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Abstract
We study Set Cover for orthants: Given a set of points in a d-dimensional Euclidean space and a
set of orthants of the form (−∞, p1]× . . .× (−∞, pd], select a minimum number of orthants so that
every point is contained in at least one selected orthant. This problem draws its motivation from
applications in multi-objective optimization problems. While for d = 2 the problem can be solved in
polynomial time, for d > 2 no algorithm is known that avoids the enumeration of all size-k subsets of
the input to test whether there is a set cover of size k. Our contribution is a precise understanding
of the complexity of this problem in any dimension d > 3, when k is considered a parameter:

For d = 3, we give an algorithm with runtime nO(
√

k), thus avoiding exhaustive enumeration.
For d = 3, we prove a tight lower bound of nΩ(

√
k) (assuming ETH).

For d > 4, we prove a tight lower bound of nΩ(k) (assuming ETH).
Here n is the size of the set of points plus the size of the set of orthants. The first statement comes
as a corollary of a more general result: an algorithm for Set Cover for half-spaces in dimension 3.
In particular, we show that given a set of points U in R3, a set of half-spaces D in R3, and an integer
k, one can decide whether U can be covered by the union of at most k half-spaces from D in time
|D|O(

√
k) · |U |O(1).

We also study approximation for Set Cover for orthants. While in dimension 3 a PTAS can be
inferred from existing results, we show that in dimension 4 and larger, there is no 1.05-approximation
algorithm with runtime f(k) · no(k) for any computable f , where k is the optimum.
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1 Introduction

Motivated by applications in multi-objective optimization, we study a geometric variant of
the classic Set Cover problem. In general, Set Cover is defined as follows. Let U be a
universe; typically, U is a finite collection of elements or Rd for some constant d > 1. Given a
finite set U ⊆ U and a finite set T of subsets of U, the goal is to find a set S ⊆ T of minimum
size such that for each u ∈ U it holds that u ∈ F for some F ∈ S. We let n = |T |+ |U |.

Set Cover can be approximated within factor ln |T | by a greedy algorithm [13, 29, 34],
but, unless P = NP, no polynomial-time algorithm can attain an approximation factor of
(1 − ε) ln |T | for any ε > 0 [20]. Moreover, when parameterized by the expected solution
size k (formally, here we consider a decision problem), the problem is W[2]-hard [21] and
there is no O(nk−ε)-time algorithm for any ε > 0, unless the Strong Exponential Time
Hypothesis (SETH) fails [50]. Recently, it was even shown that, unless the Gap Exponential
Time Hypothesis (Gap-ETH) fails, Set Cover has no f(OPT)|T |o(|OPT|)-time algorithm
that approximates the optimum OPT within a factor of a(OPT), for any computable a and
f [9]. This makes Set Cover a very hard algorithmic problem in general.

Fortunately, through years of research, we know that Set Cover becomes much easier
when geometry is involved. If the universe U is equal to Rd for some d > 1, the set U is a set
of points, and the sets in T are defined by geometric objects, then the problem is known as
Geometric Set Cover. Then various restrictions on the shapes of objects allowed in T
may lead to different tractability results. While for d = 1 the problem is polynomial-time
solvable when T is required to consist of intervals, there are easy cases in d = 2 that are
NP-hard, such as when T is defined by sets of unit squares or disks [24, 30]. However,
the approximability of Geometric Set Cover in d = 2 is significantly better than in
general. Approaches like the shifting technique [23], ε-nets [1, 2, 8, 14, 33, 41, 47], local
search [3, 25, 44], sampling techniques [11, 55] and separator techniques [43] have proven
successful in obtaining constant-factor approximation algorithms and approximation schemes.
Recently, Govindarajan et al. [25] showed a very general approximability result, namely that
Geometric Set Cover admits a PTAS when the underlying sets in T are non-piercing
regions, which includes the case of pseudo-disks. From a parameterized perspective, Marx
and Pilipczuk [39] showed that Geometric Set Cover has a |T |O(

√
k)-time algorithm

when T is a set of disks or a set of squares. Moreover, no no(
√

k)-time algorithm exists for
these cases unless the Exponential Time Hypothesis fails [36, 39]. For piercing regions, such
as axis-parallel rectangles and fat triangles, Geometric Set Cover is APX-hard [10, 27]
and admits no |T |o(k)-time algorithm unless ETH fails [39]. For d = 3, a generic PTAS is
also unlikely, as Geometric Set Cover is APX-hard even for unit balls [10], although
constant-factor approximation algorithms do exist in certain cases [33]. This makes the
complexity of Geometric Set Cover highly interesting for d > 3.

Orthant Cover. In this paper, we contribute to the knowledge about Geometric Set
Cover by considering the case when the sets in T are orthants, which we call Orthant
Cover. An orthant is a subset T ⊂ Rd of the form T = {(x1, . . . , xd) ∈ Rd : xi 6
pi for all i ∈ [d]} for some (p1, . . . , pd) ∈ Rd. Alternatively, an orthant can be defined as
(−∞, p1]× · · · × (−∞, pd].
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Our interest in Orthant Cover is motivated by multi-objective optimization. Here an
optimization problem (like shortest path) is associated with d > 1 objectives (e.g. every edge
has a cost and transition time), see, e.g., [5, 22, 26, 45, 48, 49]. We identify each possible
solution of the optimization problem with the vector in Rd that lists all of its d objectives.
A solution p ∈ Rd is called Pareto-optimal if there is no solution q ∈ Rd with q > p (i.e.,
qi > pi for all 1 6 i 6 d). The set of all Pareto-optimal solutions F ⊆ Rd is called the Pareto
front [32] (or trade-off curve [56] or skyline [4]), and computing it is the standard goal of
multi-objective optimization.

