
On Fault-Tolerant Scheduling of Time Sensitive
Networks
Radu Dobrin
Mälardalen University, Västerås, Sweden
radu.dobrin@mdh.se

Nitin Desai
Mälardalen University, Västerås, Sweden
nitin.desai@mdh.se

Sasikumar Punnekkat
Mälardalen University, Västerås, Sweden
sasikumar.punnekkat@mdh.se

Abstract
Time sensitive networking (TSN) is gaining attention in industrial automation networks since it

brings essential real-time capabilities at the data link layer. Though it can provide deterministic
latency under error free conditions, TSN still largely depends on space redundancy for improved
reliability. In many scenarios, time redundancy could be an adequate as well as cost efficient
alternative. Time redundancy in turn will have implications due to the need for over-provisions
needed for timeliness guarantees. In this paper, we discuss how to embed fault-tolerance capability
into TSN schedules and describe our approach using a simple example.

2012 ACM Subject Classification Computer systems organization → Dependable and fault-tolerant
systems and networks

Keywords and phrases Time sensitive networks(TSN), Fault-tolerant schedule, Time redundancy

Digital Object Identifier 10.4230/OASIcs.CERTS.2019.5

Funding The research leading to these results has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement
No. 764785, FORA—Fog Computing for Robotics and Industrial Automation.

1 Introduction

Time- and safety-critical control applications in the context of factories need real-time
guarantees [26]. Commonly, such requirements are specified at design time and the system
is expected to fulfil them during its entire operational life. This necessitates guaranteed
and bounded latencies and low jitter for tasks/functions that are critical to safety (for the
end-user) [24]. The design and development of distributed embedded systems driven by the
Time-Triggered paradigm [17] has proven effective in a diversity of domains with stringent
demands of determinism [7].

There has been a steady evolution from centralized control with the control logic embedded
within a single controller to decentralized/distributed control where control is shared between
multiple controllers. A key benefit of this is to provide greater robustness to failures. For
instance, a distributed architecture is more conducive to safety, by ensuring critical functions
have the possibility of being executed at multiple physical nodes and transported across
multiple communication links (the basic notion of redundancy). However, from a network
latency perspective, this may cause additional latencies due to multiple hops (when an
alternate link or node is needed). When timeliness is of the essence, such an arrangement
may not therefore be optimal in providing determinism.

© Radu Dobrin, Nitin Desai, and Sasikumar Punnekkat;
licensed under Creative Commons License CC-BY

4th International Workshop on Security and Dependability of Critical Embedded Real-Time Systems (CERTS
2019).
Editors: Mikael Asplund and Michael Paulitsch; Article No. 5; pp. 5:1–5:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:radu.dobrin@mdh.se
https://orcid.org/0000-0002-6620-2612
mailto:nitin.desai@mdh.se
https://orcid.org/0000-0001-5269-3900
mailto:sasikumar.punnekkat@mdh.se
https://doi.org/10.4230/OASIcs.CERTS.2019.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


5:2 On Fault-Tolerant Scheduling of Time Sensitive Networks

In applications such as factory automation or automobiles, the systems could be subjected
to high degrees of Electro Magnetic Interference (EMI) from the operational environment
which can cause transmission errors. The common causes for such interference include
cellular phones and other radio equipment inside the premises/vehicle, electrical devices
like switches and relays, radio transmissions from external sources and lightning in the
environment. Complete elimination of the effects of EMI is hard since exact characterization
of all such interference defy comprehension. Though usage of an all-optical network could
greatly eliminate EMI problems, it may not be favoured by many cost-conscious industries.

These interferences cause errors in the transmitted data, which could indirectly lead
to catastrophic failures. To reduce the risks due to erroneous transmissions, designers
usually provide elaborate error checking and error confinement features in the protocol (as
in Controller Area Networks). Basic philosophy of these features is to identify an error as
fast as possible and then re-transmit the affected message. This implies that in systems
without spatial redundancy of communication medium/controllers, the fault-tolerance (FT)
mechanism employed is time redundancy. On the other hand, time redundancy increases the
latency of message sets; potentially leading to violation of timing requirements. Hence any
reliability management approaches in critical systems needs to be a holistic one incorporating
both space and time redundancy at the right levels based on the system characteristics,
resource constraints, fault models and trade-offs from cost-performance perspectives.

