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Abstract
Distance labeling schemes are schemes that label the vertices of a graph with short labels in such a
way that the distance between any two vertices u and v can be determined efficiently by merely
inspecting the labels of u and v, without using any other information. One of the important problems
is finding natural classes of graphs admitting distance labeling schemes with labels of polylogarithmic
size. In this paper, we show that the class of cube-free median graphs on n nodes enjoys distance
labeling scheme with labels of O(log3 n) bits.
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1 Introduction

Classical network representations are usually global in nature. In order to derive a useful piece
of information, one must access to a global data structure representing the entire network
even if the needed information only concerns few nodes. Nowadays, with networks getting
bigger and bigger, the need for locality is more important than ever. Indeed, in several cases,
global representations are impractical and network representation must be distributed. The
notion of (distributed) labeling scheme has been introduced [12, 32, 38, 39, 27] in order to
meet this need. A (distributed) labeling scheme is a scheme maintaining global information
on a network using local data structures (or labels) assigned to nodes of the network. Their
goal is to locally store some useful information about the network in order to answer a
specific query concerning a pair of nodes by only inspecting the labels of the two nodes.
Motivation for such localized data structure in distributed computing is surveyed and widely
discussed in [38]. The predefined queries can be of various types such as distance, adjacency,
or routing. The quality of a labeling scheme is measured by the size of the labels of nodes
and the time required to answer queries. Trees with n vertices admit adjacency and routing
labeling schemes with size of labels and query time O(logn)1 and distance labeling schemes
with size of labels and query time O(log2 n), and this is asymptotically optimal. Finding
natural classes of graphs admitting distance labeling schemes with labels of polylogarithmic
size is an important and challenging problem.

1 All logarithms in this paper are in base 2.
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15:2 Distance Labeling Schemes for Cube-Free Median Graphs

A connected graph G is median if any triplet of vertices x, y, z contains a unique vertex
simultaneously lying on shortest (x, y)-, (y, z)-, and (z, x)-paths. Median graphs constitute
the most important class in metric graph theory [5]. This importance is explained by the
bijections between median graphs and discrete structures arising and playing important roles
in completely different areas of research in mathematics and theoretical computer science: in
fact, median graphs, 1-skeletons of CAT(0) cube complexes from geometric group theory
[30, 41], domains of event structures from concurrency [44], median algebras from universal
algebra [7], and solution sets of 2-SAT formulae from complexity theory [36, 42] are all the
same. In this paper, we design a distance labeling scheme for median graphs containing no
cubes. In our scheme, the labels have O(log3 n) bits and O(1) query time. Our constant
query time assumes the standard word-RAM model with word size Ω(logn).

We continue with the idea of the labeling scheme. Let G = (V,E) be a cube-free median
graph with n vertices. First, the algorithm computes a median (centroid) vertex m of G. and
the star St(m) of m (the union of all edges and squares of G incident to m). The star St(m)
is gated, i.e., each vertex of G has an unique projection (nearest vertex) in St(m). Therefore,
with respect to the projection function, the vertex-set of G is partitioned into fibers: the
fiber F (x) of x ∈ St(m) consists of all vertices v ∈ V having x as the projection in St(m).
Since m is a median of G, each fiber contains at most n

2 vertices. The fibers are also gated
and are classified into panels and cones depending to the distance between their projections
and m (one for panels and two for cones). Each cone has at most two neighboring panels
however a panel may have an unbounded number of neighboring cones. Given two arbitrary
vertices u and v of G, we show that dG(u, v) = dG(u,m) + dG(m, v) for all locations of u
and v in the fibers of St(m) except the cases when u and v belong to neighboring cones and
panels, or u and v belong to two cones neighboring the same panel, or u and v belong to
the same fiber. If dG(u, v) = dG(u,m) + dG(m, v), then dG(u, v) can be retrieved by keeping
dG(u,m) in the label of u and dG(v,m) in the label of v. If u and v belong to the same
fiber F (x), the computation of dG(u, v) is done by recursively partitioning the cube-free
median graph F (x) at a later stage of the recursion. In the two other cases, we show that
dG(u, v) can be retrieved by keeping in the labels of vertices in all cones the distances to
their projections on the two neighboring panels. It turns out (and this is the main technical
contribution of the paper), that for each panel F (x), the union of all projections of vertices
from neighboring cones on F (x) is included in an isometric tree of G and that the vertices
of the panel F (x) contain one or two projections in this tree. All such outward and inward
projections are kept in the labels of respective vertices. Therefore, one can use distance
labeling schemes for trees to deal with vertices u and v lying in neighboring fibers or in cones
having a common neighboring panel. Consequently, the size of the label of a vertex u on
each recursion level is O(log2 n). Since the recursion depth is O(logn), the vertices of G have
labels of size O(log3 n). The distance dG(u, v) can be retrieved by finding the first time in
the recursion when vertices u and v belong to different fibers of the partition. Consequently,
the main result of the paper is the following theorem:

I Theorem 1. There exists a distance labeling scheme that constructs in O(n2 logn) time
labels of size O(log3 n) of the vertices of a cube-free median graph G = (V,E). Given the
labels of u and v of G, it computes in constant time the distance dG(u, v) between u and v.

