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Abstract
Packing and covering semidefinite programs (SDPs) appear in natural relaxations of many combinat-
orial optimization problems as well as a number of other applications. Recently, several techniques
were proposed, that utilize the particular structure of this class of problems, to obtain more efficient
algorithms than those offered by general SDP solvers. For certain applications, such as those
described in this paper, it maybe required to deal with SDP’s with exponentially or infinitely many
constraints, which are accessible only via an oracle. In this paper, we give an efficient primal-dual
algorithm to solve the problem in this case, which is an extension of a logarithmic-potential based
algorithm of Grigoriadis, Khachiyan, Porkolab and Villavicencio (SIAM Journal of Optimization 41
(2001)) for packing/covering linear programs.
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1 Introduction

1.1 Packing and Covering SDPs
We denote by Sn the set of all n × n real symmetric matrices and by Sn+ ⊆ Sn the set of
all n × n positive semidefinite matrices. Consider the following pairs of packing-covering
semidefinite programs (SDPs):

z∗I = max C •X (P-I)
s.t. Ai •X ≤ bi,∀i ∈ [m]

X ∈ Rn×n, X � 0

z∗I = min bT y (C-I)

s.t.
m∑
i=1

yiAi � C

y ∈ Rm, y ≥ 0

z∗II = min C •X (C-II)
s.t. Ai •X ≥ bi,∀i ∈ [m]

X ∈ Rn×n, X � 0

z∗II = max bT y (P-II)

s.t.
m∑
i=1

yiAi � C

y ∈ Rm, y ≥ 0
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43:2 Oracle-Based Algorithms for Packing and Covering SDPs

where C,A1, . . . , Am ∈ Sn+ are (non-zero) positive semidefinite matrices, and b = (b1, . . . , bn)T
∈ Rm+ is a nonnegative vector. In the above, C •X := Tr(CX) =

∑n
i=1
∑n
j=1 cijxij , and “�”

is the Löwner order on matrices: A � B if and only if A−B is positive semidefinite. This
type of SDPs arise in many applications, see, e.g. [19, 18] and the references therein.

We will make the following assumption throughout the paper:
(A) bi > 0 and hence bi = 1 for all i ∈ [m].
It is known that, under assumption (A), strong duality holds for problems (P-I)-(C-I) (resp.,
(P-II)-(C-II)).

Let ε ∈ (0, 1] be a given constant. We say that (X, y) is an ε-optimal primal-dual solution
for (P-I)-(C-I) if (X, y) is a primal-dual feasible pair such that

C •X ≥ (1− ε)bT y ≥ (1− ε)z∗I . (1)

Similarly, we say that (X, y) is an ε-optimal primal-dual solution for (P-II)-(C-II) if (X, y) is
a primal-dual feasible pair such that

C •X ≤ (1 + ε)bT y ≤ (1 + ε)z∗II . (2)

Since in this paper we allow the number of constraints m in (P-I) (resp., (C-II)) to be
exponentially (or even infinitely) large, we will assume the availability of the following oracle:

Max(Y ) (resp., Min(Y )): Given Y ∈ Sn+, find i ∈ argmaxi∈[m]Ai • Y (resp., i ∈
argmini∈[m]Ai • Y ).

Note that an approximation oracle computing the maximum (resp., minimum) above within
a factor of (1− ε) (resp., (1 + ε)) is also sufficient for our purposes.

Our objective in this paper is to develop oracle-based primal-dual algorithms that find ε-
optimal solutions for (P-I)-(C-I) and (P-II)-(C-II). An interesting property of our algorithms
which distinguishes them from most previously known algorithms is that they produce
solutions which are sparse, in the following sense: A primal-dual solution (X, y) to (C-I)
(resp., (P-II)) is said to be η-sparse, if the size of supp(y) := {i ∈ [m] : yi > 0} is at
most η. Two applications for SDP’s with infinite/exponential number of constraints are
given in Section 3.

1.2 Main Result and Related Work
Problems (P-I)-(C-I) and (P-II)-(C-II) can be solved using general SDP solvers, such
as interior-point methods: for instance, the barrier method (see, e.g., [29]) can compute a
solution, within an additive error of ε from the optimal, in time O(

√
nm(n3 +mn2 +m2) log 1

ε )
(see also [1, 34]). However, due to the special nature of (P-I)-(C-I) and (P-II)-(C-II), better
algorithms can be obtained. Most of the improvements are obtained by using first order
methods [4, 6, 7, 2, 13, 19, 20, 21, 22, 28, 30, 31], or second order methods [17, 18]. In general,
we can classify these algorithms according to whether they:
(I) are width-independent: the running time of the algorithm depends polynomially on the

bit length of the input; for example, in the of case of (P-I)-(C-I), the running time
is poly(n,m,L, log τ, 1

ε ), where L is the maximum bit length needed to represent any
number in the input; on the other hand, the running time of a width-dependent algorithm
will depend polynomially on a“width parameter” ρ, which is polynomial in L and τ ;

(II) are parallel: the algorithm takes polylog(n,m,L, log τ) ·poly( 1
ε ) time, on a poly(n,m,L,

log τ, 1
ε ) number of processors;
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(III) output sparse solutions: the algorithm outputs an η-sparse solution to (C-I) (resp.,
(P-II)), for η = poly(n, logm,L, log τ, 1