However, the Pareto front can be prohibitively large to display to the end user. Therefore,
a typical relaxation is to compute a (1 + ε)-approximation of the Pareto front. This is
defined as a subset F ′ of the Pareto front F such that for every p ∈ F there exists a q ∈ F ′
with p 6 (1 + ε)q [48]. The question then becomes to find a Pareto front approximation
of minimum size. This problem has been studied in multi-objective optimization under
different names like “approximately dominating representatives” (ADR) [32] and “ε-indicator
subset selection” [6, 7, 57]. Observe that we can solve ADR using an algorithm for Orthant
Cover by setting

U := F and T := {(−∞, (1 + ε)f1]× . . .× (−∞, (1 + ε)fd] : (f1, . . . , fd) ∈ F}.

Therefore, Orthant Cover can be seen as an asymmetric variant of ADR. This provides
strong motivation to gain an algorithmic understanding of Orthant Cover.

We already know that in dimension d = 2, Orthant Cover can be solved in polynomial
time, and even in near-linear time in n [7, 32]. For d > 3, however, the problem becomes
NP-hard [32]. Moreover, if we focus on looking for a solution of size at most k, no algorithm is
known that avoids the enumeration of all size-k subsets of T . In fact, no no(k)-time algorithm
is known, even for d = 3. Therefore, we ask in which dimensions can the naive algorithm for
Orthant Cover with running time nO(k) be significantly improved upon?

Our Contribution. In this paper, we resolve the parameterized complexity of Orthant
Cover when parameterized by the size of the solution. We present an algorithm for d = 3 that
improves on the naive nO(k)-time algorithm, and rule out any further significant improvements
in any dimension. Our lower bounds are conditional on the Exponential Time Hypothesis
(ETH) by Impagliazzo, Paturi, and Zane [28], which (avoiding technical details) states that
3-SAT has no algorithm with running time 2o(n), where n is the number of variables.

I Theorem 1. Consider the Orthant Cover problem in dimension d. Then:
1. for d = 3, it can be solved in time |T |O(

√
k) · |U |O(1), in particular in time nO(

√
k);

2. for d = 3, it cannot be solved in time f(k)no(
√

k) for any computable f , assuming ETH;
3. for d > 4, it cannot be solved in time f(k)no(k) for any computable f , assuming ETH.

In the above and for all the results stated in this paper, we measure the running time in
the number of arithmetic operations over the reals given on input, i.e., in the strong fashion.
Note that n = |T |+ |U |.

Thus, we determine the optimal time complexity of Orthant Cover as nΘ(
√

k) for d = 3
and nΘ(k) for d > 4, assuming ETH. This dependence on d is somewhat surprising, since many
previous conditional lower bounds for geometric problems are of the form nΩ(k1−1/d) [40, 52].
We are only aware of one other work establishing problems to be easier for d = 3, but for
d = 4 to be as hard as in any high dimension, namely k-means and k-median [15].

The algorithm of Theorem 1.1 actually follows from a more general result.
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I Theorem 2. Given a set of points U in R3, a set of half-spaces D in R3, and an integer
k, one can decide whether U can be covered by the union of at most k half-spaces from D in
time |D|O(

√
k) · |U |O(1).

It is known that Orthant Cover can be reduced to this case (see [46, Lemma 2.3] or [12,
Section A.3]). We observe that Geometric Set Cover for disks in R2 (Disk Cover) can
also be reduced to this case, as follows. Consider an instance of Disk Cover where the
point set U and the disk set T are in the plane z = 0, and let p be a point in R3 outside
this plane. For each disk D ∈ T , we can define a ball B(D) whose intersection with the
plane z = 0 is D and that has p on its boundary. We apply an inversion with center p. As a
result, each ball B(D) is mapped to a half-space that contains the inverse of a point x ∈ U if
and only if x is covered by D. Hence, Theorem 2 also generalizes the known nO(

√
k)-time

algorithm for Disk Cover [39].
We also study the approximability of Orthant Cover. Previous work implies a PTAS

for d = 3 running in nO(1/ε2) time by a reduction (see [46, Lemma 2.3] or [12, Section A.3])
to the known PTAS for half-spaces in dimension 3 [44], and APX-hardness for d > 4 by a
reduction (see Section 4) to the known APX-hardness of Rectangle Cover [54]. In this
paper, we rule out any significant improvement for d = 3, particularly the existence of an
Efficient PTAS. For d > 4, we establish a stronger inapproximability result conditional on
Gap-ETH [19, 35].

I Theorem 3. Consider the Orthant Cover problem in dimension d. Then:
1. for d = 3, it has no PTAS with running time f(ε)no(

√
1/ε) for any computable f , assuming

ETH;
2. for any d > 4, it has no 1.05-approximation algorithm running in time f(k)no(k) for any

computable f , assuming Gap-ETH.

