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Abstract
We show that the finite satisfiability problem for the unary negation fragment with an arbitrary
number of transitive relations is decidable and 2-ExpTime-complete. Our result actually holds
for a more general setting in which one can require that some binary symbols are interpreted as
arbitrary transitive relations, some as partial orders and some as equivalences. We also consider
finite satisfiability of various extensions of our primary logic, in particular capturing the concepts of
nominals and role hierarchies known from description logic. As the unary negation fragment can
express unions of conjunctive queries, our results have interesting implications for the problem of
finite query answering, both in the classical scenario and in the description logics setting.
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1 Introduction

Decidable fragments and unary negation. Searching for attractive fragments of first-order
logic is an important theme in theoretical computer science. Successful examples of such
fragments, with numerous applications, are modal and description logics. They have their
own syntax, but naturally translate to first-order logic, via the standard translation. Several
seminal decidable fragments of first-order logic were identified by preserving one particular
restriction obeyed by this translation and dropping all the others. Important examples of such
fragments are two-variable logic, FO2, [25], the guarded fragment, GF, [2], and the fluted
fragment, FF, [24, 22]. They restrict, respectively, the number of variables, the quantification
pattern and the order of variables in which they appear as arguments of predicates. A more
recent proposal [27] is the unary negation fragment, UNFO. This time we restrict the use
of negations, allowing them only in front of subformulas with at most one free variable.
UNFO turns out to retain many good algorithmic and model theoretic properties of modal
logic, including the finite model property, a tree-like model property and the decidability of
the satisfiability problem. We remark here that UNFO and GF have a common decidable
generalization, the guarded negation fragment, GNFO, [5].

To justify the attractiveness of UNFO let us look at one of the crucial problems in
database theory, open-world query answering. Given an (incomplete) set of facts D, a set of
constraints T and a query q, check if D∧ T entails q. Generally, this problem is undecidable,
and to make it decidable one needs to restrict the class of queries and constraints. Widely
investigated class of queries are (unions of) conjunctive queries – (disjunctions of) sentences
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of the form ∃x̄ψ(x̄) where ψ is a conjunction of atoms. An important class of constraints
are tuple generating dependencies, TGDs, of the form ∀x̄ȳ(ψ(x̄, ȳ)→ ∃z̄ψ′(ȳ, z̄)), where ψ
and ψ′ are, again, conjunctions of atoms. Conjunctive query answering against arbitrary
TGDs is still undecidable (see, e.g., [6]), so TGDs need to be restricted further. Several
classes of TGDs making the problem decidable have been proposed. One interesting such
class are frontier-one TGDs, in which the frontier of each dependency, ȳ, consists just of
a single variable [4]. Frontier-one TGDs are a special case of frontier-guarded TGDs [3].
Checking whether D and T entail q boils down to verifying (un)satisfiability of the formula
D∧T ∧¬q. It turns out that if T is a conjunction of frontier-one TGDs and q is a disjunction
of conjunctive queries then the resulting formula belongs to UNFO.

Transitivity. A serious weakness of the expressive power of UNFO is that it cannot express
transitivity of a binary relation, nor related properties like being an equivalence, a partial
order or a linear order. This limitation becomes particularly important when database or
knowledge representation applications are considered, as transitivity is a natural property in
many real-life situations. Just consider relations like greater-than or part-of. This weakness
is shared by FO2, GF and FF. Thus, it is natural to think about their extensions, in
which some distinguished binary symbols may be explicitly required to be interpreted as
transitive relations. It turns out that FO2, GF and FF do not cope well with transitivity,
and the satisfiability problems for the obtained extensions are undecidable [15, 13, 23] (see
also [10, 18, 17]). Some positive results were obtained for FO2, GF and FF only when one
transitive relation is available [21, 18, 23] or when some further syntactic restrictions are
imposed [26].

UNFO is an exception here, since its satisfiability problem remains decidable in the
presence of arbitrarily many transitive relations. This has been explicitly stated in [16], as
a corollary from a stronger result that UNFO is decidable when extended by regular path
expressions. Independently, the decidability of UNFO with transitivity, UNFO+S, follows
from [1], which deals with the decidability of a richer logic, the guarded negation fragment
with transitive relations restricted to non-guard positions, which embeds UNFO+S. From
both papers the 2-ExpTime-completeness of UNFO+S can be inferred.

Our main results. A problem related to satisfiability is finite satisfiability, in which we
ask about the existence of finite models. In computer science, the importance of decision
procedures for finite satisfiability arises from the fact that most objects about which we
may want to reason using logic, e.g., databases, are finite. Thus the ability of solving only
general satisfiability may not be fully satisfactory. Both the above-mentioned decidability
results implying the decidability of UNFO+S are obtained by employing tree-like model
properties of the logics and then using automata techniques. Since tree-like unravelings of
models are infinite, this approach works only for general satisfiability, and gives little insight
into the decidability/complexity of finite satisfiability. In this paper we consider the finite
satisfiability problem for UNFO+S. Actually, we made a step in this direction already in
our previous paper [7] (see [8] for its longer version) where we proved a related result that
UNFO with equivalence relations, UNFO+EQ, has the finite model property and thus that
its satisfiability and finite satisfiability problems coincide, both being 2-ExpTime-complete.
Some ideas developed in [7] are extended and applied also here, even though UNFO+S does
not have the finite model property which becomes evident when looking at the following
formula with transitive T , ∀x∃yTxy ∧ ∀x¬Txx, satisfiable only in infinite models.