The remaining part of this note is organized in the following way. Section 2 introduces
the notions used in this paper. In Section 3 we review the main results on distance labeling
schemes and on median graphs. In Section 4 we recall or establish some properties of general
median graphs used in our scheme. Section 5 presents the most important geometric and
structural properties of cube-free median graphs, which are the essence of our distance scheme
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and which do not hold for general median graphs. Section 6 describes our distance labeling
scheme for cube-free median graphs and proves Theorem 1. Due to page limits, the missing
proofs and the pseudocodes are provided in the full version [22]. In the full version, we also
describe a routing labeling scheme with similar performances.

2 Preliminaries

2.1 Basic notions

All graphs G = (V,E) in this note are finite, undirected, simple, and connected. We
will write u ∼ v if two vertices u and v are adjacent. The distance dG(u, v) between two
vertices u and v is the length of a shortest (u, v)-path, and the interval I(u, v) := {x ∈
V : dG(u, x) + dG(x, v) = dG(u, v)} consists of all the vertices on shortest (u, v)–paths. A
connected subgraph H of G is called isometric if dH(u, v) = dG(u, v) for any two vertices u, v
ofH. A subgraphH of G is gated if for every vertex v /∈ V (H), there exists a vertex v′ ∈ V (H)
such that for all u ∈ V (H), dG(v, u) = dG(v, v′) + dG(v′, u) (v′ is called the gate of v in H).
For a vertex x of a gated subgraph H of G, the set F (x) = {v ∈ V : x is the gate of v in H}
is called the fiber of x with respect to H. The fibers {F (x) : x ∈ H} define a partition of G.
The m-dimensional hypercube Qm has all subsets of {1, . . . ,m} as the vertex-set and A ∼ B
iff |A4B| = 1.

A graph G is called median if the intersection I(x, y) ∩ I(y, z) ∩ I(z, x) is a singleton
for each triplet x, y, z of vertices; this unique intersection vertex is called the median of
x, y, z. Median graphs are bipartite. Basic examples of median graphs are trees, hypercubes,
rectangular grids, and Hasse diagrams of distributive lattices and of median semilattices
[5]. The star St(z) of a vertex z of a median graph G is the union of all hypercubes of G
containing z. The dimension dim(G) of a median graph G is the largest dimension of an
hypercube subgraph of G. A cube-free median graph is a median graph G of dimension 2, see
Figure 1 for illustrations. Even if cube-free median graphs are the skeletons of 2-dimensional
CAT(0) cube complexes, their combinatorial structure is rather intricate. As an example,
for n,m ≥ 5, the Cartesian product K1,n ×K1,m is a non-planar cube-free median graph.
Moreover, for any n, one can construct a cube-free median graph containing Kn as a minor
by gluing together

(
n
2
)
grids of size n× n along a common horizontal side. Hence, this class

is not a subset of any minor-closed graph family.

Figure 1 Cube-free median graphs.
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15:4 Distance Labeling Schemes for Cube-Free Median Graphs

2.2 Distance labeling schemes
A labeling scheme for a graph family G consists of an encoding function and a decoding
function. These functions depend on the family G and on the type of queries: adjacency,
distance, or routing queries. More formally, a distance labeling scheme on a graph family G
consists of an encoding function CG : V (G)→ {0, 1}∗ that gives to every vertex of a graph
G of G a label, and of a decoding function DG : {0, 1}∗ × {0, 1}∗ → N that, given the labels
of two vertices u and v of G, can compute efficiently the distance dG(u, v) between them.

3 Related work

3.1 Distance labeling schemes
Distance Labeling Schemes (DLS) have been introduced in a series of papers by Peleg et
al. [38, 39, 27]. Before these works, some closely related notions already existed such as
embeddings in a squashed cube [43] (equivalent to distance labeling schemes with labels of
size logn times the dimension of the cube) or labeling schemes for adjacency requests [32].
One of the main results for DLS is that general graphs support distance labeling schemes
with labels of size O(n) bits [43, 27, 2]. This scheme is asymptotically optimal since Ω(n) bits
labels are needed for general graphs. Another important result is that there exists a distance
labeling scheme for the class of trees with O(log2 n) bits labels [38, 3, 24]. Several classes of
graphs containing trees also enjoy a distance labeling scheme with O(log2 n) bit labels such
as bounded tree-width graphs [27], distance-hereditary graphs [25], bounded clique-width
graphs [23], and non-positively curved plane graphs [19]. A lower bound of Ω(log2 n) bits
on the label length is known for trees [27, 3], implying that all the results mentioned above
are optimal as well. Other families of graphs have been considered such as interval graphs,
permutation graphs, and their generalizations [9, 26] for which an optimal bound of Θ(logn)
bits was given, and planar graphs for which there is a lower bound of Ω(n 1

3 ) bits [27] and an
upper bound of O(

√
n) bits [28].

3.2 Median graphs
Median graphs and related structures have an extensive literature; several surveys exist
listing their numerous characterizations and properties [5, 33, 34]. These structures have
been investigated in different contexts by quite a number of authors for more than half a
century. In this subsection we briefly review the links between median graphs and CAT(0)
cube complexes. We also recall some results, related to the subject of this paper, about the
distance and shortest path problems in median graphs and CAT(0) cube complexes. For
a survey of results on median graphs and their bijections with median algebras, median
semilattices, CAT(0) cube complexes, and solution spaces of 2-SAT formulae, see [5]. For a
comprehensive presentation of median graphs and CAT(0) cube complexes as domains of
event structures, see the long version of [14].

