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Abstract
A (colored) choice dictionary is a data structure that is initialized with positive integers n and c and
subsequently maintains a sequence of n elements of {0, . . . , c− 1}, called colors, under operations to
inspect and to update the color in a given position and to return the position of an occurrence of a
given color. Choice dictionaries are fundamental in space-efficient computing. Some applications
call for the additional operation of dynamic iteration, i.e., enumeration of the positions containing a
given color while the sequence of colors may change. An iteration is robust if it enumerates every
position that contains the relevant color throughout the iteration but never enumerates a position
more than once or when it does not contain the color in question. We describe the first choice
dictionary that executes every operation in constant amortized time and almost robust iteration
in constant amortized time per element enumerated. The iteration is robust, except that it may
enumerate some elements a second time. The data structure occupies n log2 c + O((log n)2) bits.
The time and space bounds assume that c = O((log n)1/2(log log n)−3/2).
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1 Introduction

Following similar earlier definitions [3, 5] and concurrently with that of [2], the (colored)
choice dictionary was introduced by Hagerup and Kammer [10]. It appears to be fundamental
in space-efficient computing and has already been shown to have a number of applications [2,
5, 10, 11, 12]. Its precise definition is as follows:

I Definition 1.1. A (colored) choice dictionary is a data structure that can be initialized
with integers n, c ∈ N = {1, 2, . . .} and subsequently maintains a sequence (e1, . . . , en) of n
integers drawn from {0, . . . , c− 1}, initially (0, . . . , 0), under the following operations:

color(i) (i ∈ {1, . . . , n}): Returns ei.
setcolor(j, i) (j ∈ {0, . . . , c− 1} and i ∈ {1, . . . , n}): Replaces ei by j.
choice(j) (j ∈ {0, . . . , c − 1}): With Sj = {i ∈ {1, . . . , n} : ei = j}, returns an (arbitrary)

element of Sj if Sj 6= ∅, and 0 if Sj = ∅.

We call the elements of {0, . . . , c − 1} colors. The choice dictionary is similar to an
array of colors that supports reading (color) and writing (setcolor), but with a crucial
additional operation (choice) to locate an occurrence of a given color. Our terminology will
sometimes pretend that the elements of {1, . . . , n} have colors. For j = 0, . . . , c− 1, we define
Sj = {i ∈ {1, . . . , n} : ei = j} as above and call Sj a color class.

In some applications of choice dictionaries, notably to the computation of a breadth-first
search or BFS forest of a given graph [9, 10], it is essential for a choice dictionary to support
the additional operation of iteration over a given color class (while other computation takes
place in an interleaved fashion). The BFS algorithms of [9, 10], for instance, repeatedly
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64:2 A Constant-Time Colored Choice Dictionary with Almost Robust Iteration

iterate over the gray vertices, those with a given distance d from a start vertex, in order to
identify the vertices at distance d+ 1. This is not straightforward because the algorithms –
in order to save colors – also color the vertices at distance d+ 1 gray. In other words, the set
of gray vertices changes while it is being iterated over. Hagerup and Kammer [10] coined the
phrase robust iteration to describe the ideal that one would like to have in such a situation.
An iteration over a dynamic set S is robust if every element that belongs to S throughout
the iteration is certain to be enumerated by the iteration, while no element is enumerated
more than once or at a time when it does not belong to S. Elements that belong to S during
part but not all of the iteration may or may not be enumerated. We say that an iteration
works in constant time if there are constant-time operations to initialize for a new iteration,
to test whether more elements remain to be enumerated, and – if so – to enumerate the next
element.

By the information-theoretic lower bound, a choice dictionary with parameters n and
c must occupy at least dn log ce bits (“log” always denotes the binary logarithm function
log2). Kammer and Sajenko [13] recently described a choice dictionary that occupies
n log c+O(logn) bits and executes every operation including iteration in constant time, but
is severely restricted:

The number c of colors must be a power of 2.
Moreover, c must be a constant.
The iteration is static: While an iteration is underway, no changes to colors are allowed.

We present a new choice dictionary that also executes every operation including iteration
in constant time and alleviates the drawbacks listed above. The number of colors is not
restricted to be a power of 2, it is not required to be a constant – but we do impose the
condition c = O((logn)1/2(log logn)−3/2) – and the iteration is dynamic and almost robust.
By “almost robust” we mean that the definition of robust iteration is satisfied, except that
some elements may be enumerated a second time (the BFS algorithms discussed above can
tolerate this). Compared to the choice dictionary of [13], the new data structure has a few
drawbacks of its own:

It is more complicated.
The operation times are amortized, not worst-case.
The number of bits needed is n log c+O((logn)2), not n log c+O(logn).

The third drawback should be seen in light of the fact that even if only the operations
color and setcolor (i.e., those of an array) are to be supported in constant time, every known
data structure that does not restrict c to be a power of 2 requires n log c+ Ω((logn)2) bits.
As for the condition c = O((logn)1/2(log logn)−3/2), it may be noted that the performance
of comparable choice dictionaries [7, 10] also degrades sharply if the number of colors exceeds
similar thresholds.

