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Abstract
Catering to the incentives of people with limited rationality is a challenging research direction
that requires novel paradigms to design mechanisms and approximation algorithms. Obviously
strategyproof (OSP) mechanisms have recently emerged as the concept of interest to this research
agenda. However, the majority of the literature in the area has either highlighted the shortcomings
of OSP or focused on the “right” definition rather than on the construction of these mechanisms.

We here give the first set of tight results on the approximation guarantee of OSP mechanisms
for scheduling related machines. By extending the well-known cycle monotonicity technique, we
are able to concentrate on the algorithmic component of OSP mechanisms and provide some novel
paradigms for their design.
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1 Introduction

Mechanism design has been a very active research area that aims to develop algorithms that
align the objectives of the designer (e.g., optimality of the solution) with the incentives of
self-interested agents (e.g., maximize their own utility). One of the main obstacles to its
application in real settings is the assumption of full rationality. Where theory predicts that
people should not strategize, lab experiments show that they do (to their own disadvantage):
this is, for example, the case for Vickrey’s renown second-price auction; proved to be
strategyproof and yet bidders lie when submitting sealed bids. Interestingly, however, lies are
less frequent when the very same mechanism is implemented via an ascending auction [18].
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46:2 OSP Mechanisms for Machine Scheduling

A vague explanation of this phenomenon is that, from the point of view of a bidder, the
strategyproofness of an ascending price auction is easier to grasp than the strategyproofness
of the second-price sealed bid auction [3]. The key difference is the way these auctions
are implemented:

In the second-price sealed-bid auction (direct-revelation implementation), each bidder
submits her own bid once (either her true valuation or a different value). This mechanism
is strategyproof meaning that truth-telling is a dominant strategy: for every report of the
other bidders, the utility when truth-telling is not worse than the utility when bidding
untruthfully.
In the ascending price auction (extensive-form implementation), each bidder is repeatedly
offered some price which she can accept (stay in the auction) or reject (leave the auction).
In this auction, momentarily accepting a good price guarantees a non-negative utility,
while rejecting a good price or accepting a bad price yield non-positive utility. Here good
price refers to the private valuation of the bidder and, intuitively, truth-telling in this
auction means accepting prices as long as they are not above the true valuation.

Intuitively speaking, in the second type of auction, it is obvious for a bidder to decide her
strategy, because the utility for the worst scenario when truth-telling is at least as good
as that of the best scenario when cheating. The recent definition of obviously strategyproof
(OSP) mechanisms [23] formalizes this argument: ascending auctions are OSP mechanisms,
while sealed-bid auctions are not. Interestingly, [23] proves that a mechanism is OSP if and
only if truth-telling is dominant even for bidders who lack contingent reasoning skills.

As being OSP is stronger than being strategyproof, it is natural to ask if this has an
impact on what can be done by such mechanisms. For instance, the so-called deferred-
acceptance (DA) auctions [26] are OSP (as they essentially are ascending price auctions),
but unfortunately their performance (approximation guarantee) for several optimization
problems is quite poor compared to what strategyproof mechanisms can do [9]. Whether
this is an inherent limitation of OSP mechanisms or just of this technique is not clear.

One of the reasons behind this open question might be the absence of a general technique
for designing OSP mechanisms and the lack of an algorithmic understanding of OSP mechan-
isms. Specifically, it is well known that strategyproofness is equivalent to certain monotonicity
conditions of the algorithm used by the mechanism for computing the solution (be it an
allocation of goods or a path in a network with self-interested agents). Therefore, one can
essentially focus on the algorithmic part and study questions regarding the approximation
and the complexity. The same type of questions seems much more challenging for OSP
mechanisms, as such characterizations are not known. Recent work in the area [5, 27, 24]
aims at simplifying the notion of OSP, by looking at versions of the revelation principle
for OSP mechanisms. This, for example, allows to think, without loss of generality, at
deterministic (rather than randomized) extensive-form mechanisms where each agent moves
sequentially (rather than concurrently).

The goal of this work is build the foundations to reason about OSP algorithmically. In
particular, we advance the state of the art by providing an algorithmic characterization of
OSP mechanisms. Among others, our results show why deferred acceptance auctions [26] –
essentially the only known technique to design OSP mechanisms with money – do not fully
capture the power of a “generic” OSP mechanism, as the latter may exploit some aspects of
the implementation (i.e., extensive-form game) in a crucial way.

Our Contribution. To give an algorithmic characterization of OSP mechanisms, we extend
the well known cycle-monotonicity (CMON) technique. This approach allows to abstract the
truthfulness of an algorithm in terms of non-negative weight cycles on suitably defined graphs.
We show that non-negative weight cycles continue to characterize OSP when the graph of
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interest is carefully defined. Our main conceptual contribution is a way to accommodate
the OSP constraints, which depend on the particular extensive-form implementation of the
mechanism, in the machinery of CMON, which is designed to focus on the algorithmic output
of mechanism. Interestingly, our technique shows the interplay between algorithms (which
solution to return) and how this is implemented as an extensive-form game (what we call
the implementation tree). Roughly speaking, our characterization says which algorithms
can be used for any choice of the implementation tree. The ability to choose between
different implementation trees is what gives extra power to the designer: for example, the
construction of OSP mechanisms based on DA auctions [26] uses always the same fixed tree
for all problems and instances. Though this yields a simple algorithmic condition, it can be
wasteful in terms of optimality (approximation guarantee) as we show herein. In fact, for our
results, we will use CMON two ways to characterize both algorithmic properties (having fixed
an implementation tree) and implementation properties (having fixed the approximation
guarantee we want to achieve).

