
Bounded-Length Smith–Waterman Alignment
Alexander Tiskin
Department of Computer Science, University of Warwick, Coventry CV4 7AL, United Kingdom
http://warwick.ac.uk/alextiskin

Abstract
Given a fixed alignment scoring scheme, the bounded length (respectively, bounded total length)
Smith–Waterman alignment problem on a pair of strings of lengths m, n, asks for the maximum
alignment score across all substring pairs, such that the first substring’s length (respectively, the sum
of the two substrings’ lengths) is above the given threshold w. The latter problem was introduced
by Arslan and Eğecioğlu under the name “local alignment with length threshold”. They proposed a
dynamic programming algorithm solving the problem in time O(mn2), and also an approximation
algorithm running in time O(rmn), where r is a parameter controlling the accuracy of approximation.
We show that both these problems can be solved exactly in time O(mn), assuming a rational scoring
scheme; furthermore, this solution can be used to obtain an exact algorithm for the normalised
bounded total length Smith–Waterman alignment problem, running in time O(mn log n). Our
algorithms rely on the techniques of fast window-substring alignment and implicit unit-Monge matrix
searching, developed previously by the author and others.
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1 The framework

In this section, we introduce briefly the framework developed by the author in [23, 22, 21, 24].
Definitions and results of this section have either appeared in these publications, or are their
straightforward generalisations.

1.1 Preliminaries
For matrix and vector indices, we will use either integers, or half-integers (sometimes called
odd half-integers):
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For ease of reading, half-integer variables will be indicated by hats (e.g. ı̂, ̂). Ordinary
variable names (e.g. i, j, with possible subscripts or superscripts), will normally denote integer
variables, but can sometimes denote a variable that may be either integer, or half-integer.

It will be convenient to denote

i− = i− 1
2 i+ = i+ 1

2

for any integer or half-integer i. The set of all half-integers can now be written as{
. . . , (−3)+, (−2)+, (−1)+, 0+, 1+, 2+, . . .

}
We denote integer and half-integer intervals by

[i : j] = {i, i+ 1, . . . , j − 1, j} 〈i : j〉 =
{
i+, i+ 3

2 , . . . , j −
3
2 , j
−}
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16:2 Bounded-Length Smith–Waterman Alignment

In both cases, the interval is defined by a pair of integer endpoints. We will use round
parentheses (i : j) to indicate that in the given context, either square [i : j] or angle 〈i : j〉
brackets may be used.

For finite intervals [i : j] and 〈i : j〉, we call the difference j − i interval length. Note that
for a given length n, an integer interval consists of n+ 1 elements, and a half-integer interval
of n elements.

We use the following notation for the Cartesian product of two integer or two half-
integer intervals:

(i : i′ | j : j′) = (i : i′)× (j : j′)

We will denote singleton Cartesian products by (i, j) = (i | j).
We indicate the index range of a matrix by juxtaposition, e.g. matrix A(i : i′ | j : j′) over

an integer or half-integer index range. The same notation will be used for selecting subvectors
and submatrices: for example, given matrix A(0 : n | 0 : n), we denote by A(i : i′ | j : j′) the
submatrix defined by the given sub-intervals. When any of the indices i, i′, j, j′ coincide
with the range boundary, they can be omitted, e.g. A(i :|: j′) = A(i : n | 0 : j′), and
A(:| j : j′) = A(0 : n | j : j′). In particular, we write A(i, j) for a single matrix element,
A(i |:) for a row, and A(:| j) for a column. We will denote by

∑
A the sum of all elements

in matrix A.
By default, vectors and matrices will be indexed by integers based at 0, or by half-integers

based at 0+ = 1
2 . Where necessary, all our definitions and statements can easily be generalised

to indexing over arbitrary integer or half-integer intervals.
Given a string, we distinguish between its contiguous substrings, and not necessarily

contiguous subsequences. Special cases of a substring are a prefix and a suffix of a string.
Unless indicated otherwise, an algorithm’s input is a string a of length m, and a string b of
length n; we assume m ≤ n. Normally, we will say that two characters α, β match, if α = β,
and mismatch otherwise. In addition to this, we introduce the wildcard character ‘?’, which
matches itself and all other characters.