Our main contribution is demonstrating the decidability of finite satisfiability for UNFO+S
and establishing its 2-ExpTime-completeness. En route we obtain a triply exponential bound
on the size of minimal models of finitely satisfiable UNFO+S formulas. Actually, our results
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hold for a more general setting, in which some relations may be required to be interpreted as
equivalences, some as partial orders, and some just as arbitrary transitive relations. Returning
to database motivations, we get this way the decidability of the finite open-world query
answering for unions of conjunctive queries against frontier-one TGDs with equivalences,
partial orders and arbitrary transitive relations. By finite open-world query answering we
mean the question if for given D, T and q, D and T entail q over finite structures.

To the best of our knowledge, UNFO+S is the first logic which allows one to use arbitrarily
many transitive relations, and, at the same time, to speak non-trivially about relations of
arbitrary arities, whose finite satisfiability problem is shown decidable. In the case of related
logics of this kind, like the guarded fragment with transitive guards [26], and the guarded
negation fragment with transitive relations outside guards [1], the decidability was shown
only for general satisfiability, and its finite version is open. (Finite satisfiability was shown
decidable only for the two-variable guarded fragment with transitive guards [20]).

We believe that moving from UNFO+EQ from [7] to UNFO+S is an important im-
provement. Besides the fact that this requires strengthening our techniques and employing
some new ideas, general transitive relations have stronger motivations than equivalences. In
particular, it opens natural connections to the realm of description logics, DLs.

UNFO and expressive description logics. UNFO, via the above-mentioned standard trans-
lation, embeds the DL ALC, as well as its extension by inverse roles (I) and role intersections
(u). Thus, having the ability of expressing conjunctive queries, we can use our results to solve
the so-called (finite) ontology mediated query answering problem, (F)OMQA, for some DLs.
This problem is a counterpart of (finite) open-world query answering: given a conjunctive
query (or a union of conjunctive queries) and a knowledge base specified in a DL, check
whether the query holds in every (finite) model of this knowledge base.

While there are quite a lot of results for OMQA, not much is known about FOMQA. In
particular, for DLs with transitive roles (S) the only positive results we are aware of are
the ones obtained recently in [12], where the decidability and 2-ExpTime-completeness of
FOMQA for the logics SOI, SIF and SOF is shown. This is orthogonal to our results
described above, since UNFO+S captures neither nominals (O) nor functional roles (F). On
the other hand, we are able to express any positive boolean combinations of roles, including
their intersection (u), which allows us to solve FOMQA, e.g., for the logic SIu. Moreover
we can use non-trivially relations of arity greater than two.

It is an interesting question if our decidability result can be extended to capture some
more expressive DLs. Unfortunately, we cannot hope for number restrictions (Q or N ) or
even functional roles (F), as satisfiability and finite satisfiability of UNFO (even without
transitive relations) and two binary functional relations are undecidable. This is implicit in
[27] (see the full version of this paper for an explicit proof). On the positive side, we show the
decidability and 2-ExpTime-completeness of finite satisfiability of UNFO+SOH, extending
UNFO+S by constants (corresponding to nominals (O)) and inclusions of binary relations
(capturing role hierarchies (H)). This is sufficient, in particular, to imply the decidability of
FOMQA for the description logic SHOIu, which, up to our knowledge, is a new result.

Towards guarded negation fragment. We propose also another decidable extension of our
basic logic, the one-dimensional base-guarded negation fragment with transitive relations on
non-guard positions, BGNFO1+S. This is a non-trivial fragment of the already mentioned
logic from [1]. After some rather easy adjustments, our constructions cover this bigger logic,
however, it becomes undecidable when extended with inclusions of binary relations.

MFCS 2019
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Organization of the paper. The rest of this paper is organized as follows. Section 2
contains definitions, basic facts and a high-level description of our decidability proof. As our
constructions are rather complex, in the main body of the paper, Section 3, we explicitly
process the restricted, two-variable case of our logic, for which our ideas can be presented
more transparently. In Section 4 we just formulate the remaining results, leaving the details
for the full version of this paper, which also contains the missing proofs from Sections 2 and
3. In Section 5 we conclude the paper.

2 Preliminaries

2.1 Logics, structures, types and functions

We employ standard terminology and notation from model theory. We refer to structures
using Fraktur capital letters, and their domains using the corresponding Roman capitals.
For a structure A and A′ ⊆ A we use A�A′ or A′ to denote the restriction of A to A′.

The unary negation fragment of first-order logic, UNFO is defined by the following
grammar [27]: ϕ = Bx̄ | x = y | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ | ¬ϕ(x), where, in the first clause, B
represents any relational symbol, and, in the last clause, ϕ has no free variables besides (at
most) x. An example formula not expressible in UNFO is x 6= y. We formally do not have
universal quantification. However we allow ourselves to use ∀x̄¬ϕ as an abbreviation for
¬∃x̄ϕ, for an UNFO formula ϕ. Note that frontier-one TGDs ∀x̄y(ψ(x̄, y)→ ∃z̄ψ′(y, z̄)) are
in UNFO as they can be rewritten as ¬∃x̄y(ψ(x̄, y) ∧ ¬∃z̄ψ′(y, z̄)).

