : A∗ → G, defined, for each word a1 · · · an ∈ A∗, by

f(a1 · · · an) = g
∏

16i6n
fai(a1 · · · ai−1). (2.4)

By abuse of language, a function f : A∗ → G is called a sequential product of a family (fa)a∈A
of functions from A∗ to G if, for some g ∈ G, f = Seq(g, (fa)a∈A).

This terminology stems from the fact that f can be realized by a sequential transducer with
infinitely many states. Indeed, consider the sequential transducer A = (A∗, A,G, 1, · , ∗, g),
where A∗ is the set of states, A the input alphabet, G the output group, 1 the initial state,
g the initial prefix. The transition and the output functions are respectively defined by
u · a = ua and u ∗ a = fa(u).

g
1 u ua

a | fa(u)

A typical computation in A looks like this
g . . .

. . .

1 a1 a1a2 a1a2a3

a1a2 · · · an−1 a1a2 · · · an

a1 | fa1
(1) a2 | fa2

(a1) a3 | fa3
(a1a2)

an | fan
(a1 · · · an−1)

and hence A computes the sequential product f defined by (2.4).
We are now ready to solve the integration problem.

I Proposition 2.4. Let g ∈ G and let (fa)a∈A be a family of functions from A∗ to G. Then
the sequential product Seq(g, (fa)a∈A) is the unique function f such that f(1) = g and
∆af = fa for all a ∈ A.

Proof. Let f = Seq(g, (fa)a∈A). Then f(1) = g by definition. Let u = a1 . . . an be a word
and a be a letter. Since ∆af(u) = f(u)−1f(ua), one gets by (2.4)

∆af(u) =
(
g
∏

16i6n
fai(a1 · · · ai−1)

)−1
g
( ∏

16i6n
fai(a1 · · · ai−1)

)
fa(a1 · · · an) = fa(a1 · · · an)

whence ∆af = fa.
To prove uniqueness, consider a function f such that f(1) = g and ∆af = fa for all

a ∈ A. Then for each word a1 · · · an ∈ A∗, one gets by (2.3),

f(a1 · · · an) = f(1)
∏

16i6n
∆aif(a1 · · · ai−1) = g

∏
16i6n

fai(a1 · · · ai−1).

and thus f = Seq(g, (fa)a∈A). J
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2.4 Newton’s forward difference formula
For each w ∈ A∗ and f : A∗ → G, let us set δwf = ∆wf(1) and let δf : A∗ → G be the map
defined by δf (w) = δwf . This map extends to a monoid morphism δ∗f : A∗∗ → G. Thus
δ∗f (w) = δwf and if w1 + · · ·+wn is an element of A∗∗, then δ∗f (w1 + · · ·+wn) = δw1f · · · δwn

f .

I Theorem 2.5. The equality f = δ∗f ◦ µ holds for each function f : A∗ → G.

The equality f = δ∗f ◦ µ yields a noncommutative version of Newton’s forward difference
formula. Indeed, it extends the formula given in [11, Theorem 2.2] for functions from A∗ to
Z, which itself extends Newton’s forward difference formula for functions from N to Z. To
make this formula a little more concrete, let us compute a few values of f(w). Let a, b, c, d
be letters of A. Then, using the values of µ computed on page 4, one gets

f(1) = δ1f f(a) = (δ1f)(δaf) f(ab) = (δ1f)(δaf)(δbf)(δabf)
f(abc) = (δ1f)(δaf)(δbf)(δabf)(δcf)(δacf)(δbcf)(δabcf)
f(abcd) = (δ1f)(δaf)(δbf)(δabf)(δcf)(δacf)(δbcf)(δabcf)

(δdf)(δadf)(δbdf)(δabdf)(δcdf)(δacdf)(δbcdf)(δabcdf).

Here is a more complete example. Let f : {0, 1, 2}∗ → {0, 1, 2}∗ be the Euclidean division by
2 in base 3, that is, the function which associates to a word u ∈ {0, 1, 2}∗ representing an
integer u in base 3, the unique word v of the same length as u representing the quotient of
the division of u by 2. Since 1 is a letter of the alphabet, we let ε denote the empty word.
The function f can be realized by the sequential transducer represented below.

0 1

0 | 0

2 | 1

0 | 1

2 | 2

1 | 0

1 | 2

For instance, f(1212) = 0221 since 1212 = 50 and 0221 = 25 = 50/2. Let us compute the
functions ∆xf . First, we have

∆0f(w) =
{

0 if w is even
1 if w is odd

∆1f(w) =
{

0 if w is even
2 if w is odd

∆2f(w) =
{

1 if w is even
2 if w is odd

The other values of ∆xf(w) can be obtained through the following result:

I Proposition 2.6. Let u, v ∈ A∗ and let g : {0, 1, 2}∗ → A∗ be the function defined by

g(w) =
{
u if w is even
v if w is odd

Then ∆xg(w) = ε if x /∈ 1∗ and ∆1n

g(w) = (u−1v)(−1)n−1+w2n−1 for n > 1.

It is now easy to compute the elements δw = (∆wf)(ε). One gets δ0 = 0, δ1 = 0, δ2 = 1,
δ1n0 = (0−11)(−1)n−12n−1 , δ1n1 = (0−12)(−1)n−12n−1 , δ1n2 = (1−12)(−1)n−12n−1 and δw = ε in
all other cases. We get for instance

f(1212) = δεδ1δ2δ12δ1δ11δ21δ121δ2δ12δ22δ122δ12δ112δ212δ1212

= δ1δ2δ12δ1δ11δ2δ12δ12δ112 = 01(1−12)0(0−12)1(1−12)(1−12)(1−12)−2 = 0221.
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2.5 Newton’s bijection
For each n ∈ N, let Cn be the set of words of A∗ of length at most n. Let ρn be the monoid
endomorphism on A∗∗ which maps every element of Cn to itself, and maps any other element
of A∗ to 0. In other words, if x =

∑
16i6r ui is an element of A∗∗, where each ui ∈ A∗, then

ρn(x) =
∑

i∈En(x)

ui, where En(x) = {i ∈ {1, . . . r} | |ui| 6 n}.

For each n > 0, Cn is a finite subset of A∗∗ and C∗n is a free submonoid of A∗∗. The function
µn = ρn ◦ µ from A∗ to the free monoid C∗n is called the truncated noncommutative Magnus
transformation. For instance, µ2(abcd) = 1 + a+ b+ ab+ c+ ac+ bc+ d+ ad+ bd+ cd, a
result obtained by only keeping the words of length 6 2 in µ(abcd).

Recall that to each function f : A∗ → G is associated the map δf : A∗ → G defined by
δf (w) = δw(f). The Newton map is the map δ : f → δf . Let f∗ : A∗∗ → G denote the unique
monoid morphism extending f and let γ be the map defined by γ(f) = f∗ ◦ µ.

I Theorem 2.7. The Newton map δ is a permutation on the set of functions from A∗ to G
and its inverse permutation is γ.

Proof. Since f = δ∗f ◦ µ by Theorem 2.5, γ ◦ δ is the identity function. Therefore γ is
surjective, δ is injective and it suffices to prove that γ is injective. Let g, h : A∗ → G

be such that g∗ ◦ µ = h∗ ◦ µ. Let us show by induction on |w| that g(w) = h(w). If
|w| = 0, then w is the empty word 1 , µ(1) = 1, g∗(1) = g(1), h∗(1) = h(1) and thus
g(1) = h(1). Suppose now that |w| = n + 1. Then µ(w) = µn(w) + w and since g∗ and
h∗ are monoid morphisms, one gets g∗ ◦ µ(w) = g∗(µn(w) + w) = g∗(µn(w))g(w) and
similarly h∗ ◦ µ(w) = h∗(µn(w))h(w). Since µn(w) is a sum of words of length 6 n, the
induction hypothesis gives g∗(µn(w)) = h∗(µn(w)). Now since g∗ ◦ µ(w) = h∗ ◦ µ(w), one
gets g(w) = h(w), which concludes the induction step. J

Theorem 2.7 solves the following interpolation problem.

I Corollary 2.8. For each function g : A∗ → G, there exists a unique function f : A∗ → G

such that, for all u ∈ A∗, δuf = g(u).

3 Newton polynomial functions

Let G be a group. A function f : A∗ → G is called a Newton polynomial function if δwf = 1
for almost all words w ∈ A∗. Note that by Proposition 2.6, the Euclidean division by 2 in
base 3 is not a Newton polynomial function.

Let 1 denote the constant function from A∗ to G that maps every word to 1. The degree
of a Newton polynomial function is −1 if f = 1; otherwise, it is the smallest d such that
δwf = 1 for any word of length d+ 1.

Here is another convenient characterization of Newton polynomial functions.

I Proposition 3.1. A function f : A∗ → G is a Newton polynomial function of degree d if
and only if d is the smallest integer such that ∆wf = 1 for all words w of length d+ 1.

The following result gives a construction process of the set of Newton polynomial functions.

I Theorem 3.2. The set of Newton polynomial functions from A∗ to G is the smallest set of
functions from A∗ to G containing the constant functions and closed under sequential product.
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Theorem 3.2 is an immediate consequence of the following proposition.

I Proposition 3.3. Let G be a group and let f : A∗ → G be a function. The following
conditions are equivalent:
(1) f is a Newton polynomial function of degree 6 d,
(2) there exists a family (fa)a∈A of Newton polynomial functions of degree 6 d− 1 such that

f = Seq(f(1), (fa)a∈A).
In this case, one has fa = ∆af for every a ∈ A.

Proof. (1) implies (2). Suppose that f is a Newton polynomial function of degree 6 d. Then
for any letter a, ∆af is a Newton polynomial function of degree at most d− 1. Moreover,
Proposition 2.3 shows that f(a1 · · · an) = f(1)

∏
16i6n ∆aif(a1 · · · ai−1), which proves (2).

(2) implies (1). Suppose that (2) holds. Proposition 2.4 shows that, for each letter a,
∆af = fa and hence ∆af is a Newton polynomial function of degree 6 d− 1. It follows that
f is a Newton polynomial function of degree 6 d. J

A Newton polynomial function of degree 0 is a constant map different from 1. A Newton
polynomial function of degree 1 is an affine morphism, that is, a function f of the form
f(w) = f(1)g(w) for some monoid morphism g : A∗ → G. Equivalently, conjugating by f(1),
one gets f(w) = h(w)f(1) for some monoid morphism h : A∗ → G.

The function f : A∗ → F (A) defined by f(a1 · · · an) = a1(a1a2)(a1a2a3) · · · (a1 · · · an)
is a Newton polynomial function of degree 2. Indeed, it is equal to the sequential product
Seq(1, (fa)a∈A) where each fa is the affine morphism defined by fa(u) = ua.

Recall that δ∗f is a map from A∗∗ to G, but we keep the same notation for its restriction
to C∗n. Let f : A∗ → G be a function. For each n > 0, the n-th Newton polynomial function
associated to f is the function fn from A∗ to G defined by fn = δ∗f ◦ µn. This terminology is
justified by Proposition 3.4 below.

It is not difficult to see that f0 is the constant function equal to f(1). Indeed, since
∆1f = f , one gets f0(u) = δ∗f ◦ µ0(u) = δ∗f (1) = δ1f = ∆1f(1) = f(1).

I Proposition 3.4. For each n > 0, fn is a Newton polynomial function of degree at most n.

We need an auxiliary lemma.

I Lemma 3.5. The following formula holds for all n > 0 and a ∈ A.

∆a(fn) = δ∗∆af ◦ µn−1 = (∆af)n−1

Proof of Proposition 3.4. We prove the result by induction on n. For n = 0, we have
already seen that f0 is a constant function, and thus a Newton polynomial function of degree
6 0. Applying Proposition 2.3 to fn, one gets, for every word a1 · · · ak ∈ A∗, fn(a1 · · · ak) =
fn(1)

∏
16i6k ∆aifn(a1 . . . ai−1). Now, fn(1) = δ∗f ◦ µn(1) = δ∗f (1) = f(1) and ∆afn =

(∆af)n−1 by Lemma 3.5. It follows that fn(a1 . . . ak) = f(1)
∏

16i6k(∆aif)n−1(a1 . . . ai−1).
By the induction hypothesis applied to ∆af , (∆af)n−1 is a Newton polynomial function
of degree at most n− 1. Hence by Proposition 3.3, fn is a Newton polynomial function of
degree at most n. J

A function f : A∗ → G is called a G-polynomial if f(w) = 1 for almost all words w ∈ A∗.
The degree of a G-polynomial is −1 if f = 1; otherwise, it is the smallest d such that f(w) = 1
for any word of length d+ 1. One can now enrich Theorem 2.7 as follows.
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I Theorem 3.6. For each degree d, the maps δ and γ define mutually inverse bijections
between the set of Newton polynomial functions of degree d and the set of G-polynomials of
degree d.

Proof. It suffices to prove that δ and γ define mutually inverse bijections between the set of
Newton polynomial functions of degree 6 d and the set of G-polynomials of degree 6 d. Let
f be a Newton polynomial function of degree 6 d. Then by definition, δ(f) is a G-polynomial
of degree 6 d. Let now f be a G-polynomial of degree 6 d. Theorem 2.7 shows that
f = δ ◦ γ(f) = δγ(f). It follows that for every word w of length > d, 1 = f(w) = δγ(f)(w).
Thus γ(f) is a Newton polynomial of degree 6 d. J

4 Topology

4.1 Pro-p metrics
If B̄ is a copy of B, the free group F (B) is the quotient of (B ∪ B̄)∗ under the congruence
generated by the relations bb̄ = 1 = b̄b for all b ∈ B.

Recall that a group G is called residually p-finite if for any g 6= 1 in G, there is some finite
p-group H and some morphism G→ H whose kernel does not contain g. It is a well-known
fact that free groups are residually p-finite.

Let G be a residually p-finite group and let g ∈ G. The pro-p valuation of g, denoted
vp(g), is the largest n such that g belongs to the kernel of any morphism from G to a p-group
of order pn. The pro-p valuation is always finite, except for g = 1, in which case it is infinite.
The pro-p norm of g is |g|p = p−vp(g), with the usual convention p−∞ = 0. Finally G becomes
a metric space for the pro-p metric dp : G×G→ R defined by dp(x, y) = |x−1y |p.

The condition dp(x, y) 6 p−k means that x−1y is in the kernel of each group morphism
from G into a p-group of cardinality at most pk. We leave to the reader to verify that if
G = Z, one recovers the usual p-adic valuation, norm and metric.

Another useful example occurs when G is a finite p-group. Recall that the discrete metric
on G is the metric d defined by d(x, y) = 1 if x 6= y and d(x, y) = 0 if x = y. In this case, the
double inequality dp(x, y) 6 d(x, y) 6 |G| dp(x, y) shows that the pro-p metric is uniformly
equivalent to the discrete metric.

There are two equivalent ways to define the pro-p metric on a free monoid A∗. The first
solution is to view A∗ as a subspace of the free group F (A) and to consider the restriction
to A∗ of the pro-p metric on F (A).

The second solution is to directly define the pro-p metric as follows. Let us say that
a finite p-group G separates two words u and v of A∗ if there exists a monoid morphism
ϕ : A∗ → G such that ϕ(u) 6= ϕ(v). Then dp(u, v) = 0 if u = v and dp(u, v) = p−n, where pn
is the minimal size of a p-group separating u and v, if u 6= v.

I Proposition 4.1. Every monoid morphism from A∗ to a p-group is uniformly continuous.

Proof. Let π be a monoid morphism from A∗ to a p-group G and let u, v ∈ A∗. If dp(u, v) 6
|G|−1, then π(u) = π(v) and thus dp(π(u), π(v)) = 0. Thus π is uniformly continuous. J

Let us now review the connections with combinatorics on words and regular languages.
A word u = a1a2 · · · an (where a1, . . . , an are letters) is a subword of a word v if v can be
written as v = v0a1v1 · · · anvn. For instance, ab is a subword of cacbc.

Following Eilenberg [2] and Lothaire [3, Chapter 6], let
(
v
u

)
denote the number of distinct

ways to write a word u as a subword of v. More formally, if u = a1a2 · · · an, then(
v

u

)
= Card{(v0, v1, . . . , vn) | v0a1v1 · · · anvn = v}
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A language of A∗ is p-binomial if for some word v and some integer r it is equal to

L(v, r) = {w ∈ A∗ |
(
w

v

)
≡ r mod p}.

It follows from [2, p. 238] that a language belongs to Gp if and only if it is a Boolean
combination of p-binomial languages. We will also use the following consequence of [11,
Proposition 1.3 and Theorem 1.4].

I Proposition 4.2. Let f : A∗ → B∗ be a function. The following conditions are equivalent:
(1) f is uniformly continuous for the pro-p metric,
(2) f is Gp-preserving,
(3) for each p-binomial language L of B∗, f−1(L) is a Boolean combination of p-binomial

languages in A∗.

4.2 Uniform continuity and Newton polynomial functions
The aim of this section is to describe the uniformly continuous functions from A∗ to a
finite p-group. We first give a purely algebraic characterization of these functions (Proposi-
tion 4.3). Then we show that these functions are closed under applying differential operators
(Proposition 4.4) and under taking sequential products (Proposition 4.5).

I Proposition 4.3. Let G be a finite p-group and let f : A∗ → G be a function. Then f

is uniformly continuous for the pro-p metric if and only if there exist a finite p-group K
and a monoid morphism ζ : A∗ → K such that f factors through ζ, that is, there is a map
λ : K → G such that f = λ ◦ ζ.

I Proposition 4.4. Let G be a finite p-group. If f : A∗ → G is uniformly continuous for the
pro-p metric, then so is ∆wf for any word w ∈ A∗.

Proof. By induction and by Equation (2.2), it is enough to prove the result for w = a for
any letter a ∈ A. In this case, ∆af : A∗ → G is the composition of the following functions:

A∗ → A∗ ×A∗ A∗ ×A∗ → A∗ ×A∗ A∗ ×A∗ → G×G
u 7→ (u, u) (u, v) 7→ (u, va) (u, v) 7→ (f(u), f(v))

G×G→ G×G G×G→ G

(g, h) 7→ (g−1, h) (g, h) 7→ gh

as shown by the sequence

u 7→ (u, u) 7→ (u, ua) 7→ (f(u), f(ua)) 7→ ((f(u))−1, f(ua)) 7→ (f(u))−1f(ua) = ∆af(u).

Since the pro-p metric is compatible with the monoid structure (see [6, Section 2] or [11,
Section 1.4]), each of these functions is uniformly continuous and so is their composition. J

I Proposition 4.5. Let G be a residually p-finite group. Any sequential product of uniformly
continuous functions from A∗ to G is uniformly continuous for the pro-p metric.

Here is an important consequence of these results.

I Proposition 4.6. Let G be a finite p-group. Every Newton polynomial function f : A∗ → G

is uniformly continuous.



J.-E. Pin and C. Reutenauer 125:11

Proof. We prove the result by induction on the degree d of f . If d 6 0, then f is a constant
function and hence f is uniformly continuous. Otherwise, Proposition 3.3 shows that f is a
sequential product of a family (fa)a∈A of Newton polynomial functions of degree 6 d− 1.
By the induction hypothesis, each fa is uniformly continuous and hence f is uniformly
continuous by Proposition 4.5. J

We now establish the converse of Proposition 4.6.

I Proposition 4.7. Let G be a finite p-group. If a function f : A∗ → G is uniformly
continuous for the pro-p metric, then f is a Newton polynomial function.

Several auxiliary definitions are needed to prove this proposition.
Let Fp be the field with p elements and let Fp[G] be the group algebra of G over Fp. Each

group morphism G1 → G2 extends uniquely, by linearity, to an Fp-algebra morphism from
Fp[G1] to Fp[G2]. Similarly, each function from G to Fp extends uniquely, by linearity, to a
linear form on Fp[G].

The vector space of linear forms on a Fp-algebra R (that is, the dual of R) is a left
R-module: the action is defined, for any elements x, y in R and any linear form f on R by
(x · f)(y) = f(yx).

Sketch of the proof of Proposition 4.7. Let pr be the order of G. We prove the result by
induction on r.

For r = 1, G = Z/pZ and we switch to additive notation. Thus we have to show that
∆wf = 0 for almost all w. Since Z/pZ is the additive group of the field Fp, we may consider
f as a function A∗ → Fp. Since f is uniformly continuous, there exist by Proposition 4.3
a finite p-group H, a monoid morphism ζ : A∗ → H and a function λ : H → Fp such that
f = λ ◦ ζ, see the diagram on the left hand side of the figure below.

We extend by linearity all these functions, as explained previously, and denote these
extensions by the same letters. We obtain the diagram on the right hand side of the figure
below. Now ζ is a morphism of Fp-algebra and f , as well as λ, are Fp-linear forms.

A∗ Fp

H

f

ζ λ

Fp〈A〉 Fp

Fp[H]

f

ζ λ

With these notations, one can first show that

∆wf = ∆a1···anf =
(
(a1 − 1) · · · (an − 1)

)
· f |A∗ . (4.1)

Since f = λ ◦ ζ and ζ
(
(a1 − 1) · · · (an − 1)

)
=
(
ζ(a1)− 1

)
· · ·
(
ζ(an)− 1

)
, a little bit of work

shows that(
(a1 − 1) · · · (an − 1)

)
· f =

((
(ζ(a1)− 1) · · · (ζ(an)− 1)

)
·λ
)
◦ ζ (4.2)

Let IH =
{∑

g∈H agg |
∑
g∈H ag = 0

}
be the augmentation ideal of Fp[H]. It follows from [2,

Proposition VIII.10.4] that if n > |H|, then InH = 0. Since every element ζ(ai)− 1 belongs
to IH , one gets

(
ζ(a1)− 1

)
· · ·
(
ζ(an)− 1

)
∈ InH and hence

(
(ζ(a1)− 1) · · · (ζ(an)− 1)

)
= 0.

Formulas (4.1) and (4.2) now show that ∆wf = 0, which settles the case r = 1.
Suppose now that r > 1 and let f : A∗ → G be a uniformly continuous function for the

pro-p metric. By a standard result of group theory [13, Theorem 6.5, p. 116], G has a normal
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subgroup C of order p. Now the quotient map q : G→ G/C is uniformly continuous and so
is q ◦ f : A∗ → G/C. Since |G/C| = pr−1, the induction hypothesis can be applied: there
exists n such that for any word v in A∗ of length > n, one has ∆v(q ◦ f) = 1.

Since ∆v(q ◦ f) = q ◦ (∆vf) by Proposition 2.2, one has, for |v| > n, q ◦ (∆vf) = 1 and
hence ∆vf maps A∗ into C. Note that ∆vf is uniformly continuous by Proposition 4.4.
Applying the first part of the proof to C, we get the following conclusion: for each v of length
> n, there exists nv such that for each word u of length at least nv, one has ∆u∆vf = 1.
Let N be the maximum of all nv taken over the finitely many v of length n. Then for each
word w of length at least N + n, we may write w = uv, with |v| = n and |u| > N > nv.
Then ∆wf = ∆u∆vf = 1 and thus f is a Newton polynomial function. J

Putting Propositions 4.6 and 4.7 together, we get the main result of this section.

I Theorem 4.8. Let G be a finite p-group. A function f : A∗ → G is uniformly continuous
for the pro-p metric if and only if it is a Newton polynomial function.

5 Proof of the main result

We need two results on families of functions uniformly converging for the pro-p metric.

I Proposition 5.1. Let f : A∗ → F (B) be a function. If the elements δuf , u ∈ A∗, tend to
1 when |u| tends to ∞, then the sequence fn tends uniformly to f .

I Proposition 5.2. A family of functions (gu : A∗ → F (B))u∈A∗ converges uniformly to the
function g : A∗ → F (B) when |u| tends to infinity if and only if, for any finite p-group H
and any morphism ϕ : G→ H, there exists N such that, for all u ∈ A∗ such that |u| > N ,
one has ϕ ◦ gu = ϕ ◦ g.

Proof of Theorem 1.2. The equivalence of (1) and (2) follows from Proposition 4.2. Let us
prove that (2) implies (3). Let f : A∗ → F (B) be uniformly continuous. Let H be any finite
p-group and ϕ be any group morphism F (B)→ H. Since ϕ is uniformly continuous, so is
ϕ ◦ f . By Proposition 4.7, ϕ ◦ f is a Newton polynomial function and hence, for almost all
w ∈ A∗, ∆w(ϕ ◦ f) = 1. Thus, by Proposition 2.2, ϕ ◦ (∆wf) = 1. Thus by Proposition 5.2,
(3) holds.

The implication (4)⇒ (5) follows from Propositions 3.4 and 5.1. Note that (3)⇒ (4) is
clear, and (5) ⇒ (2) follows from general theorems of topology, since, by Proposition 4.6,
Newton polynomial functions are uniformly continuous. J

6 Conclusion and perspectives

By combining topology, algebra, automata and combinatorics on words, we solved the
synthesis problem for Gp in two different ways. Our results are based on a noncommutative
extension of Mahler’s theorem, a difficult mathematical result. In addition, we introduced two
new concepts that would merit further study: the sequential product and Newton polynomial
functions. We used the sequential product to solve the integration problem for a function f
from A∗ to a group G, knowing its initial value f(1) and the functions ∆af for every letter
a. We also proved that Newton’s bijection induces a degree-preserving bijection between
Newton polynomial functions and functions from A∗ to G mapping almost every word to 1,
a surprising combinatorial result.

Although these results offer exciting new perspectives, there is still a long way to go
before one can solve the synthesis problem for regularity preserving functions. Solving the
synthesis problem for other varieties of group languages is the next challenge.
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Abstract
We investigate the star-free closure, which associates to a class of languages its closure under Boolean
operations and marked concatenation. We prove that the star-free closure of any finite class and of any
class of groups languages with decidable separation (plus mild additional properties) has decidable
separation. We actually show decidability of a stronger property, called covering. This generalizes
many results on the subject in a unified framework. A key ingredient is that star-free closure
coincides with another closure operator where Kleene stars are also allowed in restricted contexts.
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1 Introduction

This paper investigates a remarkable operation on classes of languages: the star-free closure.
It builds a new class SF(C) from an input class C by closing it under union, complement and
concatenation. This generalizes an important specific class: the one of star-free languages, i.e.,
the star-free closure of the class consisting of all finite languages. Star-free languages are those
that can be defined in first order logic [12]. The correspondence was lifted to the quantifier
alternation hierarchy of first order logic by Thomas [30], which corresponds to a classification of
star-free languages: the dot-depth hierarchy [4]. These results extend to the star-free
closure [22]. For each input class C, SF(C) corresponds to a variant of first-order logic
(specified by the set of predicates that are allowed). Moreover, its quantifier alternation
hierarchy corresponds to a classification of SF(C): the concatenation hierarchy of basis C.

Schützenberger proved that one may decide whether a regular language is star-free [27].
This result established a framework for investigating and understanding classes of languages,
based on the membership problem: is it decidable to test whether an input regular language
belongs to the class under investigation? Similar results were obtained for other prominent
classes. Yet, this fruitful line of research also includes some of the most famous open problems
in automata theory. For example, only the first levels of the dot-depth hierarchy are known
to have decidable membership (see [14] for a survey).

Recently, these results were unified and generalized. First, the problem itself was
strengthened: membership was replaced by separation as a means to investigate classes. The
separation problem asks whether two input languages can be separated by one from the class
under study. While more general and difficult than membership, separation is also more
flexible. This was exploited to show that separation is decidable for several levels in the
dot-depth hierarchy [19, 17]. In fact, this is a particular instance of a generic result applying
to every hierarchy whose basis C is finite and satisfies some mild properties [18, 21]. Moreover,
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126:2 On All Things Star-Free

the same result was obtained when the basis C is a class of group languages (i.e., recognized
by a finite group) with decidable separation [26]. Altogether, these results generalize most of
the known results regarding the decidability of levels in concatenation hierarchies.

Contributions. This paper is a continuation of these research efforts. Instead of looking
at levels within hierarchies, we investigate the star-free closure as a whole. First, we show
that the star-free closure of a finite class has decidable separation. We then use this result to
establish our main theorem: the star-free closure of a class of group languages with decidable
separation has also decidable separation. In both cases, we actually prove the decidability of
a stronger property called covering. Let us mention some important features of this work.

A first point is that the case of a finite class is important by itself. Foremost, it is a
crucial step for the main result on the star-free closure of classes of group languages. Second,
it yields a new proof that covering is decidable for the star-free languages (this is shown
in [20] or can be derived from [9, 1]). This new proof is simpler and generic. While the
original underlying technique goes back to Wilke [31], the proof has been simplified at several
levels. The main simplification is obtained thanks to an abstract framework, introduced
in [24]. It is based on the central notion of rating map, which is meant to measure the quality
of a separator. For the framework to be relevant, we actually need to generalize separation
to multiple input languages, which leads to the covering problem. Another key difference
is that previously existing proofs (specific to the star-free languages) involve abstracting
words by new letters at some point, which requires a relabeling procedure and a change of
alphabet. Here, we cannot use this approach as the classes we build with star-free closure are
less robust in general. We work with a fixed alphabet, which also makes the proof simpler.

A crucial ingredient in the proof is the notion of prefix code with bounded synchronization
delay. Generalizing a definition of Schützenberger [28] which was also considered by Diekert
and Walter [6, 7], we define a new closure operator that permits Kleene stars on such
languages (this is a semantic property). This yields an operator that happens to coincide
with the star-free closure when applied to the classes that we investigate. It serves as a key
intermediary: in our proofs, we heavily rely on Kleene stars to construct languages. We
therefore present this important step in the body of the paper (Theorem 7). Moreover, its
proof provides yet another characterization of SF(C), which is effective when the class C is
finite (thus generalizing Schützenberger’s membership result). At last regarding membership,
it is worth pointing out that not only do we cover more cases, but also that it is straightforward
to reprove the known algebraic characterizations from our results (see e.g., [3]).

Finally, let us present important applications of our main result applying to input classes
made of group languages. First, one may look at the input class containing all group
languages. Straubing [29] described an algebraic counterpart of the star-free closure of this
class, which was then shown to be recursive by Rhodes and Karnofsky [10]. Altogether, this
implies that membership is decidable for the star-free closure of group languages, as noted by
Margolis and Pin [11]. Here, we are able to generalize this result to separation and covering
as separation is known to be decidable for the group languages [2].

Another important application is the class of languages definable by first-order logic with
modular predicates FO(<,MOD). This class is known to have decidable membership [3].
Moreover, it is the star-free closure of the class consisting of the languages counting the
length of words modulo some number. Since this input class is easily shown to have decidable
separation (see [26] for example), our main theorem applies.

The third application applies to first-order logic endowed with predicates counting the
number of occurrences of a letter before a position modulo some integer. The languages
definable in this logic form the star-free closure of the languages recognized by Abelian groups:
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this follows from a generic correspondence between star-free closure and variants of first-order
logic [22, 13], together with the description of languages recognized by Abelian groups [8].
Our main theorem applies, since the class of Abelian groups has decidable separation [5, 1].

Organization. In Section 2, we recall some useful background. Section 3 presents a generic
characterization of star-free closure. Then, Sections 4 and 5 are devoted to our two main
theorems applying respectively to finite input classes and those made of group languages.
Due to space limitations, several proofs are postponed to the full version of the paper [25].

2 Preliminaries

We fix a finite alphabet A for the whole paper. As usual, A∗ denotes the set of all words
over A, including the empty word ε. For u, v ∈ A∗, we denote by uv the word obtained by
concatenating u and v. A language is a subset of A∗. We lift concatenation to languages: for
K,L ⊆ A∗, we let KL = {uv | u ∈ K and v ∈ L}. Finally, we use Kleene star: if K ⊆ A∗,
K+ denotes the union of all languages Kn for n ≥ 1 and K∗ = K+ ∪ {ε}.

A class of languages is a set of languages. A class C is a Boolean algebra when it is closed
under union, intersection and complement. Moreover, C is quotient-closed if for every L ∈ C
and w ∈ A∗, the languages w−1L

def= {u ∈ A∗ | wu ∈ L} and Lw−1 def= {u ∈ A∗ | uw ∈ L}
belong to C. All classes considered in the paper are quotient-closed Boolean algebras
containing only regular languages (this will be implicit in our statements). These are the
languages that can be equivalently defined by monadic second-order logic, finite automata or
finite monoids. We briefly recall the monoid-based definition below.

We shall often consider finite quotient-closed Boolean algebras. If C is such a class, one
may associate a canonical equivalence ∼C over A∗. For w,w′ ∈ A∗, w ∼C w′ if and only if
w ∈ L⇔ w′ ∈ L for every L ∈ C. Moreover, we write [w]C ∈ A∗/∼C for the ∼C-class of w.
One may then verify that the languages in C are exactly the unions of ∼C-classes. Moreover,
since C is quotient-closed, ∼C is a congruence for word concatenation (see [22] for proofs).

Regular languages. A monoid is a set M endowed with an associative multiplication
(s, t) 7→ s · t (also denoted by st) having a neutral element 1M . An idempotent of a monoid M
is an element e ∈M such that ee = e. It is folklore that for any finite monoid M , there exists
a natural number ω(M) (denoted by ω when M is understood) such that sω is an idempotent
for every s ∈M . Observe that A∗ is a monoid whose multiplication is concatenation (the
neutral element is ε). Thus, we may consider monoid morphisms α : A∗ →M where M is
an arbitrary monoid. Given such a morphism and L ⊆ A∗, we say that L is recognized by α
when there exists a set F ⊆M such that L = α−1(F ). A language L is regular if and only if
it is recognized by a morphism into a finite monoid. Moreover, it is known that there exists
a canonical recognizer of L, which can be computed from any representation of L (such as a
finite automaton): the syntactic morphism of L. We refer the reader to [15] for details.

Group languages. A group is a monoid G in which every element g ∈ G has an inverse
g−1 ∈ G, i.e., gg−1 = g−1g = 1G. A “group language” is a language L recognized by a
morphism into a finite group. All classes of group languages investigated here are quotient-
closed Boolean algebras. Typically, publications on the topic consider varieties of group
languages which is more restrictive: they involve an additional closure property called “inverse
morphic image” (see [13]). For example, the class MOD described below is not a variety.

ICALP 2019



126:4 On All Things Star-Free

I Example 1. A simple example of quotient-closed Boolean algebra of group languages is
the class of all group languages: GR. Another one is MOD, which contains the Boolean
combinations of languages {w ∈ A∗ | |w| = k mod m} with k,m ∈ N such that k < m.

Decision problems. We rely on three decision problems to investigate classes of languages.
Each one depends on a parameter class C, which we fix for the definition. The first problem,
C-membership, takes a single regular language L as input and asks whether L ∈ C.

The second one, C-separation, takes two regular languages L1 and L2 as input and asks
whether L1 is C-separable from L2 (is there a third language K ∈ C such that L1 ⊆ K and
L2 ∩K = ∅). This generalizes membership: L ∈ C if and only if L is C-separable from A∗ \L.

The third problem, C-covering was introduced in [24]. Given a language L, a cover of L is
a finite set of languages K such that L ⊆

⋃
K∈K K. Moreover, a C-cover of L is a cover K of

L such that all K ∈ K belong to C. Consider a pair (L1,L2) where L1 is a language and L2
is a finite set of languages. We say that (L1,L2) is C-coverable when there exists a C-cover K
of L1 such that for every K ∈ K, there exists L ∈ L2 satisfying K ∩ L = ∅. The C-covering
problem takes as input a single regular language L1 and a finite set of regular languages L2.
It asks whether (L1,L2) C-coverable. Covering generalizes separation if C is closed under
union: L1 is C-separable from L2, if and only if (L1, {L2}) is C-coverable (see [24]).

Star-free closure and main results. We investigate an operation defined on classes: star-
free closure. Consider a class C. The star-free closure of C, denoted by SF(C), is the least class
containing C and the singletons {a} for every a ∈ A, and closed under Boolean operations
and concatenation. It is standard and simple to verify that when C is a quotient-closed
Boolean algebra (which will always be the case here), this is also the case for SF(C).

Our main theorems state conditions on the input class C guaranteeing decidability of our
decision problems for SF(C). First, we may handle finite classes.

I Theorem 2. Let C be a finite quotient-closed Boolean algebra. Then, membership, separa-
tion and covering are decidable for SF(C).

The second theorem applies to input classes made of group languages.

I Theorem 3. Let C be a quotient-closed Boolean algebra of group languages with decidable
separation. Then, membership, separation and covering are decidable for SF(C).

The remainder of the paper is devoted to proving these theorems. We first focus on
SF(C)-membership in Section 3. Naturally, this is weaker than directly handling SF(C)-
covering. Yet, detailing membership independently allows to introduce many proof ideas
and techniques that are needed to prove the “full” theorems. We detail these theorems in
Sections 4 and 5. We only present the algorithms: proofs are deferred to the full paper [25].

3 Bounded synchronization delay and algebraic characterization

This section is devoted to SF(C)-membership. We handle it with a generic algebraic
characterization of SF(C) (effective under the hypotheses of Theorems 2 and 3), generalizing
earlier work by Pin, Straubing and Thérien [29, 16]. We rely on an alternate definition of
star-free closure involving a semantic restriction of the Kleene star, which we first present.
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3.1 Bounded synchronization delay
We define a second operation on classes of languages C 7→ SD(C). We shall later prove that
it coincides with star-free closure (provided that C satisfies mild hypotheses). It is based on
the work of Schützenberger [28] who defined a single class SD corresponding to the star-free
languages (i.e., SF({∅, A∗})). Here, we generalize it as an operation. The definition involves
a semantic restriction of the Kleene star operation on languages: it may only be applied
to “prefix codes with bounded synchronization delay”. Introducing this notion requires basic
definitions from coding theory that we first recall.

A language K ⊆ A∗ is a prefix code when ε 6∈ K and K ∩KA+ = ∅ (no word in K has a
strict prefix in K). Note that this implies the following weaker property that we shall use
implicitly: every w ∈ K∗ admits a unique decomposition w = w1 · · ·wn with w1, . . . , wn ∈ K
(this property actually defines codes which are more general).

Given d ≥ 1, a prefix code K ⊆ A+ has synchronization delay d if for every u, v, w ∈ A∗
such that uvw ∈ K+ and v ∈ Kd, we have uv ∈ K+. Finally, a prefix code K ⊆ A+ has
bounded synchronization delay when it has synchronization delay d for some d ≥ 1.

I Example 4. Let A = {a, b}. Clearly, {ab} is a prefix code with synchronization delay 1:
if uvw ∈ (ab)+ and v = ab, we have uv ∈ (ab)+. Similarly, one may verify that (aab)∗ab is
a prefix code with synchronization delay 2 (but not 1). On the other hand, {aa} does not
have bounded synchronization delay. If d ≥ 1, a(aa)da ∈ (aa)∗ but a(aa)d 6∈ (aa)∗.

We present the operation C 7→ SD(C). The definition involves unambiguous concatenation.
Given K,L ⊆ A∗, their concatenation KL is unambiguous when every word w ∈ KL admits
a unique decomposition w = uv with u ∈ K and v ∈ L. Given a class C, SD(C) is the least
class containing ∅ and {a} for every a ∈ A, and closed under the following properties:

Intersection with C: if K ∈ SD(C) and L ∈ C, then K ∩ L ∈ SD(C).
Disjoint union: if K,L ∈ SD(C) are disjoint, then K ] L ∈ SD(C).
Unambiguous product: if K,L ∈ SD(C) and KL is unambiguous, then KL ∈ SD(C).
Kleene star for prefix codes with bounded synchronization delay: if K ∈ SD(C)
is a prefix code with bounded synchronization delay, then K∗ ∈ SD(C).

I Remark 5. Schützenberger proved in [28] that SD({∅, A∗}) = SF({∅, A∗}). His definition
of SD({∅, A∗}) was slightly less restrictive than ours: it does not require that the unions are
disjoint and the concatenations unambiguous. It will be immediate from the correspondence
with star-free closure that the two definitions are equivalent.

I Remark 6. This closure operation is different from standard ones. Instead of requiring that
C ⊆ SD(C), we impose a stronger requirement: intersection with languages in C is allowed. If
we only asked that C ⊆ SD(C), we would get a weaker operation which does not correspond
to star-free closure in general. For example, let A = {a, b} and consider the class MOD
of Example 1. Observe that (aa)∗ ∈ SD(MOD). Indeed, {a} ∈ SD(MOD) has bounded
synchronization delay, (AA)∗ ∈ MOD and (aa)∗ = a∗ ∩ (AA)∗. Yet, one may verify that
(aa)∗ cannot be built from the languages of MOD with union, concatenation and Kleene star
applied to prefix codes with bounded synchronization delay.

3.2 Algebraic characterization of star-free closure
We now reduce deciding membership for SF(C) to computing C-stutters. Let us first define
this new notion. Let C be a quotient-closed Boolean algebra and α : A∗ →M be a morphism.
A C-stutter for α is an element s ∈M such that for every C-cover K of α−1(s), there exists
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K ∈ K satisfying K ∩ KK 6= ∅. When α is understood, we simply speak of a C-stutter.
Finally, we say that α is C-aperiodic when for every C-stutter s ∈ M , we have sω = sω+1.
The reduction is stated in the following theorem.

I Theorem 7. Let C be a quotient-closed Boolean algebra and consider a regular language
L ⊆ A∗. The following properties are equivalent:
1. L ∈ SF(C).
2. L ∈ SD(C).
3. The syntactic morphism of L is C-aperiodic.

Naturally, the characterization need not be effective: this depends on C. Deciding whether
a morphism is C-aperiodic boils down to computing C-stutters. Yet, this is possible under
the hypotheses of Theorems 2 and 3. First, if C is a finite quotient-closed Boolean algebra,
deciding whether an element is a C-stutter is simple: there are finitely many C-covers and
we may check them all. If C is a quotient-closed Boolean algebra of group languages, the
question boils down to C-separation as stated in the next lemma (proved in [25]).

I Lemma 8. Let C be a quotient-closed Boolean algebra of group languages and α : A∗ →M be
a morphism. For all s ∈M , s is a C-stutter if and only if {ε} is not C-separable from α−1(s).

Altogether, we obtain the membership part in Theorems 20 and 25. We conclude the
section with an extended proof sketch for the most interesting direction in Theorem 7: 3)⇒ 2)
(a detailed proof for the two other directions is provided in the full version of this paper [25]).

Proof of 3) ⇒ 2) in Theorem 7. Let C be a quotient-closed Boolean algebra and α : A∗ →
M be a C-aperiodic morphism. We show that all languages recognized by α belong to SD(C).

Given K ⊆ A∗ and s ∈M , we say that K is s-safe when sα(u) = sα(v) for every u, v ∈ K.
We extend this notion to sets of languages: such a set K is s-safe when every K ∈ K is
s-safe. We shall use s as an induction parameter. Finally, given a language P ⊆ A∗, an
SD(C)-partition of P is a finite partition of P into languages of SD(C).

I Proposition 9. Let P ⊆ A+ be a prefix code with bounded synchronization delay. Assume
that there exists a 1M -safe SD(C)-partition of P . Then, for every s ∈ M , there exists an
s-safe SD(C)-partition of P ∗.

We first apply Proposition 9 to conclude the main argument. We show that every language
recognized by α belongs to SD(C). By definition, SD(C) is closed under disjoint union. Hence,
it suffices to show that α−1(t) ∈ SD(C) for every t ∈M . We fix t ∈M for the proof.

Clearly, A ⊆ A+ is a prefix code with bounded synchronization delay and {{a} | a ∈ A}
is a 1M -safe SD(C)-partition of A. Hence, Proposition 9 (applied in the case s = 1M ) yields
a 1M -safe SD(C)-partition K of A∗. One may verify that α−1(t) is the disjoint union of all
K ∈ K intersecting α−1(t). Hence, α−1(t) ∈ SD(C) which concludes the main argument.

It remains to prove Proposition 9. We let P ⊆ A∗ be a prefix code with bounded
synchronization delay, H a 1M -safe SD(C)-partition of P and s ∈M . We need to build an
SD(C)-partition K of P ∗ such that every K ∈ K is s-safe. We proceed by induction on the
three following parameters listed by order of importance: (1) the size of α(P+) ⊆ M , (2)
the size of H and (3) the size of s · α(P ∗) ⊆M . We distinguish two cases depending on the
following property of s and H. We say that s is H-stable when the following holds:

for every H ∈ H, s · α(P ∗) = s · α(P ∗H). (1)

The base case happens when s is H-stable. Otherwise, we use induction on our parameters.
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Base case: s is H-stable. Since α is C-aperiodic, we have the following simple fact.

I Fact 10. There is a finite quotient-closed Boolean algebra D ⊆ C such that α is D-aperiodic.

Since D is finite, we may consider the associated canonical equivalence ∼D over A∗. We
let K = {P ∗ ∩D | D ∈ A∗/∼D}. Clearly, K is a partition of P ∗. Let us verify that it only
contains languages in SD(C). We have P ∈ SD(C): it is the disjoint union of all languages in
the SD(C)-partition H of P . Moreover, P ∗ ∈ SD(C) since P is a prefix code with bounded
synchronization delay. Hence, P ∗ ∩ D ∈ SD(C) for every D ∈ A∗/∼D since D ∈ D ⊆ C.
Therefore, it remains to show that every language K ∈ K is s-safe. This is a consequence of
the following lemma which is proved using the hypothesis (1) that s is H-stable.

I Lemma 11. For every u, v ∈ P ∗ such that u ∼D v, we have sα(u) = sα(v).

Inductive step: s is not H-stable. By hypothesis, we know that (1) does not hold. There-
fore, we get some H ∈ H such that the following strict inclusion holds,

s · α(P ∗H) ( s · α(P ∗). (2)

We fix this language H ∈ H for the remainder of the proof. The following lemma is proved
by induction on our second parameter (the size of H).

I Lemma 12. There exists a 1M -safe SD(C)-partition U of (P \H)∗.

We fix the partition U of (P \H)∗ given by Lemma 12 and distinguish two independent sub-
cases. Since H ⊆ P (as H is an element of the partition H of P ), we have α(P ∗H) ⊆ α(P+).
We use a different argument depending on whether this inclusion is strict or not.

Sub-case 1: α(P ∗H) = α(P+). Since H is 1M -safe by hypothesis, there exists t ∈
M such that α(H) = {t}. Similarly, since every U ∈ U is 1M -safe, there exists rU ∈ M
such that α(U) = {rU}. The construction of K is based on the next lemma which is proved
using (2), the hypothesis of Sub-case 1 and induction on our third parameter (the size of
s · α(P ∗) ⊆M).

I Lemma 13. For every U ∈ U, there exists an srU t-safe SD(C)-partition WU of P ∗.

We are ready to define the partition K of P ∗. Using Lemma 13, we define,

K = U ∪
⋃
U∈U

{UHW |W ∈WU}

It remains to show that K is an s-safe SD(C)-partition of P ∗. First, K is a partition
of P ∗ since P is a prefix code and H ⊆ P . Indeed, every word w ∈ P ∗ admits a unique
decomposition w = w1 · · ·wn with w1, . . . , wn ∈ P . If no factor wi belongs to H, then
w ∈ (P \ H)∗ and w belongs to some unique U ∈ U. Otherwise, let wi be the leftmost
factor such that wi ∈ H. Thus, w1 · · ·wi−1 ∈ (P \H)∗, which also yields a unique U ∈ U
such that w1 · · ·wi−1 ∈ U and wi+1 · · ·wn ∈ P ∗ which yields a unique W ∈WU such that
wi+1 · · ·wn ∈W . Thus, w ∈ UHW which is an element of K (the only one containing w).

Moreover, every K ∈ K belongs to SD(C). If K ∈ U, this is immediate by definition
of U in Lemma 12. Otherwise, K = UHW with U ∈ U and W ∈ WU . We know that
U,H,W ∈ SD(C) by definition. Moreover, one may verify that the concatenation UHW is
unambiguous since P is a prefix code, U ⊆ (P \H)∗ and W ⊆ H∗. Hence, K ∈ SD(C).
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Finally, we verify that K is s-safe. Consider K ∈ K and w,w′ ∈ K, we show that
sα(w) = sα(w′). If K ∈ U, this is immediate: U is 1M -safe by definition. Otherwise,
K = UHW with U ∈ U and W ∈WU . By definition, α(H) = {t} and α(U) = {rU} which
implies that sα(w) = srU tα(x) and sα(w′) = srU tα(x′) for x, x′ ∈W . Moreover, W ∈WU

is srU t-safe by definition. Hence, sα(w) = sα(w′), which concludes the proof of this sub-case.

Sub-case 2: α(P ∗H) ( α(P+). Consider w ∈ P ∗. Since P is a prefix code, w admits a
unique decomposition w = w1 · · ·wn with w1, . . . , wn ∈ P . We may look at the rightmost
factor wi ∈ H ⊆ P to uniquely decompose w in two parts (each of them possibly empty): the
prefix w1 · · ·wi ∈ ((P \H)∗H)∗ and the suffix in wi+1 · · ·wn ∈ (P \H)∗. Using induction, we
construct SD(C)-partitions of the possible languages of prefixes and suffixes. Then, we
combine them to construct a partition of the whole set P ∗. We already handled the suffixes:
U is an SD(C)-partition of (P \ H)∗. The prefixes are handled using the hypothesis of
Sub-case 2 and induction on our first parameter (the size of α(P+)).

I Lemma 14. There exists a 1M -safe SD(C)-partition V of ((P \H)∗H)∗.

Using Lemma 14, we define K = {V U | V ∈ V and U ∈ U}. It follows from the above
discussion that K is a partition of P ∗ since V and U are partitions of ((P \H)∗H)∗ and
(P \H)∗, respectively. Moreover, every K ∈ K belongs to SD(C): K = V U with V ∈ V and
U ∈ U, and one may verify that this is an unambiguous concatenation. It remains to show
that K is s-safe. Let K ∈ K and w,w′ ∈ K. We show that sα(w) = sα(w′). By definition,
we have K = V U with V ∈ V and U ∈ U. Therefore, w = vu and w′ = v′u′ with u, u′ ∈ U
and v, v′ ∈ V . Since U and V are both 1M -safe by definition, we have α(u) = α(u′) and
α(v) = α(v′). It follows that sα(w) = sα(w′), which concludes the proof of Proposition 9. J

4 Covering when the input class is finite

This section is devoted to Theorem 2. We show that when C is a finite quotient-closed Boolean
algebra, SF(C)-covering is decidable by presenting a generic algorithm. It is formulated
within a framework designed to handle covering questions, which was originally introduced
in [24]. We start by briefly recalling it (we refer the reader to [24] for details).

4.1 Rating maps and optimal imprints
The framework is based on an algebraic object called “rating map”. These are morphisms of
commutative and idempotent monoids. We write such monoids (R,+): the binary operation
“+” is called addition and the neutral element is denoted by 0R. Being idempotent means
that r + r = r for every r ∈ R. For every commutative and idempotent monoid (R,+), one
may define a canonical ordering ≤ over R: for r, s ∈ R, we have r ≤ s when r + s = s. One
may verify that ≤ is a partial order which is compatible with addition.

I Example 15. For every set E, (2E ,∪) is an idempotent and commutative monoid. The
neutral element is ∅ and the canonical ordering is inclusion.

A rating map is a morphism ρ : (2A∗
,∪)→ (R,+) where (R,+) is a finite idempotent

and commutative monoid, called the rating set of ρ. That is, ρ is a map from 2A∗ to R such
that ρ(∅) = 0R and ρ(K1 ∪K2) = ρ(K1) + ρ(K2) for every K1,K2 ⊆ A∗.
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For the sake of improved readability, when applying a rating map ρ to a singleton set
{w}, we write ρ(w) for ρ({w}). Moreover, we write ρ∗ : A∗ → R for the restriction of ρ to
A∗: for every w ∈ A∗, we have ρ∗(w) = ρ(w) (this notation is useful when referring to the
language ρ−1

∗ (r) ⊆ A∗, which consists of all words w ∈ A∗ such that ρ(w) = r).
Most of the theory makes sense for arbitrary rating maps. However, we shall often have

to work with special rating maps satisfying additional properties. We define two kinds.

Nice rating maps. A rating map ρ : 2A∗ → R is nice when, for every nonempty language
K ⊆ A∗, there exist finitely many words w1, . . . , wn ∈ K such that ρ(K) = ρ(w1)+· · ·+ρ(wk).

When a rating map ρ : 2A∗ → R is nice, it is characterized by the canonical map
ρ∗ : A∗ → R. Indeed, for K ⊆ A∗, we may consider the sum of all elements ρ(w) for w ∈ K:
while it may be infinite, this sum boils down to a finite one since R is commutative and
idempotent. The hypothesis that ρ is nice implies that ρ(K) is equal to this sum.

Multiplicative rating maps. A rating map ρ : 2A∗ → R is multiplicative when its rating set
R has more structure: it needs to be an idempotent semiring. A semiring is a tuple (R,+, ·)
where R is a set and “+” and “·” are two binary operations called addition and multiplication.
Moreover, (R,+) is a commutative monoid, (R, ·) is a monoid (the neutral element is denoted
by 1R), the multiplication distributes over addition and the neutral element “0R” of (R,+)
is a zero for (R, ·) (0R · r = r · 0R = 0R for every r ∈ R). A semiring R is idempotent when
r + r = r for every r ∈ R, i.e., when the additive monoid (R,+) is idempotent (there is no
additional constraint on the multiplicative monoid (R, ·)).

I Example 16. A key example of an infinite idempotent semiring is the set 2A∗ . Union is
the addition and language concatenation is the multiplication (with {ε} as neutral element).

Let ρ : 2A∗ → R be a rating map: (R,+) is an idempotent commutative monoid and ρ is
a morphism from (2A∗

,∪) to (R,+). We say that ρ is multiplicative when the rating set R is
equipped with a multiplication “·” such that (R,+, ·) is an idempotent semiring and ρ is also
a monoid morphism from (2A∗

, ·) to (R, ·). That is, the two following additional axioms have
to be satisfied: ρ(ε) = 1R and ρ(K1K2) = ρ(K1) · ρ(K2) for every K1,K2 ⊆ A∗.
I Remark 17. Rating maps which are both nice and multiplicative are finitely representable.
As we explained, if ρ : 2A∗ → R is nice, it is characterized by the canonical map ρ∗ : A∗ → R.
When ρ is also multiplicative, ρ∗ is finitely representable: it is a morphism into a finite
monoid. Hence, we may speak of algorithms whose input is a nice multiplicative rating map.

Rating maps which are not nice and multiplicative cannot be finitely represented in
general. Yet, they are crucial: while our main statements consider nice multiplicative rating
maps, many proofs involve auxiliary rating maps which are neither nice nor multiplicative.

Optimal imprints. Now that we have rating maps, we turn to imprints. Consider a rating
map ρ : 2A∗ → R. Given any finite set of languages K, we define the ρ-imprint of K.
Intuitively, when K is a cover of some language L, this object measures the “quality” of K.
The ρ-imprint of K is the following subset of R:

I[ρ](K) = {r | r ≤ ρ(K) for some K ∈ K}.

We may now define optimality. Consider an arbitrary rating map ρ : 2A∗ → R and a Boolean
algebra C. Given a language L, an optimal C-cover of L for ρ is a C-cover K of L which
satisfies the following property:

I[ρ](K) ⊆ I[ρ](K′) for every C-cover K′ of L.
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In general, there can be infinitely many optimal C-covers for a given rating map ρ. It is
shown in [24] that there always exists at least one (using closure under intersection for C).

Clearly, for a Boolean algebra C, a language L and a rating map ρ, all optimal C-covers
of L for ρ have the same ρ-imprint. Hence, this unique ρ-imprint is a canonical object for C,
L and ρ. We call it the C-optimal ρ-imprint on L and we write it IC [L, ρ]:

IC [L, ρ] = I[ρ](K) for any optimal C-cover K of L for ρ.

We complete the definition with a simple useful fact (a proof is available in [23]).

I Fact 18. Let C be a Boolean algebra, ρ : 2A∗ → R a rating map and L1, L2 ⊆ A∗. Then,
IC [L1, ρ] ∪ IC [L2, ρ] = IC [L1 ∪ L2, ρ].

Connection with covering. Consider the special case when the language L that needs to
be covered is A∗. In that case, we write IC [ρ] for IC [A∗, ρ]. It is shown in [24] that for every
Boolean algebra C, deciding C-covering formally reduces to computing C-optimal imprints
from input nice multiplicative rating maps.

I Proposition 19. Let C be a Boolean algebra. Assume that there exists an algorithm which
computes IC [ρ] from an input nice multiplicative rating map ρ. Then, C-covering is decidable.

4.2 Algorithm
We may now present our algorithm for SF(C)-covering when C is a finite quotient-closed
Boolean algebra. We fix C for the presentation. In view of Proposition 19, we need to prove
that one may compute ISF(C) [ρ] from an input nice multiplicative rating map ρ.

Our algorithm actually computes slightly more information. Since C is a finite quotient-
closed Boolean algebra, we may consider the equivalence ∼C over A∗. In particular, the set
A∗/∼C of ∼C-classes is a finite monoid (we write “•” for its multiplication) and the map
w 7→ [w]C is a morphism. Given a rating map ρ : 2A∗ → R we define:

PCSF(C)[ρ] = {(C, r) ∈ (A∗/∼C)×R | r ∈ ISF(C) [C, ρ]}

Observe that PCSF(C)[ρ] captures more information than ISF(C) [ρ]. Indeed, it encodes all sets
ISF(C) [C, ρ] for C ∈ A∗/∼C and by Fact 18, ISF(C) [ρ] is the union of all these sets.

Our main result is a least fixpoint procedure for computing PCSF(C)[ρ] from a nice multiplic-
ative rating map ρ. It is based on a generic characterization theorem which we first present.
Given an arbitrary nice multiplicative rating map ρ : 2A∗ → R and a set S ⊆ (A∗/∼C)×R,
we say that S is SF(C)-saturated for ρ when the following properties are satisfied:
1. Trivial elements. For every w ∈ A∗, we have ([w]C , ρ(w)) ∈ S.
2. Downset. For every (C, r) ∈ S and q ∈ R, if q ≤ r, then (C, q) ∈ S.
3. Multiplication. For every (C, q), (D, r) ∈ S, we have (C • D, qr) ∈ S.
4. SF(C)-closure. For all (E, r) ∈ S, if E ∈ A∗/∼C is idempotent, then (E, rω+rω+1) ∈ S.

I Theorem 20 (SF(C)-optimal imprints (C finite)). Let ρ : 2A∗ → R be a nice multiplicative
rating map. Then, PCSF(C)[ρ] is the least SF(C)-saturated subset of (A∗/∼C)×R for ρ.

Given a nice multiplicative rating map ρ : 2A∗ → R as input, it is clear that one may
compute the least SF(C)-saturated subset of (A∗/∼C)×R with a least fixpoint procedure.
Hence, Theorem 20 provides an algorithm for computing PCSF(C)[ρ]. As we explained above,
we may then compute ISF(C) [ρ] from this set. Together with Proposition 19, this yields
Theorem 2 as a corollary: SF(C)-covering is decidable when C is a finite quotient-closed
Boolean algebra. Theorem 20 is proved in the full version of this paper [25].
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5 Covering when the input class is made of group languages

This section is devoted to Theorem 3. We show that when C is a quotient-closed Boolean
algebra of group languages with decidable separation, SF(C)-covering is decidable.

As in Section 4, we rely on Proposition 19: we present an algorithm computing ISF(C) [ρ]
from an input nice multiplicative rating map ρ. We do not work with ISF(C) [ρ] itself but with
another set carrying more information. Its definition requires introducing a few additional
concepts. We first present them and then turn to the algorithm. For more details, see [26].

5.1 Preliminary definitions

Optimal ε-approximations. In this case, handling SF(C) involves considering C-optimal
covers of {ε}. Since {ε} is a singleton, there always exists such a cover consisting of a single
language, which leads to the following definition.

Let C be a Boolean algebra (we shall use the case when C contains only group languages
but this is not required for the definitions) and τ : 2A∗ → Q a rating map. A C-optimal
ε-approximation for τ is a language L ∈ C such that ε ∈ L and τ(L) ≤ τ(L′) for every L′ ∈ C
satisfying ε ∈ L′. As expected, there always exists a C-optimal ε-approximation for any
rating map τ (see the full version of this paper [25] for a proof).

By definition, all C-optimal ε-approximations for τ have the same image under τ . We
write it iC [τ ] ∈ Q: iC [τ ] = τ(L) for every C-optimal ε-approximation L for τ . It turns out that
when τ is nice and multiplicative, computing iC [τ ] from τ boils down to C-separation. This
is important: this is exactly how our algorithm for SF(C)-covering depends on C-separation.

I Lemma 21. Let τ : 2A∗ → Q be a nice rating map and C a Boolean algebra. Then, iC [τ ]
is the sum of all q ∈ Q such that {ε} is not C-separable from τ−1

∗ (q).

Nested rating maps. We want an algorithm which computes ISF(C) [ρ] from an input nice
multiplicative rating map ρ for a fixed quotient-closed Boolean algebra of group languages C.
Yet, we shall not use optimal ε-approximations with this input rating map ρ. Instead, we
consider an auxiliary rating map built from ρ (the definition is taken from [23]).

Consider a Boolean algebra D (we shall use the case D = SF(C)) and a rating map
ρ : 2A∗ → R. We build a new map ξD[ρ] : 2A∗ → 2R whose rating set is (2R,∪). For every
K ⊆ A∗, we define ξD[ρ](K) = ID [K, ρ] ∈ 2R. It follows from Fact 18 that this is indeed a
rating map (on the other hand ξD[ρ] need not be nice nor multiplicative, see [23] for details).

We may now explain which set is computed by our algorithm instead of ISF(C) [ρ]. Consider
a nice multiplicative rating map ρ : 2A∗ → R. Since ξSF(C)[ρ] : 2A∗ → 2R is a rating map,
we may consider the element iC[ξSF(C)[ρ]] ∈ 2R. By definition, iC[ξSF(C)[ρ]] = ξSF(C)[ρ](L)
where L is a C-optimal ε-approximation for ξSF(C)[ρ]. Therefore, iC [ξSF(C)[ρ]] is a subset of
ξSF(C)[ρ](A∗) = ISF(C) [A∗, ρ] = ISF(C) [ρ]. When C is a quotient-closed Boolean algebra of
group languages, one may compute the whole set ISF(C) [ρ] from this subset.

I Proposition 22. Let C be a quotient-closed Boolean algebra of group languages and ρ :
2A∗ → R a nice multiplicative rating map. Then, ISF(C) [ρ] is the least subset of R containing
iC [ξSF(C)[ρ]] and satisfying the three following properties:

Trivial elements. For every w ∈ A, ρ(w) ∈ ISF(C) [ρ].
Downset. For every r ∈ ISF(C) [ρ] and q ≤ r, we have q ∈ ISF(C) [ρ].
Multiplication. For every q, r ∈ ISF(C) [ρ], we have qr ∈ ISF(C) [ρ].
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I Remark 23. Intuitively, we use iC [ξSF(C)[ρ]] to “nest” two optimizations: one for C and the
other for SF(C). Indeed, iC [ξSF(C)[ρ]] = ξSF(C)[ρ](L) = ISF(C) [L, ρ] where L is a C-optimal
ε-approximation for ξSF(C)[ρ]. Hence, iC [ξSF(C)[ρ]] is least set I[ρ](K) ⊆ R (with respect to
inclusion), over all SF(C)-covers K of some language L ∈ C containing ε.

5.2 Algorithm
We may now present our algorithm for computing ISF(C) [ρ]. We fix a quotient-closed Boolean
algebra of group languages C for the presentation. As expected, the main procedure computes
iC[ξSF(C)[ρ]] (see Proposition 22). In this case as well, this procedure is obtained from a
characterization theorem.

Consider a nice multiplicative rating map ρ : 2A∗ → R. We define the SF(C)-complete
subsets of R for ρ. The definition depends on auxiliary nice multiplicative rating maps.
We first present them. Clearly, 2R is an idempotent semiring (addition is union and the
multiplication is lifted from the one of R). For every S ⊆ R, we use it as the rating
set of a nice multiplicative rating map ηρ,S : 2A∗ → 2R. Since we are defining a nice
multiplicative rating map, it suffices to specify the evaluation of letters. For a ∈ A, we let
ηρ,S(a) = S · {ρ(a)} · S ∈ 2R. Observe that by definition, we have iC [ηρ,S ] ⊆ R.

We are ready to define the SF(C)-complete subsets of R. Consider S ⊆ R. We say that
S is SF(C)-complete for ρ when the following conditions are satisfied:
1. Downset. For every r ∈ S and q ≤ r, we have q ∈ S.
2. Multiplication. For every q, r ∈ S, we have qr ∈ S.
3. C-operation. We have iC [ηρ,S ] ⊆ S.
4. SF(C)-closure. For every r ∈ S, we have rω + rω+1 ∈ S.

I Remark 24. The definition of SF(C)-complete subsets does not explicitly require that
they contain some trivial elements. Yet, this is implied by C-operation. Indeed, if S ⊆ R is
SF(C)-complete, then ηρ,S(ε) = {1R} (this is the multiplicative neutral element of 2R). This
implies that 1R ∈ iC [ηρ,S ] and we obtain from C-operation that 1R ∈ S.

I Theorem 25 (SF(C)-optimal imprints (C made of group languages)). Let ρ : 2A∗ → R be a
nice multiplicative rating map. Then, iC [ξSF(C)[ρ]] is the least SF(C)-complete subset of R.

When C-separation is decidable, Theorem 25 yields a least fixpoint procedure for com-
puting iC[ξSF(C)[ρ]] from a nice multiplicative rating map ρ : 2A∗ → R. The computation
starts from the empty set and saturates it with the four operations in the definition of
SF(C)-complete subsets. It is clear that we may implement downset, multiplication and
SF(C)-closure. Moreover, we may implement C-operation as this boils down to C-separation
by Lemma 21. Eventually, the computation reaches a fixpoint and it is straightforward to
verify that this set is the least SF(C)-complete subset of R, i.e., iC [ξSF(C)[ρ]] by Theorem 25.

By Proposition 22, we may compute ISF(C) [ρ] from iC [ξSF(C)[ρ]]. Altogether, this yields
the decidability of SF(C)-covering by Proposition 19. Hence, Theorem 3 is proved.

6 Conclusion

We proved that for any quotient-closed Boolean algebra C, SF(C)-covering is decidable
whenever C is either finite or made of group languages and with decidable separation.
Moreover, we presented an algebraic characterization of SF(C) which holds for every quotient-
closed Boolean algebra C, generalizing earlier results [29, 16]. A key proof ingredient is an
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alternative definition of star-free closure: the operation C 7→ SD(C) which we prove to be
equivalent. This correspondence generalizes the work of Schützenberger [28] who introduced a
single class SD (i.e. SD({∅, A∗})) corresponding to the star-free languages (i.e. SF({∅, A∗})).

Our results can be instantiated for several input classes C. Theorem 2 applies when C is
finite. In this case, the only prominent application is the class of star-free languages itself. It
was already known that covering is decidable for this class [9, 20]. However, Theorem 2 is
important for two reasons. First, its proof is actually simpler than the earlier ones specific
to the star-free languages (this is achieved by relying on the operation C 7→ SD(C)). More
importantly, Theorem 2 is used as a key ingredient for proving our second generic statement:
Theorem 3, which applies to classes made of group languages with decidable separation. It is
known that separation is decidable for the class GR of all group languages [2]. Hence, we
obtain that SF(GR)-covering is decidable. Another application is the class MOD consisting
of languages counting the length of words modulo some number (deciding MOD-separation
is a simple exercise). We get the decidability of SF(MOD)-covering. This is important, as
the languages in SF(MOD) are those definable in first-order logic with modular predicates
(FO(<,MOD)). A last example is given by the input class consisting of all languages counting
the number of occurrences of letters modulo some number. These are exactly the languages
recognized by finite commutative groups, for which separation is decidable [5].
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Abstract
Every nondeterministic finite-state automaton is equivalent to a deterministic finite-state automaton.
This result does not extend to finite-state transducers – finite-state automata equipped with a
one-way output tape. There is a strict hierarchy of functions accepted by one-way deterministic
finite-state transducers (1DFTs), one-way nondeterministic finite-state transducers (1NFTs), and
two-way nondeterministic finite-state transducers (2NFTs), whereas the two-way deterministic
finite-state transducers (2DFTs) accept the same family of functions as their nondeterministic
counterparts (2NFTs).

We define multi-head one-way deterministic finite-state transducers (mh-1DFTs) as a natural ex-
tension of 1DFTs. These transducers have multiple one-way reading heads that move asynchronously
over the input word. Our main result is that mh-1DFTs can deterministically express any function
defined by a one-way nondeterministic finite-state transducer. Of independent interest, we formulate
the all-suffix regular matching problem, which is the problem of deciding for each suffix of an input
word whether it belongs to a regular language. As part of our proof, we show that an mh-1DFT can
solve all-suffix regular matching, which has applications, e.g., in runtime verification.
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1 Introduction

Finite-state automata (FAs) are a fundamental model of computation. In its simplest form,
a finite-state automaton reads an input word once, from left to right, while updating its
state deterministically. FAs accept the regular languages. It is well-known that neither
allowing the reading head to move in both directions on the input word nor updating the
state nondeterministically extends their expressiveness beyond the regular languages.

A generalization of the finite-state automata are finite-state transducers (FTs). FTs
extend a finite-state automaton with an output tape and each transition also outputs a
(possibly empty) sequence of symbols from an output alphabet. The language accepted
by a finite-state transducer is a relation (transduction) between input and output words.
A finite-state transducer is functional (f -FT) if the relation represents a function. Any
deterministic finite-state transducer is functional (hence, we just write DFT instead of
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L(1DFA) = L(1NFA) ( L(mh-1DFA)

=

L(2DFA) = L(2NFA)

L(1DFT) ( L(f -1NFT) ( L(mh-1DFT)(

L(2DFT) = L(f -2NFT)

Figure 1 The language hierarchy accepted by models of automata (left) and transducers (right).

f -DFT). For transducers, nondeterminism makes a difference: adding nondeterminism
extends the expressiveness of a finite-state transducer to nonfunctional relations. One can
also classify finite-state transducers as one-way or two-way (1FTs or 2FTs) depending on
whether the reading head can only move forwards or in both directions on the input word.

Another generalization of finite-state automata adds multiple reading heads that move
asynchronously over the input word (see, e.g., [6] for a survey). This results in an expressive
computational model with problems like emptiness, finiteness, and equivalence not being
semi-decidable already for two reading heads [6]. Multi-head finite-state automata induce a
strict hierarchy of languages when increasing the number of reading heads [10]. The problem
of simulating two-head one-way nondeterministic finite-state automata by multi-head two-way
deterministic finite-state automata is equivalent to the L ?= NL problem [9].

We combine the previous two generalizations to the notion of multi-head finite-state trans-
ducers (Section 2). We show that multi-head one-way deterministic finite-state transducers
(mh-1DFTs) can simulate any functional one-way nondeterministic finite-state transducer
(f -1NFT), and thereby establish inclusion between the classes of languages accepted by these
models. Central to our proof is the ability of an mh-1DFT to decide for each suffix of an
input word whether it belongs to a regular language (Section 3); we call this transduction
all-suffix regular matching. Computing this transduction allows us to deterministically find
an accepting computation of the nondeterministic transducer, whenever it exists (Section 4).

Figure 1 shows how our contributions, the transducer model and the proper inclusion of
language classes, highlighted in gray, fit into the landscape of other well-studied language
classes. We discuss the remaining inclusions in Section 5.

Preliminaries. Let I be the set of all finite intervals over the positive integers. We denote
an interval I ∈ I by [a..b] = {x | a ≤ x ≤ b}. We define [a..b) := ∅, if a ≥ b, and
[a..b) := [a..(b− 1)], if a < b. Moreover, we write [k] for [1..k]. Given a finite alphabet Σ, we
denote the set of all finite words over Σ by Σ∗, the empty word by ε, and the length of a
word w ∈ Σ∗ by |w|. Given a tuple of positions ps ∈ [|w|]|ps| of length |ps|, w[ps] denotes
w[ps1]w[ps2] . . . w[ps|ps|], i.e., the word consisting of symbols from w at the positions ps.

A one-way deterministic finite-state automaton (1DFA) is a tuple A = (Σ, Q, qs, QF , δ),
where Σ is the input alphabet, Q is a finite set of states, qs ∈ Q is the initial state, QF ⊆ Q
is the set of accepting states, and δ : Q× Σ→ Q is the transition function. We extend the
function δ to δ∗ : Q× Σ∗ → Q in the natural way. A one-way nondeterministic finite-state
automaton (1NFA) is obtained by replacing the transition function in the definition of a
1DFA by a transition relation δ ⊆ Q× Σ×Q.

A one-way nondeterministic finite-state transducer (1NFT) is derived from an underlying
1NFA by extending its transition relation with output words over an output alphabet Γ,
i.e., the transition relation becomes δ ⊆ Q × Σ × Q × Γ∗. We extend the relation δ to
δ∗ ⊆ Q×Σ∗×Q×Γ∗ in the natural way. A 1NFT is functional if the transduction it defines
is a function.

I Example 1. Figure 2a shows a f -1NFT computing the function f that maps a non-empty
binary word w to 0|w|, if w ends with a zero, and 1|w|, otherwise. In the first step, the
transducer guesses the last symbol and moves to a state qi,j , where i is the guess and j is
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(a) The f -1NFT from Example 1. A
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(⊣, b), 1, (0, 1)
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(⊣,⊣), ǫ, (0, 0)

(b) The mh-1DFT from Example 3. A transition labeled by
(s1, s2), o, (m1,m2) represents a transition when reading the sym-
bols (s1, s2), producing the output o, and advancing the reading
heads by the offsets (m1,m2). Here, b ∈ {0, 1}.

Figure 2 The transducers from Examples 1 and 3.

the current (i.e., first) symbol. In the subsequent steps, the transducer updates the current
state based on the current symbol. In each transition, the transducer outputs its original
guess. Finally, the transducer accepts if the last symbol equals its guess.

2 Multi-Head One-Way Deterministic Finite-State Transducer

We define multi-head one-way deterministic finite-state transducers (mh-1DFTs) by adapting
the definition of multi-head two-way finite-state automata [6] to multi-head one-way deter-
ministic finite-state automata and extending the transition function with output symbols.

The following definition of an mh-1DFT formalizes a transition on a non-final state that
reads a κ-tuple of symbols, enters a new state, produces some output, and advances some
of the reading heads. We use a special symbol a to mark the end of the input tape, on
the right-hand side. We further impose two conditions on the transition function. First,
no reading head moves out of the input tape. Second, some reading head advances at each
transition except when the new state is accepting. Without loss of generality, the transition
relation δ forbids ε-transitions to non-final states. Hence, an mh-1DFT can only reject an
input word by permitting no further transition. If δ is total, then no input word is rejected
and the transduction is a total function.

I Definition 2. A multi-head one-way deterministic finite-state transducer (mh-1DFT) is
a tuple A = (Σ,a,Γ, κ,Q, qs, QF , δ), where Σ is an input alphabet, a 6∈ Σ is the right
endmarker, Γ is an output alphabet, κ is the number of reading heads, Q is a finite
set of states, qs ∈ Q is the initial state, QF ⊆ Q is a set of accepting states, and
δ : (Q \QF )× (Σ ∪ {a})κ → Q× Γ∗ × {0, 1}κ is the partial transition function such that:

δ(q, es) = (q′, õ,ms) and esi = a, for any i ∈ [κ], implies that msi = 0, and
δ(q, es) = (q′, õ,~0) implies that q′ ∈ QF .

A configuration of an mh-1DFT A = (Σ,a,Γ, κ,Q, qs, QF , δ) is a tuple c = (w, o, q, ps) ∈
CA, where w ∈ Σ∗ is the input word, o ∈ Γ∗ is the output word produced by A so far,
q ∈ Q is the current state, and ps ∈ [|w| + 1]κ are the positions of the κ reading heads
on the input tape. A configuration is accepting if q ∈ QF . A step sA is a relation on
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CA such that ((w, o, q, ps), (w′, o′, q′, ps′)) ∈ sA if and only if w = w′, o′ = o · õ, for some
õ ∈ Γ∗, and δ(q, w[ps]) = (q′, õ, ps′ − ps). A computation of an mh-1DFT A on a word w is a
maximal finite sequence of configurations c1, c2, . . . , cl that starts with the initial configuration
c1 = (w, ε, qs,~1) and in which all pairs of consecutive configurations are contained in the
step relation sA. (The finiteness is given because ps′ − ps 6= ~0 except when q′ ∈ QF by
Definition 2.) A computation is accepting if its last configuration cl is accepting. Otherwise,
it is rejecting.

We say that an mh-1DFT A accepts a language L ⊆ Σ∗ × Γ∗ if the computation on an
input word w producing some output o satisfies (w, o) ∈ L if and only if it is accepting. One
can also view a language L ⊆ Σ∗ × Γ∗ accepted by an mh-1DFT A as a function f : X → Γ∗,
where X is the set of all input words w such that (w, o) ∈ L for some (unique) output o
and f(w) = o.

I Example 3. Figure 2b shows a two-head mh-1DFT computing the function f from
Example 1. Initially, the first reading head reads the entire input word to determine the
last symbol. Subsequently, the second reading head outputs the last symbol for each input
symbol it reads. Once the second reading head has arrived at the right endmarker a, the
mh-1DFT accepts without advancing any reading head. The empty word ε is not mapped to
any output as there is no transition from the initial state qs when reading (a,a).

3 All Suffix Regular Matching

All-suffix regular matching is the problem of deciding for each suffix of an input word whether
it belongs to a regular language. More formally, for a regular language L, we define a function
tL : Σ∗ → {0, 1}∗ that maps a word w to a binary word tL(w) of length |w|+ 1 such that,
for any 1 ≤ i ≤ |w|+ 1, tL(w)[i] = 1 if and only if the suffix w[i..|w|] is in the language L.
The last symbol in tL(w) denotes whether the empty word ε is in the language L.

We show that, for any regular language L, all-suffix regular matching can be solved by
an mh-1DFT, i.e., there exists an mh-1DFT computing the function tL. This construction is
subsequently used in our simulation of any f -1NFT by an mh-1DFT (Section 4).

3.1 Informal Account
Let A be a 1DFA with |Q| states. A naive approach to all-suffix regular matching is to run A
on each suffix of the input word, i.e., starting from every position. The mh-1DFT solving this
problem must output the decisions sequentially starting from the leftmost suffix (the entire
word). Suppose we already know the decision for some past suffixes and want to compute
the decision for a current suffix. To reuse the decisions for the past suffixes, we can first
run the automaton A again on these suffixes until we reach the current position. Now we
continue to run the automaton A on the past suffixes and also run A from its starting state
on the current suffix. If the state of A in the run on the current suffix equals at some point
the state of A in a run on a past suffix, then we know that the decision for the current suffix
is the same as the decision for that past suffix and we can output it without the need to
run A further.

Our mh-1DFT keeps a list of decisions and states for past suffixes such that running A
on them until the current position yields different states. The length of this list is at most
|Q|. To compute the decision for the current suffix, our mh-1DFT uses a reading head h
positioned at the current position to run A from all the stored states for past suffixes as well
as from the initial state for the current suffix. The reading head h stops once the state for
the current suffix equals the state for a past suffix (or the end of the input word is reached).
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Figure 3 The automaton and configurations of the mh-1DFT from Example 4.

It remains to be shown that a finite number of reading heads suffice, independently of
the input word’s length. To this end, observe that whenever the reading head h moves on,
the list of decisions and different states for past suffixes at that position expands (otherwise,
the decision for the current suffix would have been known and h would have stopped). As
the length of the list at any position is at most |Q|, it suffices to use |Q|+ 1 reading heads in
total. The extra reading head updates the stored states after a decision for the current suffix
is computed.

I Example 4. Consider the regular language L consisting of all binary words without zero.
A two-state deterministic automaton A accepting L is depicted in Figure 3. We describe a
computation of our mh-1DFT with three reading heads on the input word w = 01101.

To compute the decision for the first suffix, one reading head reads the entire input.
The remaining two reading heads advance and the decision 0 is stored (with the updated
initial state δ(q0, 0) = q1) and output (to the output tape, which is below the input tape
in Figure 3).

To compute the decision for the second suffix, another reading head positioned at the
second symbol advances to the fifth symbol until the two states (for the past and current
suffix) become a single state q1. The only remaining reading head advances and the decision 0
is stored (with the updated initial state δ(q0, 1) = q0) and output.

Since the initial state q0 is now stored with a decision, the decision for the third suffix
can be immediately output, the last reading head advanced, and the stored states updated.
The decision for the fourth suffix can again be immediately output, the last reading head
advanced, and the stored states updated (to a single state q1 since δ(q0, 0) = δ(q1, 0) = q1).
For the last suffix, the initial state q0 is no longer stored with a decision, so a reading head
reads the last symbol to compute and output the decision 1. Then the last reading head
advances and the decision is stored (with an updated initial state δ(q0, 1) = q0). Finally, as
the last reading head has arrived at the right endmarker, our mh-1DFT outputs the Boolean
decision 1 for the empty suffix (the initial state q0 is accepting) and accepts.

3.2 The Multi-Head Transducer
We now formally define an mh-1DFT that solves the all-suffix regular matching problem
for a regular language L. Let A be a 1DFA accepting L. Suppose A’s set of states is
Q = {q1, q2, . . . , qn} and that the current suffix of an input word w starts at the position
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1 δ̃((qbs, q), es) :
2 D := {qj | qbsj 6= ⊥};D′ := {qj′ | ∃j. qbsj = (qj′ ,_)}
3 k := |D|+ 1; k′ := |D′|+ 1
4 if esk′ = a then b := q ∈ QF
5 else if ∃j, qj′ , βj . qbsj = (qj′ , βj) ∧ q = qj′ then b := βj
6 else b := ⊥ fi
7 if b ∈ {0, 1} then
8 if esn+1 = a then output b and return q̃f fi
9 qbs′ := ⊥n

10 ∀qj ∈ D. let qj′ := δ(qj , esn+1), (_, βj) := qbsj in qbs′j′ := (qj′ , βj)
11 let qj′ := δ(qs, esn+1) in qbs′j′ := (qj′ , b)
12 output b
13 let k̃ := k + (qs 6∈ D) in advance reading heads k̃, . . . , n+ 1
14 return (qbs′, qs)
15 else
16 qbs′ := qbs
17 ∀qj ∈ D. let (qj′ , βj) := qbsj in qbs′j := (δ(qj′ , esk′), βj)
18 advance reading head k′ fi
19 return (qbs′, δ(q, esk′))

Figure 4 The transition function δ̃ of the mh-1DFT ÃL.

i. Let Q̃i = {δ∗(qs, w[j..i)) | j ∈ [1..i)} be the set of stored states for the past suffixes. For
each i′ ∈ [i, |w|+ 1], let Q̃i,i′ = {δ∗(qj , w[i..i′)) | qj ∈ Q̃i} be the states obtained by running
the stored states for the past suffixes from the current position i up to the position i′. Let
βw,i(q) equal one if and only if A accepts the word w[i..|w|] when run from the state q.

We define our mh-1DFT ÃL = (Σ,a,Γ, κ, Q̃, q̃s, Q̃F , δ̃) as follows. We set the output
alphabet to Γ = {0, 1} and the number of reading heads to κ = |Q| + 1 = n + 1. The
set of states is Q̃ = (((Q× {0, 1}) ∪ ⊥)|Q| ×Q) ∪ {q̃f}, where q̃f is a designated accepting
state. With the last reading head at the position i, i.e., psn+1 = i, and the reading head
for the current suffix at the position i′ (the current suffix starts at the position i), a state
(qbs, q) ∈ Q̃ consists of an n-tuple qbs whose j-th component qbsj = (qj′ , βw,i(qj)) stores the
decision βw,i(qj) for a past suffix corresponding to the stored state qj ∈ Q̃i and the state qj′

obtained by running A from the state qj on w[i..i′). If the state qj is not among the stored
states for the current position i, then qbsj = ⊥. Furthermore, the state q from the state
(qbs, q) ∈ Q̃ of the mh-1DFT ÃL is the state obtained by running A on the current suffix up
to the position i′, i.e., q = δ∗(qs, w[i..i′)). We point out that the positions i and i′ themselves
are not explicitly stored in the state (but i = psn+1 and i′ = psk′ , with k′ as in Figure 4).
The initial state is q̃s = (⊥n, qs). The set of accepting states is Q̃F = {q̃f}. The transition
function δ̃ : (Q̃ \ Q̃F )× (Σ ∪ {a})n+1 → Q̃× Γ∗ × {0, 1}n+1 is defined using pseudocode in
Figure 4. The transition function of the mh-1DFT from Example 4 is shown in Figure 5.
We use the notation let qj′ := δ(qs, esn+1) in qbs′j′ := (qj′ , b) for pattern-matching, i.e., j′
denotes the index of the state δ(qs, esn+1) in the expression qbs′j′ := (qj′ , b).

The last reading head is at the current position i = psn+1 and all reading heads j and j′
with j > j′ satisfy psj ≤ psj′ (the reading heads do not overtake each other). The transducer
maintains the invariant that the number of reading heads beyond the position i′ of the
reading head for the current suffix equals |Q̃i,i′ |. The sets D and D′ (Line 2) equal the set of
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Figure 5 The transition function of the mh-1DFT from Example 4. A transition labeled by
(s1s2s3, o,m1m2m3) represents a transition when reading the symbols (s1, s2, s3), producing the
output o, and advancing the reading heads by the offsets (m1,m2,m3). Here, b, b′ ∈ {0, 1} denote
arbitrary symbols from the input alphabet, whereas ∗ ∈ {0, 1,a} denotes an arbitrary input symbol.
(Only states and transitions reachable in a computation on an input word are shown.)

stored states Q̃i and the set of states Q̃i,i′ , obtained by running A from the stored states
Q̃i on w[i..i′). The invariant implies that k′ = |D′|+ 1 (Line 3) is the reading head for the
current suffix.

The transducer ÃL first tries to determine the decision for the current suffix (Lines 4–6).
If this can be determined, then ÃL updates the stored states (Lines 9–11), outputs the
decision, advances all reading heads at the current position i, and sets the state for the
current suffix to the initial state of A (Line 14). If A’s initial state is not among the stored
states D = Q̃i, the reading head for the current suffix has already advanced, i.e., ÃL only
needs to advance the remaining reading heads k + 1 = k̃, . . . , n+ 1 at the current position.

If the decision for i has not been determined, then the states D′ and q are updated (Lines
16–17 and 19) and the reading head for the current suffix advances (Line 18).

3.3 Proof of Correctness
To prove that the mh-1DFT ÃL computes tL, we formulate an invariant on a configuration of
ÃL that is satisfied by each configuration from a computation on an input. For the accepting
state q̃f , the invariant states that the output is correct: I(w, o, q̃f , ps) ≡ (o = tL(w)) (c0).

For a state (qbs, q) ∈ Q̃, the invariant captures the properties of a state and the reading
heads’ positions mentioned previously. In addition, it states that correct output has been
produced for all positions preceding the current position i = psn+1. In the following, we use
the definitions from Lines 2–3 in Figure 4. We further define i′ = psk′ to be the position of
the reading head for the current suffix. To capture the expansion of the set of stored states
by running A on the current suffix, we define Q̃′j = Q̃i,j ∪ {δ∗(qs, w[i..j))}, for all j ∈ [i..i′),
and Q̃′j = Q̃i,j , for all j ∈ [i′..(|w|+ 1)]. Then the invariant is as follows:

I(w, o, (qbs, q), ps) ≡ (|o| = psn+1 − 1 ∧ ∀j ∈ [|o|]. oj = tL(w)[j]) ∧ (c1)
∀j ∈ [n]. ∀qj′ , βj . (qbsj = (qj′ , βj) =⇒ qj′ = δ∗(qj , w[i..i′)) ∧ βj = βw,i(qj))∧ (c2)
q = δ∗(qs, w[i..i′)) ∧ (c3)
D = Q̃i ∧ (c4)
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D′ = Q̃i,i′ ∧ (c5)
∀j ∈ [i..i′). Q̃i,j ( Q̃′j ∧ (c6)
(psn+1 ≤ · · · ≤ ps1) ∧ (c7)
∀j ∈ [i..|w|]. |{h | psh > j}| = |Q̃′j |. (c8)

I Lemma 5. For any input word w, the initial configuration of ÃL satisfies the invariant,
i.e., I(w, ε, (⊥n, qs), 1n+1) holds.

Proof. Observe that i = i′ = 1 and D = D′ = Q̃i = Q̃i,j = ∅, for all j ∈ [i..|w|]. J

I Lemma 6. Let c1 = (w, o, (qbs, q), ps) and c2 = (w, o′, q′, ps′) be two configurations of ÃL
such that I(c1) holds and (c1, c2) ∈ sÃL . Then I(c2) holds.

Proof. We refer to Line l in Figure 4 as ll. Furthermore, we refer to the i-th conjunct in
I(c1) and I(c2) as ci and ci’, respectively and to the i-th fact labeled in the proof as fi. Let
us denote by ij , i′j , Dj , D′j , kj , k′j , jQ̃′j′ , jps, j ∈ {1, 2}, the respective definitions for the
configuration cj . To derive that I(c2) holds, we analyze the transition function δ̃ in Figure 4.

First we show that b 6= ⊥ =⇒ b = tL(w)[i1] (f1). If esk′
1

= a, then i′1 = |w|+ 1, c3, and
l4 imply that b = tL(w)[i1]. If l5’s condition holds, then c2 and c3 imply that b = tL(w)[i1].

Consider the case b ∈ {0, 1} (l8–14). If esn+1 = a, then i1 = i′1 = |w| + 1 and b 6= ⊥
(due to i′1 = |w|+ 1 and l4) which with f1 implies b = tL(w)[i1]. c1 and b = tL(w)[i1] imply
c0, i.e., I(c2) holds since c2 is accepting and thus I(c2) ≡ c0. Otherwise (if esn+1 6= a),
we have i1 ≤ |w|. Because k̃ = |D1| + 1 + (qs 6∈ D1) ≤ n + 1, the last reading head
advances, i.e., i2 = i1 + 1 (f2). Now, f1, f2, and c1 imply c1’. Next we show that
|{h | 1psh > i1}| = k̃ − 1 (f3). From c4, we have D1 = Q̃i1 . It follows that |1Q̃′i1 | =
|D1| + (qs 6∈ D1). c8 then implies |{h | 1psh > i1}| = k̃ − 1, i.e., that precisely those
readings heads at the position i1 advanced (l13). In particular, this implies c7’. l9–11
and c4 imply D2 = D′2 = Q̃i1+1

f2= Q̃i2 (f4). This immediately implies c4’. Next we show
that i2 = i′2 (f5). If i2 = |w| + 1, then i2 = i′2 follows from c7’. Suppose that i2 ≤ |w|.
It follows that |{h | 2psh > i2}|

f2–3,l13= |{h | 1psh > i1 + 1| c8= |1Q̃′i1+1|. If i′1 > i1 + 1,

we derive |1Q̃′i1+1|
i′1>i1+1

= |Q̃i1+1|. If i′1 ≤ i1 + 1, we derive |1Q̃′i1+1|
l5= |Q̃i1+1|. Hence,

|{h | 2psh > i2}| = |Q̃i1+1|
f2= |Q̃i2 |

f4= D′2, which implies that i2 = i′2. f5 implies c6’ and
f5 together with l14 imply c3’. f4–5 imply c5’. l9–11, c2, f1, and f5 further imply c2’.
f3 and l13 imply that those reading heads at i1 advanced. Hence for c8’, it suffices to
show |2Q̃′j | = |1Q̃′j |, for all j ∈ [(i1 + 1)..|w|]. We derive |2Q̃′j |

f2,f5= |Q̃i1+1,j |. If i′1 ≤ j, then

|Q̃i1+1,j |
l5,i′1≤j= |Q̃i1,j |

i′1≤j= |1Q̃′j |. If i′1 > j, then |Q̃i1+1,j |
i′1>j= |1Q̃′j |. This completes the

proof of c8’. Thus, I(c2) holds in the case b ∈ {0, 1}.
We continue with the case b = ⊥ (l17–19). Together with l5, b = ⊥ implies |D′1| < n.

We obtain k′1 ≤ n and that i2 = 2psn+1 = 1psn+1 = i1 (f6). Moreover, l17 implies
D2

l17= D1
c4= Q̃i1

f6= Q̃i2 which yields c4’. Since no output is produced, f6 immediately yields
c1’. Together with l4, b = ⊥ implies i′1 ≤ |w|. Next we show that i′2 = i′1 + 1 (f7). We
derive |{h | 1psh > i′1}|

c8,i′1≤|w|= |1Q̃′i′1 |
c5= |D′1|

l3= k′1 − 1 (f8). The fact f8 implies that the
single advancing reading head k′1 is the first reading head at the position i′1, which further

implies c7’. If i′1 + 1 = |w|+ 1, then i′2 = i′1 + 1 follows from |D′2|
l17
≤ |D′1|. If i′1 + 1 ≤ |w|,

then i′2 = i′1 + 1 follows from |D′2|
l17= |1Q̃′i′1+1| and |{h | 1psh > i′1 + 1}|

c8,i′1+1≤|w|
= |1Q̃′i′1+1|.

Then, l17, the facts f6–7 and c2, c4–5 imply c2’ and c5’. Furthermore, l19, f6–7
and c3 imply c3’. Together with l5 and f6–7, b = ⊥ implies that Q̃i1,i′1 ( 2Q̃′i′1

(f9).
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f6–7 and f9 together with c6 yield c6’. It suffices to show c8’ for j = i′1; otherwise
1Q̃′j = 2Q̃′j and the number of heads at positions > j did not change. For j = i′1, we derive
|{h | 2psh > i′1}|

l18= |{h | 1psh > i′1}|+ 1 c8= |1Q̃′i′1 |+ 1 b=⊥,l5= |2Q̃′i′1 |. This completes the proof
of c8’. Thus, I(c2) holds in the case b = ⊥. J

I Theorem 7. For any input word w, the output produced by ÃL is tL(w).

Proof. Let c1, c2, . . . , cl be ÃL’s computation on w. Lemmas 5 and 6 imply that I(ci) holds
for all configurations ci, i ∈ [l]. Since ÃL’s transition function δ̃ is total (the transducer
cannot get stuck), Definition 2 implies that cl is an accepting configuration. The invariant
I(w, o, q̃f , ps) for the last configuration cl = (w, o, q̃f , ps) then implies that o = tL(w). J

4 Simulation

Let A be a f -1NFT and let L ⊆ Σ∗×Γ∗ be the language accepted by A. We show that there
exists an mh-1DFT accepting the same language L. This establishes inclusion between the
classes of languages accepted by these models. Because two-head finite-state automata strictly
extend the expressiveness of one-head finite-state automata [10], the inclusion is proper.

4.1 Informal Account
To simulate the f -1NFT A with |Q| states on an input w, we first check if w is accepted by
A’s underlying automaton. This can be done using a single head that reads the entire input.
If the automaton rejects, then clearly no (w, o) ∈ L and our mh-1DFT simulating A may also
immediately reject. Otherwise there is exactly one (w, o) ∈ L, since A is functional. Hence,
it suffices to follow an accepting computation of the underlying automaton and concatenate
the outputs from A’s transition relation to produce the output o. A problem with this
straightforward approach is the nondeterminism of A that may have multiple transitions
from a given state of A on the same symbol. Nonetheless, if we are able to determine a
transition to a state from which A’s underlying automaton accepts the rest of the input word,
then we can follow it, since this transition is part of an accepting computation. So now our
problem is reduced to checking from which states a 1NFA accepts a suffix of an input word.
But since the language accepted by a 1NFT run from a particular state is regular, this is
precisely an instance of all-suffix regular matching, for which we have already constructed an
mh-1DFT in the previous section.

Our mh-1DFT simulating A follows the described approach. It tries to find an accepting
computation of the underlying automaton of A starting from its initial state. To this end, our
mh-1DFT runs |Q| instances of the (distinct) mh-1DFTs for the regular languages accepted by
the underlying finite-state automaton of A when run from one of its states. If at some point,
no transition can be made from the current state to a new state from which the remainder
of the input word is accepted, then our mh-1DFT rejects the input word. Otherwise, it
follows one such transition (an arbitrary one if there are multiple transitions) and outputs
the output word from the transition of the transducer A. Upon reaching the right endmarker
of the input word, our mh-1DFT accepts if the current simulated state is accepting with
respect to A.

I Example 8. We revisit the f -1NFT A from Example 1. In Example 3, we proposed an
ad-hoc mh-1DFT that simulates A. Here, we show how to obtain an mh-1DFT that simulates
A by following the general approach. First we construct a 1DFA for each regular language
accepted by A’s underlying automaton when run from one of its states. For instance, the
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regular language Ls for the initial state of A contains all non-empty binary words (note that
this is the set of all input words w such that (w, o) ∈ L for some o) and can be accepted by
a simple two-state 1DFA. For the states q0,0 and q0,1, the regular languages L0,0 and L0,1
contain all non-empty binary words that end with a zero. Analogously, for the states q1,0
and q1,1, the regular languages L1,0 and L1,1 contain all non-empty binary words that end
with a one. Each of these four regular languages L0,0, L0,1, L1,0, and L1,1 can be accepted
by a simple three-state 1DFA.

Now, for each of the five regular languages (Ls, L0,0, L0,1, L1,0, and L1,1), we construct
an mh-1DFT solving all-suffix-pattern matching. The mh-1DFT for Ls has three reading
heads and the mh-1DFTs for L0,0, L0,1, L1,0, and L1,1 have four reading heads each. Hence,
the resulting mh-1DFT Ã simulating A has 1 + 3 + 4 · 4 = 20 reading heads.

Let us analyze Ã’s computation on the input word w = 01101. The mh-1DFT for Ls
computes that the entire input word is accepted by the underlying automaton of A (because
w is non-empty). Hence, there exists an accepting computation of A on w that Ã will
simulate. The mh-1DFTs for L0,0 and L0,1 compute that neither of the first two suffixes is
in either of these two regular languages (because w does not end with a zero). In contrast,
the mh-1DFTs for L1,0 and L1,1 compute that both the first two suffixes are in both these
regular languages (because w ends with a one). Now, the mh-1DFT Ã simulating A must
decide between the states q1,0 and q1,1 based on the actual transition relation of A. Since
the first symbol of w is a zero, the next simulated state of A is going to be q1,0 and the first
output symbol is 1 (which is the correct guess of A about the last symbol of the input word).
The rest of A’s computation on w is in fact deterministic and we omit it.

4.2 The Multi-Head Transducer
We define an mh-1DFT simulating a f -1NFT A = (Σ,Γ, Q, qs, QF , δ). Suppose the set of
states of A is Q = {q1, q2, . . . , qn}. For each i ∈ [n], let Li be the regular language accepted
by the 1NFA Ai = (Σ, Q, qi, QF , δ′), where δ′ ⊆ Q×Σ×Q is the transition relation obtained
from δ by ignoring the output word Γ∗. In particular, note that As is the underlying
automaton of A and Ai is obtained from As by changing the initial state to qi.

By Theorem 7, there exists an mh-1DFT ÃLi
= (Σ,a, {0, 1}, κi, Q̃i, q̃is, Q̃iF , δ̃i) computing

the function tLi
, for each i ∈ [n]. We define our mh-1DFT Ã = (Σ,a,Γ, κ, Q̃, q̃s, Q̃F , δ̃)

simulating A as follows. We set the number of reading heads to κ = 1 +
∑n
k=1 κi (the extra

reading head is needed to simulate the actual step of A using its transition relation δ, in
particular, to obtain the output word õ ∈ Γ∗). The set of states is Q̃ = (Q×(Q̃1×{ε, 0, 1}2)×
· · · × (Q̃n ×{ε, 0, 1}2))∪ {q̃f}, where q̃f is a designated accepting state. The first component
of a state q̃ ∈ Q̃ stores the current simulated state q = qij ∈ Q of A. The (i+1)-th component
of a state q̃ ∈ Q̃ stores a tuple (q̃i, ti,j , ti,j+1), where q̃i ∈ Q̃i is a state of the mh-1DFT ÃLi

,
and ti,j and ti,j+1 are the decision for the current and next suffix (or ε if they have not been
computed yet). The initial state is q̃s = (qs, (q̃1

s , ε, ε), . . . , (q̃ns , ε, ε)). The set of accepting
states is Q̃F = {q̃f}. The transition function δ̃ : (Q̃ \ Q̃F )× (Σ ∪ {a})κ → Q̃× Γ∗ × {0, 1}κ
is defined using pseudocode in Figure 6. We point out that the next simulated state qj′ of A
(Line 14 in Figure 6) needs not be unique and the mh-1DFT Ã chooses (deterministically)
an arbitrary state if it is not unique.

Recall that the only way for an mh-1DFT to reject an input is by getting stuck. In
Figure 6, this is represented by the command “reject” (Lines 4 and 19). If the control flow
reaches “reject”, then the transition function is not defined for the respective input arguments.
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1 δ̃((q, (q̃1, t1,1, t1,2), . . . , (q̃n, tn,1, tn,2)), es) :
2 if es1 = a then
3 if q ∈ QF then return q̃f
4 else reject fi fi
5 let i be the smallest index such that (ti,1, ti,2) 6∈ {0, 1}2

6 let esi be the symbols belonging to the reading heads of ÃLi

7 (q̃i, t,msi) := δ̃i(q̃i, esi)
8 advance reading heads belonging to ÃLi according to the offsets msi
9 if t ∈ {0, 1} then

10 if ti,1 = ε then ti,1 := t

11 else ti,2 := t fi fi
12 if ∀i ∈ [n]. (ti,1, ti,2) ∈ {0, 1}2 then
13 let qj := q

14 if ∃j′ ∈ [n]. tj,1 = 1 ∧ tj′,2 = 1 ∧ (qj , es1, qj′) ∈ δ′ then
15 let õ be the output of a transition δ(qj , es1, qj′ , õ, 1) in output õ
16 advance reading head 1
17 return (qj′ , (q̃1, t1,2, ε), . . . , (q̃n, tn,2, ε))
18 else
19 reject fi fi
20 return (q, (q̃1, t1,1, t1,2), . . . , (q̃n, tn,1, tn,2))

Figure 6 The transition function δ̃ of the mh-1DFT Ã.

The first reading head simulates the only reading head of the f -1NFT A. If it reads the
right endmarker a, then the computation is accepted if and only if the current simulated
state q is accepting (Lines 2–4). Otherwise, the mh-1DFT Ã performs a transition of an
mh-1DFT ÃLi

for which either ti,1 or ti,2 have not been computed yet (Lines 5–8). The
mh-1DFT Ã maintains the invariant that one such unknown decision exists. Then it updates
ti,1, ti,2 accordingly (Lines 9–11). The definition of the transition function δ̃i (Figure 4)
implies that at most a single Boolean decision is produced in each transition.

Once all the decisions ti,1 and ti,2 have been computed, a step of the f -1NFT A can be
simulated (Lines 13–19). If there exists a transition from the current state q = qj to a new
state qj′ from which the next suffix is accepted by A, then it is taken (Lines 15–17). The
decisions for the next suffix become the decisions for the current suffix and the decisions for
the next suffix become unknown (Line 17). Otherwise, the input word is rejected (Line 19).

4.3 Proof of Correctness

To prove that the mh-1DFT Ã simulates the f -1NFT A, we formulate an invariant on a
configuration of Ã that is satisfied by each configuration from a computation on an input
word. For the accepting state q̃f , the invariant merely states that the input word is accepted
by A and the output is correct: J (w, o, q̃f , ps) ≡ (w, o) ∈ L (d0).

For a state (q, (q̃1, t1,1, t1,2), . . . , (q̃n, tn,1, tn,2)) ∈ Q̃, the invariant captures the properties
of a state mentioned previously. To express them, it uses the invariant I on the configurations
of the mh-1DFT ÃLi . In addition, it guarantess the existence of the index i from Line 5 in
Figure 6 and that the simulation does not get stuck after it successfully performs its first
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step. We denote the positions of the reading heads belonging to ÃLi
, i ∈ [n], by psi.

J (w, o, (q, (q̃1, t1,1, t1,2), . . . , (q̃n, tn,1, tn,2)), ps) ≡ (qs, w[1..ps1), q, o) ∈ δ∗ ∧ (d1)
∀i ∈ [n]. ∃ts. (|ts| = ps1 − 1 ∧ I(w, ts · ti1 · ti,2, q̃i, psi)) ∧ (d2)
∃i ∈ [n]. (ti,1, ti,2) 6∈ {0, 1}2 ∧ (d3)
(ps1 > 1 =⇒ ∃qf ∈ QF . ∃o′. (q, w[ps1..|w|], qf , o′) ∈ δ∗) (d4)

I Lemma 9. For any input word w, the initial configuration of Ã satisfies the invariant,
i.e., I(w, ε, (qs, (q̃1

s , ε, ε), . . . , (q̃ns , ε, ε)), 1κ) holds.

Proof. The invariant follows directly from Lemma 5. J

I Lemma 10. Let c1 = (w, o, (q, (q̃1, t1,1, t1,2), . . . , (q̃n, tn,1, tn,2)), ps) and c2 = (w, o′, q′, ps′)
be two configurations of Ã such that J (c1) holds and (c1, c2) ∈ sÃ. Then J (c2) holds.

Proof. We refer to Line l in Figure 6 as ll (e.g., l7 denotes Line 7). Furthermore, we refer
to the i-th conjunct from J (c1) and J (c2) as di and di’, respectively and to the i-th fact
labeled in the proof as fi. To derive that J (c2) holds, we analyze the transition function δ̃
in Figure 6.

If es1 = a, then ps1 = |w|+ 1 and d1 implies (qs, w[1..|w|], q, o) ∈ δ∗ (f1). The fact that
a step from c1 to c2 was taken implies that q ∈ QF (otherwise, the transition from c1 would
be undefined, due to l3–4). The fact f1 together with q ∈ QF imply d0, i.e., J (c2) holds as
c2 is accepting and thus J (c2) ≡ (w, o) ∈ L ≡ d0.

Suppose that es1 6= a. Conjunct d3 implies that the index from l5 is well-defined. Lines
l5–11, Conjunct d2, and Lemma 6 imply d2’ after l11. Furthermore, l16–17 imply d2’
also if the branch l15–17 is reached. If the branch l13–19 is not reached, then d1, d4
immediately imply d1’, d4’, and l12 implies d3’. Otherwise, the branch l15–17 must be
reached (otherwise, the transition from c1 would be undefined, due to l19). Then Conjunct
d1 and Lines l14–17 imply d1’. Furthermore, Lines l12 and l17 directly imply d3’ (note
that reaching l19 would make the transition from c1 to c2 undefined, which is a contradiction).
Finally, Lines l13–14 and conjuncts d1–2 together with the definition of the invariant I
imply d4’. J

I Theorem 11. For any f-1NFT A, there exists an equivalent mh-1DFT Ã, i.e., both A
and Ã accept the same language.

Proof. We again refer to Line l in Figure 6 as ll. Let LÃ denote the language accepted
by Ã. Let c1, c2, . . . , cl be the computation of Ã on an input word w. We refer to the i-th
conjunct from J (cl) as di. Let o be the output of the computation of Ã on w. Lemmas 9
and 10 imply that J (ci) holds for all configurations ci, i ∈ [1..l].

If the computation is accepting (i.e., (w, o) ∈ LÃ), then J (cl) implies that (w, o) ∈ L.
Moreover, since A is functional and Ã deterministic, there exists no o′ 6= o such that
(w, o′) ∈ L or (w, o′) ∈ LÃ. If the computation is rejecting, then the transition from cl is
undefined due to l4 or l19. If l4 is reached, then ps1 = 1 (otherwise, d4 would imply
q ∈ QF , which is a contradiction). With d1 and l2, this implies that q = qs and w = ε. The
facts that q = qs, w = ε, and q 6∈ QF (due to l3–4) imply that the input word w is rejected
by A (i.e., no (w, o) ∈ L). Moreover, no (w, o) ∈ LÃ, since the deterministic computation of
Ã on w is rejecting.

If l19 is reached, then again ps1 = 1 (otherwise, the branch l15–17 would have been
taken by d4 and d2). Then l14 and d2 imply that the input word is rejected by A (i.e.,
no (w, o) ∈ L). Moreover, no (w, o) ∈ LÃ, since the deterministic computation of Ã on w
is rejecting. J
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5 Discussion and Related Work

We review results on the expressiveness of transducer models (as depicted in Figure 1) and
connections to a practical application.

Expressiveness of Related Formalisms. It is well-known that neither nondeterminism nor a
two-way reading head extends the expresiveness of a one-head finite-state automaton beyond
the regular languages [7]. Formally, L(1DFA) = L(1NFA) = L(2DFA) = L(2NFA). But
adding reading heads does make a difference: in fact, there is a strict hierarchy of languages
accepted by finite-state automata when increasing the number of reading heads [10]. Formally,
L(2NFA) ( L(mh-1DFA). By viewing a finite-state automaton as a functional finite-state
transducer that does not produce any output, this further implies that L(mh-1DFT) 6⊆
L(f -2NFT). Theorem 11 implies that L(f -1NFT) ⊆ L(mh-1DFT). This yields the proper
inclusion L(f -1NFT) ( L(mh-1DFT).

Let us consider the function f that maps a non-empty binary word w to 0|w|, if w ends
with a zero, and 1|w|, otherwise. The function f can be computed by the f -1NFT from
Example 1. Nevertheless, f cannot be computed by a 1DFT. Intuitively, a 1DFT cannot
start producing any output before seeing the last symbol of the input word; but it cannot
remember the input word’s length needed to produce the output. We conclude that the
expressiveness of f -1NFTs strictly extends that of 1DFTs, i.e., L(1DFT) ( L(f -1NFT).

Now consider the function w 7→ wR that maps a binary word to its reverse. It can be
computed by a f -2NFT that first moves its reading head to the end of the input word
and then reads the word backwards while outputting its symbols in the reversed order (in
fact, this transducer behaves deterministically). Nevertheless, w 7→ wR cannot be computed
by a f -1NFT [5]. We conclude that the expressiveness of f -2NFTs strictly extends the
expressiveness of f -1NFTs, i.e., L(f -1NFT) ( L(f -2NFT). Surprisingly, adding nondeter-
minism to functional two-way finite-state transducers does not extend their expressiveness [4],
i.e., L(2DFT) = L(f -2NFT). We further conjecture that the function w 7→ wR cannot be
computed by a mh-1DFT either, and thus the languages accepted by mh-1DFT and 2DFT
are incomparable.

We also conjecture that mh-1DFTs are closed under composition, i.e., whenever f : X → Y

and g : Y → Z are computed by some mh-1DFTs, then there exists an mh-1DFT computing
g ◦ f : X → Z. Such a composition result could give rise to a more modular construction of
mh-1DFTs from f -1NFTs, which would recast our mh-1DFT from Figure 6 as a composition.

Monitoring. The use of mh-1DFT and all-suffix regular matching has applications to
monitoring (also called runtime verification), which is the problem of checking the compliance
of an event stream, at each position in the stream, to a policy formalized in a specification
language. Our recent work [8] provides evidence that exploiting multiple one-way reading
heads significantly improves the efficiency of monitoring policies formalized in metric temporal
logic (MTL). Since MTL is less expressive than (timed) regular expressions [3], the monitor
from [8] does not implement the proposed solution to all-suffix regular matching. Moreover,
its underlying transducer’s space complexity depends logarithmically on the input length.

6 Conclusion

We proposed multi-head finite-state transducers as a combination of multi-head finite-state
automata and finite-state transducers. We showed that multiple one-way reading heads can
replace nondeterminism on functions computable by finite-state transducers. The key insight
is that multiple one-way reading heads suffice to solve the all-suffix regular matching problem.
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As future work, we plan to use the mh-1DFT construction for all-suffix regular matching
to implement an efficient monitor for timed regular expressions [1], which are strictly more
expressive than metric temporal logic supported by our multi-head monitor [8]. The problem
of all-suffix regular matching has already inspired another monitor of ours [2]. In that
monitor, as soon as two past suffixes yield the same state of the automaton, the equivalence
between them is output (namely, the monitor outputs that the positions associated with the
suffixes will have the same verdict); outputting the actual Boolean value for the equivalent
positions is postponed, potentially until the input’s end. We envision designing an mh-1DFT
that outputs an explicit Boolean value for each position in the input word in the order of
their appearance.
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Abstract
Transducers extend finite state automata with outputs, and describe transformations from strings
to strings. Sequential transducers, which have a deterministic behaviour regarding their input, are
of particular interest. However, unlike finite-state automata, not every transducer can be made
sequential. The seminal work of Choffrut allows to characterise, amongst the functional one-way
transducers, the ones that admit an equivalent sequential transducer.

In this work, we extend the results of Choffrut to the class of transducers that produce their
output string by adding simultaneously, at each transition, a string on the left and a string on the
right of the string produced so far. We call them the string-to-context transducers. We obtain a
multiple characterisation of the functional string-to-context transducers admitting an equivalent
sequential one, based on a Lipschitz property of the function realised by the transducer, and on
a pattern (a new twinning property). Last, we prove that given a string-to-context transducer,
determining whether there exists an equivalent sequential one is in coNP.
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1 Introduction

Transducers are a fundamental model to describe programs manipulating strings. They
date back to the very first works in theoretical computer science, and are already present
in the pioneering works on finite state automata [25, 1]. While finite state automata are
very robust w.r.t. modifications of the model such as non-determinism and two-wayness, this
is not the case for transducers. These two extensions do affect the expressive power of the
model. Non-determinism is a feature very useful for modelisation and specification purposes.
However, when one turns to implementation, deriving a sequential, i.e. input-deterministic,
transducer is a major issue. A natural and fundamental problem thus consists, given a
(non-deterministic) transducer, in deciding whether there exists an equivalent sequential
transducer. This problem is called the sequentiality problem.

In [12], Choffrut addressed this problem for the class of functional (one-way) finite
state transducers, which corresponds to so-called rational functions. He proved a multiple
characterisation of the transducers admitting an equivalent sequential transducer. This
characterisation includes a machine-independent property, namely a Lipschitz property of the
function realised by the transducer. It also involves a pattern property, namely the twinning
property, that allows to prove that the sequentiality problem is decidable in polynomial
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time for the class of functional finite state transducers [27]. This seminal work has led to
developments on the sequentiality of finite state transducers [9, 8]. These results have also
been extended to weighted automata [11, 22, 17] and to tree transducers [26]. See also [23]
for a survey on sequentiality problems.

While the model of one-way transducers is now rather well-understood, a current challenge
is to address the so-called class of regular functions, which corresponds to functions realised by
two-way transducers. This class has attracted a lot of interest during the last years. It is closed
under composition [13] and enjoys alternative presentations using logic [16], a deterministic
one-way model equipped with registers, named streaming string transducers [2] (SST for
short), a set of regular combinators akin to regular expressions for regular languages [5, 7, 14]
as well as a class of functions operating on lists [10]. The class of regular functions is much
more expressive than the class of rational functions, as it captures for instance the mirror
image and the copy. Yet, it has good decidability properties: equivalence and type-checking
are decidable in PSpace [21, 3], Similarly, functionality of non-deterministic SST is also
decidable in PSpace [4]. We refer the interested reader to [19] for a recent survey. Intuitively,
two-way finite state transducers (resp. SST) extend one-way finite state transducers with
two important features: firstly, they can go through the input word both ways (resp. they
can prepend and append words to registers), and secondly, they can perform multiple passes
(resp. they can perform register concatenation).

In this paper, we lift the results of Choffrut [12] to a class of transducers that can perform
the first of the two features mentioned above, thus falling strictly between the classes of
rational and regular functions. More precisely, we consider non-deterministic transducers
which, at each transition, extend the output word produced so far by prepending and
appending two words to it. This operation can be defined as the extension of a word with
a context, and we call these transducers the string-to-context transducers. However, it is
important to notice that they still describe functions from strings to strings.

We characterise the functional string-to-context transducers that admit an equivalent
sequential string-to-context transducer through i) a machine independent property: the
function realised by the transducer satisfies a Lipschitz property that involves an original
factor distance and ii) a pattern property of the transducer which we call contextual twinning
property, and that generalises the twinning property to contexts. We also prove that the
sequentiality problem for these transducers is in the class coNP.

A key technical tool of the result of [12] was a combinatorial analysis of the loops, showing
that the output words of synchronised loops have conjugate primitive roots. For string-to-
context transducers, the situation is more complex, as the combinatorics may involve the
words of the two sides of the context. Intuitively, when these words do commute with the
output word produced so far, it is possible for instance to move to the right a part of the
word produced on the left. In order to prove our results, we thus dig into the combinatorics
of contexts associated with loops, identifying different possible situations, and we then use
this analysis to describe an original determinisation construction.

Our results also have a strong connection with the register minimisation problem for SST.
This problem consists in determining, given an SST and a natural number k, whether there
exists an equivalent SST with k registers. It has been proven in [15] that the problem is
decidable for SST that can only append (and not prepend) words to registers, and the proof
crucially relies on the fact that the k = 1 case exactly corresponds to the sequentiality problem
of one-way finite state transducers. Hence, our results constitute a first step towards register
minimisation for SST without register concatenation. The register minimisation problem for
non-deterministic SST has also been studied in [6] for the case of concatenation-free SST.
The targeted model being non-deterministic, the two problems are independent.
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2 Models

Words, contexts and partial functions

Let A be a finite alphabet. The set of finite words (or strings) over A is denoted by A∗. The
empty word is denoted by ε. The length of a word u is denoted by |u|. We say that a word u
is a prefix (resp. suffix) of a word v if there exists a word y such that uy = v (resp. yu = v).
We say that two words u, v ∈ A∗ are conjugates if there exist two words t1, t2 ∈ A∗ such that
u = t1t2 and v = t2t1. If this holds, we write u ∼ v. The primitive root of a word u ∈ A∗,
denoted ρ(u), is the shortest word x such that u = xp for some p > 1. A word is said to be
primitive, if it is equal to its primitive root. Given a word u ∈ B∗, we say that v is a factor
of u if there exist words x, y such that u = xvy. For n,m ∈ N>0, we note by gcd(n,m) the
greatest common divisor of n and m.

I Lemma 1 (Fine and Wilf, [20], Chapter 9 of [24]). Let x, y ∈ A∗ and m,n ∈ N. If xm and
yn have a common factor of length at least |x|+ |y| − gcd(|x|, |y|), then their primitive roots
are conjugates.

Given two words u, v ∈ A∗, the longest common prefix (resp. suffix) of u and v is denoted
by lcp(u, v) (resp. lcs(u, v)). We define the prefix distance between u and v, denoted by
distp(u, v), as |u|+ |v| − 2|lcp(u, v)|.

Given two words u, v ∈ B∗, a longest common factor of u and v is a word w of maximal
length that is a factor of both u and v. Note that this word is not necessarily unique. We
denote such a word by lcf(u, v). The factor distance between u and v, denoted by distf (u, v),
is defined as distf (u, v) = |u| + |v| − 2|lcf(u, v)|. This definition is correct as |lcf(u, v)| is
independent of the choice of the common factor of maximal length.

Using a careful case analysis, we can prove that distf is indeed a distance, the only
difficulty lying in the subadditivity:

I Lemma 2. distf is a distance.

Given a finite alphabet B, a context on B is a pair of words (u, v) ∈ B∗ ×B∗. The set of
contexts on B is denoted C(B). The empty context is denoted by cε. For a context c = (u, v),
we denote by ←−c (resp. −→c ) its left (resp. right) component: ←−c = u (resp. −→c = v). The
length of a context c is defined by |c| = |←−c |+ |−→c |. The lateralized length of a context c is
defined by ‖c‖ = (|←−c |, |−→c |). For a context c ∈ C(B) and a word w ∈ B∗, we write c[w] for
the word ←−c w−→c . We define the concatenation of two contexts c1, c2 ∈ C(B) as the context
c1c2 = (←−c1←−c2 ,−→c2−→c1). Last, given a context c and a word u, we denote by c−1[u] the unique
word v such that c[v] = u, when such a word exists.

Given a set of contexts C ⊆ C(B), we denote by lcc(C) the longest common context
of elements in C, defined as lcc(C) = (lcs({←−c | c ∈ C}), lcp({−→c | c ∈ C})). We also write
C.lcc(C)−1 = {c′ | c′.lcc(C) ∈ C}.

We consider two sets X,Y . Given ∆ ⊆ X ×Y , we let dom(∆) = {x ∈ X | ∃y, (x, y) ∈ ∆}.
We denote the set of partial functions from X to Y as F(X,Y ). Given f ∈ F(X,Y ), we
write f : X ↪→ Y , and we denote by dom(f) its domain. When more convenient, we may
also see elements of F(X,Y ) as subsets of X × Y . Last, given ∆ ⊆ X × Y , we let choose(∆)
denote some ∆′ ∈ F(X,Y ) such that ∆′ ⊆ ∆ and dom(∆) = dom(∆′).

String-to-Context and String-to-String Transducers

I Definition 3. Let A,B be two finite alphabets. A string-to-context transducer (S2C
for short) T from A∗ to B∗ is a tuple (Q, tinit, tfinal, T ) where Q is a finite set of states,
tinit : Q ↪→ C(B) (resp. tfinal : Q ↪→ C(B)) is the finite initial (resp. final) function,
T ⊆ Q×A× C(B)×Q is the finite set of transitions.
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A state q is said to be initial (resp. final) if q ∈ dom(tinit) (resp. q ∈ dom(tfinal)). We
depict as c−→ q (resp. q c−→) the fact that tinit(q) = c (resp. tfinal(q) = c). A run ρ from a
state q1 to a state qk on a word w = w1 · · ·wk ∈ A∗ where for all i, wi ∈ A, is a sequence
of transitions: (q1, w1, c1, q2), (q2, w2, c2, q3), . . . , (qk, wk, ck, qk+1). The output of such a run
is the context c = ck . . . c2c1 ∈ C(B), and is denoted by out(ρ). We depict this situation as
q1

w|c−−→ qk+1. The set of runs of T is denoted R(T ). The run ρ is said to be accepting if q1 is
initial and qk+1 final. This string-to-context transducer T computes a relation [[T ]] ⊆ A∗×B∗

defined by the set of pairs (w, edc[ε]) such that there are p, q ∈ Q with c−→ p
w|d−−→ q

e−→. Thus,
even if its definition involves contexts on B, the semantics of T is a relation between words
on A and words on B. Given an S2C T = (Q, tinit, tfinal, T ), we define the constant MT as
MT = max{|c| | (p, a, c, q) ∈ T or (q, c) ∈ tinit ∪ tfinal}. Given ∆ : Q ↪→ C(B), we denote
by T∆ the S2C obtained by replacing tinit with ∆. An S2C is trimmed if each of its states
appears in some accepting run. W.l.o.g., we assume that the string-to-context transducers we
consider are trimmed. An S2C T from A∗ to B∗ is functional if the relation [[T ]] is a function
from A∗ to B∗. An S2C T = (Q, tinit, tfinal, T ) is sequential if dom(tinit) is a singleton and if
for every transitions (p, a, c, q), (p, a, c′, q′) ∈ T , we have q = q′ and c = c′.

The classical model of finite-state transducers is recovered in the following definition:

I Definition 4. Let A,B be two finite alphabets. A string-to-context transducer T =
(Q, tinit, tfinal, T ) is a string-to-string transducer (S2S for short) from A∗ to B∗ if, for all
(q, c) ∈ tinit ∪ tfinal, ←−c = ε, and for all (q, a, c, q′) ∈ T , ←−c = ε.

Notations defined for S2C hold for classical transducers as is. For an S2S, we write w−→ q

(resp. q w−→, and q u|w−−→ q′) instead of (ε,w)−−−→ q (resp. q (ε,w)−−−→, and q u|(ε,w)−−−−→ q′).
Given an S2C T = (Q, tinit, tfinal, T ), we define its right S2S, denoted −→T , as the tuple

(Q,−→tinit,
−−→
tfinal,

−→
T ) where, for all q ∈ Q, −→tinit(q) =

−−−−→
tinit(q) and −−→tfinal(q) =

−−−−→
tfinal(q), and, for all

(p, a, c, q) ∈ T , (p, a,−→c , q) ∈ −→T . Its left S2S ←−T is defined similarly, and by applying the
mirror image on its output labels.

I Example 5. Two examples of S2C (not realisable by S2S) are depicted on Figure 1.

cε

cε

a|(a, ε) b|(b, ε)

(a) Tmirror.

cε

cε

a|(a, ε) b|(ε, b)

(b) Tpartition.