I Definition 1. Let D〈0 : n1 | 0 : n2〉 be a matrix. Its dominance-sum matrix (also called
distribution matrix) D↗[0 : n1 | 0 : n2] is defined by

D↗[i, j] =
∑
D〈i :|: j〉

for all i ∈ [0 : n1], j ∈ [0 : n2].

I Definition 2. Let A[0 : n1 | 0 : n2] be a matrix. Its cross-difference matrix A�〈0 : n1 | 0 :
n2〉 (also called density matrix) is defined by

A�〈̂ı, ̂〉 = A[̂ı+, ̂−]−A[̂ı−, ̂−]−A[̂ı+, ̂+] +A[̂ı−, ̂+]

for all ı̂ ∈ 〈0 : n1〉, ̂ ∈ 〈0 : n2〉.

I Definition 3. Matrix A is a Monge matrix, if its cross-difference matrix A� is nonnegative.
Matrix A is an anti-Monge matrix, if its negative −A is Monge.

The structure of Monge matrices has been described by Burdyuk and Trofimov [6] and
Bein and Pathak [4] (see also [8, 7]), and can be used to represent a Monge matrix implicitly
by its cross-difference matrix and a pair of vectors.
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I Theorem 4 (Monge matrix canonical decomposition). Let A[0 : n1 | 0 : n2] be a Monge
matrix. Let D = A�, b = A[n1 |:], c = A[:| 0]. We have

A[i, j] = D↗[i, j] + b[j] + c[i]− b[0] (1)

for all i, j ∈ [0 : n1 | 0 : n2].

I Definition 5. A permutation matrix is a zero-one matrix containing exactly one nonzero
in every row and every column.

I Definition 6. Matrix A is called unit-Monge, if its cross-difference matrix A� is a
permutation matrix. Matrix A is called unit-anti-Monge, if its negative −A is unit-Monge.

An efficient row minima searching algorithm on a canonically represented unit-Monge
matrix was given by Gawrychowski [10].

I Theorem 7. Let A be a unit-Monge matrix, canonically represented by the permutation
matrix P = A� with n nonzeros, and by implicit vectors b, c, where each vector element can be
queried in time O(1). Given P , b, c, a data structure can be computed in time O(n log logn)
in the pointer machine model, and in time O(n) in the unit-cost RAM model, such that the
index of the leftmost minimum element in a row of A can be queried in time O(1).

1.2 LCS and semi-local LCS
I Definition 8. Let a, b be strings. The longest common subsequence (LCS) score lcs(a, b)
is the length of the longest string that is a subsequence of both a and b. Given strings a, b,
the LCS problem asks for the LCS score lcs(a, b).

The classical dynamic programming algorithm for the LCS problem [17, 25] runs in time
O(mn). The best known algorithms speed it up by a (model-dependent) polylogarithmic factor
[16, 9, 5]. Similar speedups are possible for the algorithms presented in this paper; however,
we will consider them outside the paper’s scope, and will not discuss them any further.

Although global comparison (full string against full string) and fully-local comparison
(all substrings against all substrings) are the two most common approaches to comparing
strings, another important type of string comparison lies “in between”.

I Definition 9. Given strings a, b, the semi-local LCS problem asks for the LCS scores
as follows:

the whole a against every substring of b ( string-substring LCS);
every prefix of a against every suffix of b (prefix-suffix LCS);
every suffix of a against every prefix of b ( suffix-prefix LCS);
every substring of a against the whole b ( substring-string LCS).

Note that this definition is symmetric with respect to exchanging the two strings. In many
ways, our approach consists in exploiting to the full this and other symmetries of the LCS
problem, such as the symmetry between the left and the right within each of the strings.

Some alternative terms for semi-local comparison, used especially in biological texts, are
“end-free alignment” [14], [13, Subsection 11.6.4] or “semi-global alignment” [14], [15, Problem
6.24]. The string-substring (and its symmetric substring-string) component of semi-local
string comparison is also called “fitting alignment” [15, Problem 6.23]. String-substring LCS
is an important problem in its own right, closely related to approximate pattern matching,
where a short fixed pattern string is compared to various substrings of a long text string.

Let bpad〈−m : m+ n〉 = ?mb?m.

WABI 2019



16:4 Bounded-Length Smith–Waterman Alignment

I Definition 10. The semi-local LCS matrix is defined as Ha,b[i, j] = lcs(a, bpad〈i, j〉),
where i ∈ [−m : n], j ∈ [0 : m + n]. The string-substring LCS matrix is defined as
Hs.sub
a,b [i, j] = Ha,b[i, j] = lcs(a, b〈i : j〉), where i, j ∈ [0 : n].

