Argument Patterns for Multi-Concern Assurance
of Connected Automated Driving Systems

Fredrik Warg

RISE Research Institutes of Sweden, Boras, Sweden
http://www.ri.se

fredrik.warg@ri.se

Martin Skoglund
RISE Research Institutes of Sweden, Boras, Sweden
martin.skoglund@ri.se

—— Abstract

Showing that dependable embedded systems fulfil vital quality attributes, e.g. by conforming to
relevant standards, can be challenging. For emerging and increasingly complex functions, such as
connected automated driving (CAD), there is also a need to ensure that attributes such as safety,
cybersecurity, and availability are fulfilled simultaneously. Furthermore, such systems are often
designed using existing parts, including 3¢ party components, which must be included in the quality
assurance. This paper discusses how to structure the argument at the core of an assurance case
taking these considerations into account, and proposes patterns to aid in this task. The patterns
are applied in a case study with an example automotive function. While the aim has primarily
been safety and security assurance of CAD, their generic nature make the patterns relevant for
multi-concern assurance in general.

2012 ACM Subject Classification Computer systems organization — Dependable and fault-tolerant
systems and networks; Computer systems organization — Embedded and cyber-physical systems

Keywords and phrases Multi-concern assurance, connected automated driving, dependability, func-
tional safety, cybersecurity, cyber-physical systems, critical embedded systems

Digital Object Identifier 10.4230/0ASIcs.CERTS.2019.3

Funding This work was supported by Vinnova — project ESPLANADE (2016-04268), and the EU
and Vinnova — project ECSEL AMASS (692474), but the contents of the paper only reflect the

authors’ views.

1 Introduction

When releasing embedded dependability-critical electrical/electronic (E/E) systems on the
market it is typically necessary to demonstrate that they are sufficiently safe. This is often
done by showing compliance to a functional safety standard. A key design strategy to
successfully show the product is safe is to keep the safety-related part of the system as
small and simple as possible. While this is still desirable, the technological development
is inexorably moving towards higher complexity even for safety-related functionality. One
example is automated driving systems (ADS) [17], i.e. functions enabling what is commonly
referred to as self-driving or autonomous vehicles. For such functions it is difficult to keep
the safety-related part small and isolated as the goal of the function is to drive safely, a task
which by necessity involves many of the vehicle’s sensory, control and actuator subsystems.

With this complexity, it becomes more difficult to convincingly show that a product is
safe. A further complication is that safety cannot be treated in isolation in the presence of
other quality attributes (QAs) that may affect safety properties. For instance, it is expected
that most ADS equipped vehicles are also connected in order to increase performance of
the functionality, e.g. an ADS that exchanges information with surrounding vehicles and
? Fredrik Warg and Martin Skoglunfi;

5v icensed under Creative Commons License CC-BY

4th International Workshop on Security and Dependability of Critical Embedded Real-Time Systems (CERTS

2019).
Editors: Mikael Asplund and Michael Paulitsch; Article No. 3; pp. 3:1-3:13

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-4069-6252
http://www.ri.se
mailto:fredrik.warg@ri.se
https://orcid.org/0000-0001-6901-4986
mailto:martin.skoglund@ri.se
https://doi.org/10.4230/OASIcs.CERTS.2019.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

3:2

Argument Patterns for Multi-Concern Assurance

roadside infrastructure (traffic lights, signs, roadside sensors) will have a better world model
and be able to make better and less defensive driving decisions. However, adding connectivity
to enable connected automated driving (CAD) also increases the security risks. A hacker
may compromise the ADS remotely to e.g. circumvent its safety mechanisms. Hence, to
demonstrate that the function is safe it is also necessary to show that all security risk that
may compromise safety have been treated. This extends to arbitrarily many interrelated
concerns, e.g. it might be necessary to consider availability of the function to make sure
safety and security mechanisms do not lower availability of the function in a way that makes
the business case unviable.

Safety for vehicle E/E functions is typically demonstrated by showing conformance to the
ISO 26262 standard [8], through a safety case consisting of artefacts resulting from complying
to all its normative requirements. The implicit argument is that standard conformance
itself is proof of safety. However, making an explicit argument showing the product-specific
safety-rationale within the overall framework of the standard can aid both development
engineers and safety assessor [3]. For this work our premise is that such an argument is even
more important - even if the standards may not mandate it - when the complexity increases,
for instance when showing simultaneous conformance to several standards each representing
a different QA also called multi-concern assurance, or when including components developed
out-of-context by 34 party suppliers.