Figure 1 1a Example of a S2C Tmirror computing the function fmirror : u1 . . . un ∈ {a, b}∗ 7→
un . . . u1. 1b Example of a S2C Tpartition computing the function fpartition : u ∈ {a, b}∗ 7→ a|u|a b|u|b .

3 Lipschitz and Twinning Properties

We recall the properties considered in [12], and the associated results.

I Definition 6. We say that a function f : A∗ ↪→ B∗ satisfies the Lipschitz property if there
exists K ∈ N such that ∀u, v ∈ dom(f),distp(f(u), f(v)) 6 K distp(u, v).

I Definition 7. We consider an S2S and L ∈ N. Two states q1 and q2 are said to be
L-twinned if for any two runs w1−−→ p1

u|x1−−−→ q1
v|y1−−→ q1 and w2−−→ p2

u|x2−−−→ q2
v|y2−−→ q2, where p1

and p2 are initial, we have for all j > 0, distp(w1x1y
j
1, w2x2y

j
2) 6 L. An S2S satisfies the

twinning property (TP) if there exists L ∈ N such that any two of its states are L-twinned.
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I Theorem 8 ([12]). Let T be a functional S2S. The following assertions are equivalent:
1. there exists an equivalent sequential S2S,
2. [[T ]] satisfies the Lipschitz property,
3. T satisfies the twinning property.

We present the adaptation of these properties to string-to-context transducers.

I Definition 9. We say that f : A∗ ↪→ B∗ satisfies the contextual Lipschitz property (CLip)
if there exists K ∈ N such that ∀u, v ∈ dom(f),distf (f(u), f(v)) 6 K distp(u, v).

I Definition 10. We consider an S2C and L ∈ N. Two states q1 and q2 are said to be L-
contextually twinned if for any two runs c1−→ p1

u|d1−−−→ q1
v|e1−−→ q1 and c2−→ p2

u|d2−−−→ q2
v|e2−−→ q2,

where p1 and p2 are initial, we have for all j > 0, distf (ej1d1c1[ε], ej2d2c2[ε]) 6 L. An S2C
satisfies the contextual twinning property (CTP) if there exists L ∈ N such that any two of
its states are L-contextually twinned.

4 Main Result

The main result of the paper is the following theorem, which extends to string-to-context
transducers the characterisation of sequential transducers amongst functional ones.

I Theorem 11. Let T be a functional S2C. The following assertions are equivalent:
1. there exists an equivalent sequential string-to-context transducer,
2. [[T ]] satisfies the contextual Lipschitz property,
3. T satisfies the contextual twinning property.

Proof. The implications 1⇒ 2 and 2⇒ 3 are proved in Proposition 12 and Proposition 13
respectively. The implication 3 ⇒ 1 is more involved, and is based on a careful analysis
of word combinatorics of loops of string-to-context transducers satisfying the CTP. This
analysis is summarised in Lemma 22 and used in Section 6 to describe the construction of an
equivalent sequential S2C. J

I Proposition 12. Let T be a sequential S2C realizing the function f . Then f satisfies the
contextual Lipschitz property.

Proof. We claim that f is context-Lipschitzian with coefficient 3MT . Consider two input
words u, v in the domain of f . If u = v, then the result is trivial. Otherwise, let w = lcp(u, v)
and let u = w.u′, with 0 6 |u′|. Then we have [[T ]](u) = c3c2c1[ε] where c1 is the context
produced along w, c2 the one produced along u′, and c3 is the final output context. Similarly,
we can write (with v = w.v′, and 0 6 |v′|) [[T ]](v) = d3d2d1[ε]. As T is sequential, we have
d1 = c1. We also have |c3| 6MT , |d3| 6MT , |c2| 6MT |u′| and |d2| 6MT |v′|. Finally, as
u 6= v, we have distp(u, v) = |u′|+ |v′| > 1 and we obtain:

distf (f(u), f(v)) 6 |c3c2|+ |d3d2| 6MT (2 + |u′|+ |v′|) 6 3MT distp(u, v) J

I Proposition 13. Let T be a functional S2C realizing the function f . If f satisfies the
contextual Lipschitz property, then T satisfies the contextual twinning property.

Proof. We consider an instance of the CTP and stick to the notations of Definition 10. We
denote by n the number of states of T . As T is trimmed, there exist runs qi

wi|fi−−−→ ri
gi−→,

with |wi| 6 n, for i ∈ {1, 2}. We consider the input words αj = uvjw1 and βj = uvjw2, for
all j > 0. We have, for every j, distp(αj , βj) 6 |w1|+ |w2| 6 2n.

The following property of distf can be proven using a case analysis:
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Fact. For every w,w′ ∈ B∗, c, c′ ∈ C(B), we have distf (w,w′) 6 distf (c[w], c′[w′])+|c|+|c′|.
As f is K context-Lipschitzian, for some fixed K, we obtain, for all j:

distf (ej1d1c1[ε], ej2d2c2[ε]) 6 distf (g1f1e
j
1d1c1[ε], g2f2e

j
2d2c2[ε]) + 2(n+ 1)MT

6 distf (f(αj), f(βj)) + 2(n+ 1)MT
6 Kdistp(αj , βj) + 2(n+ 1)MT 6 2Kn+ 2(n+ 1)MT J

5 Analysis of Loop Combinatorics

The classical twinning property forces the outputs of two runs reading the same input to only
diverge by a finite amount. This constraint in turn makes for strong combinatorial bindings
between runs involving loops: for two runs w1−−→ p1

u|x1−−−→ q1
v|y1−−→ q1 and w2−−→ p2

u|x2−−−→ q2
v|y2−−→

q2, we have |y1| = |y2|, and ρ(y1) ∼ ρ(y2). Similar behaviours are expected with string-to-
context transducers and lead us to study the combinatorial properties of synchronised runs
involving loops in those machines. Throughout this section, we consider a string-to-context
transducer T = (Q, tinit, tfinal, T ) that satisfies the contextual twinning property.

5.1 Behaviours of Loops
We start with two examples illustrating how output contexts of synchronised loops can be
modified to obtain an equivalent sequential S2C.

I Example 14. Figure 2a shows an example of a non-sequential functional S2C transducer
T1. The contexts produced on loops around states q1 and q2 both commute with word a.
This observation can be used to build an equivalent sequential S2C D1, depicted on Figure 2c.
Figure 2b shows an example of a non-sequential functional S2C transducer T2 where output
contexts are non-commuting, but can be slightly shifted so as to be aligned. This observation
can be used to build an equivalent sequential S2C D2, depicted on Figure 2d.

q0
cε

q1

q2

q3
cε

q4
cε

a|(a, a)

a|(a, a)

b|(a, a)

a|(ε, ba)

a|(ε, aa)

c|(ε, ab)

(a) T1.

q0
cε

q1

q2

q3
cε

q4
cε

a|(ε, c)

a|(ab, de)

b|cε

a|(b, cd)

a|(ba, ed)

c|cε

(b) T2.

q0
cε

q1

q2
cε

q3
cε

a|cε

a|(ε, aa)

b|(aa, aa)

c|(ba, ab)

(c) D1.

q0
cε

q1

q2
cε

q3
cε

a|(ε, c)

a|(ab, de)

b|cε

c|(b, d)

(d) D2.

Figure 2 2a An S2C T1 computing the function that maps anb to a2n+2 and anc to ba2nb. 2c
A sequential S2C D1 equivalent to T1. 2b An S2C T2 computing the function that maps anb to
(ab)n−1c(de)n−1 and anc to b(ab)n−1c(de)n−1d. 2d A sequential S2C D2 equivalent to T2.

The following definition follows from the intuition drawn by the previous example.
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I Definition 15 (Lasso, Aligned/Commuting/Non-commuting lasso). A lasso around a state q
is a run ρ of the form c−→ p

u|d−−→ q
v|e−−→ q with p an initial state. ρ is said to be productive, if

|e| 6= 0. We say that ρ is:
aligned w.r.t. f and w, for some f ∈ C(B) and w ∈ B∗, denoted as (f, w)−aligned, if
there exists a context g ∈ C(B) such that for all i ∈ N, eidc[ε] = gf i[w].
commuting w.r.t. x, for some x ∈ B+, denoted as x−commuting, if there exists a context
f ∈ C(B) such that for all i ∈ N>0, there exists k ∈ N such that eidc[ε] = f [xk].
non-commuting if there exists no word x ∈ B+ such that ρ is commuting w.r.t x.

Two lassos c1−→ p1
u1|d1−−−→ q1

v1|e1−−−→ q1 and c2−→ p2
u2|d2−−−→ q2

v2|e2−−−→ q2 are said to be synchronised
if u1 = u2 and v1 = v2. They are said to be strongly balanced if ‖e1‖ = ‖e2‖.

Given an integer k > 1, we consider the k-th power of T , that we denote by T k. A run in
T k naturally corresponds to k synchronised runs in T , i.e. on the same input word. We lift
the notion of lasso to T k, and we denote them by H1H2, where H1 starts in initial states and
ends in some state q = (qi)i∈{1,...,k} ∈ Qk, and H2 is a loop around state q. In the sequel, we
will only consider lassos such that q contains pairwise distinct states (qi 6= qj for all i 6= j).
Those lassos are included in the lassos in T 6|Q| = ∪16k6|Q|T k.

The intuition given by Example 14 is formalised in the following Lemma:

I Lemma 16. Let H1H2 = (ρj)j∈{1,...,k} a lasso in T k, for some 1 6 k 6 |Q|. We write

ρj : cj−→ pj
u1|dj−−−→ qj

u2|ej−−−→ qj for each j. Then there exists an integer m ∈ N such that
|ej | = m for all j ∈ {1, . . . , k}. If m > 0, we say that the lasso H1H2 is productive, and:

either there exists x ∈ B+ primitive such that ρj is x−commuting for all j ∈ {1, . . . , k}.
In this case, we say that the lasso H1H2 is x−commuting, and we let powc(x,H1, H2) =
m/|x| and splitc(x,H1, H2) = {(qj , fj) | j ∈ {1, . . . , k}} where fj ∈ C(B) is such that
∀α ∈ N, eαj djcj [ε] = fj [xα powc(x,H1,H2)].1

or there exist f ∈ C(B) and w ∈ B∗ such that ρj is non-commuting and (f, w)−aligned
for all j ∈ {1, . . . , k}. In this case, we say that the lasso H1H2 is (f, w)−aligned, and
we let splitnc(f, w,H1, H2) = {(qj , gj) | j ∈ {1, . . . , k}} where gj ∈ C(B) is such that
∀α ∈ N, eαj djcj [ε] = gjf

α[w].1

Proof Sketch. As T satisfies the CTP, the outputs must grow at the same pace when
the loops are pumped. This entails that the lengths of the ej must be equal. Next, the
result is proved by considering two productive synchronised lassos, with loops producing
respectively e1 and e2. If they are not strongly balanced or one of them is x−commuting,
for some x ∈ B+, then, using the result of Fine and Wilf (Lemma 1) between ←−e1 ,

←−e2 ,
−→e1

and −→e2 , we can prove that the other one is also x−commuting. Otherwise, they are both
non-commuting and strongly balanced. Using again Lemma 1 but first between ←−e1 and ←−e2 ,
and then between −→e1 and −→e2 , we prove that there exist f ∈ C(B) and w ∈ B∗ such that ρ1 and
ρ2 are (f, w)−aligned. Finally, the result is lifted to k productive synchronised lassos. J

I Example 17. We consider the example S2C in Figure 2. The lasso in T 2
1 around (q1, q2) is

a−commuting. We can compute a powc of 2 and {(q1, (a, a)), (q2, (b, a))} as a possible splitc.
The lasso in T 2

2 around (q1, q2) is ((ab, de), c)−aligned. We can compute {(q1, cε), (q2, (b, d))}
as a possible splitnc.

1 Because we only consider lassos around pairwise distinct states, both splitc(x, H1, H2) and
splitnc(f, w, H1, H2) are partial functions from Q to C(B).
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5.2 Analysis of Loops Consecutive to a Productive Loop
Consider a run that contains two consecutive productive loops. We can observe that the type
(commuting or non-commuting) of the lasso involving the first loop impacts the possible types
of the lasso involving the second loop. For instance, it is intuitive that a non-commuting
lasso cannot be followed by a commuting lasso. Similarly, an x−commuting lasso cannot
be followed by a y−commuting lasso, if x and y are not conjugates. We will see that
loops following a first productive loop indeed satisfy stronger combinatorial properties. The
following definition characterises their properties.

I Definition 18 (Strongly commuting/Strongly aligned lasso). Let ρ be a productive lasso
c−→ p

u|d−−→ q
v|e−−→ q and x ∈ B+. We say that ρ is:

strongly commuting w.r.t. x, denoted as strongly−x−commuting, if there exists a context
f ∈ C(B) such that for all i, j ∈ N>0, there exists k ∈ N such that eidc[xj ] = f [xk].
strongly aligned w.r.t. g, f and x, denoted as strongly−(g, f, x)−aligned, if there exists
a context h ∈ C(B) such that for all i, j ∈ N, ejdc[xi] = hgjf [xi].

The following Lemma states the properties of a lasso consecutive to a commuting lasso.
To prove it, we proceed as for Lemma 16 by proving the result first for two runs and then
lifting it to k runs. The case of two runs is obtained by distinguishing whether they are
strongly balanced or not, and using Lemma 1.

I Lemma 19. Let H1H2 a productive x−commuting lasso in T 6|Q|, for some x ∈ B+.
Let ∆ = splitc(x,H1, H2) and H3H4 = (ρj)j∈{1,...,k} a productive lasso in T k∆, for some

1 6 k 6 |Q|. We write ρj : cj−→ pj
u1|dj−−−→ qj

u2|ej−−−→ qj for each j. Then:
either every ρj is strongly−x−commuting: we say that H3H4 is strongly−x−commuting,
or there exist g, h ∈ C(B) such that every ρj is strongly−(h, g, x)−aligned. In this case,
we say that H3H4 is strongly−(h, g, x)−aligned and we let extractnc(h, g, x,∆, H3, H4) =
{(qj , hj) | j ∈ {1, . . . , k}} where hj ∈ C(B) is s.t. ∀α, β ∈ N, eαj djcj [xβ ] = hjh

αg[xβ ].

The following Lemma states that once a non-commuting loop is encountered, then the
alignment of production is fixed, i.e. no transfer between left and right productions is
possible anymore. Hence, the left and right S2S derived from the S2C both satisfy the
twinning property:

I Lemma 20. Let H1H2 be a productive non-commuting lasso that is either
(f, w)−aligned in T 6|Q|, for some f ∈ C(B) and w ∈ B∗, and ∆′ = splitnc(f, w,H1, H2),
or strongly−(g, f, x)−aligned in T 6|Q|

∆ , for some g, f ∈ C(B) and ∆ ∈ F(Q, C(B)), and
∆′ = extractnc(g, f, x,∆, H1, H2).

Then ←−T∆′ and −→T∆′ both satisfy the twinning property.

5.3 A Two-loop Pattern Property
The following 2-loop property summarises the combinatorial properties of the synchronised
runs involving loops in string-to-context transducers that satisfy the CTP.

I Definition 21 (2-loop property). Given four runs H1, H2, H3, H4 in T 6|Q|, such that H1H2
and (H1H3)H4 are lassos in T 6|Q|, we say that they satisfy the 2-loop property if:
1. H1H2 is

a. either non productive,
b. or productive and x−commuting, for some x ∈ B+,
c. or productive, non-commuting and (f, w)−aligned, for some f ∈ C(B) and w ∈ B∗.
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2. if H1H2 is productive and x−commuting, we let ∆ = splitc(x,H1, H2), then H3H4 is a
lasso in T 6|Q|

∆ . If productive then it is:
a. either strongly−x−commuting,
b. or non-commuting and strongly−(h, g, x)−aligned, for some g, h ∈ C(B). We let

∆′ = extractnc(h, g, x,∆, H3, H4), then ←−T∆′ and −→T∆′ both satisfy the twinning property.
3. if H1H2 is productive, non-commuting and (f, w)−aligned, we let

∆ = splitnc(f, w,H1, H2), then ←−T∆ and −→T∆ both satisfy the twinning property.

A string-to-context transducer T is said to satisfy the 2-loop property if for all runs
H1, H2, H3, H4 as above, they satisfy the 2-loop property.

As a consequence of Lemmas 16, 19 and 20, we have:

I Lemma 22. If an S2C T satisfies the CTP then it satisfies the 2-loop property.

6 Determinisation

Throughout this section, we consider a string-to-context transducer T = (Q, tinit, tfinal, T )
from A∗ to B∗ that satisfies the 2-loop property. Intuitively, our construction stores the set
of possible runs of T , starting in an initial state, on the input word read so far. These runs
are incrementally simplified by erasing synchronised loops, and by replacing a prefix by a
partial function ∆ : Q ↪→ C(B). These simplifications are based on the 2-loop property.

Observation. It is worth noticing that, as T is functional, if two runs reach the same state,
it is safe to keep only one of them. This allows us to maintain a set of at most |Q| runs.

Notations. Given ∆ ∈ F(Q, C(B)), c ∈ C(B), w ∈ B∗, a ∈ A and H ∈ R(T 6|Q|), we define
the following notations and operations:

∆c = {(q, dc) | (q, d) ∈ ∆},
∆[w] = {(q, d[w]) | (q, d) ∈ ∆},
∆ • a = choose({(q′, dc) | (q, c) ∈ ∆ and q a|d−−→ q′}),
H •a ∈ R(T 6|Q|) is the run obtained by extending runs of H with consecutive transitions
of T associated with input symbol a, and by eliminating runs so as to ensure that runs
reach pairwise distinct states of T ,
∆ •H = choose({(q′, dc) | (q, c) ∈ ∆ and there is a run ρ : q x|d−−→ q′ ∈ H}),
id∆ = (qi)16i6k ∈ R(T k), for some enumeration {q1, . . . , qk} of dom(∆).

Construction. We define an equivalent deterministic string-to-context transducer D =
(Q, tinit, tfinal, T ), and we denote by D its trim part. While D may have infinitely many states,
we will prove that D is finite. Formally, we define Q = Qstart ]Qcom ]Q¬com where:

Qstart = {(ε, tinit, H) | H ∈ R(T 6|Q|)}
Qcom = {(x,∆, H) | x ∈ B+,∆ ∈ F(Q, C(B)), H ∈ R(T 6|Q|)}
Q¬com = {(⊥,∆, id∆) | ∆ ∈ F(Q, C(B))}.

By definition, we have Q ⊆ (B∗ ∪ {⊥}) × F(Q, C(B)) × R(T 6|Q|) = Q∞. Given
q = (x,∆, H) ∈ Q∞, we let ∆q = ∆ •H ∈ F(Q, C(B)). An invariant of our construction is
that every starting state of a run in H belongs to dom(∆).
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Intuitively, the semantics of a state q = (x,∆, H) ∈ Q can be understood as follows: x is
used to code the type of state (Qstart, Qcom or Q¬com), and ∆ and H are used to represent
the runs that remain to be executed to faithfully simulate the runs of T on the input word u
read so far. As we have seen in the previous section, loops may either be commuting, allowing
to shift some parts of the output from one side of the context to the other side, or they
are non-commuting, and then should be aligned, forbidding such modifications. Intuitively,
states in Qstart correspond to situations in which no productive loop has been encountered
yet. States in Qcom (with x ∈ B+) correspond to situations in which only x-commuting loops
have been encountered. States in Q¬com correspond to situations in which a non-commuting
loop has been encountered. A representation of D is given in Figure 3.

Qstart Qcom Q¬com

x-com

¬com

¬com

¬prod ¬prod ∨ x-com

Figure 3 A schematic representation of states and transitions of D.

Initial and final states. They are defined as follows:
tinit = {(i, cε)} where i = (ε, tinit, idtinit) ∈ Qstart
tfinal = choose({(q̄, dc) | q ∈ Q, (p, c) ∈ ∆q̄, (p, d) ∈ tfinal})

Transitions. They are defined as follows:
D = {p a|c−−→ q | p = (x,∆, H) ∈ Q, a ∈ A and (q, c) = simplify((x,∆, H • a))}

Intuitively, a transition of D leaving some state p = (x,∆, H) ∈ Q with letter a ∈ A aims at
first extending H with a, obtaining the new set of runs H • a, and then simplifying this set
of runs by removing loops, using the function simplify. This function is implemented as
Algorithm 2, which calls Algorithm 1 to remove all loops of H • a one by one. Depending on
the type of the loop encountered, the type of the state is updated.

We first define extend_with_loop(p,H2) in Algorithm 1 that takes as input a state
p = (x,∆, H1) ∈ Qstart ∪ Qcom and a run H2 in T 6|Q| such that H1H2 is a lasso in T 6|Q|

∆ .
The algorithm enumerates the possible cases for the type of this lasso, depending on the type
of p. This enumeration strongly relies on the 2-loop property. Depending on the case, the
loop is processed, and a pair composed of a new state and a context is returned. This context
will be part of the output associated with the transition. By a case analysis, we prove:

I Lemma 23. Let p = (x,∆, H1) ∈ Qstart ∪Qcom and H2 ∈ R(T 6|Q|) such that H1H2 is a
lasso in T 6|Q|

∆ . We let (q, c) = extend_with_loop(p,H2).
If x = ε then (∆p •H2)[ε] = ∆qc[ε].
If x ∈ B+ then for all k ∈ N, (∆p •H2)[xk] = ∆qc[xk].

We then define simplify(p) in Algorithm 2 that takes as input a state p ∈ Q∞ (we need
to consider Q∞ as input and not only Q because of the recursive calls) and returns a pair
composed of a new state and a context. Intuitively, it recursively processes the lassos present
in the runs stored by the state p, by using calls to the previous algorithm. The following
result is proved by induction, using Lemma 23:
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Algorithm 1 Extending a state p = (x,∆, H1) ∈ Qstart ∪ Qcom with H2 ∈ R(T 6|Q|) s.t.
H1H2 is a lasso in T 6|Q|

∆ .
1: function extend_with_loop(p,H2)
2: if H2 is non-productive then
3: return (p, cε)
4: else if p = (ε, tinit, H1) then
5: if H1H2 is x−commuting, for some x ∈ B+, then
6: let ∆ = splitc(x,H1, H2) and k = powc(x,H1, H2)
7: return ((x,∆, id∆), (ε, xk))
8: else if H1H2 is (f, w)−aligned, for some f ∈ C(B) and w ∈ B∗, then
9: let ∆ = splitnc(f, w,H1, H2)
10: return ((⊥,∆, id∆), f · (ε, w))
11: end if
12: else if p = (x,∆0, H1), where x ∈ B+, then
13: if H1H2 is strongly−x−commuting then
14: let k = |out(H2)|/|x|
15: return (p, (ε, xk))
16: else if H1H2 is strongly−(g, f, x)−aligned, for some g, f ∈ C(B), then
17: let ∆ = extractnc(g, f, x,∆0, H1, H2)
18: return ((⊥,∆, id∆), gf)
19: end if
20: end if
21: end function

I Lemma 24. Let p = (x,∆, H) ∈ Q∞ and (q, c) = simplify(p). Then q ∈ Q and we have:
If x = ε then ∆p[ε] = ∆qc[ε].
If x ∈ B+ then for all k ∈ N, ∆p[xk] = ∆qc[xk].
If x = ⊥ then ∆p = ∆qc.

I Theorem 25. D is a finite sequential string-to-context transducer equivalent to T .

Proof Sketch. First observe that D is sequential. The correctness of D is a consequence
of the following property, that we prove using Lemma 24 and an induction on |u|: for all
u ∈ A∗, if we have i u|c−−→ q in D, then ∆qc[ε] = (tinit • u)[ε]. Last, we prove that D is finite.
By construction, for every state q = (x,∆, H) of D, H contains no loop, hence its length is
bounded by |Q||Q|. This can be used to bound the size of x, as well as the size of ∆, for states
in Qstart ∪Qcom. The case of states in Q¬com is different: when such a state (⊥,∆, id∆) is
reached, then by the 2-loop property, the transducers ←−T∆ and −→T∆ both satisfy the (classical)
twinning property. It remains to observe that the operations performed on Line 24 precisely
correspond to two determinisations of [12], on both sides of the S2C. J

7 Decision

In this section, we prove the following result:

I Theorem 26. Given a string-to-context transducer, determining whether there exists an
equivalent sequential string-to-context transducer is in coNP.
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Algorithm 2 Simplifying a state p = (x,∆, H) ∈ Q∞.
22: function simplify(p)
23: if p = (⊥,∆, H) then
24: let ∆′ = ∆ •H, c = lcc(∆′) and q = (⊥,∆′.c−1, id∆′)
25: return (q, c)
26: else if p = (x,∆, H1H2H3), where x ∈ B∗ and H2 is the first loop in H, then
27: let q = (x,∆, H1)
28: let (r, c) = extend_with_loop(q,H2) with r = (x′,∆′, H ′)
29: let (s, d) = simplify((x′,∆′, H ′.H3))
30: return (s, dc)
31: else
32: return (p, cε)
33: end if
34: end function

In order to show this result, we introduce a restriction of the 2-loop property:

I Definition 27 (small-2-loop property). A string-to-context transducer T is said to satisfy
the small-2-loop property if, for all runs H1, H2, H3, H4 ∈ T 2 with |Hi| 6 |Q|2 for each i,
H1H2, H1H3H4 are lassos and they satisfy the 2-loop property (in the sense of Definition 21).

By definition, if a string-to-context transducer satisfies the 2-loop property then it also
satisfies the small-2-loop property. We will show that the two properties are equivalent.

I Lemma 28. If a string-to-context transducer T satisfies the small-2-loop property then
[[T ]] satisfies the contextual Lipschitz property.

Proof Sketch. We claim there exists K ∈ N such that for every pair of synchronised runs
H : (c0,d0)−−−−→ (p0, q0) u|(c1,d1)−−−−−→ (p1, q1) in T 2, we have distf (c1c0[ε], d1d0[ε]) 6 K. The result
then easily follows. To prove this claim, we apply the main procedure simplify (see Section 6)
to the state p = (ε, tinit, H). This procedure can indeed be applied: as it always processes
the first loop (see Line 29), the lassos considered satisfy the premises of the small-2-loop
property. The claim follows from the proof of finiteness of D. J

Proof Sketch of Theorem 26. By Theorem 11 and Lemma 28, T admits an equivalent
sequential S2C transducer iff T satisfies the small-2-loop property (see also Figure 4). Thus,
we describe a procedure to decide whether T satisfies the small-2-loop property.

The procedure first non-deterministically guesses a counter-example to the small-2-loop
property and then verifies that it is indeed a counter-example. By definition of the small-2-
loop property, the counter-example can have finitely many shapes. Those shapes require the
verification of the properties of the involved lassos: being productive or not, being commuting
or not, being aligned or not, satisfying the (classical) twinning property, etc.

Verifying that a lasso in T 2 is not commuting (resp. not aligned) boils down to checking
whether there exists no x ∈ B+ such that the lasso is x−commuting (resp. no f ∈ C(B) and
w ∈ B∗ such that the lasso is (f, w)−aligned). In both cases, the search space for the words
x,w and context f can be narrowed down to factors of the output contexts of the given lasso.
Thus these verifications can be done in polynomial time. The classical twinning property can
also be checked in polynomial time. As a summary, we can show that the verifications for all
the shapes can be done in polynomial time. Furthermore, all the shapes are of polynomial
size, by definition of the small-2-loop property, yielding the result. J
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Figure 4 Overview of the equivalent properties we consider.

Note that if one can express in the logic of [18] that a lasso in T 2 is not commuting
(resp. not aligned), then this would show that the problem can be solved in polynomial time.
However, this seems difficult because of the universal quantification on the factor x.

8 Conclusion

We have proposed a multiple characterisation of string-to-context transducers that admit an
equivalent sequential S2C, including a machine independent property, a pattern property,
as well as a “small” pattern property allowing to derive a decision procedure running in
non-deterministic polynomial time. All these equivalences are summarised in Figure 4.
Future work includes a lower bound for the complexity of the problem, the extension of this
work to the register minimisation problem for streaming string transducers without register
concatenation, and the extension of our results to infinite words.
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Abstract
The reachability problem in lossy counter machines is the best-known ACKERMANN-complete problem
and has been used to establish most of the ACKERMANN-hardness statements in the literature. This
hides however a complexity gap when the number of counters is fixed. We close this gap and prove
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1 Introduction

Mayr and Meyer exhibited in 1981 “the first uncontrived decidable problems which are not
primitive-recursive,” namely the finite containment and equality problems in Petri nets [31].
McAloon [33], Clote [8], and Howell and Yen [23] subsequently proved Ackermannian upper
bounds for these two problems, essentially matching Mayr and Meyer’s lower bound.

Such an astronomical complexity could have been an isolated phenomenon with only a few
examples related to the original problems, but uncontrived problems with a similar complexity
actually occur in logic (e.g., relevance logic [47], data logics [11, 15], interval temporal logic [35],
linear logic [28], metric temporal logic [27]), verification (e.g., counter machines [43, 22],
fragments of the π-calculus [4], broadcast protocols [42], rewriting systems [20], register
automata [11, 17]), and games (e.g., partial observation energy games [36], bisimulation
games on pushdown automata [24]), and even higher complexities also occur naturally [29, 6,
37, 19, 18, 10]; see [38, Sec. 6] for an overview.

This abundance of results is largely thanks to a framework [41, 42, 39] that comprises:
The definition of an ordinal-indexed hierarchy (Fα)α of fast-growing complexity classes,
along with assorted notions of reductions and completeness suitable to work with such high
complexities [38]. The previous decision problems are complete for ACKERMANN = Fω
under primitive-recursive reductions; Fω is the lowest non primitive-recursive class in the
hierarchy, where TOWER = F3 corresponds to problems solvable in time bounded by a
tower of exponentials and where each Fk for a finite k is primitive-recursive.
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The identification of master decision problems, which allow to establish completeness more
easily than from first principles. For instance, reachability in lossy counter machines [47,
43, 45] plays a similar role for ACKERMANN as, e.g., 3SAT for NP or QBF for PSPACE,
and has been used to derive most of the known ACKERMANN-hardness results [4, 11, 15,
35, 27, 22, 20, 17, 24].
Lower bound techniques for establishing the complexity of such master problems: this
typically relies on implementing weak computers for Hardy functions and their inverses in
the formalism at hand, allowing to build a large but bounded working space on which a
Turing or a Minsky machine can then be simulated [47, 43, 45, 6, 37, 19, 18].
Upper bound techniques relying on combinatorial statements, called length function
theorems, on the length of controlled bad sequences over well-quasi-orders, which are used
to prove the termination of the decision procedures [33, 8, 49, 7, 14, 40, 3, 37].

From an algorithmic perspective, these results are negative and one could qualify such
problems as merely “not undecidable”. What we gain however are insights into the computa-
tional power of the models, allowing to compare them and to identify the main sources of
complexity – e.g., in lossy counter machines, the key parameter is the number of counters.
Furthermore, from a modelling perspective, a formalism with a tremendous computational
power that nevertheless falls short of Turing completeness can be quite satisfactory.

Contributions. In this paper, we revisit the proof of the best-known result in this area,
namely the ACKERMANN-completeness of reachability in lossy counter machines (LCMs).
Those are simply multi-counter Minsky machines with a lossy semantics that allows the
counters to decrease in an uncontrollable manner during executions; see Section 2.

The gap in the current state of knowledge appears when one fixes the key complexity
parameter, i.e., the number d of counters. Indeed, the best known lower bound for LCM
reachability is Fd-hardness when d ≥ 3 [39, Thm. 4.9], but the best known upper bound
is Fd+1 [14, 41, 3]. This complexity gap reveals a serious shortcoming of the framework
advertised earlier in this introduction, and also impacts the complexity of many problems
shown hard through a reduction from LCM reachability.

Our first main contribution in Proposition 8 is an Fd upper bound, which together with
the lower bound from [39, Thm. 4.9] entails the following completeness result.

I Theorem 1. LCM Reachability is Fω-complete, and Fd-complete if the number d ≥ 3 of
counters is fixed.

Note that this provides an uncontrived decision problem for every class Fk with 3 ≤ k ≤
ω, whereas no natural Fk-complete problems were previously known for the intermediate
primitive-recursive levels strictly between TOWER and ACKERMANN, i.e., for 3 < k < ω.

As we recall in Section 3, reachability in lossy counter machines can be solved using
the generic backward coverability algorithm for well-structured systems [1, 16]. As usual,
we derive our complexity upper bound by bounding the length of the bad sequences that
underlie the termination argument for this algorithm. The main obstacle here is that the
length function theorems in [14, 41, 3] – i.e., the bounds on the length of controlled bad
sequences over Nd – are essentially optimal and only yield an Fd+1 complexity upper bound.

We circumvent this using a new approach in Section 4. We restrict our attention to
strongly controlled bad sequences rather than the more general amortised controlled ones (see
Section 4.1), which in turn allows us to work on the antichain factorisations of bad sequences
(see Section 4.2). This entails that, in order to bound the length of strongly controlled
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bad sequences, it suffices to bound the length of strongly controlled antichains. This is
tackled in Section 5, where we prove a width function theorem on the length of controlled
antichains over Nd; to the best of our knowledge, this is the first statement of this kind
specific to antichains rather than bad sequences. We wrap up with the proof of Proposition 8
in Section 6.

The developments of Sections 4 and 5 form our second main contribution. They are of
wide interest beyond lossy counter machines, as they can be applied whenever the termination
of an algorithm relies on Nd having finite (controlled) bad sequences or antichains.

2 Lossy Counter Machines

Syntax. A lossy counter machine (LCM) [32] is syntactically identical to a Minsky machine
M = (Q, C, δ), where the transitions in δ ⊆ Q× C× {=0?, ++, --} ×Q operate on a finite set
Q of control locations and a finite set C of counters through zero-tests c=0?, increments c++
and decrements c--.

Operational Semantics. The semantics of an LCM differ from the usual, ‘reliable’ semantics
of a counter machine in that the counter values can decrease in an uncontrolled manner at
any point of the execution. Formally, a configuration q(v) associates a control location q
in Q with a counter valuation v in NC, i.e. counter values can never go negative. The set
of configurations Q × NC is ordered by the product ordering: q(v) ≤ q′(v′) if q = q′ and
v(c) ≤ v′(c) for all c ∈ C.

A transition of the form (q, c, op, q′) ∈ δ defines a set of reliable computation steps
q(v)→ q′(v′), where v(c′) = v′(c′) for all c 6= c′ in C and

if op = =0?, then v(c) = v′(c) = 0,
if op = ++, then v(c) + 1 = v′(c), and
if op = --, then v(c) = v′(c) + 1.

A lossy computation step is then defined by allowing counter values to decrease arbitrarily
between reliable steps: q(v)→` q

′(v′) if there exist w ≤ v and w′ ≥ v′ such that q(w)→
q′(w′). We write as usual →∗` for the transitive reflexive closure of →`.

Reachability. The decision problem we tackle in this paper is the following.

I Problem (LCM Reachability).
instance A lossy counter machine (Q, C, δ) and two configurations q0(v0) and qf (vf ).
question Is qf (vf ) reachable from q0(v0), i.e., does q0(v0)→∗` qf (vf )?

Note that, due to the lossy semantics, this is equivalent to the coverability problem, which
asks instead whether there exists v ≥ vf such that q0(v0)→∗` qf (v). Indeed, such a v exists
if and only if q0(v0) ≥ qf (vf ) or q0(v0)→∗` qf (vf ).

While many problems are undecidable in LCMs [32, 44], these systems are in fact well-
structured in the sense of [1, 16], which means that their coverability problem is decidable,
as further discussed in Section 3. The ACKERMANN-hardness of reachability was first shown
by Schnoebelen [43] in 2002,1 while an ACKERMANN upper bound follows from the length
function theorems for Dickson’s Lemma [33, 8, 14, 41, 3]. Note that LCM reachability is
equivalent to reachability in counter machines with incrementing errors [11] and to coverability
in reset counter machines [45, Sec. 6], and this also holds if we fix the number of counters.

1 Urquhart [47] showed independently in 1999 and using a similar approach the same result for the closely
related model of alternating expansive vector addition systems.
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3 Well Structured Systems

Well-structured transition systems (WSTS) [1, 16] form a family of computational models
where the (usually infinite) set of configurations is equipped with a well-quasi-ordering
(see Section 3.1) that is “compatible” with the computation steps (see Section 3.2). The
existence of this well-quasi-ordering allows for the decidability of some important behavioural
properties like termination (from a given initial configuration) or coverability, see Section 3.3.

3.1 Well-Quasi-Orders
A quasi-order (qo) is a pair (X,≤) where ≤ ⊆ X ×X is transitive and reflexive; we write
x < y for the associated strict ordering, when x ≤ y and y 6≤ x, x ⊥ y for incomparable
elements, when x 6≤ y and y 6≤ x, and x ≡ y for equivalent elements, when x ≤ y and y ≤ x.
The upward-closure ↑Y of some Y ⊆ X is defined as ↑Y def= {x ∈ X | ∃y ∈ Y . x ≥ y}; we
write ↑x instead of ↑{x} for singletons and say that a set U ⊆ X is upwards-closed when
U = ↑U . We call a finite or infinite sequence x0, x1, x2, . . . over X bad if for all indices i < j,
xi 6≤ xj ; if xi ⊥ xj for all i < j, then x0, x1, x2, . . . is an antichain.

A well-quasi-order (wqo) [21, 26] is a qo (X,≤) where bad sequences are finite. Equi-
valently, (X,≤) is a wqo if and only if it is both well-founded, i.e., there does not exist
any infinite decreasing sequences x0 > x1 > x2 > · · · of elements in X, and has the finite
antichain condition, i.e., there are no infinite antichains. Still equivalently, (X,≤) is a wqo if
and only if it has the ascending chain condition: any increasing sequence U0 ⊆ U1 ⊆ U2 ⊆ · · ·
of upwards-closed subsets of X eventually stabilises, i.e.,

⋃
i∈N Ui = Uk = Uk+1 = Uk+2 = · · ·

for some k. Still equivalently, (X,≤) is a wqo if and only if it has the finite basis property:
any non-empty subset contains at least one, and at most finitely many minimal elements (up
to equivalence); thus if U ⊆ X is upwards-closed, then minU is finite and U = ↑(minU).

For a basic example, consider any finite set Q along with the equality relation, which is
a wqo (Q,=) by the pigeonhole principle. Any well-order is a wqo, thus the set of natural
numbers and any of its initial segments [k] def= {0, . . . , k− 1} along with their natural ordering
are also wqos. More examples can be constructed using algebraic operations: for instance, if
(X0,≤X0) and (X1,≤X1) are wqos, then so are:

their disjoint sum (X0 tX1,≤) where X0 tX1
def= {(x, 0) | x ∈ X0} ∪ {(x, 1) | x ∈ X1}

and (x, i) ≤ (y, j) if i = j and x ≤Xi y;
their Cartesian product (X0 × X1,≤) where (x0, x1) ≤ (y0, y1) if xi ≤Xi yi for all
0 ≤ i ≤ 1; in the case of (Nd,≤), this result is also known as Dickson’s Lemma [12].

Note that the set of configurations (Q×NC,≤) of an LCM is a wqo for the product ordering.

3.2 Compatibility
An ordered transition system S = (S,→,≤) combines a set S of configurations with a
transition relation → ⊆ S × S and a quasi-ordering ≤ of its configurations. An ordered
transition system S = (S,→,≤) is well-structured if (S,≤) is a wqo and

∀s1, s2, t1 ∈ S,
(
s1 → s2 and s1 ≤ t1

)
implies ∃t2 ∈ S,

(
t1 → t2 and s2 ≤ t2

)
. (1)

This property is also called compatibility (of the ordering with the transitions). Formally, it
just means that ≤ is a simulation relation for (S,→), in precisely the classical sense of [34].
The point of (1) is to ensure that a larger configuration can do at least as much as a smaller
configuration. For instance, lossy steps in a LCM are visibly compatible with ≤ according
to (1), and thus the transition system (Q × NC,→`,≤) defined by the lossy operational
semantics of a LCM is a WSTS.
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3.3 Coverability
We focus here on the coverability problem: given a WSTS (S,→,≤) and two configurations
s, t ∈ S, does s cover t, i.e., does there exist t′ ≥ t such that s →∗ t′? The decidability of
this problem uses a set-saturation method first introduced by Arnold and Latteux [5] for
reset Petri nets, but the algorithm was independently rediscovered by Abdulla et al. [2] for
lossy channel systems and its generic formulation was popularised in the surveys [1, 16].

Backward Coverability. The algorithm computes Pre∗∃(↑t)
def= {s′ ∈ S | ∃t′ ≥ t, s′ →∗ t′},

i.e., the set of configurations that cover t; it only remains to check whether s ∈ Pre∗∃(↑t) in
order to answer the coverability instance. More precisely, for a set of configurations U ⊆ S,
let us define its (existential) predecessor set as Pre∃(U) def= {s ∈ S | ∃s′ ∈ U, s → s′}. The
algorithm computes the limit of the sequence U0 ⊆ U1 ⊆ · · · defined by

U0
def= ↑t , Un+1

def= Un ∪ Pre∃(Un) . (2)

Note that for all n, Un = {s′ ∈ S | ∃t′ ≥ t, s′ →≤n t′} is the set of configurations that cover
t in at most n steps, and that we can stop this computation as soon as Un+1 ⊆ Un.

There is no reason for the chain defined by (2) to stabilise in general ordered transition
systems, but it does in the case of a WSTS. Indeed, Pre∃(U) is upwards-closed whenever
U ⊆ S is upwards-closed, thus the sequence defined by (2) stabilises to

⋃
i∈N Ui = Pre∗∃(↑t)

after a finite amount of time thanks to the ascending chain condition. Moreover, the finite
basis property ensures that all the sets Ui can be finitely represented using their minimal
elements, and the union or inclusion of two upwards-closed sets can be computed on this
representation. The last ingredients are two effectiveness assumptions:

(S,≤) should be effective, meaning that S is recursive and the ordering ≤ is decidable,
there exists an algorithm returning the set of minimal predecessors min Pre∃(↑s′) of any
given configuration s′; this is known as the effective pred-basis assumption.

These two assumptions hold in LCMs: (Q×NC,≤) is certainly effective, and the minimal
predecessors of a configuration q′(v′) can be computed by

min Pre∃(↑q′(v′)) = min{q(prec op(v′)) | (q, c, op, q′) ∈ δ and v′(c) = 0 if op = =0?} (3)

where prec op(v′) is a vector in NC defined by prec op(v′)(c′) def= v′(c′) for all c′ 6= c in C and

prec=0?(v′)(c) def= 0 , prec++(v′)(c) def= max{0,v′(c)− 1} , prec--(v′)(c) def= v′(c) + 1 . (4)

Coverability Pseudo-Witnesses. Let us reformulate the termination argument of the back-
ward coverability algorithm in terms of bad sequences. We can extract a sequence of elements
t0, t1, . . . from the ascending sequence U0 ( U1 ( · · · defined by (2) before saturation: t0 def= t

and ti+1 ∈ Ui+1 \ Ui for all i. Note that if i < j, then tj ∈ Uj \ Ui and therefore ti 6≤ tj : the
sequence t0, t1, . . . is bad and therefore finite. In fact, we can even pick ti+1 at each step
among the minimal elements of Pre∃(↑ti); we call such a bad sequence t0, t1, . . . , tn with

t0
def= t , ti+1 ∈ min Pre∃(↑ti) \ Ui . (5)

a pseudo-witness of the coverability of t. The maximal length of pseudo-witnesses is therefore
equal to the number of steps of the backward coverability algorithm, and this is what we will
bound in the upcoming Sections 4 and 5.

ICALP 2019
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4 Controlled Bad Sequences and Antichains

As we have just discussed, the running time of the backward coverability algorithm is
essentially bounded by the length of the bad sequences constructed by its termination
argument. Though bad sequences over a wqo are finite, we cannot bound their lengths in
general; e.g., (0, n+ 1), (0, n), . . . , (0, 0) and (1, 0), (0, n), (0, n− 1), . . . , (0, 1), (0, 0) are bad
sequences over N2 of length n+ 2 for all n. Nevertheless, a bad sequence produced by an
algorithm like the backward coverability algorithm of Section 3.3 is not arbitrary, because its
elements are determined by the algorithm’s input and the complexity of its operations. We
capture this intuition formally through controlled sequences.

4.1 Controlling Sequences
Norms. Given a wqo (X,≤X), we posit a norm function | . |X :X → N; if x ≤X x′ implies
|x|X ≤ |x′|X , we call this norm monotone. In order to be able to derive combinatorial
statements, we require X≤n def= {x ∈ X | |x|X ≤ n} to be finite for every n; we call the
resulting structure (X,≤X , | · |X) a normed wqo (nqo).

We will use the following monotone norms on the wqos we defined in Section 3.1: over a
finite Q, all the elements have the same norm 0; over N or [d], n has norm |n|N = |n|[d] = n;
over disjoint sums X0 t X1, (x, i) uses the norm |x|Xi of its underlying set; finally, over
Cartesian products X × Y , (x, y) uses the infinite norm max(|x|X , |y|Y ).

Controls. Let n0 ∈ N and let g:N→ N be a monotone and inflationary function, i.e., for all
x ≤ x′, g(x) ≤ g(x′) and x ≤ g(x). We say that a sequence x0, x1, x2, . . . of elements in X is
amortised (g, n0)-controlled if

∀i . |xi|X ≤ gi(n0) , (6)

where gi denotes the ith iterate of g. We say that it is strongly (g, n0)-controlled if

|x0|X ≤ n0 and ∀i . |xi+1|X ≤ g(|xi|X) . (7)

By definition, a strongly controlled sequence is also amortised controlled: |x0|X ≤ g0(n0) = n0,
which prompts the name of initial norm for n0, and amortised steps cannot grow faster
than g the control function.

Previous works like [14, 41, 3] focused on the more general amortised controlled sequences,
but strong controlled ones are actually more relevant in practice. For instance, in the case of
LCM coverability, the computation of minimal predecessors in (3–4) shows that the pseudo-
witnesses from (5) of the coverability of a target configuration qf (vf ) are strongly (H, |vf |)-
controlled by the initial norm |vf | = maxc∈C vf (c) and the control function H(x) def= x+ 1.

Length, Norm, and Width Functions. The point of controlled sequences is that their
length can be bounded. Consider for this the tree obtained by sharing the common prefixes
of all the strongly (g, n0)-controlled bad sequences over a normed wqo (X,≤X , | . |X).

This tree is finitely branching by (7) – its branching degree is bounded by the cardinal of
X≤gi(n0) for a node at depth i – , and
it has no infinite branches since bad sequences over (X,≤X) are finite.

By Kőnig’s Lemma, this tree of bad sequences is therefore finite, of some height Ls
g,X(n0)

representing the length of the maximal strongly (g, n0)-controlled bad sequence(s) over X,
and we also let N s

g,X(n0) bound the norms encountered along such sequences; note that
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Figure 1 The antichain factorisation of the strongly (H, 4)-controlled bad sequence (3, 4) (5, 2)
(4, 3) (4, 2) (5, 1) (2, 3) (4, 1) (5, 0) (1, 4) (3, 1) (0, 4) (3, 0) (1, 1) over N2 for H(x) def= x+ 1.

N s
g,X(n0) ≤ gL

s
g,X(n0)(n0) since g is monotone inflationary. Similarly, there exists a max-

imal length, denoted by W a
g,X(n0) (resp. W s

g,X(n0)), for amortised (resp. strongly) (g, n0)-
controlled antichains over X. We call Ls

g,X , N s
g,X , and W s

g,X the strong length, strong norm,
and strong width functions respectively, and W a

g,X the width function. By definition, a
strongly controlled antichain is amortised controlled, i.e.,

W s
g,X(n0) ≤W a

g,X(n0) , (8)

and the length of a bad sequence where all the elements are of norm at most N = N s
g,X(n0)

is bounded by the cardinal of X≤N , i.e.,

Ls
g,X(n0) ≤ |X≤N s

g,X
(n0)| . (9)

Observe that Ls
g,X(|t|X) bounds the number of steps required by the backward coverability

algorithm for a WSTS over (X,≤X , | . |X) with target configuration t where s′ ∈ min Pre(↑t′)
implies |s′|X ≤ g(|t′|X). In the case of LCMs, we are therefore interested in Ls

H,Q×NC(|vf |).

4.2 Antichain Factorisations
Let (X,≤X , | . |X) be a nwqo where | . |X is monotone – i.e., x ≤ x′ implies |x|X ≤ |x′|X – ,
and let x0, x1, . . . , x`−1 ∈ X∗ be a strongly (g, n0)-controlled bad sequence over (X,≤X , | . |X).
Informally, the antichain factorisation of x0, x1, . . . , x`−1 is an ordered forest A where all the
branches are strongly (g, n0)-controlled antichains, siblings are ordered left-to-right by the
strict ordering >X , and such that the pre-order traversal of A yields back the bad sequence.
Consider for instance the example of Figure 1: this bad sequence has length 13, thus the norm
of its elements is at most H12(4) = 16, but because the height of its antichain factorisation
is 4, we can actually bound the norm by H3(4) = 7.

We can compute this factorisation from any strongly (g, n0)-controlled bad sequence.
Formally, A ⊆ X∗ is a prefix-closed finite set of antichains with the prefix ordering as vertical
ordering. Two antichains u and v in A are siblings if u = w ·x and v = w · y for some w ∈ X∗
and x, y ∈ X, and we order such siblings by letting u >X v if x >X y. Given x0, . . . , x`−1,
we let A def= Fact(x0, 1) where

Fact(y0 · · · ym, i) def= {y0 · · · ym} ∪


∅ if i = ` ,

Fact(y0 · · · ymxi, i+ 1) if ∀j . yj 6>X xi ,

Fact(y0 · · · yk−1xi, i+ 1) if k = min{j | yj >X xi} .
(10)
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This corresponds to scanning the elements xi of the bad sequence from left to right while
building the current “rightmost branch” y0 · · · ym ∈ A, which is (by induction on i) a strongly
(g, n0)-controlled antichain and a scattered subword of x0 · · ·xi−1 (thus yj 6≤ xi for all
0 ≤ j ≤ m) such that ym = xi−1. If yj 6>X xi for all 0 ≤ j ≤ m, then y0 · · · ymxi is a
(g, n0)-controlled antichain and a scattered subword of x0 · · ·xi. If otherwise yj >X xi for
some yj , we let k be the minimal such j and we start a new rightmost branch with xi out
of yk−1 (xi is possibly a new root if k = 0); crucially, because | . |X is monotone and xi <X yk,
we have |xi|X ≤ |yk|X ≤ g(|yk−1|X) (or |xi|X ≤ |yk|X ≤ n0 at the root), thus y0 · · · yk−1xi
is again a strongly (g, n0)-controlled antichain and a scattered subword of x0 · · ·xi.

We deduce a bound on the strong norm function in terms of the strong width function.

I Lemma 2 (Antichain Factorisation). Let (X,≤X , |.|X) be a normed wqo with |.|X monotone,
n0 in N, and g:N→ N monotone inflationary. Then N s

g,X(n0) ≤ gW
s
g,X(n0)(n0).

Lemma 2 combined with (8) shows that the strong norm function N s
g,X can be bounded

in terms of the width function W a
g,X . By (9), this will also yield a bound on the strong

length function Ls
g,X . We focus therefore on the width function in the upcoming Section 5.

5 Width Function Theorem

As seen in Section 4, by suitably controlling how large the elements can grow in antichains,
we can derive upper bounds on the time and space required by the backward coverability
algorithm of Section 3. We prove in this section a width function theorem, a combinatorial
statement on the length of amortised controlled antichains over tuples of natural numbers,
which will allow to derive a complexity upper bound for reachability in lossy counter machines.

The high complexities at play here require the use of ordinal-indexed subrecursive functions
in order to denote non-elementary growths. We first recall the definitions of two families
of such functions in Section 5.1; we refer the reader to [46, 41] for further details. We then
prove in Section 5.2 a bound on the width function W a

g,Nd using the framework of [40, 41].

5.1 Subrecursive Hierarchies

Fundamental Sequences and Predecessors. A fundamental sequence for a limit ordinal λ
is a strictly increasing sequence (λ(x))x<ω of ordinal terms with supremum λ. We use the
standard assignment of fundamental sequences to limit ordinals below ε0 in Cantor normal
form, defined inductively by

(γ + ωβ+1)(x) def= γ + ωβ · (x+ 1) , (γ + ωλ)(x) def= γ + ωλ(x) . (11)

This particular assignment satisfies e.g. 0 < λ(x) < λ(y) for all x < y. For instance,
ω(x) = x+ 1, (ωω4 + ωω

3+ω2)(x) = ωω
4 + ωω

3+ω·(x+1).
The predecessor Px(α) of an ordinal term 0 < α < ε0 at x ∈ N is defined inductively by

Px(α+ 1) def= α , Px(λ) def= Px(λ(x)) . (12)

In essence, the predecessor of an ordinal is obtained by repeatedly taking the xth element in
the fundamental sequence of limit ordinals, until we finally reach a successor ordinal and
may remove 1. For instance, Px(ω2) = Px(ω · (x+ 1)) = Px(ω · x+ x+ 1) = ω · x+ x.
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Hardy and Cichoń Hierarchies. Let h:N→ N be a function. The Hardy hierarchy (hα)α∈ε0

and the Cichoń hierarchy (hα)α∈ε0 relative to h are defined for all 0 < α < ε0 by

h0(x) def= x , hα(x) def= hPx(α)(h(x)) , h0(x) def= 0 , hα(x) def= 1 + hPx(α)(h(x)) . (13)

Observe that hk(x) = hPx(k)(h(x)) = hk−1(h(x)) for some finite k is the kth iterate of
h. This intuition carries over: hα is a “transfinite” iteration of the function h, using
diagonalisation in the fundamental sequences to handle limit ordinals. A standard choice
for the function h is the successor function, noted H(x) def= x+ 1; in that case, we see that a
first diagonalisation yields Hω(x) = Hx(x+ 1) = 2x+ 1. The next diagonalisation occurs at
Hω·2(x) = Hω+x(x+ 1) = Hω(2x+ 1) = 4x+ 3. Fast-forwarding a bit, we get for instance
a function of exponential growth Hω2(x) = 2x+1(x + 1) − 1, and later a non-elementary
function Hω3(x) akin to a tower of exponentials of height x, and an “Ackermannian” non
primitive-recursive function Hωω .

Both hα and hα are monotone and inflationary whenever h is monotone inflationary.
Hardy functions are well-suited for expressing large iterates of a control function, and therefore
for bounding the norms of elements in a controlled sequence. Cichoń functions are well-suited
for expressing the length of controlled sequences: we can compute how many times we should
iterate h in order to compute hα(x) using the corresponding Cichoń function [7]:

hα(x) = hhα(x)(x) . (14)

5.2 Width Function for Dickson’s Lemma
The starting point for our analysis is a descent equation for amortised controlled antichains
through residuals, similar to the equations proven in [14, 40] for bad sequences (see Lemma 3).
The key idea introduced in [14] is then to over-approximate the residuals of Nd by working
over polynomial nwqos, where disjoint sums are also allowed. Then, the notion of “over-
approximation” of residuals of polynomial nwqos is captured formally by showing the existence
of a normed reflection into another polynomial nwqo. The final step lifts this to ordinals,
allowing to relate W a

g,X for a polynomial nwqo X to functions in the Cichoń hierarchy.

Strict Polynomial Normed wqos. Let us write X · p for
p times︷ ︸︸ ︷

X t · · · tX, Xd for
d times︷ ︸︸ ︷

X × · · · ×X,
and 0 for the empty nwqo. We call a nwqo of the form Nd1 t · · · t Ndm for some m ≥ 0 and
d1, · · · , dm ≥ 1 a strict polynomial nwqo. The set of configurations Q× NC of an LCM with
|Q| = q locations and |C| = d ≥ 1 counters, along with its ordering and infinite norm, is
isomorphic to the strict polynomial nwqo Nd · q.

Residuals and a Descent Equation. Let (X,≤X , |.|X) be a normed wqo and x be an element
of X. We write X⊥x def= {y ∈ X | x⊥ y} for the residual of X in x. By the finite antichain
condition, there cannot be infinite sequences of residuations (· · · ((X⊥x0)⊥x1)⊥x2 · · · )⊥xi
because xi ⊥ xj for all i < j and it would create an infinite antichain.

Consider now an amortised (g, n0)-controlled antichain x0, x1, x2, . . . over X. Assuming
the sequence is not empty, then for all i > 0, x0 ⊥ xi, i.e. the suffix x1, x2, . . . is actually an
antichain over X⊥x0 . This suffix is now amortised (g, g(n0))-controlled, and thus of length
bounded by W a

g,X⊥x0
(g(n0)). This yields the following descent equation when considering all

the possible amortised (g, n0)-controlled antichains; see the full version for a proof.

I Lemma 3. Let (X,≤X , | . |X) be a nwqo, n0 ∈ N and g:N → N. Then W a
g,X(n0) =

maxx∈X≤n0
1 +W a

g,X⊥x
(g(n0)).
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Reflecting Normed wqos. The descent equation, though it offers a way of computing
the width function, quickly leads to complex residual expressions. We are going to over-
approximate these X⊥x’s using nwqo reflections, so that the computation can be carried
out without leaving the realm of strict polynomial nwqos, leading to an inductive over-
approximation of X⊥x over the structure of the strict polynomial nwqo X.

A nwqo reflection [40] is a mapping r:X → Y between two nwqos (X,≤X , | . |X) and
(Y,≤Y , | . |Y ) that satisfies the two following properties:

∀x, x′ ∈ X. r(x) ≤Y r(x′) implies x ≤X x′ , (15)
∀x ∈ X. |r(x)|Y ≤ |x|X . (16)

In other words, a nwqo reflection is an order reflection that is not norm-increasing. This
induces a quasi-ordering between nwqos, written X ↪→ Y . Remark that reflections are
compatible with disjoint sums and products [40, Prop. 3.5]:

X0 ↪→ Y0 and X1 ↪→ Y1 imply X0 tX1 ↪→ Y0 t Y1 and X0 ×X1 ↪→ Y0 × Y1 . (17)

Crucially, nwqo reflections preserve amortised controlled antichains. Indeed, let r:X ↪→ Y ,
and consider a sequence x0, x1, . . . over X. Then by (15), r(x0), r(x1), . . . is an antichain
when x0, x1, . . . is, and by (16), it is (g, n)-controlled when x0, x1, . . . is. Hence

X ↪→ Y implies W a
g,X(n) ≤W a

g,Y (n) for all g, n . (18)

Inductive Reflection of Residuals. We provide a strict polynomial wqo reflecting X⊥x by
induction over the structure of the strict polynomial nwqo X. The key difference compared
to the analysis of bad sequences in [14, 41] occurs for X = N: if k ∈ N,

N⊥k = 0 . (19)
Regarding disjoint sums X0 tX1, it is plain that

(X0 tX1)⊥(x,i) = (Xi)⊥x tX1−i . (20)
Consider now (Nd)⊥v where d > 1 and v ∈ Nd. Observe that if u ∈ Nd is such that u⊥ v,
then there exists 1 ≤ i ≤ d such that u(i) < v(i), as otherwise we would have u ≥ v. Thus

(Nd)⊥v ↪→
⊔

1≤i≤d
Nd−1 × [v(i)] ↪→ Nd−1 ·

∑
1≤i≤d

v(i) . (21)

Ordinal Notations. As it is more convenient to reason with ordinals than with polynomial
nwqos, we use the following bijection between strict polynomial nwqos and ωω:

w(0) def= 0 , w(Nd) def= ωd−1 , w(X0 tX1) = w(X0)⊕ w(X1) . (22)

where “⊕” denotes the natural sum (aka Hessenberg sum) on ordinals: the natural sum α⊕β of
two ordinals with Cantor normal forms α =

∑p
i=1 ω

αi and β =
∑m
j=1 ω

βj is ωγ1 + · · ·+ωγp+m

where the exponents γ1 ≥ · · · ≥ γp+m are a reordering of α1, . . . , αp, β1, . . . , βm. Given a
strict polynomial nwqo X =

⊔m
i=1 Ndi , its associated ordinal is w(X) =

⊕m
i=1 ω

di−1. In the
case of an LCM with d def= |C| counters and q def= |Q| locations, w(Q× NC) = ωd−1 · q.

For each n ∈ N, we define a relation ∂n over ordinals in ωω that mirrors the inductive
residuation and reflection operations on strict polynomial nwqos X over the ordinals w(X):

∂nα
def=
{
γ ⊕ ∂nωd | α = γ ⊕ ωd

}
, ∂nω

d def=

{
0 if d = 0,
ωd−1 · n(d+ 1) otherwise.

(23)
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The intuition here is that w(Y ) ∈ ∂nw(X) implies X⊥x ↪→ Y for some x ∈ X≤n. Observe
that α′ ∈ ∂nα implies α′ < α, thus

⋃
n ∂n is a well-founded relation. This leads to the

definition of an over-approximation of the width function W a
g,X (see the full version):

Mg,α(n) def= max
α′∈∂nα

{
1 +Mg,α′(g(n))

}
. (24)

I Proposition 4. Let (X,≤X , | . |X) be a strict polynomial nwqo, n0 ∈ N, and g:N → N.
Then W a

g,X(n0) ≤Mg,w(X)(n0).

It remains to compareMg,α with standard subrecursive functions like the Cichoń functions,
which was already done in [41, Sec. 2.4.3] for a very similar function; see the full version.

I Proposition 5. Let n be in N, g:N→ N a monotone inflationary function, and 0 < α < ωd.
Then Mg,α(n) ≤ 1 +Mg,Pnd(α)(n).

This extra twist of using a predecessor function different from the standard one from (12)
can be avoided by instead over-approximating the control function g.

I Theorem 6 (Width Function for Strict Polynomial nwqos). Let d > 0, (X,≤X , | . |X)
be a strict polynomial nwqo with w(X) < ωd, n0 ∈ N, g:N → N monotone inflationary,
and let h:N → N be a monotone function such that h(x · d) ≥ g(x) · d for all x. Then
W a
g,X(n0) ≤ hw(X)(n0d).

Proof. By Proposition 4, it suffices to show that Mg,w(X)(n) ≤ hw(X)(nd), which we do by
induction over α def= w(X). If α = 0, then ∂nα = ∅ thus Mg,α(n) = 0 ≤ hα(nd). Otherwise,
by Proposition 5, Mg,α(n) ≤ 1 +Mg,Pnd(α) (g(n)). Because Pnd(α) < α, we can apply the
induction hypothesis, yielding Mg,α(n) ≤ 1+hPnd(α) (g(n)d) ≤ 1+hPnd(α) (h(nd)) = hα(nd),
where the last inequality follows from h(nd) ≥ g(n)d and the monotonicity of hPnd(α). J

Setting h(x) def= g(x)d always satisfies the conditions of the theorem. There are cases
where setting h def= g suffices: e.g., g(x) def= 2x, g(x) def= x2, g(x) def= 2x, and more generally
whenever g is super-homogeneous, i.e. satisfies g(dx) ≥ g(x)d for all d, x ≥ 1. In the case of
LCMs, where w(Q × NC) < ωd if d def= |C| > 0, a control function g(x) def= x+ 1 = H(x) fits,
thus setting h(x) def= x+ d = Hd(x) satisfies h(dx) = dx+ d = (x+ 1)d = g(x)d.

By (8), Lemma 2, and (14), Theorem 6 also yields a bound on the strong norm function.

I Corollary 7 (Strong Norm Function for Strict Polynomial nwqos). Let d, X, n0, g, and h be
as in Theorem 6. Then N s

g,X(n0) ≤ hw(X)(n0d).

6 Wrapping up

We have now all the ingredients needed to prove an Fd upper bound on LCM Reachability.
Let us first recall the definition of the fast-growing complexity classes from [38].

Fast-Growing Complexity Classes. The fast-growing complexity classes [38] form a strict
ordinal-indexed hierarchy of complexity classes (Fα)α<ε0 using the Hardy functions (Hα)α<ε0

relative to H(x) def= x+ 1 as a standard against which to measure high complexities. Let

F<α
def=
⋃
β<ωα

FDTIME
(
Hβ(n)

)
, Fα def=

⋃
p∈F<α

DTIME
(
Hωα(p(n))

)
. (25)

Then F<α is the class of functions computed by deterministic Turing machines in time
O(Hβ(n)) for some β < ωα; this captures for instance the class of Kalmar elementary
functions as F<3 and the class of primitive-recursive functions as F<ω [30, 48]. The class Fα is

ICALP 2019



129:12 The Parametric Complexity of Lossy Counter Machines

the class of decision problems solved by deterministic Turing machines in time O
(
Hωα(p(n))

)
for some function p ∈ F<α. The intuition behind this quantification of p is that, just like e.g.
EXP =

⋃
p∈poly DTIME

(
2p(n)) quantifies over polynomial functions to provide enough “wiggle

room” to account for polynomial reductions, Fα is closed under F<α reductions [38, Thms. 4.7
and 4.8]. For instance, TOWER def= F3 defines the class of problems that can be solved in time
bounded by a tower of exponentials of elementary height in the size of the input,

⋃
k∈N Fk

is the class of primitive-recursive decision problems, and ACKERMANN def= Fω is the class of
problems that can be solved in time bounded by the Ackermann function applied to some
primitive-recursive function of the input size.

Upper Bound. Recall from Section 3.3 that a pseudo-witness for coverability of a config-
uration qf (vf ) in a LCM with d def= |C| > 0 counters and q def= |Q| locations is a strongly
(H, |vf |)-controlled bad sequence over Q× NC, which as discussed in Section 5.2 is a strict
polynomial wqo with w(Q × NC) = ωd−1 · q < ωd, and that h def= Hd fits the conditions of
Theorem 6 and Corollary 7. As stated in Theorem 1, together with the lower bounds from [39],
the following entails the Fd-completeness of LCM Reachability with a fixed number d ≥ 3 of
counters.

I Proposition 8 (Upper Bound for LCM Reachability). LCM Reachability is in Fω, and in Fd
if the number d ≥ 3 of counters is fixed.

Proof. Let n0
def= |vf | be the infinite norm of the target configuration, d def= |C| ≥ 3 be the

number of counters, and q def= |Q| ≥ 1 the number of locations. By Corollary 7, the elements
in a pseudo-witness of the coverability of qf (vf ) are of norm at most N def= N s

H,Q×NC(n0) =
hω

d−1·q(n0) for h(x) def= Hd(x). Let n def= max{qd− 1, n0}. As shown in the full version, this
means that

N ≤ Hωd−1·qd(n0) ≤ Hωd−1·qd(n) ≤ Hωd(n) (26)

by monotonicity of the Hardy functions.
Note that there are at most q(N + 1)d different configurations in Q×NC of norm bounded

by N , i.e., |(Q × NC)≤N | ≤ q(N + 1)d. By (9), this is also a bound on the strong length
function Ls

H,Q×Nd(n0). Thus the number of steps in the backward coverability algorithm is
bounded by q(N +1)d, and each step can be carried in time O(N), hence the algorithm works
in deterministic time O(q(N + 1)d+1) = O(f(N)) = O(f(Hωd(n))) for some elementary
function f ∈ F<3. By [38, Cor. A.9], there exists an elementary inflationary function p ∈ F<3
such that f(Hωd(n)) ≤ Hωd(p(n)): the backward coverability algorithm therefore works in
deterministic time O(Hωd(p(n))) for some p ∈ F<3, which is an expression of the form (25).

Therefore, LCM Reachability is in Fd when d is fixed, and in Fω otherwise because
p(n) ≥ n ≥ d− 1 and thus Hωd(p(n)) ≤ Hωω (p(n)). J

7 Concluding Remarks

We have shown the Fd-completeness of reachability in lossy counter machines with a fixed
number d ≥ 3 of counters. The key novelty is that we analyse the length of controlled
antichains over Nd rather than that of controlled bad sequences. A possible explanation why
this leads to improved upper bounds is that the ordinal width of Nd, i.e., the ordinal rank of
its antichains, is conjectured to be ωd−1 [13], while its maximal order type, i.e., the ordinal
rank of its bad sequences, is well-known to be ωd [9].
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Our approach might be employed to tackle related parameterised complexity gaps, like
the one between Fωm−2-hardness [25] and Fωm−1+1 membership [40] of reachability in lossy
channel systems with m ≥ 4 channel symbols and a single channel. Those results rely
however on the set of finite words over an alphabet of size m being a wqo for Higman’s
scattered subword ordering [21], for which the ordinal width and maximal order type coincide
at ωωm−1 [13, 9].
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Abstract
We establish an Eilenberg-type correspondence for data languages, i.e. languages over an infinite
alphabet. More precisely, we prove that there is a bijective correspondence between varieties of
languages recognized by orbit-finite nominal monoids and pseudovarieties of such monoids. This is
the first result of this kind for data languages. Our approach makes use of nominal Stone duality and
a recent category theoretic generalization of Birkhoff-type theorems that we instantiate here for the
category of nominal sets. In addition, we prove an axiomatic characterization of weak pseudovarieties
as those classes of orbit-finite monoids that can be specified by sequences of nominal equations,
which provides a nominal version of a classical theorem of Eilenberg and Schützenberger.
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1 Introduction

In the algebraic theory of formal languages, one studies automata and the languages they
represent in terms of associated algebraic structures. This approach has been successfully
implemented for numerous types of languages and has proven extremely fruitful because it
allows to import powerful algebraic methods into the realm of automata theory. As a prime
example, regular languages can be described purely algebraically as the languages recognized
by finite monoids, and a celebrated result by McNaughton, Papert, and Schützenberger [12, 19]
asserts that a regular language is definable in first-order logic if and only if its syntactic monoid
is aperiodic (i.e. it satisfies the equation xn+1 = xn for sufficiently large n). As an immediate
application, this algebraic characterization yields an effective procedure for deciding first-order
definability. The first systematic approach to correspondence results of this kind was initiated
by Eilenberg [6] who proved that varieties of languages (i.e. classes of regular languages
closed under the set-theoretic boolean operations, derivatives, and homomorphic preimages)
correspond bijectively to pseudovarieties of monoids (i.e. classes of finite monoids closed under
quotients monoids, submonoids, and finite products). Eilenberg’s result thus establishes a
generic relation between properties of regular languages and properties of finite monoids.
In addition, Eilenberg and Schützenberger [7] contributed a model-theoretic description
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of pseudovarieties: they are those classes of finite monoids that can be axiomatized by a
sequence (sn = tn)n∈N of equations, interpreted as “sn = tn holds for sufficiently large n”. For
instance, the pseudovariety of aperiodic finite monoids is axiomatized by (xn+1 = xn)n∈N.

The goal of our present paper is to study data languages, i.e. languages over an infinite
alphabet, from the perspective of algebraic language theory. Such languages have spurred
significant interest in recent years, driven by practical applications in various areas of
computer science, including efficient parsing of XML documents or software verification.
Mathematically, data languages are modeled using nominal sets. Over the years, several
machine models for handling data languages of different expressive power have been proposed;
see [21, 20] for a comprehensive survey. The focus of this paper is on languages recognized
by orbit-finite nominal monoids. They form an important subclass of the languages accepted
by Francez and Kaminski’s finite memory automata [10] (which are expressively equivalent
to orbit-finite automata in the category of nominal sets [5]) and have been characterized by a
fragment of monadic second-order logic over data words called rigidly guarded MSO [17]. In
addition, Bojańczyk [4] and Colcombet, Ley, and Puppis [17] established nominal versions of
the McNaughton-Papert-Schützenberger theorem and showed that the first-order definable
data languages are precisely the ones recognizable by aperiodic orbit-finite monoids.

In the light of these results, it is natural to ask whether a generic variety theory akin to
Eilenberg’s seminal work can be developed for data languages. As the main contribution
of our paper, we answer this positively by establishing nominal generalizations of two key
results known from the algebraic theory of regular languages. The first one is a counterpart
of Eilenberg’s variety theorem, which is the first result of this kind for data languages:

I Nominal Eilenberg Theorem. Varieties of data languages correspond bijectively to pseudo-
varieties of nominal monoids.

Here, the notion of a pseudovariety of nominal monoids is as expected: a class of orbit-finite
nominal monoids closed under quotient monoids, submonoids, and finite products. In contrast,
the notion of a variety of data languages requires two extra conditions unfamiliar from other
Eilenberg-type correspondences, most notably a technical condition called completeness
(Definition 4.13). Like the original Eilenberg theorem, its nominal version gives rise to a
generic relation between properties of data languages and properties of nominal monoids.
For instance, the aperiodic orbit-finite monoids form a pseudovariety, and the first-order
definable data languages form a variety, and thus the equivalence of these concepts can be
understood as an instance of the nominal Eilenberg correspondence.

On a conceptual level, our results crucially make use of duality, specifically an extension
of Petrişan’s [15] nominal version of Stone duality which gives a dual equivalence between
nominal sets and nominal complete atomic boolean algebras. To derive the nominal Eilenberg
correspondence, we make two key observations. First, we show that varieties of data languages
dualize (under nominal Stone duality) to the concept of an equational theory in the category
of nominal sets. Second, we apply a recent categorical generalization of Birkhoff-type variety
theorems [14] to show that equational theories correspond to pseudovarieties of nominal
monoids. Our approach is summarized by the diagram below:

Varieties of
data languages

Nominal Eilenberg Theorem
∼=

Nominal Stone duality
∼=

Equational
theories

Nom. Birkhoff Theorem
∼=

Pseudovarieties of
nominal monoids
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The idea that Stone-type dualities play a major role in algebraic language theory was firmly
established by Gehrke, Grigorieff, and Pin [9]. It is also at the heart of our recent line of
work [1, 2, 22, 3], which culminated in a uniform category theoretic proof of more than a
dozen Eilenberg correspondences for various types of languages. A related, yet more abstract,
approach was pursued by Salamánca [18]. The key insight of [22, 18] is that Eilenberg-
type correspondences arise by combining a Birkhoff-type correspondence with a Stone-type
duality. Our present approach to data languages is an implementation of this principle in
the nominal setting. Since the existing categorical frameworks for algebraic language theory
consider algebraic-like base categories (which excludes nominal sets) and the recognition
of languages by finite structures, our Nominal Eilenberg Theorem is not covered by any
previous categorical work and requires new techniques. However, our approach can be seen
as an indication of the robustness of the duality-based methodology for algebraic recognition.

As our second main contribution, we complement the Nominal Eilenberg Theorem with
a model-theoretic description of pseudovarieties of nominal monoids in terms of sequences
of nominal equations, generalizing the classical result of Eilenberg and Schützenberger for
ordinary monoids. Our result applies more generally to the class of weak pseudovarieties of
nominal monoids, which are only required to be closed under support-reflecting (rather than
arbitrary) quotients. We then obtain the

I Nominal Eilenberg-Schützenberger Theorem. Weak pseudovarieties are exactly the
classes of nominal monoids axiomatizable by sequences of nominal equations.

While our main results apply to languages recognizable by orbit-finite monoids, the
underlying methods are of fairly general nature and can be extended to other recognizing
structures in the category of nominal sets. We illustrate this in section 5 by deriving a (local)
Eilenberg correspondence for languages accepted by deterministic nominal automata.

Full proofs of all results can be found in the extended arXiv version [23] of our paper.

2 Nominal Sets

We start by recalling basic definitions and facts from the theory of nominal sets [16]. Some
of the concepts considered in this paper are most clearly and conveniently formulated in the
language of category theory, but only very basic knowledge of category theory is required
from the reader. Fix a countably infinite set A of atoms, and denote by Perm(A) the group
of finite permutations of A (i.e. bijections π : A→ A that move only finitely many elements of
A). A Perm(A)-set is a set X with an operation Perm(A)×X → X, denoted as (π, x) 7→ π ·x,
such that (σπ) ·x = σ · (π ·x) and id ·x for all σ, π ∈ Perm(A) and x ∈ X. If the group action
is trivial, i.e. π · x = x for all π ∈ Perm(A) and x ∈ X, we call X discrete. For any set S ⊆ A
of atoms, denote by PermS(A) ⊆ Perm(A) the subgroup of all finite permutations π that fix
S, i.e. π(a) = a for all a ∈ S. The set S is called a support of an element x ∈ X if for every
π ∈ PermS(A) one has π · x = x. The intuition is that x is some kind of syntactic object
(e.g. a string, a tree, a term, or a program) whose free variables are contained in S. Thus, a
variable renaming π that leaves S fixed does not affect x. A nominal set is a Perm(A)-set X
such that every element of X has a finite support. This implies that every element x ∈ X has
a least support, denoted by suppX(x) ⊆ A. A nominal set X is strong if, for every x ∈ X and
π ∈ Perm(A), one has π · x = x if and only if π(a) = a for all a ∈ suppX(x). The orbit of an
element x of a nominal set X is the set {π · x : π ∈ Perm(A)}. The orbits form a partition
of X. If X has only finitely many orbits, then X is called orbit-finite. More generally, for any
finite set S ⊆ A of atoms, the S-orbit of an element x ∈ X is the set {π ·x : π ∈ PermS(A)},
and the S-orbits form a partition of X.
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I Lemma 2.1. Let S be a finite subset of A. Then every orbit-finite nominal set has only
finitely many S-orbits.

A map f : X → Y between nominal sets is equivariant if f(π ·x) = π ·f(x) for all π ∈ Perm(A)
and x ∈ X, and finitely supported if there exists a finite set S ⊆ A such that f(π ·x) = π ·f(x)
for all π ∈ PermS(A) and x ∈ X. Equivariant maps do not increase supports, i.e. one has
suppY (f(x)) ⊆ suppX(x) for all x ∈ X. We write Nomfs for the category of nominal sets
and finitely supported maps, and Nom for the (non-full) subcategory of nominal sets and
equivariant maps. We shall use the following standard results about Nom:
(1) Nom is complete and cocomplete. Finite limits and all colimits are formed on the level

of underlying sets. In particular, finite products of nominal sets are given by cartesian
products and coproducts by disjoint union.

(2) For every pair X,Y of nominal sets, the exponential [X,Y ] is the nominal set consisting
of all finitely supported maps f : X → Y , with the group action given by (π · f)(x) =
π · f(π−1 · x). Moreover, for every nominal set X, the nominal power set PX is carried
by the set of all subsets X0 ⊆ X with finite support; i.e. for which there exists a finite set
S ⊆ A of atoms such that π ·X0 = X0 for π ∈ PermS(A), where π ·X0 = {π ·x : x ∈ X0}.
In particular, every singleton {x} is finitely supported by suppX(x). The group action
on PX is given by X0 7→ π ·X0, and we have PX ∼= [X, 2], for the discrete nominal set
2 = {0, 1}.

(3) Quotients and subobjects in Nom are represented by epimorphisms (= surjective equivari-
ant maps) and monomorphisms (= injective equivariant maps), respectively. Nom has
image factorizations, i.e. every equivariant map f : X → Y has a unique decomposition
f = m · e into a quotient e : X � I followed by a subobject m : I � Y . We call e the
coimage of f .

(4) Orbit-finite nominal sets are closed under quotients, subobjects, and finite products.
(5) For each n ≥ 0, the nominal set A#n = { (a1, . . . , an) ∈ An : ai 6= aj for i 6= j } with

group action π · (a1, . . . , an) = (π(a1), . . . , π(an)) is strong and has a single orbit. More
generally, the (orbit-finite) strong nominal sets are up to isomorphism exactly the (finite)
coproducts of nominal sets of the form A#n.

3 Pseudovarieties of Nominal Monoids

In this section, we investigate classes of orbit-finite nominal monoids and establish two
characterizations of such classes: a categorical one, relating pseudovarieties of nominal
monoids to equational theories in the category of nominal sets, and an axiomatic one,
describing weak pseudovarieties in terms of sequences of nominal equations. The first of these
results is the algebraic foundation of our subsequent treatment of varieties of data languages.

A nominal monoid is a monoid (M, •, 1M ) in the category Nom; that is, M is equipped
with the structure of a nominal set such that the multiplication • : M ×M → M is an
equivariant map and the unit 1M ∈M has empty support, i.e. it corresponds to an equivariant
map 1→M , where 1 is the nominal set with one element. We write nMon for the category
of nominal monoids and equivariant monoid morphisms (usually just called morphisms),
and nMonof for the full subcategory of orbit-finite nominal monoids. The forgetful functor
from nMon to Nom has a left adjoint assigning to each nominal set Σ the free nominal
monoid Σ∗ of all words over Σ, with monoid multiplication given by concatentation of words,
unit ε (the empty word) and group action π · (a1 · · · an) = π(a1) · · ·π(an) for π ∈ Perm(A)
and a1 · · · an ∈ Σ∗. The category nMon has products (formed on the level of Nom), image
factorizations, and surjective and injective morphisms represent quotients and submonoids of
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nominal monoids. A quotient q : M � M ′ is called support-reflecting if for every x′ ∈ M ′
there exists an x ∈ M with q(x) = x′ and suppM (x) = suppM ′(x′). The following result
characterizes the quotient monoids of Σ∗ in terms of unary operations:

I Proposition 3.1 (Unary presentation for nominal monoids). For every nominal set Σ and
every surjective equivariant map e : Σ∗ �M , the following statements are equivalent:
(1) e carries a quotient monoid of Σ∗, i.e. there exists a nominal monoid structure (M, •, 1M )

on M such that e : Σ∗ � (M, •, 1M ) is a morphism of nominal monoids;
(2) the maps Σ∗ w·−−−→ Σ∗ and Σ∗ −·w−−→ Σ∗ (w ∈ Σ∗) lift along e, i.e. there exist (necessarily

unique) maps lw and rw making the following squares commute:

Σ∗

e
����

w·−
// Σ∗

e
����

M
lw

// M

Σ∗

e
����

−·w
// Σ∗

e
����

M
rw

// M

for every w ∈ Σ∗.

In general, the maps w ·− and −·w are not equivariant, but finitely supported (with support
contained in the one of w). This implies that also lw and rw in 2 are finitely supported.

3.1 Equational Theories
In previous work [14] we studied varieties of objects in a general category and their relation to
an abstract form of equations. In the following, we instantiate these concepts to the category
of nominal sets to derive a characterization of pseudovarieties of orbit-finite monoids.

I Definition 3.2. Let Σ be a nominal set. A Σ-generated nominal monoid is a nominal
quotient monoid e : Σ∗ �M of the free monoid Σ∗. We denote by Σ∗ �nMonof the poset of
Σ-generated orbit-finite nominal monoids, ordered by e ≤ e′ iff e′ factorizes through e.

I Definition 3.3. A local pseudovariety of Σ-generated nominal monoids is a filter TΣ ⊆
Σ∗ �nMonof in the poset of Σ-generated orbit-finite nominal monoids; that is, TΣ is
(1) upwards closed: e ∈ TΣ and e ≤ e′ implies e′ ∈ TΣ, and
(2) downwards directed: for each pair e0, e1 ∈ TΣ there exists e ∈ TΣ with e ≤ e0, e1.
If we replace (1) by the weaker condition
(1’) for each e : Σ∗ �M in TΣ and each support-reflecting q : M � N one has q · e ∈ TΣ,
then TΣ is called a weak local pseudovariety of Σ-generated nominal monoids.

I Remark 3.4. By Proposition 3.1, the definition of local pseudovariety can be equivalently
stated as follows:
(1) TΣ is a filter in the poset of orbit-finite quotients of Σ∗ in Nom;
(2) for every e ∈ TΣ and w ∈ Σ∗, the unary operations w · − and − · w on Σ∗ lift along e.
Let Nomof,s denote the full subcategory of Nom on orbit-finite strong nominal sets.

I Definition 3.5 (Equational Theory). A (weak) equational theory is a family

T = (TΣ ⊆ Σ∗ �nMonof )Σ∈Nomof,s

of (weak) local pseudovarieties with the following two properties (see the diagrams below):
(1) Substitution invariance. For each equivariant monoid morphism h : ∆∗ → Σ∗ with

∆,Σ ∈ Nomof,s and each eΣ : Σ∗ �MΣ in TΣ, the coimage e∆ of eΣ · h lies in T∆.
(2) Completeness. For each Σ ∈ Nomof,s and each quotient e : Σ∗ �MΣ in TΣ, there exists

∆ ∈ Nomof,s and a support-reflecting quotient e∆ : ∆∗ �M∆ in T∆ with M∆ = MΣ.
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∆∗ ∀h //

e∆
����

Σ∗

∀eΣ
����

M∆ // // MΣ

∆∗

∃e∆
����

Σ∗

∀eΣ
����

M∆ MΣ

I Remark 3.6.
(1) Local pseudovarieties were previously called equations [14]. In fact, in many instances of

the framework in op. cit., a filter of quotients can be represented as a single quotient of
a free algebra on an object Σ, which in turn corresponds to a set of pairs of terms given
by the kernel of the quotient, i.e. to the usual syntactic concept of an equation.

(2) The restriction to strong nominal sets Σ as generators reflects that the latter are the “free”
nominal sets [11], a property crucial for the proof of Theorem 3.8 below. More precisely,
letting PfA denote the set of finite subsets of A, the forgetful functor U : Nom→ SetPfA

mapping a nominal set X to the presheaf S 7→ {x ∈ X : suppX(x) ⊆ S } has a left
adjoint F , and strong nominal sets are exactly the nominal sets of the form FP for
P ∈ SetPfA.

(3) The somewhat technical completeness property cannot be avoided, i.e. a substitution-
invariant family of local pseudovarieties is generally incomplete. Indeed, consider the
family

T = (TΣ ⊆ Σ∗ �nMonof )Σ∈Nomof,s ,

where TΣ consists of all Σ-generated orbit-finite nominal monoids e : Σ∗ �M such that
e maps each element of Σ∗ with a support of size 1 to 1M .
To see that TΣ is a filter, suppose that e : Σ∗ �M and e′ : Σ∗ �M ′ are two quotients
in TΣ. Form their subdirect product q, viz. the coimage of the morphism 〈e, e′〉 : Σ∗ →
M ×M ′. Each w ∈ Σ∗ with a support of size 1 is mapped by q to (e(w), e′(w)) =
(1M , 1M ′) = 1M×M ′ . Thus q ∈ TΣ and q ≤ e, e′, i.e. TΣ is downwards directed. Clearly,
TΣ is also upwards closed.
For substitution invariance, let h : ∆∗ → Σ∗ be a morphism and eΣ : Σ∗ �MΣ a quotient
in TΣ. Then eΣ · h maps each element with a support of size 1 to 1MΣ since eΣ does and
the equivariant map h does not increase supports. Thus, the coimage of eΣ · h lies in T∆.
Finally, we show that T is not complete. Fix an arbitrary orbit-finite nominal monoid M
containing an element m with | suppM m| = 1. Note that m 6= 1M because 1M has empty
support. Moreover, choose an orbit-finite strong nominal set Σ such that all elements of
Σ have least support of size at least 2, and M can be expressed as a quotient e : Σ∗ �M .
(For instance, one may take Σ =

∐
i<k A#n where k is the number of orbits of M and

n = max{2, | suppM (x)| : x ∈M}.) Since all nonempty words in Σ∗ have a least support
of size at least 2, one has e ∈ TΣ. For every ∆ ∈ Nomof,s and every quotient q : ∆∗ �M

in T∆, the set q−1[{m}] ⊆ ∆∗ contains no element with least support of size 1, since
such elements are mapped by q to 1M 6= m. Consequently, q is not support-reflecting.
This shows that M is not the codomain of any support-reflecting quotient in T∆.

I Definition 3.7 (Pseudovariety and Weak Pseudovariety). A pseudovariety of nominal
monoids is a nonempty class V of orbit-finite nominal monoids closed under finite products,
submonoids, and quotient monoids. That is,
(1) for each M,N ∈ V one has M ×N ∈ V;
(2) for each M ∈ V and each nominal submonoid N �M one has N ∈ V;
(3) for each M ∈ V and each nominal quotient monoid M � N one has N ∈ V.
A weak pseudovariety of nominal monoids is a nonempty class of orbit-finite nominal monoids
closed under finite products, submonoids, and support-reflecting quotient monoids.
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The following result is a special case of the Generalized Variety Theorem [14, Theorem 3.15].
It asserts that equational theories and pseudovarieties are equivalent concepts. Note that
(weak) equational theories form a poset ordered by T ≤ T′ iff TΣ ≤ T′Σ for all Σ ∈ Nomof,s,
where TΣ ≤ T′Σ holds iff for every e′ ∈ T′Σ there exists an e ∈ TΣ with e ≤ e′. Similarly,
(weak) pseudovarieties of nominal monoids form a poset w.r.t. the inclusion ordering.

I Theorem 3.8. (Weak) equational theories and (weak) pseudovarieties of nominal monoids
form dually isomorphic complete lattices.

The isomorphism maps a (weak) equational theory T to the (weak) pseudovariety V(T) of all
orbit-finite monoids M such that each morphism h : Σ∗ →M with Σ ∈ Nomof,s factorizes
through some eΣ ∈ TΣ. The inverse maps a (weak) pseudovariety V to the (weak) equational
theory T(V) where T(V)Σ consists of all quotients e : Σ∗ �M with codomain M ∈ V.

3.2 The Nominal Eilenberg-Schützenberger Theorem
In addition to their abstract category theoretic characterization in Theorem 3.8, weak
pseudovarieties of nominal monoids admit an axiomatic description in terms of sequences
of equations, analogous to the classical result of Eilenberg and Schützenberger [7] for
pseudovarieties of ordinary monoids. The appropriate concept of equation is as follows:

I Definition 3.9.
(1) An equation is a pair (s, t) ∈ X∗ × X∗, denoted as s = t, where X is an orbit-finite

strong nominal set. A nominal monoid M satisfies s = t if for every equivariant map
h : X →M one has ĥ(s) = ĥ(t), where ĥ : X∗ →M denotes the unique extension of h
to an equivariant monoid morphism.

(2) Given a sequence E = (sn = tn)n∈N of equations (possibly taken over different orbit-finite
strong nominal sets X of generators), a nominal monoid M eventually satisfies E if there
exists an index n0 ∈ N such that M satisfies all the equations sn = tn with n ≥ n0. We
denote by V(E) the class of all orbit-finite nominal monoids that eventually satisfy E.

I Remark 3.10. Equations can be presented syntactically as expressions of the form

y1 : S1, . . . , yn : Sn ` u = v, (1)

where Y = {y1, . . . , yn} is a finite set of variables, S1, . . . , Sn ⊆ A are finite sets of atoms,
and u, v are words in (Perm(A)×Y )∗. A nominal monoid M is said to satisfy (1) if for every
variable interpretation, i.e. every map h : Y → M with suppM (h(yi)) ⊆ Si for i = 1, . . . , n,
one has h(u) = h(v). Here, h : (Perm(A)×Y )∗ →M is the unique monoid morphism mapping
(π, yi) to π ·h(yi). Every equation can be transformed into an expressively equivalent syntactic
equation, and vice versa [13, Lemma B.31].

I Theorem 3.11 (Nominal Eilenberg-Schützenberger Theorem). A class V of orbit-finite
nominal monoids forms a weak pseudovariety iff V = V(E) for some sequence E of equations.

Proof sketch. The proof proceeds along the lines of the one for ordinary monoids [7], although
some subtle modifications are required. The “if” direction is a routine verification. For the
“only if” direction, let V be a weak pseudovariety. Using that there are only countably many
orbit-finite monoids up to isomorphism, one can construct a sequence M0,M1,M2, . . . of
nominal monoids in V such that each M ∈ V is a quotient of all but finitely many Mn’s. Let
X0, X1, X2, . . . be the sequence of all (countably many) strong orbit-finite nominal sets up
to isomorphism, and consider the equivariant congruence relation on X∗n given by

s ≡n t iff Mn satisfies the equation s = t.

One then shows that the congruence ≡n is generated by a finite subset Wn ⊆ ≡n, and that
V = V(E) for every sequence E that lists all equations in the countable set

⋃
nWn. J
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I Example 3.12. An orbit-finite nominal monoid M is called aperiodic [4, 17] if there exists
a natural number n ≥ 1 such that xn+1 = xn for all x ∈ M . The class of all orbit-finite
aperiodic nominal monoids forms a pseudovariety. Taking the set Y = {y} of variables, it is
not difficult to see that this pseudovariety is specified by the sequence of syntactic equations

y : Sn ` yn+1 = yn (n ∈ N),

where Sn = {a0, a1, . . . , an−1} is the set of the first n atoms in the countably infinite set
A = {a0, a1, a2 . . .} of all atoms, and we write y for (id, y) ∈ Perm(A)× Y .

4 Duality and the Nominal Eilenberg Correspondence

In this section, we establish our nominal version of Eilenberg’s variety theorem. It is based
on a dual interpretation of the concepts of a (local) pseudovariety of nominal monoids and of
an equational theory, introduced in the previous section, under nominal Stone duality.

4.1 Nominal Stone Duality
A classical result from duality theory, known as discrete Stone duality, states that the category
of sets is dually equivalent to the category of complete atomic boolean algebras, i.e. complete
boolean algebras in which every non-zero element is above some atom. An analogous duality
holds for the category Nomfs of nominal sets and finitely supported maps.

I Definition 4.1. A nominal complete atomic boolean algebra (ncaba) is a boolean algebra
(B,∨,∧,¬,⊥,>) in Nom such that every finitely supported subset of B has a supremum,
and for every element b ∈ B \ {⊥} there exists an atom (i.e. a minimal element) a ∈ B with
a ≤ b. Here, the partial order ≤ is defined as usual by a ≤ b iff a ∧ b = a. We denote by
nCABAfs the category of ncabas and finitely supported morphisms (i.e. finitely supported
maps preserving all the boolean operations and suprema of finitely supported subsets), and
by nCABA the (non-full) subcategory of ncabas and equivariant morphisms.

I Theorem 4.2 (Nominal Stone Duality). The categories nCABAfs and Nomfs are dually
equivalent. The duality restricts to one between the subcategories nCABA and Nom.

The restricted duality is due to Petrişan [15, Prop. 5.3.11].

I Remark 4.3.
(1) The equivalence functor Nomfs

'−→ nCABAop
fs maps a nominal set X to the ncaba PX

of finitely supported subsets of X (equipped with the set-theoretic boolean operations),
and a finitely supported map f : X → Y to the morphism f−1 : PY → PX taking
preimages. The inverse equivalence functor nCABAop

fs
'−→ Nomfs maps an ncaba B to

the equivariant subset At(B) of its atoms, with group action restricting the one of B.
(2) The dual equivalence restricts to one between the full subcategories of orbit-finite nominal

sets and atom-finite ncabas, i.e. ncabas whose set of atoms is orbit-finite. For atom-finite
ncabas the property that every finitely supported subset has a supremum is equivalent
to the weaker requirement that for every finite set S ⊆ A, every S-orbit has a supremum.
Indeed, given a finitely supported subset X ⊆ B (say with finite support S ⊆ A),
put X ′ := { a ∈ At(B) : a ≤ x for some x ∈ X }. Since ≤ is an equivariant relation,
X ′ ⊆ At(B) is a subset with finite support S. Since At(B) is orbit-finite and thus
has only finitely many S-orbits by Lemma 2.1, we can express X ′ as a finite union
X ′ = X ′1 ∪ . . . ∪X ′n of S-orbits. Using that every element of B is the join of the finitely
supported set of all atoms below it, it follows that

∨
X =

∨
X ′ =

∨
X ′1 ∨ . . . ∨

∨
X ′n, so∨

X is a finite join of joins of S-orbits.
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4.2 Varieties of Data Languages
For the notion of a language over an alphabet Σ ∈ Nom and the corresponding concept of
algebraic recognition by nominal monoids, there are two natural choices: consider equivariant
subsets L ⊆ Σ∗ and their recognition by equivariant monoid morphisms [5, 17], or consider
finitely supported subsets L ⊆ Σ∗ and their recognition by finitely supported monoid
morphisms [4]. For our duality-based approach to data languages, it turns out that we
need to work with an intermediate concept: finitely supported languages recognizable by
equivariant monoid morphisms (see the discussion in Remark 4.12 below). That is, we work
with the following

I Definition 4.4. A data language over the alphabet Σ ∈ Nom is a finitely supported map
L : Σ∗ → 2. It is recognized by an equivariant monoid morphism e : Σ∗ →M if there exists a
finitely supported map p : M → 2 with L = p · e. In this case, we also say that M recognizes
L. A data language is recognizable if it recognized by some orbit-finite nominal monoid.

I Remark 4.5.
(1) Identifying finitely supported maps into 2 with finitely supported subsets, Definition 4.4

can be restated: an equivariant monoid morphism e : Σ∗ → M recognizes a language
L ⊆ Σ∗ if there exists a finitely supported subset P ⊆M∗ with L = e−1[P ].

(2) If L is an equivariant recognizable language, then p in Definition 4.4 is also equivariant.
Therefore, for equivariant languages we recover the notion of recognition of [5, 17].

(3) If Σ is a finite set (viewed as an orbit-finite discrete nominal set), a data language is just
an ordinary formal language over the alphabet Σ. Indeed, the free nominal monoid Σ∗ is
discrete, and thus every subset of Σ∗ is finitely supported. Moreover, every orbit-finite
nominal quotient monoid of Σ∗ is discrete and finite. Hence, the above notion of language
recognition coincides with the classical recognition by finite monoids. In particular, for
finite Σ, a recognizable data language is the same as a regular language.

I Example 4.6. Examples of recognizable data languages over the alphabet Σ = A include
(1) every finite or cofinite subset L ⊆ A∗ (see Remark 4.8 below), (2) aA∗ for a fixed
atom a ∈ A, and (3)

⋃
a∈A A∗aaA∗. The languages (4) {a1 . . . an : ai 6= aj for i 6= j},

(5)
⋃
a∈A aA∗aA∗, and (6) A∗aA∗ for a fixed atom a ∈ A are not recognizable. The equivariant

examples (3)–(5) are taken from [4, 5].

In previous work [1] we have given a categorical account of local varieties of regular languages
[9], i.e. sets of regular languages over a fixed finite alphabet Σ closed under the set-theoretic
boolean operations (finite union, finite intersection, complement) and derivatives. This
concept can be generalized to data languages. The derivatives of a data language L ⊆ Σ∗
with respect to a word w ∈ Σ∗ are given by

w−1L = { v ∈ Σ∗ : wv ∈ L } and Lw−1 = { v ∈ Σ∗ : vw ∈ L }.

Since supp(w−1L), supp(Lw−1) ⊆ supp(w)∪supp(L), the derivatives are again data languages.

I Definition 4.7 (Local Variety of Data Languages). Let Σ ∈ Nom. A local variety of data
languages over Σ is an equivariant set VΣ ⊆ PΣ∗ of recognizable data languages closed under
the set-theoretic boolean operations, unions of S-orbits for every finite set S ⊆ A of atoms
(that is, for every L ∈ VΣ the language

⋃
π∈PermS(A) π · L lies in VΣ), and derivatives.

I Remark 4.8.
(1) If Σ is a finite set (viewed as a discrete nominal set), then by Remark 4.5 a local variety
VΣ consists of regular languages, and the closure under unions of S-orbits is trivial: since
PΣ∗ is discrete, every S-orbit has a single element. Thus, in this case, a local variety of
data languages is precisely a local variety of regular languages.
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(2) However, in general the closedness under unions of S-orbits cannot be dropped, as it is
neither trivial nor implied by the other conditions. To see this, consider the alphabet
Σ = A and the equivariant set VA ⊆ PA∗ of all finite or cofinite subsets of A∗. Note
that every finite language L ⊆ A∗ is recognizable: let n ≥ 1 be an upper bound on the
length of words in L, and take the orbit-finite monoid M = A≤n ∪ {0} consisting of all
words over A of length at most n, and a zero element 0. The multiplication • is defined
as follows: given v, w ∈ A≤n, if the word vw has length at most n, put v • w = vw.
Otherwise, put v •w = 0. Then the equivariant monoid morphism e : A∗ →M extending
a 7→ a recognizes L since L = e−1[L]. It follows that also A∗ \ L = e−1[M \ L]. This
shows that every language in VA is recognizable. Moreover, clearly VA is closed under
the set-theoretic boolean operations and derivatives. However, the languages {a}, a ∈ A,
form an orbit in VA, but their union A =

⋃
a∈A{a} is not in VA. Thus VA is not a local

variety of data languages in the sense of Definition 4.7.
A local variety VΣ is generally not a subobject of PΣ∗ in nCABA, because it is not required
to be closed under unions of arbitrary finitely supported subsets and also not necessarily
atomic as a boolean algebra. However, if the atomic languages in VΣ form an orbit-finite
subset and every language in VΣ contains some atomic language, then VΣ is an atom-finite
subobject of PΣ∗, see Remark 4.32. In this case, we call VΣ an atom-finite local variety.

I Theorem 4.9 (Finite Local Variety Theorem). The lattice of atom-finite local varieties of
data languages over Σ is dually isomorphic to the lattice of Σ-generated orbit-finite monoids.

The isomorphism maps a Σ-generated orbit-finite monoid e : Σ∗ � M to the atom-finite
local variety of all data languages recognized by e.

Proof. By the duality of Nom and nCABA, orbit-finite equivariant quotients e : Σ∗ �M

of Σ∗ in Nom correspond bijectively to atom-finite subobjects VΣ � PΣ∗ in nCABA,
i.e. atom-finite equivariant sets of languages closed under the set-theoretic boolean operations
and unions of S-orbits for every finite S ⊆ A. By Proposition 3.1 and the dual equivalence
of Nomfs and nCABAfs, the map e represents a nominal quotient monoid of Σ∗ if and only
if VΣ is closed under derivatives, i.e. a local variety. The closure under left derivatives is
illustrated by the two dual commutative squares below, where the left-hand one lives in
Nomfs and the right-hand one in nCABAfs.

Σ∗

e
����

w·−
// Σ∗

e
����

M
∃

// M

PΣ∗ PΣ∗
w−1(−)
oo

VΣ

OO
⊆

OO

VΣ∃
oo

OO
⊆

OO

The elements of VΣ are precisely the languages recognized by e. Indeed, the former correspond
to the morphisms 1→ VΣ in nCABAfs, where 1 is the free boolean algebra on one generator,
the latter to the finitely supported maps M → 2 in Nomfs, and 1 and 2 are dual objects. J

Recall that an ideal in a poset is a downwards closed and upwards directed subset. For the
lattice of local varieties of data languages over Σ (ordered by inclusion), we obtain

I Lemma 4.10. The lattice of local varieties of data languages over Σ is isomorphic to the
lattice of ideals in the poset of atom-finite local varieties over Σ.
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The isomorphism maps a local variety VΣ to the ideal of all atom-finite local subvarieties of
VΣ. Its inverse maps an ideal { VΣ,i : i ∈ I } in the poset of atom-finite local varieties to the
local variety

⋃
i∈I VΣ,i. In order-theoretic terms, the above lemma states that local varieties

of data languages form the ideal completion of the poset of atom-finite local varieties. Using
Theorem 4.9, Lemma 4.10, and the fact that ideals are dual to filters, we obtain

I Theorem 4.11 (Local Variety Theorem). For each Σ ∈ Nom, the lattice of local varieties
of data languages over Σ is dually isomorphic to the lattice of local pseudovarieties of
Σ-generated nominal monoids.

I Remark 4.12.
(1) Since data languages are morphisms L : Σ∗ → 2 in Nomfs, the reader may wonder

why we do not entirely work in this category and use monoids with finitely supported
multiplication and finitely supported monoid morphisms (rather than the equivariant
ones) for the recognition of languages. The reason lies on the dual side: in the proof
of Theorem 4.9, we used that equivariant injective maps VΣ � PΣ∗ can be uniquely
identified with equivariant subsets of PΣ∗. In contrast, finitely supported injective maps
VΣ � PΣ∗ do not correspond to the finitely supported (or any other kind of) subsets of
PΣ∗.

(2) Similarly, we cannot restrict ourselves to the category Nom and only consider equivariant
languages L ⊆ Σ∗ rather than finitely supported ones. Indeed, the Finite Local Variety
Theorem then fails: the map sending a Σ-generated orbit-finite monoid e : Σ∗ �M to
the set of equivariant languages it recognizes is no longer bijective. To see this, consider
the nominal monoids M = A ∪ {1} with a • b = a for a, b ∈ A, and N = {0, 1} with
0 • 0 = 0 • 1 = 1 • 0 = 0. Then the two surjective morphisms e : A∗ � M , extending
a 7→ a, and f : A∗ � N , extending a 7→ 0, recognize the same equivariant languages,
namely A∗, A∗ \ {ε}, {ε} and ∅.

In the following, we consider data languages whose alphabet Σ is an orbit-finite strong
nominal set (see Remark 3.62). By dualizing the concept of an equational theory, we obtain

I Definition 4.13 (Variety of data languages). A variety of data languages is a family

V = (VΣ ⊆ PΣ∗ )Σ∈Nomof,s

of local varieties of data languages with the following two properties:
(1) Closedness under preimages. For each equivariant monoid morphism h : ∆∗ → Σ∗ with

Σ,∆ ∈ Nomof,s and each L ∈ VΣ, one has h−1[L] ∈ V∆.
(2) Completeness. For each atom-finite local subvariety V ′Σ � VΣ, there exists an equivariant

monoid morphism h : Σ∗ → ∆∗ and an atom-finite local subvariety V ′∆ � V∆ such that
a. the map L 7→ h−1[L] defines a bijection between V ′∆ and V ′Σ, and
b. every atomic language L ∈ V ′∆ contains a word w ∈ ∆∗ with suppP∆∗(L) = supp∆∗(w).

I Remark 4.14. Except for the completeness condition, the above concept is analogous to
Eilenberg’s original notion of a variety of regular languages (i.e. a family of local varieties
of regular languages closed under preimages of monoid morphisms). In fact, if Σ is a finite
alphabet, and thus VΣ is just a local variety of regular languages, completeness is trivial:
given any finite local subvariety V ′Σ of VΣ, choose ∆ = Σ, V ′∆ = V ′Σ, and h = id : Σ∗ → ∆∗.
Then 2a is clear, and 2b holds because each L ∈ PΣ∗ and each w ∈ Σ∗ has empty support.

In general, however, the completeness property cannot be dropped. This follows from Re-
mark 3.63 and the observation that the completeness of a variety dualizes to the completeness
of the corresponding equational theory (see the proof of Theorem 4.15).
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We are ready to state the main result of our paper:

I Theorem 4.15 (Nominal Eilenberg Theorem). Varieties of data languages and pseudovari-
eties of nominal monoids form isomorphic complete lattices.

The isomorphism maps a variety V of data languages to the pseudovariety V of all orbit-finite
nominal monoids that recognize only languages from V. Its inverse maps a pseudovariety V

to the variety V of all data languages recognized by some monoid in V.

Proof sketch. We observe that the concept of a variety is dual to that of an equational theory.
Indeed, by the Local Variety Theorem 4.11, a family V = (VΣ ⊆ PΣ∗ )Σ∈Nomof,s of local varie-
ties of data languages bijectively corresponds to a family T = (TΣ ⊆ Σ∗ �nMonof )Σ∈Nomof,s

of local pseudovarieties of nominal monoids. One then shows that (1) T is substitution-
invariant if and only if V is closed under preimages, and (2) T is complete if and only if V is
complete. In particular, T is a theory if and only if V is a variety of data languages. Since
theories correspond to pseudovarieties by Theorem 3.8, this proves the theorem. J

5 Adding Expressivity: Regular Data Languages

As recognizing structures for data languages, nominal monoids are of limited expressivity; in
particular, they are strictly weaker than deterministic automata in the category of nominal
sets [5, 4]. Therefore, we now show how to extend our results for monoid-recognizable data
languages and establish a local variety theorem for languages accepted by nominal automata.

I Definition 5.1. Fix an input alphabet Σ ∈ Nom. A nominal Σ-automaton A = (Q, δ, q0)
consists of a nominal set Q of states, an equivariant transition map δ : Q × Σ → Q, and
an initial state q0 ∈ Q with empty support. It is called orbit-finite if Q is orbit-finite. A
morphism between nominal automata A = (Q, δ, q0) and A′ = (Q′, δ′, q′0) is an equivariant
map h : Q→ Q′ such that δ(h(q), a) = h(δ(q, a)) for all q ∈ Q and a ∈ Σ, and h(q0) = q′0.

The initial nominal Σ-automaton is given by I = (Σ∗, δ, ε) with transition map δ(w, a) = wa

for w ∈ Σ∗ and a ∈ Σ. It is characterized by the universal property that for every nominal
Σ-automaton A = (Q, δ, q0), there exists a unique morphism eA : I → A, sending a word
w ∈ Σ∗ to the state reached from q0 after reading w. The automaton A is called reachable if
eA is surjective. A data language L ⊆ Σ∗ is accepted by A if there exists a finitely supported
subset F ⊆ Q with L = e−1

A [F ]. This corresponds to the usual notion of acceptance of an
automaton with final states F : the language L consists of all words w ∈ Σ∗ such that A
reaches a state in F after reading w. A data language L ⊆ Σ∗ is called regular if there exists
an orbit-finite nominal automaton accepting it. In analogy to Proposition 3.1, we get

I Proposition 5.2 (Unary presentation for nominal automata). For every surjective equivariant
map e : Σ∗ � Q, the following statements are equivalent:
(1) there exists a nominal automaton A = (Q, δ, q0) with states Q such that e = eA;
(2) the maps Σ∗ −·w−−→ Σ∗ (w ∈ Σ∗) lift along e, i.e. there exist (necessarly unique) maps

rw : Q→ Q such that e · (− · w) = rw · e for all w ∈ Σ∗.
Define a local pseudovariety of nominal Σ-automata to be a class VΣ of orbit-finite reachable
nominal Σ-automata such that (1) VΣ is closed under quotients (represented by surjective
automata morphisms), and (2) for every pair A,B ∈ VΣ, the reachable part of the product
A×B lies in VΣ. Here, the product of two nominal automata A = (Q, δ, q0) andB = (Q′, δ′, q′0)
is given by A×B = (Q×Q′, δ, (q0, q

′
0)) with δ((q, q′), a) = (δ(q, a), δ′(q′, a)) for (q, q′) ∈ Q×Q′

and a ∈ Σ, and the reachable part R of A × B is the coimage e : Σ∗ � R of the unique
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morphism eA×B : Σ∗ → A × B. Note that a local pseudovariety corresponds precisely to
a filter in the poset Σ∗ �Σ-nAutof of orbit-finite reachable nominal Σ-automata. The dual
version of this concept is the one of a local variety of regular data languages over Σ: an
equivariant set VΣ ⊆ PΣ∗ of such languages closed under the set-theoretic boolean operations,
unions of S-orbits for every finite set S ⊆ A of atoms, and right derivatives. The following
theorem, and its proof, are completely analogous to Theorem 4.11:

I Theorem 5.3 (Local Variety Theorem for Regular Data Languages). For each Σ ∈ Nom, the
lattice of local varieties of regular data languages over Σ is dually isomorphic to the lattice of
local pseudovarieties of nominal Σ-automata.

6 Conclusions and Future Work

We have demonstrated that two cornerstones of the algebraic theory of regular languages,
Eilenberg’s variety theorem and Eilenberg and Schützenberger’s axiomatic characterization
of pseudovarieties, can be generalized to data languages recognizable by orbit-finite monoids.
Our results are the first of this type for data languages, and thus the present work makes
a contribution towards developing a fully fledged algebraic theory of such languages. In
a broader sense, the approach taken in this paper can be seen as a further illustration
of the power of duality in formal language theory: we believe that without the guidance
given by nominal Stone duality, it would have been significantly harder to even come up
with the suitable notion of a variety of data languages that makes the nominal Eilenberg
correspondence work. The duality-based approach thus adds much conceptual clarity and
simplicity. There remain several research questions and interesting directions for future work.

As indicated in section 5, the techniques used in our paper can be adapted without much
effort to languages recognized by nominal algebraic structures other than monoids, including
deterministic nominal automata. As a first step, we aim to extend the local variety theorem
for regular data languages (Theorem 5.3) to a full Eilenberg correspondence. It remains an
important goal to further extend our results to more powerful classes of data languages.

Our proof of the (local) Eilenberg correspondence rests on the observation that a local
variety of data languages can be expressed as the directed union of its atom-finite subvarieties.
From a category theoretic perspective, this suggests that local varieties are formed within the
Ind-completion (i.e. the free completion under directed colimits) of the category of atom-finite
nominal complete atomic boolean algebras. We conjecture that this completion can be
described as a category of nominal boolean algebras with joins of S-orbits for each finite set
S of atoms. On the dual side, we expect that the Pro-completion (i.e. the free completion
under codirected limits) of the category of orbit-finite nominal sets consists of some form
of nominal Stone spaces. The approach of working with free completions should lead to
a topological version of nominal Stone duality similar to the one established by Gabbay,
Litak, and Petrişan [8]. More importantly, it might pave the way to the introduction of
pro-(orbit-)finite methods for the theory of data languages.
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Abstract
Temporal graphs are used to abstractly model real-life networks that are inherently dynamic in nature,
in the sense that the network structure undergoes discrete changes over time. Given a static underlying
graph G = (V, E), a temporal graph on G is a sequence of snapshots {Gt = (V, Et) ⊆ G : t ∈ N}, one
for each time step t ≥ 1. In this paper we study stochastic temporal graphs, i.e. stochastic processes
G = {Gt ⊆ G : t ∈ N} whose random variables are the snapshots of a temporal graph on G. A
natural feature of stochastic temporal graphs which can be observed in various real-life scenarios is
a memory effect in the appearance probabilities of particular edges; that is, the probability an edge
e ∈ E appears at time step t depends on its appearance (or absence) at the previous k steps. In
this paper we study the hierarchy of models memory-k, k ≥ 0, which address this memory effect
in an edge-centric network evolution: every edge of G has its own probability distribution for its
appearance over time, independently of all other edges. Clearly, for every k ≥ 1, memory-(k − 1)
is a special case of memory-k. However, in this paper we make a clear distinction between the
values k = 0 (“no memory”) and k ≥ 1 (“some memory”), as in some cases these models exhibit a
fundamentally different computational behavior for these values of k, as our results indicate. For
every k ≥ 0 we investigate the computational complexity of two naturally related, but fundamentally
different, temporal path (or journey) problems: Minimum Arrival and Best Policy. In the first
problem we are looking for the expected arrival time of a foremost journey between two designated
vertices s, y. In the second one we are looking for the expected arrival time of the best policy for
actually choosing a particular s-y journey. We present a detailed investigation of the computational
landscape of both problems for the different values of memory k. Among other results we prove that,
surprisingly, Minimum Arrival is strictly harder than Best Policy; in fact, for k = 0, Minimum
Arrival is #P-hard while Best Policy is solvable in O(n2) time.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Mathematics of
computing → Graph algorithms; Mathematics of computing → Paths and connectivity problems

Keywords and phrases Temporal network, stochastic temporal graph, temporal path, #P-hard
problem, polynomial-time approximation scheme

EA
T

C
S

© Eleni C. Akrida, George B. Mertzios, Sotiris Nikoletseas, Christoforos Raptopoulos,
Paul G. Spirakis, and Viktor Zamaraev;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 131; pp. 131:1–131:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1126-1623
mailto:eleni.akrida@liverpool.ac.uk
https://orcid.org/0000-0001-7182-585X
mailto:george.mertzios@durham.ac.uk
mailto:nikole@cti.gr
https://orcid.org/0000-0002-9837-2632
mailto:raptopox@ceid.upatras.gr
https://orcid.org/0000-0001-5396-3749
mailto:p.spirakis@liverpool.ac.uk
https://orcid.org/0000-0001-5755-4141
mailto:viktor.zamaraev@durham.ac.uk
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


131:2 How Fast Can We Reach a Target Vertex in Stochastic Temporal Graphs?

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.131

Category Track C: Foundations of Networks and Multi-Agent Systems: Models, Algorithms and
Information Management

Related Version A full version of the paper is available at https://arxiv.org/abs/1903.03636 [2].

Funding This work was supported by the NeST initiative of the EEE/CS School of the University
of Liverpool and by the EPSRC grants EP/P020372/1 and EP/P02002X/1.

1 Introduction

Dynamic network analysis, i.e. analysis of networks that change over time, is currently one
of the most active topics of research in network science and theory. A common task in
this field is to use our prior knowledge of the network link dynamics to answer questions
about the behavior of the network over time, e.g. how quickly information can flow through
it. Many modern real-life networks are dynamic in nature, in the sense that the network
structure undergoes discrete changes over time [31, 36]. Here we deal with the discrete-time
dynamicity of the network links (edges) over a fixed set of nodes (vertices). That is, given an
underlying static graph G, the network evolution over G is given by the successive appearance
or absence of each edge of G at every time step t = 1, 2, . . .. This concept of dynamic network
evolution is given by temporal graphs [27, 29], which are also known by other names such as
evolving graphs [6, 20], or time-varying graphs [1]. For a recent attempt to integrate existing
models, concepts, and results from the distributed computing perspective, see the survey
papers [12, 13] and the references therein.

I Definition 1 (Temporal graph). Given an underlying static graph G = (V,E) on n vertices
and m edges, a temporal graph on G is a sequence G = {Gt = (V,Et) : t ∈ N} of graphs
such that Et ⊆ E for all t ∈ N. Every Gt is the snapshot of G at time step t.

Another way to think about temporal graphs is by assigning time-labels on the edges;
for example, if an edge e appears in the snapshots G3, G5, and G8, then we equivalently
assign to e the set of labels λ(e) = {3, 5, 8}. Due to the vast applicability of temporal graphs,
various structural and algorithmic properties of them have been studied extensively, both
via theoretical/algorithmic analysis and via empirical simulation-based analysis. In many
of these works, one of the central temporal notions is that of a temporal path. A path in
the underlying (static) graph G is a temporal path (or journey) if there exists an increasing
sequence of time-labels as one walks along the edges of the path [27, 29]. Motivated by the fact
that, due to causality, information in temporal graphs can only flow along sequences of edges
that appear in an increasing time order, many temporal graph parameters and optimization
problems that have been studied so far are based on the notion of a temporal path and other
related notions, e.g. temporal analogs of distance, diameter, connectivity, reachability, and
exploration [4, 3, 23, 33, 10, 8, 14, 19, 21, 7, 28, 18]. In addition to temporal paths, recently
also various temporal non-path problems have been introduced and algorithmically studied,
such as temporal vertex cover [5], temporal coloring [30], and temporal ∆-cliques [38, 24].

Apart from the focus on the various algorithmic problems that one can study on temporal
graphs, one can also view temporal graphs through several different levels of knowledge about
the actual network evolution. On the one extreme, we may be given the whole temporal graph
instance in advance, i.e. the times of appearance and absence of every edge at all times, as it
typically happens e.g. when modeling transportation networks. On the other extreme, the
temporal graph may be created by an adversary who reveals it to us snapshot-by-snapshot
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at every time step. Here we focus on the intermediate knowledge settings, captured by
stochastic temporal graphs, where the network evolution is given by a probability distribution
that governs the appearance of each edge over time.

I Definition 2 (Stochastic temporal graph). A stochastic temporal graph is a stochastic
process G = {Gt : t ∈ N} whose random variables are snapshots Gt ⊆ G of an underlying
graph G. Every instantiation of G is a temporal graph.

A natural feature of stochastic temporal graphs which can be observed in various real-
life scenarios (and which we address in this paper) is that the appearance probability of
a particular edge at a given time step t depends on the appearance (or absence) of the
same edge at the previous k ≥ 1 time steps. This “memory effect” can often be observed,
among others, in faulty network communication and in mobile, social, and peer-to-peer
networks [15, 37, 34]. Several other models of temporal networks which exhibit some sort of
probabilistic behavior have been considered in the past, see e.g. [25].

In this paper, we study a hierarchy of models for stochastic temporal graphs which address
an edge-centric network evolution, i.e. they assign to every edge of the underlying graph G a
probability distribution for its appearance over time, independently of all the other edges.
The first and most basic model (memoryless or memory-0) assigns independently to every
edge e a probability pe such that, at every time step, e appears with probability pe. In the
general model (memory-k), at every time step the appearance probability of every edge is a
function of the history of its appearances/absences in the last k ≥ 1 time steps. Clearly, for
every k ≥ 1, the memory-(k − 1) model is a special case of the memory-k model. However,
in this paper we make a clear distinction between the values k = 0 (“no memory”) and
k ≥ 1 (“some memory”), as in some cases these models exhibit a fundamentally different
computational behavior for these values of k, as our results indicate (see Section 4).

Our memory-k model, k ≥ 1, is a direct generalization of the homogeneous version of the
memory-1 model that was introduced in a seminal paper by Clementi et al. [16], in which
all edges have the same probability distribution for their appearance, based on their own
appearance/absence at the previous step. In this homogeneous memory-1 model, Clementi
et al. gave upper bounds for the flooding time and they provided tight characterizations of
the graphs on which the flooding time is constant [16]. It is worth noting here that Avin et
al. [7] studied the completely opposite extreme of our edge-centric evolution; namely they
considered a graph-centric evolution model where a global probability distribution assigns
specific transition probabilities among different snapshots [7]. Between the two extremes
of the edge-centric and the graph-centric network evolution models, there exists a whole
hierarchy of locally interdependent probabilistic patterns, i.e. probability distributions where
the appearance probability of one edge also depends on the appearance of other edges over
time; such models remain mostly unexplored.

In both our memoryless and memory-k variations of stochastic temporal graphs, we study
two fundamental temporal path (i.e. journey) problems that are defined on two designated
vertices s and y. Consider a piece of information that is generated at s at time 1, which we
would like to send to y via an s-y journey. The arrival time of an s-y journey in a realization
of a stochastic temporal graph is the time the information reaches y using this journey. A
foremost s-y journey is one with the smallest arrival time. In the first part of the paper we
investigate the complexity of computing the expected arrival time of a foremost s-y journey.
Basu et al. [9] and Nain et al. [32] studied a similar problem but their work is restricted to
the simpler cases where the underlying graph is either a path or a grid.

In the second part of the paper we investigate the complexity of computing the arrival
time of a best policy for actually choosing a particular s-y journey in the stochastic temporal
graph. To illustrate this notion of a best policy, assume that some piece of information
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is carried by an entity, say Alice. Alice is given as input the parameters of the stochastic
temporal graph (i.e. the probabilistic rules on the edges) and, at every time step, she knows
the current snapshot and her current location. Based on this information, Alice has to
decide at every step for her next action, while her goal is to reach y as quickly as possible on
expectation, starting at time 1. In a very inspiring paper, Basu et al. [8] consider this problem
in the special case of the memoryless model where all edges have the same probability of
appearance at every time, and give a Dijkstra-like polynomial-time algorithm. Special cases
of the memory-1 model were considered in [11].

To illustrate the difference between the two problems we study, we make the following
analogy. In the first problem (Minimum Arrival) we try to transfer information from s

to y using an unbounded number of messages, i.e. we “flood” the stochastic temporal graph
with information. Initially the information is stored at s at time 1 and then, at every step,
every informed vertex informs all its neighbors as soon as the edge between them becomes
available. In the second problem (Best Policy) we try to transfer a package with a tangible
good from s to y. Now, at every step we need to decide for the actual route of the package
through the network: when an edge appears, should we ship the package along it or rather
wait where we currently are? Best Policy is more relevant to real-life applications than
Minimum Arrival, where an actual good journey needs to be found in real time.

Our contribution. In the first part of the paper, in Section 3, we provide our results for
the problem Minimum Arrival, i.e. for computing the expected arrival time of a foremost
s-y journey in a stochastic temporal graph. First we prove in Section 3.1 that Minimum
Arrival is #P-hard even for the memoryless model (and thus also for the memory-k model,
for every k ≥ 1). The reduction is done from the problem #PP2DNF which counts the
number of satisfying assignments in a positive partitioned 2-DNF Boolean formula [35].

Second, we provide in Section 3.2 a non-trivial approximation scheme for Minimum
Arrival, based on dynamic programming, for the memoryless model in the case where
the underlying graph G is a series-parallel graph with s and y being its terminals. More
specifically, it turns out that this is a Fully Polynomial-Time Approximation Scheme (FPTAS)
whenever the probabilities pe are lower bounded by 1

nc for some c ≥ 1. Let X be the random
variable that expresses the arrival time of a foremost s-y journey. For every ε ∈ (0, 1], our
FPTAS gives an algorithm that produces a value µ where E(X)− ε ≤ µ ≤ E(X), and runs
in polynomial time in both n and 1

ε . Although our main result of Section 3.2 concerns
series-parallel graphs, we actually present a more general FPTAS approach (see Theorem 11)
which is of independent interest and could lead to FPTASs also for more general classes of
underlying graphs G.