The time sensitive networking (TSN) [11] is a set of evolving standards under the IEEE
working group IEEE802.1, defining protocols that extend standard Ethernet to achieve
real-time networking capabilities for industrial/factory automation application scenarios.
The TSN standardization efforts consists of a number of (sub)standards that aim to achieve
four key technological paradigms - clock synchronization (802.1ASrev), frame preemption
(802.1Qbu), scheduled traffic (802.1Qbv), and redundancy management (802.1CB). These
must work together at the Ethernet layer (L2) to ensure that safety functions are executed
while meeting their respective deadlines and constraints.

The 802.1Qbv TSN standard provides scheduled traffic for time-triggered safety-critical
data frames in a predetermined manner. However, in the presence of faults, a static schedule
cannot satisfy system requirements particularly since the schedule has to be reconfigured.

Redundancy management in TSN (802.1CB) has been mainly focussing on space (link
redundancy). It is typical to start with a simplified error model assumption that only
singleton errors can occur in the systems and that they are separated at least by a known
minimum interarrival time.

In this paper, our focus is on time redundancy and how to improve fault tolerance
capability of the TSN schedule. The underlying assumptions and models in our work are
in line with our previous work and also with that followed in [2] [1]. We extend our earlier
works presented in [10] and adapt it to the context of TSN.

The rest of the paper is organised as follows. Section 2 introduces the reader to the
concept of time sensitive networking. Section 3 describes our system model and outlines its
basic components. In section 4 we detail the proposed approach. In section 5, we present an
illustrative example for our approach. Section 6 discusses the research relevant and related
to our work and finally we conclude with section 7 and briefly sketch our ongoing efforts.



R. Dobrin, N. Desai, and S. Punnekkat 5:3

2 Time Sensitive Networking

The TSN standard is composed of a number of sub-standards. The most relevant sub-
standard for our use-case is 802.1Qbv - scheduled traffic. In this use-case, we assume that
the 802.1Qbv protocol is implemented both in the TSN switch as well as the control nodes
and robots. A fundamental principle behind TSN [11] is the time-triggered protocol (TTP)

Figure 1 TSN 802.1Qbv-enabled switch.

[18]. In Figure 1, we have three ingress ports A, B, and C and a single egress port D. The
safety frames (ES, KC) from control nodes are sent from ports A and B while port C sends
best effort (BE) frames as shown. The Gate Control List (GCL) decides the exact times
when the frames belonging to a specific priority queues will be allowed to pass through the
egress port D. From a system safety perspective, ES and KC frames must be given higher
priority than BE frames.

Such systems depend on redundant communication schedules that contain global time-
based information of message transmissions with conflict-free paths through the switches.
The static schedule of a time-triggered system maximizes predictability, while the schedule
in an event-triggered network unfolds dynamically at run-time depending on the occurrence
of events [18]. A time-triggered network ensures the partitioning of the system into a set
of independent fault containment regions (FCR), which operate correctly regardless of an
arbitrary fault outside the region.

3 System model

Having provided the background required for this use-case, the problem we tackle can be
stated as follows:

“How do you guarantee delivery of safety-critical data frames across a TSN enabled
network in the presence of faults specified by a fault model?”

In order to quantify relevant system parameters, we present a system model that is
composed of sub-models that tackles each aspect of the system function.

3.1 System and error model
We assume a distributed real-time architecture consisting of sensors, actuators and processing
nodes communicating over a time sensitive network. The communication is performed via
a set of strict periodic messages, Γ = {M1,M2, . . .}, with mixed criticality levels. The
criticality of a message indicates the severity of the consequences caused by its failure and
corresponds to the amount of resources allocated for error recovery in terms of guaranteed
re-transmissions. The basic assumption here is that the effects of a large variety of transient
and intermittent (hardware) faults can effectively be tolerated by a simple re-transmission of

CERTS 2019



5:4 On Fault-Tolerant Scheduling of Time Sensitive Networks

the affected frames. We assume that a fault can adversely affect only one message frame at a
time and is detected by all nodes in the network. Γc represents the subset of critical messages
out of the original message set and Γnc represents the subset of non-critical messages, so
that Γ = Γc ∪ Γnc.