The main novelty of our work lies in the almost robust iteration. Allowing amortization
changes the ground rules of iteration and was crucial to obtaining the results described here.
It becomes feasible to begin a dynamic iteration over a color class Sj by an “internal” static
iteration that can serve, among other things, to determine |Sj |. Enumerating the elements
that belong to Sj at that time, i.e., at the start of the iteration, would satisfy the conditions
of robustness, but the elements that are enumerated must be handed to a caller one by one,
and there is no space to store them temporarily (cf. the BFS algorithms discussed above).
Once Sj is allowed to change while it is being iterated over, it becomes difficult to keep track
of which elements have already been enumerated and therefore to prevent elements from
being enumerated repeatedly and perhaps an unbounded number of times (i.e., the iteration
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might not terminate). Enumerating the elements of Sj in sorted order would take care of
this problem, but constant time per element is not enough to sort. Our iteration sorts a
small part of Sj initially. If the changes to Sj during the iteration are relatively few, the
partial sorting is sufficient to guarantee robustness. If there are many changes to Sj , on the
other hand, these can “pay for” a complete sorting of what remains of Sj . An element is
enumerated at most once before and at most once after the complete sorting.

The only previous choice dictionary with robust iteration was devised by Hagerup and
Kammer [10], but for worse time and/or space bounds (e.g., constant time together with
n log c+O(n/(logn)t) bits for constant c and arbitrary fixed t ∈ N). It should be noted that
in contrast with the robust iteration of [10], if the iteration described here is terminated
early, its time bound is the same as if it had run to completion, i.e., incomplete iteration is
not supported efficiently.

2 Preliminaries

Our model of computation is the standard word RAM [1, 6] with a word length of w ∈ N
bits, where we assume that w is large enough to allow all memory words in use to be
addressed. As part of ensuring this, we assume that w ≥ logn. The word RAM has
constant-time operations for addition, subtraction and multiplication modulo 2w, division
with truncation ((x, y) 7→ bx/yc for y > 0), left shift modulo 2w ((x, y) 7→ (x� y) mod 2w,
where x� y = x · 2y), right shift ((x, y) 7→ x� y = bx/2yc), and bitwise Boolean operations
(and, or and xor (exclusive or)). The machine is also assumed to be able to compute
blog xc in constant time for every given x ∈ {1, . . . , 2w − 1}.

Like all comparable data structures, the new choice dictionary depends on standard
low-level word-RAM routines, some of which are conveniently collected in the following
lemma.

I Lemma 2.1 ([10], Lemma 3.2). Let m and f be given integers with 1 ≤ m, f < 2w and
suppose that a sequence A = (a1, . . . , am) with ai ∈ {0, . . . , 2f − 1} for i = 1, . . . ,m is given
in the form of the (mf)-bit binary representation of the integer

∑m−1
i=0 2ifai+1. Then the

following holds:
(a) Let I0 = {i ∈ {1, . . . ,m} : ai = 0}. Then, in O(1 + mf/w) time, we can test whether

I0 = ∅ and, if not, compute min I0.
(b) If an additional integer k ∈ {0, . . . , 2f − 1} is given, then O(1 + mf/w) time suffices

to compute the integer
∑m−1
i=0 2ifbi+1, where bi = 1 if k ≥ ai and bi = 0 otherwise for

i = 1, . . . ,m.
(c) If m < 2f and an additional integer k ∈ {0, . . . , 2f − 1} is given, then rank(k,A) = |{i ∈
{1, . . . ,m} : k ≥ ai}| can be computed in O(1 +mf/w) time.

3 Informal Overview

This section tries to convey the basic intuition behind the new data structure. The necessary
nitty-gritty details and calculations will be presented in the subsequent sections.

It is known from the work of Dodis, Pǎtraşcu and Thorup [4] that a sequence of n
color values drawn from {0, . . . , c − 1} can be stored in a data structure that occupies
n log c + O((logn)2) bits and supports the operations color and setcolor in constant time.
Let us call this structure a c-ary array. Our task can be viewed as that of adding efficient
choice and almost robust iteration to a c-ary array.
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64:4 A Constant-Time Colored Choice Dictionary with Almost Robust Iteration

Suppose that, in addition to being represented in a c-ary array, the elements of each color
class Sj , where j ∈ {0, . . . , c− 1}, are organized in a doubly-linked list Lj . Then executing
choice(j) is trivial – return an arbitrary element of Lj – and with a little care we can also
carry out a robust iteration over Sj via a traversal of Lj during which elements that drop out
of Sj splice themselves out of Lj and elements that enter Sj are inserted at the beginning
of Lj , where they will not be enumerated – they may be “trying to sneak in again” after
having already been enumerated in the past.

The problem with the scheme outlined above is, of course, that the doubly-linked lists
L0, . . . , Lc−1 would need far too much space – Θ(n logn) bits – for two pointers for each of
the n elements. In order to alleviate this problem, we divide the n elements into equal-sized
groups and represent each group via a data structure called a container. Provided that groups
are not too large, iteration within a container can be handled efficiently with techniques
based on Lemma 2.1. If every container holds at least one element of a color class Sj , we can
therefore iterate over Sj by iterating over all containers and enumerating the elements of
Sj in each. Thus at this point the problem can be viewed as represented by the containers
that are j-free, i.e., do not contain any occurrences of j. The list Lj that we would now
like to have for each j ∈ {0, . . . , c− 1} chains together those containers that are not j-free.
In contrast with what was the case before, a container can belong to many lists, for which
reason it may need up to 2c pointers rather than just two pointers.

Even though we have reduced the need for pointers from two per element to 2c per
container, the basic problem remains that we have already used up practically all the
available space and cannot afford to store even a single pointer per container. If some color
is missing entirely from a container, however, log c bits per element is a tad more than what
is strictly necessary to record the contents of the container. Using a more efficient encoding,
we can compress the information stored in the container slightly to leave room for a couple
of pointers – provided that containers are sufficiently large. The same is true if a color is
not missing completely, but has very few occurrences, as we can then store the sequence of
these “exceptional” occurrences explicitly while using the efficient encoding for the other
elements in the container. If several colors are missing or rare in a container, we can pack the
container even more tightly. As a result, the container has room for a couple of pointers for
each such color, which in turn means that we can treat the colors somewhat independently.