It is not immediately clear from the definition, but median graphs are intimately related to
hypercubes: median graphs can be obtained from hypercubes by amalgams and median graphs
are themselves isometric subgraphs of hypercubes [8, 35]. Even more, median graphs are
exactly the retracts of hypercubes [4]. Due to the abundance of hypercubes, to each median
graph G one can associate a cube complex X(G) obtained by replacing every hypercube of G
by a solid unit cube. Then G can be recovered as the 1-skeleton of X(G). The cube complex
X(G) can be endowed with several intrinsic metrics, in particular with the `2-metric. An
important class of cube complexes studied in geometric group theory and combinatorics is the
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class of CAT(0) cube complexes. CAT(0) geodesic metric spaces are usually defined via the
nonpositive curvature comparison axiom of Cartan–Alexandrov–Toponogov [13]. For cube
complexes (and more generally for cell complexes) the CAT(0) property can be defined in a
very simple and intuitive way by the property that `2-geodesics between any two points are
unique. Gromov [30] gave a nice combinatorial characterization of CAT(0) cube complexes
as simply connected cube complexes with flag links. It was also shown in [18, 40] that median
graphs are exactly the 1-skeletons of CAT(0) cube complexes.

Previous characterizations can be used to show that several cube complexes arising in
applications are CAT(0). Billera et al. [10] proved that the space of trees (encoding all
tree topologies with a given set of leaves) is a CAT(0) cube complex. Abrams et al. [1, 29]
considered the space of all possible positions of a reconfigurable system and showed that
in many cases this state complex is CAT(0). Billera et al. [10] formulated the problem of
computing the geodesic between two points in the space of trees. In the robotics literature,
geodesics in state complexes correspond to the motion planning to get the robot from one
position to another one with minimal power consumption. A polynomial-time algorithm for
geodesic problem in the space of trees was provided in [37] and, very recently, [31] designed
such an algorithm for all CAT(0) cube complexes.

Returning to median graphs, the following is known about the labeling schemes for
them. First, the arboricity of any median graph G on n vertices is at most logn, leading
to adjacency schemes of O(log2 n) bits per vertex. As noted in [21], one logn factor can be
replaced by the dimension of G. Compact distance labeling schemes can be obtained for
some subclasses of cube-free median graphs. One particular class is that of squaregraphs,
i.e., plane graphs in which all inner vertices have degree ≥ 4. For squaregraphs, distance
schemes with labels of size O(log2 n) follow from a more general result of [19] for plane
graphs of nonpositive curvature. Another such class of graphs is that of partial double
trees [6]. Those are the median graphs which isometrically embed into a Cartesian product
of two trees. The isometric embedding of partial double trees into a product of two trees
immediately leads to distance schemes with labels of O(log2 n) bits. Finally, with a technically
involved proof, it was shown in [20] that there exists a constant M such that any cube-free
median graph G with maximum degree ∆ can be isometrically embedded into a Cartesian
product of at most ε(∆) := M∆26 trees. This immediately shows that cube-free median
graph admit distance labeling schemes with labels of length O(ε(∆) log2 n). Compared
with the O(log3 n)-labeling scheme obtained in the current paper, the disadvantage of the
O(ε(∆) log2 n)-labeling scheme is the dependence from the maximum degree ∆ of G. The
situation is even worse for high dimensional median graphs: [20] presents an example of a
5-dimensional median graph/CAT(0) cube complex with constant degree which cannot be
embedded into a Cartesian product of a finite number of trees. Therefore, for general finite
median graphs the function ε(∆) does not exist. This in some sense explains the difficulty of
designing polylogarithmic distance labeling schemes for general median graphs. Nevertheless,
we do not have any indication to believe that such schemes do not exist.

4 Fibers in median graphs

In this section, we recall several useful properties of fibers of gated subgraphs of median
graphs. From the definition, one can deduce that median graphs satisfy the following
quadrangle condition: For any vertices u, v, w, z such that dG(u, z) = k + 1, v, w ∼ z, and
dG(u, v) = dG(u,w) = k, there is a unique vertex x ∼ v, w such that dG(u, x) = k − 1.

MFCS 2019



15:6 Distance Labeling Schemes for Cube-Free Median Graphs

I Lemma 1. [17]: A subgraph H of a median graph G is gated if and only if any vertex
v /∈ V (H) is adjacent to at most one vertex of H.

Combinatorially, the stars of median graphs may have quite an arbitrary structure: by
a result of [8], there is a bijection (via the simplex graph operation) between the stars of
median graphs and arbitrary graphs. However, from the metric point of view, stars St(z)
have interesting properties:

I Proposition 2. The stars St(z) and their fibers F (x), x ∈ St(z), are gated.

Both properties of Proposition 2 are known for more general graphs: for gatedness of
stars, see [15, Theorem 6.17]) and for gatedness of fibers of gated sets, see [16].

Let H be a gated subgraph of G and let F(H) = {F (x) : x ∈ V (H)} be the partition of
V into fibers. We call two fibers F (x) and F (y) neighboring (notation F (x) ∼ F (y)) if there
exists an edge x′y′ of G with x′ in F (x) and y′ in F (y). If F (x) and F (y) are neighboring
fibers of H, then denote by ∂yF (x) the set of all vertices x′ ∈ F (x) having a neighbor y′ in
F (y) and call ∂yF (x) the boundary of F (x) relative to F (y). The following three results can
be easily proved.

