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—— Abstract

We study the problem of k-center clustering with outliers in arbitrary metrics and Euclidean space.

Though a number of methods have been developed in the past decades, it is still quite challenging
to design quality guaranteed algorithm with low complexity for this problem. Our idea is inspired
by the greedy method, Gonzalez’s algorithm, for solving the problem of ordinary k-center clustering.
Based on some novel observations, we show that this greedy strategy actually can handle k-center
clustering with outliers efficiently, in terms of clustering quality and time complexity. We further
show that the greedy approach yields small coreset for the problem in doubling metrics, so as
to reduce the time complexity significantly. Our algorithms are easy to implement in practice.
We test our method on both synthetic and real datasets. The experimental results suggest that
our algorithms can achieve near optimal solutions and yield lower running times comparing with
existing methods.
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1 Introduction

Clustering is one of the most fundamental problems in data analysis [25]. Given a set of
elements, the goal of clustering is to partition the set into several groups based on their
similarities or dissimilarities. Several clustering models have been extensively studied, such
as k-center, k-median, and k-means clustering [9]. In reality, datasets often are noisy and
contain outliers. Moreover, outliers could seriously affect the final results in data analysis [14].
Clustering with outliers can be viewed as a generalization of ordinary clustering problems;
however, the existence of outliers makes the problems to be much more challenging.

We focus on the problem of k-center clustering with outliers in this paper. Given a
metric space with n vertices and a pre-specified number of outliers z < n, the problem is
to find k balls to cover at least n — z vertices and minimize the maximum radius of the
balls. The problem also can be defined in Euclidean space so that the cluster centers can
be any points in the space (i.e., not restricted to be selected from the input points). The
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2-approximation algorithms for ordinary k-center clustering (without outliers) were given
in [18,22], and it was proved that any approximation ratio lower than 2 implies P = N P.
A 3-approximation algorithm for k-center clustering with outliers in arbitrary metrics was
proposed by Charikar et al. [15]; for the problem in Euclidean space, their approximation
ratio becomes 4. A following streaming (4 + €)-approximation algorithm was proposed by
McCutchen and Khuller [33]. Recently, Chakrabarty et al. [13] proposed a 2-approximation
algorithm for metric k-center clustering with outliers (but it is unclear of the resulting
approximation ratio for the problem in Euclidean space). Existing algorithms often have high
time complexities. For example, the complexities of the algorithms in [15,33] are O(kn? log n)
and O(%(kzn + (kz)?log ®)) respectively, where @ is the ratio of the optimal radius to
the smallest pairwise distance among the vertices; the algorithm in [13] needs to solve a
complicated model of linear programming and the exact time complexity is not provided.
The coreset based idea of Badoiu et al. [7] needs to enumerate a large number of possible
cases and also yields a high complexity. Several distributed algorithms for k-center clustering
with outliers were proposed recently [12,19,30,32]; most of these distributed algorithms, to
our best knowledge, rely on the sequential algorithm [15].

In this paper, we aim to design quality guaranteed algorithm with low complexity for
the problem of k-center clustering with outliers. Our idea is inspired by the greedy method
from Gonzalez [18] for solving ordinary k-center clustering. Based on some novel insights,
we show that this greedy method also works for the problem with outliers (Section 2). Our
approach can achieve the approximation ratio 2 with respect to the clustering cost (i.e.,
the radius); moreover, the time complexity is linear in the input size. Charikar et al. [16]
showed that if more than z outliers are allowed to remove, the random sampling technique
can be applied to reduce the data size for metric k-center clustering with outliers. Recently,
Huang et al. [23] showed a similar result for instances in Euclidean space (and they name
the sample as “robust coreset”). In Section 2.3, we prove that the sample size of [23] can be
further reduced.

We also consider the problem in doubling metrics, motivated by the fact that many
real-world datasets often manifest low intrinsic dimensions [8]. For example, image sets
usually can be represented in low dimensional manifold though the Euclidean dimension of
the image vectors can be very high. “Doubling dimension” is widely used for measuring the
intrinsic dimensions of datasets [35] (the formal definition is given in Section 1.1). Rather
than assuming the whole (X, d) has a low doubling dimension, we only assume that the
inliers of the given data have a low doubling dimension p > 0. We do not have any
assumption on the outliers; namely, the outliers can scatter arbitrarily in the space. We
believe that this assumption captures a large range of high dimensional instances in reality.

With the assumption, we show that our approach can further improve the clustering
quality. In particular, the greedy approach is able to construct a coreset for the problem of
k-center clustering with outliers; as a consequence, the time complexity can be significantly
reduced if running existing algorithms on the coreset (Section 3). Coreset construction is
a technique for reducing data size so as to speedup the algorithms for many optimization
problems; we refer the reader to the surveys [5,34] for more details. The size of our coreset
is 2z + O((Z/ ,u)pk‘), where 4 is a small parameter measuring the quality of the coreset;
the construction time is O(( %)f’kn) Note that z and k are often much smaller than n in
practice; the coefficient 2 of z actually can be further reduced to be arbitrarily close to 1,
by increasing the coefficient of the second term (2/u)Pk. Moreover, our coreset is a natural
“composable coreset” [24] which could be potentially applied to distributed clustering with
outliers. Very recently, Ceccarello et al. [12] also provided a coreset for k-center clustering
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with z outliers in doubling metrics, where their size is T = O((k + z)(%)”) with O(nT)
construction time. Thus our result is a significant improvement in terms of coreset size and
construction time. Huang et al. [23] considered the coreset construction for k-median/means
clustering with outliers in doubling metrics, however, their method cannot be extended to the
case of k-center. Aghamolaei and Ghodsi [2] considered the coreset construction in doubling
metrics for ordinary k-center clustering without outliers.

