
First-Order Guarded Coinduction in Coq
Łukasz Czajka
Faculty of Informatics, TU Dortmund University, Germany
lukaszcz@mimuw.edu.pl

Abstract
We introduce two coinduction principles and two proof translations which, under certain conditions,
map coinductive proofs that use our principles to guarded Coq proofs. The first principle provides
an “operational” description of a proof by coinduction, which is easy to reason with informally.
The second principle extends the first one to allow for direct proofs by coinduction of statements
with existential quantifiers and multiple coinductive predicates in the conclusion. The principles
automatically enforce the correct use of the coinductive hypothesis. We implemented the principles
and the proof translations in a Coq plugin.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Logic and verification

Keywords and phrases coinduction, Coq, guardedness, corecursion

Digital Object Identifier 10.4230/LIPIcs.ITP.2019.14

Related Version A full version of the paper including the appendix is available at https://www.
mimuw.edu.pl/~lukaszcz/focoind.pdf.

Supplement Material The Coq plugin is available at https://github.com/lukaszcz/coinduction.

1 Introduction

Coinduction has been studied for several decades now, and is being used increasingly often in
practice. Most formal coinduction principles are based on the lattice-theoretic Knaster-Tarski
fixpoint theorem [19, 18], on category theory [13, 16], on a syntactic description of legal
proofs [5, 10], or on corecursors [15, 9]. Arguably, these principles are not well-suited for
informal reasoning, and complex coinductive arguments are difficult to verify without a
formalisation or a tedious reformulation.

Induction is dual to coinduction and it has dual lattice-theoretic and category-theoretic
formulations, but informal proofs by induction normally follow an “operational” understanding
of how to apply the inductive hypothesis: an argument to the inductive hypothesis must
decrease in an appropriate sense. This informal understanding is reflected in Coq’s induction
principles and associated tactics. We propose a formal coinduction principle based on a dual
(in an informal sense) “operational” understanding of how to use the coinductive hypothesis:
the result must increase in an appropriate sense. This principle overcomes a weakness of
Coq’s current setup, where proofs built automatically by run-of-the-mill tactics may later be
rejected by the type-checker on the grounds that they are not guarded.

A reader familiar with research in coinduction will probably notice a similarity between
our first coinduction principle and some prior work, e.g., the principle from [14, 4.10] or the
work on sized types [3, 2, 17, 1, 11] (see Remark 3.1). A contribution of this paper is to
show that a principle of this kind may, to some extent, be already implemented in Coq’s
type theory, with the proofs translated directly to guarded Coq proof terms. From this point
of view, Coq’s guardedness criterion turns out to essentially be a syntactic description of the
shape of normal forms of proofs obtainable using our principle. Gimenez [10, Theorem 8]
already showed that his guardedness criterion is equivalent, in terms of definable functions,
to corecursors in the style of [15, 9], but these are not convenient to use directly.

© Łukasz Czajka;
licensed under Creative Commons License CC-BY

10th International Conference on Interactive Theorem Proving (ITP 2019).
Editors: John Harrison, John O’Leary, and Andrew Tolmach; Article No. 14; pp. 14:1–14:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8083-4280
mailto:lukaszcz@mimuw.edu.pl
https://doi.org/10.4230/LIPIcs.ITP.2019.14
https://www.mimuw.edu.pl/~lukaszcz/focoind.pdf
https://www.mimuw.edu.pl/~lukaszcz/focoind.pdf
https://github.com/lukaszcz/coinduction
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 First-Order Guarded Coinduction in Coq

We also propose a second coinduction principle which extends the first one to allow for
direct coinductive proofs of statements with existential quantifiers and multiple coinductive
predicates in the conclusion.

The first coinduction principle may be implemented in Coq relatively seamlessly, with
only small restrictions of limited practical significance. The situation is less satisfactory with
the second principle. Significantly stronger restrictions are required, and the theoretical
guarantees are weak. Nonetheless, the implementation is still useful. It covers a common
pattern of proofs of existential statements that occur, e.g., in proofs about infinitary lambda-
calculus [6]. Moreover, the difficulties with the implementation of the second principle seem
to be caused by the limitations of Coq’s type theory rather than by some more fundamental
problems (see Remark 4.10).

The Paco library [12] achieves similar practical objectives to the first coinduction principle
from our Coq plugin, but its methods are orthogonal to ours. It is based on parameterised
coinduction – an extension of the common lattice-theoretic coinduction principle. It replaces
Coq’s cofix and requires the user to reformulate the definitions of their coinductive predicates
using constructs from the library. In contrast, our approach is to translate the proofs obtained
with our principle directly to guarded Coq proofs, which does not require any reformulation
of the coinductive predicates. The translation approach has some practical disadvantages
(e.g. Coq still wastes time on doing the guardedness checks), but our contribution is more
in proposing a principle which may be considered an approximate semantic counterpart to
Coq’s syntactic guardedness check, thus opening an interesting line for future work.

Our principles are partly inspired by the explanations in [7] of how to elaborate proofs
by coinduction to non-coinductive proofs in set theory.

2 Informal description

In this section, we informally state two coinduction principles and illustrate their use with a
few examples of coinductive proofs. In the rest of this paper, we investigate to what extent
and under which assumptions the principles may be implemented in Coq. The purpose of
this section is to give an informal, illustrative introduction.

A (co)inductive type is given by its constructors, presented as, e.g.,

Stream(A : ∗) : ∗ := cons : A→ StreamA→ StreamA

where ∗ denotes the sort of types. Above A is a parameter and ∗ → ∗ is the arity of Stream.
The types of constructors implicitly quantify over the parameters, i.e., the type of cons
above is ∀A : ∗.A→ StreamA→ StreamA. In the presentation we leave the parameter A
implicit. Intuitively, a coinductive type consist of all possibly infinite objects built using the
constructors, while an inductive type consists only of the finite ones.

Statements (logical formulas) are represented by dependent types. (Co)inductive predic-
ates are represented by dependent (co)inductive types, e.g., the coinductive type

EqSt(A : ∗) : StreamA→ StreamA→ ∗ :=
eqst : ∀x : A.∀s1, s2 : StreamA.

EqStAs1 s2 → EqStA (consx s1) (consx s2)

defines equality (bisimilarity) on streams. We use the words “statement” and “predicate”
when we want to emphasise the logical interpretation of dependent types.

To state the coinduction principles, for each coinductive type I we need to define two
associated types: the red type Ir and the green type Ig. Here we only informally describe
them. The types Ir and Ig have the same parameters and the same arity as I and satisfy
the following two properties. Below, we assume Is1 . . . sk : ∗.

Ł. Czajka 14:3

The red type Ir is a fresh type symbol such that any value in Is1 . . . sk or in Igs1 . . . sk
may be (implicitly) converted into a value in Irs1 . . . sk.
The green type Ig is an inductive type such that for every constructor

c : ∀x1 : τ1 . . . ∀xn : τn.Is1 . . . sk

of I there is a corresponding green constructor

cg : ∀x1 : τ1[Ir/I] . . . ∀xn : τn[Ir/I].Igs1 . . . sk.

Nothing else is known about Ir and Ig. In particular, case analysis on values in Irs1 . . . sk is
not possible. Note that any value v in Is1 . . . sk may be converted into a value in Igs1 . . . sk,
by doing case analysis on v, in each case converting subterms of type Is′1 . . . s′k to values
in Irs′1 . . . s′k, and then applying the corresponding green constructor.

I Example 2.1. For the type of streams Stream the green type Streamg is:

Streamg(A : ∗) : ∗ := consg : A→ Streamr A→ Streamg A

For the bisimilarity EqSt on streams the green type EqStg is:

EqStg(A : ∗) : StreamA→ StreamA→ ∗ :=
eqstg : ∀x : A.∀s1, s2 : StreamA.

EqStr As1 s2 → EqStg A (consx s1) (consx s2)

In a type ϕ = ∀x1 : τ1 . . . ∀xn : τn.Is1 . . . sk the type Is1 . . . sk is the target and I is the
target (co)inductive predicate. We write ϕ(I ′) for ϕ with the target (co)inductive predicate
replaced by I ′. So ϕ(I ′) = ∀x1 : τ1 . . . ∀xn : τn.I ′s1 . . . sk. Note that the substitution of I ′ in
ϕ(I ′) leaves the occurrences of I in τ1, . . . , τn intact.

