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Abstract
The task of paraphrase identification has been applied to diverse scenarios in Natural Language
Processing, such as Machine Translation, summarization, or plagiarism detection. In this paper we
present a comparative study on the performance of lexical, syntactic and semantic features in the
task of paraphrase identification in the Microsoft Research Paraphrase Corpus. In our experiments,
semantic features do not represent a gain in results, and syntactic features lead to the best results,
but only if combined with lexical features.
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1 Introduction

The task of paraphrase identification consists in deciding if two sentences have the same
meaning. It is a popular task in Natural Language Processing, as it can be used in several
scenarios. For instance, it can be used for evaluation purposes in Machine Translation: a
translation result can be missing a reference, and, still, be a good translation; thus, we
should be able to see if it is a paraphrase of some sentence in the reference [24]. In addition,
paraphrase identification can also be used by a chatbot that has in its knowledge base a set
of pre-defined question/answer pairs. Here, a question submitted by the user needs to be
compared with existing questions. If the user question is a paraphrase of an existing question,
the system only needs to return the appropriate answer [19]; other applications in which
paraphrase identification can help include summarization [21], or plagiarism detection [18].
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9:2 From Lexical to Semantic Features in Paraphrase Identification

In many cases, just by comparing the shared lexical elements of two sentences (seen as
bags of words) we are able to identify paraphrases. However, in many other cases we need to
move to a semantic level to be able to say that two sentences are equivalent. For instance,
Symptoms of influenza include fever and nasal congestion. and Fever and nasal congestion
are symptoms of influenza. can be identified as paraphrases by taking advantage of features
at a lexical level (for instance, by counting the number of common words). However, the
previous sentences and the sentence A stuffy nose and elevated temperature are signs you
may have the flu.1 will only be identified as paraphrases if we have access to some semantic
information, for instance, if we know that fever is similar or equal to elevated temperature
and the same between nasal congestion and stuffy nose. Thus, a system with the goal of
identifying paraphrases should be able to reason at a semantic level. Unfortunately, some
semantic features, such as explicit meaning representations, only exist for some languages.
The same happens with syntactic features, although at a less dramatic scale, as syntactic
analyzers exist for many languages.

In this paper we present a comparative study on the performance of lexical, syntactic and
semantic features for paraphrase identification. To the best of our knowledge, the whole set of
features that we use in this work was never employed altogether for paraphrase identification,
particularly the ensemble of structural modelling for syntax and explicit whole sentence
meaning representations for semantics. Results show that syntactic features lead to the best
results, but only if combined with lexical features; semantic features in comparison with
lexical features, bring a small improvement to recall, f-measure and accuracy when applied
in addition to the lexical features.

This paper is organized as follows: in Section 2 we present Related Work, in Section 3
we describe the features from the different linguistic levels, and, in Section 4 we present the
experimental setup. Finally, in sections 5 and 6 we present the obtained results and main
conclusions, respectively; in the latter section we also point to future work.

2 Related work

As previously mentioned, this work is focused on paraphrase identification. Two sentences
are paraphrases of each other when they express equivalent meanings. The difficulty of
detecting if two sentences have equivalent meaning varies with the linguistic mechanisms
employed in paraphrasing, since a target sentence may employ various lexical and/or syntactic
transformations on its source.

Popular features employed in paraphrase identification were primarily designed for machine
translation evaluation, such as BLEU [26]. However, many other features have already been
applied to paraphrase identification, and there are even toolkits that allow to extract features
from different linguistic levels. For instance, HARRY [28] provides lexical features from
string similarity metrics applied to various word granularities, and SEMILAR [29] provides
sentence to sentence similarity metrics based on techniques such as BLEU. It also provides
word to word similarity metrics based on semantic information, as it employs Wordnet [7]
and co-occurrence models such as Latent Semantic Analysis [16]. In this work we will take
advantage of both these toolkits (along with INESC-ID@ASSIN [8]).

Still in the semantic features domain, explicit meaning representations of sentences can
also be compared for paraphrase identification purposes. For instance, in [34] features based
on the overlap among semantic representations are used. Examples of meaning representations

1 https://examples.yourdictionary.com/examples-of-paraphrasing.html
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are Abstract Meaning Representation (from now on AMR) [1] and Discourse Representation
Structures [14]. In this work we will use AMR representations of sentences to calculate
semantic features, as suggested in [12].