Let j ∈ {0, . . . , c− 1} and let us call a container H j-sparse if the number of occurrences
of j in H is bounded by some suitably chosen r, and j-abundant otherwise. For a moment,
let us make the unrealistic assumption that all j-sparse containers are to the left of (have
smaller indices than) all j-abundant containers. Then we can keep in Lj those containers
that are j-sparse (and therefore have room for the necessary pointers) but not j-free (since
a main goal is to skip the j-free containers). To iterate over Sj , iterate both over Lj and
over the j-abundant containers. The latter is easy because the j-abundant containers, by
assumption, are consecutively numbered.

Even though the unrealistic assumption is unrealistic, we can still keep track of the
number µj of j-sparse containers and imagine that the leftmost µj containers (say that these
form the left part) “normally” are j-sparse. There may be containers that go against the
norm, j-abundant containers in the left part – call these j-masters – and j-sparse containers
in the right part, j-slaves. It is easy to see that the number of j-masters equals the number
of j-slaves, and the in-place chain technique of Katoh and Goto [14] suggests to maintain a
perfect matching between the j-masters and the j-slaves. This helps us to solve two problems:
(1) A j-master, by virtue of not being in the right part, needs to belong to Lj in order to be
iterated over, but has no room for pointers. (2) Because it is in the right part, a j-slave is
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iterated over, but may be j-free, in which case it cannot “pay for” its share of the iteration.
To solve problem (1), we relocate some of the data of the master to the slave, which has
room to spare. As for problem (2), even though the slave cannot “pay”, its master can.

We cannot keep track of the number of occurrences of a color j in a container once
that number exceeds r, and therefore replace the notions j-sparse and j-abundant by
algorithmically more tractable j-weak and j-strong. A j-weak container is certain to be j-
sparse, but a j-strong container may be j-sparse or j-abundant. If the number of occurrences
of j in a j-weak container H grows beyond r, H is converted to being j-strong. A conversion
of H back to j-weak, however, takes place only if and when H is later discovered to have
fewer than r occurrences of j, and this in turn happens essentially only in connection with
an iteration over H. The iteration can “pay” a constant for each element that is enumerated,
and the operations that changed the colors of the other elements formerly of color j can
“pay” a constant for each of these. In an amortized setting, therefore, a conversion between
j-weak and j-strong can be allowed to have a cost of O(r), and r is chosen accordingly. A
budget of O(r) also covers the conversion of a j-strong container, for the purpose of iteration
over the container, from the very compact usual representation to one that supports efficient
iteration.

A final problem is represented by containers that migrate from the left to the right side
(as a consequence of a decrease in µj). Such a container might be iterated over on the left
side, because it belongs to Lj , and later again as a container on the right side. In order to
prevent elements from being enumerated repeatedly, the iteration is designed to enumerate
elements roughly in sorted order. In more detail, first the number |Lj | of containers in Lj is
determined, and then the containers in Lj that belong to a “buffer zone” of width |Lj |2 at
the right end of the left part are sorted, which can happen in O(|Lj |+ 1) time, and placed
last in Lj . If the buffer zone is consumed entirely, i.e., migrates completely to the right part
before it starts to take part in the iteration, this is evidence of so many color changes during
the iteration that we can afford to sort the remaining containers in Lj . After that point in
time, an element is enumerated at most once, but it may also have been enumerated once
before the sorting. If some part of the buffer zone remains in the left part throughout the
iteration over the part of Lj on its left, on the other hand, the order of iteration over the
containers on its left is immaterial, and the iteration is robust.

4 The Data Representation

This section describes the organization of data in the choice dictionary after it has been
initialized with parameters n, c ≥ 2 with c = O((logn)1/2(log logn)−3/2). We first describe a
slightly bigger data structure that uses n log c+O(c(logn)2) bits.

For a positive integer s = Θ(c logn), we divide the sequence (e1, . . . , en) of n color values
to be maintained into N = bn/sc subsequences of exactly s consecutive color values each,
with at most s− 1 color values left over. The left-over color values can be handled separately
in O(s log s) = O((logn)2) bits, essentially by keeping a doubly-linked list for each color of
the positions in which the color occurs. We omit the easy details and assume in the following
that n is a multiple of s. For ` = 1, . . . , N , the `th subsequence is stored in a data structure
H` called a container (as anticipated in the previous section). Each container partitions the
set {0, . . . , c − 1} of colors into a set of weak colors and the complementary set of strong
colors. If a color j ∈ {0, . . . , c− 1} is weak in a container H, we call H j-weak; otherwise
H is j-strong (again, these terms as well as notation introduced below were used already
in Section 3). For j = 0, . . . , c− 1, we keep a global count µj ∈ {0, . . . , N} of the number
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64:6 A Constant-Time Colored Choice Dictionary with Almost Robust Iteration

of j-weak containers. For ` ∈ {1, . . . , N} and j ∈ {0, . . . , c− 1}, we say that H` is j-left if
` ≤ µj and j-right if ` > µj . Finally, we call H` j-free if the sequence of color values stored
in H` does not contain any occurrence of j.

