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Abstract
We develop a framework for applying treewidth-based dynamic programming on graphs with “hybrid
structure”, i.e., with parts that may not have small treewidth but instead possess other structural
properties. Informally, this is achieved by defining a refinement of treewidth which only considers
parts of the graph that do not belong to a pre-specified tractable graph class. Our approach
allows us to not only generalize existing fixed-parameter algorithms exploiting treewidth, but also
fixed-parameter algorithms which use the size of a modulator as their parameter. As the flagship
application of our framework, we obtain a parameter that combines treewidth and rank-width to
obtain fixed-parameter algorithms for Chromatic Number, Hamiltonian Cycle, and Max-Cut.
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1 Introduction

Over the past decades, the use of structural properties of graphs to obtain efficient algorithms
for NP-hard computational problems has become a prominent research direction in computer
science. Perhaps the best known example of a structural property that can be exploited in
this way is the tree-likeness of the inputs, formalized in terms of the decomposition-based
structural parameter treewidth [35]. It is now well known that a vast range of fundamental
problems admit so-called fixed-parameter algorithms parameterized by the treewidth of the
input graph – that is, can be solved in time f(k) · nO(1) on n-vertex graphs of treewidth k
(for some computable function f). We say that such problems are FPT parameterized by
treewidth.
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42:2 A Hybrid Approach to Dynamic Programming with Treewidth

On the other hand, dense graphs are known to have high treewidth and hence require the
use of different structural parameters; the classical example of such a parameter tailored to
dense graphs is clique-width [8]. Clique-width is asymptotically equivalent to the structural
parameter rank-width [34], which is nowadays often used instead of clique-width due to a
number of advantages (rank-width is much easier to compute [26] and can be used to design
more efficient fixed-parameter algorithms than clique-width [21, 22]). While rank-width (or,
equivalently, clique-width) dominates1 treewidth and can be used to “lift” fixed-parameter
algorithms designed for treewidth to well-structured dense graphs for a number of problems,
there are also important problems which are FPT parameterized by treewidth but W[1]-hard
(and hence probably not FPT) parameterized by rank-width. The most prominent examples of
such problems are Chromatic Number [18], Hamiltonian Cycle [18], and Max-Cut [19].

Another generic type of structure used in algorithmic design is based on measuring the
size of a modulator (i.e., a vertex deletion set) [5] to a certain graph class. Basic examples of
parameters based on modulators include the vertex cover number (a modulator to edgeless
graphs) [16] and the feedback vertex set number (a modulator to forests)[3]. For dense graphs,
modulators to graphs of rank-width 1 have been studied [13, 30], and it is known that for
every constant c one can find a modulator of size at most k to graphs of rank-width c (if
such a modulator exists) in time f(k) · n [29]. However, the algorithmic applications of such
modulators have remained largely unexplored up to this point.

Our Contribution. We develop a class of hybrid parameters which combines the foremost
advantages of treewidth and modulators to obtain a “best-of-both-worlds” outcome. In
particular, instead of measuring the treewidth of the graph itself or the size of a modulator to
a graph class H, we consider the treewidth of a (torso of a) modulator to H. This parameter,
which we simply call H-treewidth, allows us to lift previously established tractability results
for a vast number of problems from treewidth and modulators to a strictly more general setting.
As our first technical contribution, we substantiate this claim with a meta-theorem that
formalizes generic conditions under which a treewidth-based algorithm can be generalized to
H-treewidth; the main technical tool for the proof is an adaptation of protrusion replacement
techniques [2, Section 4].

As the flagship application of H-treewidth, we study the case where H is the class Rc

of graphs of rank-width at most c (an arbitrary constant). Rc-treewidth hence represents a
way of lifting treewidth towards dense graphs that lies “between” treewidth and rank-width.
We note that this class of parameters naturally incorporates a certain scaling trade-off:
Rc-treewidth dominates Rc−1-treewidth for each constant c, but the runtime bounds for
algorithms using Rc-treewidth are worse than those for Rc−1-treewidth.

Our first result for Rc-treewidth is a fixed-parameter algorithm for computing the
parameter itself. We then develop fixed-parameter algorithms for Chromatic Number,
Hamiltonian Cycle and Max-Cut parameterized by Rc-treewidth; moreover, in 2 out
of these 3 cases the parameter dependencies of our algorithms are essentially tight. These
algorithms represent generalizations of:
1. classical fixed-parameter algorithms parameterized by treewidth [12],
2. polynomial-time algorithms on graphs of bounded rank-width [22], and
3. (not previously known) fixed-parameter algorithms parameterized by modulators to graph

classes of bounded rank-width.

1 Parameter α dominates parameter β if for each graph class with bounded β, α is also bounded.
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The main challenge for all of these problems lies in dealing with the fact that some parts
of the graph need to be handled using rank-width based techniques, while for others we use
treewidth-based dynamic programming. We separate these parts from each other using the
notion of nice H-tree decompositions. The algorithm then relies on enhancing the known
dynamic programming approach for solving the problem on treewidth with a subroutine
that not only solves the problem on the part of the graph outside of the modulator, but
also serves as an interface by supplying appropriate records to the treewidth-based dynamic
programming part of the algorithm. At its core, each of these subroutines boils down to
solving an “extended” version of the original problem parameterized by the size of a modulator
to Rc; in particular, each subroutine immediately implies a fixed-parameter algorithm for
the respective problem when parameterized by a modulator to constant rank-width. To give
a specific example for such a subroutine, in the case of Chromatic Number one needs to
solve the problem parameterized by a modulator to Rc where the modulator is furthermore
precolored.

