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—— Abstract
A robot modeled as a deterministic finite automaton has to build a structure from material available
to it. The robot navigates in the infinite oriented grid Z x Z. Some cells of the grid are full (contain
a brick) and others are empty. The subgraph of the grid induced by full cells, called the field, is
initially connected. The (Manhattan) distance between the farthest cells of the field is called its span.
The robot starts at a full cell. It can carry at most one brick at a time. At each step it can pick a
brick from a full cell, move to an adjacent cell and drop a brick at an empty cell. The aim of the
robot is to construct the most compact possible structure composed of all bricks, i.e., a nest. That
is, the robot has to move all bricks in such a way that the span of the resulting field be the smallest.

Our main result is the design of a deterministic finite automaton that accomplishes this task
and subsequently stops, for every initially connected field, in time O(sz), where s is the span of the
initial field and z is the number of bricks. We show that this complexity is optimal.
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1 Introduction

The problem

A mobile agent (robot) modeled as a deterministic finite automaton has to build a structure
from material available to it. The robot navigates in the infinite oriented grid Z x Z
represented as the set of unit square cells in the two-dimensional plane, with all cell sides
vertical or horizontal. The robot has a compass enabling it to move from a currently occupied
cell to one of the four cells (to the North, East, South, West) adjacent to it. Some cells of the
grid contain a brick, i.e., are full, other cells are empty. The subgraph of the grid induced
by full cells, called the field, is initially connected. The (Manhattan) distance between the
farthest cells of the field is called its span. Notice that the span of any current field may
be much smaller than its diameter as a subgraph of the grid. In fact, this diameter may be
sometimes undefined, if the field becomes disconnected. The robot starts at a full cell. It
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can carry at most one brick at a time. At each step, the robot can pick up a brick from the
currently occupied full cell (if it does not carry any brick at this time), moves to an adjacent
cell, and can drop a brick at the currently occupied empty cell (if it carries a brick). The
robot has no a priori knowledge of the initial field, of its span or of the number of bricks.

The aim of the robot is to construct the most compact possible structure composed of all
bricks, i.e., a nest. That is, the robot has to move all bricks in such a way that the span of
the resulting field be the smallest. The above task has many real applications. In the natural
world, animals use material scattered in a territory (pieces of wood, small branches, leaves) to
build a nest, and minimizing the span is important to better protect it. A mobile robot may
be used to clean a territory littered by hazardous material, in which case minimizing the span
of the resulting placement of contaminated pieces facilitates subsequent decontamination. A
more mundane example is the everyday task of sweeping the floor, whose aim is to gather all
trash in a small space and then get rid of it.

Our results

Our main result is the design of a deterministic finite automaton that accomplishes the task
of building a nest and subsequently stops, for every initially connected field, in time O(sz),
where s is the span of the initial field and z is the number of bricks. The time is defined as
the number of moves of the robot. We show that this complexity is optimal.

The essence of our nest building algorithm is to instruct the robot to make a series of
trips to get consecutive bricks, one at a time, and carry them to some designated compact
area. This approach ensures the optimal complexity. (In order to show where the problem is,
we also sketch a much simpler algorithm that uses another approach but has significantly
larger complexity). There are two major difficulties to carry out this plan. The first is that
the span of the initial field may be much larger than the memory of the robot, and hence the
robot that already put several bricks in a compact area and goes for the next brick cannot
remember the way back to the area where it started building. Thus we need to prepare the
way, so that the robot can recognize the backtrack path locally at each decision point. The
second problem is that, while we temporarily disconnect the field during the execution of the
algorithm, special care has to be taken so that the connected components of intermediary
fields be close to each other, to prevent the robot from getting lost in large empty spaces.

To the best of our knowledge, the task of constructing structures from available material
using an automaton, has never been studied before in the algorithmic setting. It is interesting
to compare this task to that of exploration of mazes by automata, that is a classic topic
with over 50 years of history (see the section “Related work”). It follows from the result of
Budach [9] (translated to our terminology) that if an automaton can only navigate in the
field without moving bricks then it cannot explore all connected fields, even without the stop
requirement, i.e., it cannot even see all bricks. By contrast, it follows from our result that
the ability of moving bricks enables the automaton not only to see all bricks but to build a
potentially useful structure using all of them and stop, and to accomplish all of that with
optimal complexity.