Our proposed algorithms are easy to implement in practice. To study the performance
of our algorithms, we test them on both synthetic and real datasets in Section 4. The
experimental results suggest that our method outperforms existing methods in terms of
clustering quality and running time. Also, the running time can be significantly reduced via
building coreset where the clustering quality can be well preserved simultaneously.

Due to the space limit, some details are omitted here, and we refer the reader to the full
version of our paper.

1.1 Preliminaries

We consider the problem of k-center with outliers in arbitrary metrics and Euclidean space
RP. Let (X,d) be a metric, where X contains n vertices and d(-, -) is the distance function;
with a slight abuse of notation, we also use the function d to denote the shortest distance
between two subsets X1, Xo C X, i.e., d(X1,X2) = minpex, qex, d(p,q). We assume that
the distance between any pair of vertices in X is given in advance; for the problem in

Euclidean space, it takes O(D) time to compute the distance between any pair of points.

Below, we introduce several important definitions that are used throughout the paper.

» Definition 1 (k-Center Clustering with Outliers). Given a metric (X,d) with two positive
integers k and z < n, k-center clustering with outliers is to find a subset X' C X, where

| X'| > n— =z, and k centers {c1,---,c,} € X, such that max,cx mini<;<p d(p,c;) is
minimized. If given a set P of n points in RP, the problem is to find a subset P! C P,
where |P'| > n — z, and k centers {c1,--- ,cx} C RP, such that maxye pr mini <<y ||p — ¢;|

is minimized.

Note. For the sake of convenience, we describe the following definitions only in terms of

metric space. In fact, the definitions can be easily modified for the problem in Euclidean space.

In this paper, we always use Xy, a subset of X with size n — z, to denote the subset
yielding the optimal solution. Also, let {C4,---,Cy} be the k clusters forming X, and
the resulting clustering cost be r,,; that is, each C} is covered by an individual ball with
radius 7opt.

Usually, optimization problems with outliers are challenging to solve. Thus we often relax
our goal and allow to miss a little more outliers in practice. Actually the same relaxation

idea has been adopted by a number of works on clustering with outliers before [3,16,23, 30].

» Definition 2 ((k, z).-Center Clustering). Let (X, d) be an instance of k-center clustering
with z outliers, and ¢ > 0. (k,z).-center clustering is to find a subset X' of X, where
| X'| > n— (14 €)z, such that the corresponding clustering cost of Definition 1 on X'
is minimized.
(i) Given a set A of cluster centers (|A| could be larger than k), the resulting clustering
cost,

i i 'C "'>n—
mln{;rel%?rcrélgd(p,cHX CX,|X'|>n—(1+¢€)z} (1)

is denoted by ¢.(X, A).
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(i) If|A| = k and ¢(X, A) < arop with o > 01, it is called an a-approzimation. Moreover,
if |A| = Bk with 8 > 1, it is called an («, B)-approzimation.

Obviously, the problem in Definition 1 is a special case of (k, z).-center clustering with
€ = 0. Further, Definition 1 and 2 can be naturally extended to weighted case: each vertex
p has a non-negative weight w, and the total weight of outliers should be equal to z; the
distance d(p,c;) in the objective function is replaced by w, - d(p,c;). Then we have the
following definition of coreset.

» Definition 3 (Coreset). Given a small parameter p € (0,1) and an instance (X,d) of
k-center clustering with z outliers, a set S C X is called a p-coreset of X, if each vertex of
S is assigned a non-negative weight and ¢o(S, H) € (1 £ u)oo(X, H) for any set H C X of
k vertices.

Given a large-scale instance (X, d), we can run existing algorithm on its coreset S to
compute an approximate solution for X; if |S| < n, the resulting running time can be
significantly reduced. Formally, we have the following claim.

Lip_

> Claim 4. If the set H yields an a-approximation of the p-coreset S, it yields an a x T

approximation of X.

As mentioned before, we also consider the case with low doubling dimension. Roughly
speaking, doubling dimension describes the expansion rate of the metric. For any p € X and
r >0, we use Ball(p,r) to denote the ball centered at p with radius 7.

» Definition 5 (Doubling Dimension). The doubling dimension of a metric (X,d) is the
smallest number p > 0, such that for any p € X and r > 0, X N Ball(p, 2r) is always covered
by the union of at most 2P balls with radius r.