Our contribution in this paper is a discussion and proposed patterns for simultaneously
covering the dimensions of (1) multiple concerns, (2) standards conformance, (3) element-
out-of-context, and (4) system lifecycle in an argument for a multi-concern assurance case. A
danger with such multi-dimensional arguments is that it becomes unwieldy and incompre-
hensible, thus failing to fill its basic purpose, something we attempt to overcome with a clear
and regular structure. We also develop such an argument in a case study relevant for CAD.

In work related to ours, others have suggested patterns for ISO 26262 arguments [4, 5, 7,
13, 15, 16]. Most of these provide more detailed patterns that could be combined with what
we are proposing, but in some cases also have a somewhat different way of organizing the
argument. However these are for safety only. Taguchi et al. [19] discuss and show patterns
for different ways of integrating safety and security, which may be done by combining the two
concerns, treating them totally separately, or by handling interdependencies in different ways.
In this work we use what Taguchi calls a bi-directional reference process pattern as a multi-
concern pattern, but also combine it with the other dimensions we discuss. Work focused
on co-engineering and how to capture trade-offs between concerns in the argumentation has
also been done [1, 12, 6]. In contrast our work is about structuring the assurance case to
capture information about inter-concern dependencies together with the other mentioned
argument dimensions, not how to handle trade-offs or co-engineering.

2 Argument Dimensions

Here we elaborate on the implication of taking the four dimensions mentioned in Sec. 1 into
account. As we focus on dependability aspects and standards conformance, the conceptual
V-model used in e.g. many functional safety standards is used to illustrate the lifecycle. In
Fig. 1, a triple V-model highlighting the aspects of nominal function, safety and cybersecurity
is shown. While some standards and work processes prefer other models, e.g. to highlight
iterative aspects more clearly, we note that interpreted as a dependency chain rather than
a timeline, the concepts expressed in the V-model are usually applicable, i.e. there is an
overall function concept which is refined to implementable components, and tested in several

F. Warg and M. Skoglund

integration levels. When a version of the product is completed, the process is repeated to
add new functionality for the next version, while the current version goes into production
and maintenance phases. In functional safety standards such as ISO 26262 [8], results from
all design and verification steps are collected in a safety case, which must be complete
and consistent for each product version. When treating several concerns the general term
assurance case is used instead. In this section we discuss the rationale behind the four
dimensions and return to the patterns in the next section.

Next product version - - >
. Operation and maintenance
Safety Nominal

concern function
Validate

Security Safety Concept N\ - oo Validation Validate
Goals (Goals and release SG SecG
A A w
oV BV /1 /
Cybersec. 1\ \ Functional Function FSecC
Concept <::‘f e \ Arch. verification ACEE “ ver.
w N
VIV N / A | 7

\
\

System 1 System System TSecC
<> TSC N s

Dev . design int. & ver. / e ver.

R L ~

\ \ > Y I 7 / |/
HW/SW HW/SW HW W W HW /
Security Safery : i - ot/ / HW/SW HW/SW

regs. { regs. es. es. test es! ver. ver.

HW/SW Implementation

Assurance Case
Product and process arguments - Evidence

Figure 1 V-model with safety and security attributes and a multi-concern assurance case.

2.1 Lifecycle

As standards and /or company-specific work processes typically prescribe specific development
lifecycles, making the lifecycle stages evident in the argument makes it easier to relate the
argument to the design process, and thereby show that the risk of introducing systematic
faults is sufficiently reduced throughout the lifecycle. In other words, showing the lifecycle in
the argument reduces the risks due to misunderstandings and omissions originating from bad
mapping between argument and the actual development work. Furthermore there is often a
distinction of product and process arguments in standards. Process arguments also include
e.g. management practices that are not specifically tied to the product. In our pattern we
make a separation of these for increased clarity.