In [23], we show that matrix Ha,b is unit-anti-Monge. By Theorem 4, it can be represented
implicitly in compact form by a permutation matrix Pa,b, that we call here semi-local LCS
kernel, from which every element of Ha,b (and therefore also of its submatrix Hs.sub

a,b ) can be
queried efficiently. In [23], we also give an algorithm computing this implicit representation
in time O(mn).

1.3 Alignment
The concept of LCS score is generalised by that of alignment score (see e.g. [14]). An alignment
of strings a, b is obtained by putting a subsequence of a into one-to-one correspondence
with a subsequence of b, respecting the index order. In contrast with an LCS, the two
subsequences need not be identical. A pair of corresponding characters, one from a and the
other from b, are said to be aligned. A character in one string that is not aligned against a
character of the other string is said to be aligned against a gap in that string. An aligned
character-character or character-gap pair is given a real-valued score:

a pair of matching characters scores w+ ≥ 0;
a pair of mismatching characters scores w0 < w+;
a gap-character or character-gap pair scores w− ≤ 1

2w0; normally, also w− ≤ 0.
Negative scores are also called penalties. Any particular triple of character alignment scores
(w+, w0, w−) will be called a scoring scheme. A scoring scheme will be called rational, if all
its components are rational numbers.

The intuition behind the score inequalities is as follows: aligning a matching pair of
characters is always better than aligning a mismatching pair of characters, while the latter is
at least as good as aligning each of the two characters against a gap.

I Definition 11. Let a, b be strings. Assuming a fixed scoring scheme, the alignment score
align(a, b) is the maximum total score across all possible alignments of a, b. Given strings a,
b, the alignment problem asks for their alignment score.

In notation related to alignment under a general scoring scheme, we will use script typeface
(e.g. H), in order to distinguish it from the LCS scoring scheme, for which we keep using
sans-serif typeface (e.g. H).

I Definition 12. The semi-local alignment problem and its component subproblems ( string-
substring alignment problem, etc.) are defined analogously to Definition 9, replacing the LCS
score by the alignment score. The semi-local alignment matrix Ha,b and the string-substring
alignment matrix Hs.sub

a,b are defined analogously to Definition 10.

The semi-local alignment problem can be reduced to the semi-local LCS problem by a
couple of simple techniques, regularisation and blow-up, described (using slightly different
terminology) in [22].

I Definition 13. A scoring scheme (1, w0, 0), where 0 ≤ w0 < 1, will be called regular.

An arbitrary (finite) scoring scheme can be reduced to a regular one as follows (a similar
method is used by Rice et al. [18]; see also [12, 15]). Let us consider first the global alignment
of strings a, b, with an arbitrary scoring scheme (w+, w0, w−). This scheme can be replaced
by a scheme (w+ +2x,w0 +2x,w−+x) for any real x. Indeed, such a transformation increases
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the score of every global alignment by (m+ n)x; therefore, the relative scores of different
global alignments do not change. The desired regular scoring scheme can be obtained by
taking x = −w−, and then dividing each of the resulting scores by w+ − 2w− > 0:

(w+, w0, w−) 7→
(
1, w∗0 = w0−2w−

w+−2w−
, 0
)

(2)

The resulting regular string alignment score h∗ and the original alignment score h are related
to each other by the following identities, defining regularisation and its reverse:

h∗ = h−(m+n)w−
w+−2w−

h = h∗ · (w+ − 2w−) + (m+ n) · w− (3)

I Definition 14. A bistochastic matrix is a matrix of nonnegative real elements, in which
the sum of elements is exactly one in every row and every column.

I Definition 15. A Monge matrix A is called regular, if its cross-difference matrix A� is
bistochastic. An anti-Monge matrix A is called regular, if its negative −A is regular.

I Theorem 16 (Alignment matrix canonical decomposition). Let a, b be strings. Assuming a
fixed scoring scheme, the semi-local alignment matrix Ha,b is anti-Monge. Furthermore, for
a regular scoring scheme, Ha,b is regular anti-Monge:

Ha,b[i, j] = j − i− S↗a,b[i, j]

for all i ∈ [−m : n], j ∈ [0 : m+ n], where Sa,b = −H�
a,b is a bistochastic matrix.