ε ) (resp., η = poly(n, logm,L, 1
ε )), where τ is a

parameter that bounds the trace of any optimal solution X (see Section 2 for details);
(IV) are oracle-based: the only access of the algorithm to the matrices A1, . . . , Am is via the

maximization/minimization oracle, and hence the running time is independent of m.
Table 1 gives a summary1 of the most relevant results together with their classifications,
according to the four criteria described above. We note that almost all these algorithms for
packing/covering SDP’s are generalizations of similar algorithms for packing/covering linear
programs (LPs), and most of them are essentially based on an exponential potential function
in the form of scalar exponentiation, e.g., [4, 22], or matrix exponentiation [6, 7, 2, 21, 19].
For instance, several of these results use the scalar or matrix versions of the multiplicative
weights updates (MWU) method (see, e.g., [5]), which are extensions of similar methods for
packing/covering LPs [14, 15, 35, 32].

In [16], a different type of algorithm was given for covering LPs (indeed, more generally,
for a class of concave covering inequalities) based on a logarithmic potential function. In this
paper, we show that this approach can be extended to provide oracle-based algorithms for
both versions of packing and covering SDPs:

I Theorem 1. For any ε > 0, there is a randomized algorithm that, for any given instance
of (P-I)-(C-I), outputs an O(nL log(nτ) + n

ε2 )-sparse O(ε)-optimal primal-dual pair in time2

Õ
(
nω+1L log τ

ε2.5 + nLT log τ
ε2

)
, where T is the time taken by a single call to the oracle Max(·)

and ω is the exponent of matrix multiplication.

I Theorem 2. For any ε > 0, there is a randomized algorithm that, for any given instance
of (P-II)-(C-II), outputs an O(nL logn+ n

ε2 )-sparse O(ε)-optimal primal-dual pair in time
Õ(n

ω+1L logn
ε2.5 + nLT

ε2 ), where T is the time taken by a single call to the oracle Min(·).

As we can see from the table, among all the algorithms listed, the logarithmic-potential
algorithm, presented in this paper, is the only one that produces sparse solutions, in the sense
described above. Moreover, the only known other oracle-based algorithm (matrix Matrix
MWU [7]) is not width-independent.It can also be shown (see [12]) that a modified version
of the matrix exponential MWU algorithm [6] can yield sparse solutions for (P-II)-(C-II).
However, the overall running time of this matrix MWU algorithm is larger by a factor of
(roughly) Ω(n3−ω) than that of the logarithmic-potential algorithm. Moreover, we were not
able to extend the matrix MWU algorithm to solve (P-I)-(C-I) (in particular, it seems tricky
to bound the number of iterations).

A work that is also related to ours is the sparsification of graph Laplacians [8] and positive
semidefinite sums [33]. Given matrices A1, . . . , Am ∈ Sn+ and ε > 0, it was shown in [33]
that one can find, in O

(
n
ε2 (nω + T )

)
time, a vector y ∈ Rm+ with support size O( nε2 ), such

that B �
∑
i yiAi � (1 + ε)B, where B :=

∑
iAi and T is the time taken by a single call to

the minimization oracle Min(Y ) (for a not necessarily positive semidefinite matrix Y ). An
immediate corollary is that, given an ε-optimal solution y for (C-I) (resp., (P-I)), one can find
in O

(
n
ε2 (nω + T )

)
time an O(ε)-optimal solution y′ with support size O( nε2 ). Interestingly,

the algorithm in [33] (which is an extension for the rank-one version in [8]) uses the barrier
potential function Φ′(x, F ) := Tr

(
(H − xI)−1) (resp., Φ′(x,H) := Tr

(
(xI −H)−1)), while in

1 We provide rough estimates of the bounds, as some of them are not explicitly stated in the corresponding
paper in terms of the parameters we consider here.

2 Õ(·) hides polylogarithmic factors in n and 1
ε .
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Table 1 Different Algorithms for Packing/covering SDPs.

Paper Problem Technique Most Expensive # Iterations Width- Parallel Sparse Oracle-
Operation indep. based

[4, 22] (P-I) MWU max /min eigenvalue O( ρ logm
ε2 ) No No No∗) No

(C-II) of a PSD matrix Õ(n
2

ε
)

[7] (P-I) Matrix MWU Matrix exponentiation O( ρ
2τ2 logn
ε2(z∗

I
)2 ) No No No∗) Yes

(C-II) O(n3)
[17, 19] (P-I) Nesterov’s smoothing Matrix exponentiation O( τ logm

ε
) No No No No

technique [27, 28] O(n3)
[18] (C-II) Nesterov’s smoothing min eigenvalue of a non O( ρ

2 log(nm)
ε

) No No No No
technique [27, 28] PSD matrix O(n3)

[20] (P-I)& MWU eigenvalue O( log13 n logm
ε13 ) Yes Yes No No

(C-II) technique [27, 28] decomposition O(n3)
[30, 31] (P-II)& Matrix MWU Matrix exponentiation O( log3 m

ε3 ) Yes Yes No No
(C-II) O(n3)