We restrict our coinduction principles to first-order statements and first-order (co)inductive
types. First-order types will be defined precisely in the next section. Essentially, we need to
disallow quantification over types and type constructors, excepting parameters of (co)inductive
types. Also, for the actual implementation in Coq some further restrictions are needed,
especially for the second principle.

I Principle 1 (First coinduction principle – informal). Let I be a coinductive type and ϕ(I) a
first-order statement. If ϕ(Ir) implies ϕ(Ig) then ϕ(I) holds.

The statement ϕ(Ir) is the coinductive hypothesis, and ϕ(Ig) is the coinductive claim.
Hence, a proof by coinduction shows the coinductive claim under the assumption of the
coinductive hypothesis. Intuitively, the red type Ir in the antecedent of the implication
ϕ(Ir)→ ϕ(Ig) ensures that a proof of Irs1 . . . sk obtained from the coinductive hypothesis
cannot be analysed in any way, or used with previously proven lemmas about I. The green
type Ig in the succedent ensures that a constructor must always be applied to a proof obtained
from the coinductive hypothesis, i.e., it ensures productivity and prohibits concluding with
the coinductive hypothesis directly. In this way, we ensure semantic guardedness of any proof
of ϕ(Ir) → ϕ(Ig), i.e., the guarded use of the coinductive hypothesis ϕ(Ir). Such a proof
may then be translated into a guarded coinductive proof of ϕ(I).

I Example 2.2. We show that the bisimilarity EqSt on streams is an equivalence relation.
We write s1 ≈ s2 instead of EqStAs1 s2, and analogously with ≈r and ≈g. We omit the
type parameter A when irrelevant.

ITP 2019

14:4 First-Order Guarded Coinduction in Coq

Using the first coinduction principle, we prove by coinduction that ≈ is reflexive. The
coinductive hypothesis is: s≈rs for all streams s. We need to show s≈gs for all streams s.
Let s be a stream. We have s = consx s′. By the coinductive hypothesis s′≈rs′. Hence
consx s′≈gconsx s′ by the definition of ≈g.

We now prove by coinduction that ≈ is symmetric. The coinductive hypothesis is: for
all streams s1, s2, if s1 ≈ s2 then s2≈rs1. Let s1, s2 be streams such that s1 ≈ s2. Then
s1 = consx s′1 and s2 = consx s′2 with s′1 ≈ s′2, by the definition of ≈. By the coinductive
hypothesis s′2≈rs′1. Hence consx s′2≈gconsx s′1 by the definition of ≈g.

Finally, we prove transitivity of ≈ by coinduction. Let s1, s2, s3 be streams such that
s1 ≈ s2 and s2 ≈ s3. Then s1 = consx s′1, s2 = consx s′2 and s3 = consx s′3 with
s′1 ≈ s′2 and s′2 ≈ s′3, by the definition of ≈. By the coinductive hypothesis s′1≈rs′3. Hence
consx s′1≈gconsx s′3 by the definition of ≈g.

The first coinduction principle requires the target of the statement being proved to be a
single coinductive predicate. This is in line with most previous work on coinduction. We
will now informally state the second coinduction principle which enables direct coinductive
proofs of statements with more complex targets.

Conjunction (product) ∧, usually written in infix notation, may be defined by:

∧(A : ∗)(B : ∗) : ∗ := conj : A→ B → A ∧B

Existential quantification (dependent sum) may also be defined as an inductive type:

ex(A : ∗)(P : A→ ∗) : ∗ := ex_intro : ∀x : A.∀p : Px.exAP

We usually write ∃x : A.t instead of exA(λx : A.t).
We consider statements

ϕ = ∀x1 : τ1 . . . ∀xm : τm.∃y : It1 . . . tp.I1s
1
1 . . . s

1
k1
y ∧ . . . ∧ Insn1 . . . snkn

y

where y does not occur in sji . Thus the target is a single existential quantification on a value of
a coinductive type followed by a conjunction of n coinductive predicates (n ≥ 1) which depend
on the existentially quantified variable. We write ϕ(I ′; I ′1, . . . , I ′n) for ϕ with I, I1, . . . , In
in the target replaced by I ′, I ′1, . . . , I

′
n respectively (other occurrences of I, I ′1, . . . , I ′n in

τ1, . . . , τm are not affected). For the sake of simplicity, we require y to always be the last
argument of Ii, but the extension to the general case is straightforward.

The problem now is that changing the type of y will result in the whole statement being
no longer well-typed. We thus introduce dependent red and green types by modifying the
definitions of the red and the green types. We replace the last coinductive type in the arity
with the corresponding red or green type, respectively, and for green types we also modify
the types of the constructors accordingly. The definition of dependent red and green types
works only for certain coinductive types. The precise conditions will be given later.

I Example 2.3. For the bisimilarity EqSt on streams the dependent red type has the type

EqStr : ∀A : ∗.StreamA→ StreamrA→ ∗

and the dependent green type EqStg is:

EqStg(A : ∗) : StreamA→ StreamgA→ ∗ :=
eqstg : ∀x : A.∀s1 : StreamA.∀sr2 : StreamrA.

EqStr As1 s
r
2 → EqStg A (consx s1) (consg x sr2)

Ł. Czajka 14:5

We can now informally state the second coinduction principle for statements with existen-
tial quantification in the target. When we write ϕ(Ir; Ir1 , . . . , Irn) we assume Ir is an (ordinary)
red type and Ir1 , . . . , Irn are dependent red types. Analogously with ϕ(Ig; Ig1 , . . . , Ign).

I Principle 2 (Second coinduction principle – informal). Let I, I1, . . . , In be coinductive types
and ϕ(I; I1, . . . , In) a first-order statement. If ϕ(Ir; Ir1 , . . . , Irn) implies ϕ(Ig; Ig1 , . . . , Ign)
then ϕ(I; I1, . . . , In) holds.

I Example 2.4. Consider the following coinductive type of infinite terms.

term : ∗ := C : nat→ term | A : term→ term | B : term→ term→ term

We define a parallel reduction relation ⇒ on such terms, written in infix notation.

⇒ : term→ term→ ∗ := rC : ∀i : nat.Ci⇒ Ci

| rA : ∀tt′.t⇒ t′ → At⇒ At′

| rB : ∀ss′tt′.s⇒ s′ → t⇒ t′ → Bst⇒ Bs′t′

| rAB : ∀tt1t2.t⇒ t1 → t⇒ t2 → At⇒ Bt1t2

Using the second coinduction principle, we show that ⇒ is confluent, i.e., if s⇒ t and
s⇒ t′ then there exists u such that t⇒ u and t′ ⇒ u. The coinductive hypothesis is: for all
terms s, t, t′, if s⇒ t and s⇒ t′ then there exists a red term ur (i.e., an element of termr)
such that t⇒rur and t′⇒rur.

Let s, t, t′ be such that s ⇒ t and s ⇒ t′. We need to show that there exists a green
term ug such that t⇒gug and t′⇒gug. We do case analysis on the definitions of s⇒ t and
s⇒ t′. There are the following possibilities.

s = t = t′ = Ci. Then take ug = Cgi.
s = As1 and t = At1 and t′ = At′1 with s1 ⇒ t1 and s1 ⇒ t′1. By the coinductive
hypothesis we obtain ur (in termr) such that t1⇒rur and t′1⇒rur. Take ug = Agur.
Then t = At1⇒gAgur and t′ = At′1⇒gAgur.
s = As1 and t = At1 and t′ = Bt′1t

′
2 with s1 ⇒ t1 and s1 ⇒ t′1 and s1 ⇒ t′2. By the

coinductive hypothesis we obtain ur1, ur2 such that t1⇒rur1, t′1⇒rur1, t1⇒rur2, t′2⇒rur2.
Take ug = Bgur1u

r
2. Then s = As1⇒gBgur1u

r
2 and t′ = Bt′1t

′
2⇒gBgur1u

r
2.

Other cases are analogous to the ones already considered.

The rest of this paper is devoted to precisely stating the two coinduction principles in
the logic of Coq, and investigating under which assumptions proofs using these principles
may be automatically translated into guarded Coq proofs of the original statement.

