
Better Practical Algorithms for rSPR Distance
and Hybridization Number
Kohei Yamada
Division of Information System Design, Tokyo Denki University, Japan
19rmd38@ms.dendai.ac.jp

Zhi-Zhong Chen
Division of Information System Design, Tokyo Denki University, Japan
zzchen@mail.dendai.ac.jp

Lusheng Wang
Department of Computer Science, City University of Hong Kong, China
cswangl@cityu.edu.hk

Abstract
The problem of computing the rSPR distance of two phylogenetic trees (denoted by RDC) is NP-hard
and so is the problem of computing the hybridization number of two phylogenetic trees (denoted by
HNC). Since they are important problems in phylogenetics, they have been studied extensively in
the literature. Indeed, quite a number of exact or approximation algorithms have been designed
and implemented for them. In this paper, we design and implement one exact algorithm for HNC
and several approximation algorithms for RDC and HNC. Our experimental results show that the
resulting exact program is much faster (namely, more than 80 times faster for the easiest dataset
used in the experiments) than the previous best and its superiority in speed becomes even more
significant for more difficult instances. Moreover, the resulting approximation programs output
much better results than the previous bests; indeed, the outputs are always nearly optimal and often
optimal. Of particular interest is the usage of the Monte Carlo tree search (MCTS) method in the
design of our approximation algorithms. Our experimental results show that with MCTS, we can
often solve HNC exactly within short time.

2012 ACM Subject Classification Theory of computation → Theory and algorithms for application
domains

Keywords and phrases phylogenetic tree, fixed-parameter algorithms, approximation algorithms,
Monte Carlo tree search

Digital Object Identifier 10.4230/LIPIcs.WABI.2019.5

Supplement Material Our programs are available at http://rnc.r.dendai.ac.jp/rsprHN.html.

1 Introduction

Constructing the evolutionary history of a set of species is an important problem in the study
of biological evolution. Phylogenetic trees are used in biology to represent the ancestral
history of a collection of existing species. This is appropriate for many groups of species.
However, due to reticulation events such as hybridization, recombination, and lateral gene
transfer, there are certain groups for which the ancestral history cannot be represented
by a tree. For this kind of groups of species, it is more appropriate to represent their
ancestral history by rooted acyclic digraphs, where vertices of in-degree at least two represent
reticulation events.

More specifically, by looking at two different segments of sequences or two different sets
of genes of a set of extant species, we may obtain two different phylogenetic trees T1 and T2
of the same extant species with high confidence. Given T1 and T2, we want to construct a
reticulate network N with the smallest number of reticulation events needed to explain the

© Kohei Yamada, Zhi-Zhong Chen, and Lusheng Wang;
licensed under Creative Commons License CC-BY

19th International Workshop on Algorithms in Bioinformatics (WABI 2019).
Editors: Katharina T. Huber and Dan Gusfield; Article No. 5; pp. 5:1–5:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:19rmd38@ms.dendai.ac.jp
mailto:zzchen@mail.dendai.ac.jp
mailto:cswangl@cityu.edu.hk
https://doi.org/10.4230/LIPIcs.WABI.2019.5
http://rnc.r.dendai.ac.jp/rsprHN.html
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 rSPR Distance and Hybridization Number

evolution of the species under consideration [13]. Roughly speaking, N is the smallest rooted
acyclic digraph such that each of T1 and T2 is homeomorphic to a subgraph of N . The number
of vertices of in-degree larger than 1 in N is called the hybridization number of T1 and T2.
The problem of computing the hybridization number of two given phylogenetic trees, denoted
by HNC, is NP-hard [12, 4]. For this reason, quite a number of approximation algorithms and
fixed-parameter algorithms have been designed and implemented for HNC [1, 9, 11, 14, 16, 20].
To the best of our knowledge, the software in [10] for solving HNC exactly achieves the
previously best speed in practice, while the software in [16] for solving HNC approximately
achieves the previously best approximation-ratio in practice.

A problem closely related to HNC is the problem of computing the rSPR distance of two
given phylogenetic trees T1 and T2 of the same extant species. The rSPR distance between T1
and T2 can be defined as the minimum number of edges that should be deleted from each of T1
and T2 in order to transform them into homeomorphic rooted forests F1 and F2. The problem
of computing the rSPR distance of two trees, denoted by RDC, is NP-hard [4, 12]. This has
motivated researchers to design and implement either exact or approximation algorithms
for RDC [4, 6, 7, 8, 10, 12, 15, 17, 20, 19]. To the best of our knowledge, the software in [7]
for solving RDC exactly (respectively, approximately) achieves the previously best speed
(respectively, approximation-ratio) in practice (http://rnc.r.dendai.ac.jp/rspr.html).

In this paper, we first improve Chen et al.’s exact algorithm [10] for HNC. Since rSPR
distance is a lower bound on hybridization number, the main idea is to use the lower bound
on rSPR distance outputted by Chen et al.’s algorithm [7] to cut unnecessary branches of the
search tree. Another main idea is to arrange the child recursive calls of each recursive call
carefully. Our experimental results show that the resulting algorithm can be implemented
into a program that runs more than 80 times faster than Chen et al.’s UltraNet [10] for
the easiest dataset used in the experiments. Moreover, its superiority in speed becomes even
more significant for more difficult instances.