The model

We consider the infinite oriented grid Z x Z represented as the set of unit square cells tiling
the two-dimensional plane, with all cell sides vertical or horizontal. Each cell has 4 adjacent
cells, North, East, South and West of it. Some cells of the grid contain a brick, i.e., are full,
other cells are empty. The subgraph of the grid induced by full cells is initially connected.
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At each step of the algorithm this subgraph can change, due to the actions of the robot,

described below. At each step, the subgraph induced by the full cells is called the current field.

Any maximal connected subgraph of the current field is called a component. Throughout the
paper, the distance between two cells (x,y) and (2/,y’) of the grid is the Manhattan distance
between them, i.e., |z — 2’| + |y — ¢’|. The number of cells of a field is called its size, and the
distance between two farthest cells of a field is called its span. A nest of size z is a field that
has the minimum span among all fields of size z.

We are given a mobile entity (robot) starting in some cell of the initial field and traveling

in the grid. The robot has a priori no knowledge of the field, of its size or of its span.
The robot is formalized as a finite deterministic Mealy automaton R = (X,Y, 8,9, A, So, St).

X ={e, f} x {l,h} is the input alphabet, Y = {N, E, S, W} x {e, f} x {l, h} is the output

alphabet. § is a finite set of states with two special states: Sy called initial and St called final.

0 : 8§ x X — §is the state transition function, and A : § x X — Y is the output function.

The meaning of the input and output symbols is the following. At each step of its
functioning, the robot is at some cell of the grid and has some weight: it is either light,
denoted by ! (does not carry a brick) or heavy, denoted by h (carries a brick). Moreover, the
current cell is either empty, denoted by e or full, denoted by f. The input = € {e, f} x {I,h}
gives the automaton information about these facts. The robot is in some state S. Given this
state and the input z, the robot outputs the symbol A(z, S) € {N, E, S, W} x {e, f} x {l,h}
with the following meaning. The first term indicates the adjacent cell to which the robot
moves: North, East, South or West of the current cell. The second term determines whether
the robot leaves the current cell empty or full, and the third term indicates whether the
robot transits as heavy or as light to the adjacent cell. Since the robot can only either leave
the current cell intact and not change its own weight, or pick a brick from a full cell leaving
it empty (in the case when the robot was previously light), or drop a brick on an empty
cell leaving it full (in the case when the robot was previously heavy), we have the following
restrictions on the possible values of the output function A:

A(S, e,1) must be (-, ¢e,1)

A(S, e, h) must be either (-, e, h) or (-, f,1)

A(S, f,1) must be either (-, f,1) or (-,e, h)

A(S, f, h) must be (-, f, h)

Seeing the input symbol x and being in a current state S, the robot makes the changes
indicated by the output function (it goes to the indicated adjacent cell, possibly changes the
filling of the current cell as indicated and possibly changes its own weight as indicated), and
transits to state d(x, S). The robot starts light in a full cell in the initial state Sy (hence its
initial input symbol is (f,1)) and terminates its action in the final state St.

Related work

Problems concerning exploration and navigation performed by mobile agents or robots in
an unknown environment have been studied for many years (cf. [7, 21, 26]). The relevant
literature can be divided into two parts, according to the environment where the robots
operate: it can be either a geometric terrain, possibly with obstacles, or a network modeled
as a graph in which the robot moves along edges.

