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Abstract
Computing systems are becoming ever more complex, increasingly often incorporating deep learning
components. Since deep learning is unstable with respect to adversarial perturbations, there is a
need for rigorous software development methodologies that encompass machine learning. This paper
describes progress with developing automated verification techniques for deep neural networks to
ensure safety and robustness of their decisions with respect to input perturbations. This includes
novel algorithms based on feature-guided search, games, global optimisation and Bayesian methods.
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1 Introduction

Computing devices have become ubiquitous and ever present in our lives: smartphones
help us stay in touch with family and friends, GPS-enabled apps offer directions literally
at our fingertips, and voice-controlled assistants are now able to execute simple commands.
Artificial Intelligence is making great strides, promising many more exciting applications
with an increased level of autonomy, from wearable medical devices to robotic care assistants
and self-driving cars.

Deep learning, in particular, is revolutionising AI. Deep neural networks (DNNs) have
been developed for a variety of tasks, including computer vision, face recognition, malware
detection, speech recognition and text analysis. While the accuracy of neural networks has
greatly improved, they are susceptible to adversarial examples [17, 1]. An adversarial example
is an input which, though initially classified correctly, is misclassified after a minor, perhaps
imperceptible, perturbation. Figure 1 from [19] shows an image of a traffic light correctly
classified by a convolutional neural network, which is then misclassified after changing only
a few pixels. This illustrative example, though somewhat artificial, since in practice the
controller would rely on additional sensor input when making a decision, highlights the
need for appropriate mechanisms and frameworks to prevent the occurrence of similar issues
during deployment.

Clearly, the excitement surrounding the potential of AI and autonomous computing
technologies is well placed. Autonomous devices make decisions on their own and on users’
behalf, powered by software that today often incorporates machine learning components.
Since autonomous device technologies are increasingly often incorporated within safety-
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Figure 1 from [19]. Adversarial examples generated on Nexar challenge data (dashboard camera
images). (a) Green light classified as red with confidence 56% after one pixel change. (b) Green
light classified as red with confidence 76% after one pixel change. (c) Red light classified as green
with 90% confidence after one pixel change.

critical applications, they must trustworthy. However, software faults can have disastrous
consequences, potentially resulting in fatalities. Given the complexity of the scenarios and
uncertainty in the environment, it is important to ensure that software incorporating machine
learning components is robust and safe.

2 Overview of progress in automated verification for neural networks

Robustness (or resilience) of neural networks to adversarial perturbations is an active topic
of investigation. Without claiming to be exhaustive, this paper provides a brief overview of
existing research directions aimed at improving safety and robustness of neural networks.
Local (also called pointwise) robustness is defined with respect to an input point and
its neighbourhood as the invariance of the classification over the neighbourhood. Global
robustness is usually estimated as the expectation of local robustness over the test dataset
weighted by the input distribution.

2.1 Heuristic search for adversarial examples
A number of approaches have been proposed to search for adversarial examples to exhibit
their lack of robustness, typically by transforming the search into an optimisation problem,
albeit without providing guarantees that adversarial examples do not exist if not found.
In [17], search for adversarial examples is performed by minimising the L2 distance between
the images while maintaining the misclassification. Its improvement, Fast Gradient Sign
Method (FGSM), uses a cost function to direct the search along the gradient. In [5], the
optimisation problem proposed in [17] is adapted to attacks based on other norms, such as
L0 and L∞. Instead of optimisation, JSMA [13] uses a loss function to create a “saliency
map” of the image, which indicates the importance of each pixel in the classification decision.
[19] introduces a game-based approach for finding adversarial examples by extracting the
features of the input image using the SIFT [9] method. Then, working on a mixture of
Gaussians representation of the image, the two players respectively select a feature and a
pixel in the feature to search for an adversarial attack. This method is able to find the
adversarial example in Figure 1 in a matter of seconds.
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2.2 Automated verification approaches

In contrast to heuristic search for adversarial examples, verification approaches aim to provide
formal guarantees on the robustness of DNNs. An early verification approach [14] encodes
the entire network as a set of constraints and reduces the verification to the satisfiability
problem. [8] improves on [14] by by extending the approach to work with piecewise linear
ReLU functions, scaling up to networks with 300 ReLU nodes. [7] develops a verification
framework that employs discretisation and a layer-by-layer refinement to exhaustively explore
a finite region of the vector spaces associated with the input layer or the hidden layers, and
scales to work with larger networks. [15] presents a verification approach based on computing
the reachable set of outputs using global optimisation. In [12], techniques based on abstract
interpretation are formulated, whereas [11] employ robust optimisation.

Several approaches analyse the robustness of neural networks by considering the maximal
size of the perturbation that will not cause a misclassification. For a given input point, the
maximal safe radius is defined as the largest radius centred on that point within which no
adversarial examples exist. Solution methods include encoding as a set of constraints and
reduction to satisfiability or optimisation [18]. In [20], the game-based approach of [19] is
extended to anytime computation of upper and lower bounds on the maximum safe radius
problem, providing a theoretical guarantee that it can reach the exact value. The method
works by “gridding” the input space based on the Lipschitz constant and checking only the
“corners” of the grid. Lower bound computation employs A? search.

Since verification for state-of-the-art neural networks is an NP problem, testing methods
that ensure high levels of coverage have also been developed [16].

2.3 Towards probabilistic verification for deep neural networks

All works listed above assume a trained network with fixed weights and therefore yield
deterministic robustness guarantees. Since neural networks have a natural probabilistic
interpretation, they lend themselves to frameworks for computing probabilistic guarantees on
their robustness. Bayesian neural networks (BNNs) are neural networks with distributions
over their weights, which can capture the uncertainty within the learning model [10]. The
neural network can thus return an uncertainty estimate (typically computed pointwise, see
[6]) along with the output, which is important for safety-critical applications.

In [3], probabilistic robustness is considered for BNNs, using a probabilistic generalisation
of the usual statement of (deterministic) robustness to adversarial examples [7], namely the
computation of the probability (induced by the distribution over the BNN weights) of the
classification being invariant over the neighbourhood around a given input point. Since
the computation of the posterior probability for a BNN is intractable, the method employs
statistical model checking [21], based on the observation that each sample taken from the
(possibly approximate) posterior weight distribution of the BNN induces a deterministic
neural network. The latter can thus be analysed using existing verification techniques for
deterministic networks mentioned above (e.g. [7, 8, 15]).

A related safety and robustness verification approach, which offers formal guarantees, has
also been developed for Gaussian process (GP) models, for regression [4] and classification
[2]. In contrast to DNNs, where trade offs between robustness and accuracy have been
observed [11, 3], robustness of GPs increases with training. More research is needed to
explore these phenomena.
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3 Conclusion

The pace of development in Artificial Intelligence has increased sharply, stimulated by the
advances and wide acceptance of the machine learning technology. Unfortunately, recent
forays of technology companies into real-world applications have exposed the brittleness
of deep learning. There is a danger that tacit acceptance of deep learning will lead to
flawed AIs deployed in critical situations, at a considerable cost. Machine learning plays
a fundamental role in enabling artificial agents, but developments so far have focused on
‘narrow’ AI tasks, such as computer vision and speech recognition, which lack the ability
to reason about interventions, counterfactuals and ‘what if’ scenarios. To achieve “strong”
AI, greater emphasis is necessary on rigorous modelling and verification technologies that
support such reasoning, as well as development of novel synthesis techniques that guarantee
the correctness of machine learning components by construction. Importantly, automated
methods that provide probabilistic guarantees which properly take account of the learning
process have a role to play and need to be investigated.
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