2  Algorithms for (k, z).-Center Clustering

For the sake of completeness, let us briefly introduce the algorithm of [18] for ordinary
k-center clustering first. Initially, it arbitrarily selects a vertex from X, and iteratively selects
the following k — 1 vertices, where each j-th step (2 < j < k) chooses the vertex having the
largest minimum distance to the already selected j — 1 vertices; finally, each input vertex is
assigned to its nearest neighbor of these selected k vertices. It can be proved that this greedy
strategy results in a 2-approximation of k-center clustering; the algorithm also works for the
problem in Euclidean space and results in the same approximation ratio. In this section,
we show that a modified version of Gonzalez’s algorithm yields approximate solutions for
(k, z)-center clustering.

In Section 2.1 and 2.2, we present our results for metric k-center with outliers. Actually,
it is easy to see that Algorithm 1 and 2 yield the same approximation ratios if the input
instance is a set of points in Euclidean space (the analysis is almost identical, and we omit
the details due to the space limit); only the running times are different, since it takes O(D)
time to compute distance between two points in RP.

! Since we remove more than z outliers, it is possible to have an approximation ratio o < 1, i.e,
d)E(Xv A) < Topt-
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Algorithm 1 Bi-criteria Approximation Algorithm.

Input: An instance (X, d) of metric k-center clustering with z outliers, and |X| = n;
parameters € > 0, n € (0,1), and t € ZT.
1. Let v = z/n and initialize a set E = ().
2. Initially, j = 1; randomly select ﬁ 1og% vertices from X and add them to E.
3. Run the following steps until j = t:
a. j =7+ 1 and let Q; be the farthest (1 + ¢)z vertices of X to E (for each vertex
p € X, its distance to E is mingeg d(p, q)).
b. Randomly select 1“ 10g vertices from (); and add them to E.

Output E.

2.1 (2,0(%))-Approximation

Here, we consider bi-criteria approximation that returns more than k cluster centers. The
main challenge for implementing Gonzalez’s algorithm is that the outliers and inliers are
mixed in X; for example, the selected vertex, which has the largest minimum distance to
the already selected vertices, is very likely to be an outlier, and therefore the clustering
quality could be arbitrarily bad. Instead, our strategy is to take a small sample from the
farthest subset. We implement our idea in Algorithm 1. For simplicity, let v denote z/n in
the algorithm; usually we can assume that v is a value much smaller than 1. We prove the
correctness of Algorithm 1 below.

» Lemma 6. With probability at least 1 — n, the set E in Step 2 of Algorithm 1 contains at
least one point from X,p;.

Since | Xope|/|X| =1 —, Lemma 6 can be easily obtained by the following folklore claim.

> Claim 7. Let U be a set of elements and V' C U with m =7 >0. Given 5 € (0,1), if
one randomly samples = log & 5 elements from U, with probability at least 1 — 7, the sample

contains at least one element from V.

Recall that {Cy,Cs,---,Cy} are the k clusters forming X,,,. Denote by A;(E) the
number of the clusters which have non-empty intersection with E at the beginning of j-th
round in Step 3 of Algorithm 1. For example, initially A\;(E) > 1 by Lemma 6. Obviously,
if \;(E) =k, ie, C;NE # (0 for any 1 <1 <k, E yields a 2-approximation for k-center
clustering with outliers through the triangle inequality.

> Claim 8. If \;(E) =k, then ¢o(X, E) < 2rgpt.

» Lemma 9. In each round of Step 8 of Algorithm 1, with probability at least 1 — n, either
(1) d(Qj,E) S 2ropt or (2) )\J<E) Z )\jfl(E) + 1.

Proof. Suppose that (1) is not true, i.e., d(Q;, E) > 27y, and we prove that (2) is true. Let
J include all the indices [ € {1,2,--- , k} with ENC; # (). We claim that Q;NC; = 0 for each
l € J. Otherwise, let p € Q,;NC; and p’ € ENCy; due to the triangle inequality, we know that
d(p,p") < 2r,p which is in contradiction to the assumption d(Q;, E') > 274, Thus, Q;NXop
only contains the vertices from C; with [ ¢ J. Moreover, since the number of outliers is z,
we know that 19:0Xestl > 1te
Q- = 1+e
with probability at least 1 — 7, the sample contains at least one vertex from Q; N Xope; also,
the vertex must come from U¢ 7C;. That is, (2) A\j(E) > A\;j_1(E) + 1 happens. <

By Claim 7, if randomly selecting log vertices from @,

40:5
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If (1) of Lemma 9 happens, i.e., d(Qj, E) < 27y, then it implies that

max d(p, F) < 2ryp; 2
b3, B B) < 2o @
moreover, since |Q;| = (1 + €)z, we have ¢.(X,E) < 2r,,. Next, we assume that (1)

in Lemma 9 never happens, and prove that \;(E) = k with constant probability when
j = O(k). The following idea actually has been used by Aggarwal et al. [1] for achieving a
bi-criteria approximation for k-means clustering. Define a random variable z;: xz; = 1 if
A(E)=Xj_1(E),or 0if \;(E) > \j_1(E)+1,for j =1,2,---. So E[z;] < n by Lemma 9 and

Y (L—xz) < N\(E). 3)

1<s<j

Also, let J;j = 37, <;(zs —n) and Jo = 0. Then, {Jo, J1,J2,- -} is a super-martingale
with Jj11 — J; < 1 (more details are shown in the full version of our paper). Through
Azuma-Hoeffding inequality [4], we have Pr(J; > Jo+ ) < e % for any t € Z* and § > 0.
Let t = kl%‘{f and 6 = vk, the inequality implies that

Pr(Y (l—z) 2k >1—e 7.