I Lemma 2. Two fibers F (x) and F (y) of H are neighboring if and only if x ∼ y. Moreover,
if F (x) ∼ F (y), then ∂yF (x) induces a gated subgraph of G of dimension ≤ dim(G)− 1.

For a vertex x of H and its fiber F (x), the union of all boundaries ∂yF (x) over all
F (y) ∼ F (x), y ∈ V (H), is called the total boundary of the fiber F (x) and is denoted by
∂∗F (x). The boundaries ∂yF (x) constituting ∂∗F (x) are called branches of ∂∗F (x).

I Lemma 3. The total boundary of any fiber of H is an isometric subgraph of G not
containing dim(G)-cubes.

We conclude this section with an additional property of fibers of stars of median vertices
of G, i.e., vertices minimizing the function M(x) =

∑
v∈V dG(x, v).

I Lemma 4. Let m be a median vertex of a median graph G with n vertices. Then any fiber
F (x) of the star St(m) of m has at most n/2 vertices.

Unfortunately, the total boundary of a fiber does not always induce a median subgraph.
Therefore, one cannot recursively apply the algorithm to the subgraphs induced by the
total boundaries ∂∗F (x). However, if G is cube-free, then the total boundaries of fibers are
isometric subtrees of G and one can use for them distance schemes for trees. Even in this
case, we still need an additional property of ∂∗F (x). We establish it in the next section.

5 Fibers in cube-free median graphs

In this section, we establish additional properties of fibers and of their total boundaries in
cube-free median graphs (for other properties of such graphs, see [11]). Using them we can
show that for any pair u, v of vertices of G, the following trichotomy holds: the distance
dG(u, v) either can be computed as dG(u,m) + dG(m, v), or as the sum of distances from
u, v to appropriate vertices u′, v′ of ∂∗F (x) plus the distance between u′, v′ in ∂∗F (x), or
via a recursive call to the fiber containing u and v.
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5.1 Classification of fibers
Let z be an arbitrary vertex of G and let Fz = {F (x) : x ∈ St(z)} denote the partition of V
into the fibers of St(z). We distinguish two types of fibers: the fiber F (x) is called a panel if
x is adjacent to z and F (x) is called a cone if x has distance two to z. The interval I(x, z) is
the edge xz if F (x) is a panel and is a square Qx := (x, y′, z, y′′) if F (x) is a cone. In the
second case, since y′ and y′′ are the only neighbors of x in St(z), by Lemma 2 we deduce
that the cone F (x) is adjacent to the panels F (y′) and F (y′′) and that F (x) is not adjacent
to any other panel or cone. By the same lemma, a panel F (y) is not adjacent to any other
panel, but F (y) is adjacent to all cones F (x) such that the square Qx contains the edge yz.

5.2 Total boundaries of fibers are quasigated
For a set A, an imprint of a vertex u /∈ A on A is a vertex a ∈ A such that I(u, a)∩A = {a}.
Denote by Υ(u,A) the set of all imprints of u on A. The most important property of
imprints is that for any vertex z ∈ A, there exists a shortest (u, z)-path passing via an
imprint. Therefore, if the set Υ(u,A) has constant size, one can store in the label of u the
distances to the vertices of Υ(u,A). Using this, for any z ∈ A, one can compute dG(u, z)
as min{dG(u, a) + dG(a, z) : a ∈ Υ(u,A)}. Note that A is gated iff any u /∈ A has a unique
imprint on A. We will say that a set A is quasigated if |Υ(u,A)| ≤ 2 for any vertex u /∈ A.
The main goal of this subsection is to show that the total boundaries of fibers are quasigated.

Let T be a tree with a distinguished vertex r in G, called the root of T . We will say that
a rooted tree T has gated branches if for any vertex x of T the unique path P (x, r) of T
connecting x to the root r is a gated subgraph of G. Lemma 3 implies:

I Lemma 5. The total boundary of any fiber is an isometric tree with gated branches.

By Lemma 5, ∂∗F (x) has gated branches, however ∂∗F (x) is not necessarily gated itself.
Since a panel F (x) may be adjacent to an arbitrary number of cones, one can think that
the imprint-set Υ(u, ∂∗F (x)) of a vertex u of F (x) may have an arbitrarily large size. The
following lemma shows that this is not the case, namely that |Υ(u, ∂∗F (x))| ≤ 2. This is one
of the key ingredients in the design of the distance labeling scheme presented in Section 6.
This property is no longer true for median graphs of dimension > 2.

I Lemma 6. Any rooted (at r) tree T with gated branches of G is quasigated.

Proof. Pick any u ∈ V \ V (T ) and suppose by way of contradiction that Υ(u, T ) contains
three distinct imprints x1, x2, and x3. Since T has gated branches, none of the vertices
x1, x2, x3 belong to the path of T between r and another vertex from this triplet. In particular,
r is different from x1, x2, x3. Suppose additionally that among all rooted trees T ′ with gated
branches of G and such that |Υ(u, T ′)| ≥ 3, the tree T has the minimal number of vertices.
This minimality choice (and the fact that any subtree of T containing r is also a rooted
tree with gated branches) implies that T is exactly the union of the three gated paths
P (r, x1), P (r, x2), and P (r, x3). Therefore, x1, x2 and x3 are the leaves of T .