Third, we present in Section 3.3 a Fully Polynomial Randomized Approximation Scheme
(FPRAS) for Minimum Arrival in the memory-k model, for every k ≥ 0, under the
assumption that every edge appearance probability is lower bounded by 1

nc for some c ≥ 1.
Let X be the random variable that expresses the arrival time of a foremost s-y journey. For
every ε ∈ (0, 1), our FPRAS gives a randomized algorithm that produces an estimate X̃
where (1− ε)E(X) ≤ X̃ ≤ (1 + ε)E(X) with probability tending to 1 as n→∞, and runs in
polynomial time in both n and 1

ε .
In the second part of the paper, in Section 4, we provide our results for the problem

Best Policy, i.e. for computing the expected arrival time of a best policy for choosing a
particular s-y journey. Initially we provide in Section 4.1 a dynamic programming algorithm
for the memoryless model which runs in O(n2) time and space. In wide contrast, we prove in
Section 4.2 that Best Policy becomes #P-hard for the memory-k model, where k ≥ 3, again
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by providing a reduction from the problem #PP2DNF. Finally, we provide in Section 4.3 a
formulation of Best Policy in the memory-k model using the general Markov Decision
Process (MDP) framework which allows us to devise in Section 4 an exact doubly exponential-
time algorithm with running time O(2(kmn+n logn)·2km). Due to lack of space, many proofs
have been omitted; the full proofs of this paper can be found in our technical report [2].

2 Preliminaries

In this paper we consider temporal graphs (see Definition 1) in which the underlying (static)
graph G = (V,E) has n vertices and m edges . A subgraph H = (V,EH) of G, denoted
by H ⊆ G, is a graph where EH ⊆ E. For every vertex u ∈ V , the neighborhood ΓG(u)
of u in G is the set of adjacent vertices of u in G. The closed neighborhood ΓG[u] also
contains vertex u itself, i.e. ΓG[u] = ΓG(u) ∪ {u}. For simplicity of notation we denote
[n] = {1, 2, . . . , n} for every n ∈ N. Furthermore, sometimes we refer to the discrete time
steps t = 1, 2, . . . as days. Throughout the paper we consider stochastic temporal graphs
that exhibit an edge-centric evolution, i.e. every edge e of G is assigned one probability
distribution for its appearance over time, independently of all other edges. We investigate
the case where there is a “memory effect” that governs the probability of appearance of every
edge over time. We distinguish now the cases where the the memory is zero or non-zero.

Memoryless (or memory-0) model. Every edge e ∈ E evolves stochastically and independ-
ently of other edges as follows: at every time step t ∈ N, e appears in Gt with probability pe
and is absent with probability 1− pe, independently of any other time step. The numbers
{pe : e ∈ E} are given parameters of the model. We denote this (memoryless) stochastic
temporal graph by G(0) = (G, {pe : e ∈ E}) or simply G(0) = (G, {pe}).

Memory-k model. This model of temporal graphs exhibits stochastic time-dependency of the
edges: we assume an initial (arbitrary) sequence of k snapshots, G−k+1, . . . , G−1, G0 ⊆ G.
At every time step t ≥ 1, every edge e appears independently of all other edges with
probability that depends only on (the edge and) the history of appearance of e in the
k previous snapshots. At every time step t, this history is a k-bit binary vector, where
a 0-entry (resp. 1-entry) on the i-th position denotes absence (resp. appearance) of e
in Et−k+i−1, for i = 1, . . . , k. Therefore the snapshot Gt is the graph that appears
at time t ≥ 1 as the result of the following experiment: given the history H(k)

e of the
appearance of edge e ∈ E in the last k snapshots, e belongs to Et independently with
probability pe(H(k)

e ). We denote the memory-k stochastic temporal graph by G(k).

In the particular case where k = 1, the memory-1 stochastic temporal graph G(1) is
the sequence {Gt = (V,Et) : t ∈ N} of snapshots such that Et = {e ∈ E : Xe

t = 1},
where {Xe

t }t∈N is a Markov chain for the edge e ∈ E with states {0, 1} (corresponding to
non-appearance and appearance of e, respectively) and probability transition matrix:

Me =

 0 1
0 1− pe pe
1 qe 1− qe

 , where 0 ≤ pe, qe ≤ 1.

Using this formalism, pe (resp. qe) is the probability that the edge e changes its current
state from absence to appearance (resp. from appearance to absence) in the next snapshot.
Note here that, setting pe = p and qe = q for every edge e, we obtain exactly the
well-established edge-Markovian evolving graph model introduced by Clementi et al. [16].
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2.1 The problems

This work studies two main problems, each under the models of stochastic temporal graphs
defined above. To describe both of these problems, let us first recall that information in
temporal graphs flows via journeys, i.e. temporal paths.

I Definition 3 (Time-edge). A time-edge in a temporal graph G = {Gt : t ∈ N} is a pair
(e, t) such that e ∈ Et.

I Definition 4 (Journey / temporal path). Let G = {Gt : t ∈ N} be a temporal graph and
s, y be two vertices of G. An s-y journey (or an s-y temporal path) in G is a sequence(
(e1, t1), . . . , (ex, tx)

)
of time-edges over a path (e1, . . . , ex) from s to y in G, where t1 <

t2 < . . . < tx. The arrival time of the journey is the time tx of appearance of its last edge.

I Definition 5 (Foremost Journey). A foremost s-y journey in a temporal graph G is an s-y
journey with the minimum arrival time amongst all s-y journeys in G.

Notice that the arrival time of a foremost s-y journey in a stochastic temporal graph is a
random variable, which we henceforth denote by X(s, y). The first problem that we study
here is how to compute the expected value of the latter, namely E[X(s, y)].

I Problem 1 (Minimum Arrival). Given a stochastic temporal graph on an underlying
graph G = (V,E) and two distinct vertices s, y ∈ V , compute the expected value of the arrival
time of a foremost s-y journey, i.e. E[X(s, y)].

Now suppose that an individual (say Alice) is at day 0 at vertex s and would like to
arrive at vertex y through a temporal path as quickly as possible. Denote by st the vertex
where she is located at time t; then s0 = s. Every day t Alice “wakes up” in the morning and
looks at which edges are available in today’s snapshot; by only knowing her current position,
the history of the last k snapshots, and the input parameters of the stochastic temporal
graph (i.e. the probabilistic rules of edge appearance), Alice needs to decide whether:
(a) to stay at the vertex st she currently is, or
(b) to use an edge of Gt to move to a neighboring vertex.
That is, st+1 is either equal to st or equal to some vertex of ΓGt

(st).
A natural problem we can study here is to compute the expected arrival time of an s-y

journey that Alice can follow, using a best policy1 possible, i.e. a policy (sequence of actions)
that minimizes her expected arrival time at y. Notice that the arrival time of the journey
suggested to Alice by the best policy is a random variable Y (s, y), whose distribution depends
on the specific stochastic temporal graph. In particular, in the memoryless model, the
expectation of Y (s, y) depends only on the edges’ probabilities of appearance. In the memory-
k model, the expectation of Y (s, y) also depends on the initial snapshots G−k+1, . . . , G−1, G0.

I Problem 2 (Best Policy). Given a stochastic temporal graph G(k) on an underlying
graph G = (V,E) and two distinct vertices s, y ∈ V , compute EG(k) [Y (s, y)].

In particular, we will write h(s, y) def= EG(0) [Y (s, y)] and h(s, y,G0) def= EG(1) [Y (s, y)].

1 We use the term “policy” here (instead of “strategy”) since, as we will see later, this problem can be
formulated using a Markov Decision Process (MDP).
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Difference between the two problems

Before we proceed further, we first give an example illustrating that the problems Minimum
Arrival and Best Policy are different. In fact, the gap between the solution to Minimum
Arrival and the solution to Best Policy can be arbitrarily large: Consider the graph
consisting of vertices s and y and n− 2 vertex disjoint paths of length 2 between s and y.
Assume also that, under the memoryless model, every edge incident to s appears each day with
probability 1 and every edge incident to y appears each day independently with probability
n−0.9. Similarly to the above example of the graph with n− 2 vertex disjoint paths of length
2, here the expected arrival time of a best policy for Alice is h(s, y) = 1 + n0.9. On the other
hand, the arrival time of the foremost journey from s to y will be equal to the first day after
day 1 on which some edge incident to y appears. But the time needed for the latter to happen
follows the geometric distribution with success probability 1 − (1 − n−0.9)n−2 = 1 − o(1).
Therefore, the expected arrival time of the foremost journey will be E[X(s, y)] = 2 + o(1),
i.e. much smaller than h(s, y) = 1 + n0.9.

As a final note, the expected arrival time E[X(s, y)] of the foremost s-y journey is always
upper-bounded by the minimum among the expected values of the arrival times of all s-y
journeys in the temporal graph. This is actually implied by a more general and well-known
lemma in Probability Theory (Fatou’s lemma [17, p. 29]) which establishes that the expected
value of the minimum among n random variables is upper-bounded by the minimum among
all the variables’ expectations.

3 Computing the expected minimum arrival time

3.1 Hardness of exact computation in the memoryless model
In this section we show that, even in the memoryless model, Minimum Arrival is #P-hard
in both undirected graphs and directed acyclic graphs (DAGs). In the proof of the following
theorem, the edges can be treated either as oriented, in which case we obtain the result for
DAGs, or as non-oriented, in which case we obtain the result for undirected graphs.

I Theorem 6. Minimum Arrival in the memoryless model is #P-hard.

I Corollary 7. For every k ≥ 0, Minimum Arrival in the memory-k model is #P-hard.

3.2 The FPTAS for the memoryless model on series-parallel graphs

3.2.1 The case of paths
In this section we will consider a stochastic temporal graph P(0) = (P = (V,E), {pe}) with
the underlying graph being a path P = (s = v0, v2, . . . , vn = y).

I Lemma 8. E[XP(0)(s, y)] =
∑
e∈E

1
pe
.

Let us denote by µ the expectation µ def= E[XP(0)(s, y)] =
∑
e∈E

1
pe
. Note that

µ =
∞∑
i=1

Pr[XP(0)(s, y) ≥ i]. (1)

In the remainder of this section we will show that the first O(µ lnµ) terms of sum (1) already
give a very good approximation of µ. In our analysis we will use the following bound.
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I Theorem 9 ([26]). Let X =
∑n
i=1 Xi, where n ≥ 1 and Xi, i = 1, . . . , n, are independent

geometric random variables with parameters p1, p2, . . . , pn ∈ (0, 1], respectively. Let µ =
E[X] =

∑n
i=1

1
pi
. Then for any λ ≥ 1, Pr[X ≥ λµ] ≤ e1−λ.

I Lemma 10. Let ε be a number such that 0 < ε ≤ 1. Then

µ−
τ∑
i=1

Pr[XP(0)(s, y) ≥ i] =
∞∑

i=τ+1
Pr[XP(0)(s, y) ≥ i] < ε,

for every τ ≥ µ
(
ln µ

ε + 1
)
, where µ = E[XP(0)(s, y)].

3.2.2 A general FPTAS approach
While deriving analytically and computing efficiently the exact solution of Minimum Arrival
in a path is an easy task (cf. Lemma 8), it does not seem to be trivial for a slight generalization
of paths, called parallel compositions of paths. A parallel composition of paths is the graph
obtained from a collection of disjoint paths P1, P2, . . . , P` with end vertices si, yi, i = 1, . . . , `,
respectively, by identifying the vertices s1, s2, . . . , s` in a single vertex s, and by identifying
the vertices y1, y2, . . . , y` in a single vertex y.

It is not clear whether there exists an efficient procedure for computing the expected
arrival time from s to y in a parallel composition of paths, even if the parallel paths are of
equal length and all the probabilities of edge appearance are the same. In this section we
present a general approach for developing ε-additive approximation algorithms2 for computing
the expected arrival time of a foremost journey in special classes of stochastic temporal graphs.
In Section 3.2.3 we apply this approach to develop an efficient ε-additive approximation
algorithm for the problem on the class of stochastic temporal graphs with underlying graphs
being series-parallel graphs, which generalize parallel compositions of paths and graphs in
which all simple s-y paths are of the same length.

Throughout the section we denote by G(0) = (G = (V,E), {pe}) a memoryless stochastic
temporal graph with n vertices and m edges, and by s, y ∈ V two distinct vertices in G.
Furthermore, we denote by H = (V,E,w) the weighted graph obtained from the underlying
graph G by assigning to every edge e ∈ E the weight w(e) = 1

pe
.

I Theorem 11. Let c ∈ N and ε ∈ (0, 1]. Let pe ≥ 1
nc for every e ∈ E and suppose that there

exists an algorithm A that computes in time O (f(`, n,m)) the probabilities Pr[XG(0)(s, y) ≥ i],
for all i = 1, . . . , `. Then there exists an algorithm B that approximates E[XG(0)(s, y)] within
the additive factor of ε in time

O
(
f
(
nc+1 ln n

ε
, n,m

)
+ n lnn+m

)
.

Consequently, if f(`, n,m) is a polynomial in variables `, n, and m, then B is an FPTAS on
the instance (G(0), s, y).

Proof. Let P = (s = v0, v1, . . . , vr = y) be a minimum weight s-y path in H, and let P(0) be
the stochastic temporal subgraph of G(0) restricted to the edges of P . For convenience, let us
denote ei = vi−1vi for every i = 1, . . . , r. Then, by definition and Lemma 8, the weight w∗

2 A feasible solution is ε-additive approximate if it is within ε additive factor from the optimal value.
An algorithm is called an ε-additive approximation algorithm if it returns an ε-additive approximate
solution for any instance.
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of P is equal to
∑r
i=1

1
pei

= E[XP(0)(s, y)]. Let τ := w∗
(

ln w∗

ε + 1
)
. Then, by Lemma 10,

we have that
∞∑

i=τ+1
Pr[XG(0)(s, y) ≥ i] ≤

∞∑
i=τ+1

Pr[XP(0)(s, y) ≥ i] < ε,

and hence
τ∑
i=1

Pr[XG(0)(s, y) ≥ i] ≤ E[XG(0)(s, y)] =
∞∑
i=1

Pr[XG(0)(s, y) ≥ i]

<

τ∑
i=1

Pr[XG(0)(s, y) ≥ i] + ε,

that is,
∑τ
i=1 Pr[XG(0)(s, y) ≥ i] approximates E[XG(0)(s, y)] within the additive factor of ε.

Now we define the desired algorithm B as follows:
1. Construct the graph H and compute the minimum weight w∗ of an s-y path in H using

Dijkstra’s algorithm.
2. Using algorithm A, compute the probabilities Pr[XG(0)(s, y) ≥ i], i = 1, . . . , τ , where

τ = w∗
(

ln w∗

ε + 1
)
.

3. Output
∑τ
i=1 Pr[XG(0)(s, y) ≥ i].

The above discussion implies that algorithm B correctly computes the declared approxim-
ation of E[XG(0)(s, y)]. It remains to justify the time complexity. First, Dijkstra’s algorithm
can be implemented to work in time O(n lnn + m) [22]. Second, the assumption on pe’s
implies that w∗ = O(nc+1), and hence τ = w∗

(
ln w∗

ε + 1
)

= O
(
nc+1 ln n

ε

)
. Therefore

the assumption of the theorem implies that the last two steps of the algorithm run in
time O

(
f
(
nc+1 ln n

ε , n,m
))

, which in turn implies the complexity bound and completes
the proof. J

3.2.3 The FPTAS for stochastic temporal series-parallel graphs
In the present section we use the approach from Section 3.2.2 to derive a polynomial-time
approximation scheme for stochastic temporal series-parallel graphs.

I Theorem 12. Let ε ∈ (0, 1] and let G(0) = {G = (V,E), {pe}} be a stochastic temporal
series-parallel graph, where s and y are the terminals of G and pe ≥ 1

nc for every e ∈ E.
Then Minimum Arrival on G(0) admits an FPTAS with running time O

(
m · n2c+2 ln2 n

ε

)
,

where |V | = n and |E| = m.

3.3 The FPRAS for general graphs in the memory-k model, k ≥ 0
In this section, we present our FPRAS for Minimum Arrival in the memory-k model, for
every k ≥ 0, under the assumption that the appearance probability of every edge e is lower
bounded by 1

nc for some c ≥ 1 regardless of the history H
(k)
e , i.e. pe(x) ≥ 1

nc holds for
all x ∈ {0, 1}k.

I Theorem 13. Let ε ∈ (0, 1) and let G(k) be a memory-k stochastic temporal graph with
two designated vertices s, y. Furthermore let every edge appearance probability be at least

1
nc for some c ≥ 1, regardless of the history H(k)

e of e. Then Minimum Arrival admits an
FPRAS which runs in O

(
mn5c+8

ε4 · log(nε )
)
time with probability of success at least 1− 2

n .
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4 Computing the expected arrival time of a best policy

In this section we investigate the computational complexity of our second problem, namely
Best Policy.

4.1 A polynomial-time algorithm for the memoryless model

In this section we focus on the memoryless model and we derive a polynomial-time dynamic-
programming algorithm for Best Policy. We define for every vertex v the expected arrival
time h(v, y) def= EG(0) [Y (v, y)] of the v-y journey suggested to Alice by a best policy (i.e. when
Alice starts her journey at vertex v). For simplicity of presentation, throughout Section 4.1
we write h(v) def= h(v, y).

Assume for now that for all v ∈ V , the value h(v) is given; let v1 = y, v2, . . . , vn be
an ordering of vertices of V in non-decreasing values of h (ties broken arbitrarily), namely
h(v1) ≤ h(v2) ≤ · · · ≤ h(vn). Clearly, v1 = y and h(v1) = h(y) = 0.

Let st be the vertex that Alice occupied at time t and recall that ΓGt(v) is the neighborhood
of vertex v in the snapshot Gt, for all v ∈ V and all t ∈ N. Notice that, the best strategy
of Alice at time t+ 1 is to look at all neighboring vertices of st in Gt+1 and find one with
minimum h-value, namely a vertex u ∈ arg min{h(v) : v ∈ ΓGt+1(st)}. If h(u) ≥ h(st), then
Alice has no incentive to change vertex and thus st+1 = st. Otherwise, if h(u) < h(st),
then st+1 = u.

Therefore, to find the best choice for Alice, it suffices to find the values h(v), v ∈ V .
In view of the above, if Alice is on vertex vi at time 0 (i.e. she is on the i-th best vertex
in terms of closeness to y), she will move to the j-th best (with j < i) only if an edge
appears between vi and vj in the next step, and no edge to a vertex better than vj appears
(i.e. no edge between vi and v`, 1 ≤ ` ≤ j − 1). This happens with probability Qi,j =
p{vi,vj}

∏j−1
`=1(1− p{vi,v`}), where {vi, v`} denotes the (undirected) edge between vi and v`.

Additionally, with probability Qi =
∏i−1
`=1(1 − p{vi,v`}) no edge to a vertex better than vi

will appear, in which case Alice will stay on vi. Therefore h(vi) can be recursively computed

by h(vi) =
∑i−1
j=1 Qi,jh(vj) +Qih(vi) + 1, or equivalently h(vi) =

∑i−1
j=1 Qi,jh(vj) + 1

1−Qi
, with

initial condition h(v1) = 0. Indeed, the above equation follows by observing that the expected
length of the foremost journey to y when Alice is on vi is equal to 1 + h(v1) with probability
Qi,1 (which is the probability that an edge between vi and v1 = y exists), plus 1 + h(v2)
with probability Qi,2 (which is the probability that an edge between vi and the second best
vertex v2 exists, but there is no edge between vi and v1), and so on. In general, the above
recurrence states that there is no incentive to visit vertices with larger index and also Alice
will visit the smallest index vertex vj for which the edge {vi, vj} is present (otherwise, if no
such edge exists, she will stay on vi). Using the above recurrence, we can compute all values
of h(vi) by a bottom-up dynamic programming algorithm.

I Theorem 14. Best Policy can be optimally computed in the memoryless model in O(n2)
time and space.

4.2 Hardness of computation for the memory-k model, k ≥ 3

We now show that Best Policy is #P-hard for memory-3 stochastic temporal graphs on
directed acyclic graphs, and consequently also for memory k ≥ 3.
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I Theorem 15. When the underlying graph is a Directed Acyclic Graph (DAG), it is #P-hard
to compute the expected arrival time of the best policy journey in the memory-3 model.

Proof. We will provide a reduction from the counting problem #PP2DNF which is known
to be #P-hard [35]. This problem takes as input a DNF formula Φ =

∨
(i,j)∈E xiyj on the

sets of variables X = {x1, . . . , xn} and Y = {y1, . . . , ym}, for some E ⊆ [n]× [m], and the
task is to compute the number ψ of truth assignments that satisfy Φ. We create a directed
acyclic graph (DAG) H as follows. First, H has one vertex for each of the variables in X ∪Y ;
then we add two distinct vertices s, y and one other vertex v. For every vertex xi ∈ X and
every vertex yi ∈ Y we add the directed edges (s, xi) and (yj , y). Furthermore we add the
edge (xi, yj) whenever xiyj is a clause in Φ. Finally we add the edges (s, v) and (v, y). The
construction of H is illustrated in Figure 1.

. . . . . .

X Y

s

v

y

Figure 1 The construction of the DAG H.

Denote byM = 5·2n+m, and assume that 2n+m ≥ 3 in order to avoid trivialities. All edges
(xi, yj) appear constantly in H, i.e. they appear at every time step i ≥ 1 in a memoryless
fashion with probability 1. Both edges (s, v) and (v, y) also appear in a memoryless fashion,
each of them with probability 2

M at every step i ≥ 1. Moreover, each of the edges (s, xi) and
(yj , y) appears at each step i ≥ 1 according to the following table of memory 3. This table
has four columns and eight rows. Each column is labeled with the sequence of consecutive
time steps i− 3, i− 2, i− 1, and i. Each row corresponds to a different triple of appearances
of each of the edges in {(s, xi), (yj , y) : x ∈ X, y ∈ Y } at the time steps i− 3, i− 2, i− 1 (here
1 means “edge exists” and 0 means “edge does not exist”). At the end of each row there is a
pair of numbers (p, 1− p) which denotes that, with the particular history of memory 3, at
time step i the edge appears with probability p and it does not appear with probability 1− p.
For simplicity of notation, in the column of time step i, we write “0” and “1” to denote the
entries (0, 1) and (1, 0), respectively.

i− 3 i− 2 i− 1 i

0 0 1 0
0 1 0 ( 1

2 ,
1
2 )

1 0 0 0
0 0 0 0
1 0 1 1
0 1 1 1
1 1 1 1
1 1 0 1

To complete the description of our memory-3 instance, we specify that, in the fictitious
initialization snapshots G−2, G−1, G0, each of the edges (s, xi) and (yj , y) appears with
probability 0, 0, and 1, respectively, i.e. according to the first row of the above table.
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The intuition of this table for the edges (s, xi) and (yj , y) is as follows. In the snapshot
G1, none of these edges appears (see the first line of the table). Then, to determine whether
each of these edges appears at time step 2 (see the second row of the table), we need to toss
an unbiased coin which with probability 1

2 outputs “appear” and with probability 1
2 outputs

“does not appear”. Once this coin has been tossed at time step 2, the status of the edge
does not change any more in any subsequent time step i ≥ 3. That is, if one of the edges
(s, xi) and (yj , y) appears (resp. does not appear) at time 2, then it appears (resp. does not
appear) at all times i ≥ 3 too. This is easy to be verified by observing the rows 3-7 of the
table. Note that the last row of the table is included only for the sake of completeness, as it
does not affect the appearance of any edge of H at any time step i.

Let ` be the expected s-y arrival time of the best policy in the memory-3 model. Note
that, from the above construction of the temporal graph instance, each of the edges (s, xi)
and (yj , y) appears with probability 1

2 at all steps i ≥ 2, while it does not appear at any step
i ≥ 2 with probability 1

2 . Therefore, the probability that there exists a directed temporal
path (s, xi, yj , y) is equal to g = ψ

2n+m , where ψ is the number of satisfying truth assignments
of the DNF formula Φ. That is, with probability 1− g, there exists no such temporal path
from s to y with 3 edges through some vertices xi and yj . Furthermore, the expected s-y
arrival time through the edges (s, v) and (v, y) is equal to M

2 + M
2 = M . Therefore, since

with probability 1 − g any policy (also the best one) needs to travel from s to y through
vertex v, it follows that ` ≥M(1− g).

We now define the following policy: at time step 1 do nothing and just wait for the
outcome of the random coin tosses which occur at time step 2. Subsequently, at time step 2
do the following: if there exists a directed temporal path (s, xi, yj , y) then follow it, starting
at time step 2; otherwise follow the temporal path (s, v, y) which has an expected travel time
M
2 + M

2 = M . The expected arrival time of this particular policy is equal to 1+3g+M(1−g),
and thus it follows that ` ≤ 1 + 3g +M(1− g). Summarizing, we have:

M(1− g) ≤ ` ≤ 1 + 3g +M(1− g)⇔

5 · 2n+m − 5ψ ≤ ` ≤ 5 · 2n+m − 5ψ + 3 ψ

2n+m + 1.

The first inequality can be written as 2n+m − `
5 ≤ ψ, while the second one can be written as(

1− 3
5·2n+m

)
ψ ≤ 2n+m − `

5 + 1
5 . Therefore:

2n+m − `

5 ≤ ψ ≤
(

1 + 3
5 · 2n+m − 3

)(
2n+m − `

5 + 1
5

)
≤ 2n+m − `

5 + 1
5 + 3

4 ,

and thus 2n+m − `
5 ≤ ψ ≤ 0.95 + 2n+m − `

5 . Therefore, knowing the expected value ` for the
best policy we can derive the exact integer value for ψ in the counting problem #PP2DNF.
This completes the #P-hardness reduction. J

4.3 An exact algorithm for the memory-k model, k ≥ 1
In this section we present a doubly exponential-time exact algorithm for computing the
best policy for Alice in the memory-k model, where k ≥ 1. Our results in this section are
derived using a Markov Decision Process (MDP) formulation of our problem under the
memory-k model.

I Theorem 16. Let k ≥ 1 and G(k) be a stochastic temporal graph, where the underly-
ing graph G has n vertices and m edges. Then Best Policy can be solved on G(k) in
O(2(kmn+n logn)·2km) time.
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Abstract
This paper provides an in-depth study of the fundamental problems of finding small subgraphs in
distributed dynamic networks.

While some problems are trivially easy to handle, such as detecting a triangle that emerges after
an edge insertion, we show that, perhaps somewhat surprisingly, other problems exhibit a wide range
of complexities in terms of the trade-offs between their round and bandwidth complexities.

In the case of triangles, which are only affected by the topology of the immediate neighborhood,
some end results are:

The bandwidth complexity of 1-round dynamic triangle detection or listing is Θ(1).
The bandwidth complexity of 1-round dynamic triangle membership listing is Θ(1) for node/edge
deletions, Θ(n1/2) for edge insertions, and Θ(n) for node insertions.
The bandwidth complexity of 1-round dynamic triangle membership detection is Θ(1) for
node/edge deletions, O(log n) for edge insertions, and Θ(n) for node insertions.

Most of our upper and lower bounds are tight. Additionally, we provide almost always tight upper
and lower bounds for larger cliques.
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1 Introduction

A fundamental problem in many computational settings is to find small subgraphs. In
distributed networks it is particularly vital for various reasons, among which is the ability
to perform some tasks much faster if, say, triangles do not occur in the underlying network
graph (see, eg., [24, 30]).

Finding cliques is a local task that trivially requires only a single communication round if
the message size is unbounded. However, its complexity may dramatically increase when the
bandwidth is restricted to the standard O(logn) bits, for an n-node network. For example,
the complexity of detecting 4-cliques is at least Ω(n1/2) [11]. For triangles, the complexity
is yet a fascinating riddle, where only recently the first non-trivial complexities of Õ(n2/3)
and Õ(n3/4) have been given for detection and listing, respectively [25], and the current
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state-of-the-art is the Õ(n1/2)-round algorithm of [10]. For listing, there is an Ω̃(n1/3) lower
bound [25, 28]. The only non-trivial lower bounds for detection say that a single round is
insufficient, as given in [1] and extended for randomized algorithms in [18]. In [1] it was also
shown that 1-bit algorithms require Ω(log∗ n) rounds, improved in [18] to Ω(logn).

In this paper, we address the question of detecting small cliques in dynamic networks
of limited bandwidth. We consider a model that captures real-world behavior in networks
that undergo changes, such as nodes joining or leaving the network, or communication links
between nodes that appear or disappear. Various problems have been studied in many
variants of such a setting (see Section 1.3).

The task of finding cliques is unique, in that it is trivial if the bandwidth is not restricted,
and it can be easily guaranteed that at the end of each round all nodes have the correct
output. This implies that one does not have to wait for stabilization and does not have
to assume that the network is quiet for any positive number of rounds. If, however, the
bandwidth is restricted, the solution may not be as simple, although some problems can still
be solved even with very small bandwidth.

As a toy example, consider the case of triangle listing when a new edge is inserted to
the graph. The endpoints of the inserted edge simply broadcast a single bit that indicates
this change to all of their neighbors, and hence if a new triangle is created then its third
endpoint detects this by receiving two such indications.

Nevertheless, we show that this simplified case is far from reflecting the general complex-
ities of clique problems in such a dynamic setting. For example, the above algorithm does
not solve the problem of membership-listing of triangles, in which each node should list all
triangles that contain it. Indeed, we prove that this stronger variant cannot be solved with
constant bandwidth, and, in fact, every solution must use at least Ω(

√
n) bits.

Our contributions provide an in-depth study of various detection and listing problems of
small cliques in this dynamic setting, as we formally define and summarize next.

1.1 Our contributions
For a subgraph H we categorize four types of tasks: Detecting an appearance of H in the
network, for which it is sufficient that a single node does so, listing all appearances of H,
such that every appearance is listed at least by a single node, and their two membership
variants, membership-detection and membership-listing, for which each node has to detect
whether it is a member of a copy of H, or list all copies of H to which it belongs, respectively.

The model is explicitly defined in Section 1.4. In a nutshell, there can be one topology
change in every round, followed by a standard communication round among neighboring
nodes, of B bits per message, where B is the bandwidth. An algorithm takes r rounds if the
outputs of the nodes are consistent with a correct solution after r communication rounds
that follow the last change. In particular, a 1-round algorithm is an algorithm in which the
outputs are correct already at the end of the round in which the topology change occurred.
Hence, 1-round algorithms are very strong, in the sense that they work even in settings in
which no round is free of changes. We note that in what follows, all of our algorithms are
deterministic and all of our lower bounds hold also for randomized algorithms.

Triangles. Our upper and lower bounds for triangles (H = K3) are displayed in Table 1.
Most of the complexities in this table are shown to be tight, by designing algorithms and

proving matching lower bounds. The one exception is for membership detection with edge
insertions, for which we show an algorithm that uses O(logn) bits of bandwidth, but we do
not know whether this is tight. However, we also show a 1-round algorithm for this problem



M. Bonne and K. Censor-Hillel 132:3

Table 1 The bandwidth complexities of 1-round algorithms for dynamic triangle problems.

Node deletions Edge deletions Edge insertions Node insertions
Detection/Listing 0 Θ(1) Θ(1) Θ(1)
Membership detection 0 Θ(1) O(log n) Θ(n)
Membership listing 0 Θ(1) Θ(

√
n) Θ(n)

that works with a bandwidth of O((∆ logn)1/2), where ∆ is the maximum degree in the
graph, implying that if our logarithmic algorithm is optimal, then a proof for its optimality
must exhibit a worst case in which the maximum degree is Ω(logn).

A single round is sufficient for solving all clique problems, given enough (linear) bandwidth.
Nevertheless, for the sake of comparison, we show that with just one additional communication
round, all of the bandwidth complexities in Table 1 drop to Θ(1), apart from membership
listing of triangles, whose bandwidth complexity for r-round algorithms is Θ(n/r).

Larger Cliques. We also study the bandwidth complexities for finding cliques on s > 3
nodes. Here, too, a single round is sufficient for all problems, and the goal is to find the
bandwidth complexity of each problem. Some of the algorithms and lower bounds that
we show for triangles carry over to larger cliques, but others do not. Yet, with additional
techniques, we prove that for cliques of constant size, almost all of the 1-round bandwidth
complexities are the same as their triangle counterparts. Due to lack of space, the study of
s-cliques is deferred to the full version [5].

Combining types of changes. In most cases, one can obtain an algorithm that handles
several types of changes, by a simple combination of the corresponding algorithms. However,
intriguingly, sometimes this is not the case. A prime example is when trying to combine edge
insertions and node insertions for triangle detection: a node obtaining 1-bit indications of
a change from two neighbors cannot tell whether this is due to an edge inserted between
them, or due to an insertion of a node that is a neighbor of both. In some of these cases we
provide techniques to overcome these difficulties, and use them to adjust our algorithms to
cope with more than one type of change.

1.2 Challenges and techniques
Algorithms. The main challenge for designing algorithms is how to convey enough inform-
ation about the topology changes that occur, despite non-trivial (in particular, sublinear)
bandwidth. Consider, e.g., edge insertions. As described, while listing triangles is trivial
with a single indication bit, this fails for membership detection or membership listing.

For membership detection we can still provide a very simple algorithm for which a
logarithmic bandwidth suffices, by sending the identity of the new edge, and by helping
neighbors in the triangle to know that they are such. For membership listing even this is
insufficient. To overcome this challenge, we introduce a technique for sending and collecting
digests of neighborhood information. When all digests from a given neighbor have been
collected, one can determine the entire neighborhood of this neighbor. The caveat in using
such an approach in a straightforward manner is that a node needs to list its triangles with
a newly connected neighbor already at the same round in which they connected, and cannot
wait to receive all of its neighbor’s digests. By our specific choice of a digests, we ensure that
a newly-connected neighbor has enough information to give a correct output after a single
communication round, despite receiving only a single digest from its latest neighbor.

ICALP 2019
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Lower bounds. For the lower bounds, our goal is to argue that in order to guarantee that
all nodes give a correct output, each node must receive enough information about the rest of
the graph. To do this, we identify sequences of topology changes that exhibit a worst-case
behavior, in the sense that a node cannot give a correct output if it receives too little
information.

One approach for doing this is to look at a particular node x, and define as many sequences
as possible such that the correct output of x is different for each sequence. At the same
time, we ensure that the number of messages that x receives from the other nodes is as small
as possible. These two requirements are conflicting – if x can have many different outputs,
it must have many different neighbors, which implies that it receives many messages with
information. Still, we are able to find such a family of sequences for each problem, and we
wrap-up our constructions by using counting arguments to prove the desired lower bounds.
In some cases, e.g., membership-listing under edge insertions, even this is insufficient, and
we construct the sequences such that one critical edge affects the output of x, but it is added
last, so that it conveys as little information as possible.

The above can be seen as another step in the spirit of the fooling views framework,
which was introduced in [1] for obtaining the first lower bounds for triangle detection under
limited bandwidth. After being beautifully extended by [18], our paper essentially gives
another indication of the power of the fooling views framework in proving lower bounds for
bandwidth-restricted settings.

On the way to constructing our worst-case graph sequences, we prove combinatorial
lemmas that show the existence of graphs with certain desired properties. To make our lower
bounds apply also for randomized algorithms, we rely on Yao’s lemma and on additional
machinery that we develop.

1.3 Additional related work
Dynamic distributed algorithms. Dynamic networks have been the subject of much research.
A central paradigm is that of self-stabilization [12], in which the system undergoes various
changes, and after some quiet time needs to converge to a stable state. The model addressed
in this paper can be considered as such, but our focus is on algorithms that do not require
any quiet rounds (though we also address the gain in bandwidth complexity if the system
does allow them, for the sake of comparison). Yet, we assume a single topology change in
each round. A single change in each round and enough time to recover is assumed in recent
algorithms for maintaining a maximal independent set [2, 3, 9, 14, 23] and matchings [31],
and for analyzing amortized complexity [29]. Highly-dynamic networks, in which multiple
topology changes can occur in each round are analyzed in [4, 7], and it is an intriguing open
question how efficient can subgraph detection be in such a setting. Various other dynamic
settings in which the topology changes can be almost arbitrary have been proposed, but
the questions that arise in such networks address the flow of information and agreement
problems, as they are highly non-structured. A significant paper that relates to our work
is [26], which differs from our setting in the bandwidth assumption. Clique detection in the
latter model is trivial, and indeed their paper addresses other problems.

Distributed subgraph detection. In the CONGEST model and in related models, where the
nodes synchronously communicate with O(logn) bits, much research is devoted to subgraph
detection, e.g., [1, 10,13,20,22,25,27,28].

A related problem is property-testing of subgraphs, where the nodes need to determine, for
a given subgraph H, whether the graph is H-free or far from being H-free [6,8,16,17,19,21].
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1.4 Preliminaries

In the dynamic setting, the network is a sequence of graphs. The initial graph, whose
topology is known to the nodes, represents the state of the network at some starting point
in time, and every other graph in the sequence is either identical to its preceding graph or
obtained from it by a single topology change. The network is synchronized, and in each
round, each node can send to each one of its neighbors a message of B bits, where B is the
bandwidth of the network. Each node has a unique ID and knows the IDs of all its neighbors.
We denote by n the number of possible IDs. Hence, n is an upper bound on the number of
nodes that can participate in the network at all times.

Note that the nodes do not receive any indication when a topology change occurs. A
node can deduce that a change has occurred by comparing the list of its neighbors in the
current round and in the previous round. This implies that a node u cannot distinguish
between the insertion of an edge uv and the insertion of a node v which is connected to u, as
the list of neighbors of u is the same in both cases.

An algorithm can be designed to handle edge insertions or deletions or node insertions or
deletions, or any combination of these. We say that an algorithm is an r-round algorithm if the
outputs of the nodes after r rounds of communication starting from the last topology change
are correct. The (deterministic or randomized) r-round bandwidth complexity of a problem
is the minimum bandwidth for which an r-round (deterministic or randomized) algorithm
exists. We denote by MemList(H), MemDetect(H), List(H), and Detect(H), respectively, the
problems of membership listing, membership detection, listing and detection of H. The
following is a simple observation.

I Observation 1. Let r be an integer and let H be a graph. Denote by BMemList, BMemDetect,
BList and BDetect the (deterministic or randomized) r-round bandwidth complexities of
MemList(H), MemDetect(H), List(H), and Detect(H), respectively, under some type of
topology changes. Then: BDetect ≤ BList ≤ BMemList and BDetect ≤ BMemDetect ≤ BMemList.

Due to this observation, our exposition starts with the more challenging task of
membership-listing, then addresses membership-detection, and concludes with listing and
detection. Within each case, we first provide algorithms for each type of topology change,
and then prove lower bounds. Missing proofs are deferred to the full version [5].

2 Triangle problems

2.1 Membership listing

Table 2 summarizes our results for membership listing of triangles.

Table 2 Bandwidth complexities of MemList(K3).

Node deletions Edge deletions Edge insertions Node insertions
r = 1 0 Θ(1) Θ(

√
n) Θ(n)

r ≥ 2 0 Θ(1) Θ(1) Θ(n/r)
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2.1.1 Upper bounds
Our algorithms for node and edge deletions appear in the full version [5]. Note that combining
these algorithms in a direct manner does not handle both types of changes. We provide a
more subtle combination of the two algorithms for doing so within O(1) rounds. Handling
edge insertions and node insertions is much more complicated. We start by showing an
algorithm that handles edge insertions.

I Theorem 2.1. The deterministic 1-round bandwidth complexity of MemList(K3) under
edge insertions is O(

√
n).

Proof. Let Nu(r) be the set of neighbours of u on round r. Note that Nu(r) can be encoded
as an n-bit string, which indicates, for every node x, whether or not x is a neighbour of u
on round r.

The algorithm is as follows. When a new edge uv is inserted on round r, both u and v
send to all their neighbors the identity of their new neighbor, denoted by NEWID.

In addition, u sends a bitmask of d
√
ne bits to v, indicating, for every one of the previous

d
√
ne rounds, whether or not one of u’s neighbors has sent a NEWID to u. We denote this

information by LASTu. Node v sends to u the same information.
Finally, u encodes Nu(r) as an n-bit string, denoted ALLu(r), and starts sending it to v in

chunks of d
√
ne bits per round. This process begins on round r and ends on round r+ b

√
nc,

when the entire string has been sent. During these rounds, u keeps sending NEWID to v, and
to all its other neighbors, as described above. Node v does the same. It should be noted that
this continuous communication between u and v is not intended for allowing them to detect
triangles that appear by the insertion of the edge uv, as these are detected immediately due
to previous information. Rather, communicating ALL allows u and v to detect triangles that
appear by other topology changes that may occur in subsequent rounds, as we show below.

Overall, NEWID requires O(logn) bits, while LAST and ALL require O(
√
n) bits. Thus, the

required bandwidth is O(
√
n).

We show that at the end of each round, every node u has enough information to determine,
for every two of its neighbors v and w, whether or not the edge vw exists.

First, since only edge insertions are considered, if the edge vw exists in the initial graph,
it exists throughout. Also, if vw is inserted when at least one of the edges uv or uw already
exists, then u receives this information through NEWID. The only other case is when vw does
not exist in the initial graph, and is inserted when u is not yet connected to either v or w.
That is, the initial graph does not contain any of these three edges, and vw is inserted before
the other two. W.l.o.g. assume that uv is inserted before uw. Now, let tv be the round in
which uv is inserted, and let tw be the round in which uw is inserted.

If tw − tv ≤ d
√
ne, then when uv is inserted, v sends a NEWID to w. Therefore, when uw

is inserted, u can determine from LASTw that in round tv a neighbor of w has sent a NEWID
to w. Since the only edge inserted in that round is uv, u determines that v is a neighbor of
w. If tw − tv > d

√
ne, then, in round tw, v has already sent the entire string ALLv(tv) to u,

which indicates that w is a neighbor of v. Therefore, in all cases, u determines whether or
not the edge vw exists, as claimed. J

The algorithm given for Theorem 2.1 can be extended to handle edge deletions and node
deletions as well. Also, if we are promised a quiet round, the problem can be solved with
O(1) bits of bandwidth (see full version [5]). Node insertions are harder to handle than the
other types of changes. If we are promised r − 1 quiet rounds, a simple algorithm exists that
uses only O

(
n
r

)
bits of bandwidth. As we show in Section 2.1.2, this is tight.
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I Theorem 2.2. For every r, the deterministic r-round bandwidth complexity of MemList(K3)
under any type of change is O(n/r).

Proof. The algorithm is as follows: on every round, every node u prepares an n-bit message
that specifies its current list of neighbors. Then, it breaks this message into B-bit blocks,
where B =

⌈
n
r

⌉
, and sends it to all its neighbors, one block on every round.

Additionally, on every round, u sends to all its neighbors one bit indicating whether or
not its list of neighbors has changed on the current round. Whenever the list of neighbors
changes, u builds its new list of neighbors, breaks it into blocks, and starts sending it again.

After at most r − 1 quiet rounds, all nodes are guaranteed to finish sending their list
to all their neighbors, thus every node can determine whether any pair of its neighbors are
connected to each other or not, as required. J

2.1.2 Lower bounds
The 1-round bandwidth complexities for node and edge deletions are clearly tight. Next, we
show that handling edge insertions in 1 round requires at least Ω(

√
n) bits of bandwidth. By

Theorem 2.1, this bound is tight. We first prove the following lemma, which shows that a
sufficiently dense bipartite graph includes a large enough complete bipartite subgraph. This
has the same spirit as the results of Erdös [15], used in [1,18] for bounding the number of
single-bit rounds for detecting triangles, but here the sides can be of different sizes.

I Lemma 2.3. For every ε ∈ (0, 1) there exist α, β, γ ∈ (0, 1), such that for every bipartite
graph G = (L∪R,E) having at least (1− ε)|L||R| edges, there are subsets A ⊆ L and B ⊆ R,
whose sizes are |A| ≥ α · |L| and |B| ≥ β · γ|L| · |R|, such that uv ∈ E for every u ∈ A and
v ∈ B (i.e., the induced subgraph on A ∪B is a complete bipartite graph).

Proof. Let α = 1−ε
6 , and let A be the set of all subsets of L whose size is exactly dα · |L|e.

For every A ∈ A, we denote by NA the set of all vertices in R which are connected to every
vertex in A. Consider the sum S =

∑
A∈A |NA|. Let M = max{|NA| : A ∈ A}. Then:

S ≤
∑
A∈A

M =
(
|L|

dα · |L|e

)
·M (1)

On the other hand, the sum S can be computed by counting, for every v ∈ R, the number of
sets A ∈ A such that v ∈ NA:

S =
∑
A∈A
|NA| =

∑
A∈A

∑
v∈NA

1 =
∑
v∈R

∑
A∈A:
v∈NA

1 =
∑
v∈R
|{A ∈ A : v ∈ NA}|

For p ∈ (0, 1), let kp be the number of vertices in R whose degree is at least p · |L|. For
every v ∈ R whose degree is d(v) we have |{A ∈ A : v ∈ NA}| =

(
d(v)
dα·|L|e

)
. Therefore we can

bound the above sum

S =
∑
v∈R

(
d(v)
dα · |L|e

)
≥

∑
v∈R:

d(v)≥p·|L|

(
d(v)
dα · |L|e

)
≥

∑
v∈R:

d(v)≥p·|L|

(
dp · |L|e
dα · |L|e

)
= kp ·

(
dp · |L|e
dα · |L|e

)
.

Combining this with (1) gives
( |L|
dα·|L|e

)
·M ≥ kp ·

(dp·|L|e
dα·|L|e

)
, which implies:

M ≥ kp ·
(
dp · |L|e
dα · |L|e

)
/

(
|L|

dα · |L|e

)
(2)
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We can bound kp as follows:

|E| =
∑
v∈R

d(v) =
∑
v∈R:

d(v)≥p·|L|

d(v) +
∑
v∈R:

d(v)<p·|L|

d(v) ≤
∑
v∈R:

d(v)≥p·|L|

|L|+
∑
v∈R:

d(v)<p·|L|

p · |L|

= kp · |L|+ (|R| − kp) · p · |L| = (1− p) · kp · |L|+ p · |L| · |R|

On the other hand we have |E| ≥ (1−ε) · |L| · |R|, and therefore (1−p) ·kp · |L|+p · |L| · |R| ≥
(1− ε) · |L| · |R|, which implies kp ≥ 1−ε−p

1−p · |R|. Setting p = 1−ε
2 gives kp ≥ 1−ε

1+ε · |R|, and
substituting this into (2) gives:

M ≥ 1− ε
1 + ε

·

(dp·|L|e
dα·|L|e

)( |L|
dα·|L|e

) · |R|
Finally, we bound the binomial fraction on the right-hand size as follows. For simplicity,
define a = |L|, b = dp · |L|e , c = dα · |L|e. Note that a ≥ b ≥ c. Now:(

b
c

)(
a
c

) =
∏c
i=1(i+ b− c)∏c
i=1(i+ a− c)

=
c∏
i=1

i+ b− c
i+ a− c

=
c∏
i=1

(1− a− b
i+ a− c

)

≥
c∏
i=1

(1− a− b
a− c

) =
c∏
i=1

b− c
a− c

=
(
b− c
a− c

)c
Therefore:(dp·|L|e

dα·|L|e
)( |L|

dα·|L|e
) ≥ (dp · |L|e − dα · |L|e|L| − dα · |L|e

)dα·|L|e
(3)

In order to choose appropriate values for β and γ, we now distinguish between two cases
for the graph G. If |L| ≤ 1

α , then α|L| ≤ 1. Since there must be a vertex in |L| having at
least (1− ε)|R| neighbors in R, the claim holds for every β ≤ 1 and γ ≤ 1− ε.

If |L| > 1
α , we can further develop the right hand side of (3) as follows:(

dp|L|e − dα|L|e
|L| − dα|L|e

)dα|L|e
≥
(
p|L| − (α|L|+ 1)
|L| − α|L|

)α|L|+1
=
(
p− α
1− α −

1
(1− α)|L|

)α|L|+1

>

(
p− α
1− α −

1
(1− α) 1

α

)α|L|+1
=
(
p− 2α
1− α

)α|L|+1

=
(

1− ε
5 + ε

)α|L|+1

To sum it all up, we now have M >
(

1−ε
5+ε

)α·|L|+1
. Recalling the definition of M ,

this inequality implies that there exists A ⊆ L whose size is exactly dα · |L|e, such that

|NA| >
(

1−ε
5+ε

)α·|L|+1
, i.e., there are more than

(
1−ε
5+ε

)α·|L|+1
vertices in R which are connected

to every vertex in A. Therefore, the claim holds for every β and γ such that: β ≤ 1−ε
5+ε , γ ≤(

1−ε
5+ε

)α
=
(

1−ε
5+ε

) 1−ε
6 . Thus, given ε ∈ (0, 1), the following values of α, β, γ satisfy the claim

for every G:

α = 1− ε
6 , β = 1− ε

5 + ε
, γ = min

{
1− ε,

(
1− ε
5 + ε

) 1−ε
6
}
. J



M. Bonne and K. Censor-Hillel 132:9

W

w1

...

...

...
wn−t−1

U

u1

...
ut

v

Figure 1 The lower bound sequence for MemList(K3) with edge insertions. The connections
between W and U are chosen. Then, v is connected to all of U . The single edge from v to W is
added last.

I Theorem 2.4. The randomized 1-round bandwidth complexity of MemList(K3) under edge
insertions is Ω(

√
n).

Proof. Let A be a (randomized) 1-round algorithm that solves MemList(K3) under edge
insertions using bandwidth B with error probability ε. Let t be a parameter to be defined
later, and consider a tripartite graph with n nodes as in Figure 1. Let C be the set of all
possible bipartite graphs with vertex sets W and U . Note that |C| = 2t(n−t−1). For every
C ∈ C and every w ∈ W , we define a sequence of changes SC,w as follows. We start with
no edges. Then, we insert edges between U and W to get the bipartite graph C. During
the next t rounds, we connect v to every u ∈ U , one by one. Finally, we insert the edge vw.
In the end of SC,w, after 1 additional round of communication, node v must output a list
of all triangles containing v. By construction, this list is uniquely determined by the set
of neighbors of w in U . Thus, node v needs to know the set of all neighbors of w after 1
additional round of communication.

We assume that the output of v is correct with probability at least 1− ε. Therefore, by
Yao’s lemma, there exists a deterministic algorithm A′ that solves the same problem correctly
for at least 1− ε of all inputs. We define a bipartite graph with node sets C and W , such
that the edge w − C exists if and only if the output of v is correct for the sequence SC,w.

We have |W | = n− t− 1 and |C| = 2t(n−t−1). Also, by assumption, this graph contains at
least (1− ε) of all possible edges. Therefore, by Lemma 2.3, there exists W1 ⊆W of size at
least α · (n− t− 1) and C1 ⊆ C of size at least β · γn−t−1 · 2t(n−t−1), for some α, β, γ ∈ (0, 1)
that depend only on ε, such that the output of v is correct for the sequence SC,w for every
C ∈ C1 and every w ∈W1.

Now, consider the input of node v during any sequence SC,w. During the first stage of
building the bipartite graph C, v is isolated and receives no input. Then, it receives a set of
messages from the nodes in U , and finally one additional message from w. Note that the
messages v receives from the nodes in U depend only on C, and not on w, since the nodes in
U cannot know the identity of w until the final round of communication.
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Now, on every round, every node in U can send to v any of 2B possible messages.
Altogether, during the entire sequence, the nodes of U send to v a set of t(t+3)

2 messages.
Hence, the number of possible inputs from the nodes of U to v is 2B·

t(t+3)
2 . Therefore, there

exists C2 ⊆ C1 of size at least 2−B·
t(t+3)

2 · |C1|, such that v receives the same input from all
nodes in U for every sequence SC,w for C ∈ C2 and every w ∈W1. Thus, we have:

|C2| ≥ 2−B
t(t+3)

2 |C1| ≥ 2−B
t(t+3)

2 βγn−t−12t(n−t−1) = βγn−t−12t(n−t−1)−B t(t+3)
2 (4)

On the other hand, we can bound the size of C2 by considering the number of possible
neighbors of w in any C ∈ C2, for every w ∈ W . Recall that during the sequence SC,w, v
receives only one message from w. Also, for every w ∈W1, v must determine the set of all
neighbors of w in U . Since there are only 2B possible inputs v can receive from w, every
w ∈W1 can have at most 2B possible sets of neighbors in any C ∈ C2.

Every w ∈W \W1 can have any subset of U as its set of neighbors, hence it can have at
most 2t possible sets of neighbors. Now, since every C ∈ C2 is uniquely determined by set of
neighbors of every w ∈W , we have:

|C2| ≤

( ∏
w∈W1

2B
) ∏

w∈W\W1

2t
 = 2B·|W1| · 2t·(|W |−|W1|) = 2(B−t)·|W1|+t(n−t−1) (5)

Combining (4) and (5) gives: β ·γn−t−1 ·2t(n−t−1)−B· t(t+3)
2 ≤ 2(B−t)·|W1|+t(n−t−1), and setting

t = d
√
ne gives, with some algebraic manipulations, B ≥ Ω(

√
n). J

Finally, for node insertions, we show that every r-round algorithm must use at least
Ω(n/r) bits of bandwidth, which is tight by Theorem 2.2.

I Theorem 2.5. For every r, the randomized r-round bandwidth complexity of MemList(K3)
under node insertions is Ω

(
n
r

)
.

Proof. Let A be a (randomized) r-round algorithm that solves MemList(K3) under node
insertions using bandwidth B with error probability ε. We show that r ·B = Ω(n).

Let u be any node, and let C be the set of all possible graphs on the other n− 1 nodes.
For every C ∈ C we define the sequence SC as follows:

Start with an empty graph (no nodes and no edges).
During n− 1 rounds, insert one node on each round and connect it to the nodes which
have been already inserted, according to the edges in C. After n− 1 rounds, the graph is
identical to the graph C.
On round n insert u and connect to all the other nodes.

After r− 1 quiet rounds u needs to output the list of all triangles that contain u. Since u
is connected to all the other nodes, this implies that u needs to know the graph C. For every
C ∈ C, the output of u is guaranteed to be correct for the sequence SC with probability at
least (1 − ε). Therefore, by Yao’s lemma, there exists a deterministic algorithm, A′, that
guarantees that the output of u is correct for at least (1− ε) of all sequences. That is, there
exists a subset C1 ⊆ C, whose size is at least (1− ε) · |C|, such that A′ guarantees the correct
output of u for sequences SC for all C ∈ C1.

Now, the number of possible graphs on n− 1 nodes is 2(n−1
2 ), hence the size of C1 is at

least (1− ε) · 2(n−1
2 ). Since A′ is deterministic, and u needs to distinguish correctly between

all possible C ∈ C1, this implies that the input u receives from its neighbors must have at
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least (1− ε) · 2(n−1
2 ) possible values. Every neighbor of u can send any of 2B messages on

every round, thus the number of possible inputs u can receive on a single round is 2B·(n−1).
Therefore, during r rounds of communication, the number of possible inputs to u is 2r·B·(n−1).

Combining the above we get that 2r·B·(n−1) ≥ (1− ε) · 2(n−1
2 ), which can be simplified to

r ·B ≥ n
2 + log(1−ε)

n−1 , and it follows that r ·B = Ω(n). J

2.2 Membership detection
Table 3 summarizes the results of this subsection.

Table 3 Bandwidth complexities of MemDetect(K3).

Node deletions Edge deletions Edge insertions Node insertions
r = 1 0 Θ(1) O(log n) Θ(n)
r ≥ 2 0 Θ(1) Θ(1) Θ(1)

2.2.1 Upper bounds
The upper bounds for node deletions and edge deletions follow from Observation 1. The
following shows that edge insertions can be handled with O(logn) bits of bandwidth, which
can be extended to handle node/edge deletions as well (see full version [5]).

I Theorem 2.6. The deterministic 1-round bandwidth complexity of MemDetect(K3) under
edge insertions is O(logn).

Proof. The algorithm works as follows. On every round, every node sends to all its neighbors
an indication whether or not it got a new neighbor on the current round, along with the ID
of the new neighbor (if any). We denote this information by NEWID. Note that with just this
information, for every pair of adjacent edges u− v − w, at least one of u and w know that
these two edges exist (specifically, the first one connected to v knows that the other one is
also connected to v).

Additionally, every node u sends to every neighbor v one bit, indicating whether u knows
that v is part of some triangle. We denote this bit by ACCEPT.

Suppose the edge uv is inserted and creates at least one triangle uvw. As explained
above, in this case at least one of u and v knows that the triangle exists, therefore it sends
ACCEPT = 1 to the two other nodes. Thus all three nodes know that they are part of a triangle.
It follows that on each round all nodes can determine whether they are in a triangle. J

If we only consider sequences of graphs with bounded degree ∆, and only allow edge
insertions, the complexity of Theorem 2.6 can be improved toO(

√
∆ logn), using an algorithm

similar to that of Theorem 2.1, but with O(
√

∆ logn) bits instead of O(
√
n), as follows. On

every round, every node sends to all its neighbors an indication whether or not it has a
new neighbor. We denote this information by NEW. Additionally, whenever a new edge uv is
inserted, the following happens:

u sends to v an indication whether or not it knows about a triangle that contains v.
For every round i within the last

⌈√
∆ logn

⌉
rounds, u sends to v an indication whether

or not it has had a new neighbor on round i.
For every round i within the last

⌈√
∆ logn

⌉
rounds, u sends to v an indication whether

or not any of its neighbors has sent NEW = 1 on round i.
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u computes the list of IDs of all its current neighbors, and starts sending it to v,⌈√
∆ logn

⌉
bits on every round. Since u has at most ∆ neighbors, after O(

√
∆ logn)

rounds v has the complete list. Note that by the time this process completes, the list
may not be up-to-date.

All of this requires a O(
√

∆ logn) bandwidth, and it can be shown, similarly to The-
orem 2.1, that this allows every node to give the correct output in all cases. The discussion
of what happens when a quiet round is promised, is deferred to the full version [5].

2.2.2 Lower bounds
For node deletions and edge deletions, we have trivial constant lower bounds, which are tight,
as shown above. For edge insertions, we have shown a general algorithm that uses O(logn)
bits, and also an algorithm that uses O(

√
∆ logn) bits for graphs with bounded degree

∆. The latter algorithm implies that showing a lower bound of B bits for the bandwidth
complexity of this problem would require looking at sequences of graphs with degree at least
Ω( B2

logn ). In particular, in order to show that the algorithm of Theorem 2.6 is optimal, one
has to consider sequences of graphs with degree at least logn. Other than that, it remains
an open question whether or not the algorithm of Theorem 2.6 can be improved.

I Open Question 1. What is the 1-round bandwidth complexity of MemDetect(K3) under
edge insertions?

Finally, for node insertions, the following theorem shows a lower bound of Ω(n) bits.

I Theorem 2.7. The randomized 1-round bandwidth complexity of MemDetect(K3) under
node insertions is Ω(n).

Proof. Let A be a (randomized) 1-round algorithm that solves MemDetect(K3) under node
insertions using bandwidth B with error probability ε. Fix x ∈ V , let U = V \ {x}, and let
C be the set of all possible graphs on the nodes of U . For every C ∈ C and every u, v ∈ U ,
define the sequence SC,u,v as follows:

Start with an empty graph (no nodes and no edges).
During n− 1 rounds, insert one node of U on each round and connect it to the nodes
which have been already inserted, according to the edges in C. After n− 1 rounds, the
graph is identical to the graph C.
On round n insert x and connect it to u and v.

Then, x should output 1 iff the edge uv exists in C. By our assumption, for every C and
every u, v ∈ U , the output is correct with probability at least 1− ε. Note that during the
final round, x receives only one message from each of u and v. Also, during this final round,
u and v do not know the identity of the other neighbor of x. Hence, the message received
from u depends only on the identity of u and the graph C, and not on the identity of v, and
the message received from v depends only on the identity of v and the graph C.

Now, consider the following experiment for a given graph C ∈ C. First, we run the
sequence SC,u,v for some u, v ∈ U , and stop just before the last round, in which x is
connected to u and v. Then, every node w ∈ U generates a message to be sent to x, as if
it has been connected to x on the final round. For every w ∈ U , let mw be the message
generated by w (note that mw is a random variable).

Note again, that the messages generated by the nodes of U depend only on the graph C,
and not on the other nodes that may have been connected to x on the last round. Therefore,
for every u, v ∈ U , given the messages generated by u and v, x should be able to determine,
with probability at least 1− ε, whether or not the edge uv exists in C.
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Next, for every pair of nodes u, v ∈ U , let Iuv be the output of x given the two messages
mu and mv. Note that for nodes u, v, w, the variables Iuv and Iuw are not necessarily
independent. Now, let C ′ be the graph on the nodes of U , in which the edge uv exists if and
only if Iuv = 1. We consider C ′ to be the result of the experiment.

Let pC denote the probability that at the end of the experiment we have C ′ = C. Since,
for every u, v ∈ U , the value of Iuv corresponds to the edge uv in the graph C with probability
at least 1− ε, we have pC ≥ (1− ε)(

n−1
2 ). Summing the above for every C ∈ C we get:∑

C

pC ≥ |C| · (1− ε)(
n−1

2 ) = (2− 2ε)(
n−1

2 ) (6)

On the other hand, consider the set of messages generated by the nodes of U at the
end of the first stage of the experiment. For every possible set of messages M generated by
the nodes of U during the first stage of the experiment, denote by φC(M) the probability
for generating exactly the messages of M . Also, for every C ′ ∈ C, let ΨM (C ′) denote the
probability for the result of the experiment to be equal to C ′, given the set of generated
messages M . We have:∑

C

pC =
∑
C

∑
M

φC(M) ·ΨM (C) ≤
∑
C

∑
M

ΨM (C) =
∑
M

∑
C

ΨM (C) =
∑
M

1 = |M|

where M is the set of all possible values of M . Since every message has exactly 2B
possible values, the number of possible sets of (n − 1) messages is |M| = 2B(n−1), and
hence

∑
C pC ≤ 2B(n−1). Combining this with (6) gives 2B(n−1) ≥ (2− 2ε)(

n−1
2 ). After some

simplifications we get the desired bound:

B ≥ log(2− 2ε) · n− 2
2 = Ω(n) J

I Remark 2.8. The discussion of List(K3) and Detect(K3), as well as the treatment of
s-cliques, appear in the full version [5].
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Abstract
We consider the problem of the existence of natural improvement dynamics leading to approximate
pure Nash equilibria, with a reasonable small approximation, and the problem of bounding the
efficiency of such equilibria in the fundamental framework of weighted congestion game with
polynomial latencies of degree at most d ≥ 1.
In this work, by exploiting a simple technique, we firstly show that the game always admits a
d-approximate potential function. This implies that every sequence of d-approximate improvement
moves by the players always leads the game to a d-approximate pure Nash equilibrium. As a corollary,
we also obtain that, under mild assumptions on the structure of the players’ strategies, the game
always admits a constant approximate potential function. Secondly, by using a simple potential
function argument, we are able to show that in the game there always exists a (d+ δ)-approximate
pure Nash equilibrium, with δ ∈ [0, 1], whose cost is 2/(1 + δ) times the cost of an optimal state.
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concept of approximate pure Nash equilibrium. This concept characterizes situations where
no player can significantly improve her payoff by unilaterally deviating from her current
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solution concepts in practical decision-making settings. Beside mere existence and efficiency,
approximate pure Nash equilibria are also an appealing alternative solution concept from a
computational point of view [2, 4].

In this work, we investigate the existence and efficiency of approximate pure Nash
equilibria in the context of the weighted congestion game. This game is a general framework
which models situations in which a group of agents compete for the use of a set of shared
resources. In the following, we introduce weighted congestion games and give a formal
statement of the problems we address. We conclude this section with a discussion about the
current literature and a detailed presentation of our contribution.

Weighted congestion games. In a weighted congestion game, players compete over a set
of resources. Each player has a positive weight. Each resource incurs a latency to all players
using it; this latency depends on the total weight (congestion) of the players that use the
resource according to a resource-specific, non-negative, and non-decreasing latency function.
Among a given set of strategies (over sets of resources), each player aims to select one selfishly,
trying to minimize her individual total cost, i.e., the sum of the latencies on the resources in
her strategy. Typical examples include weighted congestion games in networks, where the
network links correspond to the resources and each player has alternative paths that connect
two nodes as strategies. Now, let us describe the game more formally.

The weighted congestion game with polynomial latencies of degree at most
d ∈ Z≥1 is a collection of instances, denoted by WCG(d), of the form G =
〈N,E, (wi)i∈N , (Si)i∈N , (ae, ke)e∈E〉, where N = {1, 2, . . . , |N |} is the set of play-
ers, E = {1, 2, . . . , |E|} is the set of resources, wi ∈ R>0 is the weight of player i,
Si ⊆ 2E is the set of strategies of player i and (ae, ke) ∈ R>0 × {1, 2, . . . , d} are the
coefficient and the degree of resource e ∈ E respectively, which encode the latency
function `e : 2N 7→ R≥0 associated with e, mapping every subset of players P ⊆ N
to the non-negative real ae

(∑
j∈P wj

)ke
.

The set of states of G is denoted by S(G) = S1 × S2 × . . .× S|N |. For every state s
we refer to its i-th component, that is the strategy played by player i in s, by s(i).
For every state s and resource e ∈ E, we denote by Le(s) the set of players using
resource e in s, i.e., Le(s) = {j ∈ N : e ∈ s(i)}. We refer to the sum of the weights
of all the players in Le(s) as the congestion of e in s. For every state s ∈ S(G), the
cost incurred by player i ∈ N in s is ci(s) =

∑
e∈s(i) `e(Le(s)), while the social cost

of s is the weighted sum of the players’ costs, i.e., C(s) =
∑
i∈N wici(s). Notice

that, by summing over the resources instead of the players, C(s) can be rewritten

as C(s) =
∑
e∈E ae

(∑
j∈Le(s) wj

)ke+1
. Let wmax be the greatest weight in G, we

say that G is mildly congested if `e(Le(s)) ≥ (ke + 1)wmax, for every resource e ∈ E
and state s ∈ S(G).

Preliminary definitions. We now introduce concepts that are necessary to formally state
our problems and present our results.
Let us consider an instance G = 〈N,E, (wi)i∈N , (Si)i∈N , (ae, ke)e∈E〉 of WCG(d). For every
state s ∈ S(G) and every s ∈ Si, we denote by [s−i, s] the new state obtained from s by setting
the i-th component, that is the strategy of i, to s and keeping all the remaining components
unchanged, i.e., [s−i, s](i) = s. The transition from s to [s−i, s] is called a move of player i
from state s. For α ≥ 1, we say that a transition from s to [s−i, s] is an α-improvement move
for i if αci([s−i, s]) ≤ ci(s) (it is a strictly α-improvement if αci([s−i, s]) < ci(s)). For α ≥ 1,
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we say that a state-value function Γ : S(G) 7→ R≥0 is an α-approximate potential function for
G if it strictly decreases at every strictly α-improvement move; formally, Γ([s−i, s]) < Γ(s)
whenever αci([s−i, s]) < ci(s). If G admits an α-approximate potential function Γ then
every sequence of strictly α-improvement moves leads to a local optimum of Γ, that is a
state in which no further strictly improvement move can be performed; such a state is called
α-approximate pure Nash equilibrium. Formally, for α ≥ 1, we say that a state s ∈ S(G) is
an α-approximate pure Nash equilibrium if, for every player i ∈ N and every strategy s ∈ Si,
we have ci(s) ≤ αci([s−i, s]). If α = 1 we simply refer to s as a pure Nash equilibrium rather
than a 1-approximate pure Nash equilibrium. For α ≥ 1, we denote by Eα(G) ⊆ S(G) the
set of all α-approximate pure Nash equilibria of G. Every state s ∈ S(G) minimizing the
social cost is called a social optimum. We denote by OPT (G) the set of social optima of
G, i.e., OPT (G) = arg mins∈S(G) C(s). Let o ∈ OPT (G) be any social optimum of G, we
define the α-approximate price of stability of G as PoSα(G) = mine∈Eα(G)

C(e)
C(o) .

Problem statement. In this work we consider the problem of the existence of natural
improvement dynamics leading to approximate pure Nash equilibria, with a reasonable
small approximation, and the problem of bounding the efficiency of such equilibria in the
fundamental framework of weighted congestion game with polynomial latencies of degree at
most d ≥ 1. We formally state such problems as follows.

(i) Existence of Convergent sequences of α-improvement moves. In
this problem, given any instance G of WCG(d), we seek for a reasonable small
α ≥ 1 for which any sequence of α-improvement moves in G converges to an
α-approximate pure Nash equilibrium. This would be equivalent to say that
G admits an α-approximate potential function, whose value decreases at every
α-improvement move and whose local optima coincide with α-approximate
pure Nash equilibria.

(ii) Bounding the approximate price of stability. In this problem, given
any instance G of WCG(d), which admits an α-approximate pure Nash equilib-
rium, we aim at bounding the α-approximate price of stability of G.

Related work. The unweighted congestion game (i.e., when all players have unit weight)
has been widely studied in the literature. Rosenthal [16] proved that this game admits
a 1-approximate potential function. This immediately implies that every sequence of 1-
improvement moves by the players leads the game to a pure Nash equilibrium. For the
weighted congestion game, a 1-approximate potential function exists only when the latencies
are linear or exponential [10, 13, 15]. For polynomial latencies (of constant maximum degree
strictly higher than 1), pure Nash equilibria may not exist [10, 11, 14]. In general, for
arbitrary latencies, the problem of deciding whether a given instance of weighted congestion
game has a pure Nash equilibrium is NP-hard [9]. Caragiannis et al. [2] proved that
every instance of weighted congestion game with polynomial latencies of degree at most d
admits a d!-approximate potential function. This results has been subsequently improved by
Hansknecht et al. [12]; they showed that every instance of weighted congestion game with
polynomial latencies admits a (d+ 1)-approximate potential function. The potential function
they proposed is a Rosenthal-like potential function. Roughly speaking, they obtained
an approximate potential as follows. For each resource, they chose an appropriate fixed
ordering of the players. Then, for each resource separately, they computed a discrete integral.
Specifically, they sum up the latency of the resource after introducing the first player multiplied
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with the weight of the first player, the latency after introducing the first two players multiplied
with the weight of the second player, and so on, i.e., w1`e({w1}) + w2`e({w1 + w2}) + . . ..
The potential obtained depends on the way the players have been initially ordered. The
authors showed that, the potential function providing the best approximation for polynomial
latencies, that is d+ 1, is the one obtained by ordering the players in non-decreasing order in
terms of their weights, i.e., w1 ≤ w2 ≤ . . ..

For the 1-approximate price of stability, for the unweighted game, there exists a bound
of 1.577 for linear latencies [8, 3] and a bound of Θ(d) for polynomial latencies [6]. The
1-approximate price of stability for the weighted game with polynomial latencies has been
recently investigated in [7]; they provided a lower bound of Ω(d/ log d)d+1, matching the
upper bound in [1]. The authors also showed bounds to the α-approximate price of stability.
Specifically, they proved that for the weighted congestion game with polynomial latencies
and weights ranging in [1,W ], there exists an α-approximate pure Nash equilibrium, for any
α in the range [ 2(d+1)W

2W+d+1 , d+ 1], whose cost is 1 + (d+1
α − 1)W the cost of any optimal state.

Their proof exploits a potential function called Faulhaber’s potential.

Our contribution. Concerning the first problem, we show (Theorem 3) that every instance
of WCG(d) admits in general d-approximate potential functions. This implies that every
sequence of d-approximate improvement moves by the players always leads the game to
a d-approximate pure Nash equilibrium. This result is achieved by using the technique
formalised in Theorem 2 and the class of state-value functions Φγ defined in Definition
1. Essentially, while Definition 1 provides a simple interesting class of candidate potential
functions, Theorem 2 gives a local condition to each resource to determine the approximation
guarantee achieved by a given state-value function. So, by exploiting Theorem 2, in Theorem
3 we are able to show that the class Φγ contains d-approximate potential functions and, more
generally, (d + δ)-approximate potential functions, for every δ ≥ 0. We remark that, our
potential functions are substantially different from the potential function proposed in [12]. In
fact, while the potential in [12] is obtained in a Rosenthal-like fashion, by ordering the players
and summing their costs, by assuming that each player is affected only by the congestion
caused by preceding players in the ordering, our potential, more simply, is obtained by a
suitable scaling of the coefficients of the polynomials. As a matter of fact, our potentials,
despite their simplicity, provide an approximation of d instead of d+ 1; although it is worth
noticing that, for very small degrees, the two approaches provide the same approximation
guarantee. As a corollary of Theorem 3, we also show (Corollary 4) that the social optimum
of an instance of WCG(d) is always a (d+ 1)-approximate pure Nash equilibrium, as it has
already been observed in [7]. More importantly, Theorem 3 implies that, as state by Corollary
5, every mildly congested instance of WCG(d) always admits a e

e−1 -approximate potential
function, where e is the Euler’s number.

We also show that, the class of functions Φγ also serves as an essential tool to give a
constant bound on the approximate price of stability. In fact, by exploiting Φγ , we are
able to show (Theorem 8) an upper bound of 2/(1 + δ) for the (d+ δ)-approximate price of
stability, for every δ ∈ [0, 1]. To prove this bound, we use the standard potential function
argument. Specifically, we first give bounds (Lemma 6 and Lemma 7) relating the value of
the (d+ δ)-approximate potential function for a given state to the social cost of that state; if
we then perform a sequence of (d+ δ)-improvement moves starting from an optimal state,
the potential does not increase, and hence we can bound the cost of any (d+ δ)-approximate
pure Nash equilibrium that we reach. Notice that our bound does not depend on the range
of the players’ weights and significantly improves the bound provided in [7], by making use
of a different and simpler potential function.
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Roadmap. We begin with the definition of a class of state-value functions in Section 2.
In Section 3 we first present a simple technique to bound the approximation guarantee of
a given state-value function, subsequently we show that some elements of the class intro-
duced in Section 2 provide a good approximation. In Section 4 we present the bound on
the approximate price of stability. Finally, in section 5 we present a couple of technical lemmas.

2 A class of state-value functions

In this section we define a class of functions mapping every state of the game to a non-negative
real number. This class of functions will be exploited in the subsequent sections.

I Definition 1. Let G = 〈N,E, (wi)i∈N , (Si)i∈N , (ae, ke)e∈E〉 be an instance of WCG(d). For
every resource e ∈ E and every γ = (γe)e∈E, we define

Φγ(s) =
∑
e∈E

aeΨγe
e

(
Le(s)

)
,

where, for every nonempty subset of players P ⊆ N , we have

Ψγe
e (P ) = γe

ke + 1

∑
j∈P

wj

ke+1

+
(

1− γe
ke + 1

)∑
j∈P

wke+1
j .

3 Approximate potential functions

The main result of this section is stated by Theorem 3, where we show the existence of
good approximate potential functions. Before showing this result, in Theorem 2 we illustrate
our tool to define an approximate potential function. Such tool gives a local condition to
each resource to determine the approximation guarantee of a given state-value function. We
conclude this section with two corollaries, the first (Corollary 4) showing that the social
optimum of an instance of WCG(d) is always a (d+ 1)-approximate pure Nash equilibrium,
the second (Corollary 5) showing that, under mild conditions, the game always admits a
constant approximate potential function.

I Theorem 2. Let G = 〈N,E, (wi)i∈N , (Si)i∈N , (ae, ke)e∈E〉 be an instance of WCG(d). Let
Γ : S(G) 7→ R>0 be a state-value function such that Γ(s) =

∑
e∈E aeΓe

(
Le(s)

)
, where

Γe : 2N 7→ R>0. If, for every resource e ∈ E, every non-empty subset of players P ⊆ N and
every player i ∈ P , there exist λe, υe ∈ R>0, with λe ≤ υe, such that

wi`e(P )
ae

(
Γe(P )− Γe(P \ {i})

) ∈ [λe, υe] (1)

then Γ is a
(
υ
λ

)
-approximate potential function for G, where υ = maxe∈E υe and λ =

mine∈E λe.

Proof. Let us consider a state s ∈ S(G) and a player i. Let us assume that i can perform an
υ
λ -improvement move by replacing strategy s(i) with s 6= s(i), i.e., υλci([s−i, s]) < ci(s). In
order to prove the claim we need to show that Γ([s−i, s]) < Γ(s). To this aim, let us bound
the expression Γ([s−i, s])− Γ(s). We have,
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Γ([s−i, s])− Γ(s) =
∑
e∈E

aeΓe
(
Le([s−i, s])

)
−
∑
e∈E

aeΓe
(
Le(s)

)
=
∑
e∈E

ae

[
Γe
(
Le([s−i, s])

)
− Γe

(
Le(s)

)]
=

∑
e∈s\s(i)

ae

[
Γe
(
Le([s−i, s])

)
− Γe

(
Le(s)

)]
−

∑
e∈s(i)\s

ae

[
Γe
(
Le(s)

)
− Γe

(
Le([s−i, s])

)]
=
∑
e∈s

ae

[
Γe
(
Le([s−i, s])

)
− Γe

(
Le(s)

)]
−
∑
e∈s(i)

ae

[
Γe
(
Le(s)

)
− Γe

(
Le([s−i, s])

)]
(2)

≤
∑
e∈s

1
λe
wi`e

(
Le([s−i, s])

)
−
∑
e∈s(i)

1
υe
wi`e

(
Le(s)

)
(3)

≤ 1
λ

∑
e∈s

wi`e
(
Le([s−i, s])

)
− 1
υ

∑
e∈s(i)

wi`e
(
Le(s)

)
(4)

= wi
υ

(υ
λ
ci([s−i, s])− ci(s)

)
(5)

where (2) follows from the fact that for every e ∈ s(i) ∩ s the variation of Γe is null since
Le([s−i, s]) = Le(s), (3) from (1), (4) from the definition of λ and υ and (5) from the
definition of cost.

From (5) we obtain that, if υλci([s−i, s]) < ci(s) then Γ([s−i, s]) < Γ(s), from which the
claim follows. J

We are ready to present the main result of this section.

I Theorem 3. Let G = 〈N,E, (wi)i∈N , (Si)i∈N , (ae, ke)e∈E〉 be an instance of WCG(d). It
holds that
(a) if γe = 1, for every e ∈ E, then Φγ is a ρ(G)-approximate potential function for G,

where

ρ(G) = max
e∈E

sup
x>0

(
1 + x

)ke
1

ke+1
(
1 + x

)ke+1 + ke
ke+1 −

1
ke+1x

ke+1
≤ d; (6)

(b) if γe = ke, for every e ∈ E, then Φγ is a d-approximate potential function for G;
(c) if γe = ke + δ, for every e ∈ E and δ ≥ 0, then Φγ is a (d + δ)-approximate potential

function for G.

Proof. We prove the claim using Theorem 2. Therefore, for every resource e ∈ E, every
non-empty subset of players P ⊆ N and every player i ∈ P , we bound the ratio

wi`e(P )
ae

(
Ψγe
e (P )−Ψγe

e (P \ {i})
) . (7)

Let us explicitly rewrite the numerator and denominator of the previous expression. We
distinguish between the cases |P | = {i} and |P | ≥ 2.
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Let us fist assume |P | = {i}. In this case, for wi`e(P ) we get

wi`e(P ) = wiae(wi)ke = aew
ke+1
i . (8)

On the other hand, for the expression Ψγe
e (P )−Ψγe

e (P \ {i}), using Definition 1, we have

Ψγe
e (P )−Ψγe

e (P \ {i}) =
[

γe
ke + 1 (wj)ke+1 +

(
1− γe

ke + 1

)
wke+1
j

]
− 0 = wke+1

j . (9)

Therefore, by combining (8) and (9), we conclude that, for |P | = {i}, for the ratio (7) we
have

wi`e(P )
ae

(
Ψγe
e (P )−Ψγe

e (P \ {i})
) = aew

ke+1
i

aew
ke+1
i

= 1. (10)

Not let us assume that |P | ≥ 2. In this case, for wi`e(P ) we get

wi`e(P ) = wiae

∑
j∈P

wj

ke

= wiae

wi +
∑

j∈P\{i}

wj

ke

= aew
ke+1
i

(
1 + λi(P )

)ke
. (11)

Now, let us focus on the expression Ψγe
e (P ) − Ψγe

e (P \ {i}). For every i ∈ P , let λi(P ) =
1
wi

∑
j∈P\{i} wj . Using Definition 1, we have

Ψγe
e (P )−Ψγe

e (P \ {i})

= γe
ke + 1

∑
j∈P

wj

ke+1

+
(

1− γe
ke + 1

)∑
j∈P

wke+1
j

− γe
ke + 1

 ∑
j∈P\{i}

wj

ke+1

−
(

1− γe
ke + 1

) ∑
j∈P\{i}

wke+1
j

= γe
ke + 1

∑
j∈P

wj

ke+1

+
(

1− γe
ke + 1

)
wke+1
i − γe

ke + 1

 ∑
j∈P\{i}

wj

ke+1

= γe
ke + 1

wi +
∑

j∈P\{i}

wj

ke+1

+
(

1− γe
ke + 1

)
wke+1
i − γe

ke + 1

 ∑
j∈P\{i}

wj

ke+1

= γe
ke + 1w

ke+1
i

(
1 + λi(P )

)ke+1 +
(

1− γe
ke + 1

)
wke+1
i − γe

ke + 1w
ke+1
i λi(P )ke+1

= wke+1
i

[
γe

ke + 1
(
1 + λi(P )

)ke+1 +
(

1− γe
ke + 1

)
− γe
ke + 1λi(P )ke+1

]
(12)

Therefore, by combining (11) and (12), we conclude that, for |P | ≥ 2, for the expression (7)
we have
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wi`e(P )
ae

(
Ψγe
e (P )−Ψγe

e (P \ {i})
)

=
aew

ke+1
i

(
1 + λi(P )

)ke
aew

ke+1
i

[
γe
ke+1

(
1 + λi(P )

)ke+1 +
(

1− γe
ke+1

)
− γe

ke+1λi(P )ke+1

]

=
(
1 + λi(P )

)ke
γe
ke+1

(
1 + λi(P )

)ke+1 +
(

1− γe
ke+1

)
− γe

ke+1λi(P )ke+1
. (13)

Now we apply Lemma 9 to (13), by setting x = λi(P ), h = ke and β = γe.
If γe = 1, we obtain

wi`e(P )
ae

(
Ψγe
e (P )−Ψγe

e (P \ {i})
) ∈ [1, ke]. (14)

If γe = ke, we have

wi`e(P )
ae

(
Ψγe
e (P )−Ψγe

e (P \ {i})
) ∈ [ 1

ke
, 1
]
. (15)

Finally, if γe = ke + δ, with δ ≥ 0, we have

wi`e(P )
ae

(
Ψγe
e (P )−Ψγe

e (P \ {i})
) ∈ [ 1

ke + δ
, 1
]
. (16)

Claim (a) follows by combining (10), (13) and (14), and by applying Theorem 2. Claims
(b) and (c) follow by combining (10), (15) and (16), and by applying Theorem 2. J

I Corollary 4. Let G = 〈N,E, (wi)i∈N , (Si)i∈N , (ae, ke)e∈E〉 be an instance of WCG(d). Any
social optimum of G is a (d+ 1)-approximate pure Nash equilibrium.

Proof. Let us consider the function Φγ(s) =
∑
e∈E Ψγe

e (Le(s)) (defined in Definition 1), with
γe = ke + 1. The claim follows from observing that Φγ(s) = C(s) and from the fact that, by
Theorem 3(c), Φγ is also a (d+ 1)-approximate potential function. J

I Corollary 5. Let G = 〈N,E, (wi)i∈N , (Si)i∈N , (ae, ke)e∈E〉 be a mildly congested instance
of WCG(d). If γe = 1, for every e ∈ E, then Φγ is a e

e−1 -approximate potential function for
G, where e is the Euler’s number.

Proof Sketch. Since G is mildly congested, we have `e(Le(s)) ≥ (ke + 1)wmax, for every
resource e ∈ E and state s ∈ S(G), where wmax denotes the greatest weight in G. Under this
condition, we can restrict the proof of Theorem 3 to the case in which the generic subset of
player P is such that

∑
j∈P wj ≥ (ke + 1)wmax. With this condition in place, we have that,

for every i ∈ P , λi(P ) is at least ke. In fact,

λi(P ) = 1
wi

∑
j∈P

wj − wi

 ≥ 1
wi

(
(ke + 1)wmax − wi

)
≥ wmax

wi
ke ≥ ke.

By using the previous inequality, it is easy to prove that the expression (13) gets always
values in the range [1, e

e−1 ], for every ke ≥ 1. The claim follows by applying Theorem 2. J
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4 Approximate price of stability

In this section we show an upper bound on the α-approximate price of stability, for α ∈
[d, d+ 1]. This bound is stated by Theorem 8, whose proof is based on Lemma 6 and Lemma
7 presented below.

I Lemma 6. Let G = 〈N,E, (wi)i∈N , (Si)i∈N , (ae, ke)e∈E〉 be an instance of WCG(d). Let
γe = ke + δ and δ ∈ [0, 1], for every resource e ∈ E. For every resource e ∈ E and every
non-empty subset of players P ⊆ N , we have

Ψγe
e (P ) ≤

∑
j∈P

wj

ke+1

≤ ke + 1
ke + δ

Ψγe
e (P ).

Proof. We have(∑
j∈P wj

)ke+1

Ψγe
e (P )

=

(∑
j∈P wj

)ke+1

ke+δ
ke+1

(∑
j∈P wj

)ke+1
+
(

1− ke+δ
ke+1

)∑
j∈P w

ke+1
j

(17)

∈

[
1, ke + 1
ke + δ

)
. (18)

where (17) follows from Definition 1 and the definition of γe, and (18) follows by applying

Lemma 10, where we set x =
(∑

j∈P wj

)ke+1
, y =

∑
j∈P w

ke+1
j and β = ke+1

ke+δ . J

In the following lemma, we give bounds relating the value of the approximate potential
function for a given state to the social cost of that state.

I Lemma 7. Let G = 〈N,E, (wi)i∈N , (Si)i∈N , (ae, ke)e∈E〉 be an instance of WCG(d). Let
γ = (γe)e∈E, where γe = ke + δ and δ ∈ [0, 1]. For every state s ∈ S(G) we have

Φγ(s) ≤ C(s) ≤ 2
1 + δ

Φγ(s). (19)

Proof. Let E = {e1, e2, . . . , em}. Let us bound the ratio

C(s)
Φγ(s) =

∑m
t=1 aet

(∑
j∈Let (s) wj

)ket+1

∑m
t=1 aetΨ

γet
et

(
Let(s)

) .

In order to bound C(s)/Φγ(s), we consider the ratio between the t-th term in the numerator
and the t-th term in the denominator, for every t ∈ [1,m], that is(∑

j∈Let (s) wj

)ket+1

Ψγet
et

(
Let(s)

) . (20)

From Lemma 6, (20) gets values in the interval
[
1, ket+1

ket+δ
]
. We get that the smallest ratio is

1 while the greatest one is maxt
ket+1
ket+δ ≤

2
1+δ . It follows that, C(s)/Φγ(s) is at least 1 and at

most 2
1+δ , from which the claim follows. J

I Theorem 8. Let G = 〈N,E, (wi)i∈N , (Si)i∈N , (ae, ke)e∈E〉 be an instance of WCG(d). Then
PoSd+δ(G) ≤ 2

1+δ , for every δ ∈ [0, 1].

ICALP 2019
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Proof. Let Φγ be the function with γ = (γe)e∈E , where γe = ke + δ. Let o ∈ OPT (G)
be a social optimum. Let us consider any sequence of (d+ δ)-improvement moves starting
from o. From Theorem 3(c) we know that this sequence converges to a state which is a
(d + δ)-approximate pure Nash equilibrium which we denote by e. Moreover, along this
sequence of moves, Φγ is not increasing. Hence,

Φγ(e) ≤ Φγ(o). (21)

By applying Lemma 7 repeatedly to both o and e we obtain

C(e) ≤ 2
1 + δ

Φγ(e) ≤ 2
1 + δ

Φγ(o) ≤ 2
1 + δ

C(o),

where the second inequality follows from (21). From which the claim follows. J

5 Technical lemmas

In this section we present two technical lemmas. Lemma 9 is used in the proof of Theorem 3,
while Lemma 10 is used in the proof of Lemma 6.

I Lemma 9. For every x ∈ R>0, h ∈ Z≥1 and β ∈ R≥1, we have

(1 + x)h

β 1
h+1 (1 + x)h+1 + (1− β 1

h+1 )− β 1
h+1x

h+1 ∈

{
[ 1
β ,

h
β ] if β ∈ [1, h]

[ 1
β , 1] if β ≥ h.

Proof. We have
(1 + x)h

β 1
h+1 (1 + x)h+1 + (1− β 1

h+1 )− β 1
h+1x

h+1

=
∑h
t=0
(
h
t

)
xt

β 1
h+1

∑h+1
t=0

(
h+1
t

)
xt + (1− β 1

h+1 )− β 1
h+1x

h+1

=
1 +

∑h
t=1
(
h
t

)
xt

1 + β 1
h+1

∑h+1
t=1

(
h+1
t

)
xt − β 1

h+1x
h+1

=
1 +

∑h
t=1
(
h
t

)
xt

1 +
∑h
t=1 β

1
h+1

(
h+1
t

)
xt

=
1 +

∑h
t=1
(
h
t

)
xt

1 +
∑h
t=1 β

1
h+1

h+1
h+1−t

(
h
t

)
xt

=
1 +

∑h
t=1
(
h
t

)
xt

1 +
∑h
t=1 β

1
h+1−t

(
h
t

)
xt

(22)

=
1 · x0 +

(
h
1
)
x1 +

(
h
2
)
x2 + . . .+

(
h
h

)
xh

1 · x0 + β 1
h

(
h
1
)
x1 + β 1

h−1
(
h
2
)
x2 + . . .+ β

(
h
h

)
xh
, (23)

where (22) holds because(
h+ 1
t

)
=

(h+1)!
t!(h+1−t)!

h!
t!(h−t)!

(
h

t

)
= (h+ 1)!
t!(h+ 1− t)!

t!(h− t)!
h!

(
h

t

)
= h+ 1
h+ 1− t

(
h

t

)
.

In order to bound (23), for every t ∈ [0, h] we consider the ratio between the coefficient of
the term xt in the numerator and the coefficient of the same term in the denominator. For
t = 0 the ratio is 1, while for t ∈ [1, h] the ratio is h+1−t

β . For the case β ∈ [1, h], we get
that the smallest ratio is 1/β while the greatest is h/β. It follows that, when β ∈ [1, h], the
expression in (23) is at least 1/β and at most h/β. For the case β ≥ h, we obtain that the
smallest is 1/β while the greatest ratio is 1df. Therefore, when β ≥ h, the expression in (23)
is at least 1/β and at most 1. From which the claim follows. J
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I Lemma 10. For every x, y, β ∈ R>0 such that β ≥ 1 and y ≤ x, we have

x
1
βx+ (1− 1

β )y
∈
[
1, β
]
.

Proof. We have

x
1
βx+ (1− 1

β )y
= 1

1
β + (1− 1

β ) yx
≥ 1

1
β + (1− 1

β )
= 1,

where the last inequality is due to the fact that y/x ≤ 1.

x
1
βx+ (1− 1

β )y
= 1

1
β + (1− 1

β ) yx
<

1
1
β

= β,

where the last inequality is due to the fact that y/x > 0. J
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Abstract
Let G = (V,E) be an undirected graph on n vertices and λ : E → 2N a mapping that assigns to
every edge a non-empty set of positive integer labels. These labels can be seen as discrete times
when the edge is present. Such a labeled graph G = (G,λ) is said to be temporally connected if a
path exists with non-decreasing times from every vertex to every other vertex. In a seminal paper,
Kempe, Kleinberg, and Kumar (STOC 2000) asked whether, given such a temporal graph, a sparse
subset of edges can always be found whose labels suffice to preserve temporal connectivity – a
temporal spanner. Axiotis and Fotakis (ICALP 2016) answered negatively by exhibiting a family
of Θ(n2)-dense temporal graphs which admit no temporal spanner of density o(n2). The natural
question is then whether sparse temporal spanners always exist in some classes of dense graphs.

In this paper, we answer this question affirmatively, by showing that if the underlying graph G
is a complete graph, then one can always find temporal spanners of density O(n logn). The best
known result for complete graphs so far was that spanners of density

(
n
2

)
− bn/4c = O(n2) always

exist. Our result is the first positive answer as to the existence of o(n2) sparse spanners in adversarial
instances of temporal graphs since the original question by Kempe et al., focusing here on complete
graphs. The proofs are constructive and directly adaptable as an algorithm.
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1 Introduction

The study of highly dynamic networks has gained interest lately, motivated by emerging
technological contexts (e.g. vehicular networks, wireless sensors, robots, and drones) where
the entities move and communicate with each other. The communication links in these
networks vary with time, leading to the definition of temporal graph models (also called
time-varying graphs or evolving graphs) where temporality plays a central role. In these
graphs, the properties of interest are often defined over the time rather than at a given instant.
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For example, the graph may never be connected, and yet offer a form of connectivity over
time. In [6], a dozen temporal properties were identified that have been effectively exploited
in the distributed computing and networking literature. Perhaps the most basic property is
that of temporal connectivity, which requires that every vertex can reach every other vertex
through a temporal path (also called journey [5]), that is, a path whose edges are used over
a non-decreasing sequence of times. The times may also be required to be strictly increasing
(strict journey), both cases being carefully discussed in this paper. Temporal connectivity
was considered in an early paper by Awerbuch and Even [3] (1984), and systematically
studied from a graph-theoretical point of view in the early 2000’s in a number of seminal
works including Kempe, Kleinberg, and Kumar [13], and Bui-Xuan, Ferreira, and Jarry [5]
(see also [16] for an early study of graphs with time-dependent delays on the edges). More
recently, temporal connectivity has been the subject of several algorithmic studies, such
as [1] and [4] (discussed below), and [18] and [19], which consider algorithms for computing
structures related to temporal connectivity. Broad surveys on these topics can be found, e.g.
in [6, 11, 14], although the list is non-exhaustive and the literature is rapidly evolving.

1.1 Sparse Temporal Spanners and Related Work
In the last section of [13] (conference version [12]), Kempe, Kleinberg, and Kumar ask

“Given a temporally connected network G = (V,E) on n nodes, is there a set E′ ⊆ E
consisting of O(n) edges so that the temporal network on the subgraph (V,E′) is
also temporally connected? In other words, do all temporal networks have sparse
subgraphs preserving this basic connectivity property?”

Here, Kempe et al. consider a model where each edge has a single label, thus the edges
are identified with their labels, but the discussion is more general. What they are asking,
essentially, is whether an analogue of spanning tree exists for temporal networks when the
labels are already fixed. They answer immediately (and negatively) for the particular case of
O(n) density, by showing that hypercubes labeled in a certain way need all of their edges to
achieve temporal connectivity, thus some temporal graphs of density Θ(n logn) cannot be
sparsified. The more general question, asking whether o(n2)-sparse spanners always exist in
dense temporal graphs remained open for more than a decade, and was eventually settled,
again negatively, by Axiotis and Fotakis [4]. The proof in [4] exhibits an infinite family of
temporally connected graphs with Θ(n2) edges that do not admit o(n2)-sparse spanners.
Their construction can be adapted for strict and non-strict journeys.

On the positive side, Akrida et al. [1] show that, if the underlying graph G is complete
and every edge is assigned a single globally-unique label, then it is always possible to find a
temporal spanner of density

(
n
2
)
− bn/4c edges (leaving the asymptotic density unchanged).

Akrida et al. [1] also prove that if the label of every edge in G is chosen uniformly at random
(from an appropriate interval), then almost surely the graph admits a temporal spanner with
O(n logn) edges. Both [4] and [1] include further results related to the (in-)approximability
of finding a minimum temporal spanner, which is out of the scope of this paper.

By its nature, the problem of finding a temporal spanner in a temporal network seems to
be significantly different from its classical (i.e., non-temporal) version, whether this version
considers a static graph (see e.g. [8, 15, 17]) or the current network topology of an updated
dynamic graph (see e.g. [2, 9, 10]). The essential difference is that spanning trees always
exist in standard (connected) graphs, thus one typically focuses on the tradeoff between the
density of a solution and a quality parameter like the stretch factor, rather than to the very
existence of a sparse spanner.



A. Casteigts, J. G. Peters, and J. Schoeters 134:3

1.2 Contributions

In this paper, we establish that temporal graphs built on top of complete graphs uncondi-
tionally admit O(n logn)-sparse temporal spanners when non-strict journeys are allowed.
Furthermore, such spanners can be computed in polynomial time. The case of strict journeys
requires more discussion. Kempe et al. observed in [13] that if every edge of a complete
graph is given the same label, then this graph is temporally connected, but no multi-hop
strict journey can exist, thus none of the edges can be removed, and the problem is trivially
unsolvable. To make the problem interesting when only strict journeys are allowed, one should
constrain the labeling to avoid this pathological situation. Thus, in this case, we require that
a subset of one label per edge exists in which any two adjacent edges have different labels.
This formulation slightly generalizes the single-label global-unicity assumption made in [1]
(although essentially equivalent) and eliminates the distinction between strict and non-strict
journeys. Under this restriction, we establish that all temporal graphs whose underlying
graph is complete admit an O(n logn)-sparse temporal spanner. Moreover, if the restricted
labeling is given, then the spanner can be computed in polynomial time. (The problem of
deciding whether a general labeling admits such a sub-labeling is not discussed here; it might
be an interesting problem on its own, possibly computationally hard.)

Our proofs are constructive. We start by observing that the above two settings one-way
reduce to the setting where every edge has a single label and two adjacent edges have different
labels. The reduction is “one-way” in the sense that the transformed instance may have less
feasible journeys than the original instance, but all of these journeys correspond to valid
journeys in the original instance, so that a temporal spanner computed in the transformed
instance is valid in the original instance. As a result, the main algorithm takes as input
a complete graph G with single, locally distinct labels, and computes an O(n logn)-sparse
spanner of G in polynomial time. This algorithm is based on several original techniques,
which we think may be of interest for other problems related to temporal connectivity.

In summary, our results give the first positive answer to the question of whether sparse
temporal spanners always exist in a class of dense graphs, focusing here on the case of
complete graphs. This answer complements the negative answer by Axiotis and Fotakis [4]
and motivates more investigation to understand where the transition occurs between their
negative result (no sparse spanners exist in some dense temporal graphs) and our positive
result (they essentially always exist in complete graphs).

The paper is organized as follows. In Section 2, we define the model and notations, and
describe the one-way reductions that allows us to concentrate subsequently on single (and
distinct) labels. We also mention a technique from [1] and we introduce a basic technique
called pivoting which is a natural analogue of Kosaraju’s algorithm for temporal graphs. In
Section 3 we introduce the main concepts used in the rest of the paper, namely delegation,
dismountability, and k-hop dismountability, whose purpose is to recursively self-reduce the
problem to smaller graph instances. While these technique alone fail in some cases, we extend
them and combine them into a more sophisticated algorithm that successfully computes
a temporal spanner of O(n logn) edges. The first step, presented in Section 4, is called
fireworks and results in a spanner of density (essentially)

(
n
2
)
/2. It is sparsified further down

to O(n logn) by exploiting a particular dichotomy in the structure of the residual instance.
Due to space limitation, several proofs are omitted. They can be found in the full version [7].
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2 Definitions and Basic Results

2.1 Model and definitions
Let G = (V,E) be an undirected graph and λ : E → 2N a mapping that assigns to every
edge of E a non-empty set of integer labels. These labels can be seen as discrete times when
the edge is present. In this paper, we refer to the resulting graph G = (G,λ) as a temporal
graph (other models and terminologies exist, all being equivalent for the considered problem).
If λ is single-valued and locally injective (i.e., adjacent edges have different labels), then we
say that λ is simple, and by extension, a temporal graph is simple if its labeling is simple.

A temporal path in G (also called journey), is a finite sequence of k triplets J =
{(ui, ui+1, ti)} such that (u1, . . . , uk+1) is a path in G and for all 1 ≤ i < k, {ui, ui+1} ∈ E,
ti ∈ λ({ui, ui+1}) and ti+1 ≥ ti. Strict temporal path (strict journeys) are defined analogously
by requiring that ti+1 > ti. We say that a vertex u can reach a vertex v iff a journey exists
from u to v (strict or non-strict, depending on the context). If every vertex can reach every
other vertex, then G is temporally connected. Interestingly, the distinction between strict and
non-strict journeys does not exist in simple temporal graphs, as all the journeys are strict.

In general, one can define a temporal spanner of G = ((V,E), λ) as a temporal graph
G′ = ((V ′, E′), λ′) such that V = V ′, E′ ⊆ E and λ′ : E′ → 2N with λ′(e) ⊆ λ(e) for all
e ∈ E′. We call G′ a valid spanner if it is temporally connected. Observe that, if G is simple,
then spanners are fully determined by the chosen subset of edges E′ ⊆ E (as in the above
citation from [13]). Thus, in such cases, we say that E′ itself is the spanner. Many of these
notions are analogous to the ones considered in [1, 4, 13], although they are not referred to
as “spanners” in these works.

Finally, when the underlying graph G is a complete graph, we call G a temporal clique.
An example of a (valid) temporal spanner of a simple temporal clique is shown in Figure 1.

5
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Figure 1 Example of a simple temporal clique and one of its temporal spanners (edges in bold).
This spanner is not minimum (nor even minimal) and the reader may try to remove further edges.

2.2 Generality of simple labelings
We claimed in Section 1.2 that if non-strict journeys are allowed, then one can transform
a temporal clique G = (G,λ) with unrestricted labeling λ into a clique H = (G,λH) with
simple labeling such that any valid temporal spanner of H induces a valid temporal spanner
of G. (As explained, the converse is false, but this is fine because our result is positive on
H.) The reduction proceeds in two steps: (1) For every edge e, restrict λ(e) to a single label
chosen arbitrarily; and (2) Whenever k adjacent edges have identical label l, then all labels
l′ > l are shifted to l′+ k and the k labels are assigned a unique value in the interval [l, l+ k]
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(again, arbitrarily). It should not be difficult to see that this reduction produces a simple
clique H, such that if a journey exists in H, then the same sequence of edges allows for a
(possibly non-strict) journey in G.

As for the case that strict journeys are the only ones allowed, as explained above, we
consider that a simple sub-labeling of λ exists and is identified prior to the computation.
Here, it is even more direct that any journey based on the sub-labeling only is a fortiori
available in the complete instance. Based on these arguments, the rest of the paper focuses
on simple temporal cliques, sometimes dropping the adjective “simple”.

2.3 Preliminary techniques

The best approach so far for sparsifying simple temporal cliques is that of Akrida et al. [1],
who prove that one can always remove bn/4c edges without breaking temporal connectivity
as follows. (Their paper has other significant contributions.) First, they show that if n = 4,
then it is always possible to remove at least one edge. Then, as n→∞, one can arbitrarily
partition the input clique into (essentially) n/4 subcliques of 4 vertices each, and remove an
edge from each subclique. The edges between subcliques are kept, thus the impact of removals
is confined to each subclique. In the full version of the present paper [7], we improve this
technique to remove a constant fraction of bn2/12c edges. However, we consider as unlikely
that such purely structural techniques could sparsify a graph to o(n2) edges. The techniques
that we develop here are completely different.

Another natural approach that one might think of is discussed in the full version of this
paper, inspired by Kosaraju’s principle for testing strong connectivity in a directed graph.
This principle relies on finding a vertex that all of the other vertices can reach (through
directed paths) and that can reach all these vertices in return. This condition is sufficient in
standard graphs because paths are transitive. In the temporal setting, transitivity does not
hold, but we can define a temporal analogue as follows. A pivot vertex p is a vertex such
that all other vertices can reach p by some time t (through journeys) and p can reach all
other vertices back after time t. The union of the tree of (incoming) journeys towards p and
the tree of (outgoing) journeys from p is a temporal spanner with at most 2(n− 1) edges.
Unfortunately, pivot vertices may not exist, even in temporal cliques. Both possibilities
(positive and negative) are shown in Figure 2. A generic construction to build arbitrarily
large non-pivotable graphs is proposed in the full version of this paper.

p
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72
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81
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9

04
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51

3

46

7

2

98

Figure 2 Examples of pivotable graph (left) and non-pivotable graph (right). The (light) green
edges in the pivotable graph belong to the tree of incoming journeys to pivot vertex p (with t = 4);
the (darker) red edges belong to the tree of outgoing journeys; the dashed edges belong to neither.
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3 Delegation and Dismountability

This section introduces a number of basic techniques which are subsequently refined and
adapted in Sections 4 and 5 in the main algorithm. Given a vertex v, write e−(v) for the
edge with smallest label incident with v, and e+(v) analogously for the largest label.

I Fact 1. Given a temporal clique G, if {u, v} = e−(v), then u can reach all vertices
through v. Similarly, if {u,w} = e+(w), then all vertices can reach u through w.

Fact 1 applies because the underlying graph G is complete. This fact makes it possible
for a vertex u to delegate its emissions to a vertex v, i.e., exploit the fact that v can still
reach all the other vertices (if need be, by a direct edge) after interacting with u, thus none
of u’s other edges are required for reaching the other vertices. By a symmetrical argument,
u can delegate its receptions (collections) to a vertex w if w can be reached by all the other
vertices (if need be, by a direct edge) before interacting with u, so u does not need its other
edges to be reached by the other vertices.

This type of delegation suggests an interesting technique to obtain temporal spanners. We
say that a vertex u in a temporal clique G is dismountable if there exist two other vertices v
and w such that {u, v} = e−(v) and {u,w} = e+(w). The idea of dismountability is to select
e−(v) and e+(w) for inclusion in a temporal spanner for G and then reduce the computation
to finding a temporal spanner in the smaller clique G[V \ u]. We state this more formally in
the following theorem.

I Theorem 1 (Dismountability). Let G be a temporal clique, and let u, v, w be three vertices
in G such that {u, v} = e−(v) and {u,w} = e+(w). Let S′ be a temporal spanner of G[V \ u].
Then S = S′ ∪ {{u, v}, {u,w}} is a temporal spanner of G.

Proof. Since {u, v} = e−(v), all edges incident with v in S′ have a larger label than {u, v},
thus u can reach all the vertices in G through v and the edges of S′. A symmetrical argument
implies that all vertices in G can reach u through w using only {u,w} and the edges of S′. J

We call a graph dismountable if it contains a dismountable vertex. It is said to be fully
dismountable if one can find an ordering of V that allows for a recursive dismounting of the
graph until the residual instance is a two-vertex graph with a single edge. An example of
such dismountable graph is given in Figure 3.
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Figure 3 Example of a fully dismountable graph and the resulting spanner.

I Fact 2 (Spanners based on dismountability). If a graph can be fully dismounted, then the
union of the pairs of edges involved in all steps of the recursion, plus the last edge forms a
temporal spanner. There are n− 2 steps, so this spanner has 2(n− 2) + 1 = 2n− 3 edges.
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Unfortunately, one can design arbitrarily large temporal cliques which are not fully
dismountable (we give a generic construction in the full version of this paper). Yet, techniques
derived from dismountability are at the core of our algorithm. To start, the concept of
dismountability can be generalized to multi-hop journeys. The key observation is that
a multi-hop journey may exist from a vertex u to another vertex v, say through vertices
u = u0, u1, . . . , uk = v such that {uk−1, uk} = e−(v), despite the fact that {ui−1, ui} 6= e−(ui)
for some i. Indeed, it is sufficient that the last edge of a journey from u to v is e−(v) in
order to delegate u’s emissions to v. Symmetrically, it is sufficient that the first edge of a
journey from w to u is e+(w) in order to delegate u’s receptions to w. Thus, a vertex u
is called k-hop dismountable if one can find two other vertices v and w (possibly identical
if k > 1) such that there are journeys of at most k hops (1) from u to v that arrives at v
through e−(v), and (2) from w to u that leaves w through e+(w).

Temporal spanners can be obtained in a similar way to 1-hop dismountability by selecting
all of the edges involved in these journeys for inclusion in the spanner. However, only the
edges adjacent to the dismounted vertex are removed in the recursion, thus some edges
used in a multi-hop journey may be selected several times over the recursion (with positive
impact). We can then extend Fact 2 to k-hop dismountability as follows.

I Fact 3. If a temporal graph G is fully k-hop dismountable, then this process yields a
temporal spanner with at most 2k(n− 2) + 1 ' 2kn edges.

Unfortunately, again, there exist arbitrarily large graphs which are not k-hop dismountable
for any k (see the full version of this paper [7]). Nonetheless, k-hop dismountability is one of
the components of the more sophisticated techniques in Sections 4 and 5.

4 The Fireworks Technique

In this section, we present an algorithm called fireworks, which exploits delegations among
vertices in a more subtle way than dismountability. In particular, we take advantage of
one-sided delegations, in which a vertex may be able to delegate only its emissions, or only
its receptions. The combination of many such delegations is shown to lead to the removal
of essentially half of the edges of the input clique. The residual instance has a particular
structure that we exploit in Section 5 to obtain O(n logn)-sparse spanners.

4.1 Forward Fireworks
The purpose of fireworks is to mutualize several one-sided delegations in a transitive way,
so that many vertices do not need to reach the others vertices directly, most of their edges
being consequently eliminated. Given a temporal clique G = (G,λ) with G = (V,E), define
the directed graph G− = (V,E−) such that (u, v) ∈ E− iff {u, v} = e−(v), except that, if
e−(u) = e−(v) for some u and v, only one of the arcs is included (chosen arbitrarily).

I Lemma 2. Directed paths in G− correspond to journeys in G.

By construction, E− induces a disjoint set of out-trees (one source, possibly several sinks).
We transform E− into a disjoint set T − = (V,E−T ) of in-trees (one sink, possibly several
sources) as follows, see also Figure 4 for an illustration. Let E−T be initialized as a copy of
E−. For every v with outdegree at least 2 in E−, let (v, u1), ..., (v, u`) be its out-arcs with
(v, u`) being the one with the largest label. For every i < `, if ui is a sink vertex, then flip
the direction of (v, ui) in E−T (i.e., replace (v, ui) by (ui, v) in E−T ); otherwise remove (v, ui)
from E−T . Let T − = (V,E−T ) be the resulting set of in-trees T −1 , ..., T −k (containing possibly
more in-trees than the number of initial out-trees).
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→

Figure 4 Example of transformation from a disjoint set of out-trees (V,E−) to a disjoint set of
in-trees (V,E−

T ). The colored vertices represent sink vertices.

I Fact 4. The set of in-trees T − = (V,E−T ) has the following properties:
1. Directed paths in T − correspond to journeys in G.
2. Every vertex belongs to exactly one tree.
3. Every tree contains at least two vertices.
4. There is a unique sink in each tree.
5. The unique arc incident with a sink s corresponds to e−(s).

Fact 4.1 follows from Lemma 2 because an arc (v, ui) is only replaced by (ui, v) if the
label of (v, ui) is less than the label of another arc (v, u`), so (ui, v), (v, u`) is a journey in
G. Observe that some of the journeys induced by the arcs of T − may include intermediate
hops where the arc’s label is not locally minimum for its head endpoint. However, as already
discussed in Section 3, a delegation only requires that the label of the last hop of a journey
be locally minimum, and that is the case here (Fact 4.5).

The motivation behind this construction is that all the vertices in each in-tree are able to
delegate their emissions to the corresponding sink vertex. For this reason, the sink vertex will
be called an emitter in the rest of the paper. An important consequence of our construction
is that the number of emitters in T − cannot exceed half of the total number of vertices.

I Lemma 3. The number of emitters in T − is at most n/2

Proof. After the transformation from E− to E−T , there is only one emitter in each in-tree
T −i ∈ T − (Fact 4.4), and at most n/2 in-trees, each having at least 2 vertices (Fact 4.3). J

We are now ready to define a temporal spanner based on T −, which consists of the union
of all edges involved in an in-tree and all edges incident with at least one emitter. More
formally, let S−T = {{u, v} ∈ E : (u, v) ∈ T −} ∪ {{u, v} ∈ E : u is an emitter}.

I Theorem 4. S−T is a temporal spanner of G.

Proof. By Fact 4, every vertex v of G that is a non-emitter in T − can reach an emitter s
through an edge e−(s). Furthermore, the inclusion of all edges incident to a vertex s that is
an emitter in T − ensures that v can still reach all other vertices afterwards and so can s.
Therefore, every vertex can reach all other vertices by using only edges from S−T . J

We call this type of spanner a forward fireworks cover. An example is given in Figure 5,
the corresponding journeys being depicted on the left side.

I Theorem 5. Forward fireworks covers have at most 3
(

n
2
)
/4 +O(n) edges.

Before moving to Section 4.2, we establish a small technical lemma that will be used in
Section 5, but is worth being stated here as it pertains to the in-trees.

I Lemma 6. Every non-emitter vertex v can reach a vertex v′ in the same in-tree T −i
(emitter or not) using a journey of length at most two that arrives at v′ through e−(v′).
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Figure 5 Example of forward fireworks cover and the resulting spanner.

4.2 Backward Fireworks
A symmetrical concept of fireworks can be defined based on the edges {u, v} = e+(v) of
a temporal clique G = (G,λ). The above arguments can be adapted in a symmetrical
way. First, we build a directed graph G+ = (V,E+), which is a disjoint set of in-trees. A
symmetrical transformation to the above converts this set into a disjoint set T + = (V,E+

T ) of
out-trees, each with only one source which we call a collector. The collector s of an out-tree
can reach all of the other vertices in this tree by journeys that leave s through its edge e+(s),
thereby guaranteeing that every vertex that reaches s can reach all other vertices in the tree.

I Lemma 7. The number of collectors in T + is at most n/2

We build a temporal spanner S+
T = {{u, v} : (u, v) ∈ T +} ∪ {{u, v} : u is a collector}

which we call a backward fireworks cover, and prove the following results by symmetrical
arguments to the ones in Subsection 4.1.

I Theorem 8. S+
T is a temporal spanner of the temporal clique G.

I Theorem 9. Backward fireworks covers have at most 3
(

n
2
)
/4 +O(n) edges.

An example of a backward fireworks cover is given in the full version. Finally, we establish
a symmetrical property to the one in Lemma 6, to be used later in Section 5.

I Lemma 10. Every non-collector vertex v can be reached by a vertex v′ in the same out-tree
T +

i (collector or not) using a journey of length at most two that leaves v′ through e+(v′).

4.3 Bidirectional Fireworks
A forward fireworks cover makes it possible to identify a subset of vertices, the emitters,
such that every vertex can reach at least one emitter u through e−(u) and u can reach every
other vertex afterwards through a single edge. Similarly, a backward fireworks cover makes it
possible to identify a subset of vertices, the collectors, such that every vertex can be reached
by at least one collector v through e+(v) and v can be reached by every other vertex before
this through a single edge. Combining both ideas, we can define a sparser spanner that
only includes the edges between emitters and collectors (plus, of course, the edges used for
reaching an emitter and for being reached by a collector).

Precisely, let T − be the disjoint set of in-trees obtained during the construction of a
forward fireworks cover (see Figure 4), and let T + be the disjoint set of out-trees obtained
during the construction of a backward fireworks cover. Let X− be the set of emitters (one
per in-tree in T −) and let X+ be the set of collectors (one per out-tree in T +). The two
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sets can overlap, as a vertex may happen to be both an emitter in some tree in T − and a
collector in some tree in T +, which is not a problem. Let H = (X− ∪X+, EH) be the graph
such that EH = {{u, v} ∈ E : u ∈ X−, v ∈ X+}; in other words, H is the subgraph of G that
connects all emitters with all collectors. Finally, let S = {{u, v} : (u, v) ∈ T − ∪ T +} ∪ EH .
We call S a bidirectional fireworks cover (or simply a fireworks cover).

I Theorem 11. S is a temporal spanner of G.

Proof. Every non-emitter vertex can reach an emitter u through e−(u). Every emitter can
reach all collectors afterwards. Every non-collector vertex can be reached by a collector v
through e+(v). J

I Theorem 12. Bidirectional fireworks covers have at most
(

n
2
)
/2 +O(n) edges.

5 Recursing or Sparsifying Further

After applying the fireworks technique, one is left with a residual instance (or spanner)
made of all the edges between emitters X− and collectors X+, together with all the edges
corresponding to the arcs of T − and T +, these edges being denoted S− and S+ for simplicity.
As we will see, the algorithm may recurse several times due to dismountability, thus it is
worth mentioning that variables G and V refer to the instance of the current recursion. The
algorithm considers two cases, depending on the outcome of the fireworks procedure. Either
X− ∪X+ 6= V (Case 1) or X− ∪X+ = V (Case 2).

I Case 1 (X− ∪ X+ 6= V ). In this configuration, at least one vertex v is neither emitter
nor collector. By Lemma 6, there exists a journey of length at most two from v that arrives
at some vertex u 6= v through e−(u). Similarly, by Lemma 10, there is a journey of length at
most two from some vertex w 6= v to v, leaving w through e+(w). As a result, v is 2-hop
dismountable (see Section 3). One can thus select the corresponding edges (at most four)
for future inclusion in the spanner and then recurse on G[V \ v], i.e., re-apply the fireworks
technique from scratch. Then, either the recursion keeps entering Case 1 and dismounting
the graph completely, or it eventually enters Case 2.

I Case 2 (X− ∪ X+ = V ). Both X− and X+ have size at most n/2 (Lemma 3 and 7),
thus if their union is V , then both sets must be disjoint and of size exactly n/2. As a result,
the graph which connects all vertices in X− with all vertices in X+ (called H in Section 4) is
a complete bipartite graph. In fact, H possesses even more structure. Firstly, both S− and
S+ are perfect matchings – by contradiction, if this is not the case, then at least one of the
in-tree (out-tree) contains more than one edge, resulting in strictly less emitters (collectors)
than n/2. Furthermore, every vertex is either an emitter or a collector, thus each of these
edges connects an emitter with a collector, implying that the residual instance actually is H
itself. Now, recall that every edge in S− is locally minimum for the corresponding emitter
(based on Fact 4.5), and every edge in S+ is locally maximum for the corresponding collector.
We then have the following stronger property.

I Lemma 13. If the minimum edge of an emitter is not also minimum for the corresponding
collector in H, then the residual instance is 2-hop dismountable. The same holds if the
maximum edge of a collector is not also maximum for the corresponding emitter in H.

Lemma 13 implies that either a vertex v is 2-hop dismountable and the algorithm can recurse
as in Case 1, or the edges of the matchings are minimum (resp. maximum) on both sides.
(An example of the latter case is given in the long version [7].)
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In summary, either the algorithm recurses until the input clique is fully dismounted
(through Case 1 or Case 2), resulting in an O(n)-dense spanner (Fact 3), or the recursion
stops and the residual instance is sparsified further by a dedicated procedure, described now.

5.1 Sparsifying the Residual Instance
For simplicity, the sparsification of the residual instance is considered as a separate problem.
The input is a labeled complete bipartite graph B = (X−, X+, EB) where X− is the set of
emitters, X+ is the set of collectors, and the labels are inherited from G. There are two
perfect matchings S− and S+ in B such that the labels of the edges in S− (resp. S+) are
minimum (resp. maximum) locally to both of their endpoints (Lemma 13). The objective is
to remove as many edges as possible from EB, while preserving S−, S+, and the fact that
every emitter can reach all collectors by a journey. Indeed, these three properties ensure
temporal connectivity of the graph (using the same arguments as in Theorem 11).

While both S− and S+ are matchings, our algorithm effectively exploits this property
with respect to S+ as follows.

I Fact 5. If an emitter can reach another emitter, then it can reach the corresponding
collector by adding to its journey the corresponding edge of S+.

This property makes it possible to reduce the task of reaching some collectors to that
of reaching the corresponding emitter in S+. It is however impossible for an emitter u to
make a complete delegation to another emitter v, because the existence of a journey from u

to v arriving through e−(v) would contradict the fact that S− is also a matching. For this
reason, when a journey from emitter u arrives at emitter v, some of v’s edges have already
disappeared. Nevertheless, the algorithm exploits such partial delegations, while paying extra
edges for the missed opportunities (contained within a logarithmic factor). This is done by
means of an iterative procedure called layered delegations, described over the remaining of
this section. Note the term iterative, not recursive; from now on, the instance has a fixed
vertex set and it is sparsified until the final bound is reached.

Layered Delegations

The algorithm proceeds by eliminating half of the emitters in each step j, while selecting a
set Sj of edges for inclusion in the spanner, so that the eliminated emitters can reach all
collectors by a mixture of direct edges and indirect journeys through other emitters (partial
delegations). The set of non-eliminated emitters at step j (called alive) is denoted by X−j ,
with X−1 = X−. The set of collectors X+ is invariant over the execution. We denote by
k = n/2 the initial degree of the emitters in B (one edge shared with each collector), and by
ei(v) the edge with the ith smallest label (label of rank i) locally to a vertex v, in particular
e1(v) = e−(v) and ek(v) = e+(v).

The k ranks are partitioned into subintervals of doubling size Ij = [2j+2 − 7, 2j+3 − 8],
where j denotes the current step of the iteration, ranging from 1 to log2 k− 3. For simplicity,
assume that k is a power of two, we explain below how to adapt the algorithm when this
is not the case. For example, if k = 128, then I1 = [1, 8], I2 = [9, 24], I3 = [25, 56], and
I4 = [57, 120]. Computation step j is made with respect to the subgraph Bj = (X−j , X+, Ej)
where Ej = {ei(v) ∈ EB : i ∈ Ij , v ∈ X−j }, namely the edges of the currently alive emitters,
whose ranks are in the interval Ij .

I Lemma 14. In each step j, X−j can be split into two sets Xa and Xb such that |Xa| ≥ |Xb|
and every vertex in Xa can reach a vertex in Xb through a 2-hop journey (within Bj).
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Proof. The proof is in the full version [7] (together with an illustration). The main idea is
to show that the average degrees of collectors in Bj forces the existence of sufficiently many
two-hop journeys among emitters. J

I Remark 15. The computation of Xa proceeds by repeatedly considering the largest degree
d of a collector and assigning d− 1 of the corresponding emitters to Xa and one to Xb; it is
therefore a greedy algorithm. The process is to be stopped whenever Xa reaches half the
size of X−j . If Xa exceeds this threshold during step j, then some emitters can be arbitrarily
transferred from Xa to Xb to preserve the fact that |X−j+1| is a power of two. The case that
|X−1 | = k is not a power of two is addressed similarly after the first iteration, in order to set
the size of Xb to the highest power of two below k.

How Xa and Xb are then used: When an emitter u in Xa can reach another emitter v in
Xb, the corresponding journey arrives at v through some edge ei(v) with i ∈ Ij . We say that
u partially delegates its emissions to v in the sense that all collectors that v can reach after
this time can de facto be reached from u (through v), the other collectors being possibly no
longer reachable from v after this time. Thus, the delegation is partial.

I Lemma 16. If an emitter u makes a partial delegation to v in step j, then the number of
collectors that u may no longer reach through v is at most 2j+3 − 8.

Proof. This number is the largest value in the current interval; it corresponds to the largest
rank of the edge through which the journey from u may have arrived at v. All the edges
whose rank locally to v is larger than 2j+1 − 2 can still be used and thus the corresponding
collectors are still reachable. (In fact, the collector corresponding to the edge with last index
in Ij locally to v can also be considered as reached, but this is a detail.) J

A partial delegation from u to v in step j implies the removal of u from the set of emitters,
the selection of the two edges of the journey from u to v, and the selection of at most 2j+3−8
direct edges between u and the missed collectors. This implies the following fact.

I Fact 6. In each step j, at most 2j+3 edges are selected relative to every eliminated emitter.

More globally, let Jj be the edges used in all the delegation journeys from vertices in Xa

to vertices in Xb in step j, and Dj the union of direct edges towards missed collectors. Let
Sj = Jj ∪Dj . The algorithm thus consists of selecting all the edges in Sj for inclusion into
the spanner. Then X−j+1 is set to Xb and the iteration proceeds with the next step. The
computation goes for j ranging from 1 to log2 k − 3, which leaves exactly eight final emitters
alive. All the remaining edges of these emitters (call them Slast) are finally selected. Overall,
the final spanner is the union of all selected edges, plus the edges corresponding to the two
initial matchings, i.e., S = (∪jSj) ∪ Slast ∪ S− ∪ S+.

I Theorem 17. S is a temporal spanner of the complete bipartite graph B and it is made of
O(n logn) edges.

