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Abstract
We present the first universal reconfiguration algorithm for transforming a modular robot between
any two facet-connected square-grid configurations using pivot moves. More precisely, we show
that five extra “helper” modules (“musketeers”) suffice to reconfigure the remaining n modules
between any two given configurations. Our algorithm uses O(n2) pivot moves, which is worst-case
optimal. Previous reconfiguration algorithms either require less restrictive “sliding” moves, do
not preserve facet-connectivity, or for the setting we consider, could only handle a small subset of
configurations defined by a local forbidden pattern. Configurations with the forbidden pattern do
have disconnected reconfiguration graphs (discrete configuration spaces), and indeed we show that
they can have an exponential number of connected components. But forbidding the local pattern
throughout the configuration is far from necessary, as we show that just a constant number of added
modules (placed to be freely reconfigurable) suffice for universal reconfigurability. We also classify
three different models of natural pivot moves that preserve facet-connectivity, and show separations
between these models.
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1 Introduction

Shape shifting is a powerful idea in science fiction: T-1000 robots (from Terminator 2:
Judgement Day), Changelings (from Star Trek: Deep Space 9 ), Symbiotes (from Venom),
Mystique (from X-Men), and Metamorphagi (from Harry Potter) all have the ability to
transform their shape nearly arbitrarily. How can we make shape shifting into science?

Modular robots [5, 19, 22] are perhaps the best answer to this question. The idea to
build a single “robot” out of many small units called modules, each of which can attach
and detach from each other, move relative to each other, communicate with each other,
and compute. Modular robots offer extreme adaptability to changing environment or user
needs, in particular by reconfiguring the modules into exponentially many effective shapes
of the overall robot. Modularity also offers a practical future for manufacturing (identical
modules can be mass-produced, making them relatively cheap) makes robots easy to repair
by just replacing the broken modules, and makes it possible to re-use components from one
robot/task to another.

For computational geometry, modular robots offer exciting challenges: what shapes can
a modular robot self-reconfigure into, and what are good algorithms for reconfiguration?
According to [19], the main difficulties in self-reconfiguration are the physical motion con-
straints of the modules themselves, connectivity requirements for the robot to hold together,
collisions between moving and/or static modules, and “deadlocks” where no module can
move or some module gets “trapped” within the configuration.

The wide diversity of mecatronic solutions to modular robots can be characterized from
a geometric viewpoint by three key properties: (1) the lattice, (2) connectivity requirement,
and (2) allowed moves.

Lattice. Most modular robots follow a space-filling lattice structure (e.g., squares or
hexagons in 2D, or cubes in 3D), to simplify both reconfiguration and the characterization of
possible shapes. Pure lattice modular robots [13, 6, 10, 17, 2, 20] have one robot per lattice
element and always remain on the lattice, while hybrid modular robots [14, 18, 16, 23] also
allow units move out of the lattice. We focus here on the well-studied square lattice, though
we suspect our results can be generalized to cube lattices.

Connectivity requirement. A modular robot generally needs to be connected at all times
while reconfiguring, so that the modules do not fall apart. The most common and practical
constraint is that the modules are always facet-connected, meaning a connected facet-adjacency
graph where vertices represent modules and edges represent adjacencies by shared facets
(edges in 2D). The exception is that the moving module is excluded from this graph during
each move, meaning that other modules must be facet-connected while the moving module
may briefly disconnect during the move. A weaker connectivity constraint, considered in
some theoretical research [4, Ch. 4], is that the robot is connected via shared vertices.
In such case, reconfiguration is always possible. We focus here on the more challenging
facet-connectivity constraint.
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Allowed moves. One of the most popular models is sliding squares/cubes [8, 7, 1], illustrated
in Figure 1 left. In this case, modules live in a square or cube lattice, move by sliding relative
to each other, and require facet-connectivity. For this model, universal reconfiguration is
possible between any two facet-connected configurations, in any dimension [7, 1].

a

s s

a

s′ s′
a

s s

a

s′ s′

Figure 1 Two ways a module a starting above module s can move to the adjacent lattice position,
above module s′. Left: sliding. Right: pivoting. Pivoting requires more free space to execute.

