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—— Abstract

Topological data analysis (TDA) is a mathematically well-founded set of methods to derive robust
information about the structure and topology of data. It has been applied successfully in several
biological contexts. Derived primarily from algebraic topology, TDA rigorously identifies persistent
features in complex data, making it well-suited to better understand the key features of three-
dimensional chromosome structure. Chromosome structure has a significant influence in many diverse
genomic processes and has recently been shown to relate to cellular differentiation. While there exist
many methods to study specific substructures of chromosomes, we are still missing a global view of
all geometric features of chromosomes. By applying TDA to the study of chromosome structure
through differentiation across three cell lines, we provide insight into principles of chromosome
folding and looping. We identify persistent connected components and one-dimensional topological
features of chromosomes and characterize them across cell types and stages of differentiation.
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1 Introduction

The three-dimensional shape of chromosomes has significant influence in many critical cellular
processes, including gene expression and regulation [7, 14, 27|, replication timing [25, 2],
and overall nuclear organization [10]. The wide range of processes related to chromosome
structure suggests that understanding this component is crucial to a broader explanation of
many genomic mechanisms, yet it remains a challenge to study this complex system.

In particular, the process of differentiation, by which a cell changes to a new cell type, is
critical to all multi-cellular life, but the mechanisms behind this process remain an active
field of research with recent work suggesting a role for chromosome structure in this process.
Structural changes have been observed in chromosomes through lineage specification, both
across several stages of human cardiogenesis [16] as well as across human embryonic stem
cells (ESCs) and four human ES-cell-derived lineages [12]. Fields et al. (2017) [16] identified
both global and local structural dynamics, observing transitions from repressive to active
compartments around cardiac-specific genes as they are upregulated through differentiation.
Dixon et al. (2015) [12] also noted structural dynamics across hierarchical scales during
development, with some corresponding gene expression changes.

Chromosome structure can be measured by a number of variants of the chromosome
conformation capture protocol [11], including Hi-C [21] which permits genome-wide measure-
ments of the chromosomal architectures of a population of cells. Hi-C quantifies physical
proximity by counting cross-linkage frequencies between genomic segments. Because of the
dependence on cross-linking, which is likely to induce both false positive and false negative
contacts, the heterogeneity within cell populations, and the large scale and complexity of the
system, Hi-C can be very challenging to analyze. Many methods have focused on identifying
local structures [17], however it has proven challenging to study large-scale structures across
the entire genome.

A class of techniques called “Topological Data Analysis” (TDA) has gained prominence
recently as a generalized, mathematically grounded set of methods for identifying and
analyzing the topological and geometric structures underlying data. Emerging from work
in applied topology and computational geometry, TDA aims to infer information about the
robust structures of complex data sets [9]. These methods have already been applied to various
biological contexts [3], including in studies of gene expression at the single cell level [28],
viral reassortment [8], horizontal evolution [4], cancer genomics [24, 1], and other complex
diseases [20, 18]. Similar methods have also been used in tools to enable large-scale biological
database searching [32]. The two main methods of TDA are Mapper, a dimensionality
reduction framework and visualization method, and persistent homology, an algorithm for
extracting geometric and topological structures which describe the underlying data.

Given its rigorous mathematical foundation and ability to identify important topological
structures, TDA is very well-suited to the analysis of Hi-C data. Emmett et al. (2015) [15]
first applied these methods to human Hi-C data, though computational limitations at the
time restricted this analysis to only one chromosome at 1Mb resolution. More recently, the
Mapper method of TDA was used to analyze the similarities between single-cell Hi-C maps [6].
Carriere and Rabadan (2018) [6] first computed pairwise distances between all single-cell Hi-C
contact matrices, and applied TDA to the distance matrix between single cells rather than
applying TDA directly to the Hi-C data, analyzing the results with Mapper. In this paper, we
use persistent homology to identify geometric structures in human chromosomes directly from
Hi-C data, and study how they change throughout lineage specification and differentiation.
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This work presents the first use of TDA to study the chromosome structures of all 22 human
autosomal chromosomes, providing insight into the structural changes involved in cellular
differentiation. We identify hundreds of thousands of zero- and one-dimensional features of
chromosome structure across 14 cell types, and describe the patterns underlying geometric
structures of Hi-C data. We characterize the one-dimensional hole structures identified by
TDA, noting that many of the patterns we observe can be explained by the linearity of the
chromosome. Additionally, we compare the topologies of 14 cell types representing various
stages of differentiation and various cell lines, and note that the topological similarity is
largely dictated by cell line rather than differentiation stage.