Armed with the OSP CMON technique, we are able to give the first tight bounds on
the approximation ratio of OSP mechanisms. In particular, we consider the problem of
scheduling n related machines (for identical jobs). While the lower bound holds regardless of
the size of the domain, the mechanisms that we provide are shown to be OSP only for two-
and three-value domains, as we prove that these are the only cases in which non-negative
two-cycles are necessary and sufficient.

We show that the optimum for machine scheduling can be implemented OSP-ly when the
agents’ domains have size two. We prove that given a “balanced” optimum (i.e., a greedy
allocation of jobs to machines) we can always find an implementation tree for which OSP
is guaranteed. The mechanism directly asks the queried agents to reveal their type; given
that the domain only contains two values, this is basically a descending/ascending auction.
For domains of size three, instead, we give a lower bound of

√
n and an essentially tight

upper bound of d
√
ne. Interestingly, the latter is proved with two different mechanisms – one

assuming more than d
√
ne2 number of jobs and the second under the hypothesis that there

are less than that. On the technical level, these results are shown by using our approach of
CMON two ways. We prove that any better than

√
n-approximate OSP mechanism must

have the following structure: for a number of rounds, the mechanism must (i) separate, in its
implementation tree, largest and second largest value in the domain; (ii) assign nothing to
agents who have maximum value in the domain. The former property restricts the family of
implementation trees we can use, whilst the latter restricts the algorithmic output. Our lower
bound shows that there is nothing in this intersection. Our matching upper bounds need to
find both implementation tree and algorithm satisfying OSP and approximation guarantee.

IMain Theorem (informal). The tight approximation guarantee of OSP mechanisms that can
be guaranteed over all three-valued domains is

√
n. The OSP mechanisms use a descending

auction (to find the n− d
√
ne slowest machines) followed by an ascending auction (to find

the fastest machine(s)).

While the general idea of the implementation is that of a descending auction followed by
an ascending auction independently of the number of jobs, we need to tailor the design of
the mechanisms (namely, their ascending phase) according to the number of jobs to achieve
OSP and desired approximation simultaneously. This proves two important points. On one
hand, the design of OSP mechanisms is challenging yet interesting as one needs to carefully
balance algorithms and their implementation. On the other hand, it proves why fixing the
implementation, as in DA auctions, might be the wrong choice. It is indeed straightforward
to extend and adapt our analysis in order to prove that any ascending and descending (thus
including DA) auction has an approximation of n.

ESA 2019
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We remark that our mechanisms are, to the best of our knowledge, the first examples of
OSP mechanisms with money that do not follow a clock or a posted price auction format
(other mechanisms that do not follow these formats have been proposed only for setting
without money, namely matching and voting [23, 2, 5, 27]). One of the main messages
of our work is exactly that it is possible to combine ascending and descending phases for
the implementation trees of algorithms with good approximation guarantees and obtain
OSP mechanisms.

Related Works. The notion of OSP mechanism has been introduced recently by [23] and
has received a lot of attention in the community. As mentioned above, the class of deferred-
acceptance auctions [26] yields OSP mechanisms since every such auction can be implemented
as a (suitable) ascending price auction. One of the main advantages of DA auctions is that the
construction boils down to the problem of defining a suitable scoring function for the bidders
[26]. [9] studied the approximability of DA auctions for several optimization problems, and
showed that in some cases DA auctions must have an approximation guarantee significantly
worse than the best strategyproof mechanism; [9, 19] provide a number of positive results
where DA auctions are instead optimal. [15] studies also DA auction for the job scheduling
problem: they design an approximate mechanism, but for a different objective function,
namely the weighted completion time.

Several works have focused on understanding better the notion of OSP mechanism, and
studying settings without money, namely matching and voting. In particular [2, 5, 24] mainly
attempt to simplify the notion, whilst [27, 31, 14] define, among other results, stronger and
weaker versions of OSP. A couple of recent papers related to ours are [12], where among
other settings the authors consider OSP mechanisms with money for machine scheduling,
and [21], where this problem is studied in the setting without money. In particular, the lower
bound for machine scheduling in [12] is constant and uses a particular definition of payments,
while here we prove a

√
n lower bound that follows from the CMON characterization of OSP;

their upper bound instead uses monitoring, a model wherein agents pay their reported costs
whenever they overbid. Monitoring is also used in [21] to prove an encouraging bound for
OSP mechanisms without money and a single task; the bound (asymptotically) matches the
performances of strategyproof mechanisms.

Research in algorithmic mechanism design [17, 7] has suggested to focus on “simple”
mechanisms to deal with bounded rationality. For example, posted-price mechanisms received
huge attention very recently and have been applied to many different settings [4, 11, 1, 10, 8].
In these mechanisms one’s own bid is immaterial for the price paid to get some goods of
interest – this should immediately suggest that trying to play the mechanism is worthless
no matter the cognitive abilities of the agents. However, posted price mechanisms do not
fully capture the concept of simple mechanisms: e.g., ascending price auctions are not posted
price mechanisms and still turn out to be “simple” to play and understand.