To avoid any doubt, we make it explicitly clear that the runtime of all of our algorithms
utilizing Rc-treewidth has a polynomial dependency on the input where the degree of this
polynomial depends on c (as is necessitated by the W[1]-hardness of the studied problems
parameterized by rank-width).

Related Work. Previous works have used a combination of treewidth with backdoors, a
notion that is closely related to modulators, in order to solve non-graph problems such as
Constraint Satisfaction [25], Boolean Satisfiability [24] and Integer Program-
ming [23]. Interestingly, the main technical challenge in all of these papers is the problem
of computing the parameter, while using the parameter to solve the problem is straightfor-
ward. In the algorithmic results presented in this contribution, the situation is completely
reversed: the main technical challenge lies in developing the algorithms (and most notably
the subroutines) for solving our targeted problems. Moreover, while the aforementioned three
papers focus on solving a single problem, here we aim at identifying and exploiting structural
properties that can be used to solve a wide variety of graph problems.

Other parameters which target inputs with hybrid structure include sm-width [36] and
well-structured modulators [14]. It is not difficult to show that these are different (both
conceptually and factually) from Rc-treewidth.

2 Preliminaries

For i ∈ N, let [i] denote the set {1, . . . , i}. All graphs in this paper are simple and undirected.
We refer to the standard textbook [11] for basic graph terminology. For S ⊆ V (G), let G[S]
denote the subgraph of G induced by S. For v ∈ V (G), the set of neighbors of v in G is
denoted by NG(v) (or N(v) when G is clear from the context). For A ⊆ V (G), let NG(A)
denote the set of vertices in G−A that have a neighbor in A. For a vertex set A, an A-path
is a path whose endpoints are contained in A and all the internal vertices are contained in
G−A.

A setM of vertices in a graph G is called a modulator to a graph classH if G−M ∈ H. The
operation of collapsing a vertex set X, denoted G ◦X, deletes X from the graph and adds an
edge between vertices u, v ∈ V (G−X) if uv /∈ E(G) and there is an u-v path with all internal
vertices in G[X]. We assume that the reader is familiar with parameterized complexity [9, 12],
notably with notions such as FPT, W[1], treewidth and Courcelle’s Theorem.

MFCS 2019



42:4 A Hybrid Approach to Dynamic Programming with Treewidth

Rank-width. For a graph G and U,W ⊆ V (G), let AG[U,W ] denote the U ×W -submatrix
of the adjacency matrix over the two-element field GF(2), i.e., the entry au,w, u ∈ U and
w ∈ W , of AG[U,W ] is 1 if and only if {u,w} is an edge of G. The cut-rank function
ρG of a graph G is defined as follows: For a bipartition (U,W ) of the vertex set V (G),
ρG(U) = ρG(W ) equals the rank of AG[U,W ].

A rank-decomposition of a graph G is a pair (T, µ) where T is a tree of maximum degree 3
and µ : V (G)→ {t | t is a leaf of T} is a bijective function. For an edge e of T , the connected
components of T − e induce a bipartition (X,Y ) of the set of leaves of T . The width of an
edge e of a rank-decomposition (T, µ) is ρG(µ−1(X)). The width of (T, µ) is the maximum
width over all edges of T . The rank-width of G, rw(G) in short, is the minimum width over
all rank-decompositions of G. We denote by Ri the class of all graphs of rank-width at most
i. A rooted rank-decomposition is obtained from a rank-decomposition by subdividing an
arbitrarily chosen edge, and the newly created vertex is called the root.

Unlike clique-width, rank-width can be computed exactly by a fixed-parameter algorithm
(which also outputs a corresponding rank-decomposition) [26].

Monadic Second-Order Logic. Counting Monadic Second-Order Logic (CMSO1) is a basic
tool to express properties of vertex sets in graphs. The syntax of CMSO1 includes logical
connectives ∧,∨,¬,⇔,⇒, variables for vertices and vertex sets, quantifiers ∃,∀ over these
variables, and the relations a ∈ A where a is a vertex variable and A is a vertex set variable;
adj(a, b), where a and b are vertex variables and the interpretation is that a and b are
adjacent; equality of variables representing vertices and sets of vertices; Parity(A), where A
is a vertex set variable and the interpretation is that |A| is even.

The CMSO1 Optimization problem is defined as follows:

CMSO1-OPT
Instance: A graph G, a CMSO1 formula φ(A) with a free set variable A, and opt ∈

{min,max}.
Task: Find an interpretation of the set A in G such that G models φ(A) and A is of

minimum/maximum (depending on opt) cardinality.

From the fixed-parameter tractability of computing rank-width [26], the equivalence of
rank-width and clique-width [34] and Courcelle’s Theorem for graphs of bounded clique-
width [7] it follows that:

I Fact 1 ([21]). CMSO1-OPT is FPT parameterized by rw(G) + |φ|, where G is the input
graph and φ is the CMSO1 formula.