A message consists of N frames, N ≥ 1, and the network communication is assumed
to be non-preemptive during the frame transmissions. Though sub-standard 802.1Qbu is
introducing preemption of frames in TSN, for simplicity’s sake we have not considered it in
current work. Of course, messages composed of more than 2 frames can preempt each other
at frame boundaries. Additionally, the non-preemptiveness of message frames may cause a
higher priority message to be blocked by a lower priority message on the same link for at
most one frame length. This priority inversion phenomenon can affect all messages except
the lowest priority one, and only once per message period, before the transmission of the
first message frame [9].

Each message Mi is characterized by a 4-tuple < Ti, Di, Ni, Ri >, where Ti is the period,
Di is the relative deadline, Ni is the number of frames that form this message and Ri is the
fault tolerant requirement in terms of the number of re-transmissions the message needs to
be able to execute upon faults. Hence, the total number of frames that need to be guaranteed
for re-transmission ri is calculated by

ri = dNi ∗Rie (1)

Note that for non-critical messages Ri = 0. Additionally, rate constrained and best effort
messages have a priority Pi.

In an error-free scenario, the worst case transmission time Ci of message Mi is

Ci = Ni ∗ f ∗ τbit (2)

where f is the maximum frame size and τbit is the transmission time for a bit.
Each message instance M j

i is characterized by a feasibility window delimited by its earliest
start time est(M j

i ) and its deadline Dj
i .

Obviously, in order to be able to guarantee the specified fault tolerance requirements,
the maximum network utilization of the critical messages together with their required re-
transmissions can never exceed 100% of the bandwidth capacity. This will imply that, during
the error recovery, non-critical message transmissions may need to be shed in order to avoid
overload conditions.

3.2 Traffic model
Real-time traffic in control systems is highly regular and periodic. The schedules for such
traffic can be statically synthesized during design phase. This plan may not only define the
communication paths and bandwidth reservations, but also particular points in a network-
wide reference time at which messages are to be transmitted. Such a plan that incorporates
the time aspects is called a “communication schedule” and the execution of the schedule by the
network obeys the time-triggered approach. Safety critical messages are usually transmitted
through time-triggered (TT) class since bounded delivery latency is guaranteed [24].

A basic fault tolerance mechanism in the presence of faults is to re-transmit an alternate of
the original message at a later time instant. This is suitable for single errors during message
transmissions. It is also assumed that no errors affect the alternate message transmission.
For simple cases one could consider the re-transmission of the original message itself, but the
approach could as well cater to initiation of another alternate task leading to an alternate
message (for example in critical scenarios warranting an “emergency stop”).



R. Dobrin, N. Desai, and S. Punnekkat 5:5

4 Proposed approach

Our research objective is to provide efficient and fault-tolerant scheduling algorithms and
mechanisms for TSN that ensure:
1. All safety critical messages (time triggered traffic) have guaranteed correct delivery within

their deadlines under given fault assumptions
2. All non-critical traffic is given best-effort schedulability guarantees
3. The generated schedules also possess flexibility to incorporate evolving changes traffic

patterns particularly in the absence of faults

We make the following assumptions to start with:
1. A fault can affect only one message at a time
2. A specified number of re-transmissions of the message is sufficient to overcome the effect

of a transient or intermittent fault.
3. There exist sufficient fault detection capabilities (such as watchdog timers, CRC etc.) in

the system so that a fault can be detected reliably within a specified short time interval.
4. There exist ARQ mechanisms so that the sender node is able to know within a specified

time whether the message sent has reached the destination (or intermediate node) correctly.
Our ongoing research efforts aims at providing specific contributions in the following directions:
1. The use of phased re-transmissions that can achieve better bandwidth utilization than

possible with the approach of Alvarez et. al. [1].
2. Combined scheduling of critical and non-critical messages using the concept of fault-

tolerant windows and fault aware windows
3. Making more realistic fault model assumptions
4. Making our schemes more flexible to support evolution of systems
5. Suggesting mechanisms for implementation for induction into standards

The focus of current paper is only first two items above. Here we propose an approach
to jointly schedule critical and non-critical messages as time triggered and rate constrained
traffic in TSN. We propose to schedule critical messages with completely known attributes as
time triggered traffic. Some critical messages, however, may have requirements that cannot
be accommodated in an off-line schedule a-priori. These are, instead, scheduled as rate
constrained (RC). It is essential, however, to schedule them at priority levels that guarantee
their re-transmissions in case of faults. At the same time, we aim to provide the non-critical
best effort traffic the best possible service in case the system is not overloaded due to faults.

