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Abstract
We study the perfect matching reconfiguration problem: Given two perfect matchings of
a graph, is there a sequence of flip operations that transforms one into the other? Here, a flip
operation exchanges the edges in an alternating cycle of length four. We are interested in the
complexity of this decision problem from the viewpoint of graph classes. We first prove that the
problem is PSPACE-complete even for split graphs and for bipartite graphs of bounded bandwidth
with maximum degree five. We then investigate polynomial-time solvable cases. Specifically, we
prove that the problem is solvable in polynomial time for strongly orderable graphs (that include
interval graphs and strongly chordal graphs), for outerplanar graphs, and for cographs (also known
as P4-free graphs). Furthermore, for each yes-instance from these graph classes, we show that a
linear number of flip operations is sufficient and we can exhibit a corresponding sequence of flip
operations in polynomial time.
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80:2 The Perfect Matching Reconfiguration Problem

1 Introduction

Given an instance of some combinatorial search problem and two of its feasible solutions, a
reconfiguration problem asks whether one solution can be transformed into the other in a
step-by-step fashion, such that each intermediate solution is also feasible. Reconfiguration
problems capture dynamic situations, where some solution is in place and we would like to
move to a desired alternative solution without becoming infeasible. A systematic study of the
complexity of reconfiguration problems was initiated in [21]. Recently the topic has gained a
lot of attention in the context of constraint satisfaction problems and graph problems, such
as the independent set problem, the matching problem, and the dominating set problem.
Reconfiguration problems naturally arise for operational research problems but also are
closely related to uniform sampling (using Markov chains) or enumeration of solutions of a
problem. For an overview of recent results on reconfiguration problems, the reader is referred
to the surveys of van den Heuvel [17] and Nishimura [27].

In order to define valid step-by-step transformations, an adjacency relation on the set
of feasible solutions is needed. Depending on the problem, there may be different natural
choices of adjacency relations. For instance, we may assume that two matchings of a graph
are adjacent if one can be obtained from the other by exchanging precisely one edge, i.e.,
there exist e ∈M and f ∈M ′ such that M \{e} = M ′ \{f}. The corresponding modification
of a matching is usually referred to as token jumping (TJ). Here, the tokens are placed on the
edges of a matching and a token may be “moved” from an edge of the matching to another
edge so that we obtain another matching. There is another similar adjacency relation, where
two matchings are adjacent if one can be obtained from the other by moving a token to
some incident edge. This adjacency relation is called token sliding (TS). Ito et al. [21] gave
a polynomial-time algorithm that decides if there is a transformation between two given
matchings under the TJ and TS operations.

1.1 The perfect matching reconfiguration problem
Recall that a matching of a graph is perfect if it covers each vertex. We study the complexity
of deciding if there is a step-by-step transformation between two given perfect matchings of
a graph. However, according to the adjacency relations given by the TS and TJ operations,
there is no transformation between any two distinct perfect matchings of a graph. Since the
symmetric difference of any two perfect matchings of a graph consists of even-length disjoint
cycles, it is natural to consider a different adjacency relation for perfect matchings. We say
that two perfect matchings of a graph differ by a flip (or swap) if their symmetric difference
induces a cycle of length four. We consider two perfect matchings to be adjacent if they
differ by a flip. Intuitively, for two adjacent perfect matchings M and M ′, we think of a flip
as an operation that exchanges edges in M \M ′ for edges in M ′ \M .

An example of a transformation between two perfect matchings of a graph is given in
Figure 1. We formalize the task of deciding the existence of a transformation between two
given perfect matchings as follows.

Perfect Matching Reconfiguration
Input: Graph G, perfect matchings Ms and Mt of G.
Question: Is there a sequence of flips that transforms Ms into Mt?

We take the flip operation on a cycle of length four as the adjacency relation in this paper,
because a flip is in some sense a minimal modification of a perfect matching. Note that if
we do not restrict the length of a cycle in the definition of a flip, then for any two perfect
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Figure 1 A transformation between perfect matchings M0 and M4 under the flip operation. For
each i, 1 ≤ i ≤ 4, the matching Mi can be obtained from Mi−1 by applying the flip operation to the
cycle induced by the four painted (red) vertices in Mi.

matchings Ms and Mt of a graph, there always exists a sequence of flip operations that
transforms Ms into Mt, since we can perform a flip on each (disjoint) cycle in the symmetric
difference of Ms and Mt. As a compromise, we may extend our problem definition to flips on
cycles of fixed constant length `, where ` ≥ 4 and ` is even. We refer to the corresponding flip
operation as the `-flip operation, and the corresponding reconfiguration problem as Perfect
Matching `-Flip Reconfiguration. It should be noted that the `-flip operation must be
applied to a cycle of length exactly `, and hence there is no guarantee of the existence of a
transformation.