Considering syntactic features, some works (e.g., [33, 23]) take advantage of these struc-
tures on paraphrase identification. In these scenarios, the features extracted from structural
comparison of parse trees, from constituent or dependency analysis, identify which sub trees
are the same (structure wise), and may employ lexical semantics on leaf nodes (which carry
the words of the sentence) to weight the importance of a common sub tree.

Typically, approaches for paraphrase identification employ a supervised learning setting,
where a model is derived from a training corpus, composed by pairs of sentences labeled
with 1 or 0 (for instance) considering that they are or they are not paraphrases, respectively.
The Microsoft Research Paraphrase Corpus [6], from now on the MSRP corpus, is a popular
choice to train and benchmark such models, since there is a constantly updated ranking of the
various systems using it2. Features from machine translation evaluation achieve competitive
results in MSRP, as shown in [18]. Although other publicly available corpora exist, as the
paraphrases from Twitter messages [15], or, more recently, the open domain questions from
Quora3, in this paper we will target the MSRP corpus.

3 Features from different linguistic levels

We gathered features at the different linguistic levels. In the following we describe these sets.

3.1 Lexical Features

We call lexical features to the ones based on different distance metrics calculated between the
lexical elements of a sentence, and assuming that these distances can be computed both at
the character or word level. We also assume that words can be transformed in their lexical
variants, by applying, for instance, stemming or encoding text into the way it sounds. An
example of a lexical feature is the longest common subsequence metric applied to lowercased
versions of the sentences in analysis.

Table 1 illustrates some of the lexical features used in this work, where each feature
corresponds to the application of the metric on the leftmost column to two sequences, built
according to the lexical variants identified in the remaining columns (a detailed explanation
of each metric can be found in [8]). Such variants comprise lowercased (L) and stemmed
(S) versions of the original (O) text. The cluster (C) and Double Metaphone (DM) variants
produce a sequence composed by non verbal codes, which:

for cluster are binary strings that identify the cluster of each word, according to the
Brown clustering algorithm [3] on the Yelp dataset of online reviews4,
for DM are the codes of the Double Metaphone algorithm for each word.

The trigrams (T) variant produces a sequence with a different length from the number of
words in the original sentence, since it is composed by strings of 3 characters, one for each
character in the original text.

2 https://aclweb.org/aclwiki/Paraphrase_Identification_(State_of_the_art)
3 https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
4 https://www.yelp.com/dataset/
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Table 1 Combination of features with representations, where O, L, S, C, DM and T correspond
to Original, Lowercased, Stemmed, Cluster, Double Metaphone and Trigrams, respectively.

Feature O L S C DM T
LCS X X X X X
Edit Distance X X X X X
Cosine Similarity X X X X X X
Abs Length X X X X X
Max Length X X X X X
Min Length X X X X X
Jaccard X X X X X X
Soft TF-IDF X X X
NE Overlap X X X X X X
NEG Overlap X X X X X X
Modal Overlap X X X X X X
METEOR X X X X X
ROUGE N X X X X X
ROUGE L X X X X X
ROUGE S X X X X X
TER X X X X X
NCD X X X X X
Numeric X X X

3.2 Syntactic Features

In what concerns syntactic features we consider that these features are also based in distances,
but between syntactic constituents of the sentence. Thus, similarity scores are computed
for pairs of trees, based on the number of common substructures [22]. Here, a tree kernel is
applied to a pair of parse trees, to automatically produce the similarity scores. For instance,
an adjective attached to a noun corresponds to a sub-tree in the full tree of constituents for
a source sentence, and if the tree of the target sentence contains a sub-tree with exactly the
same leafs (adjective and noun) and root (the syntactic relation), then a tree kernel would
consider 3 fragments in common, meaning that both sentences apply the same adjective to
the same noun. Further details on such calculation are found in [22].

