Generating Verified LLVM from Isabelle/HOL

Peter Lammich
The University of Manchester, UK
peter.lammich@manchester.ac.uk

—— Abstract

We present a framework to generate verified LLVM programs from Isabelle/HOL. It is based on a
code generator that generates LLVM text from a simplified fragment of LLVM, shallowly embedded
into Isabelle/HOL. On top, we have developed a separation logic, a verification condition generator,
and an LLVM backend to the Isabelle Refinement Framework.

As case studies, we have produced verified LLVM implementations of binary search and the
Knuth-Morris-Pratt string search algorithm. These are one order of magnitude faster than the
Standard-ML implementations produced with the original Refinement Framework, and on par with
unverified C implementations. Adoption of the original correctness proofs to the new LLVM backend
was straightforward.

The trusted code base of our approach is the shallow embedding of the LLVM fragment and the
code generator, which is a pretty printer combined with some straightforward compilation steps.

2012 ACM Subject Classification Theory of computation — Program verification; Theory of com-
putation — Logic and verification; Theory of computation — Separation logic

Keywords and phrases Isabelle/HOL, LLVM, Separation Logic, Verification Condition Generator,
Code Generation

Digital Object Identifier 10.4230/LIPIcs.ITP.2019.22
Supplement Material http://www21l.in.tum.de/~lammich/isabelle_llvm

Funding We received funding from DFG grant LA 3292/1 “Verifizierte Model Checker” and VeTSS
grant “Formal Verification of Information Flow Security for Relational Databases”.

Acknowledgements We thank Maximilian P. L. Haslbeck and Simon Wimmer for proofreading and

useful suggestions.

1 Introduction

The Isabelle Refinement Framework [33, 26, 27] features a stepwise refinement approach to
verified algorithms, using the Isabelle/HOL theorem prover [42, 41]. It has been successfully
applied to verify many algorithms and software systems, among them LTL and timed automata
model checkers [15, 6, 48], network flow algorithms [32, 31], a SAT-solver certification
tool [29, 30], and even a SAT solver [16]. Using Isabelle/HOL’s code generator [18], the
verified algorithms can be extracted to functional languages like Haskell or Standard ML.
However, the code generator only provides partial correctness guarantees, i.e., termination of
the generated code cannot be proved. Moreover, the generated code is typically slower than
the same algorithms implemented in C or Java.

The original Refinement Framework [33, 26] could only generate purely functional code.
The first remedy to the performance problem was to introduce array data structures that
behave like functional lists on the surface, but are implemented by destructively updated
arrays behind the scenes, similar to Haskell’s now deprecated DiffArray. While this gained
some performance, the array implementation itself was not verified, such that we had to trust
its correctness. Moreover, an array access still required a significant amount of overhead
compared to a simple pointer dereference in C.

© Peter Lammich;
37 licensed under Creative Commons License CC-BY

10th International Conference on Interactive Theorem Proving (ITP 2019).
Editors: John Harrison, John O’Leary, and Andrew Tolmach; Article No. 22; pp. 22:1-22:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:peter.lammich@manchester.ac.uk
https://doi.org/10.4230/LIPIcs.ITP.2019.22
http://www21.in.tum.de/~lammich/isabelle_llvm
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2

Generating Verified LLVM from lIsabelle/HOL

The next step towards more efficient verified implementations was the Sepref tool [27]. Tt
generates code for Imperative HOL [7], which provides a heap monad inside Isabelle/HOL,
and a code generator extension to generate code that uses the stateful arrays provided by
ML, or the heap monad of Haskell. The Sepref tool performs automatic data refinement from
abstract data types like maps or sets to concrete implementations like hash tables, which can
be placed on the heap and destructively updated. Moreover, it provides tools [28] to assist
in the definition of new data structures, exploiting “free theorems” [45] that it obtains from
parametricity properties of the abstract data types. Using Imperative HOL as backend, we
gained some additional performance: For example, the GRAT tool [29, 30] provides a verified
checker for UNSAT certificates in the DRAT format [47]. It is faster than the unverified
state-of-the art checker DRAT-TRIM [47], which is written in C. However, the GRAT tool
spends most of its run time in an unverified certificate preprocessor. Nevertheless, optimizing
the verified part of the code is important: The very same technique was also implemented in
Coq, using purely functional data structures [12, 11]. There, the verified code was actually
the bottleneck®.

This paper presents a next step towards efficient verified algorithms: A refinement
framework to generate verified code in LLVM intermediate representation [35] with total
correctness guarantees. LLVM is an imperative intermediate language with a powerful
and well-tested optimizing compiler. We first formalize the semantics of Isabelle-LLVM, a
simple imperative language shallowly embedded into Isabelle/HOL, and designed to be easily
translated to actual LLVM text (§2). On top of Isabelle-LLVM, we build a separation logic
and a verification condition generator, which allows convenient reasoning about Isabelle-
LLVM programs (§3). Finally, we modify the Sepref tool to target Isabelle-LLVM instead of
Imperative/HOL (§4), connecting the Refinement Framework to our LLVM code generator.
This only affects the last refinement step, such that most parts of existing verifications can
be reused. As case studies (§5), we verify a binary search algorithm and adopt an existing
formalization [19] of the Knuth-Morris-Pratt string search algorithm [24]. The resulting
LLVM code is significantly faster than the corresponding Standard-ML code and on par with
unverified C implementations. The paper ends with the discussion of future work (§6) and
related work (§7). The Isabelle theories described in this paper are available as supplement
material (URL displayed in paper header).

2 Isabelle-LLVM
2.1 State Monad

The basis of Isabelle-LLVM is a state-error monad, which we use to conveniently model the
preconditions of instructions, their effect on memory, as well as arbitrary recursive programs.
We define the algebraic data types:

('a,'s) M = M (run:'s = (‘a,'s) mres) (‘a,’'s) mres = NTERM | FAIL | SUCC 'a s
An entity of type «('a,’s) M contains a function <runs that maps a start state of type ¢'s» to

a monad result that indicates either nontermination, a failure, or a successful execution with
a result of type <a» and a new state. We define the standard monad combinators:

! Later, the checker was rewritten in ACL2, also using imperative data structures [11, 20].

P. Lammich

return x = M (As. SUCC z s) get = M (As. SUCC s s)
fail = M (_. FAIL) set s = M (A_. SUCC () s)
bind m f = M (As. case run m s of SUCC z s = run (fz) s|r=71)

assert ® = if ® then return () else fail

That is, <return o returns result «x» without changing the state, «fail> aborts the com-
putation, <get> returns the current state, and <set s» updates the current state. Finally,
<bind m f first executes <m>, and then (f with the result of ¢m». If ¢m) fails or does not
terminate, the whole bind fails or does not terminate. The derived (assert ®) combinator
can be conveniently used to abort the computation if some precondition is violated, e.g., on
division by zero.

We use do-notation, i.e. «do { a—m; fz }» is short for <bind m (Az. fz)>. Moreover,
we define a flat chain complete partial order [37] on «mres», with <L := NTERM. For a
monotonic function «F :: (‘a = ('b,/s) M) = 'a = (b,'s) M», <REC F is the least fixed point.
As functions defined using the monad combinators are monotonic by construction [25], we
can define arbitrary recursive computations. The partial function package [25] provides
automation for monotonicity proofs and for defining simple recursive functions. Mutual
recursion still requires some manual effort, though it could be automated, too.

