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Abstract
By fundamental results of Schützenberger, McNaughton and Papert from the 1970s, the classes
of first-order definable and aperiodic languages coincide. Here, we extend this equivalence to a
quantitative setting. For this, weighted automata form a general and widely studied model. We
define a suitable notion of a weighted first-order logic. Then we show that this weighted first-order
logic and aperiodic polynomially ambiguous weighted automata have the same expressive power.
Moreover, we obtain such equivalence results for suitable weighted sublogics and finitely ambiguous or
unambiguous aperiodic weighted automata. Our results hold for general weight structures, including
all semirings, average computations of costs, bounded lattices, and others.
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1 Introduction

Fundamental results of Schützenberger, McNaughton and Papert established that aperiodic,
star-free and first-order definable languages, respectively, coincide [40, 32]. In this paper, we
develop such an equivalence in a quantitative setting, i.e., for suitable notions of aperiodic
weighted automata and weighted first-order logic.

Already Schützenberger [39] investigated weighted automata and characterized their
behaviors as rational formal power series. Weighted automata can be viewed as classical finite
automata in which the transitions are equipped with weights. These weights could model,
e.g., the cost, reward or probability of executing a transition. The wide flexibility of this
automaton model soon led to a wealth of extensions and applications, cf. [38, 28, 2, 36, 15].
Whereas traditionally weights are taken from a semiring, recently, motivated by practical
examples, also average and discounted computations of weights were considered, cf. [8, 7].

In the boolean setting, the seminal Büchi-Elgot-Trakhtenbrot theorem [6, 21, 41] estab-
lished the expressive equivalence of finite automata and monadic second-order logic (MSO).
A weighted monadic second-order logic with the same expressive power as weighted automata
was developed in [12, 13]. This led to various extensions to weighted automata and weighted
logics on trees [19], infinite words [18], timed words [34], pictures [22], graphs [10], nested
words [11], and data words [1], but also for more complicated weight structures including
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average and discounted calculations [16] or multi-weights [17]. Recently, in [23], weighted
MSO logic was revisited with a more structured syntax, called core-wMSO, and shown to
be expressively equivalent to weighted automata, while permitting a uniform approach to
semirings and these more complicated weight structures.

Here, we consider the first-order fragment wFO of this weighted logic. It extends the
full classical boolean first-order logic quantitatively by adding weight constants and if-then-
else applications, followed by a first-order (universal) product and then further if-then-else
applications, finite sums, or first-order (existential) sums. We will show that its expressive
power leads to aperiodic weighted automata which, moreover, are polynomially ambiguous.
Natural subsets of connectives will correspond to unambiguous or finitely ambiguous aperiodic
weighted automata. These various levels of ambiguity are well-known from classical automata
theory [24, 42, 26, 25].

Following the approach of [23], we take an arbitrary set R of weights. A path in a
weighted automaton over R then has the sequence of weights of its transitions as its value.
The abstract semantics of the weighted automaton is defined as the function mapping each
non-empty word to the multiset of weight sequences of the successful paths executing the
given word. Correspondingly, we will define the abstract semantics of wFO sentences also as
functions mapping non-empty words to multisets of sequences of weights. Our main result
will be the following.

I Theorem 1. Let Σ be an alphabet and R a set of weights. Then the following classes of
weighted automata and weighted first-order logics are expressively equivalent:
1. Aperiodic polynomially ambiguous weighted automata (wA) and wFO sentences,
2. Aperiodic finitely ambiguous wA and wFO sentences without first-order sums,
3. Aperiodic unambiguous wA and wFO sentences without binary or first-order sums.

Note that these characterizations hold without any restrictions on the weights. The above
result applies not only to the abstract semantics. As immediate consequence, we obtain
corresponding expressive equivalence results for classical weighted automata over arbitrary
(even non-commutative) semirings, or with average or discounted calculations of weights, or
bounded lattices as in multi-valued logics. All our constructions are effective. In fact, given
a wFO sentence and deterministic aperiodic automata for its boolean subformulas, we can
construct an equivalent aperiodic weighted automaton of exponential size. We give typical
examples for our constructions. The class of arbitrary aperiodic weighted automata and
its subclasses of polynomially resp. finitely ambiguous or unambiguous weighted automata
form a proper hierarchy for each of the following semirings: natural numbers N+,×, the
max-plus-semiring Nmax,+ and the min-plus semiring Nmin,+ [14].

It should be noticed that standard constructions used to establish equivalence between
automata and MSO logic cannot be applied. Indeed, starting from an automaton A, one
usually constructs an existential MSO sentence where the existential set quantifications are
used to guess an accepting run and the easy first-order kernel is used to check that this guess
indeed defines an accepting run. Here, we cannot use quantifications ∃X over set variables X,
or their weighted equivalent

∑
X . Instead, we take advantage of the fine structure of possible

paths of polynomially ambiguous automata, namely the fact that it must be unambiguous on
strongly connected components (SCC-unambiguous), as employed for different goals already
in [24, 42]. We first give a new construction of a wFO sentence without sums starting from an
aperiodic and unambiguous automaton. Then, we extend the construction to polynomially
ambiguous aperiodic automata using first-order sums

∑
x to guess positions where the run

switches between the unambiguous SCCs. For part 2 of Theorem 1, we also prove that
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for each aperiodic finitely ambiguous weighted automaton we can construct finitely many
aperiodic unambiguous weighted automata whose disjoint union has the same semantics.

Again, for the implication from weighted formulas to weighted automata, we cannot
simply use standard constructions which crucially rely on the fact that functions defined
by weighted automata are closed under morphic images. This was used to handle first-oder
sums

∑
x and second-order sums

∑
X , but also in the more involved proof for the first-order

product
∏
x applied to finitely valued weighted automata. But it is well-known that aperiodic

languages are not closed under morphic images. Handling the first-order product
∏
x requires

a completely new and highly non-trivial proof preserving aperiodicity properties.
Detailed proofs and additional examples are given in the full version [14].