Let ` ∈ {1, . . . , N} and suppose that (a0, . . . , as−1) is the subsequence of color values
stored in H` – thus ai = e(`−1)s+i+1 for i = 0, . . . , s − 1. If H` is j-weak, where j ∈
{0, . . . , c− 1}, we require the number |{i ∈ {0, . . . , s− 1} : ai = j}| of occurrences of j in H`

to be bounded by a positive integer r with r = Θ(logn/(c log logn)).
If H` is j-strong and j-right for all j ∈ {0, . . . , c− 1}, H` is atomic, by which we mean

that its representation, which we will call DW , consists of the single integer x =
∑s−1
i=0 aic

i.
Provided that we keep a table of the powers c0, c1, . . . , cs−1, we can then inspect and update
individual values in (a0, . . . , as−1) with a constant number of arithmetic operations. E.g.,
ai = bx/cic mod c for i = 0, . . . , s− 1. This does not necessarily translate into constant time,
as we may not be able to operate on integers as large as cs in constant time. To remedy
this, we obtain s as s0s1, where s0 and s1 are positive integers with s0 = Θ(logn/log c)
and s1 = Θ(c log c), and actually represent x through s1 digits – called big digits – to base
C = cs0 = nO(1). We can operate on big digits in constant time, and it is easy to see that we
can still inspect and update individual color values by operating only on the appropriate big
digit. Now we need only the powers c0, . . . , cs0−1. For reasons that will become clear shortly,
we store in fact a table of all powers bounded by C of the form ik, where i ∈ {2, . . . , c} and
k ∈ N. The number of bits required for the table is easily seen to be O(c(logn)2).

In all other cases, namely if H` is j-weak or j-left for at least one j ∈ {0, . . . , c− 1}, H` is
composite, namely represented through a collection of four substructures: DC, which stores
information concerning the roles played by the various colors in H`; DW and DW , which
specify the distribution of weak and strong colors in H`, respectively; and DP, which links
H` to other containers. The details are as follows:

First, for various subsets M of {0, . . . , c− 1} we store rankM (j) = |{i ∈M : i ≤ j}| for
j = 0, . . . , c − 1 and selectM (k) = min{j ∈ N ∪ {0} : rankM (j) = k} for k = 1, . . . , |M |.
Thus we store a table of rankM , which numbers the elements of M consecutively, and a
table of selectM , which realizes the inverse mapping. In detail, let W , W , R and R be
the sets of colors j for which H` is j-weak, j-strong, j-right and j-left, respectively, Then
we store tables of rank and select for all of the sets W , W , R and R as well as for all
unions and intersections of two of these (we actually need only a few of the tables). DC
is the collection of these tables, which occupy O(c log c) bits and can be computed from
W and R in O(c) time.
Second, DW stores the set {(i, ai) | i ∈ {0, . . . , s− 1} and ai ∈W} and, more abstractly,
maintains a subset A of {0, . . . , s−1}×{0, . . . , c−1} and supports the following operations
in constant time:

Given a pair (i, j) ∈ A, delete it from A.
Given a pair (i, j) ∈ {0, . . . , s− 1}× {0, . . . , c− 1}, insert it in A, provided that before
the operation no pair in A has first component i and fewer than r pairs in A have
second component j.
Given i ∈ {0, . . . , s− 1}, return the pair of the form (i, j) in A or an indication that A
contains no such pair.
Given (i, j) ∈ {0, . . . , s − 1} × {0, . . . , c − 1}, return the pair of the form (i′, j) in A
with i′ ≥ i for which i′ is minimal or an indication that A contains no such pair.
Given j ∈ {0, . . . , c− 1}, return the number of pairs of the form (i, j) in A.

DW can be thought of as an embellished associative array for the weak colors. What makes
its realization easy is the fact that the number of pairs in A at all times is bounded by cr,
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while every component of a pair is an integer of f bits, where f = O(log s) = O(log logn).
We can simply store |A|, an integer of O(log(cr)) = O(log logn) bits, and two arrays
A1 and A2 of cr f -bit entries each such that the first |A| entries in A1 contain the first
components of the pairs in A in sorted order and the first |A| entries in A2 contain their
second components in the corresponding order, i.e., so that the two components of each
pair have the same index in A1 and A2. Each of A1 and A2 is stored as a single integer
of crf = O(logn) bits, and without loss of generality (choose s0 and hence s sufficiently
large) we will assume that DC and DW fit together in a single big digit.
To delete a pair (i, j) from A, we can form the bitwise xor of A1 with an integer that
contains the integer i in each of |A| f -bit fields and can be obtained in constant time
with a multiplication, and subsequently use the algorithm of Lemma 2.1(a) to discover
the position in A1 and A2 of the pair (i, j) (or an indication that (i, j) does not occur
in A). After subtracting 1 from the variable that stores |A|, we can easily carry out the
remainder of the operation, namely prizing out a field from A1 and A2 and closing the
gap, in constant time with a combination of bitwise Boolean operations, applications of
bit masks and shifts.
When inserting a pair (i, j) in A, rather than an exact match of i in A1, we want to find
the correct place in which to insert i while keeping A1 sorted. We therefore use part (c)
instead of part (a) of Lemma 2.1, but can otherwise proceed similarly as in the case of a
deletion. The remaining operations listed above can be implemented to work in constant
time in similar ways and are left to the interested reader (the last operation can also be
handled by maintaining an additional array of counts).
Third, the distribution of strong colors in H` is recorded in DW in one of several formats,
chosen in dependence of |W | and c: If |W | = 0, there are no strong colors in H`, and DW

is a dummy data structure (denoted by ∅, say) that takes up no space. If |W | = 1 and
c = 2, we also take DW = ∅, since the necessary information can be gleaned from DW –
an element whose color is stored in H` has the strong color precisely if it does not have
the weak color. If 1 ≤ |W | ≤ c− 2, DW stores the sequence (a′0, . . . , a′s−1), where a′i = 0
if ai ∈ W and a′i = rankW (ai) if ai ∈ W , for i = 0, . . . , s− 1, essentially in the form of
the integer y =