3 Formal principles

In this section, we give a precise statement of the two coinduction principles. For this purpose,
we define a type system in which our coinductive proofs will be represented. In the next
section we define an extension of this type system which will be the target of our translations.
Both systems are simplified subsets of the logic of Coq.

The language of our system consists of terms and (co)inductive declarations. First,
we present the possible forms of terms together with a brief intuitive explanation of their
meaning. The terms are essentially simplified terms of Coq. Below by t, s, u, τ , σ, etc., we
denote terms, by c, c′, etc., we denote constructors, and by x, y, z, etc., we denote variables.
We use ~t for a sequence of terms t1 . . . tn of an unspecified length n, and analogously for a
sequence of variables ~x. For instance, s~y stands for sy1 . . . yn, where n is not important or
implicit in the context. Analogously, we use λ~x : ~τ .t for λx1 : τ1.λx2 : τ2. . . . λxn : τn.t, with
n implicit or unspecified.

ITP 2019

14:6 First-Order Guarded Coinduction in Coq

A term is a sort ∗, a constructor c, an inductive or a coinductive type I, an application
t1t2, an abstraction λx : t1.t2, a dependent product ∀x : t1.t2, or a case expression case(t, λ~a :
~α.λx : I~q~a.τ, λ ~x1 : ~σ1.s1 | . . . | λ ~xk : ~σk.sk). In a case expression, t is the term matched
on, I is a (co)inductive type, the type of t has the form I~q~u where ~q are the values of the
parameters, the type τ [~u/~a, t/x] is the return type, i.e., the type of the whole case expression,
and si[~v/~x] is the value of the case expression if the value of t is ci~q~v.

For simplicity, we consider only one impredicative sort ∗ of types. If x does not occur
free in t1 then we abbreviate ∀x : t1.t2 to t1 → t2.

A (co)inductive declaration

I(~p : ~ρ) : σ := c1 : σ1 | . . . | cn : σn

declares a (co)inductive type I with parameters ~p and arity ∀~p : ~ρ.σ with n constructors
c1, . . . , cn having types σ1, . . . , σn respectively. We require:

σ = ∀~a : ~α.∗.
σi = ∀x1

i : τ1
i∀x

ki
i : τki

i .I~p~ui.
I occurs only strictly positively in each σi, i.e., I does not occur in ~ui, and for each
j = 1, . . . , ki either I does not occur in τ ji or τ ji = ∀~y : ~γ.I~s where I does not occur in ~s
or ~γ (~s,~γ depend on i, j).

The arity of a constructor ci is ∀~p : ~ρ.σi, denoted ci : ∀~p : ~ρ.σi. For the constructor ci : ∀~p :
~ρ.∀x1

i : τ1
i∀x

ki
i : τki

i .I~p~ui, the set R(ci) of recursive positions is the set of all those j for
which τ ji = ∀~y : ~γ.I~s.

We have the following reductions:

(λx : τ.t)s →β t[s/x]
case(ci~p~v, λ~a : ~α.λx : I~p~a.τ, λ ~x1 : ~τ1.s1 | . . . | λ ~xk : ~τk.sk) →ι si[~v/~xi]

An environment is a list of (co)inductive declarations. We write I ∈ E if a declaration of
a (co)inductive type I occurs in the environment E. Analogously, we write (I : τ) ∈ E and
(c : τ) ∈ E, if a declaration of I with arity τ occurs in E, or a constructor c : τ with arity τ
in a declaration in E, respectively. A context Γ is a list of pairs x : τ with x a variable and
τ a term. A sort is ∗ or � (note that � is not a term, but ∗ is). A typing judgement has
the form E; Γ ` t : τ with t a term and τ a term or a sort. A term t is well-typed and has
type τ in the context Γ and environment E if E; Γ ` t : τ may be derived using the rules
from Figure 1. We denote an empty list by 〈〉.

In Figure 1 we assume s, s1, s2 are sorts. We also assume that the environment E is
well-formed, which is defined inductively: an empty environment is well-formed, and an
environment E, I(~p : ~ρ) : τ := c1 : τ1 | . . . | cn : τn (denoted E, I) is well-formed if E is and:

the constructors c1, . . . , cn are pairwise distinct and distinct from any constructors
occurring in the declarations in E;
E; 〈〉 ` ∀~p : ~ρ.τ : � and E; I : ∀~p : ~ρ.τ, ~p : ~ρ ` τi : ∗.

When E,Γ are clear or irrelevant, we write t : τ instead of E; Γ ` t : τ .
The type system is a subsystem of the Calculus of Inductive Constructions, so βι-reduction

is confluent and strongly normalising on well-typed terms [21]. We usually implictly consider
types to be in βι-normal form, without mentioning this every time. An η-expansion changes
a term t of type ∀x : τ.σ, which is not a λ-abstraction and is such that x /∈ FV(t), into the
term λx : τ.tx. The η-long form of a term is obtained by η-expanding as much as possible
without creating β-redexes.

Ł. Czajka 14:7

E; 〈〉 ` ∗ : �
(I : τ) ∈ E
E; Γ ` I : τ

(c : τ) ∈ E
E; Γ ` c : τ

E; Γ ` A : s x /∈ Γ
E; Γ, x : A ` x : A

E; Γ ` A : B E; Γ ` C : s x /∈ Γ
E; Γ, x : C ` A : B

E; Γ ` F : ∀x : A.B E; Γ ` t : A
E; Γ ` Ft : B[t/x]

E; Γ, x : A ` t : B E; Γ ` (∀x : A.B) : s
E; Γ ` (λx : A.t) : ∀x : A.B

E; Γ ` A : s1 E; Γ, x : A ` B : s2

E; Γ ` (∀x : A.B) : s2

E; Γ ` A : B E; Γ ` B′ : s B =βι B
′

E; Γ ` A : B′

E; Γ ` t : I~q~u E; Γ ` (λ~a : ~α.λx : I~q~a.τ) : ∀~a : ~α.I~q~a→ ∗
(I(~p : ~ρ) : ∀~a : ~α.∗ := c1 : ∀ ~x1 : ~τ1.I~p ~u1 | . . . | ck : ∀ ~xk : ~τk.I~p ~uk) ∈ E

E; Γ ` (λ~xi : ~σi.si) : ∀~xi : ~σi.τ [~wi/~a, ci~q ~xi/x] ~σi = ~τi[~q/~p] ~wi = ~ui[~q/~p]
E; Γ ` case(t, λ~a : ~α.λx : I~q~a.τ, λ ~x1 : ~σ1.s1 | . . . | λ ~xk : ~σk.sk) : τ [~u/~a, t/x]

Figure 1 Typing rules.

A term τ is first-order if ∗ does not occur in it. A context Γ is first-order if for every
(x : τ) ∈ Γ the type τ is first-order. A (co)inductive type

I(~p : ~ρ) : σ := c1 : σ1 | . . . | cn : σn

is first-order if:
σ, σ1, . . . , σn are first-order;
each parameter type ρi has the form ∀~x : ~τ .∗ with all ~τ first-order;
if σi = ∀x1 : τ1 . . . ∀xm : τm.I~p~u and I occurs in τi then xi /∈ FV(τi+1, . . . , τm, ~u).

An environment E is first-order if all (co)inductive types in E are. Note that we allow ∗ in
the types of parameters of (co)inductive types.

Let I(~p : ~ρ) : ∀~a : ~α.∗ := c1 : ∀ ~x1 : ~τ1.I~p ~u1 | . . . | ck : ∀ ~xk : ~τk.I~p ~uk be a coinductive
declaration. The red type declaration Declr(I) for I is

Ir : ∀~p : ~ρ.∀~a : ~α.∗, ιI : ∀~p : ~ρ.∀~a : ~α.I~p~a→ Ir~p~a, ιgI : ∀~p : ~ρ.∀~a : ~α.Ig~p~a→ Ir~p~a.