1<s<t

(4)

Combining (3) and (4), we know that A\;(E) > k with probability at least 1—e=*T". Moreover,
M (F) = k directly implies that E is a 2-approximate solution by Claim 8. Together with
Lemma 6, we have the following theorem.

» Theorem 10. Let € > 0. If we sett = kl%*{f for Algorithm 1, with probability at least

1—n

(1 - 77)(1 - e_T)’ (be(Xz E) S 2Topt-

Quality and Running time. If % and ﬁ are constant numbers, |E| will be O(%) and
Theorem 10 implies that E is a (2,0(1))-approximation for (k, z).-center clustering of X
with constant probability. In each round of Step 3, there are O(1) new vertices added to E,
thus it takes O(1n) time to update the distances from the vertices of X to E; to select the
set @);, we can apply the linear time selection algorithm [10]. Overall, the running time of
Algorithm 1 is O(%n) If the given instance is in R?, the running time will be O(%nD).
Further, we consider the instances under some practical assumption, and provide new
analysis of Algorithm 1. In reality, the clusters are usually not too small, compared with the

number of outliers. For example, it is rare to have a cluster C; that |C}] < z.

» Theorem 11. If each optimal cluster C; has size at least ez for 1 <1 < k, the set E of
Algorithm 1 is a (4, O(%))-appmximatz'on for the problem of (k,z)o-center clustering with
constant probability.

Compared with Theorem 10, Theorem 11 shows that we can exactly exclude z outliers (rather
than (1 4 €)z), though the approximation ratio with respect to the radius becomes 4.

Proof of Theorem 11. We take a more careful analysis on the proof of Lemma 9. If (1)
never happens, eventually \;(E) will reach k and thus ¢o(X, E) < 2r,, (Claim 8). So
we focus on the case that (1) happens before \;(E) reaching k. Suppose at j-th round,
d(Qj,E) < 2rqp but A\;j(E) < k. We consider two cases (i) there exists some Iy ¢ J such
that C, C Q; and (ii) otherwise.
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Algorithm 2 2-Approximation Algorithm.

Input: An instance (X, d) of metric k-center clustering with z outliers, and |X| = n; a
parameter € > 0.
1. Initialize a set E = (.
2. Let j = 1; randomly select one vertex from X and add it to E.
3. Run the following steps until j = k:
a. j=j+1 and let Q; be the farthest (1 + €)z vertices to E.
b. Randomly select one vertex from ); and add it to E.
Output FE.

For (i), we have Cj, C Q; for some ly ¢ J. Note that we assume |Cy,| > ez, i.e., |G

>
.- Using the same manner in the proof of Lemma 9, we know that (2) \;(E) > )\j,l(lE])‘—l— 1
happens with probability 1 — n. Thus, if (i) is always true, we can continue Step 3 and
eventually \;(E) will reach k, that is, a (2, O(%))-approximation of (k, z)o-center clustering
is obtained with constant probability.
For (ii), we have C;\Q; # 0 for all | ¢ J. Together with the assumption d(Q;, E) < 2rop,
we know that there exists ¢; € C;\ Q; (for each [ ¢ J) such that d(q;, F) < d(Qj, E) < 2ropt.
Consequently, we have that Vq € C,

d(q, E) < llg — @il| + d(qi, E) < 4rop (see the left of Figure. 1). (5)

Note that for any [ € J, d(E, C}) < 27y by the triangle inequality. Thus,

do(X,E) < max d(q, E) < 4rop. (6)
qGUleCl
So a (4, O(%))—approximation of (k, z)o-center clustering is obtained. <

2.2 2-Approximation

If k is a constant, we show that a single-criterion 2-approximation can be achieved. Actually,
we use the same strategy as Section 2.1, but run only k rounds with each round sampling
only one vertex. See Algorithm 2.

Figure 1 Left: p. is a point of E having distance < 2r,p; to p; right: pe is any point of E, o.
and o, are the centers taking charge of p. and p.

Denote by {v1,---, v} the k sampled vertices of E. Actually, the proof of Theorem 12
is similar to the analysis in Section 2.1. The only difference is that the probability that (2)
Aj(E) = Aj—1(E) +1 happens is at least 5. Also note that v1 € Xop¢ with probability 1 —+
(v = z/n). If all of these events happen, either we obtain a 2-approximation before & steps
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(i.e., d(E, X \ Qj) < 2rop for some j < k), or {vy,---,v;} fall into the k& optimal clusters
Cy,Cy, - -, Cy, separately (i.e., \g(F) = k). No matter which case happens, we always obtain
a 2-approximation with respect to (k, z).-center clustering. So we have Theorem 12.

» Theorem 12. Algorithm 2 returns a 2-approximation for the problem of (k,z).-center
clustering on X, with probability at least (1 — ’y)(ﬁe)k—l. The running time is O(kn). If the
given instance is in R, the running time will be O(knD).