1.2 Related work
Transformation of matchings has been considered under several types of flip operations
for generating random matchings. Under the TS and TJ operations, numerous algorithms
and hardness results are available for finding transformations between matchings, more
generally, between independent sets. Furthermore, similar types of flip operations are
well known for stable matchings and some geometric matching problems related to finding
transformations between triangulations. More directly, a restriction of Perfect Matching
(4-Flip) Reconfiguration to grid graphs has been considered before in the setting of
domino tilings. In this restricted setting, Saldanha et al. [28] gave a criterion for the existence
of a transformation between two tilings (which correspond to perfect matchings of a grid
graph) and a formula for their distance of a transformation.

Sampling random perfect matchings

The problem of sampling or enumerating perfect matchings in a graph received considerable
attention (see, e.g., [31]). Determining the connectivity and the diameter of the solution
space formed by perfect matchings under the flip operation provide some information on the
ergodicity or the mixing time of the underlying Markov chain. Indeed, the connectivity of
the chain ensures the irreducibility (and usually the ergodicity) of the underlying Markov
chain. Additionally, the diameter of the solution space provides a lower bound on the mixing
time of the chain.

The use of flips for sampling random perfect matchings was first started in [8] where it is
seen as a generalization of transpositions for permutations. Their work was later improved
and generalized in [13] and [12]. The focus of these last two articles is to investigate the
problem of sampling random perfect matchings using a Markov Chain called the switch
chain. Starting from an arbitrary perfect matching, the chain proceeds by applying at each
step a random 4-flip operation (called switch in these papers). The aim of these papers is to
characterize classes of graphs for which simulating this chain for a polynomial number of steps
is enough to generate a perfect matching close to uniformly distributed. Some of their results
can be reformulated in the reconfiguration terminology. In [13], it is proved that the largest
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80:4 The Perfect Matching Reconfiguration Problem

hereditary class of bipartite graphs for which the solution space formed by perfect matchings
under the 4-flip operation is connected is the class of chordal bipartite graphs. This result
is generalized in [12] where they characterize the hereditary class of general (non-bipartite)
graphs for which the solution space is connected. They call this class Switchable. Note
that it is not clear whether graphs in this class can be recognized in polynomial time. The
question of the complexity of Perfect Matching (4-Flip) Reconfiguration is also
mentioned in [12].

Reconfiguration of matchings and independent sets

Recall that matchings of a graph correspond to independent sets of its line graph. Although
reconfiguration of independent sets received a considerable attention in the last decade
(e.g., [5, 6, 7, 16, 22, 23, 33]), all the known results for reconfiguration of independent sets
are based on the TJ or TS operations as adjacency relations. Thus, none of these results
carry over to the Perfect Matching Reconfiguration problem.

A related problem can be found in a more general setting: The problem of determining,
enumerating, or randomly generating graphs with a fixed degree sequence has received a
considerable attention since the fifties (see, e.g., [30, 15, 32]). Given two graphs with a fixed
degree sequence, one might want to know if it is possible to transform the one into the
other via a sequence of 4-flip operations and if yes, how many steps are needed for such a
transformation; note that the host graph (i.e., the graph G in our problem) is a clique in
this setting. Hakimi [15] proved that such a transformation always exists. Will [32] proved
that the problem of finding a shortest transformation is NP-complete, and Bereg and Ito [2]
provide a 3

2 -approximation algorithm for this problem.