The green type declaration Declg(I) for I is

Ig(Ir : τIr)(~p : ~ρ) : ∀~a : ~α.∗ := cg1 : ∀ ~x1 : ~τ1[Ir/I].IgIr~p ~u1 | . . . | cgk : ∀ ~xk : ~τk[Ir/I].IgIr~p ~uk

where τIr = ∀~p : ~ρ.∀~a : ~α.∗ is the arity of the red type Ir. The type I is admissible for E; Γ if
Ir, ιI , ι

g
I /∈ Γ and Ig, cg1, . . . , c

g
k /∈ E. Note that Ig need not be first-order, because τIr might

not have the required form for a parameter type.
We assume two new term forms: cofix1(t) and cofix2(t).

I Principle 1 (First coinduction principle). Let ϕ = ∀~x : ~τ .z~u be a first-order type with z /∈
FV(~τ , ~u) free. Let Γ be a first-order context and E a first-order environment. Let (I : ∀~p :
~ρ.∀~a : ~α.∗) ∈ E be a coinductive type admissible for E; Γ. If

E,Declg(I); Γ,Declr(I) ` t : ϕ[Ir/z]→ ϕ[IgIr/z]

ITP 2019

14:8 First-Order Guarded Coinduction in Coq

then

E; Γ ` cofix1(t′) : ϕ[I/z]

where t′ = t[I/Ir, id/ιI , id/ιgI , (λIr.I)/Ig, (λIr.c1)/cg1, . . . , (λIr.ck)/cgk] and id = λ~p : ~ρ.λ~a :
~α.λx : I~p~a.x and c1, . . . , ck are the only constructors of I.

The first coinduction principle could be simply added to our type theory as a typing rule.
We conjecture that, even without the first-order restriction, the resulting system would be
reasonable and enjoy logical consistency and strong normalisation. In this paper we do not
study the meta-theoretical properties of such a system, leaving this for future work. Instead,
we investigate to what extent the principle may be implemented in the existing type theory
of Coq. It turns out that in addition to the assumptions already stated, we need only minor
restrictions on the proof t which have limited practical significance.
I Remark 3.1. We believe that the first-order restriction is not necessary for the soundness of
the first coinduction principle. It is necessary to enable a translation to guarded Coq proofs.
If we allow quantification over types, then some proofs obtained using the principle are not
directly translatable, but we believe them to be still valid. For instance, if I : ∗ := c : I → I

and R : I → ∗ := r : ∀x : I.Rx → R(cx) are coinductive types and the context contains
F : ∀A : ∗.A → A then cofix1(λf : ∀y.Ry.λy.case(y, λy.Ry, λx.rx(F (Rx)(fx)))) may be
obtained using the first coinduction principle. This proof is not syntactically guarded, but
seems valid. Since F is parametric in the type argument A, it cannot inspect its second
argument in any way. Hence, the proof is semantically guarded.

In fact, when restricted to streams the first coinduction principle is essentially a degenerate
case of the principle from [17] based on sized types. The two colors (red and green) may be
seen as two sizes: with green the successor of red. In a proof by coinduction the size needs
to increase from red to green. One could extend our principle by introducing an arbitrary
number of “colors” corresponding to natural numbers. The resulting system would be very
similar to systems based on sized types [3, 2].

The reader may check that the counterexamples to a more relaxed syntactic guardedness
criterion from [10, p. 53] do not translate to our principle. Nonetheless, the interaction of
the first coinduction principle with impredicative polymorphism and fixpoints is not obvious.
We leave for future work the rigorous investigation of the general soundness of our principle
without the first-order restriction.

We now proceed to state the second coinduction principle. For this purpose, we need to
introduce the definitions of dependent red and green types, as indicated in Section 2. We
consider a coinductive type I with the declaration

I(~p : ~ρ) : ∀~a : ~α.∀b : J ~w.∗ := c1 : ∀ ~x1 : ~τ1.I~p ~u1(d1 ~w1) | . . . | ck : ∀ ~xk : ~τk.I~p ~uk(dk ~wk)

such that each di is a constructor of the coinductive type J , and if I occurs in τ ji then
τ ji = I~uv and v = x is a variable. We define Vari(I) as the set of all variables which appear
as the last argument to some occurrence of I in ~τi.

A coinductive type I of the above form is J-admissible if:
for every x ∈ Vari(I): x can only occur in ~τi as the last argument of some occurrence
of I in ~τi, and x /∈ FV(~ui).
if di : ∀~y : ~σ.J~t then for every j either wji = x ∈ Vari(I) and σj = J ~sj , or wji does not
contain any variables from Vari(I) and σj does not contain J .

Ł. Czajka 14:9

I Example 3.2. Let I : ∗ := c : I → I. The type R : I → I → ∗ := r : ∀x, y : I.Rxy →
R(cx)(cy) is I-admissible, but R1 : I → I → ∗ := r1 : ∀x, y : I.R1xy → R1(cx)y and
R2 : I → I → ∗ := r2 : ∀x, y : I.R2xy → R2(cy)(cy) and R3 : I → I → ∗ := r3 : ∀x, y :
I.R3yy → R3(cx)(cy) are not.

The dependent red type declaration Declrd(I) for I is:

Ir : ∀~p : ~ρ.∀~a : ~α.∀b : Jr ~w.∗, ιI : ∀~p : ~ρ.∀~a : ~α.∀b : J ~w.I~p~ab→ Ir~p~a(ιJ ~w),
ιgI : ∀~p : ~ρ.∀~a : ~α.∀b : JgJr ~w.IgJrIr~p~ab→ Ir~p~a(ιgJ ~w).

The dependent green type declaration Declgd(I) for I is:

Ig(Jr : τJr)(Ir : τIr)(~p : ~ρ) : ∀~a : ~α.∀b : JgJr ~w.∗ :=
cg1 : ∀ ~x1 : ~σ1.I

gJrIr ~u1(dg1Jr ~w1) | . . . | cgk : ∀ ~xk : ~σk.IgJrIr ~uk(dgkJr ~wk)

where:
σji = τ ji [Ir/I] if xji /∈ Vari(I);
σji = Jr~v if xji ∈ Vari(I) and τ ji = J~v;
τJr is the arity of the non-dependent red type Jr, and τIr is the arity of the dependent
red type Ir.

If I is J-admissible then Ig is well-formed.

I Remark 3.3. The definition of dependent green types could be relaxed at the cost of
additional complexity. For example, we could parameterise the definition by ιJ and allow all
constructors of the form ci : ∀~xi : ~τi.I~p~uiw where I /∈ FV(~τi).

I Principle 2 (Second coinduction principle). Let ϕ = ∀~x : ~τ .∃y : z~u.z1 ~u1y ∧ . . . ∧ zn ~uny
be a first-order type with z, z1, . . . , zn /∈ FV(~τ , ~u, ~u1, . . . , ~un) free. Let Γ be a first-order
context and E a first-order environment. Let I, I1, . . . , In ∈ E be coinductive types admissible
for E; Γ, and such that I1, . . . , In are I-admissible. If

E,Declg(I),Declgd(I1), . . . ,Declgd(In); Γ,Declr(I),Declrd(I1), . . . ,Declrd(In) `
t : ϕ[Ir/z, Ir1/z1, . . . , I

r
n/zn]→ ϕ[IgIr/z, Ig1 IrIr1/z1, . . . , I

g
nI

rIrn/zn]

then E; Γ ` cofix2(t′) : ϕ[I/z, I1/z1, . . . , In/zn] where

t′ = t[I/Ir, id/ιI , id/ιgI , (λIr.I)/Ig,
I1/I

r
1 , id1/ιI1 , id1/ι

g
I1
, (λIrIr1 .I1)/Ig1 , . . . , In/Irn, idn/ιIn , idn/ιgIn

, (λIrIrn.In)/Ign,
(λIr.c1)/cg1, . . . , (λIr.ck)/cgk, (λIrIr1 .c1,1)/cg1,1, . . . , (λIrIr1 .ck,1)/cgk1,1, . . . ,

(λIrIrn.c1,n)/cg1,n, . . . , (λIrIrn.ckn,n)/cgkn,n
]

and id, id1, . . . , idn are functions of appropriate types which return their last argument, and
c1, . . . , ck are the only constructors of I, and c1,j , . . . , ckj ,j are the only constructors of Ij.

Above we assume all Ir1 , . . . , Irn to be distinct, even if some of the I1, . . . , In are identical.
This weakens the principle slightly in comparison to its informal presentation in Section 2.
The types ∃y : A.B and A ∧B are defined like in Section 2.

