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Abstract
We study the dynamical behavior of D-dimensional (D ≥ 1) additive cellular automata where the
alphabet is any finite abelian group. This class of discrete time dynamical systems is a generalization
of the systems extensively studied by many authors among which one may list [36, 43, 44, 40, 12, 11].
Our main contribution is the proof that topologically transitive additive cellular automata are
ergodic. This result represents a solid bridge between the world of measure theory and that of
topology theory and greatly extends previous results obtained in [12, 43] for linear CA over Zm i.e.
additive CA in which the alphabet is the cyclic group Zm and the local rules are linear combinations
with coefficients in Zm. In our scenario, the alphabet is any finite abelian group and the global rule
is any additive map. This class of CA strictly contains the class of linear CA over Zn

m, i.e., with the
local rule defined by n× n matrices with elements in Zm which, in turn, strictly contains the class
of linear CA over Zm. In order to further emphasize that finite abelian groups are more expressive
than Zm we prove that, contrary to what happens in Zm, there exist additive CA over suitable finite
abelian groups which are roots (with arbitrarily large indices) of the shift map.

As a consequence of our results, we have that, for additive CA, ergodic mixing, weak ergodic
mixing, ergodicity, topological mixing, weak topological mixing, topological total transitivity and
topological transitivity are all equivalent properties. As a corollary, we have that invertible transitive
additive CA are isomorphic to Bernoulli shifts. Finally, we provide a first characterization of strong
transitivity for additive CA which we suspect it might be true also for the general case.
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1 Introduction

Cellular automata (CA) are widely known formal models for studying and simulating complex
systems [9]. They are used in many disciplines ranging from physics to biology, stepping
through sociology and, of course, computer science (for recent results and an up-to date
bibliography on CA, see [25, 28, 17, 16, 3], while for other models of natural computing see
for instance [21, 19, 26, 18]). Their extensive use is due to the huge variety of dynamical
behaviors. In computer science, applications can be found in many different contexts such as
cryptography, pseudo-random number generation, image processing, data compression, etc.

More formally, a CA can be defined as an infinite set of finite automata arranged on
the regular lattice ZD, where D ∈ N is the dimension of the CA. Each finite automaton
has a state which is chosen from a finite set G, called the set of states or the alphabet. All
finite automata update synchronously according to a local rule which takes into account the
current state of the automaton and the states of a neighborhood N of neighboring automata.
The local rule f induces a global map F : GZD → GZD which describes the overall evolution
of the CA at each time tick.

Despite of their apparent simplicity, CA may exhibit extremely complex dynamical
behaviors. Indeed, in most cases the problem of deciding if a given CA has a certain
dynamical property or not is undecidable [5, 30, 37] and some Rice-like theorems have been
proved [34, 39]. The complex dynamics of CA has been described through a great number
of properties (see Section 2 for definitions) involving both the measure theoretical and the
topological point of views. Figure 1 illustrates the relations between those that are studied
in this paper.

Ergodic Mixing

Weak Ergodic Mixing

Ergodic

Topological Mixing

Transitive
Totally Transitive

Weak Topological Mixing

Positive Expansive

Strongly Transitive

Open

Dense Periodic OrbitsSensitive Surjective

D = 1

Figure 1 Known relations between dynamical properties of CA. An arrow with single tip indicates
that the converse relation is unknown, an arrow with double tip means that the converse relation is
false. Labels on arrows indicate that implications have been proved only for specific dimensions.
Note that there are no expansive CA in dimension D > 1.

Imposing some additional constraints to the global update map allows a complete and
efficient description of the dynamical behavior. These properties can take the form of a
conservation law [33, 29, 32, 6, 49] or superposition principles induced by an algebraic
structure imposed on the alphabet [36, 43, 44, 40, 12, 11] (in both cases the literature is
really huge, only a small excerpt is cited here).
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Similarly, in this paper, it is required that the alphabet G of the CA is a finite abelian
group and its global update map is additive, i.e., an endomorphism of GZD . This is a pretty
broad requirement which characterizes a class of CA generalizing those with linear local rule
defined by n × n matrices (see the previous citations for the case n = 1 and [40, 8] for a
generic n). Indeed, the local rule of an additive CA over a group 〈G,+〉 can be written as