Stable matchings

Suppose we are given a bipartite graph and for each vertex a linear preference order of its
neighbors. A matching M is not stable if there is an edge vw not in M such that v prefers
w and w prefers v to their respective partners in M . The well-known algorithm by Gale
and Shapley yields a stable matching in polynomial time [14]. It is known that any two
stable matchings cover the same vertices, so the stable matchings are perfect matchings of
some subgraph. Furthermore, they form a distributive lattice under rotations on preference-
oriented cycles, see for example [14]. Essentially, the symmetric difference of two stable
matchings consists of disjoint cycles (of several lengths) and we may exchange edges on these
cycles to obtain another stable matching. If we drop the preferences, then the question is
simply if we can find a transformation between two perfect matchings by exchanging edges
on cycles in the symmetric difference. Clearly the answer is always yes, for example by
processing the cycles in the symmetric difference one by one. We consider a similar setting,
but restrict the length of the cycles.

Diagonal-flips of triangulations

A diagonal-flip of a triangulation in geometry is similar to our 4-flip operation in the sense
that we switch between two states of a quadrilateral. In the context of triangulations, a
diagonal-flip operation switches the diagonal of a quadrilateral. Transformations between
triangulations of point sets and polygons have been studied mostly in the plane. It is known
that the solution space formed by triangulations of point sets and polygons in the plane
is connected and has diameter O(n2), where n is the number of points [20, 24]. Recently,
NP-completeness has been proved for deciding the distance in the solution space between
triangulations of a point set in the plane [25] and triangulations of a simple polygon [1].
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Figure 2 Our results, where each arrow represents the inclusion relationship between graph
classes: A→ B represents that the graph class B is properly included in the graph class A.

Houle et al. [18] have considered triangulations of point sets in the plane that admit a
perfect matching. They show that any two such triangulations are connected under the
diagonal-flip operation. For this purpose they consider the graph of non-crossing perfect
matchings, where two matchings are adjacent if they differ by a single non-crossing cycle (of
arbitrary length). They show that the graph of non-crossing perfect matchings is connected
and conclude from this that any two triangulations that admit a perfect matching must be
connected. In contrast to their setting, we remove all geometric requirements, but restrict
the length of the cycles allowed for our flip operation.

1.3 Our results
In this paper, we study the complexity of Perfect Matching Reconfiguration from
the viewpoint of graph classes. Figure 2 summarizes our results.

Recall that reconfiguration of matchings under the TS and TJ operations can be solved
in polynomial time for any graph [21]. In contrast, we prove that Perfect Matching
Reconfiguration is PSPACE-complete, even for split graphs, and for bipartite graphs of
bounded bandwidth and of maximum degree five. We note that our hardness result for
bipartite graphs gives contrast to chordal bipartite graphs for which there always exists a
transformation between any two perfect matchings [13]. In addition, we extend our hardness
result to a more general setting, namely the reconfiguration of k-factor subgraphs under the
`-flip operation for any fixed k ≥ 1 and any fixed even integer ` ≥ 4.

We then investigate polynomial-time solvable cases. We prove that Perfect Matching
Reconfiguration admits a polynomial-time algorithm on strongly orderable graphs (these
include interval graphs and strongly chordal graphs), outerplanar graphs, and cographs (also
known as P4-free graphs). More specifically, we give the following results:

For strongly orderable graphs, a transformation between two perfect matchings always
exists; hence the answer is always yes. Furthermore, there is a transformation of linear
length (i.e., a linear number of flip operations) between any two perfect matchings and
such a transformation can be found in polynomial time.
Perfect Matching Reconfiguration on outerplanar graphs can be solved in linear
time, and we can find a transformation of linear length for a yes-instance in linear time.
(Note that there are no-instances, e.g., long cycles).
Perfect Matching Reconfiguration on cographs can be solved in polynomial time,
and we can find a transformation of linear length for a yes-instance in polynomial time.
(Again, there are no-instances).

Due to the page limitation, we omit proofs of the claims marked with (∗).

MFCS 2019



80:6 The Perfect Matching Reconfiguration Problem

1.4 Notation
For standard definitions and notations on graphs, we refer the reader to [9]. Let G = (V, E)
be a simple graph. We sometimes denote by V (G) and E(G) the vertex set and edge set
of G, respectively. A matching M ⊆ E of G is a set of edges that share no endpoint. A
vertex v is covered by a matching M if v is incident to an edge in M . For a vertex set
V ′ ⊆ V , we denote by G[V ′] the subgraph of G induced by V ′. For a vertex set W ⊆ V , let
G−W := G[V \W ]. For a vertex v ∈ V , we denote by N(v) the neighborhood of v, that is,
N(v) := {w ∈ V | vw ∈ E}.