[2] (P-I)& Gradient Descent + Matrix exponentiation O( log2(mn) log 1
ε

ε2 ) Yes Yes No No
(C-II) Mirror Descent O(n3)

[12] (P-II)& Matrix MWU Matrix exponentiation O(n logn
ε2 ) Yes No Yes Yes

(C-II) O(n3)
This (P-II) & Logarithmic Matrix inversion O(n log(nLτ) + n

ε2 ) Yes No Yes Yes
paper (C-II) potential [16] O(nω)

(P-II) & O(n log(n/ε) + n
ε2 )

(C-II)

∗) In fact, these algorithms find sparse solutions, in the sense that the dependence of the size of the support of the dual solution on m is
at most logarithmic; however, the dependence of the size of the support on the bit length L is not polynomial.

our algorithms (generalizing the potential function in [16]) we use the logarithmic potential
function Φ(x,H) = ln x + ε

n ln det
(
H − xI

)
= ln x − ε

n

∫
x

Φ′(x,H)dx (resp., Φ(x,H) =
ln x − ε

n ln det
(
xI − H

)
= ln x − ε

n

∫
x

Φ′(x,H)dx). Sparsification algorithms with better
running times were recently obtained in [3, 24]. Since the sparse solutions produced by our
algorithms may have support size slightly more (by polylogarithmic factors) than O( nε2 ),
we may use, in a post-processing step, the sparsfication algorithms, mentioned above, to
convert the solutions obtained by Theorems 1 and 2 to ones with support size O( nε2 ), without
increasing the overall asymptotic running time.

In Section 4, we give an outline of the algorithm and sketch the proof of Theorem 1;
the proof of Theorem 2 is similar. To motivate our algorithms, in Section 3, we give two
applications that require finding sparse solutions for a packing/covering SDP 3.

2 Reduction to Normalized Form

When C = I = In, the identity matrix in Rn×n and b = 1, the vector of all ones in Rm, we
say that the packing-covering SDPs are in normalized form:

z∗I = max I •X (N-P-I)
s.t. Ai •X ≤ 1,∀i ∈ [m]

X ∈ Rn×n, X � 0

z∗I = min 1T y (N-C-I)

s.t.
m∑
i=1

yiAi � I

y ∈ Rm, y ≥ 0.

3 As pointed out by an anonymous reviewer, solution-sparsity and oracle-access to the input can also be
thought of as a way of reducing the space requirement of the algorithm, see [23].
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z∗II = min I •X (N-C-II)
s.t. Ai •X ≥ 1,∀i ∈ [m]

X ∈ Rn×n, X � 0

z∗II = max 1T y (N-P-II)

s.t.
m∑
i=1

yiAi � I

y ∈ Rm, y ≥ 0.

It can be shown4 that, at the loss of a factor of (1 + ε) in the objective, any pair of
packing-covering SDPs of the form (P-I)-(C-I) can be brought in O(n3), increasing the oracle
time only by O(nω), where ω is the exponent of matrix multiplication, to the normalized
form (N-P-I)-(N-C-I), under the following assumption:

(B-I) There exist r matrices, say A1, . . . , Ar, such that Ā :=
∑r
i=1Ai � 0. In particular,

Tr(X) ≤ τ := r
λmin(Ā) for any optimal solution X for (P-I).

Similarly, one can show (see [12, 20]) that, at the loss of a factor of (1+ ε) in the objective,
any pair of packing-covering SDPs of the form (P-II)-(C-II) can be brought in O(n3) time,
increasing the oracle time only by O(nω), to the normalized form (N-P-II)-(N-C-II). Moreover,
we may assume in this normalized form that
(B-II) λmin(Ai) = Ω

(
ε
n ·mini′ λmax(Ai′)

)
for all i ∈ [m],

where, for a positive semidefinite matrix B ∈ Sn×n+ , we denote by {λj(B) : j = 1, . . . , n} the
eigenvalues of B, and by λmin(B) and λmax(B) the minimum and maximum eigenvalues of
B, respectively. With an additional O(mn2) time, we may also assume that:
(B-II′) λmax(Ai)

λmin(Ai) = O
(
n2

ε2

)
for all i ∈ [m].

Thus, from now on we focus on the normalized problems.

3 Applications

3.1 Robust Packing and Covering SDPs
Consider a packing-covering pair of the form (P-I)-(C-I) or (P-II)-(C-II). In the framework
of robust optimization (see, e.g. [9, 10]), we assume that each constraint matrix Ai is not
known exactly; instead, it is given by a convex uncertainty set Ai ⊆ Sn+. It is required to find
a (near)-optimal solution for the packing-covering pair under the worst-case choice Ai ∈ Ai
of the constraints in each uncertainty set. A typical example of a convex uncertainty set is
given by an affine perturbation around a nominal matrix A0

i ∈ Sn+:

Ai =
{
Ai := A0

i +
k∑
r=1

δrA
r
i : δ = (δ1, . . . , δk) ∈ D

}
, (3)

where A1
i , . . . , A

k
i ∈ Sn+, and D ⊆ Rk+ can take, for example, one of the following forms:

Ellipsoidal uncertainty: D = E(δ0, D) := {δ ∈ Rk+ : (δ − δ0)TD−1(δ − δ0) ≤ 1}, for given
positive definite matrix D ∈ Sk+ and vector δ0 ∈ Rk+ such that E(δ0, D) ⊆ Rk+;
Polyhedral uncertainty: D := {δ ∈ Rk+ : Dδ ≤ w}, for given matrix D ∈ Rh×k and vector
w ∈ Rh.