The key concept in our proposed approach is the derivation of the feasibility windows for
the message transmissions. Traditionally the feasibility window for a message is the time
interval between its earliest start time (or release time) and its deadline. These parameters,
however, do not typically express the fault tolerant requirements on the critical messages,
e.g., a message transmission finishes just before its deadline, will not leave enough time for a
feasible (before its deadline) re-transmission in case the message is hit by a fault. We propose
the derivation of new feasibility windows for each message instance M j

i ∈ Γ that reflect the
FT requirements.

While transmitting non-critical messages using a background priority band can be a safe
and straightforward solution, our aim is to provide non-critical messages a better service than
what can be achieved through background scheduling. Hence, depending on the criticality of
the original set of messages, the new feasibility windows we are looking for differ as:
1. Fault-Tolerant (FT) feasibility windows for critical messages
2. Fault-Aware (FA) feasibility windows for non-critical messages

CERTS 2019



5:6 On Fault-Tolerant Scheduling of Time Sensitive Networks

Derivation of fault-tolerant 
feasibility windows for critical messages

Derivation of fault-aware feasiblity 
windows for non-critical messages

Message interference analysis

Integer Linear Programming (ILP)

Fault Model

Message Criticalities

Original 
Message Attributes

Rate constrained frame attributes

Off-line schedule for TT frames

A

B

C

D

E

Input

Output

Figure 2 Methodology overview.

While critical messages need to be entirely transmitted within their FT feasibility windows
to be able to be feasibly re-transmitted upon an error, according to the reliability requirements,
the derivation of FA feasibility windows has two purposes: 1) to prevent non-critical messages
from interfering with critical ones thus causing a critical message to miss its deadline, while
2) enabling the transmission of the non-critical messages at high priority levels in error
free situations.

The major steps of the proposed methodology are shown in Figure 2. The inputs to the
method are message attributes, criticalities and fault model in terms of frequency of faults
and fault-tolerance requirements.

Since the size of the FA feasibility windows depends on the size of the FT feasibility
windows, in our approach we first derive FT-feasibility windows and then FA feasibility
windows (as steps A and B Figure 2). Then, we assign time slots for TT traffic and priorities
to rate constrained traffic to ensure the message transmissions within their newly derived
feasibility windows.

Subsequently we generate an off-line schedule for the TT traffic (in step C) followed
by assigning message identifiers (priorities) for the rate constrained traffic (in step D) that
ensure the message transmissions within their new feasibility windows, thus, fulfilling the FT
requirements. We generate an offline schedule for the TT messages, by using the Earliest
Deadline First (EDF) heuristics and provisioning for the specified number of re-transmission
upon faults. Then we identify the optimal priorities for the critical rate based traffic in order
to ensure its coexistence with the TT traffic, as well as its FT requirements. At the same
time, we derive the priorities for the non-critical messages that ensure their timeliness in the
absence of faults. As the network utilisation will heavily increase due to the re-transmissions
of the critical messages under faults, we assume that in these situations the non-critical
messages are shed by their sending nodes.



R. Dobrin, N. Desai, and S. Punnekkat 5:7

In some cases, however, a fixed priority scheme cannot express all our assumed FT
requirements and error assumptions on the rate constrained traffic. General FT requirements
may require that instances of a given set of periodic messages needs to be transmitted in
different order on different occasions. Obviously, there exists no valid fixed priority assignment
that can achieve these different orders. Our approach proposes a priority allocation scheme
based on EDF at message instance level that efficiently utilizes the resources while minimizing
the priority levels. We use Integer Linear Programming (ILP) (Step E) to off-line analyze
the interference between the message frames and to derive the minimum number of fixed
priorities that guarantees the message transmissions within their FT/FA Feasibility Windows.

5 Discussions

We discuss our approach by resorting to a simple but instructive example detailed below.
A set of three messages A,B, and C are considered, wherein A and C are critical and B

is non-critical with periods T(A) = 4, T(B) = 8, T(C) = 16 and transmission times, C(A)
= 1, C(B) = 4, C(C) = 3. We assume the deadlines for the messages equal their periods.
We re-transmit only critical messages when subject to a single fault per message instance.
Figure 3 shows a feasible message transmission under the assumption of “no faults”.

