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Abstract
We develop a framework for generalizing approximation algorithms from the structural graph
algorithm literature so that they apply to graphs somewhat close to that class (a scenario we
expect is common when working with real-world networks) while still guaranteeing approximation
ratios. The idea is to edit a given graph via vertex- or edge-deletions to put the graph into an
algorithmically tractable class, apply known approximation algorithms for that class, and then
lift the solution to apply to the original graph. We give a general characterization of when an
optimization problem is amenable to this approach, and show that it includes many well-studied
graph problems, such as Independent Set, Vertex Cover, Feedback Vertex Set, Minimum
Maximal Matching, Chromatic Number, (`-)Dominating Set, Edge (`-)Dominating Set,
and Connected Dominating Set.

To enable this framework, we develop new editing algorithms that find the approximately-
fewest edits required to bring a given graph into one of a few important graph classes (in some
cases these are bicriteria algorithms which simultaneously approximate both the number of editing
operations and the target parameter of the family). For bounded degeneracy, we obtain an O(r logn)-
approximation and a bicriteria (4, 4)-approximation which also extends to a smoother bicriteria
trade-off. For bounded treewidth, we obtain a bicriteria (O(log1.5 n), O(

√
logw))-approximation,

and for bounded pathwidth, we obtain a bicriteria (O(log1.5 n), O(
√

logw · logn))-approximation.
For treedepth 2 (related to bounded expansion), we obtain a 4-approximation. We also prove
complementary hardness-of-approximation results assuming P 6= NP: in particular, these problems
are all log-factor inapproximable, except the last which is not approximable below some constant
factor 2 (assuming UGC).
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1 Introduction

Network science has empirically established that real-world networks (social, biological,
computer, etc.) exhibit sparse structure. Theoretical computer science has shown that graphs
with certain structural properties enable significantly better approximation algorithms for
hard problems. Unfortunately, the experimentally observed structures and the theoretically
required structures are generally not the same: mathematical graph classes are rigidly defined,
while real-world data is noisy and full of exceptions. This paper provides a framework for
extending approximation guarantees from existing rigid classes to broader, more flexible
graph families that are more likely to include real-world networks.

Specifically, we hypothesize that most real-world networks are in fact small perturba-
tions of graphs from a structural class, that is, a family of graphs which adhere to
some specified structure (e.g. treewidth at most w) [9, 29]. Intuitively, these perturbations
may be exceptions caused by unusual/atypical behavior (e.g., weak links rarely expressing
themselves), natural variation from an underlying model, or noise caused by measurement
error or uncertainty. Formally, a graph is γ-close to a structural class C, where γ ∈ N, if
some γ edits (e.g., vertex deletions, edge deletions, or edge contractions) bring the graph
into class C1. (Other papers call this the “noisy setting” [44, 12, 4].)

Our goal is to extend existing approximation algorithms for a structural class C to apply
more broadly to graphs γ-close to C. To achieve this goal, we need two algorithmic ingredients:
1. Editing algorithms. Given a graph G that is γ-close to a structural class C, find

a sequence of f(γ) edits that result in a member of C. When the structural class is
parameterized (e.g., treewidth ≤ w), we may also approximate those parameters.

2. Structural rounding algorithms. Develop approximation algorithms for optimization
problems on graphs γ-close to a structural class C by converting ρ-approximate solutions
on an edited graph in class C into g(ρ, γ)-approximate solutions on the original graph.

1.1 Our Results: Structural Rounding
In Section 4, we present a general metatheorem giving sufficient conditions for an optimization
problem to be amenable to the structural rounding framework. Specifically, if a problem
Π has an approximation algorithm in structural class C, the problem and its solutions are
“stable” under an edit operation, and there is an α-approximate algorithm for editing to
C, then we get an approximation algorithm for solving Π on graphs γ-close to C. The new
approximation algorithm incurs an additive error of O(γ), so we preserve PTAS-like (1 + ε)
approximation factors provided γ ≤ δOPTΠ for a suitable constant δ = δ(ε, α) > 0. Our
metatheorem generalizes previous analysis of two specific problems [4].

1 Note that the number of these edits could be super-constant. The number of edits could be as large as
O(m+ n), the size of the graph.
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For example, we obtain (1 +O(δ log1.5 n))-approximation algorithms for Vertex Cover,
Feedback Vertex Set, Minimum Maximal Matching, and Chromatic Number on
graphs (δ ·OPTΠ(G))-close to having treewidth w via vertex deletions (generalizing exact
algorithms for bounded treewidth graphs); and we obtain a (1− 4δ)/(4r + 1)-approximation
algorithm for Independent Set on graphs (δ · OPTΠ(G))-close to having degeneracy r
(generalizing a 1/r-approximation for degeneracy-r graphs). These results use our new
algorithms for editing to treewidth-w and degeneracy-r graph classes as summarized next.