4 In fact, unlike previously known reductions, the reduction we give in [12] is simpler to compute, as it is
based on the LDL-decompositions rather than the eigenvalue decompositions of the input matrices.
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Without loss of generality, we consider the robust version of (N-P-I)-(N-C-I), where Ai, for
i ∈ [m], belongs to a convex uncertainty set Ai. Then the robust optimization problem and
its dual can be written as follows:

z∗P = max I •X (R-P-I)
s.t. Ai •X ≤ 1, ∀Ai ∈ Ai ∀i ∈ [m]

X ∈ Rn×n, X � 0

z∗D = inf
m∑
i=1

∫
Ai
yiAidAi

(R-C-I)

s.t.
m∑
i=1

∫
Ai
yiAiAidAi � I

yi is a discrete measure on Ai, ∀i ∈ [m].

As before, we assume (B-I), where A1, . . . , Ar ∈
⋃
i∈[m]Ai. We call a pair of solutions (X, y)

to be ε-optimal for (R-P-I)-(R-C-I), if

z∗P ≥ I •X ≥ (1− ε)
m∑
i=1

∫
Ai
yiAidAi ≥ (1− ε)z∗D.

Note that the number of constraints in (R-P-I) is infinite and hence any algorithm that solves
the problem would have to be oracle-based. The Ellipsoid method is one such algorithm; a
more efficient procedure is given by the following corollary of Theorem 1.

I Theorem 3. For any ε > 0, there is a a randomized algorithm that outputs an O(ε)-
optimal primal-dual pair for (R-P-I)-(R-C-I) in time Õ

(
nω+1 logψ

ε2.5 + nT logψ
ε2

)
, where ψ :=

r·maxi∈[m],Ai∈Ai λmax(Ai)
λmin(Ā) and T is the time to compute, for a given Y ∈ Sn+, a pair (i, Ai)

such that

(i, Ai) ∈ argmaxi∈[m], Ai∈Ai Ai • Y. (4)

Note that (4) amounts to solving a linear optimization problem over a convex set. Moreover,
for simple uncertainty sets, such as boxes or ellipsoids, such computation can be done
very efficiently.

3.2 Carr-Vempala-Type Decomposition
Consider a maximization (resp., minimization) problem over a discrete set S ⊆ Zn and a
corresponding SDP-relaxation over Q ⊆ Sn+:

z∗CO =
{

max
min

}
C • qqT (DOP)

q ∈ S

z∗SDP =
{

max
min

}
C •Q

(SDP-RLX)
Q ∈ Q,

where C ∈ Sn+.

I Definition 4. For α ∈ (0, 1] (resp., α ≥ 1), an α-integrality gap verifier A for (SDP-RLX)
is a polytime algorithm that, given any C ∈ Sn+ and any Q ∈ Q returns a q ∈ S such that
C • qqT ≥ αC •Q (resp., C • qqT ≤ αC •Q).

For instance, if S = {−1, 1}n and Q = {X ∈ Sn+ : Xii = 1 ∀i ∈ [n]}, then a 2
π -integrality

gap verifier for the maximization version of (SDP-RLX) is known [26].
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Carr and Vempala [11] gave a decomposition theorem that allows one to use an α-
integrality gap verifier for a given LP-relaxation of a combinatorial maximization (resp.,
minimization) problem, to decompose a given fractional solution to the LP into a convex
combination of integer solutions that is dominated by (resp., dominates) α times the fractional
solution. Here we derive a similar result for SDP relaxations:

I Theorem 5. Consider a combinatorial maximization (resp., minimization) problem (DOP)
and its SDP relaxation (SDP-RLX), admitting an α-integrality gap verifier A. Assume
the set S is full-dimensional and let ε > 0 be a given constant. Then there is a polytime
algorithm that, for any given Q ∈ Q, finds a set X ⊆ S of size |X | = O(n

3

ε2 log(nW )) (resp.,
of size |X | = O(n log n

ε + n
ε2 )), where W := maxq∈S, i∈[n] |qi|, and a set of convex multipliers

{λq ∈ R+ : q ∈ X},
∑
q∈X λq = 1, such that

(1−O(ε))αQ �
∑
q∈X

λqqq
T (resp., (1 +O(ε))αQ �

∑
q∈X

λqqq
T ). (5)

The proof of Theorem 5 is obtained by considering the following pairs of packing and covering
SDPs (of types I and II, respectively):

z∗I = min
∑
q∈S

λq (CVX-I)

s.t.
∑
q∈S

λqqq
T � αQ (6)

∑
q∈S

λq ≥ 1 (7)

λ ∈ RS , λ ≥ 0

z∗I = max αQ • Y + u

(CVX-dual-I)
s.t. qqT • Y + u ≤ 1,∀q ∈ S (8)

Y ∈ Sn+, u ≥ 0.

z∗II = max
∑
q∈S

λq (CVX-II)

s.t.
∑
q∈S

λqqq
T � αQ (9)

∑
x∈S

λq ≤ 1 (10)

λ ∈ RS , λ ≥ 0

z∗II = min αQ • Y + u

(CVX-dual-II)
s.t. qqT • Y + u ≥ 1,∀q ∈ S (11)

Y ∈ Sn+, u ≥ 0.

