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Abstract
Graph based non-linear reference structures such as variation graphs and colored de Bruijn graphs
enable incorporation of full genomic diversity within a population. However, transitioning from a
simple string-based reference to graphs requires addressing many computational challenges, one of
which concerns accurately mapping sequencing read sets to graphs. Paired-end Illumina sequencing
is a commonly used sequencing platform in genomics, where the paired-end distance constraints
allow disambiguation of repeats. Many recent works have explored provably good index-based and
alignment-based strategies for mapping individual reads to graphs. However, validating distance
constraints efficiently over graphs is not trivial, and existing sequence to graph mappers rely on
heuristics. We introduce a mathematical formulation of the problem, and provide a new algorithm
to solve it exactly. We take advantage of the high sparsity of reference graphs, and use sparse matrix-
matrix multiplications (SpGEMM) to build an index which can be queried efficiently by a mapping
algorithm for validating the distance constraints. Effectiveness of the algorithm is demonstrated
using real reference graphs, including a human MHC variation graph, and a pan-genome de-Bruijn
graph built using genomes of 20 B. anthracis strains. While the one-time indexing time can vary
from a few minutes to a few hours using our algorithm, answering a million distance queries takes
less than a second.
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1 Introduction

Owing to continuous technological and algorithmic advancements in genomics during the
past four decades, whole-genome sequencing has now become ubiquitous, leading to an
explosive growth in genome databases. Despite this progress, the current human genome
reference (GRCh38) is primarily derived from a single individual [14, 38]. Many recent studies
have demonstrated improved variant analysis using a graph-based reference while accounting
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for population diversity. Accounting for this diversity is especially critical in polymorphic
regions of genomes [10, 17]. Realizing this paradigm shift from a simple linear reference to a
graph-based reference, however, requires addressing several open computational challenges [5],
one of which concerns designing robust algorithms for mapping reads to graph-based references.
Accuracy of read mapping is critical for downstream biological analyses.

Designing provably good algorithms for approximate sequence matching to graphs, using
both index-based and alignment-based approaches, remains an active research area. A
few recent works have investigated extending Burrows-Wheeler-Transform-based indexing
to sequence DAGs [41] and de-Bruijn graphs [2, 29, 40]. Similarly, there exist studies
that have explored extension of the classic sequence-to-sequence alignment routines to
graphs [19, 20, 30, 36]. In our recent work [19], we presented new complexity results and
algorithms for the alignment problem using general sequence-labeled graphs. The results
show that a sequence (of length m) can be aligned to a labeled directed graph G(V,E) in
O(|V | + m|E|) time, using commonly used scoring functions, while allowing edits in the
query but not graph labels. However, a general string to graph pattern matching formulation
is only good for mapping single-end reads or single-molecule sequencing reads, and does not
account for pairing information.

Paired-end sequencing provides information about the relative orientation and genomic
distance between the two reads in a pair. When reads originate from repetitive regions, this
information is valuable for pruning large number of false candidates [4]. Popular short read
mapping tools for linear references, e.g., BWA-mem [24] and Bowtie2 [22], therefore, enforce
these constraints in a read pair to guide the selection of the true mapping locus. Using a
linear reference, calculating gap between two mapping locations is just a simple subtraction
operation. However, it still remains unclear how to efficiently validate the constraints using
large non-linear graph-based references and read sets.

Several sequence to graph aligners have been developed in recent years to map reads
to variation graphs [11, 12, 18, 21, 28, 35, 37], de-Bruijn graphs [16, 25, 26] and splicing
graphs [1, 8]. Readers are referred to review articles, e.g., [5, 34] for an expanded list of
the tools. Among these tools, Graph-Aligner [35], vg [12], deBGA [26], HISAT2 [21] and
HLA-PRG [11] support paired-end read mapping. However, all of these use heuristics to
measure the observed insert size between the two reads in a pair, mainly due to lack of
associated provably-good graph-based algorithms. A popular heuristic adopted by the tools
is to do the computation while assuming a linear ordering of vertices (e.g., topological order).
However, it can produce misleading results in complex variation-rich graph regions.

