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Abstract
We describe a very large improvement of existing hammer-style proof automation over large ITP
libraries by combining learning and theorem proving. In particular, we have integrated state-of-
the-art machine learners into the E automated theorem prover, and developed methods that allow
learning and efficient internal guidance of E over the whole Mizar library. The resulting trained
system improves the real-time performance of E on the Mizar library by 70% in a single-strategy
setting.
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1 Introduction

Proof automation for interactive theorem provers (ITPs) has been a major factor behind the
recent progress in formal verification. In particular, Hammers linking ITPs with automated
theorem provers (ATPs) produce a major speedup of formalization [4]. The main AI
component of existing hammers has so far been premise selection [1], where only the most
relevant facts are chosen from the large ITP libraries as axioms for proving a new conjecture.
Machine learning from the large number of proofs in the ITP libraries has resulted in the
strongest premise selection methods [1, 17, 19, 8, 3, 2]. Premise selection however does not
guide the theorem proving processes once the premises are selected. The success of machine
learning in the high-level premise selection task has motivated development of low-level
internal proof search guidance. This has been recently started both for ATPs [29, 18, 15, 23, 9]
and also in the context of tactical ITPs [10, 13].

Recently, we have added [6] two state-of-the-art machine learning methods to the
ENIGMA [15, 16] algorithm that efficiently guides saturation-style proof search in ATPs such
as E [25, 26]. The first method trains gradient boosted trees on efficiently extracted manually
designed (handcrafted) clause features. The second method uses end-to-end training of
recursive neural networks, thus removing the need for handcrafted features . While the
second method seems very promising and already improves on a simpler linear classifier when
used for guidance, its efficient training and use over a large ITP library is still practically
challenging. On the other hand, our recent experiments with efficient feature hashing have
shown that the very good performance of gradient boosted trees is maintained even after
significant dimensionality reduction of the feature set [6]. This opens the way to training
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learning-based internal guidance of saturation search even on very large ITP libraries, where
the hundreds of thousands of handcrafted features would otherwise make the trained guiding
systems impractically slow.

In this work we conduct the first practical evaluation of learning-based internal guidance of
state-of-the-art saturation provers such as E in a realistic large-library hammer setting, with
realistic time limits. The results turn out to be unexpectedly good, improving the real-time
performance of E on the whole Mizar Mathematical Library (MML) [12] by 70% in a single-
strategy setting. We believe that this is a breakthrough that will quickly lead to ubiquitous
deployment of ATPs equipped with learning-based internal guidance in large-theory theorem
proving and in hammer-style ITP assistance.

The rest of the paper is organized as follows. Section 2 summarizes the general saturation-
style ATP setting and explains how machine learning can be trained and used over a
large library of problems to guide the saturation search. Section 3 discusses the practical
implementation of ENIGMA, i.e., the features, classifiers, and the feature hashing used to
make the ENIGMA guidance both strong and efficient on a large library. Section 4 is our
main contribution. We evaluate the latest ENIGMA on the whole Mizar Mathematical
Library and show that in several iterations of proving and learning we can develop very
strong strategies and solve in low time limits many previously unsolved problems.

2 Enhancing ATPs with Machine Learning

Automated Theorem Proving. State-of-the-art saturation-based automated theorem provers
(ATPs) for first-order logic (FOL), such as E [25] and Vampire [22] are today’s most advanced
tools for general reasoning across a variety of mathematical and scientific domains. Many
ATPs employ the given clause algorithm, translating the input FOL problem T ∪ {¬C}
into a refutationally equivalent set of clauses. The search for a contradiction is performed
maintaining sets of processed (P ) and unprocessed (U) clauses. The algorithm repeatedly
selects a given clause g from U , moves g to P , and extends U with all clauses inferred with g

and P . This process continues until a contradiction is found, U becomes empty, or a resource
limit is reached. The search space of this loop grows quickly and it is a well-known fact that
the selection of the right given clause is crucial for success. Machine learning from a large
number of proofs and proof searches may help guide the selection of the given clauses.

E allows the user to select a proof search strategy S to guide the proof search. An
E strategy S specifies parameters such as term ordering, literal selection function, clause
splitting, paramodulation setting, premise selection, and, most importantly for us, the given
clause selection mechanism. The given clause selection in E is implemented using a collection
of weight functions. These weight functions are used in a round robin manner to select the
given clause.

Machine Learning of Given Clause Selection. To facilitate machine learning research, E
implements an option under which each successful proof search gets analyzed and the prover
outputs a list of clauses annotated as either positive or negative training examples. Each
processed clause which is present in the final proof is classified as positive. On the other
hand, processing of clauses not present in the final proof was redundant, hence they are
classified as negative. Our goal is to learn such classification (possibly conditioned on the
problem and its features) in a way that generalizes and allows solving related problems.

Given a set of problems P, we can run E with a strategy S and obtain positive and
negative training data T from each of the successful proof searches. Various machine learning
methods can be used to learn the clause classification given by T , each method yielding a
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classifier or model M. In order to use the modelM in E,M needs to provide the function
to compute the weight of an arbitrary clause. This weight function is then used to guide
future E runs.