We mostly work with purely relational signatures (admitting constants only in some
extensions of our main results) of the form σ = σbase ∪ σdist, where σbase is the base signature,
and σdist is the distinguished signature. We assume that σdist = {T1, . . . , T2k}, with all the Tu
binary, and intension that T2u is interpreted as the inverse of T2u−1. For every 1 ≤ u ≤ k we
sometimes write T−1

2u for T2u−1, and T−1
2u−1 for T2u. We say that a subset E of σdist is closed

under inverses if, for every 1 ≤ u ≤ 2k, we have Tu ∈ E iff T−1
u ∈ E . Note that E is closed

under inverses iff σdist \ E is closed under inverses. Given a formula ϕ we denote by σϕ the
signature induced by ϕ, i.e., the minimal signature, with its distinguished part closed under
inverses, containing all symbols from ϕ.

The unary negation fragment with transitive relations, UNFO+S, is defined by the same
grammar as UNFO, however when satisfiability of its formulas is considered, we restrict the
class of admissible models to those that interpret all symbols from σdist as transitive relations
and, additionally, for each u, interpret T2u as the inverse of T2u−1. The latter condition
is intended to simplify the presentation, and is imposed without loss of generality. In our
constructions we sometimes consider some auxiliary structures in which symbols from σdist

are not necessarily interpreted as transitive relations (but the pairs T2u−1, T2u are always
interpreted as inverses of each other).

An (atomic) k-type over a signature σ is a maximal satisfiable set of literals (atoms
and negated atoms) over σ with variables x1, . . . , xk. We often identify a k-type with the
conjunction of its elements. We are mostly interested in 1- and 2-types. Given a σ-structure
A and a, b ∈ A we denote by atpA(a) the 1-type realized by a, that is the unique 1-type α(x1)
such that A |= α(a), and by atpA(a, b) the unique 2-type β(x1, x2) such that A |= β(a, b).

We use various functions in our paper. Given a function f : A→ B we denote by Rngf
its range, by Domf its domain, and by f�A0 the restriction of f to A0 ⊆ A.
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2.2 Normal form, witnesses and basic facts
We say that an UNFO+S formula is in Scott-normal form if it is of the shape

∀x1, . . . , xt¬ϕ0(x̄) ∧
m∧
i=1
∀x∃ȳϕi(x, ȳ) (1)

where each ϕi is a UNFO+S quantifier-free formula and ϕ0 is additionally in negation
normal form (NNF). A similar normal form for UNFO was introduced in the bachelor’s
thesis [9]. By a straightforward adaptation of Scott’s translation for FO2 [25] one can
translate in polynomial time any UNFO+S formula to a formula in normal form, in such
a way that both are satisfiable over the same domains. This allows us, when dealing with
decidability/complexity issues for UNFO+S, or when considering the size of minimal finite
models of formulas, to restrict attention to normal form formulas.

Given a structure A, a normal form formula ϕ as in (1) and elements a, b̄ of A such that
A |= ϕi(a, b̄) we say that the elements of b̄ are witnesses for a and ϕi and that A�{a, b̄} is a
witness structure for a and ϕi. Fix an element a. For every ϕi choose a witness structure
Wi. Then the structure W = A�{W1 ∪ . . . ∪Wm} is called a ϕ-witness structure for a.

We are going to present a construction which given an arbitrary finite model of a normal
form UNFO+S formula ϕ builds a finite model of ϕ of a bounded size. The construction
goes via several intermediate steps in which some tree-like models are produced. To argue
that that they are still models of ϕ we use the following basic observation (we recall that t is
the number of variables of the ∀-conjunct of ϕ).

I Lemma 1. Let A be a model of a normal form UNFO+S formula ϕ. Let A′ be a structure
in which all symbols from σdist are interpreted as transitive relations, such that
(a1) for every a′ ∈ A′ there is a ϕ-witness structure for a′ in A′,
(a2) for every tuple a′1, . . . , a′t ∈ A′ there is a homomorphism h : A′�{a′1, . . . , a′t} → A which

preserves 1-types of elements.
Then A′ |= ϕ.

2.3 Plan of the small model construction
Our main goal is to show that finite satisfiability of UNFO+S formulas can be checked in
2-ExpTime. To this end we will introduce a natural notion of tree-like structures and a
measure associating with transitive paths of such structures their so-called ranks. Intuitively,
for a transitive relation Ti and a Ti-path π, the Ti-rank of π is the number of one-directional
Ti-edges in π (a precise definition is given in Section 3.1). Then we show that having the
following forms of models is equivalent for a normal form formula ϕ:
(f1) finite;
(f2) tree-like, with bounded ranks of transitive paths;
(f3) tree-like, with ranks of transitive paths bounded doubly exponentially in |ϕ|;
(f4) tree-like, with ranks of paths bounded doubly exponentially in |ϕ|, and regular (with

doubly exponentially many non-isomorphic subtrees);
(f5) finite of size triply exponential in |ϕ|.
We will make the following steps: (f1)  (f2), (f2)  (f3), (f3)  (f4), (f4)  (f5). The step
closing the circle, (f5)  (f1) is trivial. In the two-variable case, we will omit the form (f4)
and directly show (f3)  (f5). Our 2-ExpTime-algorithm will look for models of the form
(f3). Showing transitions leading from (f3) to (f5) justifies that its answers coincide indeed
with the existence of finite models.

MFCS 2019
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This scheme is similar to the one we used to show the finite model property for UNFO+EQ
in [7]. In the main part of the construction from [7] we build bigger and bigger substructures
in which some equivalence relations are total. The induction goes, roughly speaking, by
the number of non-total equivalences in the substructure. Here we extend this approach
to handle one-way transitive connections. It may be useful to briefly compare the case of
UNFO+S and the case of UNFO+EQ.