2.2 Standards Conformance

The argument should also preferably reflect if the assurance case shall show conformance to a
standard (this is also called a conformance case). Our patterns are designed to be compatible
with the V-model used in e.g. many functional safety standards. While the patterns create
the general structure for the argument, the claims must be instantiated for the specific
quality attribute and supported by more low-level claims and supporting evidence. These
sub-claims can in many cases be requirements directly from the standard. Thus conformance
is not a separate pattern, rather the phases and modules used in our patterns are suitable for
combining with standard requirements. Using a tool allowing compliance mapping between
standard requirements and the argument, e.g. OpenCert [14], it is even possible to track
that all standard requirements have been fulfilled within the framework of the argument.

3:3

CERTS 2019

3:4

Argument Patterns for Multi-Concern Assurance

2.3 Concerns and Their Interplay

If two quality attributes are independent, i.e. fulfilling one can never impact the other, the
only aspect of multi-concern assurance compared to separate conformance to the concerns
is possible synergies to reduce the assurance work, e.g. joint testing using the same test
frameworks (co-verification in Fig. 1). However, typically interplay in the form of potential
dependencies, conflicts or synergies between the concerns exist and must be identified and
resolved in the multi-concern argument. Again, the analysis of interplay between concerns
must cover the entire product lifecycle to make sure conflicts do not appear in any design
stage or even after production. For instance, security concerns may make over-the-air (OTA)
updates necessary so that security holes uncovered long after the product is released can be
fixed, but this makes it necessary to make sure OTA updates cannot compromise safety. We
therefore include argument for interplay in our patterns. It should be noted that interplay
arguments can become unwieldy if many dependent concerns are treated since the possible
combinations quickly grows with number of QAs. Based on [11] as well as own experience,
we also claim that specifying well-defined interaction points between concerns (co-analysis
in Fig. 1) is preferable to processes integrating several concerns.

2.4 Component Structure

In many domains, including automotive, the most common way to build new features is to
integrate parts from suppliers, or reusing existing components. These must be included in
the assurance case for the new feature. A supplier may also sell the same part to several
customers and even develop it before having any requirements from an OEM. The supplier
may then construct their own assurance case for their part, using assumptions on its use,
i.e. an assumed context. In ISO 26262, this is called a safety-element-out-of-context. We
generalize the concept and use the term element-out-of-context (EooC), which may have an
assurance case for multiple concerns. When integrating the EooC in the complete feature,
there must be a bridge between the feature and EooC assurance cases explaining how the
part developed for the assumed context will also fulfil the requirements for the actual feature
in the real context.

3 Putting it Together in Argument Patterns

3.1 Pattern Notation

We use the argumentation structure defined in ISO/TEC 15026-2:2011 [9] which is illustrated
on the left hand side of Fig. 2. In this standard, an argument consists of one or more top-level
claims supported by sub-claims, evidence, and/or assumptions through an argument detailing
how these underlying components support the top-level claim. Sub-claims must be supported
in the same way; the argument can be arbitrarily many levels with evidence and assumptions
as leaf nodes. The choice of top-level claims must be supported by a justification, as must
an argument (at any level) have a justification for how underlying components support a
(sub-)claim. The standard is agnostic as to how the arguments are represented. In this paper
we use the GSN notation [18], which provides an illustrative graphical representation, to
show our proposed patterns. The GSN notation corresponding to the 15026-2 concepts are
shown to the right in Fig. 2; in GSN a claim is called a goal, an argument is called strategy
and evidence is called a solution.

F. Warg and M. Skoglund

ISO/IEC 15026-2 terms GSN notation
(" Justification Top-level Claim
Justify choice Statement of limitations
of claim of an unambiguously 4 Goal
defined property)
(" Justification ')
Justify A q
validity of _rgmA
. How underlying
reasoning
. components relate to
used in the B
the claim
_ argument /
Sub-claim Evidence As:umph;)n
Supported by | | Tangible ormo Sub-goal
. claim w/o
sub-claims data or .
. . . backing
and evidence | | information .
evidence

Figure 2 ISO/IEC 15026-2:2011 argument and corresponding GSN notation.