Guiding ATPs with Learned Models. A modelM can be used in E in different ways. We
use two methods to combineM with a strategy S. Either (1) we useM to select all the
given clauses, or (2) we combineM with the given clause guidance from S so that roughly
half of the clauses are selected byM. Proof search settings other than given clause guidance
are inherited from S. We denote the resulting E strategies as (1) S �M, and (2) S ⊕M.

3 ENIGMA: Inference Guiding Machine

Machine Learning in Practice. ENIGMA [15, 16] is our efficient learning-based method
for guiding given clause selection in saturation-based ATPs, implementing the framework
suggested in the previous Section 2. First-order clauses need to be represented in a format
recognized by the selected learning method. While neural networks have been very recently
practically used for internal guidance with ENIGMA [6], the strongest setting currently uses
manually engineered clause features and fast non-neural state-of-the-art gradient boosted
trees library [5].

Clause Features. Clause features represent a finite set of various syntactic properties of
clauses, and are used to encode clauses by a fixed-length numeric vector. Various machine
learning methods can handle numeric vectors and their success heavily depends on the
selection of correct clause features. Various possible choices of efficient clause features
for theorem prover guidance have been experimented with [15, 16, 20, 21]. The original
ENIGMA [15] uses term-tree walks of length 3 as features, while the second version [16]
reaches better results by employing various additional features.

Since there are only finitely many features in any training data, the features can be serially
numbered. This numbering is fixed for each experiment. Let n be the number of different
features appearing in the training data. A clause C is translated to a feature vector ϕC whose
i-th member counts the number of occurrences of the i-th feature in C. Hence every clause
is represented by a sparse numeric vector of length n. Additionally, we embed information
about the conjecture currently being proved in the feature vector, yielding vectors of length
2n. See [6, 16] for more details.

From Logistic Regression to Decision Trees. So far, the development of ENIGMA was
focusing on fast and practically usable methods, allowing E users to directly benefit from
our work. Simple but fast linear classifiers such as linear SVM and logistic regression
efficiently implemented by the LIBLINEAR open source library [7] were used in our initial
experiments [16]. Our recent experiments [6] report improved performance with gradient
boosted trees, while maintaining efficiency. Gradient boosted trees are ensembles of de-
cision trees trained by tree boosting. In particular, we use their implementation in the
XGBoost library [5].

The modelM produced by XGBoost consists of a set (ensemble [24]) of decision trees.
The inner nodes of the decision trees consist of conditions on feature values, while the leafs
contain numeric scores. Given a vector ϕC representing a clause C, each tree in M is
navigated to the unique leaf using the values from ϕC , and the corresponding leaf scores are
aggregated across all trees. The final score is translated to yield the probability that ϕC
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Table 1 Number of Mizar problems solved in 10 seconds by various ENIGMA strategies.

S S �M0
9 S ⊕M0

9 S �M1
9 S ⊕M1

9 S �M2
9 S ⊕M2

9 S �M3
9 S ⊕M3

9

solved 14933 16574 20366 21564 22839 22413 23467 22910 23753
S% +0% +10.5% +35.8% +43.8% +52.3% +49.4% +56.5% +52.8% +58.4
S+ +0 +4364 +6215 +7774 +8414 +8407 +8964 +8822 +9274
S− -0 -2723 -782 -1143 -508 -927 -430 -845 -454

S �M3
12 S ⊕M3

12 S �M3
16 S ⊕M3

16

solved 24159 24701 25100 25397
S% +61.1% +64.8% +68.0% +70.0%
S+ +9761 +10063 +10476 +10647
S− -535 -295 -309 -183

Table 2 Comparison of several developed strategies in higher time limits.

S (30s) S ⊕M2
9 (30s) S ⊕M2

9 (60s) S ⊕M3
9 (60s) S ⊕M3

12 (60s) S ⊕M3
16 (60s)

solved 15554 24154 24495 24762 25540 26107
hard 75 891 956 1017 1192 1296

represents a positive clause. When usingM as a weight function in E, the probabilities are
turned into binary classification, assigning weight 1.0 for probabilities ≥ 0.5 and weight 10.0
otherwise. Our experiments with scaling of the weight by the probability did not yet yield
improved functionality.

Feature Hashing. The vectors representing clauses have so far had length n when n is the
total number of features in the training data T (or 2n with conjecture features). Experiments
revealed that XGBoost is capable of dealing with vectors up to the length of 105 with
a reasonable performance. This might be enough for smaller benchmarks but with the
need to train on bigger training data, we might need to handle much larger feature sets.
In experiments with the whole translated Mizar Mathematical Library, the feature vector
length can easily grow over 106. This significantly increases both the training and the clause
evaluation times. To handle such larger data sets, we have implemented a simple hashing
method to decrease the dimension of the vectors.