2.2 Memory Model

We use a high-level memory model that does not directly expose the bit-level representation
of values and assumes an infinite supply of memory. The memory is modeled as a list of
blocks. Each block is either deallocated, or it is a list of values. A value is a pair of values, a
pointer, or an integer. We model memory by the following data types?:

memory = MEMORY (block list) block = wal list option
val = PAIR wval val | PRIM primval primval = PV_INT lint | PV_PTR rptr

Here, the type <lint> is a fixed bit width word type with a two’s complement semantics, as
used by LLVM, and pair corresponds to a 2-element structure in LLVM. The type «rptr) is
either null or an address. An address is a path through the memory structure to a value:

rptr = NULL | ADDR nat nat (va_dir list) va_dir = PFST | PSND

An address consists of a block index, a value index, and a value address, which is a list of
directions to either descend into the first or the second value of a pair.

For the rest of this paper, we will use the state monad with a memory as state. Thus,
we define the type (a lIM = (‘a,memory) M). Tt is straightforward to define functions
doad :: rptr = val lIM> and <put :: val = rptr = unit [IM> to read/write a value from/to a
pointer, or fail if the pointer is invalid. For the actual store function, we check that the
structure of the value does not change, i.e. pairs remain pairs, pointers remain pointers, and
words of width w remain words of width w:

store x p = do { y < load p; assert (vstruct x = vstruct y); put x p }
where

vstruct (PAIR a b) = VS_PAIR (vstruct a) (vstruct b)

vstruct (PRIM (PV_PTR _)) = VS_PTR

vstruct (PRIM (PV_INT w)) = VS_INT (width w)

2 We have slightly simplified the presentation. The actual implementation defines the concepts memory,
block, and value in a modular fashion, in order to ease future extensions.

22:3

ITP 2019

22:4

Generating Verified LLVM from lIsabelle/HOL

Similarly, we define an allocate and a free function:

alloen v n = do { free (ADDR bi 0 []) = do {
blocks < get; blocks < get;
set (blocks@[Some (replicate n v)]); assert (bi < |blocks| A blocks!bi # None);
return (ADDR |blocks| 0]) } set (blocks[bi:=None]) }
free _ = fail

Here, <l; @l concatenates two lists, ¢|l|> is the length of list <[>, «/i> is the ith element of
Iy, and <l[i:=1x]» replaces the ith element of /> by ¢z». The allocate function takes an initial
value and a block size, appends a new block to the memory, and returns a pointer to the
start of the new block (value index 0, and value address []). The free function expects a
pointer to the start of a block, checks that this block is not already deallocated, and then
deallocates the block by setting it to <None>.

2.3 Towards a Shallow Embedding

While we explicitly model values in memory by the type (val>, we model values in registers
in a more shallow fashion: We identify LLVM registers with Isabelle variables that have a
type of shape <T'= T x T | n word | T ptr>. Here, x> is Isabelle’s product type, (n word»
is the n bit word type from Isabelle’s word library®, and <a ptr is a pointer with an attached
phantom type for the value pointed to (<'a ptr = PTR rptr)). For each type <a» of shape
<T'y, we define the functions:

to_val ::'a = wal struct_of ::'a itself = vstruct

from_val :: val = 'a init 2l

such that

from_val o to_val = id vstruct (to_val) = (struct_of TYPE('a))

to_val init = zero_initializer (struct_of TYPE('a))

Here, <TYPE('a) :: 'a itselfy reflects type ¢ into a term. The functions <to_val> and
<from_valy inject a T-shaped type <a) into a value with structure (struct_of TYPE('a)>.
Moreover, «init:/a> corresponds to the all-zeroes value, i.e., the value where all pointers are
null pointers, and all integers are 0.

2.4 Instructions

In a next step, we define the instructions of Isabelle-LLVM. Each instruction is identified
with an Isabelle constant. For example, the load instruction is modeled by:

l_load ::'a ptr = 'a lIM

ll_load (PTR p) = do {
v < load p;
assert (vstruct v = struct_of TYPE('a));
return (from_val v) }

For convenient notation, we use the type «n wordy as if it were a type depending on a variable n.
Isabelle/HOL is not dependently typed. Instead, n is actually a type variable with type-class «len»,
which provides a function «len_of :: ‘a::len itself = nat> to extract the length as a term.

P. Lammich

It loads a value from the specified pointer, checks that its structure matches the expected
type @), and then converts the value to ¢a».
For allocation and deallocation, we provide the instructions:

ll_malloc ::'a itself = n word = 'a ptr lIM l_free ::'a ptr = unit [IM

Note that LLVM does not contain a heap manager. Instead, we assume that the generated

code will be linked with the C standard library, and let the code generator produce calls to

<callocy and <frees. We also define instructions to access the elements of a pair, to offset a

pointer, and to advance a pointer into a pair. The code generator maps these instructions to

the corresponding LLVM instructions <getelementptr, <insertvalue), and <extractvalue>.
Integer instructions are defined on the <n word) type. For example, we define:

l_udiv :: n word = n word = n word
ll_udiv a b = do { assert (b # 0); return (a div b) }

where «div) is the unsigned division from Isabelle’s word library. Note the use of assertions
to exclude undefined behavior, e.g., division by zero.

2.5 Modeling Control Flow

Next, we put together instructions to form procedure bodies. We only allow structured
control flow via if-then-else, while, procedure calls, and sequential composition: The body of
a procedure is modeled by an Isabelle term of type <'a lIM) and shape <block>, where

block = do { var + cmd; block } | return var
emd = ll_<opcode> arg* | proc_name arg* | llc_if arg block block | llc_while block block
arg = var | number | null | init

with

Ue_if :: 1 word = 'a lIM = 'a lIM = 'a lIM
llc_if bt e = if b=1 then ¢ else e

le_while :: (‘a = 1 word lIM) = (‘a = 'a lIM) = 'a = 'a lIM
llc_while b ¢ s = do {ctd + b s; lc_if ctd (do {s < c s; llc_while b ¢ s}) (return s)}

That is, a block is a list of commands whose results are bound to variables, terminated by a
return instruction. A command is either an instruction, a procedure call, or an if-then-else or
while statement. The arguments of instructions and procedure calls, as well as the condition
of an if-then-else statement, must be variables or constants (i.e., numbers, the null pointer, or
a zero-initialized value). The condition of a while statement is modeled as a block returning
a <1 wordy, such that it can be re-evaluated prior to each loop iteration. A program is
represented by a set of (monomorphic) theorems of the shape <proc; 1 ... x, = cmds, where
the <proc;» are Isabelle functions, the ¢z;» are variables, and all free variables on the right
hand side are among the «z;>.

» Example 1. Figure 1 shows the Isabelle specification of a procedure named <fiby, which
takes a 64 bit word argument, and returns a 64 bit word. Our semantics can be directly
executed inside Isabelle. The following Isabelle command evaluates <fib» on the first few
natural numbers, and an empty memory:

value <map (An. run (fib n) (MEMORY [])) [0,1,2,3)
(% output: [SUCC 0 (MEMORY []), SUCC 1 ..., SUCC 1 ..., SUCC 2 ...] %)

22:5

ITP 2019

22:6

Generating Verified LLVM from lIsabelle/HOL

fib:: 64 word = 64 word lIM define 164 @fib(i64 %z) {
fib n =do { start:
t < ll_icmp_ule n 1; %t = icmp ule 164 %z, 1
llc_if t (return n) (do { br i1 %t, label %then, label %else
ny < ll_subn 1; then:
a <+ fibn; br label %ctd_if
ng < ll_sub n 2; else:
b <+ fib ny; %n_1 = sub 164 %z, 1
¢ < ll_add a b; %a = call i64 @fib (164 %n_1)
return c %n_2 = sub i64 %z, 2
1} %b = call i64 Qfib (164 %n_2)
%c = add i64 %a, %b
Figure 1 Tsabelle-LLVM pro- 1550 dejeeil. foehildl
ctd_if:

gram.