2 Methods
2.1 Overview of TDA

TDA is based on the premise that data points are sampled from an unknown continuous
geometric structure that can be described by topological properties preserved under con-
tinuous deformations of the space. These properties can include the number and size of
connected components, loops or holes the structure contains. TDA approximates a continuous
geometry by building a simplicial complex, or a network of edges and triangles, from the
nodes of the given data points. Due to the computational complexity of TDA and the
challenges of interpreting larger-dimensional features, we focus only on 0- and 1-dimensional
features here, which requires generating simplices with maximum dimension 2, i.e., nodes,
edges, and triangles.

A Vietoris-Rips (VR) complex is then generated, which is a set of simplices produced by
adding edges between all nodes with distance less than a given «, and a triangle between all
sets of three nodes for which each pair is no more than « apart. Together these components
describe a structure built from the data, from which the topological features of the underlying
space can be described and quantified through a process called persistent homology.

» Definition (Vietoris-Rips complex). Given a set of points X in a metric space (M,d) and a
real number « > 0, The Vietoris-Rips complex is the set of simplices {[xo, ..., xi]} such that
d(zi, zj) < a for all (4, ), with k less than or equal to a given mazimum dimension [9].

The analysis of simplicial complexes and their topological properties is based in homology
theory, which defines the topological properties of any given dimension of a space. These
properties can be represented by homology groups Hy(X), H1(X), Hy(X),..., Ho(X). A
homology group Hj represents k-dimensional “holes”. For example, Hy represents the
connected components of the VR complex, H; represents one-dimensional loops, and Hs
represents two-dimensional voids [30].

Given a set of data points X, we build VR complexes for different values of parameter «.
The basis of persistent homology is the idea that features that persist in the VR complexes
across values of a are the key topological features of the space generated by the data.
Conversely, features that only appear for few values of « are often filtered out or ignored as
methodological artifacts. A feature from persistent homology is therefore described by an
interval [b, d], where b represents the birth time of the feature, or the smallest value of « at
which the feature is found, and d, called death time, the smallest value of o at which the
feature no longer exists. These features are visualized in two ways: persistence diagrams and
barcode plots. Persistence diagrams are sets of (b, d) points in the Euclidean half-plane above
the diagonal (see Figure 1(a) for an example). Barcode plots display the same information,
but with each homology group shown as an interval [b,d]. These barcode lines are plotted at
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different heights, often ordered by death time d for visualization purposes, but the y values
are arbitrary (see Figure 1(b) for an example). For more technical details on TDA and
persistent homology, see for example Carlsson (2014) [5] or Wasserman (2018) [31].

2.2 Applying TDA to Hi-C

The methods of TDA use a distance matrix that describes the distances between all data
points. Although Hi-C data is interpreted as describing the 3D distances between chromosomal
segments, the values of a Hi-C matrix are contact counts rather than distance values, where
a high contact count implies a low distance. We use the following transformation to convert
a normalized Hi-C matrix M to a distance matrix K:

1 i=j
Kij=1- o
i { o log(Mij+1) i

where m = 1.01 max; j<p(log(M; ;) + 1), and D is the number of rows in the contact matrix.
A pseudo-count of 1 is added to all off-diagonal values in the Hi-C matrix to avoid taking a
logarithm of zero, and the factor of 1.01 is included to ensure that all distances where i # j
are nonzero. Three other distance transformations were tested on a subset of our data, and
the patterns observed were qualitatively similar across all four.

Note that this transformation does not return a metric, as Hi-C values themselves do
not satisfy the triangle inequality. A short study of the practical effect of violating the
metric assumption in TDA can be found in the appendix, which suggests that at least in
simple cases, persistent homologies are somewhat robust to distances that do not satisfy the
triangle inequality.

We use GUDHI [22], a Python library for TDA, to compute persistent homology from
these distance matrices at 100kb resolution.

2.3 Loop trace-back algorithm

The H; structures identified by TDA represent “loops” in the input data, or one-dimensional
holes in the simplicial complex. We will use the term loop interchangeably with H; structure
but it is important to note that these are not loops in the traditional sense of chromatin
loops. The loops identified by TDA may be surrounded by non-consecutive genomic segments,
unlike the continuous loops generally studied in chromatin.