In addition to the basic notation we use some extensions to GSN. The modular extensions
are helpful for managing the complexity of large arguments, and the extensions allowing
for abstraction are used to express generic argument patterns. Fig. 3 shows the GSN
elements used in this paper. (a) Module is used to represent a separate sub-argument which
is used either in a module view which is a special overview diagram in GSN showing only
relationships between such modules, or to show that a goal is supported by an entire argument
contained in a separate module. (b) Contract is used when a goal will be supported in a
yet unspecified module and is used to provide decoupling. The contract module itself is

used to provide a glue argument showing how the argument in a module (which might e.g.

be provided for a re-usable component) fulfils the goal which was to be supported by the
contract. (¢) Away goal repeats a goal made in another module in the argument of a local
module in order to show dependencies between goals in different modules. The away goal
also identifies the module where the original goal can be found. The (d) InContextOf arrow
is used in a way proposed by the AMASS project [2], which is to show that fulfillment of
a goal in one concern is dependent on fulfillment of a goal in another concern. (e) Option
is used to denote alternatives to satisfy a relationship, while (f) optional arrow is used for
an optional relationship, and (g) many arrow denotes a one-to-many relationship with the
cardinality shown next to the arrow. A goal can also be (h) uninstantiated which means
it is an abstract element that needs to be replaced by a concrete instance. Words within
{brackets} in the argument are tokens to be instantiated, e.g. {Goal} could be instantiated
as LaneKeepingAssist is acceptably safe as a top-level goal in the safety argument for a lane
keeping assist vehicle feature. (i) Undeveloped means a goal which is not yet fully supported,
i.e. it needs to be developed by completing the argument beneath it. Goals can be both
undeveloped and uninstantiated at the same time. Finally, (j) context is part of the basic
GSN notation and is used to provide contextual information needed for interpreting the goal
or strategy it is attached to. These concepts are more fully described in the GSN community
standard version 2 [18]. All GSN figures in the rest of the paper are produced with the
OpenCert tool [14]*.

1 Some modifications of the figures produced by the tool have been made for improved readability.

3:5

CERTS 2019

3:6

Argument Patterns for Multi-Concern Assurance

— — 1
Module Contract Goal
(@) v — () ‘
Goal
Away Goal (d) ‘/ {Goal}
= Goal Goal
(c) (h) (M

Figure 3 GSN extensions used in the paper.

3.2 Overall Argument Structure and Lifecycle

We organize the overall argument as shown in the GSN modules view in Fig. 4. The top
level claim will be that the system (or EooC which we return to in Sec. 3.5) fulfils all quality
attributes that have been defined for it. A pattern for the topmost module of Fig. 4 is shown
in Fig. 5; this pattern references modules for all QAs and interplay arguments relevant for
the product. The concept phase is where initial concept (e.g. item definition in ISO 26262)
is defined and risk evaluation is performed (e.g. hazard analysis & risk assessment (HA&RA)
and definition of safety goals in ISO 26262). In the concept phase there will be separate
modules for each QA and for interplay between all QAs where relevant, e.g. safety and security
are not independent and therefore should have an interplay module if they are two of the
defined QAs. The rest of the argument is organized according to lifecycle with one module per
logical element on the functional concept stage, one module per component on the technical
concept/system design stage and modules for software and hardware development for each
component. There are separate modules to deal with management and post-development
issues such as production, maintenance and decommissioning. These stages are typical for
a V-model. The number of abstraction levels may vary but is easy to adapt as the basic
structure in each level is the same.

3.3 Concerns

For each quality attribute, a pattern for developing this concern in the concept phase is
shown in Fig. 6. The strategy is to use a specified lifecycle, often from a standard, with
adequate measures for the QA. The sub-goals are optional depending on the QA, but typical
components of the argument is: risk mitigation by using an analysis method and introducing
requirements specifying the risks to be avoided (and in many standards the level of risk
reduction is quantified with an integrity level [10]); adequate management and operations
and maintenance (OaM) practices; and confirmation measures, e.g. review of analysis results.

Following the goal {QA} requirements introduced to reduce {QA} risks from one of
the leaf nodes in Fig. 6 is a pattern, shown in Fig. 7, for making sure these quality
attribute requirements have also been correctly implemented. This pattern provides a way
to create a rationale around each QA requirement showing that it has been correctly refined,
implemented and verified. The pattern contains goals for refining the QA requirements to the
next abstraction level where the pattern will be repeated again for all refined requirements.
The refinement goals are optional as they are obviously not applicable on the lowest refinement
level while the verified goal is applicable (and mandatory) on all levels.