3.3 Semantic Features

We follow a broad definition of semantic features as all the features that take advantage of
some sort of semantic information, either at the lexical level (for instance, by comparing
synonyms of two words) or at the sentence level (for instance, by taking advantage of semantic
spaces or explicit meaning representations). Considering the latter, we draw on the previously
mentioned AMR [1]. An example AMR for the sentence My drawing was not a picture of a
hat., from the AMR corpus for the novel “The Little Prince”, can be seen in Figure 1, as
produced by trained annotators [1].

In Figure 1 is shown an AMR rooted at concept picture-01, with 01 indicating an entry
in OntoNotes [11] where this concept is defined as the act of displaying something in a
picture, such that its ARG1 represents what is displayed, as detailed in the corresponding
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(p / picture-01 :polarity -
:ARG0 (p2 / picture

:ARG1-of (d / draw-01
:ARG0 (i / i)))

:ARG1 (h / hat))

Figure 1 AMR example.

PropBank [25] frame 5 in which OntoNotes is based (since the latter is not available for free).
Hence, this AMR includes expression a pictured hat, negated by setting attribute polarity of
the root concept to a minus sign.

4 Experimental setup

In the following we present the resources involved in our experiments, and the method for
their preparation and usage.

4.1 Corpora
As previously mentioned, we will use the Microsoft Research Paraphrase Corpus [6]. Each
example in MSRP is composed of 2 sentences and a positive or negative value (0 or 1)
representing whether the sentences are a paraphrase or not. We take as train/test set the
usual suggested partitions.

4.2 Gathering Lexical Features
Considering the lexical features, we collect them from the two aforementioned toolkits:
INESC-ID@ASSIN, a framework used in the ASSIN competition, and HARRY, a toolkit
providing string similarity metrics.

In the INESC-ID@ASSIN framework, language independent metrics are applied to different
representations of the original text, such as Double Metaphone codes or character trigrams.
The 91 features identified in Table 1 were gathered from the INESC-ID@ASSIN framework.

We also use lexical features extracted from HARRY, which also provides a way of
extracting lexical features based on 3 different representations of a text: bytes, bits or words.
It contributes with 21 different metrics to apply to each representation, although not all
metrics are compatible with all representations. For instance, the Normalized compression
distance is only applicable to bits. From HARRY, we obtain 62 features, which include string
distances such as the Hamming distance and similarity coefficients such as Jaccard. The
complete set of features is described in [28].

4.3 Gathering Syntactic Features
Regarding syntactic features, constituency parse trees are obtained with the Shift-Reduce
version of the Stanford parser6. Then, tree kernels are applied to such trees. An efficient
approach for structural kernels, and particularly tree kernels, was proposed by [30] in
uSVM-TK, an SVM modelling platform based on the SVM-LIGHT engine [13]. This is the

5 http://verbs.colorado.edu/propbank/framesets-english-aliases/picture.html
6 http://nlp.stanford.edu/software/srparser.shtml
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9:6 From Lexical to Semantic Features in Paraphrase Identification

chosen learning platform for all our experiments (using tree kernels or not). All the tree
kernels available in uSVM-TK were employed, namely “Subtree”, “Subset tree”, “Subset tree
considering leaf labels” and “Partial tree kernel” [22].

4.4 Gathering Semantic Features

Taking into consideration semantic features, we used the ones from the already mentioned
SEMILAR. From this framework, we gather 9 different features on lexical semantics, such that
most correspond to a score on sentence similarity calculated from word to word similarities
based on Wordnet, Latent Semantic Analysis or Latent Dirichlet Allocation [2]. The latter
two word similarities are based on models provided with SEMILAR, pre-trained on Wikipedia
and the TASA corpus as described in [32].

In what concerns explicit meaning representations, we obtain the AMR for the sentences
with the JAMR parser [10]. Then, and in order to extract semantic features for the AMR, we
use SMATCH [4], a metric that computes the distance between two AMR, with its default
configuration (hill-climbing with smart initialization and 4 random restarts), established as
best setting in the original SMATCH research.

4.5 Evaluation Metrics

Performance is measured with Precision, Recall, F-measure and Accuracy, except for the
comparison with other systems from previously mentioned MSRP rank, where only F-measure
and Accuracy are reported.