%zla = phi 164 [%z, %then [, [%ec, %else |
ret i64 %zla }

Figure 2 Generated LLVM text.

2.6 Code Generation

The LLVM intermediate representation [35] is a strongly typed control flow graph (CFG)
based intermediate language that uses single static assignment (SSA) form [13]. A procedure
is a list of basic blocks, the first block in the list being the entry point of the procedure.
A basic block is a list of instructions, finished by a terminator instruction that determines
the next basic block to execute (or to return from the current procedure). Each non-void
instruction defines a fresh register containing its result. A register can only be accessed in
the part of the CFG that is dominated by its definition. To transfer values from registers
to other parts of the CFG, ¢-instructions are used. A ¢-instruction must be located at the
start of a basic block. It lists, for each possible predecessor block, an accessible register
in this predecessor block. The ¢-instruction evaluates to the value of the register from
those predecessor block from which execution was actually transferred. The result of the
¢-instruction is bound to a fresh register, which can then be accessed from the current
basic block.

It is straightforward to map an Isabelle-LLVM program to an actual LLVM program.
Each equation of the form <proc x; .. z, = block) is mapped to an LLVM function named
<procy. A block is mapped to a control flow graph. Instructions and procedure calls are
directly mapped to LLVM instructions and calls. An «x < llc_if b t e) is translated to
conditional branching, using a ¢-instruction to define the result register x> when joining the
control flow. An <z < llc_while b ¢ s» is translated similarly.

» Example 2. Figure 2 displays the output of our code generator for the <fiby constant
displayed in Figure 1.
2.6.1 Mapping the Memory Model

Mapping the abstract memory model of Isabelle-LLVM to actual LLVM is slightly more
involved. For example, recall the «ll_malloc :: 'a itself = n word = 'a ptr IIM) instruction.
It has to be mapped to the function <woid* calloc(size_t, size_t)» from the C standard library.

P. Lammich

For this, we have to parameterize the code generator with the architecture dependent size
of the (size_t) type. Next, we have to obtain the size of type (a> and cast the «n word»
parameter to (size_t>. Here, our code generator will refuse downcast, as this might result
in bits being dropped. Finally, we have to cast the returned (void*> to the correct return
type. Moreover, the <calloc) function returns «null> if not enough memory is available. In
contrast, our semantics always returns a new block of memory. We insert code to terminate
the program in a defined way if it runs out of memory. The relation between our semantics
and the actual LLVM program then becomes: Either the program terminates with an out-of-
memory condition, or it behaves as modeled by the semantics. Our current implementation
prints an error message and terminates the process with exit code 1 if it runs out of memory.

A similar issue arises when comparing pointers: LLVM does not have instructions for
pointer comparison. Instead, pointers have to be cast to integers, which can then be
compared. However, this requires to know the bit-width of a pointer, which we cannot model
in our semantics that admits unboundedly many different pointers. Instead, we model the
instructions «/l_ptremp_eq> and «lIl_ptremp_ney, and let the code generator generate the cast
to integers and the integer comparison.

2.7 Preprocessing

In the previous sections we have described the semantics of Isabelle-LLVM and its translation
to actual LLVM. However, Isabelle-LLVM programs have to adhere to a very restrictive
shape (cf. §2.5), which makes them easy to map to actual LLVM code, but tedious to
write directly. Thus, we implement a preprocessor that tries to automatically transform
user-specified equations to valid Isabelle-LLVM. While the preprocessing is highly incomplete,
i.e., it cannot convert every equation to a well-shaped one, it works well in practice, allowing
for concise specifications. Note that the preprocessor proves the new equations from the
original ones. Thus, errors in the preprocessor cannot affect soundness: Either, it fails to
prove the equations, or it produces ill-shaped equations, which the code generator will reject.

The user specifies an initial set of constants, which must be instantiated to monomorphic
types, i.e., must not contain any type variables. For each constant, the preprocessor then
gathers the defining equation, instantiates it to the actual monomorphic type of the constant,
transforms it by inlining and fixed point unfolding, and then repeats the process for any new
constant occurring on the right-hand side of the transformed equation. Note that a constant
is identified by its name and type, such that a constant with the same name can occur
multiple times in the final Isabelle-LLVM program. The code generator will disambiguate
the names. At the end, we have a set of monomorphic equations that define all constants
that occur in the final program, and can be passed to the actual code generator. We now
describe the inlining and fixed point unfolding transformations.

2.7.1 Inlining

Inlining first applies user defined rewrite rules and then flattens nested expressions, converting
function calls to the shape «r < fx ... x> or «r < return (fz; ... z,)>, where the z;
are either constants, variables, or monadic arguments of type <... = _ [IM>. Subterms of
type «_ lIM> are recursively flattened. We iterate the rewriting and flattening steps until a
fixed point is reached.

» Example 3. Consider the following definition of the constant «fib’:

fib' :: m word = m word lIM
fit n = if n < 1 then return n
else do { ny « fib (n — 1); ng < fit/ (n — 2); return (ny + ng) }

22:7

ITP 2019

22:8

Generating Verified LLVM from lIsabelle/HOL

When started with <fib’ :: 64 word = 64 word [IM>, the preprocessor automatically translates
this equation to the equation displayed in Figure 1. During the translation, it uses the
following inlining rules:

if b then c else t = llc_if (from_bool b) c ¢ return (a + b) = ll_add a b
return (from_bool (a<b)) = ll_icmp_ule a b return (a — b) = ll_sub a b

Our default setup contains similar rules for the other operations, as well as rules to map
tuples and case-distinctions over tuples to «insertvaluey and <extractvaluey instructions.

2.7.2 Fixed-Point Unfolding

The preprocessor generates recursive functions from fixed-point combinators. It examines
the right hand side of an equation for patterns «p> for which it has an unfold rule of the form
<p = F pr. Tt then defines a new constant <fz; ... @, = F (fa1 ... z,), where the (z;» are
the free variables in the pattern <p). Finally, it replaces <p> by <f z; ... x,> in the equation.
This way, specifications with fixed point combinators are automatically transformed to a set
of recursive equations, as required by the code generator.

For example, the «lc_while) combinator is defined as a fixed point (cf. §2.5). Using its
definition as an unfold rule, the preprocessor will automatically convert while loops into
tail calls. This allows for using while-loops without trusting their translation in the code
generator. A configuration option in our tool lets the user choose between direct while-loop
translation or unfolding into a tail call.

