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Abstract
Real-time critical systems have to comply with stringent timing constraints, otherwise, disastrous
consequences can occur at runtime. A large effort has been made to propose models and tools to
verify timing constraints by schedulability analysis at the early stages of system designs. Fewer
efforts have been made on verifying the security properties in these systems despite the fact that
sinister consequences can also happen if these properties are compromised. In this article, we
investigate how to jointly verify security and timing constraints. We show how to model a security
architecture (MILS) and how to verify both timing constraints and security properties. Schedulability
is investigated by the mean of scheduling analysis methods implemented into the Cheddar scheduling
analyzer. Experiments are conducted to show the impact that improving security has on the
schedulability analysis.
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1 Introduction

Real-time critical systems (RTCS) are systems characterized by the temporal behaviors of
their functions. The functions must imperatively respect deadlines specified by designers
and serious disasters may occur if these deadlines cannot be met at runtime.

Although the respect of deadlines is an important issue in RTCS design, the security has
also to be considered. The general purpose of securing a system is to prevent information
disclosure (i.e. confidentiality) and preclude information’s alteration (i.e. integrity) [22].
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Security architecture models such as MILS (Multiple Independent Levels of Security)
have been designed to make RTCS compliant with security objectives [12]. However, it is a
challenge to design RTCS architectures with both resources management to enforce deadlines
and also security policies to ensure security properties.

Schedulability can be enforced by a proper assignment of the tasks on the processors
[13]. However, task assignment may lead to modify the RTCS architecture because of the
assignment of security levels to the components. Indeed, assignment of security levels may
require extra components to avoid violation of the information flow security. Then security
architecture decisions may impact schedulability of RTCS and some means have to be
proposed to RTCS designers to predict the impact of security-driven architectural design
choices on the task schedulability, i.e. on the met deadlines of RTCS.

The ultimate goal of our work is to provide methods and tools for the exploration of
real-time critical and secure architectures. Starting from a predefined model with real-time
and security specifications, we want to automate the search of the design space defined by
the constraints embedded in those specifications. It allows us to propose a set of solutions
that represent trade-offs between security and schedulability requirements. For the first
steps, in this article, we propose to evaluate the conflict aspects between security and
schedulability concerns.

In this article, we propose to integrate a security architecture (MILS) in the Cheddar
schedulability analyzer, a tool allowing RTCS designers to predict if the deadlines will
be met at runtime. We extend the modeling capabilities of Cheddar [21] to model MILS
security aspects and we ensure RTCS security properties verification by implementing several
security models (Bell-La Padula, Biba). The resulting tool allows RTCS designers to run
combined security and schedulability analysis. In addition, in order to evaluate the impact
that improving systems security has on RTCS schedulability, we build a complete case-study
used to conduct some experiments. Finally, with these experiments, we show the drawback
of enforcing security properties for the RTCS schedulability.

The rest of the article is organized as follows. Section 2 gives an overview of security
architectures, security models and the MILS architecture. Section 3 presents the Cheddar
scheduling analyzer and depicts the system model and assumptions considered in our work.
In addition, we propose our extension of Cheddar to model the MILS architecture. Section 4
details our approach of implementing security models which help to verify MILS architecture
compliance and to compute number of security violations. We present a case study and our
experiments to validate our contributions aforementioned in Section 5. Finally, Section 6
discusses related work and Section 7 concludes the article.

2 Background

This section introduces the main aspects relevant to security architecture and models. An
overview of a high-assurance security architecture named MILS is also presented.

2.1 Security architecture and models
Regarding architecture designing, the concept of layering consists on separating hardware and
software features into modular levels (Hardware, Kernel and Device Drivers, Operating System
and Applications) [6]. Systems may use classifications, such as United States government
classification system [16], which is based on the degree of secrecy and level of sensitivity.
Classification levels can be confidential, Top_secret and Secret. They can be applied to
subjects or objects. Objects can be data classified at one level and subjects apply operations
such as read, write or execute on objects.
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A security model [22] describes the security strategy for a system with the purpose of
ensuring security objectives (confidentiality, integrity). It is an implementation of some
mathematical and analytical assumptions mapped to a system specification for resolving
security issues. Examples of security models are Graham-Denning model [10], information
flow control (IFC) models [22], State-Machine model [14], non-Interference model [9]. Bell-La
Padula [3] and Biba [4] are concrete examples of IFC models.