As in Section 2, for simplicity we allow only one existential quantifier and we require the
existential variable to always be the last argument to a coinductive predicate. The extension
to the general case is straightforward but tedious.

ITP 2019

14:10 First-Order Guarded Coinduction in Coq

4 Proof translations

In this section, we define the two translations which map proofs that use our principles into
guarded Coq proofs. The target type system of the translations is the system of the previous
section extended with cofix.

I Definition 4.1. We add a new term form to the terms from Section 3: if t is a term and I
a coinductive type, then cofix(λf : ∀~x : ~τ .I~u.t) is a term. We extend the type system from
Section 3 by the reduction rule

case(cofix(λf : ∀~x : ~τ .I~u.t), r, s1 | . . . | sk)→ι

case(t[cofix(λf : ∀~x : ~τ .I~u.t)/f], r, s1 | . . . | sk)

and the typing rule

E; Γ ` (λf : ∀~x : ~τ .I~u.t) : (∀~x : ~τ .I~u)→ (∀~x : ~τ .I~u) G(f, t)
E; Γ ` cofix(λf : ∀~x : ~τ .I~u.t) : ∀~x : ~τ .I~u

where I is a coinductive type, and G(f, t) states that f is guarded in t, as defined below.
Following [10], we define two predicates Gh(f, t) for h = 0, 1. The predicate Gh(f, t) holds

if one of the following is satisfied:
t = λx : τ.t′ and f /∈ FV(τ) and Gh(f, t′);
t = case(u, r, s1 | . . . | sk)w1 . . . wn with n ≥ 0 and f /∈ FV(u, r, w1, . . . , wn) and Gh(f, si)
for i = 1, . . . , k;
t = ct1 . . . tn and for j = 1, . . . , n we have: either j ∈ R(c) is a recusive position and
G1(f, tj), or f /∈ FV(tj);
t = f~u and h = 1 and f /∈ FV(~u);
f /∈ FV(t).

We set G = G0. If G(f, t) then f is guarded in t.
To avoid confusion, we denote the typability relation in the extended system by `e. We

reserve ` for the system without cofix.

The above syntactic guardedness criterion is more liberal than what is described in [10],
but it is closer to the criterion actually implemented in Coq. In [10] terms of the form
case(u, r, s1 | . . . | sk)w1 . . . wn with n ≥ 1 are not considered. Such terms are often generated
by the destruct and inversion tactics, and Coq’s guardedness checker does accept them.

I Example 4.2. Let I : ∗ := c : I → I. The variable f is guarded in case(x, λx : I.I →
I, λy : I.λa : I.c(fy))z but not in case(x, λx : I.I → I, λy : I.λa : I.cy)(fz).

I Definition 4.3 (The first translation). Let ϕ = ∀~x : ~τ .z~u be a first-order type with z /∈
FV(~τ , ~u) free. Let Γ be a first-order context and E a first-order environment. Let

I(~p : ~ρ) : ∀~a : ~α.∗ := c1 : ∀ ~x1 : ~τ1.I~p ~u1 | . . . | ck : ∀ ~xk : ~τk.I~p ~uk

be a coinductive type in E admissible for E; Γ.
Assume E,Declg(I); Γ,Declr(I) ` t : ϕ[Ir/z] → ϕ[IgIr/z]. The first translation of t,

denoted tr1(t), is defined as follows:

tr1(t) = cofix(t′[I/Ir, id/ιI , id/ιgI , (λI
r.I)/Ig, (λIr.c1)/cg1, . . . , (λIr.ck)/cgk])

where t′ is the η-long βι-normal form of t, and id = λ~p : ~ρ.λ~a : ~α.λx : I~p~a.x.

Ł. Czajka 14:11

I Example 4.4. Let I : ∗ := c : I → I and R : I → ∗ := r : ∀x : I.Rx→ R(cx). Then a proof
t = λf : (∀x : I.Rrx).λx : I.case(x, λx.Rgx, λx′.rgx′(fx′)) for ∀x : I.Rx gets translated to
tr1(t) = cofix(λf : (∀x : I.Rx).λx : I.case(x, λx.Rx, λx′.rx′(fx′))). For readability, we
omit parameters to green types.

I Definition 4.5. A term t satisfies the proper case restriction for X, I if for every subterm
of t of the form case(u, λ~a : ~α.x : J~p~a.τ, s1 | . . . | sk) the type τ is first-order, J 6= I, and
X, I do not occur in τ . A term t satisfies the weak case restriction for X, I if:

it satisfies the proper case restriction for X, I; or
t = λx : τ.t′, and t′ satisfies the weak case restriction for X, I; or
t = case(u, λ~a : ~α.x : J~p~a.∀~y : ~β.τ, s1 | . . . | sk,)~w, and τ, ~β are first-order, and X, I do
not occur in ~β, and J 6= I, and s1, . . . , sk satisfy the weak case restriction for X, I, and
u, ~w satisfy the proper case restriction for X, I.

The proper case restriction allows us to partially recover the subformula property for
normal proofs of first-order statements, to the extent that we need it to conclude that the
coinductive hypothesis does not occur in a proof of a statement with no occurrences of Ir.
This is achieved in the following technical lemma, whose proof may be found in the appendix.

I Lemma 4.6. Assume E is a first-order environment, Γ,Γ′ is a first-order context,
X, IX , f1, . . . , fn do not occur in Γ,Γ′, and u is an η-long βι-normal form satisfying the
proper case restriction for X, IX , and E, IX ; Γ, X : ∀~a : ~α.∗, f1 : ∀~x : ~σ1.X ~v1, . . . , fn : ∀~x :
~σn.X ~vn,Γ′ ` u : τ .
1. If τ : ∗ is a first-order type and X, IX , f1, . . . , fn do not occur in τ , then X, IX , f1, . . . , fn

do not occur in u and u is first-order.
2. If τ = ∗ and u is first-order and X, IX do not occur in u, then f1, . . . , fn do not occur

in u.
3. If τ = I~h and I 6= IX and either u = case(. . .)~w or u = y ~w, then τ is first-order and

X, IX , f1, . . . , fn do not occur in τ .

I Theorem 4.7. Under the assumptions of Definition 4.3, if the η-long βι-normal form of t
additionally satisfies the weak case restriction for Ir, Ig, then E; Γ `e tr1(t) : ϕ(I).

Proof. We reason modulo βι-conversion in types. We also implicitly use standard meta-
theoretical properties like the generation and subject reduction lemmas [4, 21]. The system
is a simplification of the Calculus of Inductive Constructions, and these properties hold.

For any term u, by û we denote the η-long βι-normal form of

u[I/Ir, id/ιI , id/ιgI , (λI
r.I)/Ig, (λIr.c1)/cg1, . . . , (λIr.ck)/cgk].

Without loss of generality assume t is in η-long βι-normal form. Then tr1(t) = cofix(t̂) and
t = λf : ϕ(Ir/z).u. It follows by induction on the derivation of E,Declg(I); Γ,Declr(I) `
t : ϕ[Ir/z]→ ϕ[IgIr/z] that E; Γ `e t̂ : ϕ[I/z]→ ϕ[I/z]. Hence, it suffices to show that f
is guarded in û. Recall ϕ = ∀~x : ~τ .z ~w with Ir, Ig, ιI , ιgI , f not occurring in ~τ , ~w which are
first-order. Because û is η-long, u = λ~x : ~τ .r. Hence E,Declg(I); Γ,Declr(I), f : ϕ[Ir/z], ~x :
~τ ` r : IgIr ~w. We need to show that G0(f, r̂), i.e., f is guarded in r̂.

By induction on u in η-long βι-normal form satisfying the weak case restriction for Ir, Ig,
we show that if E′; Γ′ ` u : σ where σ = IgIr ~w′ (resp. σ = Ir ~w′), and E′ = E,Declg(I), and
Γ′ = Γ,Declr(I), f : ϕ[Ir/z], ~x : ~τ ′, and ~τ ′, ~w′ are first-order, and Ir, Ig, ιI , ιgI , f do not occur
in ~τ ′, ~w′, then G0(f, û) (resp. G1(f, û)).