TDA does not identify the data points involved in each Hy, as each element corresponds
to a homology class rather than an individual structure. Each H; class represents the set of
loops around a one-dimensional topological hole, not a specific loop structure in the data. In
order to locate a representative loop for each homology class, we first define an “optimal
loop” as the loop in the homology class with the shortest total distance. In the Hi-C case,
loop edges are connections between two chromosome bins ¢ and j, and their edge weights are
given by K ; in the distance matrix. We therefore look for the loop that minimizes the sum
of edge weights over all loops in the homology class.

In order to identify the optimal loop of each homology class H; we use the following
loop trace-back algorithm, based on identifying a shortest path through the distance matrix
K, similar to the method used by Emmett et al. (2015) [15]. One major difference in our
algorithm is that we do not perturb the Hi-C matrices, ensuring that we preserve all spatial
relationships among genomic loci. We additionally provide a proof of the correctness of our
loop trace-back algorithm (see Appendix, section Al). The formal loop trace-back algorithm
is described as follows:
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Step 1: For each H; persistent structure, identify the unique edge which forms at the
birth time and generates the persistent homology. We will refer to the two nodes of this
edge as V7 and V5.

Step 2: Construct a weighted graph G from the distance matrix, where nodes are
chromosome bins and edges are weighted by the distance K ;, including only edges where
K; ; is less than the distance between V; and V5.

Step 3: Find the shortest (lowest weight) path from V; to Vo on the graph using Dijkstra’s
algorithm, and return this path plus the edge between V; and V5.

This algorithm is based on one key assumption: there is only one edge with weight equal
to the birth time of each H; persistent structure. In the Hi-C case, this is not a strong
assumption as only about 2% of the persistent structures were formed at values with more
than one edge. In all of these cases, there was only one other edge with the same value. The
TDA software used here reports which edge formed each persistent structure, so we take that
edge as our starting point for the algorithm in these ambiguous cases. We still guarantee
that the loop returned will be a member of the correct homology class, however there exist
edge cases in which this loop may not represent the minimum weight path. For applications
that violate this assumption more frequently, this algorithm may be unsuitable.

2.4 Null models

In order to understand the TDA loop structures, three separate null models of distance
matrices representing various properties of the Hi-C data were generated and analyzed with
TDA. The three null models are defined as follows:
Random permutation: all Hi-C distance values are permuted randomly, preserving only
the symmetry of the distance matrix and the values themselves.
Edge permutation: the distance values along each row of the distance matrix were
permuted randomly, preserving both the degree of and set of distances for each node but
randomly changing their assignments. The corresponding columns were permuted in the
same way to preserve symmetry.
Linear dependence: a new distance matrix is created, in which each diagonal beyond
the main diagonal preserves the same mean and standard deviation of the original data,
with Gaussian noise added. The dominant pattern of the Hi-C distance matrices is a

decrease in distance as the difference between the row index and column index increases.

This model represents this same pattern, but does not include any additional structural
features of chromosomes.
The properties of barcode plots and persistence diagrams of these null models were compared
with those of true Hi-C data.

2.5 Bottleneck distance to compare persistence diagrams

In order to derive stability results for TDA, Carlsson (2014) [5] proposed a metric called
the bottleneck distance that quantifies the difference between two persistence diagrams. The
bottleneck distance is based on a perfect bipartite matching g between two persistence
diagrams dgm; and dgms, where points in either persistence diagram can also be matched
to any point along the diagonal. The formula for computing the bottleneck distance dp is:

dp(dgm,,dgm,) = inf

matching g | (z,y)€g

max ||z — y|w] .
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Table 1 All Hi-C samples used for this study.

Sample name Description SRA Accessions Study
RUES2 ESC embryonic stem cell SRX3375347, SRX3375348  [16]
RUES2 MES mesoderm SRX3375349, SRX3375350 [16]
RUES2 CP cardiac progenitor SRX3375351, SRX3375352  [16]
RUES2 CM cardiac myocyte SRX3375353, SRX3375354  [16]
RUES2 FetalHeart fetal heart tissue SRX3375355, SRX3375356  [16]
WTC11 PSC pluripotent stem cell SRX4958481, SRX4958482  [16]
WTC11 MES mesoderm SRX4958483, SRX4958484  [16]
WTC11 CP cardiac progenitor SRX4958485, SRX4958486  [16]
WTC11 CM cardiac myocyte SRX4958487, SRX4958488  [16]
H1 ESC embryonic stem cell SRX378271, SRX378272 [12]
H1 ME mesendoderm SRX378273, SRX378274 [12]
H1 MS mesenchymal stem cell SRX378275, SRX378276 [12]
H1 NP neural progenitor SRX378277, SRX378278 [12]
H1 TB trophoblast-like cells SRX378279, SRX378280 [12]

The bottleneck distance quantifies the similarity between two persistence diagrams by the
maximum distance between two points in the best matching.