Related work. In [27], polynomially ambiguous, finitely ambiguous and unambiguous
weighted automata (without assuming aperiodicity) over commutative semirings were shown
to be expressively equivalent to suitable fragments of weighted monadic second order logic.
This was further extended in [33] to cover polynomial degrees and weighted tree automata.

A hierarchy of these classes of weighted automata (again without assuming aperiodicity)
over the max-plus semiring was described in [26]. As a consequence of pumping lemmas for
weighted automata, a similar hierarchy was obtained in [30] for the min-plus semiring.

We note that in [13, 20], an equivalence result for full weighted first-order logic was given,
but only for very particular classes of semirings or strong bimonoids as weight structures.

A characterization of the full weighted first-order logic with transitive closure by weighted
pebble automata was obtained in [5]. An equivalence result for fragments of weighted first-
order logic, weighted LTL and weighted counter-free automata over the max-plus semiring
with discounting was given in [29].

2 Preliminaries

A non-deterministic automaton is a tuple A = (Q,Σ,∆) where Q is a finite set of states,
Σ is a finite alphabet, and ∆ ⊆ Q × Σ × Q is the set of transitions. The automaton A is
complete if ∆(q, a) 6= ∅ for all q ∈ Q and a ∈ Σ. A run ρ of A is a nonempty sequence of
transitions δ1 = (p1, a1, q1), δ2 = (p2, a2, q2), . . . , δn = (pn, an, qn) such that qi = pi+1 for all
1 ≤ i < n. We say that ρ is a run from state p1 to state qn and that ρ reads, or has label,
the word a1a2 · · · an ∈ Σ+. We denote by L(Ap,q) ⊆ Σ∗ the set of labels of runs of A from p

to q. When p = q, we include the empty word ε in L(Ap,q) and say that ε labels the empty
run from p to p.

An automaton with accepting conditions is a tuple A = (Q,Σ,∆, I, F ) where (Q,Σ,∆) is a
non-deterministic automaton, I, F ⊆ Q are the sets of initial and final states respectively. The
language defined by the automaton is L(A) = L(AI,F ) =

⋃
p∈I,q∈F L(Ap,q). Subsequently,

we also consider automata with several accepting sets F,G, . . . so that the same automaton
may define several languages L(AI,F ), L(AI,G), . . . An automaton A = (Q,Σ,∆, I, F ) is
deterministic if I = {ι} is a singleton and the set ∆ of transitions is a partial function: for
all (p, a) ∈ Q× Σ there is at most one state q ∈ Q such that (p, a, q) ∈ ∆.

Next, we consider degrees of ambiguity of automata. A run in an automaton is successful,
if it leads from an initial to a final state. The automaton A is called polynomially ambiguous
if there is a polynomial p such that for each w ∈ Σ+ the number of successful paths in A for
w is at most p(|w|). Then, A is finitely ambiguous if p can be taken to be a constant. Further,
for an integer k ≥ 1, A is k-ambiguous if p = k, and unambiguous means 1-ambiguous. Notice
that k-ambiguous implies (k + 1)-ambiguous. An automaton A is at most exponentially
ambiguous.

MFCS 2019



76:4 Aperiodic Weighted Automata and Weighted First-Order Logic

A non-deterministic automaton A = (Q,Σ,∆) is aperiodic if there exists an integer
m ≥ 1, called aperiodicity index, such that for all states p, q ∈ Q and all words u ∈ Σ+, we
have um ∈ L(Ap,q) iff um+1 ∈ L(Ap,q). In other words, the non-deterministic automaton
A is aperiodic iff its transition monoid Tr(A) is aperiodic. It is well-known that aperiodic
languages coincide with first-order definable languages, cf. [40, 32, 9].

The syntax of first-order logic is given in Section 4 (FO). The semantics is defined by
structural induction on the formula and requires an interpretation of the free variables. Let
V = {y1, . . . , yn} be a finite set of first-order variables. Given a nonempty word u ∈ Σ+,
we let pos(u) = {1, . . . , |u|} be the set of positions of u. A valuation or interpretation is a
map σ : V → pos(u) assigning positions of u to variables in V. For a first-order formula ϕ
having free variables contained in V, we write u, σ |= ϕ when the word u satisfies ϕ under
the interpretation defined by σ. When ϕ is a sentence, the valuation σ is not needed and we
simply write u |= ϕ.

We extend the classical semantics by defining when the empty word ε satisfies a sentence.
We have ε |= > and if ∀xψ is a sentence then ε |= ∀xψ. The semantics ε |= ϕ is extended to
all sentences ϕ since they are boolean combinations of the basic cases above. Notice that if ϕ
has free variables then ε |= ϕ is not defined. When ϕ is a sentence we denote by L(ϕ) ⊆ Σ∗
the set of words satisfying ϕ. Notice that L(∀x⊥) = {ε} where ⊥ = ¬>.

I Theorem 2 ([40, 32, 9]). Let A be an aperiodic non-deterministic automaton. For all
states p, q of A we can construct a first-order sentence ϕp,q such that L(Ap,q) = L(ϕp,q).

For the converse of Theorem 2, we need a stronger statement to deal with formulas having
free variables. As usual, we encode a pair (u, σ) where u ∈ Σ+ is a nonempty word and
σ : V → pos(u) is a valuation by a word u over the extended alphabet ΣV = Σ × {0, 1}V .
A word u over ΣV is a valid encoding if for each variable y ∈ V, its projection on the
y-component belongs to 0∗10∗. Throughout the paper, we identify a valid word u with its
encoded pair (u, σ).