It can be shown, using the fact that the SDP relaxation admits an α-integrality gap verifier,
that z∗I = z∗II = 1, and that the two primal-dual pairs can be solved in polynomial time using
the Ellipsoid method. A more efficient (but approximate version) can be obtained using
the algorithms of Theorems 1 and 2. Note that, once we have a set X as in Theorem 5, its
support can be reduced to O(n

2

ε ) using the sparsification techniques of [8, 33].

4 A Logarithmic Potential Algorithm for (P-I)-(C-I)

In this section we give an algorithm for finding a sparse O(ε)-optimal primal-dual solution
for (N-P-I)-(N-C-I). Since the algorithm updates only one component of the dual solution in
each iteration, it follows that the number of positive components of the dual solution when the
algorithm terminates is exactly equal to the number of iterations; from this sparsity follows.

ESA 2019
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4.1 High-level Idea of the Algorithm
The idea of the algorithm is quite intuitive. It can be easily seen that problem (N-C-I)
is equivalent to finding a convex combination of the Ai’s that maximizes the minimum
eigenvalue, that is, maxy∈Rm+ :1T y=1 λmin(F (y)), where F (y) :=

∑m
i=1 yiAi, and 1 is the m-

dimensional vector of all ones. Since λmin(F (y)) is not a smooth function in y, it is more
convenient to work with a smooth approximation of it, which is obtained by maximizing
(over x) a logarithmic potential function Φ(x, F (y)) that captures the constraints that each
eigenvalue of F (y) is at least x. The unique maximizer x = θ∗ of Φ(x, F (y)) defines a set
of “weights” (these are the eigenvalues of the primal matrix X computed in line 6 of the
algorithm) such that the weighted average of the λj(F (y))’s is a very close approximation
of λmin(F (y)). Thus, to maximize this average (which is exactly X • F (y)), we obtain a
direction (line 7) along which y is modified with an appropriate step size (line 10). For
numbers x ∈ R+ and δ ∈ (0, 1), a δ-(lower) approximation xδ of x is a number such that
(1− δ)x ≤ xδ < x. For i ∈ [m], 1i denotes the ith unit vector of dimension m.

The algorithm is shown as Algorithm 1. The main while-loop (step 4) is embedded within
a sequence of scaling phases, in which each phase starts from the vector y(t) computed in the
previous phase and uses double the accuracy. The algorithm stops when the scaled accuracy
εs drops below the desired accuracy ε ∈ (0, 1/2). When referring to an arbitrary iteration of
the algorithm, we assume it is iteration t in phase s.

4.2 Analysis

4.2.1 High-level Idea of the Analysis
The analysis is based on a matrix generalization of the scalar arguments given in [16] (as is the
case for all algorithms for SDP’s, which are driven from their LP counterparts; see, e.g., [1]).
Besides the technical details, the algorithm also requires estimating the minimum eigenvalue of
the dual matrix F (y(t)), which is done using Lanczos’ algorithm (see Section 4.2.4 for details).

The proof of ε-optimality follows easily from the stopping condition in line 4 of the
algorithm, the definition of the “approximation error” ν in line 8, and the fact that X • F (y)
is a very close approximation of λmin(F (y(t))). The main part of the proof is to bound
the number of iterations in the inner while-loop (line 4). This is done by using a potential
function argument: we define the potential function Φ(t) := Φ(θ∗(t), F (y(t))) and show in
Claim 23 that, in each iteration, the choice of the step size in line 9 guarantees that Φ(t) is
increased substantially; on the other hand, by Claim 24, the potential difference cannot be
very large, and the two claims together imply that we cannot have many iterations.

4.2.2 Some Preliminaries
Up to Claim 26, we fix a particular iteration s of the outer while-loop in the algorithm. For
simplicity in the following, we will sometimes write F := F (y(t)), θ := θ(t), θ∗ := θ∗(t),
X := X(t), F̂ := Ai(t), τ := τ(t + 1), ν := ν(t + 1), F ′ := F (y(t + 1)), and θ′ := θ(t + 1),
when the meaning is clear from the context. For H � 0 and x ∈ (0, λmin(H)), define the
logarithmic potential function [16, 29]:

Φ(x,H) = ln x+ εs
n

ln det
(
H − xI

)
. (12)

Note that the term ln det
(
H − xI

)
forces the value of x to stay away from the “boundary”

λmin(H), while the term ln x pushes x towards that boundary; hence, one would expect the
maximizer of Φ(x,H) to be a good approximation of λmin(H) (see Claim 8).



K. Elbassioni and K. Makino 43:9

Algorithm 1 Logarithmic-potential Algorithm for (P-I)-(C-I).

