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—— Abstract

We describe a formalization of modal tableaux with histories for the modal logics K, KT and S4 in
Lean. We describe how we formalized the static and transitional rules, the non-trivial termination
and the correctness of loop-checks. The formalized tableaux are essentially executable decision
procedures with soundness and completeness proved. Termination is also proved in order to define
them as functions in Lean. All of these decision procedures return a concrete Kripke model in
cases where the input set of formulas is satisfiable, and a proof constructed via the tableau rules
witnessing unsatisfiability otherwise. We also describe an extensible formalization of backjumping
and its verified implementation for the modal logic K. As far as we know, these are the first verified
decision procedures for these modal logics.
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1 Introduction

Propositional modal logics have proved useful for reasoning about knowledge and belief [24],
verifying digital circuits [8], and knowledge representation and reasoning [1].

The main reason for their success is that they provide just the right amount of extra
expressive power, somewhere between propositional and first order logic, while retaining
almost universal decidability. Modal description logics [3] in particular are extremely
expressive, many with decision procedures that are EXPTIME-complete and beyond.

There are many efficient implementations of various modal and description logics, but the
desire for efficiency leads to numerous non-trivial optimizations which make the theoretical
soundness and completeness harder to prove. Consequently, most of these implementations
are buggy and require constant maintenance to iron out these bugs. For efficiency, these
provers also do not provide concrete evidence, such as proofs or countermodels, for their
answers. As such, these implementations cannot be used in safety-critical applications.

Naive decision procedures for modal logics sometimes proceed by constructing the, possibly
exponential sized, set of all maximal consistent subsets of a given set I' and then attempting
to construct a model directly by comparing when two such subsets can be related by the
semantic binary relation. They are analogous to the construction of a canonical model when
using a Henkin-style completeness proof for a Hilbert calculus for modal logic. If T" is finite
then so is its set of maximal consistent sets, so termination is usually easy [19], and it suffices
to prove soundness and completeness constructively [11]. But they are not practical because
their first task requires a possibly unnecessary exponential operation. More refined “on the
fly” tableau procedures [29] only construct the set of subsets in the worst-case, and as is
well-known, real-world examples rarely contain such worst-case examples.
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Our work follows this “refined” approach. We break new ground for producing verified
and optimized implementations for modal description logics by handling the basic modal
logics K, KT and S4. For K, we also give a verified implementation of backjumping [3]. The
logic K allows us to set the scene and incorporate backjumping. The logic KT allows us to
showcase how to handle axiomatic extensions. The termination argument for the logic S4
requires detecting “ancestor loops” in tableau branches. Loop-checking is also required to
handle knowledge bases (global assumptions), which encode real-world problems [4].

By utilizing the constructive nature and strong type system of Lean [9], we implemented
verified decision procedures based on tableaux with histories, which are variants of sequent
calculi with histories given by Heuerding, Seyfried, and Zimmermann [16] (HSZ henceforth).
However, our formalization does not mimic the proofs given in HSZ. Although the verified de-
cision procedures are not competitive against state-of-the-art provers, they provide promising
evidence that efficient verified provers for expressive modal description logics are plausible.

The verified decision procedures are functions defined in Lean. They could be executed
using #reduce but this will take too long to compute, meaning they cannot be used directly
in a Lean proof. Instead, we use #eval to execute these functions on the virtual machine
provided by Lean, and thus obtain our experimental results.

Related Work

Formalizations of theories, decision procedures and SAT solvers for classical propositional
logic and first order logic have been well studied. Many recent verified provers also come
with verified optimizations [7] [26]. These formalizations usually adopt modern variants
of the resolution method as their primary calculus in order to achieve efficiency. On the
other hand, there are also verified decision procedures based on tableau methods [21] [2]
[17]. However, the target logics of these projects are either classical propositional logic [21]
or basic description logics [2], without loop-checks, and without verified optimizations. For
example, Hidalgo et al. [17] verified a decision procedure for description logic ALC, but
their satisfiability was then defined with respect to empty global assumptions, so loop-checks
are not required. Our formalization also extends their work. Other work related to modal
and temporal logics includes Paulien [10], Bentzen [6] and Yuasa et al.[30]. Paulien [10]
gives a comprehensive account of embedding modal logics in Coq. Bentzen [6] gives a
formalization of Henkin-style completeness proof of modal logics in Lean. Yuasa et al. [30]
use an external decision procedure for the p-calculus to help verify the Deutsch-Schorr-Waite
marking algorithm in Agda, but leave the decision procedure itself trusted. There are also
formalizations of temporal logics developed by Schimpf et al. [25], Jantsch and Norrish
[18], Esparza et al. [12], targeting verification related to model checking problems including
verified model checkers, and translation between temporal logics and automata.

2 Modal logic preliminaries

Our verified decision procedures are all implemented with lists. However, for readability, we
use usual mathematical notation for sets in the following when there is no confusion.

2.1 Syntax and semantics of K, KT and S4

» Definition 2.1. The syntaz of formulas in this paper is given by the following grammar.

N:=0|SN
pu=N[-N[pAp|pVe|Op| Op
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» Definition 2.2. The length I of a formula ¢ is the number of logical connectives including
O and & occurring in @. The length I of a set T of formulas is Zwer l(p). The closure cl
of a formula ¢ is the set of all the subformulas of .