First of all, if a given formula ϕ is from UNFO+EQ then we can start our constructions
leading to a small finite model of ϕ from its arbitrary model, while if ϕ is in UNFO+S we
start from a finite model of ϕ. A very simple step (f1)  (f2) in both papers is, essentially,
identical. The counterpart of step (f3)  (f4) in the case of equivalences is slightly simpler,
but the main differences lie in steps (f2)  (f3) and (f4)  (f5). The former, clearly, is not
present at all in [7]. While the general idea in this step is quite standard, as we just use a kind
of tree pruning, the details are rather delicate due to possible interactions among different
transitive relations, and this step is, by no means, trivial. We refine here, in particular, the
apparatus of declarations introduced in [7]. Regarding step (f4) (f5), the main construction
there, in its single inductive step, has two phases: building the so-called components and
then arranging them into a bigger structure. It is this first phase which is more complicated
than in the corresponding step in [7]. Having components prepared we join them similarly as
in [7].

3 The two-variable case

As in the case of unbounded number of variables we can restrict attention to normal form
formulas, which in the two-variable case simplify to the standard Scott-normal form [25]:

∀xy¬ϕ0(x, y) ∧
m∧
i=1
∀x∃yϕi(x, y), (2)

where all ϕi are quantifier-free UNFO2+S formulas (in this restricted case it is not important
whether ϕ0 is in NNF or not). As is typical for two-variable logics we assume that formulas
do not use relational symbols of arity greater than 2 (cf. [14]).

3.1 Tree pruning in the two-variable case
We use a standard notion of a (finite or infinite) rooted tree and related terminology.
Additionally, any set consisting of a node and all its children is called a family. Any node b,
except for the root and the leaves, belongs to two families: the one containing its parent,
and the one containing its children, the latter called the downward family of b.

We say that a structure A over a signature consisting of unary and binary symbols is a
light tree-like structure if its nodes can be arranged into a rooted tree in such a way that
if A |= Baa′ for some non-transitive relation symbol B then one of three conditions holds:
a = a′, a is the parent of a′ or a is a child of a′, and if A |= Tuaa

′ for some Tu then either
a = a′ or there is a sequence of distinct nodes a = a0, a1, . . . , ak = a′ such that ai and ai+1
are joined by an edge of the tree and A |= Tuaiai+1. In other words, distant nodes in a light
tree-like structure can be joined only by transitive connections, moreover, these transitive
connections are just the transitive closures of connections inside families. For a light tree-like
structure A and a ∈ A we denote by Aa the set of all nodes in the subtree rooted at a and
by Aa the corresponding substructure.

Let A be a light tree-like structure. A sequence of nodes a1, . . . , aN ∈ A is a downward
path in A if for each i ai+1 is a child of ai. A downward-Tu-path is a downward path such
that for each i we have A |= Tuaiai+1. The Tu-rank of a downward-Tu-path ~a, rAu (~a), is the
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cardinality of the set {i : A |= ¬Tuai+1ai}. The Tu-rank of an element a ∈ A is defined as
rAu (a) = sup{rAu (~a) : ~a = a, a2, . . . , aN ;~a is a downward-Tu-path}. For an integer M , we say
that A has downward-Tu-paths bounded by M when for all a ∈ A we have rAu (a) ≤M , and
that A has transitive paths bounded by M if it has downward-Tu-paths bounded by M for
all u. Note that a downward-Tu-path bounded by M may have more than M nodes, as the
symmetric Tu-connections do not increase the rank.

Given an arbitrary model A of a normal form UNFO2+S formula ϕ we can simply
construct its light tree-like model of degree bounded by |ϕ|. We define a light-ϕ-tree-like
unraveling A′ of A and an associated function h : A′ → A in the following way. A′ is divided
into levels L0, L1, . . .. Choose an arbitrary element a ∈ A and add to level L0 of A′ an
element a′ such that atpA′(a′) = atpA(a); set h(a′) = a. The element a′ will be the only
element of L0 and will become the root of A′. Having defined Li repeat the following for
every a′ ∈ Li. For every j, if h(a′) is not a witness for ϕj and itself then choose in A a
witness b for h(a′) and ϕj . Add a fresh copy b′ of b to Li+1, make A′�{a′, b′} isomorphic to
A�{h(a′), b} and set h(b′) = b. Complete the definition of A′ transitively closing all relations
from σdist.

I Lemma 2 ((f1) (f2), light). Let A be a finite model of a normal form UNFO2+S formula
ϕ. Let A′ be a light-ϕ-tree-like unraveling of A. Then A′ |= ϕ and A′ is a light tree-like
structure of degree bounded by |ϕ|, and transitive paths bounded by |A|.

Our next task is making the transition (f2)  (f3). For this purpose we introduce a
notion of light declarations. It is closely related to a notion of declarations which will be
used in the general case, but simpler than the latter. Fix a signature and let α be the set of
1-types over this signature.

