Quarmic: A Data-Driven Web Development
Framework

Pedro Miguel Pereira Cunha
CRACS & INESC Tec LA / Faculty of Sciences, University of Porto, Portugal
up201405950@fc.up.pt

José Paulo Leal

CRACS & INESC Tec LA / Faculty of Sciences, University of Porto, Portugal
http://www.dcc.fc.up.pt/~zp

zp@dcc.fc.up.pt

—— Abstract

Quarmic is a web framework for rapid prototyping of web applications. Its main goal is to facilitate
the development of web applications by providing a high level of abstraction that hides Web

communication complexities. This framework allows developers to build scalable applications
capable of handling data communication in different models, data persistence and authentication,
requiring them just to use simple annotations. Quarmic’s approach consists of the replication of
the shared object among clients and server in order to communicate through its methods execution.
Where the annotations, namely decorators, are used to indicate the concern (model or view) that each
method addresses and to implement the framework’s inversion of control. By indicating the method
concern, it enables the separation of its execution across the clients (responsible for the view) and
the server (responsible for the model) which facilitates the state management and code maintenance.

2012 ACM Subject Classification Software and its engineering — Development frameworks and
environments; Software and its engineering — Application specific development environments

Keywords and phrases web development, framework, data-driven
Digital Object Identifier 10.4230/OASIcs.SLATE.2019.19

Funding This work is partially funded by the ERDF through the COMPETE 2020 Programme
within project POCI-01-0145-FEDER-006961, and by National Funds through the FCT as part of
project UID/EEA/50014/2013.

1 Introduction

The emergence of Web 2.0 and the popularization of mobile apps with internet connectivity
broaden the scope of web applications thus increasing the demand of interactive applications
that support a high number of users and deliver a real-time experience. As a result, web
development has become more difficult, because the range of problems that developers have
to deal have also increased, such as concurrency and scalability, or security and session
management issues.

This paper presents Quarmic, a web development framework for rapid prototyping of
web applications built on top of Node.js. Specifically, it consists of a high-level tool that
facilitates deployment of web apps with a sophisticated communication system, capable of
handling data communication in different models (broadcast, multicast and unicast), data
persistence and authentication in a transparent and scalable way. The main goal of Quarmic
is to simplify the development of web applications by raising the level of abstraction. A high
level of abstraction enables developers, with little expertise on web communication, to build
complex web apps, since it completely frees the developers from implementing any component
regarding communication. Consequently, it also allows them to focus on other parts of
the application, such as the user interface and the logic itself. Web applications built with
? Pedro M. P. Cunh;?u and José P. Le.al;

5v icensed under Creative Commons License CC-BY
8th Symposium on Languages, Applications and Technologies (SLATE 2019).

Editors: Ricardo Rodrigues, Jan Janousek, Luis Ferreira, Luisa Coheur, Fernando Batista, and Hugo Gongalo
Oliveira; Article No. 19; pp. 19:1-19:8

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:up201405950@fc.up.pt
https://orcid.org/0000-0002-8409-0300
http://www.dcc.fc.up.pt/~zp
mailto:zp@dcc.fc.up.pt
https://doi.org/10.4230/OASIcs.SLATE.2019.19
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

19:2

Quarmic: A Data-Driven Web Development Framework

Quarmic follow a class-based object-oriented paradigm in which each class and its methods
can be annotated using the annotation syntax provided by the framework. This annotation
syntax is the mechanism used by the developer to assign a particular role to each method (a
model or view concern) since the communication is fully based on methods execution. Also,
the objects of the annotated classes are shared among the server and clients, allowing to
keep the server’s object as the single-source-of-truth. Which implies the separation of the
method execution by its concern between the server and the clients. Hence, once the objects
are instantiated, Quarmic inverts control thus implementing and controlling the execution of
its methods (including persistence and authentication).

As a result, developers can create web apps as shared objects. For instance, Quarmic can
be used to prototype a real-time multiroom chat. Where the chat itself is a shared object
that contains a list of rooms, which are also shared objects. Every single client will share the
chat object, but only the room participants will share the object that represents its room.
Another example can be a collaborative spreadsheet app, where each cell is a shared object,
allowing to maintain the state of each cell or a group of cells separately.