Proof. The key observation for establishing validity of the spanner is that eliminated emitters
reach all collectors either directly or through an emitter that can still reach this collector
afterwards. This property applies transitively (thanks to the disjoint and increasing intervals)
until eight emitters remain, all the edges of which are selected for simplicity. Therefore,
every initial emitter can reach all collectors. The rest of the arguments are the same as in
the proof of Theorem 11: all vertices in the input clique can reach at least one emitter u
through e−(u), and be reached by at least one collector v through e+(v).
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Regarding the size of the spanner, in step j, k
2j emitters are eliminated and at most 2j+3

edges are selected for each of them (Fact 6), amounting to at most 8k = 4n edges. The
number of iterations is Θ(log k) = Θ(logn). Finally, the sets Slast, S

−, and S+ each contain
Θ(n) edges (and S+ is actually included in Slast). J

I Corollary 18. Simple temporal cliques always admit O(n logn)-sparse spanners.

Proof. In each recursion of the global algorithm, either the residual instance of the fireworks
procedure is 2-hop dismountable and the algorithm recurses on a smaller instance induced by
a removed vertex, after selecting a constant number of edges, or the algorithm computes a
Θ(n logn)-sparse spanner of the residual instance through the layered delegation process. Let
n1 be the number of times the graph is 2-hop dismounted and n2 = n− n1 be the number of
vertices of the residual instance when the layered delegation process begins (if applicable, 0
otherwise). The resulting spanner has Θ(n1) + Θ(n2 logn2) = O(n logn) many edges. J

I Remark 19. The running time of the algorithm is polynomial (see the full version).

6 Concluding Remarks

In this paper, we established that sparse temporal spanners always exist in temporal cliques,
proving constructively that one can find O(n logn) edges that suffice to preserve temporal
connectivity. Our results hold for non-strict journeys with single or multiple labels on each
edge, and strict journeys with single or multiple labels on each edge with the property that
there is a subset of locally exclusive single labels. Our results give the first positive answer
to the question of whether any class of dense graphs always has sparse temporal spanners.

To prove our results, we introduced several techniques (pivoting, delegation, dismounting
and k-hop dismounting, forward and backward fireworks, partial delegation, and layered
delegations), all of which are original and some of which might be of independent interest.
Whether some of these techniques can be used for more general classes of graphs is an open
question. Delegation and dismounting rely explicitly on the graph being complete; however,
refined versions of these techniques like partial delegation might have wider applicability.

An open question is whether sparse spanners always exist in more general classes of dense
graphs, keeping in mind that some dense graphs are unsparsifiable. Another question is
whether a better density than O(n logn) could be obtained in the particular case of temporal
cliques, in particular O(n)-dense spanners. At a deeper level, all these questions pertain to
identifying and studying analogues of spanning trees in temporal graphs, which do not enjoy
the same matroid structure as in standard graphs.
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Abstract
In this paper, we investigate a distributed maximal independent set (MIS) reconfiguration problem, in
which there are two maximal independent sets for which every node is given its membership status,
and the nodes need to communicate with their neighbors in order to find a reconfiguration schedule
that switches from the first MIS to the second. Such a schedule is a list of independent sets that
is restricted by forbidding two neighbors to change their membership status at the same step. In
addition, these independent sets should provide some covering guarantee.

We show that obtaining an actual MIS (and even a 3-dominating set) in each intermediate step
is impossible. However, we provide efficient solutions when the intermediate sets are only required
to be independent and 4-dominating, which is almost always possible, as we fully characterize.

Consequently, our goal is to pin down the tradeoff between the possible length of the schedule
and the number of communication rounds. We prove that a constant length schedule can be found in
O(MIS + R32) rounds, where MIS is the complexity of finding an MIS in a worst-case graph and R32
is the complexity of finding a (3, 2)-ruling set. For bounded degree graphs, this is O(log∗ n) rounds
and we show that it is necessary. On the other extreme, we show that with a constant number of
rounds we can find a linear length schedule.
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1 Introduction

Consider a distributed setting in which each node of a network receives an input from a
higher-level application which tells it whether it is selected or not, such that the set of selected
nodes is a maximal independent set (MIS), which we will denote by α. The reason that
the application requires an MIS is because it needs the set of selected nodes to dominate
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all nodes for the sake of, say, monitoring the network, but without having violations of two
neighbors being in the set, because they may cause conflicting actions. Now, because of
changes in the network traffic, the energy consumption, or any one of various conditions that
may change, the application needs to change the selected set of nodes. Once a new input
MIS, denoted by β, is given to the nodes by the application, the nodes need to reconfigure
their states to that set while never sacrificing the safety condition of independence. In fact,
for compatibility reasons, neighboring nodes cannot change their membership in the set at
the same time, so a sequence of changes is needed for converging into the new MIS. We call
such a sequence a reconfiguration schedule.

The length of the schedule is clearly a measure that is required to be minimized. Hence,
an extreme solution would be to have all nodes declare themselves as unselected, and then
the new set of nodes declare that they are selected. However, this very fast approach suffers
from loosing the domination property throughout the reconfiguration schedule. Thus, the
structure of the network must be taken into account, but since the topology is unknown,
finding a schedule that maintains a good covering at all times necessitates that the nodes
communicate. This brings another measure of complexity into question, which is the number
of communication rounds that are needed in order to find a short schedule. Our goal in this
work is to study the tradeoff between the possible length of the schedule and the number of
communication rounds needed for finding it.

Unfortunately, as we show, it is not always possible to find schedules where each set is an
MIS. This impossibility holds even if we relax the condition of domination and require only
independent 3-dominating sets. Even when 3-domination is possible, it may be extremely
inefficient (Section 6).

I Theorem 1. Requiring 3-domination for intermediate steps is costly:
1. There exists a class of inputs G = (V,E) with two MIS α and β such that there is no

reconfiguration schedule with 3-dominating intermediate steps.
2. There exists a class of inputs G = (V,E) with two MIS α and β such that any reconfigur-

ation schedule is of length Ω(n) and needs Θ(n) rounds to be found, if intermediate steps
must be 3-dominating.

However, we prove that independence and 4-domination can indeed be obtained. Our
main result is the following (Section 3).

I Theorem 2 (informal). For any graph G = (V,E) of diameter greater than 3 and any
input of two MIS α, β, there exists a reconfiguration schedule of constant length 28, with
independent 4-dominating intermediate steps. Moreover, such a schedule can be found in
O(MIS + R32) rounds, where MIS is the complexity of finding an MIS on a worst-case graph
and R32 is the complexity of finding a (3, 2)-ruling set on a worst-case graph.

Obtaining the above theorem turns out to be an involved task. Our key ingredients are
the following. We prove that graphs with a not-too-small diameter always admit a schedule
of reconfiguration steps from a given maximal independent set to another. Moreover, full
knowledge of the topology of the graph is not necessary in order to be able to locally add an
element to the set after having removed its neighbors (to avoid dependence). Rather, only
local manipulations are needed for doing so.

The currently known complexities that give O(MIS + R32) are discussed in the related
work part. Here, we draw attention to the fact that an immediate corollary of Theorem 2
is that for graphs of bounded degree we can compute the constant length schedule within
O(log∗ n) rounds. Further, we show that this is a lower bound by reducing the problem of
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finding an MIS on a path to obtaining a constant-length schedule for MIS reconfiguration.
The following theorem actually holds even if one requires only d-domination, for some
constant d ≥ 4 (Section 6).

I Theorem 3. For any fixed k, there exists a class of k-regular inputs G = (V,E) with two
MIS α and β such that any reconfiguration schedule of constant length with 4-domination
needs Θ(log∗ n) rounds to be found.

If one wants to optimize the communication cost of finding a schedule rather than its length,
we show that a (rather lengthy) schedule can be obtained within O(1) rounds (Section 4).

I Theorem 4 (informal). For any graph G = (V,E) and any input of maximal independent
sets α, β to the MIS-reconfiguration problem, there exists a reconfiguration schedule of length
Θ(f(n)), where f(n) is the largest identifier among the nodes in the graph, which can be
found in O(1) rounds.

The construction generalizes itself on graphs with a distance-k coloring of c colors, with
k big enough. It is possible, from this coloring, to compute a schedule of length O(c) after a
constant number of communication rounds. Let ∆ be the maximal degree of the graph. A
distance-k O(∆2k) coloring can be found in O(log∗ n) rounds [16], and a distance-k O(∆k)
coloring can be found in O(log∗ n +

√
∆k) rounds [4]. Hence, with the same respective

communication complexities, we can find schedules of lengths O(∆2k) and O(∆k).
Finally, as can be inferred from Theorem 2, 4-domination suffices for any graph with

diameter greater than 3. For graphs with small diameter, we give an exact characterization of
the conditions that allow the existence of a reconfiguration schedule (Section 5). This result
implies that our algorithm from Theorem 2, combined with a trivial algorithm that collects
the entire graph when the diameter is a small constant, produces an efficient reconfiguration
schedule in all cases for which it exists.

1.1 Related work
Distributed Reconfiguration. Questions of distributed reconfiguration were actually not
studied before 2018. Then, Bonamy et al. [6] considered distributed reconfiguration of
colorings, with the goal of finding which length of schedule can be computed within a given
number of communication rounds. The problem being PSPACE complete in the general
case, several subcases were explored. Since finding looser restrictions for the transitions is
important for making the problem local instead of having to solve a global PSPACE hard
problem, the addition of extra colors in the intermediate colorings was allowed. This aided
either having a solution, or finding one quickly.

Distributed Constructions. Our constructions sometimes make use of two fundamental
subroutines, which find an MIS or a (3, 2)-ruling set in a graph. An (x, y)-ruling set is a set
S ⊆ V in which every two nodes are at distance at least x, and every node that is not in S
is within distance at most y from S. Thus, an MIS is a (2, 1)-ruling set. Finding an MIS is
one of the most fundamental problems in distributed computing. The celebrated randomized
O(logn)-round algorithms of Luby [19] and Alon et al. [1] have been recently improved by
Ghaffari to O(log ∆+2O(

√
log logn)) rounds, where ∆ is the maximal degree in the network [9].

Deterministic solutions are the classic network-decomposition based algorithm of Panconesi
and Srinivasan that runs in 2O(

√
logn) rounds [21], and the O(∆ + log∗ n)-round algorithm

of Barenboim et al. [5]. The classic lower bound of Linial [17] shows that Ω(log∗ n) rounds
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are necessary, Kuhn et al. gives a higher bound of Ω(log ∆/ log log ∆,
√

logn/ log logn)
[15]. The latest results of Balliu et al. [3] give the new best known lower bounds to find a
MIS: There is no deterministic algorithm in o(∆ + logn

log logn ) nor randomized algorithm in
o(∆ + log logn

log log logn ). The Figure 1 in [3] sums up all the results on MIS. A (3, 2)-ruling set can
be computed by computing an MIS over G2, and more general ruling sets have been studied
in [2, 13,14,20,22].

Centralized Reconfiguration of Maximal Independent Sets. Reconfigurations problems
on graphs have been widely studied in the centralized setting during the last decade. An
excellent survey on reconfiguration problems can be found in [23]. In the centralized setting,
the transition rules are different, requiring that any intermediate set must be at least of a
certain size. While having their own motivation in that setting, these rules are not the ones
that are needed in the distributed setting, as they do not give covering guarantees (moreover,
such properties would be costly to obtain in a distributed setting, due to their global nature).

In more detail, three kinds of transitions have been studied for the independent set
reconfiguration problem. Token Addition and Removal [11], or TAR(k): at each transition,
one vertex is removed from or added to the current independent set, as long as there are at
least k nodes in the independent set. Token Jumping [12]: at each transition, one vertex
is removed from the independent set and another one is added somewhere else. Token
Sliding [10]: at each transition, an edge containing a vertex of the independent set is chosen.
This vertex is removed from the set and its neighbor on the other side of that edge is added
to the set. The two first versions are actually equivalent when k corresponds to the size of
the independent sets minus 1. Reconfiguration problems are in PSPACE, and independent
set reconfiguration problems are in general PSPACE complete [10]. Studies over subclasses
of graphs exist, and some polynomial algorithm or hardness proofs are given. For example,
planar graphs [10], perfect graphs [12], trees [8] and bipartite graphs [18].

2 Preliminaries

We work in the classic LOCAL model of computation, in which n nodes in a synchronous
network exchange messages with their neighbors in each round of computation.

Let G = (V,E,U) denote a graph with an assigned subset U ⊆ V . An input to the
MIS-reconfiguration problem is a pair Ginput = (V,E, α), Goutput = (V,E, β), where α and
β are the initial and final maximal independent sets, respectively. We refer to a node v ∈ α
as an α-node, and to a node v ∈ β as a β-node. Notice that a node may be both an α-node
and a β-node. We refer to node v ∈ V \ (α ∪ β) as an ε-node. Throughout the proofs, we say
that a node v is covered or 4-dominated by a node u if d(v, u) ≤ 4.

For a vertex v ∈ V , we denote by N(v) the set of neighbors of v (i.e., N(v) = {u ∈ V :
(u, v) ∈ E}), and given a set U ⊆ V we define NU (v) = U ∩N(v) for the subset of neighbors
of v that are in U , and we call this set the U -neighbors of v. For a subset U ⊆ Y ⊆ V and a
node v ∈ Y , we denote by dY (v, U) the distance of v from U in the subgraph induced by Y .

I Definition 5 (Reconfiguration Schedules). For a given property P of G = (V,E,U), an
(α, β, P )-reconfiguration schedule (or simply a schedule) S of length ` is a sequence of subsets
of V , S = (S0, . . . , S`), such that the following hold:
1. S0 = α and S` = β,
2. for every 0 < i < `, the graph (V,E, Si) satisfies P , and
3. for every 0 < i ≤ `, Si ⊕ Si−1 is an independent set of (V,E).
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3 An MIS reconfiguration schedule of constant length

Our main theorem is the following.

I Theorem 2 (formal). Let P be the property of (V,E,U) that says that U is a (2,4)-
ruling set. For any graph G = (V,E) of diameter greater than 3 and any input Ginput =
(V,E, α), Goutput = (V,E, β) to the MIS-reconfiguration problem, there exists an (α, β, P )-
reconfiguration schedule of constant length 28. Moreover, such a schedule can be found in
O(MIS + R32) rounds, where MIS is the complexity of finding an MIS on a worst-case graph
and R32 is the complexity of finding a (3, 2)-ruling set on a worst-case graph.

In particular, Theorem 2 immediately implies a highly efficient solution for bounded
degree graphs.

I Corollary 6. The constant length schedule of Theorem 2 can be found in O(log∗ n) rounds
in graphs of bounded degree.

We now describe the outline of the algorithm, as follows. Denote by W the set of
connected components of α ∪ β. Our main approach is to reconfigure the independent sets
according to the components in W . To this end, we first categorize each component in W
according to its diameter and whether it is isolated or not: We say that a component Vi ∈W
is isolated if for every ε-node u in its neighborhood, Nα(u) and Nβ(u) are contained in Vi.

Notice that within a constant number of rounds, all α and β-nodes can know whether
they are in a component of diameter 0, 1, 2, or at least 3. Moreover, if their diameter is
smaller than 3, they can know whether the component is isolated or not.

To avoid excessive notation, we will sometimes say that we update the component Vi in
steps {j, j + 1}. This means that we remove α ∩ Vi from the independent set in step j and
we add β ∩ Vi to the set in step j + 1. Formally, this means that Sj = Sj−1 \ (α ∩ Vi) and
Sj+1 = Sj ∪ (β ∩ Vi). Since we will sometimes update multiple components concurrently,
we will have Sj = Sj−1 \ (α ∩ Zj) and Sj+1 = Sj ∪ (β ∩ Zj), where Zj =

⋃
i∈Ij

Vi, with
Ij = {i : Vi is being updated in steps {j, j + 1}}.

The high-level description of our algorithm is as follows. First, for components in W of
diameter 0, we do not need to do anything, as such components are comprised only of nodes
in α ∩ β. These nodes remain in the independent set Si for the entire schedule, and we omit
these components and all of their ε-neighbors from the remaining discussion. Our algorithm
then handles non-isolated components and components of diameter ≥ 3, and finally handles
the isolated components of diameter ≤ 2.

We begin by claiming that with an overhead of 2 rounds, we may assume that α and
β are disjoint. Indeed, if we never remove nodes in α ∩ β from the independent set, we no
longer need to take care about α ∩ β nor its neighborhood. You can find a more complete
explanation of this in the full version of the paper [7].

3.1 Components of diameter ≥ 3
We continue with the following lemma, which is useful for handling components in W whose
diameter is not too small. Roughly speaking, the way we handle components of sufficient
diameter is by finding a set of α-nodes that are not too close to each other to ensure that
β-nodes can be added not too far from them before we remove them from the independent
set. This way, we can reconfigure the rest of the component, and then this set of α-nodes and
their neighbors. We present the following lemma before the rest of the algorithm because
we will need to use it, but notice that it is not the case that we begin the algorithm by
reconfiguring components of diameter ≥ 3.
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I Lemma 7. Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set,
and let G = (V,E, α) and G = (V,E, β) be an input to the MIS-reconfiguration problem
such that α ∩ β = ∅, the set Y = α ∪ β is a single connected component of diameter at
least 3, and each ε-node is connected to an α-node and to a β-node. Then, there exists an
(α, β, P )-reconfiguration schedule of length 8. Moreover, such a schedule can be found in
O(R32) rounds.

Proof. First, assume that the diameter of Y = α∪β is either 3 or 4. Consider a shortest path
of length 3 in Y , denoted by (v1, v2, v3, v4). Either v1 or v4 is in α, and is within distance 4
from all other nodes in the component. We denote this node by v, and define S1 = {v} and
we have that it 4-dominates the entire component. In addition, it 4-dominates all ε-nodes,
by the assumption of the lemma that all such nodes are neighbors of β-nodes, because v
actually 3-dominates all β-nodes in the component. We then denote R = {u ∈ β | u 6∈ N(v)}
and define S2 = {v} ∪R, and S3 = R, and finally S4 = R ∪N(v). It is easy to verify that
this results in a valid (α, β, P )-reconfiguration schedule. In particular, notice that, without
loss of generality, if v = v1, then R contains at least the node v4, which 4-dominates the
entire component.

For a diameter of Y that is at least 5, the high-level idea of the construction is as follows.
Consider a (3, 2)-ruling set R over the nodes in α, where we imagine an edge between two
nodes in α if they are at distance two in the subgraph induced by Y . We reconfigure all
β-nodes that are at distance 5 from R in G by removing their α-neighbors first, then by
adding them. Then, we do the same for β-nodes that are at distance 3 from R, and finally
we repeat this one last time for the β-nodes in the direct neighborhood of R. The choice
of a (3, 2)-ruling set ensures that all α-nodes in R have a β-node at distance 3 that will
be reconfigured in the 4th step. However, while we trust β-nodes at distance 3 from R to
cover α-nodes at distance 2 from R while R itself is being reconfigured, we must be careful
when handling α-nodes at distance 2 from R that do not have a neighbor at distance 3. We
overcome this caveat by taking care of these nodes separately.

Formally, we define a virtual multigraph G̃ = (Ṽ , Ẽ) as follows. The set of virtual
nodes Ṽ consists of all α-nodes. If v and u in Ṽ have a common β-neighbor, we add an
edge u, v to Ẽ. Let R be a (3, 2)-ruling set in G̃. It is easy to see that in G, the set of
nodes R is a (6, 5)-ruling set of Y . We denote R by R0 and we define Ri for 3 ≤ i ≤ 5
as Ri = {v ∈ Y | the distance of v from R in the subgraph induced by Y is i}. Then we
define R1 = {v ∈ Y | dY (v,R) = 1 and dY (v,R3) = 2} ∪ {v ∈ Y | NY (v) ⊆ R}, which
captures all β-neighbors of R that either do not have other α-neighbors, or have other
α-neighbors which in turn have β-neighbors that are farther from R. We separate those from
the set R−1 = NY (R0) \R1. We complete the partition by defining R2 = NY (R1) \R0 and
R−2 = NY (R−1) \ R0. Note that for even i, Ri contains only α-nodes, and for odd i, Ri
contains only β-nodes. We have that, for every −2 ≤ i ≤ 5, NY (Ri) ⊆ Ri−1 ∪ Ri+1 (with
R−3 = R6 = ∅). By construction of R, we have that each node in R has a node at distance 3
in R3, hence it has a node at distance 2 in R2 and a node at distance 1 in R1.

We define S0 = α and for i = 0, 1, 2, 3, we define S2i+1 = S2i \ R4−2i, S2(i+1) =
S2i+1 ∪R5−2i. We claim that S0, . . . , S8 is an (α, β, P )-reconfiguration schedule.

First, S0 = α by definition, and because every β-node is within an odd distance of at
most 5 from R and every α-node is within an even distance of at most 4 from R, we have
that S8 = β. This gives condition (1) of Definition 5.

For condition (2), it is easy to see that Si⊕Si−1 is an independent set of (V,E) for every
1 ≤ i ≤ 8. For an odd i this holds because to obtain Si we only remove α-nodes from Si−1,
and no two such nodes can be neighbors. For an even i this holds because to obtain Si we
only add β-nodes to Si−1, and no two such nodes can be neighbors.
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It remains to show condition (3) of Definition 5. To show that Si is independent for
i = 2, 4, 6, notice that β-nodes in Rj (for j = −1, 1, 3, 5) are only added to the sequence after
all α-nodes in Rk for k ≥ j − 1 have been removed. By definition, S0 is also independent.
Hence, for i = 1, 3, 5, 7, Si is independent because it is a subset of Si−1.

Next, we need to show that Si is 4-dominating for every 1 ≤ i ≤ 7. Our focus will be
for i = 1, 3, 5, 7, and for i = 2, 4, 6 it then follows because Si contains Si−1. We first show it
on Y , and will prove it for ε-nodes afterward. For i = 1 this holds because all nodes in Rj
for j ≤ 3 are in or have neighbors in R−2 ∪R0 ∪R2. All nodes in Rj for j = 4, 5 are within
distance 3 from R2. Similarly, S3 is 4-dominating because nodes in Rj for j ≤ 4 are covered
by R0, nodes in R5 are in the current independent set. For S5, recall that for any node in R,
there is a node at distance 3 from it in R3, that node being in the current independent set
since S4. Hence, R3 covers Rj for −1 ≤ j ≤ 5. R−2 is still included in S5. Finally, for S7,
R3 still covers Rj for −1 ≤ j ≤ 5. For each node in R−2, there is a node at distance 3 from
it in R1 that has been added in S6 that covers it.

Now, let u be an ε-node that has a node a ∈ α and b ∈ β in its neighborhood. We
show that a or b are always 3-dominated throughout the sequence. In a step where b has
no α-neighbor in the independent set, it must be a step right before b gets added to the
independent set. If b is in R5 or in R3 then when this happens, it is 3-dominated by an
α-node in R2 or R, respectively, and this node is still in the independent set. If b ∈ R−1
then it is 2-dominated by nodes in R−2 and then R1 (with an overlap in S6, the construction
ensures that such node exist at distance at most 3 from b). Finally, If b ∈ R1 then either
there is a β-node in R3 that 2-dominates it, and this node is already in the independent set,
or b is in {v ∈ Y | NY (v) ⊆ R}. Only in the latter case, we must resort to the α-neighbor of
u and check that it is 3-dominated by S5, as we removed R from S5 and b is added in S6.

Let i be such that a ∈ Ri. We need to make sure that a is 3-dominated at the step in
which we reconfigure R1. At this step, all of the β-nodes in R3, R5 are in the independent
set, and hence their α-neighbors in R2, R4 are covered by nodes in distance 1, and nodes in
R0 are covered by nodes in distance 3. For α-nodes in R−2 they are still in the independent
set at this step, and hence are 3-dominated.

This completes the correctness proof. For the round complexity, notice that simulating
the (3, 2)-ruling set over G̃ can be done in G with a constant overhead. J

3.2 Non-isolated components
We first observe that components of diameter ≤ 2 are such that there is a complete bipartite
graph between their α-nodes and β-nodes. Let u be an ε-node that is a neighbor of several
components. Let Wu be the set of all components that are its neighbors, so that in particular,
Vi, Vj ∈ Wu. For each pair of distinct components Vi, Vj ∈ Wu, if there is an α node in
Nα(u) ∩ Vi and a β node in Nβ(u) ∩ Vj , then we say that Vj is (u, α)-covered and that Vi is
(u, β)-covered (note that this definition allows a single component to satisfy both conditions).
As u is an ε-node, there must exist a component Vu,α ∈ Wu that is (u, β)-covered and a
component Vu,β ∈Wu that is (u, α)-covered.

We say that a component Vi ∈ W is α-covered (β-covered) if there is an ε-node u for
which Vi is (u, α)-covered ((u, β)-covered). A component that is both is αβ-covered.

The key insight is that a (u, α)-covered component of diameter ≤ 2 is covered (dominated
at distance 4) by some α-node of the component Vu,β (and similarly with the β-node of
Vu,α). Moreover, any ε-node that is connected to an α-node (a β-node) in that component is
covered by Vu,β (or Vu,α). This implies that an ε-node that is connected to two components
that are updated in different steps is always covered by the component that is currently not
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being updated. However, during the reconfiguration schedule, we need to be careful about
ε-nodes that are connected to a single component, and ε-nodes that are connected to two
components that are updated at the same time.

We denote by Cαβ the set of αβ-covered components of diameter ≤ 2, and by Cα and
Cβ the sets of α-covered and β-covered components of diameter ≤ 2 that are not in Cαβ ,
respectively. Define the component graph G̃ = (W, Ẽ), where there is an edge between
Vi, Vj ∈W iff there exists an ε-node u such that Vi is (u, α)-covered and Vj is (u, β)-covered,
or vice-versa. Notice that in G̃, the sets Cα and Cβ are two disjoint independent sets.

We are finally ready to formally provide the algorithm for handling all components that
are either non-isolated or have diameter ≥ 3.

I Lemma 8. Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set, and
let G = (V,E, α) and G = (V,E, β) be an input to the MIS-reconfiguration problem such that
α ∩ β = ∅, and all connected components of α ∪ β are either non-isolated or have diameter
at least 3. Then, there exists an (α, β, P )-reconfiguration schedule of length 18. Moreover,
such a schedule can be found in O(MIS + R32) rounds.

Proof. Our reconfiguration schedule works according to the following parts.
1. Update components of diameter ≤ 2 in Cα.

%Let M be an MIS over all nodes in Cαβ .
2. Update components of diameter ≤ 2 that are α-covered by a component in M .
3. Reconfigure components of diameter ≥ 3 using the schedule given by Lemma 7.
4. Update components in M .
5. Update components of diameter ≤ 2 in Cαβ that were not previously updated.
6. Update components of diameter ≤ 2 in Cβ that were not previously updated.

First, it is easy to see that the schedule has length 18. The part that reconfigures
components of diameter ≥ 3 requires 8 steps, by Lemma 7. Each of the other 5 parts takes
exactly 2 steps as described in the definition of updating components (removing α-nodes and
then adding β-nodes), which sums to 18 reconfiguration steps in the schedule.

It remains to prove correctness. First, condition (1) of Definition 5 trivially holds, as the
schedule reconfigures all nodes. Moreover, by Lemma 7 and by the definition of updating a
component, it is also immediate that we do not reconfigure two neighbors in a single step,
thus the schedule satisfies condition (3) of Definition 5. For condition (2), Lemma 7 and the
definition of updating a component also guarantee that each Si is an independent set. The
remainder of the proof shows that each Si in the schedule is also 4-dominating.

By the order of the reconfiguration steps in the schedule, each component that is being
updated is covered by a component that is not concurrently being updated. This also holds
for ε-nodes that are connected to a component that is not currently being updated. The main
condition that must be verified is that ε-nodes remain covered even if all of their neighboring
components are being concurrently updated in a certain part of the schedule.

Part 1 guarantees that S1, S2 are 4-dominating because for each component that is being
updated, the α-node covering it is a member of S1, S2 and it also covers the required ε-nodes
that are neighbors of the updated component, as explained earlier. For part 2, let u be
an ε-node that is connected to two of the components that are being updated and is not
connected to any component that is not being updated. One of the components must be
connected to u via an α-node. Let Vi be such a component, let u1 be the α-node connected
to u, and let v be the α-node from a component of M that covers Vi. The distance between
v and u1 is 3: v is a distance 2 to a β-node of Vi and, because Vi is of diameter ≤ 2, within
Vi all β-nodes are connected to all α-nodes. Hence, u is at distance 4 from v.
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For part 3, the 4-domination within the components that are being reconfigured is given
by Lemma 7. Notice that any ε-node connected to a component of diameter ≥ 3 is connected
either to connected components of diameter ≥ 3 through both an α and a β-node, or to
a component that is not being updated in those steps. In the first case it is covered by
Lemma 7, and in the second it is covered by the component not being concurrently updated.

For part 4, notice that all components that are β-covering components of M have been
updated in steps 2 or 3. Hence, as each component of M is in Cαβ , there is a β-node in the
current set S12 that covers it. As M is independent, we do not have ε-node between two
components that are being updated. For part 5, the ε-nodes between two components that
are being updated are covered by an argument that is symmetric to the one used for part
2. Finally, for part 6, for each component that is being updated it holds that the β-node
covering it is in a component that has already been updated and hence it is already in S16.

Finally, we note that apart from a constant overhead in communication, the number of
rounds required for computing the above schedule is proportional to that of finding the MIS
M plus solving the diameter ≥ 3 components, which completes in O(MIS + R32) rounds,
where MIS is the complexity of finding an MIS on a worst-case graph and and R32 is the
complexity of finding a (3, 2)-ruling set on a worst-case graph, as claimed. J

3.3 Isolated Components
What remains now is to handle components that are isolated and have diameter at most
2. When we address these components, we will also address all of their ε-neighbors. Hence,
from this point onwards we will slightly abuse our terminology, and when we refer to such a
component we refer to its nodes along with their ε-neighbors as the component. This means
that now the components that we address might have a diameter that is increased by 1, and
thus their diameter can be also 3. Note that the diameter cannot be increased by two as all
α-nodes are connected to all β-nodes, and each ε-node is connected to an α-node and to a
β-node of this component, otherwise the component would not be isolated.

By definition of isolated components, the neighborhood of an ε-nodes within such a
component, besides containing vertices of the component itself, is only composed of other
ε-nodes. Moreover, there is at least one additional ε-node in this neighborhood, as we consider
graphs of diameter at least 4. We distinguish two kinds of isolated components, according to
whether their diameter is at most 2, or whether it is 3.

For a component Vi of diameter ≤ 2, suppose u is an ε-node that is a neighbor of Vi.
This node u has an α-node and a β-node in its neighborhood, that both cover the entire
component. Therefore, to update such components, it suffices to make sure that a non-ε
neighbor of u is in the current independent set during the two reconfiguration steps. By
considering connected two of those components that cover each other, we can take an MIS M
over those. The schedule of length 4 is: update M , and then update the other components.

Assume now that Vi is a component of diameter 3. It holds that there exists an ε-node
u, an α-node a and a β-node b such that (u, a) 6∈ E and (u, b) 6∈ E (otherwise the diameter
would be 2). Here is an informal description of a schedule of 6-steps for this component.
1. Remove Nα(u). The node a stays in the independent set and covers the entire component.
2. Add u in the set.
3. Remove the remaining α-nodes of the component. The node u covers everything.
4. Add b to the set. Note that b covers the component.
5. Remove u.
6. Add the remaining β-nodes of the component.
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A caveat is encountered in case there are two such components, V1 and V2, whose selected
ε-nodes, u1 and u2, are connected. In such case we cannot do the above 6-step schedule
in parallel without violating independence. However, observe that if a single of those two
ε-nodes is added to the set, it actually covers the second component as well, as it has a
diameter of 3. As a consequence, taking an MIS over those ε-nodes gives us a selection of
nodes that cover all the considered components. Hence, consider the schedule above as being
for component V1 and denote u = u1, then we can add the following to steps 3 and 4 above:
3. Remove the remaining α-nodes of V1 and all α-nodes of V2. The node u covers everything.
4. Add b and the β-nodes of V2 to the set. Note that V2 is updated and b covers V1.

We now formalize the above intuition in order to prove the following.1

I Lemma 9. Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set, and
let G = (V,E, α) and G = (V,E, β) be an input to the MIS-reconfiguration problem such that
α ∩ β = ∅, and all connected components of α ∪ β are isolated and have diameter at most
2. Then, there exists an (α, β, P )-reconfiguration schedule of length 10. Moreover, such a
schedule can be found in O(MIS) rounds.

3.4 Completing the proof
We can now wrap-up all the ingredients and prove Theorem 2.

Proof of Theorem 2. We describe the full (α, β, P )-reconfiguration schedule S. First, each
node v in Vα,β = α ∩ β sends a message to its neighbors in N(v) and outputs that it is in Si
for all 0 ≤ i ≤ 28. Each node that received such a message, sends a message to its neighbors
and outputs that it is not in Si for all 0 ≤ i ≤ 28. The nodes that produced an output
terminate and any edges incident to them are removed from the graph.

Next, all nodes collect their 4-hop neighborhood to decide whether they are in a component
of diameter ≥ 3 or not, and if not then whether they are in an isolated component.

The components of diameter ≥ 3 and the non-isolated components compute the recon-
figuration schedule of 18 steps, as given in Lemma 8, which we denote by S′0, . . . , S′18. The
isolated components of diameter ≤ 3 compute the reconfiguration schedule of 10 steps, as
given in Lemma 9, which we denote by S′′0 , . . . , S′′10.

Formally, the (α, β, P )-reconfiguration schedule is now Si = S′′0 ∪ S′i ∪ Vα,β for 0 ≤ i ≤ 18
and Si = S′′i−18 ∪S′18 ∪Vα,β for 18 ≤ i ≤ 28. It is computed within O(MIS + R32) rounds. J

4 MIS reconfiguration in a constant number of rounds

I Theorem 4 (formal). Let P be the property of (V,E,U) that says that U is a (2,4)-ruling
set. For any graph G = (V,E) and any input Ginput = (V,E, α), Goutput = (V,E, β) to
the MIS-reconfiguration problem, there exists an (α, β, P )-reconfiguration schedule of length
Θ(f(n)), where f(n) is the largest identifier among the nodes in the graph, which can be
found in O(1) rounds.

To prove this, we first prove the following lemma, stating that we can always reconfigure
locally an independent set to add elements from β without losing any element in α ∩ β.

1 You can find all the missing proofs in the full version of the paper [7].
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I Lemma 10. Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set. For
any graph G = (V,E) of diameter greater than 5, two MIS α and β and v ∈ β \ α, there
exists an MIS γ such that
1. (α ∩ β) ⊂ γ and v ∈ γ, and
2. there exists an (α, γ, P )-reconfiguration schedule of length 6. Moreover, for finding

the reconfiguration schedule the nodes only need to know the topology of their 5-hop
neighborhood and therefore can be found in O(1) rounds.

Lemma 10, means that for any element v in β, we can add v to the current MIS in a
constant number of steps without losing any element of β already in the MIS. It allows us to
prove Theorem 4 as follows.

Proof of Theorem 4. Nodes use their identifiers to know when to start their own reconfig-
uration. A node with identifier k uses slots [6k + 1, 6(k + 1)] for its schedule. Since a node
only needs to know its 5-hop neighborhood, this completes in O(1) rounds. J

If the identifiers are guaranteed to be {1, . . . , n} then Theorem 4 gives that a constant
number of rounds is sufficient for a linear length schedule. However, we can do even better
by using coloring algorithms, as stated in the following corollary.

I Corollary 11. Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set.
For any graph G = (V,E) and any input Ginput = (V,E, α), Goutput = (V,E, β) to the
MIS-reconfiguration problem, if the nodes are given a k-coloring of G10, then there exists an
(α, β, P )-reconfiguration schedule of length O(k), which can be found in O(1) rounds.

5 A complete characterization for the existence of a reconfiguration
schedule with 4-domination

The following gives an exact characterization of inputs for which there exists a reconfiguration
schedule with 4-domination. In what follows, we say that two sets of nodes U1 and U2 are
fully connected if every node in U1 is a neighbor of every node in U2. If U1 contains only a
single node, then we simply say that this node is fully connected to U2.

I Theorem 12. Let P be the property of (V,E,U) that says that U is a (2,4)-ruling set. For
any input Ginput = (V,E, α), Goutput = (V,E, β) to the MIS-reconfiguration problem, there
does not exists an (α, β, P )-reconfiguration schedule if and only if:
1. The sets α and β are fully connected.
2. Let εα (resp. εβ) be the set of ε-nodes that are fully connected to α (resp. β). Then all

the ε-nodes are in εα ∪ εβ.
3. Let G′ = (V ′ = εα ∪ εβ , E′ = EV ′), where EV ′ is the complementary of E restricted to

vertices of V ′. Then there is no path from εα \ εβ to εβ \ εα in G′.

6 Impossibility results for MIS reconfiguration

We show here two types of impossibility results. One is the necessity of 4-domination in
the sense that 3-domination cannot be obtained, and the other is the necessity of Ω(log∗ n)
rounds with 4-domination, even on bounded degree graphs where it matches the complexity
we provide in Corollary 6.
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Impossibility of MIS reconfiguration with 3-domination.

I Theorem 1. Requiring 3-domination for intermediate steps is costly:
1. There exists a class of inputs G = (V,E) with two MIS α and β such that there is no

reconfiguration schedule with 3-dominating intermediate steps.
2. There exists a class of inputs G = (V,E) with two MIS α and β such that any reconfigur-

ation schedule is of length Ω(n) and needs Θ(n) rounds to be found, if intermediate steps
must be 3-dominating.

Figure 1 White nodes are α-nodes, and grey nodes are β-nodes. For the graph on the top, there
is no schedule with 3-dominating sets. For the graph on the bottom, any schedule with 3-dominating
sets must be of linear length and requires a linear number of rounds to be found.

An Ω(log∗ n) lower bound for MIS reconfiguration with 4-domination.

I Theorem 3. For any fixed k, there exists a class of k-regular inputs G = (V,E) with two
MIS α and β such that any reconfiguration schedule of constant length with 4-domination
needs Θ(log∗ n) rounds to be found.

Figure 2 White nodes are α-nodes, grey nodes are β-nodes, and black nodes are ε-nodes. Here,
Ω(log∗ n) rounds are needed with 4-domination.

7 Discussion and Open Questions

This paper defines relevant constraints for finding a reconfiguration schedule of maximal
independent sets in a distributed setting. For constant-length schedules in bounded-degree
graphs we completely settle the required complexity, as we provide an algorithm completing
in Θ(log∗ n) communication rounds, and prove that no lower complexity exists. A main open
question that remains is: Can a better complexity be found for general graphs?

Our definition only uses addition and removal of elements to the intermediate independent
sets. We propose the following question: Can an efficient distributed reconfiguration schedule
be found if the system allows that intermediate steps are 3-dominating and the transitions
used can be any combination of addition, removal and Token Sliding?
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Finally, we used as a hypothesis that the given independent sets are maximal. Our
algorithm still works when the sets are not maximal, as it suffices to complete those. For
example, if we are given (2,4)-ruling sets (which is equivalent to the 4-domination condition of
P ), the problem is solved. An interesting question could be to generalize for other (a, b)-ruling
sets. What relation between a and b is needed to ensure that a schedule exists, and that it
can be found efficiently with a distributed algorithm?
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Abstract
Exploring large-scale networks is a time consuming and expensive task which is usually operated in
a complex and uncertain environment. A crucial aspect of network exploration is the development
of suitable strategies that decide which nodes and edges to probe at each stage of the process.

To model this process, we introduce the stochastic graph exploration problem. The input is an
undirected graph G = (V,E) with a source vertex s, stochastic edge costs drawn from a distribution
πe, e ∈ E, and rewards on vertices of maximum value R. The goal is to find a set F of edges of total
cost at most B such that the subgraph of G induced by F is connected, contains s, and maximizes
the total reward. This problem generalizes the stochastic knapsack problem and other stochastic
probing problems recently studied.

Our focus is on the development of efficient nonadaptive strategies that are competitive against
the optimal adaptive strategy. A major challenge is the fact that the problem has an Ω(n) adaptivity
gap even on a tree of n vertices. This is in sharp contrast with O(1) adaptivity gap of the stochastic
knapsack problem, which is a special case of our problem. We circumvent this negative result by
showing that O(lognR) resource augmentation suffices to obtain O(1) approximation on trees and
O(lognR) approximation on general graphs. To achieve this result, we reduce stochastic graph
exploration to a memoryless process – the minesweeper problem – which assigns to every edge a
probability that the process terminates when the edge is probed. For this problem, interesting in its
own, we present an optimal polynomial time algorithm on trees and an O(lognR) approximation
for general graphs.

We study also the problem in which the maximum cost of an edge is a logarithmic fraction of
the budget. We show that under this condition, there exist polynomial-time oblivious strategies that
use 1 + ε budget, whose adaptivity gaps on trees and general graphs are 1 + ε and 8 + ε, respectively.
Finally, we provide additional results on the structure and the complexity of nonadaptive and
adaptive strategies.
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1 Introduction

Exploring networked data is a time consuming and expensive task which is also subject to
several limitations. For example, social networks can be explored only through the use of
specific APIs made available by the provider which restrict the number of nodes that can be
probed and limit the number of neighbors of each node that can be discovered with one probe.
The cost and the difficulty of exploring large-scale networks can be an obstacle to collecting
suitable snapshots for the purpose of testing new network analysis tools. The testing is more
often executed on static networks made available in public repositories [18, 17] collected in
the past for other purposes. It is therefore of crucial importance the development of effective
and efficient methods to explore large-scale networks.

The core of a network exploration method is the definition of a probing strategy that
decides which nodes or edges to probe at each stage of the process. Both the edge-probe
and the node-probe models are useful in this setting. In the case of the exploration of social
networks, a node-probing strategy allows to gain knowledge on a subset of the neighbors of
the probed node. In the case of the exploration of the Twitter graph, an edge-probing strategy
allows to gain information on those tweets of a user that are retweeted from his followers.

One main difficulty in the definition of an effective probing strategy is the intrinsic
uncertain nature in terms of cost and probability of success of the process of discovering links
in a network, especially if these links represent complex relationships between nodes. In order
to confirm the existence of a link between two nodes, it may be required to execute several
experiments whose outcome cannot be predicted in advance. Examples are the in-vitro
reactions between proteins needed to discover protein-to-protein interaction networks [22, 6]
or the influence between humans in social networks.

The second main difficulty stems from the adaptive nature of the optimal probing strategy
that needs to be updated from time to time while new parts of the network are discovered.
Adaptive strategies are computationally expensive, given that they must be continuously
updated. In the case of large network exploration, the communication cost of adaptive
strategies is also high since many machines are usually working in parallel at the exploration
process, and the updated strategy must be communicated to the machines participating in
the process. We are therefore interested in devising nonadaptive probing strategies that are
simple and that define the sequence of probes in advance before the process is started. The
obvious drawback is that nonadaptive probing strategies may be suboptimal.

Several recent works [20, 21, 16] have focused on the task of exploring real-world networks
when a limited budget is available. However, these papers do not provide a comprehensive
theoretical study of these problems. In this work we initiated the study of exploring an
undirected network from a root node. The graph has costs on the edges and rewards on the
vertices. A budget limits the total cost of the of the graph edges that are probed.

More formally, the input of the stochastic graph exploration problem is an undirected
graph G = (V,E) with a source vertex s ∈ V , stochastic edge costs C : E → R≥0 distributed
according to πe, e ∈ E, and deterministic rewards of vertices w : V → R≥0. (The model
can be easily extended to rewards distributed according to independent random variables.)
During the graph-exploration process we construct a set of edges F ⊆ E that we probe and
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we traverse. All vertices of the subgraph of G spanned by F must be connected to s via the
edges of F . We probe edges one by one and we add them to F . The actual cost of an edge e,
drawn from the distribution πe, is revealed only when the edge is traversed. The goal is to
maximize the total reward from the vertices spanned by the edge set F while the total cost
of the edges in F remains bounded by a prespecified budget B. As soon as we probe an edge
such that the total cost exceeds B the process terminates.

In the stochastic graph exploration problem, we aim to design simple polynomial-time
computable nonadaptive strategies with a reward as close as possible to the reward obtained
by the optimal adaptive strategy, which decides on the next edge to be traversed after the
cost of all previously traversed edges is revealed (see Section 2 for precise definitions). This
is customary in a class of stochastic optimization problems [4], for which it is common to
bound the adaptivity gap of the nonadaptive strategy.

The stochastic graph exploration problem generalizes some important stochastic opti-
mization problems. If the graph G is a star graph, our problem models exactly the stochastic
knapsack problem [8, 4]. Stochastic knapsack admits an O(1) adaptivity gap, that is, there
exists an optimal nonadaptive strategy, which approximates the optimal adaptive strategy
up to a constant factor. The nonadaptive strategy is devised by exploiting a suitable LP
relaxation for the problem because the standard formulation has an unbounded integrality
gap defined as the worst-case ratio between the optimal integral cost and optimal fractional
cost of the LP. In the LP version of the problem that is used, the costs of the edges are
reduced to their truncated (by the maximum budget) expected costs and the rewards are
also reduced by the probability that the cost of the item is below the maximum budget.

If the network we need to explore is a tree, the stochastic graph problem is a stochastic
knapsack problem with precedence constraints: only a subset of items are available in the
beginning and adding each item to the knapsack will make some new items – the direct
descendants of the explored node – available. Unfortunately, as opposed to the knapsack
problem, the adaptivity gap of the stochastic graph exploration problem that we consider
is unbounded even on a tree network and therefore the LP-based approach of stochastic
knapsack cannot directly be extended.

The stochastic graph exploration problem also models stochastic graph probing problems.
Probing problems in graphs have been introduced [7, 14] because of their applications to
kidney exchange and online dating. Consider a probing probability for each edge p : E → [0, 1],
that is, edge e will materialize with probability p(e) each time is probed, independently of
the other edges and of the previous probes. The goal is to maximize the number of vertices
that are connected to a source vertex s by the set F of edges that have been successfully
probed when the total number of probes is limited by B. Nonadaptive strategies probe a list
of edges in a sequence till success or the total budget B is reached. The stochastic graph
exploration problem we study models the stochastic graph probing problem by setting the
costs of the edges distributed according to Pr(Ce = i) = (1− p(e))i−1p(e), with i being the
number of probes needed to discover edge e.

1.1 Summary of Our Results

Our main contribution is the definition of the stochastic graph exploration problem and
the study of the adaptivity gap of nonadaptive probing strategies. Here is a summary of
our results:

Our first result is an Ω(n) adaptivity gap for the stochastic graph exploration problem
even on a spider graph, which is a tree containing a single node of degree more than two.
(Observe that the problem for a simple path is easy because the optimal strategy will traverse
sequentially the edges of the path starting from the root.)
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One first direction we pursue to circumvent the impossibility result is to allow a limited
amount of resource augmentation: instead of using budget B, we allow the algorithm to use a
budget of β ·B, for some value of β. We call an algorithm (α, β)-approximate if it computes
a strategy which uses budget β ·B, and obtains an expected reward of at least 1/α times the
optimal reward (obtained by an adaptive algorithm). We present polynomial time computable
nonadaptive strategies in a graph of n vertices that are (O(1), O(lognR))-approximate for
trees and (O(lognR), O(lognR))-approximate for general graphs, with R being the maximum
reward of a vertex.

The idea is to transform the stochastic exploration problem into a memoryless stochastic
process, which we call the minesweeper problem, and which may be of independent interest.
In the minesweeper problem, the budget and the edge costs are replaced by probabilities
p(e), which are specified for every edge e. When an edge e is probed, the process stops with
probability 1− p(e). Hence, the final reward of a vertex is discounted by the probability that
the strategy does not stop before the vertex is acquired. The minesweeper problem is, in fact,
a special case of stochastic graph exploration, where the support of each πe (distribution of
cost of edge e) is {0, B + 1} and the budget is B.

We prove that an α-approximate strategy for the minesweeper problem implies an
(O(α), O(lognR))-approximate nonadaptive strategy for the stochastic graph exploration
problem. The idea of the reduction is as follows. We construct a minesweeper problem
instance, where p(e) = Pr(πe < XB), where XB is random variable that follows an expo-
nential distribution with parameter B. We first show that, for any subset of edges F , the
probability that their total cost in the stochastic graph exploration is at most B is at most a
constant factor of the probability that minesweeper would stop on this set. On the other
hand, the expected additional reward that can be achieved from minesweeper after the total
cost becomes larger than O(B lognR) is negligible.

We then show how to compute in polynomial time an optimal strategy for the minesweeper
problem on trees and an O(lognR)-approximate strategy on general graphs. These results im-
ply imply an (O(1), O(lognR))-approximate strategy for trees and an (O(lognR), O(lognR))-
approximate strategy for general graphs. To show the optimal result on trees we prove
two facts. First, the order of traversal of the edges in each subtree can be determined
independently. Second, we show a simple optimality condition which helps us determine how
many edges from each subtree should be probed before switching to a different subtree. We
remark that our approach is in a spirit similar to the greedy optimal strategy defined by
the Gittins index [10, 9] for multi-armed bandit problems. However, differently from the
standard setting of the Gittins index, in the minesweeper problem, a whole new set of arms
is made available for each node of the tree reached by the exploration process. Moreover,
in the minesweeper problem, the discount factor is not constant because it depends on the
probability assigned to the traversed edge. This approach is not viable for general graphs,
and we provide an approximate solution instead, by showing a reduction of minesweeper to
max-prize problem [5].

We also pursue a second direction to circumvent the lower bound on the adaptivity
gap for trees: we restrict the distributions by considering the case when the edge costs are
bounded by ε2B

c logn for a suitable constant c. We show, under this condition, the existence of
a polynomial time computable (1 + ε, 1 + ε)-approximate nonadaptive strategy for trees and
(1 + ε, 8 + ε)-approximate nonadaptive strategy for any graph G. We note that this approach
can be extended to prove a result with resource augmentation similar to the one we obtained
through reduction to the minesweeper problem. Yet, we believe that both the minesweeper
problem and the reduction technique can be of independent interest.
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Our final result is related to the problem of finding a nonadaptive probing strategy that
is (o(n), O(1))-approximate. We leave open this challenging problem even for trees. However,
we establish an interesting result for the characterization of nonadaptive strategies. We prove
that any nonadaptive strategy that probes edges in order until it succeeds or until the budget
is exceeded can be (O(1), O(1))-approximated by a set strategy, which probes all edges at
once and obtains a reward only if all edges of a set are successfully probed within budget.
We specifically prove that the adaptivity gap of a nonadaptive strategy can be approximated
up to a factor of 6 by a set strategy that uses budget 9B. We use this result to give an
algorithm for finding a strategy for trees, which is (O(1), O(1))-approximate, compared to
the best nonadaptive strategy. Surprisingly, the resulting strategy is adaptive.

1.2 Related Work
The adaptivity gap of stochastic problems has been studied for the knapsack problem [8, 4]
which is a special case of the problem we study. The adaptivity gap has also been studied
for budgeted multi-armed bandits [19, 12, 11] by resorting to suitable linear programming
relaxation. Differently from previous work on budgeted multi-armed bandit problems, we
consider the setting in which new arms appear after some arms are pulled. Stochastic probing
problems have also been studied for matching [1, 7, 2] motivated from kidney exchange and
for more general classes of matroid optimization problems [14, 15].

The stochastic graph exploration problem we introduce is also related to the stochastic
orienteering problem [3, 13]. In stochastic orienteering, the set of traversed edges must form
a path in a metric graph with deterministic costs on the edges, while the time spent on a
node is a random variable, which follows an a-priori known distribution. In stochastic graph
exploration, the random variables are the costs of the edges of the graph but we cannot
ensure that the costs on the edges form a metric since the random variables are independent.

1.3 Organization of the Paper
In Section 2 we formally define our problems. In Section 3 we show the lower bounds on
the adaptivity gap for stochastic graph exploration. In Section 4 we show our reduction
to the minesweeper problem and our results for stochastic graph exploration with resource
augmentation. In Section 5 we present a near-optimal set strategy for trees. In Section 6 we
present our results for the case of edges of small costs and, finally, in Section 7 we study the
power of resource augmentation for relating the cost of nonadaptive strategies to the cost of
optimal set strategies.

2 Problem Definition

We start by an auxiliary definition. Let G = (V,E), with |V | = n, be an undirected graph
and s ∈ V . We say that a set F ⊆ E is connected to s if F induces a connected subgraph of
G and s is the endpoint of at least one e ∈ F .

Let us now define the StochasticExploration problem (in the following sometimes
abbreviated by SGE). This problem instance is given by a tuple (G, s, C,w), where G is an
undirected graph G = (V,E), s ∈ V is a source vertex, C is a function that assigns stochastic
edge costs to each edge, and w : V → R≥0 is a function that assigns (deterministic) reward
to each vertex.1 And we denote R as the maximum reward of a vertex i.e. R = maxv∈V w(v).

1 The results hold also if the rewards are random variables that are independent of each other and the
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Formally, for each e ∈ E, C(e) is a random variable distributed according to πe that takes
values in R≥0, all random variables C(e) being jointly independent. For an edge (u, v) we
will often denote C(u, v) = C((u, v)).

Consider the following single-player game. The player has an initial budget of B (B = 1
if not specified) and maintains an initially empty subset F of E, which we call the set of
acquired edges. In each step the player can choose an edge e ∈ E \ F and probe it (if F = E,
the game finishes). Probing an edge e is only allowed when F ∪ {e} is connected to s. When
e is probed, the actual cost C(e) of e, drawn from the distribution πe, is revealed. If the cost
e is not greater than the remaining budget, e is acquired (added to F ) and C(e) is subtracted
from the budget. If C(e) exceeds the remaining budget, the game finishes. The goal of the
player is to maximize the final payoff of F , which is the total reward of all vertices in the
subgraph of G induced by F .

Let us now define the MineSweeper problem, which we often abbreviate to MS. This
problem is defined by a tuple (G, s, p, w), where G is an undirected graph, s ∈ V is a
start vertex, p : E → [0, 1] is a function that assigns to each edge e the probability that
e materializes and w : V → R≥0 is a function that assigns (deterministic) reward to each
vertex. The only difference between MS and SGE is in how edges are probed. There are no
edge costs or budget. Instead, whenever an edge e is probed, it materializes (independently
of the other edges) with probability p(e) and is acquired immediately. If the edge does
not materialize, the process ends immediately. Note that as in SGE, probing an edge e is
only allowed when F ∪ {e} is connected to s. Note that the MineSweeper problem is a
special case of the StochasticExploration problem, by letting, for each edge e, πe be
the distribution in which with probability p(e) we obtain the value 0 and with probability
1− p(e) the value B + 1.

We consider the following types of strategies for both problems:
An adaptive strategy is a mapping from the set of already acquired edges (and the
remaining budget, in the case of SGE) to the next edge to be probed.
A nonadaptive strategy, also called a list strategy, is described by a sequence e1, . . . , ek
consisting of distinct elements of E, such that for each 1 ≤ i ≤ k, the set {e1, . . . , ei} is
connected to s. In this strategy, the edges are simply probed according to their order in
the sequence.
A set strategy is a nonadaptive strategy with the additional restriction that it does not
obtain any payoff if it does not acquire all edges from the list.2

For a strategy S for SGE, we denote by r(ISGE, S,B) the expected payoff of strategy S for
the SGE problem instance ISGE = (G, s, C,w) with initial budget of B, which is the expected
reward of the set of nodes in the returned solution. When B = 1 we sometimes omit the
third argument of r(·). Similarly, we denote by rMS(IMS, S) the expected payoff of strategy
S for the MS problem instance IMS. We call a strategy S optimal for I with budget B, if
for all strategies S′, r(I, S,B) ≥ r(I, S′, B). Let OPTad be the optimal adaptive strategy
for the SGE problem and OPTna be the optimal nonadaptive strategy. We call a strategy
S α-approximate, if for each instance I, r(I, S) ≥ 1/α · r(I,OPTad). Finally, an algorithm
ALG is (α, β)-approximate if for any instance I it computes a α-approximate strategy by
using a β factor resource augmentation, i.e. r(I,ALG(I), β ·B) ≥ 1/α · r(I,OPTad, B).

edge costs. It suffices to replace each reward with its expected value.
2 Note that we abuse earlier definitions slightly for the sake of simplicity.
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C(ui,vi) = 1−2−i+2−(ℓ+1), w.p. 1

w(ui) = 0

w(vi) = T

Figure 1 An instance in which the optimal adaptive strategy obtains a payoff which is Ω(n)
larger than the payoff of the optimal nonadaptive strategy.

3 Lower Bounds

In this section we prove a lower bound on the adaptivity gap of StochasticExploration.
Namely, we show an instance ILB = (G, s, C,w) such that r(ILB ,OPTad)/r(ILB ,OPTna) =
Ω(n), where OPTad and OPTna denote the optimal adaptive and nonadaptive strategies.

The instance ILB is shown in Figure 1. The graph G contains the set of nodes
{s, u1, u2, . . . , u`, v1, . . . , v`}, and the set of edges (s, ui) and (ui, vi) for each i ∈ [`]. For each
i ∈ [`] we set w(ui) = 0, w(vi) = T , C(s, ui) = 2−i with probability 1− 1/l and 0 otherwise,
and C(ui, vi) = 1− 2−i + 2−(`+1) with probability 1.

I Lemma 1. Let OPTad and OPTna denote the optimal adaptive and nonadaptive strategies
for instance ILB. Then, r(ILB ,OPTad)/r(ILB ,OPTna) = Ω(n).

One natural approach for StochasticExploration instance is to replace the stochas-
tic edge costs with the truncated expected costs, that is, set the cost of an edge e to
E[min{1, C(e)}]. However as this following example illustrates this approach does not lead
to a good solution, even if constant budget augmentation is allowed.

I Lemma 2. Let OPTad denote the optimal adaptive strategy for an instance I and let n
be the number of vertices in the instance. Let OPTna be the optimal nonadaptive strategy
computed on instance ITR obtained from I by setting edge costs E[min{1, C(e)}], e ∈ E.
Assume the nonadaptive algorithm is allowed to use a budget of 1 < c < n/10. Then, there
exists an instance I such that r(I,OPTad)/r(ITR,OPTna) = Ω(n/22c).

4 The General Case and the Minesweeper Problem

In this section we describe algorithms for solving StochasticExploration, which use
logarithmic budget augmentation. We first show how to reduce an instance of SGE to
MineSweeper and then present solutions for MineSweeper on trees and general graphs.
During the description of the reduction we also introduce the logarithmic budget augmentation.
First, we observe that in the MineSweeper problem we do not have budget so there is no
history that an algorithm may have to remember, except for the edges that it has probed
(and succeeded). This implies the following:

I Observation 1. There exists an optimal strategy for the MineSweeper problem that is
nonadaptive.
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4.1 Reduction from StochasticExploration to MineSweeper

In this section we show how, given an instance ISGE = (G, s, C,w) of StochasticExplo-
ration, we transform it to an instance IMS = (G, s, p, w) of MineSweeper. The graph and
the rewards remain the same; the challenge is to define the correct edge probability function
p(·) for MS and relate it to the cost function C(·) of SGE. For each edge e′ we transform the
cost distribution C(e′) to the probability that the edge materializes, p(e′) (a scalar). Let Xe′

be a random variable distributed according to the exponential distribution with parameter 1,
let ce′ be the cost, which is distributed according to C(e′), and we set p(e′) = Pr(Xe′ > ce′).
Next we show how this choice couples the two problems.

First, we show that for any subset of edges F the probability that their total cost in
SGE is at most 1 is at most a factor e times of the probability that all the edges in F

materialize, and therefore MS does not stop on this set. Let EF be the event that all the
edges in F materialize and GF the event that

∑
e′∈F ce′ ≤ 1. The following lemma makes

use of properties of the exponential distribution.

I Lemma 3. For any F ⊆ E we have that Pr(GF ) ≤ e ·Pr(EF ).

This lemma allows us to prove the following lemma, which gives a strategy for MS that
is competitive with the optimal adaptive strategy for SGE. The idea behind the proof is to
define a strategy for MS in such a way that we can couple the execution of the two strategies
in the corresponding problems.

I Lemma 4. Consider an SGE instance ISGE = (G, s, C,w) and let IMS = (G, s, p, w) be
an instance for MS as defined previously. Let OPTad denote the optimal adaptive strategy
for SGE and OPTMS the optimal strategy for MS. We have that

r((G, s, C,w),OPTad, 1) ≤ e · rMS((G, s, C,w),OPTMS).

Recall from Observation 1 that the optimal strategy for the MineSweeper problem is
nonadaptive, therefore it can be specified by a list of edges that are selected sequentially
until for one of them there is a failure. Let OPTMS be such an optimal sequence of edges.
Next we show that the sequence of edges OPTMS can provide an approximate result to the
StochasticExploration problem if we allow for some budget augmentation.

I Lemma 5. Consider an SGE instance ISGE = (G, s, C,w) and let IMS = (G, s, p, w) be
an instance for MS as defined previously. Let OPTMS be the optimal sequence of edges for
the MineSweeper instance, and let S be the (nonadaptive) strategy for StochasticEx-
ploration that probes the same edges, in the same order. Then we have that

r((G, s, C,w), S, 2 ln(nR)) ≥ rMS((G, s, C,w),OPTMS)− o(1),

where R = maxv∈V w(v).

Collecting the results of Lemmas 4 and 5 we obtain the following theorem.

I Theorem 6. Consider an SGE instance ISGE = (G, s, C,w) and let IMS = (G, s, p, w) be
an instance for MS as defined previously. Then

r((G, s, C,w),OPTna, 2 ln(nR)) + o(1) ≥ rMS((G, s, C,w),OPTMS) ≥ r((G, s, C,w), 1,OPTad)
e

.
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4.2 MineSweeper on Trees
We show that the minesweeper problem on trees can be solved optimally in near-linear time.

I Theorem 7. Consider the instance I = (T, s, p, w) of the minesweeper problem, where
T is a tree. The optimal strategy, OPTMS, for MineSweeper on T can be computed in
O(n logn) time, where n is the number of vertices of T .

The algorithm is surprisingly simple and based on a greedy approach. We define the
utility of an edge to be the expected payoff from probing it, divided by the probability that
the edge does not materialize. The algorithm is based on two observations. First, we observe
that if there is a node x in the graph with a single child y and the utility of the edge xy is
larger than the utility of the edge connecting x and its parent, then without loss of optimality
we can assume that the edge xy is probed right after the edge connecting x and its parent,
so we can merge these two edges into a single one. Second, if there is a node x, such that one
can probe all edges in the subtree of x in the order of decreasing utilities (and not violate
the constraint that an edge can be probed only after one of its endpoints has been acquired)
then one can replace the entire subtree of x with a line, which is a subtree imposing the
concrete order of probing edges. It turns out that by using both these rules one can find the
optimal order of probing edges efficiently.

We obtain the algorithm by generalizing some existing results from the area of scheduling.
At the same time our analysis is arguably simpler. We give the proof of Theorem 7 in the
full version of the paper.

4.3 MineSweeper on general graphs
In this section we present an algorithmic solution to Minesweeper for general graphs, which
provides a bicriteria approximation for our problem. We prove the following theorem.

I Theorem 8. Consider the instance I = (G, s, p, w) of the minesweeper problem, where
G = (V,E) is an undirected graph. An O(lognR)-approximate strategy can be computed in
polynomial time.

In the following we provide a sketch of the proof. Assume that the optimal solution is
the sequence of edges S∗ = (e1, . . . , ek). We first observe that the edges in S∗ must form
a tree. DefineM(E′) to be the event that all the edges in the set E′ materialize. Also let
w(e1, . . . , ei) =

∑i
j=1 w(ei). Then S∗ is a sequence that maximizes

O∗ =
k∑
i=1

Pr(M({e1, . . . , ei}),¬M({ei+1)})) · w(e1, . . . , ei) .

For ` = 0, 1, . . . , lnnR, define I(`) to be all values j such that w(e1, . . . , ej) ∈ [2`, 2`+1−1],
and ι(`) to be the smallest such j.

We can write after some manipulations:

O∗ ≤
lnnR∑
`=0

2w(e1, . . . , eι(`)) ·Pr
(
M({e1, . . . , eι(`))}

)
≤ 2 ln(nR) · w(Ẽ) ·Pr

(
M(Ẽ)

)
,

with Ẽ ⊂ E being the set of edges that defines a tree that contains s and maximizes
w(Ẽ) · Pr

(
M(Ẽ)

)
. Therefore, our goal becomes that of finding that set of edges Ẽ that

forms a tree and maximizes w(Ẽ) ·Pr
(
M(Ẽ)

)
.
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For this purpose, we use the problem of max-prize tree. In the max-prize tree [5] we are
given an undirected graph G = (V,E) with a source vertex s ∈ V , (deterministic) edge costs
c : E → R≥0, deterministic rewards on the vertices w : V → R≥0, and a budget B ∈ R. The
objective is to build a subgraph G′ = (V ′, E′) of G such that (1) G′ is a tree, (2) s ∈ V ′, and
(3)

∑
e∈E′ c(e) ≤ B, that maximizes

∑
v∈V ′ w(v).

We use for our approximation the 8-approximation algorithm for the max-prize–tree
problem given by Blum et al. [5].

5 Approximating Set Strategy on Trees

In this section we show an algorithm for computing a strategy for trees, which is (1, 1 + ε)-
approximate compared to the optimal set strategy. The strategy itself is adaptive.

I Lemma 9. Let I = (G, s, C,w) be a SGE instance, where G is a tree. Let OPTset be the
optimal set strategy for I. Then, in O(n4/ε2) time we can compute an adaptive strategy S,
such that r(I, S, 1 + ε) ≥ r(I,OPTset, 1). Moreover, if edge costs are not stochastic, that is,
the support of each distribution πe has size 1, the algorithm runs in O(n3/ε) time and the
resulting strategy is not adaptive.

We briefly describe the ideas behind the algorithm. Consider the instance I = (T, s, C,w),
where T is a tree. We root the tree at s and assume an order on the children of each node.
Consider the sequence P = 〈e1, . . . , en〉 of the tree edges built with the following recursive
algorithm. Given a node of T , iterate through its descendant edges (according to their order)
and for each such edge output it and recur on the other endpoint. This traverses the tree in
a preorder fashion. We define ≺ to be the linear order on the edges of T induced by this
traversal. In the following, we assume that the edges are ordered according to ≺, for example,
by a maximal element of a set of edges, we mean the edges that is largest according to ≺.

We say that a subset A of edges of T is feasible, if each edge e ∈ A is either incident to
the root of T , or the parent edge of e also belongs to A. Observe that given sufficient budget,
a strategy can acquire any feasible set of edges of T . This follows from the fact that for each
edge e of T , its parent comes before it in P . Our algorithm will probe some feasible set of
edges according to the order ≺, that is, after probing an edge e it will not probe any edge f
such that f ≺ e.

The algorithm for computing our strategy is based on dynamic programming. A simple
and inefficient approach is to use an exponential number of states. Namely, each state can be
characterized by the set of edges acquired so far, denoted by A, and the remaining budget,
which we discretize to a multiple of ε/n. Knowing the set A allows us to find all such edges
e that A ∪ {e} is a feasible set and e comes after the maximal element of A in the order ≺.
The key idea is that we can improve the number of states to polynomial, by taking advantage
of the following property of the ordering ≺.

I Lemma 10. Let A be a nonempty feasible set of edges of T and let e be the maximal edge
of A. Given e (and without knowing A) we can compute the set Fe of all edges f such that
e ≺ f and A ∪ {f} is a feasible set.

6 Bounded Edge Costs

In this section, we deal with the special case of StochasticExploration, where the cost
of each edge is bounded by O( ε2

lnn ) and the ratio between the smallest and largest reward R
is polynomial in n. We prove that in this setting a (O(1), 1 + ε) strategy for SGE can be
computed in polynomial time.
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I Theorem 11. Let I = (G, s, C,w) be an instance of SGE, where C(e) = O( ε2

lnn ) (for each
edge e and some 0 < ε = O(1)), R ≤ εnO(1), and the smallest reward is 1. Then, in polynomial
time, we can compute a nonadaptive (O(1), 1 + ε)-approximate strategy for I. Additionally,
if G is a tree, then in time O(n3/ε) we can compute a nonadaptive (1 + ε, 1 + ε)-approximate
strategy for I.

To prove the theorem, we consider the following strategy. We replace the stochastic edge
costs with their expected values (i.e., the edge cost distributions in the modified instance
have size 1). Then, we show that the optimal set strategy using budget augmented by a
factor of 1 + ε gives a (1 + ε)-approximate solution.

For ease of notation, we scale the edge costs and the budgets by a factor of Θ(ε2/ lnn),
so that the edge costs are bounded by 1 and the available budget is B = O(ε2/ lnn).

First, we bound the payoff of an adaptive strategy when the expected cost of its acquired
edges is more than B · (1 + ε). Let µe = E[C(e)], and µ(F ) =

∑
e∈F µe.

I Lemma 12. Let 0 < ε < 1/3 and let I = (G, s, C,w) be an instance of SGE, in which
B ≥ 5c/ε2 ·lnn. Let F be a set of edges acquired by some adaptive strategy. If µ(F ) ≥ (1+ε)·B
then the probability that C(F ) ≤ B is at most n−c.

Next, we show that if the expected cost of some set of edges is close to the budget, then
this cost is highly concentrated around the expected value. This enables us to give a set
strategy with small budget augmentation.

I Lemma 13. Let I = (G, s, C,w) be an instance of SGE. For any set of edges F and any
B̃ ≥ 5c/ε2 · lnn, if µ(F ) = B̃ then the probability that C(F ) ≥ (1 + ε)B̃ is at most n−c.

I Lemma 14. Let I = (G, s, C,w) be an instance of SGE, where B ≥ 5c/ε2 lnn, the
maximum reward R satisfies R ≤ εnc−1, and the minimum reward is 1. Let Ie be obtained
from I by replacing each edge cost with its expected value. Let OPTεset be the optimal set
strategy using budget (1+ ε)B for Ie and OPTad be the optimal adaptive strategy using budget
B for I. Then, (1 + ε)r(I,OPTεset, (1 + ε)B) ≥ r(I,OPTad, B).

Observe that finding the optimal set strategy on Ie is NP-hard, as it generalizes the
knapsack problem. However, it becomes tractable, if we augment the budget. In particular,
for trees, we use the algorithm of Lemma 9, and for general graphs, in Section 4.3, we show
how to use the solution of the max-prize problem.

7 Nonadaptive strategies

In this section we consider nonadaptive strategies for the stochastic exploration problem.
The main result of this section is that, for the graph exploration problem, that there exists a
set-strategy with a constant budget augmentation, which is a constant competitive compared
to the best nonadaptive algorithm. Recall that, a set-strategy is to choose a set of edges
(without an internal order) and to try to probe all of the edge in that set. The gain of
strategy for a set of edges, is non-zero only if the entire set was successfully probed (i.e., if
the total cost of the set is smaller than the budget), and then it collects the rewards of all
the vertices connected to this set. Therefore, the expected gain of set-strategy given a set
of edges, is the total gain of vertices spanned by these edges times the probability that the
total cost of these edges would not be greater than the specified budget.

First, we are able to show how much is the increment in the probability to successfully
probe a set, when using a constant budget augmentation.
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7.1 Power of Budget Augmentation
Let S = {e1, e2, . . . , en} be a set of edges and let ci , C(ei). Define Cnk =

∑n
i=k ci the

realized cost of the subset of the edges {ek, . . . en} and, for ease of notation, let Cj = Cj1 .
For any i ∈ [n] let Pi(a) be the probability that the sum of cost of the edges {e1, . . . ei} is at
most a, that is, Pi(a) = Pr

(
Ci ≤ a

)
.

The next lemma will allow us to take advantage of budget augmentation.

I Lemma 15. Assume that for each edge ei, i ∈ [n] we have ci ∈ [0, 1]. Then

Pn(3) ≥ Pn(1) (1− ln(Pn(1))) .

Interestingly, the multiplicative factor increases as the probability to succeed with the
original budget decreases. We will use this fact, but to compare to a list-strategy we need
stronger guarantees, we simply use the above lemma twice and deduce the following.

I Corollary 16.

Pn(9) ≥ Pn(1)(1− ln(Pn(1)))2

2

7.2 List Strategy vs. Set Strategy
Now, we are ready to prove the main claim of this section, that we are able to compare the
strategies using a budget augmentation. Consider an SGE problem instance I = (G, s, C,w).
Let Sls = 〈e1, . . . , en〉 be a nonadaptive strategy (a feasible sequence of edges) and let vi
denote the vertex whose reward is obtained when ei is acquired. The expected payoff of
probing the list with budget B(≥ 1) is by linearity of expectation:

r(I,Sls, B) =
n∑
j=1

w(vj) ·Pr
(
Cj ≤ B

)
.

Given a non-adaptive strategy Sls = 〈e1, . . . , en〉, consider n different set strategies Sk,
for k = {1 . . . n}, where Sk = {e1, . . . ek}. Note that the expected payoff of Sk with budget
9 ·B is

r(I, Sk, 9B) = Pr
(
Ck ≤ 9B

)
·
k∑
j=1

w(vj).

Finally, we show that there exists k ∈ {1, . . . , n} such that the set strategy Sk with
budget 9B obtains a constant fraction of strategy Sls.

I Lemma 17.

max
k
{r(I, Sk, 9B)} ≥ 0.46 · r(I,Sls, B).

7.3 Algorithm for Trees
By combining Lemma 17 with the algorithm of Lemma 9, we obtain the following.

I Theorem 18. Let I = (G, s, C,w) be a SGE instance, where G is a tree. Let OPTna be
the optimal nonadaptive strategy for I. Then, in O(n4/ε2) time we can compute an adaptive
strategy S, such that r(I, S, 9 + ε) ≥ 0.46 · r(I,OPTna, 1).
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8 Conclusions

In this work we have introduced the stochastic exploration problem on graphs which gener-
alizes the stochastic knapsack problem [8, 4]. We proved that, differently from stochastic
knapsack, no o(n) adaptivity gap is possible unless we allow some resource augmentation on
the budget. We provided algorithms with bounded adaptivity gap and logarithmic resource
augmentation by reducing stochastic exploration to a related memoryless problem – the
minesweeper problem. We also considered the case of edges with small costs for which it is
possible to provide an algorithm with O(1) adaptivity gap and O(1) resource augmentation.
The most challenging problem left open from our work is the one of devising an algorithm
with O(1) approximation factor that uses only O(1) resource augmentation for general graphs.
The problem is open even for trees. We provided a set of additional results on the structure
of optimal adaptive strategies and on the power of resource augmentation for set strategies
with respect to list strategies that can help in addressing this problem.
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Abstract
Consider two robots that start at the origin of the infinite line in search of an exit at an unknown
location on the line. The robots can collaborate in the search, but can only communicate if they arrive
at the same location at exactly the same time, i.e. they use the so-called face-to-face communication
model. The group search time is defined as the worst-case time as a function of d, the distance of
the exit from the origin, when both robots can reach the exit. It has long been known that for a
single robot traveling at unit speed, the search time is at least 9d− o(d); a simple doubling strategy
achieves this time bound. It was shown recently in [15] that k ≥ 2 robots traveling at unit speed
also require at least 9d group search time.

We investigate energy-time trade-offs in group search by two robots, where the energy loss
experienced by a robot traveling a distance x at constant speed s is given by s2x, as motivated by
energy consumption models in physics and engineering. Specifically, we consider the problem of
minimizing the total energy used by the robots, under the constraints that the search time is at
most a multiple c of the distance d and the speed of the robots is bounded by b. Motivation for this
study is that for the case when robots must complete the search in 9d time with maximum speed
one (b = 1; c = 9), a single robot requires at least 9d energy, while for two robots, all previously
proposed algorithms consume at least 28d/3 energy.

When the robots have bounded memory and can use only a constant number of fixed speeds, we
generalize an algorithm described in [3, 15] to obtain a family of algorithms parametrized by pairs of
b, c values that can solve the problem for the entire spectrum of these pairs for which the problem is
solvable. In particular, for each such pair, we determine optimal (and in some cases nearly optimal)
algorithms inducing the lowest possible energy consumption.

We also propose a novel search algorithm that simultaneously achieves search time 9d and
consumes energy 8.42588d. Our result shows that two robots can search on the line in optimal time
9d while consuming less total energy than a single robot within the same search time. Our algorithm
uses robots that have unbounded memory, and a finite number of dynamically computed speeds. It
can be generalized for any c, b with cb = 9, and consumes energy 8.42588b2d.

2012 ACM Subject Classification Computing methodologies → Mobile agents; Theory of computa-
tion → Online algorithms

EA
T

C
S

© Jurek Czyzowicz, Konstantinos Georgiou, Ryan Killick, Evangelos Kranakis,
Danny Krizanc, Manuel Lafond, Lata Narayanan, Jaroslav Opatrny, and Sunil Shende;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 137; pp. 137:1–137:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


137:2 Energy Consumption of Group Search on a Line

Keywords and phrases Evacuation, Exit, Line, Face-to-face Communication, Robots, Search

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.137

Category Track C: Foundations of Networks and Multi-Agent Systems: Models, Algorithms and
Information Management

Related Version Full version hosted on arXiv https://arxiv.org/abs/1904.09714.

Funding Research supported by NSERC discovery grants, NSERC graduate scholarship, and NSF.

1 Introduction

The problem of searching for a treasure at an unknown location in a specified continuous
domain was initiated over fifty years ago [6, 7]. Search domains that have been considered
include the infinite line [2, 6, 7, 34], a set of rays [10, 11], the unit circle [12, 24, 37], and
polygons [27, 33, 35]. Consider a robot (sometimes called a mobile agent) starting at some
known location in the domain and looking for an exit that is located at an unknown distance
d away from the start. What algorithm should the robot use to find the exit as soon as
possible? The most common cost measure used for the search algorithm is the worst-case
search time, as a function of the distance d of the exit from the starting position. For a
fixed-speed robot, the search time is proportional to the length of the trajectory of the
robot. Other measures such as turn cost [28] and different costs for revisiting [9] have also
been studied.

We consider for the first time the energy consumed by the robots while executing the
search algorithm. The energy used by a robot to travel a distance x at speed s is computed
as s2x and is motivated from the concept of viscous drag in fluid dynamics; see Section 2
for details on the energy model. For a single robot searching on the line, the classic Spiral
Search algorithm (also known as the doubling strategy) has search time 9d and is known
to be optimal when the robot moves with unit speed. Since in the worst case, the robot
travels distance 9d at unit speed, the energy consumption is 9d as well. Clearly, as the speed
of the robot increases, the time to find the exit decreases but the energy used increases.
Likewise, as the speed of the robot decreases, the time to find the exit increases, while the
energy consumption decreases. Thus there is a natural trade-off between the time taken
by the robot to search for the exit and the energy consumed by the robot. To investigate
this trade-off, we consider the problem of minimizing the total energy used by the robots to
perform the search when the speed of the robot is bounded by b, and the time for the search
is at most a multiple c of the distance d from the starting point to the exit.

Group search by a set of k ≥ 2 collaborating robots has recently gained a lot of attention.
In this case, the search time is the time when all k robots reach the exit. The problem has
also been called evacuation, in view of the application when it is desired that all robots reach
and evacuate from the exit. Two models of communication between the robots have been
considered. In the wireless communication model, the robots can instantly communicate
with each other at any time and over any distance. In the face-to-face communication model
(F2F), two robots can communicate only when in the same place at the same time. In many
search domains, and for both communication models, group search by k ≥ 2 agents has been
shown to take less time than search by a single agent; see for example [24, 27].

In this paper, we focus on group search on the line, by two robots using the F2F model.
Chrobak et al [15] showed that group search in this setting cannot be performed in time
less than 9d − o(d), regardless of the number of robots, assuming all robots use at most
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unit speed. They also describe several strategies that achieve search time 9d. In the first
strategy, the two robots independently perform the Spiral Search algorithm, using unit speed
during the entire search. Next, they consider a strategy first described in [3], that we call
the Two-Turn strategy, whereby two robots head off independently in opposite directions at
speed 1/3; when one of them finds the exit, it moves at unit speed to chase and catch the
other robot, after which they both return at unit speed to the exit. Finally, they present a
new strategy, called the Fast-Slow algorithm in which one robot moves at unit speed, while
the other robot moves at speed 1/3, both performing a spiral search. The doubling strategy
is very energy-inefficient, it uses energy 18d if the two robots always travel together, or 14D
if the robots start by moving in opposite directions. The other two algorithms both use
energy 28d/3 > 9d. Interestingly, the two strategies that achieve an energy consumption of
28d/3 with search time 9d, both use two different and pre-computed speeds, but are quite
different in terms of the robot capacities needed. In the Two-Turn strategy, the robots are
extremely simple and use constant memory; they use only three states. In Fast-Slow and
Spiral Search, the robots need unbounded memory, and perform computations to determine
how far to go before turning and moving in the opposite direction.

Memory capability, time- and speed-bounded search, and energy consumption by a
two-robot group search algorithm on the line: these considerations motivate the following
questions that we address in our paper:
1. Is there a search strategy for constant-memory robots that has energy consumption < 9d?
2. Is there any search strategy that uses time 9d and energy < 9d?

1.1 Our results
We generalize the Two-Turn strategy for any values of c, b. We analyze the entire spectrum
of values of c, b for which the problem admits a solution, and for each of them we provide
optimal (and in some cases nearly optimal) speed choices for our robots (Theorem 5). In
particular, and somewhat surprisingly, our proof makes explicit how for any fixed c the
optimal speed choices do not simply “scale” with b; rather more delicate speed choices are
necessary to comply with the speed and search time bounds. For the special case of c · b = 9,
our results match with the specific Two-Turn strategy described in [15]. Our results further
show that no Two-Turn strategy can achieve energy consumption less than 9d while keeping
the search time at 9d. In fact, we conjecture that this trade-off is impossible for any group
search strategy that uses only constant memory robots.

In the unbounded-memory model, for the special case of c = 9 and b = 1, we give
a novel search algorithm that achieves energy consumption of 8.42588d, thus answering
the second question above in the affirmative. This result shows that though two robots
cannot search faster than one robot on the line [15], somewhat surprisingly, two robots can
search using less total energy than one robot, in the same optimal time. Our algorithm
uses robots that have unbounded memory, and a finite number of dynamically computed
speeds. Note that our algorithm can be generalized for any c, b with cb = 9, and utilizes
energy 8.42588b2d (Theorem 16).

1.2 Related Work
Several authors have investigated various aspects of mobile robot (agent) search, resulting
in an extensive literature on the subject in theoretical computer science and mathematics
(e.g., see [1, 30] for reviews). Search by constant-memory robots has been done mainly
for finite-state automata (FSA) operating in discrete environments like infinite grids, their
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finite-size subsets (labyrinths) and other graphs. The main concern of this research was the
feasibility of search, rather than time or energy efficiency. For example, [14] showed that
no FSA can explore all labyrinths, while [8] proved that one FSA using two pebbles or two
FSAs, communicating according to the F2F model can explore all labyrinths. However, no
collection of FSAs may explore all finite graphs communicating in the F2F model [39] or
wireless model [17]. On the other hand, all graphs of size n may be explored using a robot
having O(logn) memory [38].

Exploration of infinite grids is known as the ANTS problem [29], where it was shown
that four collaborating FSAs in the semi-synchronous execution model and communicating
according to the F2F scenario can explore an infinite grid. Recently, [13] showed that four
FSAs are really needed to explore the grid (while three FSAs can explore an infinite band of
the 2-dimensional grid).

Continuous environment cases have been investigated in several papers when the efficiency
of the search is often represented by the time of reaching the target (e.g., see [2, 6, 7, 34]).
Even in the case of continuous environment as simple as the infinite line, after the seminal
papers [6, 7], various scenarios have been studied where the turn cost has been considered [28],
the environment was composed of portions permitting different search speeds [26], some
knowledge about the target distance was available [10] or where some other parameters are
involved in the computation of the cost function [9] (e.g. when the target is moving).

The group search, sometimes interpreted as the evacuation problem has been studied first
for the disc environment under the F2F [12, 18, 24, 27, 36] and wireless [18] communication
scenarios and then also for other geometric environments (e.g., see [27]). Other variants of
search/evacuation problems with a combinatorial flavour have been recently considered in
[16, 19, 20, 31, 32]. Some papers investigated the line search problem in the presence of
crash faulty [25] and Byzantine faulty agents [23]. The interested reader may also consult
the recent survey [22] on selected search and evacuation topics.

The energy used by a mobile robot is usually considered as being spent solely for travelling.
As a consequence, in the case of a single, constant speed robot the search time is proportional
to the distance travelled and the energy used by a robot. Therefore the problems of
minimization of time, distance or energy are usually equivalent for most robots’ tasks. For
teams of collaborating robots, the searchers often need to synchronize their walks in order
to wait for information communicated by other searchers (e.g, see [12, 18, 36]), hence the
time of the task and the distance travelled are different. However, the distance travelled by
a robot and its energy used are still commensurable quantities.

To the best of our knowledge, energy consumption as a function of mobile robot speed
which is based on laws of engineering physics (related to the drag force) has never been
studied in the search literature before. Our present work is motivated by [15], which proves
that the competitive ratio 9 is tight for group search time with two mobile agents in the
F2F model when both agents have unit maximal speeds. More exactly, it follows from [15]
that having more unit-speed robots cannot improve the group search time obtained by a
single robot. Nevertheless, our paper shows that using more robots can improve the energy
spending, while keeping the group-search time still the best possible.

Chrobak et al [15] present interesting examples of group search algorithms for two distinct
speed robots communicating according to the F2F scenario. An interested reader may consult
[4], where optimal group search algorithms for a pair of distinct maximal speed robots were
proposed for both communication scenarios (F2F and wireless) and for any pair of robots’
maximal speeds. It is interesting to note that, according to [4], for any distinct-speed robots
with F2F communication, the optimal group search time is obtained only if one of the robots
perform the search step not using its full speed.
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Paper Organization. In Section 2 we formally define the evacuation problem EEb
c, and

proper notions of efficiency. Our algorithms and their analysis for constant-memory robots is
presented in Section 3, while in Section 4 we introduce and analyze algorithms for unbounded-
memory robots. Whenever we omit proofs, due to space limitations, we provide an outline of
our arguments. The interested reader may consult the full version of our paper [21] for the
missing details.

2 Preliminaries

Two robots start walking from the origin of an infinite (bidirectional) line in search of a
hidden exit at an unknown absolute distance d from the origin. The exit is considered found
only when one of the robots walks over it. An algorithm for group search by two robots
specifies trajectories for both robots and terminates when both robots reach the exit. The
time by which the second robot reaches the exit is referred to as the search time or the
evacuation time.

Robot models. The two robots operate under the F2F communication model in which two
robots can communicate only when they are in the same place at the same time. Each robot
can change its speed at any time. We distinguish between constant-memory robots that can
only travel at a constant number of hard-wired speeds, and unbounded-memory robots that
can dynamically compute speeds and distances, and travel at any possible speed.

Energy model. A robot moving at constant speed s traversing an interval of length x is
defined to use energy s2 · x. This model is well motivated from first principles in physics and
engineering and corresponds to the energy loss experienced by an object moving through
a viscous fluid [5]. In particular, an object moving with constant speed s will experience a
drag force FD proportional1 to s2. In order to maintain the speed s over a distance x the
object must do work equal to the product of FD and x resulting in a continuous energy loss
proportional to the product of the object’s squared speed and travel distance. For simplicity
we have taken the proportionality constant to be one.

The total energy that a robot uses traveling at speeds s1, s2, . . . , st, traversing intervals
x1, x2, . . . , xt, respectively, is defined as

∑t
i=1 s

2
i · xi. For group search with two robots, the

energy consumption is defined as the sum total of the two robots’ energies used until the
search algorithm terminates.

For each d > 0 there are two possible locations for the exit to be at distance d from the
origin: we will refer to either of these as input instances d for the group search problem. Our
goal is to solve the following optimized search problem parametrized by two values, b and c:

I Problem EEb
c. Design a group search algorithm for two robots in the F2F model that

minimizes the energy consumption for d-instances under the constraints that the search time
is no more than c · d and the robots use speeds that are at most b. When there are no speed
limits on the robots (i.e. b =∞), we abbreviate EE∞c by EEc. Note that b, c are inputs to
the algorithm, but d and the exact location of the exit are not known.

1 The constant of proportionality has (SI) units kg/m and depends, among other things, on the shape of
the object and the density of the fluid through which it moves.

ICALP 2019



137:6 Energy Consumption of Group Search on a Line

As it is standard in the literature on related problems, we assume that the exit is at least
a known constant distance away from the origin. In this work, we pick the constant equal
to 2, although our arguments can be adjusted to any other constant. It is not difficult to
show that EEb

c is well defined for each b, c > 0 with bc ≥ 1, and the optimal offline solution,
for instance d, is for both robots to move at speed 1

c to the exit. This offline algorithm has
energy consumption 2d

c2 . Consider an online algorithm for EEb
c, which on any instance d has

energy consumption at most e(c, b, d). The competitive ratio of the algorithm is defined as
supd>0

c2

2d e(c, b, d).
Due to [15], and when b = 1, no online algorithm (for two robots) can have evacuation

time less than 9d − ε (for any ε > 0 and for large enough d). By scaling, using arbitrary
speed limit b, we obtain the following fact.

I Observation 1. No online F2F algorithm can solve EEb
c if cb < 9.

3 Solving EEb
c with Constant-Memory Robots

In this section we propose a family of algorithms for solving EEb
c (including b =∞). The

family uses an algorithm that is parametrized by three discrete speeds: s, r and k. The
robots use these speeds depending on finite state control as follows:

I Algorithm Ns,r,k. Robots start moving in opposite directions with speed s until the exit
is found by one of them. The finder changes direction and moves at speed r > s until it
catches the other robot. Together the two robots return to the exit using speed k.

I Lemma 2. Let b, c be such that there exist s, r, k for which Ns,r,k is feasible. Then, for
instance d of EEb

c, the induced evacuation time of Ns,r,k is d · T (s, r, k) and the induced
energy consumption is 2d · E (s, r, k), where

T (s, r, k) := 2(k + r)
k(r − s) + 1

s
, E (s, r, k) := r

r − s
(
s2 + r2 + 2k2)

We propose a systematic way in order to find optimal values for s, r, k of algorithm Ns,r,k
for optimization problem EEb

c (including b =∞), whenever such values exist.

I Theorem 3. Algorithm Ns,r,k gives rise to a feasible solution to problem EEb
c if and only

if bc ≥ 9. For every such b, c > 0, the optimal choices of Ns,r,k can be obtained by solving
Non Linear Program:

min
s,r,k∈R

E (s, r, k) (NLPb
c)

s.t. T (s, r, k) ≤ c
r ≥ s
0 ≤ s, r, k ≤ b

where functions E (·, ·, ·) , T (·, ·, ·) are as in Lemma 2. Moreover, if s0, r0, k0 are the optimizers
to NLPb

c, then the competitive ratio of Ns0,r0,k0 equals c2 · E (s0, r0, k0) .

The following subsections are devoted to solving NLPb
c, effectively proving Theorem 5.

First in Section 3.1 we solve the case b = ∞ and we use our findings to solve the case of
bounded speeds b in the follow-up Section 3.2.
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3.1 Optimal Choices of Ns,r,k for the Unbounded-Speed Problem
In this section we propose solutions to the unbounded-speed problem EEc. Since EEc is
the same as EE∞c the problem is well-defined for every fixed c > 0. Moreover, by the proof
of Theorem 3 algorithm Ns,r,k induces a feasible solution for every c > 0 as well, and the
optimal speeds can be found by solving NLP∞c . Indeed, in the remainder of the section we
show how to choose optimal values for s, r, k for solving EEc with Ns,r,k. Let

σ ≈ 2.65976, ρ ≈ 11.3414, κ ≈ 6.63709, (1)

whose exact values are the roots of an algebraic system and will be formally defined later.
The main theorem of this section reads as follows.

I Theorem 4. Let σ, ρ, κ as in (1). For every c > 0, the optimal speeds of Ns,r,k for problem
EEc are s = σ

c , r = ρ
c , k = κ

c . Moreover, the competitive ratio of the corresponding solution

is independent of c and equals ρ(2κ2+ρ2+σ2)
ρ−σ ≈ 292.369.

A high level outline of the proof of Theorem 4 is as follows. First we show that any
optimal choices of the speeds of Ns,r,k must satisfy the time constraint of NLP∞c tightly.
Then, we show that finding optimal speeds s, r, k of Ns,r,k for the general problem EEc

reduces to problem EE1. Finally, we obtain the optimal solution to NLP∞1 by standard
tools of nonlinear programming (KKT conditions).

3.2 (Sub)Optimal Choices of Ns,r,k for the Bounded-Speed Problem
In this section, we show how to choose optimal values for s, r, k for solving EEb

c with Ns,r,k,
for the entire spectrum of c, b values for which the problem is solvable by online algorithms.

The main result of this section is the following:

I Theorem 5. Let γ1 ≈ 9.06609, γ2 = ρ ≈ 11.3414, and σ, ρ, κ as in (1). For every c, b > 0
with cb ≥ 9, the following choices of speeds s, r, k are feasible for Ns,r,k

9 ≤ cb ≤ γ1 γ1 < cb < γ2 cb ≥ γ2

s
−
√

(bc)2−10bc+9+bc−3
2c

0.532412b− 0.0262661b2c σ/c

r b b ρ/c

k b 2bs
bcs−b−cs2−s

κ/c

The induced competitive ratio is given by:

f(x) :=


1
2x
(
x
(
x−

√
(x− 9)(x− 1)

)
+
√

(x− 9)(x− 1) + 3
)
, 9 ≤ x ≤ γ1

x2
(

(0.532412−0.0262661x)2+ 11595.8(20.2699 −1.x)2

(x(x(x−2.46798)−398.916)+2221.18)2 +1
)

0.0262661x+0.467588 , γ1 < x < γ2
292.369 x ≥ γ2

and the induced energy, for instances d, is f(cb) 2d
c2 . Moreover, the competitive ratio depends

only on the product cb.
In particular, the speeds’ choices are optimal when cb ≤ γ1 and when cb ≥ γ2. When

γ1 < cb < γ2, the derived competitive ratio is no more than 0.03 additively off from that
induced by optimal choices of s, r, k.

I Corollary 6. For c = 9, b = 1, the bounded-memory robot algorithm Ns,r,k has energy
consumption 28d/3 and competitive ratio 378.
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Theorem 5 is proven by solving NLPb
c of Theorem 3. Speed values s, r, k, are chosen

optimally when cb is either at most γ1 or at least γ2 (i.e. optimizers to NLPb
c admit analytic

description). The optimal speed parameters when γ1 < cb < γ2 cannot be determined
analytically (they are roots of high degree polynomials). The values that appear in Theorem 5
are heuristically chosen, but interestingly induce nearly optimal competitive ratio.

The proof of Theorem 5 is given by Lemma 7 (the case cb ≤ γ1), Lemma 8 (the case
cb ≥ γ2), and Lemma 9 (the case γ1 < cb < γ2). Next we state these Lemmata, and we
sketch their proofs.

I Lemma 7. For every c ∈ (9/b, γ1/b], where γ1 ≈ 9.06609, the optimizers to NLPb
c are

k = r = b, and sb = −
√

(bc)2−10bc+9+bc−3
2c . The induced competitive ratio is f(cb), (see

definition of f(x) for x ≤ γ1 in statement of Theorem 5), and the energy consumption, for
instances d, is f(cb) 2d

c2 .

For proving Lemma 7, first we recall the known optimizer for the special case cb = 9, and
we identify the tight constraints. Requiring that the exact same inequality constraints to
NLPb

c remain tight, we ask how large can the product cb be so as to have KKT condition
hold true. From the corresponding algebraic system, we obtain the answer cb ≤ γ1 ≈ 9.06609.

Similarly, from Theorem 4 we know the optimizers to NLPb
c for large enough values of

cb, and the corresponding tight constraints to the NLP. Again, using KKT conditions, we
show that the same constraints remain tight for the optimizers as long as cb ≥ γ2 ≈ 11.3414.
This way we obtain the following Lemma.

I Lemma 8. For every c > ρ/b ≈ 11.3414/b, the optimal speeds of Ns,r,k for EEb
c are

s = σ/c, r = ρ/c, k = κ/c, i.e. they are the same as for EE∞c . If the target is placed at
distance d from the origin, then the induced energy equals 584.738 d

c2 . Moreover, the induced
competitive ratio is 292.369, and is independent of b, c.

The case γ1 < cb < γ2 can be solved optimally only numerically, since the best speed
values are obtained by roots to a high degree polynomial. Nevertheless, the following lemma
proposes a heuristic choice of speeds (that of Theorem 5) which is surprisingly close to the
optimal.

I Lemma 9. The choices of s, r, k of Theorem 5 when γ1 < cb < γ2 are feasible. Moreover,
the induced competitive ratio is at most 0.03 additively off from the competitive ratio induced
by the optimal choices of speeds (evaluated numerically).

The trick in order to find “good enough” optimizers to NLPb
c is to guess the subset of

inequality constraints that remain tight when γ1 < cb < γ2. First, we observe that constraint
r ≤ b is tight for the provable optimizers for all c, b when cb ∈ [9, γ1] ∪ [γ2,∞). As the only
other constraint that switches from being tight to non-tight in the same interval is k ≤ b,
we are motivated to maintain tightness for constraints r ≤ b and the time constraint. Still
the algebraic system associated with the corresponding KKT conditions cannot be solved
analytically. To bypass this difficulty, and assuming we know (optimal) speed s, we use the
tight time constraint to find speed k as a function of c, b, s. From numerical calculations, we
see that optimal speed s is nearly optimal in c, and so we heuristically set s = αc+ β. We
choose α, β so as to have s satisfy optimality conditions for the boundary values cb = γ1, γ2.
After we identify all parameters to our solution, we compare the value of our solution to the
optimal one (obtained numerically), and we verify (using numerical calculations) that our
heuristic solution is only by at most 0.03 additively off. The advantage of our analysis is
that we obtain closed formulas for the speed parameters for all values of cb ≥ 9.
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4 Solving EEb
c with Unbounded-Memory Robots

In this section we prove Theorem 16, that is we solve EEb
c by assuming that the two robots

have unbounded memory, and in particular that they can perform time and state dependent
calculations and tasks. Note that, by scaling, our results hold for all b, c for which cb = 9.
For simplicity our exposition is for the natural case c = 9 and b = 1. Also, as before, d will
denote the unknown distance to the exit from the origin. Moreover, the exit is still assumed,
for the purposes of performance analysis, to be at least 2 away from the origin.

Throughout the execution of our evacuation algorithm, robots can be in 3 different states
(similar to the case of constant-memory robots). First, both robots start with the Exploration
State and they remain in this until the exit is located. While in the exploration state, robots
execute an elaborate exploration that requires synchronous movements in which robots, at a
high level, stay in good proximity, still they expand the searched space relatively fast. Then,
the exit finder enters the Chasing State in which the robot, depending on its distance from
the origin, calculates a speed at which to move in order to catch and notify the other robot.
Lastly, when the two robots meet, they both enter the Exit State in which both robots move
toward the exit with the smallest possible speed while meeting the time constraint.

Our algorithm takes as input the values of c = 9, b = 1, and use a speed value s ≤ b, that
will be chosen later. When the exit finder switches its state from Exploration to Chasing, it
remembers the distance d of the exit to the origin, as well as the value k of a counter that
was used while in the Exploration State. When the exit finder catches the other robot, they
both switch to the Exit State, and they remember their distance p from the origin, as well as
the value of time t that their rendezvous was realized. The speed of their Exit State will be
determined as a function of p, d, t (and hence of s, c, b as well).

4.1 A Critical Component: l-Phase Explorations

We adopt the language of [15] in order to discuss a structural property that any feasible
evacuation algorithm for EE1

9 satisfies. As a result, the purpose of this section is to provide
high level intuition for our evacuation algorithm that is presented in subsequent sections.

We refer to the two robots (starting exploration from the origin) as L and R, intended
to explore to the left and to the right of the origin, respectively. The robot trajectories
can be drawn on the Cartesian plane where point-location (x,−t) will correspond to point
x on the line being visited by some robot at time t. The following Theorem (due to [15])
was originally phrased for the time-evacuation unit-speed robots’ problem. We adopt the
language of our problem.

I Theorem 10 ([15]). For any feasible solution to EE1
9, the point-location of any robot lies

within the cone spanned by vectors
(−1
−3
)
,
( 1
−3
)
.

Next we present some preliminaries toward describing our k-phase exploration algorithms.
A phase is a pair (s, r) where s ∈ [0, 1] is a speed and r ∈ R is a distance ratio, possibly
negative. An l-phase algorithm is determined by a position p0 on the line and a sequence
S = (s1, r1), . . . , (sk, rl) of l phases (movement instructions). Whenever rix < 0, movement
will be to the left, whereas rix > 0 will correspond to movement to the right.
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l-phase Exploration: given p0 and S = (s1, r1), . . . , (sl, rl)
Go to p0 at speed 1/3
repeat

x← current position
for i = 1, . . . , l do

Travel at speed si for a distance of ri · x
end

end

We will make sure that each time the loop is executed, position x and corresponding time
induce point-locations of the robots that lie in the boundary of the cone of Theorem 10. If a
loop starts at location x, then it takes additional time

∑
i∈[l]

|ri||x|
si

to complete one iteration.
We will be referring to quantity 1 +

∑
i∈[l]

|ri|
3si

as the expansion factor of Exploration S.

4.2 Algorithm A (s): The Exploration, Chasing and Exit States

In this section we give a formal description of our evacuation algorithm. The most elaborate
part of it is when robots are in Exploration States, in which they will perform 3-phase
exploration. It can be shown that 3-phase exploration based evacuation algorithms that
do not violate the constraints of problem EE1

9 have expansion factor at most 4. Moreover,
among those, the ones who minimize the induced energy consumption makes robots move at
speed 1 in the first and third phase2. Robot’s speed in the second phase will be denoted by s.

We now present a specific 3-phase exploration algorithm, that we denote by A (s),
complying with the above conditions, with phases (−1, 1), (4s/(1−s), s) and (4−4s/(1−s), 1),
where s is an exploration speed to be determined later. Robot L will execute the 3-phase
exploration with starting position -1, while robot R with starting position 2. When subroutine
travel(v, p) is invoked, the robot sets its speed to v and, from its current position, goes
toward position p on the line until it reaches it. We depict the trajectories of the robots
while in the Exploration State in Figure 1.

Exploration State of L

travel(1/3,−1)
k ← 0
repeat

travel(1, 0)
travel(s,−4k+1 · s

1−s )
travel(1,−4k+1)
k ← k + 1

end

Exploration State of R

travel(1/3, 2)
k ← 0
repeat

travel(1, 0)
travel(s, 2 · 4k+1 · s

1−s )
travel(1, 2 · 4k+1)
k ← k + 1

end

2 The proof of these facts is lengthy and technical, and is not required for the correctness of our algorithm,
rather it only justifies some parameter choices
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−4k

−4k+1

2 · 4k

2 · 4k+1

−4·4ks
1−s

Figure 1 A representation of position
(x-axis, vertical dashed line is 0) and
time (y-axis), and the trajectory followed
by the two robots (solid lines). The two
diagonal dashed lines form the “1/3 cone”
of Theorem 10.

−4k

−4k+1

2 · 4k≤ −4·4ks
s+1

−4k

−4k+1

2 · 4k

≥ −4·4ks
s+1

Figure 2 The robots’ behavior when the exit is
found by L is indicated by the bold line. In the first
case (left), the catch-up speed is slower than 1 (and
the rendezvous is realized at the turning point of the
non-finder), whereas it is 1 in the second case (right).

A complete execution of one repeat loop within the Exploration State will be referred
to as a round. Variable k counts the number of completed rounds. Each robot stays in
the Exploration State till the exit it found. When switching to the Chasing state (which
happens only for the exit finder), robot remembers its current value of counter k, as well as
the distance d of the exit to the origin. Based on these values (as well as s) it calculates the
most efficient trajectory in order to catch the other robot (predicting, when applicable, that
the rendezvous can be realized while the other robot is approaching the exit finder). When
the rendezvous is realized, robots store their current distance p to the origin, as well as the
time t that has already passed. Then, robots need to travel distance p+ d to reach the exit.
Knowing they have time 9d− t remaining, they go to the exit together as slow as possible to
reach the exit in time exactly 9d. Figure 2 provides an illustration of the behavior of the
robots after finding the exit.

Chasing State
K ← 4k
if I am R then

K ← 2 · 4k
end

s′ ← min
{

d

4K − d/s , 1
}

Travel toward the other robot at speed s′ until meeting
it at distance p from the origin, and at time t.

Exit State
s̄← p+d

9d−t
Go toward the exit
with speed s̄.

4.3 Performance Analysis & an Optimal Choice for Parameter s

In this section we are ready to provide the details for proving Theorem 16. Evacuation
algorithm A (s) is not feasible to EEb

c for all values of speed parameter s (of the Exploration
States). We will show later that trajectories induce evacuation time at most 9d only if
s ∈ [1/3, 1/2]. In what follows, and even though we have not fixed the value of s yet, we
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will assume that s has some value between 1/3 and 1/2. The purpose of this section is to
fix a value for parameter s, show that A (s) is feasible to EE1

9, and subsequently compute
the induced energy consumption and competitive ratio. As a reminder, each iteration of the
repeat loop of the Exploration States is called a round, and k is a counter for these rounds.

I Proposition 11. For every k ≥ 0, and at the start of its k-th round,
robot L is at position −4k at time 3 · 4k, and
robot R, is at position 2 · 4k at time 6 · 4k.

Let X ∈ {L,R} be one of the robots. We define K(X, k) = 4k if X = L, and K(X, k) =
2 · 4k if X = R, i.e. the position of X at the start of round k. We will often analyze 3
cases for the distance d of the exit with respect to K := K(X, k) (as it also appears in the
description of the Chasing State), associated with the following closed intervals

D1(K) := [K, 4Ks/(s+ 1)], D2(K) := [4Ks/(s+ 1), 4Ks/(1− s)], D3(K) := [4Ks/(1− s), 4K].

We may simply write D1, D2 and D3 if K is clear from the context. Note that during
the second phase of round K, robot L explores D1 and D2, whereas D3 is explored during
the third phase. The same statement holds for R. The following lemma will be useful in
analyzing the worst case evacuation time and energy consumption of our algorithm.

I Lemma 12. Suppose that robot X ∈ {L,R} finds the exit at distance d when its round
counter has value k. Let p and t be, respectively, the position and time at which X first meets
with the other robot after having found the exit, and set K := K(X, k). Then the following
hold:
1. If d ∈ D1, then p = 0 and t = 8K.
2. If d ∈ D2, then |p| = d+ds−4Ks

1−s and t = 8K + d+d/s−4K
1−s .

3. If d ∈ D3, then |p| = 2ds/(1− s) and t = 8K + 2d+ 2ds/(1− s).

Using the lemma above, we can now prove that A (s) meets the speed bound and the
evacuation time bound.

I Lemma 13. For any s ∈ [1/3, 1/2], evacuation algorithm A (s) is feasible to EE1
9.

Lemma 12 allows us to derive the speed sb1, sb2 and sb3 at which both robots go toward
the exit after meeting for the cases d ∈ D1, d ∈ D2 and d ∈ D3, respectively. We also know
the speed sc1 at which the exit-finder catches up to the other robot when d ∈ D1. We define

sb1 := d
9d−8K , sc1 = d

4K−d/s , sb2 := 2d−4Ks
d(8−9s−1/s)+4K(2s−1) , sb3 := d(1+s)

d(7−9s)+8K(s−1)

The speed sb2 is a simple rearrangement of the speed d+qs
9d−(8K+q) , where q = d+d/s−4K

1−s , and
sb3 is obtained by rearranging d+2ds/(1−s)

9d−(8K+2d+2ds/(1−s)) .
Next we compute the energy consumption. For given K, d and s, denote by EL(K, d, s)

the energy spent by robot L from time 3 to time 9d when it exits. Similarly, ER(K, d, s) is
the energy spent by R from time 6 to time 9d. Then, the energy consumption is E(K, d, s) :=
1
3 +EL(K, d, s)+ER(K, d, s). For anyK and s, we also define F (K, s) := (K−1)(5−4s(s+1)).

I Lemma 14. Suppose that robot X ∈ {L,R} finds the exit at distance d when its round
counter has value k, and let K := K(X, k). Then

E(K, d, s) = 1
3 +


F (K, s) + 3K + d(s2 + s2

c1 + 2s2
b1) if d ∈ D1

F (K, s) + 3K +
(

2d− 4Ks
1− s

)
(1 + s2 + 2s2

b2) if d ∈ D2

F (K, s) + 3K − 4Ks(s+ 1) + 2d
1− s (s3 + s2

b3(s+ 1) + 1) if d ∈ D3.
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Denote by Ei(k, d, s) the value of E(K, d, s) when d ∈ Di, i = 1, 2, 3. Our intension now
is to fix speed value s that solves the following Nonlinear Program

min
s∈[1/3,1/2]

{
max

{
sup

d∈D1,k≥1,X

E1(K, d, s)
d

, sup
d∈D2,k≥1,X

E2(K, d, s)
d

, sup
d∈D3,k≥1,X

E3(K, d, s)
d

}}
.

For every s ∈ [1/3, 1/2] we show in Lemma 15 that E1(K,d,s)
d is decreasing in d ∈ D1, that

E2(K,d,s)
d is increasing in d ∈ D2, and that E3(K,d,s)

d is decreasing in d ∈ D3. Then, the best
parameter s can be chosen so as to make all worst case valued Ei(K,d,s)

d equal (if possible)
when i = 1, 2, 3. The optimal s can be found by numerically finding the roots of a high degree
polynomial, and accordingly, we heuristically set s = 0.39403, inducing the best possible
energy consumption for algorithm A (s). All relevant formal arguments are within the proof
of the next lemma.

I Lemma 15. On instance d of EE1
9, algorithm A (s) induces energy consumption at most

8.42588d, when s = 0.39403.

By Lemma 15, we conclude that for the specific value of s, algorithm A (s) has competitive
ratio 92

2 8.42588 ≈ 341.24814, concluding the proof of Theorem 16.

I Theorem 16. For every c, b > 0 with cb = 9, there is an evacuation algorithm for
unbounded-memory autonomous robots solving EEb

c inducing energy consumption 8.42588b2d

for instances d, and competitive ratio 341.24814.

5 Discussion

The main contribution of our paper was to introduce an energy consumption model appropri-
ate to linear search and investigate how the F2F communication model affects time/energy
trade-offs until completion of the search by two robots, considering two different computa-
tional capabilities for the robots. Our approach inspired new algorithms that take better
account of the impact of the change in the speed of the robots during the course of the search
and leads to better understanding through evaluation of trade-offs of the overall performance
of the algorithms.

Our paper raises several interesting problems worth investigating. In addition to improving
the trade-offs in the algorithms proposed, one may wish to pursue new avenues for research
by examining additional search domains, like the unit disk, in the spirit of [18]. It would
also be natural to consider more realistic models of linear search with multiple agents some
of which may be faulty [23, 25]. Further, it would be interesiting to investigate randomized
search algorithms in our setting as well as more general models in which the energy loss
experienced by a robot traveling a distance x at constant speed s is given by sax, for some
fixed positive exponent a.
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Abstract
We study the problem of finding an exact solution to the consensus halving problem. While recent
work has shown that the approximate version of this problem is PPA-complete [28, 29], we show
that the exact version is much harder. Specifically, finding a solution with n agents and n cuts is
FIXP-hard, and deciding whether there exists a solution with fewer than n cuts is ETR-complete. We
also give a QPTAS for the case where each agent’s valuation is a polynomial.

Along the way, we define a new complexity class BU, which captures all problems that can be
reduced to solving an instance of the Borsuk-Ulam problem exactly. We show that FIXP ⊆ BU ⊆ TFETR
and that LinearBU = PPA, where LinearBU is the subclass of BU in which the Borsuk-Ulam instance
is specified by a linear arithmetic circuit.
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1 Introduction

Dividing resources among agents in a fair manner is among the most fundamental problems
in multi-agent systems [16]. Cake cutting [6, 8, 7, 15], and rent division [14, 33, 25] are
prominent examples of problems that lie in this category. At their core, each of these problems
has a desired solution whose existence is usually proved via a theorem from algebraic topology
such as Brouwer’s fixed point theorem, Sperner’s lemma, or Kakutani’s fixed point theorem.

In this paper, we focus on a fair-division problem called consensus-halving: an object
A represented by [0, 1] is to be divided into two halves A+ and A−, so that n agents agree
that A+ and A− have the same value. Provided the agents have bounded and continuous
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valuations over A, this can always be achieved using at most n cuts, and this fact can be
proved via the Borsuk-Ulam theorem from algebraic topology [44]. The necklace splitting
and ham-sandwich problems are two other examples of fair-division problems for which the
existence of a solution can be proved via the Borsuk-Ulam theorem [4, 5, 37].

Recent work has further refined the complexity status of approximate consensus halving,
in which we seek a division of the object so that every agent agrees that the values of A+ and
A− differ by at most ε. Since the problem always has a solution, it lies in TFNP, which is the
class of function problems in NP that always have a solution. More recent work has shown
that the problem is PPA-complete [28], even for ε that is inverse-polynomial in n [29]. The
problem of deciding whether there exists an approximate solution with k-cuts when k < n

is NP-complete [27]. These results are particularly notable, because they identify consensus
halving as one of the first natural PPA-complete problems.

While previous work has focused on approximate solutions to the problem, in this paper
we study the complexity of solving the problem exactly. For problems in the complexity
class PPAD, which is a subclass of both TFNP and PPA, prior work has found that there is a
sharp contrast between exact and approximate solutions. For example, the Brouwer fixed
point theorem is the theorem from algebraic topology that underpins PPAD. Finding an
approximate Brouwer fixed point is PPAD-complete [37], but finding an exact Brouwer fixed
point is complete for (and the defining problem of) a complexity class called FIXP [26].

It is believed that FIXP is significantly harder than PPAD. While PPAD ⊆ TFNP ⊆ FNP,
there is significant doubt about whether FIXP ⊆ FNP. The reason for this is that there are
Brouwer instances for which all solutions are irrational. This is not particularly relevant
when we seek an approximate solution, but is a major difficulty when we seek an exact
solution. For example, the square-root-sum problem asks us to decide for integers a1, a2,
. . . , an, t, whether

∑n
i=1
√
ai ≤ t. This deceptively simple problem is not known to lie in

NP, and can be reduced to the problem of finding an exact Brouwer fixed point [26], which
provides evidence that FIXP may be significantly harder than FNP.

Our contribution. In this paper, we study the complexity of solving the consensus halving
problem exactly. In our formulation of the problem, the valuation function of the agents is
presented as an arbitrary arithmetic circuit, and the task is to cut A such that all agents
agree that A+ and A− have exactly the same valuation. We study two problems. The
(n, n)-Consensus Halving problem asks us to find an exact solution for n-agents using at
most n-cuts, while the (n, k)-Consensus Halving problem asks us to decide whether there
exists an exact solution for n-agents using at most k-cuts, where k < n.

Our results for (n, n)-Consensus Halving are intertwined with a new complexity class
that we call BU. This class consists of all problems that can be reduced in polynomial
time to the problem of finding a solution of the Borsuk-Ulam problem. We show that
(n, n)-Consensus Halving lies in BU, and is FIXP hard. The hardness for FIXP implies that
the exact variant of consensus halving is significantly harder than the approximate variant:
while the approximate problem is PPA-complete, the exact variant is unlikely to be in FNP.

We show that (n, k)-Consensus Halving is ETR-complete. The complexity class ETR
consists of all decision problems that can be formulated in the existential theory of the reals.
It is known that NP ⊆ ETR ⊆ PSPACE [17], and it is generally believed that ETR is distinct
from the other two classes. So our result again shows that the exact version of the problem
seems to be much harder than the approximate version, which is NP-complete [27].

Just as FIXP can be thought of as the exact analogue of PPAD, we believe that BU is the
exact analogue of PPA, and we provide some evidence to justify this. It has been shown that
LinearFIXP = PPAD [26], which is the version of the class in which arithmetic circuits are
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restricted to produce piecewise linear functions (FIXP allows circuits to compute piecewise
polynomials). We likewise define LinearBU, which consists of all problems that can be
reduced to a solution of a Borsuk-Ulam problem using a piecewise linear function, and we
show that LinearBU = PPA.

The containment LinearBU ⊆ PPA can be proved using similar techniques to the proof that
LinearFIXP ⊆ PPAD. However, the proof that PPA ⊆ LinearBU utilises our BU containment
result for consensus halving. In particular, when the input to the consensus halving problem
is a piecewise linear function, our containment result shows that the problem actually lies
in LinearBU. The PPA-hardness results for consensus halving show that piecewise-linear-
consensus halving is PPA-hard, which completes the containment [28, 29].

Finally, we show that, for the case where each agent has a non-piecewise polynomial
valuation of constant (resp. O(logn)) degree, an approximate solution to the problem can be
found using O(logn) (resp. O(poly logn)) cuts, which then yields a QPTAS for the problem.

For detailed proofs of the results presented, we refer the reader to the full version [22].

Related work. Although for a long period there were a few results about PPA, recently
there has been a flourish of PPA-completeness results. The first PPA-completeness result was
given by [32] who showed PPA-completeness of the Sperner problem for a non-orientable
3-dimensional space. In [30] this result was strengthened for a non-orientable and locally
2-dimensional space. In [3], 2-dimensional Tucker was shown to be PPA-complete; this result
was used in [28, 29] to prove PPA-completeness for approximate consensus halving. In [23]
PPA-completeness was proven for a special version of Tucker and for problems of the form
“given a discrete fixed point in a non-orientable space, find another one”. Finally, in [24] it was
shown that octahedral Tucker is PPA-complete. In [35], a subclass of 2DLinearFIXP ⊆ FIXP
that consists of 2-dimensional fixed-point problems was studied, and it was proven that
2DLinearFIXP = PPAD.

A large number of problems are now known to be ETR-complete: geometric intersection
problems [34, 39], graph-drawing problems [1, 9, 18, 40], matrix factorization problems [42,
43], the Art Gallery problem [2], and deciding the existence of constrained (symmetric) Nash
equilibria in (symmetric) normal form games with at least three players [10, 11, 12, 13, 31].

2 Preliminaries

2.1 Arithmetic circuits
An arithmetic circuit represents a continuous function f : Rn → Rm, and is defined by a pair
(V, T ), where V is a set of nodes and T is a set of gates. There are n nodes in V that are
input nodes, and m nodes in V that are output nodes. When a value x ∈ Rn is presented at
the input nodes, the circuit computes values for all other nodes v ∈ V , which we will denote
as x[v]. The values of x[v] for the m output nodes determine the value of f(x) ∈ Rm.

Every node in V , other than the input nodes, is required to be the output of exactly one
gate in T . Each gate g ∈ T enforces an arithmetic constraint on its output node, based on
the values of some other node in the circuit. Cycles are not allowed in these constraints.
We allow the operations {ζ,+,−, ∗ζ, ∗,max,min}, which correspond to the gates shown in
Table 1. Note that every gate computes a continuous function over its inputs, and thus any
function f that is represented by an arithmetic circuit of this form is also continuous.

We study two types of circuits in this paper. General arithmetic circuits are allowed to
use any of the gates that we have defined above. Linear arithmetic circuits allow only the
operations {ζ,+,−, ∗ζ,max,min}, and the ∗ operation (multiplication of two variables) is
disallowed. Observe that a linear arithmetic circuit computes a piecewise linear function.
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Table 1 The types of gates and their constraints.

Gate Constraint
Gζ(ζ, vout) x[vout] = ζ, where ζ ∈ Q
G+(vin1, vin2, vout) x[vout] = x[vin1] + x[vin2]
G−(vin1, vin2, vout) x[vout] = x[vin1]− x[vin2]
G∗ζ(ζ, vin, vout) x[vout] = x[vin1] · ζ, where ζ ∈ Q
G∗(vin1, vin2, vout) x[vout] = x[vin1] · x[vin2]
Gmax(vin1, vin2, vout) x[vout] = max{x[vin1], x[vin2]}
Gmin(vin1, vin2, vout) x[vout] = min{x[vin1], x[vin2]}

2.2 The Consensus Halving problem

In the consensus halving problem there is an object A that is represented by the [0, 1] line
segment, and there are n agents. We wish to divide A into two (not necessarily contiguous)
pieces such that every agent agrees that the two pieces have equal value. Simmons and
Su [44] have shown that, provided the agents have bounded and continuous valuations over
A, then we can find a solution to this problem using at most n cuts.

In this paper we consider instances of the consensus halving problem where the valuations
of the agents are presented as arithmetic circuits. Each agent has a valuation function
fi : [0, 1]→ R, but it is technically more convenient if they give us a representation of the
integral of this function. So for each agent i, we are given an arithmetic circuit computing
Fi : [0, 1] → R where for all x ∈ [0, 1] we have Fi(x) =

∫ x
0 f(y) dy. Then, the value of any

particular segment of [a, b] to agent i can be computed as Fi(b)− Fi(a).
A solution to the consensus halving problem is given by a k-cut of the object A,

which is defined by a vector of cut-points (t1, t2, . . . , tk) ∈ [0, 1]k, and a vector of signs
(s1, s2, . . . , sk+1) ∈ {−1,+1}k+1. The cut-points ti split A into up to k+ 1 pieces. Note that
they may in fact split A into fewer than k + 1 pieces in the case where two cut-points ti = tj
overlap. We define Xi to be the ith piece of A, meaning that X0 = [0, t1], Xi = [ti, ti+1] for
all i in the range 1 ≤ i < k, and Xk = [tk, 1].

The sign vector determines which half of A the piece belongs to. We define A+ :=
{Xi : si = +1} and A− := {Xi : si = −1} to be the two halves. For each agent i, we
denote the value A+ to agent i as Fi(A+) :=

∑
[a,b]∈A+

(Fi(b)− Fi(a)), and we define Fi(A−)
analogously. The k-cut is a solution to the consensus halving problem if Fi(A+) = Fi(A−)
for all agents i.

We define two computational problems. Simmons and Su [44] have proved that there
always exists a solution using at most n-cuts, and our first problem is to find that solution.

(n, n)-Consensus Halving

Input: For every agent i ∈ [n], an arithmetic circuit Fi computing the integral of
agent i’s valuation function.
Task: Find an n-cut for A such that Fi(A+) = Fi(A−), for every agent i ∈ [n].

For k < n a solution to the problem may or may not exist. So we define the following
decision variant of the problem.
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(n, k)-Consensus Halving

Input: For every agent i ∈ [n], an arithmetic circuit Fi computing the integral of
agent i’s valuation function.
Task: Decide whether there exists a k-cut for A such that Fi(A+) = Fi(A−), for
every agent i ∈ [n].

For either of these two problems, if all of the inputs are represented by linear arithmetic
circuits, then we refer to the problem as Linear Consensus Halving. We note that the
known hardness results [27, 28] for consensus halving fall into this class. Specifically, those
results produce valuations that are piecewise constant, and so the integral of these functions
is piecewise linear, and these functions can be written down as linear arithmetic circuits [36].

3 The Class BU

The Borsuk-Ulam theorem states that every continuous function from the surface of an
(d+ 1)-dimensional sphere to the d-dimensional Euclidean space maps at least one pair of
antipodal points to the same point.

I Theorem 1 (Borsuk-Ulam). Let f : Sd → Rd be a continuous function, where Sd is a
(d+ 1)-dimensional sphere. Then, there exists an x ∈ Sd such that f(x) = f(−x).

This theorem actually works for any domain D that is antipode-preserving homeomorph-
ism of Sd, where by “antipode-preserving” we mean that for every x ∈ D we have that
−x ∈ D. In this paper, we choose Sd to be the sphere in d+ 1 dimensions with respect to
L1 norm: Sd :=

{
x | x = (x1, x2, . . . , xd+1),

∑d+1
i=1 |xi| = 1

}
.

We define the Borsuk-Ulam problem as follows.

Borsuk-Ulam

Input: A continuous function f : Rd+1 → Rd presented as an arithmetic circuit.
Task: Find an x ∈ Sd such that f(x) = f(−x).

Note that we cannot constrain an arithmetic circuit to only take inputs from the domain
Sd, so we instead put the constraint that x ∈ Sd onto the solution.

The complexity class BU is defined as follows.

I Definition 2 (BU). The complexity class BU consists of all search problems that can be
reduced to Borsuk-Ulam in polynomial time.

3.1 LinearBU
When the input to a Borsuk-Ulam instance is a linear arithmetic circuit, then we call the
problem Linear Borsuk-Ulam, and we define the class LinearBU as follows.

I Definition 3 (LinearBU). The complexity class LinearBU consists of all search problems
that can be reduced to Linear Borsuk-Ulam in polynomial time.