f(x1, . . . , xr) =
r∑

i=1
fi(xi)

where the functions fi are endomorphisms of G and {x1, . . . , xr} is the neighborhood N .
The fundamental theorem of finite abelian groups states that every finite abelian group is

isomorphic to
⊕h

i=1 Zki where the numbers k1, . . . , kh are powers of (not necessarily distinct)
primes and ⊕ is the direct sum operation. Hence, the global rule F of an additive CA over G
splits into the direct sum of a suitable number h′ of additive CA over subgroups G1, . . . , Gh′

with h′ ≤ h and such that gcd(|Gi|, |Gj |) = 1 for each pair of distinct i, j ∈ {1, . . . , h′}. Each
of them can be studied separately and then the analysis of the dynamical behavior of F can
be carried out by combining together the results obtained for each component.

In order to make things clearer, consider the following example. If F is an additive CA
over G ∼= Z4 × Z8 × Z3 × Z3 × Z25 then F splits into the direct sum of 3 additive CA over
Z4 × Z8, Z3 × Z3 and Z25, respectively. Therefore, F will be topologically transitive iff each
component is topologically transitive while F will be sensitive to initial conditions iff at least
one component is sensitive to initial conditions (see Section 2.1 for the precise definitions of
these properties).

The above considerations lead us to three distinct scenarios:

- G ∼= Zpk . Then, G is cyclic and we can define each fi simply assigning the value of
fi applied to the unique generator of G. Moreover, every pair fi, fj commutes, i.e.
fi ◦ fj = fj ◦ fi, and this makes it possible a detailed analysis of the global behavior
of F . For additive cellular automata over Zpk almost all dynamical properties are well
understood and characterized [43].

- G ∼= Zn
pk . In this case, G is not cyclic anymore and has n generators. We can define each

fi assigning the value of fi for each generator of G. This gives rise to the class of linear
CA over Zn

pk that have been studied in [20, 40, 8]. Now, fi and fj do not commute in
general and this makes the analysis of the dynamical behavior much harder. As pointed
out in [20], we also recall that linear CA over Zn

pk allow the investigation of some classes
of non-uniform CA over Zpk (for these latter see [22, 10, 24, 23]).

- G ∼=
⊕n

i=1 Zpki . In this case (Z4 × Z8 in the example), G is again not cyclic and F turns
out to be a subsystem (in the sense of topological dynamics) of a suitable linear CA. In
this last case the analysis of the dynamical behavior of F is even more complex than
in the previous case. We do not even know easy checkable characterizations of basic
properties like surjectivity or injectivity.

Even if the superposition principle still allows us to prove deep and interesting results on
the asymptotic behavior of additive CA over finite abelian groups, their dynamics is definitely
more interesting and expressive than that of linear CA over Zm and exhibits much more
complex features. As a first example, consider the set A of graphs with n nodes represented
by their adjacency matrices. A can be equipped with a binary operation “+” that makes it a
finite (or finitely generated) abelian group G (isomorphic to the group of all n× n matrices
over Z2 with the “+” operation). The group operation can be defined in many different ways,
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Figure 2 Known relations among dynamical properties of additive CA before the present paper.
An arrow with single tip indicates that the converse relation is unknown, an arrow with double tip
means that the converse relation is false. Labels on arrows indicate that implications have been
proved only for specific alphabets or dimensions. Note that there are no expansive CA in dimension
D > 1.

e.g. sum of matrices or, for undirected graphs, product of (symmetric) matrices. The local
rule of the CA can be any map preserving the group structure. It is easy to verify that the
dynamics of this kind of automata cannot be simulated by any linear CA over Zm.

This richness in terms of expressive power is further stressed by Theorem 9 which shows
how the group structure of Zpk constraints the dynamics. However, there exist additive
one-dimensional CA over suitable abelian groups that are arbitrarily “small” roots of the
shift map, as illustrated in Example 10. This means that the group structure helps out
in constructing CA which are able of transmitting the information (encoded in the initial
configuration) at arbitrary slow speed. In particular, this allows the construction of ergodic
maps with arbitrary low Lyapunov exponents. Theorem 8 tells that the same cannot be
done by one-dimensional CA over alphabets of prime cardinality.