3 H-Treewidth

The aim of H-treewidth is to capture the treewidth of a modulator to the graph class H.
However, one cannot expect to obtain a parameter with reasonable algorithmic applications
by simply measuring the treewidth of the graph induced by a modulator to H – instead, one
needs to measure the treewidth of a so-called torso, which adds edges to track how the vertices
in the modulator interact through H. To substantiate this, we observe that Hamiltonian
Cycle would become NP-hard even on graphs with a modulator that (1) induces an edgeless
graph, and (2) is a modulator to an edgeless graph, and where (3) each connected component
outside the modulator has boundedly many neighbors in the modulator [1].
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Figure 1 Left: A graph G with a tree as a modulator to H (the part in H is depicted hatched).
Right: The corresponding H-torso.

The notion of a torso has previously been algorithmically exploited in other settings [23,
25, 33], and its adaptation is our first step towards the definition of H-treewidth (see also
Figure 1).

I Definition 1 (H-Torso). Let G be a graph and X ⊆ V (G). For a graph class H, G ◦X is
an H-torso of G if each connected component C of G[X] satisfies C ∈ H.

I Definition 2 (H-Treewidth). The H-treewidth of a graph G is the minimum treewidth of
an H-torso of G. We denote the H-treewidth of G by twH(G).

Typically, we will want to consider a graph class H for which certain problems are
polynomial-time tractable. Hence, we will assume w.l.o.g. that (∅, ∅) ∈ H. From the definition
we easily observe that twH(G) ≤ tw(G) for every G and H.

3.1 Nice H-Tree-Decompositions
Just like for tree decompositions, we can also define a canonical form of decompositions which
has properties that are convenient when formulating dynamic programs using H-treewidth.
Intuitively, a nice H-tree decomposition behaves like a nice tree decomposition on the torso
graph (see points 1-3), with the exception that the neighborhoods of the collapsed parts
must occur as special boundary leaves (see points 4-5).

I Definition 3 (Nice H-Tree-Decomposition). A nice H-tree decomposition of a graph G
is a triple (X,T, {Bt | t ∈ V (T )}) where X ⊆ V (G) such that G ◦ X is an H-torso,
(T, {Bt | t ∈ V (T )}) is a rooted tree decomposition of G ◦X, and:
1. Every node in T has at most two children.
2. If a node t has children t1 6= t2, then Bt = Bt1 = Bt2 and we call t a join node.
3. If a node t has exactly one child t′, then either (a) there exists x ∈ V (G) \Bt′ such that

Bt = Bt′ ∪ {x} and we call t an introduce node, or (b) there exists x ∈ V (G) \Bt such
that Bt′ = Bt ∪ {x} and we call t a forget node.

4. If a node t is a leaf, then (a) |Bt| = 1 and we call t a simple leaf, or (b) Bt = N(C) for
some connected component C of G[X] and we call t a boundary leaf.

5. For each connected component C of G[X] there is a unique leaf t with Bt = N(C).

An illustration of a nice H-tree decomposition showcasing how it differs from a nice tree
decomposition is provided in Figure 2; in line with standard terminology for treewidth, we call
the sets Bt bags. The width of a nice H-tree decomposition is simply the width of (T, {Bt | t ∈
V (T )}). Given a node t in a nice H-tree decomposition T , we let Yt be the set of all vertices

MFCS 2019
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. . .

. . .
. . .

N(C)

C

bags of the original
tree decomposition
of G ◦X

copies of the bag B
containing N(C)

path introducing
B \N(C)

Figure 2 Part of a nice H-tree-decomposition (blue) including a boundary leaf (bold) and a
connected component C (hatched) of X.

contained in the bags of the subtree rooted at t, i.e., Yt = Bt∪
⋃

p is separated from the root by t Bp.
It is possible to show that computing a nice H-tree decomposition of bounded width can be
reduced to finding an appropriate H-torso (this is because a nice H-tree decomposition can
be obtained straightforwardly from a nice tree decomposition of the torso).

Hence, we can state the problem of computing a decomposition as follows:

H-Treewidth Parameter: k
Instance: A graph G, an integer k.
Task: Find an H-torso U of G such that tw(U) ≤ k, or correctly determine that no

such H-torso exists.

An Algorithmic Meta-Theorem. Before proceeding to the flagship application of H-
treewidth where H is the class of graphs of bounded rank-width, here we give a generic
set of conditions that allow fixed-parameter algorithms for problems parameterized by H-
treewidth. Specifically, we consider graph problems that are finite-state [6] or have finite
integer index [2, 4, 20]. Informally speaking, such problems only transfer a limited amount of
information across a small separator in the input graph and hence can be solved “indepen-
dently” on both sides of such a separator. Since these notions are only used in this section,
we provide concise definitions below.

First of all, we will need the notion of boundaried graphs and gluing. A graph Ḡ is
called t-boundaried if it contains t distinguished vertices identified as bG

1 , . . . , b
G
t . The gluing

operation ⊕ takes two t-boundaried graphs Ḡ and H̄, creates their disjoint union, and then
alters this disjoint union by identifying the boundaries of the two graphs (i.e. by setting
bG

i = bH
i for each i ∈ [t]).