We will show that LinearBU = PPA. The proof that LinearBU ⊆ PPA is similar to the
proof that Etessami and Yannakakis used to show that LinearFIXP ⊆ PPAD [26], while the
fact that PPA ⊆ LinearBU will follow from our results on consensus halving in Section 4.
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To prove LinearBU ⊆ PPA we will reduce to the approximate Borsuk-Ulam problem.
It is well known that the Borsuk-Ulam theorem can be proved via Tucker’s lemma, and
Papadimitriou noted that this implies that finding an approximate solution to a Borsuk-Ulam
problem lies in PPA [37]. This is indeed correct, but the proof provided in [37] is for a slightly
different problem1. Since our results will depend on this fact, we provide our own definition
and self-contained proof here. We define the approximate Borsuk-Ulam problem as follows.

ε-Borsuk-Ulam

Input: A continuous function f : Rd+1 → Rd presented as an arithmetic circuit,
along with two constants ε, λ ∈ R.
Task: Find one of the following.
1. A point x ∈ Sd such that ‖f(x)− f(−x)‖∞ ≤ ε.
2. Two points x, y ∈ Sd such that ‖f(x)− f(y)‖∞ > λ · ‖x− y‖∞.

The first type of solution is an approximate solution to the Borsuk-Ulam problem, while
the second type of solution consists of any two points that witness that the function is not
λ-Lipschitz continuous in the L∞-norm. The second type of solution is necessary, because an
arithmetic circuit is capable, through repeated squaring, of computing doubly-exponentially
large numbers, and the reduction to Tucker may not be able to find an approximate solution
for such circuits. We now re-prove the result of Papadimitriou in the following lemma.

I Lemma 4 ([37]). ε-Borsuk-Ulam is in PPA.

To show that LinearBU ⊆ PPA we will provide a polynomial time reduction from
Linear Borsuk-Ulam to ε-Borsuk-Ulam. To do this, we follow closely the technique
used by Etessami and Yannakakis to show that LinearFIXP ⊆ PPAD [26]. The idea is to
make a single call to ε-Borsuk-Ulam to find an approximate solution to the problem for a
suitably small ε, and to then round to an exact solution by solving a linear program. To
build the LP, we depend on the fact that we have access to the linear arithmetic circuit that
represents f .

I Lemma 5. Linear Borsuk-Ulam is in PPA.

4 Containment Results for Consensus Halving

4.1 (n, n)-Consensus Halving is in BU and LinearBU = PPA
We show that (n, n)-Consensus Halving is contained in BU. Simmons and Su [44] show the
existence of an n-cut solution to the consensus halving problem by applying the Borsuk-Ulam
theorem, and we follow their approach in this reduction. However, we must show that the
approach can be implemented using arithmetic circuits. We take care in the reduction to
avoid G∗ gates, and so if the inputs to the problem are all linear arithmetic circuits, then
our reduction will produce a Linear Borsuk-Ulam instance. Hence, we also show that
(n, n)-Linear Consensus Halving is in LinearBU.

I Theorem 6. The following two containments hold.
(n, n)-Consensus Halving is in BU.
(n, n)-Linear Consensus Halving is in LinearBU.

1 The problem used in [37] presents the function as a polynomial-time Turing machine rather than an
arithmetic circuit, and the Lipschitzness of the function is guaranteed by constraining the values that it
can take.
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We note that this also implies that PPA ⊆ LinearBU, thereby completing the proof that
PPA = LinearBU. Specifically, Filos-Ratsikas and Goldberg have shown that approximate-
(n, n)-Consensus Halving is PPA-complete, and their valuation functions are piecewise
constant. Therefore, the integrals of these functions are piecewise linear, and so their
approximate-(n, n)-Consensus Halving instances can be reduced to (n, n)-Linear Con-
sensus Halving. Hence (n, n)-Linear Consensus Halving is PPA-hard, which along with
Lemma 5 implies the following corollary.

I Corollary 7. PPA = LinearBU.

4.2 (n, k)-Consensus Halving is in ETR
The existential theory of the reals consists of all true existentially quantified formulae using
the connectives {∧,∨,¬} over polynomials compared with the operators {<,≤,=,≥, >}.
The complexity class ETR captures all problems that can be reduced in polynomial time to
the existential theory of the reals.

We prove that (n, k)-Consensus Halving is in ETR. The reduction simply encodes
the arithmetic circuits using ETR formulas, and then constrains Fi(A+) = Fi(A−) for
every agent i.

I Theorem 8. (n, k)-Consensus Halving is in ETR.

Using the same technique, we can also reduce Borsuk-Ulam to an ETR formula. In this
case, we get an ETR formula that always has a solution, and so this result places the problem
in TFETR, which is the subclass of ETR in which the formula is guaranteed to be true.

I Theorem 9. BU ⊆ TFETR.

5 Hardness Results for Consensus Halving

In this section we prove that (n, n)-Consensus Halving is FIXP-hard and that (n, n− 1)-
Consensus Halving is ETR-hard. These two reductions share a common step of embedding
an arithmetic circuit into a consensus halving instance. So we first describe this step, and
then move on to proving the two individual hardness results.

5.1 Embedding a circuit in a Consensus Halving instance
Our approach is inspired by [27], who provided a reduction from ε-GCircuit [19, 38] to
approximate consensus halving. However, our construction deviates significantly from theirs
due to several reasons.

Firstly, the reduction in [27] works only for approximate consensus halving. Specifically,
some valuations used in that construction have the form of 1/ε, where ε is the approximation
guarantee, so the construction is not well-defined when ε = 0 as it is in our case. Many of
the gate gadgets used in [27] cannot be used due to this issue, including the max gate, which
is crucially used in that construction to ensure that intermediate values do not get too large.
We provide our own implementations of the broken gates. Our gate gadgets only work when
the inputs and outputs lie in the range [0, 1], and so we must carefully construct circuits
for which this is always the case. The second major difference is that the reduction in [27]
does not provide any method of multiplying two variables, which is needed in our case. We
construct a gadget to do this, based on a more primitive gadget for squaring a single variable.
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Table 2 The special types of gates, their constraints and ranges of input.

Special Gate Constraint Ranges
G()2 (vin, vout) x[vout] = (x[vin])2 x[vin] ∈ [0, 1]
G

[0,1]
∗2 (vin, vout) x[vout] = x[vin] · 2 x[vin] ∈ [0, 1/2]

G
[0,1]
− (vin1, vin2, vout) x[vout] = max{x[vin1]− x[vin2], 0} x[vin1], x[vin2] ∈ [0, 1]

Special circuit. Our reduction from an arithmetic circuit to consensus halving will use a
very particular subset of gates. Specifically, we will not use Gmin, Gmax, or G∗, and we will
restrict G∗ζ so that ζ must lie in (0, 1]. We do however introduce three new gates, shown
in Table 2. The gate G()2 squares its input, the gate G[0,1]

∗2 multiplies its input by two, but
requires that the input be in [0, 1/2], and the gate G[0,1]

− is a special minus gate that takes
as inputs a, b ∈ [0, 1] and outputs max{a− b, 0}. We note that Gmin, Gmax, and G∗ can be
implemented in terms of our new gates according to the following identities.

max{a, b} = a+ b

2 + |a− b|2 = a

2 + b

2 + 1
2 max{a− b, 0}+ 1

2 max{b− a, 0},

min{a, b} = a+ b

2 − |a− b|2 = a

2 + b

2 −
1
2 max{a− b, 0} − 1

2 max{b− a, 0},

a · b = 2
[(

a

2 + b

2

)2
−

((a
2

)2
+
(
b

2

)2
)]

.

Also, a very important requirement of the special circuit is that both inputs of any G+
gate are in [0, 1/2]. To make sure of that, we downscale the inputs before reaching the gate,
and upscale the output, using the fact that a+ b = (a/2 + b/2) · 2.

The reduction to consensus halving. The reduction follows the general outline of the
reduction given in [27]. The construction is quite involved, and so we focus on the high-level
picture here. Each gate is implemented by 4 agents, namely ad,mid, cen, ex in the consensus
halving instance. The values computed by the gates are encoded by the positions of the cuts
that are required in order to satisfy these agents. Agent ad performs the exact mathematical
operation of the gate, and feeds the outcome in mid, who “trims” it in accordance with the
gate’s actual operation. Then mid feeds her outcome to cen and ex, who make a copy of
mid’s correct value of the gate, with “negative” and “positive” labels respectively. This value
with the appropriate label will be input to other gates.

The most important agents are the ones that perform the mathematical operation of
each gate, i.e. agents ad. Figure 1 shows the part of the valuation functions of these agents
that perform the operation. Each figure shows a valuation function for one of the agents,
meaning that the blue regions represent portions of the object that the agent desires. The
agent’s valuation for any particular interval is the integral of this function over that interval.

To understand the high-level picture of the construction, let us look at the construction
for G∗ζ . The precise valuation functions of the agents in the construction ensure that there
is exactly one input cut in the region v+

in. The leftmost piece due to that cut in that region
will belong to A+, while the rightmost will belong to A−. It is also ensured that there is
exactly one output cut in the region vaout, and that the first piece in that region will belong
to A− and the second will belong to A+.

Suppose that gate gi in the circuit is of type G∗ζ and we want to implement it through
a Consensus Halving instance. If we treat v+

in and vaout in Figure 1 as representing [0, 1],
then agent adi will take as input a cut at point x ∈ v+

in. In order to be satisfied, adi will
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Valuation function

1 if t ∈ [vaout,l + ζ − 1
2, v

a
out,l + ζ + 1

2]

0 otherwise

1 if t ∈ v+in

0 otherwise

1/ζ if t ∈ [vaout,l, v
a
out,l + ζ ]

2(t− v+in,l) if t ∈ v+in

0 otherwise

1 if t ∈ vaout

1 if t ∈ [v+in2,l, v
+
in2,l +

1
2]

0 otherwise

1 if t ∈ vaout

1 if t ∈ [v+in1,l, v
+
in1,l +

1
2]

Gπ(t)

1 if t ∈ [v+in,l, v
+
in,l +

1
2]

0 otherwise

1/2 if t ∈ vaout

1 if t ∈ v−in2

0 otherwise

1 if t ∈ [vaout,l − 1, vaout,r]

1 if t ∈ v+in1
1

vaout

vaoutv+in

vaoutv+in2v+in1

vaoutv+in

v+in

vaoutv−in2v+in1

vaout

1

1

ζ

ζ

11 1

1 1 1

1

2

1

Gate

Gζ

G∗ζ

G+

G()2

G
[0,1]
∗2

1
2

1
2

1
2

1
2

1
2

1
2

1
ζ

G
[0,1]
−

Figure 1 Gates and their corresponding functions Gπ(t).

impose a cut at point y ∈ vaout, such that Fi(A+) = Fi(A−), where: Fi(A+) = x+ (ζ − y)/ζ
and Fi(A−) = (1− x) + y/ζ. Simple algebraic manipulation can be used to show that adi is
satisfied only when y = ζ · x, as required.

We show that the same property holds for each of the gates in Figure 1. Two notable
constructions are for the gates G()2 and G[0,1]

− . For the gate G()2 the valuation function of
agent ad is non-constant, which is needed to implement the non-linear squaring function.
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v+j v−k vai vmi v−i v+i· · · · · ·

adi

midi

ceni

exi

Figure 2 An example where the computation at the output vout := vi of a G[0,1]
− gate with inputs

vin1 := vj and vin2 := vk is simulated by the Consensus Halving instance. Here x[vj ] = 1/4 and
x[vk] = 3/4, hence x[vi] = 0. The information about the values of the inputs is encoded by the cuts
(red lines) in intervals v+

j , and v
−
k imposed by agents exj and cenk respectively. The blue and green

shapes depict the area below the valuation function of each of the 4 agents. The pink regions have
label “+” while the yellow have label “−”. Agent adi performs the subtraction, by demanding that
she is satisfied, and places a cut 1/10 to the left of the left endpoint of interval vai . Then agent midi
gets satisfied by placing a cut at exactly the left endpoint of interval vmi , thus encoding the value 0
which is the correct output value of the gate. Finally, agents ceni, exi copy this value by enforcing
similar cuts at the left endpoints of intervals v−

i and v+
i respectively. The encoded values in the

latter two intervals are the “negative” and “positive” version of x[vi].

For the gate G[0,1]
− , note that the output region vaout only covers half of the possible output

space. The idea is that if the result of x[vin1]− x[vin2] is negative, then the output cut will
lie before the output region, which will be interpreted as a zero output by agents mid, cen, ex
in the construction. On the other hand, if the result is positive, the result will lie in the usual
output range, and will be interpreted as a positive number. An example where x[vin1] = 1/4
and x[vin2] = 3/4 is shown in Figure 2.

Ultimately, this allows us to construct a consensus-halving instance that implements this
circuit. This means that for any x ∈ [0, 1]n, we can encode x as a set of cuts, which then force
cuts to be made at each gate gadget that encode the correct output for that gate. The full
details of the construction are quite involved, but we are able to show the following result.

I Lemma 10. Suppose that we are given an arithmetic circuit with the following properties.
The circuit uses the gates Gζ , G+, G∗ζ , G()2 , G

[0,1]
− , G

[0,1]
∗2 .

Every Gζ and G∗ζ has ζ ∈ Q ∩ (0, 1].
For every input x ∈ [0, 1]n, all intermediate values computed by the circuit lie in [0, 1].

We can construct a consensus-halving instance that implements this circuit.
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5.2 (n, n)-Consensus Halving is FIXP-hard
We show that (n, n)-Consensus Halving is FIXP-hard by reducing from the problem of
finding a Nash equilibrium in a d-player game, which is known to be a FIXP-complete [26].
As shown in [26], this problem can be reduced to the Brouwer fixed point problem: given
an arithmetic circuit computing a function F : [0, 1]n → [0, 1]n, find a point x ∈ [0, 1]n such
that F (x) = x. In a similar way to [27], we take this circuit and embed it into a consensus
halving instance, with the outputs looped back to the inputs. Since Lemma 10 implies that
our implementation of the circuit is correct, this means that any solution to the consensus
halving problem must encode a point x satisfying F (x) = x.

One difficulty is that we must ensure that the arithmetic circuit that we build falls into
the class permitted by Lemma 10. To do this, we carefully analyse the circuits produced in
[26], and we modify them so that all of the preconditions of Lemma 10 hold.

I Theorem 11. (n, n)-Consensus Halving is FIXP-hard.

This theorem, along with Theorem 6 give the following corollary.

I Corollary 12. FIXP ⊆ BU.

5.3 (n, n − 1)-Consensus Halving is ETR-complete
We will show the ETR-hardness of (n, n − 1)-Consensus Halving by reducing from the
following problem Feasible, which is known to be ETR-complete [41].

I Definition 13 (Feasible, Feasible[0,1]). Let p(x1, . . . , xm) be a polynomial. Feasible
asks whether there exists a point (x1, . . . , xm) ∈ Rm that satisfies p(x1, . . . , xm) = 0.
Feasible[0,1] asks whether there exists a point (x1, . . . , xm) ∈ [0, 1]m that satisfies p.

The idea is to turn the polynomial into a circuit, and then embed that circuit into a
consensus halving instance using Lemma 10. As before, the main difficulty is ensuring that
the preconditions of Lemma 10 are satisfied. To do this, we must ensure that the the inputs
to the circuit take values in [0, 1], which is not the case if we reduce directly from Feasible.
Instead, we first consider the problem Feasible[0,1], in which x is constrained to lie in [0, 1]n
rather than Rn, and we show the following result.

I Lemma 14. Feasible[0,1] is ETR-complete.

ETR[0,1] is the subclass of ETR in which variables are quantified over [0, 1]n rather than Rn.
The above lemma follows from the fact that ETR[0,1] = ETR, and the fact that Feasible[0,1]
is ETR[0,1]-hard. This equivalence of classes, together with the completeness of Feasible[0,1]
may be of independent interest.

We then proceed to reduce Feasible[0,1] to (n, n − 1)-Consensus Halving. We still
don’t quite meet the requirements of Lemma 10, because the intermediate terms may be
outside [0, 1]. We resolve this by implementing a circuit p+(x) implementing only the positive
terms of p(x) downscaled appropriately, and a circuit p−(x) implementing the positive terms
of −p(x) again downscaled appropriately. The check agent is then satisfied if p+(x) = p−(x),
which can only occur when p(x) = 0.

There will be n− 1 choice agents corresponding to the (n− 1)/4 nodes of the circuit, who
enforce that there is a cut for each of the nodes to the circuit, and together these cuts encode
an input x to the polynomial. Each agent introduced by Lemma 10 has an associated cut
that is forced by the construction used in that lemma, and these cuts compute the output of
the associated gate.

So far, every agent has a corresponding cut that is forced by the construction. There is,
however, one final check agent who has the following properties.
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If p(x) = 0, then the check agent agrees that A has been cut in half without an extra cut
being made.
If p(x) 6= 0, then the check agent requires one more cut to be made in order to be satisfied
that A has been cut in half.

Hence, if there is a solution to Feasible, then there is a solution to Feasible[0,1], and
there is a (n− 1)-cut that solves the Consensus Halving instance. Otherwise there is no
such solution.

I Theorem 15. (n, n− 1)-Consensus Halving is ETR-complete.

6 A QPTAS for Consensus Halving with polynomial valuation
functions

In this section we show that an approximate solution to the consensus halving problem
can be found in quasi-polynomial time when each agent’s valuation function is a single
polynomial of constant or even polylogarithmic degree. We will do so by formulating the
problem as a formula in the approximate existential theory of the reals, and then applying
the approximation theorem proved in [20, 21].

Our result implies that these instances can be solved approximately using a polylogarithmic
number of cuts. We note that this is one of the most general classes of instances for which we
could hope to prove such a result: any instance in which n agents desire completely disjoint
portions of the object can only be solved by an n-cut, and piecewise linear functions are
capable of producing such a situation. So in a sense, we are exploiting the fact that this
situation cannot arise when the agents have non-piecewise polynomial valuation functions.

I Lemma 16. For every Consensus Halving instance with n agents, and every ε > 0, if
each agent’s valuation function Fi is a single polynomial of degree at most O(poly logn), then
there exists a k-cut, where k := O(poly logn)/ε4, and pieces A+ and A− such that:

every cut point is a multiple of 1/k = ε4

O(poly logn) ;
|Fi(A+)− Fi(A−)| ≤ ε, for every agent i.

As a consequence, we can perform a brute force search over all possible k-cuts to find an
approximate solution, which can be carried out in nO(poly logn/ε4) time.

I Theorem 17. Consensus Halving admits a QPTAS when the valuation function of
every agent is a single polynomial of degree O(poly logn).
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Abstract
We consider the problem of finding a treasure at an unknown point of an n-dimensional infinite grid,
n ≥ 3, by initially collocated finite automaton agents (scouts/robots). Recently, the problem has
been well characterized for 2 dimensions for deterministic as well as randomized agents, both in
synchronous and semi-synchronous models [12, 21]. It has been conjectured that n + 1 randomized
agents are necessary to solve this problem in the n-dimensional grid [17]. In this paper we disprove
the conjecture in a strong sense: we show that three randomized synchronous agents suffice to
explore an n-dimensional grid for any n. Our algorithm is optimal in terms of the number of the
agents. Our key insight is that a constant number of finite automaton agents can, by their positions
and movements, implement a stack, which can store the path being explored. We also show how
to implement our algorithm using: four randomized semi-synchronous agents; four deterministic
synchronous agents; or five deterministic semi-synchronous agents.

We give a different algorithm that uses 4 deterministic semi-synchronous agents for the 3-
dimensional grid. This is provably optimal, and surprisingly, matches the result for 2 dimensions.
For n ≥ 4, the time complexity of the solutions mentioned above is exponential in distance D of
the treasure from the starting point of the agents. We show that in the deterministic case, one
additional agent brings the time down to a polynomial. Finally, we focus on algorithms that never
venture much beyond the distance D. We describe an algorithm that uses O(

√
n) semi-synchronous

deterministic agents that never go beyond 2D, as well as show that any algorithm using 3 synchronous
deterministic agents in 3 dimensions, if it exists, must travel beyond Ω(D3/2) from the origin.
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1 Introduction

Motivated by the self-organizing behaviour of ants and other social insects, swarm robotics
leverages the collective capability of a collection of extremely simple and inexpensive robots.
Such robots have very limited computation and communication capabilities, and yet can
collectively perform seemingly complex tasks such as: forage for food [14]; form patterns [26];
pull heavy objects [23]; and play Für Elise on the piano [15].

A series of recent papers [24, 22, 21, 12, 17] studies the conditions required for such
primitive robots (also called agents or scouts) to search for a treasure placed at an unknown
location in an infinite two-dimensional grid. In particular, they consider agents whose
behaviour is controlled by a finite automaton (FA), who are equipped with a global compass,
and can only communicate with other agents that are at the exact same grid location as
themselves. Furthermore, this communication is limited to see the current state of other
co-located agents. The primary question of interest is: how many such agents are needed to
search for a treasure located at an unknown location in an infinite n-dimensional grid for
n ≥ 2? As shown in [12, 21] for n = 2, the answer depends on the computational power of the
agents: whether or not they have access to random bits, the amount of memory they have,
and whether or not they are synchronized. Note that for randomized algorithms, we require
a finite mean hitting time for every node in the grid. The set of agents is fully synchronous
if they operate by the same global clock; they are semi-synchronous1 if in every time slot, a
subset of adversarially scheduled agents is active. Full details of the agent models are given
in Section 2.

The case of the 2-dimensional grid has been completely characterized. It has been shown
that if the agents are deterministic and semi-synchronous, 4 agents are necessary [12] and
sufficient [21]. If the agents are fully synchronous and deterministic, then 3 agents are
necessary and sufficient [21]. In [17], the authors proved that 3 agents are necessary to
search the 2-dimensional grid, even if they are fully synchronized and are randomized. They
conjectured that in an n-dimensional grid, n+ 1 agents would be necessary.

I Conjecture 1 ([17]). For n ≥ 3, any search strategy on the n-dimensional infinite grid
requires at least n+ 1 agents.

The main result of this paper is to disprove the above conjecture; we show that three
randomized synchronous agents, or 5 deterministic semi-synchronous agents can explore
any n-dimensional grid. These algorithms are completely different from previous algorithms
for grid exploration, and are based on the key insight that a constant number of finite
automata agents can, by their positions and movements, implement a stack that stores the
path being explored.

1.1 Our results
Our main result is an algorithm for 3 randomized synchronous agents to explore an n-
dimensional grid for any n ≥ 3. This result is optimal, since 3 agents are necessary to explore
even the 2-dimensional grid. Next we show how to “derandomize” the algorithm with the
addition of one agent. If the agents are semi-synchronous, the algorithm can be implemented

1 In some related literature [22, 17, 21] the same model was referred to as asynchronous. We follow the
terminology of semi-synchronous of [12] and the vast literature on autonomous mobile robots to avoid
confusion with a fully asynchronous model.
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with the addition of one more agent, in both the randomized and deterministic cases. We also
show that in the 3-dimensional grid, 4 deterministic semi-synchronous agents are sufficient
for grid exploration.

The algorithms mentioned above have an exploration cost/time that is exponential in the
volume of the smallest ball containing the treasure. In Section 5, we give an algorithm with
exploration cost linear in the volume of the ball, which is similar to the algorithm for the
2-dimensional grid given in [21], but with an important modification that enables exploration
of the 3-dimensional grid without increasing the number of agents. Our algorithm is optimal
in the explored space and also in the number of agents, since 4 agents are necessary to explore
even the 2-dimensional grid. In Section 4, we give a deterministic synchronous algorithm
for exploring the n-dimensional grid that uses 5 agents and takes time polynomial in D,
the distance from the origin to the treasure. A semi-synchronous implementation of this
algorithm uses 6 agents. Table 1 shows our results.

Table 1 Exploration of an n dimensional infinite grid. Numbers marked with ∗ indicate that
the number of agents used or the exploration cost is optimal. We use c in the exploration cost to
indicate a constant.

Model Number of agents Section Exploration cost

Randomized Synchronous 3∗ Section 3.2 cD

Randomized Semi-synchronous 4 Section 3.2 cD

Deterministic Synchronous 4
5

Section 3.3
Section 4

O(2D+2n)
DO(n)

Deterministic Semi-synchronous
4∗ (n = 3)
5 (n > 3)
6 (n > 3)

Section 5
Section 3.3
Section 4

O(D3) ∗
O(23D+4n)
DO(n)

In Section 6 we describe the following additional results. We give a lower bound of
Ω(D3/2) on the distance from the origin that must be travelled by some agent in any 3-agent
deterministic synchronous algorithm, and give an algorithm using O(

√
n) deterministic

semi-synchronous agents in which no agent travels distance more than 2D. Lastly, we extend
our algorithms to agents without global compass. We show that one additional agent is
sufficient in the semi-synchronous model, while two additional agents are sufficient in the
synchronous model.

1.2 Related work
There is a lot of related literature on multi-agent systems and the exploration problem: from
the early work on the cow-path problem to the more recent work on exploration of graphs,
labyrinths, and grids by finite state agents [3, 6, 1, 2, 4, 5, 11, 16, 29, 32, 31, 34, 10, 19, 28,
8, 7, 13, 27, 9]. In this section we briefly mention the work that is most directly relevant
to this paper.

The authors of [24] introduced the problem of k randomized mobile agents, starting
from the same initial position, and searching for a treasure at an unknown location on the
two-dimensional infinite grid. In their model, the agents are Turing machines, but cannot
communicate at all. They show that if the agents have a constant approximation of k, the
treasure can be found optimally in time O(D + D2/k), where D is the distance between
the initial location and the treasure. The authors of [22] consider semi-synchronous and
randomized FA agents and show that the same time complexity can be achieved. The
relationship between the number of random bits available and the search time was studied
in [33].

ICALP 2019
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Emek et al. [21] posed the question of how many agents are required to find the treasure.
They studied deterministic as well as randomized agents, synchronous as well as semi-
synchronous agents, and FA agents, as well as agents that are controlled by a push-down
automaton (PDA). They show that the problem can be solved by any of the following: 4
deterministic semi-synchronous FA agents; 3 deterministic synchronous agents; 3 randomized
semi-synchronous FA agents; 1 deterministic FA together with 1 deterministic PDA agent; 1
randomized PDA agent. On the negative side they show that the problem cannot be solved
by 2 deterministic (synchronous) FA agents; a single randomized FA agent; a deterministic
PDA agent. Cohen et al. [17] prove that at least 2 FA agents are necessary to explore the
one-dimensional grid and at least 3 FA agents are needed to explore the two-dimensional grid,
thus proving the optimality of the FA-agent deterministic synchronous and randomized semi-
synchronous algorithms in [21]. Recently it was shown that 3 deterministic semi-synchronous
FA agents cannot perform exploration of the 2-dimensional grid [12], thus proving the
optimality of the 4 FA-agent deterministic synchronous algorithm in [21].

A large body of work is devoted to the capabilities of autonomous mobile robots with very
limited computational and communication abilities; see [25] for a comprehensive introduction.
While we use some of that terminology in this paper, their robots are usually assumed to
be identical, anonymous, and communication is limited to being able to “see” each other’s
positions, regardless of how far they are. In contrast, in our model, the robots follow different
algorithms (this can be done by having different initial states of the same FSM), and only
see other robots if they are at the same location, and they can exchange a message with the
collocated robots. Equivalently, they can be assumed to see the current states of other robots
at the same location. This is similar to the “robots with lights” model in the autonomous
mobile robot literature [18].

2 Model and Notation

We use the same models (with the exception of Theorem 10 on agents without a global
compass) as in [21, 12]. For completeness, we recall key definitions and introduce some
notation in this section.

Our search domain is Zn with the Manhattan metric, i.e., the distance between two points
p, p′ ∈ Zn is defined as ||p−p′|| =

∑n
i=1 |pi−p′i|. We refer to Zn as the n-dimensional integer

grid and its elements as grid points, points, or cells. A grid point p = (p1, p2, . . . pi, . . . , pn) is
adjacent to every grid point (p1, p2, . . . p

′
i, . . . , pn), where |pi − p′i| = 1 for some i, 1 ≤ i ≤ n.

We assume that any two grid points cannot be distinguished from each other by an agent,
and that includes the origin from which the search starts.

The search for the treasure in the grid is done using a fixed number of agents, each
modelled by a finite automaton. These finite automata can be the same, except they typically
have a different initial state. Two agents can exchange information with each other only
when they occupy the same grid location at the same time. We assume that all agents have
the same global n-dimensional compass. Initially, all agents are located in the same grid
point, assumed without loss of generality to be the origin of the grid. The treasure is located
at distance D from from the origin, where D is unknown to the agents.

Time is divided into discrete units. In each time unit an active agent performs a single
look-compute-move cycle. In the look part of the cycle the agent sees the state of other
agents located in its own grid point. In the compute part of the cycle the agent determines,
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using its own state and those it sees, to which adjacent node to move to, if at all. The agent
also determines its new state. Such a move is then executed in the move part of the cycle.
When we consider randomized algorithms, we assume that an agent has access to an infinite
one-way tape with i.i.d. random bits. We say that the system is synchronous if at each
time unit all agents are active. We say that the system is semi-synchronous if at each time
unit only a subset of agents, chosen by an adversarial scheduler, is active. The adversarial
scheduler must schedule each agent infinitely often.

In addition to the question of whether Zn can be fully explored by k agents, we are
also interested in the efficiency of such exploration procedures. We refer to this measure of
interest as the exploration cost. Intuitively, we measure how long it takes for k agents to
visit all Θ(Dn) points in a sphere of radius D. In the synchronous model, this measure is
simply the number of time units taken by the agents to complete the exploration. In the
semi-synchronous case, because of adversarial scheduling, the exploration cost is defined as
the total distance travelled by all robots to visit all points in a sphere of radius D. Since the
number of robots is constant, we could as well define the exploration cost as the maximum
path length travelled. Now that we have discussed this subtlety, we will abuse the terminology
and use “exploration cost” and “time” interchangeably.

3 Exploration of n-dimensional Grids

A straightforward generalization of the algorithms for the exploration of 2D grids in [21] to n
dimensions results in algorithms that use Ω(n) agents. Consider, for example, such a simple
generalization of a randomized 2D algorithm. The basic idea of the n+ 1-agent randomized
algorithm for n dimensions is to make an n-segment walk, starting from the origin, and
walking the i-th segment along dimension i. The lengths of the segments are chosen randomly,
and one agent per segment is used to mark its endpoint. This allows the agent to find the
way back to the origin and start another random trial. In essence, this algorithm uses 2
agents per dimension to store in unary the distance travelled in this dimension, and by an
appropriate arrangement we can reuse one of the agents in the successive dimension to bring
the number of additional agents per dimension to 1.

The main idea of our approach is a realization that it is not necessary to use n + 1
agents to store n numbers of segment lengths. Observe that segment lengths are stored and
retrieved in this randomized algorithm in the first-in last-out order. Thus this algorithm can
be realized if we can store the agent’s movements in a stack. It turns out that we can use
a constant number of agents, independent of the grid’s dimension, to implement a stack in
which the active agent, that does the exploration, stores its walk and subsequently uses to
return to the origin. The active agent “carries” the stack along its walk, i.e., it always makes
the agents representing the stack to shift by one position in the direction it moves before
making that move itself in its walk.

3.1 The Stack Implementation
The format of data stored in the logical stack is the string α ∈ (0∗1)n, where 0 represents
continue walking in the current direction, 1 represents switch to the next dimension.
The physical implementation of the stack stores this data by interpreting αr (that is α
reversed) as a binary number S and storing it in unary as a distance between two agents
located in a row in the first dimension.
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We employ the following agents:
a: the active agent that is doing the exploration of the grid; in the semi-synchronous
model this is the only agent moving around and manipulating the other agents,
b: the base of the stack, from which measurements are taken, and representing the current
logical location of the exploration,
c: the counter agent; this is an auxiliary agent for implementing the stack operations in
the semi-synchronous model,
d: the distance agent; its distance from the base b stores the content of the stack in unary,
e: the extra agent used in the deterministic algorithms to store an extra copy of the
current stack value.

The basic stack operations we need to implement are isEmpty(), push(v) where v ∈ {0, 1} and
pop(). Operation isEmpty() simply returns whether b and d are collocated. Implementation
of push() and pop() is model-dependent and given below.

3.1.1 Implementing Semi-Synchronous Stack

Algorithms 1 and 2 show the implementation of push and pop operations for the semi-
synchronous stack. Notice that after each push/pop operation the agents b and c in these
algorithms are not only collocated, but they actually return to the position they had
before push/pop.

Algorithm 1 Semi-synchronous stack:
push(v).
1: On entry: b and c collocated, a and d

collocated at b+ Se1.
2: On exit: b and c collocated, a and d col-

located at b+ (2S + v)e1.
3: procedure push(v)
4: a goes to b and brings c to d
5: while b and d are not collocated do
6: a goes to c, pushes it one step away

from b and returns to d
7: a pushes d one step closer to b
8: end while
9: d becomes c

10: a goes to c and tells it to become d
11: if v=1 then
12: a pushes d one step away from b

13: end if
14: end procedure

Algorithm 2 Semi-synchronous stack:
pop().
1: On entry: b and c collocated, a and d

collocated at b+ Se1.
2: On exit: b and c collocated, a and d colloc-

ated at b+ bS/2ce1, returns S mod 2 = 1.
3: procedure pop
4: while b and c are at distance more

than 1 do
5: a pushes d one step closer to b
6: a goes to c and pushes it one step

away from b

7: end while
8: v = d is one step from c

9: c and d switch roles
10: a brings c to a and returns to d
11: return v
12: end procedure

3.1.2 Implementing Synchronous Stack

In the synchronous model, we can synchronize the movements of agents to effectively multiply
or divide the stack content by 2 without the need of the counter agent c, see Figure 1.
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Algorithm 3 Synchronous stack: push(v).
1: On entry: a and d collocated at b+ Se1.
2: On exit: a and d collocated at b+ (2S +
v)e1.

3: procedure push(v)
4: a goes to b and then back towards d

until they meet, walking at speed 1
5: d walks away from b at speed 1/3

(move, wait, wait, see Figure 1)
6: if v=1 then
7: a pushes d one step away from b

8: end if
9: end procedure

Algorithm 4 Synchronous stack: pop().
1: On entry: a and d collocated at b+ Se1.
2: On exit: a and d collocated at b+bS/2ce1,

returns S mod 2 = 1.
3: procedure pop
4: a goes to b and then back towards d

until they meet, walking at speed 1
5: d walks towards b at speed 1/3 (move,

wait, wait, see Figure 1)
6: if a and d meet right after d’s move

then
7: return 1
8: else
9: return 0

10: end if
11: end procedure

time time

b

a d

b

a d

b′

d
is
ta
n
ce

d
is
ta
n
ce

Figure 1 Multiply/divide operations by synchronous agents, shown in time-space diagrams. At
left: multiplication by 2 by is done by agent a walking up to b and then down, while agent d walks
down at speed 1/3. When a and d meet they have doubled the distance to b. At right: division by 2
is shown, in this case a and d walk towards b at speed 1 and 1/3 respectively; for even case a turns
at b else at one node above b, and then walks back until meeting d.

3.2 The Randomized Algorithm
As already stated in the initial part of this section, the main idea of the algorithm is to use
the stack to store the random choices during the walk, so that the agent can return to the
origin. The agent a “carries” the stack along this walk so that the operations can be applied
without the need to search for the stack.

In addition to the stack methods, it uses two new procedures. Procedure random(p)
returns 1 with probability p, while moveStack() moves the whole stack one step in the
direction specified. Note that since the whole stack is located on a single line, this can be
accomplished by agent a walking to each of the other agents and instructing them to move
one step in the specified direction.

The algorithm works in rounds, that we number 1, 2, 3, . . ., that correspond to the iteration
numbers of the outer while loop. At the beginning of each round, the active robot picks
a binary string R ∈ {−1, 1}n uniformly at random. This string indicates that the robot is
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going to explore dimension i in direction Ri. Then for each dimension i from 1 to n, the
active robot travels for Zi − 1 steps in direction Ri, where Zi is geometrically distributed
with parameter p (to be determined later). Note that we want Zi to represent the length of
the string pushed onto the stack while moving in dimension i. Since the string pushed on
the stack includes the “separator” between dimensions, we have the −1 term for the actual
number of moves. We call the concatenation of all such moves over all dimensions the logical
path of the active robot. If no treasure is found, the active robot uses the stack to retrace its
logical path back to the origin by travelling Zn − 1 steps in direction −Rnen first, followed
by Zn−1 − 1 steps in direction −Rn−1en−1, and so on. To compute the exploration cost of
each round, we need a simple helper lemma.

Algorithm 5 Randomized Grid Exploration.
1: while treasure not found do
2: Pick a random n-bit string R ∈ {−1, 1}n

3: for i = 1 to n do
4: while random(p) = 0 do
5: push(0)
6: moveStack(Riei)
7: end while
8: if i < n then
9: push(1)

10: end if
11: end for
12: i = n

13: while not empty() do
14: while pop()= 0 do
15: moveStack(−Riei)
16: end while
17: i = i− 1
18: end while
19: end while

I Lemma 2. Let S be the maximal stack size during one iteration of the outer while loop
of Algorithm 5. The overall cost of this iteration is O(S2) when implemented by semi-
synchronous agents, and is O(S) when implemented by synchronous agents.

Proof. In the semi-synchronous model, each push() or pop() costs O(X2), where X is the
actual stack size, as the active agent zig-zags between b and d. On the other hand, in the
synchronous model, the cost of each operation is linear in the stack size. The cost of moving
the stack is linear in both models.

As the stack size grows exponentially, and then reduces exponentially, the overall cost
is determined by the cost when the stack is the largest, i.e. O(S2) and O(S) for the
semi-synchronous and synchronous models, respectively. J

Observe that during a given round the maximum size of the stack is 2Z1+···+Zn . Thus
the exploration cost of each round is at most

2(Z1 + · · ·+ Zn)2Θ(Z1+···+Zn)
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where 2(Z1 + · · ·+Zn) is the bound on the overall length of the logical path (there and back)
of the active robot, and by Lemma 2 each step of the active path costs 2Θ(Z1+···+Zn), since
we need to perform operations on the stack of size 2Z1+···+Zn . Also note that

2(Z1 + · · ·+ Zn)2Θ(Z1+···+Zn) = 2Θ(Z1+···+Zn).

Let c be the constant in the Θ notation such that the exploration cost of a round is at
most 2c(Z1+···+Zn).

For simplicity, we will assume that the active robot checks for the treasure only at the
far end-point of the logical path in each round. This assumption might lead to a more
pessimistic upper bound on the exploration cost than if we assumed that the active robot
checks for treasure at each grid point that it visits. However, our assumption simplifies the
calculations and is sufficient for our purposes.

I Theorem 3. Algorithm 5 locates the treasure in the n-dimensional grid in finite expected
time, using either 4 semi-synchronous or 3 synchronous agents.

Proof. Consider the infinite sequence of random variables (Xi)∞i=1, whereXi is the exploration
cost of round i. Note that the Xi are independent and identically distributed. Consider the
exploration cost of a particular round, e.g., X1. Then we have X1 ≤ 2c(Z1+···+Zn), where the
Zi and c are as defined above. Therefore:

E(X1) ≤ E
(
2c(Z1+···+Zn))

=
∞∑

i1=1

∞∑
i2=1

· · ·
∞∑

in=1

2c(i1+···+in)pi1−1(1− p)pi2−1(1− p) · · · pin−1(1− p)

=

(
∞∑

i1=1

(2cp)i1−12c(1− p)

)(
∞∑

i2=1

(2cp)i2−12c(1− p)

)
· · ·

(
∞∑

in=1

(2cp)in−12c(1− p)

)
= 2cn(1− p)n 1

(1− 2cp)n
,

where the last step holds as long as 2cp < 1 that is p < 1/2c.
Define a random variable T to be the minimum t such that the far end-point ofXt coincides

with the treasure. That is, our exploration procedure terminates in round T , but not earlier.
Suppose that the treasure is located at position (k1, . . . , kn) where |k1|+ · · ·+ |kn| = D. By
the discussion immediately preceding the statement of this theorem, the probability that
the treasure is found in a particular round is p̂ = 2−n(1− p)npk1 · · · pkn = 2−n(1− p)npD,
where 2−n is the probability of guessing correctly the signs of the ki and pki(1− p) is the
probability of travelling the correct number of steps in dimension i. Thus T is geometrically
distributed with parameter p̂. Therefore, E(T ) = 1/p̂.

We are interested in bounding the overall exploration cost, that is, E(X1 +· · ·+XT ). Since
the Xi are i.i.d. and T is a stopping time, it follows by a generalization of Wald’s equation [35]
to stopping times that E(X1 + · · ·+XT ) = E(T )E(X1) ≤ 1

p̂
2cn(1− p)n 1

(1−2cp)n <∞. This
holds as long as we choose p < 1/2c. Since c is a constant, such a probabilistic coin can be
implemented by a finite automaton. The statement of the theorem follows by the number
of robots sufficient to implement stack operations in each of the models (synchronous vs.
semi-synchronous). J
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3.3 The Deterministic Algorithm
The main idea is to exhaustively go over all possible stack contents in increasing order,
interpreting each stack as a specification of a walk. We also keep a backup of the initial stack
content, and at the end of the walk we use the backup to return to the origin. The back-up
stack is stored using an additional agent. The backup is needed, as reading the stack content
during the walk destroys it. Note that after the outward walk, we do not logically reverse
the stack; hence the return to the origin does not use the same path as the original walk.
However, this is not a problem as the walks along different dimensions are commutative.

Finally, we should mention that some generated stacks do not necessarily have the correct
format, some may contain too few or too many 1s. However, this is easy to handle by the
algorithm: too few ones just means we walked without using all of the dimensions, which is
still a perfectly valid walk. The excessive 1s are simply ignored by taking the first excessive
1 as a directive to end the walk and return to the origin.

Using essentially the same arguments as in Lemma 2 yields:

I Lemma 4. The cost of procedure Walk is O(S2) and O(S) in the semi-synchronous and
synchronous models, respectively, where S is the size of the backup stack.

I Theorem 5. Algorithm 6 locates the treasure in the n-dimensional grid with: (a) 5 agents
and the exploration cost of O(23D+4n) moves in the semi-synchronous model, and (b) 4 agents
and the exploration cost of O(2D+2n) in the synchronous model.

Algorithm 6 Deterministic Grid Exploration.
1: while treasure not found do
2: Increment the backup stack
3: for every n-bit string R ∈ {−1, 1}n do
4: execute Walk(R, 1)
5: execute Walk(R, −1)
6: end for
7: end while
8:
9: procedure Walk(R, s)
10: Restore stack from backup
11: i = 1
12: while not empty() and i ≤ n do
13: while pop()= 0 do
14: moveStack(sRiei)
15: end while
16: i = i+ 1
17: end while
18: end procedure

Proof. The number of agents and the correctness follows easily from the construction.
It remains to sum up the cost of all calls to procedure Walk. Note that each point in

space uniquely specifies a valid (i.e. with precisely n 1’s) stack. Hence, the valid stack for the
treasure at distance D contains D + n digits. Therefore, the overall cost of Algorithm 6 is
2n
∑2D+n

X=1 O(X2) = O(2n(2D+n)3) = 23D+4n in the semi-synchronous model, and O(2D+2n)
in the synchronous model (the initial 2n covers all choices for string R). J
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4 Polynomial time solutions

While designing our exploration algorithms in the previous section, we concentrated on
minimizing the number of agents used, and the resulting cost of these algorithms is exponential
in the volume V (D), the smallest ball containing the treasure. A natural question to ask is
whether this is an unavoidable consequence of using only a constant number of agents in the
exploration. In this section we show that this is not the case: a single additional agent is
sufficient to bring the cost of exploration down to a polynomial in V (D).

The main reason the cost of algorithms in the preceding section is exponential is the
number of incorrect stack contents being considered: as D grows compared to the fixed n,
ever larger proportion of stack contents does not have the correct format and they result
in repeatedly reaching already explored vertices. To avoid this problem we will efficiently
explore an n-dimensional cube qn of side q centered at the origin. We use again the stack
idea to trace the exploration of qn. The logical stack content now consists of n numbers in
q-ary alphabet, describing a location within this cube. However, in this case, we also need
to store the scale q. As before, the stack implementation interprets the logical content as a
q-ary number and stores it in unary2. Since q also needs to be stored on its own, this incurs
the additional cost of one agent. However, this allows us to multiply and divide by q, which
would not have been possible without the extra agent.

The stack is manipulated using the explicit commands: isDivisible() which checks the
divisibility by q; push(0) which multiplies the stack content by q; pop() which divides the
stack content by q; and increment() which increments the top of the stack.

4.1 Stack operations: semi-synchronous implementation

In addition to agents a, b and d, we use agent f to maintain the value of q by placing it at
b+ qe1. Furthermore, two counter agents cd and cf are used. At the beginning of the stack
operations, f and cf are collocated, as are b and cd, and a and d. The basic procedure is a
traversal of the whole stack by agent a, manipulating the tokens according to the specific
command.

In push(0) (i.e. multiplying the stack content by q), a pushes cf towards b and cd away
from b. Whenever cf reaches b, a transports it back to f as well as pushes d one step closer
to b. The process terminates when d reaches b; subsequently cd and d change roles. The
detailed procedure is given in Algorithm 8 in [20]. .

In isDivisible(), a pushes cf towards b and cd towards d, until cd reaches d. Whenever cf

arrives to b, it is transported back to f . isDivisible() returns true iff at the moment when cd

reaches d, cf is at b (or f).
Operation pop() means dividing the stack by q. The process is essentially reverse of

push() – in every iteration/traversal of the stack, cf and d are pushed towards b. Whenever
cf reaches b, it is brought back to f and cd is pushed away from b. When d reaches b, cd and
d exchange their roles.

The detailed pseudocode of isDivisible() and pop() are straightforward and omitted. It is
easy to see that the total cost of each of the stack operations is bounded by O(S2) where S
is the maximal size of the stack during the operation.

2 This is similar to the simulation of PDAs by counter machines – see Chapter 8.5 in Hopcroft, Motwani,
and Ullman text [30]; however, the details of our implementation are completely different.
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4.2 Stack operations: Synchronous implementation
A straightforward application of the technique from Section 3 would need agents travelling at
speed 1

2q+1 (for multiply) and q−1
s+q (for divide), which is impossible with finite state agents.

Instead, we take q to be a power of two and implement the operation of multiply, divide
by q via repeated applications of multiplication by 2, division by 2, respectively. Thus in
this case f is placed at distance log q from b, instead of placing it at distance of q from b.
The counter cf is used to count the number of multiplications/divisions already performed,
while the counter cd is not used at all, i.e. only agents a, b, d, f and cf are needed. The
operations of doubling and halving were already described in Section 3 and shown to take
O(S) time. Since these operations are performed log q times, the total time complexity of
every stack operation is O(S log q).

4.3 Fast deterministic grid exploration
Our polytime deterministic grid exploration algorithm is described in Algorithm 7. Starting
with q = 2, and for any fixed value of q, the algorithm generates and visits the addresses
(n-tuples from a q-ary alphabet) in lexicographic order. Then the agent a moves to position
(−q,−q, . . . ,−q), doubles the value of q, and moves on to the next iteration. Agent a always
drags the stack along as it performs the exploration. The procedure explore(i) is a recursive
procedure to generate n-tuples in lexicographic order; it is called with logical stack content
an i-tuple x0. It then iteratively calls explore(i+ 1) to visit the (n− i)-dimensional cube of
side q with (x, j, 0, . . . , 0) as the origin, for j ranging from 0 to q − 1.

Note that the algorithm as shown in Algorithm 7 is presented using recursive calls for
convenience; however, i is maintained in the local state.

I Theorem 6. Let V (D) be the volume of the ball of diameter D in the n-dimensional
grid. Algorithm 7 locates the treasure in the n-dimensional grid with: (a) 6 agents and the
exploration cost of O(V (D)3) moves in the semi-synchronous model, and (b) 5 agents and
the exploration cost of O(V (D)2 logD) in the synchronous model.

Proof. The number of agents and the correctness follows easily from the construction. It
remains to sum up the cost of all stack operations on a stack of size S. As already described,
the cost of each stack operations is O(S2) and O(S log q) in the semi-synchronous and
synchronous models, respectively. The maximal stack size S is bound by qn, which is also
the number of points covered by the stack base during one iteration of the outer loop (i.e. for
fixed q). This results in the overall cost of O(S3) and O(S2 log q) in the semi-synchronous and
synchronous models, respectively. As q grows exponentially, the overall cost is determined
by the cost for the last value of q. Finally, it is known that V (D) = 2n

n!D
n. As q < 4D (the

treasure would had been found if q ≥ 2D), we get that S ≤ (4D)n = 2nn!V (D), where n is a
constant. This proves the theorem. J

5 Exploring 3-dimensional Grids using 4 Semi-Synchronous agents

Our algorithm for the 3D grids explores the sphere consisting of all points at distance q
from the origin for q = 1, 2, 3, . . ., until reaching the sphere containing the treasure. In the
Manhattan metric, the points of such a sphere are located on 8 triangular faces of a regular
octahedron whose edges contain q + 1 grid vertices.

The key to our success is an algorithm for exploring one such triangle using four agents,
in such a way that (i) the value of q is maintained by the distance between some of the agents
while exploring a triangle, so that it can be used for the exploration of all triangles of the
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octahedron, (ii) the exploration of all eight triangles can be done in a fixed order, and (iii)
the value of q can be increased for the exploration of the larger sphere after the exploration
of the sphere of radius q is finished.

The detailed description of this algorithm and the proof of the following theorem appear
in the full arXiv version of this paper [20].

I Theorem 7. Assume that the treasure is located in a 3D grid at distance D from the
origin. Algorithm Explore3Dgrid finds the treasure using 4 semi-synchronous agents, with
the exploration cost of O(D3). This is optimal as far as the number of semi-synchronous
agents used, and up to a constant factor in the exploration cost.

6 Additional Results

In this section, we list without proofs three additional results mentioned in Section 1. We
point out the sections of the arXiv version of this paper [20] where the details are given.

I Theorem 8. Finding a treasure at distance D in an n-dimensional grid can be achieved
with O(

√
n) agents, exploration cost O(Dn+

√
n), and without agents venturing further than

distance 2D away from the origin (Section 6.1 of [20]).

I Theorem 9. Consider 3 deterministic synchronous agents that run a protocol for exploring
Z3. In order to visit all grid points in the ball of radius D the distance of some agent from
the origin must have been Ω

(
D3/2) (Section 6.2 of [20]) .

I Theorem 10. Every algorithm in this paper which assumes agents with a global compass
can be extended to work with agents without it by using one additional agent in the semi-
synchronous model, and two additional agents in the synchronous model (Section 7 of [20]).

7 Conclusions and Open Questions

We studied the exploration of n-dimensional grids for n ≥ 3 by finite state automata agents.
We showed the surprising result that three randomized synchronous agents suffice to find a
treasure in an n-dimensional grid for any n; this is optimal in the number of agents. Our
strategy can also be implemented by four randomized semi-synchronous agents, or four
deterministic synchronous agents, or five deterministic semi-synchronous agents. For the
three-dimensional case, we gave a different algorithm for the deterministic semi-synchronous
case that uses only 4 agents, and is optimal. Our algorithms for n ≥ 4 require agents to
travel far away from the origin, i.e., exponential in D distance away, while looking for a
treasure which is located at distance D from the origin. We also considered the question of
whether it is possible to design algorithms that use few agents and do not require travelling
much further than distance D away from the origin in order to explore the entire ball of
radius D around the origin. We answered the question positively by describing an algorithm
that uses O(

√
n) semi-synchronous deterministic agents that never travel beyond 2D while

exploring the ball of radius D. We also showed that 3 synchronous deterministic agents
in 3 dimensions performing search, if such an algorithm exists, must travel Ω(D3/2) away
from the origin.
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Algorithm 7 Fast Deterministic Grid Exploration.
1: q = 2
2: push(0)
3: while treasure not found do
4: explore(1)
5: moveStack(−q

∑n
i=1 ei)

6: q = 2q
7: end while
8:
9: procedure explore(i)

10: if i > n then
11: return
12: end if
13: repeat
14: push(0)
15: explore(i+ 1)
16: increment()
17: moveStack(ei)
18: until isDivisible()
19: pop()
20: moveStack(−qei)
21: end procedure

Many interesting questions about the exploration of the n-dimensional grids remain open.
Is it possible for 4 deterministic semi-synchronous agents to explore an n-dimensional grid
for n ≥ 4? For n ≥ 3, can exploration of an n-dimensional grid be achieved by 3 randomized
semi-synchronous agents or deterministic synchronous agents? What is the minimum number
of agents that achieve polynomial time exploration? What is the minimum number of agents
such that the distance of the furthest visited node from the origin is limited to polynomial in
D? Is it possible to save an agent in the case of synchronous unoriented grids?
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Abstract
Addressing a fundamental problem in programmable matter, we present the first deterministic
algorithm to elect a unique leader in a system of connected amoebots assuming only that amoebots
are initially contracted. Previous algorithms either used randomization, made various assumptions
(shapes with no holes, or known shared chirality), or elected several co-leaders in some cases.

Some of the building blocks we introduce in constructing the algorithm are of interest by
themselves, especially the procedure we present for reaching common chirality among the amoebots.
Given the leader election and the chirality agreement building block, it is known that various tasks
in programmable matter can be performed or improved.

The main idea of the new algorithm is the usage of the ability of the amoebots to move, which
previous leader election algorithms have not used.
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1 Introduction

The notion of programmable matter [19], and specifically ameobots [8, 7], envisions matter
as composed of tiny weak robots called “particles”. Multiple studies have addressed what
these particles can achieve by cooperation, and how such weak entities can even cooperate.
See e.g., coating of materials [12, 11, 4], bridge building [1], shape formation [9, 3, 10, 15, 5],
and shape recovery [14]. An important primitive used often for coordinating such tasks is the
election of a unique leader. Interestingly, all deterministic algorithms either elected multiple
co-leaders in cases of symmetrical shapes of the matter, or relied on various assumptions
on the particles, such as initially forming a specific shape (no holes), or initially having a
common chirality.

1.1 Amoebot Model
Under the amoebot model [8, 7], each particle (an amoebot) occupies (alone) a different
intersection (or node) of the lines of a triangular grid embedded in the plane, as seen in
Figure 1.2 The degree of a particle is the number of particles occupying neighboring nodes. A
particle is either contracted (occupies one node) or expanded (occupies two neighboring nodes).

Each particle is activated infinitely often by an asynchronous scheduler to act. One
asynchronous round is completed when each particle is activated at least once. The activation
of a particle is atomic, i.e., it is completed before the next particle is activated. Each activation
consists of 3 stages: (i) P reads the memories of adjacent particles, (ii) P performs some
local computation and may update its own memory and/or the memories of its neighboring
particles (sometimes, this is called “sending messages”), and (iii) P may move by either
expanding or contracting.3 Specifically, an expanded particle can contract to either one of
the two nodes it occupies. While contracting out of node b, the particle can pull a contracted
particle Q that occupies a node c that neighbors b; then Q becomes expanded and occupies
both c and b. The expansion of P from node b into a neighboring node c is possible if P

is contracted and c is not occupied by another contracted particle. After the expansion, P

occupies both b (termed P ’s tail) and c (termed P ’s head). Suppose that P ’s move is an
expansion into c, already occupied by a different particle Q who is expanded (Q occupies
also a different node e). We then say that Q is pushed, Q becomes contracted and occupies
only node e. For the sake of convenience, we may sometimes view the (occupied) nodes as
the entities taking actions.

Each particle has constant size memory. In the leader election (LE) problem, each particle
has one of three LE statuses: C (candidate, the initial state), L (leader), and U (unelected).
and will permanently change its status to either U or L such that exactly one particle has
status L by the end of the algorithm.

The particles are classified according to their chirality as clockwise (CW) particles or
counter-clockwise (CCW) so that a CW (resp., CCW) particle numbers the ports correspond-
ing to the 6 incident edges in (each of) the node(s) it occupies from 0 to 5 in increasing
CW (resp., CCW) order; the edge from which this numbering starts is chosen arbitrarily
(refer to Figure 2 for an illustration). We assume that the particle chirality classification is

2 Because of space constraints, all figures are found in the full version.
3 Note that P allocates memory for each of its ports and that is the memory that can be modified by

adjacent particles. In other words, when P receives a message, it knows through which port the message
was sent and by extension which particle sent it.
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determined by a malicious adversary and that initially, a particle does not know whether its
chirality (or a chirality of any other node) is CW or CCW.

The configuration of the particle system at any given time is comprised of the location and
state of each particle; it is contracted if all particles are contracted. We follow the common
practice (see [6]) and assume that the particles are, initially, in a contracted configuration.
The algorithm terminates in a contracted configuration.

Define a graph G(t), called the shape, induced on the grid by the nodes occupied by
particles at time t and an edge connects two graph nodes if they represent two neighboring
grid nodes. Following the common practice in the amoebot model literature (see [8]), it
is required that the shape is connected at all times. Since the shape is a (finite) planar
graph associated with a planar embedding, it partitions the plane into faces (see [16]), where
exactly one of them is the outer face. The occupied nodes adjacent to the outer face are said
to form the outer boundary of the shape. An inner face that includes at least one unoccupied
node is called a hole in the shape (refer to Figure 3 for an example). The occupied nodes
adjacent to a hole are said to form an inner boundary. The length of a boundary B, denoted
LB , is the number of nodes on B; those are boundary nodes, occupied by boundary particles.
Define Lmax = max

B
LB .

1.2 Related Work
Randomized algorithms, assuming common chirality in the initial configuration, are given in
[13, 6]. A deterministic algorithm was presented in [15] to both elect a leader and obtain
common chirality for the natural special case that the shape did not contain holes; multiple
leaders could be elected in some cases (a constant number). They then used the leader(s) to
coordinate shape transformation. The no-holes assumption is replaced in [2] by an assumption
that the particles start with a common chirality. In a brief announcement, they outlined an
interesting algorithm that still may end with several leaders in cases of high symmetry. The
current paper adapts and uses a large part of the algorithm of [2] as a procedure. In [17],
both common chirality and no-holes are assumed to elect a unique leader. That algorithm
also assigns, to each particle, an identifier that is unique within a radius of k. Moreover,
beside triangular grids, their algorithm can work also on the square and king grids.4

The type of asynchronous scheduler used affects the leader election results. Typically in
the literature [13, 6, 17], the scheduler provides conflict resolution mechanisms for movement
and communication such that particle activations can be analyzed sequentially, i.e., the
activation of each particle is atomic. As the current paper demonstrates, it is not impossible
to elect a leader deterministically (unless, perhaps, in models when a scheduler is allowed to
schedule such particles simultaneously [2, 15]).

1.3 Technical Challenges and Ideas
Multiple ideas are combined here in order to address different cases. Consider, for example, a
polygon with a hole. One approach in previous algorithms, assuming no holes, was to remove
(from being candidates) boundary nodes repeatedly until only one remains. In the case of
one hole (addressed by one of our subroutines), the present algorithm utilizes the ability of
particles to move. Intuitively, they may move (eventually) to the center of the polygon, and
the particle reaching the center first is the elected one. (Thanks to the sequential scheduler,
only one can reach a certain node first).

4 It is possible to adapt the current paper’s leader election algorithm to run on king grids, but this would
require some work, while it follows in a natural way for the algorithm of [17].
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This, of course, requires our algorithm to perform various maneuvers, to identify the
center and to make sure no additional holes remain. In particular, particles have to identify
the outer boundary, move outward in order to gain a symmetric shape, and then move inward
together so no additional holes are formed. Since multiple polygons may be moving at the
same time, two polygons may “collide” and not manage to finish the maneuver. There, we
use the idea of reset, to restart the algorithm for the new shape. We managed to upper
bound the number of such resets.

Because of the existence of bridge (and semi-bridge particles) (to be defined in the next
section, but intuitively particles whose removal disconnects the shape), solving for a single
simple polygon is not enough. For example, consider the case that the shape is a long line
(possibly connecting simple polygons). Here, we use the fact that there exists only one outer
face (borrowing its detection from the algorithm of [2], with some necessary adaptations).
The partial leaders of the simple polygons cooperate to define a tree that spans the simple
polygons. Final leader election is then performed over the tree.

The assumption of common chirality is used throughout the paper. To remove this
assumption and have particles agree on chirality, we use again the detection of the outer
face. The particles on the outer boundary agree on chirality (this turned out to be easier for
us than agreeing on a leader among them, using the local symmetry breaking provided by
the scheduler). Then, the outer boundary particles coordinate and propagate this shared
chirality to the other particles within the shape.

1.4 Our Contributions and Paper Organization
The current paper presents the first deterministic protocol that elects exactly one leader on
any contracted configuration, even without assuming common chirality. For a comparison of
this result to known ones, please see Table 1.

The building blocks may be of interest by themselves. The assumption of common
chirality is removed last, in Section 5. Other building blocks are: maximal independent
set (MIS) protocol, boundary detection, leader election on a convex polygon without sharp
vertices, and leader election on a spanning tree. They are are given in Section 3. Additional
definitions required to understand the paper are present in Section 2. The main protocol,
Leader− Election− By− Moving (before removing the common chirality assumption), is
presented in Section 4 (together with some other small components, such as broadcast with
termination detection, and reset).

Table 1 Table comparing the result on leader election to those of previous papers. “No holes”
refers to whether the algorithm requires the graph to have no holes initially or not. “Multiple leaders”
refers to whether the leader election algorithm may output multiple leaders in certain cases or always
outputs a unique leader. The length of the largest boundary in the initial configuration is Lmax.
The length of the outer boundary in the initial configuration is L. The number of particles in the
configuration is denoted by n. The terms r and mtree are unique to paper [17].

Paper Common Randomness No holes Multiple Running time
chirality leaders

[13] Yes Yes No No O(Lmax) rounds on expectation
[6] Yes Yes No No O(L) rounds with high probability
[2] Yes No No Yes Not analyzed in paper
[15] No No Yes Yes O(n) rounds
[17] Yes No Yes No 2(r + mtree + 1) rounds

Current Paper No No No No O(Ln2) rounds
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2 Preliminaries: Shape and Boundaries

We need quite a few definitions related to the shape. A local boundary of a particle is an
interval i, i + 1, . . . , i + j mod 6 of its ports that lead to unoccupied grid nodes. Note that a
contracted particle may have up to three local boundaries, each a part of some boundary of
the shape. However, all three may be parts of the same boundary of the shape. Henceforth,
we use only the term “boundary” even for local boundaries, when the context makes the
usage clear. A bridge particle is a contracted boundary particle occupying a node b lying on
i local boundaries (note that 1 ≤ i ≤ 3), each of which is a part of the outer boundary, and
having i occupied adjacent nodes in the grid. An example of bridge particles and semi-bridge
particles (see next paragraph) with bridge edges is illustrated in Figure 4.

A semi-bridge particle is a contracted boundary particle occupying a node b lying on 2
outer boundaries, and having 3 or 4 occupied adjacent nodes in the grid. If b is occupied by
a bridge or semi-bridge particle, c is an adjacent occupied node, and both sides of the edge
(b, c) are on the outer boundary, then edge (b, c) is called a bridge edge.5

For a boundary node b occupied by particle P with chirality C and lying on boundary B,
define b’s predecessor node a and successor node c w.r.t. B and C as the previous occupied
node and the next occupied node along B according to C, respectively (refer to Figure 5
for an illustration).6 Note that node b admits such predecessor a and successor c for each
boundary b lies on.

The boundary count of b w.r.t. B and C measures the deviation of the line segment formed
by b and its successor from the line segment formed by b’s predecessor and b w.r.t. B taking
C into account. More formally, the boundary count of b w.r.t. B is a function of C and the
angle ∠abc that takes on one of the values −1, 0, 1, 2, or 3 (as illustrated in Figure 6).7 Let i

be the unique integer that satisfies ∠abc = 180◦ − i ∗ 60◦. Let x and y be the port numbers
of b corresponding to edges (b, a) and (b, c), respectively. If (x − y) mod 6 = 4, then the
boundary count of b w.r.t. B is −i, else it is i. When the boundary referred to is clear from
context, it is not mentioned when giving the boundary count for a node.

Consider an occupied node b on boundary B with boundary count w. The following
definitions for b are all w.r.t. B. Node b is called a vertex when w = −1, 1, 2, or 3.8 When
w = 2, b is a sharp vertex. Vertex b is concave when w = −1 and convex when w = 1 or
2. A shape whose outer boundary vertices are all convex w.r.t. the outer boundary is a
convex polygon. A shape consists of two (or more) simple convex polygons sharing the same
contracted semi-bridge particle(s) P (, Q, R, etc.) when (i) P (, Q, R, etc.) has no adjacent
bridge edges, (ii) the shape is disconnected by removing P (, Q, R, etc.), and (iii) all vertices
other than those occupied by P (, Q, R, etc.) are convex vertices. Notice that the definition
of convex polygon relates only to its outer boundary nodes. Specifically, no assumptions are
made on the presence of holes within the shape.

5 Note that a semi-bridge particle may have 3 adjacent occupied nodes and lie on 2 outer boundaries and
1 inner boundary. In this case, the particle still has 1 bridge edge.

6 Throughout, we use w.r.t. to abbreviate “with respect to”.
7 Note that it is not possible to have a node with boundary count -2 or -3 w.r.t. some boundary.
Also note that the boundary count and its application to calculating the count of a segment, defined
and used in the full version, is similar to how [2] uses vertex labeling in deciding the count of a segment
in their paper. The actual measurement of the boundary count is similar to how [13] measures the
angles between the direction a token enters and exits an agent.

8 Notice that the angle bisector of a vertex with boundary count 1 or -1 overlaps with a line of the
triangular grid.
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3 Building Blocks

Let us now present the four building blocks in brief, except Subsection 3.3 that is more
detailed. The full version contains all missing details. The description uses some additional
definitions. Each boundary particle P maintains a binary flag seg_head in each boundary
node b that P occupies w.r.t. each boundary that b lies on. When P occupies a boundary
node and has seg_head = true for that boundary, we say P is a seg-head for that boundary.
Consider two seg-heads P1 and P2 on boundary B, occupying nodes b1 and b2 with predecessor
nodes c1 and c2 and successor nodes d1 and d2 w.r.t. B, respectively. P2 is the previous
(resp., next) seg-head before (resp., after) P1 iff the particles in successor (resp., predecessor)
nodes from b2 to b1 w.r.t. B (excluding b1 and b2) have seg_head set to false.

Let P2 be the next seg-head after P1 w.r.t. B. P1’s segment is the sequence of successor
nodes from b1 to c2 with head b1 and tail c2. It is said that P1’s segment is before P2’s
segment or P2’s segment is after P1’s segment w.r.t. B. For the sake of convenience, when
referring to a procedure/action initiated by the head of a segment involving the participation
of the particles in that segment, we just say that a segment runs the procedure/performs
the action. It is important to note that a particle P may participate in multiple segments
simultaneously (one per boundary P lies on). The algorithm needs to be careful to prevent
contradicting actions of such segments (for example, preventing one segment from expanding
P into one node while another segment is trying to expand P into a different node).

3.1 MIS Selection
To perform Procedure MIS− Selection, P joins the MIS iff no neighbor of P has yet joined
the MIS. The following trivial observation breaks with impossibility results in other models
when the scheduler is not asynchronous.9

I Observation 1. When run by particles, procedure MIS− Selection deterministically
computes an MIS in one round.

3.2 Boundary Detection
Boundary− Detection is a parameterized procedure run by boundary nodes with common
chirality to tell each such node b, for each boundary B that b lies on, whether B is an inner or
outer boundary. This procedure is a modification of the first phase of the algorithm presented
in [2], specifically adapting their subroutine StretchExpansion to handle (1) inner boundaries
and (2) an edge case that may not be needed (and is not addressed) in [2] but is needed here
(see Figure 7).10 These adaptations result in subroutines Inner− Stretch− Expansion and
Outer− Stretch− Expansion, respectively. Due to space constraints, the entire modified
boundary detection procedure and proof of the theorem are presented in the full version.

I Theorem 1. When executed by contracted boundary particles, procedure Boundary−
Detection terminates in O(L2

max) rounds resulting in each boundary node b knowing, for
each boundary B it is on, whether B is an inner or outer boundary. If b has seg_head = true

w.r.t. boundary B, then b knows how many nodes k, k ∈ {1, 2, 3, 6}, are also segment heads
w.r.t. B.

9 In particular, this procedure selects a leader in a ring of 3 particles.
10Recall that [2] is a brief announcement, so this edge case may be handled in the full version of their paper.
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3.3 Leader Election on a Convex Polygon without Sharp Vertices
Procedure Convex− Polygon− Leader− Election relies on 3 subroutines, described below.
Note that the outer boundary nodes of a convex polygon without sharp vertices form a
hexagon in the grid. Let b be a vertex, occupied by particle P , with successor node d w.r.t.
the outer boundary. Define P ’s side as the side of the hexagon containing b and d.

Let LSLS stand for largest same length sides and SSLS stand for smallest same length
sides. Every possible hexagon is isomorphic to one of the following four. See Figures 8-13.
1. Category 1: The hexagon has exactly either 1 LSLS or 1 SSLS.
2. Category 2: The hexagon has either 2 LSLS and 4 SSLS, 4 LSLS and 2 SSLS, or 2 LSLS,

2 SSLS, and 2 other same length sides.
3. Category 3: The hexagon has exactly 3 LSLS and 3 SSLS.
4. Category 4: The hexagon has 6 sides of the same length.

Let P0, P1, . . . Pk−1 be the seg-heads on the outer boundary such that P(i+1) mod k is
the next seg-head after Pi. Subroutine Compare− Length(x) is initiated by a seg-head Pi

to compare the length of Pi’s segment with that of P(i+x) mod k’s segment. The procedure
simulates the way a Turing machine would perform a similar task, where the segments
would be segments of the machine’s tape. Since this is a known method, the details are
omitted (refer to [15] for an example). The proof of the following lemma can be found in the
full version.

I Lemma 2. Let x be a constant and assume that there are L nodes on the outer boundary. If
the nodes from Pi’s segment’s head to P(i+x) mod k’s segment’s tail run Compare− Length(x),
then the subroutine terminates in O(L2) rounds, resulting in Pi knowing the size comparison
between the two segments.

Consider two parallel lines M1 and M2 of the grid. The mid-line(s) between M1 and
M2 is the line(s) parallel to both M1 and M2 which is either equidistant from both M1 and
M2 or not closer to one of the lines by more than a unit distance. Consider a category 2
hexagon where opposite outer boundary vertices b1 and b2, occupied by particles P1 and P2
respectively, have seg_head = true and the remaining nodes have seg_head = false. There
exist either 1 or 2 mid-lines between P1’s side and P2’s side. Let c1 and c2, occupied by
particles Q1 and Q2 respectively, be nodes on P1 and P2’s segments respectively lying on the
mid-line (or on the closer mid-line to the head of the segment in the case of 2 mid-lines). The
outer boundary particles run subroutine Mid− Line to find c1 and c2 and subsequently Q1
and Q2 set seg_head = true and P1 and P2 set seg_head = false. See Figures 10 and 11
for examples. A more detailed description of the subroutine is found in the full version. The
following observation captures the running time of Mid− Line.

I Observation 2. Let there be L outer boundary nodes on a category 2 hexagon with opposite
vertices b1 and b2, occupied by particles P1 and P2 respectively, with seg_head = true

and remaining nodes with seg_head = false. Subroutine Mid− Line, run by the L nodes,
terminates in O(L2) rounds, such that nodes c1 and c2, which are the closest nodes in P1
and P2’s segments lying on mid-lines between P1’s side and P2’s side respectively, now have
seg_head = true and b1 and b2 have seg_head = false.

Intuitively, when the segment heads are on the mid-line as promised by Observation
2, if they move towards the center, they can get next to each other and elect one of them
as a leader. The following subroutine Snake− Movement(D, x) (described in more detail in
the full version), is used for election in hexagons of several types. Consider a path p of w

nodes occupied by contracted particles with head node b occupied by particle P and tail
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node c. P has seg_head = true w.r.t. the outer boundary and the remaining particles have
seg_head = false. See Figure 14 for an example. Particles in p (termed snake p) expand, so
p becomes longer and its head P moves in direction D for distance x ≤ w (without breaking
connectivity and while keeping the tail node of p fixed at c). P is the one expanding first, and
the particles perform a sequence of expansions and contractions until reaching the desired
total length of p. Note that x may not be a constant. Hence, this value is represented
distributively on the particles of p by them simulating a tape of a Turing machine. (The
value of x is also input to the subroutine and used for the computing in the same manner).

Note that only a segment on the outer boundary can perform this procedure, hence, snake
p will not belong to two different segments giving it contradictory instructions to move. One
thing that may happen is that the head of snake p reaches a particle Q not in snake p. If
Q belongs to another snake p′ then p stops. Otherwise, p continues moving in direction D

simply by annexing Q who now becomes the head of the snake (that we still call snake p).
The proof sketch of the following lemma can be found in the full version.

I Lemma 3. Assume that L contracted particles of a snake run Snake− Movement(D, x),
where x ≤ L. Then, the subroutine terminates in O(x2) rounds without breaking connectivity.
On termination, either the snake head reached a node at distance x away from the head of
the snake in direction D, or the next particle in direction D belongs to another snake.

Now, procedure Convex− Polygon− Leader− Election is described. Note that illustra-
tions expanding on the description are found in the full version. Initially, the 6 particles that
occupy vertices on the outer boundary set seg_head = true while the remaining particles in
the polygon set seg_head = false. Each of these 6 particles initiates Compare− Length(x)
for 1 ≤ x ≤ 6, sends messages to the remaining 5 particles with the results of these compar-
isons, and determines which category hexagon it lies on.11 The procedure follows one of the
following four cases:
1. Category 1 hexagon: This case is trivial - the particle at the head of the smallest or

largest side becomes the leader. See Figures 8 and 9.
2. Category 2 hexagon: If there are exactly 2 LSLS, then those sides’ polygon vertices keep

seg_head = true and the remaining vertices set seg_head = false. Else there are 2
SSLS whose vertices keep seg_head = true while others set seg_head = false. Call
particles occupying vertices with seg_head = true, P1 and P2, and denote the direction
from the successor of P1 to P1 as D1 (similarly denote D2). Now, P1 and P2 initiate
Mid− Line resulting in two new particles Q1 and Q2 setting seg_head = true and P1
and P2 setting seg_head = false (refer to Figures 10 and 11 for examples).
The resulting segments of Q1 and Q2 form snakes p1 and p2 with lengths w1 and w2 re-
spectively that run Snake− Movement(D1, w1) and Snake− Movement(D2, w2) in directions
D1 and D2, respectively. In addition to the usual termination conditions when running
Snake− Movement(D1, w1) and Snake− Movement(D2, w2), the subroutines also terminate
when the head of p1 is adjacent to that of p2. Then, the two heads run MIS− Selection
and the particle that joins the MIS becomes the leader.

3. Category 3 hexagon: Let P1, P2, and P3 occupy vertices b1, b2, and b3 such that P1, P2,

and P3’s sides are the 3 largest sides. The remaining particles set seg_head = false. See
Figure 12. Let D1, D2, and D3 be the directions along the angle bisectors of b1, b2, and
b3 respectively toward the center of the hexagon. The two phase procedure followed by
P1’s segment is now described. (P2’s and P3’s segments act similarly).

11With this information, a particle can compute, using a constant amount of space, the total order on
the lengths of sides of the hexagon. Combined with information of which sides are equal in length, a
particle can determine both the category of the hexagon it lies on and the type of its own side.
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Notice that P1’s segment encompasses 1 SSLS and 1 LSLS with lengths x and y respectively.
In phase 1 (simulating a Turing machine), the values of f = b(y − x)/3c, g = x + f , and
q = (y − x) mod 3 are computed and stored in P1’s segment. If q = 2, g is incremented
by 1. Now P1 sends a message to the particle Q1 located f nodes from the head of the
segment, telling Q1 to set seg_head = true and store D1, f , g, and q. P1 subsequently
sets seg_head = false. Q1 is now the head of a segment. Similarly, some Q2, Q3 replace
P2, P3 as heads of their segments. Now Q1 sends a message along the outer boundary
to Q2 and Q3 indicating that the first phase is over. Once Q1 receives similar messages
from Q2 and Q3, the second phase begins.
In phase two, Q1’s segment runs Snake− Movement(D1, g). If q = 0, all three snakes move
towards the same final node b. Let p be the snake such that its head particle R is the
first to occupy b. R waits until the remaining two snakes reach it and then becomes the
leader. If q 6= 0, the final nodes occupied by the heads of the three snakes form a triangle.
Let R be a head of the snake that occupies one of the triangle’s nodes. R waits until the
other two triangle’s nodes are occupied and then runs MIS− Selection. The particle
chosen to be in the MIS becomes the leader.

4. Category 4 hexagon: All vertices have seg_head = true (e.g., Figure 13). The procedure
here is a simplified version of the case of Category 3 hexagon. See the full version.

I Theorem 4. Procedure Convex− Polygon− Leader− Election run by contracted par-
ticles of a convex polygon without sharp edges results in exactly one leader being elected
deterministically in O(L2) rounds, where L is the number of particles on the outer boundary.

Proof Sketch. The readers can convince themselves that all types of hexagons have been
accounted for in the four hexagon categories. Let us prove correctness for each category
separately. The case of category 1 is trivial.

In a category 2 hexagon, Observation 2 guarantees that particles are chosen such that they
lie on the same mid-line or adjacent mid-lines. The distance needed to be traveled by each
segment until both heads are adjacent is ≤ L/2. Since the segments divide the nodes of the
outer boundary equally, each segment has enough contracted particles such that it is possible
to traverse this distance by expanding every particle in the segment. Moreover, no two snakes
can block each other before reaching that distance. MIS− Selection is guaranteed to choose
exactly one leader due to Observation 1.

For category 3, inscribe the hexagon in an equilateral triangle with vertices A, B, and
D, centroid C, and F trisecting AB, as seen in Figure 15. Observe that each side of the
triangle is of length 2x + y and |AF | = |FC|. When (y − x) mod 3 = 0, FC coincides with
a grid line and all segments move towards C using Snake-Movement(). However, if (y − x)
mod 3 6= 0, the segments move to nodes that form a triangle around the centroid, in which
case, MIS− Selection is run and Observation 1 guarantees a leader is selected. Note that
no two snakes can block each other before reaching the meeting point.

The proof for category 4 is a simplified version of the proof for Category 3. Thus for all
four types of hexagons, a leader is chosen. The running time is analyzed in the full version. J

3.4 Leader Election on a Spanning Tree
Procedure Spanning− Tree− Leader− Election deterministically elects a unique leader
when participating particles form a spanning tree and have common chirality. Note that this
can also be performed by the algorithms of [15, 17]. We defer the description to the full
version and give the following theorem without a proof.
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I Theorem 5. Procedure Spanning− Tree− Leader− Election run by particles forming
a spanning tree of diameter x results in exactly one leader being elected deterministically
in O(x) rounds.

4 Leader Election

An overview of deterministic algorithm Leader− Election− By− Moving for electing a
unique leader is now given, assuming common chirality (an assumption removed later).
Additional details and proofs appear in the full version.

The initial contracted configuration of n particles forms a connected shape G(0) at the
beginning of round 0 with all particles having status C. H(t), K(t), F1(t), and F2(t) are
virtual graphs at the beginning of round t that are maintained by the particles distributively
and are initially empty.12 Note that the round number is subsequently dropped, as it is
apparent from context.

The algorithm has six phases. Graph H is used throughout the algorithm for various
purposes depending on the phase of the algorithm. Graph K is a subgraph of G that holds a
spanning tree of all particles and is important for phase 6 of the algorithm. Graph F1 is a
forest of trees of all particles used throughout the algorithm. Graph F2 is a forest of trees of
a subset of the particles used only in phase 5 of the algorithm.

Each particle P maintains a phase counter in [1 . . . 6] and appends its value to each
message sent. If P receives a message from another particle Q in a different phase, P does
not process Q’s message until P is in the same phase as Q.13

1. Initialization: At the end of this phase, every particle is contracted and each boundary
particle has identified the type (inner/outer) of each of its boundaries. Furthermore,
graph H consists of a set of simple convex polygons, where two simple polygons may
share the same semi-bridge particle.
Each boundary particle runs Boundary− Detection for each boundary B it lies on
to determine whether B is an inner or outer boundary. Once Boundary− Detection
terminates, all particles not on the outer boundary set seg_head = false. Thus, there
are k, k ∈ {1, 2, 3, 6}, particles with seg_head = true located on the outer boundary.
Call these seg-heads P1, P2, . . . , Pk. If k = 1, change P1’s status to L and broadcast
(by simple flooding [18]) a final_terminate message to other particles to terminate the
algorithm and change their statuses to U.
Each particle that is not a bridge or semi-bridge adds itself and its edges to adjacent
nodes to H. Otherwise, semi-bridge particles add themselves and their non-bridge edges
to H. Note that all particles are contracted at the end of this phase.

2. Spanning forest formation: Each outer boundary node a becomes the root of a tree T

and uses the standard broadcast-&-echo method [18] to recruit nodes to its tree. Each
node b joins exactly one tree T . Termination detection of the phase is coordinated by
seg-heads P1 to Pk, after all the broadcast-&-echoes terminate. Thus a spanning forest F1
of trees is formed with outer boundary particles as roots of the trees. Furthermore, each
node knows its parent and children in the tree. Note that all particles remain contracted
during the phase.

12For each graph, each particle maintains locally its own edges in the graph and whether it is in the graph
or not. Each particle allots a constant amount of memory for each of the graphs G, H, K, F1, F2 and
updates them as necessary when activated.

13 It is trivial to return to a contracted configuration from the configuration the algorithm terminates in, so
this “7th phase” is not described. Informally, it consists of particles that performed Snake− Movement()
as part of Convex− Polygon− Leader− Election during phase 5 reversing their movements.
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3. Convexification: The subgraph H, induced by removing bridge particles from the shape,
is a collection of polygons. Each outer boundary particle P w.r.t. H that is a concave
vertex and not a semi-bridge particle expands towards the outer boundary along P ’s
angle bisector while coordinating the pulling of P ’s tree with it. P occupying node b and
moving to node c completes one step of convexification when it has moved to node c and
all particles in the tree rooted at P in F1 are back in a contracted state. Convexification
is performed repeatedly by particles until no more steps of convexification are possible
(refer to Figure 16 for an example).
At the same time, each seg-head Pi (1 ≤ i ≤ k) continuously checks its segment for any
concave vertices in H. If none are found, the k seg-heads coordinate to terminate this
phase. All particles previously in H update their edges in H to reflect current connections
to other particles. Bridge and semi-bridge particles add themselves and their bridge edges
to virtual graph K. Note that all particles are contracted at the end of this phase.
The phase as described so far may be stopped before convexification completes if two
types of situations arise. Type 1 : during the movement outward, an outer boundary
particle that moved in some direction D to node b in one step of convexification finds out
that the node adjacent to b in direction D is occupied. Type 2 : a semi-bridge particle,
bridge particle, or outer boundary particle stops being one. Both types reflect a change
in the particles occupying the outer boundary, possibly resulting in particles previously
with seg_head = true no longer lying on the outer boundary. The algorithm then resets
to phase 1, as described in the full version (the reset procedure also makes sure that all
the particles are reset to a contracted state).

4. De-sharpification: In this phase, certain particles remove themselves from H recursively
until only convex polygons and two-node lines remain in H. Consider a particle P in H.
If P is not a semi-bridge particle and is a sharp vertex w.r.t. the outer boundary in H,
then P removes itself from H. If P is a semi-bridge particle and its occupied adjacent
nodes are located at ports x, x + 1, x + 3, and x + 4 ( mod 6) for some positive integer
value of x, then P removes itself from H.
At the same time, each seg-head Pi (1 ≤ i ≤ k) checks its segment continuously for any
sharp vertices in H. If none are found, Pi coordinates with the other k − 1 seg-heads
to terminate the phase. The induced subgraph H at the end of the phase is a set
containing just two types of polygons: (a) lines consisting of 2 nodes as well as (2) convex
polygons without sharp vertices. Note that all the particles remain contracted at the end
of this phase.

5. Leader election on individual polygons and spanning tree formation: This phase consists of
two stages. In stage one, each convex polygon and each line in H elects a unique polygon
leader using Convex− Polygon− Leader− Election and MIS− Selection, respectively.
In stage two, each particle P chosen as a polygon leader in stage one, acts as a root and
forms a tree that spans its connected component of G \K. The nodes in K that are
reachable from P over G \K are leaves of P ’s tree. Call this forest of polygon leaders
rooted trees F2.
The termination condition is somewhat long to describe; see the full version for details.
Very informally - the polygons are connected by semi-bridge particles. Hence, when a
polygon leader finished constructing its tree over the polygon, the semi-bridge particle(s)
is notified. The seg-head particles Pi (1 ≤ i ≤ k) check continuously the semi-bridge
particles to know when the construction of F2 is done.
At the end of this phase, K is updated to contain all particles in graph G with edges
restricted to bridge edges and edges of F2. It is shown later in a lemma that K now forms
a tree, spanning all the candidates (status C particles).

ICALP 2019



140:12 Deterministic Leader Election in Programmable Matter

6. Leader election on a spanning tree: Each particle participates in
Spanning− Tree− Leader− Election on the graph K. Once a particle P changes
its status to L, P broadcasts a final_terminate message by flooding along K. This
results in one particle, the leader, having status L and the remaining particles having
status U when the algorithm terminates.

The following lemmas apply to the algorithm, with proofs deferred to the full version.

I Lemma 6. Phase 1 terminates in O(L2
m) rounds, where Lm is the length of the largest

boundary of the shape, resulting in each boundary particle knowing what type each of its
boundaries is and k, k ∈ {1, 2, 3, 6}, particles, P1, P2, . . . , Pk, lying on the outer boundary
with seg_head = true. Furthermore, at the end of the phase, H consists of a set of simple
convex polygons, where two simple polygons may share the same semi-bridge particle. If
k = 1, the algorithm terminates with one particle as leader in an additional O(n) rounds.

I Lemma 7. Phase 2 terminates in O(n) rounds, resulting in a disjoint forest of trees F1
covering every particle.

I Lemma 8. Phase 3 terminates in O(Ln) rounds, resulting in either a reset or a graph H

containing a set of simple convex polygons, where two simple polygons may share the same
semi-bridge particle.

I Lemma 9. There can be at most L resets occurring in phase 3, where L is the length of
the outer boundary of the original shape.

I Lemma 10. Phase 4 takes O(n) rounds to complete, resulting in H containing only a set
of lines consisting of 2 nodes and convex polygons without sharp vertices.

I Lemma 11. Phase 5 terminates in O(L2 +n) rounds resulting in K containing all particles
and forming a spanning tree.

I Lemma 12. Phase 6 terminates in O(n) rounds resulting in a unique leader with status L
being chosen and all other nodes having status U.

Combining the above lemmas together, we get the desired results.

I Theorem 13. Algorithm Leader− Election− By− Moving, run by n particles in a con-
tracted configuration, elects a unique leader deterministically and terminates in O(Ln2)
rounds, where L is the number of particles on the outer boundary of the original shape.

Proof Sketch. From Lemmas 6, 7, and 8, the combined running time of one iteration of
phases 1 to 3 is O(n2) rounds since Lm = O(n). There can be at most O(L) iterations of
phases 1 to 3, by Lemma 9. Adding in the running times of phases 4 to 6 from Lemmas 10, 11,
and 12, it is clear that the total running time of the algorithm is O(Ln2) rounds.

The correctness directly follows from Lemma 12. J

5 Chirality Agreement

In this section, procedure Chirality− Agreement is described. Consider n contracted
particles forming a connected shape with the length of maximum boundary being Lmax. The
particles run Chirality− Agreement and terminate in O(L2

max + n) rounds, resulting in all
particles agreeing on the same chirality and forming the original shape.
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Informally, after the boundary particles identify their boundaries, they first agree on
chirality separately for each boundary they lie on. This is easier than leader election given
the local symmetry breaking built into the model (atomicity of the scheduler). This is enough
to allow the particles to identify the outer boundary similarly to the way it was done for
the leader election. Finally, the chirality agreed upon for the outer boundary becomes the
chirality of everyone. A detailed explanation of the procedure along with the proof of the
following theorem can be found in the full version.

I Theorem 14. Procedure Chirality− Agreement, run by n contracted particles forming
a connected shape, terminates in O(L2

max) rounds, where Lmax is the length of the largest
boundary in the shape, resulting in all particles having common chirality and retaining the
original shape.

6 Conclusion and Future Work

The results of this paper leave several lines of research open. First, the algorithms here
require the particles to move for leader election and for chirality agreement. Is it possible
to solve either problem deterministically in the given setting without requiring particles to
move? Second, can one reduce the running time or provide a matching lower bound?
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Abstract

A temporal graph is a graph whose edge set can change over time. We only require that the edge set
in each time step forms a connected graph. The temporal exploration problem asks for a temporal
walk that starts at a given vertex, moves over at most one edge in each time step, visits all vertices,
and reaches the last unvisited vertex as early as possible. We show in this paper that every temporal
graph with n vertices can be explored in O(n1.75) time steps provided that either the degree of the
graph is bounded in each step or the temporal walk is allowed to make two moves per step. This
result is interesting because it breaks the lower bound of Ω(n2) steps that holds for the worst-case
exploration time if only one move per time step is allowed and the graph in each step can have
arbitrary degree. We complement this main result by a logarithmic inapproximability result and
a proof that for sparse temporal graphs (i.e., temporal graphs with O(n) edges in the underlying
graph) making O(1) moves per time step can improve the worst-case exploration time at most by a
constant factor.
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1 Introduction

Temporal graphs, or time-varying graphs, are graphs whose edge set changes over time. Due
to the prevalence of dynamic networks whose links change over time in many application
settings (e.g., wireless mobile networks, transportation networks, social networks), the study
of algorithmic aspects of temporal graphs has received increasing attention recently [14].
A temporal graph G with lifetime τ is a sequence of graphs Gi = (V,Ei), for i = 1, . . . , τ ,
that all have the same vertex set, but possibly different edge sets. A particular problem of
interest is the temporal exploration problem (TEXP) where an agent starts at a given vertex
s ∈ V and aims to visit all vertices in V as quickly as possible (i.e., minimizing the time
step in which the last unvisited vertex is reached) while making one move (either stay at
the current vertex or move to a neighboring vertex in the current graph) in each time step.
The existence of such an exploration is guaranteed if the graph Gi in each time step is a
connected graph [13], and so it has become customary to study TEXP for temporal graphs
with this property [6, 7, 13]. We make the same assumption throughout this paper. The
number of vertices of the temporal graph under consideration is denoted by n.

It is known that every temporal graph (under the assumption that the graph in each step
is connected) can be explored in O(n2) steps and that there are temporal graphs that require
Ω(n2) steps to be explored [6]. The construction of temporal graphs that require Ω(n2) steps
for an exploration from [6] produces temporal graphs for which the graph in each step has a
vertex of high degree (the graph in each step is a star, so one vertex has degree n− 1) and
in which the edge set changes in every step (the center of the star changes in each step).
This poses the natural question whether a better upper bound on the worst-case exploration
time holds if any of these properties is avoided, i.e., if the graph in each step has bounded
degree or if the edge set of the graph changes only in every other step (which is, up to a
factor of two, equivalent to allowing the agent to make two moves instead of one in each
step). A first step towards answering this question was made in [7], where it was shown
that O(log ∆ · n2

logn ) steps1 suffice for the exploration if the graph in each step has maximum
degree at most ∆. For constant ∆, this proves that O( n2

logn ) steps suffice.
In this paper, we present a substantial further improvement by showing that O(n1.75)

steps suffice for an exploration if either the graph in each step has bounded degree, or if the
graph in each step has arbitrary degree but the agent can make two moves in each step (or,
equivalently, if the agent can make one move per step but the graph changes only in every
other step). Surprisingly, the improvement for both cases follows from the same analysis: The
key insight is that the better bound on the number of time steps required for an exploration
can be proved if the graph in each time step admits a spanning tree of bounded degree.
The existence of such a spanning tree is obvious if the graph itself is connected and has
bounded degree, and it follows in the model with two moves per step because the square of
any connected graph has a spanning tree of bounded degree.

To complement our positive result, we also show that letting the agent make c moves
per step, for any constant c, cannot improve the worst-case exploration time for any family
of temporal graphs where the underlying graph (the union of the graphs in all steps) has
O(n) edges by more than a constant factor. Furthermore, we show that it is NP-hard to
approximate the exploration time with approximation ratio better than c logn for some
constant c, both for the case of bounded degree and the case of two moves per step.

1 The conference paper [7] proves a weaker bound of O(∆ log ∆ · n2

log n ), but a simple change in one
calculation shows that the factor ∆ can be avoided.



T. Erlebach, F. Kammer, K. Luo, A. Sajenko, and J. T. Spooner 141:3

The remainder of the paper is organized as follows. Section 1.1 discusses related work.
Preliminaries are given in Section 2. The main results, showing that exploration in O(n1.75)
time steps is possible for the case of bounded degree and the case of two moves per step,
are presented in Sections 3 and 4, respectively. The result that bounds the improvement
obtainable by using c moves per step for sparse temporal graphs and the inapproximability
results appear in Sections 5 and 6, respectively. Section 7 concludes the paper.

1.1 Related Work
Brodén et al. [3] studied a temporal analogue of the traveling salesperson problem (TSP)
in which the graph is a complete graph in every step and the cost of every edge is either
1 or 2 in each time step, with each edge being allowed to change its cost at most k times
over the graph’s lifetime. They provided an approximation algorithm with approximation
ratio 2 − 2

3k . Michail and Spirakis [13] studied this model as well, showing the general
problem to be APX -hard and presenting a (1.7 + ε)-approximation algorithm. They also
considered the temporal exploration problem and showed that it is NP-hard to decide if
a temporal graph can be explored if no restrictions are placed on the graph in each step.
They therefore suggested making the assumption that the graph is connected in each step,
which has turned out to be a very useful model to study. They proved that it is NP-hard
to approximate the temporal exploration problem under this assumption with ratio 2− ε.
Erlebach et al. [6] strengthened this result and proved that approximation with ratio n1−ε

for any ε > 0 is NP-hard. Moreover, they constructed a concrete family of temporal graphs
for which exploration takes Ω(n2) time. They also presented further results for special graph
classes, including upper bounds of O(n1.5k2 logn) steps for underlying graphs of treewidth k
and O(n log3 n) steps for the case that the underlying graph is a 2 × n grid. For the case
that the underlying graph is a planar graph of maximum degree 4 and the graph in each
step is a path, they proved that Ω(n logn) steps can be necessary in the worst case. The
temporal exploration problem for the special case where the underlying graph is a ring
has been studied for the setting of T -interval-connectivity (the intersection of the graphs
of any T consecutive time steps is connected) by Ilcinkas and Wade [11]. Decentralized
algorithms for the exploration of temporal rings have been studied by Di Luna et al. [5].
Temporal exploration for the case where the underlying graph is a cactus has been studied
by Ilcinkas et al. [10].

For surveys of other work on algorithmic aspects and different models of temporal or
time-varying graphs we refer to [4, 12]. Examples of recent work include results on the design
of temporal networks [1], on temporal (s, t)-separation problems [8, 15], and on temporal
vertex cover with sliding time windows [2].

2 Preliminaries

I Definition 2.1 (Temporal Graph). We represent a temporal graph G with underlying graph
G = (V,E) using an ordered sequence of static graphs: G = 〈G1, G2, . . . , Gτ 〉. The subscripts
i ∈ 1, 2, . . . , τ indexing the graphs in the sequence are the discrete time steps 1 to τ , where τ
is known as the lifetime of G. Each Gi represents the structure of G in time step i. More
precisely, Gi = (V,Ei) is a subgraph of G with V (Gi) = V (G) and Ei ⊆ E for all 1 ≤ i ≤ τ .

I Definition 2.2 (Temporal walk). A temporal walk W through a temporal graph G is given
as an alternating sequence of vertices and edge-time pairs

W = v0, (e0, i0), v1, (e1, i1), v2, . . . , vk−1, (ek−1, ik−1), vk
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that starts at vertex v0 and ends at vertex vk. Additionally, we require that i0 < i1 < . . . <

ik−1, so that an agent following W can traverse at most one edge per time step. Each
edge-time pair (ej , ij) denotes the traversal of edge ej = {vj , vj+1} at time step ij. For such
a traversal to be possible, ej must be present in graph Gij , i.e., ej ∈ Eij . We say that the
walk W departs at time i0 (or, at a time i′ ≤ i0 if we imagine the walk to wait at v0 from
time i′ to time i0), and arrives at time ik−1 + 1.

We often view a temporal walk W , defined as above, as describing the movement of an
agent that is initially located at v0 and can, in each step, either stay at its current vertex or
move to a neighboring vertex in the current graph.

I Lemma 2.3 (Reachability Lemma [6]). Let G be a temporal graph with vertex set V , and
assume that G is connected in each step. Then an agent situated at any vertex u ∈ V at any
time t ≤ τ − n can reach any other vertex v ∈ V in at most |V | − 1 = n− 1 steps, i.e., by
time step t+ n− 1.

I Problem (Temporal Exploration). An instance of the Temporal Exploration (TEXP)
problem is given by a pair (G, s), where G = 〈G1, G2, . . . , Gτ 〉 is an arbitrary temporal graph
with lifetime τ ≥ |V (G)|2 = n2 (in order to ensure that there exist feasible solutions for any
instance), and s ∈ V (G) is a start vertex. The problem then asks for a temporal walk W that
departs from vertex s and visits all vertices of G and minimizes the arrival time at the last
unvisited vertex. We make the extra assumption that the graph is connected in each step;
without this it could happen that there exists no valid exploration schedule.

We end the section with an auxiliary lemma used in the next section.

I Lemma 2.4. Let T = (V,E) be a tree with maximum degree ∆ and U ⊆ V . Then
b|U |/(∆ + 1)c pairs of vertices in U can be found such that the paths between all pairs are
pairwise vertex-disjoint.

Proof. We root T at an arbitrary vertex and explain how to iteratively select pairs {u, v} ⊆ U .
The procedure will ensure that, whenever we select a pair of vertices in U , there are at most
∆− 1 other vertices in U that can no longer be paired up and have to be removed from U .

Let u, v ∈ U be two vertices such that their lowest common ancestor w = lca(u, v) has
the largest possible depth. Note that we may have w = v or w = u. Since T has maximum
degree ∆, w can have at most ∆ children. There can be at most ∆ + 1 vertices from U in
the subtree rooted at w: Each subtree rooted at a child of w contains at most one vertex
from U (by our choice of w), and w itself may be in U . Select the pair {u, v} and remove u,
v and all other vertices that are in the subtree rooted at w from U , a total of at most ∆ + 1
vertices. It is easy to see that the paths between the pairs selected by this procedure are
vertex-disjoint. J

3 Exploration of Degree-Bounded Temporal Graphs

In this section, our goal is to construct a temporal walk using O(n1+α) time steps on a
temporal n-vertex graph G for some α with 0 < α < 1. We assume that the maximum
degree of the graph Gi in each step is bounded by a constant ∆ ∈ N. While constructing
the temporal walk, we distinguish between vertices that already belong to our constructed
temporal walk, which we call seen vertices, and the remaining vertices, called unseen vertices.
We first show in Section 3.1 that O(n1.8) time steps suffice, and then improve the analysis
further to get O(n1.75) time steps in Section 3.2.
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3.1 Phases, Subphases, Labels and Forbidden Sets
Recall that the reachability lemma allows us to easily construct a temporal walk with arrival
time O(n2) by picking an arbitrary order s = v1, v2, . . . , vn of vertices and searching for a
temporal walk from v1 to v2, from v2 to v3, and so on, each starting when the previous walk
arrives and using O(n) time steps. To find a better solution, we have to avoid fixing the order
of the vertices without considering the given temporal graph. We divide our construction
into so-called phases, each consisting of O(n) time steps. Within each phase we construct
several temporal subwalks, one ending at each unseen vertex. We say that a subwalk is better
than another subwalk if it contains more unseen vertices. Among the constructed subwalks,
we then choose a best subwalk and use it to extend the temporal walk constructed so far.

By leaving O(n) time steps between two phases, we can easily connect the subwalks of
two subsequent phases by the reachability lemma.

Let ` be the number of unseen vertices at the beginning of the current phase. The phase
is split into subphases 1, 2, 3, . . . where the goal of each subphase is to replace a constant
fraction of the subwalks by subwalks that have at least one more unseen vertex. For every
unseen vertex v we use a label L(v) to store the (ordered sequence of the) unseen vertices of
the subwalk ending at v. We also keep track of the subwalk that visits all the unseen vertices
in L(v), and we use L(v) to refer to that subwalk if no confusion can arise.

We set L(v) = v at the beginning of the phase. Moreover, we maintain the invariant that
after the ith subphase, no subwalk has more than i+ 1 unseen vertices, i.e., |L(v)| ≤ i+ 1
for all unseen vertices v. We cannot guarantee that there is an improvement w.r.t. the total
number of unseen vertices of the subwalks in every time step. Instead, at the beginning
of each subphase, we place labels on all unseen vertices. In each time step the idea is to
propagate labels from a vertex to one of its neighbors and analyze the total improvement
in the spread of the labels. Whenever a label reaches another unseen vertex w, a longer
subwalk is found that may replace the label of w in the next subphase. A similar approach
was used by Erlebach and Spooner [7].

To measure the improvement during the time steps, we additionally define for every
vertex v a home set H(v) consisting of labels of unseen vertices that can reach v within the
time steps of the current subphase. At the beginning of a subphase, we set H(v) = {L(v)}
for every unseen vertex v, and H(v) = ∅ for the remaining vertices. For technical reasons, in
subphase i, the size of each home set is bounded by 2i+ 1.

During the extension of a subwalk we have to avoid adding the same unseen vertices
to a subwalk again. For this purpose, we store for every unseen vertex v a set of vertices
whose subwalks cannot be extended by v (because they already contain v). More precisely,
we store a forbidden set F (v) of every unseen vertex v that consist of all unseen vertices w
with v ∈ L(w). Note that v ∈ F (v) for every unseen vertex v. We next describe our first
operation on the home sets.
Operation 1: If u and v are connected by an edge in the current time step, we are allowed

to copy a label L from the home set H(v) into the home set H(u). In addition, we can
delete a label L′ from H(u), i.e., we can replace a label L′ by L in H(u).

As one can easily see by induction, a label of an unseen vertex u can be part of a home set
of a vertex v by the start of time step t only if there is a temporal walk from u to v with
arrival time t in the current subphase.

In the following, we motivate a second operation. Let v and u be unseen vertices. If
L(u) ∈ H(w) where w = v or w is a neighbor of v, u /∈ F (v) and |L(u)| ≥ |L(v)| holds, the
subwalk L(u) ending at u can be extended by v and this can be a subwalk ending at v that
is better than the current subwalk L(v). In this case, we can take the better subwalk for v,
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i.e., we define Lnew(v) := L(u) ◦ v. Note that we have that |L(u)| ≤ i at the end of subphase
i− 1 by our invariant and hence it follows that |Lnew(v)| ≤ i+ 1. Thus, the invariant holds
also in the next subphase.

For the remaining time steps of the current subphase, it would seem to be useful to start
propagating the new label of v starting from v. However, then we would have several labels
ending at v and this would increase the total size of the forbidden sets, which we cannot
afford. Therefore, we set L(v) := Lnew(v) only at the end of the current subphase. For
the remainder of the current subphase, we leave all L(v) in the home sets unchanged. In
particular, it is still possible that the label L(v) reaches another unseen vertex w – which
means that we may also be able to set Lnew(w) := L(v) ◦w. Altogether, we get the following
operation.

Operation 2: If a label L(u) is in H(x) for some vertex x in the closed neighborhood of
an unseen vertex v and if |L(v)| ≤ |L(u)| as well as u /∈ F (v), then we can define
Lnew(v) := L(u) ◦ v.

In the following we measure our progress by an increase in the potential function φ =
|{u unseen vertex | L′(u) 6= L(u)}|+

∑
v∈V

∑
L∈H(v) |L| where L′(u) := Lnew(u) if Lnew(u)

is defined in the current subphase and L′(u) := L(u) otherwise.

I Lemma 3.1. Assume that we are in the ith subphase. Given a set of unseen vertices U of
size k with L(u) ∈ H(u), L′(u) = L(u) and |F (u)| ≤ 2i for all u ∈ U , the operations from
above allow us to modify the labels of the unseen vertices and the home sets of all vertices in
such a way that φ increases by Ω(k/i) within one time step.

Proof. We consider a spanning tree T in the graph of G in the time step under consideration.
Since the graph has maximum degree at most ∆, also T obeys this degree bound.

Next we pair up the unseen vertices in such a way that they are connected by pairwise
vertex-disjoint paths. However, we are not allowed to pair up vertices where one is in the
forbidden set of the other. Therefore, we compute a set of unseen vertices U ′ ⊆ U such that
we can pair up the vertices in U ′ without taking the forbidden sets into consideration. To
determine U ′, start with U ′ = ∅ and greedily iterate over the vertices u ∈ U . Whenever
F (u) ∩ U ′ = ∅ and L(u) ∩ U ′ = ∅ holds, add u to U ′. The latter condition guarantees
F (v) ∩ (U ′ ∪ {u}) = ∅ for all v already in U ′. Since each vertex u in U ′ can prevent the

insertion of at most |L(u) \ {u}|+ |F (u) \ {u}|
invariant
≤ 3i− 1 vertices into U ′, |U ′| = Ω(k/i).

Next, pair up the vertices of U ′ in such a way that, in T , the paths between every two pairs
of vertices are pairwise vertex-disjoint. By Lemma 2.4, we obtain at least Ω(k/i) pairs since
the current graph of G and thus T has constant degree ∆.

We next show that, for each of the chosen pairs of vertices u and v, φ increases by at
least one. For this purpose, we focus on the path P between u and v in T , and let w be the
neighbor of u in P . W.l.o.g. |L(u)| ≤ |L(v)| holds. We consider two cases.

Case 1. The home set of w contains a label L(x) with x /∈ F (u) and |L(x)| ≥ |L(u)|. Then
we define Lnew(u) := L(x) ◦ u using Operation 2 and remove u from U , but leave all
occurrences of L(u) in the home sets unchanged. In this way we get a potential increase
since u newly satisfies the condition L′(u) 6= L(u).

Case 2. Otherwise, we argue as follows. Note that, if |H(w)| = 2i+ 1 and |L(x)| ≥ |L(u)|
for all L(x) ∈ H(w), then we are in Case 1 since |F (u)| ≤ 2i for all u ∈ U . Thus,
either |H(w)| < 2i+ 1 or H(w) contains a label L(x) that is strictly shorter than |L(u)|.
Moreover, since u, v ∈ U ′, we have v /∈ F (u). Since we are not in Case 1, L(v) /∈ H(w).
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Let f be the function that removes from a set all labels that are shorter than |L(v)|. Note
that |f(H(w))| ≤ 2i because either |H(w)| ≤ 2i or H(w) contains a label that is strictly
shorter than |L(u)| and thus also strictly shorter than |L(v)|.
Now, observe that it is not possible that, for each pair of subsequent vertices x (possibly
w) and y (possibly v) on the path from w to v, where x is closer to w than y, f(H(x)) ⊇
f(H(y)) holds – this would be a contradiction to L(v) /∈ f(H(w)) and L(v) ∈ f(H(v)).
Therefore, there must be a pair of consecutive vertices x and y on the path, with x closer
to w, such that f(H(x)) is not a superset of f(H(y)). Among all such pairs of vertices,
choose the one such that x is closest to w. As we have |f(H(w))| ≤ 2i, it follows that
|f(H(x))| ≤ 2i. By Operation 1 we copy a label L ∈ f(H(y)) \ f(H(x)) from H(y) to
H(x). Possibly, we additionally have to remove a shorter label L′ from H(x) in order to
ensure that |H(x)| remains bounded by 2i + 1. If |H(x)| = 2i + 1, then L′ must exist
since H(x) has at most 2i labels being ≥ |L(v)| long. Thus, φ increases. In case x ∈ U ,
we have to be careful that we do not remove L(x) from H(x) in this operation. Therefore,
in that case we do not replace L(x) in H(x) by a longer label unless all other labels in
H(x) are longer than L(x). If this is the case and we replace L(x) in H(x), then H(x)
now contains 2i+ 1 labels longer than L(x) and, since |F (x)| ≤ 2i, one of these is L(v′)
for some v′ /∈ F (x) and we can apply Operation 2 and set Lnew(x) = L(v′)◦x and remove
x from U . J

To guarantee the condition on the size of the forbidden sets in the lemma above, we do
not add all unseen vertices u with L′(u) = L(u) into the set U . Instead, we initially define
U = {u unseen vertex | L′(u) = L(u) and |F (u)| ≤ 2i}. Since the total label length is at
most i` by our invariant, there can be at most `/2 unseen vertices u with |F (u)| > 2i. As
long as we have L′(u) 6= L(u) for at most `/4 unseen vertices u in the current subphase, we
have |U | ≥ `− `/2− `/4 = `/4.

Within each time step, the set of vertices u with L′(u) = L(u) shrinks whenever we apply
Operation 2. We apply the lemma only while at most `/4 vertices have been removed from U ,
so this does not cause a problem.

I Lemma 3.2. Given a set of unseen vertices U of size ` in the beginning of the ith subphase,
Θ(ni3/`) time steps allow us to increase the length of at least `/4 subpaths (i.e., labels of
unseen vertices) by one.

Proof. By Lemma 3.1, φ ≥ `/4 + i(2i + 1)n after Θ(i/4 + i2(2i + 1)(n/`)) = Θ(ni3/`)
time steps (or we set Lnew for at least `/4 vertices even earlier). This can happen only if
L′(u) 6= L(u) for at least `/4 unseen vertices u since we have in the home sets at most (2i+ 1)
labels of length i for every vertex. J

We stop the construction of the temporal walk in phases when fewer than nα unseen
vertices remain for some α with 0 < α < 1 and finish the temporal walk by adding the
remaining nα unseen vertices in O(n1+α) time steps (by visiting them in arbitrary order
using the reachability lemma). Therefore, we can assume for the next lemma that the number
of unseen vertices is ` ≥ nα.

I Lemma 3.3. After O(n) time steps within one phase, a temporal subwalk consisting of
Θ(`1/4) = Ω(nα/4) unseen vertices has been found.

Proof. By Lemma 3.2, we spend Θ(ni3/`) time steps in subphase i. Since we have O(n)
time steps, the number of subphases x within one phase is bounded by the following equation:
Θ((n/`)(13 +23 + . . .+x3)) ⊆ O(n). This means that we can have x = Θ(`1/4) subphases. J
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By choosing α = 4/5, we have to run (n− nα)/nα/4 = Θ(n4/5) phases until nα vertices
remain. Thus, this part uses Θ(n9/5) time steps, which is also true for the construction of
the rest of the temporal walk.

I Theorem 3.4. Let G be a temporal graph with n vertices that is connected and has constant
degree in every time step. Then, G admits a temporal walk that visits all vertices and arrives
at the last unvisited vertex after O(n9/5) = O(n1.8) time steps.

3.2 A Tighter Analysis
For the analysis in the previous section, we have applied Lemma 3.3 with the pessimistic
assumption that the number of unseen vertices at the start of each phase is only nα (giving
subwalks visiting Θ(nα/4) = Θ(n1/5) unvisited vertices). There are clearly more unseen
vertices in the earlier phases (e.g., n− 1 unseen vertices at the start of the first phase, thus
admitting a subwalk visiting Θ(n1/4) vertices by Lemma 3.3). To get a tighter bound, we
analyze the required number of phases more carefully. Let γ, 0 < γ < 1, be the constant
hidden in the bound Θ(`1/4) from Lemma 3.3, i.e., each phase visits at least γ · `1/4 unseen
vertices if there are ` unseen vertices at the start of the phase. An upper bound f(t) on the
number of unseen vertices after t phases is now given by the following equation system:

f(0) = n

f(t) = f(t− 1)− γ · (f(t− 1))1/4, for t ≥ 1 (1)

The following claim establishes a closed formula for an upper bound on f(t).

B Claim 3.5. f(t) ≤ (n3/4 − 3
4γt)

4/3 for all t ≥ 0.

Proof. We prove the claim by induction. For the base of the induction, note that for t = 0
we have f(0) = n = (n3/4 − 3

4γ · 0)4/3. For the induction step, assume that the claim holds
for t− 1. We want to show that it also holds for t. By the induction hypothesis and using
the fact that the function g(x) = x − γx1/4 is monotone increasing for x ≥ 1 (even for
x ≥ (γ/4)4/5) we get:

f(t) = f(t− 1)− γ · (f(t− 1))1/4

≤ (n3/4 − 3
4γ(t− 1))4/3 − γ · 4

√
(n3/4 − 3

4γ(t− 1))4/3

= (n3/4 − 3
4γt+ 3

4γ)4/3 − γ · (n3/4 − 3
4γt+ 3

4γ)1/3

We need to show that the right-hand side is bounded by (n3/4− 3
4γt)

4/3. Setting y = n3/4− 3
4γt,

this is equivalent to:

(y + 3
4γ)4/3 − γ · (y + 3

4γ)1/3 ≤ y4/3

⇔ (y + 3
4γ)4/3 − y4/3 ≤ γ · (y + 3

4γ)1/3

With h(x) = x4/3, the latter inequality is equivalent to

h(y + 3
4γ)− h(y) ≤ 3

4γ · h
′(y + 3

4γ),

which holds because the function h(x) is convex. Hence, the inductive step is complete. C

Equation (1) is valid as long as the number of unseen vertices is sufficiently large. The
value of t for which f(t) becomes smaller than n3/4 is clearly smaller than 4

3γn
3/4. Hence,

O(n3/4) phases of length O(n), a total of O(n1.75) time steps, suffice to reduce the number
of unseen vertices to a value below n3/4, and the remaining unseen vertices can be visited in
O(n1.75) steps via the reachability lemma.
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I Theorem 3.6. Let G be a temporal graph with n vertices and constant degree that is
connected in every time step. Then, G has a temporal walk that visits all vertices and uses
O(n7/4) = O(n1.75) time steps.

4 Two Moves per Time Step in a Graph of Unbounded Degree

Erlebach, Hoffmann and Kammer [6] showed that there are temporal graphs of unbounded
degree where a temporal walk visiting all vertices needs Θ(n2) time steps. We show in this
section that we can break this lower bound not only if the graph in each step has bounded
degree, but also if we allow up to two moves per time step, i.e., in each time step we are
allowed to move from a vertex v to a neighbor w of v and then to a neighbor of w.

We handle the two moves in a temporal graph G = 〈G1, G2, . . . , Gτ 〉 for some τ ∈ N
by adding additional edges between each pair of vertices of distance 2 in each graph Gi
(i = 1, . . . , τ) to obtain a graph G2

i , the so-called square graph of Gi. Afterwards, we can
simply use the “one-move-per-time-step approach” in G2 = 〈G2

1, G
2
2, . . . , G

2
τ 〉.

I Lemma 4.1. The square of a connected graph has a spanning tree with maximum degree 3.

Proof. Let G be a connected graph and G2 the square of G. Compute a spanning tree T
in G. This spanning tree T is also a spanning tree in G2. Now color all edges of T black.
Note that, because the children of every vertex of T are directly connected in G2, we are
allowed to connect them in T and still have a subgraph of G2.

We next reduce the degree of each vertex in T . First, delete all black edges from each
vertex v to all its children except one. Starting from that child, we then connect the children
of v by a red path, see also Fig. 1. After applying these changes to each vertex v we can
observe the following: Each vertex v (except the root) was either the first child in T or not.
In the former case, v has a red edge and the remaining black edges can be to a parent and to
at most one child. In the second case, v has at most two red edges to siblings and possible
one black edge to a child. Hence, in both cases v has maximum degree 3. J

⇒

Figure 1 Left: A spanning tree T of a graph G. Right: The transformation of T into a spanning
tree in G2 of maximum degree 3 as shown in Lemma 4.1.

By using the lemma above for the construction of a spanning tree in the proof of
Lemma 3.1, we get the following theorem.

I Theorem 4.2. Let G be a temporal graph with n vertices and unbounded degree that is
connected in every time step. Then G has a temporal walk that visits all vertices and uses
O(n7/4) = O(n1.75) time steps if we allow at least two moves per time step.

5 Bounded Benefit of c Moves per Step for Sparse Graphs

In the previous section we showed that allowing more than one move per time step enables us
to break the existing lower bound of Ω(n2) steps on general temporal graphs [6, Theorem 3.5].
We next show that there are certain temporal graph classes where c moves per time step, for
an arbitrary integer c = O(1), cannot decrease the worst-case bound on the exploration time
by more than a constant factor.
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Let G be a temporal graph with underlying graph G = (V,E). The vertices of G are
called original vertices. Denote the graph in time step i by Gi. For odd `, we define an
operation called edge-path transformation of length ` that produces a temporal graph G′
with underlying graph G′ and graph G′i in time step i as follows: To construct G′ from the
underlying graph G = (V,E) of G, the transformation replaces each edge {u, v} ∈ E by a
path πu,v = u, a1, a2, . . . , a`−1, v of ` edges, where each ai is a new artificial vertex. For an
artificial vertex ai, we define o(ai) to be the nearest original vertex, i.e., o(ai) = u if i < `/2
and o(ai) = v if i > `/2. For an original vertex w, we set o(w) = w. If {u, v} is present in
Gi, the whole path πu,v is present in G′i. If {u, v} is not present in Gi, the path πu,v without
its middle edge {ab`/2c, ad`/2e} is present in G′i.

A temporal graph with n ∈ N vertices is called sparse if its underlying graph has O(n)
edges. We say that a function f : N→ N is nice if f(n/b) = Ω(f(n)) holds for any constant
b ≥ 1. For example, it is easy to see that all functions of the form f(n) = ng(logn)h for
constant g, h are nice.

I Theorem 5.1. Let c = O(1) and let G∗ be a class of sparse temporal graphs such that G∗
is closed under the edge-path transformation of the odd length ` ∈ {c, c + 1}. If there is a
lower bound on the number of steps for TEXP on G∗ for one move per time step, given as a
nice function of the number of vertices, then the same lower bound, up to a constant factor,
also applies to TEXP on G∗ if c moves per time step are allowed.

Proof. Let G′ be the temporal graph obtained from a temporal graph G ∈ G∗ by the edge-
path transformation of length `. We claim the following: If a temporal walk W ′ visiting all
vertices in G′ uses k time steps with ≤ ` moves per time step, then there is a temporal walk
W visiting all vertices in G consisting of k time steps with one move per time step.

To construct W , we iterate over the time steps and analyze the moves in W ′ within the
current time step. Before and after each time step, we ensure the following invariants. (1) If
W ′ is at a vertex a, then W is at o(a). (2) All original vertices already visited by W ′ have
also been visited by W .

Let a and a′ be the (possibly artificial) vertices at which W ′ is located just before and
just after the current time step, respectively. Let u = o(a). Note that W is located at u just
before the current step by (1). We let W move from u to o(a′) in the current step. Note that,
if W ′ visits during the current step an original vertex that has not yet been visited by W ,
then that vertex must be o(a′). This is because W ′ starts on the far side of the middle edge
on the path to that original vertex, and thus must end on the near side of the middle edge
on the same or another path incident with that original vertex. It is easy to see that both
invariants hold again after the time step.

Assume there is a lower bound on the worst-case exploration time for G∗ given by a nice
function f of the number of vertices. Let G ∈ G∗ be a worst case instance where TEXP
requires at least k = f(n) steps. Let G′ be obtained from G by the edge-path-transformation
of length `. Using the claim above, we can conclude that TEXP requires at least k steps
in G′ even if ` ≥ c moves per time step are allowed. Since G′ ∈ G∗ and since G and G′ have
the same number of vertices and edges up to constant factors, we have that k = f(n′/b) for
some constant b, where n′ is the number of vertices of G′. As f is a nice function, we get a
lower bound of Ω(f(n′)) for the case where c moves per time step are allowed. J

As an application of the theorem above, we can conclude the following from the known
lower bound of Ω(n logn) steps for sparse temporal graphs in the one-move-per-step model
(Theorem 4.1 in [6]).
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I Corollary 5.2. For a temporal n-vertex graph G whose underlying graph is planar with
maximum degree 4, an optimal exploration can take Ω(n logn) steps even if c = O(1) moves
per time step are allowed.

6 Inapproximability Result

I Theorem 6.1. It is NP-hard to approximate TEXP with two moves per step on an n′-vertex
temporal graph with ratio smaller than b logn′ for some constant b > 0.

Proof. We give a reduction from the Hamiltonian s-t-path problem, which is NP-complete
even if the input graph is planar and has maximum degree 3 as shown by Garey, Johnson, and
Tarjan [9]. Let an instance of the Hamiltonian s-t-path problem be given by a graph G with
n vertices and s, t ∈ V (G). Assume without loss of generality that n = 2k for some k ∈ N
with k ≥ 2 (otherwise, simply add a new leaf t′ adjacent to t and consider the Hamiltonian
s-t′-path problem in the new graph).

We now construct an n′-vertex temporal graph G′ in two phases, for some n′ specified
later. First, we specify the vertex set and all edges that will be present during at least one
step of the first phase.
Underlying graph during the first phase. The construction is illustrated in Fig. 2. Create
2nc copies of G (for an arbitrary constant c ≥ 2). Form two groups of these copies, each of
size nc, calling the first group T and the second group B. Let T (i) be the i-th T -copy of G
and B(j) the j-th B-copy of G. For all i ∈ {1, . . . , nc − 1}, connect vertex t ∈ V (T (i)) and
s ∈ V (T (i+ 1)) by a quick link et(i, i+ 1). Create similar quick links eb(i, i+ 1) between the
B-copies. Between t ∈ V (T (nc)) and s ∈ V (B(1)), let there be a super quick link.

Moreover, build a path P consisting of further vertices vt(1), . . . , vt(12nc+1). Use the
first (last) quarter of the path to connect each vertex s in the T -copies (B-copies) of G to
the path such that the minimal distance of two such vertices s on the path is at least 3n.
More precisely, for k ∈ {0, . . . , nc− 1}, connect vertex vt(3kn+ 1) with s ∈ V (T (k+ 1)), and
connect vt(9nc+1 + 3kn+ 1) with s ∈ V (B(nc − k)). In total, G′ has n′ = O(nc+1) vertices.
Temporal realization of the first phase. Let the start vertex be s ∈ V (T (1)). Let the steps
t ∈ {1, 2, . . . , nc+1} constitute the first phase of G′’s lifetime. During this phase, the edges of
all 2nc copies of G, the path of length 12nc+1 and the connections between the T -copies or
B-copies and the path P described in the previous paragraph always exist. Additionally, let
the edge et(i, i+ 1) be present only in step in/2, for all i ∈ {1, . . . , nc − 1}. Let the super
quick link be present only in step nc+1/2. Let the edge eb(i, i+ 1) be present only in step
(nc+1 + in)/2, again for all i ∈ {1, . . . , nc − 1}.

It is not hard to see that, if G has a Hamiltonian s-t-path, then a temporal walk with
two moves per step can visit all vertices in all copies of G within the first phase: In each
copy of G, it uses the n/2 time steps to follow the n− 1 edges of the Hamiltonian s-t-path
and then the quick link (or super quick link) to move to the vertex s of the next copy.

Assume now that G does not have a Hamiltonian s-t-path. If a temporal walkW with two
moves per step does not use the super quick link, then none of the vertices in the B-copies
have been visited in the first phase.

Otherwise, W must have used all quick links connecting the T -copies. We claim that in
any two consecutive T -copies, W has missed at least one vertex. To see this, note that an
s-t walk in G consists of at least n edges if there is no Hamiltonian s-t-path. Thus, for the
walk to arrive at the ith T -copy via a quick link in step (i− 1)n/2, visit all vertices of the
copy, and leave via a quick link in step in/2, it must have used the quick links as the first
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move in step (i− 1)n/2 and as the second move in step in/2, respectively. But then it is not
possible for the walk to visit all vertices of the (i+ 1)th copy and leave it via a quick link.

6nc+1

. . .

. . .

s t s t s t

s t s t s t

super quick link
T-Copies

B-Copies

G G G

G G G

3n

Figure 2 The underlying graph during the first phase. A red line is a quick link.

s s

ss

s

G

G
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. . .
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12nc+1

s
T-Copies

B-Copies

B-Copies

T-Copies

G G

G
G

G G

G
G

Figure 3 Construction of the temporal graph in the second phase. The connections between the
orange vertices differ in the time steps and result from the connections between the labeled vertices
in the temporal graph in Fig. 3 in [6].