Let yi be the neighbor of xi in the path P (r, xi), i = 1, 2, 3. Since G is bipartite, either
xi ∈ I(yi, u) or yi ∈ I(xi, u). Since xi ∈ Υ(u, T ), necessarily xi ∈ I(yi, u). Let T ′i be the
subtree of T obtained by removing the leaf xi. From the minimality choice of T , we cannot
replace T by the subtree T ′i . This means that |Υ(u, T ′i )| ≤ 2. Since xj , xk ∈ Υ(u, T ′i ) for
{i, j, k} = {1, 2, 3}, necessarily I(yi, u) ∩ {xj , xk} 6= ∅ holds.

First, notice that x1, x2, x3 ∈ I(u, r). Indeed, let zi denote the median of the triplet
xi, u, r. If zi 6= xi, since zi ∈ I(xi, r) = P (xi, r) ⊂ T and zi ∈ I(u, xi), we obtain a
contradiction with the inclusion of xi in Υ(u, T ). Thus zi = xi, yielding xi ∈ I(u, zi).

MFCS 2019



15:8 Distance Labeling Schemes for Cube-Free Median Graphs

Now, suppose without loss of generality that dG(r, x3) = max{dG(r, xi) : i = 1, 2, 3} := k.
Since I(y3, u) ∩ {x1, x2} 6= ∅ as shown above, we can suppose that x2 ∈ I(y3, u). Since
x3 ∈ I(y3, u), from these inclusions we obtain that dG(x3, u) + 1 = dG(y3, x2) + dG(x2, u).
Then dG(x3, u) ≥ dG(x2, u), and we conclude that dG(x3, u) = dG(x2, u) and dG(y3, x2) = 1.
Since x2, x3 ∈ I(r, u), dG(x3, r) = dG(x2, r). We distinguish two cases:
Case 1. dG(x1, r) = k.

Since x1, x2, x3 have the same distance k to r, we can apply to x1 the same analysis as to x3
and deduce that the neighbor y1 of x1 in T coincides with one of the vertices y2 or y3. Since
y2 = y3 = y, we conclude that the vertices x1, x2, x3 have the same neighbor y in T . Since
y is closer to r than each of the vertices x1, x2, x3 and since x1, x2, x3 ∈ I(r, u), we conclude
that x1, x2, x3 ∈ I(y, u). Applying the quadrangle condition three times, we can find three
vertices xi,j , i, j ∈ {1, 2, 3}, i 6= j, such that xi,j ∼ xi, xj and dG(xi,j , u) = k− 1. If two of
the vertices x1,2, x2,3, and x3,1 coincide, then we will get a forbidden K2,3. Thus x1,2, x2,3,

and x3,1 are pairwise distinct. Since G is bipartite, this implies that dG(xi, xj,k) = 3
for {i, j, k} = {1, 2, 3}. Since x1,2, x2,3 ∈ I(x2, u), by quadrangle condition there exists a
vertex w such that w ∼ x1,2, x2,3 and dG(w, u) = k − 2. Since G is bipartite, dG(w, x3,1)
equals to 3 or to 1. If dG(w, x3,1) = 3 = d(y, w), then the triplet y, w, x3,1 has two
medians x1 and x3, which is impossible, because G is median. Thus dG(w, x3,1) = 1, i.e.,
w ∼ x3,1. Then one can easily see that the vertices y, x1, x2, x3, x1,2, x2,3, x3,1, w define
an isometric 3-cube of G, contrary to the assumption that G is cube-free. This finishes
the analysis of Case 1.

Case 2. dG(x1, r) < k.
This implies that dG(r, x1) ≤ k−1 = dG(r, y). Let r′ be the neighbor of r in the (r, y)-path
of T . Note that r′ /∈ I(r, x1) = P (r, x1). Otherwise, r′ ∈ P (r, x1) ∩ P (r, x2) ∩ P (r, x3)
and we can replace T by the subtree T ′ rooted at r′ and consisting of the subpaths of
P (r, xi) between r′ and xi, i = 1, 2, 3. Clearly T ′ is a rooted tree with gated branches
and x1, x2, x3 ∈ Υ(u, T ′), contrary to the minimality choice of T . Thus r′ /∈ P (r, x1).
Let also P (r, x1) = (r, v1, . . . , vm−1, vm =: x1). Note that r may coincide with y1
and x1 may coincide with v1. Since v1, r

′ ∈ I(r, u), by quadrangle condition we will
find v′2 ∼ v1, r

′ at distance dG(r, u) − 2 from u. Since r′ /∈ I(r, x1), v′2 6= v2. Since
v2, v

′
2 ∈ I(v1, u), by quadrangle condition we will find v′3 ∼ v2, v

′
2 at distance dG(r, u)− 3

from u. Again, since r′ /∈ I(r, x1), v′3 6= v3. Continuing this way, we will find the vertices
v′2, v

′
3, . . . , v

′
m, v

′
m+1 =: x′1 forming an (r′, x′1)-path P (r′, x′1) and such that v′i+1 ∼ vi, v

′
i,

v′i+1 6= vi+1, and v′i+1 is one step closer to u than vi and v′i. From its construction,
P (r′, x′1) is a shortest path. We assert that P (r′, x′1) is gated. Otherwise, by Lemma
1, we can find two vertices v′i−1 and v′i+1 having a common neighbor z′ different from
v′i. Let z be the median of the triplet z′, vi−1, vi+1. Then z is a common neighbor of
z′, vi−1, vi+1 and z is different from vi (otherwise, we obtain a forbidden K2,3). But then
the vertices vi−1, vi, vi+1, v