3 Results

3.1 Data

We analyzed Hi-C samples from 14 conditions, representing several differentiation lineages
from two different studies [16, 12]. Two of these lineages represent paths through human
cardiogenesis, starting with stem cells and continuing through the mesoderm (MES), cardiac
progenitor (CP), and cardiac myocyte (CM) stages. One line, from RUES2 cells, begins with
embryonic stem cells (ESC), and also includes a fetal heart tissue sample. The study authors
also collected data from WTCI11 cells, beginning with a human induced pluripotent stem cell
(PSC), then collecting data at the same stages as the RUES2 cells: MES, CP and CM [16].
The third Hi-C data set represents still another differentiation starting point, using H1 ESC
cells to generate four human ES-cell-derived lineages: mesendoderm (ME), mesenchymal
stem (MS) cells, neural progenitor (NP) cells, and trophoblast-like (TB) cells [12]. All data
is described in Table 1, including accession codes. Samples from all 14 conditions included
two replicates each. All of the Hi-C data was processed from raw reads to normalized contact
matrices at 100kb using the HiC-Pro pipeline [29] and iterative correction and eigenvector
decomposition (ICE) normalization [19]. In order to maximize coverage, we combined all of
the reads from replicates to produce one Hi-C matrix per sample.

We generated ten of each of the null models for every RUES2 cell type and each chromo-
some from 13 to 22. The null models on longer chromosomes proved not to be computationally
feasible, but the patterns across the chromosomes that we were able to model were remarkably
consistent (see Figure 7), suggesting that the additional data from all three null models on
chromosomes 1 through 12 would follow similar patterns.
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Figure 1 Representative example of a barcode plot (a) and persistence diagram (b) from Hi-C
data. These figures were created from chromosome 5 of WTC11 cardiac progenitor cells, and
summarize the output from the persistent homology computation. Each point or bar represents one
structure, defined by the radius at which the structure can first be seen (birth radius), and the last
radius before the structure no longer exists (death radius). These figures are two ways to represent
the same persistent homology information. (c¢) Distributions of birth, death, and lifespan values of
all 14 cell types on all 22 chromosomes.

3.2 Persistent homology in Hi-C data

We visualize the persisent homology groups in the two ways described previously, persistence
diagrams and barcode plots. We focus here on Hy and H; structures and observe a very
distinctive pattern in both structure classes across chromosomes and cell types in all of our
Hi-C data (Figure 1c). The majority of Hy structures disappear at a radius of somewhere
between o = 0.1 and a = 0.2, suggesting that many new edges are formed near these values,
and relatively few Hq structures persist after this. TDA therefore quickly recovers the linear
structure of the chromosome. The H; structures tend to have short lifespans (they are
close to the diagonal in the persistence diagrams), and most are born at o ~ 0.6 — 0.8,
though there are consistently a few loops born earlier. A representative barcode plot and
persistence diagram can be seen in Figure 1. Birth and death values to plot all barcode plots
and persistence diagrams on all cell types and all chromosomes studied here is available at
https://github.com/Kingsford-Group/hictda.