Proof. The anti-Monge property of Ha,b is a straightforward generalisation of a similar
property for semi-local LCS matrices.

Assume a regular scoring scheme (1, w0, 0). First, let us also assume it to be rational:
w0 = µ

ν . Then, the semi-local alignment problem on strings a, b can be reduced to the
semi-local LCS problem by the following blow-up technique. We transform input strings a, b
of lengths m, n into blown-up strings a, b of lengths m = νm, n = νn. The transformation
replaces every character γ by a substring $µγν−µ of length ν (here, $ is a special guard
character, not present in the original strings). We have

Ha,b[i, j] = 1
ν · Ha,b[νi, νj] (4)

for all i ∈ [−m : n], j ∈ [0 : m+ n], where the alignment matrix Ha,b is defined by the given
scoring scheme on the original strings a, b, and the LCS matrix Ha,b by the LCS scoring
scheme on the blown-up strings a, b.

Every element of Sa,b can now be obtained as a scaled sum of a ν × ν block of Pa,b:

Sa,b〈̂ı, ̂〉 = 1
ν

∑
Pa,b〈νı̂− : νı̂+ | ν̂− : ν̂+〉 (5)

for all ı̂ ∈ 〈−m : n〉, ̂ ∈ 〈0 : m+ n〉. By construction, matrix Sa,b is bistochastic.
A general regular scoring scheme can be approximated by a rational regular scheme to

arbitrary precision. The property of matrix Sa,b to be bistochastic is preserved in the limit,
therefore the theorem statement follows by compactness. J

I Definition 17. Assuming a regular scoring scheme, the semi-local alignment kernel for
strings a, b is the bistochastic matrix Sa,b〈−m : n | 0 : m+ n〉, determined by Theorem 16.
The string-substring alignment kernel is the submatrix Ss.sub

a,b = Sa,b〈0 : n | 0 : n〉

WABI 2019



16:6 Bounded-Length Smith–Waterman Alignment

The alignment matrixHa,b can be represented implicitly by (the nonzeros of) the alignment
kernel Sa,b. However, in contrast with the LCS kernel, the alignment kernel may not be a
permutation matrix. Sparsity of the alignment kernel is partially preserved for a rational
scoring scheme.

I Definition 18. Let ν > 0 be a natural number. A bistochastic matrix will be called ν-
bistochastic, if every its element is a multiple of 1/ν. A regular Monge matrix A will be
called ν-regular, if A� is ν-bistochastic. A regular anti-Monge matrix will be called ν-regular,
if −A is ν-regular.

A permutation matrix is 1-bistochastic, and a unit-Monge matrix is 1-regular Monge. Note
that in a ν-bistochastic matrix, there can be at most ν nonzeros in every row and every column.

I Theorem 19. Let a, b be strings. Assuming a regular rational scoring scheme with
denominator ν, the alignment kernel Sa,b is ν-bistochastic, and the alignment matrix Ha,b is
ν-regular anti-Monge.

Proof. Every element of Sa,b is the sum of a ν × ν block of the blown-up matrix 1
νPa,b by

(5), and is therefore a multiple of 1/ν. J

Theorem 19 implies that for ν = O(1), the alignment kernel Sa,b has O(m+ n) nonzeros.
The described reduction also preserves the O(mn) running time for computing the alignment
kernel given a pair of strings, same as for the LCS kernel.

1.4 Window-substring alignment
Given a string and a fixed integer w ≥ 0, we call any substring of length w a w-window.

I Definition 20. Given strings a, b, and a window length w, the window-substring alignment
problem asks for the alignment score of every w-window in string a against every substring
in string b.

In [23], we gave an efficient algorithm for the window-substring alignment problem.

I Theorem 21. The window-substring alignment problem can be solved implicitly in time
O(mn), providing the window-substring alignment kernel Ss.sub

a〈k:l〉,b for every k, l ∈ [0 : m],
l − k = w.

Proof. See [23]. Briefly, we compute a string-substring alignment kernel for a binary tree
of specially defined canonical substrings of a against whole b. We then assemble these
kernels into window-substring alignment kernels by a special procedure of implicit matrix
multiplication, fully described in [24]. J

Definition 20 can be extended to other types of length-constrained comparison. In particular,
we can consider a related symmetric problem, where the total length of strings a, b is fixed.