I Theorem 3 ([40, 32, 9]). For each FO-formula ϕ having free variables contained in V, we
can build a deterministic, complete and aperiodic automaton Aϕ,V = (Q,ΣV ,∆, ι, F,G) over
the extended alphabet ΣV such that for all words u ∈ Σ+

V we have:
∆(ι, u) ∈ F iff u is a valid encoding of a pair (u, σ) with (u, σ) |= ϕ,
∆(ι, u) ∈ G iff u is a valid encoding of a pair (u, σ) with (u, σ) |= ¬ϕ,
∆(ι, u) /∈ F ∪G otherwise, i.e., iff u is not a valid encoding of a pair (u, σ).

Given u ∈ Σ+ and integers k, `, we denote by u[k, `] the factor of u between positions k
and `. By convention u[k, `] = ε is the empty word when ` < k or ` = 0 or k > |u|.

We will apply the equivalence of Theorem 2 to prefixes, infixes or suffixes of words.
Towards this, we use the classical relativization of sentences. Let ϕ be a first-order sentence
and let x, y ∈ V be first-order variables. We define below the relativizations ϕ<x, ϕ(x,y) and
ϕ>y so that for all words u ∈ Σ+, and all positions i, j ∈ pos(u) = {1, . . . , |u|} we have

u, x 7→ i |= ϕ<x iff u[1, i− 1] |= ϕ

u, x 7→ i, y 7→ j |= ϕ(x,y) iff u[i+ 1, j − 1] |= ϕ

u, x 7→ j |= ϕ>x iff u[j + 1, |u|] |= ϕ

Notice that, when i = 1 or j ≤ i + 1 or j = |u|, the relativization is on the empty word,
this is why we had to define when ε |= ψ for sentences ψ. The relativization is defined by
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1 2 3 4

a | 2

a | 1

a | 3

a | 5

b | 5

b | 3

b | 1

b | 2

Figure 1 A weighted automaton, which is both aperiodic and polynomially ambiguous.

structural induction on the formulas as follows:

><x = > (Pa(z))<x = Pa(z) (y ≤ z)<x = (y ≤ z)
(¬ψ)<x = ¬(ψ<x) (ψ1 ∧ ψ2)<x = ψ<x1 ∧ ψ<x2 (∀zψ)<x = ∀z(z < x =⇒ ψ<x)

The relativizations ϕ(x,y) and ϕ>x are defined similarly. Notice that when ϕ is a sentence,
i.e., a boolean combination of formulas of the form > or ∀zψ, then the above equivalences
hold even when i = 1 for ϕ<x, or when i = |u| for ϕ>x, or when j ≤ i+ 1 for ϕ(x,y).

3 Weighted Automata

Given a set X, we let N〈X〉 be the collection of all finite multisets over X, i.e., all functions
f : X → N such that f(x) 6= 0 only for finitely many x ∈ X. The union f ] g of two multisets
f, g ∈ N〈X〉 is defined by pointwise addition of functions: (f ] g)(x) = f(x) + g(x) for x ∈ X.

For a set R of weights, an R-weighted automaton over Σ is a tuple A = (Q,Σ,∆,wt) where
(Q,Σ,∆) is a non-deterministic automaton and wt : ∆→ R assigns a weight to every transition.
The weight sequence of a run ρ = δ1δ2 · · · δn is wt(ρ) = wt(δ1)wt(δ2) · · ·wt(δn) ∈ R+. The
abstract semantics of A from state p to state q is the map {|Ap,q|} : Σ+ → N〈R+〉 which
assigns to a word u ∈ Σ+ the multiset of weight sequences of runs from p to q with label u:

{|Ap,q|}(u) = {{wt(ρ) | ρ is a run from p to q with label u}} .

Notice that {|Ap,q|}(u) = ∅ is the empty multiset when there are no runs of A from p

to q with label u, i.e., when u /∈ L(Ap,q). When we consider a weighted automaton
A = (Q,Σ,∆,wt, I, F ) with initial and final sets of states, for all u ∈ Σ+ the semantics
{|A|} is defined as the multiset union: {|A|}(u) =

⊎
p∈I,q∈F {|Ap,q|}(u). Hence, {|A|} assigns

to every word u ∈ Σ+ the multiset of all weight sequences of accepting runs of A reading u.
The support of A is the set of words u ∈ Σ+ such that {|A|}(u) 6= ∅, i.e., supp(A) = L(A).

For instance, consider the weighted automaton A of Figure 1. We have supp(A) =
a+a(a+ b)∗b+. Consider w = am(ba)nbp with m > 1 and p > 0. We have w ∈ supp(A) and
{|A|}(w) = {{2k−1 · 1 · 3m−k−1 · 5 · (3 · 5)n · 5`−1 · 1 · 2p−` | 1 ≤ k < m and 1 ≤ ` ≤ p}}.

A concrete semantics over semirings, or valuation monoids, or valuation structures can
be obtained from the abstract semantics defined above by applying the suitable aggregation
operator aggr : N〈R+〉 → S as explained in [23], see also [14]. For the natural semiring
(N,+,×, 0, 1), the sum-product aggregation operator aggrsp(f) gives the sum over all sequences
s1s2 · · · sk in the multiset f of the products s1× s2× · · · × sk in N. We continue the example
with the automaton A of Figure 1 and the word w = am(ba)nbp with m > 1 and p > 0. The
concrete semantics is given by

[[A]](w) = aggrsp({|A|}(w)) =
∑

1≤k<m

∑
1≤`≤p

2k−1+p−`3m−k−1+n5n+` .

MFCS 2019
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In further examples, we also use the max-plus semiring Nmax,+ = (N∪{−∞},max,+,−∞, 0)
and the min-plus semiring Nmin,+ = (N ∪ {∞},min,+,∞, 0).

Now, we investigate finitely ambiguous weighted automata. It was shown in [26] that over
the max-plus semiring Nmax,+ they are expressively equivalent to finite disjoint unions of
unambiguous weighted automata. Moreover, it was proved in [37] that a K-valued rational
transducer can be decomposed into K unambiguous transducers. In particular this implies
that a K-ambiguous weighted automaton can be decomposed into K unambiguous weighted
automata. We can prove that the same holds for aperiodic weighted automata [14].
I Theorem 4. Let K ≥ 1. Given an aperiodic K-ambiguous weighted automaton A,
we can construct aperiodic unambiguous weighted automata B1, . . . ,BK such that {|A|} =
{|B1 ] · · · ] BK |} = {|B1|} ] · · · ] {|BK |}.