In this work, we provide the first mathematical formulation of the problem of validating
paired-end distance constraints in sequence graphs, and propose an exact algorithm to solve
it that is also practical. The proposed algorithm exploits sparsity in sequence graphs to
build an index, which can be queried quickly using a simple lookup during the read mapping
process. On the performance side, we provide formal arguments to shed light on why our
indexing procedure is efficient with regards to the computation time and storage requirements.
We show the practical significance of our algorithm using LRC_KIR and MHC variation
graphs derived from the human genome, as well as pan-genomic de Bruijn graphs of Bacillus
anthracis strains.
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2 Problem Formulation

I Definition 1. Sequence Graph: A sequence graph G(V,E) is a directed graph with vertices
V and edges E, where each vertex v ∈ V is labeled with a character from alphabet Σ.

Sequence graph is typically defined as a directed graph with either string or character
labeled vertices because converting one form into the other is straightforward. In addition,
commonly used graph formats, such as de-Bruijn graphs, bi-directional de-Bruijn graphs,
overlap graphs or variation graphs can be converted into sequence graphs with at most a
constant factor increase in vertex or edge set sizes. While single-end read alignments can be
judged by their alignment scores alone, a valid paired-end read alignment over a sequence
graph should satisfy the expected paired-end distance constraints and orientation. As insert
size can vary within a range, let d1 and d2 denote the minimum and maximum allowed values
of the inner distance between the reads within a pair (see Figure 1).
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Figure 1 Visualizing distance constraints while mapping paired-end reads to sequence graphs.

I Definition 2. Paired-end Validation Problem: Suppose two reads r1, r2 in a pair are
independently mapped to a sequence graph G(V,E) using their positive and negative strands
respectively. Let v1 be the vertex where a path to which r1 (+ve strand) is mapped ends, and
v2 be the vertex where a path to which r2 (-ve strand) is mapped starts; then we refer to this
pair of paths as a valid paired-end read mapping if and only if there exists a path from v1 to
v2 of length d ∈ [d1, d2].

The above problem definition is based on the assumption that a fragment, from which a
read pair is sequenced, can align to any (cyclic or acyclic) path in the input sequence graph.
In this work, we focus on designing an efficient algorithm that can quickly answer the above
path queries for any two given vertices in the graph. Typically, there are multiple mapping
candidates to evaluate for each read pair, especially if a read is sequenced from repetitive
regions of a genome. In addition, a typical read set in a genomic study may contain millions
or billions of reads. Therefore, validating the distance queries quickly using an appropriate
indexing scheme is desirable.

3 Related Problems in Graph Theory

Computing all-pairs shortest paths in G(V,E) may help to identify true-positives or true-
negatives, but only for those vertex pairs whose shortest distance ≥ d1. No conclusion can be
drawn when the shortest distance between two vertices is < d1, as a valid path need not be
the shortest path. In addition, computing all-pairs shortest paths is expensive, and may not
provide the desired scalability [7]. If d1 = d2, the formulated problem becomes a special case
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of the exact-path length problem [33], with all edge weights set to 1. The exact-path length
problem determines if a path of a specified distance exists between two vertices in a weighted
graph. An extension of this problem, referred to as the gap-filling problem [39], has been
explored in the context of genome assembly using paired-end or mate pair read sets. Although
the exact-path length problem has been shown to be NP-complete [33], we will demonstrate
a simple and practical polynomial-time algorithm for our problem with unweighted edges.
Finally, if d1 = 0 and d2 = |V |, then our problem is equivalent to determining transitive
closure of a graph [32]. In our case, however, we expect d2 � |V |.

Our approach is based on an indexing strategy where we pre-compute a boolean index
matrix, which has a 1 for each vertex pair that satisfies the distance constraints (Section 4).
Computing the index requires polynomial operations, and paired-end distance queries can be
computed quickly using index lookups during the read mapping process. Before describing
the algorithm, we first discuss a trivial pseudo-polynomial time algorithm to solve the
paired-end distance validation problem. It is based on a well-known algorithm used to solve
the intractable subset-sum problem.