This novel approach is an advantage relative to the existing frameworks since it only
requires a few annotations to implement in contrast with the coding required by any other
approach. Therefore, because of its level of abstraction, a developer acquainted with the
oriented object paradigm will be able to quickly gain web development proficiency. In
addition, Quarmic does not restrict the use of other framework or libraries to program other
tiers of the application, which is advantageous to the flexibility of programming.

The remainder of this paper is organized as follows. Section 2 reviews the architecture of
Node.js and some features of a few web application frameworks that influenced the creation
of this framework. Section 3 describes Quarmic’s architecture as well as its main features,
presenting some implementation details. Section 4 concludes the purpose of this paper and
summarizes the future work.

2 State-of-the-Art

Node.js & Javascript

In the past years, Node.js has becoming increasingly popular among developers [4], as a
result of its architecture and its modules that allow to quickly and effectively build highly
scalable Web applications. Node’s architecture introduces event-driven programming to the
server-side scripting, which is a much more efficient approach in terms of memory when
dealing with concurrency. Despite not being the first platform to do this, it is by far the most
successful [5]. Its asynchronous event-driven JavaScript (single-threaded) runtime provides a
preferable application environment to develop highly scalable systems [2].

Another contributing factor to the Node’s adoption as the preferred platform to application
development is the single language feature. Node enables client-side and server-side scripting
in Javascript, elevating the language, which formerly was just used as a client-side language,
to a new height of server-side web development [1]. Therefore, it simplifies the development
environment, since developers can build the entire tier of their applications in the same
language. An approach that Google Web Toolkit framework introduced, where developers
write all components in Java. Then, the browser components would be compiled to Javascript
and HTML.

P. M. P. Cunha and J. P. Leal

Web Application Frameworks

Web application frameworks are software frameworks that make it easier to build web
applications. They provide tools and libraries that simplify common web development tasks,
such as HTML generation, state and session management and database interaction.
Frameworks such as Ruby on Rails' or Laravel?, provide an Object-Relational Mapping
(ORM) layer that simplifies the use of relational databases in Web applications by mapping
each database table with a class in the underlying language thus relieving developers of the
hassles of dealing with the underlying database [8]. Another common feature is its architecture.
Both follow the Model-View-Controller (MVC) pattern that divides the applications into three
interconnected parts. The Model, that manages the business logic; the View, that defines
the presentation of the Model to the user interface; and the Controller, that serves as an
intermediary between the View and Model, responding to the user input and interactions [7].
Other frameworks, such as Vue.js3, offer state management features. Vues’ reactivity
system makes state management simple and intuitive. When a JavaScript object is passed to a
Vue instance, all properties are converted to getters / setters using Object.defineProperty.
These getters/setters are hidden by an abstraction layer that makes them invisible to users,
but internally they allow you to run dependency-tracking and change-notification whenever
the properties in question are accessed or changed. Each instance of a Vue component has a
corresponding watcher instance. During component rendering, this watcher instance registers,
the properties converted to getter as dependencies. As such, if a setter of a dependency is
executed, it will notify the watcher, which will cause the re-rendering of its component [9].

3 Quarmic

Quarmic is a Node.js framework for rapid prototyping of web applications. Its main feature
is the support for data communication between multiple clients. As a web framework, its
goal is to facilitate the web application development process. This framework is aimed at
web applications that deal with near real-time behaviour, in particular, applications that
share objects among multiple clients. It accomplishes this goal by taking control over the
execution flow of the application, which provides the ability to sequence and coordinate the
application activity in order to receive and process data in a consistent way, and return
results quickly enough to ensure a near real-time behaviour. Thus, it frees the programmer
from the implementation of these tasks, allowing them to focus on the application custom
logic and appearance.

The main differentiation feature of Quarmic is its architecture 1. It follows the object-
oriented paradigm to design the application, allowing the developers to create shared objects,
objects that are shared among different clients. Unlike the majority of the web application
framework, this framework doesn’t rely on the Model-View-Controller (MVC) pattern to
assign different web app components to each of those roles. Instead, it enables the association
of those roles to methods of the corresponding classes by annotating them according to the
concern they address, which can be either a business logic operation (model) or a presentation
logic operation (view).