First, assume σ = IgIr ~w′. We consider possible forms of u.

ITP 2019

14:12 First-Order Guarded Coinduction in Coq

u = xu1 . . . un. This is impossible, because for no (x : τ) ∈ Γ′ the type τ has Ig or a
bound variable at the head of the target.
u = cIrq1 . . . qmu1 . . . un (m,n ≥ 0) where q1, . . . , qm are the parameters. Then c :
∀Ir : τIr .∀~p : ~ρ.∀~x : ~γ.IgIr~p~v, and Ir /∈ FV(ρ), and Ig, ιI , ι

g
I , f do not occur in ~ρ,~γ,

and for each i = 1, . . . , n either Ir /∈ FV(γi) or γi = ∀~y : ~αi.Ir~ri and i ∈ R(c) is a
recursive position. Since q1, . . . , qm occur in ~w, Ir, Ig, ιI , ιgI , f do not occur in q1, . . . , qm,
and thus f /∈ FV(q̂1, . . . , q̂m). Also q1, . . . , qm are first-order, because ~w is. Let γ′1 =
γ1[q1/p1] . . . [qm/pm]. Then Ig, ιI , ι

g
I , f do not occur in γ′1, and γ′1 is first-order, and

E′; Γ′ ` u1 : γ′1. If Ir /∈ FV(γ′1) then Ir, Ig, ιI , ι
g
I , f do not occur in u1 and u1 is first-

order by Lemma 4.6. So f /∈ FV(û1). Otherwise γ′1 = ∀~y : ~α.Ir~r with ~α,~r first-order and
Ir, Ig, ιI , ι

g
I , f do not occur in ~α,~r, and 1 ∈ R(c) is a recursive position. Let Γ′′ = Γ′, ~y : ~α.

Because u1 is η-long, u1 = λ~y : ~α.u′1 with E′; Γ′′ ` u′1 : Ir~r. By the inductive hypothesis
G1(f, û1

′), so G1(f, û1) because f /∈ FV(~α). Also, x1 does not occur in γ2, . . . , γn, because
I is first-order. Hence, in any case, γ′2 = γ2[q1/p1] . . . [qm/pm][u1/x1] is first-order, and
Ig, ιI , ι

g
I , f do not occur in γ′2, and E′; Γ′ ` u2 : γ′2. Continuing this argument for

u2, u3, . . . , un we conclude that for each i = 1, . . . , n either f /∈ FV(ûi), or G1(f, ûi) and
i ∈ R(c). Since also f /∈ FV(q̂j) for j = 1, . . . ,m, we conclude that G0(f, û).
u = case(t, r, s1 | . . . | sk)w1 . . . wn (n ≥ 0). Then E′,Γ′ ` t : J~p~q and either t =
case(. . .)~h or t = y~h. By the weak case restriction J 6= Ig and t satisfies the proper
case restriction. Hence, by Lemma 4.6, J~p~q is first-order and Ir, Ig, ιI , ι

g
I , f do not

occur in it. Using Lemma 4.6 again, we conclude that Ir, Ig, ιI , ιgI , f do not occur in t
and t is first-order. Then by the weak case restriction the type r~qt =βι ∀~x : ~β.ζ of
case(t, r, s1 | . . . | sk) must be first-order with Ir, Ig not occurring in ~β. By point 2 in
Lemma 4.6 also ιI , ιgI , f do not occur in ~β. Now using point 1 of Lemma 4.6 we conclude
that Ir, Ig, ιI , ιgI , f do not occur in ~w and ~w are first-order, by an argument analogous to
the one used in Lemma 4.6 for the case u = xu1 . . . um in the proof of point 1. To sum
up, what we have shown so far implies G0(f, t̂), G0(f, r̂) and G0(f, ŵi) for i = 1, . . . , n.
It remains to show G0(f, ŝi) for i = 1, . . . , k. Let the declaration of J be

J(~y : ~ρ) : ∀~a : ~α.∗ := c1 : ∀ ~x1 : ~τ1.J~y ~v1 | . . . | ck : ∀ ~xk : ~τk.J~y ~vk

We have E′,Γ′ ` si : ξ where ξ =βι ∀~xi : ~τi[~p/~y].r~vi[~p/~y](ci~p~xi) =βι ∀~xi : ~τi[~p/~y].∀~b :
~β1.I

gIr~v (see Figure 1). Because ~τ , ~vi, ~p, ~β1 are first-order and Ir, Ig, ιI , ιgI , f do not occur
in them, also ~τi[~p/~y], ~β1 are first-order and Ir, Ig, ιI , ι

g
I , f do not occur in them. Also

~v = ~v0[~vi[~p/~y]/~a, (ci~p~xi)/x]. Because ~w′ are substitution instances of ~v0, the terms ~v0
must be first-order and Ir, Ig, ιI , ι

g
I , f cannot occur in them. This implies that ~v are

first-order and Ir, Ig, ιI , ιgI , f do not occur in them. Because si is in η-long βι-normal
form, si = λ~b : ~β1.s

′
i. Let Γ′′ = Γ′, ~xi : ~τi[~p/~y],~b : ~β1. We have E′; Γ′′ ` s′i : IgIr~v,

and s′i still satisfies the weak case restriction, and Γ′′, ~v satisfy the requirements of the
inductive hypothesis. Thus, by the inductive hypothesis we conclude G0(f, ŝi′). This
shows G0(f, ŝi).

Now assume σ = Ir ~w′. The proof proceeds as above, mutatis mutantdis, except that we
have three additional cases.

u = fu1 . . . un. Then u satisfies the proper case restriction. Since f : ∀~x : ~τ .Ir ~w with ~τ
first-order and Ir, Ig, ιI , ιgI , f not occurring in ~τ , using Lemma 4.6 we may conclude that
f /∈ FV(u1, . . . , un) by an inductive argument as in the case u = xu1 . . . um in the proof
of Lemma 4.6. Hence G1(f, û).
u = ιIu1 . . . un. The argument is then analogous to the case above, because ιI : ∀~p : ~ρ.∀~a :
~α.I~p~a→ Ir~p~a with ~ρ, ~α first-order not containing Ir, Ig, ιI , ιgI , f .

Ł. Czajka 14:13

u = ιgIu1 . . . unu
′. We have ιgI : ∀~p : ~ρ.∀~a : ~α.IgIr~p~a → Ir~p~a with ~ρ, ~α first-order not

containing Ir, Ig, ιI , ιgI , f . Like above, using Lemma 4.6 we conclude that u1, . . . , un are
first-order and Ig, Ir, ιI , ιgI , f do not occur in them. Also u′ : IgIru1 . . . un. Hence, by
the inductive hypothesis G0(f, û′), so G1(f, û′). Thus G1(f, û), because û = û′. J

I Remark 4.8. For the purposes of the above theorem, any lemmas used in the proof term
must appear in the context Γ. Note that the theorem requires the context and the statement
to be first-order, but not the proof term. This implies that if the statement is first-order
and we recursively unfold the proofs of all lemmas, we obtain a proof term t which satisfies
the requirements of the theorem in the empty context, even if the lemmas used in the proof
term were not first-order; provided the weak case restriction holds for the η-long βι-normal
form of t.

One important situation where this procedure fails is when using the setoid library for
rewriting. Then the generated proof terms, after unfolding, often fail to satisfy the weak
case restriction.

To ease working with equality on coinductive types, our plugin provides a peek tactic
which forces reduction of a cofixpoint.

The idea with the second translation is to “split” a coinductive proof t : ∀~x : ~τ .∃y :
I~u.I1 ~u1y∧ . . .∧In ~uny into n+1 separate guarded proofs t0 : ∀~x : ~τ .I~u and ti : ∀~x : ~τ .Ii ~ui(t0~x)
for i = 1, . . . , n.

I Definition 4.9 (The second translation). Let ϕ = ∀~x : ~τ .∃y : z~u.z1 ~u1y ∧ . . . ∧ zn ~uny be a
first-order type with z, z1, . . . , zn /∈ FV(~τ , ~u, ~u1, . . . , ~un) free. Let Γ be a first-order context
and E a first-order environment. Let I, I1, . . . , In ∈ E be coinductive types admissible
for E; Γ, and such that I1, . . . , In are I-admissible. Assume

E,Declg(I),Declgd(I1), . . . ,Declgd(In); Γ,Declr(I),Declrd(I1), . . . ,Declrd(In) `
t : ϕ[Ir/z, Ir1/z1, . . . , I

r
n/zn]→ ϕ[IgIr/z, Ig1 IrIr1/z1, . . . , I

g
nI

rIrn/zn].