A Pseudo-polynomial Time Algorithm

The problem of validating distance constraints between two vertices can be solved using
dynamic programming. Assume s ∈ V is the source vertex from where we need to query
paths of length d ∈ [d1, d2]. For a vertex v ∈ V , let a(v, l) be a boolean value which is true if
and only if there is a path of length l from source s to v. Then, the following recurrence
solves the problem:

a(v, 0) = 1 if v = s and 0 otherwise,

a(v, l) =
∨

(u,v)∈E

a(u, l − 1)

Solving the above recurrence requires filling a |V | × d2 table in column-wise order. The
distance constraint from the source vertex s to t ∈ V is satisfied if and only if a(t, l) = 1
for any l ∈ [d1, d2]. Note that it is sufficient to store two columns in memory to fill the
table, and an additional column to track the final result. The algorithm is summarized as a
lemma below.

I Lemma 3. There exists an O(d2|E|) time and O(|V |) space algorithm that decides existence
of a path of length d ∈ [d1, d2] from one vertex to another in G(V,E).

The time complexity of the above algorithm is significantly high, as it requires O(d2|E|)
time to validate distance constraints from a fixed source vertex. With some optimizations
however, the above algorithm can be accelerated. As observed by Salmela et al. [39] in
the context of gap-filling problem, we expect d2 � |V |, therefore, it should be possible
to compute a sub-graph containing vertices within ≤ d2/2 distance from v1 or v2, before
solving the recurrence. While this strategy was shown to be effective for gap-filling between
assembled contigs, the count of vertex pairs to evaluate during read mapping process is
expected to be significantly higher for large read sets. Reference genomes (e.g., GRCh38 for
human genome) or graphs are static, or evolve slowly, in genomic analyses. As such, it is
desirable to use an index-based strategy, where we pay a one-time cost to build an index,
and validate the paired-end distance constraints quickly.
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4 An Index-based Polynomial-time Algorithm

In the following, we describe our index construction and querying algorithm. Given a sequence
graph in the form of a boolean adjacency matrix, the index construction procedure uses
boolean matrix additions and multiplications. As we will note later, the worst-case time of
building our index is polynomial in the input size, but still computationally prohibitive to
handle real data instances. Subsequently, we will show how to exploit sparsity in graphs
to accelerate the computation. The construction algorithm relies on the following boolean
matrix operations.

I Definition 4. Boolean matrix operations: Let A and B be two boolean n×n matrices. The
standard boolean matrix operations are evaluated in the following way:

Addition C = A ∨B Cij = Aij ∨Bij

Multiplication C = A ·B Cij =
n∨

k=1
Aik ∧Bkj

Power C = Ak C = A ·A · . . . A︸ ︷︷ ︸
k times

The boolean matrix addition and multiplication can also be performed using the standard
matrix addition and multiplication, respectively. This is done by adjusting the non-zero
values in output matrix to 1. Next, we define index matrix T , built using the adjacency
matrix of the input graph and the distance parameters d1 and d2. Lemma 6 and 7 include
its correctness proof and worst-case construction time complexity.

I Definition 5. Let Adj be the |V |× |V |-sized boolean adjacency matrix associated with graph
G(V,E). Define index matrix T = Adjd1 · (Adj ∨ I)d2−d1 , where I is an identity matrix.

I Lemma 6. T [i, j] = 1 if and only if there exists a path of length d ∈ [d1, d2] from vertex
vi to vertex vj.

Proof. Note that Adjk[i, j] = 1 if and only if there is a path of length k from vertex vi to vj .
To validate the paired-end distance constraints, we require Adjd1 ∨Adjd1+1 ∨ . . . ∨Adjd2 .

d2∨
i=d1

Adji = Adjd1 · (
d2−d1∨

i=0
Adji)

= Adjd1 · (Adj ∨ I)d2−d1 J

I Lemma 7. If multiplying two square matrices of dimension |V |×|V | requires O(|V |ω) time,
ω ∈ R, then computing the index matrix requires O(|V |ω · log(d2)) time and O(|V |2) space.