1.2 Our Results: Editing
We develop editing approximation algorithms and/or hardness-of-approximation results for
six well-studied graph classes: bounded degeneracy, bounded treewidth and pathwidth,
bounded clique number, bounded treedepth, bounded weak c-coloring number, and bounded
degree. Refer to the full version of this paper ([18]) for details about these classes. Table 1
summarizes our results for the bounded degeneracy and bounded treewidth classes which
we use in our structural rounding framework to find approximate solutions for some classic
problems. Refer to the full version of this paper ([18]) for an overview of our results for the
rest of the aforementioned graph classes.

Table 1 Summary of results for (Cλ, ψ)-Edit problems, i.e. finding the minimum number of
ψ-edits needed to obtain a graph in class Cλ (including abbreviations and standard parameter
notation). For each combination we give a shorthand problem name in bold (e.g. r-DE-V). “Approx.”
denotes a polynomial-time approximation or bicriteria approximation algorithm (see Section 3);
“inapprox.” denotes inapproximability assuming P 6= NP unless otherwise specified.

Graph
Family Cλ

Edit Operation ψ

Vertex Deletion Edge Deletion

Bounded
Degeneracy (r)

r-DE-V
O(r logn)-approx.( 4m−βrn
m−rn , β

)
-approx.(

1
ε
, 4

1−2ε

)
-approx. (ε < 1/2)

o(log(n/r))-inapprox.

r-DE-E
O(r logn)-approx.

–(
1
ε
, 4

1−ε

)
-approx. (ε < 1)

o(log(n/r))-inapprox.

Bounded
Treewidth (w)

w-TW-V
(O(log1.5 n), O(

√
logw))-approx.

o(logn)-inapprox. for w ∈ Ω(n1/2)

w-TW-E
(O(logn log logn), O(logw))-approx. [4]

–

1.3 Related Work
Editing to approximate optimization problems. The most closely related results are in
the “noisy setting” introduced by Magen and Moharrami [44], which imagines that the “true”
graph lies in the structural graph class that we want, and any extra edges observed in the
given graph are “noise.” In this model, Magen and Moharrami [44] developed a PTAS for
estimating the size of Independent Set (IS) in graphs that are δn edits away from a
minor-closed graph family (for sufficiently small values of δ). However, they provide no
method for actually finding a solution set of vertices that achieves this approximation [44].
Later, Chan and Har-Peled [12] developed a PTAS that returns a (1 + ε)-approximation to
IS in noisy planar graphs. More recently, Bansal et al. [4] developed an LP-based approach
for noisy minor-closed IS whose runtime and approximation factor achieve better dependence
on δ but only for edge edits. Moreover, they provide a similar guarantee for noisy Max
k-CSPs also for edge edits [4]. Their approximation analysis resembles our general analysis
of the structural rounding framework.

ESA 2019
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Another related set of approximation algorithms near a graph class are parameterized
approximations, meaning that they run in polynomial time only when the number of edits
is very small (constant or logarithmic input size). This research direction was initiated by
Cai [11]; see the survey and results of Marx [46, Section 3.2] and e.g. [30, 45]. An example of
one such result is a 7

3 -approximation algorithm to Chromatic Number in graphs that become

planar after γ vertex edits, with a running time of f(γ) ·O(n2), where f(γ) is at least 2222Ω(γ)

(from the use of Courcelle’s Theorem), limiting its polynomial-time use to when the number
of edits satisfies γ = O(lg lg lg lgn). In contrast, our algorithms allow up to δOPTΠ edits.

Editing algorithms. Editing graphs into a desired graph class is an active field of research
and has various applications outside of graph theory, including computer vision and pattern
matching [28]. In general, the editing problem is to delete a minimum set X of vertices (or
edges) in an input graph G such that the result G[V \X] has a specific property. Previous work
studied this problem from the perspective of identifying the maximum induced subgraph of
G that satisfies a desired “nontrivial, hereditary” property [39, 41, 42, 56]. A graph property
π is nontrivial if and only if infinitely many graphs satisfy π and infinitely many do not,
and π is hereditary if G satisfying π implies that every induced subgraph of G satisfies
π. The vertex-deletion problem for any nontrivial, hereditary property has been shown to
be NP-complete [42] and even requires exponential time to solve, assuming the ETH [37].
Approximation algorithms for such problems have also been studied in this domain [27, 43, 52],
but in general this problem requires additional restrictions on the input graph and/or output
graph properties in order to develop fast algorithms [17, 20, 22, 33, 38, 48, 49, 55].