Our proof is based on lexicographic ordering of runs. The proof of [37] uses lexicographic
coverings. It would be interesting to see whether this proof also preserves aperiodicity and
to compare the complexity of the constructions.

4 Weighted First-Order Logic

In this section, we define the syntax and semantics of our weighted first-order logic. In [12, 13],
weighted MSO used the classical syntax of MSO logic; only the semantics over a semiring
was changed to use sums for disjunction and existential quantifications, and products for
conjunctions and universal quantifications. The possibility to express boolean properties in
wMSO was obtained via so-called unambiguous formulae. To improve readability, a more
structured syntax was later used [3, 16, 27], separating a boolean MSO layer with classical
boolean semantics from the higher level of weighted formulas using products (

∏
X ,
∏
x

corresponding to ∀X, ∀x) and sums (
∑
X ,
∑
x corresponding to ∃X, ∃x) with quantitative

semantics. As shown in [12, 13], in general, to retain equivalence with weighted automata,
wMSO has to be restricted. Products

∏
X over set variables are disallowed, and first-order

products
∏
x must be restricted to finitely valued series where the pre-image of each value

is recognizable. This basically means that first-order products cannot be nested or applied
after first-order or second-order sums

∑
x or

∑
X . This motivated the equivalent and even

more structured syntax of core-wMSO introduced in [23].
As in Section 3, we consider a set R of weights. The syntax of wFO is obtained from

core-wMSO by removing set variables, set quantifications and set sums. In addition to the
classical boolean first-order logic (FO), it has two weighted layers. Step formulas defined
in (step-wFO) consist of constants and if-then-else applications, where the conditions are
formulated in boolean first-order logic. Finally, wFO builds on this by performing products
of step formulas and then applying if-then-else, finite sums, or existential sums.

ϕ ::= > | Pa(x) | x ≤ y | ¬ϕ | ϕ ∧ ϕ | ∀xϕ (FO)
Ψ ::= r | ϕ ? Ψ : Ψ (step-wFO)
Φ ::= 0 |

∏
xΨ | ϕ ? Φ : Φ | Φ + Φ |

∑
xΦ (wFO)

with a ∈ Σ, r ∈ R and x, y first-order variables.
The semantics of step-wFO formulas is defined inductively. As above, let u ∈ Σ+ be a

nonempty word and σ : V → pos(u) = {1, . . . , |u|} be a valuation. For step-wFO formulas
whose free variables are contained in V, we define the V-semantics as

[[r]]V(u, σ) = r [[ϕ ? Ψ1 : Ψ2]]V(u, σ) =
{

[[Ψ1]]V(u, σ) if u, σ |= ϕ

[[Ψ2]]V(u, σ) otherwise.
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1 2

3

a | 2

b | 1

a | 3

c | 1

b | 1

c | 1

b | 1 c | 1

Figure 2 A weighted automaton, which is both aperiodic and unambiguous.

Notice that the semantics of a step-wFO formula is always a single weight from R.
For wFO formulas Φ whose free variables are contained in V, we define the V-semantics

{|Φ|}V : Σ+
V → N〈R+〉. First, we let {|Φ|}V(u) = ∅ be the empty multiset when u ∈ Σ+

V is
not a valid encoding of a pair (u, σ). Assume now that u = (u, σ) is a valid encoding of a
nonempty word u ∈ Σ+ and a valuation σ : V → pos(u). The semantics of wFO formulas is
also defined inductively: {|0|}V(u, σ) = ∅ is the empty multiset, and

{|
∏
xΨ|}V(u, σ) = {{r1r2 · · · r|u|}} where ri = [[Ψ]]V∪{x}(u, σ[x 7→ i]) for 1 ≤ i ≤ |u|

{|ϕ ? Φ1 : Φ2|}V(u, σ) =
{
{|Φ1|}V(u, σ) if u, σ |= ϕ

{|Φ2|}V(u, σ) otherwise

{|Φ1 + Φ2|}V(u, σ) = {|Φ1|}V(u, σ) ] {|Φ2|}V(u, σ)

{|
∑
xΦ|}V(u, σ) =

⊎
i∈pos(u)

{|Φ|}V∪{x}(u, σ[x 7→ i]) .

The semantics of the product (first line), is a singleton multiset which consists of a weight
sequence whose length is |u|. We deduce that all weight sequences in a multiset {|Φ|}V(u, σ)
have the same length and {|Φ|}V(u, σ) ∈ N〈R|u|〉. We simply write [[Ψ]] and {|Φ|} when the
set V of variables is clear from the context.

As explained in Section 3, applying an aggregation function allows to recover the semantics
[[Φ]] over semirings such as N+,×, Nmax,+, etc. For instance, consider the function f : {a, b}+ →
N which assign to a word w ∈ {a, b}+ the length of the maximal a-block, i.e., f(w) = n if an
is a factor of w but an+1 is not. Over Nmax,+, we have f = [[Φ]] where

Φ =
∑
y,z(∀u (y ≤ u ≤ z)→ Pa(u)) ? (

∏
x(y ≤ x ≤ z) ? 1 : 0) : (

∏
x0) .

We refer to [13] for further examples of quantitative specifications in weighted logic.

5 From Weighted Automata to Weighted FO

We say that a non-deterministic automaton A = (Q,Σ,∆) is unambiguous from state p to
state q if for all words u ∈ Σ+, there is at most one run of A from p to q with label u.

I Theorem 5. Let A be an aperiodic weighted automaton which is unambiguous from p to q.
We can construct a wFO sentence Φp,q = ϕp,q ?