Our proposed approach is illustrated in a set of figures depicting various scenarios and
schedules. As part of our motivation for the proposed fault tolerant windows based approach,
we first show the Rate monotonic(RM) schedule for the message transmissions in Figure 3.

0

Message A
(Critical)

168

0 16

4 12

Message B
(Non-critical)

Message C
(Critical)

8

A1 A2 A3 A4

C1

16

3 7 11 15

5

9

C1

765

C1

B1 B1B1 B2B2B2 B2

9

B1

Figure 3 RM-based schedule with no faults - but not an FT schedule.

Figure 4 shows the infeasibility of the critical message C in case 2 instances of A a hit by
faults and need to be re-transmitted.

0

Message A
(Critical)

168

0 16

4 12

Message B
(Non-critical)

Message C
(Critical)

8

A1 A2 A3 A4

16

3 7 11 15

5

C1C1

B1B1B1 B2B2B2 B2

9

B1

DL miss

Figure 4 Two faults on message A causing even primary of critical message C to miss deadline.

Figure 5 shows that that the critical message C cannot even tolerate a single fault.

CERTS 2019



5:8 On Fault-Tolerant Scheduling of Time Sensitive Networks

0

Message A
(Critical)

168

0 16

4 12

Message B
(Non-critical)

Message C
(Critical)

8

A1 A2 A3 A4

C1

16

3 7 11 15

5

9

C1

765

C1

B1 B1B1 B2B2B2 B2

9

B1

No re-tx
possibility

Figure 5 A single fault in message C prevents re-transmission possibilities.

A solution could be, however, to increase the priority of the critical message C above
the priority of the non-critical message B. In this case, however, the first instance of B will
always miss its deadline, even in a fault free scenario (Figure 6).

0

Message A
(Critical)

168

0 16

4 12

Message B
(Non-critical)

Message C
(Critical)

8

A1 A2 A3 A4

C1

16

3 7 11 15

5

9

C1

765

C1

B1 B1B1

9
H

L

M

B2B2B2 B2

DL miss

Figure 6 Priority modification (non-RM) still causing B to miss deadline.

Figure 7 illustrates the derivation of the fault tolerant (FT) windows for critical messages
A and C. The dashed boxes represent the re-transmissions that would be needed if the critical
messages were to experience a single fault per instance.

0

Message A
(Critical)

168

0 16

4 12

Message B
(Non-critical)

Message C
(Critical)

8

A1 A2 A3 A4

C1

16

3 7 11 15

9765

FT deadlines

C1C1

Figure 7 Derivation of FT windows for critical messages.

Figure 8 shows the derivation of fault aware (FA) windows for non-critical message (B).
This is done after the fault tolerant windows for the critical messages have been calculated.
Figure 9 shows a resulting schedule which would meet all deadlines under a fault free scenario.

Figure 10 illustrates the benefits provided by our approach. The critical message A is
transmitted in a time-triggered (TT) manner while the other messages are assigned to the
rate-constrained traffic class (RC). We have three faults occurring on the critical messages.
Our scheduling approach ensures that all critical messages are scheduled in a fault tolerant
manner while only one instance of the non-critical message fails to meet the deadline.



R. Dobrin, N. Desai, and S. Punnekkat 5:9

0

Message A
(Critical)

168

0 16

4 12

Message B
(Non-critical)

Message C
(Critical)

8

A1 A2 A3 A4

C1

16

3 7 11 15

5

9765

C1C1

B1B1 B1 B2B2B2 B2

FA deadlines

B1

Figure 8 Derivation of fault-aware windows for non-critical messages.

0

Message A
(Critical)

168

0 16

4 12

Message B
(Non-critical)

Message C
(Critical)

8

A1 A2 A3 A4

C1

16

3 7 11 15

5

9

C1

765

C1

B1 B1B1 B2B2 B2B2

9

B1

Figure 9 Fault free messages with no deadline misses.

0

Message A
(Critical)

168

0 16

4 12

Message B
(Non-critical)

Message C
(Critical)

8

A1 A2 A3 A4

C1

16

3 7 11 15

5

9

C1

765

C1

B1 B1B1

9

B1

TT

RC

RC

Figure 10 Three faults with all critical messages scheduled and only one instance of non-critical
message un-schedulable.

Finally, Figure 11 shows a scenario with 5 faults. Critical messages A and C still remain
fault tolerant while the non-critical message B is prevented from execution. However, in the
event that critical messages do not experience faults, the non-critical message B can still
meet its deadline, thereby providing a better service than background scheduling.