Technical Overview. Our algorithm for half-spaces in R3 is a branching algorithm that
attempts to split the input point set based on a balanced separator S0 of the optimum
solution, where the separator should be small: of size O(

√
k). However, we do not know

the optimum solution and thus we cannot know the separator. Instead, we show that we
can enumerate a set of candidate separators in time |T |O(

√
k), in which the separator S0 is

guaranteed to be contained. Similar approaches to obtain a subexponential-time algorithm
for geometric and planar problems are known to exist (e.g. [31, 39]). However, the existence
of the balanced separator of size O(

√
k) is somewhat surprising here, since in 3 dimensions

only separators of size O(k2/3) are known (see e.g. [53]). In order to get the desired separator
size, we work on the surface of the convex polytope which is defined as the complement of
the union of half-spaces in the solution. The edge graph of this polytope is planar, which
allows us to define an appropriately small separator of the input point set.

For the nΩ(
√

k) lower bound, the first observation is that Orthant Cover for d = 3 is
at least as hard as Geometric Set Cover in the plane where the objects are translates of
an equilateral triangle. For the problem of Geometric Set Cover for squares, an nΩ(

√
k)

conditional lower bound is known via a reduction from the Grid Tiling problem [37, 40].
In this reduction, it is crucial that a gadget of (shifts of) a square can “transport” a value a
from its left side to its right side, and a value b from its top side to its bottom side. For the
related Dominating Set problem on intersection graphs of triangle translates, the proof
strategy does generalize [18]. However, triangle translates are not flexible enough to naively
follow this proof strategy for Geometric Set Cover: in a sense they have too few sides.
Therefore, while our lower bound is also a reduction from Grid Tiling, it is much more
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subtle. Our most crucial construction is a “sumcheck” gadget that obtains “input values”
a and b at two sides of the involved triangles and results in the value a+ b at the “output
side”, while disallowing certain combinations. Using the “sumcheck” gadget on the values
a+ b and −a allows us to recover value b, and similarly we can recover a. Hence, we can use
an essentially planar layout of triangles to transfer a value a from left to right and a value
b from top to bottom; see Figure 3 for illustrations. Using this construction we can then
simulate Grid Tiling, obtaining the claimed lower bound.

The nΩ(k) lower bound for d = 4 as well as our results on approximation algorithms all
follow by relatively simple reductions to or from known results.

Organization. We prove Theorem 2 in Section 2, which implies Theorem 1.1 as per [46,
Lemma 2.3] or [12, Section A.3]. We prove the remainder of Theorem 1 in Sections 3 and 4,
which respectively contain a sketch of the lower bound for d = 3 and the lower bound for
d = 4. Details of the lower bound for d = 3 as well as the proof of Theorem 3 are deferred to
the full version of the paper.

2 Half-spaces in dimension 3

In this section, we prove Theorem 2 (and by extension, Theorem 1.1) by giving an algorithm
for Geometric Set Cover for half-spaces in R3. An instance of this problem consists
of a set of half-spaces D in R3, a set of points U in R3, and an integer k. The question
is whether one can select k half-spaces from D so that every point of U is covered by at
least one of them.

We shall say that a set of half-spaces D in R3 is in general position if no two boundaries
of half-spaces in D are parallel, and no four boundaries of half-spaces in D meet at one point.
Note that given an instance (D, U, k) of Geometric Set Cover for half-spaces, one may
slightly perturb the half-spaces of D so that every half-space still covers the same subset
of points in U as before, but after the perturbation they are in general position. Hence,
we shall assume this property in all the considered instances of Geometric Set Cover
for half-spaces.

2.1 Algorithm
Our algorithm will rely on the following balanced separator lemma.

I Lemma 4. Suppose (D, U, k) is an instance of Geometric Set Cover for half-spaces in
R3 where D is in general position, and let S ⊆ D be an optimum solution to this instance,
whose size ` satisfies 4 < ` 6 k. Then there exists a subset S0 ⊆ S with |S0| 6 O(

√
k) and

a partition P of U \
⋃
S0 with |P| 6 k, such that the following property holds: For each

W ∈ P, if `W is the optimum size of a solution to the instance (D,W, k), then `W 6 2
3` and

|S0|+
∑

W∈P `W 6 `.
Moreover, given (D, U, k), one can in time |D|O(

√
k) · |U |O(1) enumerate a family N

consisting of at most |D|O(
√

k) pairs (S0,P) with S0 ⊆ D, P a partition of U \
⋃
S0 with

|P| 6 k, and the guarantee that N contains at least one pair satisfying the property above.

Before we give a proof of Lemma 4, we show how it can be used to construct an algorithm
as promised in Theorem 2. The algorithm is presented below using pseudo-code as Algorithm
halfSpaceCoverDim3.

ESA 2019
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Algorithm 1 Algorithm halfSpaceCoverDim3.

Input: Instance (D, U, k) of Geometric Set Cover for half-spaces in R3 with D
in general position

Output: An optimum solution S ⊆ D provided it has size 6 k, or ⊥ otherwise

S ← ⊥
for each C ⊆ D with |C| 6 min(k, 4) do

if U ⊆
⋃
C and |C| < |S| then // convention: |⊥| =∞

S ← C
if k 6 4 then

return S
N ← family enumerated using the algorithm of Lemma 4 for (D, U, k)
for each (S0,P) ∈ N do

for each W ∈ P do
SW ← halfSpaceCoverDim3(D,W, b2k/3c)

C ← S0 ∪
⋃

W∈P SW // convention: ⊥ ∪X = ⊥
if |C| 6 k and |C| < |S| then
S ← C

return S

As argued, we may assume that D is in general position. First, we look through all
candidates C for a solution with |C| 6 4. In case any such C covering U is found, we store
the smallest one as the optimum solution. Next, provided k > 4, we apply the algorithm
of Lemma 4 to the instance (D, U, k) and enumerate a suitable family of pairs N . For each
(S0,P) ∈ N we apply the algorithm recursively to all instances (D,W, b 2

3kc) for W ∈ P,
yielding solutions SW . We then consider C = S0∪

⋃
W∈P SW as a candidate solution, provided

none of SW is equal to ⊥. Finally, we output the smallest candidate solution of size at
most k found.