∑s−1
i=0 a

′
i(|W |+ 1)i. In other words, every weak color is encoded via a zero,

the strong colors are encoded via the integers 1, . . . , |W |, and the sequence of codes is
represented similarly as for atomic containers. Finally, if |W | ≥ max{c−1, 2}, we redefine
a′i as rankW (ai) − 1 for ai ∈ W and store y =

∑s−1
i=0 a

′
i|W |i. Thus for |W | = c − 1 ≥ 2

we give up on distinguishing between the weak color and one strong color.
Informally, the idea behind DW and DW is that weak colors have only few occurrences,
which can be stored in little space by listing them explicitly (in DW ), while this allows
the strong colors to be represented more economically via smaller codes (in DW ). Having
two distinct conventions for y is a necessary complication: We must be able to store
H` in less space even if only a single color is weak, which precludes the use of the first
convention (i.e., reserving a code value for weak colors) when |W | ≥ c− 1. On the other
hand, the second convention (not distinguishing between weak colors and the smallest
strong color j0) cannot be used when |W | = c− |W | is large, since it requires us to find
the occurrences of j0 by testing all occurrences of a zero in (a′0, . . . , a′s−1) and filtering
out those that correspond to weak colors – we cannot allow too many “false positives”.
Moreover, the case |W | = c− 1 must be handled separately in DW for c = 2 (namely not
at all), because |W | = 1 cannot be used as the basis of a positional system.
As was the case for x, if 1 ≤ |W | ≤ c− 2 or |W | ≥ max{c− 1, 2} it is necessary to express
y through a sequence of big digits but, unless |W | = c, the task is now hampered by
rounding issues. Assume that |W | ≤ c−1. The s small digits to base |W |+h, where h = 1
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if 1 ≤ |W | ≤ c−2 and h = 0 if |W | = c−1 ≥ 2, are to be distributed over a number of big
digits to base C = cs0 . A single big digit can accommodate b(s0 ln c)/ln(|W |+ h)c small
digits. Now ln(|W |+h) = ln(c−|W |+h) = ln c+ln(1−(|W | − h)/c) ≤ ln c−(|W | − h)/c ≤
ln c− |W |/(2c) and

s0 ln c
ln(|W |+ h)

≥ s0 ln c
ln c− |W |/(2c) = s0

1− |W |/(2c ln c) ≥ s0(1 + |W |/(2c ln c)).

Since |W | ≥ 1 and s0/(c ln c) = Ω(lnn/(c(ln c)2)) = ω(1), we may conclude that a
big digit can accommodate s0(1 + Ω(|W |/(c ln c))) small digits (even taking the b· · · c
operation into account). Moreover, since

s

s0(1 + Ω(|W |/(c ln c))) = s1

1 + Ω(|W |/(c ln c)) = s1(1− Ω(|W |/(c ln c)))

and s1 = Θ(c ln c), by choosing s1 and hence s sufficiently large we can ensure that
the total number of big digits necessary to accommodate all s small digits is at most
s1 − 2K|W | for an arbitrary constant K ∈ N of our choice (but independent of s).
Fourth and finally, DP is an array that maps each color j ∈ {0, . . . , c− 1} for which H`

is j-weak or j-left to a block of three pointers, each of which points to a container or
has the value null (points to nothing). By choosing s0 and therefore s sufficiently large,
we can assume that a block fits in a big digit. Two of the pointers stored for a color j
are used to organize certain j-left containers in a doubly-linked list Lj , namely those
that are j-strong or not j-free (informally, those that might contain occurrences of j).
The third pointer, called a matching pointer, is used (has a value different from null)
only if H` is j-left and j-strong – then H` is called a j-master – or H` is j-right and
j-weak – then H` is called a j-slave. As essentially noted before, the number of j-masters
always equals the number of j-slaves, and the matching pointers form a perfect matching
between the j-masters and the j-slaves, with each matching pointer of a master pointing
to its corresponding slave, and vice versa.

In order to reduce the space needed for tables of powers of integers to O((logn)2) bits,
we replace the set {c, c− 1, . . . , 2} of possible bases used to represent the integer y of DW by
the smaller set {c, c− 1, c− 2, c− 4, c− 8, . . .}: The base c− i, where i ∈ {1, . . . , c− 2}, is
replaced by c− 2blog ic. Then y takes up more space, but the inequality 2blog(|W |−h)c ≥ |W |/2
for 0 ≤ h ≤ min{|W | − 1, 1} shows that it is still the case that y can be represented in
s1−2K|W | big digits, where W is the set of weak colors of the container under consideration.
Now we need powers of only O(log c) integers, at most one of which is smaller than

√
c, so the

number of bits needed comes to O(log c · s0 logC) = O((logn)2). This ends the description
of the structure of a composite container H`.

The use of masters and slaves is an element of the in-place chain technique of Katoh
and Goto [14]. Another element requires us to distinguish between conceptual containers
(intended until this point) and physical containers. The number of big digits needed to store
a composite container H` was bounded above by 1 + (s1 − 2K|W |) + |W ∪R|, where W and
R are the sets of colors j for which H` is j-weak and j-left, respectively. This number varies
from one (conceptual) container to another, which is precisely the problem – we cannot store
the containers in little space so as to allow constant-time access to a given container. This
problem is solved by a transfer of data between containers. For each j ∈ {0, . . . , c− 1} and
each pair (H,H ′) of containers such that H and H ′ are a j-master and its j-slave, respectively,
K big digits are relocated from H to H ′. A container chooses the at most Kc big digits to
relocate as a master to be among at least s1 − 1− c = ω(c) big digits reserved for DW and
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not to overlap with the at most Kc digits received as a slave – if s1 and hence s are chosen
sufficiently large, this is always possible. The first condition means that no “bookkeeping
information” is moved to a place where it might be difficult to find (most obviously, the
pointer to a slave should not be relocated to the slave), and the second condition ensures
that a master can always access one of its relocated big digits in constant time – it must
follow a pointer chain of length 1 only.