Much past work on editing is on parameterized algorithms. For example, Dabrowski et
al. [17] found that editing a graph to have a given degree sequence is W[1]-complete, but if one
additionally requires that the final graph be planar, the problem becomes Fixed Parameter
Tractable (FPT). Mathieson [48] showed that editing to degeneracy d is W[P]-hard (even if
the original graph has degeneracy d+ 1 or maximum degree 2d+ 1), but suggests that classes
which offer a balance between the overly rigid restrictions of bounded degree and the overly
global condition of bounded degeneracy (e.g., structurally sparse classes such as H-minor-free
and bounded expansion [51]) may still be FPT. Some positive results on the parameterized
complexity of editing to classes can be found in Drange’s 2015 PhD thesis [20]; in particular,
the results mentioned include parameterized algorithms for a variety of NP-complete editing
problems such as editing to threshold and chain graphs [22], star forests [22], multipartite
cluster graphs [25], and H-free graphs given finite H and bounded indegree [21].

Our approach differs from this prior work in that we focus on approximations of edit
distance that are polynomial-time approximation algorithms. There are previous
results about approximate edit distance by Fomin et al. [26] and, in a very recent result
regarding approximate edit distance to bounded treewidth graphs, by Gupta et al. [31].
Fomin et al. [26] provided two types of algorithms for vertex editing to planar F -minor-free
graphs: a randomized algorithm that runs in O(f(F) ·mn) time with an approximation
constant cF that depends on F , as well as a fixed-parameter algorithm parameterized by the
size of the edit set whose running time thus has an exponential dependence on the size of this
edit set. Agrawal et al. [1] recently provided a O(log1.5 n)-approximation via a parameterized
algorithm for the Weighted F Vertex Deletion problem (among some other problems)
where F is a minor-closed family excluding at least one planar graph.

Gupta et al. [31] strengthen the results in [26] but only in the context of parameter-
ized approximation algorithms. Namely, they give a deterministic fixed-parameter
algorithm for Planar F-Deletion that runs in f(F) · n logn + nO(1) time and an
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O(log k)-approximation where k is the maximum number of vertices in any planar graph
in F ; this implies a fixed-parameter O(logw)-approximation algorithm with running time
2O(w2 logw) · n logn+ nO(1) for w-TW-V and w-PW-V. They also show that w-TW-E and
w-PW-E have parameterized algorithms that give an absolute constant factor approximation
but with running times parameterized by w and the maximum degree of the graph [31].
Finally, they show that when F is the set of all connected graphs with three vertices, deleting
the minimum number of edges to exclude F as a subgraph, minor, or immersion is APX-hard
for bounded degree graphs [31]. Again, these running times are weaker than our results, which
give bicriteria approximation algorithms that are polynomial without any parameterization
on the treewidth or pathwidth of the target graphs. Here, bicriteria relates to the number of
editing operations and the target parameter.

In a similar regime, Bansal et al. [4] studied w-TW-E (which implies an algorithm for
w-PW-E) and designed an LP-based bicriteria approximation for this problem. For a slightly
different set of problems in which the goal is to exclude a single graph H of size k as a
subgraph (H-Vertex-Deletion), there exists a simple k-approximation algorithm. On the
hardness side, Guruswami and Lee [32] proved that whenever H is 2-vertex-connected, it is
NP-hard to approximate H-Vertex-Deletion within a factor of (|V (H)| − 1− ε) for any
ε > 0 (|V (H)|−ε assuming UGC). Moreover, when H is a star or simple path with k vertices,
O(log k)-approximation algorithms with running time 2O(k3 log k) · nO(1) are known [32, 40].

An important special case of the problem of editing graphs into a desired class is
the minimum planarization problem, in which the target class is planar graphs, and the
related application is approximating the well-known crossing number problem [15]. Refer
to [7, 13, 14, 34, 36, 35, 47, 54] for the recent developments on minimum planarization and
crossing number.

2 Techniques

This section summarizes the main techniques, ideas, and contributions in the paper.