The correctness of the algorithm follows immediately from Lemma 4. Indeed, if (D, U, k)
admits a solution of size at most 4, then an optimum solution will be found in the initial
search. Otherwise, Lemma 4 ensures us that for some pair (S0,P) ∈ N , the recursive calls of
the algorithm will find solutions SW for W ∈ P which together with S0 form an optimum
solution to (D, U, k).

We are left with bounding the time complexity of the algorithm. Let C > 0 be such that
the algorithm of Lemma 4 always returns a family N satisfying |N | 6 |D|C

√
k. Let T [d, k]

be the maximum number of leaves of the recursion tree produced by the algorithm when
applied to an instance with |D| = d and parameter k. Then T [d, k] = 1 for k 6 4, while for
k > 4 we have the following recursive inequality:

T [d, k] 6 k · dC
√

k · T [d, b2k/3c].

Here, factor k · dC
√

k comes from the fact that for at most dC
√

k pairs (S0,P) ∈ N we
apply the algorithm recursively to |P| 6 k instances with parameter b2k/3c. Unraveling the
recursion, we have

T [d, k] 6 klog3/2 k · dC
√

k·(1+(2/3)1/2+(2/3)2/2+(2/3)3/2+...) = klog3/2 k · dC′
√

k = dO(
√

k),

where C ′ = C · 1
1−(2/3)1/2 .

We conclude that the recursion tree for an instance with d = |D| and parameter k has at
most dO(

√
k) leaves, so it also has dO(

√
k) nodes. The internal computation for each node

takes time dO(
√

k) · |U |O(1), so the total running time of dO(
√

k) · |U |O(1) follows.
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2.2 Balanced separator lemma
We now move to the proof of Lemma 4, which spans the remainder of this section.

Since S is an optimum solution to (D, U, k), we have that S is minimal in the following
sense: there is no S ∈ S such that S ⊆

⋃
T∈S\{S} T . It turns out that this minimality

condition together with the assumption |S| > 4 implies that S cannot cover the whole space;
this is implied by the following result.

I Theorem 5 (Danzer et al. [17]). If a set of half-spaces S in R3 is minimal and
⋃
S = R3,

then |S| 6 4.

For every half-space S ∈ S we may choose an affine function ϕS : R3 → R so that

S = {x ∈ R3 : ϕS(x) 6 0}.

In particular, we set ϕS(x) = 〈x−vS , nS〉, where vS is a point in the boundary of S, the vector
nS is the normal of the boundary plane of S pointing away from S, and 〈., .〉 denotes the inner
product in R3. Let S = {x ∈ R3 : ϕS(x) > 0}; that is, S is the closure of the complement
of S. Then the complement of

⋃
S is the interior of the polytope P defined as follows:

P =
⋂

S∈S
S = {x ∈ R3 : ϕS(x) > 0 for all S ∈ S}.

By Theorem 5 we infer that P is non-empty.
We shall also assume from now on that the polytope P is bounded. This can be achieved

by adding to S up to 6 dummy half-spaces of the form {(x1, x2, x3) ∈ R3 : xi > M} and
{(x1, x2, x3) ∈ R3 : xi 6 −M} for i = 1, 2, 3 and some large M , so that none of the dummy
half-spaces covers any point of U . These may be perturbed slightly so that S remains in
general position. As we will not use the optimality of S from now on, this can be safely done
at the cost of replacing ` with `+ 6 in all asymptotic bounds. Note that we do ensure that
minimality of S is maintained, and thus possibly less than 6 dummy half-spaces are added.

Recall that we denote |S| = `. Thus, P is a bounded convex polytope in R3 with ` faces,
one for each half-space of S (this follows by minimality). Since S is in general position, at
each vertex of P three faces meet. Let H be a graph whose vertices are the vertices of P and
whose edges are the edges of P . Observe that the boundary of P – which consists of its faces
– is homeomorphic to a sphere, so this homeomorphism shows that H admits a drawing in
the sphere with ` faces. In the following, we identify faces of H with the faces of P . Since
every face f of P is a polygon, the boundary of f is a simple cycle in H. Therefore, H is a
simple 3-regular plane graph (i.e. without loops and multiple edges connecting the same pair
of vertices) that is connected and bridgeless.

Let H ′ be the radial graph of H: the vertex set of H ′ consists of vertices and faces of
H, and in H ′ a vertex u is adjacent to a face f if and only if u lies on the boundary of f .
Note that H ′ is bipartite, with the vertices and faces of H being the bipartition. Also, H ′
admits an embedding into a sphere constructed from the embedding of H as follows: for
every face f pick an arbitrary point xf ∈ f representing it, and connect xf with all vertices
u lying on f using pairwise non-crossing curves within f . Observe that every face of H ′ is
a 4-cycle, induced by two faces of H and the endpoints of an edge shared by them. Since
H is connected and bridgeless, a straightforward argument shows that H ′ is 2-connected.
Since H is 3-regular, it follows that 3|V (H)| = 2|E(H)|, so by Euler’s formula for polyhedra
(|V (H)| − |E(H)|+ ` = 2), we have that |V (H)| = 2`− 4. Consequently, |V (H ′)| = 3`− 4.