The approach to share an object relies on the replication of the server’s instance. Once
the server instantiates a shared object, this object becomes shareable among all clients. This
means that clients that instantiate it will share it with the server and the other clients that
have instantiated it as well. And since the client’s instance is created as a replica of the

! https://rubyonrails.org/
2 nttps://laravel.com/
3 https://vuejs.org/

19:3

SLATE 2019

https://rubyonrails.org/
https://laravel.com/
https://vuejs.org/

19:4

Quarmic: A Data-Driven Web Development Framework

Server Client
«components E <<WWebSockets>> «components 5
QuarmicController QuarmicController
+
i
Handies metholy
xecution control
and chject
replication
Applicationinstance Applicationinstance
T d ! T
Server's instancd ™, i Client's instance
anly execute anly execute
methods that methods that
zddress 2 mode zddrass 3 view
aver concem aver concem

Figure 1 Quarmic’s architecture.

server’s object, the framework does not allow clients to instantiate a shared object without
it had been previously instantiated in server. By performing a distributed execution, the
framework is able to control the method execution of these objects, ensuring that methods
that have been annotated as addressing a model concern are only executed by the server’s
instance and methods that have been annotated as addressing a view concern are only
executed by the clients’ instance (server’s instance replica). Moreover, the framework updates
the clients’ replica before executing any method.

Therefore, by annotating methods with the concerns they address, classes declarations
can be shared among server and clients, facilitating data management. Since the server
is the only component allowed to change the object state, an object that is shared among
multiple clients maintains a consistent state. The fact that this framework is built on top
of Node.js provides a JavaScript runtime environment that allows the application to be
coded in a single language, JavaScript. This approach is also compatible both with popular
client-side cross-browser JavaScript libraries and toolkits, such as Bootstrap or JQuery and
with Node.js modules.

In the following subsections, the framework is described in more detail. Firstly, the
annotation syntax is presented. Secondly, the inversion of control of the framework is
addressed by presenting its core processes and some implementation details.

3.1 Annotation Syntax

The following code snippet presents a class with Quarmic annotations. In this example,
the class Counter encodes a counter with a button to increment it. The counter’s initial
state is set by the class annotation and its two methods are annotated according to their
role. The increase method increments the counter value (object state modification) and
calls the update method, thus addressing a business logic concern. Conjointly, the update
method addresses a view concern, since it updates the counter value in the user interface.
Incidentally, in this example, the controller role is provided by the constructor since it binds
user actions to the model, but this is not relevant to Quarmic.

O@sharedProperties({value: 03})

class Counter{

constructor (){

this.counterElem = document.getElementById("counter-value");
this.incElem = document.getElementById("increase-button");
this.incElem.onclick = this.increase.bind(this);
this.update.call();

}

P. M. P. Cunha and J. P. Leal

Qcause
increase(){
this.value++;
this.update();
}

Qeffect

update () {

this.counterElem.value = this.value;
}

}

Quarmic’s annotations use the ES7 decorator proposal, which enables the modification
of JavaScript classes and properties at compile time without explicitly modifying them [3].
Decorators allow programmers to apply the desired behaviour to the application built with
Quarmic. As mentioned before, they inform the framework of the concern addressed by
the methods. But more importantly, they implement Quarmic’s inversion of control, which
gives the ability to take control over the application lifecycle in order to perform the object
replication among clients and server and to control both method execution.

The code is influenced by annotations according to the side where it is executed. Thus, a
decorated class on the server-side will behave differently from the same decorated class on
the client-side. The main Quarmic annotations are the following.

@sharedProperties(properties)

This annotation is applied to a class declaration to specify the properties (fields) of shared
objects and their initial values. Essentially, it modifies the constructor in order to be used
as a dependency injection container. On the server-side, the constructor assigns the shared
object state properties passed by the 'properties’ variable (list of properties) of the argument
and sets up the database facility. On the client-side, the constructor performs the object
replication (process described in the following section) before executing the original code.