Figure 2 illustrates the known relations among dynamical properties of linear CA before
the present paper. Figure 3 illustrates the impact of the results of the present paper. As
a matter of fact, the overall picture have been greatly simplified and the dynamics much
better understood.

The paper is structured as follows. Section 2 introduces all the necessary background
and formal definitions. Section 3 states the main contributions of the paper and the next
one provides all the proofs. In the last section we draw our conclusions and provide some
perspectives.

2 Background

We begin by reviewing some general notions and introducing notations we will use throughout
the paper.

Let Z and N be the set of integers and natural numbers, respectively. For any v ∈ ZD we
denote ||v|| = ||(v1, . . . , vD)|| = max{|v1|, . . . , |vD|}.
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Ergodic Mixing, Weak Ergodic Mixing, Ergodic
Topological Mixing, Weak Topological Mixing
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Figure 3 Relations among dynamical properties of additive CA taking into account the results
of the present paper. An arrow with single tip indicates that the converse relation is unknown, an
arrow with double tip means that the converse relation is false. Labels on arrows indicate that
implications have been proved only for specific dimensions. Note that there are no expansive CA in
dimension D > 1.

Let G be a finite alphabet. A configuration over G is a map from ZD to G. For any
configuration c ∈ GZD and any vector v ∈ ZD, c(v) is the value of c in position v. The
configuration space GZD is equipped with the distance d defined as follows

∀c, c′ ∈ GZD

, d(c, c′) =
{

0, if c = c′,

2−min{||v|| : c(v)6=c′(v)}, otherwise .

In this way, the set GZD equipped with the topology induced by d turns out to be a compact,
perfect, and totally disconnected topological space (i.e., a Cantor space). In the sequel, the
configuration space GZD will be sometimes denoted by X.

A pattern P is a function from {−`, . . . , `}D to G, for some ` ∈ N. For any ` ∈ N,
denote by P` the set of all patterns with domain {−`, . . . , `}D. For any P ∈ P`, the cylinder
individuated by the pattern P is the set [P ] = {c ∈ GZD | ∀v ∈ {−`, . . . , `}D, c(v) = P (v)}.
Cylinders are clopen sets and the set {[P ] : ` ∈ N, P ∈ P`} of all cylinders is a basis for the
topology induced by d.

For some fixed integer s ≥ 1, let f (named, s-sized local rule) and N (s-sized neighborhood
frame) be any map from Gs to G and an ordered set of distinct vectors u1, . . . , us, respectively.
A D-dimensional CA over G is a pair (GZD

, F ), where F : GZD → GZD is the function
(named, global transition map) defined on the basis of f and N as follows

∀c ∈ GZD

,∀v ∈ ZD, F (c)(v) = f (c(v + u1), . . . , c(v + us)) . (1)

Recall that F is a uniformly continuous map w.r.t. the metric d and any function F : GZD →
GZD is the global transition map of a D-dimensional CA iff it is uniformly continuous and
shift-commuting (Hedlund’s theorem from [35]), i.e., F ◦ σu = σu ◦ F for any u ∈ ZD, where
σu : GZD → GZD is the D-dimensional shift map defined by ∀c ∈ GZD

,∀v ∈ ZD, σu(c)(v) =
c(v + u). From now on, for the sake of simplicity, we identify a CA with its global map.
Moreover, we will denote σ1 simply by σ.

MFCS 2019
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In the sequel, the alphabet G will be an abelian group, with group operation +, neutral
element 0, and inverse operation −. In this way, both the configuration space GZD and the
set P` turn out to be abelian groups, too, where the group operation of GZD and P` is the
component-wise extension of + to GZD and P`. With an abuse of notation, we denote by
the same symbols +, 0, and − the group operation, the neutral element, and the inverse
operation, respectively, both of ZD, G, GZD , and P`. Observe that + and − are continuous
functions in the topology induced by cylinders. Hence, GZD is a compact topological group.

A configuration c ∈ GZD is said to be finite if the number of positions v ∈ ZD with
c(v) 6= 0 is finite. A CA (GZD

, F ) over G is additive if

∀c, c′ ∈ GZD

, F (c+ c′) = F (c) + F (c′) .