I Definition 22. Given strings a, b, and a length parameter w, the fixed total length
alignment problem asks for the alignment score of every substring in string a against every
substring in string b, such that the sum of the two substrings’ lengths is w.

The fixed total length alignment problem can be solved by a technique similar to to the
algorithm of Theorem 21. Observe that a window-substring alignment kernel corresponds to
a horizontal rectangular strip of width w in the alignment grid, defined by the window in
string a and the whole string b. To obtain an algorithm for the fixed total length alignment
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Figure 1 Window-substring alignment.

Figure 2 Fixed total length alignment.

problem with a rational scoring scheme, we replace these with an alternative type of kernel,
corresponding to an anti-diagonal strip of rectilinear width w. Otherwise, the algorithm’s
structure is identical to the one of Theorem 21, and the running time remains O(mn).

I Example 23. Figure 1 shows the computation of window-substring alignment by the
algorithm of Theorem 21 on string a of length m = 16 with window size w = 7, against
string b of arbitrary length n. The canonical substrings of a of lengths 1, 2, 4, 8, 16 are shown
in black, and 7-windows in blue. For each 7-window, the figure shows its decomposition into
canonical substrings. For one of the 7-windows, highlighted in thick red, the corresponding
area is outlined in the alignment dag.

Figure 2 shows the computation of fixed total length alignment on string a of length
m = 16 with length parameter w = 7, against string b of arbitrary length n. Conventions are
the same as in Figure 1.

1.5 Approximate pattern matching
Approximate pattern matching is a natural generalisation of classical (exact) pattern matching,
allowing for some character differences between the pattern and a matching substring of the
text. Given a pattern string p of length m and a text string t of length n ≥ m, approximate
pattern matching asks for all the substrings of the text that are close to the pattern, i.e. those
that have sufficiently high alignment score (or, equivalently, sufficiently low edit distance)
against the pattern. Such substrings of the text will be called matching substrings.

I Definition 24. Given a pattern p and a text t, and assuming a fixed scoring scheme, the
complete approximate matching problem is defined as follows. For every prefix t〈0 : j〉, the
problem asks for the maximum alignment score of p against all possible choices of a suffix

WABI 2019



16:8 Bounded-Length Smith–Waterman Alignment

t〈i : j〉 from this prefix:

h[j] = max
i∈[0:j]

align
(
p, t〈i : j〉

)
where j ∈ [0 : n].

The complete approximate matching problem corresponds to searching for column maxima
in the string-substring alignment matrix Hs.sub

p,t .
The complete approximate pattern matching problem can be solved by a classical dynamic

programming algorithm due to Sellers [19] (see also [14]), running in time O(mn).
Assuming a rational scoring scheme with constant denominator, an algorithm for complete

approximate matching can also be obtained using alignment kernels.

I Theorem 25. Let A[0 : n1 | 0 : n2] be a ν-regular Monge matrix, where ν = O(1),
canonically represented by the ν-bistochastic matrix S = A� with n ≤ ν ·min(n1, n2) nonzeros,
and implicit vectors b = A[n1 |:], c = A[:| 0], where random access to an element can be
performed in time O(1). Given S, b, c, the index of the leftmost minimum element in every
row of A can be obtained in time O(n log logn) in the pointer machine model, and in time
O(n) in the unit-cost RAM model.

Proof. Straightforward generalisation of Theorem 7. J

I Theorem 26. Assuming a rational scoring scheme with denominator ν = O(1), the
complete approximate matching problem can be solved in time O(mn).

Proof. The algorithm runs in two phases.
Phase 1. We first regularise the scoring scheme by Equation (3). The alignment kernel S∗p,t
for the regular scheme is then obtained in time O(mn).
Phase 2. Since complete approximate matching compares alignment scores across different
string-substring pairs, we now reverse score regularisation via Equation (3). We then obtain
column maxima of the (suitably scaled) string-substring submatrix Hs.sub

p,t by Theorem 25.
The total running time is dominated by Phase 1, and is therefore as claimed. J

2 Classical Smith–Waterman alignment

A classical method for variable-length local string comparison was given by Smith and
Waterman [20]. Given a scoring scheme and a pair of input strings a, b, this method allows
one to obtain a pair of substrings with the highest alignment score across all substring pairs
in a, b. More generally, for each pair of prefixes of strings a, b, the method obtains their
highest-scoring pair of suffixes.