CMON is a widely used technique in mechanism design that dates back to [28] – a
general treatment is given in [25, 16]. This method has been used quite extensively to prove
strategyproofness of mechanisms in the classical setting, cf., e.g., [6, 22] and when some form
of verification can be adopted, see [30, 20]. Particularly relevant for our work is the research
which shows that in order to establish strategyproofness it is sufficient to study cycles of
length 2 as in [29].
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2 Preliminaries

A mechanism design setting is defined by a set of n selfish agents and a set of allowed
outcomes S. Each agent i has a type ti ∈ Di, where Di is called the domain of i. The type
ti is usually assumed to be private knowledge of agent i. We will let ti(X) ∈ R denote the
cost of agent i with type ti for the outcome X ∈ S. In our application, we will assume
that costs are non-negative; however, our framework and characterization hold in general no
matter the sign.

A mechanism is a process for selecting an outcome X ∈ S. To this aim, the mechanism
interacts with agents. Specifically, agent i is observed to take actions (e.g., saying yes/no)
that may depend on her presumed type bi ∈ Di (e.g., saying yes could “signal” that the
presumed type has some properties that bi enjoys). We say that agent i takes actions
compatible with (or according to) bi to stress this. We highlight that the presumed type bi
can be different from the real type ti.

For a mechanismM, we letM(b) denote the outcome returned by the mechanism when
agents take actions according to their presumed types b = (b1, . . . , bn). In our context, this
outcome is given by a pair (f,p), where f = f(b) (termed social choice function or, simply,
algorithm) maps the actions taken by the agents according to b (i.e., each agent i takes actions
compatible with bi) to a feasible solution in S, and p = p(b) = (p1(b), . . . , pn(b)) ∈ Rn

maps the actions taken by the agents according to b to payments from the mechanism
to the agents.

Each selfish agent i is equipped with a utility function ui : Di × S → R. For ti ∈ Di and
for an outcome X ∈ S returned by a mechanism M, ui(ti, X) is the utility that agent i
has for outcome X when her type is ti. We define utility as a quasi-linear combination of
payments and costs, i.e., ui(ti,M(bi,b−i)) = pi(bi,b−i)− ti(f(bi,b−i)).

A mechanismM is strategy-proof if, for each i, the utility of player i is maximized by
playing the extensive-form implementation of M according to her true type ti. That is,
in a strategy-proof mechanism the actions taken according to the true type are dominant
for each agent.

For our application, we will be focusing on single-parameter settings, that is, the case in
which the private information of each bidder i is a single real number ti and ti(X) can be
expressed as tiwi(X) for some publicly known function wi. To simplify the notation, we will
write tifi(b) when we want to express the cost of a single-parameter agent i of type ti for
the output of social choice function f on input the actions corresponding to a bid vector b.

Obvious Strategyproofness. We now formally define the concept of obviously strategy-
proof deterministic mechanisms. This concept has been introduced in [23]. However, our
definition is built on the more accessible ones given by [2] and [12]. As shown in [5, 24], our
definition is equivalent to Li’s.1

Let us first formally model how a mechanism works. An extensive-form mechanism M is
defined by a directed tree T = (V,E), called the implementation tree, such that:

Every leaf ` of the tree is labeled with a possible outcome X(`) ∈ S of the mechanism;
Every internal vertex u ∈ V is labeled with an agent S(u) ∈ [n];

1 More in detail, our definition of implementation tree is equivalent to the concept of round-table mechanism
in [24]. Consequently, our definition of OSP is equivalent to the concept of SP-implementation through a
round table mechanism, that is proved to be equivalent to the original definition of OSP for deterministic
mechanisms. For a discussion of randomization for OSP mechanisms, we kindly refer the reader to [2, 13].

ESA 2019
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Every edge e = (u, v) ∈ E is labeled with a subset T (e) ⊆ D = ×iDi of type profiles such
that:

The subsets of profiles that label the edges outgoing from the same vertex u are disjoint,
i.e., for every triple of vertices u, v, v′ such that (u, v) ∈ E and (u, v′) ∈ E, we have
that T (u, v) ∩ T (u, v′) = ∅;
The union of the subsets of profiles that label the edges outgoing from a non-
root vertex u is equal to the subset of profiles that label the edge going in u, i.e.,⋃
v : (u,v)∈E T (u, v) = T (φ(u), u), where φ(u) is the parent of u in T ;

The union of the subsets of profiles that label the edges outgoing from the root vertex
r is equal to the set of all profiles, i.e.,

⋃
v : (r,v)∈E T (r, v) = D;

For every u, v such that (u, v) ∈ E, where u is not the root, and for every two profiles
b,b′ ∈ T (φ(u), u) such that bi = b′i, i = S(u), if b belongs to T (u, v), then b′ must
belong to T (u, v) also.