In the geometric context, a closely related problem is that of pattern formation [12, 14, 28].
Robots, modeled as points freely moving in the plane have to arrange themselves to form a
pattern given as input. This task has been mostly studied in the context of asynchronous
oblivious robots having full visibility of other robots positions.
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The graph setting can be further specified in two different ways. In [1, 3, 4, 13, 19] the
robot explores strongly connected directed graphs and it can move only in the tail-to-head
direction of an edge, not vice-versa. In [2, 5, 9, 15, 16, 17, 25, 27] the explored graph is
undirected and the robot can traverse edges in both directions. Graph exploration scenarios
can be also classified in another important way. It is either assumed that nodes of the graph
have unique labels which the robot can recognize (as in, e.g., [13, 17, 25]), or it is assumed
that nodes are anonymous (as in, e.g., [3, 4, 9, 10, 27]). In our case, we work with the infinite
anonymous grid, hence it is an undirected anonymous graph scenario. The efficiency measure
adopted in papers dealing with graph exploration is either the completion time of this task,
measured by the number of edge traversals, (cf., e.g., [25]), or the memory size of the robot,
measured either in bits or by the number of states of the finite automaton modeling the
robot (cf., e.g., [15, 20, 19]). We are not concerned with minimizing the memory size but we
assume that this memory is bounded, i.e., it is constant as a function of the input grid size.
However we want to minimize the time of our construction task.

The capability of a robot to explore anonymous undirected graphs has been studied in,
e.g., [6, 9, 15, 20, 23, 27]. In particular, it was shown in [27] that no finite automaton can
explore all cubic planar graphs (in fact no finite set of finite automata can cooperatively
perform this task). Budach [9] proved that a single automaton cannot explore all mazes (that
we call connected fields in this paper). Hoffmann [22] proved that one pebble does not help
to do it. By contrast, Blum and Kozen [6] showed that this task can be accomplished by two
cooperating automata or by a single automaton with two pebbles. The size of port-labeled
graphs which cannot be explored by a given robot was investigated in [20].

Recently a lot of attention has been devoted to the problem of searching for a target
hidden in the infinite anonymous oriented grid by cooperating agents modeled as either
deterministic or probabilistic automata. Such agents are sometimes called ants. It was
shown in [18] that 3 randomized or 4 deterministic automata can accomplish this task.
Then matching lower bounds were proved: the authors of [11] showed that 2 randomized
automata are not enough for target searching in the grid, and the authors of [8] proved that
3 deterministic automata are not enough for this task. Searching for a target in the infinite
grid with obstacles was considered in [24].

Our present paper adopts the same model of environment as the above papers, i.e., the
infinite anonymous oriented grid. However the task we study is different: instead of searching
for a target, the robot has to build some structure from the available material. To the best
of our knowledge, such construction tasks performed by automata have never been studied
previously in the algorithmic setting.

2 Terminology and preliminaries

In the description and analysis of our algorithm we will categorize full cells. A full cell is
said to be a border cell if it is adjacent to an empty cell. A full cell that has only one full
adjacent cell is called a leaf. A full cell is called special, if it is either a leaf, or has at least
two full cells adjacent to it, sharing a corner.

A finite deterministic automaton may remember a constant number of bits by encoding
them in its states. We will use this fact to define several simple procedures and simplifications
that we use in the sequel. The first simplification is as follows. We formulate the actions of
the robot based on the configuration of bricks in its neighborhood. More precisely, at any
step, the robot knows whether each cell at distance at most » = 8 from its current cell is full
or empty. This can be achieved by performing a bounded local exploration with return, after
each move of the robot.
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We will use the notion of current orientation of the robot. At the beginning of its
navigation, the robot goes in one of the four cardinal directions. Then its orientation is
determined in one of the two ways: either by its last step (North, East, South or West) or
by a turn: we say that the robot turns left (respectively right) meaning that it changes its
orientation in the appropriate way while remaining at the same cell. Clearly the robot can
remember its orientation, using its states. We refer to cardinal directions with respect to this
current orientation. Thus, e.g., if the robot is oriented East then we say that its adjacent
North (resp. East, South or West) cell is left (resp. in front, right, back) of it.

Whenever we say that the robot located at a cell ¢ and not carrying a brick brings a
brick from a full cell ¢’ to ¢ we mean that the robot moves from c to ¢’, picks the brick from
¢/, moves back to ¢ and restores its original orientation. Whenever we say that the robot
located at a cell ¢ and carrying a brick places it at an empty cell ¢’ we mean that the robot

moves from c to ¢/, drops the brick at ¢/, moves back to ¢ and restores its original orientation.