To boost the probability of Theorem 12, we just need to repeatedly run the algorithm;
the success probability is easy to calculate by taking the union bound.

» Corollary 13. If we run Algorithm 2 O(ﬁ(%)kfl) times, with constant probability,
at least one time the algorithm returns a 2-approzimation for the problem of (k,z).-center

clustering.

Similar to Theorem 11, we consider the practical instances. We show that the quality of
Theorem 12 can be preserved even exactly excluding z outliers, if the optimal clusters are “well
separated”. The property was also studied for other clustering problems in practice [17,26].
Let {o1,- -, 01} be the k cluster centers of the optimal clusters {C1,---,C}.

» Theorem 14. Suppose that each optimal cluster C; has size at least €z and ||oj—op || > 4rop

for 1 <11 < k. Then with probability at least (1 — 7)(1_7_6)]“’1, Algorithm 2 returns a

2-approximation for the problem of (k,z)o-center clustering.

Proof. Initially, we know that A\;(E) = 1 with probability 1 — . Suppose that at the
beginning of the j-th round of Algorithm 2 with 2 < j < k, E already has j — 1 vertices
separately falling in j — 1 optimal clusters; also, we still let 7 be the set of the indices of
these j — 1 clusters. Then we have the following claim.

> Claim 15. |Q; N (UgsCh)| > ex.
Proof. For any p € Uj¢ 7C), we have
d(pa E) > 4ropt — Topt — Topt = 2T0pt (7)

from triangle inequality and the assumption ||o; — oy || > 4rep for 1 <1 # I’ < k (see the
right of Figure. 1). In addition, for any p € Ujc 7C, we have

d(p, E) < 2rop. (8)

We consider two cases. If d(Q;, E) < 2ryp; at the current round, then (7) directly implies
that Ujg 7C; € Q; (recall Q; is the set of farthest vertices to E); thus [Q; N (UigsCh)| =
| Uigs Ci| > ez by the assumption that any |Cy| > ez. Otherwise, d(Q;, E) > 2r,y;. Then
Q; N (UiegCr) =0 by (8). Moreover, since there are only z outliers and |Q;| = (1 + €)z, we
know that |Q; N (U7 Cr)| > ez. <

Claim 15 reveals that with probability at least ﬁe, the new added vertex falls in Uj¢ 7',
ie., N\j(E) = A;_1(E) + 1. Overall, we know that A\ (E) =k, i.e., E is a 2-approximation of

(k, z)o-center clustering (by Claim 8), with probability at least (1 — v)( 1ie)k_l~ <
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2.3 Reducing Data Size via Random Sampling

Given a metric (X, d), Charikar et al. [16] showed that we can use a random sample S to
replace X. Recall v = z/n. Let |S| = O(% Inn) and E be an a-approximate solution of
(k, z)c-center clustering on (S,d), then E is an a-approximate solution of (k, z)o()-center
clustering on (X, d) with constant probability. In D-dimensional Euclidean space, Huang et

al. [23] showed a similar result, where the sample size |S| = 0(62172 kD)? (to be consistent
with our paper, we change the notations in their theorem). In this section, we show that
1

the sample size of [23] can be further improved to be O(akD), which can be a significant

improvement if 1 = 2 is large.
Y z

Let P be a set of n points in RP. Consider the range space ¥ = (P, II) where each range
7 € II is the complement of union of k balls in RP. We know that the VC dimension of balls
is O(D) [4], and therefore the VC dimension of union of k balls is O(kDlog k) [11]. That is,
the VC dimension of the range space ¥ is O(kDlogk). Let € € (0,1), and an “e-sample” S of
P is defined as follows: Vr € II, |’T‘;1|D‘ - |’T‘g‘s‘ | < € roughly speaking, S is an approximation
of P with an additive error inside each range 7. Given a range space with VC dimension m,

an e-sample can be easily obtained via uniform sampling [4], where the success probability is
1 — X and the sample size is O(E%(m log ** + log %)) for any 0 < A < 1. For our problem, we
need to replace the “€” of the “e-sample” by ey to guarantee that the number of uncovered
points is bounded by (1 + O(e))’yn (we show the details below); the resulting sample size
will be O(ﬁkD) that is the same as the sample size of [23] (we assume that the term log +
is a constant for convenience).

Actually, the front factor ﬁ of the sample size can be further reduced to be % by
a more careful analysis. We observe that there is no need to guarantee the additive error
for each range 7 (as the definition of e-sample). Instead, only a multiplicative error for the
ranges covering at least yn points should be sufficient. Note that when a range covers more
points, the multiplicative error is weaker than the additive error and thus the sample size is
reduced. For this purpose, we use relative approzimation [21,31]: let S C P be a subset of

size O(%kD) chosen uniformly at random, then with constant probability,

[N P| |«
1P|

|7 N P }

vr eIl
|P|

(9)

|2’|S|‘ < e X max{

We formally state our result below.