Roughly speaking, the tree represents the steps of the execution of the mechanism. As
long as the current visited vertex u is not a leaf, the mechanism interacts with the agent
S(u). Different edges outgoing from vertex u are used for modeling the different actions that
the agent S(u) can take during this interaction with the mechanism. In particular, each
possible action is assigned to an edge outgoing from u. As suggested above, the action that
agent i takes may depend on her presumed type bi ∈ Di. That is, different presumed types
may correspond to taking different actions, and thus to different edges. The label T (e) on
edge e = (u, v) then lists the type profiles that enable the agent S(u) to take those actions
that have been assigned to e. In other words, when the agent takes the actions assigned to
edge e, then the mechanism (and the other agents) can infer that the type profile must be
contained in T (e). The constraints on the edges’ label can be then explained as follows: first
we can safely assume that different actions must correspond to different type profiles (indeed,
if two different actions are enabled by the same profiles we can consider them as a single
action); second, we can safely assume that each action must correspond to at least one type
profile that has not been excluded yet by actions taken before node u was visited (otherwise,
we could have excluded this type profile earlier); third, we have that the action taken by
agent S(u) can only inform about her types and not about the type of the remaining agents.
The execution ends when we reach a leaf ` of the tree. In this case, the mechanism returns
the outcome that labels `.

Observe that, according to the definition above, for every profile b there is only one leaf
` = `(b) such that b belongs to T (φ(`), `). Similarly, to each leaf ` there is at least a profile
b that belongs to T (φ(`), `). For this reason we say thatM(b) = X(`). Moreover, for every
type profile b and every node u ∈ V , we say that b is compatible with u if b ∈ T (φ(u), u).
Finally, two profiles b, b′ are said to diverge at vertex u if there are two vertices v, v′ such
that (u, v) ∈ E, (u, v′) ∈ E and b ∈ T (u, v), whereas b′ ∈ T (u, v′).

For every node u in a mechanismM such that there are two profiles b,b′ that diverge at
u, we say that u is a divergent node, and i = S(u) the corresponding divergent agent. For
each agent i, we define the current domain at node u, denoted Di(u), such that Di(r) = Di

for the root r and Di(u) = ∪b∈T (φ(u),u)bi. In words, this is the set of types of i that are
compatible with the actions that i took during the execution of the mechanism until node
u is reached. Indeed, according to the definition, at each node u in which i diverges, M
partitions Di(u) in k subsets, where k is the number of children of u, and where for every
child v of u, Di(v) ⊂ Di(u) contains the types of bidder i compatible with the action that
she takes when interacting with the mechanism at node u.
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We are now ready to define obvious strategyproofness. An extensive-form mechanism
M is obviously strategy-proof (OSP) if for every agent i with real type ti, for every vertex
u such that i = S(u), for every b−i,b′−i (with b′−i not necessarily different from b−i), and
for every bi ∈ Di, with bi 6= ti, such that (ti,b−i) and (bi,b′−i) are compatible with u, but
diverge at u, it holds that ui(ti,M(ti,b−i)) ≥ ui(ti,M(bi,b′−i)). Roughly speaking, an
obviously strategy-proof mechanism requires that, at each time step agent i is asked to take a
decision that depends on her type, the worst utility that she can get if she behaves according
to her true type is at least the best utility achievable by behaving differently. We stress
that our definition does not restrict the alternative behavior to be consistent with a fixed
type. Indeed, as noted above, each leaf of the tree Tu rooted in u corresponds to a profile
b = (bi,b′−i) compatible with u: then, our definition implies that the utility of i in the leaves
where she plays truthfully is at least as much as the utility in every other leaf of Tu. Hence,
if a mechanism is obviously strategy-proof, then it is also strategy-proof.

We say that an extensive-form mechanism is trivial if for every vertex u ∈ V and for every
two type profiles b,b′, it holds that b and b′ do not diverge at u. That is, a mechanism is
trivial if it never requires agents to take actions that depend on their type. If a mechanism
is not trivial, then there is at least one divergent node. On the other hand, every execution
of a mechanism (i.e., every path from the root to a leaf in the mechanism implementation
tree) may go through at most

∑
i(|Di| − 1) divergent nodes, the upper bound being the case

in which at each divergent node u, the agent i = S(u) separates Di(u) in Di(u) \ {b} and
{b} for some b ∈ Di(u).

Machine Scheduling. Here, we are given a set of m identical jobs to execute and the n
agents control related machines. That is, agent i has a job-independent processing time ti
per unit of job (equivalently, an execution speed 1/ti that is independent from the actual
jobs). The social choice function f must choose a possible schedule f(b) = (f1(b), . . . , fn(b))
of jobs to the machines, where fi(b) denotes the job load assigned to machine i when
agents take actions according to b. The cost that agent i faces for the schedule f(b) is
ti(f(b)) = ti · fi(b). We focus on social choice functions f∗ minimizing the makespan, i.e.,
f∗(b) ∈ arg minx maxni=1 bi(x). We say that f is ρ-approximate if it returns a solution whose
cost is at most ρ times the optimum.

3 Cycle-monotonicity for OSP Mechanisms

We now show how to generalize the cycle-monotonicity technique to design OSP mechanisms.
Let us consider an extensive-form mechanismM = (f,p) with implementation tree T .

I Definition 1 (separating vertices). A vertex u in the implementation tree T is αβ-separating
for agent i if the following holds: Node u is labelled with i, i.e., i = S(u); there are
two profiles (α,a−i) and (β,b−i) which are compatible with u but diverge at u, where
a−i,b−i ∈ D−i(u) = ×j 6=iDj(u).

Note that there might exist several αβ-separating vertices for agent i as the agent may be
asked to separate α from β in different paths from the root to a leaf (but only once for
every such path).

The algorithmic characterization of OSP we provide herein is based on the following
observation.