@cause (auth)

Indicates to the framework that the method annotated with this decorator addresses a model
concern, delegating its execution if the method is invoked on the client. Also, if the “auth”
variable is passed to the decorator as “required”, the cause will require authorization in order
to be executed. Otherwise, if it is passed as “none” or it is omitted, the cause method will
no longer require authorization to be executed. This argument is only used when the class is
protected by authentication (process described in the following section).

Qeffect(scope)

Indicates to the framework that the method annotated with this decorator addresses a view
concern, delegating its execution if the method is invoked on the server. Also, if the “scope”
variable is passed to the decorator as “private”, the effect will only be executed in the client
that has invoked the cause method of that effect. Otherwise, if it is passed as “public” or it
is omitted, the effect method will be executed by all clients.

19:5

SLATE 2019

19:6

Quarmic: A Data-Driven Web Development Framework

3.2 Distributed Execution

Quarmic’s architecture is based on a distributed execution. This process relies on WebSockets
to keep a continuous exchange of data between the clients and the server in order to perform
the object replication and to control the execution of methods. It is implemented using the
Socket.io library, which enables near real-time, bidirectional and event-based communication
between server and clients.

The following subsections address how the methods execution control and the object
replication are performed.

3.2.1 Object Replication

Object replication consists in pushing the state of the server’s object to their client’s replicas.
This process occurs when the object is instantiated and establishes a socket to the server,
which is used to request the up-to-date state. As a result, the client’s object will inherit the
server’s object properties, transforming the client’s object into a replica of the server’s object.
The following figure 2 illustrates this process.

Cuarmic
[Components |77
@ @ ‘Server Object

Client Client Server
Script Controller Controller
i i
) i i i
New :Client Object ! !
""""" 2| i i
T callmodiied |) :
! constructor : ==tablizn |
T socket connection !
retum
Return Eommmmm s
€ mmmmmmmeeees T \bie
H connection esiablished

descriptor
——
' callback{descriptor)

T
|
'
I
I
'
I
1
1
'
I
I
'
I
1
1
'
I
I
'
I
|
(ST L get object state |
emit replication message properties H
|
'
'
I
1
1
'
I
I
'
'
«constructor !
I
I
'
|

"

i

Vo

R

Wy L]

si i
!

&' !B

FR

R
|

PoE
1

Iy

!

|

|

!

'

;

;

:

|

|

!

'

;

;

:

|

|

!

'

;

;

:

|

|

!

Figure 2 Sequence Diagram - Object Replication.

3.2.2 Method Execution Control

As previously referred, the method execution control is intended to ensure that the model
layer methods are only executed in the server and the view layer methods are only executed
in the client. It is inspired in the causality principle that states that for every effect there is a
definite cause. Hence, a view method execution (effect) is always preceded by a model method
execution (cause). Therefore, the framework will not allow clients to directly invoke an effect
method. Both server and clients can directly invoke cause methods. For instance, we can
have an application with a web service running in the server that calls cause methods, and
components in the user interface bound to cause methods, but only the server can execute
them. Moreover, it’s important to note that this relationship can be chained. In particular,
a cause method can be called within another cause method or within an effect method.
This approach allows to maintain a consistent state among multiple clients. As the
server executes a cause method, invoked by itself or by one of the clients, it propagates the
up-to-date state and the effects methods execution instructions to each one of the clients.

P. M. P. Cunha and J. P. Leal

Eventually, each one of them will update its object’s state and execute the effects, updating
the object visual representation in an accurate and consistent way. . The following 3 figure
illustrates this process.

:Client Object ‘Server Object

Client | Client Server
Script/ul : Controller Controller
i i
:

| nvoke method exacute |
| Emitcauss method

zauss method H

T execution instruction +

I =

' T call method
! L
| execuie method
| call effect method

e]

1
'

I

I

'

I

1

1

'

|

| object state execution instruction update
I l‘i

! and database
! the up-to-date

! 0

; i

i H

! H

! H

! H

: H

I

update emit effect methed
! entry
axeoute 1+ call effect method object state

effect |_—.

method

Figure 3 Sequence Diagram - Method Execution Control.