2.1 Structural Rounding Framework

The main contribution of our structural rounding framework (Section 4) is establishing the
right definitions that make for a broadly applicable framework with precise approximation
guarantees. Our framework supports arbitrary graph edit operations and both minimization
and maximization problems, provided they jointly satisfy two properties: a combinatorial
property called “stability” and an algorithmic property called “structural lifting”. Roughly,
these properties bound the amount of change that OPT can undergo from each edit operation,
but they are also parameterized to enable us to derive tighter bounds when the problem has
additional structure. With the right definitions in place, the framework is simple: edit to the
target class, apply an existing approximation algorithm, and lift.

The rest of Section 4 shows that this framework applies to many different graph opti-
mization problems. In particular, we verify the stability and structural lifting properties,
and combine all the necessary pieces, including our editing algorithms from Section 5 and
existing approximation algorithms for structural graph classes. We summarize all of these
results in Table 2 and formally define the framework in Section 4.1.

ESA 2019



37:6 Structural Rounding

Table 2 Problems for which structural rounding (Theorem 4.4) results in approximation algorithms
for graphs near the structural class C, where the problem has a ρ(λ)-approximation algorithm. We
also give the associated stability (c′) and lifting (c) constants, which are class-independent. The last
column shows the running time of the ρ(λ)-approximation algorithm for each problem provided an
input graph from class Cλ. We remark that vertex∗ is used to emphasize the rounding process has
to pick the set of annotated vertices in the edited set carefully to achieve the associated stability
and lifting constants. We provide precise problem statements in the full version of this paper ([18]).

Problem Edit ψ c′ c Class Cλ ρ(λ) runtime
Independent Set (IS) vertex del. 1 0 degeneracy r 1

r+1 polytime
Annotated Dominating Set (ADS) vertex∗ del. 0 1 degeneracy r O(r) polytime [5]a
Independent Set (IS) vertex del. 1 0 treewidth w 1 O(2wn) [2]
Annotated Dominating Set (ADS) vertex∗ del. 0 1 treewidth w 1 O(3wn)
Annotated (`-)Dominating Set (ADS) vertex∗ del. 0 1 treewidth w 1 O((2`+ 1)wn) [10]
Connected Dominating Set (CDS) vertex∗ del. 0 3 treewidth w 1 O(nw)b

Vertex Cover (VC) vertex del. 0 1 treewidth w 1 O(2wn) [2]
Feedback Vertex Set (FVS) vertex del. 0 1 treewidth w 1 2O(w)nO(1) [16]
Minimum Maximal Matching (MMM) vertex del. 0 1 treewidth w 1 O(3wn)c

Chromatic Number (CRN) vertex del. 0 1 treewidth w 1 wO(w)nO(1)

Independent Set (IS) edge del. 0 1 degeneracy r 1
r+1 polytime

Dominating Set (DS) edge del. 1 0 degeneracy r O(r) polytime [5]
(`-)Dominating Set (DS) edge del. 1 0 treewidth w 1 O((2`+ 1)wn) [10]
Edge (`-)Dominating Set (EDS) edge del. 1 1 treewidth w 1 O((2`+ 1)wn) [10]
Max-Cut (MC) edge del. 1 0 treewidth w 1 O(2wn) [19]

a The approximation algorithm of [5] is analyzed only for DS; however, it is straightforward to show that
the same algorithm achieves O(r)-approximation for ADS as well.

b Our rounding framework needs to solve an annotated version of CDS which can be solved in O(nw) by
modifying the O(wwn) dynamic-programming approach of DS.

c The same dynamic-programming approach of DS can be modified to solve ADS and MMM in O(3wn).

2.2 Editing to Bounded Degeneracy and Degree

We first present a O(r logn)-approximation algorithm for finding the fewest vertex or edge
deletions to reduce the degeneracy to a target threshold r. The algorithm is a greedy
algorithm over a type of min-degree ordering computed via the classic algorithm for
finding the degeneracy of a graph G given by Matula and Beck [50]. In addition, we present
two constant-factor bicriteria approximation algorithms for the same editing problem to
degeneracy r. We provide a summary of the techniques used to obtain our results here;
refer to the full version of this paper to see a detailed description of our techniques ([18]).
The first approach uses the local ratio technique by Bar-Yehuda et al. [6] to establish that
good-enough local choices result in a guaranteed approximation. The second approach is
based on rounding a linear-programming relaxation of an integer linear program and works
even when the input graph is weighted (both vertices and edges are weighted) and the goal
is to minimize the total weight of the edit set.