Two perfect matchings M and M ′ of G are adjacent if their symmetric difference M4M ′

induces a cycle of length four. A sequence M0, M1, . . . , Mq of perfect matchings in G is
called a reconfiguration sequence between M and M ′ if M0 = M , Mq = M ′, and Mi−1
and Mi are adjacent for each i, 1 ≤ i ≤ q. Given two perfect matchings Ms and Mt of a
graph G, Perfect Matching Reconfiguration is to determine whether there exists a
reconfiguration sequence between Ms and Mt. We denote by a triple (G, Ms, Mt) an instance
of the problem.

2 PSPACE-completeness

In this section, we prove that perfect matching reconfiguration is PSPACE-complete.
Interestingly, the problem remains intractable even for bipartite graphs, even though match-
ings in bipartite graphs satisfy several nice properties.

I Theorem 1. Perfect matching reconfiguration is PSPACE-complete for bipartite
graphs whose maximum degree is five and whose bandwidth is bounded by a fixed constant.

Proof. Observe that the problem can be solved in (most conveniently, nondeterministic [29])
polynomial space, and hence it is in PSPACE. As a proof of Theorem 1, we thus prove that
the problem is PSPACE-hard for such graphs, by giving a polynomial-time reduction from
the Nondeterministic Constraint Logic problem (NCL for short) [16].

Definition of nondeterministic constraint logic

An NCL “machine” is an undirected graph together with an assignment of weights from
{1, 2} to each edge of the graph. An (NCL) configuration of this machine is an orientation
(direction) of the edges such that the sum of weights of in-coming arcs at each vertex is at
least two. Figure 3(a) illustrates a configuration of an NCL machine, where each weight-2
edge is depicted by a (blue) thick line and each weight-1 edge by a (red) thin line. Then,
two NCL configurations are adjacent if they differ in a single edge direction. Given an
NCL machine and its two configurations, it is known to be PSPACE-complete to determine
whether there exists a sequence of adjacent NCL configurations which transforms one into
the other [16].

An NCL machine is called an and/or constraint graph if it consists of only two types of
vertices, called “NCL and vertices” and “NCL or vertices” defined as follows: A vertex of
degree three is called an NCL and vertex if its three incident edges have weights 1, 1, and 2.
(See Figure 3(b).) An NCL and vertex u behaves as a logical and, in the following sense:
the weight-2 edge can be directed outward for u only if both two weight-1 edges are directed
inward for u. Note that, however, the weight-2 edge is not necessarily directed outward even
when both weight-1 edges are directed inward. A vertex of degree three is called an NCL
or vertex if its three incident edges have weights 2, 2, and 2. (See Figure 3(c).) An NCL
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Figure 3 (a) A configuration of an NCL machine, (b) an NCL and vertex u, and (c) an NCL or
vertex v.

or vertex v behaves as a logical or: one of the three edges can be directed outward for
v if and only if at least one of the other two edges is directed inward for v. It should be
noted that, although it is natural to think of NCL and/or vertices as having inputs and
outputs, there is nothing enforcing this interpretation; especially for NCL or vertices, the
choice of input and output is entirely arbitrary because an NCL or vertex is symmetric. For
example, the NCL machine in Figure 3(a) is an and/or constraint graph. From now on,
we call an and/or constraint graph simply an NCL machine, and call an edge in an NCL
machine an NCL edge. NCL remains PSPACE-complete even if an input NCL machine is
planar, bounded bandwidth, and of maximum degree three [34].

Gadgets and reduction

Suppose that we are given an instance of NCL, that is, an NCL machine and two configura-
tions of the machine. We will replace each of the NCL edges and NCL and/or vertices with
its corresponding gadget; if an NCL edge e is incident to an NCL vertex v, then we connect
the corresponding gadgets for e and v by a pair of vertices, called connectors (between v and
e) or (v, e)-connectors, as illustrated in Figure 4(a) and (b). Thus, each edge gadget has two
pairs of connectors, and each and/or gadget has three pairs of connectors. Our gadgets are
all edge-disjoint, and share only connectors.