In summary, the above example scenarios shows that:
For a given message set A,B,C where A and C are critical, a RM priority assignment
(A>B>C) will not guarantee the 100% FT (i.e. one re-transmission upon a potential
fault per message instance). C will miss its deadline.
A new priority ordering where the non-critical message has a lower priority than the
critical message (A>C>B) will guarantee the 100% FT of the critical messages but B
will miss its first deadline even in a fault free scenario

CERTS 2019



5:10 On Fault-Tolerant Scheduling of Time Sensitive Networks

0

Message A
(Critical)

168

0 16

4 12

Message B
(Non-critical)

Message C
(Critical)

8

A1 A2 A3 A4

16

3 7 11 15

9

C1

765

9

C1C1

Figure 11 Each critical message instance hit by a fault can be re-transmitted within its deadline.

What we propose is a new stream/message allocation and priority assignment that:

Maximises the FT capability of critical messages in the presence of fault
Maximises the service of the non-critical messages in the absence of faults

We derive FT feasibility windows and FA feasibility windows based on Chetto and Chetto [6]
and further Aysan et al [4] that ensure the above. In the example, we put A in the TT traffic
and B and C in the RC traffic with priorities derived by an ILP solver given the feasibility
windows constraint.

6 Related work

For scheduling on time-triggered networks, Steiner [22] introduced a method to synthesize
the time-triggered traffic using an SMT YICES solver. A common approach is to have a
“recovery slack” in the schedule in order to accommodate time needed for re-executions in
case of faults [10]. It has been shown that the time-triggered paradigm which forms a core
part of the time sensitive network standard (as 802.1Qbv time-aware shaper [23]) ensures
the fail-silent semantics whereby a packet is received only if correct or not received at all.
Fault recovery studies such as [25] depend on a fast spanning tree reconfiguration algorithm
to reduce the total fault recovery time, and a delayed link inactivation scheme that allows
real-time connections which are not affected by the failed links/switches to continue to exist.

Recent approaches by Steiner et al [21][13] based on reconfiguration of GCL schedules
at runtime for 802.1Qbv TSN discuss a configuration agent that is aware of the traffic
conditions at each node in the network. The objective is to ensure that new traffic flows can
be accommodated with use of as few queues in the switch ports as possible while maintaining
a feasible schedule.

Proenza et al [5] [19] have proposed a flexible time triggered paradigm for distributed
real time systems. Flexibility refers to the adaptation of the nodes to new and evolving hard
real-time requirements such as periodic and sporadic messages and updating the parameters
of such messages at run-time. Some recent studies on reconfiguration by means of spatial
and temporal techniques are discussed in [2] [3]. Desai et al [8] discuss safety of industrial
automation systems, although focused towards fog/edge paradigms. Pozo et al [20] have
shown that schedules can be “repaired” to combat the presence of faults.

Recovery from a transient or permanent fault in a time triggered network implies a
certain amount of flexibility in the mechanisms to ask for changes in real-time requirements
at runtime to reconfigure nodes and switches according to a new schedule [12]. Gutiérrez et



R. Dobrin, N. Desai, and S. Punnekkat 5:11

al [14] and Raagard et al [21] discuss a configuration agent that can synthesize new schedules
for TSN at runtime. Time synchronization aspects are also extremely crucial and addressed
in works such as [16] and [15].

7 Conclusion and Ongoing Work

Scheduling of safety-critical data frames (and tasks) constitutes a fundamental design
requirement. The principal limitation of the time-triggered approach is the inability to
adapt to unanticipated changes in the system parameters such as traffic patterns or faults.
This causes the schedule not to guarantee the transmission of all frames within their timing
requirements. If the network does not contain a backup schedule predicting that specific
change, the schedule needs to be synthesized again from scratch, which is computationally
and time intensive.

With respect to 802.1Qbv, our goal is to ensure that the schedule offsets representing
the opening and closing of the gates (the GCL table) for the TSN switches are recalculated
first for the TT traffic while simultaneously meeting the timing requirements (deadlines) for
message transmissions.

In this paper we saw how our FT/FA aware scheduling approach provides critical messages
to meet their deadlines even when all instances of the critical messages experience single
faults. Additionally, in case faults do not occur, we have the possibility for non-critical
messages to be served in a better way (compared to background scheduling). We are currently
in the process of performing detailed evaluation of the approach thorough simulations.