We may now apply the following Cycle Separator Theorem of Miller.

ESA 2019



26:8 On Geometric Set Cover for Orthants

I Theorem 6 ([42], with simplified formulation). Let G be a 2-connected plane graph on n
vertices and let d be the maximum length of a face in G. Suppose µ : V (G) → [0, 1] is a
weight function on the vertices of G such that µ(V (G)) =

∑
v∈V (G) µ(v) = 1. Then there

exists a simple cycle C in G of length at most 2
√

2bd/2cn such that if R1 and R2 are the
(open) connected regions of the plane with C removed, then the vertices contained in R1 have
total weight at most 2/3, and the same holds for R2.

On the vertex set of H ′ define the following weight function: µ(f) = 1
` for every face f of

H, and µ(u) = 0 for every vertex u of H. By Theorem 6, in H ′ there exists a simple cycle C
of length at most 4

√
|V (H ′)| = 4

√
3`− 4 such that every connected component of H ′ − C

contains at most 2
3` vertices that correspond to faces of H. Let

C = (z1, f1, z2, f2, . . . , zq, fq),

where 2q is the length of C (thus q 6 2
√

3`− 4), z1, . . . , zq are consecutive vertices of H
visited by C, and f1, . . . , fq are consecutive faces of H visited by C.

Let Q be a closed poly-line in R3 with vertices z1, . . . , zq, connected with straight line
segments in this order (cyclically). Then the segment between zi and zi+1 (with indices
behaving cyclically modulo q) is entirely contained in the face fi of P . Thus, Q is a curve
contained in the boundary of P (denoted further ∂P ), so it splits ∂P (which is homeomorphic
to a sphere) into two regions, say A1 and A2.

We now color the faces of P in three colors as follows:
faces incident to any of the vertices z1, z2, . . . , zq are colored green;
remaining faces are colored red or blue, depending whether they are contained in A1
or A2.

Note that since three faces meet at each vertex zi, there are at most 4
√

3`− 4 green faces:
f1, . . . , fq and at most one additional face per each vertex zi. Also, red faces do not share
edges with blue faces, because all faces intersecting Q (even at one point) are colored green.
We treat the above coloring of faces of P also as a coloring of all the points of ∂P . Here,
points on edges of P are colored green if any face incident to the edge is colored green, and
they are colored red or blue if all incident faces are red or blue, respectively.

Let X = conv{z1, . . . , zq}. The asserted properties of C immediately yield the following.

B Claim 7. There are at most 4
√

3`− 4 green faces, at most 2
3` red faces, and at most 2

3`

blue faces. No red face shares any edge with any blue face. Moreover, if x is any blue point
on ∂P and y is any red point on ∂P , then the straight line segment with endpoints x and y
intersects X.

As faces of P are in one-to-one correspondence with the half-spaces of S, we may talk
about red, green, and blue half-spaces of S. We next observe that the separating properties
of C carry over to the points of U .

B Claim 8. If a point u ∈ U is simultaneously covered by a red half-space from S and by a
blue half-space from S, then it is also covered by a green half-space from S.

Proof. Let A and B be respectively the red and the blue half-space covering u, and let fA

and fB be the faces of P that correspond to A and B, respectively. Pick any point xA ∈ fA

and xB ∈ fB and let Π be a plane through u, xA, and xB . We may choose xA and xB so that
Π does not contain any vertex of P . Then P ∩Π is a nonempty convex polygon, whose sides
are colored red, green, and blue so that no red side is adjacent to any blue side. Moreover,
the side containing xA is red, while the side containing xB is blue. Call these sides sA and
sB , respectively.
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Call a side s of P ∩Π separating if its extension to a line separates u from P ∩Π in the
plane Π. Since P ∩ Π is convex, separating sides form an interval on the perimeter of P ∩ Π.
Moreover, since A and B cover u, it follows that sA and sB are separating. As sA is red and
sB is blue, from the two claims above we conclude that there exists a green side s of P ∩Π
that is also separating. Then the half-space corresponding to the face of P containing s is
green and it covers u, as required. C

By Claim 8, we may partition U into three subsets:
green points of U that are covered by some green half-space from S;
red points of U that are covered only by red half-spaces from S;
blue points of U that are covered only by blue half-spaces from S.

Denote the above sets by UG, UR, UB , respectively. In the following claims, roughly speaking
we show that X can be used to separate red points of U from blue points of U . Call two points
u, v ∈ U separated by X if the straight line segment with endpoints u and v intersects X.

B Claim 9. For all u ∈ UR and v ∈ UB , we have that u and v are separated by X.

Proof. Let I be the straight line segment with endpoints u and v.
Suppose first that I does not intersect the polytope P . Since both I and P are convex,

there exists an affine functional ψ : R3 → R such that ψ(u) < 0, ψ(v) < 0, but ψ(x) > 0
for all x ∈ P . We may moreover choose ψ so that there exists a vertex w of P for which
ψ(w) = 0. Let the faces of P incident to w be contained in the boundaries of half-spaces
S1, S2, S3. Since ψ is nonnegative on P , it follows that ψ can be written as a nonnegative
linear combination of ϕS1 , ϕS2 , ϕS3 . Then ϕSi

(u) < 0 holds for some index i ∈ {1, 2, 3}, and
similarly condition ϕSj (v) < 0 holds for some index j ∈ {1, 2, 3}. Thus Si covers u and Sj

covers v, so Si is necessarily red and Sj is necessarily blue. However, the faces corresponding
to Si and Sj share an edge incident to the vertex w. This contradicts Claim 7.