F. Warg and M. Skoglund 3:7

Module: {System | EooC}

Top-level argument about

fulfillment of all QAs.
Module: {QA}-{QA]} Interplay Mgmt

a<=n
_ _ Argument for management of
n>=0 ma=1 {QA}-{QA} interplay issues
1 |
Module: Interplay {QA}-{QA} Module: {QA} b<=m

Concept Phase / Meodule: {QA} Management
Context Interplay argument for {System | EooC} argument b

combination {QA}-{QA} for attribute {QA} Argument for adequate

k l 1 i management for {QA}
I C<=m
. Module: {Logical Element] .
Functional Concept / Lifecycle
i callE Argument that all concerns met in
ogica ements {Logical Element}
q
Module: {QA} 0aM
1
Module: {Component}
Technical Conce pt / Argument for adequate
Argument that all concerns are met operation and maintenance
System Components in implemented {Component} (including decomissioning)
requirements for {QA}
1 1
Module: {Component} Hardware Module: {Component} Software
Implementation Level / Argument that all concerns are met Argument that all concerns are
HW and SW for {component} hardware design met for {component} software
and implementation design and implementation

Figure 4 Modules view of system or element-out-of-context.

Goal for {System | EooC}

Context

{System | EooC} fulfulls its required Justification

quality attributes (QAs).

v

Strategy

{System | EooC}
specification Which QAs used for
{System | EooC}

Each QA is met by an argument and the interplay
between attributes are considered

m n e
\ 4
Goal for {QA} E Goal for interplay E}
{System | EooC} is acceptably {QA} Adequate measures taken to identify and
treat dependencies between {QA} and {QA}

v v

Module: {QA} Module: Interplay {QA}-{QA}
Argument for {System | EooC} Argument for interplay {QA}-{QA}
fulfilling {QA} acceptably identified and treated

Figure 5 Pattern for top-level multi-concern argument.

CERTS 2019

Argument Patterns for Multi-Concern Assurance

Context

{standard | other lifecycle} used

Goal for {QA}

{System | EooC} is acceptably {QA}

v

Strategy

Use of {lifecycle} with adequate
measure for {QA}

~

Goal

{QA Confirmation
measures} are performed

sufficiently mitigated

v v
Goal Goal
All {QA risks} Adequate management

system for {QA} is used

Goal

{QA} maintained in production,
0aM, and decomissioning

v v

Strategy

Find and mitigate risks with analysis

method appropriate for {QA}

R

Module: {QA} Management

Module: {QA} 0OaM

v

v

v

Goal Goal

Risk analysis
performed

Risk analysis
results verified

Goal

{QA} requirements introduced
to reduce {QA} risks

Figure 6 Pattern for a quality attribute.

Interplay dependencies

AwayGoal

{Other-QA}{Requirement}

—)

<l

Strategy

Iterate over all requirements on
{abstraction level}

k>=1

Goal

{QA}{Requirement} is
correctly implemented

Goal

{QA}{Requirement} is correcely
refined to {next abstraction level}

Goal

All {next abstraction level} {component} with
refined requirements are correctly implemented

Goal

{QA}{Requirement} is
correctly verified

Module if {component} is
developed in context

v

Strategy

Iterate over all {component} with refined allocated

requirements refined from {QA}{requirement}

n>:l$

Goal

The {QA} requirements for {component} have
been implemented correctly

.

/

Module
{component}

k—l

Contract if {component} is
an EooC

Choice

Contract

Figure 7 Pattern for a QA requirement at any abstraction level.

F. Warg and M. Skoglund

3.4 Interplay

Interplay can be argued between two or more QAs in each interplay module depending on
which methods are found most suitable for interplay in each case. However, it must be evident
that all relevant combinations of QAs are taken into account. The pattern, shown in Fig.
8, establishes that management practices for interplay are in place and that dependencies
between QAs are found and introduced in the QA requirement hierarchy. This was shown in
Fig. 7 as an away goal for a requirement, indicating an interplay dependency. Similar to
how QA requirements were handled, the pattern in Fig. 9 then makes sure these interplay
dependencies are also refined in lower abstraction levels of the design.