We focus here on a more challenging model, pivoting squares/cubes [21, 20, 4], illustrated
in Figure 1 right. In this case, modules live in a square or cube lattice, move by rotating
relative to each other, and require facet-connectivity. The key difference is that a module
needs two additional squares/cubes of empty space in order to pivot, whereas a slide just
needs the destination square/cube to be empty. Unfortunately, some configurations are rigid
in this model, meaning that no module can move without disconnecting the robot.

Rigid configurations appear also in the sliding square model when the sliding capability is
restricted to turning corners [12]. However, in this model the existence of free space around
the modules does not guarantee reconfigurability, while in the pivoting squares model it does,
as we will discuss.

As a consequence, all known reconfiguration algorithms for pivoting squares/cubes are
somehow partial. One algorithm follows some heuristics without a termination guarantee
[3] (see also [11] for heuristics for hexagons). A recent algorithm guarantees reconfiguration
by forbidding one or more local patterns in both the start and goal configurations [20],
essentially preventing narrow holes in the shape. (A similar result was obtained for hexagons
[15].) These assumptions severely restrict the possible shapes that can be reconfigured, to
a o(1) fraction. The absence of such local patterns though is far from being necessary for
reconfigurability. In 3D, some further strong conditions are added, such as that every hole
must be orthogonally convex [20].

Our results. Our main result is that universal reconfiguration is possible if we allow the
addition of a constant number of (five) extra “helper” modules, which we call musketeer
modules.1 The key is that these musketeer modules are not considered part of the initial
or target shape, and thus we are free to place them where we like (in particular, along the
external boundary of the robot). Surprisingly, this small amount of additional freedom is
enough to achieve universal reconfiguration. In fact, we prove in Section 4 that five musketeer
modules are both sufficient and sometimes necessary to solve any reconfiguration under our
strategy. Our algorithm is based on the old idea of following the right-hand rule to escape a
maze [9]. The number of pivots it makes is O(n2), which is optimal in the worst case by an
earth-moving lower bound: each robot may need to move a distance of Θ(n).

This result can be seen as proving connectivity of the reconfiguration graph Gn,k, where
vertices represent facet-connected configurations of n modules and edges represent valid pivot
moves, with the addition of k ≥ 5 musketeer modules. With k = 0 musketeers, Gn,k is known
to be disconnected. Surprisingly, there have been no (successful) attempts to understand

1 The Three Musketeers is a story about four musketeers. This paper is a story about five musketeers.
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the structure of this reconfiguration graph. In Section 3, we analyze the structure of this
reconfiguration graph. Specifically, we prove that Gn,0 can have an exponential number of
connected components of exponential size, and in some models, can have an exponential
number of singleton connected components (rigid configurations); while in other models, the
reconfiguration graph cannot have any singleton connected components.

The other main contribution of this paper is to precisely define a variety of natural models
for pivot moves. Pivoting is naturally defined as the rotation of one module about one of its
vertices that is shared with a (static) module. But there are some subtleties in this definition
depending on exactly which modules must be facet-connected at what times. (Obviously,
for example, the moving module is not facet-connected to the others during the move.) In
Section 2, we define three nested models, each at least as powerful as the previous, and
in Section 3, we prove strict separations between these models. Our analysis of connected
components in the reconfiguration space (in Section 3) also consider the effects of these
different models. We conclude with open problems in Section 5.

2 Models and Definitions

2.1 Pivot Moves
In a square grid, the fact that two squares may share a vertex without actually sharing an
edge opens a wider range of possibilities for the pivoting move. Refer to Figure 2. The most
restrictive set of moves (Set 1 in Figure 2) requires module a to be facet-adjacent to module
s and to rotate about one of the two vertices of the edge they share. Such move can be a 90◦
or a 180◦ rotation, depending on whether or not s has a neighboring module s′ adjacent to it
through the other edge of s incident to the rotation center, and of course, requires the goal
grid position to be empty and some intermediate positions to be (at least partially) clear.
These cells are depicted in white in Figure 2.