Now we know that I indeed intersects P . Let J = I ∩ P . Note that since u ∈ UR, the
endpoint of J closer to u has to be red, for the half-space corresponding to the face of P
containing this endpoint covers u. Similarly, the endpoint of J closer to v has to be blue.
We conclude that, by Claim 7, the segment J has to intersect X. C

B Claim 10. Suppose u, v ∈ U \ UG are separated by X. Then there is no half-space in S
that would simultaneously cover both u and v.

Proof. Let I be the straight line segment with endpoints u and v, and let x be any point
of I ∩X.

Suppose first that x lies on ∂P . Since x ∈ X and all faces of P incident to z1, . . . , zq

are colored green, it follows that x is green. Let S be any half-space of S corresponding
to a green face on which x lies. As x ∈ I, we conclude that S either covers u or v, which
contradicts the assumption that u, v /∈ UG.

Suppose now that x lies in the interior of P . If there was a half-space S ∈ S containing
both u and v, then S would contain the whole segment I, and x in particular, so S would
intersect the interior of P . This is a contradiction with the definition of P . C

Consider now a graph L with vertex set U \ UG, where different u, v ∈ U \ UG are
considered adjacent if and only if they are not separated by X. Then Claims 9 and 10
directly imply the following.

B Claim 11. Every connected component of L is entirely contained either in UR or in UB.
Moreover, no half-space in S covers points from two different connected components of L.
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The existential part of Lemma 4 follows now if we take S0 to be the set of green half-
spaces and P to be the partition of U \ UG into the connected components of L. Here, if
any half-space from S0 turns out to be one of the at most six dummy half-spaces, we may
safely remove it from S0, as it does not cover any point in U anyway. Let us check that
the required properties are indeed satisfied by the pair (S0,P). First, by Claim 7 we have
|S0| 6 2q 6 O(

√
k). Next, for a connected component W of L, let us denote by SW the

set of half-spaces from S that cover at least one point of U \ UG belonging to W . Clearly,
SW is a solution to the instance (D,W, k), hence |SW | > `W . By Claim 10, the sets SW are
pairwise disjoint, and they are clearly disjoint from S0. Hence, we have

` = |S| > |S0|+
∑

W∈cc(L)

|SW | > |S0|+
∑

W∈cc(L)

`W ,

where cc(L) is the set of connected components of L. Also, the sets SW are non-empty,
because every connected component of L requires at least one half-space to be covered,
so

∑
W∈cc(L) |SW | 6 ` entails that |P| = |cc(L)| 6 ` 6 k. Finally, by Claim 9, for each

W ∈ cc(L) the half-spaces of SW are either all red or all blue, which by Claim 7 implies that
|SW | 6 2

3` for all W ∈ cc(L).

We are left with providing an algorithm enumerating a suitable family N . The algorithm
proceeds as follows. Let D′ be D augmented by adding the six dummy half-spaces of the
form {(x1, x2, x3) ∈ R3 : xi >M} and {(x1, x2, x3) ∈ R3 : xi 6 −M} for i = 1, 2, 3 and some
large M , so that none of the added half-spaces covers any point of U . Say that a point
x ∈ R3 is important if it is the intersection of some triple of planes that are boundaries of
some half-spaces in D′. Note that all vertices of the polytope P are important points, while
the total number of important points is at most (|D| + 6)3 and they can be enumerated
in time O(|D|3).

Next, for every q 6 2
√

3 · (k + 6)− 4 = 2
√

3k + 14, iterate through

every choice of 2q half-spaces from D, say S0 = {S1, . . . , S2q};

and every choice of q important points z1, . . . , zq.
Note that there are at most |D|4

√
3k+14 choices for S0 and at most (|D|+ 6)6

√
3k+14 choices

for z1, . . . , zq, hence we iterate through at most (|D|+ 6)10
√

3k+14 choices in total.
Let X = conv{z1, . . . , zq} and let UG be the set of all points of U that are covered by

some half-space of S0. Construct the graph L as described before: the vertex set of L is
U \ UG = U \

⋃
S0, and two points u, v ∈ U \ UG are adjacent if and only if u and v are

not separated by X. Observe that whether u and v are separated by X can be checked
in strongly polynomial time. Indeed, this question boils down to the verifying whether, in
3-dimensional Euclidean space, a given segment intersects a polyhedron defined as the convex
hull of a given set of points, which can be solved by any strongly polynomial-time procedure
for intersecting two convex polyhedra in R3, see e.g. [51, Section 7.3 and notes and comments
to Chapter 7]. Therefore, L can be computed in (strongly) polynomial time. Finally, if L has
at most k connected components, then include in the constructed family N the pair (S0,P),
where P is the partition of U \ UG into the connected components of L.