∏
xΨp,q : 0 where ϕp,q is a first-order sentence

and Ψp,q(x) is a step-wFO formula with a single free variable x such that {|Ap,q|} = {|Φp,q|}.

Before proving Theorem 5, we start with an example. The automaton A of Figure 2 is
unambiguous and it accepts the language L(A) = (a∗b + a∗c)+ = (a + b + c)∗(b + c). We
define a wFO sentence Φ1,3 = ϕ1,3 ?

∏
xΨ1,3(x) : 0 as follows. The FO sentence ϕ1,3 checks

that A has a run from state 1 to state 3 on the input word w, i.e., that w ∈ a∗b(a∗b+ a∗c)∗:

ϕ1,3 = ∃y (Pb(y) ∧ ∀z (z < y =⇒ Pa(z))) ∧ ∃y (¬Pa(y) ∧ ∀z (z ≤ y))

MFCS 2019
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When this is the case, the step-wFO formula Ψ1,3(x) computes the weight of the transition
taken at a position x in the input word:

Ψ1,3(x) =(Pb(x) ∨ Pc(x)) ? 1 : ∃y (x < y ∧ Pb(y) ∧ ∀z (x < z < y =⇒ Pa(z))) ? 2 : 3 .

Notice that the same formula Ψ = Ψ2,3 = Ψ1,3 also allows to compute the sequence of weights
for the accepting runs starting in state 2. Therefore, A is equivalent to the wFO sentence

Φ = ∃y (¬Pa(y) ∧ ∀z (z ≤ y)) ?
∏
xΨ(x) : 0 .

Proof of Theorem 5. Let A = (Q,Σ,∆,wt) be the aperiodic weighted automaton. By
Theorem 2, for every pair of states r, s ∈ Q there is a first-order sentence ϕr,s such that
L(Ar,s) = L(ϕr,s). This gives in particular the first-order sentence ϕp,q which is used in Φp,q.

B Claim 6. We can construct a step-wFO formula Ψp,q(x) such that for each word u ∈ L(Ap,q)
and each position 1 ≤ i ≤ |u| in the word u, we have [[Ψp,q]](u, x 7→ i) = wt(δ) where δ is the
ith transition of the unique run ρ of A from p to q with label u.

Before proving this claim, let us show how we can deduce the statement of Theorem 5.
Clearly, if a word u ∈ Σ+ is not in L(Ap,q) then we have {|Ap,q|}(u) = ∅ = {|Φp,q|}(u).
Consider now a word u = a1a2 · · · an ∈ L(Ap,q) and the unique run ρ = δ1δ2 · · · δn of A from
p to q with label u. We have {|Ap,q|}(u) = {{wt(δ1)wt(δ2) · · ·wt(δn)}} = {|

∏
xΨp,q|}(u) where

the second equality follows from Claim 6. We deduce that {|Ap,q|} = {|Φp,q|}.
We turn now to the proof of Claim 6. Let δ = (r, a, s) ∈ ∆ be a transition of A. We

define the FO-formula with one free variable ϕδ(x) = ϕ<xp,r ∧ Pa(x) ∧ ϕ>xs,q .

B Claim 7. For each word u ∈ Σ+ and position 1 ≤ i ≤ |u|, we have u, x 7→ i |= ϕδ iff
u ∈ L(Ap,q) and δ is the ith transition of the unique run of A from p to q with label u.

Indeed, assume that u, x 7→ i |= ϕδ. Then, u[1, i− 1] |= ϕp,r and there is a run ρ′ of A
from p to r with label u[1, i− 1]. Notice that if i = 1 then p = r and ρ′ is the empty run.
Similarly, from u[i+ 1, |u|] |= ϕs,q we deduce that there is a run ρ′′ of A from s to q with
label u[i+ 1, |u|]. Finally, u, x 7→ i |= Pa(x) means that the ith letter of u is a. We deduce
that ρ = ρ′δρ′′ is a run of A from p to q with label u, hence u ∈ L(Ap,q). Moreover, ρ is the
unique such run since A is unambiguous from p to q. Now, δ is the ith transition of ρ, which
concludes one direction. Conversely, assume that u ∈ L(Ap,q) and δ is the ith transition of
the unique run of A from p to q with label u. Then, u[1, i− 1] |= ϕp,r, u[i+ 1, |u|] |= ϕs,q,
and the ith letter of u is a. Therefore, u, x 7→ i |= ϕδ. This concludes the proof of Claim 7.

Now, choose an arbitrary enumeration δ1, δ2, . . . , δk of the transitions in ∆ and define
the step-wFO formula with one free variable

Ψp,q(x) = ϕδ1(x) ? wt(δ1) : ϕδ2(x) ? wt(δ2) : · · · ϕδk (x) ? wt(δk) : wt(δk) .

We show that this formula satisfies the property of Claim 6. Consider a word u ∈ L(Ap,q)
and a position 1 ≤ i ≤ |u|. Let δ be the ith transition of the unique run of A from p to q with
label u. By Claim 7, we have u, x 7→ i |= ϕδj iff δj = δ. Therefore, [[Ψp,q]](u, x 7→ i) = wt(δ),
which concludes the proof of Claim 6. J

I Corollary 8.
1. Let A be an aperiodic and unambiguous weighted automaton. We can construct a wFO

sentence Φ which does not use any
∑
x operator or + operator, and such that {|A|} = {|Φ|}.

2. Let A be an aperiodic and finitely ambiguous weighted automaton. We can construct a
wFO sentence Φ which does not use any

∑
x operator, and such that {|A|} = {|Φ|}.
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Let A = (Q,Σ,∆) be a non-deterministic automaton. Two states p, q ∈ Q are in the
same strongly connected component (SCC), denoted p ≈ q, if p = q or there exist a run of A
from p to q and also a run of A from q to p. Note that ≈ is an equivalence relation on Q. We
denote by [p] the strongly connected component of p, i.e., the equivalence class of p under ≈.