The authors of [20] propose an expanded set of moves (Set 2 in Figure 2) that allows
module a to rotate 90◦ about module s even when s′ is not present, as long as module a is
again facet-adjacent to another module t at the end of the move. Since their reconfiguration
algorithm relies on reversible moves, this implies allowing also the reverse move: module
a can rotate 90◦ about a vertex of another module s incident to a, without requiring s to
be facet-adjacent to a, as long as a is facet-adjacent to some module before performing the
move and after performing the move. We call this enlarged set the leapfrog set of moves.

If the previous move is allowed (i.e., if it is feasible for a given modular robot prototype), it
seems natural to allow concatenating more than one of such moves, i.e., to allow concatenating
consecutive rotations about vertices incident to the pivoting module. It is easy to prove
that such concatenation cannot involve more than two pivots before the moving module
becomes facet-adjacent to another module. Indeed, if a module a is facet-adjacent to a
module s1, after at most two such moves it necessarily becomes adjacent to a module s2 (Set
3 in Figure 2). We call this complete set the monkey set of moves.

2.2 Reconfiguration Problem
Consider a configuration C of n robot modules in a given grid. The facet-adjacency graph of
C has a node for each module, and an edge between a pair of nodes if the corresponding
modules are facet-adjacent. Throughout this paper we will often refer to the facet-adjacency
graph simply as the adjacency graph. We will say that a configuration C is facet-connected if
the facet-adjacency graph of C is connected.



H.A. Akitaya et al. 3:5

90◦ straight

diagonal monkey jumps

straight monkey jump

Set 3
(monkey)

180◦

90◦ opposite

Set 1
(restrictive)

Set 2
(leapfrog)

s2s2

s2 s2

s2

s2 s2 s2

s1

s1 s1

s1s1

s1 s1 s1

s s

s s
tt

a a

a a

a

a a

a

a

a a

a

a

a

s ss′ s′

Figure 2 The possible sets of moves for a pivoting module a about a module s, in a square grid.

Applying a pivot move from one of the three sets of moves described in the previous
section to a facet-connected configuration C, means applying one of the moves to a module in
C, in such a way that the configuration (without the pivoting module) stays facet-connected
before, after, and during the move, and the pivoting module does not collide with any other
module. Note that this implies that even deleting the moving module the configuration is
still facet-connected. Reconfiguring C consists of applying a concatenation of such moves.

The (universal) reconfiguration problem asks whether it is possible to reconfigure any
facet-connected configuration of n modules in a given grid into any other configuration with
the same number of modules.

For any positive integer n, the reconfiguration graph Gn has a node for each facet-
connected configuration with n modules, and an edge between two nodes if the corresponding
configurations can be reconfigured into each other through a single pivoting move. We call
rigid any configuration in which no module can move, i.e., any configuration that is an
isolated node of Gn, forming a connected component that is a singleton. We call locked
any configuration that cannot be reconfigured into a straight strip of modules, i.e., any
configuration belonging to a connected component of Gn that does not contain a strip.

ESA 2019
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Figure 3 Left: a rigid configuration of edge-connected pivoting squares. Right: A configuration
that can be reconfigured into a strip, in spite of containing instances of the three forbidden patterns.

3 Reconfiguration Graph

Figure 3 (left) shows an example of a configuration that is rigid under the largest possible
set of pivoting moves (set 3 in Figure 2). In [20] it is proved that reconfiguration for set 2 of
pivoting moves (leapfrog moves) is possible between two facet-connected configurations of
the same number of squares, provided that they are both admissible shapes. Admissibility
is defined in terms of forbidden patterns: a facet-connected configuration of squares is
admissible if it does not contain any of the patterns depicted in Figure 4. However, this local
separation condition is certainly not necessary, as proves the example in Figure 3 (right).

(Γ)
Corner bottleneck

(I)
Corridor bottleneck

(Z)
Wide bottleneck

Figure 4 The three forbidden patterns for facet-connected pivoting squares; solid squares represent
modules, and ×-ed squares represent empty spaces.

These results raise several natural questions for facet-connected pivoting squares: Are the
three sets of moves equivalent? In particular, is reconfigurability between admissible shapes
also guaranteed when using the most restrictive set of pivoting moves? This latter question
has been answered positively by the results from [20]. Although not explicitly stated, the
reconfiguration algorithm from [20] uses only restrictive moves.