The bound on the size of N and the running time of the algorithm follow immediately
from the description. The correctness is also clear, as some choice of S0 and z1, . . . , zq

considered by the algorithm is the same as the one considered in the existential argument.
This finishes the proof of Lemma 4.
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3 Lower bound for dimension 3

The goal of this section is to prove Theorem 1, assertion 2. We can restrict our attention to
the case where all points lie on the plane Π = {(x, y, z) : x+ y + z = 0} and the corners of
all orthants lie on the plane {(x, y, z) : x+ y + z = 1}. In such a setting, the intersections
of the orthants with Π form equilateral triangles on Π, which all have the same size and
orientation. In essence, this setting of Orthant Cover is equivalent to finding a geometric
set cover of size k among m translates of some triangle. We call this problem Triangle
Translate Cover. Therefore, Theorem 1.2 is implied by the following theorem.

I Theorem 12. There is no f(k)no(
√

k) algorithm for Triangle Translate Cover for
any computable function f , unless ETH fails.

Here n is m plus the number of points.
Our reduction is from Grid Tiling [38, 16], which is defined as follows. We are

given as input an integer k, an integer n, and a collection S of k2 non-empty sets Si,j ⊆
{1, . . . , n} × {1, . . . , n} for i, j ∈ {1, . . . , k}. The goal is to select an element si,j ∈ Si,j for
each i, j ∈ {1, . . . , k} such that:

If i < k, si,j = (x, y), and si+1,j = (x′, y′), then x = x′.
If j < k, si,j = (x, y), and si,j+1 = (x′, y′), then y = y′.

One can picture these sets in a k×k matrix: in each cell (a, b), we need to select a representative
from the set Si,j so that the representatives selected from horizontally neighboring cells agree
in the first coordinate, and representatives from vertically neighboring cells agree in the
second coordinate. Observe that due to equality conditions, the goal in the Grid Tiling
problem can be stated equivalently as follows: select elements x1, . . . , xk, y1, . . . , yk ∈ [n] such
that (xi, yj) ∈ Si,j for all i, j ∈ [k]. Note that si,j = (xi, yj) in this case. In the following, we
will treat the selection x1, . . . , xk, y1, . . . , yk also as a solution to a Grid Tiling instance.

Our goal is to create a parameterized reduction where the constructed instance of
Triangle Translate Cover has a cover of size ck2 for some constant c if and only if the
original Grid Tiling instance has a solution. This is sufficient due to the following theorem.

I Theorem 13 ([38, 16]). There is no f(k)no(k) algorithm for Grid Tiling for any com-
putable function f , unless ETH fails.

3.1 Gadgets
Due to lack of space, we only give a short intuitive overview of our construction. The
complete construction and all proofs can be found in the full version of the paper.

Let ε = 1
100n . In the Triangle Translate Cover problem, the input triangles are

equilateral triangles; we assume the side lengths are precisely 1. This means our construction
can effectively use three directions, namely along the vectors ē = (1, 0), é = (1/2,

√
3/2),

and è = (1/2,−
√

3/2). For convenience, we let E = {ē,−ē, é,−é, è,−è}. Given a positive
integer N , we use [N ] to denote {1, . . . , N} and [−N ] to denote {−1, . . . ,−N}.

Bundles. We first establish a gadget to represent an integer value. Let N = 2n and e ∈ E.
A bundle is a set of N triangles B = {t1, . . . , tN} such that t1 has its lower-left corner on
the origin and ti+1 is t1 translated by iε · e. The bundle also contains a point pB on the
incenter of tN/2 ensuring that at least one triangle is selected from B. The idea behind the
construction is that each solution will select exactly one triangle from the bundle. In this
manner, the index of the selected triangle represents an integer in [N ]. In the figures, each
bundle has an arrow that indicates the direction along which the translation is done, and the
indices (i.e. the represented integer) increase.
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Figure 1 Left, middle: transportation gadgets. Arrows indicate the direction of increasing indices
within the bundle. Right: negation gadget.
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6 −a

−
−

> a

Figure 2 Integer gadgets with some transportation to the outside.

A negative bundle uses a different indexing, and represents the integer −N + i− 1. Hence,
the index of the selected triangle represents an integer in [−N ]. (In figures, such bundles are
indicated with a minus sign.)

Transportation gadget. We now establish a gadget to transport an integer value over some
distance; this is built on a pair of bundles B and B′ as in Figure 1. Observe that the
boundaries of the triangles of B and B′ induce an (N − 1)× (N − 1) lattice with directions
è and ē. Now place points in the cells of this lattice as indicated in the figure. In this way,
we are able to transport the integer value i represented by the triangle selected from B to an
integer value of at most i for the bundle B′. Note that within certain limits, we can translate
B′ at will, so that we can “lengthen” or “shorten” as needed for the rest of the construction.
By switching the sign of the values represented by one bundle of the transportation gadget,
we get a negation gadget (see right hand side of Figure 1); if we make a cycle by joining
transportation gadgets, we get an integer gadget, within which the selected triangles of each
bundle must represent the same integer value (see Figure 2).