3.3 Characterization of loops

Using the loop trace-back algorithm described in Methods, we locate the representative
genomic bins for each H; homology class identified and characterize their distributions
across cell type, chromosomes, and differentiation stages. Recall that TDA “loops” are not
traditional chromosome loops in the sense that they may be made up of non-consecutive
genomic segments; across all of our data only 1868 of the 850188 total loops found are made
up of consecutive genomic segments with mean length of only ~625kb. Given that most
of the loops are not made of consecutive genomic segments, we will refer to their size as
the number of bins involved in the loop rather than the genomic distance between the first
and last bin. These loop structures are generally very small (mean ~446.5kb, or 4.47 bins),
but this mean is largely dominated by very short-lived loops; 98.98% of all Hy structures
identified by TDA have a lifespan (difference between birth and death radius) of less than
0.1, which can be seen in both the barcode plot, where the majority of blue lines are very
short, and the persistence diagram, where most blue dots are very close to the diagonal
(Figure 1). We therefore look at these loop size distributions as a function of their lifespan
(Figure 2a), noting that while the average loop is quite short, there are many much longer
loops (the longest loop involves 2492 bins, equivalent to 24.92Mb) and the distributions
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Figure 2 Distributions of genomic loop sizes across loop lifespans, cell types, and chromosomes.
For all three figures, the log-scaled y-axis represents the total number of genomic bins returned
by the loop traceback method. (a) Loop distributions separated by their lifespans in the VR
complex. Larger lifespans indicate loops that are present for a large range of a values. (b) Loop
size distributions by cell type, excluding all loops with lifespans less than 0.1, which are likely to
be artifacts. (c) Loop size distributions by chromosome, again excluding all loops with lifespans
less than 0.1.

vary significantly between lifespan ranges. Removing the loops with lifespan less than 0.1
which are likely artifacts, the distributions of loop size do not vary much between cell types
(Figure 2b), though there is some variation between chromosomes (Figure 2¢). We did not
observe any consistent trends in loop characteristics through differentiation across the three
cell lines (Figure 6).

3.4 Loop patterns are largely dictated by the linearity of chromosomes

In order to further understand the H; structures, the patterns observed in real Hi-C data
were compared to our null models. As a representative example, barcode plots of all loop
structures of chromosome 14 in RUES2 MES cells can be seen in Figure 3a, along with the
null models from this data.

One of the most striking patterns in comparing these null models to the true data is that
the loops in Hi-C tend to be born at a much higher value of a, and survive only a short
time, as noted previously. The model that most closely resembles this pattern is the linear
dependence model, but the distribution of birth times shows that the linear dependence model
has a long tail towards the earlier birth times which is absent in real Hi-C data (Figure 3b).
The short life span, which will generally correspond to smaller loops, is also much more
consistent with the linear dependence model, although somewhat more pronounced in Hi-C
(Figure 3c). The fact that the linear dependence null model shows these same patterns as
Hi-C data suggests that the linear property (nodes that are close together in index, or linear
distance, are also close in 3D space) is sufficient to explain the short loops and birth times
concentrated at high values of a. Long loops appear to be created when nodes with a large
difference in their indices (large linear distance) are close together, as demonstrated by the
loops with very long life spans in the two permutation models. This appears to be very rare in
Hi-C data; the majority of loop interactions we observe are relatively short-lived and involve
few genomic bins, consistent with findings from more traditional chromosome loop structures
which have been shown to be almost exclusively between loci less than 2Mb apart [26].

The greatest difference between the linear dependence model and Hi-C data can be seen
in the number of loops identified (Figure 3d). Although the linear dependence model is again
the most similar to real data in this regard, it typically still contains over twice the number
of loops as the corresponding Hi-C matrix. This observation could be explained by the



N. Sauerwald, Y. Shen, and C. Kingsford

a RUES2 MES, chr 14 Linear dependence b

1750 2500

Random permutation
r 1 Edge permutation
1500 [ Linear dependence
[ 3 Hi-C

2000

1000

0.0 0.2 04 06 08 1.0 0.0 02 04 06 08 1c B
Ragius . Radius ;
Edge permutation Random permutation

0000

8000

5000

4000

2000

oo 02 04 05 08 1c 0.0 0.2 0.4 0.6 0.8 1.0

d Loop birth time (a)
Random permutation [ Random permutation
[ Edge permutation | [ Edge permutation
[ Linear dependence r [ Linear dependence
1 Hi-C
0.0 0.1 0.2 0.3 0.4 0.5 0.6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Loop life span () Ratio of loop count in model to corresponding Hi-C

Figure 3 Loop analysis through multiple null models. (a) Barcode plots (showing only loop
structures) from chromosome 14 of RUES2 MES cells, along with the corresponding barcode plots
from the three null models. (b) Normalized histogram of the birth times of all loops in RUES2
data from true Hi-C and each null model. (c) Normalized histogram of loop life spans (length
of a barcode line) shows that the loops from real Hi-C data are very small, similar to the linear
dependence model. (d) Normalized histogram of the ratios of numbers of loops in each null model
to the number of loops in the corresponding Hi-C matrix.

existence of topologically associating domains (TADs) or compartments in real chromosomes,
which are absent from the linear dependence model but a defining characteristic of Hi-C.
These structures serve to isolate chromosome segments from each other, which likely prevents
the formation of loops between them. If loops can largely only be formed within a TAD or
compartment, this would significantly restrict the total number of feasible loops which could
explain the pattern we observe in the persistence diagrams of Hi-C data.