I Observation 2. An extensive-form mechanism M = (f,p) with implementation tree
T is OSP if and only if for all i, for all α, β ∈ Di, α 6= β, for all vertices u that are
αβ-separating for i:

pi(β,b−i)− pi(α,a−i) ≤ α(f(β,b−i))− α(f(α,a−i)) for all a−i,b−i ∈ D−i(u) . (1)

ESA 2019
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We next restate these conditions in terms of suitable weighted graphs and their cycles.

I Definition 3 (OSP-graph). Let f be a social choice function and T be an implementation
tree. We define for every agent i, the OSP-graph OSP (f,T )

i as follows: There is a node for
each type profile in D, and a directed edge e = ((α,a−i), (β,b−i)) for every α, β ∈ Di, α 6= β,
and a−i,b−i ∈ D−i(u), where u is an αβ-separating vertex of T . The weight of the edge is
w(e) = α(f(β,b−i))− α(f(α,a−i)).

I Definition 4 (OSP CMON). We say that the OSP cycle monotonicity (OSP CMON)
property holds if, for all i, the graph OSP (f,T )

i does not have negative weight cycles. Moreover,
we say that the OSP two-cycle monotonicity (OSP 2CMON) holds if the same is true when
considering cycles of length two only, i.e., cycles with two edges only.

I Theorem 5. A mechanism with implementation tree T is an OSP mechanism for a social
function f on finite domains if and only if OSP CMON holds.

The proof of the theorem follow standard arguments used for the classical definition
of strategyproofness. For our application, it is useful to recast the OSP CMON and OSP
2CMON for the case of single-parameter agents.

I Proposition 6. For single-parameter settings, OSP 2CMON is equivalent to the following
condition. For every i, for any α, β ∈ Di with α < β, for any αβ-separating node u of T ,
with i = S(u), it holds

fi(α,a−i) ≥ fi(β,b−i) for all a−i,b−i ∈ D−i(u) . (2)

Warm-up: Using OSP CMON to Bound Approximation Guarantee. We next give a
simple lower bound for the machine scheduling problem. This simple result gives a taster of
the power of OSP CMON as a tool to answer algorithmic questions about OSP.

I Proposition 7. For the machine scheduling problem, no OSP mechanism can be better than
2-approximate, even for two jobs and two agents with three-value domains Di = {L,M,H},
where L < M < H, with M > 3L and H > 3M .

Proof. Assume by contradiction that there is an OSP mechanism M that is better than
2-approximate, and let T be its implementation tree. Since M > 3L and H > 3M , every
trivial OSP mechanism must have approximation guarantee at least 2. HenceM must be
non trivial. Let i be the first divergent agent ofM implemented with T , and let u be the
node where this agent diverges (such an agent exists because the mechanism is not trivial).
We show that this mechanism cannot satisfy OSP 2CMON, thus a contradiction.

If i diverges at u on M and H, then consider b = (β,b−i) = (H,H) and a = (α,a−i) =
(M,L). Since the mechanism is better than 2-approximate, it must satisfy fi(β,b−i) = 1
and fi(α,a−i) = 0. Note that this violates the OSP 2CMON condition (Equation 2 in
Proposition 6): Since i is the first divergent agent, and u is the corresponding node, the set
D−i(u) consists of all types in the domain of the other agent, and therefore H,L ∈ D−i(u)
as required to invoke (2) with our choice b−i = H and a−i = L. If i diverges at u on L and
M , then consider a = (α,a−i) = (L,L) and b = (β,b−i) = (M,H). Since the mechanism is
better than 2-approximate, it must satisfy fi(α,a−i) = 1 and fi(β,b−i) = 2. Similarly to
the previous case, this violates the OSP 2CMON condition (2). J

Note that for this bound we require the domain to have at least three different values; we
will in fact prove in Section 4 that we can design an optimal OSP mechanism for scheduling
related machines when Di = {Li, Hi} for every i. We will also show how to use a more
involved argument to prove a substantially higher (and tight) bound of

√
n.



D. Ferraioli, A. Meier, P. Penna, and C. Ventre 46:9

Two-cycles are Sufficient for Single-parameter Domains of Size at most Three. Two-
cycle monotonicity is a property easier to work with than CMON. We will now observe
that, for single parameter settings, these properties turns out to be equivalent if and only if
Di = {Li,Mi, Hi} for each i, with Li ≤Mi ≤ Hi.

I Theorem 8. Consider a single-parameter setting where |Di| ≤ 3 for each agent i. A mech-
anism with implementation tree T and social choice function f is OSP iff OSP 2CMON holds.

We next show that this result is essentially tight in the sense that OSP 2CMON does not
imply OSP CMON (and thus OSP-ness) already in four-value domains.

I Theorem 9. There exists a mechanism for which OSP 2CMON holds for every agent, but
there is an agent i for which the mechanism does not satisfy OSP CMON, whenever |Di| ≥ 4.
The claim holds even for a single-item auction setting and Dj = D for every j 6= i.

4 Scheduling Related Machines

In this section, we show how the domain structure impacts on the performance guarantee
of OSP mechanisms, for the problem of scheduling related machines. Roughly speaking,
the problem is easy for two-value domains, while it becomes difficult already for three-value
domains and two jobs.

We can prove that an OSP optimal mechanism exists for the case in which each agent’s
domain has size two. Specifically, we have the following theorem.