On the lower bound side, we show o(log(n/r))-approximation is impossible for vertex or
edge edits when we forbid bicriteria approximation, i.e., when we must match the target
degeneracy r exactly. This result is based on a reduction from Set Cover. A similar
reduction proves o(log d)-inapproximability of editing to maximum degree d, which proves
tightness (up to constant factors) of a known O(log d)-approximation algorithm [23].
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2.3 Editing to Bounded Treewidth

We present a bicriteria approximation algorithm in the full version ([18]) for finding the
fewest vertex edits to reduce the treewidth to a target threshold w. Our approach builds
on the deep separator structure inherent in treewidth. We combine ideas from Bodlaender’s
O(logn)-approximation algorithm for treewidth with Feige et al.’s O(

√
logw)-approximation

algorithm for vertex separators [24] (where w is the target treewidth). In the end, we
obtain a bicriteria (O(log1.5 n), O(

√
logw))-approximation that runs in polynomial time on

all graphs (in contrast to many previous treewidth algorithms). The tree decompositions that
we generate are guaranteed to have O(logn) height. As a result, we also show a bicriteria
(O(log1.5 n), O(

√
logw · logn))-approximation result for pathwidth, based on the fact that

the pathwidth is at most the width times the height of a tree decomposition.
On the lower bound side, we prove a o(logw)-inapproximability result by another reduction

from Set Cover. By a small modification, this lower bound also applies to editing to
bounded clique number.

3 Preliminaries

This section defines several standard notions and graph classes, and is probably best used as
a reference. The one exception is Section 3.1, which formally defines the graph-class editing
problem (Cλ, ψ)-Edit introduced in this paper.

Graph notation. We consider finite, loopless, simple graphs. Unless otherwise specified,
we assume that graphs are undirected and unweighted. We denote a graph by G = (V,E),
and set n = |V |, m = |E|. Given G = (V,E) and two vertices u, v ∈ V we denote edges by
e(u, v) or (u, v). We write N(v) = {u | (u, v) ∈ E} for the set of neighbors of a vertex v; the
degree of v is deg(v) = |N(v)|. In digraphs, in-neighbors and out-neighbors of a vertex v
are defined using edges of the form (u, v) and (v, u), respectively, and we denote in- and
out-degree by deg-(v),deg+(v), respectively. For the maximum degree of G we use ∆(G), or
just ∆ if context is clear. The clique number of G, denoted ω(G), is the size of the largest
clique in G. Given some subset E′ of the edges in G, we define G[E′] to be the subgraph of
G induced on the edge set E′. Note that if every edge adjacent to some vertex v is in E \E′,
then v does not appear in the vertex set of G[E′].

We present below our definitions of editing problems that we consider in this paper.
Please refer to the full version of this paper ([18]) for complete definitions of the structural
graph classes, hardness reduction techniques, and hard optimization problems for which we
provide approximation algorithms.

3.1 Editing Problems

This paper is concerned with algorithms that edit graphs into a desired structural class, while
guaranteeing an approximation ratio on the size of the edit set. Besides its own importance,
editing graphs into structural classes plays a key role in our structural rounding framework
for approximating optimization problems on graphs that are “close” to structural graph
classes (see Section 4). The basic editing problem is defined as follows relative to an edit
operation ψ such as vertex deletion, edge deletion, or edge contraction:

ESA 2019



37:8 Structural Rounding

Input: An input graph G = (V,E), family C of graphs, edit operation ψ
Problem: Find k edits ψ1, ψ2, . . . , ψk such that ψk ◦ ψk−1 ◦ · · · ◦ ψ2 ◦ ψ1(G) ∈ C.
Objective: Minimize k

(C, ψ)-Edit parametrised by

We can also loosen the graph class we are aiming for, and approximate the parameter
value λ for the family Cλ. Thus we obtain a bicriteria problem which can be formalized
as follows:

Input: An input graph G = (V,E), parameterized family Cλ of graphs, a target parameter
value λ∗, edit operation ψ

Problem: Find k edits ψ1, ψ2, . . . , ψk such that ψk ◦ ψk−1 ◦ · · · ◦ ψ2 ◦ ψ1(G) ∈ Cλ where
λ ≥ λ∗.

Objective: Minimize k.

(Cλ, ψ)-Edit parametrised by

I Definition 3.1. An algorithm for (Cλ, ψ)-Edit is a (bicriteria) (α, β)-approximation
if it guarantees that the number of edits is at most α times the optimal number of edits
into Cλ, and that λ ≤ β · λ∗.

See the full version of this paper for a complete list of the problems considered, along with
their abbreviations. Recall that ρ(λ) is the approximation factor for a problem in class C.
We assume that Ci ⊆ Cj for i ≤ j, or equivalently, that ρ(λ) is monotonically increasing in λ.