3.5 Comparing topologies across differentiation

Although there are some evident changes in topological structures measured by TDA through
differentiation, the larger differences exist between the three main cell lines (RUES2, WTC11,
and H1, see Figure 4). Interestingly, there does not seem to be any more similarity, measured
by bottleneck distance averaged over all chromosomes, between cells at the same stages of
differentiation across the three cell lines than cells at different stages of differentiation. For
example, the distance value between the two cardiac progenitor samples from RUES2 and
WTCI11 appears no lower than the value between RUES2 CP and WTC11 CM cells, and
H1 ESC and RUES2 ESC seem no more similar to each other than H1 ESC and RUES2
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Figure 4 Comparison of all 14 samples studied. This heatmap represents the bottleneck distances
between each pair of samples in our data, averaged over all 22 chromosomes. With the exceptions of
the high distances between the two later stages and two earlier stages of WTC11 differentiation, the
pattern of low distance within one cell line dominates these comparisons. This pattern can be seen
by the lighter blocks along the diagonal with limits corresponding to the changes in cell line.

MES or RUES2 ESC and H1 ME cells. Global topological features identified by TDA at the
genome-wide scale therefore seem to be determined more by cell line than differentiation
stage, suggesting that the structural changes involved in differentiation may be more localized
or on a smaller scale than we have studied here.

4 Discussion

One of the major challenges in the application of TDA to Hi-C data is the computational
complexity of the methods combined with the scale of Hi-C. For a more in-depth discussion
of TDA complexity, see for example [23]. Due to computational limitations, the structures
studied here are fairly large-scale; the Hi-C data analyzed is at a relatively low 100kb
resolution, and our study only includes 14 samples. By studying smaller sections of the
genome, perhaps near a gene of interest or within a particular structure of interest, higher
resolution Hi-C or 5C could be used with TDA to identify small-scale topological structures.
We were also only able to study intra-chromosomal matrices, but the topology of inter-
chromosomal interactions would likely yield interesting insights as well though it would
further increase the computational complexity of the problem. Another consequence of
the computational complexity of TDA is our focus on only 0- and 1- dimensional features.
Emmett et al. (2015) [15] speculate that the 2-dimensional voids may represent interesting
biological features such as transcription factories. Future improvements in the data structures
and algorithms underlying TDA would significantly improve our ability to study more aspects
of the topology of the full genome.

The nature of Hi-C, as an experiment based on cross-linking over a full population, does
not permit a transformation from the Hi-C counts to a true distance metric. While this did
not seem to affect the results in two toy examples tested (see Section S2), the complexity of
Hi-C may result in more unpredictable outcomes from violating the triangle inequality on
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a much larger scale. One possibility to improve this concern is to use any of the methods
that estimate a 3D structure from Hi-C, or select only the Hi-C values that satisfy a metric
definition [13], and infer distances which would be geometrically consistent. However, this
induces another source of error, and it is unclear whether the results would be more reliable.

We have presented the first application of TDA to study the topology of all 22 human
autosomal chromosomes. By studying clusters and loops of 14 samples from various cell lines
and stages of differentiation, we identify generative principles of chromosome structure. We
describe the characteristics of loop structures in chromosomes, the majority of which are very
short genomically but with a small number of extremely large outliers suggesting the presence
of very long-distance chromosome interactions. Our models suggest that the linearity of the
chromosome is sufficient to explain the short lifespan of its loops, but additional structural
features specific to Hi-C likely lead to the relatively small number of loops and their late
birth times. We also show that topological structure seems to be largely determined by cell
line rather than stage of differentiation. TDA shows promise for further analysis of Hi-C
data, especially as computational limitations are overcome permitting analysis of higher
dimensional features at higher resolution.

Financial disclosure. C.K. is a co-founder of Ocean Genomics, Inc.
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A  Proof of correctness of the loop trace-back algorithm

In this section, we will prove that the loop found by shortest path based algorithm is in fact
the optimal loop of a particular persistent structure.