We then present a new approximation algorithm for RDC. Although this algorithm does
not necessarily always output a better result than the algorithm in [7], we can obtain a
new algorithm which calls the two algorithms and outputs the better result returned by
them. Our experimental results show that the resulting algorithm can be implemented into
a program that often outputs better results than Chen et al.’s program [7]. We further
propose to use the so-called Monte Carlo tree search (MCTS) method [5] to improve any
approximation algorithm A for RDC. In our application of MCTS, instead of performing a
number of random play-outs 1 in the simulation phase of each round, we make a single call
of A and then in the backpropagation phase, use its returned result to update information
in the sequence of nodes selected for this round. Our experimental results show that the
MCTS-based algorithm (denoted by MCTS_A) can be implemented into a program that
outputs much better and indeed always nearly optimal results. It is worth mentioning that
even if A has a theoretical performance guarantee (say, a 2-approximation ratio), we are
unable to prove any theoretical performance guarantee for MCTS_A. Nevertheless, our
experimental results show that MCTS_A almost always outputs better results than A. Of
course, if we want MCTS_A to have the same theoretical performance guarantee as A, then
we can modify MCTS_A so that it calls A and uses A’s output instead if its own is worse.

1 Roughly speaking, a random play-out here means computing an approximate solution by always making
a random choice whenever a decision has to be made among a set of multiple choices.

http://rnc.r.dendai.ac.jp/rspr.html

K. Yamada, Z.-Z. Chen, and L. Wang 5:3

We further combine our MCTS-based approximation algorithm for RDC with the integer-
linear programming (ILP) approach in [16] to obtain a new approximation algorithm for
HNC. Our experimental results show that the new algorithm can be implemented into a
program that outputs much better (indeed always nearly optimal and often optimal) results
than the previous best in [16].

Our programs are available at http://rnc.r.dendai.ac.jp/rsprHN.html.

2 Preliminaries

Throughout this paper, a rooted forest always means a directed acyclic graph in which every
vertex has in-degree at most 1 and out-degree at most 2.

Let F be a rooted forest. The roots (respectively, leaves) of F are those vertices whose
in-degrees (respectively, out-degrees) are 0. The size of F , denoted by |F |, is the number of
roots in F minus 1. A vertex v of F is unifurcate if it has only one child in F . If a root v of
F is unifurcate, then contracting v in F is the operation that modifies F by deleting v. If a
non-root vertex v of F is unifurcate, then contracting v in F is the operation that modifies
F by first adding an edge from the parent of v to the child of v and then deleting v.

For a vertex v of F , the subtree of F rooted at v, denoted by F v, is the subgraph of F
whose vertices are the descendants of v in F and whose edges are those edges connecting two
descendants of v in F . If v is a root of F , then F v is a component tree of F ; otherwise, it
is a pendant subtree of F . For convenience, we view each vertex u of F as an ancestor and
descendant of u itself. A vertex u is lower than another vertex v 6= u in F if u is a descendant
of v in F . The lowest common ancestor (LCA) of a set U of vertices in F , denoted by `F (U),
is the lowest vertex v in F such that for every vertex u ∈ U , v is an ancestor of u in F . Note
that if no component tree of F contains all vertices of U , then `F (U) does not exist. Two
vertices u and v of F are incomparable if neither of them is an ancestor of the other in F .
For two incomparable vertices u and v appearing in the same component tree of F , DF (u, v)
denotes the set of all vertices w such that w is not a vertex of the (undirected) path Pu,v
between u and v in F but is the child of some inner vertex of Pu,v. For each pendant subtree
T of F that has at least two leaves, the leaf-label set of T is a cluster of F .

A rooted binary forest is a rooted forest in which the out-degree of every non-leaf vertex
is 2. Let F be a rooted binary forest. F is a rooted binary tree if it has only one root. If v is
a non-root vertex of F with parent p, then detaching F v is the operation that modifies F
by first deleting the edge (p, v) and then contracting p. A detaching operation on F is the
operation of detaching a pendant subtree of F .

2.1 Phylogenetic Trees and Forests
Let X be a set of existing species. A phylogenetic tree on X is a rooted binary tree whose
leaf set is X. A phylogenetic forest is the graph obtained by applying a sequence of zero or
more detaching operations on a phylogenetic tree. In other words, a phylogenetic forest is a
graph whose connected components are phylogenetic trees on different sets of species.

An FF pair is a pair (F1, F2), where F1 and F2 are two phylogenetic forests on the same
set X of species. A TT pair is an FF pair (F1, F2) such that both F1 and F2 are trees.

For an FF pair (F1, F2), the labeled leaves of F1 naturally one-to-one correspond to
those of F2 (i.e., each pair of corresponding leaves have the same label). We extend the
correspondence between the labeled leaves of F1 and F2 to (some of) their ancestors recursively
as follows. Suppose that v1 is a non-leaf vertex of F1, v2 is a non-leaf vertex of F2, and the
children of v1 in F1 one-to-one correspond to those of v2 in F2. Then, v1 corresponds to v2.