Several other interesting questions are open. Can the admissible condition be relaxed
when using the largest set of pivoting moves? Do there exist rigid configurations that contain
only one type of pattern? If so, are they rigid with respect to all three sets of pivoting moves?
What can we say about the reconfiguration graph Gn for the different sets of pivoting moves?
We try to answer these questions in the remaining of this section. Due to space constraints,
the proofs of the propositions in this section are omitted.

We start by showing that the three sets of moves for pivoting squares are not equivalent,
as they produce three different reconfiguration graphs.

I Proposition 1. The monkey set of moves for pivoting squares (set 3) is stronger than the
leapfrog set (set 2), and the leapfrog set is stronger than the restrictive set (set 1). That is,
the resulting reconfiguration graph Gn has strictly fewer connected components for set 3 than
for set 2, and fewer connected components for set 2 than for set 1.
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Let us now discuss the differences between the three forbidden patterns. From a purely
geometric viewpoint, pattern Γ produces a (corner) bottleneck along the boundary of a
configuration that is narrower than the one produced by pattern I (corridor bottleneck).
This one is in turn narrower than the one produced by pattern Z (wide bottleneck). The
next propositions show how the presence or the absence of each of such patterns influences
reconfiguration under each of the 3 sets of pivoting moves.

Pattern Γ : Corner Bottleneck

We start by showing that pattern Γ alone suffices to make a configuration rigid, regardless of
the set of pivoting moves used (restrictive, leapfrog, or monkey).

I Proposition 2. Let Gn be the reconfiguration graph of facet-connected pivoting squares. If
only pattern Γ is allowed, while patterns I and Z are forbidden, the number of connected
components of Gn that are singletons and the number of connected components of Gn of
exponential size are both exponential, regardless of the set of pivoting moves used.

Pattern I : Corridor Bottleneck

The forbidden pattern I is weaker than pattern Γ in the sense that it suffices to make a
configuration rigid for the sets of moves 1 and 2 (restrictive and leapfrog) but, if the entire
set 3 of moves is allowed, pattern I alone cannot make a configuration rigid, as we will see.

I Proposition 3. Let Gn be the reconfiguration graph of facet-connected pivoting squares
under sets 1 and 2 of pivoting moves (restrictive and leapfrog). If only pattern I is allowed, and
patterns Γ and Z are forbidden, the number of connected components of Gn that are singletons
and the number of connected components of Gn of exponential size are both exponential.

In contrast, if the entire set of monkey-pivoting moves is allowed, then no configuration
can be rigid if it only contains instances of pattern I (and no instance of patterns Γ and Z).

I Proposition 4. Let Gn be the reconfiguration graph of facet-connected pivoting squares
under the entire set 3 of monkey-pivoting moves. If only pattern I is allowed, and patterns Γ
and Z are forbidden, then Gn contains no singleton components.

Pattern Z : Wide Bottleneck

The forbidden pattern Z is weaker than the forbidden patterns Γ and I in the sense that no
configuration can be rigid if it contains only instances of pattern Z.

I Proposition 5. Let Gn be the reconfiguration graph of facet-adjacent pivoting squares. If
only pattern Z is allowed, and patterns Γ and I are forbidden, then Gn contains no singleton
components, regardless of the set of pivoting moves allowed.

However, there can be locked configurations containing only instances of pattern Z.

I Proposition 6. Let Gn be the reconfiguration graph of facet-connected pivoting squares
under pivoting set of moves 1. If only pattern Z is allowed, and patterns Γ and I are forbidden,
the number of connected components of Gn of exponential size is exponential.

ESA 2019
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4 Universal Reconfiguration Algorithm with O(1) Musketeers

In this section, we aim for the important practical goal of universal reconfiguration, that is,
connectivity of the reconfiguration graph. We have seen that the local separation condition
(while sufficient) is too strong: Robot configurations can contain many instances of the
forbidden patterns and still be reconfigurable. On the other hand, we proved that as soon as
the local separation condition is relaxed, the reconfiguration graph breaks into at least an
exponential number of connected components of exponential size.