To obtain a neat formalization we only consider formulas in negation normal form as defined
in Definition 2.1. However, it is easy to establish a translation between the full language and
the negation normal form, preserving the correctness of the decision procedures.

» Definition 2.3 (Kripke models). A Kripke model is a triple (S, R, V) where S is a set of
states, and R C S xS and V C N x S are two binary relations. R is called a reachability
relation, and V is called a valuation function.

» Definition 2.4. A KT model is a Kripke model whose reachability relation is reflexive. An
S4 model is a KT model whose reachability relation is transitive.

» Definition 2.5 (forcing). For a Kripke model M = (S, R, V'), the forcing relation IF between
a state s € S and a formula ¢ is:

M,s)lFn if V(n,s)

M, s) - —n if (M,s)lFn

M,s)IFony if (M,s)lFe and (M,s)l-
M,s)IFoVvy if (M,s)lFe or (M,s)lF4

M, s) - O if for all't € S, R(s,t) implies (M,t) IF ¢
M, s)IF Qg if there exists t € S, R(s,t) and (M,t) IF ¢

» Definition 2.6 (satisfiability). Let M be a Kripke model. A state s € M satisfies a set T of
formulas, written (M, s) ET, if for all p € T, (M,s) - . A set T of formulas is satisfiable
if there is a Kripke model containing a state that satisfies I', and is unsatisfiable otherwise.

We write s IF ¢ and s F T" if the model M is clear from the context. Kripke models are
formalized as a Lean structure equipped with two relations, parameterized by a carrier type
states. Also note that by definition, an empty model never satisfies a set I" of formulas.
When T is proved to be unsatisfiable, then it is also not satisfied in any non-empty model.

structure kripke (states : Type) :=
(val : N — states — Prop)
(rel : states — states — Prop)

def sat {st} (k : kripke st) (s) (I' : list nnf) : Prop :=
V ¢ € I', force k s ¢

def unsatisfiable (I' : list nnf) : Prop :=
V (st) (k : kripke st) s, = sat k s I

2.2 Tableaux for K, KT and S4

The tableau K7 for modal logic K is the calculus defined as in Figure 1. We call the upper
part of a rule the upper sequent (lower sequent resp.). Rule (K) is called the transition rule
[13]. The computational behaviour of the transition rule has a backtracking flavor. If the
lower sequent is unsatisfiable, then so is the upper sequent. If the lower sequent is satisfiable,
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. n,—\n,F @A¢ar @Vipar <>907D23F
(d) ———=— (N ———= (V) (K) —~—
unsatisfiable o, T o, ' Y, T 0,
Figure 1 Tableau K7 .
oA, 0%, T
%0, by $1 X Pn, by
where A = {¢g,...,on} # @ and T is a set of literals not containing a pair n, -n

Figure 2 Equivalent form of the transition rule.

then the decision procedure backtracks and tries another {-formula. If all of them are
satisfiable, then so is the upper sequent. In our formalization, the transition rule should be
understood as its variant as shown in Figure 2, which encodes such a computational behavior
in the form of a rule. This applies to all the transition rules of the tableaux given in this
paper. Rules with the semantics captured by our dotted line are also known as AND-nodes,
indicating that such rules have a semantic interpretation that is “dual” to that of the V rule,
and the resulting calculi are also called AND-OR tableaux [14]. We abuse notation by using
the same rule names but distinguish them by dotted lines.

» Theorem 2.7 (invertibility). For the (K) rule (above) and the (A) rule, all the lower
sequents are satisfiable if and only if the upper sequent is satisfiable. One of the lower
sequents of the (V) rule is satisfiable if and only if the upper sequent is satisfiable.

» Theorem 2.8 (termination). Let T, be the upper sequent and T'; a lower sequent of a non-id
rule in K. Then I(T}) < I(Ty).

The tableau KT7 for modal logic KT is obtained by adding the (T') rule to K”. The
tableau S47 for modal logic S4 is KT7 with the transition rule replaced by the rule (S4):

U, T’

(T) oo T (54)

Op,0%,T
LRE)Y

3 Formalization

We now describe verified decision procedures for K, KT and S4. The one for K introduces
the basic tools we developed for formalizing modal tableaux, and serves as an overview of the
verified algorithms. The one for KT introduces tableaux with histories to handle non-trivial
termination, and focuses on their correctness. The one for S4 combines the techniques for K
and KT to deal with the correctness of loop-checks.

Each decision procedure is implemented as a computable function in Lean, and is proved
to be sound, complete and terminating. They can be evaluated by Lean’s #eval command.

3.1 Formalizing modal tableaux — K

The invertibility Theorem 2.7 guarantees that each rule of K7 properly propagates the status
of a sequent. Thus a natural way to write a decision procedure f for K is to call f recursively
on the lower sequents of each rule and propagate the status upwards [29]. Eventually, the
root sequent, which is the goal, will have its status updated. In a theorem prover supporting
a strong type theory, the status can be a complex witness such as a proof or a model.
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In cases where a formula ¢ is satisfiable, instead of returning a proof of the statement that
 is satisfiable, which is an existential sentence, we can return a Kripke model as a concrete
object that satisfies ¢. For the purpose of formalization, such a model should be easy to
construct and easy to check. Defining a Kripke structure by specifying all its fields from
scratch can be tedious, especially when one wants to extract information from a sequence
of Kripke models and re-arrange them by manipulating their R and V to construct a new
model. This happens when dealing with the transition rule. To achieve a better solution, we
describe a uniform way of constructing Kripke models using tree models with interpretation
functions, and let the decision procedure return such a model as a witness when a lower
sequent is satisfiable.