WABI 2019

http://rnc.r.dendai.ac.jp/rsprHN.html

5:4 rSPR Distance and Hybridization Number

An FF pair (F1, F2) is proper if every root of F1, except at most one, corresponds to a root
in F2. Obviously, a TT pair is also a proper FF pair. Simplifying a proper FF pair (F1, F2)
is to repeatedly perform the following operation on F1 and F2 until it is not applicable:

If some non-root vertex v of F1 corresponds to a root of F2, then modify F1 by detach-
ing F v1 .

Obviously, if (F1, F2) is proper, then it remains proper after being simplified.
Throughout the remainder of this paper, an FF pair always means a proper FF pair. A

sub-FF pair of a TT pair (T1, T2) is an FF pair (F1, F2) such that for each i ∈ {1, 2}, Fi is
obtained from Ti by performing zero or more detaching operations.

For an FF-pair (F1, F2), if a vertex v1 of F1 and a vertex v2 of F2 correspond to each other,
then both v1 and v2 are matched and they are the mates of each other. For brevity, if v is a
matched vertex of Fi for some i ∈ {1, 2}, then we will also use v to denote its mate in F3−i.

2.2 Agreement Forests

Let (F1, F2) be a sub-FF pair of a TT pair (T1, T2). If we can apply a sequence of detaching
operations on each of F1 and F2 so that they become the same forest F , then we refer to F
as an agreement forest (AF) of (F1, F2). A maximum agreement forest (MAF) of (F1, F2)
is an AF of (F1, F2) whose size is minimized over all AFs of (F1, F2). The size of an MAF
of (F1, F2) minus |F2| is called the rSPR distance of (F1, F2), and is denoted by d(F1, F2).
Obviously, an AF F of (F1, F2) is also an AF of (T1, T2). The following lemma is shown in [7].

I Lemma 1 ([7]). Given an FF-pair (F1, F2), we can compute a lower bound b` and an
upper bound bu on the rSPR distance of (F1, F2) in cubic time such that bu ≤ 2b`.

Suppose that F is an AF of (T1, T2). For each i ∈ {1, 2}, we can define an injective
mapping fi from the vertex set of F to that of Ti as follows. For each leaf u of F , fi(u) is the
leaf of Ti with the same label. For each non-leaf vertex u of F , fi(u) is `Ti(fi(v1), . . . , fi(vq)),
where v1, . . ., vq are the leaf descendants of u in F . For convenience, we hereafter also use
each vertex u of F to denote fi(u) in Ti. We can now use F , T1, and T2 to construct a
directed graph GF as follows:

The vertices of GF are the roots of F .
For every two roots r1 and r2 of F , there is an edge from r1 to r2 in GF if and only if r1
is an ancestor of r2 in T1 or T2.

We refer to GF as the decision graph associated with F . If GF is acyclic, then F is an
acyclic agreement forest (AAF) of (T1.T2); otherwise, F is a cyclic agreement forest (CAF) of
(T1, T2). If F is an AAF of (T1, T2) and its size is minimized over all AAFs of (T1, T2), then
F is a maximum acyclic agreement forest (MAAF) of (T1, T2). The hybridization number of
(T1, T2) is the size of an MAAF of (T1, T2), and is denoted by h(T1, T2).

We are now ready to define the problems studied in this paper:

Hybridization Number Computation (HNC):
Input: A TT-pair (T1, T2).
Output: The hybridization number of (T1, T2).

rSPR Distance Computation (RDC):
Input: A TT-pair (T1, T2).
Output: The rSPR distance of (T1, T2).

K. Yamada, Z.-Z. Chen, and L. Wang 5:5

2.3 Transforming a CAF to an AAF
Suppose that F is a CAF of a TT-pair (T1, T2). We construct a directed graph D as follows.
For every non-leaf vertex of F , we create a vertex in D. There is an edge in D from a vertex
u to a vertex v precisely if in either F1 or F2 (or in both), there is a directed path from u to v.
A minimum directed feedback vertex set (MDFVS) of D is a minimum-sized set U of vertices
in D such that modifying D by removing the vertices in U yields a directed acyclic graph.

I Lemma 2 ([14]). Let U be an MDFVS of D. Then, to transform F to an AAF of (F1, F2)
by performing a minimum number of detaching operations on F , it suffices to modify F by
removing the vertices corresponding to those in U and further contracting unifurcate vertices.

Let V be the set of vertices in D. By Lemma 2, to compute an MDFS U of D, it suffices
to solve the following integer linear programming (ILP) model [16]:

Minimize :
∑
v∈V

xv (1)

s.t. 0 ≤ `v ≤ |V | − 1 for all v ∈ V (2)
`v ≥ `u + 1− |V |xu − |V |xv for all e = (u, v) ∈ E (3)
`v ∈ Z for all v ∈ V (4)
xv ∈ {0, 1} for all v ∈ V (5)

Fortunately, in our application, we will have an integer k and only want to know whether
the optimal value of the objective function is bounded by k from above. So, we modify
the model by replacing the objective function with any constant (say, 0) and adding the
new constraint

∑
v∈V xv ≤ k. We refer to this modified model as the ILP model associated

with (T1, T2, F, k).

3 Solving HNC Exactly

Our algorithm for solving HNC exactly will use a subroutine for the following parameterized
version of HNC.
Parameterized HNC (PHNC):
Input: (T1, T2, F1, F2, k), where (T1, T2) is a TT pair, (F1, F2) is a sub-FF pair of (T1, T2),

and k is an integer.
Output: “Yes” if performing k more detaching operations on F2 leads to an AAF of (T1, T2);

“no” otherwise.