As described in Methods, the persistent homology algorithm involves building a series of
VR complexes by varying the parameter «, creating different homology classes that appear
and disappear at different values of a. For a given parameter «g, we construct a weighted
graph (G(ap),V, E) where vertices are all points in the given data set, and an edge, with
weight equal to the distance between the vertices, exists if the weight is not larger than ayg.
From the perspective of algebraic topology, the graph G(«p) can be regarded as a simplicial
complex, therefore, definitions such as homology group H; can be used on G(ag) as well.
We will also need to define the group of 1-boundaries of a simplicial complex G, B1(G).
Conceptually B;(G) is the set of all “trivial” cycles in G; the cycles composed of boundaries
of triangles.

The following describes useful notations for the proof.

» Definition (Cycle weight). Given a weighted graph (G,V, E), Ve € E, denote w(e) as the
weight of e, then the weight of a cycle I in the graph is defined as: w(l) = Leciw(e).

» Definition (Cycle birth time). Given a weighted graph (G,V, E), the birth time of a cycle
in the graph is defined as: T(l) = max.c; w(e).

We will refer to an element of a homology group H;(G) as a homology class, which is an
equivalence class over cycles. We define the birth time of a homology class as follows.

» Definition (Homology class birth time). Given a homology group H1(G), the birth time of
a homology class h € Hy(QG) is defined as: T'(h) = minep, T(1), where | € h are cycles.

We denote [[] = {l+ s | s € B1(G)} as the corresponding homology class of the cycle
[. The sum of two cycles used here is similar to the sum of a vector space over field
Z,, specifically, given two cycles I; = {e11,...,e1m} and lo = {ea1,...,€2,}, their sum is
ll + lQ = {6/1, ) 6;-}, 6; S (({611, ceey elm} U{egl, ceey 6271}) - ({611, ceey elm} 0{621, ceey €2n})).
Given a homology class h € H1(G), then VI € h, h = [l]. For the purposes of our algorithm,
we assume that at each time «q at which the dimension of H; increases through the filtration,
there is one unique edge e with w(e) = ag. Under this assumption, we look for the optimal
cycle L satisfying the following;:

L = argmin w(l) = ¥, ciw(e;)

s.t.
I ¢ B1(G(ao))
(1) = ao
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Intuitively, L is the smallest (in terms of total weight) non-trivial cycle among all the
cycles in homology classes born at «p.

We will denote the unique edge with weight «g as [a, b], and let psport be the shortest
path through G(ag)\[a,b] from a to b. This leads to the main result.

» Theorem 1. If there is only one edge with weight ag for ag at which the dimension of
H,(G) increases by 1, then the pshort + [a, ] is the optimal cycle L.

The proof of the theorem can be divided into two parts: first we will show that any cycle
satisfying two conditions above should contain the edge [a, b], and second we will show that
the cycle psport + [a, b] satisfies these two conditions. Since psport + [a, 8] is the shortest cycle
among all the cycles having the edge [a,b], we can easily get theorem 1.

We have the following three lemmas:

» Lemma 1. If all the edges have unique weights, for any g when the dimension of Hi(G(ay))
increases by one, any cycle | on G(ag) satisfying the two conditions | ¢ B1(G(ap)) and
T([l]) = ag contains the edge [a,b], where w([a,b]) = «p.

Proof. Assume for contradiction that there exists a cycle | = {e,ea,...,e,} on G(ap),
1 ¢ B1(G(ap)) and T([l]) = g, which does not include the edge [a,b]. We assume there is
only one edge with weight ag, so w(e;) < ap for all e¢; € {eq,...,e,}. Then ag = T([I]) <
T(l) = maxXeege,,....e,} W(e) < ap, which contradicts the first statement. <

» Lemma 2. If all the edges have unique weights, for any oy when the dimension of
H1(G(ap)) increases by one, any cycle | which belongs to a homology class h satisfying the
conditions h € H1(G(w)) and T(h) = ag contains the edge [a,b] with w([a,b]) = ap.

Proof. Assume for contradiction that there exists a cycle [ € h, | = {e1, e, ..., €, }, that does
not include [a, b], and h € Hi(ag) and T'(h) = ap. There is only one edge with the weight «p,
so w(e;) < agVe; € {e1,...,ep}. Then ag = T'(h) < T(l) = maxeeye,,....c,} w(e) < ag, which
is a clear contradiction. |

» Lemma 3. If all the edges have the unique weights, for any oy when the dimension
number of Hy(G(ag)) increases by one, any cycle | on G(cg) which contains the edge [a,b],
w([a,b]) = ag, does not belong to B1(G(ap)).