A security architecture [6] uses an integrated view of the system to comply with security
requirements. MLS (Multiple Levels of Security) and MILS (Multiple Independent Levels of
Security) are examples of such security architecture [1].

2.2 MILS architecture
MILS is a high-assurance security architecture characterized by untrusted and trusted
components, based on security models such as IFC [12]. It ensures confidentiality [22] which
is the insurance of preventing the system from information disclosure and integrity [4] which is
the protection of the system from unauthorized alteration. To meet those requirements, MILS
is based on a set of properties named NEAT (Non-by-passable, Evaluatable, Always-invoked,
Tamperproof) [2].

In order to ensure IFC, MILS adopts a classification level for subjects and objects which is
Top_secret, Secret, Confidential and Unclassified for confidentiality; and High, Low, Medium
for integrity. MILS is also based on the divide and conquer approach in order to reduce the
effort for a system’s security evaluation.

MILS introduces the following concepts [12]:
Processes, which model the applications in a RTCS. For IFC purpose, they have to be
labeled by a confidentiality level (e.g. Top_secret) and an integrity level (e.g. High). The
same confidentiality and integrity levels are also applied to objects.
Partitions, which are units of separations that host processes and/or data. They are
characterized by a resource allocation in the space and time domains. Communications
between processes in a partition and between partitions are subjected to IFC.
Middleware Service Layer, which is a service responsible for maintaining the IFC. To
enforce IFC, such component applies restrictions and permissions expressed by the
designer according to communication between messages and processes and between
processes themselves.
Objects (message, buffer), communications.
Application layer, which concerns all the processes. The components of this layer can
be of 3 types[1]: Single Level of Security (SLS), Multiple Levels of Security (MLS), or
Multiple Single Level of Security (MSLS).

3 MILS architecture modeling in Cheddar

In this section, we give explanations and details about Cheddar, a real-time scheduling
analysis tool. We describe next how our models are represented and some assumptions
adopted for this purpose. Last, we present the MILS modelling in Cheddar.

3.1 Cheddar scheduling analyzer
Cheddar [21] is a free real-time scheduling analysis tool. It provides a graphical editor and
a library of schedulability analysis modules. The entry point of the tool is an architecture
model expressed with Cheddar ADL. Cheddar ADL is a dedicated language designed to
model software architecture of RTCS for scheduling analysis with Cheddar.

CERTS 2019



1:4 Combined Security and Schedulability Analysis

Cheddar ADL’s basic entities can be grouped into 2 types: hardware and software
components. The formers model the execution platform of the RTCS to be analyzed. Such
components allow the designer to model processors, cache units, cores or any computing
units, memory units and communication units. Software components model the software
entities, i.e. applications composing a RTCS. Those components can be entities to model
flows of control (Cheddar ADL Task entity), shared resources (entity Resource or Buffer) or
task dependencies (Cheddar ADL entity Dependency or Message).

From a Cheddar ADL model, Cheddar provides two kinds of analysis tools: feasibility
analysis tool, which assesses schedulability by analytical methods; and simulation analysis
tool, which assesses schedulability by scheduling simulations.

3.2 System model and assumptions
We assume a RTCS consisting of tasks scheduled by a preemptive fixed priority scheduler.
The system is compliant with the MILS architecture and is defined as follows:

τ1, τ2, ..., τi, ..., τn are the n tasks composing the system. Each task models a MILS
process.
Ti, Ci, Di are respectively the period, the capacity (or the worst-case execution time)
and the deadline of task τi. Any task τi makes its initial request at time 0, and then
released periodically every Ti units of time. The task set is then synchronous. A task
requires Ci units of computation time and must complete before Di units of time.
O1, O2, ..., Oi, ..., Om are the m MILS objects in the system. Objects model messages
exchanged between the tasks. Tasks can have read or write access to messages.
ILi and CLi are respectively τi or Oi integrity and confidentiality levels.
dep(τi, τj) describes a communication from task τi to task τj .
dep(τi, Oj) describes a communication from task τi to object Oj , task τi having write
access to the object Oj .
dep(Oj , τi) describes a communication from object Oj to task τi, task τi having read
access to the object Oj .