4 Structural Rounding

In this section, we show how approximation algorithms for a structural graph class can
be extended to graphs that are near that class, provided we can find a certificate of being
near the class. These results thus motivate our results in later sections about editing to
structural graph classes. Our general approach, which we call structural rounding, is
to apply existing approximation algorithms on the edited (“rounded”) graph in the class,
then “lift” that solution to solve the original graph, while bounding the loss in solution
quality throughout.

4.1 General Framework

First we define our notion of “closeness” in terms of a general family ψ of allowable graph
edit operations (e.g., vertex deletion, edge deletion, edge contraction):

I Definition 4.1. A graph G′ is γ-editable from a graph G under edit operation ψ if there is
a sequence of k ≤ γ edits ψ1, ψ2, . . . , ψk of type ψ such that G′ = ψk ◦ψk−1 ◦ · · · ◦ψ2 ◦ψ1(G).
A graph G is γ-close to a graph class C under ψ if some G′ ∈ C is γ-editable from G under ψ.

To transform an approximation algorithm for a graph class C into an approximation
algorithm for graphs γ-close to C, we will need two properties relating the optimization
problem and the type of edits:
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I Definition 4.2. A graph minimization (resp. maximization) problem Π is stable under
an edit operation ψ with constant c′ if OPTΠ(G′) ≤ OPTΠ(G) + c′γ (resp. OPTΠ(G′) ≥
OPTΠ(G) − c′γ) for any graph G′ that is γ-editable from G under ψ. In the special case
where c′ = 0, we call Π closed under ψ. When ψ is vertex deletion, closure is equivalent to
the graph class defined by OPTΠ(G) ≤ λ (resp. OPTΠ(G) ≥ λ) being hereditary; we also
call Π hereditary.

I Definition 4.3. A minimization (resp. maximization) problem Π can be structurally
lifted with respect to an edit operation ψ with constant c if, given any graph G′ that is
γ-editable from G under ψ, and given the corresponding edit sequence ψ1, ψ2, . . . , ψk with
k ≤ γ, a solution S′ for G′ can be converted in polynomial time to a solution S for G such
that CostΠ(S) ≤ CostΠ(S′) + c · k (resp. CostΠ(S) ≥ CostΠ(S′)− c · k).

Now we can state the main result of structural rounding:

I Theorem 4.4 (Structural Rounding Approximation). Let Π be a minimization (resp. max-
imization) problem that is stable under the edit operation ψ with constant c′ and that can
be structurally lifted with respect to ψ with constant c. If Π has a polynomial-time ρ(λ)-
approximation algorithm in the graph class Cλ, and (Cλ, ψ)-Edit has a polynomial-time
(α, β)-approximation algorithm, then there is a polynomial-time ((1 + c′αδ) · ρ(βλ) + cαδ)-
approximation (resp. ((1− c′αδ) · ρ(βλ)− cαδ)-approximation) algorithm for Π on any graph
that is (δ ·OPTΠ(G))-close to the class Cλ.

Proof. We write OPT(G) for OPTΠ(G). Let G be a graph that is (δ ·OPT(G))-close to the
class Cλ. By Definition 3.1, the polynomial-time (α, β)-approximation algorithm finds edit
operations ψ1, ψ2, . . . , ψk where k ≤ αδ ·OPT(G) such that G′ = ψk ◦ψk−1◦· · ·◦ψ2◦ψ1(G) ∈
Cβλ.Let ρ = ρ(βλ) be the approximation factor we can attain on the graph G′ ∈ Cβλ.

We prove the case when Π is a minimization problem. The proof of the maximization
case can be found in the full version of this paper. Because Π has a ρ-approximation in Cβλ
(where ρ > 1), we can obtain a solution S′ with cost at most ρ · OPT(G′) in polynomial
time. Applying structural lifting (Definition 4.3), we can use S′ to obtain a solution S for G
with Cost(S) ≤ Cost(S′) + ck ≤ Cost(S′) + cαδ ·OPT(G) in polynomial time. Because Π is
stable under ψ with constant c′,

OPT(G′) ≤ OPT(G) + c′k ≤ OPT(G) + c′αδ ·OPT(G) = (1 + c′αδ) OPT(G),

and we have

Cost(S) ≤ ρ ·OPT(G′) + cαδ ·OPT(G) = (ρ+ ρc′αδ + cαδ) OPT(G),

proving that we have a polynomial time (ρ + (c + c′ρ)αδ)-approximation algorithm as
required. J

To apply Theorem 4.4, we need four ingredients: (a) a proof that the problem of interest is
stable under some edit operation (Definition 4.2); (b) a polynomial-time (α, β)-approximation
algorithm for editing under this operation (Definition 3.1); (c) a structural lifting algorithm
(Definition 4.3); and (d) an approximation algorithm for the target class C.