Since JavaScript has a concurrency model based on an event loop, it ensures that whenever
a method is executed, it cannot be pre-empted[6]. This enables the server to handle multiple
concurrent calls of cause methods by multiple clients because the server is able to coordinate
the execution of those methods even if they were called almost simultaneously. And the same
goes to the propagation of the object state and the resulting effects.

3.2.2.1 Data persistence

Quarmic handles data persistence by itself. When the server instantiates a shared object,
the framework creates an entry in the database to store the object state or to get the object
data if already exists. This entry is updated whenever the object state is modified, ensuring
an up-to-date backup of the shared object. Since this process is done asynchronous, it won’t
overload the server. Moreover, to improve performance, up to a certain number of objects
are kept in memory, using a least recently used (LRU) cache.

3.2.2.2 Authentication

Quarmic also provides an authentication feature. It consists of a token-based authentication
system and is also controlled through the invocation and execution of methods. These
methods are a special type of cause (annotated with the @authenthicator decorator) and
they are responsible for assigning a token that initiates the client’s authorized session in the
shared object domain.

When a class has a method of this kind (authenticator method), it will be treated as
a protected class, which means that all others methods will require authorization to be
invoked. The authorization is provided by the authenticator method and since it addresses a
model concern, it is executed in the server. If its execution determines that was successfully
authenticated, the framework assigns a token to the clients’ object, establishing an authorized
session. This is useful in methods that implement login, for instance.

19:7

SLATE 2019

19:8

Quarmic: A Data-Driven Web Development Framework

4 Conclusions and future work

This paper presents Quarmic, a web application framework that aims to facilitate the
development of applications, in particular, near real-time web applications. The framework
includes a high-level mechanism that supports real-time applications as a single shared object
(e.g. a webchat) or a set of shared objects (e.g. a collaborative spreadsheet app).

Quarmic is a work in progress, currently in the final development stage. At the time of
writing, it lacks some improvements in the deployment of the applications and validation
regarding system testing and user acceptance testing. The main challenge it has been
the implementation of the facility to deployment because at this moment the decorators’
proposal is at stage 2 (Draft), which is a hindrance to work with them in the browser. The
current workaround is the transpilation of the decorators to ES5. The remaining steps go
through to test its performance in the real world by performing some stress tests and user
acceptance tests.

—— References

1 Dave Anderson. How Node.js can accelarate development, 2014. Modulus.

2 Nimesh Chhetri. A Comparative Analysis of Node.js (Server-Side JavaScript), 2016. Culmin-
ating Projects in Computer Science and Information Technology. Paper 5.

3 JavaScript Decorators. [Online; accessed April 2019]. URL: https://github.com/tc39/
proposal-decorators.

4 Node.js Foundation. Node.js User Survey, 2018. [Online; accessed April 2019]. URL:
https://nodejs.org/en/user-survey-report.

5 Tom Hughes-Croucher and Mike Wilson. Node: Up and Running. O’Reilly Media, Inc., 2012.

6 Neelakantan R. Krishnaswami Jennifer Paykin and Steve Zdancewic. The Essence of Event-
Driven Programming, 2016. Unpublished Draft. URL: https://www.cl.cam.ac.uk/~nk480/
essence-of-events.pdf.

7 Abdul Majeed and Ibtisam Rauf. MVC Architecture: A Detailed Insight to the Modern Web
Applications Development, 2018.

8 David B. Copeland Sam Ruby and Dave Thomas. Agile Web Development with Rails 5.1.
Pragmatic Bookshelf, 2017.

9 Reactivity in Depth. [Online; accessed April 2019]. URL: https://vuejs.org/v2/guide/
reactivity.html.

https://github.com/tc39/proposal-decorators
https://github.com/tc39/proposal-decorators
https://nodejs.org/en/user-survey-report
https://www.cl.cam.ac.uk/~nk480/essence-of-events.pdf
https://www.cl.cam.ac.uk/~nk480/essence-of-events.pdf
https://vuejs.org/v2/guide/reactivity.html
https://vuejs.org/v2/guide/reactivity.html

	Introduction
	State-of-the-Art
	Quarmic
	Annotation Syntax
	Distributed Execution
	Object Replication
	Method Execution Control

	Conclusions and future work