Proof. Matrix addition uses O(|V |2) operations. Computing Ak requires O(|V |ω log k)
operations. Therefore, computing the index matrix requires O(|V |2 + |V |ω(1 + log d1 +
log(d2−d1))) operations. As ω ≥ 2 and d2 ≥ d1, this simplifies to O(|V |ω · log(d2)) time. J

The current best algorithm to compute general matrix multiplication requires O(|V |2.37)
time [23]. Using the general matrix storage format, querying for the distance constraints
between a vertex pair requires a simple O(1) lookup. However, general matrix multiplication
solvers require at least quadratic time and space (in terms of |V |), which does not scale to
real graph instances. We next propose an alternate approach to build the index matrix that
exploits sparsity in sequence graphs.
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4.1 Exploiting Sparsity in Sequence Graphs
Typically, sequence graphs representing variation or assembly graphs have large diameter
and high sparsity, with edge to vertex ratio close to 1 [31]. As d2 � |V | in practice, we also
expect our final index matrix to be sparse. As a result, we propose using SpGEMM (sparse
matrix-matrix multiplication) operations to build the index. Below, we briefly recall the
algorithm and matrix storage format used for SpGEMM. Subsequently, we shed light on the
construction time and size of the index using this approach. We borrow standard notations
typically used to discuss SpGEMM algorithms. Let nnz(A) denote number of non-zero values
in matrix A. During boolean matrix multiplication A ·B, let bitops(AB) indicate the count
of non-zero bitwise-AND operations (i.e., 1 ∧ 1), assuming Definition 4.

4.1.1 Working with Sparse Matrices
Storage. During SpGEMM, the input and output matrices are stored in a sparse format,
such that the space is primarily used for non-zeros. Compressed Sparse Row (CSR) is a
classic data structure for this purpose [3]. In CSR format, a boolean matrix An×n can be
represented by using two arrays: the first array ptr of size n+ 1 contains row pointers, and
the second array cols of size O(nnz(A)) contains column indices of each non-zero entry in A,
starting from the first row to the last. The row pointers are essentially offsets within the
second array, such that the range

[
cols[ptr[i]], cols[ptr[i+ 1]]

)
lists column indices in row i.

By default, CSR format does not require the indices of a row to be sorted. However, the
sorted order will be useful in our index storage to enable fast querying. Therefore, we use
“sorted-CSR” format in our application.

I Remark 8. Storing a matrix An×n in sorted-CSR format requires Θ(n+ nnz(A)) space.

I Remark 9. Given a sequence graph G(V,E) as an array of edge tuples, transforming its
adjacency information into sorted-CSR format takes Θ(|V |+ |E|) time using count sort [15].

Multiplication (SpGEMM). SpGEMM algorithms limit their operation count to just non-
zero multiplications and additions required to compute the product, as the remaining entries
are guaranteed to be 0. Most of the sequential and high-performance parallel algorithms
for SpGEMM, including in MATLAB [13], are based on Gustavson’s algorithm [15]. The
algorithm can take input matrices A and B in sorted-CSR format and produce the output
matrix C = A · B in the same format. In this algorithm, a row of matrix C, i.e., C[i, :] is
computed as a linear combination of the rows κ of B for which A[i, κ] 6= 0. The complexity
result from Gustavson’s work is listed as the following lemma.

I Lemma 10. The time complexity to multiply two sparse matrices An×n and Bn×n using
Gustavson’s algorithm is Θ(n+ nnz(A) + bitops(AB)).

4.1.2 Indexing Time and Storage Complexity
Computing the index (Definition 5) requires several SpGEMM operations. As such, it is hard
to derive a tight bound on the complexity, as runtime and index size depend on non-zero
structure of the input sequence graph. However, it is important to get an insight into how the
different parameters, e.g., |V |, d1, d2 may affect them. To address this, we derive a practically
useful lower-bound on the complexity.

Consider the chain graph G′(V ′, E′) associated with a longest path in G(V,E), V ′ ⊂
V,E′ ⊂ E. We claim that the time needed to index G(V,E) is either the same or worse than
indexing its chain G′(V ′, E′) (Lemma 11). Subsequently, we compute the time complexity
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for indexing the chain using our SpGEMM-based algorithm. The rationale for analyzing the
chain graph is (a) non-zero structure of a chain is simple and well-defined for computing
time complexity, and (b) sequence graphs are expected to have “near-linear” topology in
practice, therefore the derived lower-bounds will be a useful indication of the true costs.

I Lemma 11. The time requirement for indexing a graph G(V,E) using SpGEMM is either
the same or higher than indexing the chain graph G′(V ′, E′) associated with its longest path.