4.6 Machine Learning kits

We use both uSVM-TK [30] and LIBSVM [5] (from its scikit-learn [27] interface) in our
experiments. The former allow us to test syntactic features in a plug and play way. The
latter was used just for sanity checking, considering the non-syntactic features, as it does not
allows a “plug and play” evaluation of syntactic features.

5 Experiments and results

5.1 The impact of the different features

The best results of applying our feature sets to MSRP are shown in Table 2. By SEMANTICS
we understand a feature set containing the SEMILAR and SMATCH features, as opposed to
using only one of these semantic feature sets.

As expected, lexical features achieve the best results when the majority of words are
common or very similar. Also, as expected, lexical features are almost useless when a
paraphrase has low lexical overlap, such as when most words in a target sentence are
synonyms of the words in the source sentence. In fact, some lexical features are 0 for all
training examples of MSRP, as identified with the Facets tool7. Listing 1 shows an example
corresponding to paraphrases from the MSRP test partition that were only correctly identified
using semantic features, due to low lexical overlap.

7 https://pair-code.github.io/facets/
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Table 2 Evaluation results on MSRP (best of all configurations attempted).

Features Prec Rec F Acc

lexical 78.79% 85.18% 81.86% 74.90%

lexical + SEMILAR 78.22% 86.40% 82.10% 74.96%

lexical + SMATCH 77.98% 85.53% 81.58% 74.32%

lexical + SEMANTICS 77.44% 85.88% 81.44% 73.97%

syntax 69.87% 95.46% 80.69% 69.62%

lexical + syntax 79.90% 86.66% 83.14% 76.63%

lexical + syntax + SEMILAR 79.44% 86.57% 82.85% 76.17%

lexical + syntax + SMATCH 79.31% 86.92% 82.94% 76.23%

lexical + syntax + SEMANTICS 79.61% 86.83% 83.06% 76.46%

Listing 1 Example that was not successful classified in lexical + syntax, but it was successful
classified in lexical + syntax + SEMANTICS.
Consumers would still have to get a descrambling security card from their cable operator to

plug into the set .

To watch pay television, consumers would insert into the set a security card provided by their
cable service .

When syntax is not involved (the first 4 results in Table 2), semantics do not improve
the performance of lexical features isolated. Overall, syntactic features in combination with
lexical features lead to the best results.

5.2 How do we compare with other systems
In order to compare our results with state-of-the-art systems, Table 3 shows the performance
of other systems on the MSRP corpus.

Of particular interest is the result from system [31], which employs neural networks, and
performs similarly to our best ensemble of features. Although no feature engineering is
needed, we are able to explain our results.

System [9] is the most similar to ours, in that it also employs lexical, syntactic and
semantic features in the uSVM-TK platform. Although with fewer features, it achieves better
results, as it involves more experiments, additional kernels and an exhaustive configuration
of SVM parameters.

5.3 The influence of the Machine Learning toolkit
Finally, experiments were also performed in LIBSVM [5], which implements the SVM
decision process in a different manner from SVM-LIGHT. Using LIBSVM for the lexical
+ SEMANTICS experiment results in F measure of 82.62% and accuracy of 76%. Hence,
results improved (previous results were of 81.44% and 73.97%, respectively), which suggest
an influence of the SVM implementation.

SLATE 2019
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Table 3 Other systems employing MSRP on similar feature types.

F Acc

lexical similarity [20] 81.3% 70.3%

distributional semantics [17] 82.8% 75.7%

neural networks [31] 83.6% 76.8%

MT metrics [18] 84.1% 77.4%

tree and graph kernels [9] 85.2% 79.1%

our best: lexical + syntax 83.1% 76.6%

6 Conclusion and Future Work

We have presented a study on the contribution of lexical, syntactic and semantic features in
paraphrase identification on the MSRP corpus.

Semantic features contribute to a performance enhancement over lexical features isolated
(if Precision is not considered), but slightly decreases performance when combined with
lexical and syntactic features, although by less than 1%. Best results were achieved by
syntactic features in combination with lexical ones. Future work includes balancing the
amount of features in vector sets, further exploration of SVM parameters, enrich the set of
semantic features, study the behaviour of these features in other corpora, and apply the same
approach to the tasks of Semantic Textual Similarity and Recognizing Textual Entailment.
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