Whenever the robot selects a cell according to some condition that is fulfilled by more
than one cell, the robot selects the cell that is minimal with respect to the following total
order < on the set of all cells. For cells ¢ = (x,y) and ¢ = (2/,y’), ¢ < ¢’ holds if and only if
either y < ¢/, or y = ¢’ and x < 2’. We denote by |S| the number of cells in a sequence or a
set S of cells.

We define a disc of radius » > 0 with center ¢ to be the set of all cells at distance at most
r from ¢, see Fig. 1. A disc of radius r contains z, = 2(14+34+5+---+(2r—1))+ (2r+1) =
272 + 2r + 1 cells and has span 2r. A rough disc of size z, where z, < z < Zp+1 is defined as
follows. If z = z,, then the rough disc is the disc of radius r. Otherwise, let F' be the set
of cells not belonging to the disc D of radius r but adjacent to some cell of it. Add to D
exactly z — z, cells belonging to F', starting from the North neighbor of the East-most cell of
D and going counterclockwise. If z,. < z < z. 4 2r + 2 then the rough disc of size z has span
2r + 1 and if 2, + 2r + 2 < z < 2,41 then the rough disc of size z has span 2r + 2, the same
as the disc of radius r 4 1 that has size z.41.

(a)

Figure 1 (a) disc of size z, for r = 3; (b) a rough disc of size z, + 7 and span 2r + 1, r = 3; (c) a
rough disc of size z, + 11 and span 2r 4+ 2, r = 3.

The proofs of the next two propositions are omitted due to space limitation.
» Proposition 1. Any rough disc is a nest.

The nests built by our automaton will be rough discs. The following proposition shows
that the complexity of our nest-building algorithm is optimal, regardless of the relation
between the size of the initial field and its span (recall that, by definition, the span must be
smaller than the size z and it must be in Q(y/z)). Our lower bound on complexity follows
from geometric properties of the grid, and hence it holds regardless of the machine that
builds the nest, i.e., even if the robot is a Turing machine knowing a priori the initial field.

» Proposition 2. Let s’ < z be positive integers such that s’ € Q(y/z). There exists an initial
field of size z and span s € O(s'), such that any algorithm that builds a nest starting from
this field must use time Q(sz).
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3 The algorithm

The robot will move bricks from the original field and build two special components. One of
them will be a rough disc that will be gradually extended. The second one will be a one-cell
component whose only cell is called the marker. The robot will periodically get at large
distances from the rough disc being built, and the role of the marker will be to indicate to the
robot that it got back in the vicinity of the rough disc. Any component that is different from
the rough disc and from the marker will be called a free component. During the execution of
the entire algorithm, the robot will not ensure that the full cells outside of the rough disc
and of the marker form one component — they may form several components — but after
adding a new brick to the rough disc these components will be always at a bounded distance,
i.e., at distance O(1), from the rough disc that the robot is constructing.

We are now ready to sketch the high-level idea of the algorithm, whose pseudo-code
is presented at the end of this section as algorithm Nest. First the robot performs some
preliminary actions by establishing the marker and the initial rough disc and by calling
procedure Sweep, which together result in constructing the first rough disc D (of size one),
placing the marker next to it and ensuring that no full cells other than the marker are at
distance at most 7 from D. Then each iteration of the main loop of algorithm Nest performs
three actions. First, it executes procedure FindNextBrick that allows the robot to find a
brick in a free component C. This brick must be carefully chosen. For example, greedily
picking the closest available brick would soon result in creating large empty spaces between
components of the field, in which the robot could get lost. This brick will be later used
to extend the rough disc. However, this procedure may lead the robot far from the rough
disc and may also disconnect C into many components. Disconnecting C is one of the main
tools in our construction. It is done by the robot on purpose to allow it to find its way
back to the marker and so that it is possible to recover the connectivity of C on the way
back. Such a walk back to the marker is the second action performed in the main loop and
described as procedure ReturnToMarker. The third action is done once the robot is back
at the marker, and it is given as procedure ExtendRoughDisc. This procedure extends the
rough disc, ensuring the property that there are no full cells at a prescribed bounded distance
from the rough disc, except the marker. While restoring this property, the robot may again
disconnect some components but all of them are at a bounded distance from the rough disc
and thus the robot will be able to find them easily. Additionally, it may happen that the cell
brought to the rough disc was the last cell of C. In such a case, as the last part of procedure
ExtendRoughDisc, the robot places the marker near another component close to the rough
disc, if one exists. This will be the new free component C in which the robot will find the
next brick in the next iteration of the main loop. If no such C exists, then the robot adds
the brick from the marker to the rough disc, thus completing the construction of the nest.