For T ⊆ {T1, . . . , T2k} we write A |= T ab iff A |= Tuab for all Tu ∈ T . A light
declaration is a function of type P({T1, . . . , T2k})→ P(α). Given a light tree-like structure
A and its node a we say that a respects a light declaration d if for every T , for every
α ∈ d(T ) there is no node b ∈ A of 1-type α such that A |= T ab. We denote by ldecA(a)
the maximal light declaration respected by a. Formally, for every T ⊆ {T1, . . . , T2k},
ldecA(a)(T ) = {α : for every node b of type α we have ¬A |= T ab}. Intuitively, ldecA(a)
says, for any combination of transitive relations, which 1-types have no realizations to which
a is connected by this combination in A. Note that if a respects a light declaration d then for
any T we have d(T ) ⊆ ldecA(a)(T ). We remark that it would be equivalent to define the light
declarations without the negations, listing the 1-types that a given node is connected with,
however we choose a version with negations to make them uniform with the corresponding
(more complicated) notion in the general case, where negations are more convenient.

Now we define the local consistency conditions (LCCs) for a system of light declarations
(da)a∈A assigned to all nodes of a tree-like structure A. Let F be the downward family of
some node a. We say that the system satisfies LCCs at a if for every a1, a2 ∈ F and for
every T such that A |= T a1a2 the following two conditions hold: (ld1) for every α ∈ α, if
α ∈ da1(T ) then α ∈ da2(T ), (ld2) atpA(a2) 6∈ da1(T ). Given a light tree-like structure A

we say that a system of light declarations (da)a∈A is locally consistent if it satisfies LCCs
at each a ∈ A and is globally consistent if da(T ) ⊆ ldecA(a)(T ) for each a ∈ A and each T .
Note that the global consistency means that all nodes a respect their light declarations da.
It is not difficult to see that local and global consistency play along in the following sense.

I Lemma 3 (Local-global, light). Let A be a light tree-like structure. Then, (i) if a system
of light declarations (da)a∈A is locally consistent then it is globally consistent; and (ii) the
canonical system of light declarations, (ldecA(a))a∈A, is locally consistent.

MFCS 2019
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Given a light tree-like structure A, by the generalized type of a node a of A we will mean
a pair (ldecA(a), atpA(a)), and denote it as gtpA(a). We introduce a concept of top-down
tree pruning. Let A be a light tree-like structure. A top-down tree pruning process on A has
countably many steps 0, 1, 2, . . ., each of them producing a new light tree-like structure by
removing some nodes from the previous one and naturally stitching together the surviving
nodes. We emphasise that the universes of all structures build in this process are subsets
of the universe of the original structure A. More specifically, we take A0 := A, and having
constructed Ai, i ≥ 0 construct Ai+1 as follows. For every node a of Ai of depth i+ 1 (we
assume that the root has depth 0) either leave the subtree rooted at a untouched or replace
it by a subtree rooted at some descendant b of a having in the original structure A the same
generalized type as a, and then transitively close all transitive relations. The result of the
process is a naturally defined limit structure A′, in which the pair of elements a, b, of depth
da and db respectively, has its 2-type taken from Amax(da,db). Note that this 2-type is not
modified in the subsequent structures, so the definition is sound.

I Lemma 4 (Tree-pruning, light). Let A be a light tree-like structure. Let (da)a∈A be the
canonical system of light declarations on A, da := ldecA(a). Let A′ be the result of a top-town
tree pruning process on A. Then (i) the system of light declarations (da)a∈A′ (the canonical
declarations from A of the nodes surviving the pruning process) in A′ is locally consistent,
(ii) for any pair of elements a, a′ ∈ A′ there is a homomorphism A�{a, a′} → A preserving
the 1-types; it also follows that (iii) for a normal form ϕ, if A is a model of ϕ such that any
node a has all its witnesses in its downward family then A′ |= ϕ.

It is not difficult to devise a strategy of top-down tree pruning leading to a model with
short transitive paths in a simple scenario where only one transitive relation is present. With
several transitive relations, however, a quite intricate strategy seems to be required. The
main obstacle is that when decreasing the Tu-rank of an element a, for some u, we may
accidentally increase the Tv-rank of a for some v 6= u. Nevertheless, an appropriate strategy
exists (see the full version of this paper), which allows us to state:

I Lemma 5 ((f2)  (f3), light). Let ϕ be a normal form UNFO2+S formula. Let A |= ϕ be
a light tree-like structure over signature σϕ, with transitive paths bounded by some natural
number M , such that each element has all the required witnesses in its downward family.
Then ϕ has a light tree-like model with transitive paths bounded doubly exponentially in |ϕ|.

3.2 Finite model construction in the two-variable case
In this section we show the following small model property. To this end, in particular, we
will make the transition (f3)  (f5).

I Theorem 6. Every finitely satisfiable two-variable UNFO+S formula ϕ has a finite model
of size bounded triply exponentially in |ϕ|.

Let us fix a finitely satisfiable normal form UNFO+S formula ϕ over a signature σϕ =
σbase ∪ σdist for σdist = {T1, . . . , T2k}. Denote by α the set of 1-types over this signature.
Fix a light tree-like model A |= ϕ, with linearly bounded degree and doubly exponentially
bounded transitive paths (in this section we denote this bound by M̂ϕ), as guaranteed by
Lemma 5. We show how to build a “small” finite model A′ |= ϕ. For a set E ⊆ σdist, closed
under inverses, and a ∈ A we denote by [a]E the set consisting of a and all elements b ∈ A
such that A |= Tuab for all Tu ∈ E . Note that [a]E is either a singleton or each of the Tu ∈ E
is total on [a]E , that is, for each b1, b2 ∈ [a]E we have A |= Tub1b2 for all Tu ∈ E . We note
that [a]∅ = A.
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In our construction we inductively produce finite fragments of A′ corresponding to some
(potentially infinite) classes [a]E of A. Essentially, the induction goes downward on the size of
E . Intuitively, if a relation is total then it plays no important role, so we may forget about it
during the construction. Every such fragment will be obtained by an appropriate arrangement
of some number of basic building blocks, called components. Each of the components is
obtained by some number of applications of the inductive assumption to situations in which
a new pair of relations T2u−1, T2u is added to E .