Several definitions are in order. Let (F1, F2) be an FF-pair, and i ∈ {1, 2}. A vertex v
of Fi is active if v is a matched non-root vertex of Fi and its parent in Fi is not matched.
Since (F1, F2) is an FF-pair, all active vertices of F1 fall into the same component tree of
F1. An active sibling-pair of Fi is a pair (u, v) of active vertices in Fi such that u and v are
siblings in Fi.

3.1 Key Ideas
Basically, our algorithm is a significantly refined version of the algorithm for HNC implemented
in Chen and Wang’s UltraNet [10]. In this subsection, we list the key new ideas behind our
new algorithm for HNC.

WABI 2019

5:6 rSPR Distance and Hybridization Number

First, the new algorithm builds on a recent 2-approximation algorithm for RDC [7].
When we compute the hybridization number, we use the lower bound outputted by the
approximation algorithm to bound the search of the hybridization number. Since the lower
bound is often nearly optimal, this bounding idea makes it possible for our algorithm to find
the hybridization number in short time. Since the exact algorithm for RDC in [7] is also
fast, we can use it to bound the search of the hybridization number instead of using the
2-approximation algorithm for RDC.

Secondly, the new algorithm is recursive and we make child recursive-calls in a careful
order. More precisely, child recursive-calls that appear to finish in shorter time are made
earlier than those that look likely to finish in longer time.

Thirdly, when we make a recursive call, we may know certain vertices v such that the
subtree rooted at v should not be detached, and so we lock these vertices so that the subtrees
rooted at them will never be detached in subsequent recursive calls. Moreover, the locked
vertices help us make fewer child recursive-calls.

Finally, when our algorithm needs to transform a CAF F of a TT-pair (T1, T2) to an
AAF of (T1, T2), we use the ILP-based method outlined in Section 2.3. However, we modify
the ILP model in Section 2.3 as follows.

Let D be the digraph constructed from F and (T1, T2) as in Section 2.3. Since F is a
CAF, D has a cycle and we need to remove at least one vertex from D to make D acyclic.
Once D becomes acyclic, its number of vertices has decreased by at least 1. So, it is safe
to modify the ILP model by changing the upper bound on the value of `v from |V | − 1 to
|V | − 2.
Some vertices of F may have been locked. So, for each locked vertex v of F , we can
modify the model by fixing xv = 0.
By Lemma 4 in [9], we know that for each edge (p, c) of F , if removing a set U of vertices
from D with {p, c} ⊆ U makes D acyclic, then removing the vertices of U \ {c} also
makes D acyclic. Thus, for each edge (p, c) of F , we can add the constraint xc ≤ xp
to the model.

3.2 The Algorithm
Throughout this subsection, fix an instance (T1, T2) of HNC.

Our algorithm for computing h(T1, T2) exactly first repeatedly performs a cluster reduction
on T1 and T2 until no such reduction is applicable. For the detail of cluster reductions,
the reader is referred to [2]. As the result of zero or more cluster reductions on T1 and
T2, we obtain a sequence (T1,1, T2,1), . . . , (T1,q, T2,q) of instances of HNC such that q ≥
1 and h(T1, T2) =

∑q
i=1 h(T1,i, T2,i). Hence, it suffices to compute h(T1,i, T2,i) for each

i ∈ {1, . . . , q}. Therefore, for simplicity, we hereafter assume that q = 1 and in turn
(T1, T2) = (T1,1, T2,1).

Our algorithm then uses the program in [7] for RDC to compute d(T1, T2). The program
can also output an AF F of (T1, T2) with size d(T1, T2). So, our algorithm checks whether F
is indeed an AAF of (T1, T2) (by constructing the decision graph GF associated with F and
testing if GF is acyclic or not). If it is, then d(T1, T2) is also h(T1, T2) and so the algorithm
outputs d(T1, T2) and stops. Thus, we hereafter assume that F is not an AAF of (T1, T2).

To compute h(T1, T2), it suffices to solve PHNC on input (T1, T2, T1, T2, k) for k =
d(T1, T2), d(T1, T2) + 1, . . . (in this order) until a “yes” is returned. So, it remains to detail
our algorithm for PHNC. During its execution, our algorithm will lock certain non-root
vertices v of F2 at certain time points so that F v2 will never be detached thereafter; it will
always maintain the following invariant:

K. Yamada, Z.-Z. Chen, and L. Wang 5:7

Invariant 1: Whenever a non-root vertex is locked by the algorithm, it knows that it
will return “yes” with the locking if and only if it will return “yes” without the locking.

Our algorithm for PHNC is recursive and proceeds as follows. It starts by checking
whether k ≥ 0. If k < 0, then this is Base Case 1 and it returns “no”. So, we hereafter
assume k ≥ 0. Then, it simplifies (F1, F2) and further checks the following base case:

Base Case 2: All roots of F1 are matched. In this case, F1 and F2 are the same forest
and hence F2 is an AF of (T1, T2). To test if F2 is an AAF, our algorithm constructs the
decision graph GF2 associated with F2 and tests if it is acyclic or not. If GF2 is acyclic, then
it returns “yes”. Otherwise, it checks if k ≥ 1 or not. If k ≤ 0, then it returns “no”. On the
other hand, if k ≥ 1, then it constructs the ILP model associated with (T1, T2, F2, k) and
solves the ILP model by an ILP solver (say, CPLEX or GUROBI); it returns “yes” if and
only if the model is feasible.