Many of the difficulties described above come from our desire to keep the complexity
of the algorithm optimal, i.e., O(sz). If complexity were not an issue, the following much
simpler algorithm would be sufficient. The robot first builds a horizontal line at the level
of a South-most cell of the initial field, by gradually squeezing down the field, keeping it
connected at all times. Then it transforms the line into a nest. The squeezing down can be
performed by iteratively repeating the following steps. First, the robot makes sure that it is
not on the lowest level (if the line is not yet constructed, this can be done by finding a full
cell with a full South neighbor). Then the robot goes to some North-West extremity of the
field, i.e., to any full cell that has empty cells to the North and to the West of it. Then it
picks the brick from this cell and drops it one level down, ensuring the connectivity. This
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can be done by first moving one level down and then iteratively going West until an empty
cell is encountered, where the robot drops the brick. When the field is squeezed down to a
line, the robot will recognize this and easily transform it into a nest.

This idea potentially requires time ©(z) to lower a brick by one level. Since there are z
bricks possibly on ©(s) levels, the entire time would be ©(s22) in the worst case, which is
suboptimal. Thus we proceed with the detailed description of the optimal algorithm Nest
whose high-level idea was described before.

3.1 Moving bricks out of the way

One of the challenges in constructing the rough disc is to have enough room so that, while
expanding, it does not merge with the remainder of the field. This is one of the goals of
procedure Sweep. Its high-level idea is the following. It ensures an invariant that has to hold
whenever the agent goes to retrieve the next brick in order to extend the rough disc. This
invariant is that there are no full cells, other than the cell M that is the marker, within a
given bounded distance from the current rough disc D. This procedure is called when the
robot is at the marker, in two situations. The first one is right before the main loop: in this
case the marker, the rough disc (of size one) and its corresponding neighborhood occupy a
constant number of cells and hence in this case the robot is able to decide whether a given
cell is in D U {M}. The second situation occurs after each extension of the rough disc. In
this case, the size of D may be unbounded but a walk around its border (which can be done
with stop, using the marker) allows to determine if there is a full cell ¢ within a bounded
distance from D, that does not belong to the rough disc itself. Whenever such a full cell ¢ is
found, the robot picks the brick from ¢ and searches for an empty cell at distance at least
7 from the rough disc. This searching walk is done in such a way as to ensure the return
to the rough disc. At the end of the procedure, the robot places the marker next to some
free component. Below is the pseudo-code of procedure Sweep. In this pseudo-code, we use

Procedure Sweep sweeping away bricks that are close to the rough disc.

1 M := the marker

2 go to the closest cell of the rough disc D

3 perform a full counterclockwise traversal of the border of D, executing the following
actions after each step:

a for each full cell ¢ ¢ DU {M} at distance at most 7 from the robot do

5 ¢’ := the cell currently occupied by the robot

6 go to ¢ and pick the brick

7 move in direction away from D and stop at the first empty cell at distance at
least 7 from D

8 drop the brick and return to ¢

9 if there exists a free component C then

10 pick the brick from marker and place it at distance 3 from the rough disc and at
distance 4 from C, creating a new marker

11 go to the marker

the notion of the robot going in direction away from the rough disc D. This is the direction
which strictly increases the distance between the robot and the rough disc. In the case where
there are two such directions, we use priority North, East, South, West.