I Definition 27. Given a scoring scheme, the Smith–Waterman (SW) alignment problem
on strings a, b is defined as follows. For every prefix a〈0 : l〉 and every prefix b〈0 : j〉, the
problem asks for the maximum alignment score over all possible choices of a suffix a〈k : l〉
and a suffix b〈i : j〉 of the respective prefixes:

h[l, j] = max
k∈[0:l],i∈[0:j]

align
(
a〈k : l〉, b〈i : j〉

)
where l ∈ [0 : m], j ∈ [0 : n].

An efficient dynamic programming algorithm for SW-alignment was given by Smith and
Waterman [20] and by Gotoh [11].
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I Algorithm 28 (SW-alignment).
Parameters: scoring scheme (w+, w0, w−).
Input: strings a, b of length m, n, respectively.
Output: SW-alignment scores for a against b.
Description. We initialise

h[0, j]← 0 h[l, 0]← 0

for all l ∈ [0 : m], j ∈ [0 : n]. We then iterate through all indices l ∈ [1 : m] and j ∈ [1 : n].
In each iteration, we assign

h[l, j]← max


h[l − 1, j − 1] +

{
w+ if a〈l−〉 matches b〈j−〉
w0 otherwise

h[l − 1, j] + w−; h[l, j − 1] + w−; 0

I Theorem 29. The SW-alignment problem can be solved in time O(mn).

Proof. In Algorithm 28, each iteration runs in constant time. The overall running time is
mn ·O(1) = O(mn). J

3 Bounded-length Smith–Waterman alignment

A commonly observed drawback in biological applications of SW-alignment is that it seeks to
maximise the scores of substring pairs regardless of their lengths. However, if the substrings
are too short, then their alignment may be less significant biologically than a slightly lower-
scoring alignment of much longer substrings. To address this issue, various alternative
definitions of local string comparison have been proposed, taking substring lengths into
account; see [2] for a survey. Algorithms for such length-sensitive alignment problems are
typically more computationally expensive than Algorithm 28 (SW-alignment); for this reason,
approximation versions of such problems have also been considered [2].

The most straightforward approach to defining length-sensitive local alignment is to
require that the aligned substrings satisfy a specific lower bound on their lengths, thus
filtering out substrings that are too short.

I Definition 30. Given strings a, b, an length threshold w ≥ 0, and assuming a fixed scoring
scheme, the bounded length (respectively, the bounded total length) SW-alignment problem
is defined as follows. For every prefix a〈0 : l〉 and every prefix b〈0 : j〉, the problem asks for
the maximum alignment score over all possible choices of a suffix a〈k : l〉 and a suffix b〈i : j〉
of the respective prefixes, such that l − k ≥ w (respectively, l − k + j − i ≥ w):

hlen≥w[l, j] = max
k∈[0:l],i∈[0:j]

l−k≥w

align
(
a〈k : l〉, b〈i : j〉

)
htlen≥w[l, j] = max

k∈[0:l],i∈[0:j]
l−k+j−i≥w

align
(
a〈k : l〉, b〈i : j〉

)
where l ∈ [0 : m], j ∈ [0 : n].

The bounded total length SW-alignment problem was introduced by Arslan and Eğecioğlu
[1] (see also [2]) under the name local alignment with length threshold (LAt). They proposed
a dynamic programming algorithm solving the problem in time O(mn2). They also gave an

WABI 2019



16:10 Bounded-Length Smith–Waterman Alignment

approximation algorithm running in time O(rmn), and returning a pair of substrings of total
length at least

(
1− 1

r

)
w, scoring no less than the exact solution to the original problem.