In order to model MILS architectures with Cheddar, we need to make some extensions
to Cheddar ADL, even if several Cheddar’s components can be already used to model few
MILS’s entities:

MILS partitions can be modeled by Cheddar Address_space entities.
MILS objects can be modeled by Cheddar shared resources (i.e. Buffer or Message
entities).
MILS processes can be represented by Cheddar Tasks.
MILS communications have the same semantics than Cheddar ADL dependencies. MILS
messages can be modeled by asynchronous communication Cheddar dependencies.
MILS functions do not need to be represented in Cheddar as they can be modeled by
groups of partitions (i.e. groups of Cheddar Address Spaces).
Finally, applications (which can be composed of one or more processes) are modeled by
Cheddar ADL Task entities.

To complete the modeling capabilities of Cheddar for MILS (Fig. 1) architectures, several
Cheddar ADL entities have to be extended with new attributes modeling MILS data. As an
example, we need to model Buffers and Messages confidentiality and integrity levels and
also the right levels of tasks and partitions that are using them, i.e. if a partition or a task
is allowed to handle a Buffer or a Message according to its authorization levels. We give
bellow the list of properties we actually added to Cheddar ADL entities:
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Figure 1 Modeling of MILS.

An attribute named Confidentiality_Level (Top_secret, Secret, Classified, Unclassified)
has to be defined for each Cheddar ADL address spaces, objects and tasks entities.
An attribute named Integrity_Level (High, Medium, Low) also has to be defined for each
Cheddar ADL address spaces, objects and tasks entities.
MILS_component_type (SLS, MLS, MSLS) is an attribute to model MILS type of
security level. Again, such attribute has to be defined in tasks and address spaces
Cheddar ADL entities.
Finally, MILS_compliant_type (Non_Compliant, Partition,...) specifies if a Cheddar’s
entity models a MILS’s component or not. Such attribute is defined in any Cheddar
ADL entity.

4 MILS security model implementation

In order to verify MILS architectures, we have implemented the two well-known security
models Bell-La Padula [3] and Biba [4] into Cheddar. Both of them have been adapted
and implemented in order to verify Cheddar ADL models. In the sequel, we describe
their implementation as functions that take as entry a Cheddar model composed of cores,
processors, address spaces, buffers, tasks, and dependencies.

4.1 Bell-La Padula in Cheddar
This security model was introduced to formalize the U.S. Department of Defense (DoD)
multilevel security [16]. It is based on the No read up, No write down principle. No read up
refers to the fact that a subject at a given security level cannot read data that is tagged with
a higher security level. No write down means that a subject tagged with a given security
level cannot write information to a lower security level.

CERTS 2019
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We have implemented the Bell-La Padula algorithm in Cheddar. It checks if a Cheddar
ADL model conforms to Bell-La Padula rules by returning the number of No read-up/No
write-down rule violations. The algorithm is sketched below:

Sys: a Cheddar model composed of n tasks (τ1, τ2, ..., τi, ..., τj , ..., τn)
num: number of rules violations
For each dep in Sys loop

If ((dep = dep(Oj , τi)) OR (dep = dep(τi, Oj)))
AND (CLi < CLj ) Then

num := num +1
Elsif (dep = dep(τi, Oj)) AND (CLj < CLi) Then

num := num +1
Elsif (dep = dep(τi, τj)) AND (CLj < CLi) Then

num := num +1
End if

End loop
Return (num)

4.2 Biba in Cheddar
This security model was developed to ensure data integrity [4]. It is based on the No read
down, no write up principle. “No read down” means that a subject cannot read data from a
lower integrity level and “No write up” means that a subject cannot write data to an object
tagged with a higher integrity level. We have implemented Biba rule checking into Cheddar.
The algorithm is sketched below as a function that checks if a Cheddar model conforms to
Biba rules by returning how many times the Read down and Write up rules are missed.

Sys: a Cheddar model composed of n tasks (τ1, τ2, ..., τi, ..., τj , ..., τn)
num: number of rule violations
For each dep in Sys loop

If (dep = dep(Oj , τi)) AND (ILj < ILi) Then
num := num +1

Elsif(dep = dep(τi, Oj)) AND (ILi < ILj ) Then
num := num +1

Elsif (dep = dep(τi, τj)) AND (ILi < ILj ) Then
num := num +1

End if
End loop
Return (num)

4.3 MILS securing process
In order to design MILS architectures that meet the different security rules previously
presented, we propose to add the following components to the architecture model.