» Theorem 16. Let P be an instance for the problem of k-center clustering with outliers in
RP as described in Definition 1, and S C P be a subset of size O(ﬁkD) chosen uniformly
at random. Suppose € < 0.5. Let S be a new instance for the problem of k-center clustering
with outliers where the number of outliers is set to be 2’ = (1 + €)v|S|. If E is an a-
approzimate solution of (k, z")e-center clustering on S, then E is an a-approzimate solution
of (k, z)o(e)-center clustering on P, with constant probability.

Proof. We assume that S is a relative approximation of P and (9) holds (this happens with
constant probability). Let B,,; be the set of k balls covering (1 — «)n points induced by the
optimal solution for P, and Bg be the set of k£ balls induced by an a-approximate solution
of (k,2")e-center clustering on S. Suppose the radius of each ball in B, (resp., Bg) is ropt
(resp., rs). We denote the complements of B,,; and Bg as 7., and g, respectively.

2 . .= B ©D
The asymptotic notation O(f) = O(f . polylog(?)),
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First, since B,y covers (1 — v)n points of P and S is a relative approximation of P,
we have

|7T0pth’ ’WoptﬂP’ |7Topth|
< —|—e><max{7,’y}:(l+e)’y (10)
5] 1P| P

by (9). That is, the set balls B,y cover at least (1 — (1 + €)v)|S| points of S, and therefore
it is a feasible solution for the instance S with respect to the problem of k-center clustering
with 2’ outliers. Since Bg is an a-approximate solution of (k, z’).-center clustering on S,
we have

rs < arop; s NS < (142" = (1+€)*y]S]. (11)

Now, we claim that

1+¢)?
ms P < L2900y (12)
Assume that (12) is not true, then (9) implies ‘”f;lp‘ - |W‘SSQ‘S|‘ < € X max { ‘WfS‘Plﬁ} =
e‘”ls;‘Pl. So |7T‘SSH|S‘ > (1- e)% > (1 + €)%y, which is in contradiction with the second
inequality of (11), and thus (12) is true. We assume € < 0.5, so -~ < 1+ 2¢ and
(114;522 =14 O(e). Consequently (12) and the first inequality of (11) together imply that Bg
is an a-approximate solution of (k, z)o()-center clustering on P. <

3 Coreset Construction in Doubling Metrics

In this section, we always assume the following is true by default:

Given an instance (X, d) of k-center clustering with outliers, the metric (Xopt, d), i.e., the
metric formed by the set of inliers, has a constant doubling dimension p > 0.

We do not have any restriction on the outliers X \ X,,;. Thus the above assumption is
more relaxed and practical than assuming the whole (X, d) has a constant doubling dimension.
From Definition 5, we directly know that each optimal cluster C; of X,,; can be covered by
27 balls with radius 7,,:/2 (see the left figure in Figure. 2). Imagine that the instance (X, d)
has 2°k clusters, where the optimal radius is at most 7,,;/2. Therefore, we can just replace
k by 2Pk when running Algorithm 1, so as to reduce the approximation ratio (i.e., the ratio
of the resulting radius to rop) from 2 to 1.

Topt

Figure 2 Illustrations for Theorem 17 and 18.

» Theorem 17. If we set t = W for Algorithm 1, with probability (1—n)(1— e‘lTTn),

¢e(X, E) < ropr. So the set E is a (17 O(%))—approm’mation for the problem of (k, z)-center
clustering, and the running time is 0(2"%71).
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Algorithm 3 The Coreset Construction.

Input: An instance (X, d) of metric k-center clustering with z outliers, and |X| = n;

parameters n and p € (0,1).

1. Let I = (2)°k.

m

2. Set ¢ =1 and run Algorithm 1 ¢ = lf%ﬂ rounds. Denote by 7 the maximum distance
between E and X by excluding the farthest 2z vertices, after the final round of
Algorithm 1.

3. Let X; ={p|pe X and d(p, E) < 7}.

4. For each vertex p € X, assign it to its nearest neighbor in F; for each vertex q € E,
let its weight be the number of vertices assigning to it.

5. Add X \ X; to F; each vertex of X \ X7 has weight 1.

Output F as the coreset.

If considering the problem in Euclidean space R” where the doubling dimension of the
inliers is p, the running time becomes O(2° %nD) Inspired by Theorem 17, we can further
construct coreset for k-center clustering with outliers (see Definition 3). Let p € (0,1), and
for simplicity we assume that log 2/ is an integer. If applying Definition 5 recursively, we
know that each Cj is covered by 2°1°82/r = (%)’) balls with radius 57,,¢, and X, is covered
by (%)pk such balls in total. See the right figure in Figure. 2. Based on this observation, we
have Algorithm 3 for constructing u-coreset.

» Theorem 18. With constant probability, Algorithm 3 outputs a p-coreset E of k-center
clustering with z outliers. The size of E is at most 2z + O((%)pk), and the construction time
is O((%)pkn).