′
i−1, v

′
i, v
′
i+1, z, z

′ induce in G an isometric 3-cube, contrary to
the assumption that G is cube-free. Consequently, P (r′, x′1) is a gated path of G.
Let T ′′ be the tree rooted at r′ and consisting of the gated path P (r′, x′1) and the gated
subpaths of P (r, x2) and P (r, x3) between r′ and x2, x3, respectively. Clearly, T ′′ is a
rooted tree with gated branches. Notice that x′1, x2, x3 ∈ Υ(u, T ′′). Indeed, if x2 or x3
belonged to I(x′1, u), then x′1 ∈ I(x1, u) and we would conclude that x2 or x3 belongs to
I(x1, u), which is impossible because x1 ∈ Υ(u, T ). On the other hand, x′1 cannot belong
to I(x2, u) or to I(x3, u) because dG(x′1, u) = dG(x1, u) − 1 ≤ dG(x2, u) = dG(x3, u).
Consequently, |Υ(u, T ′′)| ≥ 3. Since T ′′ contains less vertices than T , we obtain a
contradiction with the minimality choice of T . This concludes the analysis of Case 2,
thus T is quasigated. J
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Applying Lemmas 5 and 6 to the subgraph of G induced by the fiber F (x), we obtain:

I Corollary 3. The total boundary ∂∗F (x) of any fiber F (x) is quasigated.

5.3 Classification of pairs of vertices
In Subsection 5.1, we classified the fibers of St(z) into panels and cones. In this subsection,
we use it to provide a classification of pairs of vertices of G with respect to the partition into
fibers, which extends the one done in [19] for planar median graphs.

Let z be an arbitrary fixed vertex of G. Let Fz = {F (x) : x ∈ St(z)} be the partition of
V into the fibers of St(z). Let u, v be two arbitrary vertices of G and suppose that u belongs
to the fiber F (x) and v belongs to the fiber F (y) of Fz. We say that u and v are roommates
if they belong to the same fiber, i.e., x = y. We say that u and v are 1-neighboring if F (x)
and F (y) are two neighboring fibers (then one of them is a panel and another is a cone). We
say that u and v are 2-neighboring if F (x) and F (y) are distinct cones neighboring with a
common panel, i.e., there exists a panel F (w) ∼ F (x), F (y). Finally, we say that u and v are
separated if the fibers F (x) and F (y) are distinct, are not neighboring, and if both F (x) and
F (y) are cones, then they are not 2-neighboring. From the definition it follows that any two
vertices u, v of G are either roommates, or separated, or 1-neighboring, or 2-neighboring.

separated vertices 1-neighboring vertices

u
v

x y

z

F (x) F (y)

u

u1

u2

v+

v

z

x

y

F (x)

F (y)

2-neighboring vertices

z

u
u+

v+
v

y

w

x

F (x) F (y)

F (w)

Figure 2 To Lemmas 7, 8 and 9: in red, shortest paths between separated, 1-neighboring, and
2-neighboring vertices u and v. The total boundaries of the panels appear in blue.

We continue with distance formulae for separated, 2-neighboring, and 1-neighboring
vertices. The illustration of each of the formulae is provided in Figure 2.
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I Lemma 7. Two vertices u and v are separated if and only if dG(u, v) = dG(u, z)+dG(z, v).

I Lemma 8. Let u and v be two 1-neighboring vertices such that u belongs to the panel
F (x) and v belongs to the cone F (y). Let u1 and u2 be the two imprints of u on the total
boundary ∂∗F (x) and let v+ be the gate of v in F (x). Then, dG(u, v) = min{dG(u, u1) +
d∂∗F (x)(u1, v

+), dG(u, u2) + d∂∗F (x)(u2, v
+)}+ dG(v+, v).

I Lemma 9. Let u and v be two 2-neighboring vertices belonging to the cones F (x) and
F (y), respectively, and let F (w) be the panel neighboring F (x) and F (y). Let u+ and v+ be
the gates of u and v in F (w). Then dG(u, v) = dG(u, u+) + d∂∗F (w)(u+, v+) + dG(v+, v).

6 Distance labeling scheme for cube-free median graphs

Let G = (V,E) be a cube-free median graph with n vertices and let m be a median vertex of
G. Let u, v be any pair of vertices of G for which we have to compute the distance dG(u, v).
Applying Lemmas 7, 8, and 9 with m instead of z, the distance dG(u, v) can be computed
once u and v are separated, 1-neighboring, or 2-neighboring and once u and v keep in their
labels the distances to m, to the respective gates u+ and v+, and to the imprints u1 and
u2 if u belongs to a panel. It also requires keeping in the labels of u and v the information
necessary to compute each of the distances d∂∗F (x)(u1, v

+), d∂∗F (x)(u2, v
+), d∂∗F (w)(u+, v+).

Since the total boundaries are isometric trees, this can be done by keeping in the label of
u the labels of u1, u2, and u+ in a distance labeling scheme for trees, as well as keeping in
the label of v such a label of v+. This shows that dG(u, v) can be computed in all cases
except when u and v are roommates. Since F (x) is median, we can apply the same recursive
procedure to each fiber F (x) instead of G. Therefore, dG(u, v) is computed in the first
recursive call when u and v will no longer belong to the same fiber of the current median
vertex (we will sometimes refer at this median vertex as the separator of u and v). Since at
each step the division into fibers is performed with respect to a median, |F (x)| ≤ n/2 by
Lemma 4, thus the tree of recursive calls has logarithmic depth.