Figure 5 shows our three types of gadgets which correspond to NCL edges and NCL
and/or vertices. As illustrated in Figure 4, we replace each of the NCL edges and NCL
and/or vertices with its corresponding gadget; let G be the resulting graph. Notice that
each of our three gadgets is of maximum degree three, and connectors in the edge gadget are
of degree two; thus, G is of maximum degree five. In addition, each of our three gadgets is a
bipartite graph such that two connectors in the same pair belong to different sides of the
bipartition; therefore, G is bipartite. Furthermore, since NCL remains PSPACE-complete
even if an input NCL machine is bounded bandwidth [34], the resulting graph G is also
bounded bandwidth and of maximum degree five; notice that, since each gadget consists of
only a constant number of edges, the bandwidth of G is also bounded.

We next construct two perfect matchings of G which correspond to two given NCL config-
urations Cs and Ct of the NCL machine. In our reduction, we construct the correspondence
between orientations of an NCL machine and perfect matchings of the corresponding graph,
as follows: We regard that the orientation of an NCL edge e = vw is inward direction for v if
the two (v, e)-connectors are both covered by (edges in) the and/or gadget for v. On the
other hand, we regard that the orientation of e = vw is outward direction for w if the two
(w, e)-connectors are both covered by the edge gadget for e. To achieve this correspondence,
our gadgets are constructed so that both two (v, e)-connectors are always covered by exactly
one of the gadgets for v and e. Note that there are (in general, exponentially) many perfect
matchings which correspond to the same NCL configuration. However, by the construction of

MFCS 2019
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(a)                                                                  (b)

v w Gadget
for v

Gadget
for w

Gadget for vw

Figure 4 (a) An NCL edge vw, and (b) its corresponding gadgets, where the connectors are
depicted by (red) circles.

e1

ea

e2

eb

ea

ec

(a) (b) (c)

(v, e)-connectors

(w, e)-connectors

Figure 5 Illustrations of (a) an edge gadget for an NCL edge e = vw, (b) an and gadget, and
(c) an or gadget. In the and/or gadget, the three light green parts represent the edge gadgets
corresponding to the edges incident to the NCL vertex; e1 and e2 in the and gadget correspond to
weight-1 edges.

the three gadgets, no two distinct NCL configurations correspond to the same perfect match-
ing of G. We arbitrarily choose two perfect matchings Ms and Mt of G which correspond to
Cs and Ct, respectively.

This completes the construction of our corresponding instance of perfect matching
reconfiguration. The construction can be done in polynomial time. Furthermore, the
following lemma gives the correctness of our reduction.

I Lemma 2 (∗). There exists a desired sequence of NCL configurations between Cs and Ct
if and only if there exists a reconfiguration sequence between Ms and Mt.

This completes the proof of Theorem 1. J

Remarks
We conclude this section by giving some remarks that can be obtained from Theorem 1. We
first prove that the problem remains intractable even for split graphs. A graph is split if its
vertex set can be partitioned into a clique and an independent set.

I Corollary 3. Perfect matching reconfiguration is PSPACE-complete for split graphs.

Proof. By Theorem 1 the problem remains PSPACE-complete for bipartite graphs. Consider
the graph obtained by adding new edges so that one side of the bipartition forms a clique.
The resulting graph is a split graph. We claim that these new edges can never be part of any
perfect matching of the graph. Indeed, since the original graph was bipartite, there must be
the same number of vertices on each side of the bipartition. In a perfect matching of the
split graph, all the vertices from the independent set must be matched with vertices from
the clique, and no vertex from the clique remains to be matched together. Thus, the claim
holds, and hence the corollary follows. J
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We finally extend Theorem 1 into two directions: regular spanning subgraphs and flip
operations on alternating cycles of a fixed length. Let k be a positive integer. A spanning
subgraph H of a graph G is a k-factor if all the vertices in H have degree exactly k. Thus, a
1-factor of G is a perfect matching of G. Based on the proof of Theorem 1, we can obtain
the following theorem.

I Theorem 4 (∗). Let k ≥ 1 be a fixed integer, and let ` ≥ 4 be a fixed even integer. Given
two k-factors Hs and Ht of a graph G, it is PSPACE-complete to decide if there is a sequence
of `-flip operations transforming Hs into Ht.

3 Polynomial-time algorithms

In this section, we investigate the polynomial-time solvability of perfect matching re-
configuration from the viewpoint of graph classes. We first give the following lemma,
which holds for any graph.

I Lemma 5. It suffices to solve Perfect Matching Reconfiguration for 2-connected
graphs having at least four vertices.