In the remainder of this section, we show how this framework applies to many problems
and graph classes, as summarized in Table 2 on page 6. Most of our approximation algorithms
depend on our editing algorithms described in Section 5.
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Structural rounding for annotated problems. We refer to graph optimization problems
where the input consists of both a graph and subset of annotated vertices/edges as annotated
problems. Hence, in our rounding framework, we have to carefully choose the set of annotated
vertices/edges in the edited graph to guarantee small lifting and stability constants. To
emphasize the difference compared to “standard” structural rounding, we denote the edit
operations as vertex∗ and edge∗ in the annotated cases. Moreover, we show that we can
further leverage the flexibility of annotated rounding to solve non-annotated problems that
cannot normally be solved via structural rounding. In the full version of this paper ([18]), we
consider applications of annotated rounding for both annotated problems such as Annotated
Dominating Set and non-annotated problems such as Connected Dominating Set.

4.2 Applications: Vertex and Edge Deletions
For each problem, we show stability and structural liftability, and use these to conclude
approximation algorithms. Using our structural rounding framework above, we obtain the
following results on a broad set of problems for a number of different target classes. We
point out that these problems are hard-to-solve on general graphs. Table 2 shows a summary
of the set of problems we can obtain efficient approximation algorithms using structural
rounding. The full version of this paper ([18]) contains the stability and structural liftability
proofs used to obtain the corresponding results stated below.

We first use our structural rounding framework with vertex deletions to obtain the
following approximation results.

I Theorem 4.5. For graphs (δ ·OPT(G))-close to degeneracy r via vertex deletions,
Independent Set has a (1− 4δ)/(4r + 1)-approximation.
Annotated Dominating Set has O(r + δ)-approximation.

For graphs (δ ·OPT(G))-close to treewidth w via vertex deletions:
Annotated (`-)Dominating Set has a (1 +O(δ log1.5 n))-approximation for the case
w
√

logw = O(log` n).
Independent Set has a (1−O(δ log1.5 n))-approximation when w

√
logw = O(logn).

The problems Vertex Cover, Chromatic Number, and Feedback Vertex Set
have (1 +O(δ log1.5 n))-approximations when w

√
logw = O(logn).

Minimum Maximal Matching has a (1 + O(δ log1.5 n))-approximation for the case
w log1.5 w = O(logn).
Connected Dominating Set has a (1 +O(δ log1.5 n))-approximation when w = O(1).

Finally, for graphs (δ ·OPT(G))-close to planar-H-minor-free via vertex deletions,
Independent Set has a (1− cHδ)-approximation.
The problems Vertex Cover, Minimum Maximal Matching, Chromatic Number,
and Feedback Vertex Set have (1 + cHδ)-approximations.

We now use our structural rounding framework with edge deletions to obtain the following
approximation results.

I Theorem 4.6. For graphs (δ ·OPT(G))-close to degeneracy r via edge deletions,
Independent Set has a (1/(3r + 1)− 3δ)-approximation.
Dominating Set has an O((1 + δ)r)-approximation.

For graphs (δ ·OPT(G))-close to treewidth w via edge deletions,
(`-)Dominating Set and Edge (`-)Dominating Set have (1 +O(δ logn log logn))-
approximations when w logw = O(log` n).
Max-Cut has a (1−O(δ logn log logn))-approximation when w logw = O(logn).
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Although we do not present any editing algorithms for edge contractions, we point out
that such an editing algorithm would enable our framework to apply to additional problems
such as (Weighted) TSP Tour, and to apply more efficiently to other problems such as
Dominating Set (reducing c′ from 1 to 0).

5 Editing Algorithms

5.1 Degeneracy: Greedy O(r logn)-Approximation

In this section, we give a polytime O(logn)-approximation for reducing the degeneracy of
a graph by one using either vertex deletions or edge deletions. More specifically, given a
graph G = (V,E) with degeneracy r + 1, we produce an edit set X such that G′ = G \X
has degeneracy r and |X| is at most O(log |V |) times the size of an optimal edit set. Note
that this complements an o(log n

r )-inapproximability result for the same problem.
In general, the algorithm works by computing a vertex ordering and greedily choosing an

edit to perform based on that ordering. In our algorithm, we use the min-degree ordering
of a graph. The min-degree ordering is computed via the classic greedy algorithm given
by Matula and Beck [50] that computes the degeneracy of the graph by repeatedly removing
a minimum degree vertex from the graph. The degeneracy of G, degen(G), is the maximum
degree of a vertex when it is removed. In the following proofs, we make use of the observation
that given a min-degree ordering L of the vertices in G = (V,E) and assuming the edges are
oriented from smaller to larger indices in L, deg+(u) ≤ degen(G) for any u ∈ L.