A tree model is defined as an inductive type model with a first argument of type 1ist nat,
intuitively representing the propositional variables true in a state, and a recursive argument
list model, intuitively representing the states reachable from that state. The base case is
when the second list is empty and is not encoded explicitly. Interpretation functions mval
and mrel are defined as follows to capture this intuition.

inductive model
| cons : list N — list model — model

def mval : N — model — bool
| p (cons vr) :(=p €v

def mrel : model — model — bool
| (cons vr)m:=m¢€Tr

Note that although such a type is called model, as can be seen from the type of interpre-
tation functions, model is supposed to be used as the type of a state. However, such a state
contains essentially all the information about a Kripke model constructed so far. It is always
possible to recover the model from within a state via the interpretation functions. We define
such a recovery builder, whose type is exactly just Kripke model.

def builder : kripke model :=
{val := A n s, mval n s, rel := \ s s, mrel s; sg} —— A\ for coercion

This mechanism allows us to construct without too much effort a provably correct model
of the upper sequent I' of a transition rule from the models returned by its lower sequents. For
example, if [ is the list of tree models returned by the recursive calls on the lower sequents of
the transition rule, then the tree model s of the upper sequent is simply s := cons v [ where
v is a list of natural numbers definable from the upper sequent itself. For non-transition
rules, the tree model remains the same. Then we prove sat builder s I'. The return type
of the decision procedure f is as follows, where the // notation denotes subtypes:

inductive node (I' : list nnf) : Type
| closed : unsatisfiable I' — node
| open_ : {s // sat builder s '} — node

Since the return value of calling f on the lower sequents of the transition rule is potentially
a list of tree models satisfying each lower sequent, a predicate called batch_sat is defined to
relate the lower sequents and their models. The function unmodal takes a sequent I' and
produces its lower sequent according to the transition rule.
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inductive batch_sat : list model — list (list nnf) — Prop

| bs_nil : batch_sat [] []

| bs_cons (m I' 1; 15) : sat builder m I' — batch_sat 1; 1o —
batch_sat (m::17) (IT'::15)

-— unbozx and undia take a list of formulas, and

-— get rid of the outermost box or diamond of each formula respectively
def unmodal (I" : 1list nnf) : list (list nnf) :=

list.map (A d, 4 :: (unbox I')) (undia I')

The verification of the transition rule is illustrated next. The type modal_applicable
expresses the extra conditions of the transition rule: I" contains only literals, contains no
contradictions, and contains at least one ¢-formula. Moreover, unmodal_sat_of_sat not
only encodes that if the upper sequent is satisfiable then so is every lower sequent, but also
that it holds for any list A of formulas that contains all the (J- and (-formulas in I'.

theorem sat_of_batch_sat : Il 1 I' (b : modal_applicable I),
batch_sat 1 (unmodal I') — sat builder (cons h.v 1) I'

theorem unmodal_sat_of_sat (I' : list nnf) : V (i : list nnf),

i € unmodal I' — (V {st : Type} (k : kripke st) s A

(hy : V ¢, box p € I' = box ¢ € A)

(hyg : V ¢, dia p € ' — dia ¢ € A), sat ks A —» 3 s’, sat k s’ i)

The termination of the algorithm is not difficult to formalize, because each lower sequent
of each rule contains fewer logical connectives. A termination argument is then given by the
length of a sequent. However, the transition rule requires some implementational attention.
It is worth noting that a map-like function is needed to execute f on the list of lower sequents.
Given a term such as list.map f 1 occurring within the definition of f, Lean does not know
automatically that the computation terminates because f is not applied to any arguments.
Secondly, the transition rule needs early termination in order to make the algorithm efficient.
As soon as one of the lower sequents turns out to be unsatisfiable, the computation should
terminate because the upper sequent must be unsatisfiable. We define a dedicated function
as follows to achieve early termination and help Lean prove termination.

-- psum 1s the sum type extended to Sort in Lean.

def tmap {p : list nnf — Prop} (f : II ', p I' — node I'):
IIT : list (1ist nnf), (V iel, p i) —

psum {i // i€l' A unsatisfiable i} {x // batch_sat x I'}

The dependent function f in the argument is an abstraction of the decision procedure f
itself with a proof h saying that the input of it satisfies the property p. This p is supposed to
be the termination of the transition rule whose proof is given as follows. Since the termination
proof is found in the local context where the decision procedure f is being called, Lean knows
that this recursive call terminates.

def unmodal_size (I' : list nnf) : V (i : list nnf),
i € unmodal I' — (node_size i < node_size I')
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Since the return type contains either a proof that the goal is unsatisfiable, or a Kripke
model which provably satisfies the goal, soundness and completeness are immediately given.
They can also be proved explicitly as follows.

def tableau : II I' : list nnf, node I' := ...
using_well founded {rel_tac := A\ _ _, ‘[exact (_, measure_wf node_size)]}

def is_sat (I' : list nnf) : bool :=
match tableau I' with

| closed _ := ff
| open_ _ := tt
end

theorem correctness (I" : list nnf)
is_sat I' = tt <> 3 (st : Type) (k : kripke st) s, sat k s [

3.2 Tableaux with histories — KT

As we can see from the (T') rule of KT7 | the termination of proof search in KT becomes

non-trivial. In HSZ, a sequent calculus with histories was proposed to handle termination.