As part of ongoing work, we are focusing on transmitting critical messages as time-
triggered traffic which will enforce a much stricter time assignment.

References

1 I. Álvarez, C. Drago, J. Proenza, and M. Barranco. First Study of the Proactive Transmission
of Replicated Frames Mechanism over TSN. 16th International Workshop on Real Time
Networks (RTN), ECRTS, 2018.

2 I. Álvarez, J. Proenza, and M. Barranco. Mixing Time and Spatial Redundancy Over Time
Sensitive Networking. In IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W), June 2018. doi:10.1109/DSN-W.2018.00031.

3 M. Ashjaei, P. Pedreiras, M. Behnam, L. Almeida, and T. Nolte. Evaluation of dynamic
reconfiguration architecture in multi-hop switched ethernet networks. In IEEE Emerging
Technology and Factory Automation, pages 1–4, September 2014. doi:10.1109/ETFA.2014.
7005322.

4 H. Aysan, R. Dobrin, and S. Punnekkat. Fault Tolerant Scheduling on Control Area Net-
work (CAN). IEEE International Workshop on Object/component/service-oriented Real-time
Networked Ultra-dependable Systems, 2010.

5 A. Ballesteros, J. Proenza, and P. Palmer. Towards a dynamic task allocation scheme for
highly-reliable adaptive distributed embedded systems. In 2017 22nd IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), pages 1–4, September
2017. doi:10.1109/ETFA.2017.8247773.

6 H. Chetto and M. Chetto. Some Results of the Earliest Deadline Scheduling Algorithm. IEEE
Transactions on Software Engineering, 15(10), October 1989. doi:10.1109/TSE.1989.559777.

7 S.S. Craciunas and R.S. Oliver. Combined Task- and Network-level Scheduling for Distributed
Time-triggered Systems. Real-Time Systems Journal, 52(2), March 2016.

8 N. Desai and S. Punnekkat. Safety of Fog-based Industrial Automation Systems. In Proceedings
of the Workshop on Fog Computing and the IoT. ACM, 2019. doi:10.1145/3313150.3313218.

CERTS 2019

https://doi.org/10.1109/DSN-W.2018.00031
https://doi.org/10.1109/ETFA.2014.7005322
https://doi.org/10.1109/ETFA.2014.7005322
https://doi.org/10.1109/ETFA.2017.8247773
https://doi.org/10.1109/TSE.1989.559777
https://doi.org/10.1145/3313150.3313218


5:12 On Fault-Tolerant Scheduling of Time Sensitive Networks

9 M. Di Natale. Scheduling the CAN Bus with Earliest Deadline Techniques. IEEE Real-Time
Systems Symposium, pages 259–268, November 2000.

10 R. Dobrin, H. Aysan, and S. Punnekkat. Maximizing the Fault Tolerance Capability of Fixed
Priority Schedules. In RTCSA, pages 337–346, September 2008. doi:10.1109/RTCSA.2008.6.

11 N. Finn. Introduction to Time-Sensitive Networking. IEEE Communications Standards
Magazine, 2(2):22–28, June 2018. doi:10.1109/MCOMSTD.2018.1700076.

12 D. Gessner, J. Proenza, M. Barranco, and A. Ballesteros. A Fault-Tolerant Ethernet for Hard
Real-Time Adaptive Systems. IEEE Transactions on Industrial Informatics, pages 1–1, 2019.
doi:10.1109/TII.2019.2895046.

13 M. Gutiérrez, A. Ademaj, W. Steiner, R. Dobrin, and S. Punnekkat. Self-configuration
of IEEE 802.1 TSN networks. In 2017 22nd IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), pages 1–8, September 2017. doi:10.1109/
ETFA.2017.8247597.

14 M. Gutiérrez, W. Steiner, R. Dobrin, and S. Punnekkat. A configuration agent based on the
time-triggered paradigm for real-time networks. In 2015 IEEE World Conference on Factory
Communication Systems (WFCS), pages 1–4, May 2015. doi:10.1109/WFCS.2015.7160584.

15 Marina Gutiérrez, Wilfried Steiner, Radu Dobrin, and Sasikumar Punnekkat. Synchronization
Quality of IEEE 802.1AS in Large-Scale Industrial Automation Networks. In 23rd IEEE
Real-Time and Embedded Technology and Applications Symposium, April 2017.