Proof. Note that G′ is a sub-graph of G, which will also reflect in their adjacency matrices.
The above lemma is based on the following simple observation. Suppose A,B,A′, B′, δ1, δ2
are boolean square matrices, such that, A = A′∨δ1 and B = B′∨δ2. Then, using Gustavson’s
algorithm, multiplying A and B requires at least as much time as required for multiplying A′
and B′. In addition, the product (A ·B) is of the form (A′ ·B′) ∨ δ3, where δ3 is a boolean
matrix. For each SpGEMM executed while computing the index, we can use this argument
to support the claim. J

I Lemma 12. Computing the index for G(V,E) using SpGEMM requires Ω(|V ′|((d2−d1)2 +
log d1)) time.

Proof. Let Adj′ be the adjacency matrix associated with G′(V ′, E′). To prove the above
claim, it is useful to visualize the structure of Adj′ (Figure 2). Define a constant k � |V ′|.
For simplicity, assume d1 and d2−d1 are powers of 2. Throughout the index computation, the
time required by Gustavson’s SpGEMM algorithm is dictated by bitops. Following Lemma 10,
multiplying Adj′k to Adj′k requires Θ(|V ′|) time. In addition, multiplying (Adj′ ∨ I)k with
(Adj′ ∨ I)k requires Θ(|V ′|(k2)) time. Therefore, we need Θ(|V ′|(1 + 1 + . . .+ 1︸ ︷︷ ︸

log d1 times

)) time to

compute Adj′d1 , and Θ(|V ′|(1 + 22 + 42 + . . .+ (d2 − d1)2)) time to compute (Adj′ ∨ I)d2−d1 .
The final multiplication between Adj′d1 and (Adj′ ∨ I)d2−d1 uses Θ(|V ′|(d2 − d1)) time. All
these operations add up to Θ(|V ′|((d2 − d1)2 + log d1)) time. This argument, and Lemma 11
suffice to support the claim. J

I Remark 13. The index size is dictated by count of non-zeros in the final output matrix.
Using similar arguments as above, it can be shown that the index storage for graph G(V,E)
requires Ω(|V ′|(d2 − d1 + 1)) space.

4.1.3 Querying the Index
Querying for a value in a sorted-CSR formatted index is trivial. The lookup procedure for
T [i, j] requires a binary search among the non-zeros of row i. Let maxRownnz(T ) be the
maximum row size, i.e., maximum number of non-zero entries in a row of index matrix T .
After computing the index, deciding the existence of a path of length d ∈ [d1, d2] between
two vertices in G(V,E) requires O(logmaxRownnz(T )) time.

5 Results

We implemented our algorithm, referred to here as PairG, in C++. The source code is
available at https://github.com/ParBLiSS/PairG. We conducted our evaluation using an
Intel Xeon CPU E5-2680 v4, equipped with 28 physical cores and 256 GB main memory. In
our implementation, we utilize KokkosKernels [9], an open-source parallel library for basic
linear algebra (BLAS) routines. This library does not provide explicit support for boolean
matrix operations, so we used integer matrix operations instead, while rounding the non-zero
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Adj'

1 hop k hops
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Figure 2 Visualizing non-zero structure of adjacency matrix of a chain graph. We also show how
the structure changes after exponentiation. This is useful to count bitops during SpGEMM.

output values to one. We leveraged multi-threading support in KokkosKernels, and allowed
it to use 28 threads during execution. Our benchmark data sets, summarized below, consist
of cyclic and acyclic graphs built using publicly available real data. We tested indexing and
querying performance using PairG for various values of distance constraints. These choices
were motivated by the typical insert sizes used for Illumina paired-end sequencing. We
demonstrate that PairG can index graphs with more than a million vertices in a reasonable
time. Once the index is built, it can answer a million distance constraint queries in a fraction
of a second.

5.1 Datasets
We generated seven sequence graphs, four acyclic (G1-G4) and three cyclic (G5-G7) (see
Table 1). The first four sequence graphs are variation graphs built using human genome
segments (GRCh37) and variant files from the 1000 Genomes Project (Phase 3) [6]. We
used vg [12] for building these graphs. The human genomic regions considered in our
evaluation are mitochondrial DNA (mtDNA), BRCA1 gene, the killer cell immunoglobulin-
like receptors (LRC_KIR), and the major histocompatibility complex (MHC). The sizes of
these regions range from 16.6 kilobases (mtDNA) to 5.0 megabases (MHC) in the human
genome. De Bruijn Graph (DBG) is another popular format to represent “pan-genome” of
a species. DBG is also a good candidate structure to test our algorithm on more complex
graphs. We built DBGs with k-mer length 25 using whole-genome sequences of one (G5),
five (G6), and twenty (G7) B. anthracis strains, using SplitMEM [27]. Strain ids and size of
these genomes are listed in the Appendix.