Soundness and completeness of such a sequent calculus was then proved by establishing a
translation between the original calculus and the one with histories. We use a tableau system
with histories based on the sequent calculus with histories, and give a direct semantic proof
of soundness and completeness with the corresponding formalization. We use a different

termination argument, as we found that the measure given by HSZ does not always decrease.

» Definition 3.1. Tableau KT ™ is defined as in Figure 3 where the vertical bar | separates
the history 3, which is a formula-set, from the formula-set I' carried by each sequent:

unsatisfiable DRRCRUNN Y|, I X|,T

( )D%EI%F g |, %

where I' in (K) is a set of literals not containing a contradiction

Figure 3 Tableau KT7 ™,

» Definition 3.2. A sequent ¥ | T is satisfiable if X UT is satisfiable.

The procedure to decide whether IT" is satisfiable in KT is similar to the one designed for
K. Starting with the goal @ | T as a root sequent, apply rules repeatedly until a contradiction
is found or no rule is applicable, whence a KT proof or model can be constructed.

However, the correctness proof now becomes different. The first thing to notice is that
KT7™ does not have the strict subformula property as does K7. The lower sequent of the (T)
rule contains more logical connectives than the upper sequent. Consequently, the termination
argument that worked for K does not work for KT. Secondly, although the transition rule
in KT7T™ is very similar to that of K7, the change of semantics from K to KT means its
invertibility is not immediately obvious. We prove termination by defining a measure on
sequents and showing that such a measure decreases under a well-founded relation every
time we apply a rule.

31:7

ITP 2019



31:8

Verified Decision Procedures for Modal Logics

» Definition 3.3. Let T" be a set of formulas. The degree of T' is the maximal number of
modal operators occurring in any formula ¢ € T'.

» Definition 3.4. Let ¥ | T be a sequent in KT7 ™. The size of ¥ | T' is defined as a pair
size(X | T) := (degree(X UT),I(T))

» Theorem 3.5. Let & | T be the upper sequent and X' | TV a lower sequent of a rule in
KT Let <jop be the lexicographic order on N x N. Then

size(X' | T) <jeq size(X | T)

Proof. For the (T) rule, degree(X | T') remains unchanged and [(T') decreases. For the
transition rule, degree(X | T') decreases. For propositional rules, there are two possibilities:
either degree(X | T') decreases or degree(X | T') remains unchanged and [(T") decreases. In
either case size(X | T') decreases. <

The invertibility of the transition rule is key to the correctness of the decision procedure.
We prove this by establishing a semantic relationship between ¥ and I' of a sequent, using
the tree model and interpretation functions mechanism developed in the previous section.

» Definition 3.6. A sequent 3 | T is called reflexive if for every Oy € X, if a tree model
m = cons v | satisfies the following two conditions:

1. mET, and

2. for every s €1, for every Ly € X, s 1.

then m I- .

» Theorem 3.7. Let X | T' be a sequent generated by KT ™. Then
1. ¥ contains only O-formulas.
2. X | T is reflexive.

A paper proof of Theorem 3.7 could proceed by induction on the construction of sequents.
In our formalization, we encode Theorem 3.7 as a property into the definition of a sequent so
a sequent cannot be constructed without proving it obeys Theorem 3.7. This avoids the extra
work of defining an inductive type representing KT7* carrying out an explicit induction and
relating such a type to the decision procedure. The final definition of a sequent of KT7™ is:

structure seqt : Type :=

(main : list nnf)

(hdld : list nnf)

—-— srefl main hdld says that sequent hdld | main satisfies theorem 3.7(2)
(pmain : srefl main hdld)

-- boz_only says there are only boxed formulas in hdld

(phdld : box_only hdld)

As an example, we show the construction of a sequent in the implementation. The
and_child function takes a sequent I', assumes that an A-formula is found in the main part,
and returns a new sequent which is the lower sequent of the A-rule with Theorem 3.7 proved.
Henceforth, we refer to this way of proving properties of sequents as “downward propagation”.
The function I'".main returns the main field of the sequent I'.
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def and_child {¢ ¥} (I' : seqt) (h : nnf.and ¢ ¢ € I'.main) : seqt :=
(p :: 9 :: T'.main.erase (and ¢ ), I'.hdld,
begin

intros k s 7 hsat hin hall,

by_cases heq : 7 = and ¢ 7,

{ rw heq, split, apply hsat, simp, apply hsat, simp 1},

{ apply I'.pmain _ hin hall,

apply sat_and_of_sat_split

end, I'.phdld)

h hsat }

» Theorem 3.8 (invertibility). All the lower sequents of the transition rule are satisfiable if
and only if the upper sequent is satisfiable.

Proof. (=) By Theorem 3.7. (<) By KT semantics. <

Note that applying Theorem 3.7 by itself gives us satisfiability with respect to tree
models. However, in the end of the formalization, an immediate corollary is that a sequent is
satisfiable if and only if it is satisfied by a tree model. Thus Theorem 3.8 does not claim
too much.