In other words, additive D-dimensional CA over G are endomorphisms of GZD .
The sum of two additive CA F1 and F2 over G is naturally defined as the map on

GZD denoted by F1 + F2 and such that

∀c ∈ GZD

, (F1 + F2)(c) = F1(c) + F2(c) .

2.1 Topological and measure theoretic properties
We now recall the definition of some topological and measure theoretical properties for
general systems.

A discrete time dynamical system (DTDS) is a pair (X ,F), where X is any set
equipped with a distance d and F is a transformation on X which is continuous with respect
to d. Clearly, CA are DTDS. A DTDS (X ,F) is surjective, resp., open, if F is surjective,
resp., open. Open CA are surjective (for a proof see [25], for instance). Moreover, any open
one-dimensional CA F is characterized by the following property: there exists a natural
k > 0 such that for every configuration c ∈ GZD it holds that |F−1(c)| = k. Two DTDS
(X ,F) and (X ′,F ′) are isomorphic if there exists an homeomorphism ϕ : X → X ′ such that
ϕ ◦ F = F ′ ◦ ϕ.

A DTDS (X ,F) is topologically transitive (or, simply, transitive) if for all nonempty
open subsets U and V of X there exists a natural number t such that F t(U) ∩ V 6= ∅, while
it is said to be topologically mixing if for all nonempty open subsets U and V of X there
exists a natural number t0 such that the previous intersection condition holds for every t ≥ t0.
Intuitively, a topologically transitive system (X ,F) has elements of X which eventually
move under iteration of F from one arbitrarily small neighbourhood to any other. As a
consequence, the dynamical system cannot be decomposed into two disjoint open sets which
are invariant under the map F . Clearly, topological mixing is a stronger condition than
transitivity. Further, (X ,F) is topologically weakly mixing if the DTDS (X ×X ,F ×F)
is topologically transitive, while it is totally transitive if (X ,F t) is topologically transitive
for all t ∈ N. We now recall another condition stronger than transitivity. A DTDS is
strongly transitive if for any nonempty open subset U of X it holds that

⋃∞
t=1 F t(U) = X .

A DTDS (X ,F) is sensitive to initial conditions if there exists ε > 0 such that for
any δ > 0 and x ∈ X , there are an element y 6= x with d(y, x) < δ and a natural number t
such that d(F t(y),F t(x)) > ε. Roughly speaking, (X ,F) is sensitive to initial conditions, or
simply sensitive, if there exist elements arbitrarily close to x which eventually separate from
x by at least ε under iteration of F . If a DTDS is sensitive, then, for all practical purposes,
the dynamics eventually defy numerical approximation. Small errors in computation which
are introduced by round-off may become magnified upon iteration. The results of numerical
computation of an orbit, no matter how accurate, may be completely different from the real
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orbit. In [13] it has been proven that, for CA, topological transitivity implies sensitivity.
Thus, for CA, the notion of topological transitivity becomes central to chaos theory. A DTDS
(X ,F) is said to be positively expansive if there exists ε > 0 such that for any pair of
elements x, y ∈ X with x 6= y there exists a natural number t such that d(F t(y),F t(x)) > ε.
If X has infinite cardinality then expansivity is a stronger condition than sensitivity (see [31]
for a study concerning expansivity and sensitivity in CA). While there are no positively
expansive D-dimensional CA when D ≥ 2, in dimension 1, expansivity implies both mixing,
strong transitivity, and openness [41].

An element x ∈ X is a periodic point for a DTDS (X ,F) if F t(x) = x for some integer
t > 0. A DTDS (X ,F) has dense periodic orbits (DPO) if the set of its periodic points
is dense in X . The popular book by Devaney [27] isolates three components as being the
essential features of chaos for DTDS: topological transitivity, sensitivity to initial conditions
and denseness of periodic orbits (see [27, Def. 8.5]).

Let (X ,M, µ) be a probability space and let (X ,F) be a DTDS where F is a measurable
map which preserves µ, i.e., µ(E) = µ(F−1(E)) for every E ∈ M. The DTDS (X ,F), or,
the map F , is ergodic with respect to µ if for every E ∈M(

E = F−1(E)
)
⇒ (µ(E) = 0 or µ(E) = 1) .