The automaton A is SCC-unambiguous if it is unambiguous on each strongly connected
component, i.e., A is unambiguous from p to q for all p, q such that p ≈ q. A trimmed (all
states are reachable and co-reachable) and unambiguous automaton is SCC-unambiguous.

For instance, the automaton A of Figure 1 has three strongly connected components:
{1}, {2, 3} and {4}. It is not unambiguous from 1 to 4, but it is SCC-unambiguous.

I Proposition 9 ([35, 24] and [42] Thm 4.1). Let A = (Q,Σ,∆, I, F ) be a trimmed non-
deterministic automaton. Then A is polynomially ambiguous iff A is SCC-unambiguous.

I Theorem 10. Let A be an aperiodic weighted automaton which is SCC-unambiguous. For
each pair of states p and q, we can construct a wFO sentence Φp,q such that {|Ap,q|} = {|Φp,q|}.
Moreover, we can construct a wFO sentence Φ such that {|A|} = {|Φ|}.

First, we give for the weighted automaton A of Figure 1 the equivalent wFO formula
Φ1,4 =

∑
y1

∑
y2
ϕ(y1, y2) ?

∏
xΨ(x, y1, y2) : 0 where ϕ and Ψ are defined below. When reading

a word w ∈ supp(A), the automaton makes two non-deterministic choices corresponding to
the positions y1 and y2 at which the transitions switching between the strongly connected
components are taken, i.e., transition from state 1 to state 2 is taken at position y1, and
transition from 3 to 4 is taken at position y2. Since the automaton is SCC-unambiguous,
given the input word and these two positions, the run is uniquely determined. Formula
ϕ(y1, y2) states that it is possible to take the switching transitions at positions y1 and y2:

ϕ(y1, y2) = y1 < y2 ∧ ∀z (z ≤ y1 → Pa(z)) ∧ Pa(y1 + 1) ∧ ∀z (y2 ≤ z → Pb(z)) .

When this is the case, the step-wFO formula Ψ(x, y1, y2) computes the weight of the transition
taken at a position x in the input word:

Ψ(x, y1, y2) = (x < y1 ∨ y2 < x) ? 2 : (x = y1 ∨ x = y2) ? 1 : Pa(x+ 1) ? 3 : 5 .

With these definitions, we obtain {|A|} = {|Φ1,4|}. The proof of Theorem 10 is in [14].
Intuitively, a run from p to q reading a word w ∈ Σ+ uses a sequence of transitions switching
between connected components of A. The positions where these switches are taken can be
described by a sequence of

∑
y-operators. Since there are only finitely many sequences of

switching transitions, they can be described by a finite sum of wFO sentences.

6 From Weighted FO to Weighted Automata

Let A = (Q,Σ,∆) and A′ = (Q′,Σ,∆′) be two non-deterministic automata over Σ. Assuming
that Q∩Q′ = ∅, we define their disjoint union as A]A′ = (Q]Q′,Σ,∆]∆′) and their product
as A×A′ = (Q×Q′,Σ,∆′′) where ∆′′ = {((p, p′), a, (q, q′)) | (p, a, p′) ∈ ∆ ∧ (p′, a, q′) ∈ ∆′}.

I Lemma 11. The following holds.
1. If A and A′ are aperiodic, then A ]A′ and A×A′ are also aperiodic.
2. If A and A′ are SCC-unambiguous, then A ]A′ and A×A′ are also SCC-unambiguous.

Now let ϕ be an FO-formula with free variables contained in the finite set V, and let
Aϕ,V = (Q,ΣV ,∆, ι, F,G) be the deterministic, complete, trim and aperiodic automaton
given by Theorem 3. For i = 1, 2, let Ai = (Qi,ΣV ,∆i,wti, Ii, Fi) be two weighted automata
over ΣV with Q1 ∩Q2 = ∅. Define the weighted automaton A′ = (Q′,ΣV ,∆′,wt′, I ′, F ′) by
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Q′ = Q×Q1 ]Q×Q2, I ′ = {ι} × I1 ] {ι} × I2, F ′ = F × F1 ]G× F2,
∆′ = {

(
(p, p′), a, (q, q′)

)
| (p, a, q) ∈ ∆ and (p′, a, q′) ∈ ∆1 ∪∆2}, and

wt′
(
(p, p′), a, (q, q′)

)
= wti(p′, a, q′) if (p′, a, q′) ∈ ∆i for i = 1, 2.

I Lemma 12. For each u ∈ Σ+
V , we have

{|A′|}(u) =


{|A1|}(u), if u is valid and u |= ϕ,

{|A2|}(u), if u is valid and u 6|= ϕ,

∅, if u is not valid.

Moreover, if A1 and A2 are aperiodic (resp. unambiguous, SCC-unambiguous) then so is A′.

Let V be a finite set of first-order variables and let V ′ = V ∪ {y} where y /∈ V. Given a
word w ∈ Σ+

V and a position i ∈ pos(w), we denote by (w, y 7→ i) the word over ΣV′ whose
projection on ΣV is w and projection on the y-component is 0i−110|w|−i, i.e., has a unique 1
on position i. Given a function A : Σ+

V′ → N〈X〉, we define the function
∑
yA : Σ+

V → N〈X〉
for w ∈ Σ+

V by (
∑
yA)(w) =

⊎
i∈pos(w)A(w, y 7→ i).

I Lemma 13. Let A be a weighted automaton over ΣV′ . We can construct a weighted
automaton A′ over ΣV such that {|A′|} =

∑
y{|A|}. Moreover, if A is aperiodic then A′ is

also aperiodic, and if A is SCC-unambiguous then A′ is also SCC-unambiguous.

We turn now to one of our main results: given a step-wFO formula Ψ, we can construct a
weighted automaton for

∏
xΨ which is both aperiodic and unambiguous.