We now show that, assuming a rational scoring scheme, the bounded (total) length
SW-alignment problem can be solved exactly by an efficient algorithm. In fact, our exact
algorithm is asymptotically faster not only than the exact algorithm of [1], but also than their
approximation algorithm. We first describe an algorithm for the bounded length alignment
problem, and then adjust it to the bounded total length alignment problem.
I Algorithm 31 (Bounded-length SW-alignment).
Parameters: a rational scoring scheme (w+, w0, w−), where w− < 0.
Input: strings a, b of length m, n, respectively; length threshold w ≥ 0.
Output: Bounded length SW-alignment scores for a against b.
Description. The algorithm runs in three phases:
1. solving the window-substring alignment problem for every w-window in a against every

substring in b;
2. solving the complete approximate matching problem for every w-window in a against

b: for every w-window a〈k : l〉 in a and every prefix b〈0 : j〉 of b, we find the maximum
alignment score of a〈k : l〉 against all possible choices of a suffix b〈i : j〉 from this prefix;

3. extending the complete approximate matching scores to optimal bounded-length SW-
alignment scores by a dynamic programming procedure that generalises Algorithm 28
(SW-alignment).
We now describe each of these phases in more detail.

Phase 1. By Theorem 21, we obtain the window-substring alignment kernel Ss.sub
a〈k:l〉,b for every

k, l, l − k = w.
Phase 2. We now consider the window-substring alignment matrices Hs.sub

a〈k:l〉,b for every k, l,
l − k = w. Every such matrix is represented implicitly by the window-substring alignment
kernel Ss.sub

a〈k:l〉,b, obtained in the first phase. By Theorem 26, for every w-window a〈k : l〉 in
a and every prefix b〈0 : j〉 of b, we find a suffix b〈i : j〉 of that prefix, that has the highest
alignment score against a〈k : l〉:

hlen=w[l, j] = max
i∈[0:j]

Hs.sub
a〈k:l〉,b[i, j]

Phase 3. We initialise

hlen≥w[w, j]← hlen=w[w, j] hlen≥w[l, 0]← 0

for all l ∈ [w : m], j ∈ [0 : n]. We then iterate through all indices l ∈ [w + 1 : m] and
j ∈ [1 : n]. In each iteration, we assign

hlen≥w[l, j]← max


hlen≥w[l − 1, j − 1] +

{
w+ if a〈l−〉 matches b〈j−〉
w0 otherwise

hlen≥w[l − 1, j] + w−; hlen≥w[l, j − 1] + w−; hlen=w[l, j]

I Theorem 32. The bounded length SW-alignment problem can be solved in time O(mn).
Proof. In Algorithm 31, the running time of each of the three phases, and therefore the
overall running time, is O(mn). J

The bounded total length alignment problem can be solved by an algorithm structured
similarly to Algorithm 31. In this algorithm Phase 1, instead of the window-substring
alignment problem, solves the fixed total length alignment problem. Phase 2 obtains column
maxima in the resulting implicit alignment matrices. Phase 3 remains unchanged. The
algorithm’s running time remains O(mn).
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4 Normalised bounded-length Smith–Waterman alignment

Arslan et al. [3] introduced another, more sophisticated approach to length-sensitive local
alignment, by incorporating the substrings’ lengths into the scoring function.

I Definition 33. Let a, b be strings. Assuming a fixed scoring scheme, the strings’ normalised
alignment score is defined as their alignment score divided by their total length:

nalign(a, b) = align(a, b)
m+ n

Analogously to Definition 30, the normalised bounded total length SW-alignment problem
was introduced by Arslan and Eğecioğlu [1] (see also [2]) under the name normalised local
alignment with length threshold (NLAt). They gave an approximation algorithm running in
time O(rmn logn), assuming a rational scoring scheme, and returning a pair of substrings of
total length at least

(
1− 1

r

)
w, scoring no less than the exact solution to the original prob-

lem. The algorithm uses the authors’ approximation algorithm for ordinary (unnormalised)
bounded total length SW-alignment as a subroutine; the only dependence on parameter r is
within that subroutine. By replacing this subroutine with Algorithm 31, we obtain an exact
algorithm for normalised bounded total length SW-alignment running in time O(mn logn),
assuming a rational scoring scheme.

5 Conclusion and open problems

We have described an efficient algorithm for bounded-length alignment and bounded total
length alignment; our algorithm can also be used as a subroutine for efficient normalised
bounded total length alignment. The algorithm relies on a rather complex framework of
semi-local string comparison, window-substring alignment and implicit matrix searching,
developed previously by the author and others. It remains a challenge to simplify and
streamline our algorithm to a point where it can be easily and efficiently implemented.

The algorithm relies on the scoring scheme to be rational, with the least common
denominator of the character alignment scores considered to be a constant factor in the
running time. It remains an open question whether the algorithm can be generalised to an
arbitrary real-weighted scoring scheme.
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