It is well known that F is ergodic iff for any pair of sets A,B ∈M it holds that

lim
n→∞

1
n

n−1∑
i=0

µ(F−i(A) ∩B) = µ(A)µ(B)

The DTDS (X ,F) is (ergodic) mixing, if for any pair of sets A,B ∈M it holds that

lim
n→∞

µ(F−n(A) ∩B) = µ(A)µ(B) ,

while it is (ergodic) weak mixing, if for any pair of sets A,B ∈M it holds that

lim
n→∞

1
n

n−1∑
i=0
|µ(F−i(A) ∩B)− µ(A)µ(B)| = 0

In order to apply ergodic theory to CA, we need to define the collectionM of measurable
subsets of GZD and a probability measure µ :M→ [0, 1]. We will use the normalized Haar
measure µH defined over the σ-algebra generated by the cylinders which is, to our knowledge,
one of the most widely used probabilistic setting in CA theory. The measure µH is defined
as the product measure induced by the uniform probability distribution over G. In this way,
for any ` ∈ N and any pattern P ∈ P`, it holds that µH([P ]) = 1

|G|(2`+1)D . Since in the rest
of this paper we will only use the Haar measure, then we will write µ instead of µH .

3 Statement of the main results

In this section, we state the main results of this paper. They allow us to simplify the
relationships between the dynamical and measure theoretic properties of additive CA, as
depicted in Figure 3.

The following is the main result of the paper. It builds a bridge between two pretty
different ways of approaching the study of the dynamics of CA: measure-theoretic and
topological. The arguments used in the proofs are closely crafted on the additivity property
of the global rule and on the group structure of the alphabet, however, the overall impression
is that this tight link between topology and measure theory shall be true in a much more
general setting.

MFCS 2019
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I Theorem 1. Let F be an additive D-dimensional CA over a finite abelian group. If F is
topologically transitive then F is ergodic.

Theorem 2 provides a new facet of the ergodicity property. This time ergodicity is related
to set theoretic properties like surjectivity and aperiodicity of finite configurations.

I Theorem 2. Any additive D-dimensional CA F over a finite abelian group is ergodic if
and only if F is surjective and no finite configuration except 0 is a periodic point for F .

The following corollary collects all the known properties which are related to ergodicity
in the context of additive CA over finite abelian groups.

I Corollary 3. Let F be an additive D-dimensional CA over a finite abelian group. The
following properties are equivalent
1. ergodic mixing;
2. weak ergodic mixing;
3. ergodicity;
4. topological mixing;
5. total transitivity;
6. weak topological mixing;
7. topological transitivity;
8. F is surjective and no finite configuration except 0 is a periodic point of F .

I Corollary 4. Let F be an additive D-dimensional CA over a finite abelian group. If F is
invertible and transitive then F is isomorphic to a Bernoulli shift.

Surjectivity has strong implications on the dynamics of general CA, the following propo-
sition and its corollary prove that in the context of additive CA, those implications are even
stronger.

I Proposition 5. Let F be an additive D-dimensional CA over a finite abelian group. If F
is surjective then it is open.

I Corollary 6. Surjectivity and openness are equivalent properties for additive D-dimensional
CA over a finite abelian group. Furthermore, they are equivalent to DPO in dimension D = 1.

The following theorem provides a first characterization of strong transitivity for additive
CA over finite abelian groups. Roughly speaking, the theorem states that this property is
conserved under translations and iterations. We wonder whether the same holds for general
CA.

I Theorem 7. Let F be and additive D-dimensional CA over a finite abelian group. The
following conditions are equivalent:
1. F is strongly transitive;
2. for every v ∈ ZD, the CA σv ◦ F is strongly transitive;
3. for every n ∈ N, the CA Fn is strongly transitive;

In the context of 1-dimensional CA, the following result characterizes the roots of powers
of the shift map. Recall that a CA F is a root of another CA F ′ if there exists an integer
n > 0 such that Fn = F ′.