Instead of serially numbering all features, we represent each feature f by a unique string
and apply a general-purpose string hashing function1 to obtain a number nf within a required
range (between 0 and an adjustable hash base). The value of f is then stored in the feature
vector at the position nf . If different features get mapped to the same vector index, the
corresponding values are summed up. See [6] for more details.

4 Experiments

The experiments are done on a large benchmark of 57880 Mizar40 [19] problems2 from the
MPTP dataset [27]. Since we are here interested in internal guidance rather than in premise
selection, we have used the small (bushy, re-proving) versions of the problems, however

1 We use the following hashing function sdbm: hi = si + (hi−1 � 6) + (hi−1 � 16)− hi−1.
2 http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/MPTP2/problems_small_consist.tar.

gz

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/MPTP2/problems_small_consist.tar.gz
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/MPTP2/problems_small_consist.tar.gz
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Table 3 Training statistics and inference speed for different tree depths.

Tree depth training error real time CPU time model size (MB) inference speed

9 0.201 2h41m 4d20h 5.0 5665.6
12 0.161 4h12m 8d10h 17.4 4676.9
16 0.123 6h28m 11d18h 54.7 3936.4

Table 4 Effect of looping on 10k randomly selected problems.

S S ⊕M0 S ⊕M1 S ⊕M2 S ⊕M3 S ⊕M4 S ⊕M5 S ⊕M6

solved 2487 3204 3625 3755 3838 3854 3892 3944
S% +0% +28.8% +45.7% +50.9% +54.3% +54.9% +56.4% +58.5%

without previous ATP minimization. We start with a good evolutionarily optimized [14] E
strategy S that performed best in previous experiments on the smaller MPTP2078 dataset.
We run S for 10s on the whole library, producing the first proofs, we learn from them the
next guiding strategy, and this is iterated with the growing body of proofs. All problems
are run on the same hardware3 and with the same memory limits employing multiple cores
(around 300) for massive parallel evaluation.

Table 1 shows the number of Mizar problems solved in 10 seconds by the baseline strategy
S and by each iteration of learning and proving with the learned guidance. The modelM0

9
is trained on the training data coming from the problems solved by S with the maximum
depth of XGBoost decision trees set to 9. We further loop this process and modelsMn

9 are
trained on all the problems solved by S, and by all the previous S �Mk

9 and S ⊕Mk
9 for

k < n. ModelsM3
12 andM3

16 are trained on the same data asM3
9 but with the tree depth

increased to 12 and 16. XGBoost models contain 200 decision trees and the hash base is set
to 215. In the row S% we show the percentage gain over the baseline strategy S, while S+
and S− are the additions and missing solutions w.r.t. S. We can see that new problems are
added with every iteration of looping. Combined versions (⊕) typically perform better and
lose less solutions. Increasing the tree depth to 16 leads to a strategy that outperforms the
baseline by rather astonishing 70%.

Table 2 compares several of our new strategies with higher time limits and also shows
the number of solved hard problems, i.e., the problems unsolved by any method developed
previously in [19]. Our best strategy S ⊕M3

16 solves 26107 problems in 60s. Note that
the 60s portfolio of our six best previous evolutionarily developed strategies for Mizar (i.e.,
each run for 10s) solves only 22068 problems, i.e., the single new strategy is 18.3% better.
Vampire in the CASC (best portfolio) mode run in 300s has solved 27842 of these problems
in 300s in [19].

Table 3 shows the training times, model sizes and inference speeds of XGBoost in the
4th iteration of proving and learning, using different tree depths. The training data is a
sparse matrix with 65536 (= 2 ∗ 215) columns (features) consisting of 63M examples. The
total number of non-empty entries in the matrix is 5B (40GB). The inference speed is the
average of the generated clauses per second measured on problems that timed out in all
three runs. Note that despite the decrease of the inference speed with the more complicated
XGBoost models, their accuracy and real-time performance grows (cf. Table 2). Training of
better models on the millions of proof search examples however already requires significant
resources – almost 12 CPU days for the best model with tree depth 16.

3 Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz with 256G RAM.

ITP 2019
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Table 4 presents additional shorter experiments with more looping performed on a
randomly selected 10k problems. The tree depth is set to 9. Again, the modelM0 is trained
only on the problems solved by S and the next models are obtained by looping. The highest
improvement is achieved after the first learning (M0), however, the next iterations continue
to add improvements.

5 Conclusion and Future Work

We have taken a good previously tuned E strategy and turned it into a learning-guided
strategy that is 70% stronger in real time. We have done that by several iterations of
MaLARea-style [28] feedback loop between proving and learning over a large mathematical
library. The iterations here are however not done for learning premise selection as in
MaLARea, but for learning efficient internal guidance. While developing this kind of efficient
internal guidance for state-of-the-art saturation ATPs has been challenging and took time,
the very large gains obtained here show that this has been very well invested effort. Future
work will certainly focus on even stronger learning methods and also on more dynamic proof
state characterization such as ENIGMAWatch [11]. It is however clear that this is the point
when machine learning guidance has very strongly overtaken the human development of ATP
strategies over large problem corpora.
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