The second translation of t, denoted tr2(t), is defined as follows. We omit the parameters
of ex_intro and conj.
1. We compute t′ – the η-long βι-normal form of

λf : ψ[Ir/z].λf1 : ψ1[Ir1/z, f/y] . . . λfn : ψn[Irn/z, f/y].
t(λ~x : ~τ .ex_intro(f~x)(conj(f1~x)(f2~x)(. . .))).

where ψ = ∀~x : ~τ .z~u and ψi = ∀~x : ~τ .z ~ui(y~x). In this way we “split” the coinductive
hypothesis into n+ 1 hypotheses. Note that

t′ : ∀f : ψ[Ir/z].ψ1[Ir1/z, f/y]→ . . .→ ψn[Irn/z, f/y]→
ϕ[IgIr/z, Ig1 IrIr1/z1, . . . , I

g
nI

rIrn/zn].

2. Inductively, for a term u we define tr0
2(u), and for i = 1, . . . , n, a sequence of terms ~w,

and a term u, we define tri2(~w;u).
If u = case(x, λx : J~p.ζ, λ ~x1 : ~τ1.s1 | . . . | λ ~xk : ~τk.sk) where

ζ = ∃y : IgIr~v.Ig1 IrIr1 ~v1y ∧ . . . ∧ IgnIrIrn ~vny

and J is a (co)inductive type with no non-parameter arguments, and c1, . . . , ck are
the only constructors of J , then

tr0
2(u) = case(x, λx : J~p.I~v, λ ~x1 : ~τ1.tr0

2(s1) | . . . | λ ~xk : ~τk.tr0
2(sk)).

tri2(~w;u) = case(x, λx : J~p.Ii~vi(f ~w), λ ~x1 : ~τ1.tri2(~w[c1~p ~x1/x]; s1) | . . . | λ ~xk :
~τk.tri2(~w[ck~p ~xk/x]; sk)) for i > 0.

ITP 2019

14:14 First-Order Guarded Coinduction in Coq

If u = ex_introu0 (conju1 (conju2 (. . .)) then
tr0

2(u) = u0[I/Ir, id/ιI , (λIr.I)/Ig, . . .],
tri2(~w;u) = ui[I/Ir, id/ιI , (λIr.I)/Ig, . . .],

with the substitutions like in Principle 2.
In other cases tri2 are undefined.

3. Since t′ is in η-long βι-normal form,

t′ = λf : ψ[Ir/z].λf1 : ψ1[Ir1/z, f/y] . . . λfn : ψn[Irn/z, f/y].λ~x : ~τ .t′′.

We define ti for i = 0, . . . , n by:
t0 = cofix(λf : ψ[I/z].λ~x : ~τ .tr0

2(t′′)),
ti = cofix(λfi : ψi[Ii/z, t0/y].λ~x : ~τ .tri2(~x; t′′)[t0/f]) for i = 1, . . . , n.

4. Finally: tr2(t) = λ~x : ~τ .ex_intro(t0~x)(conj(t1~x)(conj(t2~x)(. . . (conj(tn−1~x)(tn~x))))).

I Remark 4.10. The above translation is very restricted, essentially to proofs which do
case analysis on variables followed by the use of the coinductive hypothesis. It is undefined
for proof terms commonly generated by the inversion tactic. The problem here is that
Coq’s dependent matching “forgets” some equality information in the branches, which makes
it difficult to automatically choose the arguments for the f function above in a way that
satisfies the type-checker. More precisely, when u : I~q ~w and ci : ∀~p : ~ρ.∀~xi : ~τi.I~p~vi is the
i-th constructor of I, the equalities u = ci~p~vi and vji = wji are not available to the Coq’s
type-checking algorithm when checking the branch si in case(u, r, s1 | . . . | sk) (see Figure 1).
In practice, we allow a broader class of proof terms. In particular, we handle proofs commonly
generated by one inversion (but not multiple nested inversions in general). The details of
this are very tedious and not particularly illuminating, so we do not describe them here.
The restrictions in the actual implementation, while a bit ad-hoc and still significant, are
weak enough to allow for reasonably convenient usage. Especially the restriction on nested
inversions can usually be easily worked around. See Example 5.2.

I Example 4.11. Let I : ∗ := c : I → I and R : I → I → ∗ := r : ∀x, y : I.Rxy → R(cx)(cy)
be coinductive types. Recall Ir : ∗, Rr : I → Ir → ∗, Ig : ∗ := cg : Ir → Ig, Rg : I → Ig →
∗ := rg : ∀x : I.∀y : Ir.Rrxy → Rg(cx)(cgy). For readability, we omit the parameters to the
green types. Consider the term

t = λf : (∀x : I.∃y : Ir.Rrxy).λx : I.case(x, λx.∃y : Ig.Rgxy,
λx′.case(fx′,∃y : Ig.Rg(cx′)y, λy′ : Ir.λh : Rrx′y′.ex_intro(cgy′)(rgx′y′h)))

which proves ∀x : I.∃y : I.Rxy by the second coinduction principle. After the first step
of the second translation we obtain t′ = λf : I → Ir.λf1 : ∀x : I.Rrx(fx).λx : I.t′′
where t′′ = case(x, λx.∃y : Ig.Rgxy, λx′.ex_intro(cg(fx′))(rgx′(fx′)(f1x

′))). We have
tr0

2(t′′) = case(x, λx.I, λx′.c(fx′)) and tr1
2(x; t′′) = case(x, λx.Rx(fx), λx′.rx′(fx′)(f1x

′)).
Then tr2(t) = λx:I.ex_intro(t0x)(t1x) with t0 = cofixλf : I → I.λx:I.tr0

2(t′′) and t1 =
cofixλf1 : (∀x : I.Rx(t0x)).λx : I.tr1

2(x; t′′)[t0/f].

Note that in the example above rx′(t0x′)(f1x
′) : R(cx′)(c(t0x′)), but the branch should

have type R(cx′)(t0(cx′)). We thus relax the ι-reduction for cofix to: cofix(λf.t) →ι

t[cofix(λf.t)/f]. Then t0(cx′) =βι c(t0x′) and tr2(t) type-checks. The typing relation of
the system thus modified is denoted by `e+. This allows us to prove the theorem below,
but makes type-checking undecidable. In practice, the implemented translation inserts
appropriate equality proofs into the proof term to make it type-check. The details are again
quite tedious and not very interesting.

Ł. Czajka 14:15

I Definition 4.12. A term satisfies the strong case restriction if it does not contain any
subterms case(case(u, r′, t1 | . . . | tm)~w, r, s1 | . . . | sk) or case(u, r, s1 | . . . | sk)w1 . . . wn
with n ≥ 1.

I Theorem 4.13. Under the assumptions of Definition 4.9, if the η-long βι-normal form of t
additionally satisfies the strong case restriction, and tr2(t) is defined, and E; Γ, f : ψ[I/z], fi :
ψi[Ii/z, t0/y], ~x : ~τ `e+ tri2(~x; t′′)[t0/f] : Ii ~ui(t0~x) for i = 1, . . . , n (with ψ,ψi, t0, . . . as in
Definition 4.9), then E; Γ `e+ tr2(t) : ϕ(I; I1, . . . , In).

Proof (sketch). The strong case restriction essentially recovers the subformula property
for first-order statements, which allows us to show that the coinductive hypotheses do not
appear in parts of the proof term whose types do not contain corresponding red or green
types. The special form of the original proof term enforced by the second translation, and
the typability assumptions for tri2, guarantee that the result is well-typed. J

5 Coq plugin

We provide a proof-of-concept implementation of our principles in a Coq plugin (see the
supplement material). The plugin introduces the CoInduction command which starts a
proof by coinduction using one of our principles. The command defines the (dependent)
green coinductive types, and adds the (dependent) red type declarations and the coinductive
hypothesis to the context. At Qed the proof is translated to a guarded Coq proof. The
coinduction principle is chosen automatically based on the form of the goal statement.