Goal for Interplay

Adequate measures taken to identify and treat
dependencies between {QA} and {QA}

Strategy

Institute management of cross-concern issues and use
cross-concern analysis methods between each QA.

Goal Goal

{QA}-{QA} dependencies {QA}-{QA} cross-concern
identified and treated management procedures in place

: b

Strategy
Module: {QA}-{QA} Interplay Management

{QA}-{QA} Cross-concern analysis method used to
establish dependencies

Goal Goal Goal
Dependencies {QA}{Requir {QA}-{QA} Cross-concern {QA}-{QA} Cross-concern
{QAHRequirements} established analysis verified dependences introduced

Figure 8 Pattern for an interplay.

3.5 Element-out-of-Context

The final pattern is the glue between in-context feature and element-out-of-context mentioned
in Sec. 2.4. This pattern, shown in Fig. 10, simply connects in-context QAs with the same
QA for the EooC, but establishes that an argument showing their compatibility needs to be
developed. An analogous pattern (not shown) can be used for the interplay, i.e. it is also
necessary to ascertain that the relevant interplay dependencies are covered in the EooC. A
component in any abstraction level can be an EooC, which means the EooC will contain the
argument from that abstraction level down.

4 Case Study

As a case study we use a positioning element (PE) for CAD which needs to conform to both
functional safety and cybersecurity standards. PE is designed as an element-out-of-context
(EooC) and can thus be used for various functions. As it is aimed at the automotive domain,

3:9

CERTS 2019

3:10 Argument Patterns for Multi-Concern Assurance

Strategy

Iterate over {QA}-{QA} dependencies
on {abstraction level}

Goal

Dependence resolved to satisfy

all concerns.
/ 5
Goal Goal Goal
Dependence correctly refined to Dependencies correctly introduced in all {next abstraction Acceptable trade-off relevant on
{next abstraction level} level}{component} resulting from this dependence. {abstraction level} found for all concerns

v

Strategy

Iterate over all {Components} with allocated
dependencies resulting from this dependence

n>=1

Goal

Dependencies correctly introduced in {Component}

Module if {component} is Choice
developed in context e itk — Contract if {component} is
Module Contract
an EooC
{Component}

—1

Figure 9 Pattern for an interplay refinement.

Goal

The {QA} requirements for {component} have —
Context been implemented correctly

Justification

All inherited context *
applies to {lower Strategy
level component}

All {QA} requirements from {upper level component} are
covered by {QA} requirements in {lower level component}

{lower level component} is an element-
out-of-context which is reusable when
its assumed context matches what is
required by {upper level component}

v

Away Goal

Goal

Requirements and context of {lower level component}
cover what is required by {upper level component} {component} is acceptably {QA}

—

Figure 10 Pattern for a contract between system/component and an element-out-of-context.

F. Warg and M.

Skoglund

Sarial Connection

AB N ¢ B8 ¥ 8 & =

UDP Connection

TCP Cannection

127.00.1 -

b« (1.2)
46, 120)
2

Add Vebicles

Figure 11 Demonstrator with model cars using the PE (inset) for navigation.

ISO 26262 is used as safety standard and a working draft of ISO/SAE 214342 for cybersecurity.
Fig. 11 (inset) shows the hardware for PE containing a satellite navigation receiver which
is used in conjunction with correction data for enhanced precision. To complete the use
case, PE is matched to the hypothetical context of an ADS feature - highway autopilot,
where it is used to provide accurate absolute (i.e. on a map) position. Fig. 11 also shows a
demonstrator environment for this feature with autonomous model cars.

A detailed description of the function is beyond the scope of this paper; however, it has
functional requirements which are analyzed for safety and security risks according to both
standards, resulting in safety goals (top-level safety requirements) and security goals. A
simplified version of one functional requirements is: The automated driving mode may only be
activated on roads certified for ADS wvehicles. The ISO 26262 HA&RA results in safety goals
for the ADC. A safety goal related to the stated requirement is: ADC may only be activated
on certified roads3. Since the function is only designed to work within the parameters given in
the functional requirement, its behavior is undefined if enabled anywhere else, thus resulting
in high risk of harm. For cybersecurity, a threat analysis and risk assessment (TA&RA) is
used to elicit security goals. A security goal with a dependency to the mentioned safety goal
is: Integrity protection against spoofing to fulfil ADC may only be activated on certified roads.