When weights are uninterpreted, a weighted automaton A = (Q,Σ,∆,wt, I, F ) is a
letter-to-letter transducer from its input alphabet Σ to the output alphabet R. If in addition
the input automaton is unambiguous, then we have a functional transducer. In the following,
we will construct such functional transducers using the boolean output alphabet B = {0, 1}.

I Lemma 14. Let V = {y1, . . . , ym}. Given an FO formula ϕ with free variables contained
in V ′ = V ∪ {x}, we can construct a transducer Bϕ,V from ΣV to B which is aperiodic and
unambiguous and such that for all words w ∈ Σ+

V
1. there is a (unique) accepting run of Bϕ,V on the input word w iff it is a valid encoding of

a pair (w, σ) where w ∈ Σ+ and σ : V → pos(w) is a valuation,
2. and in this case, for all 1 ≤ i ≤ |w|, the ith bit of the output is 1 iff w, σ[x 7→ i] |= ϕ.

Proof (sketch). Notice that ΣV′ = ΣV × B so letters in ΣV′ are of the form (a, 0) or (a, 1)
where a ∈ ΣV . Abusing the notations, when v ∈ Σ∗V , we write (v, 0) to denote the word over
ΣV′ whose projection on ΣV is v and projection on the x-component consists of 0’s only.

Consider the deterministic, complete and aperiodic automaton Aϕ,V′ = (Q,ΣV′ ,∆, ι, F,G)
associated with ϕ by Theorem 3. We also denote by ∆ the extension of the transition function
to subsets of Q. So we see the deterministic and complete transition relation both as a total
function ∆: Q× ΣV′ → Q and ∆: 2Q × ΣV′ → 2Q.

We construct now the transducer Bϕ,V = (Q′,ΣV ,∆′,wt, I ′, F ′). The set of states is
Q′ = Q× 2Q × 2Q × B. The unique initial state is ι′ = (ι, ∅, ∅, 0). The set of final states is
F ′ = (Q× 2F × 2G × B) \ {ι′}. Then, we define the following transitions:

δ = ((p,X, Y, b), a, (p′, X ′, Y ′, 1)) ∈ ∆′ is a transition with weight wt(δ) = 1 if
p′ = ∆(p, (a, 0)), X ′ = ∆(X, (a, 0)) ∪ {∆(p, (a, 1))} and Y ′ = ∆(Y, (a, 0)),
δ = ((p,X, Y, b), a, (p′, X ′, Y ′, 0)) ∈ ∆′ is a transition with weight wt(δ) = 0 if
p′ = ∆(p, (a, 0)), X ′ = ∆(X, (a, 0)) and Y ′ = ∆(Y, (a, 0)) ∪ {∆(p, (a, 1))}.
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Notice that, whenever we read a new input letter a ∈ ΣV , there is a non-deterministic
choice. In the first case above, we guess that formula ϕ will hold on the input word when the
valuation is extended by assigning x to the current position, whereas in the second case we
guess that ϕ will not hold. The guess corresponds to the output of the transition, as required
by the second condition of Lemma 14. Now, we have to check that the guess is correct.
For this, the first component of Bϕ,V computes the state p = ∆(ι, (u, 0)) reached by Aϕ,V′

after reading (u, 0) where u ∈ Σ∗V is the current prefix of the input word. When reading the
current letter a ∈ ΣV , the transducer adds the state ∆(p, (a, 1)) = ∆(ι, (u, 0)(a, 1)) either
to the “positive” X-component or to the “negative” Y -component of its state, depending
on its guess as explained above. Then, the transducer continues reading the suffix v ∈ Σ∗V
of the input word. It updates the X (resp. Y )-component so that it contains the state
q = ∆(ι, (u, 0)(a, 1)(v, 0)) at the end of the run. Now, the acceptance condition allows us to
check that the guess was correct.
1. If w = uav is not a valid encoding of a pair (w, σ) with w ∈ Σ+ and σ : V → pos(w) then

q /∈ F ∪G and the run of the transducer is not accepting. Otherwise, let i ∈ pos(w) be
the position where the guess was made.

2. If the guess was positive then q belongs to the X-component and the accepting condition
implies q ∈ F , which means by definition of Aϕ,V′ that w, σ[x 7→ i] |= ϕ.

3. If the guess was negative then q belongs to the Y -component and the accepting condition
implies q ∈ G, which means by definition of Aϕ,V′ that w, σ[x 7→ i] 6|= ϕ. J

I Theorem 15. Let V = {y1, . . . , ym}. Given a step-wFO formula Ψ with free variables
contained in V ′ = V ∪ {x}, we can construct a weighted automaton AΨ,V over ΣV which
is aperiodic, unambiguous and equivalent to

∏
xΨ, i.e., {|AΨ,V |}(w) = {|

∏
xΨ|}V(w) for all

words w ∈ Σ+
V .

Proof. In case Ψ = r is an atomic step-wFO formula, we replace it with the equivalent
> ? r : r step-wFO formula. Let ϕ1, . . . , ϕk be the FO formulas occurring in Ψ. By the above
remark, we have k ≥ 1. Consider the aperiodic and unambiguous transducers B1, . . . ,Bk
given by Lemma 14. For 1 ≤ i ≤ k, we let Bi = (Qi,ΣV ,∆i,wti, Ii, Fi). The weighted
automaton AΨ,V = (Q,ΣV ,∆,wt, I, F ) is essentially a cartesian product of the transducers
Bi. More precisely, we let Q =

∏k
i=1Qi, I =

∏k
i=1 Ii, F =

∏k
i=1 Fi, and

∆ = {((p1, . . . , pk), a, (q1, . . . , qk)) | (pi, a, qi) ∈ ∆i for all 1 ≤ i ≤ k} .

Since the transducers Bi are all aperiodic and unambiguous, we deduce by Lemma 11 that
AΨ,V is also aperiodic and unambiguous. It remains to define the weight function wt.