» Example 4. Consider the following program:

euclid :: 64 word = 64 word = 64 word
euclid a b = do {
(a,b) + llc_while
(M a,b) = ll_cmp (a # b))
(A(a,b) = if (a<b) then return (a,b—a) else return (a—b,b))
(a,b);

return a }

From this, the preprocessor proves the following two equations (before inlining):

euclid a b = do {
(a, b) « euclidy (a, b);
return a }
euclidy s = do {
ctd < case s of (a, b) = ll_cmp (a # b);
le_if ctd (do {
s + case s of (a, b) = if a < b then return (a, b — a) else return (a — b, b);
euclidy s
}) (return s) }

That is, it defined a new constant <euclidy> to replace the while loop by tail recursion.

P. Lammich

3 Verification Condition Generator

The next step towards generating verified LLVM programs is to establish a reasoning
infrastructure. In this section, we describe our separation logic [43] based verification
condition generator. Note that, while applying complex operations on the proof state, at the
end, our VCG conducts a proof that goes through Isabelle’s inference kernel. Thus, bugs in
the VCG cannot cause unsoundness.

3.1 Separation Algebra

The first step to obtain a separation logic is to define a separation algebra on a suitable
abstraction of the memory. A separation algebra [8] is a structure with a zero, a disjointness

predicate a#b, and a disjoint union a + b. Intuitively, elements describe parts of the memory.

Zero describes the empty memory, a#b means that a and b describe disjoint parts of the
memory, and a + b describes the memory described by the union of a and b. For the exact
definition of a separation algebra, we refer to [8, 22]. We note that separation algebras
naturally extend over functions, pairs, and option types.

We abstract a value by a partial function from value addresses (<va_dir listy) to primitive
values, such that the addresses in the domain of the function are independent, i.e., no address
is the prefix of another address:

typedef aval = { m :: vaddr = 'a option. Yva,va'€dom m. va#vad — indep va vad' }
val_a :: val = aval

val_a (PRIM z) = [[] — 1]

val_ae (PAIR z y) = PFST - val_aw x + PSND - val_a y

Here, <[k —v]> is the partial function that maps <k> to v, and « - a) prepends the item <>
to all addresses in the domain of «a». It is straightforward (though technically involved) to
show that abstract values form a separation algebra, where the empty map is zero, maps are
disjoint iff their domains are pairwise independent, and union merges two maps.

A natural abstraction of a block («wval listy) would be a function from indexes to abstract
values, mapping invalid indexes to 0. However, this abstraction does not contain enough
information to reason about deallocation. In order to deallocate a block, we have to own the
whole block. However, from the abstraction, we cannot infer the size of the block, and thus
we cannot specify an assertion that ensures that we own the whole block. A remedy (which
the author has seen in [1]) is to additionally abstract a block to its size. Thus, abstract blocks
have the type <ablock = (nat = aval) x nat option>. The option type is required to make
the second elements of the tuples a separation algebra. We use the trivial separation algebra
here, where two elements are only disjoint if at least one of them is «None>. Finally, we
define <amemory = nat = ablock>, and a function <« :: memory = amemory that abstracts
memory by a function from block indexes to abstract blocks, mapping deallocated or invalid
indexes to zero.

3.2 Basic Reasoning Infrastructure

Predicates of type «assn = amemory = bool» are called assertions. The weakest precondition
of a program «c :: ‘a lIM), a postcondition <Q ::'a = assn», and a memory <s> is defined as:

wpecQs=3rs runcs=5UCCrsAQr(xay¥))

22:9

ITP 2019

22:10

Generating Verified LLVM from lIsabelle/HOL

Intuitively, «wp ¢ @ s> states that program «<c», if run on memory <s), terminates successfully
with the result <, and the abstraction of the new state s satisfies «@>.

For assertions <P and <Q)», the separating conjunction <P*(@) describes a memory that
can be split into two disjoint parts described by <P» and «Q», respectively:

(P*Q)S:Elslsg.sl #82/\5281 +52/\P51/\Q82
Validity of a Hoare triple <{P} ¢ {Q}> is defined as follows:
E{P} c{Q} =VFs. (P*F) (o s) — wpc(Ars. (Qr+F)s)s

That is, if the memory can be split into a part described by the precondition <P»>, and a
frame described by <F, then command <c» will succeed, and the new memory consists of a
part described by the postcondition <@)»> and the unchanged frame. Our Hoare triples satisfy
the frame rule: (= {P} ¢ {Q} = E{P * F} ¢ {Ar. Q r x F}» for all <I».

3.3 Basic Rules

Once we have set up the separation algebra and the abstraction function, we can prove Hoare
triples for the basic operations of our memory model. For example, we prove the following
rules for <allocny and <freey:

E {0} allocn v n {\p. malloc_tag n p * range {0..<n} (A_. v) p}
E {malloc_tag n p * Ablk. range {0..<n} blk p} free p {_. O}

where <0 = As. s=0» describes the empty memory, <malloc_tag n p» asserts that «p> points to
the beginning of a block, and the size field of this block’s abstraction is <n», and <range I f p»
describes that for all <i € I, <p + 4> points to value «f ¢». Intuitively, <allocny creates a block
of size (n»y, initialized with values (v, and a tag. If one possesses both, the whole block and
the tag, it can be deallocated by free. For the Isabelle-LLVM memory instructions, we obtain
the following rules:

E {n#0} ll_malloc TYPE('a) n {\p. range {0..<n} (A_. init) p * malloc_tag n p}
E {range {0..<n} blk p * malloc_tag n p} ll_free p {_. O}

E {pto = p} li_load p {\r. =z * pto x p}

E {pto zz p} ll_store x p {_. pto x p}

Here, <pto z p» describes that p points to value x, and we write predicates as if they were
assertions on the empty memory, e.g., (n#£0) instead of (As. s=0 A n#0>. We prove similar
rules for the other instructions.

3.4 Automating the VCG

In order to efficiently prove Hoare triples, some automation is required. We provide a
verification condition generator with a frame inference heuristics. The first step to prove a
Hoare triple is to convert it to a proposition on weakest preconditions:

INF s. STATE (P+F) s = wpc(Ars. (Qr=F)s)s] = E{P} c{Q}

where «<STATE P s = P (a s)>. In general, the VCG operates on subgoals of the form
(STATE P s = wp c Q s». It then iteratively performs one of the following steps*:

4 This is a simplified presentation. The actual VCG is an instantiation of a generic VCG framework that
can be configured with various solvers, rules, and heuristics.

P. Lammich

simplification. Apply a rewrite rule to transform «wp ¢ @ s» into some equivalent proposition.
For example, binding is resolved by the rule:

wp (do {a=m; fa}) Qs =wp m (Az. wp (f2) Q) s

rule. If there is a Hoare triple of the form <= {P} ¢ {@'}», the VCG tries to infer a frame
(F) such that <P+ P*F», and replaces the goal by «<STATE (Q+F) § = @Q s for a
fresh «s’». Here, <P+ Q =Vs. P s = (@ s> denotes entailment.

final. If the goal has the form «(STATE P s — @ s> such that «Q» is not of the form
«wp _ _ _», a heuristics is used to prove <P F @».

The actual verification conditions are generated during frame inference and the final proof

heuristics. For example, the rule for </l_malloc) requires to prove that the size operand is

not zero. The VCG will try to prove these goals by a default tactic, and leave them to the

user if this tactic fails.