16 E. Heidinger, F. Geyer, S. Schneele, and M. Paulitsch. A performance study of Audio Video
Bridging in aeronautic Ethernet networks. In IEEE International Symposium on Industrial
Embedded Systems (SIES’12), pages 67–75, June 2012. doi:10.1109/SIES.2012.6356571.

17 H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the IEEE, 91(1):112–
126, January 2003. doi:10.1109/JPROC.2002.805821.

18 H. Kopetz and G. Grunsteidl. TTP - a time-triggered protocol for fault-tolerant real-time sys-
tems. In FTCS-23 The Twenty-Third International Symposium on Fault-Tolerant Computing,
pages 524–533, June 1993. doi:10.1109/FTCS.1993.627355.

19 P. Pedreiras and A. Luis. The flexible time-triggered (FTT) paradigm: an approach to
QoS management in distributed real-time systems. In Proceedings International Parallel and
Distributed Processing Symposium, April 2003. doi:10.1109/IPDPS.2003.1213243.

20 F. Pozo, G. Rodriguez-Navas, and H. Hansson. Schedule Reparability: Enhancing Time-
Triggered Network Recovery Upon Link Failures. In RTCSA, 2018. doi:10.1109/RTCSA.2018.
00026.

21 M. L. Raagaard, P. Pop, M. Gutiérrez, and W. Steiner. Runtime reconfiguration of time-
sensitive networking (TSN) schedules for Fog Computing. In 2017 IEEE Fog World Congress
(FWC), pages 1–6, October 2017. doi:10.1109/FWC.2017.8368523.

22 W. Steiner. An Evaluation of SMT-Based Schedule Synthesis for Time-Triggered Multi-hop
Networks. In IEEE Real-Time Systems Symposium, November 2010. doi:10.1109/RTSS.2010.
25.

23 W. Steiner, S. S. Craciunas, and R. S. Oliver. Traffic Planning for Time-Sensitive Com-
munication. IEEE Communications Standards Magazine, 2(2):42–47, June 2018. doi:
10.1109/MCOMSTD.2018.1700055.

24 D. Tamas-Selicean, P. Pop, and W. Steiner. Synthesis of Communication Schedules for
TTEthernet-based Mixed-criticality Systems. In IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis, 2012. doi:10.1145/2380445.2380518.

25 S. Varadarajan and T. Chiueh. Automatic fault detection and recovery in real time switched
Ethernet networks. In IEEE INFOCOM Conference on Computer Communications, March
1999. doi:10.1109/INFCOM.1999.749264.

26 M. Wollschlaeger, T. Sauter, and J. Jasperneite. The Future of Industrial Communication:
Automation Networks in the Era of the Internet of Things and Industry 4.0. IEEE Industrial
Electronics Magazine, 11(1):17–27, March 2017. doi:10.1109/MIE.2017.2649104.

https://doi.org/10.1109/RTCSA.2008.6
https://doi.org/10.1109/MCOMSTD.2018.1700076
https://doi.org/10.1109/TII.2019.2895046
https://doi.org/10.1109/ETFA.2017.8247597
https://doi.org/10.1109/ETFA.2017.8247597
https://doi.org/10.1109/WFCS.2015.7160584
https://doi.org/10.1109/SIES.2012.6356571
https://doi.org/10.1109/JPROC.2002.805821
https://doi.org/10.1109/FTCS.1993.627355
https://doi.org/10.1109/IPDPS.2003.1213243
https://doi.org/10.1109/RTCSA.2018.00026
https://doi.org/10.1109/RTCSA.2018.00026
https://doi.org/10.1109/FWC.2017.8368523
https://doi.org/10.1109/RTSS.2010.25
https://doi.org/10.1109/RTSS.2010.25
https://doi.org/10.1109/MCOMSTD.2018.1700055
https://doi.org/10.1109/MCOMSTD.2018.1700055
https://doi.org/10.1145/2380445.2380518
https://doi.org/10.1109/INFCOM.1999.749264
https://doi.org/10.1109/MIE.2017.2649104

	Introduction
	Time Sensitive Networking
	System model
	System and error model
	Traffic model

	Proposed approach
	Discussions
	Related work
	Conclusion and Ongoing Work