Remark. (1) The previous ideas based on uniform sampling [16, 23] (also our idea in
Section 2.3) cannot get rid of the violation on the number of outliers; the sample sizes will
become infinity if not allowing to remove more than z outliers. Our coreset in Theorem 18
works for removing z outliers exactly. Consequently, our coreset can be used for existing
algorithms of k-center clustering with outliers, such as [15], to reduce their complexities.
(2) Another feature is that our coreset is a natural composable coreset. If X (or the point
set P) is partitioned into L parts, we can run Algorithm 3 for each part, and obtain a coreset

with size | 22+ = in total (the proof is almost identical to the proof o eorem
h 2240 i Pk) | L 1 (th f is al d | h f of Th 18

below). So our coreset construction can potentially be applied to distributed clustering with
outliers. (3) The coefficient 2 of 2z actually can be further reduced by modifying the value
of € in Step 2 of Algorithm 3 (we just set ¢ = 1 for simplicity). In general, the size of E is
(I4+€)z+ O(%(%)Pk) and the construction time is O(%(%)pkn) (or O(%(%)PknD) in RD).
Proof of Theorem 18. Similar to Theorem 17, we know that |X;| = n — 2z and 7 <
2 X Brops = propy with constant probability in Algorithm 3. Thus, the size of E is | X \ X5 +
O((%)”k) =2z+ O((%)pk). Moreover, it is easy to see that the running time of Algorithm 3
is O((%)pkn).

Next, we show that E is a p-coreset of X. For each vertex q € E, denote by w(q)
the weight of ¢; for the sake of convenience in our proof, we view each ¢ as a set of w(q)
overlapping unit weight vertices. Thus, from the construction of E, we can see that there is
a bijective mapping f between X and E, where

lp = fPI <7 < prope,  VpeX. (13)
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Let H = {c1,¢2, - ,c} be any k vertices of X. Suppose that H induces k clusters
{A1,As, -+, Ay} (vesp., {B1, Ba,- -+, By }) with respect to the problem of k-center clustering
with z outliers on E (resp., X ), where each A; (resp., B;) has the cluster center ¢; for
1 <j<k Letrg = ¢o(E,H)and rx = ¢o(X, H), respectively. Also, let r (resp.,
'y ) be the smallest value r, such that for any 1 < j < k, f(B;) € Ball(c;,r) (resp.,
F7Y(A;) C Ball(cj,r)). We need the following claim.

> Claim 19. |rp — x| < prope and |1y — rp| < propt.

In addition, since {f(B1),- -, f(Bk)} also form k clusters for the instance E with the fixed
k cluster centers of H, we know that 7% > ¢o(E, H) = rg. Similarly, we have 7 > rx.
Combining Claim 19, we have

TX — HTopt < 7"_/)( — UTopt <rg< TIE <rx+ HTopt - (14>

by Claim 19 by Claim 19

So [rx —rE| < Wropt, i.e., ¢po(E,H) € ¢o(X, H) £ prope C (1 £ p1)¢o(X, H). Therefore E is
a p-coreset of (X, d). <

4 Experiments

Our experimental results were obtained on a Windows workstation with 2.8GHz Intel(R)
Core(TM) i5-840 and 8GB main memory; the algorithms were implemented in Matlab
R2018a. We test our algorithms on both synthetic and real datasets. For Algorithm 2, we
take two well known algorithms of k-center clustering with outliers, Basel of [15] and Base2
of [33], as the baselines. For Algorithm 3, we compare our coreset construction with uniform
random sampling.

To generate the synthetic datasets, we set n = 10% and D = 103, and vary the values of
z and k. First, randomly generate k clusters inside a hypercube of side length 200, where
each cluster is a random sample from a Gaussian distribution with variance 10; each cluster
has a random number of points and we keep the total number of points to be n — z; we
compute the minimum enclosing balls respectively for these k clusters (by using the algorithm
of [6]), and randomly generate z outliers outside the balls. The maximum radius of the balls
is used as rop¢.

We also use three real datasets. MNIST dataset [28] contains n = 60,000 handwritten
digit images from 0 to 9, where each image is represented by a 784-dimensional vector. The
10 digits form k = 10 clusters. Caltech-256 dataset [29] contains 30,607 colored images with
256 categories, where each image is represented by a 4096-dimensional vector. We choose
n = 2,232 images of 20 categories to form k = 20 clusters. CIFER-10 training dataset [27]
contains n = 50,000 colored images in 10 classes as k& = 10 clusters, where each image
is represented by a 4096-dimensional vector. For each real dataset, we use the minimum
enclosing ball algorithm of [6] to compute 4, and randomly generate z = 5%n outliers
outside the corresponding balls.

Results and analysis. Note that we exactly exclude z outliers (rather than (1 4 €)z as
stated in Theorem 10 and 12) in our experiments, and calculate the approximation ratio
0(X, E) /rop: for each instance, if E is the set of returned cluster centers.