Consider a decision problem P whose input is a graph. We say that two t-boundaried
graphs C̄ and D̄ are equivalent, denoted by C̄ ∼P,t D̄, if for each t-boundaried graph H̄ it
holds that C̄ ⊕ H̄ ∈ P if and only if D̄ ⊕ H̄ ∈ P. We say that P is finite-state (or FS, in
brief) if, for each t ∈ N, ∼P,t has a finite number of equivalence classes.
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Next, consider a decision problem Q whose input is a graph and an integer. In this case
we say that two t-boundaried graphs C̄ and D̄ are equivalent (denoted by C̄ ∼Q,t D̄) if
there exists an offset δ(C̄, D̄) ∈ Z such that for each t-boundaried graph H̄ and each q ∈ Z:
(C̄⊕H̄, q) ∈ Q if and only if (D̄⊕H̄, q+δ(C̄, D̄)) ∈ Q.We say that Q has finite integer index
(or is FII, in brief) if, for each t ∈ N, ∼Q,t has a bounded number of equivalence classes.

We note that a great number of natural graph problems are known to be FS or FII. For
instance, all problems definable in Monadic Second Order logic are FS [2, Lemma 3.2], while
examples of FII problems include Vertex Cover, Independent Set, Feedback Vertex
Set, Dominating Set, to name a few [20]. We say that a FS or FII problem P is efficiently
extendable on a graph class H if there is a fixed-parameter algorithm (parameterized by t)
that takes as input a t-boundaried graph Ḡ such that the boundary is a modulator to H and
outputs the equivalence class of Ḡ w.r.t. ∼P,t.

I Theorem 4. Let P be a FS or FII graph problem and H be a graph class such that (1) P is
efficiently extendable on H, (2) P is FPT parameterized by treewidth, and (3) H-treewidth
is FPT. Then P is FPT parameterized by H-treewidth.

Proof Sketch. We can solve P as follows. First of all, we use Point (3) to compute an H-torso
G ◦ X of treewidth k, where k is the H-treewidth. Next, for each connected component
C of G[X], we use the fact that C ∈ H and Point (1) to compute the equivalence class
of the boundaried graph H̄ = G[C ∪N(C)] where the boundary is N(C). Note that since
tw(G ◦X) ≤ k and N(C) forms a clique in G ◦X, |N(C)| ≤ k and hence this step takes only
fixed-parameter time. Next, we use a brute-force enumeration argument to compute a bounded-
size representative of the equivalence class of H̄, and replace H̄ with this representative.
After doing this exhaustively, we obtain a graph G′ of bounded treewidth, for which we can
invoke Point (2). J

4 Rc-Treewidth

This section focuses on the properties of Rc-treewidth, a hierarchy of graph parameters that
represent our flagship application of the generic notion of H-treewidth.

Comparison to Known Parameters. It follows from the definition of H-treewidth that Rc-
treewidth dominates treewidth (for every c ∈ N). Similarly, it is obvious that Rc-treewidth
dominates the size of a modulator to Rc (also for every c ∈ N). The following lemma shows
that, for every fixed c, Rc-treewidth is dominated by rankwidth.

I Lemma 5. Let c ∈ N. If twRc(G) = k then rw(G) ≤ c+ k + 1.

Proof. Let the Rc-treewidth of G be witnessed by some nice Rc-tree-decomposition
(X,T, {Bt | t ∈ V (T )}) of width k.

We can obtain a rank-decomposition (T ′, µ) of G from (X,T, {Bt | t ∈ V (T ))} as follows:
For vertices v of G ◦ X such that there is no leaf node t ∈ V (T ) with Bt = {v}, let

t ∈ V (T ) be a forget node with child t′ such that Bt ∪ {v} = Bt′ . Turn t′ into a join node
by introducing t1, t2 with Bt1 = Bt2 = Bt′ as children of t′, attaching the former child
of t′ to t1 and a new leaf node tv with Btv

= {v} below t2. Note that this preserves the
fact that for any v ∈ V (G) \ X, T [{u ∈ V (T ) | v ∈ Bu}] is a tree. Now we can choose
for each v ∈ V (G ◦ X) some µ(v) ∈ V (T ) such that Bt = {v}. This defines an injection
from V (G ◦X) to the leaves of T . However not every leaf of T is mapped to by µ. On one
hand there are the boundary leaf nodes, below which we will attach subtrees to obtain a
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42:8 A Hybrid Approach to Dynamic Programming with Treewidth

rank-decomposition of G. On the other hand there may be v ∈ V (G ◦ X) for which the
choice of µ(v) was not unique, i.e. there is t 6= µ(v) with Bt = {v}. For all such v and t we
delete all nodes on the root-t-path in T that do not lie on a path from the root to a vertex
in {µ(w) | w ∈ V (G ◦X)} ∪ {t′ | t′ boundary leaf node}. This turns µ into an injection from
V (G ◦X) to the leaves of T , that is surjective on the non-boundary leaf nodes.

Next, we extend (T, µ) to a rank-decomposition of G by proceeding in the following way
for each connected component C of G[X]:
Let tC ∈ V (T ) be the boundary leaf node with Bt = N(C). Since rw(C) ≤ c, we find a
rank-decomposition (TC , µC) of C with width at most c. Attach TC below tC .
Let T ′ be the tree obtained by performing these modifications for all connected components
C. Consider the rank-decomposition of G given by(

T ′, v 7→

{
µ(v) if v ∈ V (G ◦X)
µC(v) if v ∈ C for some C as above

)
.