ESA 2019
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3.2 Finding the next brick

The high-level idea of procedure FindNextBrick is the following. In may happen that the
cells that belong to a free component C and are close to the marker cannot be rearranged in
such a way that the robot be able to obtain a brick that it can then use to extend the rough
disc and at the same time keep the connectivity of C and ensure that C remains close to the
marker. Thus, the robot has to retrieve the needed brick by following a potentially long
walk; we will call it a search walk and formally define it below. The search walk needs to be
carefully chosen to ensure that it ends at a location where it is possible to find the desired
brick and so that the robot be able to return to the marker. Moreover, this walk has to be
sufficiently short to guarantee the time O(sz) of the algorithm, i.e., the length of each walk
must be O(s). We ensure the latter as follows: each search walk W leads alternatingly in
two non-opposite directions, e.g., North and West. The return is guaranteed by repeatedly
performing an action called switch while walking along W, which we formally describe later.
Intuitively speaking, the switch eliminates the cells adjacent to VW at which the robot may
incorrectly turn on its way back to the marker. The switch potentially disconnects the
component but the robot is able to recover the connectivity while backtracking along W.
Finally, we will describe how the desired brick can be found at the end of W.

3.2.1 Search walks

Suppose that the robot is currently at a full cell and there is a full cell in front of the robot.

A left-free (respectively right-free) segment consists of all full cells that will be visited by the

robot that moves without changing its direction until one of the following conditions holds:

(S1) the robot arrives at a full cell that has an empty cell in front of it and has an empty
cell to the left (respectively right) of it; such a segment is called terminal,

(S2) the robot arrives at the first special cell such that the cell to the left (respectively right)
of the robot is full.

Whenever the orientation is not important or clear from the context we will refer to a
left-free or right-free segment by saying segment. Note that not every special cell terminates
the above sequence of moves.

We now define a search walk WV of the robot in an arbitrary component C (cf. the example
in Fig. 2). A search walk depends on the initial position of the robot in C and on its
orientation. We make two assumptions in the definition: the robot is initially located at a
full cell of C and, if |C| > 1, then there is a full cell in front of the robot. The search walk W
is a concatenation of segments. The first segment is both left-free and right-free. If the cell ¢
at the end of this segment is a leaf, then the construction of W is completed. Otherwise,
note that there is a full cell to the left of the robot located at ¢ or to the right of it. In
the former case, the search walk is called left-oriented and in the latter it is right-oriented.
Intuitively, a left-oriented search walk prescribes going straight until it is possible to go left,
then going straight until it is possible to go right, and so on, alternating directions, until a
stop condition is satisfied. A similar intuition concerns right-oriented search walks.

More formally, if |C| > 1, then the search walk W counsists of a single cell. Otherwise, in
a right-oriented (respectively left-oriented) search walk, the segments are sequentially added
to W, cyclically alternating the following construction steps.

(W1) The robot traverses a right-free (respectively left-free) segment, adding it to W. This
segment becomes the last segment in W if it is a terminal. If the segment is not the
last one, then the robot turns right (respectively left).
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(W2) The robot traverses a left-free (respectively right-free) segment, adding it to W. This
segment becomes the last segment in W if it is a terminal. If the segment is not the
last one, then the robot turns left (respectively right).

a

e ]

1 (e

O O O a

O 0 (Rl
17
O ™

Figure 2 An example of a search walk W = (w1,...,w20) that is constructed by the robot
initially located at wi and facing North. This search walk is left-oriented, and has three left-free
segments S1 = (w1, w2, ws3), S3 = (ws,wy,w10), S5 = (w11, wi2) and three right-free segments
SQ = ('LU37 e ,ws), S4 = (wlo,wu), S6 = (’w12, . ,'LUQ()).

3.2.2 Ensuring the return from a search walk

We start with a high-level idea of the mechanism that will ensure the return from a search
walk. Whenever the robot follows a search walk W, it may a priori not be able to return to
the origin of W. This is due to the fact that, e.g., if W is left-oriented, then any segment
that is right-free may have an unbounded number of special cells such that each of them
is adjacent to a cell that does not belong to WW. Thus, the returning robot is not able to
remember, using its bounded memory, which of such cells do not belong to the search walk
and should be skipped. To overcome this difficulty, the robot will make small changes in
the field close to the search walk while traversing it for the first time. These changes may
disconnect the component in which the robot is walking, and this may result in creating
many new components. While doing so, we will ensure two properties. First, thanks to the
modifications in the field performed while traversing W, the robot is able to return to the
first cell of this search walk. Second, while backtracking on W, the robot is able to undo
earlier changes and recover the connectivity of the component.