Proof. Let (G, Ms, Mt) be a given instance of Perfect Matching Reconfiguration. If
G is not connected, then we can simply consider each connected component separately.

Since the input graph G = (V, E) has a perfect matching, it has an even number of
vertices. If |V | = 2, then it must hold that Ms = Mt = E, and hence the instance is trivially
a yes-instance. Therefore, it suffices to solve the problem for |V | ≥ 4.

Suppose that G is not 2-connected and has a cut vertex v ∈ V , that is, G− {v} consists
of more than one connected component. Since |V | is even, there exists a vertex subset
X ⊆ V \ {v} such that |X| is odd and G[X] forms a connected component of G−{v}. Then,
any perfect matching in G contains an edge connecting v and X. This shows that we can
consider two subgraphs G1 := G[X ∪ {v}] and G2 := G− (X ∪ {v}), separately. That is, we
output “yes” if (Gi, Ms ∩ Ei, Mt ∩ Ei) is a yes-instance for every i ∈ {1, 2}, where Ei is the
edge set of Gi, and output “no” otherwise. Thus, the lemma follows. J

3.1 Strongly orderable graphs
Interval graphs form easy instances for many NP-hard problems, and the situation is no
different here. In fact, we prove that any instance on an interval graph is a yes-instance.
Our argument also yields a linear-time algorithm to compute a reconfiguration sequence of a
linear number of flip operations between any two perfect matchings.

For the sake of generality, we consider a wider class of graphs, called strongly orderable
graphs. A graph G = (V, E) is strongly orderable if there is a strong ordering on its vertices,
defined as follows: an order (v1, v2, . . . , vn) of V such that for every i, j, k, ` with i < j and
k < `, if all of vivk, viv` and vjvk are edges, then vjv` is an edge. Note that the class of
strongly orderable graphs is hereditary: every induced subgraph of a strongly orderable
graph is strongly orderable.

Our proof strategy for the following theorem is to show that every perfect matching N of
a strongly orderable graph G can be transformed into some particular perfect matching M

of G, called the canonical perfect matching; then, any two perfect matchings N and N ′ of
G admit a reconfiguration sequence between them via M . The canonical perfect matching
of a graph G with respect to an order O = (v1, v2, . . . , vn) is a perfect matching of G (if
any) greedily obtained by selecting, among the available edges, the one with endpoints of

MFCS 2019



80:10 The Perfect Matching Reconfiguration Problem

smallest indices. Note that any strongly orderable graph that admits a perfect matching, also
admits a canonical perfect matching with respect to a corresponding order on the vertices
(see, e.g., [10]). We give the following theorem in this subsection.

I Theorem 6 (∗). Let G be a strongly orderable graph. Then, there is a reconfiguration
sequence of linear length between any two perfect matchings of G. Furthermore, such a
reconfiguration sequence can be found in linear time if we are given a strong ordering on the
vertices of G as a part of the input.

The natural question regarding Theorem 6 is whether a strong ordering can be computed
efficiently. In general, Dragan [11] proved that strongly orderable graphs G = (V, E) can be
recognized in O(|V | · (|V | + |E|)) time, and if so we can obtain its strong ordering in the
same running time. However, when restricted to interval graphs, we can obtain a strong
ordering in linear time [19]. We thus have the following corollary.

I Corollary 7. Let G be an interval graph. Then, there is a reconfiguration sequence of linear
length between any two perfect matchings of G. Furthermore, such a reconfiguration sequence
can be found in linear time.

3.2 Outerplanar graphs
In this subsection, we consider outerplanar graphs. Note that there are no-instances for
outerplanar graphs, e.g., induced cycles of even length more than four. Nonetheless, we give
the following theorem.

I Theorem 8. Perfect Matching Reconfiguration can be solved in linear time for
outerplanar graphs. Moreover, for a yes-instance, a reconfiguration sequence of linear length
can be output in linear time.

We give such an algorithm as a proof of Theorem 8. Suppose we are given a simple
outerplanar graph G = (V, E), and two perfect matchings Ms and Mt in G. By Lemma 5 we
assume without loss of generality that G is 2-connected and |V | ≥ 4. Then, G has a planar
embedding such that the outer face boundary is a simple cycle and all the vertices of G are
on the outer face boundary. Suppose that the vertices v1, v2, . . . , vn appear in this order
along the cycle. For notational convenience, we denote vn+1 = v1, vn+2 = v2, and v0 = vn.
We first give the following assumption without loss of generality.