3.3 Loop checks — S4

The transitivity constraint in the semantics of S4 poses more difficulties on both the termi-
nation and correctness of the decision procedure. HSZ introduced a sequent calculus with
histories for S4 and proved its soundness and completeness via a translation connecting two
intermediate calculi. We give a tableau calculus that enhances HSZ’s calculus, and give a
formalization of soundness and completeness without establishing translations. We again use
a slightly different termination argument as the measure from HSZ could become negative
in some cases. This does not necessarily mean that HSZ’s argument is incorrect, because a
negative lower bound might still be given. However, we were not able to find it in the paper.

» Definition 3.9. Tableau S47™ is defined as in Figure 4. The condition ¢ ¢ H in the
transition rule is called a “loop-check” H, S and A are called a history, a signature, and
ancestors of the sequent respectively. A signature is a pair of formula and list of formulas,
but can be empty. The ancestors is a list of non-empty signatures. For each rule that is not
id or S4, the x in its upper sequent A || S || H || £ | x, T is called a principal formula.

» Definition 3.10. A sequent A || S || H || £ | T is satisfiable if X UT is satisfiable. Given
a sequent s, we refer to its fields by the projection notation (e.g., s.I').

3.3.1 Downward propagation

The transition rule of S47* prevents us from using the termination argument for KT7*,
because the degree of ¥ | I' can remain unchanged, and the length of ' can increase. However,
S47™M has some nice properties that are helpful to design a termination argument.

» Theorem 3.11. Let A || S || H || £ | T be a sequent generated by S477 from root
A || S| H || X | T'. Then

1. X contains no duplicate elements. H contains no duplicate elements.

2. ¥ and H are sublist permutations of cl(T").

3. T C ().
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Al SIIHX[n,mT
unsatisfiable
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AllSIH|2[0pT
AllellH[[Z]eT
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(54)

where T in (S4) is a set of literals not containing a contradictory pair

Figure 4 Tableau S47 .

A paper proof of Theorem 3.11 could use induction on the S47* rules using these three

properties simultaneously. In the formalization, this is handled by a downward propagation
as in Section 3.2.

» Definition 3.12. Let A || S || H || £ | T be a sequent generated by S477 from root
A || S| H || ¥ | TY. We use o for function composition, | for the length function and cl
for the closure function in Definition 2.2. The size of A || S || H || £ | T is a triple

size(A|| S| H||Z|T):=(oc(l)=1UX),loc(T)—I(H),I(T))
By Theorem 3.11, size is a well-defined function from sequents to N x N x N.

» Theorem 3.13. Let u be the upper sequent and l the lower sequent of a non-id rule in
S4T7". Let <jep be the lexicographic order on N x N x N. Then

size(l) <jey Size(u)

In addition to Theorem 3.13, which suffices to prove termination, S47 * has more properties
that help prove soundness and completeness. These properties do not need to be proved
by referring to each other, but we gather them together as they are all properties about
sequents, which can be handled by a downward propagation.

» Theorem 3.14. Let A || S || H || £ | T be a sequent generated by S47*. Then
1. X contains only O-formulas.

2. For every ¢ € H, (¢, %) € A.
3. If S # ¢ then fst(S) € T and snd(S) CT.

As for a sequent of KT7? a sequent of S477 can now be defined formally as follows.
structure sseqt : Type :=
(goal : list nnf)
(a : list psig) -- psig i¢s the signature, which ts of form (d, b)
(s : sig) -- sig := option psig
(h b m: list nnf)

(ndh : list.nodup h) -- nodup says there is no duplicate elements
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N

~

\\8\4

S4-" sS4

Figure 5 Edges labeled with S4 are an application of transition rule, N an application of non-
transition rule. The red edge indicates that a loop-check is triggered at node m and a request is
made. Black nodes are nodes with tree models constructed, and white nodes do not have a tree
structure yet and their statuses are unknown to m. The node labeled r is the root.

(ndb : list.nodup b)

(sph : h <+~ closure goal) -- <+~ denotes sublist permutation
(spb : b <+~ closure goal)

(sbm : m C closure goal)

(ha : V ¢ € h, ({p, b) : psig) € a)

(hb : box_only b)

-- dsig takes a signature (d, b) and a proof h, and returns d
(ps1 : II (h : s # none), dsig s h € m)

-- bsig takes a signature (d, b) and a proof h, and returns b
(psg : I (b : s # none), bsig s h C m)

3.3.2 Upward propagation

Before diving into correctness, we give an informal view of the problems caused by S4. One
essential difference between S477 and KT7 ™ is that when there are no rules applicable to a
sequent [, in KT7™ a provably correct model for [ can immediately be constructed, but in
S4T™ this is not true. In S47 7, there are two cases where no rules are applicable. The first
case is that I' contains only literals in the current sequent A || S || H || ¥ | . In this case a
tree model m which is a singleton can be constructed, and with some effort we might be able
to prove mF X UT.

The second case is that I' contains not only literals, but also a list of {-formulas ¢.D such

that D C H. This happens when loop-checks are triggered to prevent further computation.

The intuition behind this termination is that if the ¢-formula to be handled occurs in the
history, then it must have been handled before. Then a reachability relation is supposed to
be established between the potential state that satisfies the current sequent and the potential
state that satisfies the resulting sequent of the previous (S54)-rule application.