Proof. Assume 3l = {e1,eq,...,e,} + [a,b], e; € E, such that | € B1(G(ap)). Since the
dimension increases by one at ag, 3h € H;(G(ap)) such that T'(h) = «p. Choose one
cycle I' € h, from Lemma 2, we know that !’ contains the edge [a,b], then we can write
I"as I' = {e},€5,...,e;} + [a,b]. Since | € Bi1(G(aog)), | +1" = {e1,e2,...,ep} + [a,b] +
{el e, sy} +[a,b] C {er,ea,....ep, €1, €5, ..., e0} still belongs to the homology class h.
Then a9 = T'(h) < T +1V) < maxee{ehe%”,ep,e/l76;"”362}w(e) < ap, which is again a
clear contradiction. |

Lemma 3 tells us that psport + [a, 0] € B1(G (o)), and also any cycle | = pgport + [a, b] + s,
s € B1(G(ay)) contains the edge [a, b], therefore T(pshort + [a,b] + ) > g, Vs € B1(G(ayp)),
then ag > T([pshort + [a,b]]) = mingep, (G(ao)) T (Pshort + [a,b] + 8) > ap which indicates
that T([pshort + [a,b]]) = ao.

Now we have proved that the cycle psport + [a, b] satisfies two conditions, and from Lemma
1 we have also proved that any cycle satisfying these two conditions must contain [a, b],
therefore psport + [a, b] is definitely the one with the smallest weight. We have finished the
proof of theorem 1.
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Figure 5 Study of robustness to violating the triangle inequality. In both figures, the “metric”
values came from perturbing the original data and generating a distance matrix satisfying the triangle
inequality, and the “nonmetric” points are the result of perturbing the distance matrix to violate the
triangle inequality. The x-axis is the Frobenius norm between the perturbed distance matrix and the
original, and the y-axis represents the bottleneck distance between the resulting persistent homology
computations. (a) Underlying geometry: one two-dimensional circle. (b) Underlying geometry: Two
adjacent two-dimensional circles.

B Study of robustness to triangle inequality failure

Much of the theory of TDA is built on the assumption that the distances being analyzed
satisfy the definition of a metric. Unfortunately Hi-C data is not a direct measurement of
distance, and does not satisfy the triangle inequality. The transformation used here to convert
Hi-C values to a “distance” similarly does not satisfy the triangle inequality and is therefore
not a metric. In order to determine whether the violation of the metric assumption strongly
influences the results of TDA, we ran a small study on two toy examples. One example
is a simple two-dimensional circle, and the other is two adjacent two-dimensional circles.
First, we sampled n points (40 points for the first example and 80 for the other) from each
underlying geometry, and generated a distance matrix from these points. We then performed
two perturbations of the sampled data: (1) preserving symmetry and non-negativity, we
applied Gaussian noise of increasing variance to the distance matrix itself, creating a matrix
which violates the triangle inequality, and (2) we applied Gaussian noise of increasing variance
to the sampled points, and computed a distance matrix from the perturbed points, thereby
preserving the triangle inequality. We ran 20 perturbations for each variance (0.5, 1, 1.5,
2, and 2.5), and then ran TDA on all matrices from the two perturbations as well as the
original sampled data, and computed the bottleneck distance between each perturbation and
the original data. We note that the bottleneck distances for perturbations that violate the
metric definition do not differ clearly from those that obey it, suggesting that in these toy
examples, the violations of the triangle inequality did not meaningfully influence the output
of the persistent homology computations (Figure 5).
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Figure 6 Distributions of genomic loop sizes across loop lifespans, separated by differentiation
stage. The log-scaled y-axis again represents the total number of genomic bins returned by the loop
traceback method. (a) RUES2 cell line (b) WTCI11, and (c) H1. Note that because the H1 data is
not a linear trajectory through the differentiation process like the RUES2 and WTC11 data, this is
represented by a different color scheme.
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Figure 7 Persistence diagrams for all null models. Ten null models were generated for each of
the RUES2 cell types on each chromosome from 13-22. All computed models for each cell type are
plotted on top of each other here to demonstrate that each null model shows a very characteristic
shape, which is very consistent across all models. Lighter-colored areas represent regions of variance
between chromosomes or models.
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