We hereafter assume that one or more roots of F1 are still not matched. Our algorithm
then uses the program in [7] to compute a lower bound b` and an upper bound bu on d(F1, F2).
The program will also return an AF F of (F1, F2) with size bu as a witness for bu. If k < b`,
then this is Base Case 3, and the algorithm returns “no”. Otherwise, the algorithm checks
if the ILP model associated with (T1, T2, F, k) is feasible or not. If it is feasible, then this is
Base Case 4, and the algorithm returns “yes”.

We hereafter assume that k ≥ b` and the ILP model associated with (T1, T2, F, k) is
infeasible. Clearly, both F1 and F2 must have at least one active sibling-pair. Our algorithm
now distinguishes several cases in the following order.

Case 1: There is an active sibling-pair (u, v) in F1 such that |DF2(u, v)| = 1. In this
case, we clearly know that to transform F2 into an AF of (F1, F2), we need to select at least
one x ∈ {u, v, w} and detach F x2 , where DF2(u, v) = {w}. So, if all vertices of {u, v, w} are
locked, then this is Base Case 5, and the algorithm returns “no”. Thus, we may assume that
at least one vertex of {u, v, w} is not locked. As observed in [18], selecting x = u is the same
as selecting x = v (which means that the former selection leads to a “yes”-output if and only
if so does the latter). Hence, if u or v is not locked, then our algorithm chooses an arbitrary
unlocked x ∈ {u, v} and makes a recursive call on input (T1, T2, F1, F

′
2, k − 1), where F ′2 is

obtained from F2 by detaching F x2 . In addition, if w is also not locked, then our algorithm
makes a recursive call on input (T1, T2, F1, F

′′
2 , k − 1), where F ′′2 is obtained from F2 by

detaching Fw2 and further locking x in case the recursive call on input (T1, T2, F1, F
′
2, k − 1)

has been made. So, we make one or two recursive calls. If at least one call returns “yes”, the
algorithm returns “yes”; otherwise, it returns “no”.

Case 2: There is an active sibling-pair (u, v) in F2 such that |DF1(u, v)| = 1 and the
unique vertex w in DF1(u, v) is active. This case is symmetric to Case 1; so, the algorithm
proceeds as in Case 1 except that each of u, v, and w is replaced by its mate.

Case 3: Neither Case 1 nor 2 occurs. In this case, our algorithm searches F1 for an active
sibling-pair (u, v) in the following order :
Type 1: Both u and v are locked in F2.
Type 2: u and v belong to different connected components of F2.
Type 3: Either u or v is locked in F2.
Type 4: The sibling s of the parent of u and v in F1 satisfies that either s is active or both

children of s in F1 are active.
Type 5: (u, v) is of none of the above types.
We emphasize that the smaller type of an active sibling-pair in F1 is, the more our algorithm
prioritizes it. Intuitively speaking, choosing an active sibling-pair of a smaller type in F1 will
likely lead to fewer recursive calls.

WABI 2019

5:8 rSPR Distance and Hybridization Number

Suppose that our algorithm has selected an active sibling-pair (u, v) in F1 as above. Our
algorithm constructs a family F of sets as follows. Initially, F is empty. For each y ∈ {u, v}
such that y is not locked in F2, we add the set {y} to F . Moreover, if no vertex in DF2(u, v)
is locked in F2, then we add DF2(u, v) to F . Since Case 1 does not occur, |DF2(u, v)| ≥ 2.
Clearly, to transform F2 into an AF of (F1, F2), we need to select a set S ∈ F and detach
Fw2 for all w ∈ S. Thus, if F is empty, then our algorithm returns “no”. Otherwise, it sorts
the sets in F so that larger sets precede smaller sets. Let S1, . . . , St be the sets in F . For
each i ∈ {1, . . . , t}, let F2,i be the phylogenetic forest obtained from F2 by first detaching
F y2 for all y ∈ Si and further distinguishing two cases as follows:
1. If |Si| ≥ 2, then lock both u and v in F2.
2. If i ≥ 2 and |Si−1| = |Si| = 1, then lock the vertex of Si−1 in F2.
Now, our algorithm makes t recursive calls on input (T1, T2, F1, F2,1, k−|S1|), . . . , (T1, T2, F1,

F2,t, k − |St|). If at least one call returns “yes”, the algorithm returns “yes”; otherwise,
it returns “no”.

4 Solving RDC Approximately

Basically, we want an approximate algorithm that outputs better results than the algorithm
in [7]. Although the algorithm in [8] has a worse theoretical-guarantee than the algorithm
in [7], it does not necessarily mean that the former always outputs worse results. So, we
obtain a new approximation algorithm for RDC which simply runs the algorithms in [7, 8]
and outputs the better result returned by them.

Our new idea is to use MCTS to improve the performance of any approximation algorithm
for RDC. MCTS has a number of variants, but we here use the basic one (namely, the UCT
algorithm) for its simplicity.