Let us formally state our inductive lemma. In this statement we do not explicitly include
any bound on the size of promised finite models, but such a bound will be implicit in the
proof and will be presented later. Recall that A is the model fixed at the beginning of this
subsection.

I Lemma 7 (Main construction, light). Let a0 ∈ A and let E0 ⊆ σdist be closed under inverses,
let Etot := σdist \ E0. Let A0 = Aa0�[a0]Etot . Then there exist a finite structure A′0, a function
p : A′0 → A0 and an element a′0 ∈ A′0, called the origin of A′0, such that
(b1) A′0 is a singleton or every symbol from Etot is interpreted as the total relation on A′0.
(b2) p(a′0) = a0.
(b3) For each a′ ∈ A′0 and each i, if p(a′) has a child being its witness for ϕi in A0 then a′

has a witness for ϕi in A′0. Moreover, atpA′0(a′) = atpA0(p(a′)).
(b4) For every pair a′, b′ ∈ A′0 there exists a homomorphism h : A′0�{a′, b′} → A preserving

1-types such that h(a′) = p(a′), and for any 1-type α and T ⊆ {1, . . . , 2k}, if A′0 |= T a′b′
and α 6∈ ldecA(p(b′))(T ) then α 6∈ ldecA(p(a′))(T ).

Observe first that Lemma 7 indeed allows us to build a particular finite model of ϕ.
Apply it to E0 = σdist (which means that Etot = ∅ and [a0]Etot = A) and a0 being the root of
A (which means that A0 = A) and use Lemma 1 to see that the obtained structure A′0 is a
model of ϕ. Indeed, Condition (a1) of Lemma 1 follows directly from Condition (b3), as in
this case p(a′) has all witnesses in A0. Condition (a2) is directly implied by Condition (b4).

The proof of Lemma 7 goes by induction on l, where l = |E0|/2. In the base of induction,
l = 0, we have Etot = σdist. Without loss of generality we may assume that the classes [a]Etot
are singletons for all a ∈ A. (If this is not the case, we just add artificial transitive relations
T2k+1 and T2k+2 both interpreted as the identity in A.) We simply take A′0 := A0 = A�{a0}
and set p(a0) = a0. It is readily verified that the conditions (b1)–(b4) are then satisfied.

For the inductive step assume that Lemma 7 holds for arbitrary E0 closed under inverses,
of size 2(l− 1) < 2k. We show that then it holds for E0 of size 2l. Take such E0, and assume,
w.l.o.g., that E0 = {T1, . . . , T2l}. In the next two subsections we present a construction of
A′0. We argue that it is correct in the full version of this paper. Finally we estimate the size
of the produced models and establish the complexity of the finite satisfiability problem.

3.2.1 Pattern components
We plan to construct A′0 out of basic building blocks called components. Each component
will be an isomorphic copy of some pattern component.

Let γ[A0] be the set of the generalized types realized in A0. For every γ ∈ γ[A0] we
construct two pattern structures, a pattern component Cγ and an extended pattern component
Gγ . Cγ is a finite structure whose universe is divided into 2l layers L1, . . . , L2l. Gγ extends
Cγ by an additional, interface layer, denoted L2l+1. See the left part of Fig. 1. We now
define Gγ , obtaining then Cγ just by the restriction of Gγ to non-interface layers.

Each non-interface layer Li is further divided into sublayers L1
i , L

2
i , . . . , L

M̂ϕ+1
i . Addition-

ally, in each sublayer Lji its initial part Lj,initi is distinguished. In particular, L1,init
1 consists
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Cγ
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root

L1
3

L2
3

L3
3

L
M̂ϕ+1
3

L1,init
3

not crossed by T2

not crossed by T3

Figure 1 A schematic view of a component in the two-variable case.

of a single element called the root. The interface layer L2l+1 has no internal division but, for
convenience, is sometimes referred to as L1,init

2l+1 . The elements of L2l are called leaves and
the elements of L2l+1 are called interface elements. See Fig. 1.

Gγ will have a shape resembling a tree, with structures obtained by the inductive
assumption as nodes, though it will not be tree-like in the sense of Section 3.1 (in particular,
the internal structure of nodes may be complicated). All elements of Gγ , except for the
interface elements, will have appropriate witnesses (those required by (b3)) provided. The
crucial property we want to enforce is that the root of Gγ will not be joined to its interface
elements by any transitive path.

We remark that during the process of building a pattern component we do not yet
apply the transitive closure to the distinguished relations. Postponing this step is not
important from the point of view of the correctness of the construction, but will allow us for
a more precise presentation of the proof of this correctness. Given a component C (extended
component G) we will sometimes denote by C+ (G+) the structure obtained from C (G) by
applying all the appropriate transitive closures.

The role of every non-interface layer Lu is, speaking informally, to kill Tu, that is to
ensure that there will be no Tu-connections from Lu to Lu+1. See the right part of Fig. 1.
The role of sublayers of Lu, on the other hand, is to decrease the Tu-rank of the patterns of
elements. The purpose of the interface layer, L2l+1, will be to connect the component with
other components.