We show that its width is at most c+ k + 1. Any edge e of T ′ is of one of the following
types:

e corresponds to an edge already contained in T : Then e induces a bipartition (XG, YG)
of V (G). Fix t ∈ V (T ) to be the vertex in which e starts.
Let x ∈ XG and y ∈ YG be such that xy ∈ E(G). Observe that e does not separate
neighbors in X as these lie within the same connected component of G[X] whose rank-
decomposition is, by construction, attached completely within one of the two subtrees of
T ′ separated by e. So, we consider x ∈ V (G ◦X). If y ∈ V (G ◦X) then x and y occur
together in some bag of the original tree of the tree decomposition, and as remarked
earlier this is still the case modified tree. This implies that at least one of {x, y} must
be present in Bt. If y /∈ V (G ◦ X), by the construction of T ′, y corresponds to a leaf
ty ∈ V (T ′) in a subtree attached to T rooted at tC ∈ V (T ) with BtC

= N(C) 3 x and
tC and ty are not separated by the removal of e. Also, x corresponds to a leaf tx ∈ V (T )
which is in the subtree of T ′− e not containing ty, i.e. the subtree not containing tC . This
means any subtree containing tC and tx also contains t, and since (T, {Bt | t ∈ V (T )}) is
a tree-decomposition and x ∈ Btx ∩BtC

this means x ∈ Bt.
In both cases at least one of {x, y} is in Bt. Since this argument applies for every edge
crossing the bipartition (XG, YG), it follows that AG[XG, YG] may only contain “1” entries
in rows and columns that correspond to the vertices in Bt. Since |Bt| ≤ k + 1, it holds
that AG[XG, YG] can be converted into a zero matrix by deleting at most k+ 1 rows plus
columns, which is a sufficient condition for AG[XG, YG] having rank at most k + 1.
e corresponds to an edge in a rank-decomposition of some connected component C
of G[X]: Then e induces a bipartition (XG, YG) of V (G) and a bipartition (XC , YC),
where XC = XG ∩ C and YC = YG ∩ C, of C. Since vertices of C are only connected to
vertices in N(C) outside of C and N(C) ⊆ Bt for some t ∈ V (T ), we have ρG(XG) ≤
ρC(XC) + |N(C)| ≤ c+ k + 1.
e corresponds to an edge connecting the rank-decomposition of some connected component
C of G[X] to T : Then the bipartition induced is (C, V (G) \ C) and as N(C) ⊆ Bt for
some t ∈ V (T ) ρG(C) ≤ |N(C)| ≤ k + 1. J

Next, we compare Rc-treewidth to Telle and Saether’s sm-width [36].

I Lemma 6. Rc-treewidth and sm-width are incomparable.
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Computing Rc-Treewidth. Our aim here is to determine the complexity of computing
our parameters, i.e., finding a torso of small treewidth. Obtaining such a torso is a base
prerequisite for our algorithms. We formalize the problem below.

Rc-Treewidth Parameter: k
Instance: A graph G, an integer k.
Task: Find a Rc-torso U of G such that tw(U) ≤ k, or correctly determine that no such

Rc-torso exists.

I Lemma 7. Rc-Treewidth is FPT.

5 Algorithms Exploiting Modulators to Rc

For a problem P to be FPT parameterized by Rc-treewidth, P must necessarily be FPT
parameterized by treewidth and also FPT parameterized by the size of a modulator to Rc.
However, it is important to note that the latter condition is not sufficient; indeed, one can
easily invent artificial problems that are defined in a way which make them trivial in both of
the cases outlined above, but become intractable (or even undecidable) once parameterized
by Rc-treewidth. That is, after all, why we need the notion of efficient extendability in
Theorem 4.

Hence, in order to develop fixed-parameter algorithms for Chromatic Number, Hamil-
tonian Cycle and Max-Cut parameterized by Rc-treewidth, we first need to show that
they are not only FPT parameterized by the size of a modulator to Rc, but they are also
efficiently extendable. Such a result would be sufficient to employ Theorem 4 together with
Lemma 7 in order to establish the desired fixed-parameter tractability results. That is also
our general aim in this section, with one caveat: in order to give explicit and tight upper
bounds on the parameter dependency of our algorithms, we provide algorithms that solve
generalizations of Chromatic Number, Hamiltonian Cycle and Max-Cut parameter-
ized by the size of a modulator to Rc, whereas it will become apparent in the next section
that these generalizations precisely correspond to the records required by the treewidth-based
dynamic program that will be used in the torso. In other words, the efficient extendability of
our problems on Rc is not proved directly but rather follows as an immediate consequence of
our proofs in this section and the correctness of known treewidth-based algorithms.

Chromatic Number. In Chromatic Number, we are given a graph G and asked for the
smallest number χ(G) such that the vertex set of G can be properly colored using χ(G) colors,
i.e., the smallest number χ(G) such that V (G) can be partitioned into χ(G) independent
sets. Our aim in this section is to solve a variant of Chromatic Number on graphs with a
k-vertex modulator X to Rc where X is precolored:

Rc-Precoloring Extension Parameter: k
Instance: A graph G, a k-vertex modulator X ⊆ V (G) to Rc and a coloring of X.
Task: Compute the smallest number of colors required to extend the coloring of X to a

proper coloring of G.