When a communication between two tasks of different security levels doesn’t meet a
security rule, we propose to add an encrypter or a decrypter components between the
two tasks. So the tasks can still communicate but the data sent are encrypted and the
designer can decide to allow communications by using a decrypter on the other side of the
communication link. In MILS, such an encrypter (resp. a decrypter) is called a downgrader
(resp. an upgrader).
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In our implementation, downgraders and upgraders are extra Cheddar ADL tasks. Each
of them has a period, a capacity, a deadline, a confidentiality and an integrity level. Assuming
a Cheddar model composed of a set of tasks and their related dependencies, we run through
these dependencies and check if they meet Bell-La Padula or Biba rules. If not, we add a
downgrader or upgrader depending if it is Bell-La Padula or a Biba violation.

For such purpose, we make an arbitrary assumption about the downgrader (resp. upgrader)
parameters: downgraders (resp. upgraders) inherit from receiver task period and deadline.

Furthermore and for the sequel experiments, we have chosen for encryption the AES/GCM
(2K tables) algorithm (cycle per Byte: 16.1; cycles to set up key and IV(Initialization Vector):
3227) [7]. By supposing that our data size is 64 Bytes and that the frequency is 125 MHz,
then the encrypter’s execution time is 1660 us.

5 Experiments & Evaluation

The objective of our experiments is to evaluate the integration of the security architecture
MILS into Cheddar and more precisely the two security models Bell-La Padula and Biba
implemented into Cheddar. We also evaluate the impact of improving RTCS security by
applying MILS can have on the RTCS schedulability.

We assume a single processor execution platform, on which all the tasks are placed in
the same partition. The task set is synchronous and scheduled by preemptive fixed priority
scheduler. Each task has two possibilities of Confidentiality_Level (Top_secret or Secret)
and Integrity_Level (High or Medium).

The experimentation process is built by the three following parts: non secure models
generation, secure models generation and models evaluation.

In the remainder of this section, we present in 5.1 a case study made for our experiments
purpose. Sections 5.2 and 5.3 refer to the models generation part of the experiments. Finally
section 5.4 gives the evaluation of the generated models and also the results of the experiments.

5.1 Case study
To conduct the experiments, we have created the study case 2 inspired by a drone system.
It is made of two applications composed of dependent tasks: (1) a digital signal processing
application called Constant False Alarm Rate detection (CFAR) [19]. It is a set of low critical
tasks designed to detect target based on the variation of background noise. (2) A flight control
system called ROSACE (Research Open-Source Avionics and Control Engineering)[17]. It is
a longitudinal and multi-periodic flight controller designed as a benchmark to respond to
stability, real-time and performance issues. ROSACE is composed of high critical tasks.

The set of tasks and their parameters of our case study are described in Table 1. This
table does not give confidentiality and integrity levels of tasks since they are decided later in
our experiments.

5.2 Non secure models generation
This part consists of generating as many models as possible without considering if the
generated models are secure or not. Our starting point is to describe a system. We used the
case-study described in Section 5.1 with its default parameters of Table 1.

Confidentiality level of each task can be selected between two levels (Top_secret and
Secret). The same holds for the integrity level (High and Medium). So our generator, for
Bell-La Padula (resp. Biba) evaluation, takes the case-study model with an integrity (resp.

CERTS 2019
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Figure 2 Case study model.

Table 1 Case study parameters.

Tasks Period/deadline [us] Capacity[us]

Cfar_complex 10000 90

Cfar_square_scale 10000 50

Cfar_gather 10000 340

Cfar_printer 10000 30

Aircraft dynamics 5000 200

Va_c, h_c 20000 500

H_filter, Az_filter, Va_filter, q_filter, Va_filter 10000 100

delta_e_c, delta_th_c 20000 500

Altitude_hold, Va_control, Vz_control 20000 100

Engine, Elevator 5000 100
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confidentiality) level fixed for all the tasks and switches the confidentiality (resp. integrity)
level of task. Each switching leads us to another different model. With 19 tasks in our
case-study, we produce 1048576 (2*219) models for both Bell-La Padula and Biba evaluation.

5.3 Secure models generation

It consists of applying MILS securing process 4.3 on each non secure model generated in the
previous step. To make all the non secure models secure, whenever a dependency doesn’t
respect Bell-La Padula or Biba’s rules, we add a downgrader or an upgrader as additional
task. For a given model, the number of downgraders or upgraders added is equal to the
number of security rules violations.

As described in Section 4.3, we choose for encryption an AES/GCM (2K tables) algorithm
with an execution time of 1660 us. Furthermore, we make an arbitrary assumption about the
downgrader (resp. upgrader) attributes: downgraders (resp. upgraders) inherit from receiver
task period and deadline.