In this section, we present the distance labeling scheme. The encoding scheme is described
by the algorithm Dist_Enc presented in Subsection 6.1. Subsection 6.2 presents the
algorithm Dist for answering distance queries. In Subsection 6.3, we briefly explain how a
constant query time can be achieved by adding O(log2 n) bits in head of each label.

6.1 Encoding
We describe now how Dist_Enc constructs for every vertex u of G a distance label LD(u).
This is done recursively and every depth of the recursion is called a step. Initially, we suppose
that every vertex u of G is given a unique identifier id(u). We define this naming step
as Step 0 and denote the corresponding part of LD(u) by LD0(u), i.e., LD0(u) := id(u).
At Step 1, Dist_Enc computes a median vertex m of G, the star St(m) of m, and the
partition Fm := {F (x) : x ∈ St(m)} of V into fibers. Every vertex u of G receives the
identifier id(m) of m and its distance dG(u,m) to m. After that, every vertex x of St(m)
receives a special identifier LSt(m)(x) of size O(log |V |) given by a distance labeling for the
star St(m). Then, Dist_Enc computes the gate u↓ in St(m) of every vertex u of G and
adds its identifier LSt(m)(u↓) to LD(u). The identifiers LSt(m)(x) of the vertices of St(m)
can also be used to distinguish the fibers of St(m). This triplet (id(m), dG(u,m),LSt(m)(u↓))
contains the necessary information relative to St(m) and is thus referred as the part “star”
of the information LD1(u) given to u at Step 1. We denote this part by LDSt

1 (u). We also
set LDSt[Med]

1 (u) := id(m), LDSt[Dist]
1 (u) := dG(u,m) and LDSt[gate]

1 (u) := LSt(m)(u↓) for the
three components of the label LDSt

1 (u).
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Afterwards, at Step 1, the algorithm considers each fiber F (x) of Fm. If F (x) is a panel,
then the algorithm computes the total boundary ∂∗F (x) of F (x). The vertices v of the
quasigated tree ∂∗F (x) are given special identifiers LD∂∗F (x)(v) of size O(log2 |V |) consisting
of a distance labeling scheme for trees (see [24]). For each vertex u of the panel F (x),
the algorithm computes the two imprints u1 and u2 of u in ∂∗F (x) (it may happen that
u1 = u2) and stores (LD∂∗F (x)(u1), dG(u, u1)) and (LD∂∗F (x)(u2), dG(u, u2)) in LD1st

1 (u) and
LD2nd

1 (u). If F (x) is a cone and F (w1) and F (w2) are the two panels neighboring F (x),
then for each vertex u of F (x), the algorithm computes the gates u+

1 and u+
2 of u in F (w1)

and F (w2), respectively. Since u+
i ∈ ∂xF (wi) ⊂ ∂∗F (x), i = 1, 2, the labels LD∂∗F (w1)(u+

1 )
and LD∂∗F (w2)(u+

2 ) in the distance labelings of trees ∂∗F (w1) and ∂∗F (w2) are well-defined.
Therefore, the algorithm stores (LD∂∗F (w1)(u+

1 ), dG(u, u+
1 )) and (LD∂∗F (w2)(u+

2 ), dG(u, u+
2 ))

in LD1st
1 (u) and LD2nd

1 (u). This ends Step 1.
Since Fm partitions V into gated median subgraphs, the label LD2(u) added to LD(u)

at Step 2 is constructed as LD1(u) replacing G by the fiber F (u↓) containing u, and so on.
Since each fiber contains no more than half of the vertices of the current graph, at Step
dlog |V |e, the fiber containing any vertex consists solely of this vertex, and the algorithm
stops. Therefore, for each pair of vertices u and v of G, there exists a step of the recursion
after which u and v are no longer roommates.

6.2 Distance queries
Let u and v be two vertices of G and let LD(u) and LD(v) be their labels returned by
Dist_Enc. Here we describe how the algorithm Dist computes the information about the
relative positions of u and v with respect to each other and how, using it, computes dG(u, v).
First, the algorithm has to detect if u and v coincide or not. If u 6= v, then Dist finds the
largest integer i such that LDSt[Med]

i (u) = LDSt[Med]
i (v). This corresponds to the first time

the vertices u and v belong to different fibers in a partition. Let m be the median vertex
of the current median graph that is the separator of u and v. Then, the algorithm Dist
retrieves the distances d := dG(u↓, v↓), du := dG(u↓,m) and dv := dG(v↓,m). This is done
by using the identifiers LDSt[gate]

i (u) and LDSt[gate]
i (v) and the distance decoder for distance

labeling in stars. With this information at hand, one can easily decide for each of the vertices
u and v if it belongs to a cone or to a panel, and moreover decide if the vertices u and v are
1-neighboring, 2-neighboring, or separated. In each of these cases, a call to an appropriate
function is done.