The first ordering L0 is constructed by taking a min-degree ordering on the vertices of G
where ties may be broken arbitrarily. Using L0, an edit is greedily chosen to be added to X.
Each subsequent ordering Li is constructed by taking a min-degree ordering on the vertices
of G \X where ties are broken based on Li−1. Specifically, if the vertices u and v have equal
degree at the time of removal in the process of computing Li, then Li(u) < Li(v) if and only
if Li−1(u) < Li−1(v). The algorithm terminates when the min-degree ordering Lj produces
a witness that the degeneracy of G \X is r.

In order to determine which edit to make at step i, the algorithm first computes the
forward degree of each vertex u based on the ordering Li (equivalently, deg+(u) when edges
are oriented from smaller to larger index in Li). Each vertex with forward degree r + 1
is marked, and similarly, each edge that has a marked left endpoint is also marked. The
algorithm selects the edit that resolves the largest number of marked edges. We say that a
marked edge is resolved if it will not be marked in the subsequent ordering Li+1.

We observe that given an optimal edit set (of size k), removing the elements of the set in
any order will resolve every marked edge after k rounds (assuming that at most one element
from the optimal edit set is removed in each round). If it does not, then the final ordering
Lk must have a vertex with forward degree r + 1, a contradiction. Let mi be the number of
marked edges based on the ordering Li. We show that we can always resolve at least mi

k

marked edges in each round, giving our desired approximation (all proofs of this section are
deferred to the full version of this paper).

By repeatedly applying the O(logn) approximation given above, we can edit a graph
with arbitrary degeneracy to the class of graphs with degeneracy r.

I Theorem 5.1. There exists an O(r · logn)-approximation for finding the minimum size
edit set to reduce the degeneracy of a graph to r.
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5.2 Treewidth: bicriteria-approximation for vertex deletion
Our method for editing to bounded treewidth exploits the general recursive approach of the
approximation algorithms for constructing a tree decomposition [3, 8, 24, 53]. Our algorithm
iteratively subdivides the graph, considering G[Vi] in iteration i. We first apply the result
of [8, 24] (see Theorem 5.2) to determine if G[Vi] has a tree decomposition with “small”
width; if yes, the algorithm removes nothing and terminates. Otherwise, we compute an
approximate vertex (3/4)-separator S of G[Vi], remove it from the graph, and recurse on the
connected components of G[Vi \ S]. The full exposition of our results for editing to bounded
treewidth and pathwidth graphs are given in the full version of this paper.

Algorithm 1 Approximation for Vertex Editing to Bounded Treewidth Graphs.

1: procedure TreeWidthNodeEdit(G = (V,E), w)
2: t← compute tw(G) B refer to Theorem 5.2
3: if t ≤ 32c1 · w

√
logw then

4: return ∅
5: else
6: S ← compute a vertex ( 3

4 )-separator of G by invoking the algorithm of [24]
7: let G[V1], · · · , G[V`] be the connected components of G[V \ S].
8: return

(⋃
i≤` TreeWidthNodeEdit(G[Vi], w)

)
∪ S

9: end if
10: end procedure

I Theorem 5.2 ([8, 24]). There exists an algorithm that, given an input graph G, in
polynomial time returns a tree decomposition of G of width at most c2 · tw(G)

√
log tw(G)

and height O (log |V (G)|) for a sufficiently large constant c2.

Next, we analyze the performance of Algorithm 1. Our approach relies on known results for
vertex c-separators, structures which are used extensively in many other algorithms for
finding an approximate tree decomposition.

I Definition 5.3. For a subset of vertices W , a set of vertices S ⊆ V (G) is a vertex
c-separator of W in G if each component of G[V \ S] contains at most c|W | vertices of
W . The minimum sized vertex c-separator of a graph is a separator with size k, denoted
sepc(G), where k is the minimum integer such that for any subset W ⊆ V there exists a
vertex c-separator of W in G of size k.

I Theorem 5.4. Algorithm 1 removes at most O(log1.5 n) OPTw-TW-V(G) vertices from any
n-vertex graph G. The treewidth of the subgraph of G returned by Algorithm 1 is O(w ·

√
logw).
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