4.1 Outline of the Algorithm
In the remainder of this section, fix an FF-pair (F1, F2). Our algorithm for computing
d(F1, F2) approximately is recursive and starts by simplifying (F1, F2) and further checking
whether F2 is already an AF of (F1, F2). If it is, then this is Base Case 1 and it returns 0.
So, assume that F2 is not an AF of (F1, F2). Then, F1 has a unique non-matched root r. If r
has at most 6 leaf descendants in F1, then this is Base Case 2 and our algorithm computes
d(F1, F2) in O(1) time by brute force. Thus, we further assume that r has more than 6 leaf
descendants in F1. Now, our algorithm finds a promising vertex z in F2, next detaches F z2 ,
further makes a recursive call on the modified (F1, F2), and finally returns c+ 1, where c is
the value returned by the recursive call.

It remains to consider how to find a promising z. In the following two cases, we know an
optimal choice of z, i.e., we know that the choice of z will lead to an optimal solution [6]:

Optimal Case 1: (u, v) is an active sibling-pair in F1 with |DF2(u, v)| = 1. In this case,
z is the unique vertex in DF2(u, v).
Optimal Case 2: (u, v) is an active sibling-pair in F2 with |DF1(u, v)| = 1 and the
unique vertex in DF1(u, v) is a leaf. In this case, z is the mate of the unique vertex in
DF1(u, v).

We hereafter assume that none of the above optimal cases occurs. Next, we outline how
to find a promising z with MCTS. The idea behind MCTS is to build a small-sized search
tree Γ. We will always use ρ to denote the root of Γ. In our case, each node α of Γ holds the
following information:

K. Yamada, Z.-Z. Chen, and L. Wang 5:9

f(α) : A sub-FF pair of (F1, F2). (Comment: We use f(α)1 and f(α)2 to denote the first
and the second forest in f(α), respectively.)
t(α) : The number of times α has been visited so far.
s(α) : The score of α.
Q(α) : the reward α has received so far.

When creating a node α, we are always given a sub-FF pair (F̂1, F̂2) of (F1, F2) and
initialize f(α) = (F̂1, F̂2), t(α) = 0, s(α) = 0, and Q(α) = 0. To evaluate a child α of a node
β of Γ, we use the UCT value of α, which is computed as follows:

Q(α)
t(α) + C ·

√
2 ln t(β)
t(α) ,

where C is a constant (called the balance constant and fixed to be 0.2 in our experiments).
The best child of a node β in Γ is the child of β in Γ whose UCT value is maximized over all
children of β in Γ.

Initially, Γ has a unique node, namely, the root ρ created with (F1, F2). We then grow
Γ by repeatedly performing the following steps (in this order) for a predetermined number
(fixed to be 60 in our experiments) of repetitions:
1. Select a leaf-node α in Γ by starting at ρ and repeatedly descending to the best child of

the current node until reaching a leaf. (Comment: Ties are broken arbitrarily.)
2. Expand α. (Comment: See Section 4.2.)
3. Perform a simulation for α by calling an approximation algorithm (say, the algorithm

in [7]) on input f(α), and then update s(α) to App(f(α)) + |f(α)2| − |f(ρ)2|, where
App(f(α)) means the approximate rSPR distance of f(α) returned by the approximation
algorithm. (Comment: We refer to this step as the simulation step.)

4. Compute the reward Q(α) =
{

1 if s(α) ≤ the average score of the nodes in Γ
0 otherwise

.

5. Backpropagate the reward Q(α) from α all the way to the root ρ by performing the
following step for all ancestors β of α in Γ:

Increase t(β) by 1 and increase Q(β) by Q(α),
Once finishing growing Γ as above, we select the best child γ of ρ. As will be detailed in
Section 4.2, f(γ)2 is obtained from f(ρ)2 by detaching the subtrees rooted at the vertices of
a set S. Finally, we set z to be an arbitrary vertex in S.

4.2 Expanding a Node α

Suppose that we have selected a leaf node α to expand. We first simplify f(α) and then
search f(α)1 and f(α)2 for an active sibling-pair (u, v) in the following order :
Type 1: (u, v) is an active sibling-pair in f(α)1 with |Df(α)2(u, v)| = 1.
Type 2: (u, v) is an active sibling-pair in f(α)2 such that |Df(α)1(u, v)| = 1 and the unique

vertex in Df(α)1(u, v) is a leaf
Type 3: (u, v) is an active sibling-pair in f(α)1 such that u and v belong to different connected

components of f(α)2.
Type 4: (u, v) is an active sibling-pair in f(α)1 such that u and v belong to the same

connected component of f(α)2 and `f(α)2(u, v) is a root of f(α)2.
Type 5: (u, v) is of none of the above types.
We emphasize that the smaller type of an active sibling-pair is, the more our algorithm
prioritizes it.

WABI 2019

5:10 rSPR Distance and Hybridization Number

If (u, v) is not found, we know that f(α)2 is an AF of f(α) and hence we have nothing
to do with expanding α. Thus, we hereafter assume that (u, v) has been found. Then, we
construct a family F of sets as follows.

If (u, v) is of Type 1 (respectively, 2), then F consists of only Df(α)2(u, v) (respectively,
Df(α)1(u, v)).
If (u, v) is of Type 3 or 4, then F consists of {u} and {v}.
If (u, v) is of Type 5, then F consists of {u}, {v}, and Df(α)2(u, v).