For space reasons the entire argument for the case study cannot be shown. However, Fig.
12 shows some parts of interest: (a) dependence between the safety and security goals discussed
above; (b) the same dependence refined to functional level, (c¢) example of where requirements
from ISO 26262 have been connected to the assurance case (HA&RA forms a tree of its own
ending in requirements from the standard, this tree has been automatically generated to a
module), and (d) reference to the contract between function and positioning EooC.

5 Conclusions

In this paper, our goal was to propose a structured way to build the argument for a multi-
concern assurance case of a complex dependability-critical system such as a CAD function,
and demonstrate its feasibility by an example. Our claim is that the complexity can be

2 A coming cybersecurity standard for the automotive domain.
3 The actual safety and security goals also have integrity levels but as they are not relevant for the
example we have omitted them.

3:11

CERTS

2019

3:12

Argument Patterns for Multi-Concern Assurance

. ADC Strategy_
SG-1 is dependent on SecG-1 Strategys
Iterate over all
make sure each
- ADC_Goal Vision1-1-1 ADC_Goal Vision_2-1-1
ADC_Goal SecTOP1-2-1-1-1
. . ADC_Goal SafTOP1-1-1-1-1 FSR-1 "Detect faulty position FSecR-1 "Position information may not
Security goal SecG-1 "Integrity for = aquisition” is correctly implemented | [~/ be altered by spoofing attacks” is
5G_ADC_001 is not violated" is Safety goal SG-1 - “ADC may only be correctly implemented
sufficiently mitigated | activated on certified roads” is mitigated
E 'ADC_Mod_SecurityTOP *
/ ADC Strategy_SafTOP1-1-1-1-1
(a) | (b)
(c) | (d
< (d)
ADC Strategy_SafTOP1-1
ADC_Goal Vision1-1-1-2-1 ADC_Goal Vision2-1-1-2-1
Find all hazards in hazard analysis and mitigate i -0
each resulting safety goal
The technical safety requirements for The technical security requirements for
component "PositioningEooc” have been component "PositioningEooc” have been
\ implemented correctly implemented correctly
ADC Goal SafTOP1-1b
All risks have been sufficiently mitigated
3.7 Hazard analysis and risk assessment
N — Vision2Positioning Agreement
[15026262 GeneratedArg
ADC Strateav SafTOP1-1b

Figure 12 Snippets from argument for case study.

managed by a traceable argument structure, with an attached rationale to every branching
in order to keep track of the reasoning behind the design. With this structure the overall
design can also be aggregated and contain re-usable components. The structure follows each
concern, with dependencies at certain interaction points. The interaction can be predicted
because the argument structure also reflects the development lifecycles of the concerns.
When the interaction between the concerns is planned and limited, as we propose, there is a
good possibility too keep the benefits from co-engineering, without the extra effort of high
frequency interaction between different disciplines such as safety and security.

It should be noted that even if a structured approach makes it easier to manage large
complex systems, the approach would still require good tool support to be feasible as the
arguments can become very large. Traceability and compliance management, management
of argument modules, and automation of argument integrity checks are examples where
tools are helpful. There is ample opportunity for automation, for instance detecting nodes
that have not been developed or instantiated, or solution nodes with no references to actual
evidence. Combination with semi-formal notations for goals/requirements to allow for even
better control of structure and more checks for possible omissions is yet another possibility
to increase automation opportunities. Some tools such as OpenCert already contain many of
these features. Another issue we have not discussed in the paper is how to include assurance
in the actual development workflow. For instance, today many organizations are adopting
agile practices to allow for more frequent product updates. This is an issue we are currently
exploring in our continued work.

—— References

1 AMASS deliverable D4.3: Design of the AMASS tools and methods for multiconcern assurance,
2018. [Accessed 17-April-2019]. URL: https://www.amass-ecsel.eu/.

2 AMASS deliverable D4.8: Methodological guide for multiconcern assurance(b), 2018. [Accessed
17-April-2019]. URL: https://www.amass-ecsel.eu/.