I Lemma 9. Perfect Matching Reconfiguration for outerplanar graphs can be reduced
to the case when vivj 6∈ E holds for any pair of indices i, j ∈ {1, 2, . . . , n} such that |i− j| is
even. In particular, vivi+2 6∈ E holds for any i ∈ {1, 2, . . . , n}.

Proof. Suppose that there exists a pair of indices i, j ∈ {1, 2, . . . , n} such that |i − j| is
even and vivj ∈ E. Then, the edge vivj cannot be contained in any perfect matching of G,
because G[{vi+1, vi+2, . . . , vj−1}] forms a connected component in G− {vi, vj} even though
it contains an odd number of vertices. Therefore, we can remove vivj from G. J

We now show the following lemma for an outerplanar graph G = (V, E).

I Lemma 10 (∗). If vivi+2 6∈ E for any i ∈ {1, 2, . . . , n}, then there exists an index
k ∈ {1, 2, . . . , n} such that both vk and vk+1 are of degree two.

Let k ∈ {1, 2, . . . , n} be an index such that both vk and vk+1 are of degree two, and let
ei := vivi+1 for each i ∈ {k − 1, k, k + 1}. Note that if a perfect matching of G does not
contain ek = vkvk+1, then it has to contain both ek−1 = vk−1vk and ek+1 = vk+1vk+2. We
consider the following two cases separately.



M. Bonamy et al. 80:11

Case 1: We first consider the case with vk−1vk+2 6∈ E. In this case, we can see that ek is
not contained in any cycles of length four, and hence ek is never touched by any flip
operation. Thus, we consider one of the following three sub-cases.

If ek ∈Ms4Mt, then we can immediately conclude that (G, Ms, Mt) is a no-instance.
If ek ∈Ms∩Mt, then we solve the smaller instance (G−{vk, vk+1}, Ms\{ek}, Mt\{ek}).
If ek 6∈Ms ∪Mt, then we solve the smaller instance (G− {vk−1, vk, vk+1, vk+2}, Ms \
{ek−1, ek+1}, Mt \ {ek−1, ek+1}).

Case 2: We next consider the case with vk−1vk+2 ∈ E. Then, G[{vk−1, vk, vk+1, vk+2}]
forms a cycle of length four. For each i ∈ {s, t}, we define

M ′
i :=

{
Mi \ {ek} if ek ∈Mi,
(Mi \ {ek−1, ek+1}) ∪ {vk−1vk+2} otherwise.

Let G′ = G− {vk, vk+1}, and we solve the smaller instance (G′, M ′
s, M ′

t).

In either case, we can reduce the original instance (G, Ms, Mt) to a smaller instance, which
implies that our algorithm runs in polynomial time. Indeed, we can implement the above
arguments so that the algorithm runs in linear time. (The details are omitted.) The
correctness of Case 1 is obvious, while the correctness of Case 2 is guaranteed as follows.

I Lemma 11 (∗). (G, Ms, Mt) is a yes-instance if and only if (G′, M ′
s, M ′

t) is a yes-instance.

This completes the proof of Theorem 8. J

3.3 Cographs
We consider cographs in this subsection. Cographs, also known as P4-free graphs, are
graphs without a path on four vertices as an induced subgraph. As examples concerning
reconfiguration on this class of graphs, it is known that the problems independent set
reconfiguration and Steiner tree reconfiguration can be solved in polynomial time
for cographs [3, 4, 26], while they are PSPACE-complete for general graphs [21, 26]. We will
show that the situation is similar for Perfect Matching Reconfiguration.

To describe our algorithm for cographs, we generalize our problem to non-perfect match-
ings. In the generalized problem, we regard that two matchings are adjacent if their symmetric
difference is either a cycle of length four, or a path on three vertices. Note that any two
adjacent matchings have the same size. Then, the generalized problem is defined as follows:

General Matching Reconfiguration
Input: Graph G, two matchings Ms and Mt of G.
Question: Is there a sequence of adjacent matchings that transforms Ms into Mt?

An instance of the generalized problem is also denoted by a triple (G, Ms, Mt), and a
sequence of adjacent matchings is also called a reconfiguration sequence. (G, Ms, Mt) is
clearly a no-instance if |Ms| 6= |Mt|, and hence we assume that |Ms| = |Mt| holds.