Each cell ¢ at which the robot stops to perform the above-mentioned modification will
be called a break point and is defined as follows. First, we require that ¢ be an internal
cell of a segment S, i.e., neither the first nor the last cell of S. Second, if S is left-free
(respectively right-free), then when the robot traversing S is at ¢, there is a full cell f to the
right (respectively left) of it. Clearly, the cell e to the left (respectively right) of the robot is
empty. The following couple of actions performed by the robot located at such a cell ¢ are
called a switch: if the robot is not carrying a brick, then the robot brings the brick from
f and then places it at e, and if the robot is carrying a brick, then the robot places it at
e and then brings the brick from f. Note that the switch may disconnect the component
in which the robot is located thus creating two new components. One new component is
the one in which the robot is located and this is the component that contains the search
walk. The second new component is the one that contains the cell f’ adjacent to f and at
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distance two from ¢, if f’ is full. If the cell f’ is full and belongs to a separate component,
then this second component containing f’ will be called a switch-component. Whenever the
robot traversing a segment performs the switch at each internal special cell of the segment,
we say that this is a switch-traversal (cf. the example in Fig. 3).

D
w20
Wi || wig | W17 || Wie || Wis || W14 || W13 || W12
D f6 f5 f4
D fl

f2

HER T

Figure 3 The field from Figure 2 after switch-traversal of the search walk from Figure 2. The
cells we, wr, wo, w13, w15 and wie are the break points at which the robot moves a brick from a cell
fi to e; for i € {1,...,6}. Note that a brick is moved from fs to es while traversing the second
segment and then the same brick is moved to es while traversing the third segment.

3.2.3 Obtaining a brick at the end of a search walk

Informally, the purpose of traversing the entire search walk by a robot is to arrive at a
location in the current component C of the robot, where the robot can start a procedure
aimed at obtaining a brick whose removal will not disconnect C. We will say that such a
brick is free. In our algorithm, we check the condition (S1) to learn if the last segment is
terminal. According to the condition, the terminal segment may end with a leaf, and in such
a case the robot is at a cell with a free brick. If the terminal segment does not end with
a leaf, then there need not exist a free brick located in a close neighborhood of the robot.
However, we will prove that it is possible to perform a series of changes to the field that
results in creating a configuration of bricks that does contain a free brick.

We now define the behavior of the robot that ended the switch-traversal of the last
segment S of a search walk W and arrived at a cell that is not a leaf. The following series of
moves is called shifting (cf. Fig. 4). Suppose that the cell to the right (respectively left) of
the robot is full. Note that this implies that S is left-free (respectively right-free). First the
robot changes its direction so that a cell of S is in front of it (i.e., the robot turns back). The
following three actions are performed until the stop condition specified in the third action
occurs. First, the robot picks the brick from the currently occupied cell. Second, the robot
moves one step forward — thus backtracking along S. Third, when the robot is at a special
cell, then the shifting is completed, and otherwise the robot places the brick at the cell to
the left (respectively right) of it. Note that when the robot arrives at a special cell, it is
carrying a brick and this is the desired free brick.

We now give the pseudo-code of procedure FindNextBrick that obtains this brick.
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Figure 4 The field from Fig. 3 at the end of shifting. The shifting ends with a right-free segment,
at the cell wis because it has a full neighbor, the cell es. There is one fewer brick than in Fig. 3
and this is the free brick obtained and carried by the robot.

Procedure FindNextBrick finding a free brick.

W := the search walk that starts at the cell where the robot is located
go to the nearest cell belonging to a free component
perform a switch-traversal of VW
if the robot is at a leaf then
pick the brick
else
perform shifting

N G R w N R

3.3 Back to the marker

Before presenting the high-level idea of procedure ReturnToMarker that takes the robot
carrying a brick back to the marker, we need the following definitions. If S is a segment,
then the reversal of S, denoted by ¢(S), is the segment composed of the same cells as S but
in the reversed order. For a search walk W that is a concatenation of segments Sy, ..., 5],
define the reversal of W, denoted by ¢(W), to be the walk that is the concatenation of
segments ©(51), (Si—1),...,©(S1), in this order. Thus, following ¢ (W) means backtracking
along W, and in this section we give a procedure performing it, that reconnects the previous
free component on the way. We also define the orientation of (W) as follows. If the last

segment of W is left-free, then (W) is left-oriented, and otherwise p(W) is right-oriented.