I Theorem 8. Rc-Precoloring Extension can be solved in time 2O(k)nO(1).
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Proof Sketch. Let G be a graph together with a k-vertex modulator X to Rc and a proper
coloring of X by colors [k]; let colX be the set of colors assigned to at least one vertex in X.
For disjoint vertex sets S and Q of G, two vertices v and w in S are twins with respect to Q
if N(v) ∩Q = N(w) ∩Q. A twin class of S with respect to Q is a maximal subset of S that
consists of pairwise twins w.r.t. Q.

Our starting point is a rooted rank-decomposition (T, µ) of G−X of width at most c,
which may be computed in time O(n3) [26]. On a high level, our algorithm will apply dynamic
programming along (T, µ) where it will group colors together based on which twin classes
they occur in (analogously as in the XP algorithm for Chromatic Number parameterized
by clique-width, due to Kobler and Rotics [31]), but keep different (more detailed) records
about the at most k colors used in X.

For each t ∈ V (T ), let St be the set of all vertices that are assigned to the descendants of
t, and let Gt := G[St ∪X]. By our definition of (T, µ), recall that ρG−X(St) ≤ c and that
there are at most z = 2c twin classes of St w.r.t. V (G) \ (X ∪ St). We will refer to these twin
classes as Rt

1, R
t
2, . . . , R

t
z.

We are now ready to formally define the dynamic programming table Mt that stores the
information we require at a node t of T . For b1, b2, . . . , bk ⊆ [z] and { dZ ∈ [n] | Z ⊆ [z] }, we
let Mt(b1, b2, . . . , bk, { dZ | Z ⊆ [z] }) = 1 if there is a proper coloring of Gt such that (1) for
every i ∈ [k], the color i appears in twin classes in {Rt

j : j ∈ bi} and does not appear in other
twin classes, and (2) for every Z ⊆ [z], dZ is the number of colors from {k+1, k+2, . . . , n} that
appear in twin classes of {Rt

j : j ∈ Z} and do not appear in other twin classes. On the other
hand, if no such proper coloring exists then we let Mt(b1, b2, . . . , bk, { dZ | Z ⊆ [z] }) = 0.

The table Mt will be filled in a leaf-to-root fashion. Observe that by definition of dZ ’s,
for distinct subsets Z1, Z2 of [z], dZ1 and dZ2 count disjoint sets of colors. This provides
an easy way to count the total number of colors used. Since all vertices in G −X appear
below the root node r, the minimum number of colors required for a proper coloring of
G will be the minimum value of

∣∣colX ∪ { i ∈ [k] | bi 6= ∅ }
∣∣ +

∑
Z⊆[z] dZ , over all tuples

(b1, b2, . . . , bk, { dZ | Z ⊆ [z] }) whose Mr value is 1. J

Hamiltonian Cycle. In Hamiltonian Cycle, we are given an n-vertex graph G and asked
whether G contains a cycle of length n as a subgraph. Note that if we restrict G to some
subset of vertices Y ⊆ V (G), then what remains from a Hamiltonian Cycle in G is a set of
paths that start and end in the neighborhood of V (G) \ Y . Hence, the aim of this section is
to solve the following generalization of Hamiltonian Cycle:

Rc-Disjoint Paths Cover Parameter: k
Instance: A graph G, a k-vertex modulator X ⊆ V (G) to Rc, and m ≤ k pairs

(s1, t1), . . . , (sm, tm) of vertices from X with si 6= ti for all i ∈ [m].
Task: Decide whether there are internally vertex-disjoint paths P1, P2, . . . , Pm in G such

that Pi is a path from si to ti and every vertex in G−X belongs to precisely one
path in P1, P2, . . . , Pm.

I Theorem 9. Rc-Disjoint Paths Cover can be solved in time 2O(k)nO(1).

Proof Sketch. Let G be a graph, X be a k-vertex modulator to Rc, and (s1, t1), . . . , (sm, tm)
be m pairs of vertices from X. Our starting point is once again a rooted rank-decomposition
(T, µ) of G −X of width at most c, which may be computed in time O(n3) [26]. We will
obtain a fixed-parameter algorithm for checking the existence of such paths P1, . . . , Pm in G
by expanding the records used in Espelage, Gurski and Wanke’s algorithm [15] for computing
Hamiltonian Cycle parameterized by clique-width.
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To follow partial solutions on each subgraph Gt, we consider certain generalizations of
path-partitions of subgraphs of G. For a subgraph H of G, an X-lenient path-partition P of
H is a collection of paths in H that are internally vertex-disjoint and share only endpoints
in X such that

⋃
P∈P V (P ) = V (H). For convenience, we consider a path as an ordered

sequence of vertices, and for a path P = v1v2 · · · vx, we define `(P ) = v1 and r(P ) = vx.
We proceed by introducing our dynamic programming table. For each node t of T , we

use the following tuples (D,SP) as indices of the table. Let D = {db1,b2 ∈ {0, 1, . . . , n} |
(b1, b2) ∈ [z] × [z]}. The integer db1,b2 will represent the number of paths in an X-lenient
path-partition of Gt that are fully contained in Gt −X and whose endpoints are contained
in Rt

b1
and Rt

b2
. Let SP be a set such that

for each i ∈ {1, . . . ,m}, (i, 0, x), (0, i, x), (i, i) with some x ∈ [z] are the only possible
tuples in SP,
each integer in {1, . . . ,m} appears at most once as an ` among all tuples (`, 0, p) or (`, `)
in SP, and similarly, each integer in {1, . . . ,m} appears at most once as an r among all
tuples (0, r, p) or (r, r) in SP.