» Example 5. Recall the function <euclid :: 64 word = 64 word = 64 word lIM> from Ex-
ample 4. We prove the following Hoare triple:

= {uintes a ar * wintgs b by * 0<a * 0<b} euclid a; by {Ary. wintsa (ged a b) 4}

Here, (uintss a ay> states that <a;::64 word> is an unsigned integer with value <a::int), where
«int> is the type of (mathematical) integers in Isabelle, and <ged» is Isabelle’s greatest common
divisor function. After annotating a suitable loop invariant, the VCG generates the following
two verification conditions:

[gedzy=gcdab;jztyx<vy ...] = gedaz(y—xz) =gedabd
[gedzy=gcdab; mz<y;,...] = ged(xz—y) y=gedab

These are straightforward to prove in Isabelle, e.g., using sledgehammer [3].

3.5 Data Structures and Basic Refinement

Recall Example 5. The Hoare triple that is proved there first maps the 64 bit word arguments
and results to mathematical integers, and then phrases the correctness statement in terms
of mathematical integers. This approach is often more feasible than stating correctness on
the concrete implementation directly. In our case, we would have to define the concept of
greatest common divisor for 64 bit words. In general, an algorithm often computes some
function on abstract mathematical concepts like integers or sets, but has to implement these
by concrete data structures like 64 bit words or hash-tables. Thus, a concise way to specify
the correctness statement is to first map the implementations back to the abstract concepts,
and then state the actual correctness abstractly.

In separation logic based reasoning, a data structure provides a refinement assertion
<A z z; :: assny, which describes that the abstract value «z) is implemented by the concrete
value «z;)>. We define refinement assertions to implement integers and natural numbers by n
bit words, and to implement lists by blocks of memory. On top of that, we define more complex
data structures like dynamic arrays. Note that new data structures can easily be added. In
general, an implementation does not completely implement an abstract mathematical concept.
For example, n bit words can only represent the integers «sints n = {—2""1.. < 2771}, and
hash-tables can only represent finite sets. Thus, the rules for the operations generally come
with additional preconditions. For example, the rule to implement subtraction on integers by
subtraction on n bit words is the following:

22:11

ITP 2019

22:12

=W N =

Generating Verified LLVM from lIsabelle/HOL

E {sint, a ar * sint, b bi * a—b € sints n} l_sub ar by {Ary. sint, (a—b) i}
for a; by :: m word and a b :: int

Here, <sint,» implements mathematical integers by n-bit words. Note that the postcondition
does not mention the operands «<a,b) again, though they are still valid after the operation.
As «sint,» is pure, i.e., does not use the memory, our VCG will automatically add the
corresponding assertions to the postcondition.

4 Automatic Refinement

Our basic VCG infrastructure can be used to verify simple algorithms like <euclid> from
Example 5. However, many complex algorithms have already been verified using the Isabelle
Refinement Framework [33]. It features a non-deterministic programming language with a
refinement calculus and a VCG. It allows to express an algorithm using abstract mathematical
concepts, and then refine it in multiple steps towards an efficient implementation. The last
step of a refinement is typically performed by the Sepref tool [27], which translates a program
from the non-deterministic monad of the Refinement Framework into the deterministic heap
monad of Imperative HOL [7], replacing abstract data types by concrete implementations.
We have modified the Sepref tool to translate to Isabelle-LLVM’s monad instead. We only
had to modify the translation phase. The preprocessing phases, which only work on the
abstract program, remained unchanged.

The translation phase works by symbolically executing the abstract program, thereby
synthesizing a structurally similar concrete program. During the symbolic execution, the
relation between the abstract and concrete variables is modeled by refinement assertions.
The predicate <hnr I' m;y I'" R m) means that concrete program «<m;» implements abstract
program <m», where <I') contains the refinements for the variables before the execution, «I'»
contains the refinements after the execution, and <R is the refinement assertion for the result
of «<m». For example, a <bind» is processed by the following rule:

[hnr T my IV R, my;
Az zr. hnr (Ry z 2 «) (fy z4) (R, z 2 »T") Ry (f 2);
MK_FREE R, free;
| = hnrT (do {z4<—myi;ri<fr x;; free z;; return ri}) I' Ry, (do {z¢—m; f z})

To refine <z<—m; f z», we first execute <m», synthesizing the concrete program «m;» (line 1).
The state after <m) is <R, = 24 * I'», where <2 is the result created by <m». From this state,
we execute «f 2> (line 2). The new state is <R}, z z+ * I'" ¥ R, y y;», where (y is the result
of «f »». Now, the variable x> goes out of scope, such that it has to be deallocated. The
predicate <MK_FREE R/, free =V z+. = {R}, x 2} free zy {A_. O}» (line 3) states that
freer is a deallocator for data structures implemented by refinement assertion «R.». Note
that the refinement for variable «z» may change: If <f; ;> overwrites «z;», the refinement
assertion for x> will be changed to the special assertion <inwvalid>. The deallocator for
<invalidy is simply a no-op. Adding support for deallocators was the most substantial change
we applied to the Sepref tool. Its original target language, Imperative HOL, is garbage
collected, such that there is no need for explicit deallocation.

4.1 Data Structure Library

Once the basic Sepref tool is adapted, we can define data structures. Reusing the basic data
structures from the original Sepref tool is not possible, as Imperative HOL uses arbitrary
precision integers and algebraic data types, while we have only fixed width words and pairs.

P. Lammich

Up to now, we have added the implementation of integers and natural numbers by n bit words

and some basic container data structures like dynamic arrays, bit-vectors, and min-heaps.

Thereby, we could reuse the existing infrastructure of the Sepref tool: For example, there is
support to automatically generate rules that also support refinement of the elements of a
data structure, exploiting “free theorems” [45] which stem from parametricity properties of
the abstract types.

5 Case Studies

To assess the usability of our approach, we have verified a binary search algorithm and the
Knuth-Morris-Pratt string search [24] algorithm. Both algorithms have also been verified
with the original Sepref tool, such that we can compare the two approaches.

5.1 Binary Search

Binary search is a simple algorithm to find a value in a sorted array. Despite its simplicity, it
has a history of flawed implementations®, making it a natural example for formal verification.

We start with a high-level specification: For a list «xs» and a value <), find the index of
the first element greater or equal to <x>. We define the following constant:

fi_spec xs x = spec i. i = find_index (\y. 2<y) xs

where (find_index P zs) is a standard list function that returns the index of the first element
in <zs» that satisfies «P», or <length xs if there is no such element.
Next, we phrase the binary search algorithm in the Isabelle Refinement Framework:

bin_search zs © = do {
(Lh) < while
(A(Lh). I<h)
(A(Lh). do {
assert (I<length zs A h<length xs A I<h);
let m =1 + (h—1) div 2;
if zs/m < z then return (m+1,h) else return (I,m)
b))
(0,length xs);
return [}

It is a standard exercise to prove that the algorithm adheres to its specification:

bs_correct: sorted rs = bin_search s x < fi_spec xs T

Finally, we invoke our adapted Sepref tool:

sepref_definition bs_impl [llvm_code] is bin_search
2 (larrayes sintes)* — sintl, — snates
unfolding bin_search_def [...] by sepref
export_llvm bs_impl file bin_search.ll
lemmas bs_impl_correct = bs_impl.refinel FCOMP bs_correct]

5 A buggy implementation in the Java Standard Library has gone undetected for nearly a decade [5].

22:13

ITP 2019

22:14

Generating Verified LLVM from lIsabelle/HOL

This produces an Isabelle-LLVM program <bs_impl>, exports it to actual LLVM text, and
proves the refinement theorem <bs_impl_correct:

(bs_impl, fi_spec) : [M(as, _). sorted zs] (larrayes sintss)® x sintf, — snates

Here, <snat,,» implements natural numbers by signed w-bit words®. Moreover, array,, A»
refines a list to an array and a w-bit length field, the elements of the list being refined
by assertion <A>. The notation «[®] A’f‘d X .. X AZ‘d — R» specifies a refinement with
precondition «®», such that the arguments are refined by <4; ... A, » and the result is refined
by <R>. The -l annotations specify whether an argument is overwritten (k for keep, d for
destroy). While we use this notation a lot in the Refinement Framework, it is straightforward
to prove a standard Hoare triple from it. By unfolding some definitions we get:

= {larrayss sintes xs xsy * sintgs x x4 * sorted xs }
bs_impl xs;
{Ni;. 3i. larrayes sintes x5 xsy * snates @ i * i=find_index (\y. z<y) s}

That is, if we start with an array «zs;) representing the sorted list «zs>, and a 64-bit word
<xp) representing the integer <z), then the array still represents («xs;), and the result <>
represents a natural number <@, which is equal to the correct index.

The Sepref tool implements mathematical integers by 64-bit words, proving absence of
overflows. This is only possible because the assertion in <bin_search> explicitly states that
the indexes are in bounds. Moreover, note the expression « + (h—1) div 2> that we used to
compute the midpoint index. On mathematical integers, it is equal to «({+h) div 2). However,
on fixed-width words, the latter may overflow, while the former does not”.

5.2 Knuth-Morris-Pratt String Search

Next, we regard the Knuth-Morris-Pratt (KMP) string search algorithm [24], a well-known
linear time algorithm to find the index of the first occurrence of a string s in a string ¢:

8s_spec 8 t = spec
None = Bi. sublist_at s t i |
Some i = sublist_at s t i A\ (Vii<i. -sublist_at s t 7))

where <sublist_at s t ©) specifies that list «s) occurs in list <¢» at index «(i»:

sublist_at s t i = dps ss. t = ps@s@ss A i = length ps

We have recently formalized KMP with the original Sepref tool [19]. The adaption of the
existing formalization was straightforward: In the abstract part, we had to explicitly add
a few in-bounds assertions. Most of them were already contained implicitly in the original
proof. For the synthesis step, we only had to add setup for the fixed-width word types. The
result of the automatic synthesis is an Isabelle-LLVM program <kmp_impl>, and the theorem:

(kmp_impl, ss_spec)
c[As L8| + |t < 298] (larrayes sintss)* x (larrayes sintes)* — snat_optiongs

Here <snat_optiongs> implements the type <nat option> by signed 64-bit words, mapping
<None» to —1.

6 As LLVM’s index operations are on signed words, it’s convenient to always implement sizes and indexes
by signed types, even if they are natural numbers.
7 Exactly this overflow caused the infamous bug in the Java Standard Library (5].

P. Lammich

Table 1 Time (ms) to search for the values Table 2 Time (ms) to run the a-l benchmark
0,2,... < 5n in an array [0,5,... < 5n]. suite from StringBench [44]. Here a is the alpha-
bet size, and [the pattern size. The sample size
n/10° C LLVM SML SML~* is 3- 220 characters. The algorithm stops after
1 121 100 1999 139 finding the first match.
2 251 204 4209 289
3 379 304 6516 440 a-l C++ LLVM SML SML*
4 513 412 8843 600 16-8 499 597 4616 918
5 635 514 11494 756 16-64 511 598 4621 926
6 767 617 13646 917 16-512 513 590 4573 909
7 | 908 726 16032 1076 32-8 | 453 551 447l 850
] 1038 854 18421 1250 32-64 465 552 4523 857
9 1162 945 20957 1409 32-512 463 544 4456 840
10 | 1293 1045 23409 1564 64-8 | 418 530 4433 803
64-64 420 531 4514 809
64-512 416 523 4411 799

5.3 Runtime

We have compared our verified LLVM implementations to unverified C/C++ implementations
of the same algorithms, as well as to the Standard ML (SML) implementations generated
by the original Sepref tool. While we have implemented binary search in C ourselves, we
used a publicly available code snippet [34] for KMP®. The programs were compiled with
MLton-2018 [39] and clang-6.0 [10], and run on a standard laptop machine (2.8GHz Quadcore
i7 with 16MiB RAM). Tables 1 and 2 display the results: The verified LLVM implementations
are on par with the unverified C/C++ implementations, and an order of magnitude faster
than the SML implementations.

Isabelle’s code generator uses arbitrary precision integers, which tend to be significantly
slower than fixed-width integers. The SML* column shows the results when we manually
replace the arbitrary precision integers by 64-bit integers in the generated code. While this is
unsound in general, it gives us a lower bound of what would be possible in SML with more
elaborate code generator configurations?. SML* is significantly faster than the original SML,
but still 1.5 times slower than LLVM.

6 Future Work

While our case studies only cover medium complex algorithms, we expect that our approach
will scale to more complex algorithms, e.g. model checkers [48, 16] and SAT solvers [16],
which have already been formalized with the original refinement framework. While these
formalizations use a combination of functional and imperative data structures, the LLVM
backend only supports imperative data structures. We expect the necessary changes to
be manageable, but non-trivial. In particular, the current Sepref tool only supports pure
data structures to be nested in containers. In the Imperative HOL setting, we simply use
functional data structures inside containers. For LLVM, nested container data structures
currently require ad-hoc proofs on the separation logic level. We leave the lifting of Sepref to
support nested imperative data structures to future work.

8 One easily finds many C implementations of KMP, mainly differing in the loop structure. We tried to
choose one that is close to our implementation.
9 Fleury et al. [16] have successfully experimented with such code generator tuning.

22:15

ITP 2019

22:16

Generating Verified LLVM from lIsabelle/HOL

Moreover, the refinement from arbitrary precision integers to fixed size integers was quite
straightforward for our case studies, and we expect these refinements to be more complex in
general. We leave it to future work to explore this issue more systematically, and to provide
semi-automated tools, e.g. along the lines of AutoCorres [17].

Our code generator, as well as most standard code generators in theorem provers, translates
from logic to target language code, implicitly identifying logical concepts with programming
language concepts. This approach is simple, however, the translation algorithm and its
implementation become part of the trusted code base. More recently, code generators that
translate into a deeply embedded semantics of the target language have been developed [40, 21].
We leave a translation to a deep embedding of LLVM to future work, and note that a deep
embedding will also enable more advanced control flow constructs like exceptions and breaking
from loops, without significantly increasing the trusted code base.

Compared to actual LLVM, Isabelle-LLVM makes a few simplifying assumptions: We
do not support floating point arithmetic, though this could be added, e.g. based on Lei
Yu’s floating point formalization [49]. Moreover, we only support two-element structures
(pairs). This nicely fits Isabelle HOL’s product datatype, and the nested structures resulting
from longer tuples should not be a problem for LLVM’s optimizer. Also, we do not support
concepts that are handy for program optimization, but not required for code generation,
like poison values. Isabelle-LLVM assumes an infinite supply of memory, and thus cannot
assign a bit-size to pointers. This assumption helps us to retain a deterministic semantics,
which is executable inside the theorem prover (cf. Example 1). We plan to use this feature
for systematic testing of our code generator against the actual LLVM compiler. A similar
assumption is implicitly made for the stack, as our semantics permits arbitrarily deep recursive
procedure calls. We remedy this mismatch between semantics and reality by terminating the
program in a defined way if it runs out of heap. To protect against stack overflows, LLVM
provides mechanisms like stack probing or split stack, which, however, require some effort
to enable. We leave that to future work, and note that our generated code allocates no
large blocks of memory on the stack. Thus, stack overflows are likely to hit the guard pages
inserted by most operating systems, which will cause defined termination of the process.