There are three levels of difficulty towards the construction of a provably correct model
at this stage. The first is that the current sequent [ needs to know where the previous
handling happened and what the resulting sequent r was. The second is that even if it knows
what r was, a tree model m; for [ cannot be constructed because r is above [ and does not
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have a tree structure yet. Moreover, m; is a subtree of m, and its construction should not
refer to that of m,. The third is that even if we give up the idea of trees and manage to
construct a model where a state s; is supposed to satisfy [ (s, for r resp.), to prove that s;
satisfies [, we need to show that all the (J-formulas in [, when unboxed, are satisfied by s,..
However, whether this is true has not been determined because there could be unexplored
branches of r. It is also worth noting that the overall status of r depends on the status of [,
which is being determined. This non-well-founded behaviour of S4 is illustrated by Figure 5.
Similar difficulties also occur when dealing with other more expressive modal logics such as
propositional dynamic logic [29].

We proceed as follows to handle this non-well-foundedness and give a formalization of
the correctness of S47 %,

1. When no rule is applicable to a sequent I = A || S || H || £ | T and T' contains diamonds,
a tree model m is constructed. The tree model comes with three additional pieces of data:
the sequent [ called id, a list of formulas called htk, and a list of signatures called request.
Intuitively, htk contains formulas true within m, and request contains backward edges
representing loops. A request can be defined using only H and ¥, without referring to a
sequent occurring “above” [, but | does not know whether theses requests can be fulfilled.

2. The model m is then propagated to the upper sequents in the same way it is done for K
and KT. For the transition rule, the constructor is applied to obtain a new tree. For the
non-transition rules, the tree structure remains the same. The construction of htk and
request are described below.

3. The correctness of m is left open at the time it is constructed, instead, a set P of properties
of m is proved. These properties exploit the data contained in [ and m, and are preserved
by upward propagation. In other words, for each rule of S47™ | if there is a tree model
of the lower sequent with P proved, then a tree model of the upper sequent can also be
constructed with P proved.

4. We show that if the root sequent r = @ || € || @ || @ | I has a tree model m, with P
proved, then interpretation functions can be defined on a type induced by m,. to construct
an S4 model m. It can be proved from P that m F T

» Definition 3.15. Lists htk and request are defined recursively as follows :

1. If no rules can be applied to a sequent A || S || H || ¥ | T, or it is the upper sequent of a
transition rule, then
htk =T
request = {(¢, %) : p € H}
2. If htk; and request; are defined for the a sequent of a non-transition rule R, then

htk, = {@} U htk

request, = request;
where @ is the principal formula of R.

» Definition 3.16. A list | of formulas is called pre-hintikka if the following hold:
1. For every propositional variable p, if p € | then —p & L.

2. If oA €l, then p €l and ¢ € 1.

3. If vy el, thenpel ory el.

4. If Oy €, then ¢ €.
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» Theorem 3.17. Let m be a tree model and A || S || H || £ | T its id. Then m.htk is
pre-hintikka and T' C m.htk.

As for sequents, Theorem 3.17 can be part of the definition of a tree model. We put id,
htk, and Theorem 3.17 into a single package called info, as they are the information about
the state being constructed. The final definition of an S4 tree model is as follows:

structure info : Type :=
(id : sseqt)

(htk : list nnf)

(hhtk : pre_hintikka htk)
(mhtk : I'.m C htk)

inductive tmodel
| cons : info — list tmodel — list psig — tmodel

In order to describe the properties P in step 3, we need one more definition.

» Definition 3.18. Let m := cons i I r be a tree model. A tree model s is a child of m if
s € 1. The descendant relation is the transitive closure of the child relation.

The following non-trivial properties are the key to the correctness proof. We refer to the id,
htk and request of a tree model m by the projections m.id, m.htk and m.request respectively.

» Theorem 3.19. Let m be a tree model constructed in the way described above. Then

1. If s is a child of m and ¢ € m.id.%, then ¢ € s.htk.

2. If s is a child of m and Oy € m.htk, then Op € s.hik.

3. If Op € m.htk, then either there exists a A such that (p, A) € m.request or there exists
a child s of m such that ¢ € s.htk.

4. If (v,A) € m.request and Op € m.htk Um.id.X, then Op € A.

5. m.request C m.id.A.

Property 2 requires property 1 as a lemma, and property 5 needs property 2 from
Theorem 3.14. We omit the proof of Theorem 3.19, but give a proof sketch of the following
substantial theorem, which illustrates that well-founded reasoning is achieved eventually.

» Theorem 3.20 (fulfillment). Let m be a tree model constructed in the way described above
and s be a descendant of m. For every r € s.request, either r € m.id.A, or there exists a
descendant d of m such that r = d.id.S.

Proof. By induction on the construction of m. In the base case, there is no descendant of
m. If m is constructed by non-transition rules, the theorem holds trivially because the tree
structure, m.id.A and request remain the same. Suppose m is constructed by the transition
rule. Let s be a descendant of m. Then s is either a child of m or there exists a child ¢ of m
such that s is a descendant of ¢. In the first case, we proceed by cases on whether r is the

head of s.id.A: if so, then s itself is the witness of a qualified descendant, else r € m.id.A.

In the second case, we apply the inductive hypothesis and proceed by cases once more. <«

The fulfilment theorem tells us that every request is eventually fulfilled by the tree model
constructed at the root. This is because the root sequent has an empty ancestors A.