Thus, if W ended with a left-free (respectively right-free) segment, then (W) also starts
with a left-free (respectively right-free) segment.

At a high level, the robot will perform a switch-traversal along (W), stopping at each
break point to reconnect the corresponding switch-component with the component in which
the robot is walking. However, we need to ensure that, at the end, the robot stops at the
right point, i.e., at the marker. In order to ensure this, we define the following condition:

(S1’) the robot arrives at a cell at distance at most 4 from the marker.

We define a return switch-traversal of o(WW) to be a switch-traversal of ¢(W) in which each
verification of condition (S1) is replaced by the verification of condition (S1’). Recall that the
condition (S1) is checked in the definition of a switch-traversal to determine the termination
of a segment and consequently the termination of the entire search walk. Intuitively, by
replacing condition (S1) with (S1’) we change the behavior of the robot so that it is looking
for the marker while backtracking along W, i.e., going along p(W).
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A high-level sketch of procedure ReturnToMarker is the following. As indicated earlier,
the robot essentially follows ¢(W) and, as the return switch-traversal dictates, reconnects
the switch components. However, there is one special case in which the robot should not
perform a switch while being at a cell ¢’ of (W), although ¢’ satisfies the definition of a
break point. This case occurs if the shifting moved all internal cells of the last segment
of W. In this case, it is enough for the robot to move to the next cell after ¢’ and start
the return switch-traversal of (W) from there. This is feasible because the cell ¢ and its
neighbors are at a bounded distance from the robot when the shifting is completed. Below is
the pseudo-code of procedure ReturnToMarker.

Procedure ReturnToMarker going back to the marker.

W := the search walk traversed in the last call to FindNextBrick
let S1,...,S5; be the segments in W
if the robot is at the first cell of S; then

turn towards the penultimate cell of S;_

move min{2, |S;_1| — 1} cells forward

o ok W N -

if |S;—1] = 2 and I > 2, then make a turn towards the penultimate cell of S;_5
7 starting at the current location, perform a return switch-traversal of (W)
8 go to the marker

3.4 Extending the rough disc

The aim of procedure ExtendRoughDisc is double: it adds a new brick to the current rough
disc in a specific place, and it calls procedure Sweep to extend, if necessary, the empty
space around the rough disc and to ensure that the marker is close to some free component.
Whenever procedure ExtendRoughDisc is called, the following conditions will be satisfied:
the robot is at the marker and it is carrying a brick.

Below is the pseudo-code of procedure ExtendRoughDisc.

Procedure ExtendRoughDisc adding one brick to the rough disc D.

1 place the brick at the unique cell e such that D U {e} is a rough disc
2 call procedure Sweep

Now the pseudo-code of the entire algorithm can be succinctly formulated as follows.

Algorithm Nest building a nest from any connected field.

if the span of the field is at most 2 then
exit > the field is already a nest
the cell occupied by the robot becomes the marker
a full cell at distance 2 from the marker becomes the initial rough disc
call procedure Sweep
while there exists a free component C do
call procedure FindNextBrick
call procedure ReturnToMarker
call procedure ExtendRoughDisc > moves the marker if necessary

© 0 N O ok W N =

o
o

pick the brick (the marker) and place it at the unique cell e of the rough disc D such
that D U {e} is a rough disc
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The following is the main result of this paper. Its proof is omitted due to space limitation.

» Theorem 3. Algorithm Nest builds a nest starting from any connected field of size z and
span s in time O(sz). This time is worst-case optimal.

4  Conclusion

We designed a finite deterministic automaton that builds the most compact structure starting
from any connected field of bricks, and does it in optimal time. An interesting problem
yielded by our research is to characterize the classes of target structures that can be built by
a single automaton, starting from any connected field of bricks in the grid. Another problem
is that of how the building task parallelizes, i.e., how much time many automata use to build
some structure.
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