Currently, we interface our generated LLVM code from C programs compiled by clang.
However, the ABIs of C and LLVM only partially match, and some LLVM constructs cannot
be expressed in C at all. Currently, it is the user’s responsibility to implement a correct
header file. We plan to automatically generate header files and adapter functions to make
the exported code accessible from C.

7 Related Work

This project would not have been possible without several independent Isabelle developments:
We use the Separation Algebra library [23, 22] as basis for our separation logic. We
substantially extended this library by a frame inference heuristics, and formalized the
extension of separation algebras over functions, products, and options. Moreover, we use
Isabelle’s machine word library [2] to model the 2’s complement arithmetic of LLVM. We
slightly extended this library by adding a few lemmas. Finally, the Eisbach language [38]
was a great help for prototyping the verification condition generator, although most of the
final VCG is now implemented directly in the more low-level Isabelle/ML.

The Vellvm project [50, 51] verifies LLVM program transformations in Coq. To be useful,
e.g. as backend for clang, they have to formalize a substantial fragment of LLVM. On the
other hand, we can afford to formalize a simplified and abstract semantics that is just
powerful enough to cover what Sepref generates.

P. Lammich

We drew some of the ideas for our separation logic from the Verifiable C project [1], a
Coq formalization of a separation logic on top of the CompCert C semantics [4].

There exists various formalizations of low-level imperative languages, eg [36, 46]. These
are focused on specifying the semantics, and we are not aware of any complex algorithm
verifications using these formalizations.

The DeepSpec project [14] aims at a completely verified computation environment, down
to machine code, including the operating system. This is much more ambitious than the
work presented here, which stops at a (simplified) LLVM semantics. For proving correct
imperative programs, they have a separation logic based VCG for a fragment of C [1, 9],
which they apply to several small C programs, mainly for cryptographic algorithms.

8 Conclusions

We have developed Isabelle-LLVM, a shallowly embedded imperative language designed
to be easily translated to actual LLVM text. On top of this, we have built a verification
infrastructure, and re-targeted the Sepref tool to connect the Refinement Framework to
LLVM. As case studies, we have generated verified LLVM code for a binary search algorithm
and the Knuth-Morris-Pratt string search algorithm. Both implementations are an order
of magnitude faster than the ones generated with the original Sepref tool, and on par with
unverified C implementations. The additional effort required to refine to LLVM instead of
Standard ML was quite low.

—— References

1 Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds, Gordon
Stewart, Sandrine Blazy, and Xavier Leroy. Program Logics for Certified Compilers. Cambridge
University Press, New York, NY, USA, 2014.

2 Joel Beeren, Matthew Fernandez, Xin Gao, Gerwin Klein, Rafal Kolanski, Japheth Lim, Corey
Lewis, Daniel Matichuk, and Thomas Sewell. Finite Machine Word Library. Archive of Formal
Proofs, June 2016. , Formal proof development. URL: http://isa-afp.org/entries/Word_
Lib.html.

3 Jasmin Christian Blanchette, Sascha Béhme, and Lawrence C. Paulson. Extending Sledge-
hammer with SMT Solvers. J. Autom. Reasoning, 51(1):109-128, 2013. doi:10.1007/
s10817-013-9278-5

4 Sandrine Blazy and Xavier Leroy. Mechanized semantics for the Clight subset of the C

language. Journal of Automated Reasoning, 43(3):263-288, 2009. URL: http://xavierleroy.

org/publi/Clight.pdf.

5 Joshua Bloch. Extra, Extra - Read All About It: Nearly All Binary Searches and Mergesorts
are Broken. URL: http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-
about-it-nearly.html.

6 Julian Brunner and Peter Lammich. Formal Verification of an Executable LTL Model
Checker with Partial Order Reduction. J. Autom. Reasoning, 60(1):3-21, 2018. doi:10.1007/
s10817-017-9418-4.

7 Lukas Bulwahn, Alexander Krauss, Florian Haftmann, Levent Erkok, and John Matthews.
Imperative Functional Programming with Isabelle/HOL. In Otmane Ait Mohamed, César A.
Munoz, and Sofiéne Tahar, editors, TPHOLs 2008, volume 5170 of LNCS, pages 134-149.
Springer, 2008.

8 C. Calcagno, P.W. O’Hearn, and Hongseok Yang. Local Action and Abstract Separation Logic.
In LICS 2007, pages 366-378, July 2007.

22:17

ITP 2019

http://isa-afp.org/entries/Word_Lib.html
http://isa-afp.org/entries/Word_Lib.html
https://doi.org/10.1007/s10817-013-9278-5
https://doi.org/10.1007/s10817-013-9278-5
http://xavierleroy.org/publi/Clight.pdf
http://xavierleroy.org/publi/Clight.pdf
http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://doi.org/10.1007/s10817-017-9418-4
https://doi.org/10.1007/s10817-017-9418-4

22:18

Generating Verified LLVM from lIsabelle/HOL

10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Appel. VST-
Floyd: A Separation Logic Tool to Verify Correctness of C Programs. Journal of Automated
Reasoning, 61, February 2018. doi:10.1007/s10817-018-9457-5.

Clang: a C language family frontend for LLVM. URL: https://clang.1llvm.org/.

Luis Cruz-Filipe, Marijn Heule, Warren Hunt, Matt Kaufmann, and Peter Schneider-Kamp.
Efficient Certified RAT Verification. In Proc. of CADE. Springer, 2017.

Luis Cruz-Filipe, Joao Marques-Silva, and Peter Schneider-Kamp. Efficient Certified Resolution
Proof Checking. In Proc. of TACAS, pages 118-135. Springer, 2017.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.
Efficiently Computing Static Single Assignment Form and the Control Dependence Graph.
ACM Trans. Program. Lang. Syst., 13(4):451-490, October 1991. doi:10.1145/115372.115320.
Deep Spec Project Web Page. URL: https://deepspec.org/.

Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander Schimpf, and
Jan-Georg Smaus. A Fully Verified Executable LTL Model Checker. In CAV, volume 8044 of
LNCS, pages 463-478. Springer, 2013.

Mathias Fleury, Jasmin Christian Blanchette, and Peter Lammich. A verified SAT solver with
watched literals using Imperative HOL. In Proc. of CPP, pages 158-171, 2018.

David Greenaway, Japheth Lim, June Andronick, and Gerwin Klein. Don’t sweat the small
stuff: formal verification of C code without the pain. In Proc. of PLDI ’1/, pages 429-439,
2014. doi:10.1145/2594291.2594296.

Florian Haftmann, Alexander Krauss, Ondfej Kuncar, and Tobias Nipkow. Data Refinement
in Isabelle/HOL. In Proc. of ITP, pages 100-115. Springer, 2013.

Fabian Hellauer and Peter Lammich. The string search algorithm by Knuth, Morris and
Pratt. Archive of Formal Proofs, December 2017. , Formal proof development. URL:
http://isa-afp.org/entries/Knuth_Morris_Pratt.html.