The second phase. For the whole second phase, the path P is present. Thus, all vertices of
P can be visited in O(n′) time steps. Therefore, if G has a Hamiltonian s-t-path, G′ can be
explored in O(n′) time steps.

Erlebach et al. [6, Theorem 4.1] show that TEXP takes Ω(N logN) steps on a planar
N -vertex temporal graph. More precisely, the proof of their theorem shows that, for arbitrary
parameters r,m ∈ N, there is a planar temporal graph H with r + m vertices, consisting
of r vertices that we call path vertices and m vertices that we call target vertices, in which
Ω(r logm) time steps are necessary for visiting all m target vertices. In the temporal graph H,
the r path vertices are connected in the form of a path Q in all time steps. The lower bound
of Ω(r logm) steps for visiting the m target vertices also holds for the model with two moves
per step if the length of the rounds in the construction of H is divided by two. Let H′ be H
with this modification of the length of the rounds.

The idea is now to take in the second phase of our construction the temporal graph H′
for parameters r = 12nc+1 and m = nc/2. However, we must construct the temporal graph
with the vertices used in Phase 1. Therefore, the second phase of our temporal graph G′ is
constructed as follows – see also Fig. 3: Each of the m target vertices v in H′ is identified
with a vertex s of a T -copy T (2i) such that no two such vertices s are identified with the
same vertex v. Furthermore, the vertex s of each T -copy T (2i− 1) is made adjacent to the



T. Erlebach, F. Kammer, K. Luo, A. Sajenko, and J. T. Spooner 141:13

vertex s of T (2i). In addition, connect exactly the vertices s of two B-copies to each such
vertex v. Our path P becomes the path Q. As in Phase 1, the edges in the copies of G are
present in all time steps. Note that the only edges that change during the time steps of the
second phase are the edges between the m target vertices of H′. Such an edge exists in the
ith time step within Phase 2 exactly if it exists in H′ in the ith time step.
Analysis. Assume that G does not have a Hamiltonian s-t-path. Since we have an unvisited
vertex in each pair of consecutive T -copies or in each B-copy after Phase 1, we must
visit all m target vertices of H′ to reach the unvisited vertices. Thus, we have to spend
Ω(r logm) = Ω(nc+1 lognc) = Ω(n′ logn′) time steps to explore all vertices of G′, where the
last equality follows from r = Θ(n′) and m = nc/2 = Θ((n′)c/c+1).

Since establishing whether G′ can be explored in its entirety in just O(n′) steps or requires
Ω(n′ logn′) steps also decides whether there exists a Hamiltonian s-t-path in G, we get that
it is NP-hard to approximate TEXP with two moves per step with approximation ratio
smaller than b logn′ for some constant b > 0. J

Using a simple variation of the proof of Theorem 6.1, we also get:

I Corollary 6.2. It is NP-hard to approximate TEXP on n-vertex temporal graphs whose
underlying graph has bounded degree with ratio smaller than c logn for some constant c > 0.

7 Conclusion

In this paper we have shown that temporal graphs can be explored in O(n1.75) time steps if
the graph in each step has bounded degree or if two moves per step are allowed. We remark
that our proofs are constructive and also yield polynomial-time algorithms to compute such
exploration schedules. Moreover, we have shown that TEXP is NP-hard to approximate
with ratio better than b logn for some constant b for the considered cases (bounded degree
or two moves per step). The main open problem for these cases is to further reduce the
gap between the lower bound of Ω(n logn) steps (proved in [6] for bounded degree and in
Corollary 5.2 for two moves per step) and the upper bound proved in this paper.
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Abstract
We present a constant-time randomized distributed algorithms in the congested clique model that
computes an O(α)-vertex-coloring, with high probability. Here, α denotes the arboricity of the
graph, which is, roughly speaking, the edge-density of the densest subgraph. Congested clique
is a well-studied model of synchronous message passing for distributed computing with all-to-all
communication: per round each node can send one O(logn)-bit message algorithm to each other
node. Our O(1)-round algorithm settles the randomized round complexity of the O(α)-coloring
problem. We also explain that a similar method can provide a constant-time randomized algorithm
for decomposing the graph into O(α) edge-disjoint forests, so long as α ≤ n1−o(1).

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Mathematics
of computing → Graph algorithms

Keywords and phrases Distributed Computing, Message Passing Algorithms, Graph Coloring,
Arboricity, Congested Clique Model, Randomized Algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.142

Category Track C: Foundations of Networks and Multi-Agent Systems: Models, Algorithms and
Information Management

Funding The first author acknowledges the support of the Swiss National Foundation, under project
number 200021_184735. The second author is grateful for the support of the Student Summer
Research Fellowship (SSRF) program at the Computer Science department of ETH Zurich; this
project was initiated during an undergraduate internship in the summer of 2018.

1 Introduction and Related Work

This paper settles the randomized complexity of the graph coloring problem with a number
of colors linear in its arboricity, in the congested clique model of distributed computing: we
show that constant time suffices. Before formally stating our result, let us start by reviewing
the model and the problem statement, as well as state of the art.

1.1 Background: Model, Problem Statement, and State of the Art
The Congested Clique Model. We work with the congested clique model of distributed
computing, which was introduced by Lotker et al. [18] and has received extensive attention
over the past seven years1. There are n processors in the system. We are also given an
n-node graph G = (V,E), which has one node corresponding to each processor. This graph

1 There are many paper, and it is well-beyond the scope of this paper to survey them all. As a prominent
example, see the beautiful line of developments for the minimum spanning tree problem [18, 12, 11, 14],
which also settled its complexity to be O(1) rounds [14].

EA
T

C
S

© Mohsen Ghaffari and Ali Sayyadi;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 142; pp. 142:1–142:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ghaffari@inf.ethz.ch
mailto:ali.sayyadi.98@gmail.com
https://doi.org/10.4230/LIPIcs.ICALP.2019.142
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


142:2 Arboricity-Dependent Coloring

can abstract various things. For instance, it might be abstracting the dependencies in
a contention resolution setting, as follows: processors that are adjacent in the graph are
dependent and cannot perform their tasks simultaneously, e.g., they should not transmit their
wireless messages simultaneously or they should not read/write to the same memory location
simultaneously, or many other similar settings of accessing shared resources. We assume
that the graph G is known to the processors in a distributed fashion: each processor/node
knows its own neighboring processors/nodes in G. In the congested clique model, we assume
that processors can communicate in synchronous rounds, in an all-to-all fashion. Per round,
each processor can send one O(logn)-bit message to each other processor. At the end, each
processor should know its own part of the output, e.g., the color of its own node.

A discussion about the model, in contrast with other distributed models. Two other
well-studied, and in fact more classic, models of distributed computing are CONGEST and
LOCAL [23]. In these models, the communication network among the processors is the same
as the graph G for which they want to solve the graph problem. In the CONGEST model, per
round, each node can send one O(logn) bit message to each of its neighbors (in the graph,
which abstract both the problem and the communication network). The LOCAL model is
the variant where there is no upper bound on the message sizes.

These models CONGEST and LOCAL are perfectly suitable for settings such as computer
networks, where we want to solve a graph problem about the communication network. This
was in fact the original motive of these models. Moreover, there has been a host of beautiful
and powerful algorithmic and impossibility results developed in the context of these two
models. For some other applications, these models may be less suitable. In particular, when
the graph problem is a logical one – as in the abstraction used in the above above example
to capture contentions among processor – such a coincidence of communication graph and
problem graph may look strange. This is perhaps a partial explanation for the surge of
recent interest in distributed algorithms in the congested clique model. Some other reasons
are more theoretical and have to do with setting the limitation of locality aside, see the
introduction of [11] for a more extensive discussion of this aspect.

The congested clique model is more permissive than CONGEST and we can easily simulate
CONGEST-model algorithms in congested clique. But that would not be enough for us, as
there is no constant-algorithm for our problem in CONGEST. In fact, in the CONGEST and
LOCAL models, the problem has an Ω(logn) lower bound [17]. We build on the techniques
developed in the CONGEST and LOCAL model, but we also present and use several other
algorithmic ideas which allow us to go much further and solve the problem in constant time.

Problem Statement – Arboricity-Dependent Graph Coloring. The graph coloring problem
is a well-studied problem with a wide range of applications. It asks for coloring the vertices
with few colors in a way that no two adjacent nodes have the same color. For instance, in
the context of the contention resolution example mentioned above, this would allow the
processors to perform their tasks in a few time slots, without any two dependent processors
working concurrently.

Our objective is to compute a coloring whose number of colors is O(α), where α denotes
the arboricity of the graph. We recall that arboricity is a measure of sparsity of the graph.
For a graph G = (V,E), its arboricity is defined as the maximum edge-density d E(V ′)

|V ′|−1e
among all induced subgraphs on vertices V ′ ⊆ V with |V ′| > 1. Alternatively, by a beautiful
result of Nash-Williams[19], an equivalent formulation can be given as the minimum number
of edge-disjoint forests into which we can decompose the edges of G. We assume that α is
given as an input parameter and the input graph has arboricity at most α.
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Any graph with arboricity α admits a coloring with 2α colors and this bound is sharp.
For the former, note that we can arrange vertices as a1 to an such that each vi has at most
2α− 1 neighbors vj with a higher index j > i. For the latter, a graph consisting of disjoint
cliques, each having 2α vertices, gives the sharpness example.

Following [3, 5], we set out target to be obtaining a coloring close to this existentially
optimal bound; ideally we would want a coloring with (2 + ε)α colors for a small constant
ε > 0, but we relax it further to O(α) colors, for this paper. Note that α ≤ ∆, where ∆
denotes the maximum degree of the graph. Hence, coloring with O(α) colors also directly
gives a coloring with O(∆) colors. However, α can be much smaller than ∆; take for instance
a star graph where ∆ = n− 1 and α = 1. For many graph problems in practice, α is indeed
much smaller than ∆: even though they might have a few nodes of high degree, typically
they do not contain very dense subgraph, at least not as dense as average degree of ∆.

State-of-the-Art – LOCAL and CONGEST. As it will become clear soon, there is a large
body of work on distributed algorithms for graph coloring, and other related problems, and
it is well beyond the scope of this paper to review them all. For a survey of the results
prior to 2013 on algorithms in the LOCAL and CONGEST models, we refer the reader to the
Distributed Graph Coloring book by Barenboim and Elkin [3]. We will just mention the best
known result in randomized and deterministic settings:

In the LOCAL model, the best known randomized upper bound for (∆ + 1)-coloring
problem is 2O(

√
log logn) [7] and the best known deterministic upper bound for (∆ + 1)-

coloring is 2O(
√

logn)[20]. Only if we relax the number of colors to ∆1+ε for some constant
ε > 0, a polylogarithmic-time – and particularly O(log ∆ logn)-round – algorithm is known,
thanks a breakthrough of Barenboim and Elkin [2]. For the CONGEST model, the best
known randomized algorithm for (∆ + 1)-coloring runs in O(log ∆) + 2O(

√
log logn) rounds [9].

If we parameterize the algorithm’s complexity by ∆, the best known algorithm runs in
Õ(
√

∆) +O(log∗ n) rounds [4].
Regarding coloring dependent on α, Linial [17] showed that any coloring with O(α)

colors, or even poly(α) colors, needs at least Ω(logn) rounds, even in the LOCAL model.
Barenboim and Elkin[1] gave a deterministic algorithm that gives a Θ(α2) coloring in O(logn)
rounds, and an O(α1+ε) coloring in O(logα logn) rounds. Ghaffari and Lymouri [10] gave a
randomized algorithm that computes a (2 + ε)α colors, for constant ε > 0, if α = Ω̃(logn),
an O(α logα)-coloring in O(logn) rounds, and an O(α)-coloring running in Õ(logn) rounds.

State-of-the-Art – CONGESTED-CLIQUE. There has been a sequence of improvements,
for coloring with a number of colors dependent on the maximum degree ∆, as we overview
next: Hegeman and Pemmaraju [12] gave algorithms for O(∆)-coloring in the CONGESTED-
CLIQUE model, which run in O(1) rounds if ∆ ≥ Θ(log4 n) and in O(log logn) rounds
otherwise. For (∆+1) coloring problem, recently Parter [21] designed the first sublogarithmic-
time (∆ + 1) coloring algorithm for CONGESTED-CLIQUE, which runs in O(log log ∆ log∗∆)
rounds. Parter and Su [22] improved the bound to O(log∗∆) round. Finally, the round
complexity of (∆ + 1)-coloring was settled very recently O(1), by a recent work of Chang,
Fischer, Ghaffari, Uitto, and Zheng [6].

For coloring with the number of colors dependent on the arboricity α, we are aware
only one prior work in the CONGESTED-CLIQUE: Barenboim and Khazanov[5] gave a
deterministic O(α)-coloring which runs in αε rounds, for a constant ε > 0, and an O(α2+ε)-
coloring, which runs in O(log∗ n) rounds. For randomized algorithms, we are not aware of
any faster algorithm than these deterministic ones, or the randomized algorithms of the
CONGEST model (which need at least Ω(logn) rounds).

ICALP 2019
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1.2 Our Results
Coloring. We settle the randomized complexity of O(α)-coloring in the congested clique
model, by showing that constant rounds suffice.

I Theorem 1. There is a randomized distributed algorithm that computes an O(α)-coloring
in constant rounds of the congested clique model, with high probability.

Forest Decomposition. Our techniques also allow us to compute a decomposition of the
graph into O(α) edge-disjoint forests in constant time, so long as α ≤ n1−o(1). The best
known previous algorithm for this problem was by Barenboim and Khazanov [5] and it uses
O(logα) rounds. The statement of our result appears in the following theorem.

I Theorem 2. There is a randomized distributed algorithm that computes a decomposition
of the graph into O(α) edge-disjoint forests in constant rounds of the congested clique model,
whenever α ≤ n

1−O( 1√
logn

)
, with high probability.

1.3 Technical Overview
On a high-level, our result makes use of a number of technical ingredients, and puts them
together – along with several smaller ideas – in a way that results in the claimed constant-
round algorithm for O(α) coloring. We start with a brief list of these technical ingredients:
1. The iterative peeling algorithm of Barenboim and Elkin [1], which partitions vertices into

successive layers, along with an orientation from lower layers to higher layers, such that
each node has out-degree at most (2 + ε)α.

2. A topology-gathering procedure which allows us to exponentially speed up some LOCAL
model algorithms, on sparse graphs and up to a small locality bound [16, 8].

3. An opportunistic topology-gathering idea which allows us to speed up some LOCAL model
algorithms to just O(1) rounds of the CONGESTED-CLIQUE model. Variants of this idea
have been used by [14, 6].

4. Some ad-hoc but simple random sampling ideas which allow us to use a much sparser
subgraph to perform an approximate peeling about the original graph.

5. A simple random partition idea which allows us to break the case of graphs with large
arboricity to several graphs with smaller arboricity, or sometimes graphs that are almost
small aboricity, in the sense that they have some number of extra edges.

6. A simple randomized coloring algorithm where per round each node chooses a random
color from its palette and keeps it, if none of the neighbors (or sometimes neighbors in
certain subsets) chose that color. Variants of this simple idea are standard in distributed
coloring algorithms, perhaps the first appearance was in the work of [13].

7. A routing method of Lenzen [15], which by now has become a staple in CONGESTED-
CLIQUE algorithms. It is worth noting that the topology gathering ingredients mentioned
in items 2 and 3 above also make use of this routing method.

From a bird’s eye viewpoint, our algorithm works as follows: we use the random par-
titioning of item (5) to break the graph into several graphs of much lower arboricity, plus
some additional edges. We use the oppurtunistic topology-gathering of item (3) to learn
some sufficent local topology in each of these subgraphs, so that we can locally simulate a
non-constant number of iterations of the peeling algorithm of item (1) and then apply a
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suitable variant of the randomized coloring algorithm of item (6). This will be only a partial
coloring, but the number of nodes that remain uncolored will be considerably smaller. Then,
we can apply the sampling idea of item (5) and gather the sampled sparse graph, using the
routing method of (7), so that we can solve the problem in a centralized fashion, and make
even more progress in reducing the number of nodes that remain uncolored. This number at
the end will be so small that we can gather all the induced edges by the remaining nodes,
using the routing of item (7), and solve the problem in a centralized way. There are several
subtleties in this rough outline; we leave the details to the technical sections.

Roadmap. We start with a warm up in Section 2 where we present an O(log log logn)
round algorithm for forest-decomposition. Of course, that O(log log logn) complexity is much
higher than our claimed bound of O(1) round complexity, but we can introduce a number of
the key algorithmic ideas that we use in the context of this simpler but slower algorithm.
Then, in Section 3, we present our O(1)-round algorithm for O(α)-coloring.

2 Warm up: Forest Decomposition in O(log log logn) rounds

In this section, as a warm up, we describe an algorithm for (2 +O(ε))α forest decomposition
for graphs with α ≤ n1−O( (log logn)2

logn ), in O(log log logn) rounds of the congested clique model,
for any desirably small constant ε > 0. This allows us to introduce some of the basics of our
end-results, in a simpler setting.

Studying α = O(logn) Suffices. Before starting our forest-decomposition algorithm, we
comment that almost without loss of generality, we can assume that α = O(logn/ε2). The
reason is as follows: suppose that α = Ω(logn). Partition the edges into k = ε2α/(10 logn)
parts E1, . . . , Ek, randomly. Then, as we show in a simple lemma below, we can see that each
group is a subgraph with arboricity α′ = (1 + ε)α/k ≤ Θ(logn), with high probability. We
describe an algorithm below, which when applied to each of these subgraphs, it decomposes
each such subgraph into (2+ε)α′ edge-disjoint forests. Thus, overall, the graph is decomposed
into k · (2 + ε)α′ = (2 + ε)α forests. We will remark at the end of this section why we have
sufficient communication capacity to perform this algorithm on all the subgraphs in parallel.

I Lemma 3. If we randomly partition edges of a graph with arboricity α = Ω(logn/ε2) into
k = ε2α/(10 logn) parts E1, . . . , Ek, then each part is a subgraph with arboricity at most
α′ = (1 + ε)α/k, with high probability.

Proof. We focus on one part Ei. Consider an arbitrary subset of vertices V ′ ≤ V , where
|V ′| ≥ 2. The expected number of edges of V ′ that would be put in Ei at most E(V ′)/k ≤
(|V |′ − 1)α/k edges. By a basic Chernoff bound, the probability that there are more than
(|V |′ − 1)α/k(1 + ε) edges is at most 2exp(−(|V |′ − 1)α/(3k)) ≤ exp(−(|V ′| logn). Now, we
can use a union bound over all possible subset of size |V ′|, for which there are at most(
n
|V ′|

)
� 2|V ′| logn possibilities, and conclude that the edge density of each of them is at most

α′, with probability 1− exp(−Θ(|V ′| logn)) ≥ 1− 1/poly(n). Finally, a union bound over all
the n possibilities for the value |V ′| and at most α ≤ n possibilities for index i, in part Ei,
concludes the proof. J

We will next describe our forest decomposition algorithm for graphs with arboricity
α = O(logn). The algorithm we present in this section will provide a stronger structure,
called H-partition by Barenboim and Elkin [5], defined as follows: The set V of nodes will

ICALP 2019
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be partitioned into L = O(logn) disjoint sets V1, V2, . . . , VL, which we will call layers of
the H-partition, such that for each i ∈ {1, 2, . . . , L}, each node v ∈ Vi has at most (2 + ε)α
neighbors in ∪Lj=iVj .

Given such an H-partition, one can easily obtain a forest-decomposition, i.e., decompose
the graph into edge-disjoint forests F1,. . .FK , where K = (2 + ε)α, as follows: (A) orient
each edge {v, u} between two disinct sets Vi and Vj where i 6= j from the lower index one to
the higher indexed one, i.e., from Vi to Vj iff i < j. (B) orient each edge {v, u} where both
endpoints are in the same layer Vi from the lower ID node to the higher ID node. Then,
clearly each node has out-degree at most K. Each node v puts each of its outgoing edges
in a distinct one of F1 to Fk. Hence, each Fi is a directed acyclic graph with out-degree at
most one. Thus, if we ignore the directions, Fi is a forest. See section 5.1 of the book by
Barenboim and Elkin[3], for an elaborate proof.

OurH-partition Algorithm. We build our O(log log logn)-roundH-partition (and therefore
forest decomposition) algorithm in two steps. First, in Section 2.1, we present a slower
algorithm that computes H-partition in O(log logn) rounds, with high probability. Then, in
Section 2.2, we explain a topology-gathering idea (stated in Lemma 9), which allows us to
improve this round complexity to O(log log logn), thus proving the following theorem.

I Theorem 4. There is a randomized distributed algorithm that for any n-node graph with
arboricity α = O(logn) computes H-partition with parameter (2 + ε)α in O(log log logn)
rounds with high probability.

2.1 H-partition in O(log logn)
We now present our slow O(log logn) round algorithm for H-partition. This algorithm relies
on two key ingredients: (I) an iterative peeling algorithm of Barenboim and Elkin [5], which
on its own would need R = Θ(logn) rounds to build the H-partition. (II) A random edge
sampling idea which will allow us to compress the last R−O(log logn) = O(logn) rounds of
the peeling algorithm into just O(1) rounds of the congested clique.

High-Level Outline. First by running O(log logn) iterations of the peeling algorithm of
Barenboim and Elkin [5], we reduce the number of nodes to O( n

log2 n
). Then, we use an

randomized edge sampling process which allows us to generate a graph with just O(n) edges,
using which we can perform the rest of the peeling rounds. Since this graph has just O(n)
edges, we can deliver it to a single node, using Lenzen’s routing method [15], and thus
perform all these remaining peeling rounds in a centralized fashion there, without having to
use more rounds of communication in the congested clique model.

Part 1 – Slow Iterative Peeling. First, we perform O(log logn/ε) iterations. In iteration i,
we remove all nodes whose degree in the remaining graph is at most (2 + ε)α and we put
them in layer i. Then, we proceed to the next iteration. A more formal description can be
found in Algorithm 1.

I Lemma 5. After 2 log logn · 2
ε iterations of peeling, at most n

log2 n
nodes remain.

Proof. After each iteration, the number of remaining nodes reduces by a factor of 2
2+ε . This

is because any remaining graph has arboricity at most α, which means it has average degree
at most 2α, and thus only 2

2+ε fraction of its nodes can have degree higher than (2 + ε)α and
remain for the next iteration. Hence, after 2 log logn · 2

ε iterations, the number of remaining
nodes is at most ( 2

2+ε )
d2 log logn· 2ε en ≤ n

log2 n
. J
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Algorithm 1 Computing a partial H-partition for a graph G with arboricity α.
1: procedure H-PARTITION((α, ε))
2: An algorithm for each vertex v of G:
3: i = 1
4: while i ≤

⌈ 4
ε log logn

⌉
do

5: if v is active and has at most (2 + ε)α active neighbors then
6: make v inactive
7: add v to Hi

8: send the message “inactive” and “v joined Hi” to all the neighbors
9: for each received “inactive” message do
10: mark the sender neighbor as inactive
11: i = i+ 1

Part 2 – Speeding up Peeling via Random Edge Sampling. Next we focus on the remaining
nodes and we find an H-partition of them in constant rounds of the congested clique. Let
N denote the number of remaining nodes, and notice that we know N ≤ n

log2 n
. Consider

O(logn) independent sampling process where in each, each edge of the graph induced by the
remaining nodes is sampled with probability p = min( 1000 logn

ε2a , 1). Let Gi be the graph with
sampled edges in ith process. We will show in Lemma 6 that the total number of sampled
edges is O(n), with high probability. Thus, using Lenzen’s routing method [15], we can
collect all sampled edges in one node in O(1) rounds. Then, we devise an iterative processing
algorithm to compute H-partition of the remaining nodes, by processing only these sampled
edges (instead of working on the base graph). We note that this iterative process will happen
in a centralized fashion in the node that holds all the sampled edges, and thus it needs no
communication. At the end, we can report to each node of the graph the peeling iteration
in which it was removed. The peeling algorithm based on the randomly sampled edges is
described in Algorithm 2. We note that for each iteration, this algorithm uses a different
randomly sampled subgraph Gi, and these samplings are performed independent of each
other. We will show that even though we are working on a randomly sampled subgraph,
our peeling process will still produce a correct H-partition, in the following senses: On one
hand, in Lemma 7, we show that in each iteration, all nodes of degree less than (2 + ε

2 )α in
the remaining graph will be removed, with high probability. Hence, we will be done after
O(logn) iterations of peeling. On the other hand, in Lemma 8, we show that any node that
gets removed in an iteration has degree at most (2 + 2ε)α, with high probability, among the
nodes that had remained for that iteration. Hence, each node has at most (2+2ε)α neighbors
in its own layer or the future layers. We next present these lemmas and their proofs.

We first show that the number of sampled edges is small enough to allow us to deliver
them to one node, via Lenzen’s routing.

I Lemma 6. The total number of sampled edges is at most O(n), with high probability.

Proof. The number of remaining nodes isN ≤ n
log2 n

. We haveO(logn) independent sampling
process, where in each process, each edge is sampled with probability p = min( 1000 logn

ε2a , 1).
Hence, the expected number of sampled edges is O(n). Moreover, since the samplings are
independent (across different edges and different runs of the process), we can apply the
Chernoff bound and conclude that with high probability, at most O(n) edges are sampled. J

Now, we argue that in each iteration of peeling on the sampled subgraph, we will remove
all nodes of relatively small degree in the base graph (among remaining nodes).

ICALP 2019
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Algorithm 2 Computing H-partition for the remaining nodes by processing the sampled
subgraphs Gi for i ∈ 1, . . . ,Θ(logn).
1: procedure Processing Sampled graphs(Gi)
2: i = 1
3: while i ≤ Θ(logn) do
4: for for each vertex v of Gi do
5: if v has at most (2 + ε)αp neighbors in Gi then
6: add v to Hi+T

. T=Θ(log logn) is the number of iterations in Algorithm 1
7: delete v from all Gk for k ∈ {i+ 1, ...,Θ(logn)}
8: i = i+ 1

I Lemma 7. In each iteration of working with the sampled subgraphs, all nodes of degree
less than (2 + ε

2 )α in the remaining base graph will be removed, with high probability.

Proof. Consider iteration i. Let G′ be the subgraph of the base graph induced by the
nodes that remain in iteration i. Consider a remaining node v and suppose that its degree
dG′(v) ≤ (2 + ε

2 )α. We argue that such a node will be remove in this iteration, with high
probability. Then, in the sample subgraph for process i , each of these edges is sampled with
probability p. Thus, the expected number of the sampled edges of v is (2 + ε

2 )αp. Since
the sampling for this process is independent of the randomness of the previous processes,
and since different edges are sampled independently, we can apply a Chernoff bound and
conclude that the number of sampled edges of v is at most (2 + ε)αp, with high probability.
Hence, node v gets removed in this iteration. J

As mentioned before, Lemma 7 allows us to argue that after each iteration the number of
nodes reduces by a factor of 2

2+ ε
2
with high probability. Thus, after O(logn) iterations, the

number of nodes that did not find their proper partition is below 1, i.e., no node remains.
We also need to ensure that the peeling performs the correct thing in that any node that
gets removed in some iteration has degree at most (2 + 2ε)α in the base graph, among the
remaining nodes.

I Lemma 8. In each iteration of working with the sampled subgraphs, any node that gets
removed has degree at most (2 + 2ε)α in the base graph among the nodes that remained for
that iteration, with high probability.

Proof. Consider iteration i. Let G′ be the subgraph of the base graph induced by the
nodes that remain in iteration i. Consider a remaining node v and suppose that its degree
dG′(v) ≥ (2 + 2ε)α. We argue that such a node will be not be removed in this iteration, with
high probability. In the sample subgraph for process i , each of these edges is sampled with
probability p. Thus, the expected number of the sampled edges of v is at least (2 + 2ε)αp.
Since the sampling for this process is independent of the randomness of the previous processes,
and since different edges are sampled independently, we can apply a Chernoff bound and
conclude that the number of sampled edges of v is strictly exceeds (2 + ε)αp, with high
probability. Hence, node v does not get removed in this iteration. J

To conclude, as argued above Lemma 7 implies that we are done in O(logn) iterations of
peeling, and Lemma 8 shows that each node that gets removed in each iteration of peeling
has degree at most (2 + 2ε)α among the nodes that had remained for that iteration. That is,
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the nodes peeled in different iterations gives a partitioning of the nodes so that each node in
a given layer has at most (2 + 2ε)α neighbors in that layer or the future ones. This gives us
an H-partition with out-degree (2 + 2ε)α.

2.2 H-partition in O(log log logn) rounds
In this section, we explain how to speed up the O(log logn)-round algorithm described in
the previous subsection to run in O(log log logn) rounds.

Recall that our previous algorithm had two main part, a slow O(log logn) round for
iterative peeling, and a fast O(1) round algorithm where all the other peelings happen in
constant rounds of the congested clique, by processing a sparse randomly sampled subgraph
of the remaining graph. Here, we focus on the first part and improve its complexity to
O(log log logn)-round, using a topology-gathering idea.

Notice that the first part of the algorithm did not need any all-to-all communication. It
was simply iterations of peeling in the graph. Hence, if a node v knew all of the topology
within its R hops, it could simulate this peeling process for R rounds. We can learn this
R-hop topology much faster than R rounds in the congested clique model, thanks to the
all-to-all communication, but subject to some constraint: it is only possible if the topology
to be learned is relatively small. In particular, we next discuss a special case of such a
topology learning on graphs where the maximum degree is small. Later, we will discuss how
to incorporate this maximum degree limitation into our peeling algorithm.

First, we start with a generic topology-gathering lemma, for small-degree graphs. Variants
of such a statement have been used in prior work, see [16, 8], for instance.

I Lemma 9. Suppose that F is graph with n nodes and maximum degree at most log100 n.
Then we can make each node v ∈ F learns its R-hop neighborhood in F for R = O(log logn),
in O(logR) = O(log log logn) rounds in congested clique.

Proof. We use an induction to prove that for any k ≤ O(log log logn), in O(k) rounds, we
can make the nodes learn the graph F ′ = F 2k , which is formed by connecting each two nodes
that are within distance 2k. After that, each node can directly receive all the edges of all of
its F ′ neighbors and thus know the whole topology within its 2k-hop neighborhood, using
Lenzen’s routing[15]. The base case of induction where k = 1 is trivial, as that is knowing the
graph F itself. Suppose that assume that O(k) rounds have passed and each node already
knows its neighbors in the graph F 2k . Now, the number of neighbors in this graph is at
most (log100 n)(2k) ≤ 2O((log logn)2) �

√
n. Make each node send the names of each of its

neighbors in F 2k to each of its neighbors in F 2k . That is at most n messages. Hence, this
information can be routing in O(1) round using Lenzen’s routing. Then, each node knows
its neighbors of neighbors in F 2k , which means it can know it knows all of its neighbors in
F 2·2k = F 2k+1

. J

Applying Topology-Gathering to Speed Up Peeling. If we could apply the above topology
gathering to our O(log logn) round peeling algorithm, we would compress it to O(log log logn)
rounds. However, this is not immediately possible. Our original graph may have nodes of very
large degree, much larger than poly(logn), despite its small arboricity α = O(logn). This
means we cannot directly apply the topology gathering idea of the above lemma. However,
fortunately, our graph cannot have too many nodes of large degree (exactly because of its
small arboricity). This allows us to freeze those few high degree nodes, and still use a peeling
process on the rest of the graph to reduce the number of remaining nodes (including the
frozen ones) to just O( n

log2 n
).
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In particular, freeze each node whose degree is greater than log100 n. Notice that since
the graph has arboricity α = O(logn), as we justified this assumption at the beginning of
this section and in Lemma 3, the number of frozen nodes is at most 2nα

log100(n) ≤
2n

log99 n
. Now,

we apply O(log logn) iterations of the peeling algorithm on the remaining nodes, but sped
up to O(log log logn) rounds of the congested clique model, using the topology-gathering
approach of Lemma 9. The number of nodes that remain from this peeling is O(n/ log2 n).
Hence, even including the at most 2n

log99 n
frozen nodes, the number of remaining nodes is

O(n/ log2 n). That means, we can now apply the algorithm of the second part, described in
the previous subsection, to finish all of the peeling of the H-partition in O(1) rounds of the
congested clique (via working on the sampled subgraphs).

Running the Algorithm in Different Parts with Arboricity O(logn)

At the beginning of the section, we explained that we partition graphs with arboricity higher
than Θ(logn) into many α/Θ(logn) subgraphs, each with arboricity Θ(logn), and we then
decompose each subgraph separately, using the procedure described above. It remains to
explain why we can run the algorithm on all these subgraphs simultaneously. Notice that the
local communications performed for peeling are in the edges of the subgraph, and therefore
those can be performed in parallel. When performing a local topology gathering, each node
needs to send or receive 2O((log logn)2) bits of information. Hence, even over all the α/Θ(logn)
subgraphs, the total information that each each node needs to send or receive is O(n), as we
have assumed α ≤ n1−O( (log logn)2

logn ). After that, for the final step of the algorithm, we just
need to bring a graph of size O(n) to some leaders node and solve the problem of remaining
nodes there, for each subgraph. It suffices to use different such leaders for different subgraphs.

3 Constant-Time Coloring

In this section, we provide our proof of Theorem 1, thus showing a randomized distributed
algorithm that colors any graph of arboricity at most α using O(α) colors, w.h.p.

Proof of Theorem 1. The proof has several steps. We start with a high-level outline: we
will first argue that it suffices to work with graphs of arboricity at most O(logn), because
higher-arboricity graphs can be broken to this case easily, via randomness. Second, we set
aside nodes of degree higher than α10, to color them only later using some other fresh O(α)
colors. Then, we explain how we partition any graph with arboricity α = O(logn) to β/α
subgraphs, each being a graph with arboricity almost β = poly(logα) plus a small number of
extra edges. Then, we explain how we color almost the entirety of each of these subgraphs,
using different colors for different subgraphs. For this partial coloring, we will first explain a
slow algorithm in the CONGEST model and then discuss how to simulate it in O(1) rounds
of the CONGESTED-CLIQUE model. The nodes that remain uncolored will be so few that
we can gather the topology induced by them and color them using some 2α extra colors. We
next explain these steps separated by paragraph titles, to reflect the above outline.

Studying α = O(logn) Suffices. We focus on the case where α = O(logn). Coloring of
graphs with α = Ω(logn) arboricity can be transformed easily to this O(logn)-arboricity case:
place each node in a randomly chosen one of k = α/Θ(logn) parts. Each part will induce
a subgraph with arboricity Θ(logn), with high probability. The reason is that the original
graph with arboricity α admits an orientation with out-degree 2α. Fix such an orientation.
We do not need to know this orientation but use it for our analysis, only. When we randomly
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partition nodes, we expect each node’s out-degree in its own part to be 2α/k = Θ(logn).
Hence, by applying a Chernoff bound, each node’s outdegree in this imagined orientation is
at most 3α/k. Thus, each of the subgraphs admits an orientation with out-degree at most
3α/k, which means it has arboricity at most 3α/k.

We color each of these parts using Θ(logn) separate colors, all in parallel. For each part,
we apply the algorithm for graphs with arboricity at most O(logn), which we describe next.

Setting aside nodes with degree Ω(α10). As a preparation step, we set aside all nodes
which have degree at least α10. We note that a graph of arboricity α can have at most 2n/α9

such nodes, simply because it has at most nα edges. This number of left-over nodes is small
enough that allows us to deal with coloring these nodes later, using some fresh colors.

Partitioning to lower-arboricity subgraphs, plus few extra edges. We now have a graph
G = (V,E) with at most n nodes, arboricity α = O(logn), and maximum degree at most
α10. We randomly partition V into k = α

log3 α
parts V1, V2, . . . , Vk, by placing each node

in a random part Vi. In Claim 10, we show that, with high probability, the subgraph
G[Vi] induced by the nodes in each part Vi is a graph with arboricity (2 + ε) log3 α, plus at
most n/(α)10 extra edges, for an arbitrarily small constant ε > 0. We partially color each
part G[Vi] separately, using O(log3 α) different colors. This partial coloring will leave some
O(n/α5) nodes uncolored per part. In fact, the partial coloring will be done in two steps,
one leaves at most O(n/ log3 α) uncolored nodes, and the second reduces the number of
uncolored nodes to O(n/α5). At the very end, we will then gather the subgraph induced by
all these remaining nodes over all parts – which has at most k ·O(n/α5) ·α = O(n) edges – in
one node and color them using 2α extra colors.

B Claim 10. The subgraph G[Vi] induced by each part Vi is a graph with arboricity
(2 + ε) log3 α, plus at most n/(α)10 extra edges, for an arbitrarily small constant ε > 0.

Proof of Claim 10. Consider a hypothetical orientation of the graph with out-degree 2α
and call a node v bad if in the subgraph G[Vi] to which v belongs, its outdegree exceeds
2α/k(1 + ε) = (2 + ε) log3 α. Notice that the probability of a node being bad is exponentially
small in its expected outdegree, i.e., it is at most exp(−Θ(α/k)) ≤ exp(− log2 α). Hence,
the expected number of nodes that are bad is at most nexp(− log2 α). We would like to
say that, with high probability, the number of bad nodes is at most n · exp(− log2 α). We
cannot directly apply the Chernoff bound, because the events of different nodes being bad
are not independent of each other. However, the events are independent for any two nodes
that do not share a common neighbor. Since we are now on a graph with maximum degree
at most α10, as we have set aside nodes of higher degree, we can infer that the even of
each node being bad depends on the events of at most d = α20 many other nodes – all
those within 2 hops. Hence, we can apply the extension of Chernoff to the setting with
a bounded degree of dependency[24]. In particular, we get that the probability that the
number of bad nodes exceeds µ = n · exp(− log2 α) by more than a constant factor is at most
Θ(d) · exp(−Θ(µ/d)) = Θ(α10) · exp(−Θ(n · exp(− log2 α)/α20))� 1/poly(n). Hence, with
high probability, the number of bad nodes is less than Θ(n · exp(− log2 α)). A node that is
bad introduced at most α5 bad edges, in G[Vi], because it is incident on at most α10 edges.
Thus, except for at most n · exp(− log2 α) · α10 � n/(α)10 edges incident to bad nodes, all
other edges can be oriented with out-degree (2 + ε) log3 α. Hence, the subgraph is graph
with arboricity β = (2 + ε) log3 α = O((log logn)3), plus at most n/(α)10 extra edges. C
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Outline for First Partial Coloring of Each Part. We now focus on one subgraph H = G[Vi]
which is a subgraph with arboricity β = (2 + ε) log3 α = O((log logn)3), plus at most n/(α)10

extra edges. We next describe an algorithm A that runs in O(log2 β) rounds of the CONGEST
model and colors all but O(n/β) many of the nodes of H, using O(β) colors. Then, we
explain how we simulate A in just O(1) rounds of the CONGEST-CLIQUE model.

A CONGEST Algorithm for Partial Coloring of One Part. We focus on one part H = G[Vi].
First, we put aside all nodes of degree greater than β2. The number of such nodes is O(n/β).
Then, we attempt to color most of the rest, in O(log2 β) rounds, as follows. First, for
` = 40 log β iterations, in each iteration j, we remove nodes of degree at most 2.1β and put
them in layer Lj . Since the graph has arboricity β, in each iteration at least a constant
fraction of nodes get removed. Thus, We can show that the number of remaining nodes
after 40 log β iterations is O(n/(β)5). Then, we attempt to color the nodes in layers L`,
L`−1,. . .L1 using 2.2β colors. We spend one phase to color each layer layer, as follows.

We now describe each phase, which is simply 10 log β repetitions of a simple randomized
coloring attempt. In each round of the jth phase, each node of layer Lj picks a color at
random from 2.2β colors and keeps it if it is different than the colors of its neighbors in layers
Lj′ for j′ ≥ j. A node that did not choose such a color remains uncolored in this round.
After 10 log β rounds, all nodes of Lj that remain uncolored are removed. Per round, each
node gets colored with at least 0.1β/2.2β = 0.02, regardless of the choices of its other up to
2.1β neighbors. Hence, the probability of a node remaining uncolored after 10 log β rounds
is at most β5. Moreover, the events of different nodes remaining uncolored is independent,
because in the above argument we only relied on the randomness in the color choices of the
node itself. We can conclude that, with high probability, the number of these nodes in Lj is
O(n/(β)2). We then proceed to the next phase. Over all the phases, the number of nodes in
Lj that remain uncolored is at most O(n log β/(β)2). Moreover, the number of nodes that
were not in any of the layers is at most O(n/(β)2). Hence, overall, this process leaves at
most O(n/β) nodes of H uncolored.

A small final note about algorithm A is that each node uses at most O(log2 β)� O(logn)
bits of randomness, O(log β) many bits in each round where it picks a random color from
{1, 2, . . . , 2.2β}. We will use this fact about the amount of randomness, later, when we speed
up the algorithm in the CONGESTED-CLIQUE model.

CONGESTED-CLIQUE Algorithm for Partial Coloring of One Part. We focus on one
part H = G[Vi] and show how we mimic the algorithm described above, in just O(1) rounds
of CONGESTED-CLIQUE. As before, we put aside all nodes of degree greater than β2. We
next try to simulate A, using a randomized information gathering approach.

We now use an opportunistic information gathering to compress the round complexity in
CONGESTED-CLIQUE to O(1). Concretely, we make each remaining node v send a message
to all other nodes, where the message contains the name of v, its degree, and the at most
O(logn)-bits of randomness that v uses in algorithm A. Besides the above, each v also sends
each of its edges to each other node, but only randomly: each edge is sent to each node with
probability 1/β2, all independent of each other. Notice that the total number of edges that
are to be sent to each node is at most O(n) · β2/β2 = O(n), with high probability.

We say a node u successfully received the relevant ball of node v – with respect to algorithm
A – if node u received all the edges incident on all nodes w within distance Θ(log2 β) of v.
The number of such edges is at most βΘ(log2 β) ≤ 2Θ(log3 β). The probability of each of them
being sent to u is 1/β2. Thus, the probability that they are all sent to u is (1/β2)2Θ(log3 β) ≥
2−2 log β·2Θ(log3 β) ≥ 2−2Θ(log3 β) � 2−

√
logn, given that log β = Θ(log log logn). Since each
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node u successfully receives the ball of v with probability at least 2−
√

logn, and as there
are n possibilities for u, with high probability, there is at least one node u that successfully
receives the ball of v. Notice that node u realizes this successful event as it knows the degree
of each node and it can distinguish whether it has received all of the edges or not. Once u
has received the relevant ball of node v, node u can simulate the CONGEST-model algorithm
A and inform node v about the status of node v at the end of A. This status is simply
whether v is colored or not, and if yes, with which color.

Notice the small subtlety that there might be many nodes like u that receive the ball.
However, since they all use the same randomness to simulate the behavior of each node in
this ball (the randomness received from that node), they all get the same output for v.

Second Step of Partial Coloring. Finally, we go back to those O(n/β) nodes that remain
uncolored and we color enough of them that the number of uncolored nodes reduces to
O(n/α5). Given that H is a graph with arboricity at most β plus some O(n/α10) edges, the
number of edges induced by the remaining O(n/β) nodes is at most O(n). That means we
can move all these edges to one node . Then, we run a process similar to algorithm A on
these remaining nodes, but in a centralized fashion. In particular, in O(logα) iterations, we
remove nodes of degree at most 2.1β. Then, we color these removed nodes greedily from the
last layer to the beginning, using 2.2β extra colors. The only nodes that are not colored are
those that are not in any of these O(logα) layers. Since each layer of peeling and coloring
removes at least a 0.1/2.2 fraction of nodes (similar to the previous arguments), after O(logα)
such iterations, the number of nodes that remain uncolored is at most O(n/α5) many.

Final Step, Coloring the Remaining Nodes. Finally, we handle these remaining nodes of
different parts. In each of the parts G[Vi], we have O(n/α5) remaining nodes. Moreover, we
had some O(n/α9) nodes that we set aside at the very beginning, because they had degree
greater than α10. We collect the subgraph induced by all remaining nodes into one node,
which has no more than O(n/α4) edges, and we color them using 2α new colors. J
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Abstract
For fixed h ≥ 2, we consider the task of adding to a graph G a set of weighted shortcut edges on the
same vertex set, such that the length of a shortest h-hop path between any pair of vertices in the
augmented graph is exactly the same as the original distance between these vertices in G. A set
of shortcut edges with this property is called an exact h-hopset and may be applied in processing
distance queries on graph G. In particular, a 2-hopset directly corresponds to a distributed distance
oracle known as a hub labeling. In this work, we explore centralized distance oracles based on
3-hopsets and display their advantages in several practical scenarios. In particular, for graphs of
constant highway dimension, and more generally for graphs of constant skeleton dimension, we show
that 3-hopsets require exponentially fewer shortcuts per node than any previously described distance
oracle, and also offer a speedup in query time when compared to simple oracles based on a direct
application of 2-hopsets. Finally, we consider the problem of computing minimum-size h-hopset
(for any h ≥ 2) for a given graph G, showing a polylogarithmic-factor approximation for the case
of unique shortest path graphs. When h = 3, for a given bound on the space used by the distance
oracle, we provide a construction of hopset achieving polylog approximation both for space and
query time compared to the optimal 3-hopset oracle given the space bound.
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1 Introduction

An exact h-hopset for a weighted graph G is a weighted edge set, whose addition to the
graph guarantees that every pair of vertices has a path between them with at most h edges
(hops) and whose length is exactly the length of shortest path between the vertices.
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143:2 Exact Distance Oracles Using Hopsets

The concept of a hopset was first explicitly described by Cohen [19] in its approximate
setting, in which the length of h-hop path between a pair of vertices in the hopset should
approximate the length of the shortest path in G. Hopsets were introduced in the context of
parallel computation of approximate shortest paths. In this paper, we study hopsets in their
exact version, with the general objective of optimizing exact shortest path queries.

Data structures which allow for querying distance between any pair of vertices of a
graph have been intensively studied under the name of distance oracles. The efficiency of an
exact distance oracle is typically measured by the interplay between the space requirement
of the representation of the data structure and its decoding time. It is a well-established
empirical fact that many real-world networks admit efficient (i.e., low-space and fast) distance
oracles [6, 22]. A key example here concerns transportation networks, and specifically road
networks, which are empirically known [34, 32, 5] to be augmentable by carefully tailored sets
of shortcut edges, allowing for shortest-path computation. These sets of shortcuts may be
hopsets (as is the case for the hub-labeling approach which effectively implements a 2-hopset),
but may also be considered in some related (and frequently more involved) framework, such
as contraction hierarchies [31] or transit-node routing [11].

An interesting theoretical insight due to Abraham et al. [3, 4, 5] provides theoretical
bounds on the number of shortcuts required in all of the above-mentioned frameworks. They
introduce a parameter describing the structure of shortest paths within ball neighborhoods
of a graph, called highway dimension h̃. They also express the number of shortcuts that need
to be added for each node so as to achieve shortest-path queries in a graph of n nodes with
weighted diameter D as a polynomial of h̃, logn, and logD; this approach has been extended
in subsequent work [2, 37]. The value of h̃ is known to be small in practice (e.g., typically
h̃ < 100 for continental-sized road networks [4]), and does indeed appear to be inherently
linked to the size of the required shortcut sets. In fact, empirical tests have suggested that
the (average) number of necessary shortcuts per node is in fact very close to h̃, laying open
the question of whether the additional dependence of the number of shortcuts on logarithmic
factors in n and D may be an artifact of the theoretical analysis of the oracles, which for
each node require a separate shortcut for every “scale” of distance.

1.1 Results and Organization of the Paper
Our main result is to provide strong evidence that the dependence of the number of shortcuts
on such logarithmic factors in n and D is indeed not essential, and we design a simple
distance oracle based on a 3-hopset in which the number of shortcuts per node depends only
on h̃, log logn, and the logarithm of the average edge length. This result is in fact shown in
the framework of a strictly broader class of graphs, namely, graphs with a bounded value of a
parameter known as skeleton dimension k (k ≤ h̃), describing the width of the shortest-path
tree of a node after pruning all branches at a constant fraction α of their depth. Considering
various ranges of fraction α for increasing distance ranges was a novel key step for improving
over [37, 36] from a 2-hopset construction to a 3-hopset construction.

From a general perspective, our connection between h-hopsets and distance oracles is
original and offers new perspectives for studying the trade-off between size and query time
of distance oracles. To exemplify this, we provide a construction of h-hopsets for graphs of
treewidth t following a classical approach in pre-processing product queries on trees [7, 16].
For 3-hopsets, we obtain a distance oracle with quadratic dependency in t which improves
over the construction of [15] (which has cubic dependency) for t = ω(log2 logn). The space
and time-bounds of oracles based on 3-hopsets are presented in Table 1, and compared with
the corresponding parameters of oracles based on 2-hopsets. For the case of constant skeleton
dimension or constant treewidth, we remark that using a 3-hopset instead of a 2-hopset
reduces the number of shortcuts per node from O(logn) to O(log logn) while achieving a
query time of O(log2 logn).
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Table 1 Comparison of distance oracles based on 2-hopsets (hub labeling [19, 28, 37]) and
3-hopsets (this paper). Size represents the number of shortcut edges in the hopset, i.e., the number
of O(logn)-bitsize words when measuring oracle size. The main results concern skeleton dimension
and are stated in simplified form, assuming average edge length at most O(poly logn), with expected
query times given for both types of oracles.

Distance oracle Treewidth t Skeleton dimension k
Size Time Size Time

2-hopset (hubs): n ·O(t logn) O(t+ log logn) n ·O(k logn) O(k logn)
3-hopset: n ·O(t log logn) O(t2 log2 logn) n ·O(k log k log logn) O(k2 log2 k log2 logn)

A classical assumption (applied, e.g., in almost all literature on transportation networks)
resides in the uniqueness of shortest paths. It can be made without loss of generality by
slightly perturbing the weights of the edges or by using appropriate tie break rules. In this
context of unique shortest path graph (USP) graphs where there is a unique shortest path
Puv between any two nodes u and v, we propose an LP-based approximation algorithm for
constructing h-hopsets with size within a polylog factor from optimal. Our construction can
be seen as a non-trivial generalization of the prehub labeling introduced in [9] from 2 to
more hops. In the case h = 3, we further extend our approach to provide an algorithm which
constructs distance oracles in USP graphs based on 3-hopsets, with (approximate) optimality
guarantees on size and query time. The form of guarantees we obtain is again novel: for a
given size bound S of 3-hopset based oracle, we construct an oracle with size larger than
S by at most a polylog factor which has average query time within a polylog factor of the
performance achieved by the best oracle with size S.

The rest of the paper is organized as follows. In Section 2, we introduce the necessary
notions related to h-hopset and give a general approach for how a h-hopset can be used
as a distance oracle, focusing on the special case of h = 3. In Section 3, we provide our
first main result, using 3-hopsets to obtain improved (smaller and faster) distance oracles in
graphs with bounded skeleton dimension. In Section 4, we present our second main result
about approximating h-hopsets and constructing 3-hopset based oracles in USP graphs.
Finally, Section 5, we show how to construct efficient h-hopsets and 3-hopset based oracles
for bounded treewidth graphs. We provide full details of omitted and sketched proofs in the
full version [33].

Our work is presented in the context of weighted undirected graphs, but all results can
easily be extended to weighted directed graphs.

1.2 Other Related Work
Hopsets. Exact hopsets were implicitly constructed in the context of single-source shortest
paths parallel computation [43, 35, 18, 40]. Such works study the work versus time trade-offs
of such computation. Cohen [19] explicitly introduced the notion of (h, ε)-hopset of G as set
H of weighted edges such that paths of at most h hops in G ∪H have length within (1 + ε)
of the corresponding shortest path in G. The parameter h is called the hopbound. For any
graph G and ε, ε′ > 0, she proposed a construction of (O(poly logn), ε)-hopset of G with size
O(n1+ε′). More recently, Elkin et al. [24] proposed the construction of (O(ε−1 log κ)logκ, ε)-
hopset with O(n1+1/κ logn log κ) edges for any ε > 0 and integral κ ≥ 1. Abboud et al. [1]
recently showed the optimality of the Elkin et al. [24] result. In particular, they showed that
for any δ > 0 and integer k, any hopset of size less than n1+ 1

2k+1−1
−δ must have hop bound

h = Ω(ck/εk+1), where ck is a constant depending only on k. The linear size case was then
improved in [25]. As far as we know, exact hopsets (with ε = 0) have not been explicitly
studied. However, they are related to the following well studied notion.
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Hopsets vs. TC-spanners. In directed graphs, a hopset can be seen as a special case of
an h-transitive-closure spanner (h-TC-spanner). Hopsets and TC-spanners are fundamental
graph-theoretic objects and are widely used in various settings from distance oracles to pre-
processing for range queries in sequential or parallel setting or even in property testing. The
concept of adding transitive arcs to a digraph in order to reduce its diameter was introduced
by Thorup [41] in the context of parallel processing. Bhattacharyya et al. [12] defined an
h-TC-spanner of an unweighted digraph G as a digraph H with same transitive closure as
G and diameter at most h. They note that this is a central concept in a long line of work
around pre-processing a tree for range queries [7, 16, 42]. A TC-spanner can also be defined
as a spanner (for the classical spanner definition [38]) of the transitive closure of a graph that
has bounded diameter. We will see that an exact h-hopset defines a h-TC-spanner but that
the converse is not necessarily true. Bhattacharyya et al. [12] proposed a construction of
h-TC-spanner of size O(n lognλh(n)) for H-minor-free graphs (where λh denotes the hth-row
inverse Ackermann function, cf. Section 5).

Exact Distance Oracles. A long line of research studies the interplay between data structure
space and query decoding time. A lot of attention has been given to distance oracles for
planar graphs [23, 10, 17, 14, 26, 21, 30], and it has recently been shown that a distance
oracle with O(n1.5) space and O(logn) query-time is possible [30]. In the context of weighted
directed graphs with treewidth t, Chaudhuri and Zaroliagis [15] propose a distance oracle
using O(t2nλh(n)) space and O(t3h + λh(n)) query time for integral h > 1 where λh is
the hth-row inverse Ackermann function (as defined in Subsection 5). In the context of
unweighted graphs with treewidth t, Farzan and Kamali [27] obtain distance oracles with
O(t3 log3 t) query time using optimal space (within low order terms). This construction
heavily relies on the unweighted setting as exhaustive look-up tables are constructed for
handling graphs with polylogarithmic size.

Distance Labelings and 2-Hopsets. The distance labeling problem is a special case of a
distributed distance oracle, and consists of assigning labels to the nodes of a graph such
that the distance between two nodes s and t can be computed from the labels of s and t
(see, e.g., [28]).

The notion of 2-hopset studied in this work coincides with the special case of two-hop
distance labeling (also called hub-labeling), where labels are constructed from hub sets: in
hub-labeling, a small hub set S(u) ⊆ V (G) is assigned to each node of a graph G such that for
any pair u, v of nodes, the intersection of hub sets S(u) ∩ S(v) contains a node on a shortest
u− v path. Such a construction is formally proposed in [20] and is implicitly introduced by
Gavoille et al. [28] and applied to graphs of treewidth t with labels of O(t logn) size and allows
to answer distance queries in O(t logn) time; the hub sets have a hierarchical structure, which
allows for an improvement of query time to O(t log logn) time by a binary search over levels.
Hub labelings are the currently best known distance labelings for sparse graphs, achieving
sublinear node label size [8, 29], and may also be used to provide a 2-additive-approximation
for distance labeling in general graphs using sublinear-space labels [29].

In graphs of bounded highway dimension, hub labels were among the first identified
distance oracles to provide label size and query time polynomial in the highway dimension
and polylogarithmic in other graph parameters [5]. This result was then extended to the
more general class of graphs with bounded skeleton dimension [37, 36].

Hub sets with near to optimal size can be constructed in polynomial time. A greedy set
cover-type O(logn)-approximation algorithm (with respect to average size of a hub set) was
proposed by Cohen et al. [20]. For the case of USP graphs, this approximation ratio was
improved by Angelidakis et al. [9] to the logarithm of the graph hop-diameter DH , i.e., the
maximum number of hops of a shortest path in G, showing an approximation gap between
USP and non-USP graphs.
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2 Preliminaries

2.1 Definitions
We are given a weighted undirected graph G = (V,E, ω) where ω : E → R+ associates a
weight with each edge of G. For a positive integer parameter h and a pair u, v ∈ V , the
h-limited distance between u and v, denoted dhG(u, v), is defined as the length of the shortest
path from u to v that contains at most h edges (aka hops). The usual shortest path distance
can be defined as dG(u, v) = dn−1

G (u, v). For the sake of brevity, we often let uv denote the
pair {u, v} representing an edge from u to v.

I Definition 1. An (exact) h-hopset for a weighted graph G is a set of edges H such that
dhG∪H(u, v) = dG(u, v) for all u, v in V (G) where G ∪ H = (V,E ∪ H,w′) is the graph
augmented with edges of the hopset with weights w′(u, v) = dG(u, v) for uv ∈ H and
w′(u, v) = w(u, v) for uv ∈ E \H. The parameter h is called the hopbound of the hopset.
Edges from set H are called shortcuts in G.

By convention, we will assume that all self-loops at nodes of V are included in H. Thus,
G∪H is a graph whose h-th power in the (min,+) algebra on n×n matrices of edge weights
corresponds to the transitive closure of the weight matrix of graph G.

Equivalently, a h-hopset can be defined as a set H of edges such that for any pair s, t,
there exists a path P of at most h edges from s to t in G ∪H and a shortest path Q from s
to t in G such that all nodes of P belong to Q and appear in the same order. Note that a
h-hopset is completely specified by its set H of edges as the associated weights are deduced
from distances in the graph.

2.2 Using a Hopset as a Distance Oracle
Hopsets may be used to answer shortest-path queries in a graph G = (V,E). In general,
given a hopset H, the naïve way to approach a query for dG(u, v) for a given node pair u, v
is to perform a bidirectional Dijkstra search in graph G ∪H from this node pair, limited to
a maximum of dh/2e hops distance from each of these nodes. We have, in particular for any
pair u, v ∈ V :

dG(u, v) = min
w∈V

(ddh/2e
G∪H (u,w) + d

bh/2c
G∪H (v, w)).

Different optimizations of this technique are possible.
In this paper, we focus only on the time complexity of the case of h = 3, where we

perform the following optimization of query execution. We represent set H as the union
of two (not necessarily disjoint) sets of shortcuts, H = H1 ∪H2, where an edge belongs to
H1 if it is used as the first or third (last) hop on a shortest path in G ∪H, and it belongs
to G ∪H2 if it is used as the second hop on such a path. By convention, we assume that
self-loops at nodes are added to H1, thus e.g. a 3-hop path between a pair of adjacent nodes
in G is constructed by taking a self-loop from H1, the correct edge from G ⊆ G ∪H2, and
another self-loop from H1. (Note that we never directly use edges of G as first or last hops in
the hopset; if such an edge is required for correctness of construction, it should be explicitly
added to set H1.) We further apply an orientation to the shortcuts in H1, constructing a
corresponding set of arcs ~H1, such that, for any node pair u, v ∈ V , there exist x, y ∈ V such
that (u, x) ∈ ~H1, {x, y} ∈ H2, (v, y) ∈ ~H1, and:

dG(u, v) = dG(u, x) + dG(x, y) + dG(y, v).

The orientation (w, z) of an arc in ~H1 indicates that edge {w, z} can be used as the first
edge of a 3-hop path from w or as the third edge of a 3-hop path to w. We note that
|H1| ≤ | ~H1| ≤ 2|H1|, since each shortcut from H1 corresponds to at most a pair of symmetric
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arcs in ~H1. For a node w ∈ V , let N1(w) = |{x ∈ V : (w, x) ∈ ~H1}| represent the out-
neighborhood of w in the graph (V, ~H1). To perform shortest path queries on G, for each node
w, we now store the list {(x, dG(w, x)) : x ∈ N1(w)}. We also store a hash map, mapping all
node pairs {x, y} ∈ H2 to the length of the respective link, dG(x, y). Now, we answer the
distance query for a node pair u, v ∈ G as follows:

dG(u, v) = min
x∈N1(u),y∈N1(v):{x,y}∈H2

(dG(u, x) + dG(x, y) + dG(y, v)).

Using the given data structures, the query is then processed using |N1(u)| · |N1(v)| hashmap
look-ups, one for each pair (x, y) ∈ N1(u)×N1(v), i.e., in time Tuv = O(|N1(u)| · |N1(v)|).
Time Tuv is simply referred to as the query time for the considered node pair in the 3-hopset
oracle H. Assuming uniform query density over all node pairs, the uniform-average query
time T (H) is given as: T (H) ≡ EuvTuv = O

(
1
n2

(∑
u∈V |N1(u)|

)2
)

= O(|H1|2/n2). Thus,
in the uniform density setting (which we refer to only in Section 4), the average time of
processing a query is proportional to the square of the average degree of a node with respect
to edge set H1.

The size of set H2 affects only the size of the data structure required by the distance
oracle, which is given as at most S = O(|E|+ |H1|+ |H2|) edges, with each edge represented
using O(logn) bits.

In the 3-hopset distance oracles described in the following sections, we will confine
ourselves to describing shortcut sets H1 and H2, noting that the correct orientation ~H1 of
H1 will follow naturally from the details of the provided constructions.

3 Bounded Skeleton Dimension

A formal definition of the notion of skeleton dimension relies on the concept of the geometric
realization of a graph, cf. [37]. The geometric realization G̃ of G can be seen as the
“continuous” graph where each edge is seen as infinitely many vertices of degree two with
infinitely small edges, such that for any uv ∈ E(G) and t ∈ [0, 1], there is a node in G̃ at
distance tdG(u, v) from u on edge uv. Given a shortest-path tree Tu of node u with length
function ` : E(Tu) → R+, obtained as the union of shortest paths

⋃
{Puv : v ∈ V (G)}, we

treat it as directed from root to leaves and consider the geometric realization T̃u of this
directed graph. We define the reach of v ∈ V (T̃u) as the distance from v to the furthest leaf
in its subtree of the directed tree T̃u, i.e., Reach

T̃u
(v) := maxx:v∈Pux dT̃u

(v, x). For a given
value α > 0, we then define the skeleton T ∗u of Tu as the subtree of T̃u induced by nodes with
reach at least α times their distance from the root. More precisely, T̃ ∗u is the subtree of T̃u
induced by {v ∈ V (T̃u) | Reach

T̃u
(v) ≥ αd

T̃u
(u, v)}.

The α-skeleton dimension kα of a graph G is now defined as the maximum width of the
skeleton of a shortest path tree, taken over cuts at all possible distances from the root of
the tree: k = maxu∈V (G) maxr>0 |Cutr(T̃ ∗u )|, where Cutr(T̃ ∗u ) is the set of nodes v ∈ V (T̃ ∗u )
with d

T̃∗u
(u, v) = r. When α = 1

2 , k1/2 is simply called the skeleton dimension of G and we
let k = k1/2 denote it.

The definition was originally proposed with α = 1
2 (for comparison with highway dimen-

sion) in the context of USP graphs [37]. In the long version [36], the definition is extended
to other choices of α with 0 < α < 1 and applies to any choice of shortest paths trees that
pairwise agree on their paths (the path from u to v in Tu must be the reverse of the path
from v to u in Tv). In the non-USP case, the skeleton dimension should be measured with
the best choice of agreeing trees. In particular, if a small perturbation of the edge weights
of G provides unique shortest path trees whose skeletons have width at most kα, then the
skeleton dimension of G is at most kα. The α-skeleton dimension (with parameter α) was
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introduced in [36] for the sake of a general definition with fixed α value in mind. We use it
here in a novel manner with α tending towards 0 as we consider larger distances, enabling
analysis of our new construction.

For the definition of the related concept of highway dimension, we refer the readers
to [4]. We note that if a graph G has highway dimension h, then G has skeleton dimension
k = k1/2 ≤ h; hence, in all subsequent asymptotic analyses, upper bounds expressed in terms
of skeleton dimension can be replaced by analogous bounds in terms of highway dimension.

3.1 Construction of the 3-Hopset
We denote by Lmax the maximum length of an edge in graph G. The construction of the
3-hopset H is obtained by taking a union of sets of shortcuts, each of which covers sets of
node pairs within a given distance range. The first shortcut set H ′ covers all node pairs
u, v ∈ V with dG(u, v) ≤ D′, for some choice of distance bound D′, whereas each of the
subsequent shortcut sets H(D) covers nodes at a distance in an exponentially increasing
distance range, dG(u, v) ∈ [D,D1+ε], where ε := 1

2 log2 k
is suitably chosen. We then put:

H = H ′ ∪
⋃

i=1,2,...
H(D′ i(1+ε)).

Construction of set H ′. We note that a construction of 2-hopsets for graphs of skeleton
dimension k was performed in [37]. As a direct corollary of [37][Lem. 2, Cor. 1,2], given
a distance bound D′, there exists a randomized polynomial-time construction of a set of
shortcuts H ′ for graph G with the property that for any pair of nodes u, v ∈ V with
dG(u, v) ≤ D′, we have d2

G∪H′ = dG(u, v), such that |H ′| = O(nk logD′), and moreover for
all u ∈ V , we have E degH′(u) = O(k logD′) and degH′(u) = O(k logD′ log logn + logn).
We directly use set H ′ for the value D′ := L4

maxk
6 log12 n, considering H ′ as a 3-hopset for

node pairs u, v ∈ V with dG(u, v) ≤ D′. So we have:

|H ′| = O(nk(log logn+ logLmax + log k)),

and for all u ∈ V :

E degH′(u) = O(k(log logn+ logLmax + log k)),
degH′(u) = O(k log logn(log logn+ logLmax + log k) + logn).

We remark that, without loss of generality, in asymptotic analysis one may assume that
Lmax ≤ kL, where L is the average edge length in G, noting that edges longer than kL can
be subdivided into edges of length at most kL by inserting additional vertices, increasing the
number of nodes of the graph only by a multiplicative constant. Thus, in the above bounds,
we can replace (log logn+ logLmax + log k) by (log logn+ logL+ log k).

Construction of set H(D). We now proceed to construct a 3-hopset for node pairs u, v with
dG(u, v) ∈ [D,D1+ε]. The construction of set H(D) is randomized and completely determined
by assignment of real values ρ(u) ∈ [0, 1] to each node u ∈ V , uniformly and independently
at random. We condition all subsequent considerations on the event that all values ρ are
distinct, i.e., |ρ(V )| = |V |, which holds with probability 1. ( ρ(V ) = {ρ(v)|v ∈ V } )

Now, hopset H(D) is defined as H(D) := H
(D)
1 ∪H(D)

2 , where following our usual notation,
H

(D)
1 is the set of first and last hops, and H(D)

2 is the set of middle hops.
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Set of first and last hops. For u ∈ V , let R(D)(u) be the set of nodes which lie on a shortest
path of length at least D which has one of its endpoints at u, and which have minimum
value of ρ among all vertices on this path at distance in [D/4, D/2] from u:

R(D)(u) =
⋃

v∈V :dG(u,v)≥D

{
argminr∈Puv,dG(u,r)∈[D/4,D/2] ρ(r)

}
.

We now put: H(D)
1 := {ur : u ∈ V, r ∈ R(u)}.

Set of middle hops. We put in H(D)
2 links between all pairs of nodes which have a small

value of ρ, satisfy the natural upper bound of D1+ε on distance between them, and have
sufficiently large reach, i.e., the shortest path between them can be extended by at least D/4:

H
(D)
2 :=

{
qr : q, r ∈

⋃
u∈V

R(D)(u) ∧ dG(q, r) ≤ D1+ε −D/2 ∧ (∃v∈V r ∈ Pqv ∧ dG(r, v) ≥ D/4)

}
.

The validity of H as a 3-hopset is immediate to verify from the construction: consider
u, v and i ≥ 0 such that dG(u, v) ∈ [D,D1+ε] with D = D′i(1+ε).

For q = argminw∈Puv,dG(u,w)∈[D/4,D/2] ρ(w) and r = argminw∈Puv,dG(u,w)∈[D/2,3D/4] ρ(w),
we then have uq ∈ H(D)

1 , qr ∈ H(D)
2 and vr ∈ H(D)

1 , yielding a 3-hop shortest path from u
to v. For dG(u, v) ≤ D′, H ′ contains a 2-hop shortest path from u to v.

3.2 Bound on 3-Hopset Size and Oracle Time
I Lemma 2. Fix u ∈ V and D > 0. We have: |R(D)(u)| ≤ k.

From the above Lemma, it follows that for any u ∈ V , we have deg
H

(D)
1

(u) ≤ k. Thus
summing over all the O(log log(nLmax)/ log(1 + ε)) = O(log log(nLmax) log k) levels of the
construction, we successively obtain:

degH1
(u) ≤ degH′(u) + k ·O(log log(nLmax) log k) = O(k log logn log k(log logn+ logL) + logn), (1)

E degH1
(u) ≤ E degH′(u) + k ·O(log log(nLmax) log k) = O(k log k(log logn+ logL)), (2)
|H1| ≤ |H ′|+ nk ·O(log log(nLmax) log k) = O(nk log k(log logn+ logL)). (3)

We now proceed to bound the size of the set H2 of middle hopsets.

I Lemma 3. Fix D ≥ D′. With probability 1−O(1/n2), it holds that for all u ∈ V and for
all r ∈ R(D)(u), we have ρ(r) ≤ Lmax/D.

We now proceed under the assumption that the event from the claim of the Lemma holds.
We now consider an arbitrary node q ∈ R(D)(u) for some u ∈ V , and look at deg

H
(D)
2

(q).

We now have that if qr ∈ H(D)
2 , then by the definition of H(D)

2 and the above Lemma, the
following conditions jointly hold:

ρ(r) ≤ Lmax/D
r ∈ {w ∈ V : ∃v∈V D1+ε ≥ dG(q, v) ≥ dG(q, w) +D/4 ∧ Pqw ⊆ Pgv} =: W (q).

We note that W (q) is the subset of the vertex set of the shortest path tree of node q,
pruned to contain only those paths which have reach at least D/4 at depth less than D1+ε.
This tree has depth bounded by D1+ε, and width bounded by an α-skeleton dimension kα
(following [36]), with parameter α = D/4

D1+ε = D−ε/4. Following [36][Section 6], kα can be
easily expressed using skeleton dimension k = k1/2 as:

kα ≤ kdlog2(1+1/α)e < k1+log2(4Dε) = k3Dε log2 k.
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We then have |W (q)| ≤ D1+εkα < k3D1+ε(1+log2 k). Moreover, by an easy concentration
bound, we have that for all q ∈ V , |{r ∈W (q) : ρ(r) ≤ Lmax/D}| = O(logn) + 2Lmax

D |W (q)|,
with probability 1−O(1/n2). It follows that with probability 1−O(1/n2), we have for all
q ∈

⋃
u∈V R

(D)(u):

deg
H

(D)
2

(q) ≤ O(logn) + 2Lmax

D
|W (q)| ≤ O(logn+ Lmaxk

3Dε log2 k).

Noting that with probability 1−O(1/n2):

|
⋃
u∈V

R(D)(u)| ≤ |{w ∈ V : ρ(w) ≤ Lmax/D| ≤ O(logn+ nLmax/D)

we finally obtain that with probability 1−O(1/n2):

|H(D)
2 | ≤ O(logn+ nLmax/D)O(logn+ Lmaxk

3Dε log2 k) = O(log2 n+ nL2
maxk

3Dε log2 k−1)

≤ O(nL2
maxk

3D−1/2) ≤ O(nD′−1/4) ≤ O(n/ log3 n),

where in the last two transformations we use the fact that ε = 1
2 log2 k

and that D ≥ D′ ≥
L4

maxk
6 log12 n. Using a union bound and summing over all levels of the construction, we

eventually obtain that with probability 1−O(1/n):

|H2| ≤ O(n/ log2 n). (4)

Thus, the set of middle links is sparse and does not contribute to the asymptotic size of the
overall representation of the 3-hopset.

Overall, considering a randomized construction which rejects random choices of ρ for
which any of the considered w.h.p. events fail, by combining Eq. (1)–(4) with the hopset-based
distance oracle framework described in the Preliminaries, we obtain the following Theorem.

I Theorem 4. For a unique shortest path graph with skeleton dimension k and average link
length L ≥ 1, there exists a randomized construction of a 3-hopset distance oracle of size
|H| = O(nk log k(log logn+logL)), which for an arbitrary queried node pair performs distance
queries in expected time O(k2 log2 k(log2 logn+ log2 L)) (where the expectation is taken over
the randomized construction of the oracle), and in time O(k2 log2 k log2 logn(log2 logn +
log2 L) + log2 n) with certainty.

In particular, for graphs with constant-length edges and small skeleton dimension (k =
O(logn)), the 3-hopset has size |H| = O(nk log k log logn), with expected time of any query
given as O(k2 log2 k log2 logn).

4 LP-based Approximation Algorithm

In this section, we propose an Integer Linear Programming (ILP) formulation for h-hopsets
with a minimum number of edges, which we then relax to a LP formulation. Whereas both
formulations are applicable to the general case, we prove relations between them only for
USP graphs.

4.1 ILP and LP Formulations
A necessary and sufficient condition for H to be a h-hopset for G is that for every pair of
vertices s, t there exists a path Pst = (s = v0, v1, . . . , vlst = t) in G∪H such that lst ≤ h and
in graph G there exists some shortest s− t path passing through all of the vertices v0, . . . , vlst ,
in the given order. For a fixed pair s, t, we consider the directed graph Hst with vertex set
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V × {0, . . . , h} ≡ Vh (by convention, elements of Vh will be denoted compactly as vi, where
v ∈ V , i ∈ {0, . . . , h}) and with an arc set defined as follows. For i ∈ {0, . . . , h− 1}, we add
arc (ui, vi+1) to Hst if and only if {u, v} ∈ G ∪H and u, v lie on some shortest s− t path in
the given order, i.e., if dG(s, u) + dG(u, v) + dG(v, t) = dG(s, t). In particular, all arcs of the
form (ui, ui+1), for u ∈ V on a s− t shortest path, belong to Hst. Now, we have that H is a
h-hopset for G if and only if there exists a path from s0 to th in Hst. This is equivalent to
saying that for all s, t ∈ V , the flow value from s0 to th is at least 1 in Hst. Given graph
G, we thus have the following ILP formulation for the minimum h-hopset problem, using
indicator variables xuv for G∪H (given as 1 if {u, v} ∈ G∪H and 0 otherwise) and variables
fstuivj , representing the flow value along arc (ui, vj) in Hst:

Minimize:
∑

u6=v,{u,v}/∈E

xuv (5)

Subject to:

xuv ∈ {0, 1} (6)

0 ≤ fstuivj ≤
{
xuv, if j = i+ 1 and dG(s, u) + dG(u, v) + dG(v, t) = dG(s, t),
0, otherwise.

(7)

∑
ui

fstvjui −
∑
ui

fstuivj =


0, for vj ∈ Vh \ {s0, th}
+1, for vj = s0

−1, for vj = th

, (8)

where indices s, t, u, v traverse V and indices i, j traverse {0, . . . , h}.
To obtain an LP relaxation of the above problem, we replace the integral condition

xuv ∈ {0, 1} by the fractional one xuv ∈ [0, 1]. We look at the connection between the
integral and fractional forms for the special case of unique shortest path graphs.

We remark that the above formulation can be seen as a generalization of the LP and ILP
statement of Angelidakis et al. [9] proposed for the special case of 2-hop labeling. In the
case of 2-hop labeling, Angelidakis et al. do not rely on an explicit flow formulation but
use a single constraint of the simpler form

∑
w∈P st min{xsw, xwt} ≥ 1, where P st represents

the set of nodes on some shortest s− t path in G. However, the analysis of the integrality
gap does not carry over from the case of h = 2 to h > 2, i.e., as soon as there exist internal
shortcuts which have neither s nor t as one of their endpoints.

4.2 Bounding Integrality Gap for Unique Shortest Path Graphs
We analyze the integrality gap of the above LP formulation for the case of unique shortest
path (USP) graphs, i.e., graphs in which each pair of nodes s, t ∈ V is connected by a
unique shortest path P st in G. We will occasionally identify P st with its set of nodes,
and we will introduce a linear order on its vertices, writing for u, v ∈ P st that u <st v if
dG(s, u) < dG(s, v); we will denote the order simply as “<” when the path P st is clear from
the context. Observe that in the LP formulation, we may have fstuivj 6= 0 only if u <st v
and j = i+ 1. Thus, fixing s, t ∈ V , the flow fst = (fstuivj : ui, vj ∈ Vh) is non-zero between
vertices of {P st} × {0, 1, . . . , h} only, and the flow is oriented towards t on this path.

Let (xuv, fstuivj ) be a fixed solution to the LP problem in a USP graph, with cost COSTLP =∑
u6=v,{u,v}/∈E xuv. We will show how to use this set to construct a valid hopset H ′′ for G

(thus, equivalently, also solving the ILP formulation). We first apply a randomized rounding
procedure following the classical scheme of Raghavan and Thomson [39]. We define the family
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of independent random variables (x′uivi+1
: u, v ∈ V, i ∈ {0, . . . , h}), with x′uivi+1

∈ {0, 1}. For
u 6= v, {u, v} /∈ E we put Pr[x′uivi+1

= 1] = min{Cxuv, 1}, where C ≥ 1 is a suitably chosen
probability amplification parameter (we put C = 8h lnn). We will assume, without affecting
the validity or cost of the solution, that xuv = x′uivi+1

= 1, when u = v or {u, v} ∈ E.
We denote H ′ = {{u, v} : u, v ∈ V ∧ u 6= v ∧ {u, v} /∈ E ∧ ∃i∈{0,...,h−1} x

′
uivi+1

= 1}. Let
π : V → {1, . . . , n} be a bijection picked uniformly at random (it is a random permutation
when V = {1, . . . , n}). We define the set of shortcuts S({u, v}) associated with each pair
{u, v} ∈ H ′ as the set of all pairs of nodes on path Puv, one of which is a prefix minimum on
this path with respect to π, and the other of which is a suffix minimum with respect to π:

S({u, v}) :=
{
{u∗, v∗} : u∗, v∗ ∈ Puv ∧ π(u∗) = min

z∈Puv,z≤uvu∗
π(z) ∧ π(v∗) = min

z∈Puv,z≥uvv∗
π(z)

}
.

The obtained solution is given as the set of all such shortcuts: H ′′ :=
⋃
{u,v}∈H′ S({u, v}).

I Proposition 5. With probability 1−O(1/n), set H ′′ is a hopset for G of size O(h2 log3 n ·
COSTLP).

We remark that the above Proposition implies that the h-hopset problem can be efficiently
approximated by finding an optimal fractional LP solution and constructing set H ′′.

I Theorem 6. There exists a randomized polynomial-time O(poly logn)-approximation
algorithm for the h-hopset problem in unique shortest path graphs, for any h ≤ O(poly logn).

4.3 Approximating Average Query Time for 3-Hopsets
In order to design an efficient distance oracle based on 3-hopsets, we follow the framework
described in the preliminaries and use an LP-rounding technique to obtain sets H1∪H2 =: H.
The obtained claim relies on the notion of uniform-average query time introduced in the
Preliminaries.

I Theorem 7. For any feasible bound S, let HOPT,S be a 3-hopset for a unique shortest
path graph, which satisfies the given bound on the number of edges |HOPT,S | ≤ S and
such that the uniform-average query time T (HOPT,S) is minimized. Then, there exists a
randomized polynomial-time algorithm which finds a 3-hopset H with |H ′′| ≤ O(log3 n)S and
T (H ′′) ≤ O(log4 n)T (HOPT,S).

We remark that the above Theorem can be directly generalized to a notion of average query
time for non-uniform query densities, in which the goal is to minimize expected query time
in a model in which each node v ∈ V is assigned its relative frequency fv ∈ [0, 1], and a node
pair uv is queried with frequency fufv.

5 Bounded Treewidth Graphs

We now show how to obtain h-hopsets for graphs with bounded treewidth by following a
classical construction for trees. We first begin with preliminaries recalling the definitions of
treewidth and inverse Ackermann function.

Treewidth definition. Recall that a graph G has treewidth t if there exists a tree T whose
nodes are subsets of V (G) called bags such that: |X| ≤ t+ 1 for all X ∈ V (T ); for all edges
uv ∈ E(G), there exists a bag X ∈ V (T ) containing both u and v (u, v ∈ X); and for all
nodes u ∈ V (G), the bags containing u form a sub-tree of T . Without loss of generality, we
assume that each bag contains exactly t + 1 nodes, and that two neighboring bags share
exactly t nodes (the decomposition is standard). This implies |V (T )| ≤ n as each bag brings
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one new node. Note that removing a non-leaf bag separates the graph into several connected
components. We consider that all edges of T have weight 1. For convenience, we assume
that T is rooted at some bag R and define for each node u ∈ V (G) the root bag of u as the
bag Ru ∈ V (T ) containing u which is closest to the root.

Inverse Ackermann notation. The kth-row inverse Ackermann function λk(.) can be defined
by λ0(n) = n

2 , λ1(n) =
√
n, λ2(n) = logn, λ3(n) = log logn, λ4(n) = log∗ n, and more

generally for k ≥ 2 by the recurrence λk(n) = λ∗k−2(n) where we define for any function
f : f (0)(n) = n, f (i)(n) = f(f (i−1)(n)) for i > 0, and f∗(n) = min{j | f (j)(n) ≤ 1}. The
inverse Ackermann function can be defined as α(n) = min{j | λ2j(n) ≤ j}. See [33] for a
more formal definition based on Ackermann function.

We first consider the case of (weighted) trees for which the construction of h-hopsets is
classical (even though the connection with hopsets was not made). It is implicit in [7, 16],
explicit for unweighted trees in [13] and directed trees in [42]. We provide a short construction
which fine-grains the dependence of the hopset size on h (e.g., replacing 2h by h with respect
to the asymptotic analysis in [7]). The construction is based on the following folklore lemma
for splitting a tree into smaller sub-trees (it can be seen as a generalization of the existence
of a centroid).

I Lemma 8. Given a rooted tree T with n nodes and a value p > 1, there exists a set P of
at most 2p nodes such that each connected component of T \ P contains less than n/p nodes
and is connected to at most two nodes in P . Set P can be computed in linear time through a
bottom-up traversal of the tree.

h-hopset construction for trees. A 1-hopset in a tree T is obtained by adding all pairs as
edges with appropriate weight. For h > 1, we recursively define a h-hopset of T as follows.
Select a set P of 2p nodes at most with p = n

λh−2(n) according to Lemma 8. When h = 2, we
add an edge from each node u of T to each node in P . When h > 2, we consider the forest
T ′ induced by nodes in P : it has node set P and edges xy such that y is the closest ancestor
of x in T that belongs to P . The weight of such an edge is defined as w′(x, y) = dT (x, y).
We then add a (h − 2)-hopset of T ′ to the construction. Additionally, we add one or two
edges per node not in P : for each connected component C of T \ P , add an edge ux for each
node u ∈ C and each x ∈ P connected to C. Note that Lemma 8 ensures that there are
at most two such nodes x for a given component C. In both cases (h ≥ 2), we construct
recursively a h-hopset of each sub-tree induced by a connected component C of T \ P . In
the special case of h = 3, the (h− 2)-hopsets contribute to H2 while all edges connecting to
a node in some selected set P contribute to H1 according to the H = H1 ∪H2 convention
introduced in the Preliminaries.

Following a similar approach on the tree decomposition of a graph with treewidth t, we
obtain the following result (detailed construction is given in the full paper [33]).

I Theorem 9. For all h > 1, any graph with treewidth t has a h-hopset with O(tnλh(n))
edges and a 2(α(n) + 1)-hopset with O(t2n) edges.

For the special case of h = 3, we have λ3(n) = log logn, and the size required to represent
the 3-hop data structure is S = O(tn log logn) edges. Following the convention H = H1∪H2,
we note that we have degH1(v) = O(t log logn) for any v ∈ V . The following bound on the
query time follows.

I Theorem 10. Any graph with treewidth t admits a 3-hopset distance oracle represented on
O(tn log logn) edges of O(logn) bits, with a query time of O(t2 log2 logn).
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Abstract
A classical multi-agent fence patrolling problem asks: What is the maximum length L of a line
fence that k agents with maximum speeds v1, . . . , vk can patrol if each point on the line needs to
be visited at least once every unit of time. It is easy to see that L = α

∑k

i=1 vi for some efficiency
α ∈ [ 1

2 , 1). After a series of works [3, 8, 9, 10] giving better and better efficiencies, it was conjectured
by Kawamura and Soejima [10] that the best possible efficiency approaches 2

3 . No upper bounds on
the efficiency below 1 were known.

We prove the first such upper bounds and tightly bound the optimal efficiency in terms of
the minimum speed ratio s = vmax

vmin
and the number of agents k. Our bounds of α ≤ 1

1+ 1
s

and
α ≤ 1 − 1√

k+1
imply that in order to achieve efficiency 1 − ε, at least k ≥ Ω(ε−2) agents with a

speed ratio of s ≥ Ω(ε−1) are necessary. Guided by our upper bounds, we construct a scheme whose
efficiency approaches 1, disproving the conjecture stated above. Our scheme asymptotically matches
our upper bounds in terms of the maximal speed difference and the number of agents used.

A variation of the fence patrolling problem considers a circular fence instead and asks for
its circumference to be maximized. We consider the unidirectional case of this variation, where
all agents are only allowed to move in one direction, say clockwise. At first, a strategy yielding
L = maxr∈[k] r · vr where v1 ≥ v2 ≥ · · · ≥ vk was conjectured to be optimal by Czyzowicz et al. [3]
This was proven not to be the case by giving constructions for only specific numbers of agents with
marginal improvements of L. We give a general construction that yields L = 1

33 loge log2(k)
∑k

i=1 vi for
any set of agents, which in particular for the case 1, 1/2, . . . , 1/k diverges as k →∞, thus resolving
a conjecture by Kawamura and Soejima [10] affirmatively.
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1 Introduction

Patrolling is a fundamental task in robotics, multi-agent systems, and security settings. Given
some environment of interest, and a collection of mobile agents, the aim is to coordinate
the movements of the agents in order to, for example, guard an area from intrusion by an
enemy, prevent accidents or failure of equipment, maintain up-to-date information of the
environment, etc. For each of these tasks, ensuring that certain points in the environment get
visited/monitored frequently is crucial. Performance of patrolling algorithms is consequently
often measured in terms of idleness – roughly speaking, the time between two consecutive
visits to a point in the environment.

Multi-agent patrolling has been extensively studied in the robotics literature since the
early 2000s, e.g., see [1, 11] and the survey [12]. However, even for extremely clean and very
simple models, determining optimal patrolling schemes poses many natural mathematical
questions with interesting and surprisingly sophisticated answers [2, 3, 4, 5, 6, 7, 8, 9, 10].

1.1 Fence Patrolling
This paper studies a classical fence patrolling problem introduced by Czyzowicz et al. [3],
which might be one of the cleanest and most natural patrolling problems: What is the
maximum length L of a fence that k agents a1, . . . , ak with maximum speeds v1, . . . , vk can
patrol if each point needs to be visited at least once every unit of time. Czyzowicz et al.
introduce two variations of this question – the fence could be either an open curve, or a
closed curve. For simplicity, we assume the open curve is a line segment and the closed
curve is a circle.

For the line segment, it is easy to see that for any speeds the maximum length L satisfies
L = α

∑k
i=1 vi for some efficiency α ∈ [ 1

2 , 1). In particular, in one unit of time an agent ai
can cover a length of at most vi and all agents can cover at most a total length of

∑k
i=1 vi.

An efficiency of exactly α = 1 is furthermore never possible because agents have to turn
around eventually. On the other hand, an efficiency of α = 1

2 can easily be achieved by the
following strategy:
Partition-based strategy, A1: For all i ∈ [k], agent ai patrols a subsegment of length
1
2vi by going back and forth on this segment once every unit of time. This patrols a segment
of length L = 1

2
∑k
i=1 vi with idle time 1.

Considering patrol schedules on a circle, the picture is quite different than for a line
segment. Again, the length L of any circle that can be patrolled by a set of agents is
upper-bounded by the sum of the maximum speeds of the agents, since agent ai cannot
cover a length of more than vi. Here, however, it is easy to find collections of agents and
a corresponding patrol schedule that achieves this exactly – imagine k identical agents
starting equidistantly along the circle and moving in unison in the same direction, say
counter-clockwise.

1.2 Prior Work on Fence Patrolling

1.2.1 Prior Work on the Line Segment
Czyzowicz et al. [3] observed that the trivial scheme A1 with efficiency 1

2 is optimal if the
paths of the agents never cross. To see this, note that the leftmost agent ai cannot walk
away further than 1

2vi from the leftmost point of the fence as it would take more than one
unit of time between two visits of this point. By the same argument the agent aj to the
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right of agent ai cannot ever be further away than 1
2 (vi + vj) from the leftmost point of the

fence and induction shows that a total fence length of 1
2
∑k
i=1 vi is best possible. For the

special case of all agents having the same speed the assumption that the paths of the agents
never cross is furthermore without loss of generality as one can equally well switch identities
of agents at a crossing, making the agents bounce off each other instead of crossing. In the
worst case an efficiency of 1

2 is thus optimal and Czyzowicz et al. posited [3] that indeed no
better efficiency can be achieved for any speeds.

Surprisingly, Kawamura and Kobayashi [9] disproved this by providing an explicit fence
patrolling schedule for 6 agents with speeds 1, 1, 1, 1, 7

3 , and
1
2 for a fence of length 7

2 , thus
achieving an efficiency of 21

41 >
1
2 . This was improved by Dumitrescu, Ghosh and Tóth [8],

who proposed a family of patrolling schedules with efficiency approaching 25
48 , and finally

by Kawamura and Soejima [10] who achieved an efficiency approaching 2
3 . Kawamura and

Soejima furthermore explicitly conjectured that no efficiency better than 2
3 is possible for

any set of speeds [10, Conjecture 6, page 9].
On the other hand, except for the setting of equal speeds discussed above, no upper

bounds on the efficiency below 1 have been provided in the literature [3, 9, 8, 10].

1.2.2 Prior work on the Circle
For a general set of agents, Czyzowicz et al. [3] proposed the following universal scheme that
generalizes the schedule above for equal speeds:
Runners strategy, A2: Assume v1 ≥ v2 ≥ · · · ≥ vk. Find the r ∈ [k] that maximizes
r · vr, and let the r fastest agents move equidistantly along the circle at speed vr. This
patrols a circle of length L = maxr∈[k] r · vr with idle time 1.

Suppose for a collection of agents with maximum speeds v1 ≥ v2 ≥ · · · ≥ vk, A2 produces
a schedule on a circle with length L. Without loss of generality, we can assume L = 1. Then
maxr∈[k] r · vr = 1, and by possibly increasing the maximum speed of some agents we may
assume vi = 1/i for each i ∈ [k]. Note that increasing speeds in this way can only increase
the maximum circumference that can be patrolled with idle time 1 using these agents, but
will not increase the length produced by A2. Thus, if there is any collection of agents where
there is a patrol schedule that performs better than A2, there must be such a schedule in
the case of harmonic maximum speeds 1, 1/2, . . . , 1/k.

To analyse the performance of patrol schemes on the circle, Czyzowicz et al. considered
two different cases: unidirectional patrol schedules, where agents are only allowed to move in
one direction, and general (or bidirectional) patrol schedules, where agents are allowed to go
in both directions. Clearly, any patrol schedule obtained through A2 is unidirectional.

In the bidirectional case, it is not too hard to see that there are situations where A2 is
not optimal. Indeed, in the case of harmonic maxiumum speeds, the partition-based strategy
A1, which works in the same way for a circular fence as for a line segment fence, would give
L = (1 + 1/2 + · · ·+ 1/k)/2, which is bigger than 1 as given by A2 for any k ≥ 4. In fact,
an example with three agents was given in [3] where neither A1 nor A2 are optimal. This
was strengthened further by Dumitrescu et al. [8], who showed for any k ≥ 4 there exists
a collection of k agents where what they call the train strategy A3 performs strictly better
than both A1 and A2. To the authors’ knowledge, no universal scheme has been proposed to
always produce an optimal patrol schedule in this setting.

For the unidirectional case, it was initially conjectured by Czyzowicz et al. that A2 is
optimal for any set of agents. This was proved to be true for up to four agents. However, it
was shown incorrect by parallel results by Dumitrescu et al. [8] and Kawamura and Soejima
[10], who gave explicit examples of patrol schemes for 32 and 122 agents (with harmonic
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speeds) with L = 1 + ε (for a small unspecified ε > 0) and L = 1.05 respectively. Kawamura
and Soejima further conjectured that the maximum length of a unidirectional circle that can
be patrolled by agents with speeds 1, 1/2, . . . 1/k diverges as k →∞.

2 Our Results

This paper advances the understanding of the fence patrolling problem by giving tight upper
and lower bounds on the optimal efficiency for the line segment, and a construction for the
circle with efficiency of Θ( 1

loge log2 k
) for any set of k agents. To a large extent it concludes

the main line of inquiry put forward in the works discussed above [3, 9, 8, 10].

2.1 Results for the Line Segment
We provide the first technique to prove general impossibility results for the fence patrolling
problem. We explain our ideas in more detail in Section 4 and merely state our main upper
bound here:

I Theorem 2.1. Any fence patrol schedule with k agents with maximum speeds v1, . . . , vk
patrols a fence of length at most

L ≤
k∑
i=1

vi
1 + vi

maxj vj

.

One way to interpret Theorem 2.1 is that the contribution of an agent ai depends not
only on his/her own speed vi but also on how much slower he/she is than the fastest agent.
In particular, instead of always contributing vi, as in the trivial upper bound, an agent
contributes at most 1

1+ 1
si

· vi given that the fastest agent patrolling is a factor of si faster
than ai. That is, the “relative efficiency” of an agent ai ranges anywhere between 1/2
and 1 depending on si, which always constitutes an improvement over the trivial upper
bound of

∑
i vi.

We also show that Theorem 2.1 can be used to prove an upper bound on the efficiency of
a schedule solely in terms of the number of agents:

I Lemma 2.2. Any fence patrolling schedule with k agents has an efficiency of at most
1− 1√

k+1 .

We note that our upper bounds are tight in several interesting special cases. Specifically,
for the case of agents having identical speeds, Theorem 2.1 shows that the efficiency of the
schedule (and indeed each agent) is at most 1

2 , reproving the result of [3]. In contrast to
the symmetry argument about non-crossing agents explained above, our arguments and
upper bounds easily extend to near-identical speeds as well. Lastly, it is easy to check that
Theorem 2.1 is tight when applied to the configuration of agents used by Dumitrescu et
al. [8] and Kawamura and Soejima [10] for their construction to obtain efficiency ratios of
25/48− o(1) and 2/3− o(1), respectively.

Our upper bounds do not exclude schedules with efficiency close to 1. They do however
give important restrictions and clues about what an extremely efficient schedule, if it exists,
has to look like. In particular, Lemma 2.2 implies that any schedule with efficiency 1− ε has
to have at least

( 1
2ε
)2, i.e., quadratically in 1

ε many agents. In the same manner, Theorem 2.1
implies that, with ε → 0, the ratio between the fastest and slowest agent has to be at
least Ω( 1

ε ), i.e. grow unboundedly. Even more interestingly, the way the upper bound in
Theorem 2.1 depends on maxi vi seems to indicate that even just a single very fast agent can
raise the “relative efficiency” of slower agents from 1/2 to almost 1.



B. Haeupler, F. Kuhn, A. Martinsson, K. Petrova, and P. Pfister 144:5

Equipped with this better understanding and guidance from our impossibility results we
were, to our surprise, able to design schedules which achieve an efficiency arbitrarily close to
1, thus disproving the conjecture of [10]:

I Theorem 2.3. For any sufficiently large k, there exists a fence patrolling schedule with
efficiency 1− 3.5√

k
. Such a schedule uses k−1 agents of speed one and one agent with maximum

speed Θ(
√
k).

Note that this theorem implies that for any ε > 0 there exists a fence patrolling schedule
with efficiency 1− ε using O( 1

ε2 ) agents – one with speed Θ( 1
ε ) and all others with speed 1.

In other words, the efficiency can be made arbitrarily close to 1 by choosing the appropriate
number and maximum speeds of agents.

We remark that Theorem 2.3 also shows that both our upper bounds are asymptotically
tight. In particular, the optimal efficiency for any schedule with k agents is indeed 1−Θ( 1√

k
).

Furthermore, for any s ≥ 1, there is a configuration (with k = Θ(s2) agents), where the
maximum speeds of the agents differ by a factor s and for which the optimal efficiency
is 1

1+ 1
Θ(s)

= 1−Θ( 1
s ).

2.2 Results for the Circle
We resolve the conjecture by Kawamura and Soejima affirmatively. Namely, for any large
enough k, we can construct a patrol schedule with idle time 1 using agents with maximum
speeds 1, 1/2, . . . 1/k that patrols a unidirectional circle of length L = Θ

(
log2 k

loge log2 k

)
. In fact,

our construction extends to a new universal scheme for the unidirectional circle. This is
captured in the following theorem.

I Theorem 2.4. For k sufficiently large and for any k agents with maximum speeds v1, . . . vk
there exists a patrol scheme with idle time 1 that patrols a unidirectional circle of length

L = 1
33 loge log2 k

k∑
i=1

vi.

The construction of our schedule has two steps: we first divide the agents into Θ(log2 k)
groups, reducing the speed of some and discarding others so that each group consists of a
power of 2 number of agents that move with the same speed, which is also a power of 2 times
the sum of speeds. This allows us to use a randomized construction, in which the agents
from each group are placed equidistantly around the circle with a random offset from some
fixed “beginning” of the circle, and move around it with the same speed. We show that
with this patrol schedule, most points are visited as frequently as required by our theorem.
Then as a second phase, we cut out the bad points – that is, the ones that are not visited
as frequently as necessary. We move the patrol schedule to a smaller circle, intuitively only
consisting of the good bits. Agents move as if they were on the larger circle, but whenever
moving though a cut-out segment, they just stand still instead. The details of this scheme
together with a proof sketch will be given in Section 6.

2.3 Organization
The rest of the paper is organized as follows: We first give a more formal model description
of the fence patrolling problem as well as discuss some related models and works in Section 3.
In Section 4 we explain and prove our upper bounds for the line segment. Section 5 explains
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and gives a proof sketch of our optimal fence patrolling schedule for the line segment.
Finally, Section 6 presents and and gives a proof sketch our schedule for a circle with length
Θ( 1

loge log2 k

∑k
i=1 vi). Formal and complete proofs for the two schedules can be found at

https://arxiv.org/abs/1809.06727.

3 Fence Patrolling and Related Models

In this section we give a more detailed formal definition for the fence patrolling model/problem
and briefly discuss related models and results. The fence patrolling model as given by [3] is
defined as follows:

The environment E to be patrolled is 1-dimensional and consists of a line segment of
length L or a circle of circumference L. This line segment or circle is also referred to as a
fence.
The fence patrolling problem consists of some finite number k ∈ N of mobile agents
a1, a2, . . . , ak to patrol the fence, each having a possibly distinct positive maximum speed
v1, v2, . . . , vk ∈ R+.
A schedule for the fence patrolling problem consists of a k-tuple of functions a1, a2, . . . , ak :
[0,∞)→ E such that, for all i ∈ [k], t ≥ 0 and ε > 0,

dist(ai(t+ ε), ai(t)) ≤ ε · vi.

That is, we assume patrolling starts at t = 0 and goes on indefinitely. Each agent follows a
predetermined trajectory, in which he/she moves along E with at most his/her maximum
speed. In the case of a circular fence, the function dist(x, y) refers to the length of the
shorter circle arc between x, y ∈ E . In the case of the unidirectional circle, we have the
additional requirement that ∀i ∈ [k], t ≥ 0 and 0 < ε < L

2vi
, the shorter arc between ai(t)

and ai(t+ ε) is the one that spans clockwise from ai(t).
We say that a patrol schedule has idle time T for some fixed positive parameter T if for
all t ≥ T and for all x ∈ E , there is some agent that visits x during [t− T, t]. Intuitively,
this condition means that an intruder cannot remain undetected at a point for more than
T time.
Given a patrol schedule, we say that a point (x, t) ∈ E × [T,∞) is T -covered if some
agent ai visits the point x ∈ E on the fence during the time interval [t− T, t]. Note that
in this model an agent patrols/monitors a point x ∈ E by visiting it. On the one hand,
this means the agents are limited to zero line of sight. On the other hand, no additional
operation (e.g. stop and look around) is necessary to patrol a point.

One can see that a schedule has idle time T if and only if every point (x, t) ∈ E × [T,∞)
is T -covered. It is easy to observe that any patrol schedule of a fence of length L with idle
time T can be rescaled to a schedule of a fence of length α · L with idle time 1

α · T for any
α > 0. Thus, to simplify terminology, we assume henceforth that T = 1 and we refer to
1-covered simply as covered.

Related models have been considered in the literature: where agents have positive line of
sight [7], where agents have distinct walking and patrolling speeds [5], where some agents
may be faulty [4], where only some regions of the environment need to be patrolled [2], or
where the environment is a geometric tree [6]. However, all of these models feature identical
agents and in particular do not allow for varying maximum speeds. Overall, the model given
above is likely the cleanest and most natural model in which agents with different speeds can
and have been studied. Despite the extreme simplicity of this model, this paper and prior

https://arxiv.org/abs/1809.06727
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works on the fence patrolling problem [3, 9, 8, 10] show that very surprising and intricate
phenomena occur when agents have different speeds and that these nontrivial consequences
can be studied in the model defined above.

4 Impossibility Results for the Line Segment: Proof of Theorem 2.1
and Lemma 2.2

In this section, we prove two upper bounds on the length of a straight line fence (i.e. E = [0, L])
patrolled by agents of maximum speeds v1, . . . , vk.

Proof of Theorem 2.1. The main idea of the proof is to consider the two-dimensional
spacetime continuum S := [0, L]× [0,∞) and the trajectories of the agents along with the
points they cover. Since, as noted in Section 3, a patrol schedule with agents a1, . . . , ak has
idle time 1 if and only if ∀x ∈ [0, L],∀t ≥ 1, (x, t) ∈ S is covered by at least one agent aj ,
the theorem can be equivalently stated as that, for any patrol schedule such that all points
(x, t) ∈ S with t ≥ 1 are covered by some agent, we have

L ≤
k∑
i=1

1
1
vi

+ 1
vmax

. (4.1)

In fact, we will show (4.1) under the weaker assumption that only points (x, t) ∈ S with
t ∈ [1, 2k] are covered by some agent.

Given a patrol schedule of [0, L] with agents a1, . . . , ak and a non-empty subset A ⊆
{a1, . . . , ak}, we define the right border (see Figure 2) of A as the function BA : [1,∞)→ [0, L]
given by BA(t) := max{x ∈ [0, L] : (x, t) is covered by some agent in A}. We show (4.1) by
considering consecutively the collections of agents A1, . . . , Aq, where A1 = {ai1}, ∀j ∈
[q] \ {1}, Aj = Aj−1 ∪ {aij}, i1, . . . , iq is a sequence of distinct integers in [k] to be specified
later, and 1 ≤ q ≤ k as we might not need to consider all agents. The intuition behind this is
that we are starting with an empty set and adding more agents in a specific order until some
termination condition is met. It is clear that ∀t ≥ 0,∀j ∈ [q − 1], BAj (t) ≤ BAj+1(t). The
key idea of the proof is to consider what happens to the right border of Aj as j increases
(that is, as more agents are added). An example of the right borders of Aj and Aj+1 for
some j is shown in Figure 1.

At this point we prove a claim which will be useful in specifying the sequence i1, . . . , iq.

B Claim 4.1. For any patrol schedule of [0, L] with set of agents A = {a1, . . . , ak} and idle
time 1, for any subset A′ of {a1, . . . , ak}, and for any point (px, pt) ∈ S on the right border
of A′ (that is, such that BA′(pt) = px), there exists an ε > 0 such that there is at least one
agent ai ∈ A \A′ that covers all points (px + ν, pt) for ν ∈ [0, ε].

Proof. Note that there could not exist three points (x1, t), (x2, t), (x3, t) such that 0 ≤ x1 <

x2 < x3 ≤ L and some agent aj covers (x1, t) and (x3, t) but not (x2, t). This is because the
trajectory of every agent can be considered as a continuous function faj : [0,∞)→ [0, L], so it
cannot be that ∃t1, t3 ∈ [t−1, t] such that f(t1) = x1 and f(t3) = x3 but 6 ∃t2 ∈ [t−1, t] with
f(t2) = x2. It follows that the set of points Cj on the segment between (px, pt) and (L, pt)
covered by some agent aj must be either the empty set or a segment. Now consider the set
of agents Ap in A \A′ that cover (px, pt) and note that ∃ε > 0 such that ∃a ∈ Ap that covers
(px + ε, pt) (otherwise choose the non-empty Cj with aj ∈ A \A′ with the leftmost left end
(pl, pt) that is strictly to the right of px and notice that all points (px′ , pt) with px′ ∈ (px, pl)
are not covered by any agent in A, which is impossible as all points in S should be covered).
But now a ∈ Ap covers both (px, pt) and (px + ε, pt), therefore it also covers anything in
between since the points it covers between (px, pt) and (L, pt) must form a segment. C
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fence
0

time

Figure 1 If we have added the blue agent and the red agent so far, then the right border is shown
in yellow. If we now also add the green agent, the new right border is shown in black.

Now we can continue with the proof of our main upper bound by specifying i1, . . . , iq.
Consider a fixed patrol schedule of [0, L] with agents a1, . . . , ak and idle time 1. To pick
the sequence i1, . . . , iq, consider the following procedure: initially, put l0 = (x0, t0) = (0, k)
and pick i1 ∈ [k] such that agent ai1 covers l0. For each consecutive j = 1, 2, . . . , we let
lj = (xj , tj) be such that

tj = arg min
t∈[k−j,k+j]

BAj (t)

and xj = BAj (tj). Intuitively, lj is the leftmost point of BAj between times k − j and k + j.
Now if xj = L, we stop adding agents and we set q := j. Note that if j = k, then xj = L as
agents a1, . . . , ak cover all of [1, 2k]. If xj < L, pick as agent aij+1 an agent that covers all
the points with coordinates (xj + ν, tj) for ν ∈ [0, ε] for some small enough ε > 0. Such an
agent should exist by Claim 4.1. To make sure lj is always defined for any j ∈ {0, 1, . . . , q},
if q = k, set lk := (L, k).

We note that x0, x1, ..., xq is non-decreasing, x0 = 0 and xq = L since we either stopped
adding agents when q < k because xq = L or we stopped when q = k, in which case
all of [0, L] × [1, 2k] should be covered. Hence the theorem follows if we can show that
∀j ∈ {0, 1, . . . , q − 1}, xj+1 − xj ≤ 1

1
vij+1

+ 1
vmax

.

In order to bound this difference, we investigate how the right border moves when agent
aij+1 is added. Note that ∀t ∈ [0,∞),

BAj+1(t) = max(BAj (t), B{aj+1}(t)).

For any time t > tj , the rightmost point at time t that could be covered by any agent in Aj
is (xj + (t− tj)vmax, t) since the speed of any agent is at most vmax. Similarly, for any time
t < tj , the rightmost point at time t that could be covered is (xj + (tj − t)vmax, t). Thus,
∀t ∈ [0,∞),

BAj (t) ≤ xj + |t− tj |vmax.

Denote by u the ray (xj + (tj − t)vmax, t) where t ≤ tj , and by w the ray (xj + (t− tj)vmax, t)
where t ≥ tj .
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Next, consider B{aj+1}(t). Since agent aj+1 covers lj , this means that he/she visits xj
at some time between tj − 1 and tj , say at point (xj , tvisit). Under the restriction that
the trajectory of agent aij+1 should go through (xj , tvisit), it is clear that B{aij+1}(t) is
maximized if agent aij+1 comes from the right at maximum speed, hits (xj , tvisit) and then
turns around and moves to the right at maximum speed, in which case equality is achieved in

∀t ∈ [0,∞), B{aij+1}(t) ≤ min(x′ + |t− t′|vij+1 , L),

where (x′, t′) = (xj + vij+1
2 , tvisit + 1

2 ). Denote by h the ray (x′ + (t′ − t)vij+1 , t) where t ≤ t′
and by g the ray (x′ + (t− t′)vij+1 , t) where t ≥ t′.

L′
Lold

Lnew

M

Lold

Lnew

M

L′

Lold
Lnew

L′
M

Figure 2 The rays R1 and R2 give a bound to the right of the current right border and are given
in red and green respectively, and in black and gray we have a bound to the right of the trajectory
of the newly added agent ai and its shadow, i.e. the points that are covered by it.

We thus get ∀t ∈ [0,∞),

BAj+1(t) = max(BAj (t), B{aij+1}(t)) ≤ f(t),

where f(t) = max(xj + |t − tj |vmax, x
′ + |t − t′|vij+1). Consider tnew = arg mint∈[1,∞) f(t).

Let Lnew = (xnew := f(tnew), tnew) be the leftmost point on the aforementioned upper bound
on BAj+1(t). Notice that Lnew is either the intersection of h and w, or the intersection of g
and u, or the intersection of g and h. These three cases are illustrated in Figure 2. We have
u in red and w in green. Consider the upper bound on B{aij+1}(t) mentioned above. The
trajectory of agent aij+1 that would correspond to matching this upper bound is given in
black and the points aij+1 would cover if this was his/her trajectory are given in gray. We
have that Lold = (xold, told) := lj . It can be seen by inspection of the three cases in Figure 2
that |tnew − tj | ≤ 1. Then tnew ∈ [k − (j + 1), k + (j + 1)], which makes Lnew a candidate
for lj+1, therefore lj+1 = (xj+1, tj+1) will have xj+1 ≤ xnew. Thus it is enough to show that
xnew − xj ≤ 1

1
vij+1

+ 1
vmax

.

We need an upper bound on d = xnew − xold. We consider the points M = (xM , tM )
and N = (xN , tN ) as illustrated in Figure 2, such that in all three cases xM = xnew and
|tM − tnew| = 1. In Case 1, we consider the segment MN of slope 1

vij+1
and xM − xN = d,

and the segment LoldLnew of w of slope − 1
vmax

and xnew − xold = d. This gives us

d

vij+1

+ d

vmax
≤ 1⇒ d ≤ 1

1
vij+1

+ 1
vmax

. (4.2)

In Case 2, we consider the segment LnewLold of u of slope 1
vmax

and xnew − xold = d, and
the segment NM of slope − 1

vij+1
and xM − xN = d. This implies Equation (4.2) for Case 2
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as well. In Case 3, we consider the segment MN of slope 1
vij+1

and xM − xN = d, and the
segment NLnew of slope − 1

vij+1
and xnew − xN = d. This means that

2d
vij+1

= 1⇒ d =
vij+1

2 ≤ 1
1

vij+1
+ 1

v

.

Therefore, xnew − xold ≤ 1
1

vij+1
+ 1

vmax
as desired. J

Proof of Lemma 2.2. We show how L ≤
(

1− 1√
k+1

)∑k
i=1 vi follows from Theorem 2.1.

First note that L ≤
∑k
i=1 vi−

vmax
2 as each agent ai contributes at most vi · 1

1+ vi
vmax

≤ vi while

the agent with maximum speed contributes exactly vmax
2 . Therefore, if vmax ≥ 1√

k

∑k
i=1 vi

the desired upper bound for L follows immediately. It remains to deal with the case
vmax <

1√
k

∑k
i=1 vi. For this we first note that x · 1

1+ x
vmax

= 1
1
x + 1

vmax
is a concave function

in x for 0 ≤ x ≤ vmax, since the second derivative − 2
(1+ x

vmax )3vmax
is always negative. This

allows us to apply Jensen’s inequality and thus we have

L ≤
k∑
i=1

1
1
vi

+ 1
vmax

≤ k 1
1

vavg
+ 1

vmax

= 1

1 +
∑k

i=1
vi

k·vmax

k∑
i=1

vi ≤
(

1− 1√
k + 1

) k∑
i=1

vi,

where vavg = 1
k

∑k
i=1 vi. This concludes the proof of Lemma 2.2. J

5 A Schedule with Efficiency 1 − ε for the Line Segment: Proof of
Theorem 2.3

In this section, we give proof sketch that for any k agents, there exist speeds v1, . . . , vk and
a scheme for these agents to patrol a fence of length

L =
(

1− 3.5√
k

+O(1/k)
) k∑
i=1

vi.

This improves the result from [10] and therewith falsifies the corresponding conjecture stated
in that paper.

Proof sketch of Theorem 2.3. Assume k is sufficiently large, and, for ease of notation,
define n := k − 2. Let L = n− 3/2

√
n. We construct a schedule that patrols E = [0, L] with

idle time 1, using n+ 1 agents with maximum speed 1 and 1 agent with maximum speed
2
√
n− 1. Thus we have a total speed of V =

∑k
i=1 vi = n+ 2

√
n. As the ratio between L

and V approaches 1− 3.5√
k

+O(1/k), Theorem 2.3 follows.
To simplify the presentation of the patrol schedule, we will allow the agents to occasionally

“step out of the fence [0, L]”, i.e. we allow an agent ai to assume positions ai(t) < 0 and
ai(t) > L (to avoid this, we could also modify the schedule so that they stay at the respective
end of the fence for a while). To keep the notation as clean as possible, we henceforth assume
that n is a square number. Our schedule works as follows (see Figure 3 for a graphical
representation):

Slow agents a1, . . . , an: For each i ∈ {0, . . . , n}, agent ai starts at time 0 at position
x = i− i/

√
n and moves i/(2

√
n) time units to the right. Then he or she repeats:

move to the left for
√
n time units.

move to the right for
√
n time units.
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Fast agent an+1: The fast agent an+1 starts at time 0 and repeats the following four steps:
(1) Move from position 0 to position L+ 1/2 with speed 2

√
n− 1.

(2) Move from position L+ 1/2 to position −1/2 during the next
√
n/2 + 1 time units (e.g.

with constant speed (L+ 1)/(
√
n/2 + 1) = 2

√
n− 7 + (16)/(

√
n+ 2)).

(3) Move from position −1/2 to position L with speed 2
√
n− 1.

(4) Move from position L to position 0 in the next
√
n/2 time units (e.g. with constant

speed (L)/(
√
n/2) = 2

√
n− 3).

The idea behind our patrol schedule is to initially place the agents with maximum speed
1 equidistantly along the fence with gaps of length slightly smaller than 1, similar to the
schedule for the fast agents in [10]. In contrast to their schedule, this is performed slightly
out of phase between the agents. This will cover most of the points on the fence. The only
problem appears whenever the agents turn around, as then the points right next to these
turning points are not visited for more than 1 time unit, hence creating uncovered triangles
in the “spacetime” diagram (white triangles in Figure 3). By timing the turning times of the
agents appropriately, we ensure that these uncovered triangles are placed such that they can
all be cleaned up by the last fast agent. Figure 3 gives a complete illustration of our schedule
for 18 agents and intuitively shows that each point x on the line L is visited at least once
every unit of time. J

6 A schedule for the unidirectonal circle: Proof of Theorem 2.4

In this section, we will present a schedule with which a group of agents a1, . . . , ak with
maximum speeds v1, . . . , vk can patrol a circle with circumference

1
33 loge log2(k)

k∑
i=1

vi,

followed by a short sketch of why the proposed schedule behaves as claimed. Our schedule
will be divided in two parts. First, we will give a randomized construction for a strategy
which allows the agents a1, . . . , ak to patrol a circle with circumference 1 such that with
probability 1− o(1) “most” of the points are visited at least every Θ

(
log log(k)/(

∑k
i=1 vi)

)
time units. Then, we will argue that one can remove the “bad” points and then “blow up”
the circle to obtain the desired result.

Proof sketch of Theorem 2.4. We are given a group a1, . . . , ak of agents with maximum
speeds v1 . . . , vk and define V :=

∑k
i=1 vi. We propose the following schedule:

Circle Schedule:
(1) Round speeds down to the next power of 2 and omit too slow agents:

For all i ∈ [k] let ji ∈ N be the non-negative integer such that V · 2−ji ≤ vi < V · 2−ji+1.
We define v′i := V · 2−ji and I :=

{
i ∈ [k] : v′i ≥ V

4·k
}
.

(2) Group remaining agents according to their speed:
For all i ∈ {0, . . . , dlog2(k)e+ 2} define Gi :=

{
j ∈ I : v′j = V · 2−i

}
.

(3) Reduce number of agents in each group to a power of 2:
For all i ∈ {0, . . . , dlog2(k)e + 2} let hi ∈ N be the positive integer such that 2hi ≤
|Gi| < 2hi+1 and let G′i ⊆ Gi be an arbitrary subset of Gi of size 2hi . We denote by
m′i = |G′i| · v′a = V · 2hi−i the mass of the group G′i, where a ∈ G′i (that is, each agent in
G′i has maximum speed v′a after the rounding down in step 1).
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position

time

fence

2z
√
n

(2z + 1)
√
n

(2z + 2)
√
n

(2z + 3)
√
n

(2z + 4)
√
n

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10a11a12a13a14a15a16
a17

Figure 3 The described schedule for n = 16. The dark grey area describes the points (x, t) which
are covered by the slow agents a0, . . . , an while the light grey shaded area describes the points (x, t)
which are covered by the fast agent in steps (1) and (3) of his protocol.

(4) Omit groups with too small mass:
Let J :=

{
i ∈ {0, . . . , dlog2(k)e+ 2} : m′i ≥ V

16(dlog2(k)e+3)

}
.

(5) Patrol schedule: For each j ∈ J , pick an independent uniform random number rj in the
interval [0, 1

|G′
j
| ). At time 0, we place the |G′j | agents from the group G′j at positions

rj , rj + 1
|G′j |

, . . . , rj +
|G′j | − 1
|G′j |

,

i.e. we place all agents from the same group equidistantly from each other along the
circle with a random offset from the origin. Then the agents G′j walk along the circle
with speed v′j at all times.

Note that the two rounding steps and the two omitting steps each reduced the total
“available” speed by a factor of at most 2, therefore we have that

∑
j∈J m

′
j ≥ V/16. Defining

T = 1
minj∈J m′j

≤ 16(dlog2(k)e+ 3)/V,
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we observe that after T time units the distribution of agents along the circle repeats itself, i.e.
if an agent with speed s is located at position x at time t, then another (or the same) agent
of speed s is located at position x at time t+ T . Cutting the time interval into small pieces
of size τ ≈ 16 loge log2(k)/V , one can show that with probability 1− o(1), almost all points
get visited at least once in each of these small time intervals, and hence all these points get
visited at least every 2τ time units. Next, we can “cut away” the few “bad” points for which
this is not true and obtain a circle of circumference 1 − ε. Adjusting the above schedule
so that agents “stand still” on the smaller circle whenever they cross a “bad” point on the
original circle gives us a schedule for which each point (on the small circle) is visited at least
every 2τ time units. Rescaling this patrol schedule then gives the scheme to patrol a circle
with circumference (1− ε) 1

2τ ≥
1

33 loge log2(k)
∑k
i=1 vi as desired. J
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We consider the matroid coflow scheduling problem, where each job is comprised of a set of flows
and the family of sets that can be scheduled at any time form a matroid. Our main result is a
polynomial-time algorithm that yields a 2-approximation for the objective of minimizing the weighted
completion time. This result is tight assuming P 6= NP . As a by-product we also obtain the first
(2 + ε)-approximation algorithm for the preemptive concurrent open shop scheduling problem.
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1 Introduction

Coflows were introduced in [5] as: “We propose coflows, a networking abstraction to express
the communication requirements of prevalent data parallel programming paradigms. Coflows
make it easier for the applications to convey their communication semantics to the network,
which in turn enables the network to better optimize common communication patterns.”
Data parallel application frameworks such as MapReduce [9] and Spark [31] have a unique
processing pattern that interleaves local computation with communication across machines.
Due to the size of the large data sets processed, communication often tends to be a bottleneck
in the performance of these platforms and the coflow model abstracts out this bottleneck.
Theoretical work on coflow scheduling has primarily focused on the switch model (also called
matching model) where the underlying network is assumed to have full-bisection bandwidth
and the set of flows that can be scheduled at any time step is restricted to be form a matching.
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While there are several reasonable formulations/models of scheduling coflows, the following
will be convenient for our purposes. The input consists of a collection J of jobs, where each
job j ∈ J is comprised of a set Uj of tasks (also called flows), a non-negative integer wj
and a release time rj . Each task e ∈ Uj has a processing requirement pe. For example,
in the setting of a network supporting MapReduce [9] computations, each job could be a
MapReduce job, and a task/flow could represent a required communication within a shuffle
phase of a job. Let U = ∪j∈JUj be the collection of all tasks. Further the input contains
a downward-closed set systemM = (U, I). Here I ⊆ 2U and elements of I are called the
independent sets ofM. Conceptually a collection of tasks is independent (and in I) if they
can be simultaneously scheduled by the network. A feasible output is a schedule σ that
schedules all the flows. That is for each integer time t, σ specifies a collection σt of tasks
processed/scheduled at time t. In order to be feasible, σ must satisfy the conditions that:

every task e ∈ U is scheduled for pe time steps, and
at each time t, the scheduled tasks/flows σt are in I.

A job j completes at the first time Cj such that every task in Uj has been scheduled fully.
The objective is to minimize the total weighted completion time of the jobs. That is, to
minimize

∑
j wjCj .

In this paper, we consider coflow scheduling when the set systemM forms a matroid.
The starting point for our investigations is the question whether there is an algorithm to
effectively schedule coflows that involve aggregating information, stored at various locations
in a network, to a common sink location. Such gathering communication patterns were
identified as common in [5]. We model aggregation communications by assuming that for
each job j, Uj is a collection of locations in the network where the units of information
needed for job j are stored. It is natural to define the independent sets to be locations that
can simultaneously be routed to the sink without violating any capacity constraint of the
network. In this case, M is a matroid, and more specifically, a gammoid. Note that the
symmetric problem, of disseminating data from a fixed location to various locations in the
network, is also common, and essentially equivalent to the aggregation problem.

The matroid coflow scheduling problem as defined here also naturally captures a number
of well-studied scheduling problems.

Parallel Identical Machines Scheduling: Each job j has a single task. The matroid
M = (U, I) is the uniform matroid of rank m, i.e., any set of m jobs can be scheduled in
parallel.
(Preemptive) Concurrent Open Shop Scheduling: In the concurrent open shop scheduling
problem, each job j comprises of m tasks, one on each machine, i.e. Uj = {tij}mi=1. Task
tij needs to be scheduled for time pij and the job is completed when all its tasks are
completed. To model this setting, consider Ti = {tij}nj=1 to be set of all tasks that need
to be scheduled on machine i. M is a partition matroid that ensures that a set S of tasks
is independent if and only if |S ∩ Ti| ≤ 1 for each machine i.

1.1 Our Contributions

We first consider coflow scheduling on unit length tasks whenM is a matroid. Our main
result is:

I Theorem 1. There is a deterministic polynomial-time algorithm for coflow scheduling with
unit length tasks, whenM is a matroid, that is 2-approximate with respect to the objective of
minimizing total weighted completion time.
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We note that Theorem 1 can be extended to the case that tasks may have arbitrary
processing times, albeit at a slight loss in the approximation factor.

I Theorem 2. There is a deterministic polynomial-time algorithm for coflow scheduling with
arbitrary length tasks, whenM is a matroid, that is (2 + ε)-approximate with respect to the
objective of minimizing total weighted completion time, for any constant ε > 0.

As with all the approximation results for coflow scheduling in the literature, our algorithm
is based on rounding a natural time-indexed linear program. Intuitively the rounding extracts
a deadline C∗j for each job j. This time is roughly 1/λ times later than the first time when
every task in Uj has been scheduled at least to the extent λ in the solution to LP. Here
the value of λ is randomly chosen. The expected value of C∗j is shown to be at most twice
the fractional completion time for j in the solution to LP; this “stretching” (also called
slow-motion) idea has been used in other scheduling contexts [12, 22, 27]. This can be
viewed as deriving from the LP a fractional schedule where each job j is fully completed by
time C∗j . Then, we observe that the problem of scheduling tasks to meet the C∗j deadlines
can be expressed as a matroid intersection problem. As the matroid intersection polytope
is integral [26], one can find an integral schedule meeting these deadlines. Finally, by
derandomizing the random choice of λ, we derive our main theorem.