I Theorem 8. [35, Thm. 18.1] Let F be a 1-dimensional CA over an alphabet G of prime
cardinality. If Fn = σm for some naturals n,m with n ≥ 1, then n|m.
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In the case of linear CA over an alphabet of cardinality which is a power of a prime, the
following weaker form of Theorem 8 can be proved.

I Theorem 9. Let G = Zpk with p prime and let F be a 1-dimensional CA over G defined
by the neighborhood N = {−r, . . . , r} and the local rule f : Z2r+1

pk → Zpk expressed by the
linear combination with coefficients a−r, . . . , ar ∈ Zpk . If Fn = σm for some naturals n ≥ 1
and m ≥ 1, then m ≥ n.

The following example shows that Theorem 9 is no longer true for additive CA over finite
abelian groups.

I Example 10. Let F be the 1-dimensional CA over Zn
m defined by the neighbourhood

N = {0, 1} and the local rule f : (Zn
m)2 → Zn

m such that

∀(x0, x1) ∈ (Zn
m)2, f(x0, x1) = M0x0 +M1x1 ,

where

M0 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 0 0 · · · 0

 and M1 =


0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0
1 0 0 · · · 0

 .

It is easy to check that Fn = σ contradicting the statement of Theorem 9.

Example 10 has also other important consequences. On the one hand, it provides examples
of CA that are arbitrarily “small” roots of the shift map. On the other hand, it provides the
basic building blocks for systems which are ergodic but have both arbitrarily low Lyapunov
exponents and arbitrarily low topological entropies.

4 Proofs of the main results

4.1 Useful known results
Before going into the proofs of our main results let us recall some known facts which helped
in shaping the situation depicted in Figure 2.

I Theorem 11. [50, Thm. 1.28, pag. 50] Mixing, weak mixing and ergodicity are equivalent
properties for endomorphisms of compact groups.

I Theorem 12. [4, Thm. 1] An ergodic automorphism of a compact metric abelian group is
a Bernoulli shift.

I Proposition 13. [15, Prop. 6.7, pag. 32] Ergodic (resp., weak ergodic) mixing implies
topological (resp., weak) mixing for endomorphisms of compact groups and measures with full
support.

The following will be fundamental for proving our main result.

I Theorem 14. [48, Thm. 1] Let F be any endomorphism of a compact abelian group with
normalized Haar measure. Then, F is ergodic if and only if F is surjective and Fn − I is
surjective for all n ∈ N (I is the identity map).

MFCS 2019
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4.2 Proofs of our results
In order to make the proof of the main result more readable, we cut it into several lemmata.

I Lemma 15. Let F be an additive D-dimensional CA over a finite abelian group G. For
all n ≥ 1, it holds that

Fn − I = (F − I) ◦ (I + F + · · ·+ Fn−1) = (I + F + · · ·+ Fn−1) ◦ (F − I) (2)

Proof. It is an immediate consequence of the fact that the composition operation on the set
of additive CA is distributive over the sum operation (defined on the same set). J

I Lemma 16. Let F be an additive CA over a finite abelian group G. Let ` ∈ N and w ∈ Pl

such that (F − I)(X) ∩ [w] = ∅. Then, it holds that

∀n ≥ 1, (Fn − I)(X) ∩ [w] = ∅ .

Proof. For every natural n ≥ 1, by Lemma 15, we get

(Fn − I)(X) = (F − I)
(
(I + F + · · ·+ Fn−1)(X)

)
⊆ (F − I)(X) .

Since (F − I)(X) ∩ [w] = ∅, it follows that (Fn − I)(X) ∩ [w] = ∅. J

I Lemma 17. Let F be an additive D-dimensional CA over a finite abelian group G. If
there exist ` ∈ N and w ∈ Pl such that

∀n ≥ 1, (Fn − I)(X) ∩ [w] = ∅ ,

then F is not topologically transitive.

Proof. For the sake of argument, assume that F is topologically transitive. Choose arbitrarily
two patterns w1, w2 ∈ Pl such that w2 − w1 = w. By transitivity, there exist a configuration
c ∈ [w1] and a natural n ≥ 1 such that Fn(c) ∈ [w2]. Thus, Fn(c)− c ∈ [w], or, equivalently,
(Fn − I)(c) ∈ [w], which is a contradiction. J

At present all the necessary pieces have been built to go through the proof of Theorem 1.