We tested PairG using three different ranges of distance constraints, associated with three
insert-size configurations. Assuming a typical sequencing scenario of insert-size configuration
as 300 bp and read length 100 bp, the inner distance between paired-end reads should equal
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Table 1 Directed sequence graphs used for evaluation. In these graphs, each vertex is labeled
with a DNA nucleotide. Four acyclic graphs are derived from segments of human genome and variant
files from the 1000 Genomes Project (Phase 3). Three cyclic graphs are de Bruijn graphs built using
whole-genome sequences of Bacillus anthracis strains, with k-mer length 25.

Id Graph # vertices # edges Type
G1 mitochondrial-DNA 21,038 26,842

acyclicG2 BRCA1 83,268 85,422
G3 LRC_KIR 1,108,769 1,154,046
G4 MHC 5,138,913 5,318,639

G5 B. anthracis (1 strain) 5,174,432 5,175,000
cyclicG6 B. anthracis (5 strains) 10,360,296 10,363,334

G7 B. anthracis (20 strains) 11,237,067 11,253,437

100 bp (i.e., insert size minus twice the read length). To allow for sufficient variability, we
tested PairG using d1 = 0, d2 = 250. Similarly, for insert-size configurations of 500 bp and
700 bp, we tested PairG using inner distance limits (d1 = 150, d2 = 450) and (d1 = 350, d2 =
650), respectively. There may be insert size configurations where allowing read overlaps may
also be necessary; this can be handled trivially by computing a second matrix with desirable
limit on the overlap length.

5.2 Index construction
We report wall-clock time, memory-usage, and index size (nnz) using various graphs and
distance constraints in Table 2. We note large variation in performance for various graph
sizes and complexity. Time, memory, and index size increase almost linearly with increasing
graph size. This is also expected based on our theoretical analysis (Section 4.1.2). The
specified range of distance constraints [d1, d2] can also affect performance. The index size for
graphs G1-G5 remains almost uniform for the three different constraints. This should be
because the first five graphs have linear chain-like topology, where the performance should
be dictated by the gap (d2 − d1) according to our analysis. The graphs G1-G4 were built
by augmenting the variations (substitutions, indels) on the reference sequence, and the fifth
graph uses a single strain. On the other hand, index size varies with distance constraints for
the last two graphs, especially G7. We expect G7 to have significantly more branching due
to complex structural variations and repeats. Another important contributing factor is that
DBGs collapse repetitive k-mers into a single vertex, causing large deviation from the linear
topology. As a result, it takes time ranging from 1.3 hours to 17 hours for graph G7.

For larger graphs, we expect the index size (nnz) to increase with graph size. In sorted-
CSR storage format, we use 4 bytes for each non-zero, which can become prohibitively
large at the scale of complete human genome. However, we expect substantial room for
compressing the final index, and plan to explore it in the future. Memory-usage of a matrix
operation (addition or multiplication) is dictated by the size of the associated input and
output matrices. As a result, memory required for the index construction appears to increase
proportionally with the index size (Table 2).

5.3 Querying Performance
While indexing is a one-time routine for a sequence graph, we would need to query the index
numerous times during the mapping process. Querying for a vertex pair requires a simple
and fast lookup in the index (Section 4.1.3). As read mapping locations are expected to
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Table 2 Performance measured in terms of wall-clock time and memory-usage for building index
matrix using all input graphs and different distance constraints. nnz represents number of non-zero
elements in the index matrix, to indicate its size. Our implementation uses 4 bytes to store each
non-zero of a matrix in memory.