The approximation guarantee in Theorem 1 is tight assuming P 6= NP . This is because
it is NP-hard to approximate the total weighted completion time for concurrent open shop
(even with unit sized tasks) within a factor of 2− ε [23], and this problem is a special case of
matroid coflow scheduling, where the matroid is a partition matroid. Somewhat surprisingly,
even for the concurrent open shop scheduling with release times, the previous best known
approximation factor was 3 [10, 17]. (See also additional discussion in [2].) Thus, Theorem 2
immediately yields an improved approximation algorithm for preemptive concurrent open
shop with arbitrary release times.

I Corollary 3. There is a deterministic, polynomial-time (2 + ε) approximation algorithm
for the preemptive concurrent open shop scheduling problem when jobs have arbitrary release
times, for any constant ε > 0. If all the release times and processing requirements are
polynomially bounded, then the approximation guarantee improves to 2.

We believe our primary technical contribution is the high-level approach to reduce a
weighted completion time scheduling problem to a deadline-constrained scheduling problem.
Our approach to first extract a deadline for each job from the LP solution and then finding
an integer schedule that meets those deadlines can be viewed as a strict generalization of
processing jobs in increasing order of their completion time derived from the LP, which
has been a very common rounding tool in scheduling literature; e.g. [21, 28, 2]. Our
novel approach allows us to handle the matroid constraint, which we believe is natural and
quite general.

1.2 Related Results
Most of the theoretical/algorithmic work on coflows has been on matching coflows [20, 16,
15, 2, 1]. These results essentially abstract out the network by modeling the network as
an n-by-n switch, or equivalently a complete bipartite graph, and by modeling supportable
flows by matchings in the graph. This is well motivated in practice as the networks in many
data centers are hierarchical, with higher network elements having higher capacities. Thus a
matching between servers at leaves of the network is a not unreasonable approximation of
a communication supportable by the network. We note that matching coflows correspond
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to coflows in our framework when the set system M is an intersection of two partition
matroids. The first constant (16.54) approximation for coflow scheduling in this model was
given in [20]. Currently the best known approximation ratios are 5 for when jobs may have
variable release times, and 4 when all jobs arrive at time 0 [2, 29], respectively. Note that
the 2-approximation algorithms claimed in [18] and [11] are both flawed; see [2] and [11] for
the discussion of the flaws.

Jahanjou et al. [14] consider several problems where there is an underlying network with
capacities on the edges. If the tasks are paths in the network, and I consists of collections of
paths that don’t collectively violate any edge capacity, then their work gives a algorithm
for producing a fractional schedule (which is equivalent to time being continuous) that is
O(1)-approximate with respect to total weighted completion time. If the tasks are (source,
sink) pairs in the network, and I consists of collections of (source, sink) pairs that can be
simultaneously routed without violating any edge capacity, then their work gives a algorithm
for producing a fractional unsplittable schedule that is O(logE/ log logE)-approximate with
respect to total weighted completion time, together with a matching hardness result; here, E
is the number of edges. Our work is not comparable to theirs since different constraints are
addressed and our focus is on integer schedules in contrast to theirs on fractional schedules.

Coflow scheduling is a generalization of the classical concurrent open shop scheduling
problem [3, 4, 10, 17, 19, 23, 30]. Several 2-approximation algorithms were shown [4, 10, 17]
via LP rounding. Matching hardness results were shown in [3, 23]. When jobs have different
release times, the same LP relaxations yielded 3-approximations [10, 17]. Later, [19] gave a
simple greedy algorithm that matches the best approximation ratio when all jobs arrive at
time 0. Recently, [2] gave a combinatorial 3-approximation via a primal-dual analysis when
jobs have non-uniform release times.

Coflow scheduling has been actively studied within the networking community; some
examples include [5, 6, 7, 18, 32].

1.3 Organization
The rest of the paper is organized as follows. In Section 2 we give some basic definitions and
notation. In Section 3 we give the linear programming formulation. In Section 4 we explain
how to round a solution to the linear program. In Section 5 we discuss the derandomization.
In Section 6, we discuss the extension to tasks with variable processing times.

2 Definitions and Notations

We first consider the matroid coflow scheduling problem with unit length tasks. We will
discuss three types of schedules, and two types of objectives. In a discrete-time schedule,
we consider that time is divided into unit length intervals (also called time slots), and the
schedule specifies the set of jobs processed during each time slot. We let time slot t refer
to the interval of time (t − 1, t]. In an integer discrete-time schedule, at each time slot t,
an independent set in the matroid is scheduled. In a fractional discrete-time schedule, at
each time slot t, a convex combination of independent sets from the matroid are scheduled.
In other words, in such a fractional schedule, the set of tasks scheduled at time slot t
can be expressed as

∑
S∈I αS1S , where

∑
S∈I αS = 1, and 1S is the characteristic vector

corresponding to independent set S ∈ I. A valid feasible solution is restricted to be an
integer discrete-time schedule. On the other hand, during our analysis, we will also consider
continuous schedules. A continuous schedule specifies an independent set of tasks to be
scheduled at each instantaneous time τ (as opposed to during a unit-length time slot).
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The completion time Cj of a job j is the first time when all tasks in Uj have been
completed. We let qe(t) : [0, T ]→ {0, 1} denote an indicator function defined for each task
e ∈ U , where qe(t) = 1 if and only if task e (more precisely an independent set including e)
is scheduled at time t in σ. We let Qe(t) =

∫ t
τ=0 qe(τ)dτ denote the extent to which task e is

scheduled by time t. Let C̃j(v) denote the first time when every task in Uj has been scheduled
by extent at least v. The fractional completion time of job j is then C̃j =

∫∞
v=0 C̃j(v)dv. We

will use cost(LP) to denote the optimum objective of the LP, which we will describe soon.

3 Linear Program

In this section we give a linear programming formulation LP of our matroid coflow problem
when tasks have unit lengths. Let xj,t be an indicator variable that specifies whether job j
completes at time t. For a task e ∈ Uj , let ye,t be an indicator variable that specifies whether
task e is assigned to time slot t. Let ρ(S) be the rank function of the matroid.1 Let T = |U |
be an upper bound on the time by which all tasks can be completed. The formulation of
LP is then:

LP : min
∑
j∈J

wj
∑
t∈[T ]

t · xj,t

s.t. ∀j ∈ J,
∑
t

xj,t = 1 (1)

∀j ∈ J and ∀e ∈ Uj and ∀t ∈ [T ],
∑
s≤t

ye,s ≥
∑
s≤t

xj,s (2)

∀S ⊆ U and ∀t ∈ [T ],
∑
e∈S

ye,t ≤ ρ(S) (3)

∀j ∈ J and ∀e ∈ Uj and ∀t ∈ [rj − 1], ye,t = 0 (4)
x,y ≥ 0 (5)

Constraint (1) ensures that every job is scheduled. Constraint (2) ensures that all tasks
of a job j are scheduled to at least the extent that j is completed by time t. Constraint (3)
ensures that at any time step t, the set of tasks assigned to t form an independent set in the
given matroid. Constraint (3) is the only constraint set that can potentially have a super-
polynomial size. However, for each fixed time t, the constraint is just a polymatroid, and
therefore, admits an efficient separation oracle [8, 24, 13]. In case that there are arrival/release
times, constraint (4) ensures that no tasks in Uj are processed before j’s release time rj . The
objective of LP is fractional weighted completion time.

Note that a solution to LP can be viewed as a fractional discrete schedule. We will use
Xj,t :=

∑
s≤t xj,s to denote the extent to which job j has been processed by time t, and use

Ye,t :=
∑
s≤t ye,s to denote the extent to which task e has been processed by time t.

4 Rounding

In this section, we show how to round an optimal solution to LP to obtain a 2-approximate
integral (discrete) schedule. For each job j and v ∈ (0, 1], define C̄j(v) = 1

xj,t
(v −Xj,t−1) +

(t− 1) if v ∈ (Xj,t−1, Xj,t], t ∈ [T ]. Intuitively, C̄j(v) is a linear interpolation of the discrete

1 ρ(S) is defined as maxS′⊆S:S′∈I |S′|.

ICALP 2019



145:6 Matroid Coflow Scheduling

times when job j is partially completed. We set a deadline C∗j = d 1
λ C̄j(λ)e for each job j,

where λ ∈ (0, 1] is randomly drawn according to the probability density function f(v) = 2v.
A key portion of the analysis is to show that the expected value of each wjC∗j is at most
twice the contribution of job j to the LP objective.

To analyze the expected value of C∗j , we construct several schedules from the LP solution.
In Subsection 4.1, we will show how to convert a solution of LP to a continuous schedule σ.
In Subsection 4.2 we show how to convert σ into a stretched schedule σλ, which is another
continuous schedule parameterized by λ ∈ (0, 1]. Finally, in Subsection 4.3 we will show how
to convert this continuous schedule into (discrete-time) integer schedule with the same cost.
We note that we construct schedules in Subsection 4.1 and 4.2 only for the sake of analysis.
That is, we can obtain a 2-approximate integral discrete schedule only using the rounding
algorithm in Subsection 4.3 with the deadlines {C∗j }j .

4.1 Constructing the Continuous Schedule σ
We construct a continuous schedule σ from the solution to LP. For each time t, we first
decompose {ye,t}e∈U into a convex combination

∑
S∈I αS1S of independent sets.2 To create

σ this convex combination is “smeared” across all instantaneous times during (t− 1, t]. That
is, in σ each independent set S is scheduled for αi(τ2−τ1) time units during each infinitesimal
time interval (τ1, τ2] ∈ (t− 1, t]. This is formalized in Proposition 4. In Lemma 5 we show
that the first time when a job j is scheduled to extent v in σ is at most C̄j(v). In Lemma 6
we show that the fractional weighted completion time of σ is a bit less than the objective
value of the solution to LP. This is because any processing of job j done during (t − 1, t]
has no effect until time t on the LP objective, whereas it can have effect on j’s fractional
weighted completion time of σ during (t− 1, t], before time t.

I Proposition 4. Consider the schedule σ. For any integer t ∈ [T ] and (τ1, τ2] ∈ (t− 1, t],
we have,

∫ τ2
τ=τ1

qe(τ)dτ = ye,t(τ2 − τ1).

I Lemma 5. Consider the schedule σ. For any j and v ∈ (0, 1],

C̃j(v) ≤ C̄j(v) =: 1
xj,t

(v −Xj,t−1) + (t− 1) if v ∈ (Xj,t−1, Xj,t], t ∈ [T ],

and C̃j(0) = 0.

Proof. By definition, we have C̃j(0) = 0, so let us assume that v > 0. We first show that
C̃j(Xj,t) = t. Due to constraint (2), Ye,t ≥ Xj,t for all e ∈ Uj . Thus, by construction
of σ, all tasks in Uj are processed by at least Xj,t by time t, i.e., Qe(t) ≥ Xj,t, meaning
that C̃j(Xj,t) ≤ t. We also have that C̃j(Xj,t) ≥ t since we know by the optimality of
the LP solution that Ye,t = Xj,t for some e ∈ Uj , therefore, Qe(t) = Xj,t. Thus, we have
C̃j(Xj,t) = t = C̄j(Xj,t).

Now consider an arbitrary v ∈ (0, 1]. Let t ∈ [T ] be such that v ∈ (Xj,t−1, Xj,t]. Then, it
follows that xj,t 6= 0. Thus, from the above argument, we have C̃j(Xj,t) = t. Let tv := C̄j(v)
for notational convenience. We want to show C̃j(v) ≤ tv. By Proposition 4 and construction
of σ, we know that the extend to which e is processed by time tv,

Qe(tv) = Ye,t−1 + ye,t(tv − (t− 1)) = Ye,t−1 + ye,t
xj,t

(v −Xj,t−1)

2 This is possible because {ye,t}e lies in the polymatroid associated with the matroid rank function ρ due
to constraint (3). It is well-known that this polymatroid is equivalent to the independence set polytope
of the matroid, meaning that {ye,t}e can be expressed as a convex combination of characteristic vectors
of some independent sets. For more details, see Chapter 44 of [25].
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First, if ye,t ≥ xj,t, we immediately have Qe(tv) ≥ v + Ye,t−1 −Xj,t−1 ≥ v due to constraint
(2). Otherwise, since 1

xj,t
(v − Xj,t−1) ≤ 1, fixing the value of Ye,t = Ye,t−1 + ye,t, the

right-hand-side decreases when we increase ye,t. Therefore, we have, Qe(t) ≥ Ye,t−1 − (xj,t −
ye,t) + xj,t

xj,t
(v −Xj,t−1) = v + Ye,t −Xe,t ≥ v, again due to constraint (2). Hence, we have

Qe(tv) ≥ v for all e ∈ Uj , which immediately yields C̃j(v) ≤ tv. J

I Lemma 6.
∑
j∈J wj

∫ 1
v=0 C̄j(v)dv = cost(LP)−

∑
j∈J wj/2

Proof. It suffices to show that
∫ 1
v=0 C̄j(v)dv =

∑
t∈[T ] t · xj,t − 1/2, since summing this

equation over all j ∈ J multiplied by their weight wj yields the lemma.∫ 1

v=0
C̄j(v)dv =

∑
t∈[T ]

∫ Xj,t

v=Xj,t−1

C̄j(v)dv =
∑

t∈[T ]:xj,t 6=0

∫ Xj,t

v=Xj,t−1

C̄j(v)dv

=
∑

t∈[T ]:xj,t 6=0

∫ Xj,t

v=Xj,t−1

(
1
xj,t

(v −Xj,t−1) + (t− 1)
)
dv

=
∑

t∈[T ]:xj,t 6=0

[
1
2xj,t + (t− 1)xj,t

]
= −1

2 +
∑

t∈[T ]:xj,t 6=0

t · xj,t,

where the last equality follows from constraint (1). J

4.2 Constructing the Stretched Schedule σλ

To construct σλ from σ we “stretch” the schedule σ by a factor of 1/λ. More precisely, if
an independent set S is scheduled in σ during an infinitesimal interval (τ1, τ2], the same
independent set is scheduled in σλ during (τ1/λ, τ2/λ]. In Lemma 7 we show that σλ

completes job j by time C∗j = d C̄j(λ)
λ e. In Lemma 8 we upper bound the expected cost of∑

j wjC
∗
j by twice cost(LP).

I Lemma 7. The schedule σλ completes every job j by time C∗j .

Proof. Lemma 5 shows that C̃j(v) ≤ C̄j(v) for all v ∈ (0, 1], meaning that every task in Uj
is completed by v units by time C̄j(v) in σ. Thus, in the stretched schedule σλ, every job j
completes by time C̄j(λ)/λ, for any value of λ ∈ (0, 1]. J

I Lemma 8. E[
∑
j∈J wjC

∗
j ] ≤ 2 cost(LP).

Proof. First note that∑
j∈J

wjE[C̄j(λ)/λ] =
∑
j∈J

wj

∫ 1

v=0
C̄j(v)/v · (2v)dv = 2

∑
j∈J

wj

∫ 1

v=0
C̄j(v)dv (6)

Thus, we have,

E
[∑
j∈J

wjC
∗
j

]
= E

[∑
j∈J

wjd
1
λ
C̄j(λ)e

]
≤
(
E
[∑

j

wj
1
λ
C̄j(λ)

])
+
∑
j

wj

= 2
∑
j

wj

∫ 1

v=0
C̄j(v)dv +

∑
j

wj [Eqn. (6)]

= 2
(

cost(LP)−
∑
j

wj/2
)

+
∑
j

wj [Lemma 6]

= 2 cost(LP) J
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4.3 Constructing a Discrete Integer Schedule
Let y∗e,t denote how much task e is processed during time interval (t− 1, t]. In other words,
task e appears in y∗e,t units of independents sets scheduled in σλ during the time interval.
Then, {y∗e,t}e∈U,t∈[T ] satisfies the following:
1. For all j ∈ J and e ∈ Uj ,

∑
t∈[C∗

j
]\[rj−1] y

∗
e,t = 1; and .

2. For all S ⊆ U and for all t ∈ [T ],
∑
e∈S y

∗
e,t ≤ ρ(S),

where the second holds true since {y∗e,t}e∈U can be expressed as a convex combination of
independent sets scheduled during time interval (t− 1, t], and therefore, lies in the matroid
polytope. We now interpret {y∗e,t} as a fractional point in the intersection of two matroid
polytopes. We create the following two matroids. The new universe U ′ is defined as
U ′ := {(e, t) | t ∈ [T ], j ∈ J, e ∈ Uj s.t. rj ≤ t ≤ C∗j }. The first matroid M1 is a partition
matroid that forces to choose at most one element out of {(e, t)}t, for each e ∈ U . Intuitively,
this ensures that no task is scheduled more than once across times. The second matroid
ensures that elements scheduled at each time t forms an independent set in I. The following
lemma formally defines the second matroid and shows that it is indeed a matroid.

I Lemma 9. Define I2 ⊆ 2U ′ such that S′ ⊆ U ′ is in I2 if and only if for any t ∈ [T ],
{e | (e, t) ∈ S′} ∈ I. Then, M2 = (U ′, I2) is a matroid.

Proof. Let I2 denote the family of independent sets of M2. It is straightforward to see
that I2 is downward closed. Thus, it suffices to show that for any A′, B′ ∈ I2 such
that |A′| < |B′|, there exists (e, t) ∈ B′ \ A′ such that A′ ∪ {(e, t)} ∈ I2. Let U ′t :=
{(e, t) | j ∈ J, e ∈ Uj s.t. rj ≤ t ≤ C∗j } denote the subset of U ′ restricted to time t. Consider
any fixed A′, B′ ∈ I2 such that |A′| < |B′|. Then, consider any fixed time t∗ such that
|A′ ∩ U ′t∗ | < |B′ ∩ U ′t∗ |; such a time t∗ must exist since {U ′t}t partitions U ′. Then, for some
(e∗, t∗) ∈ (B′ ∩ U ′t∗) \ (A′ ∩ U ′t∗), it must be the case that {e∗} ∪ {e | (e, t∗) ∈ A′ ∩ U ′t∗} ∈ I.
This is because B′ has more elements than A′ that are paired up with the fixed time t∗, and
therefore, the set of elements appearing in A′ ∩U ′t∗ remains independent with some e∗ added.
Further, for any other time t, the elements appearing in the pairs of A′ associated with t
remain unchanged, and therefore, is in I. J

Then, it is easy to see that {y∗e,t} is a point that lies in the intersection of the polymatroids
that are defined by M1 and M2. Further, {y∗e,t} belongs to the base polymatroid of M1; so
we have

∑
(e,t)∈U ′ y

∗
e,t = |U |. Since the matroid intersection polytope is well-known to be

integral [26], meaning that every vertex is an integer point, a maximum independent set in
the intersection ofM1 andM2 must have |U | elements. Further, we can find such a maximum
independent set in polynomial time. To recap, we have found S′ ∈ U ′ that is a base of M1
and is independent in M2. This set S′ immediately gives the desired integer schedule where
{e | (e, t) ∈ S′} is scheduled at each time t. Indeed, due to S′ being a base of M1, every task
in Uj is scheduled exactly once during time interval [rj , C∗j ]. Further, S′ being independent
in M2 ensures that the set of tasks scheduled at each time forms an independent set in I.

5 Derandomization

In this section, we discuss how to derandomize the choice of λ ∈ (0, 1], which was used to
compute the deadlines for the jobs. This will complete the proof of Theorem 1. Let us first
define step values. We say that v ∈ (0, 1] is a step value if

∑
s≤t xj,s = v for some j ∈ J

and integer t ∈ [T ] – in other words, exactly v fraction of some job j is completed by some
integer time in the LP solution. Let V denote the set of all step values; 1 ∈ V by definition.
Note that that |V | is polynomially bounded in the input size, as the number of variables xj,t
we consider in LP is at most |J | · |U |.
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Recall that in Lemma 8 we showed E[
∑
j wjC

∗
j ] ≤ 2 cost(LP) when C∗j := d 1

λ C̄j(λ)e. This
implies there exists a certain value of λ ∈ (0, 1] such that

∑
j wjC

∗
j ≤ 2cost(LP). For the pur-

pose of derandomization, it suffices to find λ such that
∑
j wjC̄j(λ)/λ ≤ 2

∑
j wj

∫ 1
v=0 C̄j(v)dv;

the equality is shown in equation (6) in expectation.
Towards this end, we aim to find λ ∈ (0, 1] that minimizes

∑
j wjC̄j(λ)/λ. Suppose λ

was set to a value v ∈ (v1, v2], where v1 and v2 are two adjacent step values in V . Consider
any fixed job j. Let t ∈ [T ] be such that v ∈ (Xj,t−1, Xj,t]. By definition of step values, we
have (v1, v2] ⊆ (Xj,t−1, Xj,t]. Thus, we have C̄j(v)/v = 1

xj,t
(1− Xj,t−1

v ) + t−1
v . This becomes

a linear function in z over [1/v2, 1/v1) if we set z = 1/v. Therefore, we get a piece-wise linear
function g(z) by summing over all jobs multiplied by their weight and considering all pairs
of two adjacent step values in V . We set λ to the the inverse of z’s value that achieves the
global minimum, which can be found in polynomial time.

6 Arbitrary Processing Times

In this section we show how to extend Theorem 1 to allow tasks with arbitrary processing
times with a loss of (1 + ε) factor in the approximation ratio for any arbitrary constant
ε > 0. In this setting, each task e has an arbitrary integer size pe and the task e completes
when pe independent sets including e are scheduled. As before, at each time we can schedule
a set of tasks that is independent in the given matroid and a job completes when all its
tasks complete.

6.1 Compact Linear Program
We first describe our new compact LP relaxation. Let T :=

∑
e pe + maxj rj , which is clearly

an upper bound on the maximum time we need to consider. We define a set of times T
that consists of polynomially many time steps. First, let T include every job’s arrival time.
Next, let T include all times appearing in {b(1 + ε)ic}0≤i≤dlog1+ε Te+1. In words, T includes
exponentially increasing time steps by a factor of (1 + ε) starting from 1 but includes no
times greater than (1 + ε)2T . Let t1 = 1, t2, . . . , tk, . . . , tK+1 denote the (integer) times in T
in increasing order. Let Ii := [ti, ti+1) where i ∈ [K]. The idea is to rewrite LP compactly as
follows by replacing time-indexed variables with interval-indexed variables.

min
∑
j∈J

wj
∑
i∈[K]

(ti+1 − 1) · xj,i

s.t. ∀e ∈ U,
∑
i∈[K]

(ti+1 − ti)ye,i = pe (7)

∀j ∈ J ∀e ∈ Uj ∀i ∈ [K],
∑
i′≤i

ye,i′/pe ≥
∑
i′≤i

xj,i′ (8)

∀S ⊆ U ∀i ∈ [K],
∑
e∈S

ye,i ≤ ρ(S) (9)

∀j ∈ J ∀e ∈ Uj ∀i ∈ [K] s.t. ti+1 ≤ rj , ye,i = 0 (10)
x,y ≥ 0 (11)

Here, variable xj,i can be viewed as the average fraction of job j that completes per
unit time during Ii; so, when the job j completes during Ii for the first time, we have∑
i′≤i xj,i′ = 1. Likewise, ye,i has an analogous meaning for each task e but it denotes the
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average unit of task e that is processed per unit time during Ii. Constraint (7) ensures that
all tasks complete eventually. Constraint (9) ensures that the average vector representing how
much each task is processed per unit time during It lies in the polymatroid. Constraint (10)
enforces that no tasks in Uj are processed before j’s arrival time; this is possible since T
includes all jobs arrival times. Before explaining constraint (8), we explain the objective. If
all intervals, {Ii} were of unit length, the objective would be exactly the fractional total
weighted completion time. However, to make the LP compact, when job j completes by
xj,i fraction during interval Ii, we pretend that the fraction completes at the end of Ii,
i.e., ti+1 − 1. Thus, we overestimate the fractional objective; but since times in Ii differ
by at most (1 + ε) factor, our overestimate is by a factor of at most (1 + ε). Finally, we
discuss constraint (8), which caps each job’s (cumulative) processed fraction at the analogous
quantity of each task of the job, which is measured as how much the task has been processed
divided by its processing time. We also note that this compact LP admits the same separation
oracle as the one for LP.

6.2 Rounding
As before, we seek to round the optimal LP solution. Recall that we first obtained C∗j :=
d 1
λ C̄je and found an integer schedule that completes every job j before C∗j . We observe that

the first procedure is no issue. This is because we can interpret the solution to our compact
LP as a solution to LP. To see this, when a task e is processed by δ amount, pretend that
there exist pe different tasks of unit size and they are processed equally by δ/pe amount.
Thus, we can compute C̄j(v) efficiently for any value of v ∈ (0, 1]. The derandomization can
be done similarly.

6.3 Finding An Integer Schedule
It now remains to find an integer schedule meeting the discovered deadlines, {C∗j }j∈J . We
use essentially the same idea of reducing the problem to finding an integer solution to the
intersection of two matroids. However, this reduction requires some careful modifications to
be implemented in polynomial time. Also, we will aim to complete every job j by (1+O(ε))C∗j
meeting the deadline slightly loosely.

The main idea is to use the fact that the continuous schedule σλ meeting the deadlines {C∗j }
only changes polynomially many times. This is because the continuous schedule σ before the
stretching is identical at all times during each of the intervals (0, t1−1], (t1−1, t2], . . . , (tK−1−
1, tK ] – these intervals are stretched into (0, (t1 − 1)/λ], ((t1 − 1)/λ, t2/λ], . . . , ((tK−1 −
1)/λ, tK/λ], respectively. We split the interval including the time T ′ = |U |2/ε2 into two, the
left one ending at |U |2/ε2 and the right one starting at |U |2/ε2. Here, assume that 1/ε is
an integer. We also add time C̄j(λ)/λ for every j ∈ J and split the intervals accordingly.
To simplify the notation, we recycle the notations Ii. By reindexing the resulting intervals
and merging some initial intervals, we have I0 := (0, T ′], I1, I2, ..., IK′ . We say that an
interval is small if its starting time or ending time is not a power of (1 + ε) divided by λ;
more precisely, ((ti−1 − 1)/λ, ti/λ] is small if ti−1 or ti is not a power of (1 + ε) divided by λ.
Note that there are at most 4|J |+ 4 ≤ 8|J | ≤ 8|U | small intervals since each job’s arrival
time and deadline together can create at most 4 small intervals; the extra four come from
time 0, the final time, and T ′.

For each interval Ii, let Qe(Ii) denote the amount of task e processed during Ii, which
can be easily computed in polynomial time. For each interval, we will construct an integer
schedule that schedules each task as much as the continuous schedule σλ does without using
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too many time steps compared to the interval’s length; more precisely, the integer schedule
will process at least dQe(Ii)e units of task e. We categorize the intervals into three groups.
Depending on the category where each interval belongs, we construct an integer schedule
differently or give a different upper bound on the length of the integer schedule. At the end,
we will concatenate the constructed integer intervals in increasing order of times. In the
following, |I| denotes I’s length.

The first interval, I0 = (0, T ′]. Using the same idea we used for handling unit-sized tasks,
we find an integer schedule that processes at least bQe(Ii)c, meeting all job deadlines no
greater than T ′. Note that I0 has a polynomial length; thus, the desired integer schedule
can be computed in polynomial time. Then, we can greedily schedule each task e per unit
time such that Qe(Ii) is not an integer. Note that such a task e hasn’t completed by time
T ′, so the task (more precisely, the job to which the task belongs) has deadline at least T ′.
Therefore, we will be able to charge the extra delay of at most |U | to the corresponding job’s
deadline directly.

Ii that is not small, for i ≥ 1. We seek to construct an integer schedule of length
(1 +O(ε))|Ii|. Towards this end, we do the following. Suppose we divide the interval into
d |Ii||U |/εe subintervals of length |U |/ε; there can be at most one subinterval of a smaller length
and we will handle it later. Next, for each subinterval of length |U |/ε, we try to schedule
d |U |/ε|Ii| Qe(Ii)e units of each task e. Since the length is polynomial in |U |, we can find an
integer schedule of length |U |/ε + 1 that schedules b |U |/ε|Ii| Qe(Ii)c units of each task e. By
scheduling one task per unit time, we can schedule d |U |/ε|Ii| Qe(Ii)e units of each task e for
|U |/ε + 1 + |U | ≤ (|U |/ε) · (1 + 2ε) time steps. Here, our integer schedule’s length is at
most (1 + 2ε) times the subinterval’s length, |U |/ε. This integer schedule is repeated b |Ii||U |/εc
times. We now handle the smaller subinterval of length less than |U |/ε. Using a similar
argument, we can process more units of each task than the continuous schedule, using at
most |U |/ε+ 1 + |U | ≤ 2|U |/ε time steps. Here we use the fact that Ii has length significantly
greater than |U |. To see this, suppose we had not added jobs arrival times, deadlines or T ′
in the process of creating the intervals. Then the intervals preceding Ii have exponentially
decreasing lengths by a factor of (1 + ε). Using this observation, we can argue that Ii’s length
is at least ε/2 times Ii’s starting time. Since Ii’s starting time is greater than T ′, we have
that Ii’s length is at least (ε/2) · T ′ = (ε/2) · (|U |2/ε2) = |U |2/(2ε). So, we can charge the
number of time steps spent to handle the smaller subinterval, which is at most 2|U |/ε, to the
length of Ii. From all these arguments, we can construct an integer schedule of length at
most (1 + 6ε)|Ii|.

Ii that is small, for i ≥ 1. We seek to construct an integer schedule of length (1+O(ε))|Ii|+
2|U |/ε. The whole idea is the same for the intervals that are not small. The only difference
is that we cannot charge the extra time steps we spend to handle the smaller subinterval,
which is at most 2|U |/ε, to the length of Ii. Thus, we just use the upper bound on the length
of our integer schedule.

As mentioned before, we concatenate the integer schedules originating from I0, I1, . . . , IK
in this order to obtain the final schedule. It now remains to show that each job completes by
time (1 +O(ε))C∗j . We already showed that our integer schedule completes every job j before
its deadline C∗j if it is smaller than T ′. For any other job j, it must be the case that C̄j(λ)/λ
is greater than T ′. Let Ii be the interval including C̄j(λ)/λ. Due to the way the intervals are

ICALP 2019



145:12 Matroid Coflow Scheduling

constructed, C̄j(λ)/λ must be equal to Ii’s finish time. Our goal is to show that we complete
j not too late compared to Ii’s finish time. That is, we want to show that the total length of
the integer schedules originating from I0, I1, . . . , Ii is at most (1 +O(ε))

∑
i′≤i |Ii′ |. Indeed,

the total length is at most,

|I0|+ |U |+
∑

i′=[i]:Ii′ is small
((1 +O(ε))|Ii|+ 2|U |/ε) +

∑
i′=[i]:Ii′ is not small

(1 +O(ε))|Ii|

≤
i∑

i′=0
(1 +O(ε))|Ii′ |+ |U |+ (2|U |/ε) · (8|U |) ≤

i∑
i′=0

(1 +O(ε))|Ii′ |+O(ε)|I0|

Here, the first inequality follows from the fact that there are at most 8|U | small intervals, as
argued above. The second inequality is immediate from |I0| = T ′ = |U |2/ε2. Therefore, we
have shown that each job completes by time (1 +O(ε))C∗j , which establishes that our final
schedule’s objective is at most (1 +O(ε)) times the compact LP’s optimum. Since we showed
the compact LP lower bounds the optimum times (1 + ε), we obtain a 2(1 + ε)-approximate
schedule for arbitrary ε > 0 by scaling ε appropriately.
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Abstract
Assume that a treasure is placed in one of M boxes according to a known distribution and that
k searchers are searching for it in parallel during T rounds. We study the question of how to
incentivize selfish players so that group performance would be maximized. Here, this is measured by
the success probability, namely, the probability that at least one player finds the treasure. We focus
on congestion policies C(`) that specify the reward that a player receives if it is one of ` players
that (simultaneously) find the treasure for the first time. Our main technical contribution is proving
that the exclusive policy, in which C(1) = 1 and C(`) = 0 for ` > 1, yields a price of anarchy of
(1− (1− 1/k)k)−1, and that this is the best possible price among all symmetric reward mechanisms.
For this policy we also have an explicit description of a symmetric equilibrium, which is in some sense
unique, and moreover enjoys the best success probability among all symmetric profiles. For general
congestion policies, we show how to polynomially find, for any θ > 0, a symmetric multiplicative
(1 + θ)(1 + C(k))-equilibrium.

Together with an appropriate reward policy, a central entity can suggest players to play a
particular profile at equilibrium. As our main conceptual contribution, we advocate the use of
symmetric equilibria for such purposes. Besides being fair, we argue that symmetric equilibria can
also become highly robust to crashes of players. Indeed, in many cases, despite the fact that some
small fraction of players crash (or refuse to participate), symmetric equilibria remain efficient in
terms of their group performances and, at the same time, serve as approximate equilibria. We show
that this principle holds for a class of games, which we call monotonously scalable games. This applies
in particular to our search game, assuming the natural sharing policy, in which C(`) = 1/`. For the
exclusive policy, this general result does not hold, but we show that the symmetric equilibrium is
nevertheless robust under mild assumptions.
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146:2 Multi-Round Search Games

1 Introduction

Searching in groups is ubiquitous in multiple contexts, including in the biological world, in
human populations as well as on the internet [8, 11, 16]. In many cases there is some prior
on the distribution of the searched target. Moreover, when the space is large, each searcher
typically needs to inspect multiple possibilities, which in some circumstances can only be
done sequentially. This paper introduces a game theoretic perspective to such multi-round
treasure hunt searches, generalizing a basic collaborative Bayesian framework previously
introduced in [8].

Consider the case that a treasure is placed in one of M boxes according to a known
distribution f and that k searchers are searching for it in parallel during T rounds, each
specifying a box to visit in each round. Assume w.l.o.g. that the boxes are ordered such that
lower index boxes have higher probability to host the treasure, i.e., f(x) ≥ f(x + 1). We
evaluate the group performance by the success probability, that is, the probability that the
treasure is found by at least one searcher.

If coordination is allowed, letting searcher i visit box (t− 1)k + i at time t will maximize
success probability. However, as simple as this algorithm is, it is very sensitive to faults
of all sorts. For example, if an adversary that knows where the treasure is can crash a
searcher before the search starts (i.e., prevent it from searching), then it can reduce the
search probability to zero.

The authors of [8] suggested the use of identical non-coordinating algorithms. In such
scenarios all processors act independently, using no communication or coordination, executing
the same probabilistic algorithm, differing only by the results of their coin flips. As argued in
[8], in addition to their economic use of communication, identical non-coordinating algorithms
enjoy inherent robustness to different kind of faults. For example, assume that there are
k + k′ searchers, and that an adversary can fail up to k′ searchers. Letting all searchers run
the best non-coordinating algorithm for k searchers guarantees that regardless of which ` ≤ k′
searchers fail, the overall search efficiency is at least as good as the non-coordinating one for k
players. Of course, since k′ players might fail, any solution can only hope to achieve the best
performance of k players. As it applies to the group performance we term this property as
group robustness. Among the main results in [8] is identifying a non-coordinating algorithm,
denoted A?, whose expected running time is minimal among non-coordinating algorithms.
Moreover, for every given T , if this algorithm runs for T rounds, it also maximizes the
success probability.

The current paper studies the game theoretic version of this multi-round search problem1.
The setting of [8] assumes that the searchers adhere fully to the instructions of a central
entity. In contrast, in a game theoretical context, searchers are self-interested and one needs
to incentivize them to behave as desired, e.g., by awarding those players that find the treasure
first. For many real world contexts, the competitive setting is in fact the more realistic
one to assume. Applications range from crowd sourcing [26], multi-agent searching on the
internet [25], grant proposals [18], to even contexts of animals [17]. See the full version
for more details.

1 We concentrate on the normal form version in which players do not receive any feedback during the
search (except when the treasure is found in which case the game ends). In particular, we assume that
players cannot communicate with each other.
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In the competitive setting, choosing a good rewarding policy becomes a problem in
algorithmic mechanism design [24]. Typically, a reward policy is evaluated by its price
of anarchy (PoA), namely, the ratio between the performances of the best collaborative
algorithm and the worst equilibrium [19]. Aiming to both accelerate the convergence process
to an equilibrium and obtain a preferable one, the announcement of the reward policy
can be accompanied by a proposition for players to play particular strategies that form a
profile at equilibrium.

This paper highlights the benefits of suggesting (non-coordinating) symmetric equilibria
in such scenarios, that is, to suggest the same non-coordinating strategy to be used by all
players, such that the resulting profile is at equilibrium. This is of course relevant assuming
that the price of symmetric stability (PoSS), namely, the ratio between the performances
of the best collaborative algorithm and the best symmetric equilibrium, is low. Besides
the obvious reasons of fairness and simplicity, from the perspective of a central entity who
is interested in the overall success probability, we obtain the group robustness property
mentioned above, by suggesting that the k + k′ players play according to the strategy that
is a symmetric equilibrium for k players. Obviously, this group robustness is valid only
provided that the players indeed play according to the suggested strategy. However, the
suggested strategy is guaranteed to be an equilibrium only for k players, while in fact, the
adversary may keep some of the extra k′ players alive. Interestingly, however, in many cases,
a symmetric equilibrium for k players also serves as an approximate equilibrium for k + k′

players, as long as k′ � k. As we show, this equilibrium robustness property is rather general,
holding for a class of games, that we call monotonously scalable games.

1.1 The Collaborative Search Game

A treasure is placed in one of M boxes according to a known distribution f and k players
are searching for it in parallel during T rounds. Assume w.l.o.g. that f(x) > 0 for every x
and that f(x) ≥ f(x+ 1).

Strategies. An execution of T rounds is a sequence of box visitations σ = x(1), x(2), . . . x(T ),
one for each round i ≤ T . We assume that a player visiting a box has no information on
whether other players have already visited that box or are currently visiting it. Hence, a
strategy of a player is a probability distribution over the space of executions of T rounds.
Note that the probability of visiting a box x in a certain round may depend on the boxes
visited by the player until this round, but not on the actions of other players. A strategy is
non-redundant if at any given round it always checks a box it didn’t check before (as long as
there are such boxes).

A profile is a collection of k strategies, one for each player. Special attention will be
devoted to symmetric profiles. In such profiles all players play the same strategy (note that
their actual executions may be different, due to different probabilistic choices).

Probability Matrix. While slightly abusing notation, we shall associate each strategy A with
its probability matrix, A : {1, . . . ,M} × {1, . . . , T} → [0, 1], where A(x, t) is the probability
that strategy A visits x for the first time at round t. We also denote Ã(x, t) as the probability
that A does not visit x by, and including, time t. That is, Ã(x, t) = 1−

∑
s≤tA(x, t) and

Ã(x, 0) = 1. For convenience we denote by δx,t the matrix of all zeros except 1 at x, t. Its
dimensions will be clear from context.
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Group Performance. A profile is evaluated by its success probability, i.e., the probability
that at least one player finds the treasure by time T . Formally, let P be a profile. Then,

success(P) =
∑
x

f(x)
(

1−
∏
A∈P

Ã(x, T )
)
.

The expected running time in the symmetric case, which is
∑
x f(x)

∑
t Ã(x, t)k, was studied

in [8]. That paper identified a strategy, denoted A?, that minimizes this quantity. In fact, it
does so by minimizing the term

∑
x f(x)Ã(x, t)k for each t separately. Note that minimizing

the case t = T is exactly the same as maximizing the success probability. Thus, restricted to
the case where all searchers use the same strategy, A? simultaneously optimizes the success
probability as well as optimizes the expected running time. For completeness, a description
of A? is provided below.

Algorithm A?. We note that in [8] the matrix of A? is given, and then an algorithm is
explicitly described that has its matrix (Section 4.3 in [8]). We describe the matrix only, as
its details are necessary for this paper.

Denote q(x) = f(x)−1/(k−1). For each t, Ã?(x, t) = min(1, α(t)q(x)), where α(t) ≥ 0 is
such that

∑
x Ã

?(x, t) = M − t. Of course, once Ã? is known, then so is A?: A?(x, t) =
Ã?(x, t− 1)− Ã?(x, t).

Congestion Policies. A natural way to incentivize players is by rewarding those players
that find the treasure before others. A congestion policy C(`) is a function specifying the
reward that a player receives if it is one of ` players that (simultaneously) find the treasure
for the first time. We assume that C(1) = 1, and that C is non-negative and non-increasing.
Due to the fact that the policy C ≡ 1 is rather degenerate, we henceforth assume that C 6≡ 1.
We shall give special attention to the following policies.

The sharing policy is defined by Cshare(`) = 1/`, namely, the treasure is shared equally
among all those who find it first.
The exclusive policy is defined by Cex(1) = 1, and Cex(`) = 0 for ` > 1, namely, the
treasure is given to the first one that finds it exclusively; if more than one discover it,
they get nothing2.

A configuration is a triplet (C, f, T ), where C is a congestion policy, T is a positive integer,
and f is a positive non-increasing probability distribution on M boxes.

Values, Utilities and Equilibria. Let (C, f, T ) be a configuration. The value of box x at
round t when playing against a profile P is the expected gain from visiting x at round t.
Formally,

vP(x, t) = f(x)
k−1∑
`=0

C(`+ 1) Pr
(
x was not visited before time t, and
at time t is visited by ` players of P

)

= f(x)
k−1∑
`=0

C(`+ 1)
∑
I⊆P
|I|=`

∏
A∈I

A(x, t)
∏
A6∈I

Ã(x, t).

2 In the one round game, the exclusive policy yields a utility for a player that equals its marginal
contribution to the social welfare, i.e., the success probability [27]. However, this is not the case in the
multi-round game.
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The utility of A in round t and the utility of A are defined as:

UP(A, t) :=
∑
x

A(x, t) · vP−A(x, t), UP(A) :=
∑
t

UP(A, t), (1)

where P−A is the set of players of P excluding A. Here are some specific cases we are
interested in:

For symmetric profiles, vA(x, t) denotes the value when playing against k − 1 players
playing A. Then vA(x, t) = f(x)

∑k−1
`=0 C(`+ 1)

(
k−1
`

)
A(x, t)`Ã(x, t)k−`−1.

For the exclusive policy, vP(x, t) = f(x)
∏
A∈P Ã(x, t).

For the exclusive policy in symmetric profiles, vA(x, t) = f(x)Ã(x, t)k−1.

A profile P is a Nash equilibrium under a configuration, if for any A ∈ P and any other
strategy B, UP−A(A) ≥ UP−A(B). Similarly, a strategy A is called a symmetric equilibrium if
the profile Ak consisting of all k players playing according to A is an equilibrium. We also use
the notion of approximate equilibrium. For ε > 0, we say a profile P is a (1 + ε)-equilibrium
if for every A ∈ P and for every strategy B, UP−A(B) ≤ (1 + ε)UP−A(A).

A Game of Doubly-Substochastic Matrices. Both the expressions for the success probab-
ility and utility solely depend on the values of the probability matrices associated with the
strategies in question. Hence we view all strategies sharing the same matrix as equivalent.
Note that a matrix does not necessarily correspond to a unique strategy, as illustrated by
the following equivalent strategies, for which A(x, t) = B(x, t) = 1/M for every t ≤M and 0
thereafter:

Strategy A chooses uniformly at every round one of the boxes it didn’t choose yet.
Strategy B chooses once x ∈ {0, . . . ,M − 1}. Then, at round t it visits box (x + t

mod M) + 1.

Matrices are much simpler to handle than strategies, and so we would rather think of
our game as a game of probability matrices than a game of strategies. For this we need
to characterize which matrices are indeed probability matrices of strategies. Clearly, a
probability matrix is non-negative. Also, by their definition, each row and each column sums
to at most 1. Such a matrix is called doubly-substochastic. In the extended version we prove
the converse, i.e., that every doubly-substochastic matrix is a probability matrix of some
strategy. Furthermore, this strategy is implementable as a polynomial algorithm. We will
therefore view our game as a game of doubly-substochastic matrices.

Greediness. Informally, a strategy is greedy at a round if its utility in this round is the
maximum possible in this round. Formally, given a profile P and some strategy A, we say
that A is greedy w.r.t. P at time t if for any strategy B such that for every x and s < t,
B(x, s) = A(x, s), we have UP(A, t) ≥ UP(B, t). We say A is greedy w.r.t. P if it is greedy
w.r.t. P for each t ≤ T . A strategy A is called self-greedy (or sgreedy for short) if it is greedy
w.r.t. the profile with k − 1 players playing A.

Evaluating Policies. Let (C, f, T ) be a configuration. Denote by Nash(C, f, T ) the set of
equilibria for this configuration, and by S-Nash(C, f, T ) the subset of symmetric ones. Let
P(T ) be the set of all profiles of T -round strategies. We are interested in the following
measures.
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The Price of Anarchy (PoA) is PoA(C, f, T ) := maxP∈P(T ) success(P)
minP∈Nash(C,f,T ) success(P) .

The Price of Symmetric Stability (PoSS) is PoSS(C, f, T ) := maxP∈P(T ) success(P)
maxA∈S-Nash(C,f,T ) success(Ak) .

The Price of Symmetric Anarchy (PoSA) is PoSA(C, f, T ) = maxP∈P(T ) success(P)
minA∈S-Nash(C,f,T ) success(Ak) .

On the Difficulty of the Multi-Round Game. The setting of multi-rounds poses several
challenges that do not exist in the single round game. An important one is the fact that, in
contrast to the single round game, the multi-round game is not a potential game. Indeed,
being a potential game has several implications, and a significant one is that such a game
has always a pure equilibrium. However, we show that multi-round games do not always
have pure equilibria and hence they are not potential games. Another important difference is
that for policies that incur high levels of competition (such as the exclusive policy), profiles
that maximize the success probability are at equilibrium in the single round case, whereas
they are not in the multi-round game. See the full version of the paper for more details.

1.2 Our Results
Equilibrium Robustness. We first provide a simple, yet general, robustness result, that
holds for symmetric (approximate) equilibria in a family of games, termed monotonously
scalable. Informally, these are games in which the sum of utilities of players can only increase
when more players are added, yet for each player, its individual utility can only decrease.
Our search game with the sharing policy is one such example.

I Theorem 1. Consider a symmetric monotonously scalable game. If A is a symmetric
(1 + ε)-equilibrium for k players, then it is an (1 + ε)(1 + `/k)-equilibrium when played by
k + ` players.

Theorem 1 is applicable in fault tolerant contexts. Consider a monotonously scalable game
with k + k′ players out of which at most k′ may fail. Let Ak be a symmetric (approximate)
equilibrium designed for k players and assume that its social utility is high compared to the
optimal profile with k players. The theorem implies that if players play Ak, then regardless of
which ` ≤ k′ players fail (or decline to participate), the incentive to switch strategy would be
very small, as long as k′ � k. Moreover, due to symmetry, if the social utility of the game is
monotone, then the social utility of Ak when played with k players is guaranteed when playing
with more. Thus, in such cases we obtain both group robustness and equilibrium robustness.

General Congestion Policies. Coming back to our search game, we consider general policies,
focus on symmetric profiles, and specifically, on the properties of sgreedy strategies.

I Theorem 2. For every policy C there exists a non-redundant sgreedy strategy. Moreover,
all such strategies are equivalent and are symmetric (1 + C(k))-equilibria.

When C(k) = 0 this shows that a non-redundant sgreedy strategy is actually a symmetric
equilibrium. We next claim that this is the only symmetric equilibrium (up to equivalence).

B Claim 3. For any policy such that C(k) = 0, all symmetric equilibria are equivalent.

Theorem 2 is non-constructive because it requires calculating the inverse of non-trivial
functions. Therefore, we resort to an approximate solution.

I Theorem 4. Given θ > 0, there exists an algorithm that takes as input a configuration,
and produces a symmetric (1 + C(k))(1 + θ)-equilibrium. The algorithm runs in polynomial
time in T , k, M , log(1/θ), log(1/(1− C(k))), and log(1/f(M)).
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The Exclusive Policy. Recall that the exclusive policy is defined by Cex(1) = 1 and
Cex(`) = 0 for every ` > 1. We show that A? is a non-redundant and sgreedy strategy in the
exclusive policy. Hence, Theorem 2 implies the following.

I Theorem 5. Under the exclusive policy, Strategy A? of [8] is a symmetric equilibrium.

Claim 3 together with the fact (established in [8]) that A? has the highest success
probability among symmetric profiles, implies that both the PoSS and the PoSA of Cex are
optimal (and equal) on any f and T when compared to any other policy. The next theorem
considers general equilibria.

I Theorem 6. Consider the exclusive policy. For any profile Pnash at equilibrium and any
symmetric profile A, success(Pnash) ≥ success(A).

Observe that, as A? is a symmetric equilibrium, Theorem 6 provides an alternative proof
for the optimality of A? (established in [8]). Interestingly, this alternative proof is based on
game theoretic considerations, which is a very rare approach in optimality proofs.

Combining Theorems 5 and 6, we obtain:

I Corollary 7. For any f and T , PoA(Cex, f, T ) = PoSA(Cex, f, T ). Moreover, for any policy
C, PoA(Cex, f, T ) ≤ PoA(C, f, T ).

At first glance the effectiveness of Cex might not seem so surprising. Indeed, it seems
natural that high levels of competition would incentivize players to disperse. However, it
is important to note that Cex is not extreme in this sense, as one may allow congestion
policies to also have negative values upon collisions. Moreover, one could potentially define
more complex kinds of policies, e.g., policies that depend on time, and reward early finds
more. However, the fact that A? is optimal among all symmetric profiles combined with the
fact that any symmetric policy has a symmetric equilibrium [23] implies that no symmetric
reward mechanism can improve either the PoSS, the PoSA, or the PoA of the exclusive policy.

We proceed to show a tight upper bound on the PoA of Cex. Note that as k goes to
infinity the bound converges to e/(e− 1) ≈ 1.582.

I Theorem 8. For every T , supf PoA(Cex, f, T ) = (1− (1− 1/k)k)−1.

Concluding the results on the exclusive policy, we study the robustness of A? in the
full version of the paper. Let A?k denote algorithm A? when set to work for k players.
Unfortunately, for any ε, there are cases where A?k is not a (1 + ε)-equilibrium even when
played by k+1 players. However, as indicated below, A? is robust to failures under reasonable
assumptions regarding the distribution f .

I Theorem 9. If f(1)
f(M) ≤ (1 + ε)

k−1
k′ , then A?k is a (1 + ε)-equilibrium when played by k + k′

players.

The Sharing Policy. Another important policy to consider is the sharing policy. This policy
naturally arises in some circumstances, and may be considered as a less harsh alternative to
the exclusive one. Although not optimal, it follows from Vetta [31] that its PoA is at most 2
(see the full version). Furthermore, as this policy yields a monotonously scalable game, a
symmetric equilibrium under it is also robust. Therefore, the existence of a symmetric profile
which is both robust and has a reasonable success probability is guaranteed.

Unfortunately, we did not manage to find a polynomial algorithm that generates a
symmetric equilibrium for this policy. However, Theorem 4 gives a symmetric (1+θ)(1+1/k)-
equilibrium in polynomial time for any θ > 0. This strategy is also robust thanks to Theorem 1.
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Moreover, the proof in [31] regarding the PoA can be extended to hold for approximate
equilibria. In particular, if P is some (1 + ε)-equilibrium in the sharing policy, then for
every f and T , success(P) ≥ 1

2+ε maxP′∈P(T ) success(P′). See the full version of the paper
for the proof.

1.3 Related Works
Fault tolerance has been a major topic in distributed computing for several decades, and in
recent years more attention has been given to these concepts in game theory [13, 14]. For
example, Gradwohl and Reingold studied conditions under which games are robust to faults,
showing that equilibria in anonymous games are fault tolerant if they are “mixed enough” [12].

Restricted to a single round the search problem becomes a coverage problem, which has
been investigated in several papers. For example, Collet and Korman studied in [30] (one-
round) coverage while restricting attention to symmetric profiles only. The main result therein
is that the exclusive policy yields the best coverage among symmetric profiles. Gairing [10]
also considered the single round setting, but studied the optimal PoA of a more general family
of games called covering games (see also [27, 28]). Motivated by policies for research grants,
Kleinberg and Oren [18] considered a one-round model similar to that in [30]. Their focus
however was on pure strategies only. The aforementioned papers give a good understanding
of coverage games in the single round setting. As mentioned, however, the multi-round
setting studied here is substantially more complex than the single-round setting.

The area of “incentivizing exploration” also studies the tradeoff between exploration,
exploitation and incentives [21, 9, 26, 20]. This area often focuses on different variants of the
Multi-Armed Bandit problem. The settings of selfish routing, job scheduling, and congestion
games [22, 29] all bear similarities to the search game studied here, however, the social welfare
measurements of success probability or running time are very different from the measures
studied in these frameworks, such as makespan or latency [1, 3, 24, 2].

2 Robustness in Symmetric Monotonously Scalable Games

Consider a symmetric game where the number of players is not fixed. Let UP(A) denote
the utility that a player playing A gets if the other players play according to P and let
σ(P) =

∑
A∈P UP−A(A). We say that such a game is monotonously scalable if:

1. Adding more players can only increase the sum of utilities, i.e., if P ⊆ P′ then σ(P) ≤ σ(P′).
2. Adding more players can only decrease the individual utilities, i.e., if P ⊆ P′ then for all

A ∈ P, UP−A(A) ≥ UP′−A(A).

I Theorem 1. Consider a symmetric monotonously scalable game. If A is a symmetric
(1 + ε)-equilibrium for k players, then it is an (1 + ε)(1 + `/k)-equilibrium when played by
k + ` players.

Proof. On the one hand by symmetry,

UAk+`−1(A) = σ(Ak+`)
k + `

≥ σ(Ak)
k + `

,

where the last step is because σ is non-decreasing. On the other hand, if B is some
other strategy,

UAk+`−1(B) ≤ UAk−1(B) ≤ (1 + ε)UAk−1(A) = (1 + ε)σ(Ak)
k

.
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The first inequality is because U is non-increasing, and the second is because A is a (1 + ε)-
equilibrium for k players. Therefore, what a player can gain by switching from A to B is at
most a multiplicative factor of (1 + ε)(k + `)/k = (1 + ε)(1 + `/k). J

An example of such a game is our setting with the sharing policy. Note however, that our
game with the exclusive policy does not satisfy the first property, as adding more players
can actually deteriorate the sum of utilities. Another example is a generalization known as
covering games [10]. This sort of game is the same as our game in a single-round version,
except that each player chooses not necessarily one element, but a set of elements, from a
prescribed set of sets. Again, to be a monotonously scalable game, the congestion policy
should be the sharing policy. Note that one may consider a multi-round version of these
games, which will be monotonously scalable as well.

3 General Policies

The proofs of this section appear in the full version of the paper.

3.1 Non-Redundancy and Monotonicity
A doubly-substochastic matrix A is called non-redundant at time t if

∑
xA(x, t) = 1. It is

non-redundant if it is non-redundant for every t ≤M . In the algorithmic view, as
∑
xA(x, t)

is the probability that a new box is opened at time t, then a strategy’s matrix is non-redundant
iff it never checks a box twice, unless it already checked all boxes.

I Lemma 10. If a profile P is at equilibrium and success(P) < 1 then every player is
non-redundant.

We will later see that in the symmetric case the condition in the lemma is not needed.
However, the following example shows it is necessary in general. Let M = k, T > 1, and
assume that for every 1 ≤ i ≤ k, player i goes to box i in every round. Under the exclusive
policy, this strategy is an equilibrium, whereas each player is clearly redundant. The following
monotonicity lemmas hold under any congestion policy C.

I Lemma 11. Consider two doubly-substochastic matrices A and B. If A(x, t) > B(x, t),
and for all s < t, A(x, s) = B(x, s) then vA(x, t) < vB(x, t).

I Lemma 12. Let A be doubly-substochastic. For every x and t, vA(x, t + 1) ≤ vA(x, t).
Moreover, if A(x, t+ 1) > 0 then the inequality is strict.

Using the above, we prove a stronger result than Lemma 10 for the symmetric case:

I Lemma 13. If A is a symmetric equilibrium then it is non-redundant.

Proof. Because of Lemma 10 it is sufficient to consider only the case where success(A) = 1.
Let T ′ = min{M,T}, and assume by contradiction that A is redundant. Thus there is some
t ≤ T ′ where

∑
xA(x, t) < 1. Hence,

∑
s≤T ′

∑
xA(x, s) < T ′. Therefore, there is some x

such that
∑
s≤T ′ A(x, s) < 1 and so

∑
s≤tA(x, s) < 1. As success(A) = 1, there is some

t′ > t such that A(x, t′) > 0. Define A′ = A+ ε(δx,t − δx,t′). Taking ε > 0 small enough, A′
is doubly-substochastic. Also, UA(A′) − UA(A) = ε(vA(x, t) − vA(x, t′)), which is strictly
positive by Lemma 12. Contradicting the fact that A is an equilibrium. J

ICALP 2019



146:10 Multi-Round Search Games

3.2 Greedy Strategies
I Lemma 14. A non-redundant strategy A is greedy w.r.t. P at time t iff for every x and y,
if A(x, t) > 0 and vP(x, t) < vP(y, t) then Ã(y, t) = 0.

The lemma above gives a useful equivalent definition for greediness. We can then prove:

I Theorem 2. For every policy C there exists a non-redundant sgreedy strategy. Moreover,
all such strategies are equivalent and are symmetric (1 + C(k))-equilibria.

Proof. See the full version for a proof for the existence of a strategy A that is non-redundant
and sgreedy. We prove here that such a strategy is a (1 + C(k))-equilibrium. Consider
a strategy B. We compare the utility of B to that of A when both play against k − 1
players playing A. By non-redundancy, all of vA(x, t) are 0 when t > M , and so we can
assume T ≤M .

Denote maxv(t) = maxx vA(x, t). Since the utility of B in any round t is a convex
combination of vA(x, t), we have UA(B, t) ≤ maxv(t). We say that A fills box x at round t if
A(x, t) > 0 and Ã(x, t) = 0. The following four claims hold for any round t:
1. If A does not fill any box at round t then UA(A, t) = maxv(t). This is because UA(A, t)

is a convex combination of vA(x, t) for the boxes where A(x, t) > 0, which by the
characterization of greediness in Lemma 14, all have the same value at time t.

2. UA(A, 1) = maxv(1). Why? if no box is filled in round 1, then Item 1 applies. Otherwise,
for some box x, A(x, 1) = 1, and all other boxes have A(·, 1) = 0. The result follows
again by Lemma 14.

3. For any s < t, UA(A, s) ≥ maxv(t). We prove this by showing that for every x, UA(A, s) ≥
vA(x, t). If vA(x, t) = 0, then the claim is clear. Otherwise, A(x, t) > 0 or Ã(x, t) > 0
or both. Either way, Ã(x, s) > 0. Therefore, as A is sgreedy, for every y such that
A(y, s) > 0, vA(y, s) ≥ vA(x, s) ≥ vA(x, t). The last inequality follows from monotonicity,
i.e., Lemma 12. As vA(A, s) is a convex combination of such y’s we conclude.

4. If A fills box x at time t > 1 then for any s < t, vA(x, t) ≤ C(k)vA(x, s). To see
why, first note that vA(x, s) ≥ f(x)C(1)Ã(x, s)k−1 = f(x)Ã(x, s)k−1. On the other
hand, since Ã(x, t) = 0, vA(x, t) = f(x)C(k)A(x, t)k−1 ≤ f(x)C(k)Ã(x, s)k−1 , because
A(x, t) ≤ Ã(x, t− 1) ≤ Ã(x, s). Combining the above two inequalities gives the result.

Denote by X1 the set of rounds for which there is no box x that is filled by A. Let X2 be
the rest of the rounds, except for t = 1 which is in neither. Also denote t0 = minX2, and
t1 = maxX2. Since UA(B) ≤

∑
t maxv(t), by Items 1,2 and 3 above,

UA(B) ≤
∑

t∈X1∪{1}

UA(A, t) + maxv(t0) +
∑

t∈X2\{t1}

UA(A, t) ≤ UA(A) + maxv(t0).

We conclude by using Items 4 and 2 and showing:

maxv(t0) = max
x

vA(x, t0) ≤ max
x

C(k)vA(x, 1) = C(k)UA(A, 1) ≤ C(k)UA(A). J

In the full version we provide an example showing that in the sharing policy, a non-redundant
sgreedy strategy is not necessarily at equilibrium. On the other hand, it is worth noting that
for any policy, the existence of a symmetric equilibrium follows from [23], and for C(k) = 0
we can get a full characterization of such equilibria:

B Claim 15. For any policy such that C(k) = 0, all symmetric equilibria are equivalent.
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Interestingly, this result does not extend to non-symmetric profiles even for the exclusive
policy, as is demonstrated by the following example of a non-greedy non-redundant equilibrium.
Consider three players and two rounds. f(1) = f(2) = f(3) = (1− ε)/3, f(4) = ε, for some
small positive ε. Player 1 plays first 4 and then 1. Player 2 plays 2 and then 3, and player 3
plays 3 and then 2. This can be seen to be an equilibrium, yet player 1 is not greedy.

Finally, the proof of Theorem 4, which shows how to construct an approximate equilibrium
in polynomial time, is presented in the full version of the paper. This proof involves defining
notions of approximate greediness and non-redundancy, proving an equivalent of Theorem 2
for them, and then using bounds on the rate of change that vA(x, t) goes through as a function
of A(x, t). This allows us to polynomially find an approximate sgreedy and non-redundant
matrix, thus giving a polynomial strategy with our use of the Birkhoff von-Neumann theorem
(see the full version).

4 The Exclusive Policy

Missing proofs of this section appear in the full version of this paper. There, we first
prove that under the exclusive policy, A? is sgreedy and non-redundant. Hence, according
to Theorem 2,

I Theorem 5. Under the exclusive policy, Strategy A? of [8] is a symmetric equilibrium.

According to Claim 3 all symmetric equilibria under the exclusive policy are equivalent,
and thus equivalent to A?. Hence, the optimality of A? (w.r.t. symmetric profiles) implies
that both the PoSA and PoSS of the exclusive policy are optimal. That is, for every f , T ,
and policy C,

PoSA(Cex, f, T ) = PoSS(Cex, f, T ) ≤ PoSS(C, f, T ).

Our next goal is to establish the PoA of the exclusive policy. For this purpose, we first prove
that the success probability of any equilibrium is at least as large as that of any symmetric
profile. Since A? is a symmetric equilibrium, its optimality among symmetric profiles follows.
Hence, the proof provides as alternative proof to the one in [8].

I Theorem 6. Consider the exclusive policy. For any profile Pnash at equilibrium and any
symmetric profile A, success(Pnash) ≥ success(A).

Proof. Let A be a strategy and Pnash be a profile at equilibrium with respect to Cex. If
success(Pnash) = 1, then the inequality is trivial. According to Lemma 10, we can therefore
assume that all players of Pnash are non-redundant and that T ≤M . Denote the probability
of visiting x in profile P by

success(P, x) = 1−
∏
B∈P

B̃(x, T ).

We say that box x is high with respect to a profile P if success(P, x) > success(A, x),
low if success(P, x) < success(A, x), and saturated if they are equal. The next lemma uses
the fact that A is symmetric.

I Lemma 16. If a profile P is non-redundant and contains no high boxes, then all boxes
are saturated.

We proceed to prove a weak greediness property for equilibria. Denote a box x full for
player B if

∑
tB(x, t) = 1. Also, for readability of what follows, when P is clear from the

context, we shall denote vB(x, t) = vP−B (x, t) = f(x) ·
∏
A∈P\{B} Ã(x, t).
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I Lemma 17. Consider a profile Pnash at equilibrium. For every B ∈ Pnash and t, x, y such
that y is not full in B, if B(x, t) > 0 then vB(x, t) ≥ vB(y, t).

Proof. Assume otherwise. Define an alternative matrix B′ for player B, as B′ = B+ ε(δy,t−
δx,t). For a sufficiently small ε > 0, B′ is a doubly-substochastic matrix because y is not full
in B. Then, UP−B

nash
(B′)− UP−B

nash
(B) = ε(vB(y, t)− vB(x, t)) > 0, in contradiction. J

Let us define a process that starts with the profile Pnash and changes it by a sequence
of alterations, each shifting some amount of probability between two boxes. Importantly,
we make sure that each alteration can only decrease the success probability. Hence, the
proof is concluded once we show that the final profile has a success probability that is higher
than that of A.

We first describe the alternations. Each alteration considers the current profile P, and
changes it to P′. It takes some high box x, some low box y (both w.r.t. P), and the maximal
t such that there is a player B ∈ P with B(x, t) > 0. It defines B′ = B + ε(δy,t − δx,t), and
lets the player that played B play B′ instead. This ε is taken to be the largest so that x
does not become low, y does not become high, and such that ε ≤ B(x, t), so that the entries
remain non-negative. Note that B′ is doubly sub-stochastic, because taking care that y
remains low, also means that y’s row in B′ still sums to less than 1.

After this alteration, either x is saturated, y is saturated, or B′(x, t) = 0. Clearly, in a
finite number of alterations a profile Pfinal is obtained, for which either no box is high or
no box is low.

I Lemma 18. success(Pfinal) ≥ success(A).

Proof. By Lemma 16, Pfinal can only contain high and saturated boxes, that is, for every x,
success(Pfinal, x) ≥ success(A, x). However, success(P) =

∑
x f(x) success(P, x), and

so success(Pfinal) ≥ success(A). J

Lastly, the following lemma concludes the proof of Theorem 6.

I Lemma 19. An alteration can only decrease the probability of success. J

Since A? is a symmetric equilibrium, we immediately get that for every f and T , the PoA
is attained by A?, that is, PoA(Cex, f, T ) = maxP∈P(T ) success(P)/success(A?). Since A?
has the best success probability among symmetric profiles, and that every policy has some
symmetric equilibrium, we get Corollary 7. To make this more concrete, we show that in
the worst case,

I Theorem 8. For every T , supf PoA(Cex, f, T ) = (1− (1− 1/k)k)−1.

Note that as k goes to infinity the PoA converges to e/(e− 1) ≈ 1.582.

5 Future Work and Open Questions

In [8], the main complexity measure was actually the running time and not the success
probability. Our results about equilibria are also relevant to this measure, but the social
gain is different. For example, it is still true that A? is an equilibrium under the exclusive
policy, and that all other symmetric equilibria in the exclusive policy are equivalent to it. As
A? is optimal among symmetric profiles w.r.t. the running time, the PoSA of Cex is equal to
the PoSS, and it is also the best among all policies. Furthermore, importing from [8], we
know that the PoSA (w.r.t. the running time) is about 4. However, showing the analogue of
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Corollary 7, namely, that the PoA of Cex is that achieved by A?, seems difficult, especially
because general equilibria are not necessarily greedy. Moreover, the results of Vetta [31] do
not apply when analyzing the running time, and finding the PoA, PoSA, and PoSS of the
sharing policy, for example, remains open.

Another interesting variant would be to consider feedback during the search. For example,
assuming that a player visiting a box x knows whether or not other players were there
before. Such a feedback can help in the case that the players collaborate [5], but seems to
significantly complicate the analysis in the game theoretic variant.

Finally, we would like to encourage game theoretical studies of other frameworks of
collaborative search, e.g., [4, 6, 7, 15].
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Abstract
Counting the number of nodes in Anonymous Dynamic Networks is enticing from an algorithmic
perspective: an important computation in a restricted platform with promising applications. Starting
with Michail, Chatzigiannakis, and Spirakis [18], a flurry of papers sped up the running time
guarantees from doubly-exponential to polynomial [16]. There is a common theme across all
those works: a distinguished node is assumed to be present, because Counting cannot be solved
deterministically without at least one.

In the present work we study challenging questions that naturally follow: how to efficiently count
with more than one distinguished node, or how to count without any distinguished node. More
importantly, what is the minimal information needed about these distinguished nodes and what
is the best we can aim for (count precision, stochastic guarantees, etc.) without any. We present
negative and positive results to answer these questions. To the best of our knowledge, this is the
first work that addresses them.
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1 Introduction

The recent excitement around the problem of Counting, i.e., computing the number of nodes
of an Anonymous Dynamic Network (ADN) comes as no surprise. On one hand, knowing
the number of processors is a fundamental requirement to decide termination in a myriad
of distributed algorithms. On the other hand, ADN is a very restrictive scenario from an
algorithmic perspective: network nodes do not have identifiers and communication links may
change arbitrarily and continuously over time. The combination of an important problem
with harsh computational conditions is any algorithmist’s delight.

Node anonymity in ADNs is motivated by expected applications of such communication
infrastructure. For instance, in ad-hoc networks embedded in the Internet of Things, nodes
may have to be deployed in a massive scale, and having unique identifiers may simply be
impractical or inconvenient. Moreover, low node-cost expectations may introduce uncertainty
about the number of nodes that will effectively startup. Hence, the need of Counting.
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Strikingly, the progress on deterministic Counting speed-ups over various works ranged
over a broad spectrum: from unbounded [11, 12] to polynomial time [16], going through
doubly-exponential [11] and exponential time [10, 7]. In all that fruitful work, the ADN
model has been equipped with one distinguishable node1. The assumption is well motivated:
in a seminal paper [18], it was shown that, without at least one such node, Counting cannot
be solved deterministically. But what if we have more than one special node? Do these nodes
really need to be special? In other words, is it enough to put one of two different programs
on each of the nodes, that otherwise are all identical? Moreover, can we let the nodes choose
at random which program to run and have no special nodes? To the best of our knowledge,
this is the first work that considers these questions.

As the more general case where all nodes are identical, only differentiated by the program
they run, let the set of n network nodes be formed by ` black nodes (the “special” ones)
and n − ` white nodes (the “regular” ones). Our first contribution is negative results.
On one hand, if ` is unknown, Counting cannot be solved deterministically. On the other
hand, for randomized Counting algorithms, we show that if ` is unknown or zero, there exist
executions when the algorithm does not stop.

Even knowing how many black nodes are in the network, straightforward application of
previous ideas for Counting is not clear. Indeed, each black node may carry its own count,
but how do we combine or compare final counts? Even passing messages among black nodes is
challenging, because black nodes are also indistinguishable among them and communication
links change arbitrarily. For instance, a black node is not able to tell whether a received
message is even its own, coming back after being previously sent for dissemination.

Our second contribution is a deterministic Counting protocol that computes exactly
the number of network nodes. Our protocol uses no information about the network, except
the number of black nodes ` ≥ 1. After completing its execution, all nodes obtain the exact
size of the network and stop. Moreover, they stop all at the same time, allowing the algorithm
to be concatenated with other computations.

This protocol resembles our Methodical Counting protocol presented in [16]. So, we
call it Methodical multi-Counting (MMC). However, it is not a simple combination of
multiple instances of Methodical Counting to handle multiple black nodes. We overcome
the challenge of how to combine the actions of multiple indistinguishable black nodes by
careful design of a set of alarms, so that all black nodes can simultaneously detect when a
running estimate of the size is correct. Moreover, the asymptotic performance of MMC is
O(n4+ε(log3 n)/`), for an arbitrarily small ε > 0. This is a speed-up by a factor arbitrarily
close to n`/ logn with respect to Methodical Counting. That is, even for ` = 1, MMC is
faster than the best previous work.

In face of the impossibility of deterministic Counting without a distinguished node [18],
an enticing question is what is possible introducing randomness. Our third contribution
is a Counting protocol that computes exactly the number of nodes in an ADN where
` = 0 (no special nodes). That is, we show that randomness breaks the impossibility result
of [18], and for the first time it is possible to consider an ADN model where all nodes are
identical, indistinguishable, and run the same program. Our protocol, called Leader-less
Methodical Counting (LLMC), is Monte Carlo; i.e., there is a small probability ε > 0 of
obtaining the wrong size, and the running time of O(n4+ε log3 n) holds with probability 1− ε.

1 Exactly one, usually called leader. We refrain from using the name leader to avoid confusion: in our
model we may have more than one, and in our algorithm they are not going to select a single one among
them. Moreover, they cannot even be local leaders, because due to ADN’s dynamicity they may all be
connected being their own (local) leaders.
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To the best of our knowledge, this is the first comprehensive study of Counting in ADNs
where ` may be different than one.

2 Previous Work

A comprehensive overview of work related to ADNs can be found in a survey by Casteigts et
al. [5] and references in the papers cited here.

With respect to lower bounds, it was proved in [9] that at least Ω(logn) rounds are
needed, even if D is constant. Also, Ω(D) is a lower bound since at least one node needs to
hear about all other nodes to obtain the right count.

Counting and Naming was already studied in [18] for dynamic and static networks,
showing that it is impossible to solve Counting without the presence of a distinguished node,
even if nodes do not move. The Counting protocol requires knowledge of an upper bound on
∆, and obtains only an upper bound, which may be as bad as exponential.

Conscious Counting [11] computes the exact count, but it needs to start from an upper
bound, and it takes exponential time only if the size upper bound is tight. In the same work
and follow-up papers [12, 13], more challenging scenarios where ∆ is unknown are studied,
but protocols either do not terminate [11], or the protocol is terminated heuristically [13].
In experiments [13], such heuristic was found to perform well on dense topologies, but for
other topologies the error rate was high. Another protocol in [12] is shown to terminate
eventually, without running-time guarantees and under the assumption of having for each
node an estimate of the number of neighbors in each round. In [18] it was conjectured that
some knowledge of the network such as the latter would be necessary, but the conjecture was
disproved later in [10]. On the other hand the protocol in [10] requires exponential space.

Incremental Counting, presented recently in [19], reduced exponentially the best-known
running time guarantees. The protocol obtains the exact count, all nodes terminate simul-
taneously, the topology dynamics is only limited to 1-interval connectivity, it only requires
polynomial space, and it only requires knowledge of the dynamic maximum degree ∆. The
running time is still exponential, but reducing from doubly-exponential was an important
step towards understanding the complexity of Counting.

In a follow-up paper [6], Incremental Counting was tested experimentally showing a
promising polynomial behavior. The study was conducted on pessimistic inputs designed to
slow the convergence, such as bounded-degree trees rooted at the leader uniformly chosen
at random for each round, and a single path starting at the leader with non-leader nodes
permuted uniformly at random for each round. The protocol was also tested on static versions
of the inputs mentioned, classic random graphs, and networks where some disconnection is
allowed. The results exposed important observations. Indeed, even for topologies that stretch
the dynamic diameter, the running times obtained are below ∆n3. It was also observed
that random graphs, as used in previous experimental studies [13], reduce the convergence
time, and therefore are not a good choice to indicate worst-case behavior. These experiments
showed good behavior even for networks that sometimes are disconnected, indicating that
more relaxed models of dynamics, such as (α, β)-connectivity [14, 15], are worth to study.

All in all, the experiments in [6] showed that Incremental Counting behaves well in a
variety of pessimistic inputs, but not having a proof of what a worst-case input looks like,
and being the experiments restricted to a range of values of n far from the expected massive
size of an ADN, a theoretical proof of polynomial time remained an open problem even from
a practical perspective.
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A polynomial Counting algorithm was presented in a manuscript [2], relying on the
availability of an algorithm to compute average with polynomial convergence time. Such
average computation is modeled as a Markov chain with underlying doubly-stochastic matrix,
which requires topology information within two hops (cf. [21]). In the pure model of ADN,
such information is not available, and gathering it may not be possible due to possible
topology changes from round to round.

Recently, we presented the first polynomial-time deterministic Counting algorithm for
ADNs in [16], called Methodical Counting. Unlike previous works, Methodical
Counting does not require any knowledge of network characteristics, such as dynamic
maximum degree or an upper bound on the size. That is, it works in the pure model of
ADN. Like previous works, Methodical Counting requires the presence of a distinguished
node. In the present work, we generalize that assumption assuming the presence of ` ≥ 1
distinguished nodes. As in [16], we leverage previous work on lazy random walks to analyze
MMC, but the alarms to detect wrong computations had been completely re-designed to
deal with multiple distinguished nodes. Moreover, with respect to Methodical Counting,
MMC achieves a Ω((log2 n)/(n`)) speed-up. That is, even for ` = 1, MMC also provides a
speed-up with respect to previous work.

In the same paper [16], we also presented extensions of Methodical Counting to
compute more complex functions, such as the sum of input values held by nodes and other
algebraic and Boolean functions.

With respect to randomized Counting, a linear Counting algorithm for dynamic networks
was presented in [17]. The algorithm requires unique identifiers (i.e., it is not applicable to
ADNs), knowledge of an upper bound on the size of the network, and only guarantees an
approximation to the network size. To the best of our knowledge, no randomized Counting
algorithms for ADNs have been studied before.

Other studies also dealing with the time complexity of information gathering exist [8, 3,
22, 4, 20, 23], but include in their model additional assumptions, such as the network having
the same topology frequently enough or node identifiers.

3 Model, Problem, and Notation

We define the Counting problem as follows. An algorithm A solves the Counting Problem if,
after completing its execution, all network nodes running A have obtained the size of the
network and stop (not necessarily concurrently). Notice that we focus on exact Counting.
That is, all nodes obtain the exact size of the network n, rather than an approximation as
other works. We define now a class of Counting algorithms.

For a given algorithm A, let an execution of A be a sequence of steps of A followed in one
of the possible sequence of choices made by A. Let X (A) be the set of all possible executions
of A. An algorithm A is called eventually stopping if, for all X ∈ X (A), X has finite length.

We will model worst case scenarios assuming the presence of an adversary that controls
the topology of the network. In particular, we consider the following adversaries.

Let the sequence E = 〈E1, E2, . . . 〉 be the sets of communication links of an ADN for
time slots t1, t2, . . . . Consider the execution of an algorithm A. We say that an adversary is
oblivious if it determines the sequence E completely before the execution of A begins. On
the other hand, we say that an adversary is adaptive if it determines the sequence E during
the execution of A, according to the actions of A.

Notice that the distinction between oblivious and adaptive makes sense only for randomized
algorithms, given that for deterministic algorithms the actions of the algorithm are defined
before the execution.
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The following model is customary in the ADNs literature. We consider a network
composed by a set V of n > 1 network nodes with processing and communication capabilities.
It was shown in [18] that Counting cannot be solved in Anonymous Networks without the
availability of at least one distinguished node in the network. Hence, all previous studies of
Counting in ADNs included in the model the presence of such node called the leader. However,
to the best of our knowledge, nothing is known about deterministic Counting in presence of
multiple distinguished nodes. In this work, we generalize the ADN model assuming that the
number of distinguished nodes is ` ≥ 1. Aside from the distinction between distinguished
and not-distinguished, all nodes are indistinguishable within their group; we call them black
nodes and white nodes resp. All black nodes execute exactly the same program, and all
white nodes execute exactly the same program. That is, there are no identifiers that allow to
distinguish one black (resp. white) node from another black (resp. white) node. (Although
we label the nodes throughout the paper for the sake of presentation and analysis.)

Each pair of nodes that are able to communicate define a communication link, and the set
of links is called the topology of the network. The nodes in a communication link are called
neighbors. The event of sending a message to neighbors is called a broadcast or transmission.
Nodes and links are reliable, in the sense that no communication or node failures occur.
Hence, a broadcasted message is received by all neighbors. Moreover, links are symmetric,
that is, if node a is able to send a message to node b, then b is able to send a message to a.

Without loss of generality, we discretize time in rounds. In any given round, a node may
broadcast a message, receive all messages from broadcasting neighbors, and carry out some
computations, in that order. Time needed for computations is assumed negligible and the
size of messages is unbounded.

The set of links among nodes may change from round to round, and nodes have no way
of knowing which were the neighbors they had before. These topology changes are arbitrary,
limited only to maintain the network connected in each round. That is, at any given round
the topology is such that there is a path, i.e., a sequence of links, between each pair of nodes,
but the set of links may change arbitrarily from round to round. This adversarial model of
dynamics is known as 1-interval connectivity in [17].

The following notation will be used. The maximum number of neighbors that any node
may have at any given time, called the dynamic maximum degree, is denoted as ∆ or dmax
indistinctively. The maximum length of a path between any pair of nodes at any given time is
called the dynamic diameter and it is denoted as D. The maximum length of an opportunistic
path between any pair of nodes over many time slots is called the chronopath [14] and it is
denoted as D.

4 Impossibility of Counting

Note that the results of this section hold even for static anonymous networks. The proofs of
the following lemmas are left to the full version of this paper for brevity.

I Lemma 1. For every positive integer ` there are two networks of `+ 4 and 2(`+ 4) nodes,
respectively, such that:
(i) no deterministic algorithm could successfully accomplish Counting on both of them in

finite time, even if some ` nodes are black in the former and 2` nodes are black in the
latter network.

(ii) for any randomized algorithm there is an execution in which no node outputs a correct
count in a finite time, if no node is initially black in any of them or even if some `
nodes are black in the former and 2` nodes are black in the latter network.

ICALP 2019
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The following results follow immediately from the lemma.

I Theorem 2. If the number of black nodes is not given as a parameter, then there is no
deterministic algorithm accomplishing Counting in finite time in ADNs.

I Theorem 3. If the number of black nodes is not given as a parameter or if there is no black
node, then for every randomized algorithm there is an execution in which no node outputs
correct node count in finite time in some fixed anonymous networks.

I Corollary 4. If there is no black node or their number is not explicitly known to the nodes,
there is no eventually stopping randomized algorithm accomplishing Counting in ADNs even
with approximation smaller than

√
2 and even against an oblivious adversary.

Since there is no eventually stopping PTAS algorithm for Counting if the exact number
of black nodes is unknown or (in case of randomized algorithms) there is no black node, we
pursue two directions. One is to design a polynomial-time deterministic algorithm for exact
Counting if the exact number of black nodes is apriori known. The other direction is to design
a randomized algorithm computing the exact number of nodes with an arbitrary probability
1− ε, for any ε ∈ (0, 1), even in scenario when no node is black prior the computation. The
latter algorithm is polynomial in the sense of expected number of rounds and also holds with
high probability (i.e., probability polynomially close to 1 in terms of n).

Remark: the inapproximability result could be extended from
√

2 to any constant by
considering networks with c · (`+ 4) nodes, for an arbitrary constant c instead of c = 2 used
in the above proofs for the ease of arguments.

5 Methodical multi-Counting

In this section we present MMC. For brevity, we give the intuition of the algorithm, leaving
the pseudocode to the full version of this paper.

Initially, each of the ` black nodes is assigned a potential of 0 and each of the n− ` white
nodes is assigned a potential of `. Then, the algorithm is composed by epochs, each divided
into phases composed by rounds of communication. Epoch k corresponds to a size estimate
k that is iteratively updated from epoch to epoch until the correct value n is found. Each
epoch is divided into p phases. The purpose of each phase is for the black nodes to collect as
much potential as possible from white nodes in a mass-distribution fashion as follows.

Each phase is composed by r rounds of communication. In each round, each node
broadcasts its potential and receives the potential of all its neighbors. Each node keeps
only a fraction 1/d of the potentials received. The parameters p, r, and d are functions
of k. The specific functions needed to guarantee correctness and saught efficiency are
defined in Theorem 14. This varying way of distributing potential is different from previous
approaches using mass distribution. After communication, each node updates its own
potential accordingly. That is, it adds a fraction 1/d of the potentials received, and subtracts
a fraction 1/d of the potential broadcasted times the number of potentials received. Then,
a new round starts. At the end of each phase, each black node “consumes” its potential.
That is, it increases an internal accumulator ρ with its current potential, which is zeroed for
starting the next phase.

The correctness (or incorrectness) of the estimate is detected by various alarms as follows.
A node stops the update of potential described, raises its potential to `, and broadcasts
an alarm status “low” in each round until the end of the epoch if any of the following
happens: 1) at the end of the first phase its potential is above some threshold τ as defined
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in Theorem 14, 2) at any round it receives more than d− 1 messages, or 3) at any round
receives an alarm status “low” from one of its neighbors. Case 1) allows the black nodes to
detect that the estimate is wrong when k1+ε < n for some ε > 0 (Lemmas 10 and 12), case 2)
allows the black nodes to detect that d is too small and hence the estimate is low, and case
3) allows dissemination of these alarms. (In “low” status the potential is set to ` to facilitate
the analysis, but it is not strictly needed by the algorithm.)

At the end of each epoch, each black node checks the value of ρ and updates its status
accordingly. If it is within some range, call it Γ, the current estimate is correct and each
black node changes its status to “done”. Otherwise, the estimate is incorrect. If ρ is below
(resp. above) Γ each black node changes its status to “high” (resp. “low”) indicating that
the estimate is too big (resp. “low”). The case when ρ is below (resp. above) Γ allows to
detect when k > n (resp. k < n ≤ k1+ε) (c.f. Lemmas 7 and 13 respectively.).

After black nodes update their status, the network is flooded with it for k rounds. If k ≥ n,
those rounds are enough for all white nodes to receive the “done” or “high” status. If they
receive “done”, after completing the k rounds all nodes stop. Otherwise, after completing
the k rounds all nodes update k according to status to start a new epoch. If k has not been
detected to be greater than n since the computation started, it is doubled for the next epoch,
otherwise it is updated as in binary search.

5.1 Analysis of Methodical multi-Counting
In this section we analyze MMC. We use standard notations I for the unit vector, and Lp for
the norm of vector x = (x1, x2, . . . , xn) as ||x||p = (

∑n
i=1 |xi|p)

1/p, for any p ≥ 1. Only for
the analysis, nodes are labeled as 0, 1, 2, . . . , n− 1. The potential of a node i at the beginning
of round s of phase t is denoted as Φs,t[i], the potential of all nodes is denoted as a vector
Φs,t, and the aggregated potential is then ||Φs,t||1. The subindices s, t, or both are omitted
sometimes for clarity. We will refer to the potential right after the last round of a phase as
Φr+1. Such round does not exist in the algorithm, but we use this notation to distinguish
between the potential right before black nodes consume their own potential and the potential
at the beginning of the first round of the next phase.

First, we provide a broad description of our analysis of MMC. Consider the vector of
potentials Φi held by nodes at the beginning of any given phase i. The way that potentials
are updated in each round is equivalent to the progression of a d-lazy random walk on the
evolving graph underlying the network topology [1], where the initial vector of potentials is
equivalent to an initial distribution Πi on the overall potential ||Φi||1 and the probability of
choosing a specific neighbor is 1/d.

Note that MMC is not a simple “derandomization” of the lazy random walk on evolving
graphs. First, in the Anonymous Dynamic Network model neighbors cannot be distinguished,
and even their number is unknown at transmission time (only at receiving time the node
learns the number of its neighbors). Second, due to unknown network parameters, it may
happen in an execution of MMC that the total potential received could be bigger than 1.
Third, our algorithm does not know a priori when to terminate and provide a result even
with some reasonable accuracy, as the formulas on mixing and cover time of lazy random
walks depend on the (a priori unknown) number of nodes n. Nevertheless, we can still use
some results obtained in the context of analogous lazy random walks in order to prove useful
properties of parts of MMC, namely, some parts in which parameters are temporarily fixed
and the number of received messages does not exceed parameter d.

ICALP 2019
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It was shown in [1] that random walks on d-regular explorable evolving graphs have a
uniform stationary distribution, and bounds on the mixing and cover time were proved as
well. Moreover, it was observed that those properties hold even if the graph is not regular
and d is only an upper bound on the degree.2

Thus, for the cases where d is an upper bound on the number of neighboring nodes, we
analyze the evolution of potentials within each phase leveraging previous work on random
walks on evolving graphs. Specifically, we use the following result which is an extension of
Corollary 14 in [1].

I Theorem 5 (Corollary 14 in [1]). After t rounds of a dmax-lazy random walk on an evolving
graph with n nodes, dynamic diameter D, upper bound on maximum degree dmax, and initial
distribution Π0, the following holds.∣∣∣∣∣∣∣∣Πt −

I
n

∣∣∣∣∣∣∣∣2
2
≤
(

1− 1
dmaxDn

)t ∣∣∣∣∣∣∣∣Π0 −
I
n

∣∣∣∣∣∣∣∣2
2

In between phases, black nodes “consume” their potential, effectively changing the
distribution at that point. Then, a new phase starts.

In MMC, given that d is a function of the estimate k, if the estimate is low, there may
be inputs for which d is not an upper bound on the number of neighbors. We show in our
analysis that in those cases the black nodes detect the error and after some time all nodes
increase the estimate.

Structure of the proof
The proof of correctness is structured in the following cases, depending on the relation
between the size estimate k and n. For some γ and ε, after completing an epoch with size
estimate k, we prove that ρ, the potential accumulated by a black node, must be within the
following ranges.

k = n ⇒ (k − `)
(

1− 1
kγ

)
≤ ρ ≤ (k − `)

(
1 + 1

kγ

)
(Lemma 6)

k > n ⇒ ρ < (k − `)
(

1− 1
kγ

)
(Lemma 13)

k < n ≤ k1+ε ⇒ ρ > (k − `)
(

1 + 1
kγ

)
(Lemma 7)

For the remaining case when k1+ε < n, we prove first the following relation between Φr+1,1,
the potential of any node at the end of the first phase, and a threshold τ .

k1+ε < n ⇒ Φr+1,1 > τ for at least one node (Lemma 10)
k ≥ n ⇒ Φr+1,1 ≤ τ for all nodes (Lemma 11)

Thus, if k1+ε < n, and only if k < n, there is at least one node with potential above
τ , which moves to a status “low” and spreads this alarm. We complete the proof with the
following.

k1+ε < n ⇒ all nodes receive an alarm “low” during phase 2 (Lemma 12)

2 Their analysis relies on Lemma 12, which bounds the eigenvalues of the transition matrix as long as it
is stochastic, connected, symmetric, and non-zero entries lower bounded by 1/d. Those conditions hold
for all the transition matrices, even if the evolving graph is not regular.
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Analysis
We start the analysis considering the case k = n in the following lemma. The proofs of the
lemmata in this section are left to the full version of this paper for brevity.

I Lemma 6. If d ≥ k = n, for an ADN with ` < k black nodes, for any γ > 0
there is a α ≥ max{2, 1 + γ + logk 3} such that, after running the MMC protocol for
p ≥ (2γ ln k)/

(
`
( 1
k + 1

kα

))
phases, each of r ≥ 2αdk2 ln k rounds, the potential ρ consumed

by each of the ` black nodes is such that

(k − `)
(

1− 1
kγ

)
≤ ρ ≤ (k − `)

(
1 + 1

kγ

)
.

The previous lemma shows that, after running MMC enough time, if for some black node
it is ρ > (k−`)

(
1 + 1

kγ

)
or ρ < (k−`)

(
1− 1

kγ

)
, for some γ > 0, we know that the estimate k

is wrong. However, the complementary case, that is, (k − `)
(
1− 1

kγ

)
≤ ρ ≤ (k − `)

(
1 + 1

kγ

)
,

may occur even if the estimate is k 6= n and hence the error has to be detected by other
means. To prove correctness in that case we further separate the range of k in three cases.
The first one, when k < n ≤ k1+ε, for some ε > 0, in the following lemma, which is based on
upper bounding the potential left in the system after running MMC long enough. To ensure
that d ≥ ∆ + 1, we restrict d ≥ k1+ε.

I Lemma 7. Under the following conditions 1 < k < n ≤ k1+ε ≤ d, ε > 0,
after running the MMC protocol for p ≥ 2δ(ln k)/(`

(
1/n+ 1/kβ

)
) phases, each of r ≥

2βdk2+2ε ln k rounds, under the following conditions β ≥ logk(n(2kδ + 1)), β > 2, δ >
logk(nkγ/(nkγ − (n− 1)(kγ + 1))), and γ > logk(n− 1). Then, the potential ρ consumed by
any black node is ρ > (k − `) (1 + 1/kγ).

We now consider the case k1+ε < n. First, we prove the following two claims that establish
properties of the potential during the execution of MMC. (Recall that we use round r + 1 to
refer to potentials at the end of the phase right before black nodes consume their potential.)

B Claim 8. Given an ADN of n nodes running MMC with parameter d, for any round t of
the first phase, such that 1 ≤ t ≤ r + 1, if d was larger than the number of neighbors of each
node x for every round t′ < t, then ||Φt||1 = (n− `)`.

B Claim 9. Given an ADN of n nodes running MMC, for any round t of any phase and any
node x, it is 0 ≤ Φt[x] ≤ `.

To show that if k1+ε < n MMC detects that the estimate is low, we focus on the first
phase. We define a threshold τ and a number of rounds such that, after the first phase is
completed, some nodes will have potential above τ and this can happen only if the estimate
is low. Then we show that black nodes receive an alarm indicating that.

First, we show an upper bound of at most k1+ε nodes with potential at most τ at the
end of the first phase (Lemma 10). Thus, given that k1+ε < n, we know that there is at
least one node with potential above τ at the end of the first phase. Second, we show that if
the estimate is not low, that is k ≥ n, then all nodes have potential at most τ at the end of
the first phase (Lemma 11). That is, a potential above τ can only happen when indeed the
estimate is low. Finally, we show that if k1+ε < n an alarm “low” initiated by nodes with
potential above τ must be received after k1+ε further rounds of communication (Lemma 12).

I Lemma 10. For ε > 0, after running the first phase of the MMC protocol, there are at
most k1+ε nodes that have potential at most τ = `(1− `/k1+ε).
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I Lemma 11. If k ≥ n, r ≥ (4 + 2ε − 2 ln(kε − 1)/ ln k)dk2 ln k, and ε > 0, given that
k > ` ≥ 1, at the end of the first phase no individual node should have potential larger than
τ = `(1− `/k1+ε).

The previous lemma shows that, if the estimate is “not-low” (k ≥ n), at the end of the
first phase all nodes must have “low” potential (Φ1,r+1 ≤ τ). (Notice the inverse relation
between estimate and potential.) In the following lemma we show that if k1+ε < n (i.e. low
estimate) there are some nodes with Φ1,r+1 > τ (i.e. high potential), and that all the other
nodes will know this within the following phase.

I Lemma 12. If k1+ε < n, 0 < ε ≤ 1 + logk 4d, and r ≥ (4 + 2ε− 2 ln(kε − 1)/ ln k)dk2 ln k,
within the following k1+ε rounds after the first phase of the MMC protocol, all black nodes
have received an alarm status “low”.

Finally, in the following lemma we show that if k > n, black nodes detect that the
potential consumed is too low for the estimate k to be correct.

I Lemma 13. Under the following conditions d > k > n > ` > 0, for β ≥ logk(n(2kδ − 1)),
δ > logk(kγ(n − `)/(kγ − (n − `) − 1)), and γ > logk(n − ` + 1), after running the MMC
protocol for p phases and r rounds such that p ≤ 2δ ln k(1− `

( 1
n −

1
kβ

)
)/(`

( 1
n −

1
kβ

)
), and

r ≥ 2βdk2 ln k, the potential ρ consumed by any black node is ρ < (k − `)
(
1− 1

kγ

)
.

Based on the above lemmata, we establish the correctness and running time of MMC:

I Theorem 14. Given an ADN with n nodes, which include ` black nodes such that n > ` ≥ 1
black nodes, after running MMC for each estimate k = `+1, `+2, `+3, . . . , n with parameters:
d = k1+ε, p =

⌈
2 ln k
` max

{
γ

1/k+1/kα ,
δ

1/d+1/kβ

}⌉
,

r =
⌈
2dk2(ln k) max

{
α, βk2ε, 2 + ε− ln(kε−1)

ln k

}⌉
, and τ = `

(
1− `

k1+ε

)
, under the following

conditions: ε > 0, α ≥ 1 +γ+ logk 3, β ≥ logk(d(2kδ + 1)), γ > logk(d− 1), δ > logk dkγ

kγ +1−d .

Then, all nodes stop after at most
∑
k∈E∪B(pr + d) rounds of communication and output n,

for E = {2i(`+ 1) : i = 0, 1, . . . , logdn/(`+ 1)e}, and B = {(2logdn/(`+1)e − 2i)(`+ 1) : i =
0, 1, . . . , logdn/(`+ 1)e − 2}.

I Corollary 15. The time complexity of MMC on an ADN with ` black nodes and n − `
white nodes is O

(
n4+ε

` log3 n
)
, for any ε > 0.

6 Leader-less Methodical Counting

The main idea of LLMC (cf. Algorithm 1) is to consider consecutive powers of 2 as values of
K, and for each such K to select black nodes locally with probability corresponding to the
inverse of K and run MMC with ` = 1. If K ≥ n and there is indeed one black node, MMC
guarantees that all nodes find the proper count n of nodes and stop. There are however two
problems: how to recognize if K ≥ n and what to do when there is no black node or at lest
two black nodes. Algorithm LLMC overcomes these two issues implicitly, by combining the
executions of MMC for consecutive powers of 2 with two other techniques:

introducing parallel threads and carefully counting the number of threads with no black
nodes recorded (locally) and requiring that their ratio is bigger than half (this is to
recognize whether K is close to n with sufficiently high probability),
making use of the fact that having more than one black node in the execution of MMC for
` = 1 (as a subroutine of LLMC) cannot return an estimate bigger than as if it was run
with one black node; therefore, taking the maximum of returned estimates over threads
could mitigate the potential problem of more than one black node.
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The main control parameter used in LLMC is K, which is an upper bound for estimates
considered in one execution of the While loop (which we call epoch K). We start from
sufficiently large K, to assure that starting from this value of K the chance of getting
incorrect output or behavior of nodes (e.g., stopping at different times) is smaller than ε/2
Within one While loop, we initiate f(K) parallel threads and for each of them we select
black nodes for the whole thread – trying to make sure that the chance of getting one black
node is sufficiently large (we need it to argue about correct stopping), especially for K ≥ n
(recall that we could not recognize for sure whether K ≥ n or not). Then in each thread
independently we run MMC for ` = 1 as a subroutine (hoping that we selected exactly one
black node in the beginning of the loop), which checks all possible values of k from 1 to K to
find a good estimate of n (i.e., we have to trim the execution of MMC to estimates k ≤ K).

This approach does not work for K < n, as then the probability of getting more than
one black node could be bigger than the one for one black node; however, we could eliminate
such cases by monitoring the number of threads with no black node, which in case of K < n

should be compared with a large threshold (intuitively, we want LLMC to reach this threshold
with high probability when K will be close to n). Note that a no-black-node thread will not
output any estimate. If a thread identifies a good estimate, it puts it to the set Count and
we do not enter the next iteration of While loop but stop, returning the maximum value
in Count - this is to make preference to threads with one black node over those with more
than one black node (we will argue that they could return values but not bigger than ones
by threads with one black node).

Algorithm 1 LLMC algorithm. ε ∈ (0, 1).
1: procedure
2: K ← dd12/(ε)ee // ddxee: the smallest power of 2 bigger than x

3: Count← ∅ // set of potentially “good” estimates computed in threads
4: EmptyThreads← 0 // number of threads with no black node detected
5: while Count = ∅ or EmptyThreads ≤ f(K)/2 do
6: Count← ∅, EmptyThreads← 0
7: K ← 2K
8: Initiate f(K) = 64 log(K/ε)

log(e/(e−2)) parallel threads
// parallel computation and messages sharing same resources/medium

9: for each thread do
10: for each node do
11: Select to be a black node with probability 1/g(K), where g(K) = K/2
12: end for
13: k ←MMC(K, 1) // refer to Algorithm 2
14: if k > 0 then
15: Count← Count ∪ {k}
16: end if
17: if no black node detected then
18: Increase EmptyThreads by 1
19: end if
20: end for
21: end while
22: return max(Count) // Output the maximum number in Count as the size n.
23: end procedure
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Algorithm 2 Subroutine of LLMC.

Input: number of black nodes `, max size estimate K.
1: procedure MMC (K,`)
2: Run MMC modified as follows:
3: – Stop iterations when size estimate k > K

4: – If estimate k < K, remain idle until end of phase K // for synchronization
5: – Include a Boolean pj in each node j as follows:
6: – Initially:
7: if node j is black then pj ← true else pj ← false

8: – In each iteration:
9: Broadcast and Receive messages including pj

10: if pi = true received from some neighbor i then pj ← true

11: Upon completion:
12: if status = done return k else return 0
13: end procedure

6.1 Analysis of Leader-less Methodical Counting
We may assume that n > 1, otherwise the algorithm would easily recognize n = 1 by no
received communication. Throughout the whole analysis we consider an adaptive adversary,
as we allow network changes to be done online when viewing the whole history of the
computation up to the current round.

We call an execution of the While loop for a fixed parameter K epoch K. Recall that K
is a power of 2 bigger than 12/(ε); by ddxee we denote the smallest power of 2 bigger than x.

Observe from the structure of the algorithm that nodes could only stop at the end of
an epoch. In the analysis below, we will often prove some properties under condition that
the stopping times are synchronized, i.e., either all nodes stop or none, and remove this
assumption at the end of the analysis. That is, we will show that in fact all nodes synchronize
their stopping time and output the correct value of n with desired probability at least 1− ε.
We also conjecture that all arbitrary constants in the algorithm, i.e., in the definition of
starting value of K, functions f(K) and g(K), could be substantially lowered, as we set them
high to avoid too many cases in the analysis (so making it focused on main arguments).

The proofs of the following lemmata are left to the full version of this paper for brevity.

I Lemma 16. The probability that for some epoch K, where K < n, the value of
EmptyThreads is bigger than f(K)/2 at any node is smaller than 1− ε/2. Consequently,
with probability at least 1− ε/2: no node stops during epochs K < n.

Recall from the description of the algorithm that nodes could only stop at the end of an
epoch. We prove the following two structural properties of LLMC.

I Proposition 17. Consider an epoch K ≥ n and assume that all nodes are active in the
beginning of this epoch. If some nodes stop while some other do not at the end of epoch K,
then there are more than f(K)/2 threads with no black node selected and no thread with
exactly one black node.

I Proposition 18. Consider an epoch K ≥ n and assume that all nodes are active in the
beginning of this epoch. If all nodes stop but some of them output incorrect value, then there
are more than f(K)/2 threads with no black node and no thread with exactly one black node.
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We use these structural properties to estimate the probabilities of the two following events.

I Lemma 19. Consider an epoch K ≥ n and assume that all nodes are active in the beginning
of this epoch. The probability of event: in epoch K there will be some nodes that stop and
some other that do not, or all nodes stop with incorrect output, is at most ε/K.

I Lemma 20. The probability of some nodes stopping at different times or outputting
incorrect value is at most ε/2.

We now analyze good events of correct stopping by all nodes, moreover, simultaneously.
We start from stating a structural property and follow with estimating of the probability of
correct simultaneous stopping.

I Proposition 21. For any epoch K ≥ n, if all nodes are active in the beginning, the number
of threads with no black node is bigger than f(K)/2 and there is at least one thread with one
black node, then all threads with one black node store the same value in set Count and it is
the biggest value stored in Count in this epoch.

I Lemma 22. Consider an epoch K ≥ n and assume that all nodes are active in the beginning
of this epoch. The probability of event: in epoch K all nodes stop with correct value, is at
least 1− exp(−f(K)/64)− exp

(
−nf(K)
g(K)e

)
.

I Corollary 23. Consider epoch K = dd8nee and assume that all nodes are active in the
beginning of this epoch. The probability of event: in epoch K all nodes stop with correct value,
is at least 1− ε/n.

I Theorem 24. For any given ε > 0, LLMC simultaneously stops at all nodes returning
correct count n of nodes in O(n4 log4 n) rounds, with probability at least 1 − ε, even when
running against an adaptive adversary.

7 Conclusions

This paper expanded the knowledge about feasibility of polynomial computations in an-
onymous dynamic environments/networks. In particular, counting-type computations can
be done deterministically if symmetry is broken by existing a partition of nodes where
the size of one subset is known. It is also feasible without any distinction between the
nodes with an arbitrary probability. Natural open directions include a study of the message
complexity of MMC and LLMC, randomized approximation solutions and extensions to
other related models and problems, as well as deriving tighter upper and lower bounds in
the considered setting.
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Abstract
We study a process of averaging in a distributed system with noisy communication. Each of the
agents in the system starts with some value and the goal of each agent is to compute the average
of all the initial values. In each round, one pair of agents is drawn uniformly at random from the
whole population, communicates with each other and each of these two agents updates their local
value based on their own value and the received message. The communication is noisy and whenever
an agent sends any value v, the receiving agent receives v +N , where N is a zero-mean Gaussian
random variable. The two quality measures of interest are (i) the total sum of squares TSS(t),
which measures the sum of square distances from the average load to the initial average and (ii)
φ̄(t), which measures the sum of square distances from the average load to the running average
(average at time t).

It is known that the simple averaging protocol – in which an agent sends its current value and
sets its new value to the average of the received value and its current value – converges eventually to
a state where φ̄(t) is small. It has been observed that TSS(t), due to the noise, eventually diverges
and previous research – mostly in control theory – has focused on showing eventual convergence
w.r.t. the running average. We obtain the first probabilistic bounds on the convergence time of
φ̄(t) and precise bounds on the drift of TSS(t) that show that although TSS(t) eventually diverges,
for a wide and interesting range of parameters, TSS(t) stays small for a number of rounds that is
polynomial in the number of agents. Our results extend to the synchronous setting and settings
where the agents are restricted to discrete values and perform rounding.
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1 Introduction

We consider the problem of distributed averaging by a group of agents (e.g., sensors),
initialized with values that represent, for example, different temperature measurements. The
agents’ goal is to compute the average of all the initial values using the following simple
dynamic: In each discrete round, two agents are drawn uniformly at random from the whole
population, communicate their values to each other and set their new values to the average
of their old value and the received value. Converging to the average plays a key role in
many applications, e.g., for sensor networks [56, 50], social insects [10], and robotics [20, 30].
In all of these applications, the agents (sensors, ants, and robots) are very simple and are
therefore limited in both memory and communication. Moreover, communication is often
erroneouees.1 This motivates the study of the aforementioned simple averaging dynamic
in a setting where the agents only remember one value, do not use any additional memory,
and the communication is subject to noise. We model the noise in the communication as
follows: Whenever an agent sends any value v, the receiving agent receives v + N , where
random variable N is distributed according to some zero-mean probability distribution ℵ,
e.g., a normal distribution. The agents update their values as follows: whenever two agents
communicate, each agent sets its new value to the average of their old value and the received
value; note that – due to the noise – the two agents might have distinct new values.

The values of the n nodes in step t of the process are denoted by X(t)
1 , X

(t)
2 , . . . , X

(t)
n .

We consider the following models: (i) the sequential setting where one pair of agents is
chosen uniformly at random and (ii) the synchronous setting where each agent is matched
to exactly one other agent chosen uniformly at random. The two quality measures of the
convergence used in this work are (i) the total sum of squares TSS(t) =

∑
i(X

(t)
i −∅(0))2,

where ∅(0) =
∑
iX

(0)
i /n is the initial average and (ii) the sum of squared distances to the

running average φ̄(t) =
∑
i(X

(t)
i −∅(t))2, where ∅(t) =

∑
iX

(t)
i /n is the running average.

Our contributions can be informally summarized as follows:

(i) We give, under mild assumptions on the noise, the first bounds on the convergence
time of the running average φ̄(t) in the noisy gossip-based communication setting. The
bounds we obtain are – up to a constant factor – tight. In particular, the potential
converges to a value that is linear in n and the second moment of the noise E

[
N2 ];

which is tight. So far it was only known that the process eventually converges to a
state where φ̄(t) is small (e.g., [54]), but precise bounds were not known. (Theorem 1)

(ii) We show that, in contrast to the current belief, one can hope to converge to the initial
average in addition to convergence to the running average as long as the number of
rounds are bounded: It was known that TSS(t), due to the noise, eventually diverges
(the running average diverges from the initial average) and for this reason related
research – mostly in control theory – has focused on showing eventual convergence w.r.t.
φ̄(t); leaving TSS(t) aside. Since we give precise bounds on the convergence time of
the running average, we can show the following. Under mild assumptions on the noise,
TSS(t) converges to almost the same value as φ̄(t) as long as the number of time steps
t is bounded by O(n2), where n is the number of nodes. (Corollary 2)

(iii) We pioneer in the discrete setting in which the agents can store only integer values
and the noise is also an integer. In this setting the agents in our algorithm perform
randomized rounding. We show that this only causes a negligible difference from the
continuous case. (Corollary 3)

1 Consult Subsection 1.1 for a more detailed review of these applications including the limitation of agents
and further motivation. Subsection 1.1 also contains related work on the averaging protocol.
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(iv) We study both the sequential and the synchronous setting and show that there is no
significant difference (up to a scaling of time) between the models. (Corollary 4)

(v) We perform simulations in the setting where nodes are limited in storage, i.e., they
can only store values from a bounded range. This leads to a much faster (by order
of magnitude) divergence between the running average and the initial average. Our
simulations also seem to indicate strong bounds on the distribution of distances to the
running average in our main model (unbounded values). (Section 5)

The convergence time of the averaging processes in the gossip-based communication
setting without noise has been studied before (e.g., [37]). However, to the best of our
knowledge, no bounds on the convergence time are known in the gossip-based communication
setting with noise. We continue with a detailed motivation for studying noise in the simple
averaging dynamic and related work.

1.1 Motivation and Related Work
Converging to the average plays a key role in many applications in which agents have limited
computational and communication power, e.g.,
(i) sensor networks [56, 50]: here there is a wide range of application including terrain

monitor applications [51], computing an average temperature, PIR sensors measuring
the infrared light radiation emitted from objects, and many more applications. In such
scenarios links are often faded [46, 14],

(ii) social insects: for ants, values could represent the individuals’ different assessments of
nest qualities when house hunting [10] or the deficit of workers at a given task [41], and

(iii) robotics [20, 30] and in particular memory-limited robots, e.g., Kilobots exploring the
percentage of white tiles in an area [21], or microbots measuring the concentration of
chemicals.

In all of these applications the agents (representing sensors, ants or robots) are very simple
and severely limited in both memory and communication. Moreover, the communication is
often not only limited but also erroneous (e.g., consider wireless communication with obstacles
between robots), or received messages are subject to interpretation (e.g., when insects com-
municate through gestures [39]). Motivated by this unreliable communication in applications
we study the simple averaging dynamic where the communication is subject to noise.

We continue with related work. The problem of distributed values converging to the
average (often without noise) has been studied in various areas reaching back to early versions
studied in statistics [18, 26, 31]. However, to the best of our knowledge, none of the studied
models match our model. We review the related work by areas:
(i) average consensus and its applications,
(ii) gossip-based communication models,
(iii) consensus protocols in population protocols,
(iv) biological distributed algorithms,
(v) noise and failures in sensor networks.

Average consensus and its applications. Consensus has been studied intensively in various
settings in general network topologies, much of it under the name of average consensus
[55, 53]. Most of this work is orthogonal to our work: First, due to the general network
topology and the fact that, in each step of the studied algorithms, the agents update their
values with a weighted average of all of their neighbors’ values whereas in our averaging
dynamic, an agent can only access a single other value per interaction. Second, while the
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potential functions in these works and the noise, if any, are usually identically or similarly
defined as in our work the main goal of these papers is – just as in the classic works – to
study under which circumstances the processes eventually converge to a state with a small
potential function [55], whereas we are interested in the number of interactions until our
process obtains a small potential. Recent papers [45, 11, 40, 15] consider the convergence
rate of the weighted averaging process, but only in the noiseless setting. Average consensus
has also been studied in networks with time-varying topologies [44, 49]. Variants with noisy
communication were studied [55, 36], but they only consider additive noise and assume it to
be zero-mean with unit variance (as mentioned before, only convergence in the limit is shown).
The noisy version of the problem also received ample attention in control theory [52, 48, 47].
Already in the early works on average consensus immediate applications of converging to the
average were discovered and intensively studied, e.g., applications to load balancing between
parallel machines [9, 17] or to coordinate distributed mobile agents [9, 34, 23]. For a more
detailed overview on average linear consensus consult the survey [27].

Gossip-based communication models. Much closer to our work is the study of aggregating
information in gossip-based model. In this model, each node can contact one of its neighbors
in the network in each round and exchange information with it. Even though a node can be
contacted by many neighbors in a single round, this model, if applied to the complete graph,
is very similar to our synchronous model. On the complete graph [37] shows that O(n · lnn)
interactions are enough to approximate the average well with high probability. On the one
hand they consider more general graphs (in some sense we consider the complete graph); on
the other hand they do not consider noise, which simplifies their analysis of the convergence
time significantly.

Consensus protocols in population protocols, biological distributed algorithms. Motiv-
ated by biological applications, population protocols have also been studied in the noisy
setting in the context of biological distributed algorithms. The authors of [24] study rumor
spreading and consensus in extremely faulty networks where a bit in a message can be flipped
with probability 1/2 − ε. This was later generalized in [25] to plurality consensus. The
authors of [8] study the differences between pull and push rumor spreading in the noisy
setting. Reaching consensus to an opinion in population protocols in the noiseless setting
has received much attention (see e.g., [4, 22, 1, 2, 5, 6, 19, 7, 38, 29, 28, 35]).

Noise and failures in sensor networks. The problem of converging to the average (and
similar problems) have also been studied in (noisy) sensor networks [56, 50] where nodes
again can interact with all their neighbors. In these networks another type of unreliable
communication, i.e., packages might be dropped, has received ample attention, e.g., [12]
studies the broadcast problem and [13] develops a framework to transform certain algorithms
for failure free networks to also work in faulty sensor networks.

An interesting type of failure has been studied in [32]. There failures do not happen
during the communication but the algorithm itself might be faulty, i.e., a state machine run
at an agent might switch to a wrong state.

1.2 Formal Results
We now formally state our main theorems. For the ease of presentation, in the discussion
we assume that noise is normally distributed with unit variance, N ∼ N (0, 1), but our
results hold for general variance σ2. Let φ0 = φ̄(X(0)) be the initial potential. Our first
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theorem shows that the agents converge to a small value of φ̄(t) = O(n) after parallel
time2 that is logarithmic in φ0/n. In particular, if we use b to denote the initial imbalance
(b = maxi,j{x(0)

i − x
(0)
j }), then it takes O(ln b) parallel steps for the potential to become

φ̄(t) = O(n). Note that φ̄(t) = O(n) means that the “average” difference between the values
of any two agents is constant and we show that the constant hidden in the O-notation is
actually very small. It is worth mentioning that this is tight in two senses: (i) In expectancy
we have φ̄(t) = Ω(n) for any fixed time step t ≥ n, (i.e., after one parallel time step).
Even in the case where all nodes initially have the same value, our results show that the
potential increases after n interactions in expectation by Ω(nE

[
N2 ]) = Ω(n). (ii) At least

Ω(ln b) parallel time steps are required3 to decrease the potential to O(n), since the potential
only drops in expectation by a constant factor in each parallel step. The formal statement
is as follows.

I Theorem 1 (Convergence to Running Avg.). Consider any noise-distribution ℵ with (at
least) exponential-decay4. Fix any δ ∈ R. Let n = n(δ) be large enough. The following hold:

(i) for any t = Ω
(
n ln

(
φ0
δσ2n

))
with probability at least 1− δ we have

φ̄(X(t)) = O(σ2n ln(1/δ)) ,
(ii) for any t ≥ n (parallel time) with constant probability we have φ̄(X(t)) = Ω(σ2n) and
(iii) even without noise, for any t = o

(
n ln

(
φ0
σ2n

))
we have E

[
φ̄(X(t))

]
= ω(σ2n) .

While the above theorem shows a quick convergence to the running average, this does
not imply convergence to the initial average. In fact, as time progresses the distance to the
initial average (TSS(X(t))) is likely to increase. Nonetheless, in the case of the Gaussian
white noise model we can bound the drift of the running average from the initial average
in a time window of O(n2) steps (see Lemma 17). Theorem 1 roughly says that after at
least t = Ω(n logn) steps the distance to the running average is small if we start with a
potential that is polynomial in n. Thus, as long as t = Ω(n logn) and t = O(n2) we obtain
TSS(X(t)) = O (n). After the O(n2) step time window the potential starts to increase again,
which, is unavoidable, due to the noise causing drift of the running average; in Gaussian
white noise model, the running average after t steps diverges with constant probability from
the initial average by

√
t
n (Lemma 17). This in turn implies that TSS(X(t)) ≥ t/n.

I Corollary 2 ((Bounded) Divergence from Initial Avg.). In the case of Gaussian white noise
model, for any δ ∈ R and large enough n = n(δ) and all t = Ω

(
n ln

(
φ̄(X(0))
δσ2n

))
we have

(i) “non-divergence for O(n2) steps”, i.e., TSS(X(t)) = O
((

t
n + n

)
σ2 ln(1/δ)

)
with prob-

ability at least 1− δ and
(ii) “divergence for ω(n2) steps”, i.e., TSS(X(t)) = Ω

((
t
n + n

)
σ2) with constant probabil-

ity.
If one can bound the divergence between the running average and the initial average for a
general noise-distribution ℵ with (at least) exponential-decay5 the following remark is useful
to obtain a similar bound for the TSS(X(t)) as in Corollary 2. Recall that ∅(t) =

∑
iX

(t)
i /n

and in particular, ∅(0) denotes the initial average.

2 Recall that in parallel time we scale time by a factor of n for a fair comparison with the synchronous
time model.

3 For the case where constant fraction of the values are at distance b.
4 In fact we only require the function to be smooth, which we define later. This class is much broader

and contains most of the famous distributions including the normal distribution, geometric distribution
and the Poisson distribution.

5 Again, we only require the function to be smooth, which we define in Section 3.

ICALP 2019



148:6 Noidy Conmunixatipn: On the Convergence of the Averaging Population Protocol

I Remark 2. Fix any δ ∈ R. Let n = n(δ) be large enough. For any fixed t = Ω
(
n ln

(
φ0
δσ2n

))
with probability at least 1− δ we have TSS(X(t)) = Θ

(
n
(
∅(t) −∅(0))2 + σ2n ln(1/δ)

)
.

Remark 2 follows by rewriting TSS(t) = φ̄(X(t)) + n ·
(
∅(0) −∅(t))2 (cf. Fact 9) and

plugging in the first part of Theorem 1. Corollary 2 then follows by plugging in the bounded
deviation of the running average from the initial average for the Gaussian white noise model
(cf. Lemma 17).

The Influence of Rounding. Agents with limited computational power might not be able
to store real values. Motivated by this we also consider the setting where agents can only
store integers. In particular, we consider the case that the averaging protocol is augmented
with the following rounding procedure: Assume that the noise N ∼ ℵ takes only integer
variables. After a node i receives the value from node j, the node averages it as before and
then rounds up or down with equal probability. In the full version we show how to relate the
setting of rounding to the original setting allowing us to derive the following corollary.

I Corollary 3. The bounds of Theorem 1 and Corollary 2 hold even if rounding is used.

The Synchronous Model. In the full version, we show how our results extend to the
synchronous setting. It turns out that the results are the same up to a rescaling of time.

I Corollary 4 (Synchronous Setting). The bounds of Theorem 1 and Corollary 2 hold even
in the synchronous setting, where time is rescaled by a factor of 2/n.

Experimental Results. In Section 5, we simulate the averaging dynamic in various settings.
In the first setting, we consider the distribution of the distances between agents’ values and
the running average. Our simulations show that these distances seem to follow an exponential
law, i.e., the concentration is even stronger than what Theorem 1 implies.

Due to the limited memory of agents it would be desirable to obtain similar results as
in Theorem 1 for the averaging dynamic in the setting where agents can only store values
from a bounded range. However, our simulations in Section 5 show that this setting leads
to a much faster (by order of magnitude) divergence between the running average and the
initial average.

1.3 Technical Contributions
While it is not hard to show that in expectation the potentials TSS(t) and φ̄(t) decrease in one
step as long as their value is large, it is surprisingly challenging to derive probabilistic bounds
on either potential at an arbitrary point in time, i.e., bounds of the type P

[
φ̄(t) ≥ b

]
≤ p(b).

Two of the reasons are as follows. (i) The potential decreases (expectedly) only conditioned
on the fact that it is large enough. In fact, when the potential is small, then due to the noise
it will increase in expectation. (ii) Since we study general distributions and in particular
the normal distribution, the noise in a given round can be arbitrarily large leading to an
arbitrarily large increase in φ̄(t); if the protocol runs long enough (possibly exponentially long
in n) we, indeed, will have encountered some time steps with a very large potential increase.
There are surprisingly few analytical tools for using potentials as φ̄(t) with challenges (i) and
(ii). One notable exception is Hajek’s theorem [33], which can be used to bound the value of
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such a potential at a given time t. However, in our setting – with our potential function –
the results obtained are very weak.6

Instead, we use a more sophisticated approach that at its core has a decomposition
of the potential change in a single time step into three additive (but dependent) random
variables. We iterate this decomposition over time throughout some interval I = (t0, t1] and
sum the respective variables which we will denote as S−(I), S′(I), and S∗(I). Then (cf.
Proposition 12) we are able to bound the potential change at the end of the interval as

φ̄(X(t1)) ≤
(

1− S−(I)
t1 − t0

)t1−t0
· φ̄(X(t0)) + S′(I) + S∗(I). (1)

Due to the dependencies between the three variables we use strong Martingale concentration
bounds to separately upper bound S′(I) + S∗(I) and lower bound S−(I) (cf. Lemma 14).
We then use a union bound – to circumvent the dependencies – to bound each of these
variables allowing us to get a bound on Equation 1. It is critical that we define the random
variable S− in such a way that it always has an expected decrease. This is in stark contrast to
the entire potential, which, as we mentioned before in (i), only decreases in expectation when
it is large. Having an unconditional decrease of S− allows us to consider arbitrarily large
intervals. With these bounds at hand one can use Equation 1 to obtain probabilistic bounds
on the potential at any given point time t1. However, due to the bound on S′(I) + S∗(I)
the total bound becomes very weak for large intervals. As a remedy, we carefully trace the
change in the potential in different regimes (with several phases in each regime) and we
separately apply the aforementioned analysis with a fresh (small) interval in each phase. The
intervals (and thus also the phases) have variable length – decreasing geometrically or even
exponentially, depending on the regime.

All missing proofs can be found in the full version [43].

2 Model

In this section we present the model including all assumptions. We have a collection of n
agents that have initial values X(0)

1 , X
(0)
2 , . . . , X

(0)
n . Time is discrete and X(t)

i denotes the
value of agent i ∈ [n] at time t. Recall that ∅(t) =

∑
iX

(t)
i /n denotes the average value

at time t; in particular, ∅(0) denotes the initial average. For two random variables X and
Y we write X d= Y if they have the same (probability) distribution. Next, we define the
communication models.

I Definition 5 (Communication Models). We consider two communication models.
(i) Sequential model: At every discrete time step two of the agents i, j are chosen uniformly

at random (with replacement7) and send their current values xi and xj to each other,
where the values received are xi +Ni and xj +Nj , where Ni, Nj

d= N .
(ii) Synchronous model: At every discrete time step a perfect matching is chosen u.a.r.

among all perfect matchings on the n agents8. All matched agents interchange their

6 Hajek’s theorem considers the moment generating function of the potential. In order to apply the
theorem to our potential, it seems that one would need to consider a logarithmic version of the potential,
which together with the moment generating function results in bound that is weaker than a simple
union bound.

7 This is not crucial to our results, but simplifies the calculations slightly.
8 Again, we allow matchings of the kind (i, i) for simplicity. It is easy but slightly less aesthetic to modify
our results to exclude matchings (i, i).
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values as in the sequential model.
We use the parallel time, which was first defined in [3], to denote the time step t/n in the
sequential model. This notion eases the comparison of results in both models, as the total
number of interactions is up to a factor of 2 equal.

I Definition 6 (Noise Models). Let v be the value sent by an agent. The value received
is v + N , where N is distributed according to some zero-mean noise distribution ℵ with
σ2 = Var [N ].

We consider general noise distributions and our results depend on the moments of N . The
following two models are of special interest in this paper.
(i) Gaussian white noise model where ℵ = N (0, σ2) for an arbitrary σ.
(ii) Discrete white noise model where ℵ = D(p), with P [N = i ] = 1

2p(1−p)
|i|, for i ∈ Z\{0}

and P [N = 0 ] = p, where p ∈ (0, 1]. Note that Var [N ] = 1−p
p2 .

From now on we assume that the noise N is distributed according to a fixed noise distribution
ℵ that is independent of n.

I Definition 7 (Averaging Dynamic). We consider the real valued and the discrete valued
algorithm. A node with value v at time receiving the input w sets its new value to
(i) v′ = (v + w)/2 in the real valued model.

(ii) v′ =
{
d(v + w)/2e w.p. 1

2

b(v + w)/2c otherwise
in the discrete valued model.

A probability distribution D is called sub-Gaussian if for X ∼ D we have that there exists
positive constants c1, c2 such that for every x we have P [ |X| ≥ x ] ≤ c1 exp(−c2x2).

Whenever we calculate the new values X(t+1) by conditioning on the current state,
X(t) = x(t) we use small letters x(t)

i to denote fixed values and capitalized letters X(t+1)
i

to denote random variables. Furthermore, we use bold-face to denote vectors. Throughout
the paper we will assume that the number of agents n is large enough and in particular
nE
[
N2 ] ≥ 1.