I Theorem 10. For the machine scheduling problem, there exists an optimal polynomial-time
OSP mechanism for any number of agents with two-value domains Di = {Li, Hi}.

Lower Bound for Three-value Domain

We now show how to strengthen Proposition 7 and prove a
√
n-inapproximability result for

three-value domains.

I Theorem 11. For the machine scheduling problem, no OSP mechanism can be better than√
n-approximate. This also holds for three-value domains Di = {L,M,H}.

For the proof, we consider m = n = c2, for some c > 1, and a three-value domain Di =
{L,M,H} such that M ≥ m · L and H ≥ m

√
n ·M . Observe that, in such domains, every

trivial mechanism must have an approximation ratio not lower than
√
n. Consider then a

non-trivial mechanismM and let T be its implementation tree. Let us rename the agents
as follows: Agent 1 is the 1st agent that diverges in T ; since the mechanism is not trivial
agent 1 exists. We now call agent 2, the 2nd distinct agent that diverges in the subtree of
T defined by agent 1 taking an action compatible with type H; if no agent diverges in this
subtree of T we simply call 2 an arbitrary agent different from 1. More generally, agent i
is the ith distinct agent that diverges, if any, in the subtree of T that corresponds to the
case that the actions previously taken by agents are compatible with their type being H.
As above, if no agent diverges in the subtree of interest, we just let i denote an arbitrary
agent different from 1, 2, . . . , i− 1. We denote with ui the node in which i first diverges in
the subtree in which all the other agents have taken actions compatible with H; if i does not
diverge (i.e., got her id arbitrarily) we denote with ui a dummy node in which we will say
that i does not diverge and i takes an action compatible with every type in Di. We then
have the following lemma.
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I Lemma 12. Any OSP mechanismM which is k-approximate, with k <
√
n, must satisfy:

1. For every i ≤ n−
√
n+ 1, if agent i diverges at node ui, it must diverge on M and H.

2. For every i ≤ n−
√
n, if agent i diverges at node ui and takes an action compatible with

her type being H, thenM does not assign any job to i, regardless of the actions taken by
the other agents.

Proof. Let us first prove part (1). Suppose that there is i ≤ n−
√
n+ 1 such that at node ui

i diverges on L and {M,H}. Consider the type profile x such that xi = M , and xj = H for
every j 6= i. Observe that x is compatible with node ui. The optimal allocation for the type
profile x assigns all jobs to machine i, with cost OPT (x) = mM . SinceM is k-approximate,
then it also assigns all jobs to machine i. Indeed, if a job is assigned to a machine j 6= i, then
the cost of the mechanism would be at least H ≥

√
n ·mM > k ·OPT (x), that contradicts

the approximation bound.
Consider now the profile y such that yi = L, yj = H for every j < i, and yj = L for

every j > i. Observe that also y is compatible with node ui. It is not hard to see that
OPT (y) ≤

⌈
m

n−i+1

⌉
·L. SinceM is k-approximate, then it cannot assign all jobs to machine

i. Indeed, in this case the cost of the mechanism contradicts the approximation bound,
since it would be mL ≥

√
n
⌈

m
n−i+1

⌉
L > k · OPT (y), where we used that

√
n
⌈

m
n−i+1

⌉
≤

√
n
⌈
m√
n

⌉
=
√
n
⌈
n√
n

⌉
=
√
n ·
√
n = n = m.

Hence, we have that if i takes actions compatible with M , then there exists a type profile
compatible with ui such that i receives n jobs, whereas, if i takes a different action compatible
with a lower type, then there exists a type profile compatible with ui such that i receives
less than n jobs. However, this contradicts the OSP CMON property.

Let us now prove part (2). Suppose that there is i ≤ n−
√
n and x−i compatible with ui

such that if i takes an action compatible with type H, thenM assigns at least a job to i.
According to part (1), machine i diverges at node ui on H and M .

Consider then the profile y such that yi = M , yj = H for j < i, and yj = L for j > i.
It is easy to see that the optimal allocation has cost OPT (y) =

⌈
m
n−i

⌉
· L. Since M is

k-approximate, then it does not assign any job to machine i. Otherwise, the mechanism con-
tradicts the approximation bound since his cost would be at least M ≥ mL ≥

√
n
⌈
m
n−i

⌉
L >

k ·OPT (x), where we used that
√
n
⌈
m
n−i

⌉
≤
√
n
⌈
m√
n

⌉
=
√
n
⌈
n√
n

⌉
=
√
n ·
√
n = n = m.

Hence, we have that if i takes actions compatible with H, then there exists a type
profile compatible with ui such that i receives one job, whereas, if i takes a different action
compatible with a lower type, then there exists a type profile compatible with ui such that i
receives zero jobs. However, this contradicts the OSP CMON property. J

Proof of Theorem 11. Suppose that there is an OSP k-approximate mechanismM for some
k <
√
n, thus implying that the mechanism is not trivial.

Assume first that for all i ≤ n−
√
n agent i diverges at ui. Consider x such that xi = H

for every i. Observe that x is compatible with ui for every i. The optimal allocation consists
in assigning a job to each machine, and has cost OPT (x) = H. According to Part (2) of
Lemma 12, if machines take actions compatible with x, then the mechanismM does not
assign any job to machine i, for every i ≤ n −

√
n. Hence, the best outcome thatM can

return for x consists in assigning
√
n jobs to each of the other

√
n machines. Therefore, the

cost ofM is at least
√
nH > kOPT (x), which contradicts the approximation ratio ofM.