Sum and sumcheck gadget. We can create a sum gadget, which has three bundles, two of
which are considered input bundles and one an output bundle. The gadget has the property
that if the triangles selected in the two input bundles represent a and b respectively, then
the output bundle must have a triangle representing some value that is at most a+ b. Such
a gadget is depicted in Figure 3. By adding extra points (indicated by red crosses), we can
also disable the selection of certain triplets (a, b, a+ b). For a set S ⊆ [n]× [n], this allows
us to create a sumcheck gadget where given inputs a, b the output is at most a+ b, where
equality can occur if and only if (a, b) ∈ S. This is the crucial step that eventually allows us
to check for the sets Si,j corresponding to the cell i, j of the Grid Tiling instance.
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1
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3

1
2
3

2 3 4 5 6
a

b

6 a+ b

a = ai,j

b = bi,j

ai,j+1

bi+1,j

6 a

6 b

6 b

6 a

6 −a

6 −b

6 a+ b

Gh
i,j

Gh
i,j+1

Gv
i,j

Gv
i+1,j

Si,j
check

sum

sum

sum

Figure 3 Left: summation gadget. Adding the points indicated by the red crosses creates an
S-sumcheck gadget for S = {(1, 1); (1, 3); (2, 2)}. Right: schematic representation of a cell (i, j) of
the Grid Tiling instance. The transportation gadgets (blue) carry inequalities involving a = ai,j

and b = bi,j .

3.2 The complete construction
The idea of the reduction is to have for any pair of neighboring tiles an integer gadget which
contains the value that these neighboring tiles must agree on. Given such integer gadgets,
we can realize a single tile (i, j) ∈ [k]× [k] using our gadgetry the following way. We want
to transfer the value a that is our horizontal selection and the value b which is our vertical
selection between these integer gadgets. At the same time, we want to ensure that (a, b) ∈ Si,j .
We do this as explained schematically in Figure 3. From the integer gadgets on the left
and on the top, we extract the integer values stored there, say ai,j and bi,j respectively,
and transport these values (using transportation gadgets) to an Si,j-sumcheck gadget. The
output of this gadget will be an integer c satisfying c 6 ai,j + bi,j , and moreover c < ai,j + bi,j

if (ai,j , bi,j) 6∈ Si,j . Using negation gadgets, we can extract −ai,j and −bi,j from the left and
top integer gadgets, respectively. Each of these values can be combined with c through a sum
gadget, whose output (i.e., third bundle) recovers integer values ai,j+1 6 ai,j and bi+1,j 6 bi,j

that can be passed along to the right hand side and bottom integer gadgets respectively.
Let G be the construction thus far. Note that the construction ensures that left-to-right

and top-to-bottom we have non-increasing values stored in our integer gadgets. To ensure
equality holds, we need to wrap the rows and columns into cycles, just as we did for a single
integer gadget. Doing this in a naive manner would lead to further crossings, so instead
we create a construction H that is similar to G, but the rows are in reverse order, and the
gadgetry of every tile is mirrored on the vertical axis; this construction is then translated
below G (see Figure 4). In particular, the cell in row i and column j of H corresponds to
the cell in row k − i+ 1 and column j of the Grid Tiling instance. As Figure 4 indicates,
we can create transportation gadgets in a suitable manner to realize this construction.

We remark that it is tempting to use a known a variant of Grid Tiling called Grid
Tiling with 6 as the starting point of the reduction, which enjoys the same complexity lower
bound as Grid Tiling; see [16, Theorem 14.30]. In this variant, the equality conditions are
replaced with the requirement that one coordinate behaves non-decreasingly along rows, while
the second behaves non-decreasingly along columns. The variant looks convenient, as our
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Figure 4 Schematic representation of the complete construction for k = 3.
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gadgets directly implement inequalities between coordinates, not equalities. This thinking,
however, is problematic for the following reason: in our construction, in order to implement
the check (a, b) ∈ Si,j we have to enforce equality in the sumcheck gadget created for the
cell (i, j), as in case of any slackness, this condition is not checked by the gadget. Therefore,
starting the reduction from Grid Tiling with 6 would not simplify the reasoning.

4 Lower bound for dimension 4 and higher

Consider the Rectangle Cover problem: Given points P ⊆ R2, a set R of axis-parallel
rectangles in the plane, and a number k, decide whether there is a subset R′ ⊆ R of size k
such that P is contained in the union of all rectangles in R′. Rectangle Cover is not
solvable in time f(k)no(k) for any computable f assuming ETH [39], where n = |P |+ |R|. We
obtain the same lower bound for Orthant Cover in dimension d > 4 by an easy reduction.

Proof of Theorem 1.3. Given points P and rectangles R in the plane, we construct a 4-
dimensional Orthant Cover instance (U, T ): For each point p = (x, y) ∈ P , we add the
point (−x, x,−y, y) to U . For each rectangle r = [x1, x2]× [y1, y2] ∈ R, we add the orthant
with corner (−x1, x2,−y1, y2) to T . Note that p is contained in r if and only if x1 6 x 6 x2
and y1 6 y 6 y2, which is equivalent to −x 6 −x1, x 6 x2, −y 6 −y1, and y 6 y2. For
points p, q ∈ Rd, note that q is contained in the orthant T = (−∞, p1] × . . . × (−∞, pd] if
and only if every coordinate of p is not larger than the corresponding coordinate of q. This
proves the correctness of our reduction. We thus ruled out time f(k)no(k) assuming ETH for
Orthant Cover in dimension d = 4, and also for any d > 4 (by a trivial embedding). J

Together with the reasoning presented in [39], the above argument yields a chain of reduc-
tions from Clique to Orthant Cover in d = 4. Using recent hardness of approximation
for Clique [9] and carefully tracking the gap through this chain of reductions, we obtain
that Orthant Cover in d = 4 has no 1.05-approximation with running time f(k)no(k) for
any computable f , assuming Gap-ETH (Theorem 3.2). This result is presented in the full
version of the paper.
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