Marijn Heule, Warren Hunt, Matt Kaufmann, and Nathan Wetzler. Efficient, Verified Checking
of Propositional Proofs. In Proc. of ITP. Springer, 2017.

Lars Hupel and Tobias Nipkow. A Verified Compiler from Isabelle/HOL to CakeML. In Amal
Ahmed, editor, Programming Languages and Systems, pages 999-1026, Cham, 2018. Springer
International Publishing.

Gerwin Klein, Rafal Kolanski, and Andrew Boyton. Mechanised Separation Algebra. In ITP,
pages 332-337. Springer, August 2012.

Gerwin Klein, Rafal Kolanski, and Andrew Boyton. Separation Algebra. Archive of For-
mal Proofs, May 2012. | Formal proof development. URL: http://isa-afp.org/entries/
Separation_Algebra.html.

Donald E. Knuth, Jr. James H. Morris, and Vaughan R. Pratt. Fast Pattern Matching in
Strings. SIAM Journal on Computing, 6(2):323-350, 1977. doi:10.1137/0206024.
Alexander Krauss. Recursive definitions of monadic functions. In Proc. of PAR, volume 43,
pages 1-13, 2010.

Peter Lammich. Automatic Data Refinement. In ITP, volume 7998 of LNCS, pages 84-99.
Springer, 2013.

Peter Lammich. Refinement to Imperative/HOL. In ITP, volume 9236 of LNCS, pages 253-269.
Springer, 2015.

Peter Lammich. Refinement based verification of imperative data structures. In Jeremy Avigad
and Adam Chlipala, editors, CPP 2016, pages 27-36. ACM, 2016.

Peter Lammich. Efficient Verified (UN)SAT Certificate Checking. In Proc. of CADE. Springer,
2017.

Peter Lammich. The GRAT Tool Chain - Efficient (UN)SAT Certificate Checking with Formal
Correctness Guarantees. In SAT, pages 457463, 2017.

Peter Lammich and S. Reza Sefidgar. Formalizing the Edmonds-Karp Algorithm. In Proc. of
ITP, pages 219-234, 2016.

https://doi.org/10.1007/s10817-018-9457-5
https://clang.llvm.org/
https://doi.org/10.1145/115372.115320
https://deepspec.org/
https://doi.org/10.1145/2594291.2594296
http://isa-afp.org/entries/Knuth_Morris_Pratt.html
http://isa-afp.org/entries/Separation_Algebra.html
http://isa-afp.org/entries/Separation_Algebra.html
https://doi.org/10.1137/0206024

P. Lammich

32

33

34

35
36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Peter Lammich and S. Reza Sefidgar. Formalizing Network Flow Algorithms: A Re-
finement Approach in Isabelle/HOL. J. Autom. Reasoning, 62(2):261-280, 2019. doi:
10.1007/s10817-017-9442-4.

Peter Lammich and Thomas Tuerk. Applying Data Refinement for Monadic Programs to
Hopcroft’s Algorithm. In Lennart Beringer and Amy P. Felty, editors, ITP 2012, volume 7406
of LNCS, pages 166—182. Springer, 2012.

Yong Li. Knuth-Morris-Pratt code snippet. URL: https://gist.github.com/yongpitt/
5704216.

LLVM language reference manual. URL: https://11lvm.org/docs/LangRef .html.

Andreas Lochbihler. Java and the Java Memory Model - A Unified, Machine-Checked
Formalisation. In Proc. of ESOP, pages 497-517, 2012. doi:10.1007/978-3-642-28869-2_25.
George Markowsky. Chain-complete posets and directed sets with applications. algebra
universalis, 6(1):53-68, December 1976. doi:10.1007/BF02485815.

Daniel Matichuk, Toby Murray, and Makarius Wenzel. Eisbach: A Proof Method Language
for Isabelle. Journal of Automated Reasoning, 56(3):261-282, March 2016. doi:10.1007/
s10817-015-9360-2.

MLton. URL: http://mlton.org/.

Magnus O. Myreen and Scott Owens. Proof-producing translation of higher-order logic
into pure and stateful ML. J. Funct. Program., 24(2-3):284-315, 2014. doi:10.1017/
S0956796813000282.

Tobias Nipkow and Gerwin Klein. Concrete Semantics: With Isabelle/HOL. Springer Publish-
ing Company, Incorporated, 2014.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In Proc of.
Logic in Computer Science (LICS), pages 55-74. IEEE, 2002.

StringBench Benchmark Suite. URL: https://github.com/almondtools/stringbench.
Philip Wadler. Theorems for free! In Proc. of FPCA, pages 347-359. ACM, 1989.

Conrad Watt. Mechanising and verifying the WebAssembly specification. In Proc. of CPP,
pages 53-65, 2018. doi:10.1145/3167082.

Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt. DRAT-trim: Efficient checking
and trimming using expressive clausal proofs. In Carsten Sinz and Uwe Egly, editors, SAT
2014, volume 8561 of LNCS, pages 422—429. Springer, 2014.

Simon Wimmer and Peter Lammich. Verified Model Checking of Timed Automata. In TACAS
2018, pages 61-78, 2018.

Lei Yu. A Formal Model of IEEE Floating Point Arithmetic. Archive of Formal Proofs, July
2013. , Formal proof development. URL: http://isa-afp.org/entries/IEEE_Floating_
Point.html.

Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. Formalizing
the LLVM Intermediate Representation for Verified Program Transformations. In Proc. of
POPL, pages 427-440. ACM, 2012. doi:10.1145/2103656.2103709.

Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve Zdancewic. Formal
Verification of SSA-based Optimizations for LLVM. SIGPLAN Not., 48(6):175-186, June 2013.
doi:10.1145/2499370.2462164.

22:19

ITP 2019

https://doi.org/10.1007/s10817-017-9442-4
https://doi.org/10.1007/s10817-017-9442-4
https://gist.github.com/yongpitt/5704216
https://gist.github.com/yongpitt/5704216
https://llvm.org/docs/LangRef.html
https://doi.org/10.1007/978-3-642-28869-2_25
https://doi.org/10.1007/BF02485815
https://doi.org/10.1007/s10817-015-9360-2
https://doi.org/10.1007/s10817-015-9360-2
http://mlton.org/
https://doi.org/10.1017/S0956796813000282
https://doi.org/10.1017/S0956796813000282
https://github.com/almondtools/stringbench
https://doi.org/10.1145/3167082
http://isa-afp.org/entries/IEEE_Floating_Point.html
http://isa-afp.org/entries/IEEE_Floating_Point.html
https://doi.org/10.1145/2103656.2103709
https://doi.org/10.1145/2499370.2462164

	Introduction
	Isabelle-LLVM
	State Monad
	Memory Model
	Towards a Shallow Embedding
	Instructions
	Modeling Control Flow
	Code Generation
	Mapping the Memory Model

	Preprocessing
	Inlining
	Fixed-Point Unfolding

	Verification Condition Generator
	Separation Algebra
	Basic Reasoning Infrastructure
	Basic Rules
	Automating the VCG
	Data Structures and Basic Refinement

	Automatic Refinement
	Data Structure Library

	Case Studies
	Binary Search
	Knuth-Morris-Pratt String Search
	Runtime

	Future Work
	Related Work
	Conclusions