Consider now the case that there is 1 < i ≤ n−
√
n that does not diverge at ui (since the

mechanism is not trivial i > 1). This means that all the machines j ≥ i will not diverge at ui;
let S denote this set of machines. Note that the n− i+ 1 ≥

√
n+ 1 machines in S will have
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the same outcome no matter their types when the machines not in S have type H; in other
words, any profile x where xj = H for j 6∈ S is compatible with ui. Consider x such that
xj = H for j 6∈ S and xj = L otherwise. Since H ≥ n5/2L, to guarantee approximation k,
the mechanism must return a solution for x which keeps the machines not in S empty; then
there is a j∗ ∈ S which is allocated at least

⌈
n√
n+1

⌉
jobs. Consider now y where yj = H for

j 6∈ S \ {j∗} and yj = L otherwise. The mechanism must give in output the same allocation
given in output for x since it cannot distinguish x from y. However, giving that many jobs
to machine j∗ contradicts the approximation guarantee on y. J

The arguments above can be used to prove that ascending and descending auctions do
not help in this setting. Specifically, they cannot return an approximation better than n.

Upper bound for Three-value Domain

We describe our mechanisms for a generic domain, as this turns out to be useful in the
analysis. In what follows, the usual bold notation x denotes vectors of n entries, while a
“hat-bold” notation x̂ denotes vectors of d

√
ne entries only.

A Mechanism for Many Jobs (Large m). We now introduce mechanismMmany whose
approximation ratio approaches d

√
ne, whenever m � d

√
ne. The mechanism consists of

a descending Phase (Algorithm 1) followed by an ascending Phase (Algorithm 2). The
descending phase simply queries the agents to identify (and forget about) the n−

√
n slowest

machines; the ascending phase instead identifies the fastest machine and then computes the
optimal solution to a vector where the types of the remaining

√
n− 1 machines is set to the

best type of the slow machines found in the descending phase.

Algorithm 1 Descending Phase (for both mechanismsMmany andMfew).

1 Set A = [n], and ti = max{d ∈ Di}
2 while |A| >

⌈√
n
⌉

do
3 Set p = maxa∈A{ta} and i = min{a ∈ A : ta = p}
4 Ask machine i if her type is equal to p
5 if yes then remove i from A

6 else set ti = max{t ∈ Di : t < p}

I Proposition 13. MechanismMmany is OSP for any three-value domain Di = {Li,Mi, Hi}.

Proof. We prove thatMmany satisfies OSP 2CMON. The claim then follows from Theorem 8.
Specifically, for each machine i, for each node u in which the mechanism makes a query to i,
for each pair of type profiles x,y compatible with u such that i diverges at u between xi and
yi, we need to prove that if xi > yi, then fi(Mmany(x)) ≤ fi(Mmany(y)).

Let us first consider a node u corresponding to the descending phase of the mechanism.
In this case, xi = p, where p is as at node u. Moreover, in all profiles compatible with u
there are at least d

√
ne machines that either have a type lower than p, or they have type

p but are queried after i. However, for every x−i satisfying this property, we have that
fi(Mmany(x)) = 0, which implies that these two-cycles have non-negative weight.

Suppose now that node u corresponds to the ascending phase of the mechanism. In this
case, yi = p, where p is as at node u. Observe that for every y−i compatible with node u,
fi(Mmany(y)) = f?i (yi, ẑ−i), where f?i (yi, ẑ−i) is the number of jobs assigned to machine
i by the optimal outcome on input profile (yi, ˆz)−i, ẑ−i being such that ẑj = maxk∈A tk
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for every j ∈ A \ {i}. Observe that for every x compatible with u, it must be the case
that xj ≥ yi for every j ∈ A. Hence, we can distinguish two cases: if minj xj = xi, then
fi(Mmany(x)) = f?i (xi, ẑ−i) ≤ f?i (yi, ẑ−i) = fi(Mmany(y)); if instead minj xj = xk, for
some k 6= i, then fi(Mmany(x)) = f?i (xk, ẑ−k) ≤ f?k (xk, ẑ−k) ≤ f?i (yi, ẑ−i) = fi(Mmany(y)),
where we used that ẑ−k = ẑ−i and the inequalities follow since: (i) in the optimal outcome
the fastest machine must receive at least as many jobs as slower machines; (ii) the optimal
outcome is monotone, (i.e., given the speeds of other machines, the number of jobs assigned
to machine i decreases as its speeds decreases). J

Algorithm 2 Ascending Phase
(Mmany).

1 Set si = min {d ∈ Di}
2 while |A| > 0 do
3 Set p = mina∈A{sa} and

i = min{a ∈ A : sa = p}
4 Ask machine i if her type is p
5 if yes then
6 Let ẑ be s.t. ẑi = p and

ẑj = mink /∈A tk for j ∈ A, j 6= i

7 Let f?(ẑ) = (f?
i (ẑ))i∈A be the

optimal assignment for profile ẑ
8 Assign f?

j (ẑ) jobs to each j ∈ A
9 Set A = ∅

10 else set si = min{d ∈ Di : d > p}

Algorithm 3 Ascending Phase
(Mfew).