With the transfer of data described above, the number of big digits needed by a composite
container H` changes to

1 + (s1 − 2K|W |) + |W ∪R| −K|W ∩R|+K|W ∩R|
≤ 1 + s1 −K(|W |+ |W ∩R|) + |W ∪R|
= s1 + 1− (K − 1)|W ∪R|

where, again, W , W , R and R are those of H`. Because H` is composite, |W ∪R| ≥ 1, so
that the quantity above is at most s1 − (K − 2). After the transfer of data, therefore, every
conceptual container H can be stored in a physical container of exactly s1 big digits, and if
H is composite, it additionally offers K − 2 big digits of freely usable extra space.

The P = Ns1 big digits of the N physical containers are maintained in an instance of the
ingenious data structure of Dodis et al. [4] embodied in the lemma below. The number of
bits needed is P logC +O((logP )2) = Ns1s0 log c+O((log(Ns1))2) = n log c+O((logn)2).

I Lemma 4.1 ([4], Theorem 1). There is a data structure that, given arbitrary positive
integers P and C with C = PO(1), can be initialized in O(logP ) time and subsequently
maintains an array of P elements drawn from {0, . . . , C − 1} in P logC +O((logP )2) bits
such that individual array elements can be read and written in constant time.

When nothing else is stated, in the following “container” means “conceptual container”.
A subtle point is that an atomic container must be prevented from “posing as” a composite
container – there is no space for an atomic/composite bit, and every bit combination is
in use for an atomic container. If an atomic container H “claims” to be j-left for some
j ∈ {0, . . . , c− 1}, such a j can be found in constant time with DC, and the claim can be
falsified in constant time by inspection of µj . Otherwise, if H “claims” to be j-weak for some
j ∈ {0, . . . , c− 1} and hence a j-slave, the claim can be falsified in constant time by the lack
of a reverse pointer to H in its purported j-master. Thus we can always test in constant
time whether a given container is atomic or composite.

In addition to the “per-container” data detailed above, we store globally, for each color,
a choice buffer and an iteration buffer, maintained in a special loose representation that is
wasteful of space, but allows efficient operations corresponding to choice and robust iteration.
Each buffer is derived from a container H` whose index ` is remembered. If the data structure
DW of H` stores the sequence (a′0, . . . , a′s−1) of codes, the loose representation of H` consists
of the integer

∑s−1
i=0 2ifa′i, where f = dlog ce. The derivation of a choice or iteration buffer can

be carried out in O(log s0) time per big integer and O(s1 log s0) = O(c log c log logn) = O(r)
time altogether with the algorithm of Lemma 4.2 below, which is a word-parallel version
(i.e., essentially independent computations take place simultaneously in different regions of a
word) of a simple divide-and-conquer procedure.

I Lemma 4.2 ([7], Lemma 3.3 with p = 1). Given positive integers c, d, f and s with c, d ≥ 2
and f ≥ dlog2 max{c, d}e and an integer of the form

∑s−1
j=0 ajc

j , where 0 ≤ aj < min{c, d} for
j = 0, . . . , s−1, the integer

∑s−1
j=0 ajd

j can be computed in O(dsf/we(log s+(log(2+sf/w))2))
time.

MFCS 2019



64:10 A Constant-Time Colored Choice Dictionary with Almost Robust Iteration

Because each code a′i is readily available in an f -bit field in the loose representation,
we can use the algorithm of Lemma 2.1(a), applied to a buffer for a color j and derived
from a container H, to carry out a sweep of H that reports all elements stored in H whose
color is j when they are hit by the sweep. This takes O(1 + sf/w) = O(c log c) time plus
time proportional to the number of occurrences reported plus, possibly, O(r) time to skip
occurrences of weak colors with the same code as j, and clearly satisfies the conditions for
a robust iteration over H. We generally suspend the sweep as soon as we have found one
occurrence of j and resume the sweep later to find the next occurrence, for which reason
we also store with each buffer how far the current sweep over the buffer has progressed. In
the case of a choice buffer, the sweep is resumed one position earlier so that it reports the
same element as last time unless the color of that element has changed. The space needed
is O(sf) = O(c log c logn) bits per buffer and O(c2 log c logn) = O((logn)2) bits for all 2c
buffers.

When a buffer for a color j derived from a container H is replaced by a different buffer, j
is made weak in H if this is possible, i.e., if j occurs at most r times in H. The procedure
for doing this is described in the following section.

Initially all containers are 0-strong and j-weak for j = 1, . . . , c − 1, and there are no
masters or slaves.

5 Conversion Between Weak and Strong Colors

If the number of occurrences of a color j in a container H` is bounded by r, H` may be
changed from j-weak to j-strong, or vice versa. This section describes the details.

Assume first that H` is composite both before and after the change. Let the sets W , R,
etc., and the substructures DC, DW , etc., be those of H`. First, W changes in the obvious
way by gaining or losing an element, and DC is recomputed accordingly from skratch in O(c)
time. Second, up to r pairs are inserted in or removed from DW , which can happen in O(r)
time.