Proof of Theorem 1. For the sake of argument, assume that F is transitive but not ergodic.
Since transitive CA are surjective, then, by Theorem 14, there exists n ≥ 1 such that Fn − I
is not surjective. Let H = Fn. Since H − I is not surjective and (H − I)(X) is closed, there
exist a natural ` ∈ N and a pattern w ∈ P` such that (H − I)(X) ∩ [w] = ∅. So, by Lemma
16, it follows that

∀m ≥ 1, (Hm − I)(X) ∩ [w] = ∅ .

Therefore, by Lemma 17, H is not topologically transitive. Since topologically transitive CA
are totally transitive (see [46], where the proof involving 1-dimensional CA can be extended
to any dimension D), we conclude that neither is F , which is a contradiction. J

Proof of Theorem 2. By Theorem 14, F is ergodic if and only if it is surjective and for
every natural m ≥ 1 the CA I −Fm is surjective. Fix an arbitrary natural m ≥ 1 and define
H(m) = I − Fm. The Garden-of-Eden Theorem for CA [45, 47] guarantees that H(m) is
surjective if and only if it is injective on finite configurations, i.e., H(m)(c) 6= H(m)(c′) for
every pair of distinct finite configurations c, c′ ∈ GZD . Set d = c− c′ ∈ GZD . Clearly d is a
finite configuration. Furthermore, by additivity, it holds that H(m)(c) 6= H(m)(c′) if and only
if H(m)(d) 6= 0. By definition of H(m), the condition H(m)(d) 6= 0 is true for every m ≥ 1 if
and only if Fm(d) 6= d, i.e., d is not a periodic point of F . J
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Proof of Proposition 5. We are going to prove that F is open at the configuration 0 ∈ GZD ,
i.e., equivalently, for every ` ∈ N, the set F ([0]) is open, where 0 ∈ P`. Since F is an
endomorphism of the topological group GZD , we conclude that F is open.

To proceed, consider any arbitrary ` ∈ N. Clearly, it holds that GZD =
⋃

w∈P`
[w] and,

since F is surjective, we get GZD =
⋃

w∈P`
F ([w]). Thus, there exists w′ ∈ P` such that

F ([w′]) has non-empty interior. Let c ∈ [w′] be the configuration such that c(v) = 0 ∈ G for
every position v ∈ ZD with ||v|| > `. One gets F ([w′]) = F ([0] + c) = F ([0]) + F (c) (where
[0] + c and F ([0]) + F (c) denote suitable cosets of [0] and F ([0]), respectively). Therefore,
F ([0]) must have non-empty interior, too. Since F ([0]) is a subgroup of the topological group
GZD , it follows that F ([0]) is open. J

Proof of Corollary 6. It is well-known that any open D-dimensional CA is surjective. By
Proposition 5, surjective additive D-dimensional CA over a finite abelian group are open.
It is easy to see that DPO implies surjectivity in any dimension. While, by Proposition 5
and the fact that open 1-dimensional CA have DPO [7, Thm. 4.4], it follows that surjective
additive 1-dimensional CA have DPO. J

Proof of Corollary 4. By Theorem 1, F is ergodic. The thesis follows from Theorem 12. J

I Lemma 18. An additive CA F over a finite abelian group G is strongly transitive if and
only if the following condition holds: for any natural ` ∈ N and any pattern P ∈ P` there
exists t ∈ N such that 0 ∈ F t([P ]).

Proof. The “only if” part trivially follows from the definition of strong transitivity. Let us
prove the “if” part. Assume that F is an additive CA over a finite abelian group G and
satisfying the condition in the statement. Consider an arbitrary natural ` ∈ N. For every
P ∈ P` let nP,` be the smallest natural t such that 0 ∈ F t([P ]). Define n` = max{nP,` : P ∈
P`}. Since F (0) = 0 it holds that

∀P ∈ P`, 0 ∈ Fn`([P ]) (3)