1 Set ta = mini {d ∈ Di} and C = m

2 while |A| > 0 do
3 Set q = mina∈A{ta} and

i = min{a ∈ A : ta = q}
4 Ask machine i if her type is q
5 if yes then
6 Let ζ = dC/|A|e
7 Let z be the largest integer in

[ζ, C] such that z · q ≤
⌈√

n
⌉
· p

8 Assign z jobs to i
9 Set C = C − z

10 Remove i from A

11 else set ti = min{d ∈ Di : d > p}

The next theorem bounds the approximation ratio of the mechanism

I Theorem 14. MechanismMmany is (d
√
ne+ 1)-approximate for m > d

√
ne2.

A Mechanism for Few Jobs (Small m). We now introduce a mechanism Mfew which
is OSP and d

√
ne-approximate whenever m ≤ d

√
ne2. Like Mmany, Mfew consists of a

descending phase followed by an ascending phase. The descending phase is exactly the same
(Algorithm 1) with the difference that the ascending phase (Algorithm 3) does not need the
information on the type of the machines that are not in A at that point.

We show next thatMfew is well defined under our assumption on m, is OSP and has
approximation d

√
ne.

I Lemma 15. If m ≤ d
√
ne2 then there exists a z in line 7 of Algorithm 3.

Proof. We next show that it never occurs during the ascending phase that ζ · q > d
√
ne · p.

Indeed, for the first machine to reveal the type during the ascending phase, we have that
|P0| = m ≤ d

√
ne2, and, thus ζ ≤ d

√
ne. Hence, ζ · q ≤ d

√
ne · p since q ≤ p. If a set

Q ⊂ A of machines has previously revealed the type during the ascending phase, and
the execution of this phase has not been stopped, then these machines received at least
m′ = b|Q|m/|A|c+ min{|Q|,m mod |A|} jobs. Then |P0| = m−m′ ≤ (|A|− |Q|) d

√
ne, and

thus ζ ≤ d
√
ne, and, since q ≤ p, ζ · q ≤ d

√
ne · p. J

I Proposition 16. MechanismMfew is OSP for three-value domains Di = {Li,Mi, Hi}.
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Proof. We prove that Mmany satisfies the OSP 2CMON. The claim then follows from
Theorem 8. Specifically, for each machine i, for each node u in which the mechanism makes
a query to i, for each pair of type profiles x,y compatible with u such that xi and yi diverge
at u, we need to prove that if xi > yi, then fi(Mfew(x)) ≤ fi(Mfew(y)).

Let us first consider a node u corresponding to the descending phase of the mechanism.
In this case, xi = p, where p is as at node u. Moreover, in all profiles compatible with u
there are at least d

√
ne machines that either have a type lower than p, or they have type

p but they are queried after i. Hence, for every x−i satisfying this property, we have that
fi(Mfew(x)) = 0, that implies the claim.

Suppose now that node u corresponds to the ascending phase of the mechanism. Let
C(u), A(u), p(u) and q(u) be the value of C, A, p and q at that node. Observe that for
every profile compatible with u, the type of machines not in A(u) is fixed, whereas for every
machine in A(u), the type is at least q(u). Moreover, yi = q(u). Hence, fi(Mfew(y)) is the
largest integer z ≤ C(u) such that z · yi ≤ d

√
ne · p(u). On the other side, for every xi > yi,

fi(Mfew(x)) is at most the largest integer z′ ≤ C(u) such that z′ · xi ≤ d
√
ne · p(u). Since

xi > yi, then z′ ≤ z, and the lemma follows. J

I Proposition 17. MechanismMfew is d
√
ne-approximate.

5 Conclusions

We have focused on OSP mechanisms, a compelling and needed notion of incentive compatibil-
ity for bounded rationality; [23] proves that OSP is the notion that captures strategyproofness
for agents who lack contingent reasoning skills. It is thus paramount to understand the
limitations and the power of these mechanisms.

We have introduced a new technique to look at OSP mechanisms, and shown its power
by giving tight results on the approximation for a paradigmatic problem in the area. Our
contribution highlights how there are two dimensions, algorithms and their implementation,
to the design of these mechanisms. The interplay between these dimensions is encapsulated by
OSP CMON and plays a central role, as shown by the limitations of fixing the implementation
beforehand (as in DA auctions or direct revelation mechanisms).

Furthermore, the significance of the technique can be seen by comparing the previously
known lower bounds on the approximation guarantee of OSP mechanisms given in [12, 5].
These results focus on the first divergent agent only and bound the strategyproof payments
for the identified instances in order to understand and limit the behavior of the algorithm.
As a result, their bounds are small constants (2 for machine scheduling in [12] and 1 + ε, for
combinatorial auctions with additive bidders in [5]).

We leave a number of open problems. A technical one is about the domain size and
the difference between 2-cycles and longer ones; to what extent adding an extra type in
the domain can deteriorate the approximation ratio of OSP mechanisms? A second, more
conceptual question, is about dealing with multi-parameter agents. Even with the machinery
of OSP CMON, it does not seem immediate to characterize the implementation trees for this
kind of agents as there is not a concept of relative ordering of types. Hence, the common
pattern of OSP mechanisms, where at each node of the implementation tree an extreme of
the current domain is separated from the rest, cannot be adopted.
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