We define the following potentials which are essential in all our proofs and formal results.

I Definition 8 (Potentials).

TSS(x(t)) =
∑
i

(
x

(t)
i −∅(0)

)2
, φ̄(x(t)) =

∑
i

(
x

(t)
i −∅(t)

)2
, φ(x(t)) =

∑
i,j

(
x

(t)
i − x

(t)
j

)2
.

When clear from the context we drop the time index t and we write x instead of x(t), xi
instead of x(t)

i , etc. Similarly we will use the following short forms TSS(t) = TSS(x(t))
and φ̄(t) = φ̄(x(t)). We emphasize that the difference between φ̄(x) and TSS(t) is that the
former measures the squared distance w.r.t. the running average and the latter w.r.t. initial
average. Initially, we have φ̄(x(0)) = TSS(0). In [43] we prove the following fact that shows
how φ̄(X(t)) relates to TSS(t) and how φ̄ relates to φ.

I Fact 9. We have that
1. TSS(t) = φ̄(X(t)) + n ·

(
∅(0) −∅(t))2 and

2. φ(x) = 2n · φ̄(x).

Note that many alternative ways to define the potential at a time t such as the max
distance and `1 norm give only a very partial picture: The max distance to the mean for
example does not distinguish between just one node being far and all nodes being far. On the
other hand, the `1 norm does not “punish” outliers enough: there is no difference between n
nodes being off by 1 from the average and one node being off by n.
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Notation
We use X ∼ D to denote that X is distributed according to probability distribution D. For
two random variables X and Y we write X ≤st Y if X is stochastically dominated by Y , i.e.,
P [X ≥ x ] ≤ P [Y ≥ x ] for all x ∈ R. We use ‖x‖2 to denote the L2-norm. In the sequential
model we have two random variables N (t)

1 and N (t)
2 for the noise of the channel at time step

t (recall that N (t)
1 and N (t)

2 are distributed according to ℵ). We define the following two
random variables N ′(t) and N∗(t) that will play a key role in our analysis:

N ′(t) =
(
N

(t)
1

)2
+
(
N

(t)
2

)2
, N∗(t) = N

(t)
1 +N

(t)
2 .

I Fact 10. In the Gaussian noise model, we have N∗(t) ∼ N (0, 2σ2) and N ′(t) ∼ Γ(1, 2σ2),
where Γ(·, ·) denotes the gamma distribution.

When clear from the context we simply write N ′ and N∗ instead of N ′(t) and N∗(t), respect-
ively. We use Ft to denote the filtration at time t, which encapsulates all randomness up to
time t as well as the initial values of the nodes; hence it defines the state at time t completely.

3 The Sequential Setting: Convergence towards the Running
Average

Conditioning on all the randomness until time t, i.e., conditioning on Ft, we define

∆(t+1) =


(
x

(t)
i
−x(t)

j

)2

2φ̄(x(t)) for φ̄(x(t)) > 0
1/n otherwise

, where i and j are the chosen in round t.

I Lemma 11 (One Step Bound). Fix an arbitrary potential at time t. Suppose the pair i, j
was chosen to communicate and condition on the filtration Ft (all events that happened up
to round t). Then, the following holds

φ̄(X(t+1))− φ̄(x(t)) ≤ −∆(t+1)φ̄(x(t)) + N ′(t+1)

4 +N∗(t+1)

(
x

(t)
i + x

(t)
j

2 −∅(t)

)
.

Further we have E
[

∆(t+1) | Ft
]

= 1
n .

In order to prove the statement, we first calculate the exact expected change in one step
(which we do in the full version). We then majorize (stochastic dominance) with the slightly
more convenient statement above.

For an arbitrary time interval I define

S′(I) =
∑
τ∈I

N ′(τ)/4, S∗(I) =
∑
τ∈I

N∗(τ)

(
x

(τ−1)
i + x

(τ−1)
j

2 −∅(τ)

)
, S−(I) =

∑
τ∈I

∆(τ) .

Note that, in the definition of S∗, we sum up over all time steps τ in the interval I and we
consider the pair i and j that is chosen in round τ (in each round a different pair i and j
can be chosen). With Lemma 11 and the definitions of S′, S∗ and S− we can deduce the
following decomposed bound on the potential for an arbitrary interval.

I Proposition 12 (Decomposition of Potential). Fix arbitrary t0, t1 and consider the interval
I = (t0, t1]. For t = t1 − t0 we have that

φ̄(X(t1)) ≤
(

1− S−(I)
t

)t
φ̄(X(t0)) + S′(I) + S∗(I). (1)
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Our results only hold for smooth noise distributions, which we define in the following. Let

mt,δ = arg max
`

{
P
[

max
({
N
′(t0), . . . , N

′(t0+t)
}
∪
{
N∗(t0), . . . , N∗(t0+t)

})
≤ `

]
≥ 1− δ

}
.

I Definition 13. A noise distribution ℵ is smooth if for all δ > 0 and all t > 0 we have
mt,δ ≤

(
t
δ

)1/20.

Any (sub-)linear probability distribution and even some inverse polynomial distributions
are smooth. Thus many practically relevant distributions such as Gaussian, binomial
and Poisson distributions are smooth. For example, for the standard normal distribution
(N ∼ N (0, 1)) we have mt,δ = log(t/δ), since in each time step the probability that the N2

exceeds log(t/δ) is equal to the probability that N exceeds
√

log(t/δ) which happens w.p.
at most δ/t. Taking union bound over all t steps shows that it is smooth.

Using strong martingale concentration bounds (see the full version for details) and bound-
ing the variance, we deduce the following upper bound on S∗ + S′ and lower bound on S−.

I Lemma 14. Let t0, t1 be such that t1 > t0 and consider the interval I = (t0, t1].
(i) With probability 1− δ we have

S∗(I) + S′(I) ≤

t

4E [N ′ ] + 5
√
t

n

(
ln(4t/δ)m∗t,δ/4

)2
(2 + E [N ′ ])

√
φ̄(x(t0)) + 9tE [N ′ ] + 2 .

(ii) For any γ < 1, w.p. at least 1− exp
(
− 3γ2t

8n

)
we have S−(I) ≥ (1− γ) tn .

The following proposition almost directly implies Theorem 1.

I Proposition 15. Fix any δ ∈ (0, 1] and assume that the noise distribution is smooth. There
exists a constant c such that for a time step t0 with potential φ̄(x(t0)) we have

P
[
φ̄(X(t∗)) ≥ ln(1/δ)nE [N ′ ] + b | Ft0

]
≤ δ,

where t∗ = t0 + cn ln
(
φ̄(x(t0))
E[N ′ ]nδ

)
and b = 2 (1 + E [N ′ ]) (ln(1/δ))9

n9/10.

Proof Sketch. We only sketch the proof idea for a simplified setting; during the sketch we
assume that N ∼ N (0, 1) (with E [N ′ ] = O(1)) and also that δ is at least 1/n3. The main
ingredients for the proof are Proposition 12 and Lemma 14. For an interval I = (t0, t1]
Proposition 12 upper bounds the potential at time t1 by

φ̄(X(t1)) ≤
(

1− S−(I)
t

)t
φ̄(X(t0)) + S′(I) + S∗(I), (2)

where t is the length of the interval. Lemma 14 lower bounds S−(I) and upper bounds the sum
S′(I) + S∗(I). To prove Proposition 15 we have to show that the initial potential φ̄(x(t0))
decreases to O(n) after O(n · log φ̄(x(t0))) time steps with probability 1 − δ. Optimally,
we would use a single application of Proposition 12 to upper bound the potential as in
Equation 2 and then bound the terms S−(I) and S′(I) + S∗(I) via Lemma 14. However,
the bounds on S− and S′ + S∗ given by Lemma 14 are too loose to yield the desired result
via a single application of Proposition 12 and Lemma 14 with the whole time interval
I = [t0, t0 + O(n log φ̄(x(t0)))]. For example, the bound on S′ + S∗ inherently has a term
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of order
√
φ̄, where φ̄ is the potential at the start of the interval for which Lemma 14, i is

applied. Thus a one shot proof as described above can never reach a potential below
√
φ̄.

This is not sufficient if the initial potential is large, e.g., say for φ̄� n8/3.
To circumvent this problem we apply Proposition 12 and Lemma 14 several times for

smaller time intervals: More detailed, we split the proof of Proposition 15 into two regimes.
In regime 2 we use several phases to decrease the potential to Θ(n4/3). If the potential is φ̄
at the beginning of a phase a single application of Proposition 12 and Lemma 14 reduces the
potential to φ̄3/4. The length of each such phase is geometrically decreasing by a factor 3/4
where the first phase is of length O

(
n ln

(
φ̄(x(t0))
nδ

))
. After the last phase of regime 2 the

potential is of order n4/3.
Then, in regime 1 the potential reduces from Θ(n4/3) to O(n), again through several

phases. If the first phase of regime 1 starts with a potential of size B, the phase has length
t = O(n ln(B)). If there was no additive increase due to the noise, then this would reduce
the potential to 0. However, there is an additive increase of Θ(t) = Θ(n ln(B)) which leaves
us with a potential of size O(n ln(B)). The next phase will therefore be of length n ln ln(B)
etc. This is repeated for ln∗(B) phases until the potential reduces to O(n), which, as we
explained in Subsection 1.2, is the furthest the potential can be decreased .

Putting everything together, we get that after O
(
n ln

(
φ̄(x(t0))
nδ

))
rounds the potential

reduces to O(n). J

The full proof of Proposition 15 handles general E [N ′ ] and general δ and thus it is significantly
more technical. It can be found in the full version. From Proposition 15 we are able to
derive Theorem 1.

4 Deviation from the Initial Average

An informal argument for the statements in this section in the special case of σ = 1 can
be found in [54]. Before we state our results we need the following result on the standard
normal distribution.
I Theorem 16 ([16]). Let Φ(x) denote the cumulative distribution function of the standard
normal distribution. We have for x ≥ 0:

1√
2π

x

x2 + 1 exp
(
−x2/2

)
≤ Φ(x) ≤ 1√

2π
1
x

exp
(
−x2/2

)
.

We can now state and prove the main results of this section.

I Lemma 17. For any t and any δ < 1 , we have ∅(t) −∅(0) ∼
∑2t

τ=1
N(τ)

2n with probability
at least 1− δ, where N (τ) is the noise of the channel. In particular, for the Gaussian white
noise model setting where N ∼ N (0, σ2) we have

∑2t
τ=1N

(τ) ∼ N (0, 2tσ2). Thus

(i) |∅(t) −∅(0)| ≤ σ
√
t ln(1/δ)
n w.p. at least 1− δ

(ii) |∅(t) −∅(0)| ≥ σ
√
t ln(1/δ)
n w.p. at least δ

2
√

2 ln(1/δ)
.

Using the Berry-Esseen theorem, one can easily prove similar bounds for any distribution
with bounded third moment including discrete white noise.

In the following we consider the potential (∅t)t≥0 as a Martingale to derive the desired
concentration bounds. The following bound is weaker than the aforementioned bounds,
however, it is useful whenever the noise is such that mt,δ/(2t) is small.
I Proposition 18. For any t ≥ 2 and any δ < 1, we have −mt,δ/(2t)σ

√
2t ≤ ∅(t) −∅(0) ≤

mt,δ/(2t)σ
√

2t with probability at least 1− δ.
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5 Experimental Results

The goal of this section is twofold. First, we seek to better understand the distribution D
of the distances x(t)

i − ∅(t). Second, we simulate a setting in which the range of values is
bounded, motivated by computational and storage limited agents. All results in this section
are based on an implementation of the simple averaging dynamic. The code (python3) for
the experiments can be found here [42].

(a) The setting of this example is: n = 106, initial
distribution of values is uniformly at random in
the range [1, n2], 10n iterations, Gaussian white
noise with variance 1, unbounded range.

(b) The setting of this example is: n = 1000,
all values equal to 10, using discrete white noise
model D(0.8) (see Definition 6), bounded range in
the interval [1, 10], 104n iterations. The avg. of
the values drifts from 10 to 6.

Figure 1 The figure depicts the distribution of distances as well as the bounded value setting.

5.1 The Distribution of the Distances
The experiments suggest that the distance decays at least exponentially. Note that the
experiments only show a single iteration, however, this phenomena was observable in every
single run. The bound on E

[
φ̄
(
X(t)) ] we obtained in Theorem 1 only implies that D is at

most O(1/d3). However, we conjecture, for sub-Gaussian noise that P
[
|X(t)

i −∅(t)| ≥ x
]

=
O(exp−x) (cf. Figure 1a). Showing this rigorously is challenging due to the dependencies
among the values. Nonetheless, such bounds are very important since they immediately
bound the maximum difference and we consider this the most important open question.

5.2 The Bounded Values Setting
One of the motivations for the very simple averaging dynamic arises in the setting of limited
computational power of the interacting agents. So far we assumed that agents can store and
transmit (intermediate) values from an unbounded range. For many applications and in
particular motivated by agents with bounded memory one would hope for similar results if
there is a maximum and a minimum value that can be stored or transmitted. The formal
definition is as follows: values can only be from the range [vmin, vmax] (= [1, 10] in our
experiments). We assume noise of the channel cannot produce values larger than vmax
or smaller than vmin, which can be motivated as follows in the setting where the values
correspond to amplitudes: here vmax and vmin are simply the amplitudes (high amplitude
and no amplitude) where the signal-to-noise ratio is very large, and noise becomes negligible.
An equivalent model is that the agents know the range of possible communication values,



F. Mallmann-Trenn, Y. Maus, and D. Pajak 148:13

and hence, they can simply correct every value larger than vmax to vmax. In particular when
agents only have limited storage, the communication range will often be bounded, and even
rounding might become necessary (see the full version).

We refer to these equivalent models as the model with cutoffs. While the experiments
indicate that values still converge towards the running average, there is a clear drift of the
running average from the initial average if the input values are chosen unsuitably. In our
experiments, we set the range of values to [1, 10], use the noise described in the discrete
noise model together with rounding. Initially, all agents have value 10. We see a drastic drift
of the running average (see Figure 1b). Even though the initial average is 10, the running
average appears to approach the midpoint of the range, i.e., 5. The histogram of distances to
the initial average shows even more clearly that the values are not concentrated around the
initial average. Although the experiments only show a single iteration, this phenomena was
observable in every single run. We believe that the reason for this is simply that the noise is
no longer symmetric and no longer zero-mean due to the cutoffs [1, 10]. Proving convergence
to the running-average in this model seems challenging and interesting.

We believe that the insights in bounding this potential might be useful in similar problems.

6 Conclusion and Open Problems

In this paper we showed bounds on the convergence time for the unbounded setting. Our
simulations in Section 5 yield two interesting open problems: (i) study the setting where the
values are restricted to some interval (in this case the noise is no longer symmetrical) and
(ii) prove tail bounds on the distance distribution w.r.t. to the running or initial average.
Another interesting research direction is to move away from zero-mean noise and consider
biased noise models: how quickly can the bias(es) be estimated and is convergence still
feasible by compensating for the (learned) bias?
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Abstract
Bandit-style algorithms have been studied extensively in stochastic and adversarial settings. Such
algorithms have been shown to be useful in multiplayer settings, e.g. to solve the wireless network
selection problem, which can be formulated as an adversarial bandit problem. A leading bandit
algorithm for the adversarial setting is EXP3. However, network behavior is often repetitive, where
user density and network behavior follow regular patterns. Bandit algorithms, like EXP3, fail to
provide good guarantees for periodic behaviors. A major reason is that these algorithms compete
against fixed-action policies, which is ineffective in a periodic setting.

In this paper, we define a periodic bandit setting, and periodic regret as a better performance
measure for this type of setting. Instead of comparing an algorithm’s performance to fixed-action
policies, we aim to be competitive with policies that play arms under some set of possible periodic
patterns F (for example, all possible periodic functions with periods 1, 2, · · · , P ). We propose
Periodic EXP4, a computationally efficient variant of the EXP4 algorithm for periodic settings.
With K arms, T time steps, and where each periodic pattern in F is of length at most P , we show
that the periodic regret obtained by Periodic EXP4 is at most O

(√
P KT log K + KT log |F |

)
. We

also prove a lower bound of Ω
(√

P KT + KT log |F |
log K

)
for the periodic setting, showing that this is

optimal within log-factors. As an example, we focus on the wireless network selection problem.
Through simulation, we show that Periodic EXP4 learns the periodic pattern over time, adapts to
changes in a dynamic environment, and far outperforms EXP3.
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1 Introduction

The multi-armed bandit problem is an online learning problem in which a player has access to
a set of choices (i.e., “arms”) each of which provides some reward (i.e., “gain”). At each time
step, the player chooses an arm and gets some reward. In stochastic variants, rewards are
determined by some probabilistic distribution. In adversarial variants, an adversary specifies
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the rewards. Amazingly, even when rewards are adversarially chosen, the player can do fairly
well! For example, the EXP3 algorithm [6] minimizes the player’s “regret”, ensuring that
the player does almost as well as if she had selected the single fixed best arm throughout.
Another fascinating property of bandit algorithms is that they work well in multi-player
settings [27, 16], converging to close variants of a Nash equilibrium.

Recently, it has been shown that bandit-style algorithms can efficiently solve the wireless
network selection problem, yielding good performance both in theory and in practice [1, 2, 7].
In this problem, each user has access to a collection of networks (e.g., a few different WiFi
networks and a 4G connection); the goal is to pick networks with higher data rates. Selecting
the best network is challenging, especially in dynamic environments where the “best” network
changes over time, as users move and network bandwidth fluctuates. This can be modeled as
an adversarial bandit problem and solved with EXP3 and its variants.

Bandit algorithms have one major weakness in dynamic settings (such as wireless network
settings): they are designed to learn the average payoff of each arm, and to converge to the
arm that provides the best average performance. In the stochastic case, this is exactly what
you want. In the adversarial case, it leads to minimum regret, i.e., the user does almost as
well as if they knew the best network in advance. If, however, the situation is changing over
time, and especially if it is changing in some predictable manner, then learning the average
payoff of each arm is not productive.

Periodic, repetitive patterns are a particularly common type of dynamic behavior. Take,
for example, the problem of network selection. Network behavior is often repetitive, with user
density and network quality following regular patterns: for example, office WiFi networks
have no users at night, their performance drops when workers arrive in the morning, and the
performance improves again during lunch hour. Other networks are clogged with streaming
video during lunch hour and in the evenings. Periodic patterns are ubiquitous.

Unfortunately, bandit algorithms will fail badly in the case of periodic behavior. As an
example, suppose a player is playing a slot machine with two arms. The first arm gives a
reward of 1 when pulled on odd-numbered hours and 0 otherwise, while the second arm does
the reverse, with a reward of 1 on even-numbered hours and 0 otherwise. In this simple case,
a bandit algorithm will never learn this pattern, instead converging to the best single-action
policy; and the best policy can only reap half of the maximum reward. The player will
receive an average payout of only 1/2 per selection, despite a very predictable pattern. And
when this case is extended to cycle among K arms, the best fixed choice of arm gives only
1/K of the total obtainable reward. Thus, algorithms like EXP3 that minimize the regret do
not guarantee good performance on periodic problems.

1.1 Contributions
Our goal in this paper is to develop an efficient adversarial bandit algorithm for periodic
settings, and to demonstrate the effectiveness of this algorithm in the context of the wireless
network selection problem, yielding a new approach to network selection in dynamic, periodic
environments. The first step is to establish the right metric by which to evaluate bandit
algorithms. The performance of an adversarial bandit algorithm is heavily characterized by
the definition of “regret,” which forms the baseline that it competes against. And traditionally,
the regret is computed with respect to the best fixed strategy.

For the periodic bandit setting, we define a better performance measure, “periodic regret”,
which compares an algorithm’s performance against the best periodic choice of arms. No
choice of period may match the input data perfectly, but the goal of periodic regret is to
compare against the best choice. Moreover, we provide a generalized notion of periodicity, so
that this notion of periodic regret can capture different types of patterned behavior.
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Next, we develop an algorithm that minimizes periodic regret, Periodic EXP4, a com-
putationally efficient variant of EXP4 (Exponential-weight algorithm for Exploration and
Exploitation using Expert advice) [6]. We show that the algorithm minimizes periodic
regret in the following sense: with K arms, |F | possible periods, with each possible period
of at most length P , then in an execution of length T the periodic regret is at most
O
(√

PKT logK +KT log |F |
)
. We also prove a lower bound of Ω

(√
PKT +KT log |F |

logK
)
on

periodic regret in an adversarial setting, showing that this is optimal within log-factors. An
important aspect of Periodic EXP4 is that it is a polynomial time algorithm: we leverage the
structure provided by the target periodic patterns to reduce the computational complexity.
This is in contrast to EXP4 which requires exponential time and space in this context.

The other major contribution of this paper is a new algorithm for network selection that
is especially optimized for environments with periodic, patterned behaviors. We simulate
the network selection problem, comparing Periodic EXP4 to EXP3 and to a “randomized
optimal” omniscient solution. (We have previously seen in [1] that these types of simulations
are reasonably predictive of real-world behavior.)

Our first observation is that Periodic EXP4 does in fact efficiently learn periodic patterns
and adapts relatively quickly to changes in network data rates (both discrete and continuous).
We also see that Periodic EXP4 does indeed outperform EXP3 in periodic settings, as
expected, potentially yielding significant real-world improvements.

Our second question involved the robustness of Periodic EXP4 to noisy patterns. Real-
world periodic patterns are rarely perfectly periodic, suffering noise and variance. We
experiment with noisy patterns, and see that Periodic EXP4 continues to work well.

Finally, our third set of experiments looked at the performance of Periodic EXP4 in the
context of user mobility. We simulate several scenarios where users change location over
time, leading to changes in which networks they can access (and hence changes in the load
on those networks). For example, we imagine a typical office scenario where users arrive at
the office in the morning, take a break for lunch, return to work, and then head home at the
end of the day. We observe that Periodic EXP4 can also learn this type of periodic behavior,
again, learning to adapt the users’ network selection in a near-optimal fashion. In fact, we
compare two versions of the algorithm: one in which the algorithm is notified when networks
become unavailable, and one in which it is not – we observe that even in the latter case where
it is completely oblivious to the changes, the user strategy converges to near-optimal choices.

Overall, we conclude that periodic adversarial bandit algorithms may have significant
value, that Periodic EXP4 is an efficient algorithm for the problem, and that it yields a
potentially interesting and useful approach to network selection.

2 Related work

In this section, we discuss relevant work done on bandit algorithms, and state-of-art wireless
network selection approaches. Multi-armed bandit techniques have been successfully applied
to wireless network selection [1, 2, 7]. They have also been considered for other resource
selection problems, such as channel selection [13, 27], selection of the right sensors to query
in a sensor network [14], and selection of replica server for content distribution networks [28].

Many variations of bandit problems have been studied, in both stochastic and adversarial
settings. EXP3 is the most well-known algorithm for the standard adversarial bandit problem.
With K arms and T time steps, it establishes a pseudo-regret upper bound of O(

√
KT logK),

which almost matches the lower bound of Ω(
√
KT ) [6]. The logK gap in the bounds has

been recently closed by [5] bringing the upper bound down to O(
√
KT ). But, these bound

the regret against the best single-action policy, limiting their usefulness in a periodic setting.

ICALP 2019
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A related problem is that of bandits with expert advice, defined in the same paper [6].
It defines a more general notion of regret, by competing against the best policy from a set.
With K arms, T time steps and N experts, the EXP4 algorithm gives a pseudo-regret bound
of O(

√
KT logN). However, its possibly high running time and memory cost limit its use in

practice. There are other algorithms for bandits with expert advice, like Context-FTPL. The
latter is more computationally efficient, but has a weaker regret bound [26]. A lower bound
of Ω(

√
KT logN

logK ) [23] has been shown, but the logK gap in bounds has not been closed.
An equivalent formulation of our generalized periodic regret (explained later in Section

4.2) has been briefly discussed in [10, Chapter 4.2.1], phrased as a contextual bandit problem
where the algorithm competes against the best context set from a class of context sets. The
possible use of EXP4 is mentioned, but an alternative algorithm with a weaker regret bound
is instead discussed as it has a reasonable polynomial-time performance unlike EXP4.

While much of the existing literature assume a single best arm, there are other efforts to
look beyond this. One approach to the stochastic version of the problem is to allow reward
distributions of the arms to occasionally change [9, 22]. Our work on the other hand is fully
adversarial, and makes no assumptions on the rewards produced by the adversary.

Numerous wireless network selection approaches have been proposed. Some are centralized
[3, 8, 18, 25]; hence, not scalable and limited to managed networks. A number of distributed
approaches have been proposed, with various limitations. Some rely on coordination from
networks [15], while others require cooperation of wireless devices [12]. Others assume
global knowledge [20, 4, 19], or availability of some information [30, 11]. A continuous-time
multi-armed bandit approach in a stochastic setting has been considered in [29]. A similar
setting to ours, though non-periodic and in the stochastic setting, is considered in [7].

3 Wireless Network Selection

Here, we describe the wireless network selection problem, discuss the periodicity of events in
wireless environments, and formulate the network selection problem as a bandit problem.

3.1 Wireless network selection problem.

We consider an environment with multiple wireless devices and heterogeneous wireless
networks, such as the one depicted in Figure 1. The latter illustrates four mobile users with
their (active) mobile devices, and five wireless networks, namely four WiFi networks and
a cellular network (represented using 3 cellular base stations). The wireless networks have
limited areas of coverage. Hence, each mobile device may have access to a different set of
wireless networks depending on their location, e.g. different networks are available at home
and at the office. The bandwidths of wireless networks may also vary with time. Each mobile
device aims to quickly identify and associate with the best network, which may vary over
time, to maximize their data rates.

Mobile users tend to have daily routines that follow repetitive patterns - going to the office
each morning, lunch at noon, returning home in the evening; these activities are performed
at fixed times each weekday. Figure 1 broadly depicts the daily routine of a mobile user,
Alice. Network behavior, which is affected by user density, is also often repetitive and follows
a regular pattern. For example, the available bandwidth of office WiFi networks is likely to
be higher during lunch hours, where the office is nearly empty. A good network selection
protocol learns and adapts to periodic patterns in network quality for better performance.
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Figure 1 Mobile devices with access to a different set of wireless networks as the user moves.

3.2 Wireless network selection as a bandit problem
A device must be aware of the bit rate it can observe from each network to perform an
optimal network selection. While this information is unknown at the time of selection, the
device can estimate the achievable bit rate by exploring the networks. The network selection
problem can be seen as a multi-armed bandit problem in a multi-player setting. A mobile
device is a player, and each network can be considered as an arm. Every so often (e.g. once
per minute), a device selects a network (analogous to pulling an arm) and observes a bit
rate (gain) for that network. The gain from other networks is unknown to the device. Given
that mobile devices operate in a dynamic environment, they must continuously explore and
adapt to changes, by deciding which networks to select in sequence. The goal of each device
is to maximize its cumulative gain over time. Since the quality of a wireless network is
affected by its number of clients, other mobile devices in the environment may be considered
to be adversaries. We hence use the adversarial setting. A leading bandit algorithm in this
setting is EXP3.

4 Periodic Bandit Problem

In this section, we introduce the periodic bandit problem and discuss periodic regret.
We consider a general bandit problem. On each time step, an algorithm is allowed to

pick any one out of K possible arms, and each arm produces a certain amount of reward.
These rewards are unknown to the algorithm, which can only observe the reward of the arm
it picked. We aim to maximize the total reward obtained by the algorithm. We study the
adversarial setting with a possibly adaptive adversary, which decides on the distribution of
rewards at each time step, taking into consideration the outcomes of past random events.

Let K be the number of arms. The set of arms is [K] := {1, 2, · · · ,K}. Let xi(t) ∈ [0, 1]
be the reward earned by arm i ∈ [K] at time step t. Let a(t) ∈ [K] be the arm played by
the algorithm at time t. Let T be the total number of time steps. The set of time steps
is [T ] := {1, 2, · · · , T}. Thus, the total reward earned by the algorithm after T iterations
is
∑T
t=1 xa(t)(t). The commonly used performance measure for bandit algorithms is regret.

Regret compares the total reward obtained by the algorithm against a “best possible” reward
“OPT” after some number of time steps T . Different types of regret compare the algorithm’s
result to different notions of the optimal result.

We can define a form of regret where OPT is allowed to pick any arm in [K] at each time
step. For later reference we will refer to this as full regret, defined as follows:

Rfull(T ) =
T∑
t=1

max
i∈[K]

E
[
xi(t)

]
− E

[ T∑
t=1

xa(t)(t)
]

ICALP 2019
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The above definition uses what is commonly known as pseudo-regret, rather than expected
regret. For the rest of this paper, we will often refer to pseudo-regret as simply “regret”.
Expectations are taken over the possible randomness of the algorithm and adversary.

In most studies of adversarial bandits, a weaker definition of regret is used. This is
because full regret uses too powerful an adversary, and it is impossible to achieve better than
linear expected full regret in the worst case (we include a proof in the full version of the
paper [21]). Therefore, it is common to define a notion of regret where OPT is required to
use the same arm for all T time steps. We refer to this as weak regret, defined as follows:

Rweak(T ) = max
i∈[K]

T∑
t=1

E
[
xi(t)

]
− E

[ T∑
t=1

xa(t)(t)
]

Weak regret however, severely limits what OPT can do, and being competitive with an
algorithm that can only pick one arm and stick to it may not be a very strong result.

4.1 Periodic Regret
We can bridge the two with a periodic definition of regret. Taking the idea that a periodic
choice of arms is likely to perform well in situations with periodic patterns, we can define
a regret function which measures how competitive an algorithm is with the best periodic
choice of arms. For example, we can say OPT is forced to play the same arm every τ ∈ N
steps. This defines a regret function as follows,

Rτ (T ) =
τ∑
`=1

max
i∈[K]

bT−`
τ c∑
t=0

E
[
xi(tτ + `)

]
− E

[ T∑
t=1

xa(t)(t)
]

As OPT may optionally still pick the same arm on all time steps, this is a generalization of
weak regret. This makes for a regret value in between weak regret and full regret.

If we were competing against the regret for a specific, known value of τ , this would
be equivalent to playing τ independent instances of the adversarial bandits problem over
approximately T/τ time steps each. By playing τ separate instances of an algorithm for
weak regret, and by Theorem 2 in Section 6.1, we have an upper/lower bound of Θ(

√
τKT ).

However, if we were to consider that the “best possible” period τ may not be known (for
example, if OPT were to consist of the best periodic function for any of the possible periods
τ ∈ {1, · · · , P}), these bounds do not apply as easily.

4.2 Generalized Periodic Regret
A generalization of the periodic case is the use of partition functions. Fix a maximum number
of labels P . We define this upper bound P for use in our analysis later on. A partition
function f : [T ] → [P ] is a function that assigns every time step a label from 1 to P . We
consider two partition functions the same if their choice of label assignments are permutations
of each other. The regret under function f would be when OPT is forced to play the same
arm for all timesteps with the same label as assigned by f .

Rf (T ) =
∑
`∈[P ]

max
i∈[K]

∑
t∈f−1(`)

E
[
xi(t)

]
− E

[ T∑
t=1

xa(t)(t)
]

(1)
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Consider a set of partition functions F ⊆ {f : [T ]→ [P ]} for some P ∈ N. F is necessarily
finite. The regret under the function set f would be when OPT can choose to play using any
of the partition functions in F . This gives the following regret definition:

RF (T ) = max
f∈F

∑
`∈[P ]

max
i∈[K]

∑
t∈f−1(`)

E
[
xi(t)

]
− E

[ T∑
t=1

xa(t)(t)
]

(2)

This definition (2) of periodic regret gives us more choice in how we want to define our
potential periodic patterns to learn, through deciding on the labels on each time step for
each function. We demonstrate this with our choice of partition functions in Section 7.

To model the example described earlier with periods τ ∈ {1, 2, · · · , P}, we can use the
set of partitions F = {f1, f2, · · · , fP }, where fτ (t) := (t mod τ) + 1 for each t ∈ [T ], τ ∈ [P ].

5 The Periodic EXP4 Algorithm

We discuss the relationship between our generalized periodic setting and the problem of
bandits with expert advice, and hence the applicability of EXP4 [6] to the problem. We use
this to introduce Periodic EXP4, an efficient algorithm for generalized periodic regret.

5.1 Applying Bandits with Expert Advice to Periodic Bandit Problems
Periodic bandit problems can be reduced to the problem of bandits with expert advice. In
the problem of bandits with expert advice, we are given a set Π of N experts. Each expert
predicts an arm on each time step. We fix the number of time steps T . Thus an expert can
be seen as a function π : [T ]→ [K]. An algorithm to solve this problem would make use of
each expert’s predictions on each time step, to obtain a reward competitive with the best
expert in the set. This gives us the following regret definition:

RΠ(T ) = max
π∈Π

T∑
t=1

xπ(t)(t)− E
[ T∑
t=1

xa(t)(t)
]

This can be used to model all of the above notions of regret. For full regret, we have
Π := {π : [T ]→ [K]}, the set of all possible functions from [T ] to [K]. For weak regret, Π is
the set of all constant functions from [T ] to [K].

In the generalized periodic setting, let F be the set of partition functions f : [T ]→ [P ].
For each function f ∈ F , let Θf be the set of all possible mappings θ : f([T ])→ [K] from
the image set f([T ]) of f to the set of arms [K] (thus |Θf | = K |f([T ])|). Each composition
θ ◦ f , f ∈ F , θ ∈ Θf thus represents a possible mapping of the time steps [T ] to arms. Thus,
for the generalized periodic setting, Π = {θ ◦ f | f ∈ F, θ ∈ Θf}.

We note that when Π1 ⊆ Π2, we will have RΠ1(T ) ≤ RΠ2(T ). Let Πfull, Πweak and ΠF

be the sets of functions corresponding to full regret, weak regret and generalized periodic
regret under some function set F respectively. Thus, for any nonempty set F of partition
functions, we have RΠweak(T ) ≤ RΠF (T ) ≤ RΠfull(T ).

An existing algorithm for this problem is the EXP4 algorithm [6], which achieves a regret
upper bound of O(

√
KT logN), where N := |Π|. We can thus apply EXP4 directly to our

problem. However, a commonly cited drawback of the EXP4 algorithm is that its running
time and memory cost are at least linear in N . This is an issue as N is often very large. For
example, in the generalized periodic setting, the size of N could easily be on the order of

ICALP 2019
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Algorithm 1 Periodic EXP4.
1: procedure Initialization
2: for each f ∈ F do
3: for each ` ∈ f([T ]) do
4: for each i ∈ [K] do
5: Initialize b`,fi (1) = 1
6: procedure Algorithm
7: for each time step t = 1, 2, · · · , T do
8: for each i ∈ [K] do

9: ri(t) :=
∑
f∈F

(
b
f(t),f
i (t)

∏
`∈f([t])\{f(t)}

K∑
j=1

b`,fj (t)
)

10: for each i ∈ [K] do

11: pi(t) = ri(t)∑K
j=1rj(t)

12: Play arm it ∈ [K] from the probabilities p1(t), p2(t), · · · , pK(t)
13: Obtain reward xit(t)
14: for each f ∈ F do
15: for each ` ∈ f([T ]) do
16: for each i ∈ [K] do
17: if i = it and ` = f(t) then
18: b`,fi (t+ 1) = b`,fi (t) exp( γKxi(t)/pi(t))
19: else
20: b`,fi (t+ 1) = b`,fi (t)

|F |KP , which is exponential in P . However, we show below that in the generalized periodic
setting, we can devise an algorithm that is distributionally equivalent to EXP4 and can be
made to run in time polynomial in |F |, K and P .

The EXP4 algorithm works by assigning a weight wπ (with initial value 1) to each expert
π ∈ Π. The probability pi(t) of playing an arm i ∈ [K] would then be

∑
π(t)=i wπ(t)/

∑
π wπ(t),

the ratio of the combined weights of the experts agreeing to play arm i to the total weight of
the experts. Whenever an arm i ∈ [K] is played, each expert who suggested arm i will have
their weight adjusted by some factor exp( γKxi(t)/pi(t)). More details on EXP4 are given in
[6]. Note that it discusses a more general form of expert advice where each expert suggests a
probability vector on the arms. However, we only require the case where at each time step,
each expert suggests one arm with probability 1, and all other arms with probability 0.

5.2 Periodic EXP4, Memory and Running Time Costs

Periodic EXP4 (Algorithm 1) is distributionally equivalent to the EXP4 algorithm when run
with the set of experts Π = {θ ◦ f | f ∈ F, θ ∈ Θf}. The key intuition behind this algorithm
is that the generalized periodic setting produces many symmetries in the weight computation
for each expert. Specifically, we take advantage of how for each partition function f , the set
of experts contains every possible combination of arm assignments to labels in the image set
f([T ]). This allows us to compute the probabilities that EXP4 would play each arm at each
time step without computing the individual weights of every expert.
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For brevity, let Pf := |f([T ])| be the number of labels used by the function f . Necessarily
Pf ≤ P . The memory requirement is O(K

∑
f∈F Pf ), which is at most O(KP |F |). A naive

implementation of the algorithm gives a running time of O(K2∑
f∈F Pf ) per time step, but

with some pre-computation, the running time can be lowered as shown in the full paper [21].

5.3 Correctness of Periodic EXP4
To show correctness, we show that our algorithm produces the same probability distribution
over arms as EXP4 in every time step. Define πθ,f as the expert which at time t recommends
arm θ ◦ f(t) with probability 1 and all other arms with probability 0. We show this algorithm
is distributionally equivalent to EXP4, where Π = {πθ,f |f ∈ F, θ ∈ Θf}. In EXP4, each
expert πθ,f would have some weight wθ,f (t) at time step t. At time step t, EXP4 plays arm
i with probability pi(t) represented by the following expression:

pi(t) =
∑
f∈F,θ∈Θf ,θ◦f(t)=i wθ,f (t)∑

f∈F,θ∈Θf wθ,f (t)

Thus, to show that the two algorithms are distributionally equivalent, as pi(t) :=
ri(t)/

∑K
j=1 rj(t) in our algorithm, for each successive time step t, we only need to show

the following:

ri(t) =
∑

f∈F,θ∈Θf ,θ◦f(t)=i

wθ,f (t)

The details of this derivation is given in the full paper [21]. We can thus formally state a
regret upper bound as follows (Theorem 1). This upper bound comes directly from EXP4’s
regret bound of O(

√
KT logN), where the number of experts N =

∑
f∈F

K |f([T ])| ≤ |F |KP .

I Theorem 1. With K arms, T time steps, |F | partition functions, with every function having
at most P labels, Periodic EXP4 gives a regret upper bound of O

(√
PKT logK +KT log |F |

)
.

6 Lower Bounds

In this section, we provide lower bounds for the case of a single partition and for a set of
partitions. We demonstrate that the upper and lower bounds differ by a factor of logK.

The existing regret lower bound for the problem of bandits with expert advice [23] is
Ω
(√

KT logN
logK

)
. This lower bound is derived by dividing the time steps [T ] into logN

logK equal
parts. For the generalized periodic setting, as this lower bound uses an instance that can be
modeled with a single partition function, it does not give immediate insight into whether
having multiple different periods or partition functions increases the difficulty of the problem.

6.1 Lower Bound for a Single Partition
We consider the case with only a single partition function f : [T ]→ [P ], which partitions the
time steps into P labels 1, 2, · · · , P . The sizes of the partitions are |f−1(1)|, |f−1(2)|, · · · ,
|f−1(P )| respectively. It seems like intuitively, by seeing this as P separate instances of the
weak regret setting, and by the existing Θ(

√
KT ) upper/lower bounds on weak regret [6, 5],

we would have an upper/lower bound of Θ(
∑P
`=1
√
K|f−1(`)|). For equally sized partitions

of size approximately T
P each, this bound would be Θ(

√
PKT ).

ICALP 2019
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However, while the upper bound is clearly met by running P independent instances of
an algorithm for weak regret, the lower bound is less clear. Even when considering it as P
separate instances, there is a possibility of an algorithm “reacting” to losses in other instances
to play differently in the current instance, obtaining a higher total reward as a result. For
completeness, we include a proof for the lower bound (Theorem 2) in the full paper [21].

I Theorem 2. Fix a partition function f : [T ]→ [P ] which assigns a label to each time step.
Assume that for each ` ∈ f([T ]), there are at least K/(4 ln 4

3 ) time steps with label `. Then
the minimax pseudo-regret (1), over all algorithms a and adversaries R, has a lower bound
as follows, for some positive constant c:

inf
a

sup
R

(
max
θ∈Θf

E
[ ∑
t∈[T ]

xθ◦f(t)(t)
]
− E

[ ∑
t∈[T ]

xa(t)(t)
])
≥
∑
`∈[P ]

√
cK|f−1(`)|

If we consider the simple case where OPT may play only periodic functions from any period
τ ∈ {1, 2, · · · , P}, it can do no worse than if it were only allowed to play at period P . We
thus obtain a lower regret bound of

√
PKT .

6.2 Lower Bound for the Generalized Periodic Setting
Let F be the set of partitions, so |F | is the number of partitions. Let P be the maximum
number of labels of any partition in F . For sufficiently large T and K ≤ P , we obtain a
pseudo-regret(2) lower bound of Ω(

√
PKT +

√
KT log |F |

logK ). It is proved in the full paper [21].
If P < K instead, a simple lower bound can be obtained by using only P out of the K

arms, so we obtain a problem with P arms and maximum partition size P . This gives us a
lower bound of Ω

(√
PKT +

√
PT log |F |

logP

)
. We can then merge these two lower bounds into

a single expression Ω
(√

PKT +
√

min(P,K)T log |F |
log min(P,K)

)
.

6.3 Analysis of Bounds
A conclusion we can make from Section 6.2 is that having multiple periods indeed increases
the difficulty of the problem - we have obtained a lower bound higher than the known upper
bound of O(

√
PKT ) had only one partition function of the maximum period P been used.

With K arms, T time steps, |F | partition functions, with every function having at most
P labels, Periodic EXP4 gives an upper bound of O

(√
PKT logK +KT log |F |

)
. On the

other hand, we have a lower bound of Ω
(√

PKT +KT log |F |
logK

)
in the case where K ≤ P .

This gives a gap of
√

logK between the two bounds. Interestingly, this log-factor is the
same as the current gap between the upper and lower bounds in the problem of bandits with
expert advice. This is possibly because we use a similar lower bound proof to the problem of
bandits with expert advice [23], as well as a similar algorithm for the upper bound.

7 Experimental Evaluation

In this section, we discuss the implementation details of Periodic EXP4 and parameter values
chosen, evaluate the algorithm via simulation, and compare its performance to EXP3 [6].
We show how Periodic EXP4 (a) learns periodic patterns over time under both discrete and
continuous changes in network data rates, (b) outperforms EXP3, (c) is robust to noisy
patterns, and (d) adapts to changes due to mobility of users.
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We benchmark against “Optimal Random”, a player with prior knowledge of the actual
bandwidths of each network. In each time slot, it picks a network from a probability
distribution equal to the ratios of the bandwidths. For example, with network bandwidths
4, 10 and 6, the probability of picking the networks will be 0.2, 0.5 and 0.3, respectively.

All the algorithms are implemented in Python, using SimPy [24], while the core algorithm
is written in C++. We use a time-varying learning rate γ = t−

1
10 [17] for both Periodic

EXP4 and EXP3; γ slowly tends to zero to ensure convergence [27] while at the same
time ensures that the algorithm does not take too long to learn (it learns slowly when γ
is very small). Although they are not pre-requirements of Periodic EXP4, for simplicity,
we assume that (a) a network’s bandwidth is equally shared among its clients, and (b)
devices are time-synchronized. To reduce numerical error in our simulations, we substitute
computations of

∑
x∈Y exp(x) with exp(maxx∈Y x). In nearly all cases, sums of exponentials

in our algorithm are heavily dominated by a single term, making the values of the two
expressions approximately equal. Experimentally, we find that this has negligible effects on
the values computed within the algorithm.

We do simulations on synthetic data. We consider setups with 20 mobile devices and 3
wireless networks, unless otherwise specified. While the number of devices remain constant
throughout the simulation run, the data rates and availability of networks may change. We
assume that a network selection is performed once every minute; hence, 1440 time slots is
one simulated day. All results presented are from 20 simulation runs, of 86,400 time slots
each (i.e., 2 simulated months). The pattern of network behavior and/or user mobility over
the first 1440 time slots is repeated 60 times; we refer to each repetition as an “iteration”.

We apply Periodic EXP4 in the generalized periodic setting. We define a partition
function of period τ as one which divides each iteration of 1440 time slots into τ equal
contiguous segments, labeled 1 to τ in chronological order. The same labels are used for each
successive repetition. Unless otherwise specified, we use the period set {1, · · · , 24}. This
refers to using 24 partition functions, of periods 1 to τ respectively.

7.1 Evaluation Criteria
Good assignments of devices to networks divide the available bandwidth evenly among the
devices. We thus evaluate the performance of the algorithms based on the lowest data rate
observed by any of the devices. We compare this to the optimal allocation of devices, which
maximizes the lowest data rate observed by any device. If a device with the lowest data rate
observes 3Mbps, but the optimal’s lowest is 5Mbps, we say it loses 40% of its achievable gain.
We refer to this percentage loss as the “distance to optimal minimum” in our results.

We do not use average cumulative gain as a performance measure because in our problem
setting, average gain is maximized as long as there is at least one user in each network.

7.2 Performance Comparison of Algorithms
We consider two setups, both at an office with two WiFi networks and a cellular network.
The data rates of these networks vary over time. The first setup involves discrete changes
in network bandwidths at fixed time intervals (Figure 2a). In the second setup, the data
rates vary continuously with time (Figure 2b). Figures 3a and 3b show that in both setups,
the distance to optimal minimum of Periodic EXP4 drops over time while EXP3 shows no
noticeable improvement with time.

Figure 4 for the continuous setup explains this improvement. The figure for the discrete
setup is in the full paper [21]. At each time step, each user has a probability of picking each
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(a) Discrete changes in network data rates.
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(b) Continuous changes in network data rates.

Figure 2 Changes in network data rates over one iteration (this is repeated 60 times).
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(a) Performance under discrete setup.
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(b) Performance under continuous setup.

Figure 3 Distance to optimal minimum of Periodic EXP4 and EXP3 over 60 iterations.
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(a) EXP3: Combined probabilities for each network over first 10 iterations.
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(b) Bandwidth ratio.
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(c) Periodic EXP4: Combined probabilities for each network over first 10 iterations.

Figure 4 Area chart showing the time variation of combined probabilities in the continuous setup.
Figure 4b shows the actual ratio of the bandwidths of the three networks within any one iteration.

of the networks. If we consider the combined probability of picking each network, we can see
that in Periodic EXP4, these probabilities converge towards the ratios of the bandwidths of
the networks (Figures 4c). This is despite the continuous setup having no obvious best period.
On the other hand, EXP3’s probabilities slowly flatten out (Figure 4a). This is consistent
with what we would expect, as EXP3 seeks to be competitive with the best fixed-action
policy, meaning that it only seeks out the best fixed arm to play.

Figure 5 shows that while EXP3 initially learns more quickly, Periodic EXP4 eventually
outperforms EXP3 (which converges to the network with the best average performance),
with a performance similar to Optimal Random. From our experiments, we find that while
all algorithms have similar total cumulative gains, we may note that Periodic EXP4 is fairer
than EXP3, with significantly lower variance. We present these results in the full paper [21].
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Figure 5 Distances to Optimal minimum in the first and last repetitions of the discrete setting
in Figure 2a. Vertical lines indicate points where data rates change.

7.3 Other Experiments
In the full version of the paper [21], we discuss a few more experiments, the results of which
are briefly summarized as follows:
1. Performance in Noisy Settings: On each time step, we apply a 10% Gaussian noise

to each of the networks’ data rates. We find that our algorithms are largely unaffected
by noise in the data, giving similar results with and without noise.

2. Comparison of Period Sets: We do a comparison between different possible period
sets F . We find that the algorithm learns more slowly with larger period sets (e.g.
{1, 2, · · · , 45}, as compared to {1, 2, · · · , 15}), but can converge to better results on more
complex instances (instances where the bandwidth may fluctuate more wildly).

3. Mobility of Users: We consider a setup where users move around and have access to
different sets of networks at different times. We compare Vanilla Periodic EXP4, which
is oblivious to networks possibly becoming unavailable, against an optimized version,
which selects only from the set of currently available networks. While the optimized
version initially yields a better performance, they eventually perform equally well when
the Vanilla Periodic EXP4 algorithm learns the pattern.

8 Conclusion

In this paper, we develop an efficient variant of EXP4 for the periodic bandit problem, give
nearly matching upper and lower bounds for it, and demonstrate its advantages in learning
periodic behavior in the context of the network selection problem.

An interesting issue raised in contrasting this paper and [9, 22] is whether non-stationary
bandit problems are better modeled stochastically or adversarially. While these papers
address non-stationary rewards primarily in a stochastic setting with some adversarial
aspects, we tackle the periodic bandit problem in a fully adversarial setting. Using the
adversarial setting has the benefit of not placing any constraints on the adversary; we adapt to
the periodic setting only through our definition of regret. A proper comparison of stochastic
and adversarial methods for network selection is a possible future line of work.
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Abstract
We consider the problem of transforming a given graph Gs into a desired graph Gt by applying
a minimum number of primitives from a particular set of local graph transformation primitives.
These primitives are local in the sense that each node can apply them based on local knowledge
and by affecting only its 1-neighborhood. Although the specific set of primitives we consider makes
it possible to transform any (weakly) connected graph into any other (weakly) connected graph
consisting of the same nodes, they cannot disconnect the graph or introduce new nodes into the
graph, making them ideal in the context of supervised overlay network transformations. We prove
that computing a minimum sequence of primitive applications (even centralized) for arbitrary Gs

and Gt is NP-hard, which we conjecture to hold for any set of local graph transformation primitives
satisfying the aforementioned properties. On the other hand, we show that this problem admits a
polynomial time algorithm with a constant approximation ratio.
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1 Introduction

Overlay networks are used in many contexts, including peer-to-peer systems, multipoint
VPNs, and wireless ad-hoc networks. In fact, any distributed system on top of a shared
communication infrastructure usually has to form an overlay network (i.e., its participating
sites have to know each other or at least some server) to allow the exchange of information.

A fundamental task in the context of overlay networks is to maintain or adapt its topology
to a desired topology, where the desired topology might either be pre-defined or depend
on a certain objective function. The problem of reaching a pre-defined topology has been
extensively studied in the context of self-stabilizing overlay networks (e.g., [29, 21, 12, 5,
22, 7]), and the problem of adapting the topology based on a certain objective function
has been studied in the context of self-adapting and -optimizing overlay networks (e.g.,
[33, 14, 2, 19, 11, 3, 10, 8]). Many of these approaches are decentralized, and because of that,
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the work (in terms of number of edge changes) they need to adapt to a desired topology might
be far away from the minimum possible work to reach that topology. In fact, no non-trivial
results on the competitiveness of decentralized overlay network adaptations are known so
far other than handling single join or leave operations, and it is questionable whether any
good competitive result can be achieved with a decentralized approach. An alternative
approach would be that a server is available for controlling the network adaptations, and this
has already been considered in the context of so-called supervised overlay networks. In a
supervised overlay network there is a dedicated, trusted node called supervisor that controls
all network adaptations but otherwise is not involved in the functionality of the overlay
network (such as serving search requests), which is handled in a peer-to-peer manner. This
has the advantage that even if the supervisor is down, the overlay network is still functional.
Solutions for supervised overlay networks have been proposed in [24, 15], for example, and
the results in [24] imply that, for specific overlay networks, any set of node arrivals and
departures can be handled in a constant competitive fashion (concerning the work needed
for adding and removing edges) to get back to a desired topology. But no general result is
known so far for supervised overlay networks concerning the competitiveness of converting
an initial topology into a desired topology. Also, no result is known so far on how to handle
the problem that a supervisor could be faulty or even act maliciously.

A malicious supervisor would pose a significant problem for an overlay network since it
could easily launch Sybil attacks (i.e., flooding the overlay network with fake or adversarial
nodes) or Eclipse attacks (i.e., isolating nodes from other nodes in the overlay network). We
thus ask: Can we limit the power of a supervisor such that it cannot launch an eclipse or
sybil attack while still being able to convert the overlay network from any connected topology
to any other connected topology?

We answer the question to the affirmative by determining a set of graph transformation
commands, also called primitives, that only the supervisor may issue to the nodes. These
primitives are powerful enough to transform any (weakly) connected topology into any other
(weakly) connected topology but still allow the nodes to locally check that applying them
does not disconnect the network or introduce a new node into the network. We additionally
aim at minimizing the reconfiguration overhead, i.e., the number of commands to be issued
(and, related to this, the number of changes to be made to node neighborhoods) to reach a
desired topology. Unfortunately, as we will show, this cannot be done efficiently for the set
of primitives we consider unless P 6= NP, and we conjecture that this holds for any set of
commands that has the aforementioned property of giving the participants the ability to
locally check that they cannot be used for eclipse or sybil attacks. However, we are able to
give an O(1)-approximation algorithm for this problem.

1.1 Model and Problem Statement

We model the overlay network as a graph, i.e., nodes represent participants of the network
and if there is a directed edge (u, v) in the graph, this means that there is a connection
from u to v. Undirected edges {u, v} model the two connections from u to v and from v

to u. Since there may be multiple connections between the same pair of participants, the
graphs we consider in this work are multigraphs, i.e., edges may appear several times in
the (multi-)set of edges. For convenience throughout this work we will use the term “graph”
instead of multigraph and refer to “edge sets” even though their elements need not be unique.

We consider the following set Pd of four primitives for the manipulation of directed graphs,
first introduced by Koutsopoulos et al. [25] in the context of overlay networks:
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Introduction. If a node u has a reference of two nodes v and w with v 6= w, u introduces w

to v if u sends a message to v containing a reference of w while keeping the reference.
Delegation. If a node u has a reference of two nodes v and w s.t. u, v, w are all different,

then u delegates w’s reference of v if u sends a message to v containing a reference of w

and deletes the reference of w.
Fusion. If a node u has two references v and w with v = w, then u fuses the two references

if it only keeps one of these references.
Reversal. If a node u has a reference of some other node v, then u reverses the connection if

it sends a reference of itself to v and deletes its reference of v.

The four primitives are visualized in Figure 1. Note that for the Introduction primitive, it
is possible that w = u, i.e., u introduces itself to v. To simplify the description, we sometimes
say that a node u introduces or delegates the edge (u, v) if u introduces v to some other node
or delegates v’s reference to some other node, respectively.

u
v

w
u

v

w
(a) Introduction Primitive.

u
v

w
u

v

w
(b) Delegation Primitive.

u v u v

(c) Fusion primitive.

u v u v

(d) Reversal primitive.

Figure 1 The four primitives in Pd in pictures.

The primitives in Pd are known to be universal (c.f. [25]), i.e., it is possible to transform
any weakly connected graph into any other weakly connected graph by using only the
primitives in Pd. Note that for every edge (u, v) used in any of the primitives, either (u, v)
still exists after the corresponding primitive is applied, or there is still an (undirected) path
from u to v in the resulting graph. This directly implies that no application of the primitives
can disconnect the graph. We assume that all connections are authorized, meaning that both
endpoints are aware of the other endpoint of this connection. Thus, if for an edge (u, v)
that is supposed to be transformed into (v, u) by an application of the Reversal Primitive,
v checks that u actually was the previous endpoint of the former edge then the primitives
cannot be used to introduce new nodes into the graph.

For undirected graphs, consider the set Pu containing only the primitives Introduction,
Delegation and Fusion (defined correspondingly). These three primitives, accordingly, are
universal on undirected graphs, i.e., any connected undirected graph can be transformed into
any other connected undirected graph by applying the primitives in Pu (c.f. [25]).

We make the following observation:

I Observation 1. The Introduction primitive is the only primitive that can increase the
number of edges in a graph. The Fusion primitive is the only primitive that can decrease the
number of edges in a graph. The Delegation primitive is the only primitive that can remove
the last edge between two nodes (i.e., an edge of multiplicity one).

A computation C is a finite sequence G1 ⇒ G2 ⇒ · · · ⇒ Gl of either directed or undirected
graphs, in which each graph Gi+1 is obtained from Gi by the application of a single primitive
from Pd or Pu, respectively. The graphs G1 and Gl are called the initial and the final graphs
of C, respectively. The variable l is called the length of the computation.
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We define the Undirected Local Graph Transformation Problem (ULGT) as follows: given
two connected undirected graphs Gs, Gt, find a computation of minimum length whose initial
graph is Gs and whose final graph is Gt. The corresponding decision problem k-ULGT is
defined as follows: given a positive integer k and two connected undirected graphs Gs and
Gt, decide whether there is a computation with initial graph Gs and final graph Gt of length
at most k. Accordingly we define the Directed Local Graph Transformation Problem (DLGT)
and k-DLGT, which differ from the according problems in that the graphs are directed.

1.2 Related Work

Graph transformations have been studied in many different contexts and applications,
including but not limited to pattern recognition, compiler construction, computer-aided
software engineering, description of biological developments in organisms, and functional
programming languages implementation (for a more detailed introduction and literature
overview, we refer the reader to [4], [20], or [31, 13]). Simply put, a graph transformation (or
graph-rewriting) system consists of a set of rules L→ R that may be applied to subgraphs
isomorphic to L of a given graph G thus replacing L with R in G. Since changing the labels
assigned to a graph (graph relabeling) is also a kind of graph transformation, basically every
distributed algorithm can be understood as a graph transformation system (c.f. [13]). The
type of graph transformations probably closest related to our work is the area of Topology
Control (TC). In simple terms, the goal of TC is to select a subgraph of a given input graph
that fulfills certain properties (such as connectivity) and optimizes some value (such as the
maximum degree). This problem has been studied in a variety of settings (for surveys on
this topic see, e.g., [27], or [6]) and although the usual approach is decentralized, there are
also some centralized algorithms in this area (see, e.g., [30]). However, these works only
consider the complexity of computing an optimal topology (instead of the complexity of
transforming the graph by a minimum number of rule applications). There is one work by
Lin [28] proving the NP-hardness of the Graph Transformation Problem, in which the goal is
to find the minimum integer k such that an initial graph Gs can be transformed into a final
graph Gt by adding and removing at most k edges in Gs. Our work differs from that work
in that we do not allow arbitrary edge relocations but restrict them to a set of rules that can
be applied locally (and we also provide constant-factor approximation algorithms).

Our approximation algorithms use an approximation algorithm for the Undirected Steiner
Forest Problem as a black-box (also known as the Steiner Subgraph Problem with edge
sharing, or, in generalizations, the Survivable Network Design Problem or the Generalized
Steiner Problem). 2-approximations of this problem were first given by Agrawal, Klein, and
Ravi [1], and by Goemans and Williamson [16], and later also by Jain [23]. Gupta and
Kumar [18] showed a simple greedy algorithm to have a constant approximation ratio and
recently, Groß et al. [17] presented a local-search constant approximation for Steiner Forest.

1.3 Our Contribution

The main contributions of this paper are as follows: We prove the Undirected and the
Directed Local Graph Transformation Problem to be NP-hard in Section 2. Furthermore,
in Section 3 we show that they belong to APX, i.e., there exist constant approximation
algorithms for these two problems.
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2 NP-hardness results

In this section, we show the NP-hardness of the Undirected Local Graph Transformation
Problem by proving the NP-hardness of k-ULGT (see Section 2.1). Since k-DLGT’s NP-
hardness is very similar for k-ULGT, we omit its proof and only briefly sketch the differences
in the full version of this paper [32].

Throughout this section, for any positive integer i we use the notation [i] to refer to the
set {1, 2, . . . , i}.

2.1 k-ULGT is NP-hard
We prove k-ULGT’s hardness via a reduction from the Boolean satisfiability problem (SAT)
which was proven to be NP-hard by Cook [9] and, independently, by Levin [26]. We briefly
recap SAT as follows:

I Definition 1 (SAT). Given a set X of n Boolean variables x1, . . . , xn and a Boolean
formula Φ over the variables in X in conjunctive normal form (CNF), decide whether there
is a truth assignment t : X → {0, 1} that satisfies Φ.

To reduce SAT to k-ULGT, we use the following reduction function:

I Definition 2 (Reduction function). Let S = (X, Φ) be a SAT instance, in which X =
{x1, . . . , xn} is the set of Boolean variables and Φ = C1 ∧ · · · ∧ Cm for clauses C1, . . . , Cm.
Then f(S) = (Gs, Gt, k) in which k = 2n + m and Gs and Gt are undirected graphs defined
as follows. Without loss of generality, assume that each literal yi ∈ {xi, xi} occurs only once
in each clause. We say yi ∈ Cj if literal yi occurs in Cj.

We define the following sets of nodes: VC = {C1, . . . , Cm}, and VXi
= {xi, xi, si, ti}.

Then, the set of nodes of Gs and Gt is V =
⋃

1≤i≤n VXi
∪VC∪{r}. For the set of edges, define

EXi
= {{si, xi}, {xi, si}, {xi, ti}, {ti, xi}}, ECj

= {{yi, Cj}|yi ∈ {xi, xi} ∧ yi occurs in Cj},
Esr = {{si, r}|1 ≤ i ≤ n}, Etr = {{ti, r}|1 ≤ i ≤ n}, ECr = {{Cj , r}|1 ≤ j ≤ m}. Both Gs

and Gt have the edges in
⋃

1≤i≤n EXi ∪
⋃

1≤j≤m ECj . Additionally, Gs has the edges in Esr

and Gt has the edges in Etr ∪ ECr.

Intuitively, each variable xi is mapped to a gadget Xi consisting of the four nodes xi, xi, si,
and ti. Also each clause Cj is connected with each literal occurring within it. Lastly, in Gs,
each of the si is connected with the node r, whereas in Gt, each of the ti and each of the Cj

are connected with r. Figure 2 shows an example of the output of the reduction function for
a given formula in CNF.

We now show that every SAT instance S is satisfiable if and only if f(S) is a “yes” instance
of k-ULGT. We start with the “only if” part for this is the simpler direction:

I Lemma 3. If a SAT instance S as in Definition 2 is satisfiable then f(S) = (Gs, Gt, k)
with k = 2n + m is a k-ULGT instance and there is a computation with initial graph Gs

and final graph equal to Gt of length at most 2n + m.

Proof. Assume there is a satisfying truth assignment t : X → {0, 1} of S. For every 1 ≤ i ≤ n

let yi := xi if t(xi) = 1 or yi := xi if t(xi) = 0. We construct the following computation with
initial graph Gs and final graph Gt:
1. For every 1 ≤ i ≤ n, si delegates the edge {si, r} to yi.
2. For every Cj ∈ {C1, . . . , Cm} choose one neighbor zj ∈ {y1, . . . , yn} (we show below that

this exists), and let zj introduce r to Cj .
3. For every 1 ≤ i ≤ n, yi delegates the edge {yi, r} to ti.
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X1

s1

t1

x1x1

C1

r

X2

s2

t2

x2x2

X3

s3

t3

x3x3

C2 C3 C4

Figure 2 Graph Gs returned by the reduction function for the (example) Boolean formula
(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2) ∧ (x2 ∨ x3). Gt differs from Gs in that the dashed edges do not exist and
all grey nodes share an edge with node r.

Obviously, the length of this computation is 2n + m. To prove the missing part, recall that
every Cj is satisfied under t, i.e., there is at least one literal zj in Cj that evaluates to true,
i.e., there is an i ∈ [n] such that zj = xi if t(xi) = 1, or zj = xi if t(xi) = 0. By definition of
yi, zj = yi. Thus because zj occurs in Cj , yi was a neighbor of Cj during Step 2. J

The “if” part is more complex. We begin with the following insight that will prove helpful
in the course of this part.

I Lemma 4. Suppose the nodes in the initial graph of a computation C can be decomposed
into disjoint sets V1, . . . , Vk, P such that there is no edge {u, v} for some u ∈ Vi, v ∈ Vj,
i, j ∈ [k], i 6= j and throughout C none of the nodes in P applies a primitive. Then there is
no edge {u, v} for some u ∈ Vi, v ∈ Vj, i, j ∈ [k], i 6= j in any graph of the computation.

Proof. Assume there is a computation C and sets V1, . . . , Vk, P as defined above and assume
for contradiction that the claim is not true. We consider the first edge {u, v} such that
u ∈ Vi, v ∈ Vj , i, j ∈ [k], i 6= j. Clearly, it cannot have been created by the application of a
Fusion primitive. Thus it must have been created by an Introduction or Delegation primitive
applied by a node w that knew both u and v before the application of this primitive. By
definition of P , w /∈ P , i.e., w ∈ Vl for some l ∈ [k]. However, by the definition of {u, v}, u

and v must have been from Vl as well, yielding a contradiction. J

The next lemma we show represents a main building block of the proof of the “if” part.

I Lemma 5. Let S be a SAT instance and let (Gs, Gt, k) = f(S). For every computation C

with initial graph Gs and final graph equal to Gt of length at most 2n + m it holds: There
are y1, . . . , yn, yi ∈ {xi, xi} for every i ∈ [n], such that in C there are no edges other than
E(Gs) ∪ E(Gt) ∪ {{yi, r}|i ∈ [n]} and no edge occurs twice (where E(Gs) and E(Gt) denote
the edge set of Gs and Gt, respectively).

Due to space constraints, we only sketch the proof here, whereas the full proof can be found
in the full version of this paper [32]. The general idea of the proof of Lemma 5 is the following:
To obtain the target graph, for each j ∈ [m] the edge {Cj , r} has to be created and for
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each i ∈ [n] the edge {ti, r} has to be created. Each of these creations involves a distinct
application of a primitive. Therefore, only n applications of primitives are left in a feasible
computation. We show that the nodes in each gadget i have to apply at least one primitive
pi that does not create one of the above edges. This implies that each gadget may apply no
other primitive than pi to create an edge that is not in the target graph and that the nodes
r and Cj themselves cannot apply any primitives at all which by Lemma 4 means that there
are no inter-gadget edges. We use these facts to prove that pi is used to remove the edge
{si, r} thereby creating either {xi, r} or {xi, r}.

The rest of the proof of the “if” part, as formalized by the following lemma, is comparably
straightforward.

I Lemma 6. Let S be a SAT instance as in Definition 2. If f(S) = (Gs, Gt, k) with
k = 2n + m is a k-ULGT instance and there is a computation with initial graph Gs and
final graph equal to Gt of length at most 2n + m then S is satisfiable.

Proof. In the following, we refer to the variables defined in Definition 2. Furthermore, we
say a computation is feasible if and only if its initial graph is Gs, its target graph is Gt and
its length is at most 2n + m. Moreover, we say that the edge that is established during the
application of an Introduction or Delegation primitive (the edge (v, w) in Figures 1a and 1b)
is the result of the Introduction or Delegation, respectively.

Assume that f(S) = (Gs, Gt, 2n + m) is a k-ULGT instance and there is a feasible
computation C for f(S). According to Lemma 5 there are y1, . . . , yn, yi ∈ {xi, xi} for every
i ∈ [n] such that in C there are no edges other than E(Gs) ∪ E(Gt) ∪ {{yi, r}|[n]}. Note
that in Gt, for every j ∈ [m] there is an edge {Cj , r} and each such edge must have been the
result of an introduce or Delegation primitive applied by an yi, i ∈ [n] (as throughout C, the
Cjs do not have any other neighbors with an edge to r that could possible create this edge) .
Let g : {C1, C2, . . . , Cm} → {y1, y2, . . . , yn} be the mapping of each Cj to the yi who applied
a primitive that resulted in the edge {Cj , r}. Consider the truth assignment t : X → {0, 1}
such that t(xi) = 1 if yi = xi and t(xi) = 0 if yi = xi. Observe that t(yi) = 1 for every
i ∈ [n]. Assume for contradiction that there is a clause Cj in S that does not evaluate to 1
under t. Note that g(Cj) must occur in Cj by construction. However, since g(Cj) = yi for
some i ∈ [n] and t(yi) = 1, we obtain the desired contradiction. J

3 Approximation Algorithms

In this section, we first describe an approximation algorithm for ULGT (see Section 3.1)
and prove it to have a constant approximation ratio (see Section 3.2). Note that a constant
approximation factor algorithm for DLGT can be obtained by a slight adaptation of this
algorithm. For a description of this, we refer the reader to the full version [32] due to
space constraints.

As an ingredient our algorithm uses a 2-approximation algorithm (see Section 1.2) for
the Undirected Steiner Forest Problem (USF) defined as follows: Given a graph G and a set
S of pairs of nodes from G, find a forest F in G with a minimum number of edges such that
the two nodes of each pair in S are connected by a path in F .

3.1 Algorithm Description
For an initial graph Gs = (V, Es) and a final graph Gt = (V, Et), we define the set of
additional edges E⊕ := Et \ Es and the set of excess edges E	 := Es \ Et. We now describe
the algorithm in detail and then summarize its pseudo-code in Algorithm 1. Our algorithm
consists of two parts, the first of which dealing with establishing all additional edges and the
second of which dealing with removing all excess edges.
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Algorithm 1 Approximation algorithm for ULGT.
Input: Initial graph Gs and final graph Gt.
First part:

1: Compute a 2-approximate solution FALG,⊕ for the USF with input Gs, and the set E⊕
as the set of pairs of nodes.

2: For each tree T in FALG,⊕, select a root node rT and connect all nodes in T that are
incident to an edge in E⊕ with rT (details below).

3: For each {u, v} ∈ E⊕, the root of the tree u and v belong to applies the Introduction
primitive to create the edge {u, v}.

4: For each tree T in FALG,⊕, delegate all superfluous edges (i.e., not belonging to Gs or
E⊕) created during Step 2 bottom up in T rooted at rT , starting with the lowest level.
At each intermediate node fuse all of these edges before delegating them to the next
predecessor.
Second part:

5: Compute a 2-approximate solution FALG,	 for the USF with input Gt, and the set E	
as the set of pairs of nodes.

6: For each e ∈ E	, let s(e) be an arbitrary of the two endpoints of e. For each tree T in
FALG,	, select a root node rT and for each e ∈ E	 whose endpoints belong to T , connect
s(e) with rT (similar to Step 2, details below).

7: For each e ∈ E	, s(e) delegates the other endpoint to rT .
8: For each tree T in FALG,	, delegate all superfluous edges bottom-up and fuse multiple

edges as in Step 4.

In the first part, using an arbitrary 2-approximation algorithm for the USF as a black
box the algorithm computes a 2-approximate solution to the following USF instance: The
given graph is Gs, and the set of pairs of nodes is E⊕. Note that the result is a forest such
that for every edge {u, v} ∈ E⊕, u and v belong to the same tree. For each tree T in this
forest the algorithm then selects an arbitrary root rT and connects all nodes in T that are
incident to an edge in E⊕ to rT . The exact details of this will be described when we analyze
the length of the resulting computation. In the next step, for every T , for every {u, v} ∈ E⊕
such that u and v belong to T , rT introduces u to v to each other, thereby creating the edge
{u, v}. After that, the superfluous edges are deleted in a bottom-up fashion: every node that
does not have a descendant with a superfluous edge (in the tree T this node belongs to when
viewing this tree as rooted by rT ), fuses all superfluous edges and delegates the last such to
its predecessor in the tree. Note that all superfluous edges in the same tree T have rT as one
of their endpoints.

The second part of the algorithm is similar to the first, with the following differences: In
the fifth step, the USF is approximated for the graph Gt and E	 as the set of pairs. Note
that the solution is a subgraph of the graph obtained after the first part of the algorithm.
In the sixth step, only one of the two endpoints of an edge from E	 is selected to become
connected with the root of the tree the endpoints belong to. In the seventh step (where in
the first part the additional edges are created by the rT nodes), for each edge e ∈ E	, the
endpoint selected in the sixth step delegates this edge to rT (resulting in the edge {rT , v}).
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3.2 Analysis
In this section we show that Algorithm 1 is a constant-approximation algorithm for ULGT,
which is formalized by the following theorem:

I Theorem 7. ULGT ∈ APX.

For convenience we will analyze the two parts of the algorithm individually. Therefore,
for a given initial graph Gs and final graph Gt, let ALG1(Gs, Gt) be the length of the
computation of the first part of the algorithm for this instance, ALG2(Gs, Gt) be the length
of the computation of the second part, and ALG(Gs, Gt) := ALG1(Gs, Gt) + ALG2(Gs, Gt).
Furthermore, let OPT (Gs, GT ) be the length of an optimal solution to ULGT for initial
graph Gs and final graph Gt. We also define the intermediate graph G′ = (V, Es ∪ E⊕).
In the course of the analysis we will establish a relationship between ALG1(Gs, Gt) and
OPT (Gs, G′) and between ALG2(Gs, Gt) and OPT (G′, Gt). This will aid us in determining
the approximation factor of Algorithm 1 due to the following lemma:

I Lemma 8. OPT (Gs, G′) + OPT (G′, Gt) ≤ 2OPT (Gs, Gt) + |E⊕|.

Proof. Let P denote the problem equal to k-ULGT with initial graph Gs and final
graph Gt with the additional requirement that the computation must contain G′ and
let OPT ′(Gs, Gt) be the length of an optimal solution to it. Clearly, OPT (Gs, G′) +
OPT (G′, Gt) ≤ OPT ′(Gs, Gt) (otherwise, split the computation at G′ and improve either
OPT (Gs, G′) by the first part obtained or OPT (G′, Gt) by the second part obtained). We
now show that OPT ′(Gs, Gt) ≤ 2OPT (Gs, Gt) + |E⊕|.

Consider a computation C whose initial graph is Gs, whose final graph is Gt and whose
length is OPT (Gs, Gt) (note that such a computation is an optimal solution to ULGT). We
now transform C into a computation that represents a solution to P. This transformation
increases its length by only OPT (Gs, Gt) + |E⊕| and thus proves the above claim (recall that
any solution to P has at least the size of an optimal solution to it). First, because the final
graph does not contain any edge {u, v} ∈ E	, for every such edge there is one last Delegation
in C that removes this edge (recall Observation 1). We replace each of these last delegations by
an introduction and obtain a new computation C ′ of equal length. Note that changing these
delegations to introductions does not make the computation infeasible as this only causes the
graph to have additional edges. The final graph of C ′ is (V, Et ∪E	) = (V, Es ∪E⊕) = G′

(recall that Et = (Es ∪E⊕) \E	). Next we append C ′ by C and obtain the computation C ′′

of length 2OPT (Gs, Gt). Note that since C transformed Gs to Gt, this second half of C ′′,
which starts from G′ = (V, Es ∪ E⊕), has the final graph G′′ = (V, Et ∪ E⊕), i.e., each edge
from E⊕ appears twice in G′′. Thus we extend C ′′ by fusing each edge from E⊕ with its
double, resulting in a computation C ′′′ of length 2OPT (Gs, Gt) + |E⊕|. Since C ′′′ represents
a solution to P for initial graph Gs and final graph Gt, this completes the proof. J

In the rest of the analysis we show that ALG1(Gs, Gt) ≤ 11OPT (Gs, G′) (Lemma 9)
and that ALG2(Gs, Gt) ≤ 7OPT (G′, Gt) (Lemma 10). By Lemma 8 this implies that
ALG(Gs, Gt) ≤ 11(2OPT (Gs, Gt)+ |E⊕|) ≤ 33OPT (Gs, Gt) (since, clearly, OPT (Gs, Gt) ≥
|E⊕|), which yields the claim of Theorem 7.

We begin with the former claim, which is formalized by the following lemma:

I Lemma 9. ALG1(Gs, Gt) ≤ 11OPT (Gs, G′).

Proof. Let FOP T,⊕ be an optimal solution for the USF with input Gs and E⊕ as the set of
nodes and recall that FALG,⊕ is the USF approximation computed in Step 1 of Algorithm 1.
Throughout the analysis, |FOP T,⊕| and |FALG,⊕| will denote the number of edges in these
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x zy

w u v

rT

(a) Step 2 connects all endpoints
of edges in E⊕ belonging to T with
rT .

x zy

w u v

rT

(b) In Step 3, rT creates the edges
in E⊕ that belong to T by an In-
troduction.

x zy

w u v

rT

(c) Step 4 removes all superflu-
ous edges by delegating and fusing
them up in the tree.

Figure 3 Example of a tree T with root rT for Step 2-4 of Algorithm 1 assuming {u, v} ∈ E⊕.
ST (x) consists of x, w, and u. x is relevant, whereas y is not. Dashed edges exist temporarily during
the displayed step.

solutions. In the first part of this proof, we show that ALG1(Gs, Gt) ≤ 4|FOP T,⊕|+ 3|E⊕|.
The second part then consists in proving OPT (Gs, G′) ≥ |FOP T,⊕| − |E⊕|, which together
with the observation that OPT (Gs, G′) ≥ |E⊕| yields the claim.

To upper bound ALG1(Gs, Gt), we analyze the number of primitives applied in each of
the steps of the first part of the approximation algorithm. In Step 1, no primitive is applied.
To keep the number of edges as low as possible (which saves Fusion primitives in Step 4), the
algorithm for every T in FALG,⊕ connects the desired nodes to rT in Step 2 in the following
way: To simplify the description, we view T as rooted at rT and for a node u ∈ T denote by
ST (u) the set consisting of u and all of its descendants in the tree T rooted at rT . We say a
node u is relevant if ST (u) contains a node with an endpoint in E⊕. See Figure 3 for an
illustration of these notions. First of all, rT introduces itself to all relevant children. Then,
starting from the second level, we proceed level-wise in the tree: For each level i, every node
u at level i checks whether u is an endpoint of an edge in E⊕ or {u, rT }. If so, it introduces
rT to all relevant children. Otherwise, it introduces rT to all but one of its relevant children
(chosen arbitrarily) and delegates rT to the relevant child it did not introduce rT to. One can
check that the result of this procedure is that each node incident to an edge in E⊕ has an
edge to rT for the tree T it belongs to, see Figure 3a. Note that according to the definition of
FALG,⊕, for each pair {u, v} ∈ E⊕ u and v belong to the same tree T . The above procedure
increases the number of edges by at most 2|E⊕| and requires at most |FALG,⊕| applications
of primitives (since each tree T with k edges contains at most k + 1 nodes and for each node
u in T , at most one primitive is applied to create {u, rT } and this is done for neither rT

nor the nodes at level 1). It is easy to see that Step 3 (c.f. Figure 3b) involves exactly E⊕
applications of primitives. For the length of Step 4 (c.f. Figure 3c), note that for every tree
T at most |T | delegations have to be applied because every node in each tree has to apply
at most one Delegation (causing |FALG,⊕| delegations in total) and at most 2|E⊕| fusions
have to be applied for this is the number of superfluous edges created during Step 2. All
in all, Step 2, Step 3, and Step 4 involve |FALG,⊕|, E⊕, and |FALG,⊕|+ 2|E⊕| applications
of primitives, respectively. This makes a total of 2|FALG,⊕| + 3|E⊕|. Since FALG,⊕ is a
2-approximation of FOP T,⊕, we obtain ALG1(Gs, Gt) ≤ 4|FOP T,⊕|+ 3|E⊕|.

For the lower bound on OPT (Gs, G′), assume for contradiction that there is a computation
C with initial graph Gs and final graph G′ of length L < |FOP T,⊕| − |E⊕|. Let Gs = G1 ⇒
G2 ⇒ · · · ⇒ GL be the sequence of graphs of this computation. For every {u, v} ∈ E⊕ we
iteratively create a path from u to v in the following way: Begin with P L

u,v := (u, v). Note
that P L

u,v exists in GL. We iterate through C in reverse order and for every graph Gi, if P i+1
u,v

exists in Gi, P i
u,v := P i+1

u,v . Otherwise, since Gi+1 is the result of a single application of a
primitive to Gi, there is exactly one edge {x, y} in P i+1

u,v that exists in Gi+1 but not in Gi and
this edge was created by the application of an Introduction or Delegation primitive of some
node w such that {w, x} and {w, y} exist in Gi. Thus, let P i

u,v be P i+1
u,v with (x, y) replaced
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(a) Initial graph G1.
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(c) G3: y has delegated u
to v.
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(d) G4: y has introduced v
to w.
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(e) G4: P 4
u,v = (u, v)

and P 4
v,w = (v, w).
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(f) G3: P 3
u,v = (u, v)

and P 3
v,w = (v, y, w).
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(g) G2: P 2
u,v = (u, y, v)

and P 2
v,w = (v, y, w).

x
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z

(h) G1: P 1
u,v = (u, x, y, v)

and P 1
v,w = (v, y, w).

Figure 4 Example of an optimal computation C with initial graph G1 and E⊕ = {{u, v}, {v, w}},
and the notions used in the proof of Lemma 9. The upper row shows C in order, the lower row
illustrates the path sets P i

u,v and P i
v,w, which are defined by iterating through C in reverse order.

In the lower row, the edges drawn black in Gi are the edges belonging to to F i. Observe that F1

represents a solution to the USF for graph G1 and node pairs E⊕.

by (x, w, y) and note that P i
u,v exists in Gi. Eventually, we obtain a path P 1

u,v that exists in
Gs. For i ∈ {1, . . . , L}, let F i :=

⋃
{u,v}∈E⊕

E(P i
u,v) (where E(P ) is the set of all edges on

the path P ) and note that F 1 represents a solution to the USF with input Gs and E⊕ as the
set of node pairs. An example is given in Figure 4. For an arbitrary i ∈ {1, . . . , L− 1}, note
that |F i| ≤ |F i+1|+ 1: if Gi+1 was obtained from Gi by the application of a Fusion primitive,
this inequality trivially holds as none of the above paths changes in this case. Otherwise,
Gi+1 was obtained from Gi by an application of an Introduction or Delegation primitive
by some node w causing at most one edge {x, y} to exist in Gi+1 that does not exist in Gi.
In this case, we further know that {w, x} and {w, y} exist in Gi and by the definition of
the above paths, for every pair {u, v} such that P i+1

u,v contains the edge {x, y} the path P i
u,v

contains (x, w, y) as a sub-path instead and for all other pairs {u′, v′}, P i
u′,v′ = P i+1

u′,v′ . By
the definition of F i and F i+1, this implies |F i| ≤ |F i+1|+ 1 also in this case. All in all we
obtain that |F 1| ≤ |F L|+ L = |E⊕|+ L because F L = E⊕ (note the definition of F L). By
the assumption that L < |FOP T,⊕| − |E⊕|, we obtain |F 1| < |FOP T,⊕|, which represents a
contradiction. J

I Lemma 10. ALG2(Gs, Gt) ≤ 7OPT (G′, Gt).

Proof. The general structure of this proof follows the line of the proof of Lemma 9, but
differs in the details. Similar to the notation used in that proof, let FOP T,	 be an optimal
solution for the USF with input Gt and E	 as the set of nodes and recall that FALG,	 is
the USF approximation computed in Step 5 of Algorithm 1. Analogously, |FOP T,	| and
|FALG,	| denote the number of edges in these solutions. In the first part of this proof, we
show that ALG2(Gs, Gt) ≤ 4|FOP T,	| + 3|E	|. The second part then consists in proving
OPT (G′, Gt) ≥ |FOP T,	|, which together with the observation that OPT (G′, Gt) ≥ |E	|
yields the claim.

To upper bound ALG2(Gs, Gt), we analyze the number of primitives applied in each step
of the second part of the approximation algorithm. Of course, no primitive is applied in Step 5.
The connections required in Step 6 can be created in a similar fashion as in Step 2 (see the
proof of Lemma 9: For each tree T , we proceed top-down in the T rooted at rT again. Here,
each intermediate node u checks whether u = s(e) for some e ∈ E	. If so, it introduces rT to
all relevant children (here a node v is relevant if ST (v) contains a node w such that w = s(e′)
for some e′ ∈ E	). Otherwise, it introduces rT to all but one relevant children and delegates
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it to the remaining one. In the end, for every edge e ∈ E	, s(e) has an edge to rT , the
number of edges in the graph has increased by at most |E	|, and the process involved at most
|FALG,	| applications of primitives. In Step 7, clearly exactly |E	| edges have to be delegated.
Step 8 is similar to Step 4 and for analogous reasons requires at most |FALG,	| delegations
and at most 2|E	| fusions (recall that up to |E	| edges were added in Step 6 and the edges
delegated in Step 7 have to be removed as well). All in all, Step 6, Step 7 and Step 8 of the
algorithm involve at most |FALG,	|, |E	| and |FALG,	|+ 2|E	| applications of primitives,
respectively, which yields: ALG2(Gs, Gt) ≤ 2|FALG,	|+ 3|E	| ≤ 4|FOP T,	|+ 3|E	| (since
FALG,	 is a 2-approximation of FOP T,	).

To lower bound the value of OPT (G′, Gt), assume for contradiction that there is a
computation C with initial graph G′ and final graph Gs of length L < |FOP T,	| − |E	|. Let
Gs = G1 ⇒ G2 ⇒ · · · ⇒ GL be the sequence of graphs of this computation. Similar to the
proof of Lemma 9, for every {u, v} ∈ E	, we create a path from u to v, but this time we
start with P 1

u,v := (u, v) and consider the graphs in increasing order: For i ∈ {2, . . . , L}, if
P i−1

u,v exists in Gi, P i
u,v := P i−1

u,v . Otherwise since Gi is the result of a single application of a
primitive to Gi−1, there is exactly one edge {x, y} in P i−1

u,v that exists in Gi−1 but not in Gi

and this edge must have been delegated by either x or y to some node w. In the following
denote the node that applied the Delegation by z and denote by z the other node from
{x, y}. In Gi−1, z must share an edge with w and this edge still exists in Gi (for only one
primitive is applied in the transition from Gi−1 to Gi). Since {z, z} was delegated to w,
in Gi the edge {w, z} exists in Gi. Thus, let P i

u,v be P i−1
u,v with (x, y) replaced by (x, w, y)

and observe that P i
u,v exists in Gi. Eventually, we obtain a path P L

u,v that exists in Gt.
Define F i :=

⋃
{u,v}∈E	

E(P i
u,v) (where E(P ) is the set of all edges on the path P ) for all

i ∈ {1, . . . , L}, and note that F L represents a solution to the USF with input Gt and E	 as
the set of nodes. Furthermore, for an arbitrary i ∈ {1, . . . , L− 1}, note that |F i+1| ≤ |F i|+ 1
because there is at most one edge {x, y} that exists in Gi but not in Gi+1 and thus causes
the replacement of (x, y) by (x, w, y) for some fixed node w for all paths that contain (x, y)
as a sub-path. This yields that |F L| ≤ |F 1| + L = |E	| + L because F 1 = E	 (note the
definition of F 1. By the assumption that L < |FOP T,	| − |E	|, we obtain |F L| < |FOP T,	|,
which represents a contradiction. J

4 Conclusion

We proposed a set of primitives for topology adaptation that a server may use to adapt the
network topology into any desired (weakly) connected state but at the same time cannot
use to disconnect the network or to introduce new nodes into the system. So far, we only
assumed that the server could act maliciously but that the participants of the network are
honest and correct, i.e., they refuse any graph transformation commands beyond the four
primitives. What, however, if some participants also behave in a malicious manner? Is it
still possible to avoid Eclipse or Sybil attacks? It seems that in this case the only measure
that would help is to form quorums of nodes that are sufficiently large so that at least one
node in each quorum is honest.

Besides these security-related aspects, our results give rise to additional questions: For
example, does the NP-hardness apply to any set of local primitives, or is there a set of local
primitives that can transform arbitrary initial graphs much faster into arbitrary final graphs
than the set considered in this work? Furthermore, is it possible to obtain decentralized
versions of the algorithms presented in Section 3, and, if so, what is their competitiveness
when compared to the centralized ones?
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Abstract
We study a two-sided network investment game consisting of two sets of players, called providers
and users. The game is set in two stages. In the first stage, providers aim to maximize their profit
by investing in bandwidth of cloud computing services. The investments of the providers yield a
set of usable services for the users. In the second stage, each user wants to process a task and
therefore selects a bundle of services so as to minimize the total processing time. We assume the
total processing time to be separable over the chosen services and the processing time of each service
to depend on the utilization of the service and the installed bandwidth. We provide insights on how
competition between providers affects the total costs of the users and show that every game on a
series-parallel graph can be reduced to an equivalent single edge game when analyzing the set of
subgame perfect Nash equilibria.
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1 Introduction

With the increasing availability of a fast and reliable internet connection, the demand for
and the importance of cloud-computing services is heavily growing. That is why large
IT-companies such as Amazon, Google or Microsoft have been investing massively in the
improvement of their cloud services in recent years. New high-speed cables are being placed,
high performance hardware has been installed, new software has been developed, and machine
numbers have been scaled up [21]. Interestingly, prices for these services are typically charged
per usage time (see for example, Amazon Web Services [3], Microsoft Azure [26] and Google
Cloud [17]). This might a-priory lead to a situation, where a non-optimal infrastructure takes
longer to process the users’ tasks, and thus even leads to a higher income for the corresponding
provider. This paper addresses this issue by means of a theoretical model and provides some
results on how competition between providers helps to prevent this behavior of providers.
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We study the problem by means of a two-stage game, which we call a network investment
game. In the first stage, a set of providers invests in bandwidths of services that are used by
users in the second stage to process their task. These services could be different types of
on-demand cloud computing, storage, data-base, security or media services. We assume that
these services are either complements or substitutes to each other. This implies that the set
of feasible bundles of services for the users can be represented by means of source-sink paths
in a series-parallel network. Two services that are complementary can be modeled as two
edges that are connected in series, whereas two services that are substitutes to each other
can be modeled by means of two parallel edges. A similar idea has been used by Correa
et al. in [14]. We call this underlying graph the technology graph. However, before a user
can use a particular service, there must be a provider that has invested in bandwidth for
that particular service. In other words, the investments of the providers induce a subgraph,
the set of usable services, of the original technology graph that can be used by the users
to process their task. Each user selects a bundle of services that is needed to perform the
user’s task at minimum total processing time. The total processing time of a service depends
on the quantity of users that chooses the particular service and the installed bandwidth of
the providers. We assume that each user has a given willingness to pay for taking part in
the game and is only present if the total costs do not exceed this value. Given that users
impose externalities on each other, we assume that users in the second stage choose their
bundle of services according to a Wardrop equilibrium [33] in the corresponding graph of
usable services.

Given that prices for services are typically charged per usage time, we use the users’
costs as a proxy for the total revenue of the providers investing in a service. This total
revenue is shared proportionally among those providers investing in the service. Proportional
sharing is used in many different settings, e.g., in cooperative game theory [28] and in the
context of congestion games [27]. We assume that the providers’ aim is to maximize profit,
which depends on the amount of users using their services and the total amount invested.
Intuitively, little investment in a service implies a high processing time and thus a high price
paid by users, but only a small fraction of users will choose the service. Too much investment
might lead to a large fraction of users, but only for a low price.

1.1 Contribution
We are interested in how competition between selfish providers affects the choices made
by the users in the network investment game. More formally, we study the existence and
uniqueness of subgame perfect Nash equilibria in which in the first stage, providers maximize
profit and in the second stage, users choose a Wardrop equilibrium given the strategies of
the providers in the first stage. We then consider the performance of equilibria in terms
of the price of anarchy [23]. The price of anarchy measures the difference in performance
between the worst subgame perfect Nash equilibrium and the social optimum. In fact, for all
instances we consider, the performance of all subgame perfect Nash equilibria is the same
and we are able to provide an exact characterization of this performance.

Our main result, Theorem 3.2, provides a simplification of the structure of equilibrium
investments for series-parallel networks. We focus on series-parallel networks as this represents
bundles of services consisting of complements and substitutes. We show that we can restrict
attention to investments in which each provider invests in shortest paths (with respect to the
number of services). This means that providers have no incentive to diversify their portfolio
and invest in complements, nor to invest in services that can be replaced by less services.
The result has some interesting implications. When being interested in either a subgame
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perfect Nash equilibrium, the social optimum, or combining both in the price of anarchy,
it is without loss of generality to assume that the network consists of a single edge. This
greatly simplifies the remaining analysis.

We then study the quality of subgame perfect Nash equilibria for different classes of
users. In Section 4, we assume that all users have a fixed common willingness to pay. We
precisely characterize the society’s surplus and the providers’ profits both in a corresponding
optimal solution and in every subgame perfect Nash equilibrium. It turns out that the price
of anarchy with respect to society’s surplus can be bounded by a constant, whereas the ratio
with respect to providers’ profits can grow linearly with the number of providers. In Section
5, we redo the same analysis for users that have different willingnesses to pay and obtain
similar results as for the fixed reservation value case.

1.2 Related work
Our model is closely related to several different classes of recently studied models. There is
a close connection with network design games, as introduced by Anshelevich et al. [5] and
extended by Anshelevich et al. [4]. In these games, selfish agents want to connect a personal
source to sink by means of a path, and they share the costs of an edge in case multiple agents
use that edge in their path. In network investment games, providers do not share the cost of
an edge, but rather the revenue from the users using that edge. As a result, we obtain that
providers want to invest in paths in equilibrium, an assumption that is not made a-priori.

In network investment games, we assume that users in the second stage behave as in
a non-atomic network congestion game. The idea behind congestion games is that selfish
users try to minimize their cost in an already existing network. The best-known solution
concept for these games is the Wardrop equilibrium [33]. Beckmann et al. [7] and Dafermos
and Sparrow [16] proved some structural results of this equilibrium concept. Roughgarden
and Tardos [30] were the first to obtain a bound on the price of anarchy for non-atomic
routing games.

Recently, starting with Acemoglu and Ozdaglar [1], several authors considered a two-stage
game in which edge owners compete for users by means of tolling. In those games, the
users in the second stage also choose a Wardrop equilibrium. Acemoglu and Ozdaglar [1]
only considered parallel networks, which was then generalized to parallel-serial networks by
Acemoglu and Ozdaglar [2]. Ozdaglar [29] and Hayrapetyan et al. [20] allowed for elastic
users. Johari et al. [22] studied an extension that includes entry and investments decisions.
Recently, Correa et al. [13] and Harks et al. [18] considered the game in which a central
authority is allowed to impose price caps. In the former paper, caps are allowed to be different
on different edges, in the latter the cap is uniform. Almost all of the above models, with
the exception of Acemoglu and Ozdaglar [2], impose the simplifying assumption that the
topology of the network is restricted to be parallel. We allow for arbitrary series-parallel
graphs and do not impose any restriction on the strategy space of the providers, that is,
every provider is allowed to invest in every edge of the network.

A slightly different, but closely related model is the game analyzed by Correa et al. [14].
Here each edge in a series-parallel network represents a producer that competes by selecting
a markup that then determines a price function. The main difference to our work is
that producers are identified by an edge and thus do not have the possibility to compete
on other edges.

Leader-follower models as the previous ones are also known as Stackelberg games [32].
Recently, lots of attention has been placed on Stackelberg pricing games. Starting with Labbé
et al. [24], who considered the problem in which a leader sets prices on a subset of edges and
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the follower chooses a shortest path, several authors generalized to different combinatorial
problems for the follower. For example, Cardinal et al. [12] studied the Stackelberg minimum
spanning tree problem, and Bilò el al. [8] and later Cabello [11] investigated the Stackelberg
shortest path tree problem. Balcan et al. [6] and Briest et al. [10] considered the power of
single-price strategies. Böhnlein et al. [9] extended the analysis of this simple algorithm
beyond the combinatorial setting.

Lastly, there is a close connection to some of the traditional models of competition
in economics, like Cournot competition [15]. We refer to Harks and Timmermans [19]
for some other recent work connecting atomic splittable congestion games to multimarket
Cournot oligopolies.

2 Preliminaries

We consider a two-sided market in which users purchase bundles of services. The set of feasible
bundles is specified by a technology graph Gst = (V,E), which is a directed series-parallel
network with source s ∈ V and sink t ∈ V . Each edge corresponds to a service. Every s-t
path in Gst describes a feasible bundle of services. Note that serial edges in Gst correspond
to complements, whereas parallel edges correspond to substitutes.

We model such a market as a two-stage game. In the first stage, a set of providers chooses
to invest into services represented by edges. In the second stage, the users select bundles of
services or paths in Gst given the investments of the providers in the first stage.

The amount of investment affects the speed of the services. We assume for simplicity
that prices for each service are charged automatically on a per-time basis. That is, the price
function of an edge directly depends on the chosen investments into the corresponding service
in the first stage and the current load induced by the users in the second stage. These two
quantities highly influence the time that is needed to finish a job on a cloud computing device.
Our choice of the price functions and the model of network investment games are motivated
by time-dependent prices that are implemented in Amazon Web Services [3], Microsoft Azure
[26] and Google Cloud [17] for using on-demand virtual machines.

We assume for simplicity that each user is of infinitesimal size which allows us to model
the second stage as a non-atomic routing game. However it is important to note that the
overall demand is not fixed, but depends on the total price the users have to pay for the
services. The demand thus depends on the investment of the providers.

More formally, a network investment game is given by a tuple G = (Gst, N, u), where
Gst = (V,E) is a directed series-parallel network with source s ∈ V and sink t ∈ V ,
N = {1, . . . , n} is the set of providers, and u : R+ → R+ is the reservation function.
Reservation functions model the users’ willingness to pay and impose elastic demand. This
concept has already been used in the work of Beckmann, McGuire, andWinsten [7]. Intuitively,
there is a total demand of x in the game if the total price for bundles of services under
demand x is not larger than u(x). We assume that u is non-increasing.

The Provider’s Strategies. Each provider i ∈ N chooses an investment bi,e ≥ 0 for every
edge e ∈ E. Let bi = (bi,e)e∈E be the investments of provider i. Given an investment matrix
b = (bi)i∈N , the total investment on edge e is be =

∑
i∈N bi,e. Given b ∈ RN×E+ , we define

the set of relevant edges by E+(Gst) = {e ∈ E(Gst) | be > 0}. The price ce for a user using
an edge e, i.e., a service, is an increasing function of the amount of users fe using edge e and
defined by

ce(fe, be) =
{
fe
be

e ∈ E+(Gst),
∞ otherwise.



D. Schmand, M. Schröder, and A. Skopalik 151:5

Note that this cost function is a very simple model for prices that depend on the total load
of a service and the total investment. Here, we use the simplifying assumption that the time
that is needed to complete a service request scales linearly with the load on the machines
and inverse linearly with the investment.

The User’s Actions. Let P(Gst) denote the set of s-t paths, and let P∗(Gst) denote the set
of s-t paths with minimum number of edges in Gst. We model the behavior of the users by a
flow in Gst. The flow is defined to be a non-negative vector f(Gst) = (fP )P∈P(Gst). Note
that we stick to the path-definition of flows, because we assume strong flow conservation.
For a flow f(Gst) and an edge e ∈ E(Gst), let fe =

∑
P3e fP denote the amount of flow on

edge e. Let |f(Gst)| =
∑
P∈P(Gst) fP be the total amount of users that are routed through

the network under f(Gst).
For a given investment matrix b, we call some flow f(Gst) a Wardrop equilibrium if for

all P, P ′ ∈ P(Gst) with fP > 0, we have∑
e∈P

ce(fe, be) ≤
∑
e∈P ′

ce(fe, be) and
∑
e∈P

ce(fe, be) <∞.

In a network investment game, we assume that both the providers and the users act
selfishly. For simplicity, we assume that users are infinitesimal small and thus, a Wardop flow
arises in the second stage. We will remark below that, for a given investment matrix and a
given non-increasing reservation function, the arising Wardrop flow is uniquely defined, which
is necessary for our model to be well-defined. Given the investment matrix b, we denote the
corresponding Wardrop flow by f(Gst, b). If Gst and/or b is clear from the context, we often
omit the dependency on Gst and/or b in order to improve readability. If s and t are clear
from the context, we sometimes write G instead of Gst.

The Provider’s Profits. The profit of provider i ∈ N depends on the associated Wardrop
flow f , the investment matrix b and the actual cost for the users ce(fe, be). We define it by

πi(b) =
∑
e∈E+

bi,e
be
· fe · ce(fe, be)−

∑
e∈E+

bi,e =
∑
e∈E+

bi,e ·
f2
e

b2
e

−
∑
e∈E+

bi,e.

where bi,e
be

is the proportional share of provider i ∈ N and
∑
e∈E+ bi,e her investment costs.

This profit function is motivated by that fact that each user pays a load-dependent price
for using a service of the provider, which is proportionally divided among those providers
investing in the service, and the provider has some cost for installing bandwidth for the
services. We consider the very simple model that investment costs are linear and the profit
is given by the payment of the users minus the investment costs.

We call an investment matrix b ∈ RN×E+ a subgame perfect Nash equilibrium if for all
i ∈ N and all b′i ∈ RE+,

πi(b) ≥ πi(b′i, b−i).

Given b ∈ RN×E+ , we call b′i a better response for provider i ∈ N if πi(b′i, b−i) > πi(b). In
a subgame perfect Nash equilibrium, no provider has a better response. We call a better
response b′i demand preserving if |f(b′i, b−i)| = |f(b)|.
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The Social Welfare. or social surplus, is traditionally defined as the sum of the providers’
surplus and the user’s surplus. In our model, similarly as in Hayrapetyan et al. [20], this
boils down to,

SW (b) =
∑
i∈N

πi(b) +
∫ |f |

0
u(x) dx−

∑
e∈E+

fece(fe, be) =
∫ |f |

0
u(x) dx−

∑
e∈E

be.

Note that payments do not appear in the social welfare, as they are transfers from users to
providers. An investment matrix b∗ is called a social optimum if b∗ maximizes the social
welfare.

For a given instance G, let E(G) denote the set of subgame perfect Nash equilibria. Notice
that E(G) might be empty. A natural question is to quantify the loss in social welfare due to
competition. Typically, researchers provide upper bounds for the loss in efficiency. We are
able to precisely bound this inefficiency for any given instance. To this end, we define the
price of anarchy and price of stability for a given instance as

PoA(G) =

sup
b∗∈RN+

SW (b∗)

inf
b∈E(G)

SW (b) , and PoS(G) =

sup
b∗∈RN+

SW (b∗)

sup
b∈E(G)

SW (b) .

We assume that 0/0 = 1 and PoA(G) = PoS(G) =∞ if E(G) is empty.
A second natural question is to quantify the loss in total profit due to competition. We

call this the providers’ price of anarchy and providers’ price of stability, and define it by

PPoA(G) =

sup
b∗∈RN+

∑
i∈N πi(b∗)

inf
b∈E(G)

∑
i∈N πi(b)

, and PPoS(G) =

sup
b∗∈RN+

∑
i∈N πi(b∗)

sup
b∈E(G)

∑
i∈N πi(b)

.

As before, we assume that 0/0 = 1 and PPoA(G) = PPoS(G) =∞ if E(G) is empty.
We start with some simple observations on Wardrop equilibria for this model. To calculate

the flow that models the users, we distinguish between two cases. Either there exists a s-t
path P ∈ P such that be > 0 for all e ∈ P , or not. Put differently, either there is a path P
such that for all e ∈ P we have e ∈ E+(Gst), or all paths have investment 0 for at least one
edge. If there is no s-t path with strictly positive investment on every edge, the Wardrop
equilibrium is the empty flow with |f | = 0. If there is some P ∈ P with be > 0 on all edges
e ∈ P , we obtain the following results.
I Remark 2.1 ([7, 16]). If f is a Wardrop equilibrium, then there is a constant cb ≥ 0 such that∑
e∈P ce(fe, be) = cb whenever P ∈ P with fe > 0 for all e ∈ P , and

∑
e∈P ce(fe, be) ≥ cb

otherwise.
I Remark 2.2 ([7, 16]). For two Wardrop flows f, f ′ with |f | = |f ′| in a network with strictly
increasing cost functions on every edge, we have that fe = f ′e for all e ∈ E.

Note that, by Remarks 2.1 and 2.2, we have that the cost per user in the network
investment game cb, as defined in Remark 2.1, only depends on the total demand |f | for all
Wardrop flows f and a fixed b. Let us focus on this dependence and write cb(|f |) instead of
cb. It turns out that cb(|f |) is in fact strictly increasing in |f |. The following proposition is
due to Lin, Roughgarden, and Tardos [25]. However, in their variant of the proposition they
only assume non-decreasing cost functions and show that cb(|f |) is non-decreasing in |f |.
Since we have strictly increasing cost functions, we modify their proof in the full version [31]
such that we get a slightly stronger statement.
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I Proposition 2.3 ([25]). cb(|f |) is strictly increasing in |f |.

We note that we can extend Proposition 2.3 and show that for network investment games,
cb(|f |) is even linear in |f |. The proof uses the series-parallel structure of the graph and can
be found in the full version [31].

I Proposition 2.4. Given a vector of investment levels b, cb(|f |) is a linear function of |f |.

The above two propositions are very important for the setup of network investment games.
We assume that demand directly depends on the actual cost for the users, and thus indirectly
on b. In order to do so, we use that the costs for each user are given by a linear function
cb(|f |). Combining this with the reservation function u stating that an amount of u(x) has a
willingness to pay at least x, we define

|f | = inf{x ∈ R+ | u(x) ≤ cb(x)}.

Note that this infimum is well defined, since u is non-increasing and cb(·) is strictly increasing
due to Proposition 2.3. Furthermore, let us illustrate the dependence of |f | on b by the
following observation. An increase of some be for fixed f induces a change in the corresponding
edge cost ce(fe, be) and weakly decreases the cost of the flow f . Since Wardrop flows are
optimal flows for linear cost functions, this weakly decreases the value of cb(x) for any fixed
x. Overall, one can show that a change of b changes the slope of cb(x) in the definition above,
which then might result in a different demand.

3 Characterization of Equilibria

In this section, we derive some important properties of subgame perfect Nash equilibria. First,
we prove our main result that in every subgame perfect Nash equilibrium, every provider
only invests in shortest (with respect to the number of edges) paths. The implications
of this result are quite significant and twofold. First, it implies a nice characterization of
markets that can be modeled by means of a network investment game. Second, the result
simplifies the further analysis of the game significantly. As long as we are interested in
equilibrium investments, the analysis gets notably easier. Instead of considering a strategy
space in which every provider is allowed to invest in every edge separately, we can restrict
attention to strategies in which providers invest in shortest paths. We will heavily use this
characterization in the later sections.

I Definition 3.1. We call a strategy bi a path strategy of provider i if there exist values
(bi,P )P∈P with bi,P ≥ 0 such that bi,e =

∑
P :e∈P bi,P for all e ∈ E.

Note that the definition ensures that we can always decompose a path strategy (bi,e)e∈E
of a provider i ∈ N defined on edges into a path decomposition. Thus, when considering path
strategies, we can work with the path decomposition of investments, instead of the investments
defined on edges. If all providers’ investments are path strategies, it is immediately clear
that we can also define bP =

∑
i∈N bi,P for all P ∈ P and |b| =

∑
P∈P bP .

Note that, when using the term shortest paths, we always refer to shortest paths with
respect to the number of edges in the path. Now, we are able to state and prove our main
theorem of this section.
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I Theorem 3.2.
(i) In every subgame perfect Nash equilibrium, every provider i ∈ N chooses a path strategy

on shortest paths.
(ii) Let i ∈ N . If every provider j ∈ N \ {i} chooses a path strategy on shortest paths

then the following holds: For every strategy bi of provider i, there is a path strategy
on shortest paths b′i inducing the same amount of flow and at least the same profit for
provider i.

For the proof of Theorem 3.2, we need the following two lemmas. In the first lemma we
observe that in equilibrium a provider cannot choose positive investments on two paths of
different length. If so, there is always a better response that only invests in the shorter of
the two paths.

I Lemma 3.3. Let (G, s, t) be a series-parallel graph that is a parallel composition of series-
parallel graphs (G1, s, t) and (G2, s, t). Let b be a vector of path strategies of paths that all
are either shortest s-t paths in G1 with length k or shortest s-t paths in G2 with length `.
If k < `, and bi,P2 > 0 for some provider i ∈ N and P2 ∈ P∗(G2), then there is a demand
preserving better response for i with bi,P2 = 0.

Next we turn to graphs that are a series composition of two subgraphs. Assuming that
every provider’s strategy can be decomposed into two path strategies for the two subgraphs,
we show that in equilibrium they must invest the same value in both subgraphs. Furthermore,
if all other providers play shortest path strategies, for all strategies of a provider, the provider
always has an at least as good strategy in shortest paths.

I Lemma 3.4. Let (G, s, t) be a series-parallel graph that is a series composition of series-
parallel graphs (G1, s, v) and (G2, v, t). Let b be a vector of investments (bi,e)i∈N,e∈E that
can be partitioned into (b1

i,e)i∈N,e∈E(G1) and (b2
i,e)i∈N,e∈E(G2) such that b1 and b2 are shortest

path strategies in their corresponding graphs G1 and G2, respectively.
(i) If

∑
P∈P∗(G1) b

1
i,P 6=

∑
P∈P∗(G2) b

2
i,P for some provider i ∈ N , then there is a demand

preserving better response for some j ∈ N .
(ii) If, additionally,

∑
P∈P∗(G1) b

1
m,P =

∑
P∈P∗(G2) b

2
m,P for all providers m 6= i, then

the following holds. For every strategy bi there is a shortest path strategy b′i with
|f(b−i, bi)| = |f(b−i, b′i)| and at least the same profit for provider i, i.e., πi(b−i, bi) ≤
πi(b−i, b′i).

Now, we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. The main difficulty in proving statements on strategy changes of
providers lies in the fact that the users’ costs and, hence, demand and flow might change.
However, we are able to circumvent the dependency on the reservation function by only
considering demand preserving better responses. In fact, we prove the first statement of the
theorem by showing the following stronger statement. (i’) If there is a provider i ∈ N such
that bi is not a path strategy on shortest paths, then there is a provider j ∈ N with a demand
preserving better response. Note that statement (i’) implies part (i) of the theorem. We show
statement (i’) and part (ii) of the theorem by induction on the structure of the series-parallel
graph G. For the base case, a graph with a single edge, both statements are trivially fulfilled.
For the induction step, assume the statements are true for series-parallel graphs G1 and G2,
and we will argue that the statements are true for a new series-parallel graph that either
arises from a parallel composition or a series composition of G1 and G2.

For (i’), observe the following: If there is a provider i such that bi is not a path strategy
in one of the two subgraphs G1 or G2, we can assume w.l.o.g. that it is not a path strategy
in G1. Then there is a demand preserving better response in G1 for some provider j. This is
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also a demand preserving better response for j in G, since it is demand preserving in G1,
and thus does not change any flow in G2, and thus any profit in G2. So we can assume that
the investments bi are shortest paths within G1 and within G2 for all i ∈ N .

Case 1: Parallel Composition. Assume G is the result of a parallel composition of series-
parallel networks G1 and G2. For proving (i’), denote the length of the shortest paths in
G1 by k and the length of the shortest paths in G2 by `. If k 6= ` and there is a provider i
that invests in the longer path, we can apply Lemma 3.3 to show that there is a demand
preserving better response for provider i. For (ii), observe that if bj is a path strategy
on shortest paths for every provider j ∈ N \ {i}, it is also a path strategy on shortest
paths in both subgraphs. Thus, by induction, provider i has a shortest path strategy
b′i that is demand preserving w.r.t. bi within G1 and G2. Note that this is already a
strategy on paths that does not change the overall demand and yields at least as much
profit as bi. Note that this is not a shortest path strategy in G only if k 6= `, say w.l.o.g.
k < ` and i invests in G2. In this case, we apply Lemma 3.3 and conclude that i has a
demand preserving better response and, thus in fact has the desired strategy on shortest
paths in G.

Case 2: Series Composition. Assume G is the result of a series composition of series-parallel
networks G1 and G2. For (i’), note that have already argued that b is a shortest path
strategy within G1 and within G2 for every provider. However, if bi it is not a shortest
path strategy in G for some i ∈ N , we fulfill the conditions of Lemma 3.4 (i).

For (ii), note that we also fulfill the additional condition of Lemma 3.4 (ii). By using the
lemma, we can conclude that for every strategy bi, provider i has a strategy b′i on shortest
paths inducing the same demand and at least the same profit. J

Note that we have proven that in a subgame perfect Nash equilibrium, all providers
invest in shortest path strategies. Additionally, for proving that some investment matrix is
an equilibrium, we can restrict the strategy set to shortest path strategies.

We proceed with a proposition that significantly reduces the set of shortest path strategies.
We show that if each provider chooses an investment on shortest paths, it is irrelevant how
this investment is distributed over the shortest paths. The proof of the proposition is omitted
and can be found in the full version [31] .

I Proposition 3.5. Let b and b′ be investment matrices such that for all i ∈ N , bi and b′i
are path strategies, and bi and b′i can be decomposed into path decompositions (bi,P )P∈P∗ and
(b′i,P )P∈P∗ only using shortest paths, respectively. Additionally, let

∑
P∈P∗ bi,P =

∑
P∈P∗ b

′
i,P

for all i ∈ N . Then, πi(b′) = πi(b) for all i ∈ N and |f(b)| = |f(b′)|.

By using Proposition 3.5, we can classify shortest path strategies into equivalence classes,
represented by a single number.

I Observation 3.6. In order to analyze subgame perfect Nash equilibria and check their
existence, it is sufficient to check investments on shortest paths. By Proposition 3.5, we
know that it is irrelevant on which shortest path a provider invests. Thus, we can assume
that each strategy of a provider is not a vector of investments (bi,e)e∈E, but a single number∑

P∈P∗ bi,P representing the total investment in shortest paths.
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4 Homogeneous Users

In this section, we assume that all users are homogeneous and have the same fixed reservation
value R ∈ R+ for processing a task, and decide not to process their task if the price is above
R. More formally, we assume that u(x) = R for all x ∈ [0, d], and u(x) = 0 for all x > d,
where d ∈ R+ represents the size of the population of users. We show that there always
exists a subgame perfect Nash equilibrium and analyze the inefficiency of equilibria in terms
of the PoA and PPoA.

Recall that, by Observation 3.6, we can restrict the strategy spaces of the providers to
path strategies on shortest paths and denote them by a single number. We slightly abuse
notation and denote the strategy chosen by provider i by bi ∈ R+.

We first compute the demand and profits of providers in a network investment game with
a fixed reservation value.

I Lemma 4.1. For u(x) = R for all x ∈ [0, d], and u(x) = 0 for all x > d, where d ∈ R+,
(i) the demand |f(b)| is given by the function |f(b)| = min

{
R·|b|
k , d

}
and

(ii) the profit πi is given by πi(bi, b−i) = min
{
k ·
(
R2

k2 − 1
)
· bi, k ·

(
d2

|b|2 − 1
)
· bi
}
,

where k denotes the length of a shortest s-t path.

Using the closed form for the demand and the profit, we show by a case distinction of
R < k, R = k and R > k in the full version [31] that a subgame perfect Nash equilibrium
always exists and has the same total investment.

I Theorem 4.2. There always exists a subgame perfect Nash equilibrium.

The following example illustrates that a subgame perfect Nash equilibrium need not
be unique.

I Example 4.3. Let G consist of a single edge connecting s to t, n = 2, and u(x) = 2 for
all x ∈ [0, 1], and u(x) = 0 for all x > 1. Then for i = 1, 2, πi(b) = min

{
3bi,

(
1
|b|2 − 1

)
· bi
}
.

From the first order conditions of provider i = 1, 2, we get that all b ∈ R2
+ with 3

16 ≤ b1 ≤ 5
16

and b1 + b2 = 1
2 are subgame perfect Nash equilibria. Notice that the total investment is the

same in all subgame perfect Nash equilibria.

Given that a subgame perfect Nash equilibrium exists, we might wonder about the induced
performance of an equilibrium. In order to answer this question, we consider two different
measures of performance: the social welfare and the total providers’ profits.

The main result of this section gives a tight characterization on the price of anarchy for
fixed reservation value users.

I Theorem 4.4. For an instance G with u(x) = R for all x ∈ [0, d], and u(x) = 0 for all
x > d, where d ∈ R+,

PoA(G) = PoS(G) =


(R+k)·(R−k)
R·(R−k

√
n−2
n )

if R > k and
√

n−2
n ≥ k

R ,

1 otherwise.

Proof. First, observe from the definition of the social welfare that SW (b) = b ·
(
R2

k − k
)
for

all b ∈ RN+ with |b| ≤ d·k
R . Moreover, SW (b) is decreasing in |b| for |b| > d·k

R . This implies
that sup

b∈RN×E+

SW (b) is attained at some b∗ ∈ RN+ with |b|∗ ≤ d·k
R . In particular, if R ≤ k, all

subgame perfect Nash equilibrium maximize the social welfare.
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So assume that R > k. Then, |b|∗ = d·k
R . From the proof of Theorem 4.2, it follows that

either |b| = d·k
R or |b| = d ·

√
n−2
n . In the former case, we have that all subgame perfect

Nash equilibrium maximize the social welfare. In the latter case, we have d·R−k· d·kR
d·R−k·d·

√
n−2

2
=

(R+k)·(R−k)
R·(R−k

√
n−2
n )
≤ 1 + k

R < 2, where the last inequality follows since R > k. J

I Corollary 4.5. For all G with u(x) = R for all x ∈ [0, d], and u(x) = 0 for all x > d, where
d ∈ R+, PoA(G) < 2.

Note that the above result is quite robust, and states that, independent of R, the social
welfare under competition is at least 1/2 the optimal social welfare.

However, the following result shows that the providers’ price of anarchy is not bounded
by a constant, but could grow linearly with the number of providers (by at most n/2), even
for fixed reservation value users.

I Theorem 4.6. For an instance G with u(x) = R for all x ∈ [0, d], and u(x) = 0 for all
x > d, where d ∈ R+,

PPoA(G) = PPoS(G) =


n·
√

n−2
n ·(R

2−k2)
2·R·k if R > k and

√
n−2
n ≥ k

R ,

1 otherwise.

Proof. First, observe that if R ≤ k, then
∑
i∈N πi(b) ≤ 0 for all b ∈ RN+ and thus all subgame

perfect Nash equilbria maximize the sum of providers’ profits.
Second, if R > k, then by Lemma 4.1, b∗ = arg max

b∈RN+

∑
i∈N πi(b) has |b∗| = d·k

R . In

particular, if
√

n−2
n < k

R , all subgame perfect Nash equilibrium maximize the sum of the
providers’ profits.

Third, if R > k and
√

n−2
n ≥ k

R , then from the proof of Theorem 4.2, it follows that in a

subgame perfect Nash equilibrium, |b| = d ·
√

n−2
n . Hence, we get

k·

(
d2

( d·kR )2−1

)
· d·kR

k·

(
d2(

d·
√

n−2
n

)2−1

)
·d·
√

n−2
n

= n·
√

n−2
n ·(R

2−k2)
2·R·k .

J

5 Heterogeneous Users

We now turn to reservation functions that correspond to heterogeneous users with differing
reservation values. As an example we choose one of the arguably simplest class of functions.
We note that the study of different and application specific functions is an interesting open
question. Here, we consider the reservation functions u(x) = 1

x1/α , where α > 0, for all
x ∈ R+. We distinguish between one and multiple provider games as for one provider
games a subgame perfect Nash equilibrium might not exist. We study equilibrium existence,
equilibrium uniqueness and the inefficiency in terms of the PoA and PPoA. Note that we
again restrict the strategy spaces of the providers to path strategies on shortest paths and
denote them by a single number bi ∈ R+ due to Observation 3.6.
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We show that for network investment games with a single provider a monopoly equilibrium
exists if and only if α > 1. If α ≤ 1, it is always beneficial for the provider to decrease
investment to a smaller, strictly positive amount. For the case of n ≥ 2 there is a unique
subgame perfect equilibrium.

I Theorem 5.1. Let k denote the length of a shortest s-t path in G. For n = 1, there exists
a subgame perfect Nash equilibrium if and only if α > 1. If α > 1, the equilibrium is unique

and given by b1 =
(

1− 2
(α+1)

)α+1
2

kα .

For n ≥ 2, there is a unique Nash equilibrium given by bi = 1
|N | ·

(
1− 2

(α+1)·|N|

)α+1
2

kα

for all i ∈ N .

For n = 1, we refer to the full version [31]. For the proof of the theorem for n ≥ 2, we
need the following lemmas that are proven in the full version [31].

I Lemma 5.2. Let S be the set of providers i ∈ N with bi > 0 for some investment vector b.

Then, if there is some i ∈ S with bi 6= 1
|S| ·

(
1− 2

(α+1)·|S|

)α+1
2

kα , then b is not a subgame perfect
Nash equilibrium.

I Lemma 5.3. Let S be the set of providers i ∈ N with bi > 0. If S 6= N , then this is not a
subgame perfect Nash equilibrium.

Proof of Theorem 5.1. Assume n ≥ 2. First, note that by Lemma 5.3 all providers have to

invest and by Lemma 5.2 in a Nash equilibrium all have to invest b̃ = 1
|N | ·

(
1− 2

(α+1)·|N|

)α+1
2

kα .
Thus, b = b̃ · 1 ∈ RN is the only possibility for a Nash equilibrium. It remains to show that b
is in fact a Nash equlibrium. In order to do so, we fix some provider i ∈ N and prove that b̃
is in fact a best response to b = b̃ ·1. First, we observe in a lemma in the full version [31] that
πi(bi, b−i) is continuous in bi. We proceed by showing that (i) b̃ is the only value fulfilling
the first order conditions and (ii) yields a positive profit. For (i) note that

∂πi(bi, b−i)
∂bi

= k
1−α
α+1

(bi + |b|−i)
2

α+1
·
(

1− 2
(α+ 1) ·

bi
bi + |b|−i

)
− k.

We have shown in Lemma 5.2 that b̃ fulfills the first order condition for all i ∈ N . For
showing uniqueness, define h(x) =

(
1− 2

(α+1) ·
x

x+|b|−i

)
and observe that if h(x̂) < 0 for

some x̂, then h(x) < 0 for all x ≥ x̂. We conclude that all values b∗ fulfilling the first order
condition have the property b∗ < x̂. However, for all b∗ < x̂, the h(b∗) is decreasing in b∗.
This shows that there is in fact only one value fulfilling the first order condition.

For (ii), observe that πi(b) evaluates to b̃
(
k
(

1− 2
(α+1)n

)−1
− k
)
, which is positive since(

1− 2
(α+1)n

)−1
> 1. J

We are now ready to precisely quantify the inefficiency of subgame perfect Nash equilibria
for any instance of a network investment game with reservation function u(x) = 1

x1/α , where
α > 1. The proof can be found in the full version [31]. As in immediate consequence,
we obtain that the price of anarchy is upper bounded by a surprisingly small constant of
approximately 1.22 for every graph and every α > 1.

I Theorem 5.4. For an instance G with u(x) = 1
x1/α , where α > 1,

PoA(G) = PoS(G) =
(

αn

n(α+ 1)− 2

)α−1
2 2αn
n(α+ 1) + 2(α− 1) ≤ 2

√
1
e
.



D. Schmand, M. Schröder, and A. Skopalik 151:13

As an interesting consequence, we would like to point out that the equilibrium for a two
providers game is in fact optimal.

I Corollary 5.5. For u(x) = 1
x1/α , where α > 1, and n = 2, we have PoA = 1.

We now consider the total providers’ profit and derive tight bounds on the PPoA.
Interestingly, in contrast to the PoA, the PPoA is not constant but grows almost linearly
with the number of providers.

I Theorem 5.6. For an instance G with u(x) = 1
x1/α , where α > 0, and n ≥ 2,

PPoA(G) = PPoS(G) =

∞ if α < 1,

n
(

(α+1)n−2
n(α−1)

) 1−α
2 otherwise.

6 Conclusion

We have considered a class of games, called network investment games, in which providers
invest in bandwidth of particular services that are then used by users to process a specific
task. We studied the existence and inefficiency of subgame perfect Nash equilibria when
the underlying technology graph is series-parallel, reflecting that services can be either
complements or substitutes. We showed that it is essentially without loss of generality to
restrict attention to one-edge networks. For two particular classes of reservation functions
we studied the performance of subgame perfect Nash equilibria and we quantified this
performance in terms of the social welfare and the total providers’ profit.

Several questions remain open. We have given examples for which subgame perfect Nash
equilibria exist and do not exit, and we have shown that for series-parallel graphs the existence
of subgame perfect Nash equilibria is essentially independent of the technology graph. It
would be interesting to know if there is a (general) property of the reservation functions
that characterize the existence of subgame perfect Nash equilibria. In case there is such an
existence condition, it would be nice to find a price of anarchy bound that is independent
of the class of reservation functions being used? Unfortunately, our results have far less
implications for graphs that are not series-parallel, like for example the Braess’ graph. Is it
still true that for more general networks providers only invest in shortest paths in equilibrium?
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