If γ is the generalized type of a0 then take a := a0; otherwise take as a any element of
A0 of generalized type γ. We begin the construction of Gγ by defining L1,init

1 = {a′} for a
fresh a′, setting atpGγ (a′) = atpA(a) and p(a′) = a.

Construction of a layer. Let 1 ≤ u ≤ 2l. Assume we have defined layers L1, . . . , Lu−1,
the initial part of sublayer L1

u, L1,init
u , and both the structure of Gγ and the values of p on

L1 ∪ . . . ∪ Lu−1 ∪ L1,init
u . We are going to kill Tu. We now expand L1,init

u to a full layer Lu.

Step 1: Subcomponents. Assume that we have defined sublayers L1
u, . . . , L

j,init
u , and both

the structure of Gγ and the values of p on L1 ∪ . . . ∪ Lu−1 ∪ L1
u ∪ . . . ∪ Lj,initu . For each

b ∈ Lj,initu perform independently the following procedure. Apply the inductive assumption
to p(b) and the set E0 \ {Tu, T−1

u } obtaining a structure B0, its origin b0 and a function
pb : B0 → Ap(b) ∩ [p(b)]Etot∪{Tu,T−1

u } ⊆ A0 with pb(b0) = p(b). Identify b0 with b and add
the remaining elements of B0 to Lju, retaining the structure. Substructures B0 of this kind
will be called subcomponents (note that all appropriate relations are transitively closed in
subcomponents). Extend p so that p�B0 = pb. This finishes the definition of Lju.
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Step 2: Providing witnesses. For each b ∈ Lju and 1 ≤ s ≤ m independently perform the
following procedure. Let B0 be the subcomponent created inductively in Step 1, such that
b ∈ B0. If p(b) has a witness for ϕs(x, y) in A0 then we want to reproduce such a witness for
b. Choose one such witness c (being a child of p(b)) for p(b). Let us denote β = atpA(p(b), c).
If {Tuxy, T−1

u xy} ⊆ β then by Condition (b3) of the inductive assumption b already has an
appropriate witness in the subcomponent B0. So we do nothing in this case. If Tuxy ∈ β
and T−1

u xy 6∈ β then we add a copy c′ of c to Lj+1,init
u ; if Tuxy 6∈ β then we add a copy c′ of

c to L1,init
u+1 . We join b with c′ by β and set p(c′) = c.

An attentive reader may be afraid that when adding witnesses for elements of the last
sublayer LM̂ϕ+1

u of Lu we may want to add one of them to the non-existing layer LM̂ϕ+2
u .

There is however no such danger, which follows from the following claim.

B Claim 8. (i) Let b ∈ Lj,initu and let B0 be the subcomponent created for b in Step 1. Then
for all b′ ∈ B0 we have rAu (p(b)) ≥ rAu (p(b′)). (ii) Let b ∈ Lju and let c′ ∈ Lj+1

u be a witness
created for b in Step 2. Then rAu (p(b)) > rAu (p(c′)).

Hence, when moving from Lju to Lj+1
u the Tu-ranks of pattern elements for the elements

of these sublayers strictly decrease. Since these ranks are bounded by M̂ϕ, then, even if
the Tu-ranks of the patterns of some elements of L1

u are equal to M̂ϕ, then, if L
M̂ϕ+1
u is

non-empty, the Tu-ranks of the patterns of its elements must be 0, which means that they
cannot have witnesses connected to them one-directionally by Tu.

The construction of Gγ is finished when layer L2l is fully processed. We have added some
elements to the interface layer, L2l+1. Recall that it has only its “initial part”.

3.2.2 Joining the components
In this section we take some number of copies of pattern components and arrange them into
the desired structure A′0, identifying interface elements of some components with the roots
of some other. Some care is needed in this process in order to avoid any modifications of the
internal structure of closures C+ of components C, which could potentially result from the
transitivity of relations. In particular we need to ensure that if for some u a pair of elements
of a component C is not connected by Tu inside C, then it will not become connected by a
chain of Tu-edges external to C.

We create a pattern component Cγ and its extension Gγ for every γ ∈ γ[A0]. Let γa0 be
the generalized type of a0. Let max be the maximal number of interface elements across all
the Gγ . For each Gγ arbitrarily number its interface elements from 1 up to, maximally, max.

For each γ we take copies Gγ,gi,γ′ of Gγ for g ∈ {0, 1}, 1 ≤ i ≤ max and γ′ ∈ γ[A0]. The
parameter g is sometimes called a color (red or blue); it is convenient to think that the
non-interface elements of Gγ,gi,γ′ are of color g, but its interface elements have color 1−g, cf. the
left part of Fig. 1, as the latter will be later identified with the roots of some components of
color 1− g. We import the numbering of the interface elements to these copies. We also take
an additional copy G

γa0 ,0
⊥,⊥ of Gγa0 . Its root will become the origin of the whole A′0. By Cγ,gi,γ′

we denote the restriction of Gγ,gi,γ′ to its non-interface elements.
For each γ, g consider extended components of the form Gγ,g·,· , where the placeholders ·

can be substituted with any combination of proper indices. Perform the following procedure
for each 1 ≤ i ≤ max. Let b be the i-th interface element of any such extended component,
let γ′ be the generalized type of p(b). Identify the i-th interface elements of all Gγ,g·,· with
the root c0 of Gγ

′,1−g
i,γ . Note that the values of p(c0) and p(b) may differ. However, by

construction, they have identical generalized types γ′. For the element c∗ obtained in this
identification step we define p(c∗) = p(c0).
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A′0

g
=

1

g=
0

a

b

Figure 2 Viewing A0
0 and A′

0 as placed on a cylindrical surface.