We first run our Algorithm 1 on synthetic and real datasets. For synthetic datasets, we set
k = 2-20, and 8 = |E|/k = 8 via modifying the values of ¢ and 7 appropriately (that means
we output 8k cluster centers); normally, we set 7 = 0.1 and € ~ 0.7. We try the instances with



H. Ding, H. Yu, and Z. Wang

z = {2%n, 4%n, 6%n, 8%n,10%n}, and report the average results in Figure 3 (a) and (b);
the approximation ratios are within 1.3-1.4 and the running times are less than 30s. Actually,
the performance is quite stable regarding different values of z in our experiments, and the
standard variances of approximation ratios and running times are less than 0.03 and 0.12,
respectively. We also vary the value of 8 from 4 to 28 with k& = 10. Figure 3 (c) shows that
the approximation ratio slightly decreases as 3 increases. The running times are all around
14s and do not reveal a clear increasing trend as [ increases. We think the reason behind
may be that we just use the simple O(nlogn) sorting algorithm, rather than the linear time
selection algorithm [10], for computing @), in practice (see Step 3(a) of Algorithm 1); thus
the running time is not linearly dependent on |E|. The results for real datasets are shown
in the full version of our paper; the approximation ratios are all below 1.3 and the running
times are less than 35s even for the largest CIFER-10 dataset.
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Figure 3 The experimental results of Algorithm 1 on synthetic datasets.

We also test our Algorithm 2 on synthetic and real datasets. We set e = 1 so that to avoid
to repeat running Algorithm 2 too many times (see Corollary 13), but we still exactly exclude
z outliers for calculating the approximation ratio as mentioned before. Our results are shown
in Table 1. The synthetic and real datasets are too large for the baseline algorithms Basel
and Base2, e.g., they run too slowly or even out of memory in our workstation if n, z, and D
are large (they have complexities Q(n2D) or Q(kznD))3. To make a fair comparison, we run
Basel, Base2, and Algorithm 2 on smaller synthetic datasets with (n = 2000, D = 10) and
(n = 2000, D = 100); we also set z = {2%n, 4%n, 6%n, 8%n, 10%n} as before and report the
average results. When D = 10, Basel and Algorithm 2 achieve approximation ratios < 1.5
generally (Figure 4 (a)); moreover, Base2 and Algorithm 2 run much faster than Basel
(Figure 4 (b)). However, when D = 100, Basel and Base2 yield much worse approximation
ratios than Algorithm 2 (Figure 4 (c¢) and (d)). Our experiment reveals that Algorithm 2
can achieve a more stable performance when dimensionality increases.

Finally, we compare the performances of our coresets method (Algorithm 3) and uniform
random sampling in terms of reducing data sizes. Though real-world image datasets often
are believed to have low intrinsic dimenions [8], it is difficult to compute them (e.g., doubling
dimension) accurately. In practice, we can directly set an appropriate value for [ in Step
1 of Algorithm 3 (without knowing the value of doubling dimension p). For example, the

size of coreset is 2z + O((%)pk) = 2z + O(l) according to Theorem 18, so we keep the sizes

of our coresets to be {15%n,20%n, 25%n} via modifying the value of [ in our experiments.

Correspondingly, we also set the sizes of random samples to be {15%n, 20%n, 25%n}. We
run Algorithm 2 on the corresponding random samples and coresets, and report the results
in Table 2. Running Algorithm 2 on the coresets yields approximation ratios close to

3 We are aware of several distributed algorithms for k-center clustering with outliers [12,19, 30, 32], but
we only consider the setting with single machine in this paper.
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Figure 4 Comparison of Basel, Base2, and Algorithm 2 on smaller synthetic datasets ((a) and
(b) for D =105 (c) and (d) for D = 100).

Table 1 The results of Algorithm 2 on synthetic and real datasets.

Synthetic datasets Real datasets
k=2| k=4 | k=6 k=8 | MNIST |[CALTECH256|CIFAR10
Approx. ratio |1.410| 1.403 | 1.406 | 1.423 1.277 1.378 1.249
Running time(s)|8.097|63.636|374.057|1939.004|2644.709| 2864.231  |13295.306

those obtained by directly running the algorithm on the original datasets; the results also
remain stably when the level reduces from 25% to 15%. More importantly, our coresets
significantly reduce the running times (e.g., it only needs 15%-35% time by using 15%-level
coreset). Comparing with the random samples, our coresets can achieve significantly lower
approximation ratios especially for the 15% level. Note that the coreset based approach
takes more time than uniform random sampling, because we count the time spent for
coreset construction.

Table 2 The results of Algorithm 2 on random samples, coresets, and original datasets.

random sampling coreset
15% 20% 25% 15% 20% 25% 100%
MNIST Appro. Ratio | 1.591 1.597 1.566 1.275 1.261 1.261 1.277
running time(s)| 624.612 | 769.517 | 958.549 | 936.393 [1071.926|1262.996| 2644.709
CALTECH256| Appro. Ratio | 2.144 1.779 1.448 1.431 1.420 1.401 1.378
running time(s)| 407.294 | 510.423 | 603.713 | 413.961 | 516.862 | 609.979 | 2864.231
CIFAR10 Appro. Ratio | 1.538 1.383 1.446 1.248 1.256 1.249 1.249
running time(s)|2420.943|2170.416]2938.773|3526.752|3264.858|4033.862|13295.306

5  Future Work

Following our work, several interesting problems deserve to be studied in future. For example,
can the coreset construction time of Algorithm 3 be improved, like the fast net construction
method proposed by Har-Peled and Mendel [20] in doubling metrics? It is also interesting to
study other problems involving outliers by using greedy strategy.
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