5.4 Models evaluation

This section describes the evaluation of the schedulability and the security of all the generated
models (non secure and secure). For each model, the security is quantified by the number
of security violations while we decide to quantify the schedulability by the number of tasks
missed deadlines.

It is important to notice that the number of security violations for secured models is
null, while the number of missed deadlines will be null for the non secure models if the
starting model is schedulable. Missed deadlines occur when adding security-related tasks (i.e.
downgraders, upgraders).

As it can be noticed throughout this article, we have settled the security aspect into
two parts: confidentiality and integrity. The figure (Fig. 3) below shows the relationship
between scheduling (missed deadlines) and confidentiality (number of Bell-La Padula’s
rules violations).

In Fig. 3, each point corresponds to the number of confidentiality rules violations for a
testcase (combination of different security levels) and the number of deadlines missed when
we apply security rules to make the testcase secure by adding some downgraders.

The same work has been done for the integrity aspect. Figure 4) shows the relationship
between schedulability (missed deadlines) and integrity (number of Biba’s rules violations).

We observe that two different RTCS models with the same number of rules violations
may not lead to the same number of missed deadlines. It is explained by the fact that
downgraders/upgraders added to solve security problems may not have the same period and
deadline in both RTCS models. Indeed, a downgrader’s period and deadline depend on the
period and the deadline of the sink task of the non-secure dependency.

From our experiments, with the security metrics, we conclude that the higher number of
violations (confidentiality or integrity) is, the more we have tasks missing their deadlines
when adding downgraders/upgraders through the MILS securing process. Fig. 3 and 4 show
an quantification of such impact.

Finally, we can observe in the figures that even if the Bell-La Padula and Biba results
of our experiments look similar, for a RTCS that violates both Bell-La Padula and Biba
rules, resolving the Bell-La Padula’s problem does not solve automatically the Biba’s one
and conversely.

CERTS 2019
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Figure 3 Schedulability and confidentiality evaluation.

Figure 4 Schedulability and integrity evaluation.
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6 Related work

In [15], the authors worked on designing a security gateway in avionic domain based on
Integrated Modular Avionics (IMA) architecture, characterized by the separation of system
resources into partitions. In order to control information flow between partitions for security
issues, they applied MILS principles based on the real-time OS named PikeOS.

In [8], the authors modeled MILS using AADL (Architecture Analysis and Design
Language) [20] and proposed an automated implementation process based on code generation.
Applications are run on a MILS operating system called POK. In [5], the authors presented
a guide on securing a system design using MILS architecture. They focused their work on
distributed systems and systems of systems.

The article [11] discusses how to build a secure system by using AADL. The authors
proposed an approach to validate the confidentiality of systems by defining assumptions
based on Bell-La Padulla’s security protocol. They showed how security can have impact on
data quality, resource consumption, availability, reliability, and real-time performances.

One important concern about MILS is task partitioning. [18] presents XtratuM, a
hypervisor that helps to build partitioned systems while meeting safety critical real-time
requirements. Scheduling analysis is performed using Xcronte. The authors also measure the
cost in terms of performance and memory footprint of using XtratuM compared to other
partition development environments.

Our approach is different of the above ones because we integrate MILS concepts in
scheduling analysis as none of them have experimented joined schedulabity and MILS
security analysis . As far as we know, it is the first time one extends a scheduling analyzer
to support a secure architecture. We implemented into Cheddar several security models in
order to jointly enforce MILS properties and schedulability.

7 Conclusion

In this article, we investigated security properties in RTCS through a high assurance security
architecture MILS. Our work overlays real-time scheduling analysis, and architecture design
and security.

We have proposed an extension of Cheddar to model MILS real-time critical architecture
and to perform both schedulability analysis and security analysis. We have integrated MILS
concepts including the two security models (Bell-La Padula and Biba) with Cheddar ADL.

We have evaluated the impact of security on schedulability analysis. From the experiments,
we observed that securing a system can affect negatively its scheduling by leading some
tasks missing their deadlines. We also have shown that downgraders and upgraders periods
and deadlines have impact on numbers of missed deadlines. Finally, we observed that
confidentiality and integrity are independent, meaning that resolving one does not help to
resolve the other.

As future work, we want to measure more precisely the cost of securing a RTCS and explore
trade-offs to optimize both security and scheduling with different encryption algorithms for
downgrader and upgrader components.
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