Given a bit vector b = (b1, . . . , bk) ∈ Bk of size k, we define Ψ(b) as the weight from
R resulting from the step-wFO formula Ψ when the FO conditions ϕ1, . . . , ϕk evaluate to b.
Formally, the definition is by structural induction on the step-wFO formula:

r(b) = r (ϕi ? Ψ1 : Ψ2)(b) =
{

Ψ1(b) if bi = 1
Ψ2(b) if bi = 0 .

Consider a transition δ = ((p1, . . . , pk), a, (q1, . . . , qk)) ∈ ∆ and let δi = (pi, a, qi) for 1 ≤ i ≤ k.
Let b = (b1, . . . , bk) ∈ Bk where bi = wt(δi) ∈ B for all 1 ≤ i ≤ k. We define wt(δ) = Ψ(b).

Let w ∈ Σ+
V . If w is not a valid encoding of a pair (w, σ) then {|

∏
xΨ|}V(w) = ∅ by

definition. Moreover, {|AΨ,V |}(w) = ∅ since by Lemma 14, w is not in the support of B1. We
assume below that w is a valid encoding of a pair (w, σ) where w ∈ Σ+ and σ : V → pos(w)
is a valuation. Then, each transducer Bi admits a unique accepting run ρi reading the input
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word w. These result in the unique accepting run ρ of AΨ,V reading w. The projections of ρ
on B1, . . . ,Bk are ρ1, . . . , ρk. Let j ∈ pos(w) = {1, . . . , |w|} be a position in w and let δj be
the j-th transition of ρ. For 1 ≤ i ≤ k, we denote by δji the projection of δj on Bi and we let
bji = wt(δji ). By Lemma 14, we get bji = 1 iff w, σ[x 7→ j] |= ϕi. Finally, let b

j = (bj1, . . . , b
j
k).

From the above, we deduce that [[Ψ]]V∪{x}(w, σ[x 7→ j]) = Ψ(bj) = wt(δj). Putting things
together, we have {|AΨ,V |}(w, σ) = {{wt(ρ)}} = {{wt(δ1) · · ·wt(δ|w|}} = {|

∏
xΨ|}V(w, σ). J

I Theorem 16. Let Φ be a wFO sentence. We can construct an aperiodic SCC-unambiguous
weighted automaton A such that {|A|} = {|Φ|}. Moreover, if Φ does not contain the sum
operations + and

∑
x, then A can be chosen to be unambiguous. If Φ does not contain the

sum operation
∑
x, we can construct A as a finite union of unambiguous weighted automata.

Proof. We proceed by structural induction on Φ. For Φ = 0 this is trivial. For Φ =
∏
xΨ

with a step-wFO formula Ψ, we obtain an aperiodic unambiguous weighted automaton A by
Theorem 15. For formulas ϕ ? Φ1 : Φ2, Φ1 + Φ2 and

∑
xΦ, we apply Lemmas 12, 11, 13. J

In the proof of Theorem 16, we may obtain the final statement also as a consequence of
the preceding one by the following observations which could be of independent interest. Let
ϕ be an FO-formula and Φ1, Φ2 two wFO formulas, with free variables contained in V . Then,

{|ϕ ? Φ1 : Φ2|}V = {|ϕ ? Φ1 : 0 + ¬ϕ ? Φ2 : 0|}V ,
{|ϕ ? Φ1 + Φ2 : 0|}V = {|ϕ ? Φ1 : 0 + ϕ ? Φ2 : 0|}V .

Hence, given a wFO sentence Φ not containing the sum operation
∑
x, we can rewrite Φ as a

sum of 0,
∏
xΨ and if-then-else sentences of the form ϕ ? Φ′ : 0 where Φ′ does not contain

the sum operations + or
∑
x.

Proof of Thm 1. Immediate by Theorem 10, Theorem 4, Corollary 8 and Theorem 16. J

7 Concluding remarks

We introduced a model of aperiodic weighted automata and showed that a suitable concept
of weighted first order logic and two natural sublogics have the same expressive power as
polynomially ambiguous, finitely ambiguous, resp. unambigous aperiodic weighted automata.
For the three semirings N+,×, Nmax,+ and Nmin,+ the hierarchies of these automata classes
and thereby of the corresponding logics are strict. Some separating examples are given below.
Proofs and other separating examples can be found in [14].

I Example 17. Let Σ = {a} and consider the automaton A below over the semiring N+,×
of natural numbers. Note that the weighted automaton computes the sequence (Fn)n≥0 of
Fibonacci numbers 0, 1, 1, 2, 3, 5, · · · . More precisely, for any n ∈ N, we have [[A]](an) = Fn.

a | 1

a | 1

a | 1

Clearly, A is exponentially ambiguous and aperiodic with index 2. But [[A]] cannot be
realized by an aperiodic polynomially ambiguous weighted automaton. In [31], it was shown
that the Fibonacci numbers cannot be computed by copyless cost-register automata. y
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I Example 18. Consider the automaton A below over Σ = {a} and the semiring N+,×.
Clearly, [[A]](an) = n for each n > 0, and A is aperiodic and polynomially (even linearly)
ambiguous. But A is not equivalent to any finitely ambiguous weighted automaton.

a | 1 a | 1

a | 1

y

I Example 19. Let Σ = {a} and consider the function f : Σ∗ → N defined by f(an) = 2n+1.
We have f = [[A]] for some aperiodic and 2-ambiguous weighted automaton: one self-loop
computes 2n and another self-loop computes 1. But f cannot be realized by an unambiguous
weighted automaton over N+,×.

Our main theorem generalizes to the weighted setting a classical result of automata
theory. A challenging open problem is to obtain similar results for suitable weighted linear
temporal logics. Another interesting problem is to characterize wFO with unrestricted
weighted products, possibly using aperiodic restrictions of the pebble weighted automata
studied in [4, 27, 5].

Decidability problems for wFO or equivalently for weighted aperiodic automata are also
open and very interesting. For instance, given a wMSO sentence, is there an equivalent wFO
sentence? Decidability may indeed depend on the specific semiring.
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