» Theorem 3.21 (global invariant). Let m be a tree model constructed in the way described
above and s a descendant of m. s satisfies the conclusions of Theorem 3.19 and Theorem 3.20.
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Theorem 3.21 is not superfluous for the formalization. Since Theorem 3.19 and The-
orem 3.20 are not part of the definition of a tree model, each model knows that it itself
satisfies Theorem 3.19 and Theorem 3.20, but has no information about its descendant once
the construction is completed. The formalization of Theorem 3.21 is no harder than a proof
by intuition — it is simply a property of m whose proof is immediately given by Theorem 3.19
and Theorem 3.20 during the construction of m, and can be kept by the return type.

For convenience, we now define a subtype rmodel that combines a tree model and the
invariants ptmodel, as the invariants are frequently referred to in the following proofs,
especially in proving semantic facts about the reachability relation. The evaluation function
val and reachability relation reach are defined on rmodel as follows. Note that reach is
the reflexive transitive closure of the relation reach_step. A state s reaches a state t by one
step, if ¢ is a child of s, or the signature of t is in the request of s.

def rmodel : Type := {m : tmodel // ptmodel m}

inductive reach_step : rmodel — rmodel — Prop

| fwd (s : rmodel) (i 1 ba h) : s.1 € 1 — reach_step ((cons i 1 ba), h) s

| bwd (s : rmodel) (i 1 ba h) : (3 rq € ba, some rq = msig s.1) —
reach_step ((cons i 1 ba), h) s

def reach (s; sp : rmodel) := rtc reach_step s; sg

Given a tree model m, the carrier set M of the final S4 model induced by m is all the
rmodels whose tmodel part is either m or a descendant of m. The final S4 model ready to
be proved correct is as follows.

def builder (m : tmodel) : S4 {x : rmodel // x.1 = m V desc x.1 m} :=

{val := A vs, var v € htk s.1.1,

rel := )\ s; sy, reach s; s2, —— A for coercion
refl := \ s, refl _reach s,

trans := A\ a b ¢, trans_reach a b c}

When there is no confusion, we refer to the htk of an element s in M as s.htk.

» Theorem 3.22. Let m be the tree model returned by the decision procedure called on the
root sequentr = & || e || @ || @ | T with Theorem 3.19, Theorem 3.20 and Theorem 8.21
proved. Then for every state s in the induced model M, if p € s.htk then s Ik ¢. In particular,
when viewed as an element of M, mET.

Proof. By induction on the construction of formulas. This one makes use of everything
proved so far, especially the invariants. m E ' because I' C m.htk by Theorem 3.17. <

4 Backjumping

The verified decision procedures described above can be equipped with provably correct
optimizations as well. We now describe how backjumping [3] as an optimization can be
integrated to gain exponential speedups.

Backjumping reduces search space by preventing recursive calls on the right branch of an
(V) rule when its status can already be determined by analyzing the information propagated
from the left branch. If the left branch is open, then there is no need for backjumping as we
don’t have to explore the right branch. Backjumping is triggered only on closed branches. On
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the other hand, all the significant changes we made to verify KT7? and S477 happen only
on the construction of models, namely the open branches, and the closed branches remain
almost the same. Due to this nature, the verification of backjumping does not interfere with
the proofs in Section 3.2 and Section 3.3. Such a verification for K can be ported to KT and
S4 without too many changes. We formalize backjumping for K as an example, and leave
the extension to KT and S4 as future work.

We define a notion of responsibility for each of the rules of K7. Each sequent is assigned a
list of formulas, called a marking set, representing the formulas responsible for contradictions.
The construction of a marking set is an upward propagation.

» Definition 4.1 (responsibility). A marking set M is recursively defined on closed branches
as follows. The ¢ and 1) refer to their corresponding occurrences in K7 defined in Figure 1.
1. For the id rule, M = {p, —p}.

2. Let M be the marking set of the lower sequent of the A-rule.

M= {enpy UM, if p € My oryp € M
M; otherwise

3. Let M;/M, be the marking sets of the left/right lower sequent of the V-rule respectively.

M= M UM, U{pVY} if o€ M or v € M,
M; U M, otherwise

4. Letl be the first unsatisfiable lower sequent of the transition rule, with a marking set M:
M = O(l.head) UO(l.tail N M)

The idea of backjumping is that if the left principal formula (i.e., ) of the (V) rule is not
in the marking set of the left lower sequent, then the upper sequent is unsatisfiable. We
strengthen this claim and prove the following:

» Theorem 4.2 (marking). For each sequent T', if a sublist A of T' contains nothing in the
marking set if defined, then I' — A is unsatisfiable.

Formally, Theorem 4.2 is defined as:

def pmark (I' m : list nnf) :=
VA, (VéeA, §d ¢m) —> A<+ T — unsatisfiable (list.diff ' A)

The motivation of Theorem 4.2 is that we want to add a new rule BJ standing for
backjumping into K7. The upper sequent is immediately unsatisfiable because I' is unsatis-
fiable by Theorem 4.2. Also note that a marking set is defined if and only if the sequent
is unsatisfiable.

(B) £LE it M,

In terms of the formalization of S4, Theorem 4.2 is an invariant. It is proved during the
upward propagation along with the construction of the marking set, but this time everything
happens in the closed branches. The formalization of Theorem 4.2 is difficult, mainly due
to the reasoning about list difference. We omit the proof here as it should be conceptually
clear how it can be proved by induction. One thing to note is that a marking set of BJ also
needs to be defined and proved to respect Theorem 4.2 because BJ now takes part in the
computation. This can be achieved by using case 3 of Definition 4.1 assuming M, is empty.
The corresponding proof of Theorem 4.2 is then straightforward.
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Table 1 Results on the LWB benchmark for K (left) and S4 (right).