First suppose that the vertices u and v are 1-neighboring (d = 1 and one of du, dv is 1
and the other is 2), i.e., one of the vertices u, v belongs to a cone, the other one belongs to
a panel, and the cone and the panel are neighboring. The function Dist_1-Neighboring
returns the distance dG(u, v) in the assumption that u belongs to a panel and v belongs to a
cone (if v belongs to a panel and u to a cone, it suffices to swap the names of the vertices u
and v before using Dist_1-Neighboring). The function finds the gate v+ of v in the panel
of u by looking at LDSt[gate]

i (v) (it also retrieves the distance dG(v, v+)). It then retrieves
the imprint u∗ of u (and the distance dG(u, u∗)) on the total boundary of the panel that
minimizes the distance of u to one of the two imprints plus the distance from this imprint to
the gate v+ using their tree distance labeling scheme. Finally, Dist_1-Neighboring returns
dG(u, u∗) + dG(u∗, v+) + dG(v+, v) as dG(v, u).

Now suppose that the vertices u and v are 2-neighboring (i.e., d = du = dv = 2). Then
both u and v belong to cones. By inspecting LDSt[gate]

i (u) and LDSt[gate]
i (v), the function

Dist_2-Neighboring determines the panel F (w) sharing a border with the cones F (u↓)
and F (v↓). Then, the function retrieves the respective gates u+ and v+ of u and v in

MFCS 2019
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this panel F (w) and the distances dG(u, u+) and dG(v, v+). The distance between the
gates u+ and v+ is retrieved using the distance decoder for trees. The algorithm returns
dG(u, u+) + dG(u+, v+) + dG(v+, v) as dG(u, v).

In the remaining cases, the vertices u and v are separated. By Lemma 7, dG(u, v) =
dG(u,m) + dG(m, v). Both u and v have stored the median vertex m and their distances to
m. Therefore, Dist_Separated simply returns the sum of those two distances.

6.3 Complexity analysis and improved query time

The correctness of Dist results from the following properties of G: stars and fibers are gated
(Proposition 2); total boundaries of fibers are quasigated (Corollary 3) isometric trees with
gated branches (Lemma 5); the formulae for computing the distance between separated,
1-neighboring, and 2-neighboring vertices (Lemmas 7, 8, and 9). At each step of the encoding,
O(log2 n) bits are added to the label of every vertex (due to the tree-distance labeling scheme
they contain). Since there are dlogne steps, the total length of each label is O(log3 n). For
decoding the labels, it suffices to read them once to find when the vertices are no longer
roommates. This is done in time O(log2 n) assuming the word-RAM model. Then it might
be necessary to decode the distance labels for trees. This can be done in constant time [24].

To sum up, the most costly part of decoding the labels LD(u) and LD(v) is to read
them up to find the (median) separator of u and v. But with an appropriate O(log2 n) bits
information concatenated to LD(u) and LD(v), one can find this median vertex in O(1) time
and then directly jump to the corresponding part of LD(u) and LD(v). For that, consider
the tree T (of recursive calls) in which vertices at depth i are the median vertices chosen
at step i and in which the children of a vertex x are the medians chosen at step i + 1 in
the fibers generated by x at step i. We can observe that every vertex of G appears in this
tree, that the separator m of any two vertices u and v of G is their nearest common ancestor
in the tree T , and that its depth j in this tree corresponds to its position in LD(u) and
LD(v), i.e., LDSt[Med]

j (u) = LDSt[Med]
j (v) = id(m). As noticed in [39], any distance labeling

for trees T can be modified to support nearest common ancestor’s depth (NCAD) queries
by adding the depth depth(u) of u in T to the label L(u) given to each vertex u ∈ V (T ) by
the distance labeling. Given two vertices u and v of T , the NCAD decoder then returns
1
2 (depth(u) + depth(v) − dT (u, v)). So, during the execution of Dist_Enc, we can also
construct the tree T of recursive calls and then give an NCAD label L′(u) in T to every
vertex of G. Now, the first step of Dist will consist in decoding L′(u) and L′(v). Then the
algorithm directly reads the parts of LD(u) and LD(v) corresponding to the last common
median they stored. This establishes Theorem 1.

7 Conclusion

In this paper we presented a distance labeling scheme for cube-free median graphs G with
labels of size O(log3 n). For that, we considered the partitioning of G into fibers (of size
≤ n/2) of the star St(m) of a median vertex m. Each fiber is further recursively partitioned
using the same algorithm. We classified the fibers into panels and cones and the pairs of
vertices u, v of G into roommates, separated, 1-neighboring, and 2-neighboring pairs. If u
and v are roommates, then dG(u, v) is taken at a later step of the recursion. Otherwise, we
showed how to retrieve dG(u, v) by keeping in the labels of u and v some distances from those
vertices to some gates/imprints. Our main ingredient is the fact that the total boundaries of
fibers of cube-free median graphs are isometric quasigated trees.
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This last property of fibers is an obstacle in generalizing our approach to all median graphs,
or even to median graphs of dimension 3. The main problem is that the total boundary is
no longer a median graph. Therefore, one cannot apply to this total boundary the distance
scheme for cube-free median graphs. Nevertheless, a more brute-force approach works for
arbitrary median graphs G of constant maximum degree ∆. In this case, all hypercubes of G
have constant size. Thus, the star St(m) cannot have more than O(2∆) vertices, i.e., St(m)
has a constant number of fibers. Since every fiber is gated, at every step of the encoding
algorithm, every vertex v can store in its label the distance from v to its gates in all fibers of
St(m). Consequently, this leads to distance labeling scheme with labels of (polylogarithmic)
length O(2∆ log3 n) for all median graphs with constant maximum degree ∆. We would like
to finish this paper with the following question: Does there exist a polylogarithmic distance
labeling scheme for general median graphs or for median graphs of constant dimension?
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