In short, the tuple (i, 0, t) indicates the existence of a path starting in si and ending at a
vertex in Rt

x. Similarly, (0, i, t) indicates the existence of a path starting in ti and ending in
Rt

x. The tuple (i, i) indicates the existence of a path starting in si and ending in ti. Note
that there are at most (n+ 1)z2 possibilities for D. For an element of SP, there are 2mz + 1
possible elements in SP, and thus there are at most 22kz+1 possibilities for SP. This implies
that the number of possible tuples (D,SP) is bounded by (n+ 1)z222kz+1.

We define a DP table Mt such that Mt(D,SP) = 1 if there is an X-lenient path-partition
P = P1 ] P2 of Gt such that
P1 is the subset of P that consists of all paths fully contained in Gt −X,
for every db1,b2 ∈ D, there are exactly db1,b2 distinct paths in P1 with endpoints in Rt

b1

and Rt
b2
,

for every (`, r, p) or (`, r) ∈ SP, there is a unique path P ∈ P2 such that
if ` = i > 0, then `(P ) = si, and if r = i > 0, then r(P ) = ti,
if ` = 0, then `(P ) ∈ Rt

p, and if r = 0, then r(P ) ∈ Rt
p,

In this case, we say that the X-lenient path-partition P is a partial solution with respect
to (D,SP), and also (D,SP) is a characteristic of P. We define Qt as the set of all tuples
(D,SP) where Mt(D,SP) = 1.

The table Mt is filled in a leaf-to-root fashion. Since all vertices in G−X appear below
the root node ro, to decide whether there is a desired X-lenient path-partition, it suffices to
confirm that there are D and SP such that Mro(D,SP) = 1, for every db1,b2 ∈ D, db1,b2 = 0,
and for every i ∈ {1, 2, . . . ,m}, (i, i) ∈ SP.

The proof can be completed by describing a dynamic program to fill in the table Mt for
each node t ∈ V (T ) in a leaf-to-root fashion. J

Max-Cut. The third problem we consider is Max-Cut, where we are given an integer `
together with an n-vertex graph G and asked whether V (G) can be partitioned into sets V1
and V2 such that the number of edges with precisely one endpoint in V1 (called the cut size)
is at least `.
Rc-Max-Cut Extension Parameter: k
Instance: A graph G, a k-vertex modulator X ⊆ V (G) to Rc, s ⊆ X, and ` ∈ N.
Task: Is there a partition of V (G) into sets V1 and V2 such that X ∩ V1 = s and the

number of edges between V1 and V2 is at least `.

I Theorem 10. Rc-Max-Cut Extension can be solved in polynomial time.
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6 Algorithmic Applications of Rc-Treewidth

In this section, we show that Chromatic Number, Hamiltonian Cycle and Max-Cut
are FPT parameterized by Rc-treewidth. As our starting point, recall that each of these
problems admits a fixed-parameter algorithm when parameterized by treewidth which is
based on leaf-to-root dynamic programming along the nodes of a nice tree decomposition.
Notably, the algorithms are based on defining a certain record δ(P,Q) (for vertex sets P , Q)
such that δ(Bt, Yt) captures all the relevant information required to solve the problem on
G[Yt] and to propagate this information from a node t to its parent. The algorithms compute
these records on the leaves of the tree decomposition by brute force, and then dynamically
update these records while traversing a nice tree decomposition towards the root; once the
record δ(Br, Yr) is computed for the root r of the decomposition, the algorithm outputs the
correct answer.

Our general strategy for solving these problems will be to replicate the records employed
by the respective dynamic programming algorithm A used for treewidth, but only for the
nice Rc-tree decomposition of the torso of the input graph G. Recall that aside from the
“standard” simple leaf nodes, nice Rc-tree decompositions also contain boundary leaf nodes,
which serve as separators between the torso and a connected component C with rank-width
at most c. For A to work correctly with the desired runtime, we need to compute the record
for each boundary leaf node using a subprocedure that exploits the bounded rank-width of
C; in particular, we will see that this amounts to solving the problems defined in Section 5.
Before proceeding to the individual problems, we provide a formalization and proof for the
general ideas outlined above.

I Lemma 11. Let P be a graph problem which can be solved via a fixed-parameter algorithm
A parameterized by treewidth, where A runs in time f(k′) · n′a and operates by computing a
certain record δ in a leaves-to-root fashion along a provided nice width-k′ tree decomposition
of the n′-vertex input graph.

Let Q be obtained from P by receiving the following additional information in the input:
(1) a nice Rc-tree decomposition (X,T, {Bt | t ∈ V (T )}) of width k for the input n-vertex
graph G, and (2) for each boundary leaf node t corresponding to the neighborhood of a
connected component C of G[X], the record δ(Bt, Bt ∪ C).

Then, Q can be solved in time f(k) · na.