Consider now the necessary update of DW . Recall that in the nontrivial cases, DW is
represented by an integer y composed of s small digits to base |W | or |W |+ 1 distributed
over a number of big digits. Using the algorithm of Lemma 4.2, we first convert y to the
loose representation, which takes O(r) time as before. Informally, we must either create a
gap among the code values of the existing strong colors to make room for a new strong color
or, conversely, prize out the code value of a color that stops being strong and subsequently
close the gap that it leaves. Both of these can be done in O(r) time with the algorithm of
Lemma 2.1(b). We omit the details. For c ≥ 3, these vary a little depending on whether or
not |W | switches between c−2 and c−1, i.e., depending on whether or not the interpretation
of y switches between the first and the second convention. After the creation of a gap for the
code value of a new strong color, the r + 1 occurrences of that code are “planted” one by
one in O(r) time. Similarly, the occurrences of the code of a color that becomes weak are
replaced by the code of weak colors (i.e., zero) before the code value of the formerly strong
color is prized out. When these changes have taken place, the algorithm of Lemma 4.2 is
applied again to convert the loose representation back to the usual representation of DW as
an integer y. Altogether, the update of DW can happen in O(r) time.

The final task is to repair the matching between j-masters and j-slaves. In the special
case in which H` switches not only between j-weak and j-strong, but simultaneously between
j-left and j-right (this happens if µj switches between ` and `− 1), H` is neither a j-master
nor a j-slave neither before nor after the switch, and nothing needs to be done. Otherwise
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let H 6= H` be the container that switches as above between j-left and j-right because of
the change in µj . There are two main cases: (1) If H` switches from j-weak to j-strong
and therefore µj decreases by 1 and H switches from j-left to j-right, H` either becomes
a j-master (it is j-left) or stops being a j-slave (it is j-right), and H either stops being
a j-master (it is j-strong) or becomes a j-slave (it is j-weak). In all combinations there
is a master without a slave and a slave without a master, and they are matched. (2) If
H` switches from j-strong to j-weak and H switches from j-right to j-left, the situation is
completely analogous: H` either becomes a j-slave (it is j-right) or stops being a j-master
(it is j-left), and H either stops being a j-slave (it is j-weak) or becomes a j-master (it is
j-strong). Again, there is a slave without a master and a master without a slave, and they
are matched. In each case the matching pointers are adjusted and the data relocated from
masters to slaves is moved appropriately. In addition, the substructure DC of H must be
updated. All of this can be done in O((s log c)/w) = O(r) time.

If H` is atomic either before or after the conversion, the algorithmic steps are very similar,
except that the bookkeeping information for H` is only implicit when H` is atomic. A similar
situation obtains when H` has DW = ∅ either before or after the conversion. In all cases,
the total time needed for the complete conversion is O(r).

6 The Operations

This section describes how to execute the operations color , setcolor and choice and how to
carry out an almost robust iteration.

color
In order to execute a call color(i), we identify the container H that stores the ith color value.
The substructures DW , DW and DC mentioned in the following are those of H. Accessing
DW , we can determine whether the color j to be returned is weak in H and, if so, j itself. If
j is strong and |W | ≥ 2, we can access DW to learn the code of j in H, from which j itself
can be recovered using DC. If j is strong and |W | = 1, j is the unique element of W . Once
j is known, it is returned. The execution of color takes constant time.

setcolor
Suppose that a call of setcolor changes the color of some i ∈ {1, . . . , n} from j to j′. If j′
is weak in the relevant container H and the operation causes the number of occurrences
of j′ in H to exceed r, H is first converted from j′-weak to j′-strong, as described in the
previous section. The rest of the operation is straightforward. If j is weak in H, the pair
(i, j) is removed from the substructure DW of H, and if j′ is weak in H, (i, j′) is inserted
in DW . Similarly, if j′ is strong in H and |W | ≥ 2, the code of j′ in H is obtained from
the substructure DC of H, after which it is easy to carry out the appropriate update of the
sequence (a′0, . . . , a′s−1) stored in the substructure DW . A call of setcolor needs O(r) time if
it carries out a conversion of a container and constant time if not.

choice
The execution of a call choice(j) continues the sweep over the choice buffer for the color j,
if any, until an occurrence of j is found or the sweep is complete. In the former case the
position found is returned. In the latter case, as far as possible, a container H is selected
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that either belongs to Lj or is j-right – if there is no such container, there are no occurrences
of j, and 0 is returned. If H is j-weak, we distinguish between two cases: If H belongs to Lj ,
it is not j-free, and an occurrence of j in H can be found in constant time and returned. If
H is j-right and therefore a j-slave, it is replaced by its corresponding j-master. Now H is
strong, a new choice buffer for the color j is derived from H, and the procedure is restarted
recursively.

Almost Robust Iteration
Consider an iteration over a given color class Sj . In preparation for the iteration, we step
through the list Lj to determine |Lj |. Then, using O(logn) bits of additional space, we split
Lj into two lists L′j and L′′j , with L′j consisting of precisely those containers H` in Lj for
which ` ≤ µj − |Lj |2. The time needed to do this is O(|Lj |+ 1). Since the indices ` of the
containers in L′′j are distinct integers in the range {µj − |Lj |2 + 1, . . . , µj} of size |Lj |2, we
can sort the containers in L′′j by their indices with 2-pass radix sorting in O(|Lj |+ 1) time.
If K is chosen sufficiently large, the O(|Lj | logn) bits of additional space needed for this can
be supplied by the extra space, discussed shortly before Lemma 4.1, of the containers H`

with µj − |Lj |2 < ` ≤ µj . At this point Lj is updated to be the concatenation of L′j with
the sorted L′′j .