In what follows, we propose and analyze a new approach for reconfiguring arbitrary
facet-connected configurations (which may contain an arbitrary number of instances of the
forbidden patterns). Our strategy is based on the addition of O(1) musketeer modules, i.e.,
modules that can freely move around the boundary of our robot configuration and will be
used as helpers in certain situations. These modules are not necessarily part of the specified
initial or target configuration.

4.1 Preliminaries: Outer Shell
Let C be an arbitrary facet-connected configuration of pivoting squares. We start introducing
a few definitions.

Let G be the facet-adjacency graph of C, and G the facet-adjacency graph of the lattice
cells that are not occupied by a module of C. Each bounded connected component of G

is a hole of the robot configuration C. The only unbounded connected component of G

is the exterior of C. The boundary of C is the set of lattice cells that are empty and are
facet-adjacent to (at least) one module of C. If the configuration has holes, we define its
external boundary as the subset of the boundary contained in the unbounded connected
component of G.

I Lemma 7. Let C be an arbitrary and static facet-connected configuration of pivoting
squares. Let m be an active module attached to C, North of the topmost rightmost module
of C. Using the monkey set of moves (set 3) m can pivot along the external boundary of
C following the right-hand rule and return to its initial position. If only the leapfrog set of
moves (set 2) is allowed, this is not always possible.

The proof of this lemma is omitted due to space constraints.
It is worth noticing that the proof of Lemma 7 does not require the use of diagonal monkey

jumps, but only of straight monkey jumps. This is relevant form a practical viewpoint,
since it allows our results to be applied to a larger class of modular robots. For example,
the hardware systems modeled in [3, 20] can performs straight monkey jumps, but not
diagonal ones.

We can now define the outer shell of a facet-connected configuration C of pivoting squares
to be the subset of the external boundary of C formed by the lattice cells eventually occupied
by any active robot module m initially positioned North of the topmost-rightmost module in
C, in its right-hand rule traversal of the boundary of C, described in Lemma 7. Figure 5
illustrates this concept.

4.2 Algorithm Overview
Our reconfiguration algorithm transforms any initial facet-connected configuration C of
pivoting squares into any goal configuration with the same number of modules.

In order to simplify the algorithm’s description, we use an intermediate canonical config-
uration, say a strip, and describe the transformation from the initial shape to the strip. The
reconfiguration from the strip to the final shape is obtained by reversing the steps of the
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Figure 5 A robot configuration (in gray) and its associated outer shell (striped in pink).

algorithm. The strip can be built from any lexicographically best positioned module of the
configuration. For example, we will grow a horizontal strip to the left of the bottommost of
the leftmost modules of the configuration.

The strategy behind the algorithm is simple. It consists of sequentially choosing a module
from the configuration that is not a cut vertex of its facet-adjacency graph, and make it
pivot, following the right-hand rule, along the outer shell, until it reaches the tip of the strip
and stops. The problem of this strategy, as we saw in Section 3, is that the reconfiguration
graph is not connected, even under the extended set of monkey moves. In order to overcome
this problem, the algorithm uses musketeer modules. Any module from the canonical strip
can serve as a musketeer module. We will prove that five musketeer modules are sufficient
and sometimes necessary to solve any reconfiguration based on our strategy. Because the
canonical strip is initially empty, it may be necessary to add musketeer modules to the strip
if fewer than needed are available (this may happen at most once).

4.3 Algorithm Details
The description of the algorithm and the proof of its correctness make use of a potential
function. If m is a module located in the lattice position with coordinates (x, y), the potential
function at m is defined as Φ(m) = (x+y, x). The potential being a two-dimensional function,
we sort its values lexicographically. The maximum potential Φmax (minimum potential Φmin)
of a configuration is the lexicographically largest (smallest) potential of all its modules. Note
that, whenever we use the term configuration, we refer to the facet-connected component
that includes all modules other than the ones in the canonical strip.

Given any configuration, we define NE and SW as being the modules with highest and
lowest potential, respectively. Notice that in any configuration C, both NE and SW are
facet-adjacent to the outer shell of C.