1 s← 0; ε0 ← 1
2 ; t← 0; ν(0)← 1; y(0)← 1

r

∑r
i=1 1i

2 while εs > ε do
3 δs ← ε3

s

32n
4 while ν(t) > εs do
5 θ(t)← θ∗(t)δs , where θ∗(t) is the smallest positive number root of the

equation εsθ

n
Tr(F (y(t))− θI)−1 = 1

6 X(t)← εsθ(t)
n

(F (y(t))− θ(t)I)−1 /* Set the primal solution */
7 i(t)← argmaxiAi •X(t) /* Call the maximization oracle */

8 ν(t+ 1)←
X(t) •Ai(t) −X(t) • F (y(t))
X(t) •Ai(t) +X(t) • F (y(t)) /* Compute the error */

9 τ(t+ 1)← εsθ(t)ν(t+ 1)
4n(X(t) •Ai(t) +X(t) • F (y(t))) /* Compute the step size */

10 y(t+ 1)← (1− τ(t+ 1))y(t) + τ(t+ 1)1i(t) /* Update the dual solution */
11 t← t+ 1
12 end
13 εs+1 ← εs

2
14 s← s+ 1
15 end
16 X̂ ← (1−εs−1)X(t−1)

(1+εs−1)2θ(t−1)) ; ŷ ←
y(t−1)
θ(t−1) /* Scale primal and dual to retain feasibility */

17 return (X̂, ŷ, t)

B Claim 6. If F (y(t)) � 0, then θ∗(t) = argmax0<x<λmin(F ) Φ(x, F (y(t))) and X(t) � 0.

For x ∈ (0, λmin(F )), let g(x) := εsx

n
Tr(F − xI)−1. The following claim shows that our

choice of δs guarantees that g(θ) is a good approximation of g(θ∗) = 1.

B Claim 7. g(θ(t)) ∈ (1− εs, 1).

The following two claims show that θ(t) ≈ X(t) • F (y(t)) provides a good approximation
for λmin(F (y(t))).

B Claim 8. (1 − εs)λmin(F (y(t))) < θ(t) < λmin(F (y(t)))
1+εs/n and λmin(F (y(t)))

1+εs ≤ θ∗(t) ≤
λmin(F (y(t)))

1+εs/n .

B Claim 9. θ(t) < X(t) • F (y(t)) < (1 + εs)θ(t).

Throughout the algorithm, we maintain the invariants that the (non-scaled) dual objective
1T y(t) is exactly 1, that the step size τ(t) and the approximation error ν(t) are between 0
and 1, and that the dual matrix F (y(t)) =

∑
i yi(t)Ai is positive definite. This is summarized

in the following claims.

B Claim 10. 1T y(t) = 1.

B Claim 11. For all iterations t, except possibly the last, ν(t+ 1), τ(t+ 1) ∈ (0, 1).

B Claim 12. F (y(t)) � 0.
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4.2.3 Primal Dual Feasibility and Approximate Optimality
Let tf + 1 be the value of t when the algorithm terminates and sf + 1 be the value of s at
termination. For simplicity, we write s = sf .

B Claim 13. (Primal feasibility). X̂ � 0 and maxiAi • X̂ ≤ 1.

Proof. The first claim is immediate from Claim 6. To see the second claim, we use the
definition of ν(tf ) and the termination condition in line 4 (which is also satisfied even if
X(tf ) •Ai(tf ) −X(tf ) • F (y(tf )) = 0):

X(tf ) •Ai(tf ) −X(tf ) • F (y(tf ))
X(t1) •Ai(tf ) +X(tf ) • F (y(tf )) ≤ εs.

∴ (1 + εs)X(tf ) • F (y(tf )) ≥ (1− εs)X(tf ) •Ai(tf )

= (1− εs) max
i
X(tf ) •Ai

(by the defintition of i(tf ))
∴ (1 + εs)2θ(tf ) ≥ (1− εs) max

i
X(tf ) •Ai.

(∵ X(tf ) • F (y(tf )) ≤ (1 + εs)θ(tf ) by Claim 9)

The claim follows by the definition of X̂ in step 16 of the algorithm. C

B Claim 14. (Dual feasibility). ŷ ≥ 0 and F (ŷ) � I.

Proof. The fact that ŷ ≥ 0 follows from the initialization of y(0) in step 1, Claim 11, and
the update of y(t+ 1) in step 10. For the other claim, we have

λmin
(
F (ŷ)

)
= 1
θ(tf )λmin

(
F (y(tf ))

)
≥ 1 + εs

n
. (by Claim 8)

C

B Claim 15. (Approximate optimality). I • X̂ ≥
(

1−εs
1+εs

)2
1T ŷ.

Proof. By Claim 7, we have Tr(X(tf )) ≥ 1− εs, and by Claim 10, we have 1T y(tf ) = 1. The
claim follows by the definition of X̂ and ŷ in step 16. C

4.2.4 Running Time per Iteration
Given F := F (y(t)) � 0, we first compute an approximation λ̃ of λmin(F ) using Lanczos’
algorithm with a random start [25].

I Lemma 16 ([25]). Let M ∈ Sn+ be a positive semidefinite matrix with N non-zeros and
γ ∈ (0, 1) be a given constant. Then there is a randomized algorithm that computes, with
high (i.e., 1− o(1)) probability a unit vector v ∈ Rn such that vTMv ≥ (1− γ)λmax(M). The
algorithm takes O

( logn√
γ

)
iterations, each requiring O(N) arithmetic operations.