We now show that for any configuration e ∈ GZD , any natural `, and any pattern P ∈ P`

there exists t′ = n` such that e ∈ F t′([P ]), that is, F is strongly transitive. Choose arbitrarily
a configuration e ∈ GZD , a natural `, and pattern P ∈ P`. Let c be any configuration
belonging to F−n`(e). If c ∈ [P ] we are done. Otherwise, by (3), there exists c′ ∈ GZD such
that c+ c′ ∈ [P ] and Fn`(c′) = 0. Thus, we get

Fn`(c+ c′) = Fn`(c) + Fn`(c′) = Fn`(c) + 0 = Fn`(c) = e ,

and this concludes the proof. J

Proof of Theorem 7. It is an immediate consequence of Lemma 18 and the fact that for
every v ∈ ZD and every n ∈ N both σv(0) = 0 and Fn(0) = 0 hold. J

Proof of Theorem 9. The CA F can be represented by the Laurent polynomial p(x, x−1) =∑r
i=−r aix

i ∈ Zpk [x, x−1], while σ1 can be represented by the Laurent polynomial x. Assume
that Fn = σm for some naturals n,m with n ≥ 1 and m ≥ 1. It is easy to verify that
Fn = σm if and only if

(
p(x, x−1)

)n = xm. We consider two cases. 1) If p|ai for each
i ∈ N with i 6= 0 then, by [14, Lemma 5], putting h = pk−1 ∈ N we have that

(
p(x, x−1)

)h

is a constant (i.e., it does not contain the formal variable x). Hence, for every s ∈ N it
holds that

(
p(x, x−1)

)sh 6= xmh and this contradicts that Fn = σm. 2) Otherwise, there
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exists i 6= 0 such that gcd(ai, p) = 1 (since Fn = σm then F must be injective and so for
every other coefficient aj with i 6= j we have gcd(aj , p) = p). First of all, we prove that
there always exist n′ and m′ with m′ ≥ n′ such that Fn′ = σm′ . Indeed, by [14, Lemma
5], for h = pk−1 ∈ N we get

(
p(x, x−1)

)h = ah
i x

ih. Therefore, for t = ϕ(pk) (where ϕ is
the Euler’s totient function) we get

(
p(x, x−1)

)n′

= xm′ , i.e., Fn′ = σm′ , with n′ = ht and
m′ = iht. To conclude, assume by contradiction that Fn = σm with m < n. Then, we get
Fn′n = σm′n and Fn′n = σn′m. So, it follows that m′n = n′m, but this is not possible since
m′n ≥ n′n > n′m. Thus, it holds that m ≥ n and this concludes the proof. J

5 Conclusions and perspectives

Comparing Figure 2 and 3, one can immediately appreciate the impact of the results in the
paper. All single arrow tips (i.e. the known relations for which the opposite implication was
unknown) disappeared and several properties coalesced in the group of transitivity, total
transitivity and weak topological mixing. However, what is more important is that many
measure theoretical and topological properties coincide. These facts legitimate the following

I Conjecture 1. Transitive CA are ergodic with respect to Bernoulli measures.

Solving the previous conjecture will probably clarify also the status of the properties of
ergodic mixing, weakly ergodic mixing and topological mixing, much like it happened for the
case of endomorphisms of compact abelian groups in this paper. Investigating, the following
well-known conjecture due to Blanchard and Tisseur (see [2, Conjecture 1] and [1] for more
details) will definitively complete the overall picture.

I Conjecture 2. All surjective CA have a dense set of periodic orbits.

Another interesting research direction consists in establishing the decidability of the
dynamical properties. In the framework of general CA, recent results from Ville Lukkarila
have shown that both topological mixing and transitivity are undecidable properties [42].
Undecidability of sensitivity, surjectivity (for dimensions larger than 1) and openness (for
dimensions larger than 1) were already known for years [38, 30]. It is therefore natural to
conjecture that the remaining ones are also undecidable.

I Conjecture 3. Ergodicity, weak ergodic mixing, ergodic mixing and strong transitivity are
undecidable for CA.

We want to remark that we intentionally left out the expansivity property from Conjecture 3,
since it is so peculiar that we believe it might be decidable.

Finally, it would be very interesting to extend Theorem 7 to all CA, and not only to
additive CA. In some way, this would turn strong transitivity into the “strongest” translation
invariant property, since it is well-known that expansivity is not translations invariant and
that there are no expansive CA for dimensions greater than one.
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