We now use F to create the children of α as follows. For each set S ∈ F , we create a
child βS , where f(βS)1 = f(α)1 and f(βS)2 is obtained from f(α)2 by detaching the subtrees
rooted at the vertices in S.

5 Solving HNC Approximately

We say that an approximation algorithm A for RDC is useful if given a TT-pair (T1, T2),
A can not only output an approximate value d′ of d(T1, T2) but also output an AF F of
(T1, T2) with |F | = d′. Our approximation algorithm given in Section 4 is useful and so are
all known approximation algorithms for RDC. Using a useful approximation A for RDC,
we can design an approximation algorithm for HNC, denoted by Ahn, as follows. Given a
TT-pair (T1, T2), Ahn calls A to obtain an approximate value d′ of d(T1, T2) and an AF F of
(T1, T2) with |F | = d′. If F is an AAF of (T1, T2), then d′ is also an approximate value of
h(T1, T2) and hence Ahn returns d′. So, assume that F is a CAF of (T1, T2). Then, as in
Section 2.3, we can transform F into an AAF of (T1, T2) by solving an ILP model. Thus, d′
plus the optimal value of the objective function of the model gives us an approximate value
of h(T1, T2) and so Ahn returns it.

6 Experimental Results

To compare our new algorithms against the previous bests, we have implemented them in
Java. In this section, we compare the real performance of our programs against that of the
previous bests. In our experiments, we use a Linux (x64) desktop PC with Intel i7-4790 CPU
(4.00GHz, 8 threads) and 32GB RAM. As the ILP solver, we use the IBM CPLEX which is
freely available for academic research.

We define the average approximation ratio (AAR) of an approximation algorithm A (for
RDC or HNC) as follows. For a given instance I, we use A(I) (respectively, B(I)) to denote
the value outputted by A (respectively, an exact algorithm) on input I; the approximation
ratio of A for I, denoted by rA(I), is A(I)

B(I) . The AAR of A for a set I of instances is∑
I∈I

rA(I)
|I| .
As in previous studies [1, 3, 7, 10, 16, 17], we here generate simulated datasets randomly.

More specifically, for a given pair (n,m) of parameters, we use the program of [3] to generate
a dataset consisting of 120 TT-pairs, where each TT-pair is generated by first generating a
random phylogenetic tree T1 with n leaves and then obtaining another phylogenetic tree T2
by applying m random rSPR operations on T1. So, the rSPR distance of each pair (T1, T2)
in the dataset is at most m, but the hybridization number of (T1, T2) may be larger than m.
In our experiments stated below, we choose (n,m) from {(100, 50), (200, 80), (200, 100)} and
generate a dataset I(n,m) for each (n,m) in this set.

K. Yamada, Z.-Z. Chen, and L. Wang 5:11

Table 1 Comparing the AARs of Approximation Algorithms for RDC.

Svv CMW CHN CombApp MCTS_CMW MCTS_CHN CombMCTS
1.41 1.133 1.135 1.104 1.03 1.03 1.019
1.391 1.141 1.127 1.108 1.048 1.044 1.031

The first and the second rows show the results for I(100, 50) and I(200, 100), respectively;
Svv, CMW, and CHN mean the algorithm in [15], [8], and [7], respectively; MCTS_CMW
and MCTS_CHN mean our MCTS algorithm with CMW and CHN used in the simulation
step, respectively; CombApp (respectively, CombMCTS) means the algorithm which runs
CMW and CHN (respectively, MCTS_CMW and MCTS_CHN) and outputs the better
solution returned by them.

Table 2 Comparing the AARs of Approximation Algorithms for HNC.

Svvhn CMWhn CHNhn CombApphn MCTS_CMWhn MCTS_CHNhn CombMCTShn

1.397 1.146 1.134 1.1 1.032 1.031 1.02
1.419 1.087 1.083 1.062 1.021 1.02 1.015

The first and the second rows show the results for I(100, 50) and I(200, 80), respectively.

6.1 Results on Approximating RDC
Since all programs used in our experiments for approximating RDC are fast, it is meaningless
to compare them in terms of running time. So, we compare them in terms of their AARs. We
use I(100, 50) and I(200, 100) in the experiment. Our experimental results are summarized in
Table 1. From the table, we can see that MCTS is very helpful in improving the performance of
approximation algorithms for RDC. In particular, our best algorithm (namely, CombMCTS)
achieves a significantly better AAR than the previous best (namely, CHN). We did not test
MCTS_Svv because the source code of Svv has not been made public.

6.2 Results on Approximating HNC
Since we want the exact hybridization number to be known, we use the two easiest data-
sets (namely, I(100, 50) and I(200, 80)) in this experiment to compare the AARs of our
approximation algorithms for HNC against the previous bests. Our experimental results
are summarized in Table 1. From the table, we can see that MCTS is very helpful in
improving the performance of approximation algorithms for HNC as well. In particular, our
best algorithm (namely, CombMCTShn) achieves a much better AAR than the previous
best (namely, Svvhn). Indeed, our experimental results show that for about half the tested
instances, CombMCTShn found optimal solutions.