Define the graph of components used in the above construction, Gcomp, by joining two
components by an edge iff we identified an interface element of the extended version of one
of them with the root of the other. Let A0

0 be the union of the components accessible from
C
γa0 ,0
⊥,⊥ in Gcomp and let A0

0 be the induced structure. Note that in A0
0 we still do not take the

transitive closures of relations. We define A′0 by transitively closing all relations from σdist in
A0

0. Finally, we choose as the origin a′0 of A′0 the root of the pattern component Cγ0,0
⊥,⊥.

We remark that it is sufficient to take as the universe of A′0 the union of the universes
of some components C·,··,·, and not of their extended versions G·,··,· from which we started our
construction, since the interface elements from these extended components were identified
with some roots of other components.

For the correctness proof of our construction see the full version of this paper. In this
proof it is helpful to think about A0

0 and A′0 as the structures placed on a cylindrical surface
and divided into 4l levels, see Fig. 2. What is crucial, any transitive path in A0

0 can cross at
most one of the two borders between colors.

3.2.3 Size of models and complexity
By a rather routine calculation we can show that models produced in the proof of Lemma 7
are of size bounded triply exponentially in the length of input formulas. This finishes the
proof of Thm. 6, which immediately gives the decidability of the finite satisfiability problem
for UNFO2+S and suggests a simple 3-NExpTime-procedure: guess a finite structure of
size bounded triply exponentially in the size of input ϕ and verify that it is indeed a model
of ϕ. We can however do better and show a doubly exponential upper bound matching the
known complexity of the general satisfiability problem. For this we design an alternating
exponential space algorithm searching for models of the form (f3). The lower bound can
be obtained for the two-variable UNFO2+S in the presence of one transitive relation by a
straightforward adaptation of the lower bound proof for GF2 with transitive guards [19].

I Theorem 9. The finite satisfiability problem for UNFO2+S is 2 -ExpTime-complete.

4 The general case and its further extensions

In the full version of this paper we generalize the ideas from Section 3 to show:

I Theorem 10. The finite satisfiability problem for UNFO+S is 2 -ExpTime-complete.

We also obtain a triply exponential upper bound on the size of minimal finite models of
finitely satisfiable formulas. The structure of the proofs is similar to the two-variable case,
though some details are more complicated. In particular, we need to go through form (f4)
of models: regular trees with bounded ranks of transitive paths. We also explain that in
addition to general transitive relations we can use also equivalences and partial orders.



D. Danielski and E. Kieroński 17:13

We further extend Thm. 10 by considering an extension, UNFO+SOH, of UNFO+S by
constants and inclusion of binary relations of the form B1 ⊆ B2, interpreted in a natural
way: A |= B1 ⊆ B2 iff A |= ∀xy(B1xy → B2xy).

I Theorem 11. The finite satisfiability problem for UNFO+SOH is 2 -ExpTime-complete.

As mentioned in the Introduction, UNFO+SOH captures several interesting description
logics. This implies that we can solve FOMQA problem for them. In particular, we have the
following corollary, which, up to our knowledge is the first decidability result for FOMQA in
the case of a description logic with both transitive roles and role hierarchies.

I Corollary 12. Finite ontology mediated query answering, FOMQA, for the description
logic SHOIu is decidable and 2 -ExpTime-complete.

SHOIu and some related logics are considered, e.g., in [11]. For more about FOMQA
for description logics with transitivity see [12]. For more about OMQA for description logics
see, e.g., references in [12].

Somewhat orthogonally to the extensions motivated by description logics we consider
the base-guarded negation fragment with transitivity, BGNFO+S, for which the general
satisfiability problem was shown decidable in [1]. We do not solve its finite satisfiability
problem here, but, analogously to the extension with equivalence relations, UNFO+EQ [7],
we are able to lift our results to its one-dimensional restriction, BGNFO1+S, admitting only
formulas in which every maximal block of quantifiers leaves at most one variable free.

I Theorem 13. The finite satisfiability problem for BGNFO1+S is 2 -ExpTime-complete.

Surprisingly, in contrast to UNFO+S, BGNFO1+S becomes undecidable when extended
by inclusions of binary relations.

5 Conclusions

We proved that the finite satisfiability problem for the unary negation fragment with transitive
relations, UNFO+S, is decidable and 2-ExpTime-complete, complementing this way the
analogous result for the general satisfiability problem for this logic implied by two other
papers. Further, we identified some decidable extensions of our base logic capturing the
concepts of nominals and role hierarchies from description logics. We noted that our work
has some interesting implications on the finite query answering problem both under the
classical (open-world) database scenario as well as in the description logics setting.

One open question is the decidability of the finite satisfiability problem for the full logic
BGNFO+S from [1]. We made a step in this direction here, by solving this problem for
the one-dimensional restriction of that logic. Another question is if our techniques can be
adapted to a setting in which we do not assert that some distinguished relations are transitive
but where we can talk about the transitive closure of the binary relations, or, more generally,
to the extension of UNFO with regular path expressions from [16].

We finally remark that we do not know if our small model construction, producing finite
models of size bounded triply exponentially in the size of the input formulas, is optimal with
respect to the size of models. The best we can do for the lower bound is to enforce models
of doubly exponential size (actually, this can be done in UNFO even without transitive
relations).
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