Our main result of this subsection is the following theorem.

I Theorem 12 (∗). General Matching Reconfiguration can be solved in polynomial
time for cographs. Moreover, for a yes-instance, a reconfiguration sequence of linear length
can be output in polynomial time.

We note that when two input matchings are perfect, every connected component in their
symmetric difference is a cycle. Therefore, even in the generalized problem, two adjacent
perfect matchings differ by a flip operation on a cycle of length four. We thus obtain the
following result as a corollary of Theorem 12.

MFCS 2019
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I Corollary 13. Perfect Matching Reconfiguration can be solved in polynomial time
for cographs. Moreover, for a yes-instance, a reconfiguration sequence of linear length can be
output in polynomial time.

As a proof of Theorem 12, we give such an algorithm in this subsection. We will use the
recursive characterization of cographs. For two graphs G1 = (V1, E1) and G2 = (V2, E2), their
disjoint union G1∪G2 is the graph such that V (G1∪G2) = V1∪V2 and E(G1∪G2) = E1∪E2,
while their complete join G1 ∨ G2 is the graph such that V (G1 ∨ G2) = V1 ∪ V2 and
E(G1 ∨G2) = E1 ∪ E2 ∪ {vw | v ∈ V1, w ∈ V2}. Then, a cograph can be recursively defined,
as follows:

a graph consisting of a single vertex is a cograph;
if G1 and G2 are cographs, then their disjoint union G1 ∪G2 is a cograph; and
if G1 and G2 are cographs, then their complete join G1 ∨G2 is a cograph.

Let (G, Ms, Mt) be a given instance of General Matching Reconfiguration such
that G = (V, E) is a cograph. By Lemma 5 we assume without loss of generality that G

is connected and |V | ≥ 4, and hence G = G1 ∨ G2 for two cographs G1 = (V1, E1) and
G2 = (V2, E2). Assume that |V1| ≥ |V2|, and let k := |Ms| = |Mt|. We first give a sufficient
condition for which there exists a reconfiguration sequence between Ms and Mt.

I Lemma 14 (∗). There is a reconfiguration sequence between Ms and Mt if G has a matching
M of size k such that at least one of the following two conditions holds:
(C1) M ∩ E2 6= ∅; and
(C2) at least one vertex of G2 is not covered by M .
Furthermore, a reconfiguration sequence of linear length can be output in polynomial time.

We claim that this sufficient condition can be checked in polynomial time. The existence
of a matching satisfying the condition (C1) can be checked as follows: For each edge vw ∈ E2,
we check if the graph G− {v, w} has a matching of size k − 1, or not. This can be done in
polynomial time since a maximum matching in a graph can be computed in polynomial time.
Similarly, the condition (C2) can be checked in polynomial time, as follows: For each vertex
v ∈ V2, we check if the graph G− {v} has a matching of size k, or not.

We then consider the case where the sufficient condition of Lemma 14 does not hold.
Recall that G = G1 ∨G2 and |V1| ≥ |V2|.

I Lemma 15 (∗). Suppose that G does not have a matching of size k satisfying the conditions
(C1) or (C2) of Lemma 14. Then, the following two claims hold.

(G, Ms, Mt) is a yes-instance if and only if (G1, Ms ∩ E1, Mt ∩ E1) is a yes-instance.
For a yes-instance (G, Ms, Mt), a reconfiguration sequence between Ms and Mt of linear
length can be output in polynomial time.

The above arguments can be implemented so that the algorithm runs in polynomial time,
since we reduce the original instance (G, Ms, Mt) to a smaller instance (G1, Ms∩E1, Mt∩E1).

This completes the proof of Theorem 12. J

4 Conclusion

We introduced the Perfect Matching Reconfiguration problem and analyzed its
complexity from the viewpoint of graph classes. We showed that this problem is PSPACE-
complete on split graphs and bipartite graphs of bounded bandwidth and maximum degree five.
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Furthermore, we gave polynomial-time algorithms for strongly orderable graphs, outerplanar
graphs, and cographs. Each of the algorithms outputs a reconfiguration sequence of linear
length in polynomial time.

A natural open question is on which graph classes a shortest reconfiguration sequence
can be found in polynomial time. Furthermore, it would be interesting to investigate if the
flip operation can be used in order to sample perfect matchings uniformly.
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