6.3 Results on Computing HNC Exactly
To compare the speed of our new exact algorithm for HNC against the previous best (namely,
UltraNet in [10]), we use I(100, 50) and I(200, 80) again. For each tested instance, we set a
1-hour time limit on the running time of each program. As the result, UltraNet fails to solve
1 (respectively, 16) instances of I(100, 50) (respectively, I(200, 80)), while our new program
fails to solve none. With the failed instances excluded, the average running time of UltraNet
is 54.46 (respectively, 323.86) seconds for the first (respectively, second) dataset, while that

WABI 2019

5:12 rSPR Distance and Hybridization Number

of our new program is only 0.66 (respectively, 0.86) seconds. So, our new program is more
than 82 times faster than UltraNet and its superiority in speed over UltraNet becomes
more significant for larger instances.

References
1 B. Albrecht, C. Scornavacca, A. Cenci, and D.H. Huson. Fast computation of minimum

hybridization networks. Bioinformatics, 28(2):191–197, 2012.
2 M. Baroni, C. Semple, and M. Steel. Hybrids in real time. Systematic Biology, 55(1):46–56,

2006.
3 R.G. Beiko and N. Hamilton. Phylogenetic identification of lateral genetic transfer events.

BMC Evolutionary Biology, 6(15):159–169, 2006.
4 M. Bordewich and C. Semple. On the computational complexity of the rooted subtree prune

and regraft distance. Annals of Combinatorics, 8(4):409–423, 2005.
5 C. Browne, E. Powley, D. Whitehouse, S. Lucas, P.I. Cowling, P. Rohlfshagen, S. Tavener,

D. Perez, S. Samothrakis, and S. Colton. A Survey of Monte Carlo Tree Search Methods.
IEEE Transactions on Computational Intelligence and AI in Games, 4(1):1–49, 2012.

6 Z.-Z. Chen, Y. Fan, and L. Wang. Faster exact computation of rSPR distance. Journal of
Combinatorial Optimization, 29(3):605–635, 2015.

7 Z.-Z. Chen, Y. Harada, Y. Nakamura, and L. Wang. Faster exact computation of rSPR
distance via better approximation. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, to appear.

8 Z.-Z. Chen, E. Machida, and L. Wang. An Approximation Algorithm for rSPR Distance. In
22nd International Computing and Combinatorics Conference, Ho Chi Minh City, Vietnam,
August 2-4, 2016, pages 468–479, 2016.

9 Z.-Z. Chen and L. Wang. Algorithms for reticulate networks of multiple phylogenetic trees.
IEEE/ACM Trans. on Computational Biology and Bioinformatics, 9(2):372–384, 2012.

10 Z.-Z. Chen and L. Wang. An ultrafast tool for minimum reticulate networks. Journal of
Computational Biology, 20(1):38–41, 2013.

11 L. Collins, S. Linz, and C. Semple. Quantifying hybridization in realistic time. J. of Comput.
Biol., 18(10):1305–1318, 2011.

12 J. Hein, T. Jing, L. Wang, and K. Zhang. On the complexity of comparing evolutionary trees.
Disc. Appl. Math., 71(1-3):153–169, 1996.

13 D.H. Huson, R. Rupp, and C. Scornavacca. Phylogenetic Networks: Concepts, Algorithms and
Applications. Cambridge University Press, 2010.

14 S. Kelk, L. van Iersel, N. Lekic, S. Linz, C. Scornavacca, and L. Stougie. Cycle killer...qu’est-ce
que c’est? On the comparative approximability of hybridization number and directed feedback
vertex set. SIAM J. Discrete Math., 26(4):1635–1656, 2012.

15 F. Schalekamp, A. van Zuylen, and S. van der Ster. A Duality Based 2-Approximation
Algorithm for Maximum Agreement Forest. In 43rd International Colloquium on Automata,
Languages and Programming, Rome, Italy, July 11-15, 2016, pages 70:1–70:14, 2016.

16 L. van Iersel, S. Kelk, N. Lekic, and C. Scornavacca. A practical approximation algorithm
for solving massive instances of hybridization number for binary and nonbinary trees. BMC
Bioinformatics, 15(127), 2014.

17 C. Whidden, R.G. Beiko, and N. Zeh. Fast FPT algorithms for computing rooted agreement
forest: theory and experiments. In International Symposium on Experimental Algorithms,
Naples, Italy, May 20-22, 2010, pages 141–153, 2010.

18 C. Whidden, R.G. Beiko, and N. Zeh. Fixed-parameter algorithms for maximum agreement
forests. SIAM J. Comput., 42(4):1431–1466, 2013.

19 C. Whidden and N. Zeh. A unifying view on approximation and FPT of agreement forests.
In 9th International Workshop on Algorithms in Bioinformatics, Philadelphia, PA, USA,
September 12-13, 2009, pages 390–401, 2009.

20 Y. Wu. A practical method for exact computation of subtree prune and regraft distance.
Bioinformatics, 25(2):190–196, 2009.

	Introduction
	Preliminaries
	Phylogenetic Trees and Forests
	Agreement Forests
	Transforming a CAF to an AAF

	Solving HNC Exactly
	Key Ideas
	The Algorithm

	Solving RDC Approximately
	Outline of the Algorithm
	Expanding a Node alpha

	Solving HNC Approximately
	Experimental Results
	Results on Approximating RDC
	Results on Approximating HNC
	Results on Computing HNC Exactly