By Claim 8, we need λ̃ to lie in the range [λmin(F )
1+εs/n , λmin(F )]. To obtain λ̃, we may apply

the above lemma with M := F−1 and γ := εs
2n . Then in O

(√
n
εs

logn
)
iterations we get

λ̃ := 1−γ
vTF−1v

satisfying our requirement. However, we can save (roughly) a factor of
√
n in
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the running time by using, instead, M := F−n and γ := εs
2 . Let v be the vector obtained

from Lemma 16, and set λ̃ :=
( 1−γ
vTF−nv

)1/n. Then, as λmax(M) ≥ vTMv ≥ (1− γ)λmax(M),
and λmin(F ) = λmax(F−n)−1/n, we get

λmin(F )
1 + εs/n

≤ (1− γ)1/nλmin(F ) ≤ λ̃ ≤ λmin(F ). (13)

Note that we can compute F−n in O(nω logn), where w is the exponent of matrix multiplic-
ation. Thus, the overall running time for computing λ̃ is O(nω logn+ n2 logn√

εs
).

Given λ̃, we know by Claim 8 and (13) that θ∗(t) ∈ [ λ̃
1+εs , λ̃]. Then we can ap-

ply binary search to find θ(t) := θ∗(t)δs as follows. Let θk = λ̃
1+εs (1 + δs)k, for k =

0, 1, . . . ,K := d 2 ln(1+εs)
δs

e, and note that θL ≥ λ̃. Then we do binary search on the exponent

k ∈ {0, 1 . . . ,K}; each step of the search evaluates g(θk) := εsθ`
n

Tr(F − θkI)−1, and depend-
ing on whether this value is less than or at least 1, the value of k is increased or decreased,
respectively. The search stops when the search interval [`, u] has u ≤ `+ 1, in which case we
set θ(t) = θ`; the number of steps until this happens is O(logK) = O(log 1

δs
) = O(log n

εs
).

By the monotonicity of g(x) (in the interval [0, λmin(F )]), and the property of binary search,
we know that θ∗ ∈ [θ`, θu]. Thus, by the stopping criterion,

θ(t) = θ` ≤ θ∗(t) ≤ θu ≤ θ`+1 = (1 + δs)θ`,

implying that (1− δs)θ∗(t) ≤ θ(t) ≤ θ∗(t). Since evaluating g(θ`) takes O(nω), the overall
running time for the binary search procedure is O(nω log n

εs
), and hence the total time needed

for for computing θ(t) is O(nω log n
ε + n2 logn√

ε
).

All other steps of the algorithm inside the inner while-loop can be done in O(T +n2) time,
where T is the time taken by a single call to the oracle Max(X(t)) in step 7 of the algorithm.
Thus, in view of Claim 26 on the number of iterations below, we obtain Theorem 1.

4.2.5 Number of Iterations
Define B = B(t) := n

εsθ

(
τX1/2(F̂ − F )X1/2 − (θ∗ − θ)X

)
. The following (technical) claims

are needed for the proofs of Claims 23 and 24 below (which are, in turn, the main claims
needed for the analysis of the potential function). They can be skipped at a first reading
and recalled when needed.

B Claim 17. (F − θ∗I)−1 =
(
εsθ
n I − (θ∗ − θ)X

)−1
X.

B Claim 18. F ′ − θ∗I = (F − θI)1/2(I +B)(F − θI)1/2.

B Claim 19. maxj |λj(B)| ≤ 1
2 .

B Claim 20. θ∗(t) < λmin(F (y(t+ 1))).

B Claim 21. if ν > εs, then Tr(B) ≥ ν2

8 .

B Claim 22. If ν > εs, then Tr(B2) < ν2

10 .

Define the potential function Φ(t) := Φ(θ∗(t), F (y(t))).
The following claim states that the potential difference between two consecutive iterations

of the algorithm is sufficiently large.
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B Claim 23. For t, t+ 1 in phase s, Φ(t+ 1)− Φ(t) ≥ εsν(t+1)2

40n .

Proof. Note that Claim 20 implies that θ∗ is feasible to the problem max{Φ(ξ, F ′) : 0 ≤ ξ ≤
λmin(F ′)}. Thus,

Φ(t+ 1) = Φ(θ∗(t+ 1), F ′) ≥ ln θ∗ + εs
n

ln det(F ′ − θ∗I).

∴ Φ(t+ 1)− Φ(t) ≥ εs
n

(ln det(F ′ − θ∗I)− ln det(F − θ∗I))

≥ εs
n

(
ln det

(
F ′ − θ∗I

)
− ln det(F − θI)

)
(∵ θ ≤ θ∗)

= εs
n

ln det (I +B) (by Claim 18)

= εs
n

n∑
j=1

ln (1 + λj(B))

≥ εs
n

n∑
j=1

(
λj(B)− λj(B)2)

(by Claim 19 and ln(1 + z) ≥ z − z2,∀z ≥ −0.5)

= εs
n

(
Tr(B)− Tr(B2)

)
>
εs
8nν

2 − εs
10nν

2 (by Claims 21 and 22)

= εs
40nν

2.