Now the iteration proper can begin. We move a token through Lj , always robustly
enumerating the elements of Sj in the current container H, the container that holds the
token. If H is j-strong, this is done by deriving the iteration buffer for j from H and sweeping
it, as described in Section 4. If H is j-weak, it is done similarly, by always remembering
the last occurrence enumerated and using the fourth operation listed for DW to enumerate
the next occurrence. We will speak of a sweep also in this case. If a container H drops out
of Lj because it becomes j-free while it holds the token, the token is first passed on to the
successor of H in Lj , if any.

If a container H is j-strong or not j-free and H is to be inserted in Lj because it becomes
j-left, then H is inserted at the end of Lj , i.e., so that it will still be swept. If a container is
to be inserted in Lj because it stops being j-free, however, it is inserted at the beginning of
Lj , i.e., so that it will not be swept.

Suppose that the iteration starts with µj = µ̂j . If µj decreases all the way to µ̂j − |Lj |2
(i.e., to the “border” between L′j and L′′j ) before all containers in L′j have been fully swept,
the enumeration is suspended and the containers in Lj whose sweep has not yet begun are
sorted. Although it is not strictly necessary, this can happen “in-place” with Bubblesort in
O(|Lj |2) time. Then the enumeration is resumed. When the iteration reaches the end of Lj ,
it proceeds to sweep the containers Hµj+1, . . . ,HN in that order, where µj is the value of µj
when the iteration over Lj finishes.

7 Analysis of Correctness and Execution Times

The correctness of the implementation of color , setcolor and choice is easy to see or has
already been argued. Consider therefore an iteration over a color class Sj . Every element i
that belongs to Sj throughout the iteration is stored in a container H that belongs to Lj or
is j-right at the beginning of the iteration, and it is stored in H throughout any sweep over
H. During the iteration H can drop out of Lj only by becoming j-right, and if H stops being
j-right it is inserted at the end of Lj , where it will still be swept. Thus i is enumerated.

Let t0 be the point in time when the iteration over L′j ends or when what remains of Lj
is sorted, whatever happens first. Until t0 only containers in L′j are iterated over, and any
containers that enter Lj during this period are inserted at the beginning of Lj , where they
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will not be iterated over. Thus no element is enumerated more than once before t0. After
t0 the enumeration happens strictly in increasing order, so again no element is enumerated
more than once. Thus an element is enumerated at most once before t0 and at most once
after t0. It is easy to see that no element is ever enumerated when it does not belong to Sj .
It follows that the iteration is almost robust, as claimed.

The basic idea of the amortized timing analysis is simple: Disregarding iteration, all
operations that involve only weak colors take constant time. Consider a point in time at
which a container H is converted from j-weak to j-strong for some color j. At that time H
contains more than r elements of color j. Because of this, before a conversion of H from
j-weak to j-strong can happen again, a buffer for the color j must be derived from H, and
the data structure must operate on each of the more than r elements of color j in H by
enumerating the element, returning it (choice) or changing its color. We can “charge” all of
the following to these more than r operations: The derivation of up to two buffers for color j
from H, the sweep over the buffers, exclusive of the time spent reporting occurrences of j
found there, and a possible conversion of H from j-strong to j-weak and back.

A problematic issue with the argument in the previous paragraph is that operations on
elements in a buffer are called upon to pay for the derivation of the buffer, which happened
earlier. For every color j other than 0 there is no problem here, since more than r operations
– which can pay for the cost – must change the colors of elements in H to j before j can
become strong in H for the first time. This argument does not apply to the color 0 because all
elements have color 0 initially. However, using the structure DW of H, a suitably represented
first buffer for the color 0 can be derived from H in a time that is at most proportional to a
constant plus the number of color changes executed on H since the initialization, so these
operations can be charged with the cost.

Certain costs of an iteration are not covered by the analysis above (and, indeed, an
iteration may temporarily “go into dept”, which is why we cannot support incomplete
iteration efficiently). First, there is the cost associated with sorting. The first sorting of part
of Lj happens in O(|Lj |+ 1) time, which is acceptable because every container that does
not drop out of Lj before it receives the iteration token eventually contributes at least one
occurrence of j to be enumerated or – if it turns out to be j-free – is converted from j-strong
to j-weak, the cost of which was considered above. The second sorting of part of Lj is carried
out, in O(|Lj |2) time, only after at least |Lj |2 operations on elements of color j have been
executed during the iteration, and the cost of the sorting can be charged to these operations.
Second, there is the cost associated with sweeping j-slaves and j-weak former j-slaves that
turn out to be j-free (so that the cost of the sweep cannot be charged to the occurrences
found). This cost, however, can be charged to the sweeping of the corresponding masters or
to the color changes that created or destroyed the matching links to these masters.

Theorem 4 of [8] furnishes a variant of the data structure of Lemma 4.1 that initializes
all array elements to zero and can itself be initialized in constant time. Storing the global
book-keeping information such as µ0, . . . , µc−1 in another instance of this data structure and
interpreting the all-zero initial values appropriately allows the choice dictionary developed
here to be initialized in constant time. We omit the details.

I Theorem 7.1. There is a choice dictionary that, for arbitrary given positive integers n and
c with c = O((logn)1/2(log logn)−3/2), can be initialized with parameters n and c in constant
time and subsequently occupies n log2 c+ O((logn)2) bits and executes color, setcolor and
choice in constant amortized time and complete almost robust iteration (an element may be
enumerated a second time) in constant amortized time per element enumerated.
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