3 John Birch, Roger Rivett, Ibrahim Habli, Ben Bradshaw, John Botham, Dave Higham, Peter
Jesty, Helen Monkhouse, and Robert Palin. Safety cases and their role in ISO 26262 functional
safety assessment. In 32nd International Conference on Computer Safety, Reliability, and
Security, SAFECOMP, pages 154-165. Springer, 2013.

https://www.amass-ecsel.eu/
https://www.amass-ecsel.eu/

F. Warg and M. Skoglund

10

11

12

13

14

15

16

17

18

19

John Birch, Roger Rivett, Ibrahim Habli, Ben Bradshaw, John Botham, Dave Higham, Helen
Monkhouse, and Robert Palin. A Layered Model for Structuring Automotive Safety Arguments
(Short Paper). In 10th European Dependable Computing Conference, EDCC, pages 178-181.
IEEE, 2014.

Thomas Chowdhury, Chung-Wei Lin, BaekGyu Kim, Mark Lawford, Shinichi Shiraishi, and
Alan Wassyng. Principles for systematic development of an assurance case template from ISO
26262. In 2017 IEEE International Symposium on Software Reliability Engineering Workshops,
ISSREW, pages 69-72. IEEE, 2017.

Georgios Despotou and Tim Kelly. An Argument-Based Approach for Assessing Design
Alternatives and Facilitating Trade-offs in Critical Systems. Journal of System Safety, 43(2):22,
2007.

Ashlie B Hocking, John Knight, M Anthony Aiello, and Shinichi Shiraishi. Arguing software
compliance with ISO 26262. In 2014 IEEE International Symposium on Software Reliability
Engineering Workshops, ISSREW, pages 226-231. IEEE, 2014.

ISO. ISO 26262:2018 Road vehicles — Functional safety, 2018.

ISO/IEC. ISO/IEC 15026-2:2011 Systems and software engineering — Systems and software
assurance — Part 2: Assurance case, 2011.

ISO/IEC. ISO/IEC 15026-2:2015 Systems and software engineering — Systems and software
assurance — Part 3: System integrity levels, 2015.

Nikita Johnson and Tim Kelly. An Assurance Framework for Independent Co-assurance of
Safety and Security. In 36th International System Safety Conference, ISSC, 2018.

Helmut Martin, Robert Bramberger, Christoph Schmittner, Zhendong Ma, Thomas Gruber,
Alejandra Ruiz, and Georg Macher. Safety and security co-engineering and argumentation
framework. In International Conference on Computer Safety, Reliability, and Security, pages
286-297. Springer, 2017.

Helmut Martin, Martin Krammer, Robert Bramberger, and Eric Armengaud. Process- and
product-based lines of argument for automotive safety cases. In ACM/IEEE Tth International
Conference on Cyber-Physical Systems, ICCPS, 2016.

OpecCert contributors. OpenCert. [Accessed 17-April-2019]. URL: https://www.polarsys.

org/projects/polarsys.opencert.
Rob Palin, David Ward, Ibrahim Habli, and Roger Rivett. ISO 26262 safety cases: Compliance
and assurance. In 6th IET International Conference on System Safety. IET, 2011.

Robert Palin and Ibrahim Habli. Assurance of Automotive Safety—A Safety Case Approach.

In 29th International Conference on Computer Safety, Reliability, and Security, SAFECOMP,
pages 14-17. Springer, 2010.

SAE. SAE J3016:201806 - SURFACE VEHICLE RECOMMENDED PRACTICE - Taxonomy
and Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles,
2018.

SCSC Assurance Case Working Group Contributors. GSN Community Standard Version 2,
2018. [Accessed 17-April-2019]. URL: https://scsc.uk/r141B:17t=1.

Kenji Taguchi, Daisuke Souma, and Hideaki Nishihara. Safe & sec case patterns. In 33rd
International Conference on Computer Safety, Reliability, and Security, SAFECOMP, pages
27-37. Springer, 2014.

3:13

CERTS 2019

https://www.polarsys.org/projects/polarsys.opencert
https://www.polarsys.org/projects/polarsys.opencert
https://scsc.uk/r141B:1?t=1

	Introduction
	Argument Dimensions
	Lifecycle
	Standards Conformance
	Concerns and Their Interplay
	Component Structure

	Putting it Together in Argument Patterns
	Pattern Notation
	Overall Argument Structure and Lifecycle
	Concerns
	Interplay
	Element-out-of-Context

	Case Study
	Conclusions