C

On the other hand, the following claim states that the overall potential difference between
any iterations cannot be too large.

B Claim 24. For any t, t′ in phase s,

Φ(t′)− Φ(t) ≤ (1 + εs) ln
X(t) •Ai(t)

(1− εs)X(t) • F (y(t)) .

Proof. Write F = F (y(t)), θ∗ := θ∗(t), θ := θ(t), X := X(t), F ′ = F (y(t′)), θ′∗ := θ∗(t′).
Then

Φ(t′)− Φ(t) = ln θ
′∗

θ∗
+ εs
n

ln det
[
(F − θ∗I)−1(F ′ − θ′∗I)

]
= ln θ

′∗

θ∗
+ εs
n

ln det
[(

εsθ

n
I − (θ∗ − θ)X

)−1
X(F ′ − θ′∗I)

]
(by Claim 17)

= ln θ
′∗

θ∗
+ εs
n

[
ln det

(
εsθ

n
I − (θ∗ − θ)X

)−1
+ ln det

[
X(F ′ − θ′∗I)

]]
≤ ln θ

′∗

θ∗
+ εs
n

[
ln
(
εsθ

n
− δsθ

1− δs

)−n
+ ln det

[
X(F ′ − θ′∗I)

]]
(∵ Tr(X) ≤ 1 by Claim 7 and (1− δs)θ∗ ≤ θ)



K. Elbassioni and K. Makino 43:13

≤ ln θ
′∗

θ∗
+ εs
n

[
ln
(

n

(1− εs)εsθ

)n
+ ln detX(F ′ − θ′∗I)

]
(by defintion of δs)

= ln θ
′∗

θ∗
+ εs ln n

(1− εs)εsθ
+ εs
n

ln
[
detX(F ′ − θ′∗I)

]
= ln θ

′∗

θ∗
+ εs ln n

(1− εs)εsθ
+ εs
n

n∑
j=1

lnλj
(
X(F ′ − θ′∗I)

)
≤ ln θ

′∗

θ∗
+ εs ln n

(1− εs)εsθ
+ εs ln

(
1
n

n∑
j=1

λj
(
X(F ′ − θ′∗I)

))
(by the concavity of ln(·))

= ln θ
′∗

θ∗
+ εs ln n

(1− εs)εsθ
+ εs ln

( 1
n
Tr(XF ′ − θ′∗X)

)
≤ ln θ

′∗

θ∗
+ εs ln n

(1− εs)εsθ
+ εs ln

(
X • F ′ − θ′∗(1− εs)

n

)
(∵ Tr(X) ≥ 1− εs by Claim 7)

= ln θ
′∗

θ∗
+ εs ln 1

(1− εs)εsθ
+ εs ln

(
X • F ′ − θ′∗(1− εs)

)
≤ ln θ

′∗

θ∗
+ εs ln 1

(1− εs)εsθ
+ εs ln

(
max

y∈Rm+ : 1T y=1
X • F (y)− θ′∗(1− εs)

)
(∵ 1T y(t′) = 1 by Claim 10)

= ln θ
′∗

θ∗
+ εs ln 1

(1− εs)εsθ
+ εs ln

(
X •Ai(t) − θ′∗(1− εs)

)
(by defintion of i(t))

≤ max
0≤ξ<X•Ai(t)

{
ln ξ

(1− εs)θ∗
+ εs ln 1

(1− εs)εsθ
+ εs ln

(
X •Ai(t) − ξ

)}
= (1 + εs) ln

X •Ai(t)
(1− εs2)θ + ln θ

θ∗
(max(·) is achieved at ξ = X•Ai(t)

1+εs )

≤ (1 + εs) ln
X •Ai(t)
(1− εs2)θ (∵ θ ≤ θ∗)

≤ (1 + εs) ln
X •Ai(t)

(1− εs)X • F
. (by Claim 9)

C

Recall by assumption (B-I) that Ā :=
∑r
i=1Ai � 0.

B Claim 25. X(0)•Ai(0)
X(0)•F (y(0)) ≤ ψ := r·λmax(Ai(0))

λmin(Ā) ≤ r·maxi λmax(Ai)
λmin(Ā) ≤ nτ2L.

Proof. Let X(0) =
∑n
j=1 λjuju

T
j be the spectral decomposition of X(0). Then,

X(0) •Ai(0) =
n∑
j=1

λjAi(0) • ujuTj ≤
n∑
j=1

λjλmax(Ai(0)) = λmax(Ai(0)) · Tr(X(0))

X(0) • F (y(0)) =
n∑
j=1

λjF (y(0)) • ujuTj ≥
1
r

n∑
j=1

λjλmin(Ā) = 1
r
λmin(Ā) · Tr(X(0)).

The claim follows. C

Now we combine claims 23, 24 and 25 to obtain a bound on the number of iterations.
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B Claim 26. The algorithm terminates in at most O
(
n logψ + n

ε2

)
iterations.

I Remark 27. If we do not insist on a sparse dual solution, then we can use the initialization
y(0)← 1

m1 in step 1 in Algorithm 1, and replace ψ in Claim 25, and hence in the running
time in Claim 26, by m.
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