4.3.1 Musketeer Modules
I Definition 8. We say that a module m is outer-free in a configuration C if it is facet-
adjacent to the outer shell and it can pivot clockwise, without disconnecting the robot.

The first step of the algorithm is to look for an outer-free module, and pivot it to the
tip of the strip. This step is repeated until no further outer-free modules exist in the initial
configuration. If at that point the configuration is a strip, the algorithm ends.

Otherwise, all the modules in the strip may be used as musketeer modules, one at at
time, starting from the tip of the strip, pivoting them to the positions where they are needed,
as described in next Section 4.3.2. Since our algorithm may require five such modules, it

ESA 2019
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S

s0

sm−1

m

b g

sk sk−1

b1

g1

R

Figure 6 Top: 3× 3 square S in its initial position s0. The outer thick line indicates the path
traversed by the center of S. Dots correspond to the center positions where S is adjacent to a
boundary edge. Bottom: the rectangular union R of S centered at sk and at sk−1.

may be necessary to add extra modules to the strip (or anywhere in the configuration where
they are outer-free) in order to complete the necessary set of musketeer modules. This can
be done at this stage or on the fly, as needed. This second option may be preferable in some
cases, as not all configurations require as many as five musketeer modules.

4.3.2 Bridging Procedure
In this section we describe an operation necessary in some situations when there are no
outer-free modules in the configuration. Let m be the NE module, i.e., the maximum potential
module of a given configuration C. Trivially, there can be no modules of C located North,
North-East, or East of m, i.e., in positions (0, 1), (1, 1), or (1, 0) relative to m. Therefore,
the degree of m in the facet-adjacency graph can only be 1 or 2. Since m is not outer-free, it
must be a cut vertex and have degree 2. Let b1 and g1 respectively be its counterclockwise
and clockwise facet-adjacent modules (see Figure 6). We color the two connected components
of C connected by m blue and green, so that b1 is blue and g1 is green. One important
procedure of our algorithm, which we call bridging, is the act of using musketeer modules to
connect the green and blue components so that m becomes outer-free.

I Observation 9. The outer shell has two green-blue changes of color, one happening at m.

Consider a grid-aligned 3×3 square S centered at the lattice cell of coordinates s0 = (2, 1),
relative to m (see top of Figure 6). Translate S orthogonally clockwise one unit at a time
along the boundary of the configuration until it reaches s0 again. Ignoring the positions
where S is not adjacent to a boundary edge (i.e., the positions of S where one of its corners
coincides with a convex corner of C), let si be the i-th position of the center of S along its
boundary traversal, and let sm = s0. Refer to Figure 6. Since m is the maximum potential
module of the configuration, S is empty of modules at position s0 and all subsequent positions,
and it does not share edges with the blue component when centered at s0, while at sm−2 it
is facet-adjacent to the blue module b1. Let sk be the first position of S along its boundary
traversal where S becomes facet-adjacent to a blue module. Since S travels along the
boundary of the configuration, the rectangular union R of S centered at sk and at sk−1
should also be facet-adjacent to a green module (see bottom of Figure 6).

The algorithm pivots the musketeer modules clockwise, following the right-hand rule
along the outer shell of the configuration, and brings them to the vicinity of sk to connect
the blue and green components, thus forming a cycle containing m.
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Let g and b be the closest pair of respectively green and blue modules facet-adjacent to
rectangle R, and let d be the L1 distance between them. The bridging procedure depends on
the value of d. It is easy to see that d can only be 2, 3, 4, 5, or 6. In the full version of this
paper we prove the following lemma:

I Lemma 10. Let m be the NE module, i.e., the maximum potential module of a given
configuration C. The bridging procedure for m uses O(n) pivoting operations and at most
five musketeer modules, and does not change the maximum and minimum potential of the
configuration. After the procedure ends, m is still the NE module of the modified configuration,
but no longer a cut vertex of its facet-adjacency graph.

Notice also that the bound of five musketeer modules for bridging is tight: Figure 7 shows
an example requiring five musketeer modules for bridging.

m

b g

Figure 7 A rigid configuration that requires the addition of five musketeer modules for bridging.