Subclass K | K (backjumping) | FaCT++ Subclass || S4 | FaCT++
branch_n 3 5 10 45 n 0 21
branch_p 1 3 10 45_p 1 21

d4_n 5 5 21 branch_n 3 6
d4_p 6 7 21 branch_p 6 7
dum_n 18 18 21 grz_n 21 21
dum_p 9 17 21 grz_p 0 21
grz_n 21 21 21 ipc_n 3 10
grz_p 6 7 21 ipc_p 3 10
lin_n 3 4 21 md_n 3 10
lin_p 6 7 21 md_p 4 4
path_n 10 10 21 path_n 2 15
path_p 2 12 21 path_p 1 21
ph_n 3 3 13 ph_n 3 7
ph_p 2 3 7 ph_p 2 6
poly_n 20 20 21 sb_n 2 21
poly_p 19 21 21 s5_p 21 21
t4p_n 7 7 21 t4p_n 0 21
t4p_p 7 12 21 t4p_p 0 21

5 Evaluation

We evaluated the performance of the verified decision procedures for K and S4 against
FaCT++ [28], using the Logic Work Bench (LWB) benchmarks [5]. FaCT++ is a state-of-
the-art reasoner for modal description logics. The LWB benchmarks are widely used for
measuring the performance of modal reasoners [20] [15]. There are 18 subclasses of problems
in the benchmark. Each subclass contains 21 problems, and each problem is harder to solve
than the previous ones within the same subclass. We perform the tests on an Intel 2.20
GHz CPU with 2GB of memory. The time limit for each problem in a subclass is set to
be 100 seconds and Table 1 shows the most difficult problem solved from each subclass
by each prover within this limit. Thus the first row of the left hand table shows that our
verified provers K and K (with backjumping) could solve 3 and 5 problems, respectively,
while FaCT++ could solve 10, with each problem taking at most 100 seconds.

It is not surprising that FaCT++ outperforms the verified decision procedures on almost
every problem. Figure 6 displays a fragment of a typical profile of the verified S4 decision
procedure called on a problem. It can be seen that nearly 50% to 75% of the time is spent
on dec_eq_nnf, which is called heavily in list operations such as 1ist.erase. This suggests
that future improvements of efficiency can include using better data structures such as arrays
or hash tables instead of lists, as well as implementing other algorithmic optimizations such
as unit propagation, semantic branching [28] and better ordering heuristics [27]. On the other
hand, we see from Table 1 that the decision procedure for K with backjumping dominates the
vanilla one in performance and backjumping is never worse. In particular, on the subclasses
dum_p and path_p, there is a huge boost given by backjumping.

6 Conclusion and future work

We have presented verified decision procedures for three basic modal logics and shown how to
handle loop-checking and backjumping. All of these decision procedures are executable, and
are proved to be sound, complete and terminating. Backjumping has been implemented and
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#eval execution took 15.6s
15552ms 99.9%  tableau

10703ms 68.8), dec_eq_nnf
9491ms 61.0% list.decidable_mem

Figure 6 A fragment of a typical profile.

verified for K, and can be ported to KT and S4. All of these decision procedures return a
concrete Kripke model when the input set of formulas is satisfiable, and a proof constructed
via the tableau rules witnessing unsatisfiability otherwise. In fact, although the following
well-known theorem is not formalized, it is implied by the formalization:

» Theorem 6.1 (finite model K, KT, S4). Every satisfiable formula is satisfiable in a finite
model.

It should be clear that each satisfiable formula is witnessed by a tree model, which is
a finite object. It can also be seen that the valuation functions and reachability relations
constructed by the decision procedures for K and KT are computable. In the case of S4,
this is a bit subtle because the transitive closure relation is not necessarily computable.
However, since the descendants of a tree model form a finite set, by checking their requests
and signatures one by one, we do have a way to compute reachability. We leave it to future
work to have an explicit formalization of this for completeness.

Tableaux with histories offer us convenient tools for formalizing correctness of decision
procedure for modal logics, but they also introduce some inefliciency. Comparing to a sequent
of 847 | a sequent of S47*" contains more information and takes time to construct. The
extra information helps with verification but slows down the implementation. Therefore,
future work also includes finding a balance point between the ease of formalization and
computational efficiency of these decision procedures, and of course, porting backjumping to
them would be an external boost.

One last thing to notice is that the expressiveness of S4 allows us to apply the verified
decision procedures to more than modal logics. Since S4 is topologically complete [22], a
translation between Kripke semantics and topological semantics can be established. It can
be shown that a formula ¢ has a topological model if and only if it has an S4 model. We
have also done half of this translation in our formalization. Another translation called the
Go6del-McKinsey-Tarski translation is given in McKinsey and Tarski [23]. It is a translation
between propositional intuitionistic logic and modal logic S4, and preserves theoremhood.
Consequently, if the translation is formalized, then a verified decision procedure for S4 also
gives us a verified decision procedure for intuitionistic propositional logic. The formalization of
S4 opens the possibility of promising cross-field applications, and we leave the implementation
of these as future work.
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