Chromatic Number. Chromatic Number is W[1]-hard parameterized by rank-width [17]
but can be solved in time 2O(tw(G)·log tw(G)) · n on n-vertex graphs when a minimum-width
tree-decomposition is provided with the input [28]; moreover, it is known that this runtime
is essentially tight [32].

It is well known that the chromatic number is at most tw(G) + 1. One possible way of
defining records in order to achieve a runtime of 2O(tw(G)·log tw(G)) · n is to track, for each
proper coloring of vertices in a bag Bt, the minimum number of colors required to extend such
a coloring to Yt [28]. Formally, let St be the set of all colorings of Bt with colors [tw(G) + 1],
and let α(Bt, Yt) : St → Z be defined as follows:

α(Bt, Yt)(s) = −1 if s is not a proper coloring of G[Bt].
α(Bt, Yt)(s) = q if q is the minimum number of colors used by any proper coloring of
G[Yt] which extends s.

Using Theorem 8, we can compute such α(Bt, Yt)(s) for every proper coloring s of Bt.
Hence, combining Lemma 11 and Theorem 8, we obtain:
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I Theorem 12. Chromatic Number can be solved in time 2O(k log(k)) · nO(1) if a nice
Rc-tree decomposition of width k is provided on the input.

Hamiltonian Cycle. Hamiltonian Cycle is W[1]-hard parameterized by rank-width [17]
but can be solved in time 2O(tw(G)·log tw(G)) · n on n-vertex graphs when a minimum-width
tree-decomposition is provided with the input via standard dynamic programming. This
algorithm can be improved to run in time 2O(tw(G)) · n) by applying the advanced rank-based
approach of Cygan, Kratsch and Nederlof [10] to prune the number of records. To simplify
our exposition, here we focus on extending the standard dynamic programming algorithm
which yields a slightly super-exponential runtime.

One possibility for defining the records for Hamiltonian Cycle is to track all possible
ways one can cover Yt by paths that start and end in Bt (intuitively, this corresponds to
what remains of a hypothetical solution if we “cut off” everything above Yt) [12]. Formally,
let Bt

� be defined as follows:
if |Bt| > 2, then Bt

� is the set of graphs with at most |Bt| edges and degree at most 2
over vertex set Bt;
if |Bt| = 2, then Bt

� contains three (multi)graphs over vertex set Bt: the edgeless graph,
the graph with one edge, and the multigraph with two edges and no loops;
if |Bt| = 1, then Bt

� contains an edgeless graph and a graph with a single loop, both over
the single vertex in Bt;
if |Bt| = 0, then Bt

� = {YES, NO}.

We let β(Bt, Yt) : Bt
� → {0, 1}, where for Q ∈ Bt

� we set β(Bt, Yt)(Q) = 1 if and only if
there exists a set P of paths in G[Yt] and a bijection that maps each (v1, . . . , v`) ∈ P to an
edge (v1, v`) ∈ E(Q) such that each vertex v ∈ G[Yt \Bt] is contained in precisely one path
in P . In the special case where Bt = ∅, our records explicitly state whether G[Yt] contains a
Hamiltonian cycle or not.

As before, we can now shift our attention to the problem of computing our records in
boundary leaf nodes. We do so by looping over all of the at most k2k-many graphs Q ∈ Bt

�;
for each such Q we check whether G[Yt]− Bt can be covered by internally vertex-disjoint
paths connecting the pairs of vertices in Bt that form the endpoints of the edges in Q. Hence,
we are left with the Rc-Disjoint Paths Cover problem. From Theorem 9 and Lemma 11,
we obtain:

I Theorem 13. Hamiltonian Cycle can be solved in time 2O(k log(k)) · nO(1) if a nice
Rc-tree decomposition of width k is provided on the input.

Max-Cut. Max-Cut is another problem that is W[1]-hard parameterized by rank-width [19]
but admits a simple fixed-parameter algorithm parameterized by treewidth – notably, it can
be solved in time 2O(tw(G)) ·n on n-vertex graphs when a minimum-width tree-decomposition
is provided with the input via standard dynamic programming [9, 12].

The simplest way of defining the records for Max-Cut is to keep track of all possible
ways the bag Bt can be partitioned into V1 and V2, and for each entry in our table we keep
track of the maximum number of crossing edges in Yt compatible with that entry. Formally,
let γ(Bt, Yt) : 2Bt → N0, where for each s ∈ 2Bt it holds that γ(Bt, Yt)(s) is the maximum
cut size that can be achieved in G[Yt] by any partition (V1, V2) satisfying V1 ∩ Bt = s. As
before, from Theorem 10 and Lemma 11, we obtain:

I Theorem 14. Max-Cut can be solved in time 2k · nO(1), if a nice Rc-tree decomposition
of width k is provided on the input.
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7 Concluding Remarks

While the technical contribution of this paper mainly focused on Rc-treewidth, a parameter
that allows us to lift fixed-parameter algorithms parameterized by treewidth to well-structured
dense graph classes, it is equally viable to consider H-treewidth for other choices of H.
Naturally, one should aim at graph classes where problems of interest become tractable,
but it is also important to make sure that a (nice) H-tree decomposition can be computed
efficiently (i.e., one needs to obtain analogues to our Lemma 7). Examples of graph classes
that may be explored in this context include split graphs, interval graphs, and more generally
graphs of bounded mim-width [27].
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