I Example 5.1. Using our plugin, the proofs from Example 2.2 may be formalised as follows.

CoInduction lem_refl : forall {A : Type} (s : Stream A), s == s.
Proof. ccrush. Qed.

CoInduction lem_sym :
forall {A : Type} (s1 s2 : Stream A), s1 == s2 -> s2 == s1.

Proof. ccrush. Qed.

CoInduction lem_trans :
forall {A : Type} (s1 s2 s3 : Stream A), s1 == s2 -> s2 == s3 -> s1 == s3.

Proof. destruct 1; ccrush. Qed.

The ccrush tactic is a generic proof search tactic, based on a tactic from CoqHammer [8].
Note that the user may just apply generic automated tactics without worrying too much
about the guarded use of the coinductive hypothesis. In contrast, when using Coq’s cofix
directly, generic automated tactics are likely to use the coinductive hypothesis incorrectly so
that the proof fails at Qed.

I Example 5.2. A direct formalisation of the confluence proof from Example 2.4 would require
two nested inversions, and the second translation would fail at Qed (compare Remark 4.10).
This may, however, be easily worked around by defining a predicate Peak s t t′ which holds if
s ⇒ t and s ⇒ t′ do. We define all predicates into Set to get around Coq’s restriction of
case analysis on proofs. Note that for the proof of lem_peak below the first translation may
be used, with no restrictions on nested destructions/inversions.

ITP 2019

14:16 First-Order Guarded Coinduction in Coq

CoInductive Peak : term -> term -> term -> Set :=
| peak_C : forall i, Peak (C i) (C i) (C i)
| peak_A : forall s t t', Peak s t t' -> Peak (A s) (A t) (A t')
| peak_B : forall s t s1 t1 s2 t2, Peak s s1 s2 -> Peak t t1 t2 ->

Peak (B s t) (B s1 t1) (B s2 t2)
| peak_AAB : forall s s' t1 t2, Peak s s' t1 -> Peak s s' t2 ->

Peak (A s) (A s') (B t1 t2)
| peak_ABA : forall s s' t1 t2, Peak s t1 s' -> Peak s t2 s' ->

Peak (A s) (B t1 t2) (A s')
| peak_ABB : forall s s1 s2 t1 t2, Peak s s1 t1 -> Peak s s2 t2 ->

Peak (A s) (B s1 s2) (B t1 t2).

CoInduction lem_peak : forall s t t', s ==> t -> s ==> t' -> Peak s t t'.
Proof. destruct 1; inversion_clear 1; constructor; eauto. Qed.

Then the confluence proof looks as follows. It corresponds closely to the “pen-and-paper”
proof presented in Example 2.4.

CoInduction lem_confl :
forall s t t', Peak s t t' -> { s' & (t ==> s') * (t' ==> s') }.

Proof. intros s t t' H; inversion_clear H.
- ccrush.
- generalize (CH s0 t0 t'0 H0); intro.

simp_hyps; eexists; split; constructor; eauto.
- generalize (CH s0 s1 s2 H0); generalize (CH t0 t1 t2 H1); intros.

simp_hyps; eexists; split; constructor; eauto.
(...)

Qed.

Above CH refers to the coinductive hypothesis automatically introduced by CoInduction:

CH : forall s t t' : term, Peak s t t' ->
{s' : term__r & Red__r__01 t s' * Red__r__00 t' s'}

At the beginning of the proof the goal is:

forall s t t' : term, Peak s t t' ->
{s' : term__g term__r & Red__g__01 term__r Red__r__01 t s' *

Red__g__01 term__r Red__r__00 t' s'}

I Example 5.3. Using the first coinduction principle, we formalised most of the examples
from [14]. The formalisation is in the examples/practical.v file in the plugin sources.

6 Conclusions and future work

We introduced two coinduction principles and corresponding proof translations which, under
certain conditions, map proofs using our principles to guarded Coq proofs. In contrast to
previous work on coinduction, the second principle allows to directly prove by coinduction
statements with existential quantifiers and multiple coinductive predicates in the conclusion.
The proof translations clarify the relationship between Coq’s syntactic guardedness criterion
and the shape of normal forms of proofs obtained using our principles. Implementating the
first translation required only small restrictions on dependent matches occurring in proof

Ł. Czajka 14:17

terms. While trying to implement the second translation, we encountered more difficulties,
which necessitated introducing much heavier restrictions. These difficulties, however, do not
seem to be fundamental, but rather stem from the limitations of Coq’s type theory.

The restrictions on proof terms are needed because normal proofs in the Calculus of
Inductive Constructions are not sufficiently normal in a proof-theoretical sense. And they
cannot be normalised further using commutative conversions [20, Chapter 6], like in a
natural-deduction system for first-order logic, because commutative conversions are not
sound in general for dependent elimination with case as defined in the Calculus of Inductive
Constructions. The lack of “good” normal forms is a consequence of the fact that not enough
equality information is available to the type checker in the branches of dependent matches,
which also makes it difficult to implement the second coinduction principle in full generality.

For a more complete implementation of the second coinduction principle, it would probably
be better to use a target system with copatterns and sized types, or use negative coinductive
types instead of positive ones. We leave this for future work. It also remains to investigate
the properties of a type theory directly extended with our principles, and the effects of
removing the first-order restriction.

References
1 A. Abel. A Polymorphic Lambda-Calculus with Sized Higher-Order Types. PhD thesis,

Ludwig-Maximilians-Universität München, 2006.
2 A. Abel and B. Pientka. Well-founded recursion with copatterns and sized types. J. Funct.

Program., 26:e2, 2016.
3 A. Abel, A. Vezzosi, and T. Winterhalter. Normalization by evaluation for sized dependent

types. PACMPL, 1(ICFP):33:1–33:30, 2017.
4 H. Barendregt. Lambda calculi with types. In Handbook of Logic in Computer Science,

volume 2, pages 118–310. Oxford University Press, 1992.
5 T. Coquand. Infinite Objects in Type Theory. In TYPES 1993, pages 62–78, 1993.
6 Ł. Czajka. A New Coinductive Confluence Proof for Infinitary Lambda Calculus. Submitted,

2018.
7 Ł. Czajka. Coinduction: an elementary approach. arXiv, 2019. arXiv:1501.04354.
8 Ł. Czajka and C. Kaliszyk. Hammer for Coq: Automation for Dependent Type Theory. J.

Autom. Reasoning, 61(1-4):423–453, 2018.
9 H. Geuvers. Inductive and coinductive types with iteration and recursion. In TYPES 1992,

pages 193–217, 1992.
10 E. Giménez. Codifying Guarded Definitions with Recursive Schemes. In TYPES, pages 39–59,

1994.
11 J. Hughes, L. Pareto, and A. Sabry. Proving the Correctness of Reactive Systems Using Sized

Types. In POPL 1996, pages 410–423, 1996.
12 C.-K. Hur, G. Neis, D. Dreyer, and V. Vafeiadis. The power of parameterization in coinductive

proof. In POPL 2013, pages 193–206, 2013.
13 B. Jacobs and J. Rutten. An introduction to (co)algebras and (co)induction. In Advanced

Topics in Bisimulation and Coinduction, pages 38–99. Cambridge University Press, 2011.
14 D. Kozen and A. Silva. Practical coinduction. Math. Struct. in Comp. Science, 27(7):1132–1152,

2017.
15 N.P. Mendler. Inductive types and type constraints in the second-order lambda calculus.

Annals of Pure and Applied Logic, 51:159–172, 1991.
16 J. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249(1):3–80,

2000.
17 J.L. Sacchini. Type-Based Productivity of Stream Definitions in the Calculus of Constructions.

In LICS 2013, pages 233–242, 2013.

ITP 2019

http://arxiv.org/abs/1501.04354

14:18 First-Order Guarded Coinduction in Coq

18 D. Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University Press,
2012.

19 A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5(2):285–309, 1955.

20 A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University Press, 1996.
21 B. Werner. Une Théorie des Constructions Inductives. PhD thesis, Paris Diderot University,

France, 1994.

	Introduction
	Informal description
	Formal principles
	Proof translations
	Coq plugin
	Conclusions and future work
	References