Id Distance constraints
[0 - 250] [150 - 450] [350 - 650]

Time Mem nnz Time Mem nnz Time Mem nnz
G1 0.2s 0.1G 6.8M 0.4s 0.2G 7.8M 0.4s 0.2G 7.6M
G2 0.4s 0.3G 21M 0.9s 0.5G 26M 0.9s 0.5G 26M
G3 5.6s 3.8G 0.3B 12s 6.2G 0.3B 12s 6.2G 0.3B
G4 25s 17G 1.3B 53s 28G 1.6B 53s 28G 1.6B

G5 25s 17G 1.3B 54s 28G 1.6B 54s 28G 1.7B
G6 52s 35G 2.8B 2m 60G 3.6B 2m 60G 4.2B
G7 1.3h 56G 4.6B 7.2h 118G 8.9B 17.2h 129G 14B

Table 3 Time to execute a million queries using all the graphs and distance constraints. Each
query is a random pair of vertices in the graph.

Id Distance constraints
[0 - 250] [150 - 450] [350 - 650]

Time (sec)
G1 0.1 0.1 0.1
G2 0.2 0.2 0.2
G3 0.4 0.4 0.5
G4 0.5 0.5 0.5
G5 0.4 0.5 0.5
G6 0.4 0.5 0.5
G7 0.5 0.5 0.6

be uniformly distributed over the graph, we tested the querying performance by generating
a million random vertex pairs (u, v), u, v ∈ [1, |V |]. For all the seven graphs, querying a
million vertex pairs finished in less than a second (Table 3). Even though the majority of
randomly generated queries result in a “no” answer, this aspect has insignificant effect on the
query performance. Our results implicate that distance constraints can be validated exactly
without additional overhead on the mapping time, which is similar to the case of mapping
reads to a reference sequence.

We also compared our index-based algorithm using a breadth first search (BFS)-based
heuristic. Using this heuristic, we answer a query of a pair of vertices (u, v) as true if and
only if v is reachable within d2 distance from u. Accordingly, BFS initiated from vertex u is
terminated if we find vertex v, or after we have explored all vertices up to depth d2. This
heuristic does not require a pre-computed index. However, we find that querying time using
our index-based algorithm is faster by two to three orders of magnitude. For the randomly
generated query set, fraction of results that agree between the two approaches varied from
98% to 100%. The above heuristic yields incorrect result for a vertex pair (u, v) when all the
possible paths that connect u to v have length < d1.
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6 Conclusions and Future Work

In this work, we formulated the Paired-end Validation Problem, required for paired-end read
mapping on sequence graphs. We proposed the first provably good and practically useful
exact algorithm for solving this problem. The proposed algorithm builds on top of existing
SpGEMM algorithms, to exploit the sparsity and large diameter characteristics of sequence
graphs. Our experiments indicate that index construction time is affected by the size and
topology of the sequence graph, as well as the desired distance constraints. The querying
time is less than a second for answering a million distance queries using all test cases.

There are two immediate avenues for future work. First, we expect huge room for
lossless compression in the final index matrix. By computing an appropriate vertex ordering,
we can potentially benefit from differential coding of column indices. Thus, alternative
formats than sorted-CSR might be more efficient for index storage. We anticipate that
good compression ratio can be achieved without affecting querying performance. Second,
we plan to integrate this work with an exact sequence to graph aligner as a paired-end read
mapping tool, and evaluate the advantages of a provably-good approach relative to existing
heuristics-based methods.
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A Appendix: Data Availability

Table 4 List of 20 Bacillus anthracis strains used to build the sequence graphs G5-G7. We used
the first strain in G5, the first five strains in G6, and all the 20 strains in G7.

Strain id Assembly id Size (Mbp)
Ames GCA_000007845.1 5.23
delta Sterne GCA_000742695.1 5.23
Cvac02 GCA_000747335.1 5.23
Parent1 GCA_001683095.1 5.23
PR09-1 GCA_001683255.1 5.23
Sterne GCA_000008165.1 5.23
CNEVA-9066 GCA_000167235.1 5.49
A1055 GCA_000167255.1 5.37
A0174 GCA_000182055.1 5.29
Sen2Col2 GCA_000359425.1 5.17
SVA11 GCA_000583105.1 5.49
95014 GCA_000585275.1 5.34
Smith 1013 GCA_000742315.1 5.29
2000031021 GCA_000742655.1 5.33
PAK-1 GCA_000832425.1 5.40
Pasteur GCA_000832585.1 5.23
PR06 GCA_001683195.1 5.23
55-VNIIVViM GCA_001835485.1 5.35
Sterne 34F2 GCA_002005265.1 5.39
UT308 GCA_003345105.1 5.37
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