4.3.3 Reconfiguration Step
We now need to guarantee that module m is able to move and thus it can pivot along the
outer shell of C and join the canonical strip. This is clear when m is disjoint from the
neighborhood of m. We also want to show that we can liberate and send to the canonical
strip either the musketeers used or at least as many modules as musketeers used. In the
full version of this paper we extend the analysis of the neighborhood of m, and for each of
the possible cases we show that either invoking the bridging procedure or explicitly placing
musketeer modules we can guarantee that.

Progress of the reconfiguration is measured in terms of the potential gap ∆Φ = Φmax −
Φmin of the configuration and the size of C (recall that C includes all modules that are not
part of the canonical strip). In all the different cases we show that a reconfiguration step
decreases the potential gap and/or the size of C.

4.4 Algorithm Pseudocode
Algorithm 1 solves the reconfiguration problem by combining the operations described in the
previous sections:

I Theorem 11. The reconfiguration algorithm (Algorithm 1) transforms a facet-connected
configuration C with n modules into a canonical strip of the same size, using O(n2) monkey-
move pivoting steps, which is worst-case optimal, and adding at most five extra modules.

Proof. The input to the algorithm is a configuration C of size n and potential gap ∆Φ = O(n).
Each step of the innermost loop uses O(n) pivoting operations to take an outer-free module to
the end of the strip, thus decreasing the size of C by one. Each reconfiguration step uses O(n)
pivoting steps to decrease either the potential gap or the size of C, leaving it facet-connected
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Algorithm 1 Reconfiguring an arbitrary facet-connected configuration into a canonical
strip.

Data: An arbitrary facet-connected configuration C with n modules
Result: A canonical strip of modules of length n

while there are still modules in C do
while there exist outer-free modules do

pick one outer-free module and pivot it all the way to the tip of the strip;
end
if the strip has fewer than five modules then

make the strip five modules long by adding musketeer modules;
end
invoke the reconfiguration step;

end

(and never increasing the potential gap). Because the size of C never increases, the length
of the canonical strip never decreases. This means that the strip can have fewer than five
modules only once and the conditional does not affect the complexity of the algorithm. We
conclude that the algorithm terminates after O(n) iterations in total. Because each iteration
takes O(n) pivoting steps, the total number of pivoting steps is O(n2). Optimality comes
from the Ω(n2) pivoting steps required to reconfigure a vertical strip into a horizontal one. J

5 Conclusion and Open Problems

This paper addresses the problem of reconfiguring a facet-connected grid configuration of n

modules into any other configuration of n modules under three increasingly more flexible
sets of pivoting moves, namely restrictive, leapfrog and monkey. Previous results solve this
problem under the leapfrog set of moves, as long as the initial and final configurations satisfy
a strong local separating condition imposed by three forbidden patterns. We show that there
exist robot configurations with many instances of the three forbidden patterns that are still
reconfigurable, so the local separation condition is not necessary. On the other hand, we show
that as soon as the local separation condition is relaxed, the reconfiguration graph breaks
into an exponential number of connected components of exponential size. To overcome this
obstacle we introduce a new pivoting move, called monkey, and a natural reconfiguration
approach that does not depend on local features, but uses up to five extra modules that can
freely move around the boundary of the robot configuration. These extra modules are used
to unlock intermediate locked configurations so that progress can be made towards the target
configuration. We show that our approach uses O(n2) monkey-pivoting moves to reconfigure
any source configuration with n pivoting modules into any given target configuration.

We leave open the question of whether universal reconfiguration can be accomplished under
the more restrictive set of leapfrog pivoting moves using a constant number of extra modules.

Another question is whether our approach generalizes to three or higher dimensions. For
example, when the slice graphs (where the vertices are the slices of the configuration cut
along an axis and the edges connect slices with facet-adjacent modules) of the source and
target configurations are both paths, we should be able to reconfigure each to a strip of
modules, one slice at a time, similar to our 2-dimensional approach does. We conjecture
that a similar approach will also work for general 3-dimensional configurations, potentially
after increasing the number of musketeer modules to bridge larger gaps introduced by the
higher dimensionality.
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